

INTRODUCTION TO

CRYPTOGRAPHY
WITH JAVA™ APPLETS

D AV I D B I S H O P
Grinnell College

Copyright © 2003 by Jones and Bartlett Publishers, Inc.

Cover image © Mark Tomalty / Masterfile

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in
any form, electronic or mechanical, including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Bishop, David 1963-
Introduction to cryptography with Java applets / David Bishop.

p. cm.
Includes index.
ISBN 0-7637-2207-3

1. Computer security. 2. Cryptography. 3. Java (Computer program language) I. Title.

QA76.9.A25 B565 2003
005.8—dc21

2002034167

Editor-in-Chief, College: J. Michael Stranz
Production Manager: Amy Rose
Editorial Assistant: Theresa DiDonato
Associate Production Editor: Karen C. Ferreira
Senior Marketing Manager: Nathan J. Schultz
Production Assistant: Jenny L. McIsaac
V.P., Manufacturing and Inventory Control: Therese Bräuer
Cover Design: Night and Day Design
Interior Design: Anne Flanagan
Illustrations: Dartmouth Publishing
Composition: Northeast Compositors
Printing and Binding: Malloy Incorporated
Cover Printing: Malloy Incorporated

Printed in the United States of America
06 05 04 03 02 10 9 8 7 6 5 4 3 2 1

World Headquarters
Jones and Bartlett Publishers
40 Tall Pine Drive
Sudbury, MA 01776
978-443-5000
info@jbpub.com
www.jbpub.com

Jones and Bartlett Publishers Canada
2406 Nikanna Road
Mississauga, ON L5C 2W6
CANADA

Jones and Bartlett Publishers
International

Barb House, Barb Mews
London W6 7PA
UK

4 G & Gjr

Form is exactly emptiness, emptiness exactly form;
so it is with sensation, perception, mental reaction, and consciousness.
All things are essentially empty, not born, not destroyed;
not stained, not pure; without loss, without gain.
Therefore in emptiness there is no form,
no sensation, perception, mental reaction, or consciousness;
no eye, ear, nose, tongue, body, mind,
no color, sound, smell, taste, touch, object of thought;
no seeing and so on to no thinking;
no ignorance, and no end to ignorance;
no old age and death, no end to old age and death,
no anguish, cause of anguish, cessation, path;
no wisdom and no attainment.
Since there is nothing to attain, the Bodhisattva lives thus:
with no hindrance of mind; no hindrance, and hence, no fear;
far beyond deluded thought,
RIGHT HERE IS NIRVANA.

—From The Great Prajna–Paramita Heart Sutra

I saw myself seeing Nirvana,
but I was there, blocking my view;
“I see only me,” I said to myself,
to which I replied, “Me too.”

—David Bishop

Preface

Cryptography is the art of secret writing. It involves transforming information into
apparently unintelligible garbage so that unwanted eyes will be unable to comprehend

it. This transformation, however, must be done so that it is reversible, so that individuals
intended to view the information may do so. This is the traditional use of cryptography.

I agree with the philosophy that it is wiser to publish your encryption methods than to
try to keep them secret. Thus, this book and others like it exist. Only government agencies
endeavor to keep their encryption methods hidden. It is generally thought that publishing
your ciphers exposes them to an army of brilliant people who will take great joy in point-
ing out any weaknesses they have. This gives the developer a chance to correct these weak-
nesses. On the other hand, trying to protect your methods from someone who really wants
to know what they are probably won’t work. A few bribes here and there will take care of
that, and once they know your algorithms, they will pay very intelligent people to find weak-
nesses to exploit. The difference, of course, is that you won’t know that this has happened,
nor that the precious information you are sending with this cryptosystem is being moni-
tored.

A great deal of modern cryptography depends upon the clever manipulation of huge inte-
gers. Thus, both number theory and abstract algebra play a large role in contemporary meth-
ods of hiding information. In many respects, Java is a pioneer in computer languages, with
system security one of its primary missions. Java provides a BigInteger class, and through
the use of this class, one may write cryptographic routines unbreakable by even the fastest
supercomputers in the world. This will not change in the near future, nor probably even the
distant future. The solution to modern cryptanalysis is not more powerful hardware, but more
powerful mathematics, for modern cryptosystems depend on the intractability of certain
mathematical problems.

Java already has security classes defined for it; they are in a package consisting of var-
ious abstract classes and interfaces, like Cipher, Message, and so on. This book does not
cover these; rather, the emphasis is in learning the mathematical theory of cryptography, and
writing algorithms “from the ground up” to implement the theory. For an excellent expo-
sition of Java security providers and the Java security classes, one should consult Knudsen’s
book, Java Cryptography by O’Reilly.

v

This book is intended for undergraduate students taking a first course in cryptography.
I wrote it with both the mathematical theory and the practice of writing cryptographic algo-
rithms in mind. The chapters present the number theory required, and, in most cases, cryp-
tosystems are presented as soon as the material required to understand them has been
completed. No prior knowledge of number theory is necessary, though you should know
how to use matrices, and should be familiar with the concept of mathematical induction, and
other methods of proof. There are many math exercises for you, and I believe this is nec-
essary to deepen one’s understanding of cryptography. A working knowledge of Java is
assumed. You should have little trouble programming cryptographic algorithms in Java once
the mathematics is understood. We begin the cryptographic programming “from the ground
up.” For example, we will first develop our own large integer class in order to gain a deeper
appreciation of the challenges involved in such construction.

With Java, one may construct secret key cryptographic systems or public key schemes.
The concept of secret key cryptography is the traditional view, where both the encryption
key and the decryption key must be kept secret, or the messages will be compromised.
Secret key cryptography is often said to involve only one key (often it does), because either
the encryption key or decryption key is easily obtainable from the other. With public key
cryptography, each user generates his or her own public key, which he makes known to
anyone, and a private key, which he keeps to himself. Anyone knowing some individual’s
public key can encrypt and send messages to that person, but only the intended recipient can
decrypt it with the private decryption key. It is interesting to note that knowing the public
encryption key is of almost no help at all in finding the decryption key.

There are many other aspects of cryptography that Java may also be used to implement;
for example:

Signing Messages. A problem with public key cryptosystems is knowing whether or not
someone who has sent a message actually is the person they claim to be. The concept of
signing is a technique the sender uses so that the message is known to have come from her.
This is simply one of various methods used to authenticate people.

Key Agreement. Since public key encryption and decryption tends to execute more slowly
than secret key systems, public key systems are often used just to establish secret keys,
which are then used in message exchange using a quicker method of encryption and decryp-
tion.

Database Enciphering. We can use cryptography to encipher entire databases in such a
way that individuals can recover certain files or records without giving them access to the
entire database.

Shadows. This is a method of enciphering highly sensitive information that can be recon-
structed only with the combination of a certain minimum number of keys or shadows (as
they are more commonly known) assigned to various individuals.

vi Preface

Hashes or Message Digests. A message digest is a special marker sent referencing a
message. It is used to verify that the message is authentic. Messages, like people, are authen-
ticated using various techniques.

Generating Random Numbers. Since computers are designed to operate in a completely
deterministic fashion, they actually have a very difficult time producing true random num-
bers. Many of the same mathematical transformations that are used to disguise data are
also used to produce “pseudorandom” sequences of numbers.

As you can see, the world of cryptography has many faces. I hope everyone who reads
this will come to enjoy the beauty in all of them.

About The Applets
Since the Internet has swept across the face of the Earth, penetrating homes, businesses,
and classrooms, people have been trying to figure out how to use it in a way that best suits
them. The modern Internet streams digital video, audio, photos, and text through high-
speed connections. Since the receiving device is usually a computer, even more sophisti-
cated messages can be sent; for example, programs can be downloaded and run live within
a Web page. One can even run programs on a server thousands of miles away, and have the
output sent to the receiver. Via the connection of multiple computers storing myriad types
of data, one can view live maps, weather information, government forms, and so on. One
can interact with these other machines by the simple click of a mouse.

The impact of the Internet is highly visible in schools. Never have individuals had such
easy access to materials for learning, and the tools available now go far beyond text, dia-
grams, and footnotes. This book, in particular, uses an easily accessible method to demon-
strate its concepts: Java applets. Applets are programs that run within a Web page, and
with a few restrictions, behave like regular windowed applications with buttons, text fields,
check boxes, and so on.

What makes applets different is that these programs are referenced from an HTML doc-
ument, and are downloaded and run automatically through the Internet connection. The
user simply goes to a Web page, and the program pops up and starts running. Contrast this
to users downloading programs the old-fashioned way:

• Download the source code.

• Obtain a compiler for the language the program is written in (this step is often difficult
and expensive).

• Compile the program(s).

• If the programs compile (often not the case), you can now finally run them.

Anyone with the time, patience, and experience for all this will have a wonderful time
plodding through all these steps. The rest of us want results now, and with this text, we have
it. To access the applets in the book, go to the book’s Web site:

http://computerscience.jbpub.com/cryptography

Preface vii

Here you will see links to all of the following course resources:

• The applets

• Sample data files

• Program files

• Instructor’s manual

The applet names begin with “Test,” and the HTML document associated with each
applet will have a name something like “TestSomethingApplet.html”. By clicking on such
a document, you invoke, download, and run some applet. For example, by selecting Test-
DiscreteLogApplet.html, an html document is brought up, which immediately references an
applet on the server. In this case, the applet TestDiscreteLogApplet.class is requested, down-
loaded, and run within the browser window on your computer.

viii Preface

You always invoke the applet by selecting its associated HTML document.

Program Files
If you wish to view the Java source code for the applets or any of the other classes in the
text, select the Program Files link. We have included on the next page an example of the
source code for an applet that demonstrates a block affine cipher in “TestBlockAffine-
CipherApplet.java”.

Preface ix

Sample Data Files
Because cryptography often involves manipulating very large numbers, there are examples
in the text that incorporate them. These examples are also stored on the book’s Web site.
Click on the Sample Data Files link to view them. By copying these files and pasting the
large numbers into a math computation engine, you can verify the results claimed in the
book.

Instructor’s Manual and Resources
Instructors of a course using this text have access to a manual that provides solutions to the
more difficult exercises in the text. There are also programs written just for instructors that
can be used to generate additional exercises. Permission must be obtained to use this por-
tion of the site. Please contact your publisher’s representative at 1-800-832-0034 for your
username and password.

x Preface

A Word of Thanks
I would like to extend my sincere thanks to Charles J. Colbourn of Arizona State Univer-
sity and K. T. Arasu of Wright State University, who reviewed this book in its early stages.
Their insightful comments and suggestions were of great value, and I appreciate the time
and energy they put in to their reviews.

To You, THE READER
I hope you have as much fun reading this book as I had writing it, and I SINCERELY hope
you use the many applets provided for you online. If you are a student, this goes double for
you, and if you are a teacher, quadruple. Without the applets, this book is just another crypto
book, but with them, IT’S AN ADVENTURE!

HAVE FUN!

Preface xi

Contents

Chapter 1: A History of Cryptography 1

1.1 Codes 2
1.2 Monoalphabetic Substitution Ciphers 3
1.3 Frequency Analysis on Caesar Ciphers 4
1.4 Frequency Analysis on Monoalphabetic Substitution Ciphers 7
1.5 Polyalphabetic Substitution Ciphers 8
1.6 The Vigenere Cipher and Code Wheels 10
1.7 Breaking Simple Vigenere Ciphers 11
1.8 The Kaisiski Method of Determining Key Length 12
1.9 The Full Vigenere Cipher 14
1.10 The Auto-Key Vigenere Cipher 16
1.11 The Running Key Vigenere Cipher 17
1.12 Breaking Auto-Key and Running Key Vigenere Ciphers 18
1.13 The One-Time Pad 18
1.14 Transposition Ciphers 19
1.15 Polygram Substitution Ciphers 20
1.16 The Playfair Cipher 20
1.17 Breaking Simple Polygram Ciphers 23
1.18 The Jefferson Cylinder 23
1.19 Homophonic Substitution Ciphers 24
1.20 Combination Substitution/Transposition Ciphers 26

Exercises 28

Chapter 2: Large Integer Computing 33

2.1 Constructors 34
2.2 Comparison Methods 38
2.3 Arithmetic Methods 41
2.4 The Java BigInteger Class 51
2.5 Constructors 51

xiii

2.6 Methods 54
Exercises 62

Chapter 3: The Integers 65

3.1 The Division Algorithm 66
3.2 The Euclidean Algorithm 77
3.3 The Fundamental Theorem of Arithmetic 82

Exercises 86

Chapter 4: Linear Diophantine Equations and Linear Congruences 89

4.1 Linear Diophantine Equations 89
4.2 Linear Congruences 92
4.3 Modular Inverses 98

Exercises 100

Chapter 5: Linear Ciphers 105

5.1 The Caesar Cipher 105
5.2 Weaknesses of the Caesar Cipher 111
5.3 Affine Transformation Ciphers 111
5.4 Weaknesses of Affine Transformation Ciphers 113
5.5 The Vigenere Cipher 115
5.6 Block Affine Ciphers 116
5.7 Weaknesses of the Block Affine Cipher, Known Plaintext Attack 118
5.8 Padding Methods 119

Exercises 124

Chapter 6: Systems of Linear Congruences—Single Modulus 125

6.1 Modular Matrices 125
6.2 Modular Matrix Inverses 129

Exercises 141

Chapter 7: Matrix Ciphers 143

7.1 Weaknesses of Matrix Cryptosystems 144
7.2 Transposition Ciphers 150
7.3 Combination Substitution/Transposition Ciphers 154

Exercises 159

Chapter 8: Systems of Linear Congruences—Multiple Moduli 161

8.1 The Chinese Remainder Theorem 162
Exercises 166

xiv Contents

Chapter 9: Quadratic Congruences 169

9.1 Quadratic Congruences Modulo a Prime 169
9.2 Fermat’s Little Theorem 170
9.3 Quadratic Congruences Modulo a Composite 171

Exercises 179

Chapter 10: Quadratic Ciphers 181

10.1 The Rabin Cipher 181
10.2 Weaknesses of the Rabin Cipher 185
10.3 Strong Primes 190
10.4 Salt 199
10.5 Cipher Block Chaining (CBC) 204
10.6 Blum–Goldwasser Probabilistic Cipher 208
10.7 Weaknesses of the Blum-Goldwasser Probabilistic Cipher 211

Exercises 212

Chapter 11: Primality Testing 213

11.1 Miller’s Test 215
11.2 The Rabin–Miller Test 217

Exercises 219

Chapter 12: Factorization Techniques 221

12.1 Fermat Factorization 221
12.2 Monte Carlo Factorization 226
12.3 The Pollard p–1 Method of Factorization 230

Exercises 234

Chapter 13: Exponential Congruences 235

13.1 Order of an Integer 236
13.2 Generators 237
13.3 Generator Selection 239
13.4 Calculating Discrete Logarithms 243

Exercises 256

Chapter 14: Exponential Ciphers 259

14.1 Diffie–Hellman Key Exchange 259
14.2 Weaknesses of Diffie–Hellman 260
14.3 The Pohlig–Hellman Exponentiation Cipher 260
14.4 Weaknesses of the Pohlig–Hellman Cipher 261
14.5 Cipher Feedback Mode (CFB) 262
14.6 The ElGamal Cipher 267
14.7 Weaknesses of ElGamal 269

Contents xv

14.8 The RSA Cipher 270
14.9 Weaknesses of RSA 272

Exercises 278

Chapter 15: Establishing Keys and Message Exchange 279

15.1 Establishing Keys 279
15.2 Diffie–Hellman Key Exchange Application 281
15.3 Message Exchange 284
15.4 Cipher Chat Application 284

Exercises 298

Chapter 16: Cryptographic Applications 299

16.1 Shadows 299
16.2 Database Encryption 306
16.3 Large Integer Arithmetic 309
16.4 Random Number Generation 315
16.5 Signing Messages 320
16.6 Message Digests 326
16.7 Signing with ElGamal 334
16.8 Attacks on Digest Functions 338
16.9 Zero Knowledge Identification 340

Exercises 350

Appendix: List of Propositions 351

Appendix II: Information Theory 357

AII.1 Entropy of a Message 357
AII.2 Rate of a Language 358
AII.3 Cryptographic Techniques 360
AII.4 Confusion 360
AII.5 Diffusion 361
AII.6 Compression 361

Recommended Reading 365

Index 367

xvi Contents

C H A P T E R 1
A History of Cryptography

1

This chapter provides an overview of some of the classical methods of cryptography
and some idea of how they evolved. None of the methods described here is used today,

because they are considered either insecure or impractical. We begin with some definitions:

Definition A cipher, or cryptosystem, is a pair of invertible functions:

• fk (known as the enciphering function), which maps from a set S to a set T, based on
a quantity k called an enciphering key.

• gk� (known as the deciphering function), the inverse of fk. k� is known as the deci-
phering key.

The function fk maps an element x in S to an element fk(x) in T so that determining the
inverse mapping is extremely difficult without knowledge of k�. An element of S is called
plaintext, whereas an element of T is called ciphertext.

Some ciphers are better at satisfying this definition than others. The terms encipher and
encrypt are synonymous, as are the terms decipher and decrypt.

Definition If, for some cipher k = k�, or if k� is easily computable given k, such a
cipher is called a secret key cipher. However, if k� is extremely difficult to obtain even
with knowledge of k, such a cipher is called a public key cipher. In this case k is called
a public key, whereas k� is called a private key.

1.2 Monoalphabetic Substitution Ciphers 3

WordCodeword

...

Dawn

...

Enemy

...

At

...

Attack

...

...

Computer

...

Explode

...

Lion

...

Run

...

TABLE 1.2 A Sample
Decoding Codebook

A decoding codebook would provide the reverse mappings, organized alphabetically by
codeword, as shown in Table 1.2.

In practice, both the encoding and decoding codebooks would probably be incorporated
into one book.

So, using the previous codebook, the message

ATTACK ENEMY AT DAWN

would be encoded as

RUN EXPLODE LION COMPUTER.

Though there is some evidence that codes may be more secure than most ciphers, they
are not used widely today because of the high overhead involved in distributing, maintain-
ing, and protecting the codebooks.

1.2 MONOALPHABETIC SUBSTITUTION CIPHERS

The oldest cryptosystems were based on monoalphabetic substitution ciphers. These ciphers
mapped individual plaintext letters to individual ciphertext letters. They are considered inse-
cure because they are all vulnerable to a type of analysis called frequency analysis, which
breaks these ciphers.

The oldest cipher known is called the Caesar cipher. The enciphering and deciphering
transformations map an individual letter to another letter in the same alphabet. Specifically,
a plaintext letter is shifted down 3 letters, with letters near the end of the alphabet wrapping
around again to the front, as shown in Table 1.3.

Thus, using this cipher,

FIRE MISSILE

4 Chapter 1 A History of Cryptography

Plaintext letter A B C D W X Y Z
Ciphertext letter D E F G Z A B C

TABLE 1.3

would be enciphered as

ILUH PLVVLOH.

In practice, however, one usually groups these letters into blocks, say 5 letters each. A
cryptanalyst can easily guess certain mappings if the ciphertext words are the same size as
the plaintext words. Thus, we would probably send the previous message as

ILUHP LVVLO H.

To decipher, one simply shifts each ciphertext letter 3 letters up the alphabet, again tak-
ing wrap-around into account.

Every cipher has at least one key, which may need to be kept secret. In the case of the
Caesar cipher, the key is the shift value, say k = 3. This key must certainly be protected
from unauthorized users, as knowing it allows decryption. In general, we can choose any
shift value we wish for a Caesar cipher.

1.3 FREQUENCY ANALYSIS ON CAESAR CIPHERS

Of course, the Caesar cipher is easily breakable, using what is called frequency analysis. We
can proceed in the following way:

1. Suppose the message is English text. (The message may not be English text, but the prin-
ciple remains the same.)

2. Note that the most common letter appearing in English text is “E.”

3. Examine as much ciphertext as possible. The character appearing most often is proba-
bly the character “E” enciphered.

4. The distance between “E” and the enciphered character is the shift value.

Of course this guess may be wrong, but it is a pretty fair guess with this simple cipher.
Frequency analysis exploits the fact that languages are biased in that some letters appear
much more frequently in text than others, and that some ciphers preserve this bias. Fre-
quency analysis is only useful for simple ciphers, however, such as this one.

EXAMPLE. Take a look at the following ciphertext, which was produced using a Caesar
cipher:

WFIDZ JVORT KCPVD GKZEV JJVDG KZEVJ JVORT KCPWF IDJFZ KZJNZ KYJVE

JRKZF EGVIT VGKZF EDVEK RCIVR TKZFE REUTF EJTZF LJEVJ JRCCK YZEXJ

1.3 Frequency Analysis on Caesar Ciphers 5

RIVVJ JVEKZ RCCPV DGKPE FKSFI EEFKU VJKIF PVUEF KJKRZ EVUEF KGLIV

NZKYF LKCFJ JNZKY FLKXR ZEKYV IVWFI VZEVD GKZEV JJKYV IVZJE FWFID

EFJVE JRKZF EGVIT VGKZF EDVEK RCIVR TKZFE FITFE JTZFL JEVJJ EFVPV

VRIEF JVKFE XLVSF UPDZE UEFTF CFIJF LEUJD VCCKR JKVKF LTYFS AVTKF

WKYFL XYKEF JVVZE XREUJ FFEKF EFKYZ EBZEX EFZXE FIRET VREUE FVEUK

FZXEF IRETV EFFCU RXVRE UUVRK YEFVE UKFFC URXVR EUUVR KYEFR EXLZJ

YTRLJ VFWRE XLZJY TVJJR KZFEG RKYEF NZJUF DREUE FRKKR ZEDVE KJZET

VKYVI VZJEF KYZEX KFRKK RZEKY VSFUY ZJRKK MRCZM VJKYL JNZKY EFYZE

UIRET VFWDZ EUEFY ZEUIR ETVRE UYVET VEFWV RIWRI SVPFE UUVCL UVUKY

FLXYK IZXYK YVIVZ JEZIM RER

If we count the occurrences of each letter in the text, we come up with the following
counts:

A: 1 B: 1 C: 16 D: 14 E: 82 F: 69 G: 10 H: 0 I: 27 J: 47 K: 61 L: 15

M: 3 N: 5 O: 2 P: 8 Q: 0 R: 45 S: 5 T: 21 U: 28 V: 69 W: 9 X: 15

Y: 28 Z: 47

The letter E appears most frequently, but this would be the identity map, not a smart
choice. Otherwise, the most frequently occurring letters are F and V, which each appear 69
times. Thus, the shift value is likely to be

distance(E, F) = 1, or distance(E, V) = 17.

If we try the shift value of 1, we see that we get only garbage. If we shift each letter of
the ciphertext to the left by 17, though, we get the beautiful expression:

FORMI SEXAC TLYEM PTINE SSEMP TINES SEXAC TLYFO RMSOI TISWI THSEN

SATIO NPERC EPTIO NMENT ALREA CTION ANDCO NSCIO USNES SALLT HINGS

AREES SENTI ALLYE MPTYN OTBOR NNOTD ESTRO YEDNO TSTAI NEDNO TPURE

WITHO UTLOS SWITH OUTGA INTHE REFOR EINEM PTINE SSTHE REISN OFORM

NOSEN SATIO NPERC EPTIO NMENT ALREA CTION ORCON SCIOU SNESS NOEYE

EARNO SETON GUEBO DYMIN DNOCO LORSO UNDSM ELLTA STETO UCHOB JECTO

FTHOU GHTNO SEEIN GANDS OONTO NOTHI NKING NOIGN ORANC EANDN OENDT

OIGNO RANCE NOOLD AGEAN DDEAT HNOEN DTOOL DAGEA NDDEA THNOA NGUIS

HCAUS EOFAN GUISH CESSA TIONP ATHNO WISDO MANDN OATTA INMEN TSINC

ETHER EISNO THING TOATT AINTH EBODH ISATT VALIV ESTHU SWITH NOHIN

DRANC EOFMI NDNOH INDRA NCEAN DHENC ENOFE ARFAR BEYON DDELU DEDTH

OUGHT RIGHT HEREI SNIRV ANA

It is not necessary that a monoalphabetic mapping be based on a shift. We can map the
plaintext alphabet letters to a permutation of the alphabet, as shown in Table 1.4.

This particular mapping is based on a keyphrase “THE HILLS ARE ALIVE.” Note that
the first few letters in the ciphertext column are the initial occurrences of each letter in the
phrase. This was often done in practice, as it made the permutation easy to reconstruct.
However, a permutation certainly need not be based on such a keyphrase.

6 Chapter 1 A History of Cryptography

Ciphertext LetterPlaintext Letter

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

T

H

E

I

L

S

A

R

V

B

C

D

F

G

J

K

M

N

O

P

Q

U

W

X

Y

Z

TABLE 1.4

1.4 Frequency Analysis on Monoalphabetic Substitution Ciphers 7

FIGURE 1.1 Relative Frequencies of English Letters (percent)

Letter
A

0

2

4

6

8

10

12

14

B C D E F G H I J K L M N O P Q R S T U V W X Y Z

F
re

qu
en

cy
 o

f O
cc

ur
re

nc
e

(p
er

ce
nt

)

1.4 FREQUENCY ANALYSIS ON MONOALPHABETIC SUBSTITUTION
CIPHERS
Frequency analysis can be used for any permutation of single letters of an alphabet, not just
a shift as in the Caesar cipher. The relative frequencies of all letters in English text (and
many other languages) are well known. These frequencies can be used to break any cipher
that maps individual letters. The approximate frequency distribution of letters in typical
English text is shown in Figure 1.1.

If analysts have enough ciphertext, they can use this distribution to make fairly good
guesses about how individual letters are mapped in a monoalphabetic substitution cipher.
For example, the most common letter in the ciphertext probably corresponds with the plain-
text letter “E,” the second most common letter in the ciphertext probably corresponds with
“T,” and so on. Once the analyst starts filling in these more common letters, they can begin
to make some good guesses for the other letters, and they eventually fill out enough letters
so that they uncover the secret mapping.

EXAMPLE. Consider the following ciphertext, which was produced by a mapping of the
alphabet A . . . Z to a permutation of the alphabet.

HUFMD JCXNE ONUFZ UFJCX NUYMM TDHLF XTGYT HUFEY KFNEF MXFCD

GTXTQ JFFTZ YNHSJ FNUFM FYCNE FLFNX CFPSX FHGYH FJNUF JFNHD

JFNEO NDSMU FQSXC FNEFX TZYHU NDBJX QUHFD SNTFN NBDJU XNTYE

FNNYK FFAFT HUDSQ UXGYM KHUJD SQUHU FAYMM FODBH UFNUY CDGDB

CFYHU XGXMM BFYJT DFAXM BDJOD SYJFG XHUEF ODSJJ DCYTC ODSJN

HYBBH UFORD EBDJH EFODS ZJFZY JFYHY LMFLF BDJFE FXTHU FZJFN

FTRFD BEOFT FEXFN ODSYT DXTHE OUFYC GXHUD XMEOR SZDAF JBMDG

NNSJF MOQDD CTFNN YTCMD AFGXM MBDMM DGEFY MMHUF CYOND BEOMX

BFYTC XGXMM CGFMM XTHUF UDSNF DBHUF MDJCB DJFAF J

8 Chapter 1 A History of Cryptography

We must count the frequency of each letter in the ciphertext, and then compare these
frequencies with the relative frequency table. Here are the counts for each letter:

A: 6 B: 17 C: 17 D: 39 E: 17 F: 67

G: 13 H: 25 I: 0 J: 26 K: 3 L: 4

M: 29 N: 30 O: 15 P: 1 Q: 6 R: 3

S: 15 T: 21 U: 28 V: 0 W: 0 X: 26

Y: 26 Z: 7

F is by far the most common letter, and its plaintext partner is probably E. The next most
common letters are D, N, M, U, J, X, and Y, which are likely the mappings of A, I, N, O, R,
S, and T. The least frequent ciphertext letters are I, V, and W, which are likely the mappings
of Q, X, and Z. These guesses may of course be wrong, but once you start trying different
combinations words will start to appear in the plaintext. As you progress, you can start to
make educated guesses about the mappings; this process starts out slowly, but quickly speeds
up. Table 1.5 shows the mapping for this cipher.

Using this mapping, we see that the plaintext is:

THELO RDISM YSHEP HERDI SHALL NOTBE INWAN THEMA KESME LIEDO

WNING REENP ASTUR ESHEL EADSM EBESI DEQUI ETWAT ERSHE RESTO

RESMY SOULH EGUID ESMEI NPATH SOFRI GHTEO USNES SFORH ISNAM

ESSAK EEVEN THOUG HIWAL KTHRO UGHTH EVALL EYOFT HESHA DOWOF

DEATH IWILL FEARN OEVIL FORYO UAREW ITHME YOURR ODAND YOURS

TAFFT HEYCO MFORT MEYOU PREPA REATA BLEBE FOREM EINTH EPRES

ENCEO FMYEN EMIES YOUAN OINTM YHEAD WITHO ILMYC UPOVE RFLOW

SSURE LYGOO DNESS ANDLO VEWIL LFOLL OWMEA LLTHE DAYSO FMYLI

FEAND IWILL DWELL INTHE HOUSE OFTHE LORDF OREVE R

1.5 POLYALPHABETIC SUBSTITUTION CIPHERS

As one can readily see, monoalphabetic substitution ciphers are notoriously easy to break.
In the case of the Caesar cipher, the shift value can be uncovered rather easily. One way clas-
sical cryptographers dealt with this was to use different shift values for letters depending on
their position in the text. For example, one may do something like the following:

• Let a1, a2, . . . , an be the letters in a plaintext message. Consider the letter ap:

• If p is divisible by 4, shift ap 7 letters down the alphabet.

• If p is of the form 4k + 1 for some k, shift ap 5 letters down the alphabet.

• If p is of the form 4k + 2 for some k, shift ap 13 letters down the alphabet.

• If p is of the form 4k + 3 for some k, shift ap 2 letters down the alphabet.

Using this scheme, we can encipher the message

DEFCON FOUR

as shown in Table 1.6.

1.5 Polyalphabetic Substitution Ciphers 9

Ciphertext LetterPlaintext Letter

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

Y

L

R

C

F

B

Q

U

X

I

K

M

E

T

D

Z

P

J

N

H

S

A

G

V

O

W

TABLE 1.5

10 Chapter 1 A History of Cryptography

Plaintext D E F C O N F O U R
Shift value 5 13 2 7 5 13 2 7 5 13
Ciphertext I R H J T A H V Z E

TABLE 1.6

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

TABLE 1.7

The message to send is

IRHJT AHVZE.

Note that the way we group the letters has nothing to do with how many shift values are
being used; in fact, we don’t want to give the analyst any clues by grouping the letters in
blocks the same size as the number of shift values!

It was difficult for classical cryptographers to remember shift values when using a large
number of them. They certainly didn’t want to write them down, because the shift values
were the secret key. So instead they used letters to represent the shifts in the form of a key-
word, or a long keyphrase. Each letter in the alphabet was associated with its position, as
shown in Table 1.7.

From now on, when our alphabet consists of only capital English characters we will call
this the “ordinary” alphabet. These keywords and keyphrases were easily remembered. For
example, the keyphrase

BLAST OFF

represents the shift values

1 12 0 18 19 14 5 5.

These are the 8 shift values that would be used on a message, repeating the sequence every
eighth letter.

1.6 THE VIGENERE CIPHER AND CODE WHEELS

One convenient tool used for the previous type of cipher (called a simple shift Vigenere
cipher) was a code wheel. The outer ring of the wheel represented plaintext letters, and the
inner wheel represented ciphertext letters. Using a letter from a keyword or keyphrase, say
“S,” one would rotate the inner wheel and position the keyword letter under the letter “A.”
To encipher, one would go to the plaintext letter in the outer wheel, say “G,” and find its cor-
responding ciphertext letter, in this case “Y.” This is the position of the wheel illustrated in

1.7 Breaking Simple Vigenere Ciphers 11

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I
J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

U

U

V

V
W

W

X

X

Y

Y

Z

Z

FIGURE 1.2 A Sample Code Wheel

Figure 1.2. To decipher, one would position the keyword letter under “A,” but would go from
the inner ciphertext wheel to the outer plaintext wheel.

1.7 BREAKING SIMPLE VIGENERE CIPHERS

If enough ciphertext is received, and if the analyst makes a good guess for the key length,
say n, frequency analysis also breaks these types of polyalphabetic substitution ciphers. An
analyst can separate the ciphertext into n categories, and then do a separate frequency analy-
sis on each category. In this way, one could derive all of the n shift values. The problem with
using a keyword in this way is that it would eventually repeat, and this fact could be
exploited.

12 Chapter 1 A History of Cryptography

Key Length = 5

Category 1

XIPGL

Category 2

ZIASN

Category 3

QSWGO

Category 4

TTRPX

Category 5

YNTOF

TABLE 1.8

Suppose we have the ciphertext message

XZQTY IISTN PAWRT GSGPO LNOXF.

If the analyst assumes (correctly) that the keyword is of length 5, she would separate the
ciphertext into 5 categories, as described in Table 1.8.

She then does a separate frequency analysis for each category; in this way she can derive
the shift values for all letters in categories 1, 2, 3, 4, and 5. (Of course, this example does
not provide nearly enough ciphertext to do this, but the method works as described.) How
does one determine the key length? Random guessing may work, but perhaps only after a
lot of work. The method described here is often useful.

1.8 THE KAISISKI METHOD OF DETERMINING KEY LENGTH

The Kaisiski method is a way of determining key length. This method takes advantage of
the fact that languages contain not only frequent individual characters, but also frequently
occurring letter pairs and letter triples. We can use this to spot recurring triples in the cipher-
text. This will happen when a common triple falls on, and is enciphered by, the same por-
tion of the keyword. By noting the distance between these recurring blocks of text in the
ciphertext, we can make a good guess for the key length.

EXAMPLE. Suppose the triple FSI appears in the ciphertext 12 times, and the distance between
the first character (F) of each is as shown in Table 1.9.

Note that all but 2 of the distances in the table are multiples of 7. (The sixth appearance
of FSI came about probably by coincidence, and probably does not represent the same plain-
text triple). A good guess for the key length being used here is 7.

EXAMPLE. Consider the following ciphertext, which was formed using a Vigenere cipher on
uppercase English letters:

LJVBQ STNEZ LQMED LJVMA MPKAU FAVAT LJVDA YYVNF JQLNP LJVHK

VTRNF LJVCM LKETA LJVHU YJVSF KRFTT WEFUX VHZNP

If we use the Kaisiski method, we see that the triple LJV keeps reappearing. The distances
between each occurrence of LJV are shown in Table 1.10.

This tells us that it is very likely that the key length is 5. We now separate the ciphertext
into 5 categories, and do a frequency analysis on each category, as shown in Table 1.11.

In each category, the most common letter probably corresponds with the plaintext letter
E, T, I, N, or R. It would be easier to determine the shift values if we had more text to work

1.8 The Kaisiski Method of Determining Key Length 13

i
Distance between

(i–1)th and i th
occurrence

2

3

4

5

6

7

8

9

10

11

12

56

14

35

63

9

5

28

35

33

21

35

TABLE 1.9

Occurrence Distance

2

3

4

5

6

15

15

15

10

10

TABLE 1.10

with, since E is more likely to appear than any other letter in plaintext. However, we have
even more information: The most common triple in English is THE, and in this example it
probably corresponds with the triple LJV. Even with this short amount of text, we can try a
few possibilities. The one that works is shown in Table 1.12.

Thus, we derive the keyword

SCRAM

14 Chapter 1 A History of Cryptography

TABLE 1.12

Category Plaintext Letter Maps to Ciphertext Letter Shift value

1

2

3

4

5

T

H

E

N

O

L

J

V

N

A

18 = S

2 = C

17 = R

0 = A

12 = M

Category Letters Most Common Letter

1

2

3

4

5

LSLLM FLYJL VLLLY KWV

REH

FFZ

TUN

TXP

L

J

V

N

A

TJKJJ

RVEVV

NCTHS

FMAUF

AJYQJ

VVVLV

ADNNH

TAFPK

JTQJP

VNMVK

BEEMA

QZDAU

TABLE 1.11

and based on this, we can recover the plaintext.

THEBE ARWEN TOVER THEMO UNTAI NYEAH THEDO GWENT ROUND THEHY

DRANT THECA TINTO THEHI GHEST SPOTH ECOUL DFIND

1.9 THE FULL VIGENERE CIPHER

The full Vigenere cipher is similar to the simple shift Vigenere in that it uses a keyword or
keyphrase. However, in the full Vigenere cipher, rather than using a series of shift values k1,
k2, . . . , kn, each letter in the keyword refers to a general permutation e1, e2, . . . , en of the
alphabet. Enciphering in this way is aided by the use of a table such as Table 1.13.

1.9 The Full Vigenere Cipher 15

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

F

G

L

F

Q

M

F

O

N

S

E

M

J

E

B

Z

I

C

V

W

R

C

A

P

M

Q

B

W

A

Y

D

T

X

E

B

F

A

W

B

I

S

Z

Y

V

B

E

B

B

Z

S

Q

Y

P

C

Y

Y

B

I

G

C

P

Z

Y

U

N

L

O

C

K

O

E

U

R

R

O

B

P

O

X

W

D

G

O

O

V

S

P

Z

M

D

M

D

T

C

Y

J

U

H

Y

D

A

M

N

Y

Z

O

O

E

B

M

N

Z

A

O

D

N

Z

E

L

A

W

G

W

M

Q

T

S

P

A

G

Q

M

A

Y

F

D

X

I

H

R

N

Y

Y

H

K

X

S

H

Z

P

W

J

G

Q

O

N

L

R

X

N

Z

G

Z

C

Z

E

Z

F

O

A

O

O

U

N

U

R

U

N

F

N

W

D

T

O

G

Y

V

N

H

I

W

C

G

P

W

I

L

E

N

K

X

M

U

Y

B

D

P

O

F

C

Y

F

W

C

X

I

X

H

K

U

B

E

C

U

A

J

O

J

B

D

L

V

K

E

G

T

D

F

D

S

L

H

J

V

Z

M

Y

H

V

W

R

G

F

F

W

V

P

A

D

U

S

F

C

V

X

E

L

U

M

K

H

N

J

B

X

I

B

D

P

C

V

D

G

O

X

G

Z

D

C

M

L

K

Z

N

W

S

L

A

B

X

T

F

Q

Q

C

W

P

M

U

N

F

H

P

G

Q

P

X

Q

M

H

U

B

J

M

L

S

H

K

J

B

X

K

C

T

T

V

Y

A

V

K

R

Z

Y

Y

J

W

O

K

I

L

N

K

T

G

P

O

D

J

P

V

H

C

O

F

H

R

T

A

O

J

G

Z

H

T

V

T

I

O

J

E

A

W

Y

G

S

H

M

Y

S

C

P

T

M

A

T

A

U

U

E

R

V

T

G

U

P

U

V

E

C

K

H

N

Q

I

V

R

K

K

V

I

R

P

M

N

E

S

D

I

I

K

A

Q

E

P

T

S

U

L

H

F

J

L

I

Q

L

K

F

H

C

F

H

Q

K

P

B

J

Q

G

R

T

D

Q

N

D

Z

A

X

T

G

P

P

Y

Q

Q

C

S

L

L

N

U

J

X

D

J

C

S

C

K

F

Q

W

U

R

J

R

Q

Z

I

D

I

G

X

Y

W

X

I

I

S

N

G

P

T

T

N

Q

V

J

I

K

T

E

B

Z

G

F

X

M

O

J

M

K

I

Z

W

A

U

B

Z

E

U

R

U

D

M

M

R

G

S

Q

D

Q

Z

E

B

S

I

W

I

K

V

Y

I

J

R

H

F

V

P

L

W

O

V

Y

L

T

L

X

J

G

R

X

N

E

O

R

Z

L

P

Q

L

E

R

V

W

S

F

P

A

C

J

K

G

K

I

Y

R

Q

J

C

L

L

X

T

S

H

U

K

A

S

D

X

M

R

R

L

N

T

V

I

S

R

H

E

S

L

T

Q

B

J

B

H

F

E

W

F

E

K

Y

O

I

S

X

L

A

M

W

U

B

A

Y

Z

W

E

S

X

H

A

K

X

V

C

C

D

B

Z

Q

J

U

R

E

S

U

V

X

W

B

H

A

N

D

F

N

V

M

J

G

T

M

H

F

R

TABLE 1.13

16 Chapter 1 A History of Cryptography

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

TABLE 1.14 Letter–Number Associations of the Ordinary Alphabet

Each row is a permutation of the ordinary alphabet; the leftmost letter of each row is
referenced by the keyword. The first row in the table represents the plaintext letter. To enci-
pher the plaintext letter T using the key letter D, for example, we find the letter in the cell
referenced by row D, column T. This yields the ciphertext letter J.

EXAMPLE. Encipher the message

HARKONNEN RULZ

using the keyphrase

SPICE.

By locating each ciphertext letter in the manner described previously, we get

OZTJY JTZGD KPX.

Decryption should be simple to figure out. What makes the full Vigenere cipher slightly
superior to the simple shift Vigenere is that the full relative frequency distribution of the lan-
guage may be necessary to break the former, whereas only the most common letter is needed
to break the latter.

1.10 THE AUTO-KEY VIGENERE CIPHER

Vigenere ciphers are our earliest examples of stream ciphers. Stream ciphers are those that
encipher letters based on their position in the plaintext. Ideally, the key being used should
never repeat, as this aids the cryptanalyst. Some stream ciphers make the plaintext and/or
the ciphertext part of the encryption process; such is the case with the auto-key Vigenere.

This type of cipher begins with a priming key of length n, say k0, k1, . . . , kn�1. Encryp-
tion for the first n characters is done the same way (using the key) as for the simple shift
Vigenere, but after that, to encipher the ith character of the plaintext, we add to it (with
wrap-around) the (i � n)th letter of the plaintext. This is easily seen with an example.

EXAMPLE. For this example, it is convenient to see the letter–number associations of the
ordinary alphabet. (See Table 1.14.)

Suppose we wish to encipher the message

LIGHT SPEED CHEWIE NOW

1.11 The Running Key Vigenere Cipher 17

Plaintext L I G H T S P E E D C H E W I E N O W
Key A R G H L I G H T S P E E D C H E W I
Ciphertext L Z M O E A V L X V R L I Z K L R K E

TABLE 1.15

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

TABLE 1.16 Letter–Number Associations of the Ordinary Alphabet

using the keyword

ARGH

and an auto-key Vigenere. First, we write the plaintext, and underneath it we write the prim-
ing key, followed by as much of the plaintext as necessary to fill out the line. Underneath
this, we do a simple shift to generate the ciphertext shown in Table 1.15.

How does one recover the plaintext when the plaintext is part of the key? It should be
easy to see that only knowledge of the priming key is necessary. Once we use the key to
decrypt the first n characters of the ciphertext, we derive the first n characters of the plain-
text, and hence can use it to decrypt more ciphertext.

One must be particularly careful with ciphers like these that no errors are made in the
encryption phase, for a single miscalculated character affects an entire series of characters
following it. Care must also be taken to ensure that no errors occur during transmission.

1.11 THE RUNNING KEY VIGENERE CIPHER

Another alternative to the auto-key Vigenere is called a running key Vigenere. It makes use
of a very long key in the form of meaningful text, as in a book, of which both the sender
and intended receiver have a copy.

EXAMPLE. Suppose we are working with the ordinary alphabet. Again, we show the ordinary
letter/number associations, in Table 1.16, for quick reference.

To encrypt the message

TORA TORA TORA

we use a passage from a book, such as a particular edition of the Bible, as the key:

AND GOD SAID LET THERE BE LIGHT.

The encryption proceeds as a simple shift, as shown in Table 1.17.
To decrypt, one simply needs to know which passage from which book to use, and the

plaintext is easily regained.

18 Chapter 1 A History of Cryptography

Plaintext T O R A T O R A T O R A
Key A N D G O D S A I D L E
Ciphertext T B U G H R J A B R D E

TABLE 1.17

E N G A G E W A R P D R I V E
9 20 13 0 21 1 13 19 9 5 25 12 25 4 7 25 0 8 8 7 24
N H T A B F J T A U C D H Z L

2 6 18 16 10 23 5 11 12 13 6 22 22 17 3 8 0 0 19 4 15

Plaintext letter
Shift value
Ciphertext letter

Plaintext letter
Shift value
Ciphertext letter

TABLE 1.18

1.12 BREAKING AUTO-KEY AND RUNNING KEY VIGENERE CIPHERS

Though the auto-key Vigenere and the running key Vigenere evade the problem of the
repeating key, they are still vulnerable to frequency analysis. This is because plaintext is being
used for the key. Even though this plaintext never repeats, it still provides information. This
is because high frequency letters in the key will often encipher high frequency letters in the
message. This information is often enough to recover messages.

1.13 THE ONE-TIME PAD

One solution to thwarting frequency analysis on polyalphabetic substitution ciphers was to
use a truly random key that would never repeat. Such a key was called a one-time pad.
These were notebooks consisting of sheets with tables of random numbers on them. The ran-
dom numbers were used as shift values. Each sheet in the pad was different from every
other, and each sheet was used only once. Encrypting using a one-time pad would look
something like Table 1.18.

Using this particular sheet from a one-time pad, the ciphertext message

NHTAB FJTAUCDHZL

is produced from the plaintext message

ENGAGE WARP DRIVE.

If the message does not fill out the sheet, the rest of the sheet is ignored. After the sheet
is used, it is destroyed. The recipient of the message would also have an identical one-time
pad. The messages are numbered, so the recipient would know which sheet to use. They
would use the same shift values to shift back to the plaintext.

The one-time pad is the ultimate cipher, if used properly. In terms of ciphertext analy-
sis, it is totally secure. In fact, it is the most secure cipher possible. There is no way an ana-

1.14 Transposition Ciphers 19

lyst can guess the key if it is a potentially infinite sequence of random numbers. It is math-
ematically provable that any plaintext message could map to some particular ciphertext
message if random numbers are used; thus, the ciphertext provides absolutely no informa-
tion to the analyst at all.

Of course, the reason one-time pads are not used today is because they are simply imprac-
tical. The distribution and protection of the pads is a logistical nightmare. For example, if
all the sheets in a pad were used up, it would have to be replaced with a new pad consist-
ing of entirely different random numbers. However, one-time pads have been used; in par-
ticular, certain embassies have used them for highly sensitive communications with their
governments.

1.14 TRANSPOSITION CIPHERS

Transposition ciphers were simply a permutation of the letters in a plaintext message; that
is, they reordered the letters of the message. This reordering was specified for blocks of a
predetermined size, and the reordering would occur within each block. Say we choose a
block size of 5, and for a particular block we specify the following:

The 1st letter becomes the 4th letter,

the 2nd letter becomes the 3rd letter,

the 3rd letter becomes the 1st letter, (*)

the 4th letter becomes the 5th letter, and

the 5th letter becomes the 2nd letter.

A short way of denoting this permutation is to use the notation

(1 4 5 2 3),

which becomes meaningful if you just rearrange the statements in (*).

The 1st letter becomes the 4th letter,

the 4th letter becomes the 5th letter,

the 5th letter becomes the 2nd letter,

the 2nd letter becomes the 3rd letter, and

the 3rd letter becomes the 1st letter.

Suppose we have the plaintext message

THE SKY FALLING PLEASE ADVISE

which we split into blocks of length 5:

THESK YFALL INGPL EASEA DVISE

If we use the permutation defined by (*), we get the following scrambled blocks, which
comprise the ciphertext.

EKHTS ALFYL GLNIP SAAEE IEVDS

20 Chapter 1 A History of Cryptography

AAAAAAAA maps to ZXCIJCDV
AAAAAAAB maps to APQODFIM
...
ZZZZZZZZ maps to SSTFQQWR

TABLE 1.19

By themselves, transposition ciphers are considered very weak ciphers. Anyone who has
played anagrams or has done unscrambling puzzles in the newspaper can testify to this.
However, when transposition is used in combination with substitution, one can produce
very powerful ciphers. Many modern ciphers are based on this idea.

1.15 POLYGRAM SUBSTITUTION CIPHERS

Mapping single letters to single letters is far too vulnerable to be useful. Thus, cryptogra-
phers eventually came up with the idea of mapping entire blocks of plaintext letters to blocks
of ciphertext letters. The ciphertext blocks didn’t necessarily have the same length as the
plaintext blocks. For example, suppose we wish to map 8 letter blocks to 8 letter blocks. In
general, we could specify the mapping shown in Table 1.19.

There are clearly a lot of 8-letter plaintext blocks in the range AAAAAAAA through
ZZZZZZZZ (268, exactly). If one wanted to do frequency analysis on such a scheme, he
would require a table of 268 = 208,827,064,576 blocks, and would have to know the rela-
tive percentages for which each 8-letter block appears in typical English text (if that is the
language being used). Then, he would need an enormous amount of ciphertext so that he
could determine the relative frequency of the 8-letter ciphertext blocks, and equate cipher-
text blocks to plaintext blocks. This is clearly infeasible, both in terms of the time and stor-
age requirements. Thus, doing frequency analysis on blocks of letters is much harder than
doing frequency analysis on individual letters. However, if the cryptosystem does not use
a sufficiently large block size, frequency analysis is still possible. An example follows.

1.16 THE PLAYFAIR CIPHER

The Playfair cipher was a cryptosystem that mapped digraphs (2-letter pairs) to digraphs.
The letters were arranged in a 5 � 5 square. There are 26 letters in the ordinary alphabet,
so the letters I and J were equated. This is the simplest 5 � 5 Playfair square:

A

F

L

Q

V

B

G

M

R

W

C

H

N

S

X

D

I/J

O

T

Y

E

K

P

U

Z

1.16 The Playfair Cipher 21

The letters in the square, however, were usually permuted, often based on a keyword or
keyphrase. The Playfair Square that follows is derived from the keyphrase “The quick brown
fox jumped over the lazy dogs.”

It is easy enough to see how this is done. You fill in the square with letters from the
keyphrase, avoiding duplicates. If the keyphrase does not contain all 26 letters, you fill out
the rest of the table with the unused letters, in order. A Playfair square based on the keyphrase
“Since by man came death” follows.

Here is how to encrypt with the square: The plaintext pair of letters p, q is mapped to the
ciphertext letters c, d as follows:

1. If p and q are in both different columns and different rows, they define the corners of a
square. The other 2 corners are c and d; c is the letter in the same column as p.

2. If p and q are in the same row, c is the letter to the right of p, and d is the letter to the right
of q (wrapping around if necessary).

3. If p and q are in the same column, c is the letter below p, and d is the letter below q (with
wrap-around).

4. If p = q, the letter “X” is inserted into the plaintext between the doubled letters. The eval-
uation continues with the new pair p, and q = “X.” If there is only one letter trailing at
the end (instead of a full pair), add a final letter “X.”

S

B

T

L

U

I/J

Y

H

O

V

N

M

F

P

W

C

A

G

Q

X

E

D

K

R

Z

T

I/J

O

M

A

H

C

W

P

Z

E

K

N

D

Y

Q

B

F

V

G

U

R

X

L

S

22 Chapter 1 A History of Cryptography

EXAMPLE. We use the following square

to encrypt the message

AMBASSADOR SHOT.

First, group the letters in pairs

AM BA SS AD OR SH OT.

Now look for any doubled letter pairs and insert an X between them. Regroup the plain-
text.

AM BA SX SA DO RS HO TX

If there are not enough letters to make the final pair, add another X at the end, as done
here. If one follows the rules outlined previously, one should obtain the following cipher-
text:

MN UD QN AM BA MP ID FE

The rules for decryption should be easy to figure out; the same Playfair square is used.
(Of course—the square is the key.) The ciphertext pair of letters c, and d, are mapped to the
plaintext letters p and q in the following way.

1. If c and d are in both different columns and different rows, they define the corners of a
square. The other 2 corners are p and q; p is the letter in the same column as c.

2. If c and d are in the same row, p is the letter to the left of c, and q is the letter to the left
of d (wrapping around if necessary).

3. If c and d are in the same column, p is the letter above c, and q is the letter above d (with
wrap-around).

Because of the way enciphering was done, doubled letter ciphertext pairs will not occur.
The recipient must remove from the recovered plaintext any letter X’s which do not make
sense. They must also determine, since I and J are equated, whether a recovered plaintext
I/J is an I or a J.

L

S

P

G

Q

O

A

D

B

U

V

M

R

C

W

E

N

T

F

X

I/J

Y

H

K

Z

1.18 The Jefferson Cylinder 23

AN
0

0.5

1

1.5

2

2.5

3

1.51 1.53

2.13

3.05 3.213.5

AT ED EN ER ES HE IN ON OR RE ST TE TH TI

1.28

1.9

1.22 1.3 1.281.32 1.36

2.3

1.831.81

FIGURE 1.3 Percentage of Common Digraphs in English Text

1.17 BREAKING SIMPLE POLYGRAM CIPHERS

The Playfair cipher, for all its complicated rules, is not secure. Digraphs are not large enough
blocks to rule out the use of frequency analysis. Tables that record the relative frequency of
digraphs in typical English text exist (as well as for many other languages). For example,
the most common digraph in English text is “TH,” followed by “HE.” Using such tables,
one can break a Playfair cipher given enough ciphertext. A complete table is often not even
necessary; a partial table will often be enough, such as the chart shown in Figure 1.3.

Relative frequency tables for English exist even for trigraphs (3-letter blocks); the most
common is “THE,” followed by “AND” and “THA.” Such tables exist for even larger blocks.
Modern polygram ciphers use a block size of at least 8 characters.

1.18 THE JEFFERSON CYLINDER

None other than the American statesman Thomas Jefferson invented the Jefferson cylinder.
It was an ingenious device that provided very secure ciphers, and it was used for many
years. The cylinder consisted of 36 wheels. Each wheel had printed on it a complete (scram-
bled) alphabet. A simplified drawing of a typical Jefferson cylinder is shown in Figure 1.4.

To encipher, one needed to rotate the wheels so that the plaintext appeared along one of
the rows in the cylinder. To select the ciphertext, one would simply select any of the other
25 rows. Rotating the wheels so that the ciphertext would appear in one of the rows did
deciphering. Then they would search the other 25 rows of the cylinder for meaningful text.

What made the Jefferson cylinder so powerful was the huge size of its rows, or blocks;
frequency analysis on such blocks, each consisting of 36 characters, was literally impossi-
ble at the time.

The Jefferson cylinder eventually fell into disuse because of its impracticality. (This is
why most of the excellent classical ciphers were rejected; they were too hard to implement.)
Every authorized user of the cryptosystem would need his or her own cylinder. If a single

24 Chapter 1 A History of Cryptography

FIGURE 1.4 Simplified Drawing of a Typical Jefferson Cylinder

Plaintext

Z

L

D

Q

V

N

M

D

A

S

T

P

A

X

D

F

B

W

A

O

X

M

Z

R

P

F

X

Q

L

VA ciphertext

.

Letter
A

0

2

4

6

8

10

12

14

B C D E F G H I J K L M N O P Q R S T U V W X Y Z

F
re

qu
en

cy
 o

f O
cc

ur
re

nc
e

(p
er

ce
nt

)

FIGURE 1.5 Relative Frequencies of English Letters (percent)

cylinder fell into the wrong hands, the cipher would become useless; in that case, one solu-
tion would be to reorder the wheels on the cylinder, ensuring that no unauthorized persons
receive this vital information.

1.19 HOMOPHONIC SUBSTITUTION CIPHERS

Another approach taken to thwart frequency analysis was the use of homophones. This was
a system of enciphering wherein letters that occurred more frequently in the language were
given multiple choices of ciphertext symbols. The more frequent a plaintext letter was, the
more choices it would have.

For quick reference, the relative frequencies of letters in typical English text are shown
again, in Figure 1.5.

1.19 Homophonic Substitution Ciphers 25

Plaintext
letter Choices for ciphertext unit

A BU CP AV AH BT BS CQ
B AT
C DL BK AU
D BV DY DM AI
E DK CO AW BL AA CR BM CS AF AG BO BN BE
F BW CM CN
G DN BJ
H AS CL CK
I DJ BI AX CJ AB BP CU CT
J BX
K DI
L AR BH CI AJ
M DH BG AY
N BY DG DF CH AC BR DU DT
O DZ BF DX AK CG BQ DR
P BZ DE AZ
Q DD
R AQ DC DQ AL CE CF CV DS
S AP AN AO CD DW DV
T CB DB DP CC AD CY CW CX AE
U CA AM BA
V BB
W CZ
X BD
Y DO DA
Z BC

TABLE 1.20 A Sample Table of Homophones

The following table is a sample of a homophonic substitution scheme. This scheme is
based on the distribution of letters in typical English text. So, for example, because the let-
ter E appears about 13 percent of the time in such text, there are 13 choices of ciphertext
replacements for E in the table. This is called a table of homophones. (See Table 1.20.)

Using this table, the message “RETREAT” could be enciphered as

DQ AW CC AQ CO BS DB.

It could also be enciphered in other ways depending on our choices for those letters hav-
ing multiple selections. It is important to make a selection as randomly as possible. This ran-
domization “evens out” the relative frequency distribution of the ciphertext digraphs, so
equating “humps” in the ciphertext to “humps” in the plaintext becomes difficult, if not
impossible.

Note that the ciphertext is larger than the plaintext. This is necessary if individual letters
have multiple choices without introducing new alphabetic symbols. Encryption is a

26 Chapter 1 A History of Cryptography

one–to–many mapping, but note that decryption is not, for none of the letter pairs in the pre-
vious table appear more than once. (You may wish to verify this.) Thus, decryption always
produces the correct message.

Those decrypting would probably have the inverse mappings organized according to the
ciphertext symbols, to aid in decryption. A listing of the inverse mappings of our sample
homophone is shown in Table 1.21.

Homophonic ciphers were very effective, and were used extensively in the past. Because
of their heavy dependence on the language being used, and because modern powerful block
ciphers are primarily independent of language, homophones are not commonly used today.

1.20 COMBINATION SUBSTITUTION/TRANSPOSITION CIPHERS

When substitution and transposition are used simultaneously, and especially when the respec-
tive block sizes are different, the result can be a very powerful cipher.

EXAMPLE. The following is a cipher that uses both substitution and transposition. Three
transformations will be involved. Suppose we use the ordinary alphabet, where substitu-
tions for plaintext are first made according to Table 1.22.

That is,

A maps to AA (row A, column A)

B maps to AB

C maps to AC

. . .

Q maps to DB

. . .

Y maps to EE

Z maps to DB.

(Note that the letters Q and Z map to the same pair. When decryption is done this should not
be a problem as Q and Z are very infrequent letters, and it should be easy to determine
which letter was intended). Suppose we wish to encipher the following message:

TAKE ME TO YOUR LEADER.

Now, convert each letter to its letter pair equivalent.

DE AA CA AE CC AE DE CE EE CE EA DC CB AE AA AD AE DC

Take the second half of this text and place it under the first half.

DE AA CA AE CC AE DE CE EE

CE EA DC CB AE AA AD AE DC

1.20 Combination Substitution/Transposition Ciphers 27

Ciphertext
Pair

Letter Ciphertext
Pair

Letter Letter Ciphertext
Pair

LetterCiphertext
Pair

AA

AB

AC

AD

AE

AF

AG

AH

AI

AJ

AK

AL

AM

AN

AO

AP

AQ

AR

AS

AT

AU

AV

AW

AX

AY

AZ

E

I

N

T

T

E

E

A

D

L

O

R

U

S

S

S

R

L

H

B

C

A

E

I

M

P

BA

BB

BC

BD

BE

BF

BG

BH

BI

BJ

BK

BL

BM

BN

BO

BP

BQ

BR

BS

BT

BU

BV

BW

BX

BY

BZ

U

V

Z

X

E

O

M

L

I

G

C

E

E

E

E

I

O

N

A

A

A

D

F

J

N

P

CA

CB

CC

CD

CE

CF

CG

CH

CI

CJ

CK

CL

CM

CN

CO

CP

CQ

CR

CS

CT

CU

CV

CW

CX

CY

CZ

U

T

T

S

R

R

O

N

L

I

H

H

F

F

E

A

A

E

E

I

I

R

T

T

T

W

Y

T

R

Q

P

N

N

M

K

I

E

C

D

G

Y

T

R

O

R

N

N

S

S

O

D

O

DA

DB

DC

DD

DE

DF

DG

DH

DI

DJ

DK

DL

DM

DN

DO

DP

DQ

DR

DS

DT

DU

DV

DW

DX

DY

DZ

TABLE 1.21
Inverse
Mappings
for Sample
Table of
Homophones

28 Chapter 1 A History of Cryptography

A

F

K

P

U

A

B

C

D

E

B

G

L

Q/Z

V

C

H

M

R

W

D

I

N

S

X

E

J

O

T

Y

A B C D ETABLE 1.22

Now, we do the second transformation. Form new pairs by associating each letter in the
upper half with the letter below it; this yields

DC EE AE AA CD AC AC EB CA CE AA EA DA ED CA EE ED EC.

Now, using the same matrix given previously, map these pairs back to their single letter
equivalents. This third transformation yields the final ciphertext (grouped into 5-letter
blocks):

RYEAN CCVKO AUPXK YXW

(If we encounter a DB pair, it doesn’t matter if we map it back to a Q or a Z.) In order to
decipher, an individual simply maps the ciphertext letters to their letter pair equivalents,
perhaps writing them vertically to save time.

DE AA CA AE CC AE DE CE EE

CE EA DC CB AE AA AD AE DC

She then regards the pairs horizontally, and regains the plaintext

TAKEM ETOYO URLEA DER.

This cipher is similar to a German wartime cipher (called the ADFGVX cipher) that per-
plexed the allied cryptanalysts for quite some time. It was a surprisingly simple cipher, but
it was only cracked after great expenditure of time and effort.

This cipher, like the German ADFGVX cipher, uses a property called fractionation, which
means a permutation on parts of a unit rather than among the units. In this cipher, this hap-
pens when we split the letter pairs. A mapping from a single character initially formed these
pairs, so it is akin to moving “half” of a plaintext character. This is what confounds attempts
at breaking such ciphers. Not all substitution/transposition ciphers use this property.

EXERCISES

1. Write a Java program to simulate one of the ciphers in this chapter. Prompt the user to
enter a message, and then return the corresponding ciphertext. Then decrypt the mes-

Exercises 29

sage and show the user the regained plaintext. Use only uppercase English characters
for your alphabet.

2. The following text was produced using a Caesar cipher on a message consisting of only
uppercase English letters. Determine the shift value and recover the plaintext.

MXXFT QQHUX WMDYM QHQDO DQMFQ PNKYQ EUZOQ ARAXP AZMOO AGZFA RYKNQ

SUZZU ZSXQE ESDQQ PTMFD QPMZP USZAD MZOQN ADZAR YKOAZ PGOFE BQQOT

MZPFT AGSTF UZAIO AZRQE EABQZ XKMZP RGXXK

3. The following text was produced using a simple Vigenere cipher. Use the Kaisiski
method to determine probable key length, then do a frequency analysis to determine the
keyword, and recover the plaintext.

SSQYN ASXES RBFOR SOUYK VTAKO QVKSZ WOQSF VNOBB BRWKB BRCQS

QSOSF WJYSX FHKYS YGODI FSUMD BJJOD FQCWN IBSDO HSPBW XBDIL

MWQGP FZNVD DOSGO NEZSB JJSBQ FSXUW QOIOZ VLBIN TSBTP VBKUV

OXKOJ KDFMZ UCUBB DVITS PKTHC ZPZCB FWZVZ YCLMW HJOSO VBQCE

SGSSO BIWCS FDISC BZOBN DFMZU CUBBD VIORS NJHWY OBSGZ CFUTD

FSOUS BWSFV BUAOO SNOTO ZPSSR FBBCY SGQRP HDKVZ OXEJO XTHCX

FGQYU HVKOR PYPYC PBDDV JSRMS MDDPU FKQVM MSQDB FGGBP GSXLS

BXFHV OMSAO OHOBZ BIWCS FDISC BZOBN JHGKQ DZSDO HSPBG LPGHY

OORNJ GCXXS GVFMF YTWBQ NWQRB SZSND ZONSB DJBUO MZWZU WQMVF

JODFM ZUCUB BDVIH FSOOK WMIAO XOWBQ TAWDI FWMIO FNJBH OSBSD

DFMZU CUBBD VICCG DPBON EWGYO KSCMS MCUOZ VJBUC XWZVJ OAMSM

DDPUF KQVMK ORBOU KCBLG SMVFW DZBRO EWHSP BIZQS FCBRR VFFWF

FFDBF BHSDS VKMZG DFDSX TCBXF OZMSM DDPBC WJQCX OSKIP FYZFF

SXOWO VUFOZ QSKKE SOXEK OCIWB QUCBV BKFOO QSSOH FYEIQ DJCBD

PQFIQ HCQSO DRZKW DIQCN JBUDI SCBZI DZFFG KERZO SWJOS DFOOH

WMFVO VMKOI OSFZF HSBEW GKQDS KSWBQ DFMZU CUBBD VIDVS CUBID

IWZVB DDBPT SCTWC XBZ

4. The following text was produced using an auto-key Vigenere cipher. Attempt to recover
the priming key, and hence the plaintext.

TVWFP VVHZD PZXLX ADBSS SSWBW KAABS DXZFG ANWTZ PWEKV AEOEA

PIOBZ TALSV XUIFW AYEMU MFWAY EMWLT AMMNL HGAHX QILIG PPXFQ

ZMEAD XUXCM RSJHZ XLXCW HKNEH YKZMB OEDXZ FGANW TZPWE MOGWO

EAPKH HRTAL SVXUI FWAYE MUMFW AYEMW LTAMM NLHGA HXQIL IGPPX

FSSSW BWKAA BS

5. The following text was produced using a monoalphabetic substitution cipher, which
maps the alphabet A . . . Z to a permutation of that alphabet. Using frequency analysis,
attempt to recover the plaintext.

ULNEA YTWPX TFNUR WBPHN BPEXE YRKXB PANXE YRKFX HNENW WPETF

NUULN BKRFN YZNKU LNSXW LYSUL NWNPP ETULN GXKTW YSULN PXKYZ

NKULN FXZNW UYIHY ZNKPF FULNN PKULP ETYZN KPFFU LNIKN PURKN

WULPU BYZNP FYEAU LNAKY RETWY AYTIK NPUNT BPEXE LXWYD EXBPA

NXEUL NXBPA NYSAY TLNIK NPUNT LXBBP FNPET SNBPF NLNIK NPUNT

ULNBA YTGFN WWNTU LNBPE TWPXT UYULN BGNSK RXUSR FPETX EIKNP

30 Chapter 1 A History of Cryptography

WNXEE RBGNK SXFFU LNNPK ULPET WRGTR NXUKR FNYZN KULNS XWLYS

ULNWN PPETU LNGXK TWYSU LNPXK PETYZ NKNZN KJFXZ XEAIK NPURK

NULPU BYZNW YEULN AKYRE TULNE AYTWP XTXAX ZNJYR NZNKJ WNNTG

NPKXE AMFPE UYEUL NSPIN YSULN DLYFN NPKUL PETNZ NKJUK NNULP

ULPWS KRXUD XULWN NTXEX UULNJ DXFFG NJYRK WSYKS YYTPE TUYPF

FULNG NPWUW YSULN NPKUL PETPF FULNG XKTWY SULNP XKPET PFFUL

NIKNP URKNW ULPUB YZNYE ULNAK YRETN ZNKJU LXEAU LPULP WULNG

KNPUL YSFXS NXEXU XAXZN NZNKJ AKNNE MFPEU SYKSY YTPET XUDPW

WYAYT WPDPF FULPU LNLPT BPTNP ETXUD PWZNK JAYYT PETUL NKNDP

WNZNE XEAPE TULNK NDPWB YKEXE AULNW XOULT PJ

6. The following ciphertext was produced from a Playfair square. Using the relative fre-
quencies of digraphs in the English language (see Figure 1.3), attempt to recover the
plaintext and the Playfair square used.

PK QT OX OK KR QK ZX BI OZ BZ ZO EK KQ KP ZO IB ZO KG ZS VL HR
OR HY EK RK RU PH BO OW IH KR YK FW EK OI NR KR YK FW EK AF AX
AT VA KU GX OW YH VM EI FL HT QT XG AB LO LZ RH EK KU AE MF QH
AI EK HY KY QE OW IH KR UG FT ZN AI ZS FC LO TL PH TF BZ LZ RH
EK RQ OR RH OL CI ZS XL OF VD RE IK KR HR QK OD VK RO CI EK RH
RQ LO OD VK KZ LI OL NR RL KI EK HU XZ KE AF XK SI LI OW VC KU
QE FW OR HY EK HU XZ KE MW AZ EK HY FW TB KU GX ZS VL LS DS HY
EK HU XZ KE FL FU CI EK HY FW TB KU GX KR WL SD UH IC XZ KE OW
IH KR HR AF UK PH OZ BZ OW IH KR HR AF AG AT OZ BZ EK RY FT OK
FL FU CI ZS XL OF VD RE IK KR HR QK OW KY MU BO KQ RE QR YK ON
KR AF ER KA NI UK MU WF ER AF ER WM TA RA OR RH OU ZS FV LF RE
KR YK YG OW UK OW XL QE FW OR HY EK RQ OR RH OQ YH HE KR YK YG
OW UK MW AZ EK RQ OR RH SW LZ TY RO CI ZN AF XG OU ZS VL LS DS
HY EK KY KY MU BO KU EX OW IH KR HR AF UK PH OZ BZ OW IH KR HR
AF AG AT OZ BZ EK KU HQ IO XI FL FU CI ZS XL OF VD RE IK KR AF
ER EA CI RH EK KU EX QK MS EK RH HY NI IS QT VU LW RU CI UH HI
EF MK UA CI UM YG RU WF CI ZN AF XG OU ZS VL LS DS HY EK HY EF
MK UA CI SL CI OW IH KR MS EK RH HY AF ER KA KR WL SD UH XL RU
OL CI ZS XL FA EK OR ZN AF XK SI LI EK TQ ZS XL OF VD RE IK KR
SL CI ME LI LQ HP KP RE OR ZI BO KY HY QK FW ZO ZM SL ON OL CI
EH KY KU IO EK HU OW IH RL KN RU WM EA ZN NF EK UK YK XY OZ RO
BD NL HF ZO ZK IN KR FT ML TF UA XB ZO XL OW XY RN LO GX IN KR
SL CI ME LI LQ HY PH PK RO NZ IO VU OW KO QK FW ZO KX KY HY LW
DB AT XY BZ NI EK TY HT ZO XL OW IH HR YK XS RU TF BZ MW OY RN
ZN KL KY HY ZO ZN LW DB AT XY BZ NI EK TY HT ZO XL OW XV LI OL
NR RL NZ RN LO ZS IS FL CI EK RH RQ LO HP TQ ZO MS CI EK RH RQ
LO ZA TW ZO ZK KR EK FT XI FL FU CI ZS XL OF VD RE IK KR HR QK
OD VK KO ZO EK KY KY MU BO TU IR KR XB IE UO QE FW OR RE KR FL
FD TA ZR KR OZ VK RO CI UH KI EK RP UK HM RU XG OX ZB OK AZ FW
BX RU OU BO OW XI FL XU OW XF RU KA OW VD RE IK KR GW HU XZ KE
OX ON KR YK YG OW UK AI EK KU EX NI ZX PH OD VK NI ON KR YK FW
EK OW XY RN LO GX SZ LI RF YH RN SZ HR OR OD VK KO EK KP HR OR
RH OD VK KI NI ZS PH TW EK HY UF OW IH KR UH XG UK HA XZ KE IK
SZ LZ RH ON KR OZ VK EK RU SO AZ LF RE KR OK FW XK LI UK KI EK
RP ZO EK KY KY MU BO TU IR KR XB IE SZ DZ HU XZ KE IO EK KY RU

Exercises 31

HE KE SZ LZ RH ON KR FL FU CI EK TQ XZ KE OW IH UO QE FW OR HU
XZ KE MW AZ FL HT QT XG OL CI ZS XL FA EK OR ZN AF XK SI LI OW
IH KR HR AF UK PH OZ BZ OW IH KR HR AF AG AT OZ BZ EK RY UA HE
CV UF OW XV LI OL YX UH KI EK RQ OR RH ER YK RA ZN CD DZ ZO VB
HR OR AE KU OW VD RE NX HF AX UD SW LZ RE KR YK FW EK LW TA XG
OK KR YK YG OW UK AI EK KU EX OU ZS VL HR OR HY EK KP HR OR WH
RU EO HR OU IR KR UK SF OW YH PH EF OD ZD BZ OW FV LZ ZO ZK TD
BZ NF EK CR DN KE KR AF ER HE KY RP OL BD NL HF ZO ZK IN KR FT
TX CI OL CI HP RH FQ ZO PK XC FT FL BD NL HF ZO ZK IZ KO TX CI
OW XV LI OL NR RL NZ RN LO ZS IS XV LI CS KU GX HY EK RP OW XL
OF XC RY EA ZN YA SL CI ZO WH RU UK ZO IB AP QK WF CI DY SD OH
KR AF ER TF ON KR UK LO OW VD RE IK KR NX HF OX QB HR LO TU ON
KR YK FW EK OW IH KR HR AF UK PH OZ BZ OW IH KR HR AF AG AT OZ
BZ EK RY YD EK FL FU CI ZS XL OF VD RE IK KR SL CI ME LI LQ HU
DZ ZO VB HR OR AE KU LW DB AT XY BZ NI EK TY HT ZO XL OD PH OK
LN HB HR OR AE KU EK OR ZA PH LS IO ZK KR MK UA CI OW FC DO FL
OZ RF SO RU LC LW DB AT XY BZ NI ZN XB ZO FL CI ZN AF XG OU ZS
FV LF RE KR NF DV OW FZ LS OL BD NL HF ZO ZK IN KR FT TX CI OK
KR OD PH OK LN RS BD NL HF ZO ZK IN KR FT TX CI OL CI LS DS EK
HQ HR OR AE KU EK OR ZA PH LS IO ZK KR MK UA CI LW DB AT XY BZ
NI EK TY HT ZO XL OW XV LI OL NR RL NZ RN LO ZS IS IH KR BZ LI
OL YX UH EO AG SR RP OW ZO UA TF RF PK ZO UA HA XT TQ KU GX OW
VD RE IK KR RW AS TU PH HE KR DY LK AI EK KU RU FS CI EK KQ FT
XL AI EK RU FT LZ RH EK HU DZ KU NI BH LZ RH LS DS EK KY RU HE
RL CI LZ RH LS DS EK HQ HR OR AE KU EK OR ZA PH LS IO ZK KR MK
UA CI OU ZS VL HR OR HY RF OZ CT XO AN OZ RF PK ZO EK TY RF PK
AI ZS VC HQ HR OR HY TD GF RF UH OW XD RP LS RK HQ HR OR HY EK
RP ZS XC UH XG UK IH KR RF CI OL YX NI EK RP QK MW OY RI AS OW
XY QB HR LO TY BI QO GW RH DY SD OH KR YK FW EK OW XL SQ YL TY
EH AS TU PH HE KR DY LK AI EK KU RU FS CI EK KQ FT XL AI EK RU
FT OW IL PH HR PH EF OD ZD BZ WH RU EO HR EK OR ZA PH OU ON KR
MK UA CI EK TQ ZS XL OF XY ZX PH IU YQ PH EF UK YK XC RU TF BZ
VU OW NI ON KR MF QH AI EK RQ TL UH YK FW EK OW YH PH EF EH KY
RE RL EK LO MW OY RN ZN KL KY HY ZO ZN IK KR FQ DO DS QK IU AE
AX AT IA IS FL CI NI LS DS EK KQ RU OK OU IR KR YK FW EK OW FL
SD OH KR NX HF OU IR KR OF WF CI LS DS EK HQ HR OR AE KU EK OR
ZA PH IO EK KP TA OQ YH PH EF EK ZO ZK RL EK LO EK KQ HR OR TL
DA YD TY OZ NZ ZX PH YK PH EF MK KY TQ VU OW RI AT IA IS FL CI
ZN AF XG OU ZS XL FA LS DS EK OR KR RL FV LF RU CI ZN AF LG RH
XP SI LI OW IH KR HR AF UK PH OZ BZ OW IH KR HR AF AG AT OZ BZ
EK KU YI EK FL FI

C H A P T E R 2
Large Integer Computing

33

The vast majority of modern cryptography is handled by computers, which deal very
efficiently with numbers, especially integers. Thus, not surprisingly, we find that much

of modern cryptography is based on arithmetic with large integers. Of course, the default
integer data type for computing languages is limited in size, so programmers are often faced
with producing a new data type for integers of arbitrary size. Java, however, does provide
a BigInteger class, and it is very useful in cryptography. We will discuss this class later in
the book, but first it would be enlightening to try to produce a similar class of our own.

So, we begin developing an Int class. It can be supplied with various methods that manip-
ulate integers of arbitrary size; that is, it should be able to perform arithmetic with integers
of hundreds or even thousands of decimal digits. Such integers are common in modern cryp-
tography.

The Int class data fields should be able to represent an integer of arbitrary size in some
way, and also be able to represent some constructors that accept parameters to initialize the
data fields. We could represent the integer as an array of ints, where each int is a digit. (See
Figure 2.1.) We could also have a boolean data field that records the sign of the number, as
in the following code:

public class Int {

//Records if Int negative/nonnegative

boolean negative=false;

//Digits are stored as decimal digits,

//highest order digit first

int[] digits;

//Declare zero constant

final public static Int ZERO=new Int();

//Records position of 0 (zero) in the

//character set

final private static int zeroPos=’0’;

34 Chapter 2 Large Integer Computing

Digits

Negative True 7

2

3

8

9

4

1

0

1
FIGURE 2.1

So, for example, we would store the integer �000723894101 as in Figure 2.1. Note that
we disregard any leading zeros. The exception to this will be when we represent zero; the
array will have the single digit 0.

2.1 CONSTRUCTORS

For constructors, we should have the following:

1. An Int constructor which can convert an atomic type int to an Int,

2. One which can convert a string into an Int,

3. One which copies an Int to a new Int, and

4. The default constructor (one which accepts no parameters). This one will set the Int to
zero.

For the first constructor listed, we consider how this will be done. Suppose we want to
convert the int n = �562 into an Int. We could set aside enough space for ten digits, since
the largest int is around 2 billion and would require no more than ten decimal digits.

We first take note of the sign of the number, and then set the boolean negative field to
either true or false. We could then successively divide n by ten, keeping the remainder each
time and placing it in the array starting at the rear. If we have any unfilled slots in the array
when we are finished, we can move forward the elements at the rear. The code to accom-
plish this follows:

public Int(int n) {

//Produce the array-an int can not have more than 10 decimal digits

int[] temp=new int[10];

//zero is a special case

if (n==0) {

negative=false;

2.1 Constructors 35

digits=new int[1];

digits[0]=0;

return;

}

//Negative int n-set negative to true, take absolute value of n

if (n<0) {

negative=true;

n=Math.abs(n);

}

int count=10;

//Divide by 10 until nothing left

while (n>0) {

//Remainder is the count-th digit in the array

temp[—count]=n%10;

n/=10;

}

//Remove any leading zeros-make new array and copy

digits=new int[temp.length-count];

for (int i=0;i<digits.length;i++) digits[i]=temp[count+i];

}

The constructor which produces a copy of an Int from another Int, and the Int() con-
structor which accepts no parameters, are easy to code. The Int() constructor should set the
Int to zero.

//This one produces an array of one int containing 0

public Int() {

negative=false;

digits=new int[1];

digits[0]=0;

}

public Int(Int n) {

negative=n.negative;

digits=new int[n.digits.length];

for (int i=0;i<digits.length;i++) digits[i]=n.digits[i];

}

We now develop a constructor that produces Int objects from strings. We can arrange it
so that it will parse strings to determine whether or not it can be interpreted as an Int, then
place the characters (converted to ints) in the array. In case the string cannot be parsed as
an Int, we can throw an IntException:

public class IntException extends Exception {

public IntException() {super();}

public IntException(String s) {super(s);}

}

36 Chapter 2 Large Integer Computing

//This constructor converts a String to an Int. May throw an

//Exception if the String cannot be converted to an Int.

public Int(String s) throws IntException {

//Place the string into an array of characters

char[] temp=s.trim().toCharArray();

//Parse the array.

//First character may be a sign

//firstDigitLoc records index of first digit

int firstDigitLoc=0;

//If “-” sign symbol encountered, make negative Int, move to

//next index

if (temp[0]==’-’) {

negative=true;

firstDigitLoc++;

//If “+” just move to next symbol

} else if (temp[0]==’+’) {

firstDigitLoc++;

}

int index=firstDigitLoc;

//Check if remaining characters are digits-record # leading

//zeros

boolean significantDigitFound=false;

while (index<temp.length&&Character.isDigit(temp[index])) {

if (!significantDigitFound) {

//Skip any leading zeros

if (temp[index]==’0’) firstDigitLoc++;

else significantDigitFound=true;

}

index++;

}

//Throw an exception if nondigit found

if (index<temp.length) throw new IntException(“This is not a

valid integer!”);

//If no significant digit found, this was a string of all zeros

//Make the zero Int and return

if (!significantDigitFound) {

negative=false;

digits=new int[1];

digits[0]=0;

return;

}

2.1 Constructors 37

//This parsed as an integer-store it, ignoring leading zeros

char[]

c=s.trim().substring(firstDigitLoc,s.length()). toCharArray();

digits=new int[c.length];

//Subtract zeroPos from the character-this gives the

//corresponding int

for (int i=0;i<c.length;i++) digits[i]=(int)c[i]-zeroPos;

}

For output purposes, we should be able to convert an Int object to a string and display
it. Thus, as with all good classes in Java, we will supply a toString() method.

//Returns the Int as a String, mainly for output purposes

public String toString() {

//Use a StringBuffer for efficiency

StringBuffer answer=new StringBuffer(“”);

//Put a “-” symbol in front if negative

if (negative) answer.append(“-”);

//Append each digit to the StringBuffer and return it as a String

for (int i=0;i<digits.length;i++) {

answer.append(new Integer(digits[i]).toString());

}

return new String(answer);

}

Now that we have designed these constructors, we should test them to verify that they
work. The class TestIntConstructors is a console program that simply asks the user to enter
some integers and then converts them to Ints. It then turns them back to strings using the
toString() method and displays them. The code can be found at the book’s website, and an
example run is shown in Figures 2.2(a)–(e).

FIGURE 2.2 (a)

(b)

38 Chapter 2 Large Integer Computing

(c)

(d)

(e)

FIGURE 2.2
(continued)

2.2 COMPARISON METHODS

We should write methods that allow us to compare Int objects; that is, methods to tell us when
they are equal, and if one is less than another. To determine whether Int x is less than Int y,
for example, we could do the following:

• If x and y are of different signs, the negative one is smaller. Otherwise, continue with the
next step.

• If the arrays representing x and y are different lengths, and if both are negative, then the
larger array is the smaller number. Otherwise the smaller array represents the lesser of the
two Ints. If both arrays are the same length, continue with the next step.

• Proceed down the array until you find unequal digits. If both x and y are negative, the array
containing the smaller digit is the largest. Otherwise, the array containing the larger digit
represents the larger integer. If you find no unequal digits, neither integer is larger.

2.2 Comparison Methods 39

This is how we normally compare integers ourselves, and writing the lessThan(Int)
method in Java isn’t terribly difficult.

public boolean lessThan(Int other) {

//Start by assuming this is less than other

boolean answer=false;

//Both Ints are nonnegative here

if (!negative&&!other.negative) {

//If they are the same length, must compare the digits

if (digits.length==other.digits.length) {

int i=0;

while (i<this.digits.length&&digits[i]==other.digits[i]) i++;

//Each digit of this was less than each digit of other

if (i<this.digits.length)

if (digits[i]<other.digits[i])

answer=true;

//this has smaller length than other-must be less than

} else if (digits.length<other.digits.length) answer=true;

//If both Ints negative, do the reverse of the above comparisons

} else if (negative&&other.negative) {

if (digits.length==other.digits.length) {

int i=0;

while (i<this.digits.length&&digits[i]==other.digits[i]) i++;

if (i<this.digits.length)

if (digits[i]>other.digits[i])

answer=true;

} else if (other.digits.length<digits.length) answer=true;

//If this is negative and other nonnegative, must be less than

} else if (negative&&!other.negative) answer=true;

//Otherwise, this is nonnegative and other negative

//Return answer, which was initialized to false

return answer;

}

The code to determine whether or not two Ints are equal should now be very simple to
write.

public boolean equals(Int other) {

boolean answer=true;

//Check if same sign

if (negative!=other.negative) answer=false;

//Check if different lengths

else if (digits.length!=other.digits.length) answer=false;

//If same length and sign, compare each digit

else for (int i=0;i<digits.length;i++)

40 Chapter 2 Large Integer Computing

(a)

(b)

(c)

(d)

FIGURE 2.3

//Any nonmatching digit sets answer to false

if (digits[i]!=other.digits[i]) answer=false;

return answer;

}

We now demonstrate a test program for the lessThan(Int) and equals(Int) methods. The
code can be found on the book’s website under the class name TestIntComparisonMethods.

Screen shots of the test program are shown in Figure 2.3a–d.

2.3 Arithmetic Methods 41

2.3 ARITHMETIC METHODS

Of course, we must write methods to perform arithmetic with Int objects. We must be able
to add, subtract, multiply, and divide. For convenience, we should add methods to increment
and decrement Int objects. First, we consider the addition of two integers a and b:

• If one is zero, return the other as the answer. Otherwise go on.

• If a = �b, return zero. Otherwise go on.

• If the digits are the same sign, add them beginning with the lowest digits, adding any car-
ries in the subsequent addition. Otherwise go on.

• If the digits are of different signs, this is a subtraction; either a � –b or b � –a. To do a
subtraction, you must determine the larger of the two integers without regard to sign, then
subtract the smaller integer from the larger. The sign of the answer is the same as that of
the larger operand.

We shouldn’t be too surprised at this addition/subtraction scheme, because it is the way
humans (using base 10) normally do it. Notice that writing the add(Int) and subtract(Int) may
entail using some of the methods already developed (like equals(Int) and lessThan(Int)),
and may require writing a few more methods as well. For instance, in the following there
is a method to negate an Int, and one to produce the absolute value. These are listed first.

public Int absoluteValue() {

//Make a new Int by copying this Int

Int answer=new Int(this);

//Set negative to false

answer.negative=false;

return answer;

}

public Int negative() {

Int answer=new Int(this);

//Flip the negative value

answer.negative=!this.negative;

return answer;

}

The code which does most of the work is in the add(Int) method. First, it determines the
sign of the two numbers; if they are the same, it is an addition problem, and the addDigits(Int)
method is called. If they are not the same, it is a subtraction problem, and the subtractDig-
its(Int) method is called. The subtractDigits(Int) method may call the borrow(Int) method,
which allows us to borrow from digits to the left for subtraction. Of course, after the num-
bers are added or subtracted, there may be leading zeros, which should be removed.

public Int add(Int other) {

Int ans;

42 Chapter 2 Large Integer Computing

//zero is a special case-nothing to do but return a copy of the

//nonzero Int

if (this.equals(ZERO)) return new Int(other);

else if (other.equals(ZERO)) return new Int(this);

else if (this.equals(other.negative())) return new Int();

//If they are the same sign, perform the addition; add carries

else if (negative==other.negative) {

ans=addDigits(other);

ans.negative=negative;

}

//If they are of different signs, determine the larger

//(magnitude-wise) and subtract the smaller from it.

//Result has same sign as first (larger) operand.

else if (this.absoluteValue().lessThan(other.absoluteValue())) {

ans=other.subtractDigits(this);

ans.negative=other.negative;

} else {

ans=this.subtractDigits(other);

ans.negative=this.negative;

}

//Trim leading zeros and return

return ans.trimZeros();

}

public Int subtract(Int other) {

//To subtract, we add the negative

return this.add(other.negative());

}

private Int addDigits(Int other) {

int top1=this.digits.length-1;

int top2=other.digits.length-1;

int top3=Math.max(this.digits.length,other.digits.length)+1;

Int answer=new Int();

answer.digits=new int[top3];

top3--;

int carry=0; int sum=0;

while (top1>=0&&top2>=0) {

sum=this.digits[top1]+other.digits[top2]+carry;

if (sum>9) {sum%=10; carry=1;} else carry=0;

answer.digits[top3]=sum;

top1--;top2--;top3--;

}

if (top1<0&&top2<0) {

answer.digits[0]=carry;

} else if (top1<0) {

2.3 Arithmetic Methods 43

while (top2>=0) {

sum=other.digits[top2]+carry;

if (sum>9) {sum%=10; carry=1;} else carry=0;

answer.digits[top3]=sum;

top2--;top3--;

}

answer.digits[top3]=carry;

} else {

while (top1>=0) {

sum=this.digits[top1]+carry;

if (sum>9) {sum%=10; carry=1;} else carry=0;

answer.digits[top3]=sum;

top1--;top3--;

}

answer.digits[top3]=carry;

}

return answer;

}

private Int subtractDigits(Int other) {

Int answer=new Int();

Int copy=new Int(this);

answer.digits=new int[this.digits.length];

int top1=this.digits.length-1;

int top2=other.digits.length-1;

while (top2>=0) {

if (copy.digits[top1]<other.digits[top2]) {

borrow(copy,top1-1);

copy.digits[top1]+=10;

}

answer.digits[top1]=copy.digits[top1]-other.digits[top2];

top1--; top2--;

}

while (top1>=0) {

answer.digits[top1]=copy.digits[top1];

top1--;

}

return answer;

}

//Method to “borrow” for subtraction

private void borrow(Int n,int pos) {

while (n.digits[pos]==0) {

n.digits[pos]=9;

pos--;

}

44 Chapter 2 Large Integer Computing

n.digits[pos]—;

}

//Method to chop off any leading zeros

private Int trimZeros() {

int i;

//Look for first nonzero in the array

for (i=0;i<this.digits.length;i++)

if (this.digits[i]!=0)

break;

Int answer=new Int();

answer.negative=this.negative;

//Make a (possibly) smaller array for answer

answer.digits=new int[this.digits.length-i];

//Copy the nonzero digits over, and return answer

for (int j=0;j<answer.digits.length;j++)

answer.digits[j]=this.digits[j+i];

return answer;

}

Methods to multiply and divide Ints should also be written. We will develop the multi-
ply(Int) method here. When we multiply two integers, we really just multiply by a single digit
at a time, then perform a total of these individual products. For example, when we do

we actually do these separate products:

527 � 6 = 3162, 527 � 1 = 527, and 527 � 3 = 1581.

We then add these products together, shifting some of the products to the left. That is, we
append a zero to 527 � 1 since 1 is in the tens column, and we append two zeros to 526 �
6 because 6 is in the hundreds column: This gives us

Thus our multiplication problem actually becomes an addition problem, as long as we
are able to multiply an integer by a single digit, and as long as we can append a certain
number of zeros to our sub-products. Doing the latter in Java is very simple, as you can see
from the following code:

 527
x 613

1581
+ 5270
+ 316200

323051

527
� 613

2.3 Arithmetic Methods 45

private Int appendZeros(int places) {

//Make a new Int object

Int result=new Int();

//If this equals 0, return 0; no need to append

if (this.equals(ZERO)) return result;

//Make the resulting array larger

result.digits=new int[this.digits.length+places];

//Shift the digits into the new array

for (int i=0;i<this.digits.length;i++) {

result.digits[i]=this.digits[i];

}

return result;

}

Now, to multiply an Int by a single digit, we simply multiply each digit in the first operand
by the selected digit from the second operand. If this product is greater than 9, we use the
remainder of division by 10 for the corresponding digit in the result (plus a possible carry
from the previous multiplication), and we record the quotient when dividing by 10 as a
carry. Take the following example:

We first take 7 � 3 = 21; 1 becomes the digit in the one’s column of the result, and 2
becomes the carry.

We then take 2 � 3 = 6, and add the previous carry 2, to get 8. This becomes the digit in
the tens column of the result, and 0 becomes the carry.

Now we take 5 � 3 = 15, and add the previous carry 0. 5 becomes the digit in the hun-
dreds column of the result, and 1 becomes the carry.

1
527

x 3
581

0
527

x 3
?81

2
527

x 3
??1

527
x 3

???

46 Chapter 2 Large Integer Computing

There are no more digits to multiply, but there is the possibility of one final carry, as is
the case here. This becomes the thousands digit in the result.

Of course, this is exactly how we’ve done multiplication by a single digit since elemen-
tary school, but perhaps coding it seems not so elementary. Examine the following code
carefully:

//Method to multiply an Int by a single decimal digit

//Called repeatedly by multiply(Int) method

private Int multiply(int otherDigit) {

//Make a new Int for the answer

Int result=new Int();

//If digit to multiply by is 0, return 0

if (otherDigit==0) return result;

//Make the answer array one longer than the first operand,

//in case there is a carry

result.digits=new int[this.digits.length+1];

int carry=0;

int tempInteger;

int i;

for (i=this.digits.length-1;i>=0;i--) {

//i+1th digit of result is the ith digit of the first operand

//times the digit in the second operand. If this is more than

//10, we must keep only the least significant digit.

//We also add any previous carries

tempInteger=this.digits[i]*otherDigit+carry;

result.digits[i+1]=tempInteger%10;

//If the product is more than 10, we must set carry

//for the next round

carry=tempInteger/10;

}

//Possibility of one last carry; do the final digit.

result.digits[0]=carry;

return result;

}

Once we have the ability to append zeros and to multiply an Int by a single digit, multi-
plying two Int objects simply becomes a matter of calculating these sub-products and adding
them together. This part is actually easy with the two previous methods defined, as you can
see in the following code:

public Int multiply(Int other) {

527
x 3

1581

2.3 Arithmetic Methods 47

//Initialize the answer to 0

Int result=new Int();

//If either operand is 0, return 0

if (this.equals(ZERO)||other.equals(ZERO)) return result;

//Now, multiply the first operand by each digit in the

//second operand, shifting left each answer by a power of ten

//as we pass through the digits, adding each time to result.

for (int i=0; i<other.digits.length; i++) {

result=result.add(this.multiply(other.digits[i])

.appendZeros(other.digits.length-1-i));

}

//If operands are same sign, result is positive

//otherwise, the result is negative; 0 is already taken care of

if (this.negative==other.negative) result.negative=false;

else result.negative=true;

//Return the result

return result.trimZeros();

}

Note that at the end of the multiply(Int) method we remove any leading zeros which may
come about. Another consideration is the sign of each operand: If they are equal, the result
is a nonnegative number; otherwise, the result is negative. Zero is treated as a special case.

At this point, you should be able to write the divide(Int), and remainder(Int) methods, and
will be asked to do so in the exercises. It would be prudent to write a divideAndRemain-
der() method, since both the quotient and remainder would probably be generated at the
same time. It could return an array of two Ints, with the quotient in slot 0, and the remain-
der in slot 1 of the array.

Division is the most costly (in terms of computer time) to run. For now, we only consider
problems where the dividend and divisor are both positive. One of the primary problems is
estimating the digits in the quotient. For example, consider the following division problem:

6772190 ÷ 37658.

Note that 3 (the leading digit of the divisor) goes into 6 (the leading digit of the dividend)
twice, but the real quotient of the previous division is 179. The estimate of the first digit of
the quotient is too high. A similar problem occurs in the following problem:

19276 ÷ 273.

Note that the leading digit of the divisor cannot go into the leading digit of the dividend
at all, and we must therefore attempt to take the divisor into the first two digits of the divi-
dend. One way to avoid spending too much time estimating is to allow the quotient to have
mixed positive and negative digits. Consider again

19276 ÷ 273.

48 Chapter 2 Large Integer Computing

Number the position of each digit:

19276 273

54321 321

First, attempt to divide 1 by 2; if this fails, incorporate another digit. Here we divide 19
by 2, which yields 9. Produce the first value for the quotient:

90.

The number of zeros to add is clear when you note the position of the 9 in the dividend
is 4, and the position of the 2 in the divisor is 3. Thus, we add 4 � 3 = 1 zero. Now, sub-
tract 90 · 273 from 19276:

Now, attempt to divide 2 into �5; this yields �2. Since the �5 is at position 4, and 2 is
still at position 3, we add a zero to get

-20

We now modify the quotient value:

90 + -20 = 70.

Now, subtract �20 · 273 from �5294; this gives us

Note now that the value remaining is smaller than the divisor 273; thus, we have

quotient = 70, and

remainder = 166.

Here is the whole process written out; the only difference between this and the way we
normally do division is that negative quantities appear in the quotient:

70
–20
 90

273)19276
–24570
–5294
––5460

166

 -5294
--5460
 166

 19276
-24570
 -5294

2.3 Arithmetic Methods 49

Here is another example for you:

It is entirely possible that this process could yield a negative remainder, as in the following
example (the absolute value of �542 is less than the divisor, 982).

When this happens, it is easy to fix: simply add the divisor to the negative remainder and
subtract 1 from the quotient. In this case, this yields:

quotient = 9

remainder = 440.

Now we consider what to do when either the dividend or divisor is negative. Note that
if x is the positive dividend, y is the positive divisor, q is the quotient, and r is the remain-
der, we can express their relationship to each other as:

x = yq + r b > r ≥ 0.

If either x or y changes sign, we can maintain this relationship by inverting some signs.
For example, we can perform calculations with all positive numbers, because:

if y is negative, change the sign of q, since

x = yq + r iff

x = �y(�q) + r,

10
982)9278

–9820
–542

80297
–3

 300
–10000

 90000
123)9876543
–11070000
–1193457
––1230000

 36543
–36900

–357
––369

12

50 Chapter 2 Large Integer Computing

FIGURE 2.4 (a)

(b)

if x is negative, change the sign of both q and r, since

x = yq + r iff

�x = �(yq + r) iff

�x = y(�q) � r,

and if both x and y are negative, change the sign of r, since

x = yq + r iff

�x = �(�y(�q) + r)

�x = �yq � r.

With this in mind, writing a division method should be a snap.
Naturally, the arithmetic methods must be tested. No programmer ever designs a class

without writing a multitude of programs to wring all the bugs out of it. I’ve written a sim-
ple applet to do this. I ask the user to enter an Int in a text field, and then they click an oper-
ation, either “+”, “�”, or “*”. They then enter another Int and press the “=” button. This is
the beginning of a calculator; you will be asked to produce a better one in the exercises. Some
screen shots follow, and the applet can be found on the book’s website under the class name
TestIntArithmeticMethodsApplet. (See Figure 2.4a–c.)

2.5 Constructors 51

(c)FIGURE 2.4
(continued)

Having an Int class is a very valuable tool, for it frees us from the boundaries placed on
us by the primitive integer data types of most computer languages. A Java int, for example,
is only 4 bytes, which is not nearly large enough for the numbers we will need to handle in
this book. However, the cost of this freedom is decreased performance, and as a result large
integer packages are usually very carefully designed and optimized to yield the maximum
benefit. The Int class as we have designed it here is in fact rather poor, but it is neverthe-
less a good introduction for someone who has never attempted the feat before. In the exer-
cises we will discuss how to produce a much better Int class.

2.4 THE JAVA BIGINTEGER CLASS

Java provides a BigInteger class with the same functionality that we have given our Int
class, and more. It is optimized for speed, and we will use it for further development. Rewrit-
ing programs for the Int class and then comparing their performances to the BigInteger class
will make interesting exercises, and you are invited to do this.

2.5 CONSTRUCTORS
A partial list of the BigInteger constructors and methods follows:

• public BigInteger(byte B[]) throws NumberFormatException

This constructor translates a byte array containing the two’s–complement representation
of a signed integer into a BigInteger (see Figure 2.5). The input array is assumed to be big-
endian; that is, the most significant byte is in the [0] position. The most significant bit of the
most significant byte is the sign bit. The array must contain at least one byte or a Number-
FormatException will be thrown.

• public BigInteger(int signum, byte magnitude[]) throws

NumberFormatException

52 Chapter 2 Large Integer Computing

FIGURE 2.5
Array of bytes

sign bit negative two’s complement
representation

1 000 1101 1111 0011 0010 1101 0100 1110

= –1913442992

= –1110010000011001101001010110000base 2
B

B

signum

magnitude[0] magnitude[1]

1101 0011 0010 1100

Produces BigInteger –54060

= –1101001100101100base 2

–1

FIGURE 2.6

This constructor translates the sign-magnitude representation of an integer into a BigIn-
teger (see Figure 2.6). The integer is sent in as an array of bytes, and the sign is represented
as an integer signum value:

�1 for negative,

0 for zero, and

1 for positive.

The magnitude is represented as a big-endian byte array; that is, the most significant
byte is in the [0] position. An invalid signum value or a 0 signum value coupled with a
nonzero magnitude will result in a NumberFormatException. A zero length magnitude array
is permissible and will result in a value of zero regardless of the given signum value.

• public BigInteger(String val) throws NumberFormatException

This translates a string containing an optional minus sign followed by a sequence of one
or more decimal digits into a BigInteger. Any extraneous characters (including whitespace)
will result in a NumberFormatException.

2.5 Constructors 53

EXAMPLE. This constructor is very useful when entering large integers in decimal format from
an input device. An example of how it may be called follows:

BigInteger m = new BigInteger(“92387569832653429874569286898623498”);

• public BigInteger(String val, int radix) throws NumberFormatException

This translates a string containing an optional minus sign followed by a sequence of one
or more digits in the specified radix into a BigInteger. Any extraneous characters, includ-
ing whitespace, or a radix outside the range 2 through 36, will result in a NumberFormat-
Exception.

EXAMPLE. This constructor is similar to the previous one, and is likewise very useful when
entering large integers in decimal format from an input device. However, with this con-
structor we can specify the base of the number being entered. An example of creating a Big-
Integer object from the string representation of a number in base 2 follows:

BigInteger m = new

BigInteger(“101111100001010111010000001111101010011111101”,2);

• public BigInteger(int bitLength, int certainty, Random rnd)

This returns a randomly selected BigInteger with the specified bitLength that is proba-
bly prime. The certainty parameter is a measure of the uncertainty that the caller is willing
to tolerate: the probability that the number is prime will exceed 1 � (1/2)t where t = certainty.
The execution time is proportional to the value of the certainty parameter. The given ran-
dom number generator is used to select candidates to be tested for primality. This will throw
an ArithmeticException if bitLength < 2.

EXAMPLE. This BigInteger constructor will prove to be the most useful of them all for our
purposes, for it can generate random (probable) primes for use in cryptosystems. To gener-
ate an integer 1024 bits long, which is prime with probability 0.875 = 1 � (0.5)3, we could
make the following calls:

SecureRandom sr=new SecureRandom();

BigInteger p=new BigInteger(1024,3,sr);

The SecureRandom class (seen here) is a subclass of Random; if used properly, it gen-
erates random integers much more difficult to predict than those created by ordinary ran-
dom number generators.

• public BigInteger(int numBits, Random rndSrc) throws

IllegalArgumentException

54 Chapter 2 Large Integer Computing

This returns a random number uniformly distributed on the interval [0, 2numBits � 1],
assuming a fair source of random bits is provided in rndSrc. Note that this constructor always
returns a nonnegative BigInteger. It throws an IllegalArgumentException if numBits < 0.

EXAMPLE. This constructor just generates random positive integers without regard to pri-
mality. Again, to ensure randomness which is hard to predict, SecureRandom objects should
be used, as seen here:

SecureRandom sr=new SecureRandom();

BigInteger p=new BigInteger(1024,sr);

2.6 METHODS
This is the last of the constructors; the BigInteger methods follow:

• public static BigInteger valueOf(long val)

Returns a BigInteger with the specified value. This factory is provided in preference to
a (long) constructor because it allows for reuse of frequently used BigIntegers, such as 0 and
1, obviating the need for exported constants.

EXAMPLE. (Note that this is a static method, and so is called by the class name):

final BigInteger ONE=BigInteger.valueOf(1);

The methods following perform basic arithmetic with BigIntegers.

• public BigInteger add(BigInteger val) throws ArithmeticException

Returns a BigInteger whose value is (this + val).

• public BigInteger subtract(BigInteger val)

Returns a BigInteger whose value is (this � val).

• public BigInteger multiply(BigInteger val)

Returns a BigInteger whose value is (this · val).

• public BigInteger divide(BigInteger val) throws ArithmeticException

Returns a BigInteger whose value is the quotient of (this / val). It throws an ArithmeticEx-
ception if val = 0.

• public BigInteger remainder(BigInteger val) throws

ArithmeticException

Returns a BigInteger whose value is the remainder of (this / val). It throws an Arith-
meticException if val = 0.

2.6 Methods 55

EXAMPLE. Using these methods is elementary, as you can see from the following program
fragment:

BigInteger op1=new BigInteger(“3”);

BigInteger op2=new BigInteger(“2”);

BigInteger sum=op1.add(op2);

BigInteger difference=op1.subtract(op2);

BigInteger product=op1.multiply(op2);

BigInteger quotient=op1.divide(op2);

BigInteger rem=op1.remainder(op2);

• public BigInteger[] divideAndRemainder(BigInteger val)

throws ArithmeticException

Since most division algorithms produce the quotient and the remainder at the same time,
a more efficient way of capturing both of these values is provided by the divide-
AndRemainder() method.

EXAMPLE. The answers are returned in an array of two BigIntegers, as follows:

BigInteger op1=new BigInteger(“9”);

BigInteger op2=new BigInteger(“2”);

BigInteger[] answers=new BigInteger[2];

answers=op1.divideAndRemainder(op2);

When this code completes, answers[0] contains the value 4 (as a BigInteger), and
answers[1] contains 1.

• public BigInteger pow(int exponent) throws ArithmeticException

This method returns a BigInteger whose value is thise where e = exponent and throws an
ArithmeticException if e < 0 (as the operation would yield a noninteger value). Note that e
is an integer rather than a BigInteger

EXAMPLE. Here is an example of how this method would be used (it calculates 2256):

BigInteger base=new BigInteger(“2”);

BigInteger humungous=base.pow(256);

Clearly, care should be used with this method, for it can easily generate gigantic num-
bers which could exhaust the storage capacity of the computer.

• public BigInteger gcd(BigInteger v)

This method returns a BigInteger whose value is the greatest common divisor of |this| and
|v|. It correctly returns (0, 0) as 0.

56 Chapter 2 Large Integer Computing

• public BigInteger abs()

This method returns a BigInteger whose value is the absolute value of this number.

EXAMPLE. Here is how you would call the method:

BigInteger test=new BigInteger(“-1”);

test=test.abs();

• public BigInteger negate()

This method returns a BigInteger whose value is (�1 · this).

• public int signum()

This method returns the signum function of this number; that is,

�1 if this < 0,

0 if this = 0,

1 if this > 0.

• public BigInteger mod(BigInteger m)

This method returns a BigInteger whose value is this mod m. It throws an ArithmeticEx-
ception if m ≤ 0. This method may return a negative value if the dividend is negative.

• public BigInteger modPow(BigInteger e, BigInteger m)

This method returns a BigInteger whose value is (thise) mod m. If e = 1, the returned value
is this mod m. If e ≤ 0, the returned value is the modular multiplicative inverse of this–e. This
method throws an ArithmeticException if m ≤ 0.

Java Algorithm The modPow() method will be handy in the upcoming development
of cryptography; b.modPow(y,n) basically returns the remainder of by divided by n, where
b, y, and n are all positive BigIntegers. For example, if b = 2, y = 3, and n = 5 were all
declared as BigIntegers, then b.modPow(y,n) would return the remainder of 23/5, or 3. Fig-
ure 2.7 shows an applet which allows you to enter b, y, and n, and then returns and displays
b.modPow(y,n).

The code for this applet can be found on the book’s website under the class name
TestPowApplet.

• public BigInteger modInverse(BigInteger m) throws ArithmeticException

This method returns the modular multiplicative inverse of this modulo m. (The expla-
nation of “modular multiplicative inverse” will come later.) The method throws an Arith-
meticException if m ≤ 0 or if this has no multiplicative inverse mod m (that is, if this and
m are not relatively prime).

• public BigInteger shiftLeft(int n)

2.6 Methods 57

FIGURE 2.7

This method returns a BigInteger whose value is this << n; that is, it shifts the binary rep-
resentation of this n bits to the left.

• public BigInteger shiftRight(int n)

This method returns a BigInteger whose value is this >> n; that is, it shifts the binary rep-
resentation of this n bits to the right.

• public BigInteger and(BigInteger val)

This method returns a BigInteger whose value is (this & val). It performs a bitwise AND
on the two BigIntegers.

EXAMPLE. If a and b are two BigIntegers, where

a = 1001011base 2

b = 1011010base 2

then the following call

BigInteger c = a.and(b);

leaves c with the value 1001010base 2.
This method returns a negative number iff both this and val are negative.

• public BigInteger or(BigInteger val)

This method returns a BigInteger whose value is (this | val).

EXAMPLE. This method performs a bitwise OR on the two operands. So if a and b are as
defined previously; that is,

a = 1001011base 2

b = 1011010base 2

58 Chapter 2 Large Integer Computing

then the following call

BigInteger c = a.or(b);

leaves c with the value 1011011base 2.
This method returns a negative number iff either this or val is negative.

• public BigInteger xor(BigInteger val)

This method returns a BigInteger whose value is (this ^ val).

EXAMPLE. This method performs a bitwise exclusive OR on the two operands. So if a and
b are as defined previously; that is,

a = 1001011base 2

b = 1011010base 2

then the following call

BigInteger c = a.xor(b);

leaves c with the value 0010001base 2.
This method returns a negative number iff exactly one of this and val are negative.

• public BigInteger not()

This method returns a BigInteger whose value is this with each bit flipped. It returns a
negative value iff this is nonnegative.

EXAMPLE. Thus, if we are using b as defined earlier; that is,

b = 1011010base 2,

then the following call

BigInteger c = b.not();

leaves c with the value 0100101base 2.

• public BigInteger andNot(BigInteger val)

This method is equivalent to and(val.not()), and is provided as a convenience for mask-
ing operations. This method returns a negative number iff this is negative and val is posi-
tive.

• public boolean testBit(int n) throws ArithmeticException

This method returns true iff the designated bit is set, and throws an ArithmeticException
if n < 0.

2.6 Methods 59

• public BigInteger setBit(int n) throws ArithmeticException

This method returns a BigInteger whose value is equivalent to this number with the des-
ignated bit set. It throws an ArithmeticException if n < 0.

• public BigInteger clearBit(int n) throws ArithmeticException

This method returns a BigInteger whose value is equivalent to this number with the des-
ignated bit cleared. It throws an ArithmeticException if n < 0.

• public BigInteger flipBit(int n) throws ArithmeticException

This method returns a BigInteger whose value is equivalent to this number with the des-
ignated bit flipped. It throws an ArithmeticException if n < 0.

• public int getLowestSetBit()

This method returns the index of the rightmost (lowest–order) one bit in this number
(that is, the number of zero bits to the right of the rightmost one bit). It returns �1 if this
number contains no one bits.

• public int bitLength()

This method returns the number of bits in the minimal two’s–complement representation
of this number, excluding a sign bit. For positive numbers, this is equivalent to the number
of bits in the ordinary binary representation.

• public int bitCount()

This method returns the number of bits in the two’s–complement representation of this
number that differ from its sign bit. This method is useful when implementing bit-vector style
sets atop BigIntegers.

• public boolean isProbablePrime(int certainty)

This method returns true if this BigInteger is probably prime, or false if it’s definitely com-
posite. The certainty parameter is a measure of the uncertainty that the caller is willing to
tolerate: the method returns true if the probability that this number is prime exceeds 1 � 1/2t

where t = certainty. The execution time is proportional to the value of the certainty parameter.
The test for primality here is the same one used in the constructor that generates random prob-
able primes.

• public int compareTo(BigInteger val)

This method returns �1, 0, or 1 as this number is less than, equal to, or greater than val.
This method is provided in preference to individual methods for each of the six boolean
comparison operators:

==

!=

<

60 Chapter 2 Large Integer Computing

<=

>

>=

EXAMPLE. Examples for performing these comparisons are any of the following:

boolean b=x.compareTo(y)<0;

b=x.compareTo(y)<=0;

b=x.compareTo(y)>0;

b=x.compareTo(y)>=0;

b=x.compareTo(y)==0;

b=x.compareTo(y)!=0;

• public boolean equals(Object x)

This method returns true iff x is a BigInteger whose value is equal to this BigInteger. It
is provided so that BigIntegers can be used as hash keys.

• public BigInteger min(BigInteger val)

This method returns the BigInteger whose value is the lesser of this and val. If the val-
ues are equal, either may be returned.

• public BigInteger max(BigInteger val)

This method returns the BigInteger whose value is the greater of this and val. If the val-
ues are equal, either may be returned.

• public int hashCode()

This method computes a hash code for this object.

• public String toString(int radix)

This method returns the string representation of this number in the given radix. If the radix
is outside the range from 2 through 36, it will default to 10. This representation is compat-
ible with the (String, int) constructor.

EXAMPLE. An example of how this method may be called follows:

BigInteger bigBoy=new BigInteger(“255”);

System.out.println(“255 in binary is ”+bigBoy.toString(2));

The output is:

255 in binary is 11111111

• public String toString()

This method returns the string representation of this number, radix 10. The digit-to-char-
acter mapping provided by Character.forDigit is used, and a minus sign is prepended if
appropriate. This representation is compatible with the (String) constructor, and allows for
string concatenation with Java’s + operator.

Exercises 61

EXAMPLE. An example of how this method may be called follows:

BigInteger bigBoy=new BigInteger(“255”);

System.out.println(bigBoy.toString());

However, it is often not necessary to convert BigIntegers to Strings before printing them,
for we can use implicit calls to a toString() method by concatenating a BigInteger to a String
using the “+” concatenation operator:

BigInteger bigBoy=new BigInteger(“255”);

System.out.println(“This # is: “+bigBoy);

The BigInteger will be displayed in base 10.

• public byte[] toByteArray()

This method converts a BigInteger into a raw array of bytes. In effect, it returns the
two’s–complement binary representation of this number in the array, which is big-endian
(that is, the most significant byte is in the [0] position). The array contains the minimum num-
ber of bytes required to represent the number. For example, suppose b is a BigInteger hav-
ing the value 987654321=111010110111100110100010110001base 2. (You may wish to verify
that this is actually the base 2 representation of 987654321.) Then we make the following
call:

byte[] a=b.toByteArray();

This will produce a byteArray of 4 bytes, assign it to a, and the most significant digits
of the BigInteger b will be first. That is,

a[0]=00111010,

a[1]=11011110,

a[2]=01101000, and

a[3]=10110001.

This representation is compatible with the (byte[]) constructor.

• public int intValue()

This method converts this number to an int.

• public long longValue()

This method converts this number to a long.

• public float floatValue()

This method converts this number to a float. It is similar to the double-to-float narrow-
ing primitive conversion defined in The Java Language Specification: If the number has
too great a magnitude to represent as a float, it will be converted to infinity or negative
infinity as appropriate.

62 Chapter 2 Large Integer Computing

• public double doubleValue()

This method converts this number to a double. It is similar to the double-to-float nar-
rowing primitive conversion defined in The Java Language Specification: If the number
has too great a magnitude to represent as a double, it will be converted to infinity or nega-
tive infinity as appropriate.

EXERCISES

1. Write the following Java methods for the Int class:

public Int[] divideAndRemainder(Int other);

public Int divide(Int other);

public Int remainder(Int other);

The first returns both the quotient and remainder of one Int object divided by another.
(This is more efficient since you will probably compute both quantities at the same
time anyway.) Return these two values as an array of two Ints; answer[0] could contain
the quotient, and answer[1] could contain the remainder. The second and third meth-
ods return the quotient and the remainder of Int division, respectively.

2. Design a graphical calculator for Int objects, with buttons to perform addition, multi-
plication, subtraction, and division. If desired, write methods to perform other opera-
tions with Ints, and supply buttons for these on the calculator. Establish precedence
among your operators, and include parentheses buttons to override precedence rules.

Exercises 63

3. There are many ways to implement a class to perform arithmetic with arbitrarily large
integers. The method presented in this chapter is perhaps the most intuitive for us,
because it uses decimal arithmetic, and because the algorithms closely resemble what
we do as humans. However, a computer does arithmetic in a different way than us. First
of all, numbers are represented as a series of switches that are either on or off, or in
binary.

To develop a large integer class that executes more efficiently, we want to mimic as
closely as possible the way a binary computer does arithmetic. While we are at it, we
might want to make the number representation more flexible, and use linked lists to hold
the data instead of arrays. For example, suppose we use a doubly-linked list with a
head and tail pointer. It will point at a series of ints (or bytes, or shorts, or longs), where
each int represents part of the binary integer. (See the figure.)

To perform addition of integers with the same sign, simply add them as binary integers
the same way the computer does. If there is a carry in the high order digit of each int, carry
it over to the next int. To subtract, simply add the negative, then store all negative num-
bers in two’s–complement form, the same way a computer normally does. The two’s–
complement of a binary integer is where each bit is inverted, and then you add 1. For
example, the byte-sized two’s complement of 9 = 00001001base 2 is 11110111base 2. Thus,
if you wish to compute 5 minus 9 in binary, this is

To do a subtraction, form the two’s–complement of the second integer, and add them.

This answer is the two’s–complement representation of �4 (you can verify this by sub-
tracting 1 then inverting the bits), and so the answer to 5 minus 9 is �4, as it should be.

00000101
 + 11110111

 11111100

00000101
– 00001001

0000101011110100

1010111111110101

1111011101011101

0111111101101111

false negative head

tail

64 Chapter 2 Large Integer Computing

Multiplication and division in binary is particularly easy and fast to implement,
since it involves mostly just shifting to the right or left, and adding. For example, to mul-
tiply 5 by 9 we take

Which we note is simply 00000101base 2 plus 00101000base 2 (which is 00000101base 2

shifted to the left 3 places). This gives us 00101101base 2, or 45 in decimal, which is
correct.

Now, with all of this in mind, rewrite the Int class.

4. If you prefer using base 10 for the Int() class (it’s much easier to convert these to and
from strings, for example), you may consider using base 1 billion. A number in this
base can be written as

an · 1000000000n + an–1 · 1000000000n–1 + . . . + a1 · 10000000001 + a0 · 10000000000.

where each ai is an integer between 0 and 999999999.
The array (or list) of ints which hold the “digits” can store a number in this range.

The size of this data structure will clearly be much smaller. Conversion between base
1 billion and base 10 is easy because 1 billion = 109. You may also consider using an
array (or list) of type long, using as your base the maximum power of 10 which does
not exceed the maximum positive long value 263 � 1.

00000101
� 00001001

C H A P T E R 3
The Integers

65

In order to understand most of modern cryptography, it is necessary to understand
some number theory. We begin with the divisibility properties of integers.

Definition
If a and b are integers with a ≠ 0, we say that a divides b if there is an integer c such
that b = ac. If a divides b, we also say that a is a divisor, or factor, of b, and we write
a|b. We also write a � b if a does not divide b.

For example, 3|27, since 27 = 3 · 9. Likewise, 5 � 32, because there exists no inte-
ger c such that 32 = 5c.

Using this test, we can find and list the divisors of all nonzero integers. For example, the
divisors of 9 are �1, �3, and �9. The factors of 20 are �1, �2, �4, �5, �10, and �20.

Now, we prove some properties of divisibility.

PROPOSITION 1 If x, y, and z are integers with x|y and y|z, then x|z.

Proof. Say that integer x divides integer y, and y divides integer z. Then � (there exits)
an integer c such that y = cx, and � an integer d such that z = dy. Now, note that z = dy =
d(cx) = (dc)x, and that dc is likewise an integer. Thus, x divides z. �

EXAMPLE. Note that 3|9, and that 9|72. By the previous theorem, this implies that 3 also
divides 72.

The next theorem is as easy to prove as the previous, and the proof is left to you.

PROPOSITION 2 If c, x, y, m, and n are integers such that c|x and c|y, then c|(mx + ny).

66 Chapter 3 The Integers

This proposition tells us that if an integer divides two others, it also divides any integer
linear combination of the other two.

EXAMPLE. Note that 4|20 and 4|8. By the previous theorem then, 4 also divides 128 = 4 · 20
+ 6 · 8.

The following proposition is very useful in that it establishes that any integer can be
expressed as a multiple of any other positive integer b, plus some remainder, where that
remainder is nonnegative and less than b. It is called the division algorithm.

3.1 THE DIVISION ALGORITHM

PROPOSITION 3 (The Division Algorithm.) If y and b are integers such that b > 0, then
� unique integers q and r such that 0 ≤ r < b and y = bq + r. This q is called the quotient, r
the remainder, b the divisor, and y the dividend.

Proof. Let S be the set of all integers of the form y � bk where k is an integer. Further,
let T be the set of all nonnegative members of S. T is not the empty set, since y � bk > 0
whenever k < y/b. So, T must have a smallest element; choose q to be the value of k so that
y � bq is the smallest member of T. Now, set r = y � bq. We will show that this choice of
q and r are exactly those desired. First, we know that r ≥ 0, (since y � bq is nonnegative)
and r < b, since if r ≥ b we would have r > r � b = y � bq � b = y � b(q + 1) ≥ 0, which
says we have a nonnegative integer smaller than r in T, a contradiction. Thus, 0 ≤ r < b.

We have shown that r and q exist; now we must show that they are unique. Suppose we
have two equations

y = bq1 + r1 (*)

y = bq2 + r2

with 0 ≤ r1 < b and 0 ≤ r2 < b. Subtract the second from the first to get 0 = b(q1 � q2) +
(r1 � r2), or r2 � r1 = b(q1 � q2). Thus, b|(r2 � r1). Since 0 ≤ r1 < b and 0 ≤ r2 < b we get
�b < r2 � r1 < b. Because 0 is the only multiple of b between �b and b (not including �b
and b), b divides r2 � r1 only if r2 � r1 = 0, or when r1 = r2. Replacing r2 with r1 in the equa-
tions in (*), we easily establish that q1 = q2, and thus q and r are indeed unique. �

EXAMPLES. We wish to find q and r as defined in the division algorithm for all of the fol-
lowing equations:

• 65 = 3q + r. Divide 65 by 3 to get q = 21, r = 2.

• �21 = 5q + r. If we simply divide �21 by 5, we get a quotient of �4, and a remainder
of �1. To place the remainder in the proper range, simply add 5 to it, while subtracting
1 from the quotient. This yields q = �5, r = 4. This is a simple way of calculating q and
r when the dividend is negative.

3.1 The Division Algorithm 67

Prime numbers play a huge role in number theory, and in modern cryptography as well.
Thus, the definition of a prime number follows.

Definition
A prime number, or a prime, is an integer greater than 1 divisible by no positive inte-
gers other than itself and 1. A positive integer greater than 1 that is not prime is said to
be composite.

EXAMPLES. All of the following integers are primes: 2, 7, 23, 29, and 163. None of these num-
bers has positive factors except themselves and 1. On the other hand, the following num-
bers are composite: 4 = 2 � 2, 100 = 2 � 2 � 5 � 5, and 39 = 3 � 13. You should be
careful to note, however, that many integers are neither prime nor composite, as all primes
and composite numbers are positive integers greater than 1. For example, the following
integers are neither prime nor composite: 1, 0, �21, and �5.

It is important to establish that every positive integer greater than 1 has a prime divisor,
for it helps us establish that there are infinitely many primes. It also helps us determine the
whereabouts of a prime factor for composite numbers.

PROPOSITION 4 Every positive integer greater than 1 has a prime divisor.

Proof. First, assume there is a positive integer greater than 1 having no prime divisors.
Thus, the set of all such integers is not empty, and so has a least element, say m. Since m
has no prime divisors and m|m, m is not prime. So m is composite, and we write m = bc where
1 < b < m and 1 < c < m. Now, since b < m, b must have a prime divisor, say p, since m is
the least nonnegative integer having no prime divisors. But p then also divides m by Propo-
sition 1, and so m has a prime divisor, a contradiction. �

PROPOSITION 5 There are infinitely many primes.

Proof. Take the integer z = n!+1, where n ≥ 1. Proposition 4 says z has a prime divisor,
say p. Suppose p ≤ n. Then we would have p|n!. This is so since

n! = n(n � 1)(n � 2) . . . 3 · 2 · 1,

and if p ≤ n, it must divide one of the numbers in the sequence. But then, by Proposition 2,
we would have p|(z � n!) = 1, an impossibility. So the prime p must be greater than n, and
since n is completely arbitrary, we have found a prime larger than n for any integer n. This
establishes that there must be infinitely many primes. �

It is important for us to establish that there are infinitely many primes, as we must be able
to freely select primes for use in cryptographic applications. The primes we choose are usu-
ally kept secret, so there must be enough primes scattered about to make finding the primes
you choose very difficult for an attacker.

68 Chapter 3 The Integers

Factor of 101?

2

3

4

5

6

7

8

9

10

No

No

No

No

No

No

No

No

No

Table 3.1

PROPOSITION 6 If n is composite, then n has a prime factor not exceeding the square
root of n.

Proof. Suppose n is the product of integers b and c, and say 1 < b ≤ c < n. Note that b is
no greater than

√
n bcause if it were, c would also be greater than �n�, implying that bc > �n�

· �n� = n, a contradiction. Proposition 4 says that b must have a prime divisor, which must
also divide n by Proposition 1. Thus, a prime divisor smaller than �n� exists. �

The previous result tells us that if we wish to search sequentially for a prime factor of some
number n, we need not exceed its square root. This can reduce our workload considerably. For
example, if we wish to know whether or not 101 is prime, we need only search for factors up
to 10, which is the largest integer ≤ �101�. We check for factors in Table 3.1.

We conclude, therefore, that 101 is prime. Proposition 6 proves it is not necessary to
search for factors of 101 greater than 10, for one such factor, if it exists, must be ≤ 10.

This sequential method for determining whether or not numbers are prime is known as
trial division by small primes.

Say we want to find a prime factor of an integer consisting of 500 decimal digits. (This
is typical in modern cryptography.) Then the square root of that number would still be about
250 decimal digits. Asking the computer to search each number in a sequential fashion up
to the square root would take an enormous amount of time. Thus, trial division is limited to
integers having small prime factors. If we want to factor large integers, we must find bet-
ter methods of factoring.

We can speed up trial division by noting that it isn’t necessary to divide by every inte-
ger not exceeding the square root of n, but only those integers which are prime. If we make

3.1 The Division Algorithm 69

Table 3.2
2 3 5 7

11

31

41

61

71

13 17 19

29

59

79

89

37

47

67

97

23

43

53

73

83

a table of all integers from 2 to n, we can begin by successively crossing out all multiples
of 2, then multiples of 3, then multiples of 5, and so on. In this way, we can determine all
primes less than or equal to any integer; they are the numbers which have not been crossed
out.

For instance, we make a list of all the integers from 2 to 99, and begin by crossing out
all multiples of 2 in the list, then all multiples of 3, then the multiples of 5 (because 4 and
all of its multiples are already crossed out), and so on until we reach 9, the largest integer
≤ �99� � 9.95. Its multiples have already been crossed out; thus the numbers in the list
which have not been crossed out are the primes ≤ 99. See Table 3.2. Integers which are mul-
tiples of 2, 3, 5, or 7 have been removed.

This method of identifying primes by crossing out multiples is known as the Sieve of
Eratosthenes. Because of great storage requirements, it is not very efficient for determining
large primes.

Java Algorithm We can write a Java program which sequentially searches up to �n�
for the smallest prime factor of n, then returns it if found. Otherwise, we conclude n is
prime, and return n. Since trial division would perform poorly for large integers, we will just
write it for primitive ints.

The main method prompts the user to enter an integer n greater than 1; it then calls the
sieveFactor() method, which will return the first prime divisor it finds, or n itself if n is
prime.

70 Chapter 3 The Integers

import javax.swing.*;

public class TestSieveFactor {

public static void main(String[] args) {

boolean idiot;

do {

idiot=false;

try {

int n=new Integer(JOptionPane.showInputDialog

(“Enter an integer > 1:”)).intValue();

if (n<=1) {

idiot=true;

JOptionPane.showMessageDialog(null,”Invalid integer entered!”);

} else {

int d=sieveFactor(n);

if (d==n) JOptionPane.showMessageDialog(null,n+” is prime.”);

else JOptionPane.showMessageDialog(null,d+” divides “+n+”.”);

}

} catch (NumberFormatException e) {

idiot=true;

JOptionPane.showMessageDialog(null,e.toString());

}

} while (idiot);

System.exit(0);

}

private static int sieveFactor(int n) {

int divisor; boolean prime=true;

for (divisor=2;divisor<=Math.sqrt(n);divisor++)

if (n%divisor==0) {prime=false; break;}

return prime?n:divisor;

}

}

If we run the previous program with some test data, we get the results shown in Figure
3.1a–h.

The ability to factor efficiently is at the heart of breaking many cryptosystems. We thus
begin the study of finding divisors, or factors. In particular, we want to find the greatest
common divisor of two integers.

Definition
The greatest common divisor of two integers x and y, where at least one is nonzero, is
the largest integer that divides both x and y. We also call this the gcd of x and y, and write
it as (x, y). We define the greatest common divisor of 0 and 0 as 0; that is, (0, 0) = 0.

3.1 The Division Algorithm 71

Figure 3.1 (a)

(b)

(c)

(d)

(e)

72 Chapter 3 The Integers

Figure 3.1 (f)

(g)

(h)

EXAMPLE. The divisors of 30 are �1, �2, �3, �5, �6, �10, �15, and �30. The divisors
of 18 are �1, �2, �3, �6, �9, �18. The largest integer in both lists is 6, so the gcd of 30
and 18 is 6.

Definition
Two integers are said to be relatively prime if their gcd is 1.

EXAMPLES. The following pairs of integers are relatively prime. (Verify.)

a. 8 and 9

b. 23 and 44

c. 27 and 55

3.1 The Division Algorithm 73

Note that the sign of the integers is not important when computing the gcd. This is easy
to see if one simply notices that the divisors of n are exactly the same as the divisors of �n.
So, all of the following are equal:

(x, y) = (x, �y) = (�x, y) = (�x, �y) = (|x|, |y|)

Thus, we need only concern ourselves with the gcd of positive integers.

EXAMPLE. (18, �54) = (18, 54) = 9.

PROPOSITION 7 Let x, y, and z be integers with (x, y) = d. Then

a. (x/d, y/d) = 1

b. (x + cy, y) = (x, y).

c. An integer c divides both x and y if and only if c|(x, y).

Proof. (Part a.) First, suppose there is some integer n that divides both x/d and y/d. Then
� integers j and k such that x/d = jn and y/d = kn or, alternatively, x = djn and y = dkn. From
this we establish that dn is a common divisor of both x and y. But d is the greatest common
divisor of both x and y, so dn ≤ d, implying that n = 1. So the gcd of x/d and y/d is 1.

(Part b.) Let x, c, and y be integers, and suppose e is a common divisor of x and y. By
Proposition 2 we know e|(x + cy), so e divides both x + cy and y. On the other hand, sup-
pose f is a common divisor of x + cy and y. Then f also divides (x + cy) � cy = x by Propo-
sition 2. So f is then a common divisor of x and y. Consequently, we conclude that the
common divisors of x and y are identical to the common divisors of x + cy and y, and so they
share the same greatest common divisor.

(Part c.) The “if ” part is obvious, since (x, y) divides both x and y, and because if we have
c|(x, y) we must have c|x and c|y by proposition 1. This tells us that the divisors of (x, y) is
a subset of the common divisors of x and y. We can represent this with a Venn diagram, as
shown in Figure 3.2.

Now we write x and y as multiples of their gcd; that is,

x = (x, y)e, and y = (x, y)f.

and note (e, f) = 1 by part (a). Thus, no common divisor of x and y (except 1) can simulta-
neously divide e and f, and so any common divisor of x and y must also divide (x, y).

Thus, the set of divisors of (x, y) and the set of common divisors of x and y are the same
set. (See Figure 3.3.) �

EXAMPLES. To satisfy our cynical natures, we’ll test the previous proposition with some data.

74 Chapter 3 The Integers

Divisors of x Divisors of yDivisors of (x,y)

Figure 3.2

Figure 3.3

Divisors of x Divisors of yDivisors of (x,y)

• Note that (24, 42) = 6, and that if we divide both 24 and 42 by 6, we can verify that (24/6,
42/6) = (4, 7) = 1.

• Take the same two integers, 24 and 42. Compute = 24 + (�3)(42) = �102, and note that
(�102, 42) = 6 = (24, 42).

Definition
If x and y are integers, we will say a linear combination of x and y is a sum of the form
mx + ny where m and n are integers.

3.1 The Division Algorithm 75

PROPOSITION 8 The gcd of integers x and y, not both zero, is the least positive inte-
ger that is a linear combination of x and y.

Proof. Suppose d is the least positive integer that is a linear combination of x and y. We
know that the set of such integers must be nonempty, as at least one of the following linear
combinations must be positive:

x + 0 · y,

�x + 0 · y,

0 · x + y, or

0 · x � y.

So, a least such element in this set, say d, exists. We must first show d is a divisor of both
x and y. We have d = mx + ny where m and n are integers, and by the division algorithm we
can obtain

x = dq + r where 0 ≤ r < d.

From this equation, and because d = mx + ny, we can derive

r = x � dq = x � q(mx + ny) = (1 � qm)x � qny.

So we can write r also as a linear combination of x and y. Now, by construction, r is non-
negative, strictly less than d, and d is the least positive integer which may be written as a
linear combination of x and y. So r must be zero. This means that d divides x, which is what
we want to show. Similarly, we can show that d|y, and that d is therefore a common divisor
of x and y, as desired.

Now, it remains to be shown that d is the gcd of x and y. Suppose c is a common divisor
of x and y. Then, since d = mx + ny, c divides d by proposition 2. Hence, because c is arbi-
trary, d must be the greatest common divisor of x and y. �

We now turn our attention to common divisors of more than two integers.

Definition
The greatest common divisor of a set of integers a1, a2, . . . , an, not all zero, is the
largest divisor of all the integers in the set. We write this as (a1, a2, . . . , an).

EXAMPLE. The greatest common divisor of 20, 30, and 15 is 5.

PROPOSITION 9 (a1, a2, a3, . . . , an) = ((a1, a2), a3, . . . , an).

Proof. Note that any common divisor of the n integers in the list a1, a2, . . . , an is, in par-
ticular, a common divisor of the first two, a1 and a2. This divisor then also divides the gcd

76 Chapter 3 The Integers

of a1 and a2 by proposition 7 (part c). Now consider an integer that divides the last n � 2
integers in the list, and that also divides the gcd of a1 and a2. This divisor must then also sep-
arately divide both a1 and a2, and so then is a common divisor of all the n integers. We now
see that the common divisors of all the n integers are exactly the same as the common divi-
sors of the last n � 2 integers taken with the gcd of the first two. Hence, they also have the
same greatest common divisor. �

EXAMPLE. The previous proposition is very handy in that it turns a large problem into a
small one. It says, for example, that we can compute the gcd of 28, 126, 21, and 10 in the
following way:

(28, 126, 21, 10)

= ((28, 126), 21, 10)

= (14, 21, 10)

= ((14, 21), 10)

= (7, 10)

= 1.

Note that the previous numbers, when taken together, have a gcd of 1. However, if we
examine each pair from the list, we see that some pairs are not relatively prime. (For exam-
ple, (28, 21) = 7.) This motivates us to make a distinction between these two situations, and
thus make a definition.

Definition
We say that the integers a1, a2, . . . , an are mutually relatively prime if the gcd of the
set of integers is 1. We say the integers are pairwise relatively prime if each pair of
integers taken from the set are relatively prime.

EXAMPLE. The numbers 18, 9, and 25 are mutually relatively prime. The largest divisor all
have in common is 1. But, they are not pairwise relatively prime because (18, 9) = 9.

Until now, we have presented a lot of propositions about the gcd, but no really good way
of finding it has been presented. We could make a list of all the divisors of our numbers, then
choose the largest divisor that they have in common, but this is not really efficient. The
next proposition, which you should be able to prove, leads us to the Euclidean algorithm, a
lightning-fast way of finding the gcd.

PROPOSITION 10 If c and d are integers and c = dq + r where q and r are integers, then
(c, d) = (d, r).

3.2 The Euclidean Algorithm 77

The previous proposition provides us with a particularly fast way of finding the gcd of
two integers. We will calculate the gcd of 132 and 55. If we successively apply the division
algorithm to obtain

132 = 2 · 55 + 22

55 = 2 · 22 + 11

22 = 2 · 11 + 0,

the preceding proposition then tells us that

(132, 55) = (55, 22) = (22, 11) = (11, 0) = 11.

Note that we wisely chose q and r as the same q and r obtained by the division algorithm.
The remainders are all positive, and are getting smaller after each successive division. The
remainder must eventually reach 0, and the previous remainder must be the gcd. The proof
that this always works follows.

3.2 THE EUCLIDEAN ALGORITHM

PROPOSITION 11 (The Euclidean Algorithm.) Let r0 = x and r1 = y be integers such that
x ≥ y > 0. If the division algorithm is successively applied to obtain rj = rj�1qj�1 + rj�2 with
0 < rj�2 < rj�1 for j = 0, 1, 2, . . . , n � 2 and rn�1 = 0, then (x, y) = rn.

Proof. This follows almost immediately using proposition 10. Let r0 = x, r1 = y, where x
≥ y > 0. We successively apply the division algorithm to obtain

r0 = r1q1 + r2 with 0 ≤ r2 < r1

r1 = r2q2 + r3 with 0 ≤ r3 < r2

. . .

ri�2 = ri�1qi�1 + ri

. . .

This process must terminate. The remainders form a strictly decreasing sequence of pos-
itive integers bounded below by zero. This sequence can certainly have no more than x
terms:

r0 ≥ r1 > r2 > . . . > rn�1 > rn > rn�1 = 0.

We must eventually have rn�1 = 0 for some n, where rn is the last nonzero remainder.
Proposition 10 then tells us that

(x, y) = (r0, r1) = (r1, r2) = . . . = (rn�1, rn) = (rn, rn�1) = (rn, 0) = rn

and we have the desired result. �

EXAMPLE. Use the Euclidean algorithm to find the gcd of 252 and 198. Successively apply
the division algorithm to obtain

78 Chapter 3 The Integers

252 = 1 · 198 + 54

198 = 3 · 54 + 36

54 = 1 · 36 + 18

36 = 2 · 18 + 0

The last nonzero remainder is 18, so (252, 198) = 18. We can write this process out very
quickly as

(252, 198) = (198, 54) = (54, 36) = (36, 18) = (18, 0) = 18.

Java Algorithm Once we know the Euclidean algorithm, writing a method to compute
the gcd should be simple. Though the BigInteger class supplies a method to compute the gcd
of two BigIntegers, it may be interesting to write our own. Here, we use a static recursive
method. Recursion is natural for this algorithm, because if we have positive ints m and n in
Java such that m > n, proposition 10 says that (m, n) = (n, m % n). This makes an easy sub-
stitution in a recursive call. The recursion is not particularly wasteful in this case since the
Euclidean algorithm arrives at the gcd so quickly. The following test program simply asks
the user to enter two integers, then computes and displays their gcd (see Figures 3.4a–c).

import java.io.*;

import javax.swing.*;

import java.math.BigInteger;

public class TestGCD {

public static void main(String[] args) {

BigInteger i=new BigInteger(JOptionPane.showInputDialog(“Enter an integer: “));

BigInteger j=new BigInteger(JOptionPane.showInputDialog

(“Enter another integer: “));

JOptionPane.showMessageDialog(null,”The gcd of “+i+” and “+j+” is “+gcd(i,j));

System.exit(0);

}

static BigInteger ZERO=new BigInteger(“0”);

//Compute the gcd recursively using the Euclidean algorithm

private static BigInteger gcd(BigInteger first, BigInteger second) {

//Make sure both are nonnegative

first=first.abs();

second=second.abs();

//Call the recursive method

return recurseGCD(first,second);

}

private static BigInteger recurseGCD(BigInteger x, BigInteger y) {

if (y.equals(ZERO)) return x;

else return recurseGCD(y,x.mod(y));

}

}

3.2 The Euclidean Algorithm 79

Figure 3.4 (a)

(b)

(c)

There is a test applet for computing greatest common divisors on the book’s website
under the class name TestGCDApplet. It uses the gcd() method supplied with the BigInte-
ger class. Figure 3.5 shows a screen shot of a sample run.

The following development will be very useful to us later on, for it will help us solve spe-
cial equations called diophantine equations, and congruences. It also reveals something
interesting about the gcd. Recall that the gcd of two numbers is the least positive integer that
can be expressed as a linear combination of those two numbers; that is,

(x, y) = mx + ny

for some integers m and n. What are the values of m and n? The next proposition shows us
exactly how these two quantities can be computed.

PROPOSITION 12 (Extended Euclidean Algorithm). Let x and y be positive integers such
that x ≥ y > 0. Then

(x, y) = snx + tny

80 Chapter 3 The Integers

Figure 3.5

where the sn and tn are defined recursively as

sj = sj�2 � qj�1sj�1 for j = 2, . . . , n

s0 = 1

s1 = 0

tj = tj�2 � qj�1tj�1 for j = 2, . . . , n

t0 = 0

t1 = 1

and the qj and ri are as in the Euclidean algorithm.
Rather than produce a proof right away for this, we do an example to clarify what is

going on. Suppose we wish to express the gcd of 252 and 198 as a linear combination of 252
and 198. We can apply the Euclidean algorithm, and while keeping track of the quotients
and remainders, we shall also compute the two values sj and tj during the jth step. This is
perhaps best done in a table. (See Table 3.3.)

The fourth remainder is the last nonzero remainder, so we need not compute the fifth
row in the table. The two numbers desired are 4, and �5; that is,

18 = (252, 198) = 4 · 252 + (�5) · 198

Now, we can show a proof to you that this always works.

Proof. First note that (x, y) = rn, where rn is the last nonzero remainder generated in the
Euclidean algorithm. If we show then that

rj = sjx + tjy (*)

� (for all) j = 0, 1, . . . , k < n, the result then follows by induction. First, note (*) is true
when j = 0, and when j = 1, since

r0 = 1 · x + 0 · y = s0x + t0y, and r1 = 0 · x + 1 · y = s1x + t1y.

3.2 The Euclidean Algorithm 81

j qj rj sj tj

0

1

2

3

4

5

1

3

1

2

252

198

54

36

18

0

1

0

1 – 0 • 1 = 1

0 – 1 • 3 = – 3

1 – (–3) • 1 = 4

0

1

0 – 1 • 1 = –1

1 – (–1) • 3 = 4

–1– 4 • 1 = –5

Table 3.3

Now, assume (*) is true for j = 2, . . . , k � 1. The kth step of the Euclidean algorithm
tells us that rk = rk�2 � rk�1qk�1, and by using the induction hypothesis, we can then show
(*) is true when j = k as follows:

rk = (sk�2x + tk�2y) � (sk�1x + tk�1y)qk�1

= (sk�2 � sk�1qk�1)x + (tk�2 � tk�1qk�1)y

= skx + tky

Induction then says snx + tny = rn = (x, y), as desired. �

Java Algorithm We should write a euclid() method to calculate the values cited in the
foregoing theorem. The BigInteger class does not provide such a method, so we will write
a BigIntegerMath class to place methods in. The BigInteger class will be used to house
many of the methods used in this book. In particular, this class defines a euclid(BigInteger
x, BigInteger y) method, which returns an array (say, arr[]) of three BigIntegers. We will set
arr[0] to (x, y) = rn (from Proposition 12), arr[1] to sn, and arr[2] to tn. This method is not
recursive; an interesting exercise for you is to write it recursively.

import java.math.*;

import java.security.SecureRandom;

import java.util.*;

public class BigIntegerMath {

//Define some BigInteger constants; this is handy for comparisons

static final BigInteger ZERO=new BigInteger(“0”);

static final BigInteger ONE=new BigInteger(“1”);

static final BigInteger TWO=new BigInteger(“2”);

static final BigInteger THREE=new BigInteger(“3”);

static final BigInteger FOUR=new BigInteger(“4”);

82 Chapter 3 The Integers

//A nonrecursive version of euclid. It returns an array answer of 3 BigIntegers

//answer[0] is the gcd, answer[1] is the coefficient of a, answer[2] the coeff

//of b

public static BigInteger[] euclid(BigInteger a,BigInteger b) throws

IllegalArgumentException {

//Throw an exception if either argument is not positive

if (a.compareTo(ZERO)<=0||b.compareTo(ZERO)<=0) throw new

IllegalArgumentException(“Euclid requires both arguments to be positive!”);

BigInteger[] answer=new BigInteger[3];

//Set up all the initial table entries

BigInteger r0=new BigInteger(a.toByteArray());

BigInteger r1=new BigInteger(b.toByteArray());

BigInteger s0=new BigInteger(“1”);

BigInteger s1=new BigInteger(“0”);

BigInteger t0=new BigInteger(“0”);

BigInteger t1=new BigInteger(“1”);

BigInteger q1=r0.divide(r1);

BigInteger r2=r0.mod(r1);

BigInteger s2,t2;

//When r2 becomes zero, the previous table entries are the answers

while (r2.compareTo(ZERO)>0) {

s2=s0.subtract(q1.multiply(s1)); s0=s1; s1=s2;

t2=t0.subtract(q1.multiply(t1)); t0=t1; t1=t2;

r0=r1; r1=r2; q1=r0.divide(r1); r2=r0.mod(r1);

}

answer[0]=r1; answer[1]=s1; answer[2]=t1;

return answer;

}

}

TestEuclidApplet is on the book’s website. Run it to test the algorithm (see Figure 3.6).

3.3 THE FUNDAMENTAL THEOREM OF ARITHMETIC
The following propositions lead us to the pinnacle of number theory: the Fundamental The-
orem of Arithmetic, which states that every integer factors uniquely into a product of prime
powers. Of course, we’ve been using this fact since we were children, but we rarely see the
proof until after we’ve left high school, and most people never see it at all. But first, two
other theorems:

PROPOSITION 13 If a, b, and c are positive integers with a and b relatively prime, and
such that a|bc, then a|c.

Proof. Since a and b are relatively prime, � integers x and y such that ax + by = 1. Mul-
tiply both sides of the equation by c to get acx + bcy = c. Now, since a|a, and a|bc by hypoth-
esis, proposition 2 says a|(acx + bcy), a linear combination of a and bc. Hence, a|c. �

3.3 The Fundamental Theorem of Arithmetic 83

Figure 3.6

PROPOSITION 14 Suppose a1, a2, . . . , an are positive integers, and p is a prime which
divides a1a2 . . . an. Then there is an integer i such that 1 ≤ i ≤ n and p|ai.

Proof. If n = 1, the result is trivially true. Now suppose the theorem is true for n = k, and
consider a product of k + 1 integers a1a2 . . . ak�1 divisible by p. Since p|a1a2 . . . ak�1 = (a1a2

. . . ak)ak�1, proposition 13 says either p|a1a2 . . . ak, or p|ak�1. If p|ak�1, we are finished. If,
on the other hand p|a1a2 . . . ak, our supposition says � an integer i between 1 and n (inclu-
sive) such that p|ai. In this case, induction establishes the desired result. �

PROPOSITION 15 (The Fundamental Theorem of Arithmetic.) Every positive integer
n greater than 1 can be written in the form n = p1p2 . . . pr where each pr is prime, i = 1,
2, . . . , n. Furthermore, this representation is unique.

Proof. Assume some positive integer greater than 1 cannot be written as a product of
primes, and let n be the smallest such integer. If n is prime, it is trivially a product of primes.
So n = ab is composite, where 1 < a < n, 1 < b < n. Since n is the smallest number greater
than 1 which cannot be written as a product of primes, a and b must both be products of
primes. But since n = ab, n is also a product of primes, contrary to our assumption. Given
that this prime factorization of n exists, we must now show it is unique. Suppose n has two
different factorizations

n = p1p2 . . . pm = q1q2 . . . qk

84 Chapter 3 The Integers

where each pi and qj is prime, i = 1, 2, . . . , m, j = 1, 2, . . . , k, and that these factors are in
nondecreasing order. Remove any common primes from the two factorizations, and re-index
if necessary to obtain

p1p2 . . . pv = q1q2 . . . qw, where v ≤ m, w ≤ k.

All of the factors on the left-hand side are different from the factors on the right. Now,
consider p1, which divides q1q2 . . . qw (since p1|p1p2 . . . pv, which is equal to q1q2 . . . qw).
Proposition 14 says then that p1 must divide qi for some i between 1 and w (inclusive), but
this is clearly impossible, since each qi is prime, and each different from p1. Thus, the prime
factorization of n is unique. �

The Fundamental Theorem of Arithmetic reveals that integers greater than 1 factor
uniquely into primes. We often order these factors from the smallest to the largest, and group
those that are equal together. We call this the prime power factorization of an integer.

EXAMPLES.

• 24 = 23 · 3

• 588 = 22 · 3 · 72

• 450 = 2 · 32 · 52

Before we move on to the next chapter, we should discuss the least common multiple of
two integers. We will derive a convenient formula to compute it, based on the greatest com-
mon divisor. Proving the validity of this formula is easy with the Fundamental Theorem of
Arithmetic.

Definition
The least common multiple of two integers x and y, not both zero, is the smallest pos-
itive integer that is divisible by both x and y. We denote the least common multiple, or
lcm, of x and y as lcm(x, y).

It isn’t difficult to compute the lcm of two integers x and y if we reason in the following
way: Take the prime power factorization of the two integers, and note which factors they
have in common. Note that the product P of these common factors must be the gcd of x and
y. To see this, note that P|x and P|y, and furthermore:

• If we multiply P by another factor of x (or y), that product will then fail to divide y (or x),
and

• if we remove a factor from P, we then have a common divisor of x and y which is smaller
than P.

Thus, P = (x, y). (See Figure 3.7.)
Now, remove one set of the common factors; say, from x. (See Figure 3.8.)

3.3 The Fundamental Theorem of Arithmetic 85

Figure 3.7
Factorization of y

Factorization of x

Common
Factors

Common
Factors

Figure 3.8
Factorization of y

Factorization of x

Common
Factors

Common
Factors

Figure 3.9
lcm of x and y

Common
Factors

Consider now the integer formed by the product of the factors of y with the remaining
factors of x. (See Figure 3.9.)

Clearly, this integer is divisible by both x and y. Furthermore, if we attempt to remove
any more factors from this integer, it will no longer be divisible by either x or y (possibly
neither). This is clearly the least common multiple of x and y. This yields a convenient for-
mula for the least common multiple; that is,

lcm(x, y) = xy/(x, y).

This argument doesn’t really count as a proof, and you should confirm this. (Hint: Use
the prime power factorization of x and y.)

86 Chapter 3 The Integers

EXAMPLES.

• lcm(36, 78) = 36 · 78/(36, 78) = 36 · 78/6 = 6 · 78 = 468

• lcm(21, 56) = 21 · 56/(21, 56) = 21 · 56/7 = 3 · 56 = 168

• lcm(100, 2050) = 100 · 2050/(100, 2050) = 100 · 2050/50 = 2 · 2050 = 4100

EXERCISES

1. Show that

a. 5|20

b. 7|42

c. 8|8

d. 1|55

e. 7|0

f. 342|0

2. Give the divisors of

a. 72

b. 37

c. 30

d. �27

e. 0

3. Using the division algorithm, find integers q and r for the following equations. Remem-
ber, 0 ≤ r < b.

a. 47 = 5q + r

b. 153 = 7q + r

c. �143 = 8q + r

d. �7 = 9q + r

e. 0 = 32q + r

f. �1 = 6q + r

g. �6 = 6q + r

4. Prove proposition 2.

5. Determine which, if any, of the following integers are primes. For any that are not
prime, list the positive factors.

a. 77

b. 78

Exercises 87

c. 79

d. 1801

e. 981

f. 31

g. �31

6. Find all the primes ≤ 100 using the Sieve of Eratosthenes.

7. Write a Java program to prompt the user for a positive number n, then compute and dis-
play all primes ≤ n using the Sieve of Eratosthenes. (Hint: Use an array of size n + 1
of type boolean.)

8. Find the gcd of the following sets of integers.

a. 15, 35

b. 21, 99

c. 76, 24, 32

d. 132, 64, 0

e. 99, �100

f. �83, �23

9. Determine if the following lists of integers are mutually relatively prime, pairwise rel-
atively prime, or neither.

a. 198, 252, 54, 18, 9

b. 130, 65, 39, 143

c. 14, 98, 25

d. 32, 27, 35

10. Find a set of four integers which are mutually relatively prime, but not pairwise rela-
tively prime.

11. Find a set of five integers which are mutually relatively prime, but not pairwise rela-
tively prime.

12. Find the gcd of the following sets of integers using the Euclidean algorithm.

a. 318, 3243

b. 21, 364

c. 102, 222

d. 104, 24, 32

e. 132, 64, 40

f. 20785, 44350

g. 99, 121

h. 83, 23

i. 34709, 100313

88 Chapter 3 The Integers

13. Prove proposition 10. (Hint: Use proposition 2 to show that the common divisors of c
and d are the same as the common divisors of d and r.)

14. Write a gcd() method for the Int class without using recursion.

15. Add a gcd button to the Int calculator developed in a previous exercise. Use your own
gcd() method from the previous exercise.

16. Express the gcd of each of the following pairs of integers as a linear combination of the
pair.

a. 45 and 75

b. 121 and 32

c. 512 and 96

d. 10101 and 27

e. 39 and 143

f. 1023 and 300

g. 25 and 26

h. 423102 and 462

i. 98 and 70

j. 23984756 and 9238475

17. Write a recursive version of the euclid() method for BigIntegers.

18. Give the prime power factorization of the following integers:

a. 10201

b. 874

c. 252

d. 5250

e. 1212

f. 36179

g. 4350

19. Prove that if a and b are nonzero integers, then lcm(a, b) = ab/(a, b).

20. Calculate the lcm of the following pairs of integers:

a. 104, 24

b. 252, 198

c. 17, 83

d. �123, 6

e. 987654321, 123456789

C H A P T E R 4
Linear Diophantine Equations
and Linear Congruences

89

4.1 LINEAR DIOPHANTINE EQUATIONS

Diophantine equations are special types of equations. What characterizes them is that their
solutions must be integers. Consider the following equation:

12x + 27y = 32.

This is called a linear diophantine equation in two variables. It is diophantine because we
are only interested in integer solutions for the variables, and it is linear because the highest
power of any variable in the equation is 1. The preceding equation has no integer solutions
for x and y (try to find one, if you like), whereas the following equation

12x + 27y = 30

has infinitely many integral solutions! One solution is x = �20, y = 10. (Try to find some
more, or a formula which gives them all.) What distinguishes the first equation from the sec-
ond? Proposition 16 will provide the answer to this; it will tell us which such equations
have solutions, and which do not. The proof is constructive, in that it shows how to find the
solutions when they exist.

PROPOSITION 16. Let a and b be nonzero integers with d = (a, b). If d|c, the integer
solutions x and y of the equation ax + by = c are x = x0 + bn/d, y = y0 � an/d, where x = x0,
y = y0 is a particular solution. If d � c, the equation has no integer solutions.

Proof. Suppose x and y are integers such that

ax + by = c. (*)

Then, since d|a and d|b, by proposition 2, d also divides c. Thus, the contrapositive says
if d does not divide c then there are no integral solutions. So, suppose d|c. Proposition 12
demonstrates the existence of integers s and t such that

d = as + bt.

90 Chapter 4 Linear Diophantine Equations and Linear Congruences

Since d|c, there is an integer e such that de = c. Multiply both sides of d = as + bt by e
to obtain

c = de = (as + bt)e = a(se) + b(te)

and we see then that x = x0 = se, y = y0 = te is a particular solution to (*). Now, let x = x0 +
bn/d, y = y0 � an/d, where n is any integer. Note that this is also a solution:

ax + by = ax0 + abn/d + by0 � ban/d = ax0 + by0 = c.

We must show that every solution of (*) must be of this form. Suppose x and y are inte-
gers such that ax + by = c. Since ax0 + by0 = c, we subtract and rearrange terms to get

(ax + by) � (ax0 + by0) = 0

a(x � x0) + b(y � y0) = 0

a(x � x0) = b(y0 � y).

Divide both sides of the previous equation by d to get

(a/d)(x � x0) = (b/d)(y0 � y).

Proposition 7 tells us that (a/d, b/d) = 1, and we use proposition 13 to then show that
(a/d)|(y0 � y). Thus, we can write an/d = y0 � y for some integer n, and so y = y0 � an/d.
If we insert this value of y back into

a(x � x0) = b(y0 � y)

we get a(x � x0) = b(an/d), and hence x = x0 + bn/d, as desired. �

EXAMPLE. The previous theorem allows us to find all solutions of the two equations presented
at the beginning of this chapter. Consider again the equation 12x + 27y = 32. The gcd of 12
and 27 is 3, which does not divide 32. Thus, this equation has no integer solutions. But the
second equation, 12x + 27y = 30, has infinitely many integer solutions since 3|30. We find
all the solutions by first finding a particular solution. First, note that integers s and t exist
which solve 12s + 27t = (12, 27) = 3, and proposition 12 tells us how to compute them.
They are s = �2, t = 1. Thus, since 12(�2) + 27 � 1 = 3, we can multiply both sides of the
equation by 10 to get 12(�20) + 27 � 10 = 30. So a particular solution to 12x + 27y = 30 is
x0 = �20, y0 = 10. Proposition 16 says all of the solutions to 12x + 27y = 30 are then given
by x = �20 + 27n/3 = �20 + 9n, and y = 10 � 12n/3 = 10 � 4n, ∀ integers n.

EXAMPLE. Diophantine equations have real-world applications as well. Suppose you are at
the grocery store with 4 dollars and 27 cents. Apples sell for 35 cents, and oranges for 49
cents. What combination of apples and oranges (if any) will exhaust your money? (Assume
there is no sales tax.) We wish to find all integer solutions to the equation 35x + 49y = 427.
First, compute (35, 49) = 7, and note that 427 = 61 � 7, so 7|427. Thus, the equation has infi-
nitely many solutions. We find a particular solution by first solving 35s + 49t = 7, and get
s = 3, t = �2. Multiply both sides of 35 � 3 + 49(�2) = 7 by 61 to get 35 � 183 + 49(�122)
= 427, and get a particular solution to our equation; that is, x0 = 183, and y0 = �122. The

general solutions to the equation are then x = 183 + 7n, y = �122 � 5n ∀ integers n. Since
we obviously cannot buy a negative number of apples or oranges, we need to find which of
these solutions are nonnegative. Thus we find that x = 183 + 7n ≥ 0, or n ≥ �183/7 =
�26 1/7, and y = �122 � 5n ≥ 0, or n ≤ �122/5 = �24 2/5. Thus, n can only attain the val-
ues �26, and �25. Each of these values of n produces a satisfactory solution to our prob-
lem, which can be seen in the Table 4.1.

Note that with diophantine equations, it is only necessary to solve the equation ax + by
= c where a, b, and c are all positive, for if any of these are negative, the solution is still eas-
ily obtained by inverting some of the signs. For example, suppose x = x� and y = y� is a
solution to ax + by = c, where a, b, and c are all positive. Then we have all of the following
in case any one of the constants changes sign.

x = �x�, y = �y� is a solution to ax + by = �c,

x = �x�, y = y� is a solution to �ax + by = c, and

x = x�, y = �y� is a solution to ax � by = c

One can easily solve for the other cases when 2 or all 3 of the constants change sign.
More cases to consider are when one of a, b, or c is 0. For these cases we have

• x = b, y = �a is a solution to ax + by = 0

• x = 0, y = c/b is a solution to 0x + by = c (provided b|c)

• x = c/a, y = 0 is a solution to ax + 0y = c (provided a|c)

Java Algorithm. We now write for the BigIntegerMath class a method to solve linear
diophantine equations ax + by = c. Because of the previous discussion, we will allow only
equations where a and b are positive, and c is nonnegative. You may wish to rewrite the
method to solve equations when any of a, b, or c are negative, or zero. The method will accept
the coefficients a and b, and the constant c as BigIntegers. If a or b are not positive, or if c
is negative, it will throw an IllegalArgumentException. It will then compute d = (a, b), and
if d � c, it will again throw an IllegalArgumentException. Otherwise, it will compute a par-
ticular solution x = x�, y = y� to the equation, and return it in an array of BigIntegers. The
element at index 1 will be x�, and y� will be at index 2. For convenience, the gcd of a and b
will be returned at index 0. This is useful if we want to display the general solution.

public static BigInteger[] solveLinearDiophantine (BigInteger a,

BigInteger b,

4.1 Linear Diophantine Equations 91

Table 4.1

n Number of apples Number of oranges Total spent (in cents)

– 2 6

– 2 5

1 8 3 + 7 (– 2 6) = 1

1 8 3 + 7 (– 2 5) = 8

– 1 2 2 – 5 (– 2 6) = 8

– 1 2 2 – 5 (– 2 5) = 3

3 5 • 1 + 4 9 • 8 = 4 2 7

3 5 • 8 + 4 9 • 3 = 4 2 7

92 Chapter 4 Linear Diophantine Equations and Linear Congruences

FIGURE 4.1

BigInteger c) throws IllegalArgumentException {

if (a.compareTo(ZERO)<=0||b.compareTo(ZERO)<=0||c.compareTo(ZERO)<0)

throw new IllegalArgumentException

(“All constants must be positive in linear diophantine equation.”);

BigInteger[] euclidAnswers=euclid(a,b);

if (c.mod(euclidAnswers[0]).compareTo(ZERO)!=0)

throw new IllegalArgumentException

(“No solution since “+euclidAnswers[0]+” does not divide “+c+”.”);

BigInteger[] answer=new BigInteger[3];

BigInteger q=c.divide(euclidAnswers[0]);

answer[0]=euclidAnswers[0];

answer[1]=q.multiply(euclidAnswers[1]);

answer[2]=q.multiply(euclidAnswers[2]);

return answer;

}

There is an applet called TestDiophantineApplet on the book’s website you can use to
solve linear diophantine equations. A screen shot of the applet solving a sample equation is
shown in Figure 4.1.

4.2 LINEAR CONGRUENCES

Now we can begin the study of congruences, which are a special type of relation greatly influ-
enced by and related to diophantine equations. They are used heavily in many cryptosys-
tems. The definition of congruence follows.

4.2 Linear Congruences 93

Definition
Let m be a positive integer, and a and b integers. If m|(a � b), we say that a is congru-
ent to b modulo m, and write a � b (mod m). If m � (a � b), we say that a and b are
incongruent modulo m (or not congruent modulo m), and write a � b (mod m).

EXAMPLES. Note the following:

• 23 � 2 (mod 7), since 7 divides 23 � 2 = 21.

• 45 � �7 (mod 13), since 13|(45 � (�7) = 52).

• 10 � 100 modulo 4, since 4 � (10 � 100) = �90.

The following will help us solve linear congruences by allowing us to express them as
equations.

PROPOSITION 17. Integers a and b are congruent modulo m iff ∃ an integer k such that
a = b + km.

Proof. a � b (mod m) iff m|(a � b) iff ∃ an integer k with a � b = km, or a = b + km.
�

EXAMPLE.

75 � 3 (mod 8)

iff 8|(75 � 3)

iff 8k = 75 � 3 for some integer k

iff 75 = 8k + 3 for some integer k

iff k = 7.

Congruences have many properties similar to equations. Some of these follow in the
next proposition, and you should easily be able to prove all of them.

PROPOSITION 18. Let a, b and c be integers, and let m be a positive integer. Then

a. a � a (mod m).

b. a � b (mod m) implies b � a (mod m).

c. a � b (mod m) and b � c (mod m) implies a � c (mod m).

94 Chapter 4 Linear Diophantine Equations and Linear Congruences

EXAMPLES.
a. 7 � 7 (mod 9) (Clearly, since 9|(7 � 7) = 0).

b. 8 � 2 (mod 6) and so 2 � 8 (mod 6) (Since 6|(8 � 2) = 6 iff 6|(2 � 8) = �6).

c. 7 � �3 (mod 5) and �3 � 2 (mod 5) implies 7 � 2 (mod 5).

Proposition 18 tells us that congruences modulo m partition the integers into m distinct
subsets modulo m, and each subset contains integers that are all congruent to each other
modulo m. For example, congruences modulo 3 partition the integers into 3 subsets:

a. {. . . , �9, �6, �3, 0, 3, 6, 9, . . .}

b. {. . . , �8, �5, �2, 1, 4, 7, 10, . . .}

c. {. . . , �7, �4, �1, 2, 5, 8, 11, . . .}

All of the integers in set (a) are congruent to each other modulo 3. Likewise for sets (b)
and (c). (Verify.) Also, there are no integers that do not belong to exactly one of these sets.
Now, consider the subsets consisting of only the nonnegative members of sets (a), (b), and
(c). Note that no such subset is empty, and so each will have a minimal element. For the set
of nonnegative elements of set (a), this minimal element is 0. For set (b), the minimal pos-
itive element is 1, and 2 is the minimal positive element of set (c). These particular ele-
ments are often used as representatives of the congruence classes in which they reside, and
a definition for them follows.

Definition
Let b be an integer, and let m be a positive integer. All integers congruent to b modulo
m are called residues of b modulo m. The least nonnegative residue, or lnr, of b mod-
ulo m is the least nonnegative integer congruent to b modulo m.

Again, note that such a least nonnegative residue always exists, just by noting that
the least nonnegative residue r of c modulo m > 0 is the very same r obtained from the
division algorithm

c = dq + r 0 ≤ r < d

which we already know always exists.

EXAMPLES.
a. The lnr of 29 modulo 13 is 3. That is, 3 � 29 (mod 13), and 3 is the smallest nonnega-

tive integer congruent to 29 modulo 13.

b. 44 � 2 (mod 6), and 2 is the smallest nonnegative number congruent to 44 modulo 6,
hence it is the lnr of 44 modulo 6.

c. �17 � �2 � 3 (mod 5), and 3 is the lnr of �17 modulo 5.

Note that in all of the examples, the lnr is just r from the division algorithm, for

a. 29 = 13 � 2 + 3,

4.2 Linear Congruences 95

b. 44 = 7 � 6 + 2, and

c. �17 = 5 � �4 + 3.

Java Algorithm. Since we now have the concept of the least nonnegative residue, we
should write a Java method (in the BigIntegerMath class) to compute it. The BigInteger
class provides a mod() method, but the Java documentation says it can return a negative
remainder if the dividend is negative. We correct this by just adding the value of the mod-
ulus to the residue if it is negative. Also, recall that we do not allow negative moduli.

//Computes the least nonnegative residue of b mod m, where m>0.

public static BigInteger lnr(BigInteger b, BigInteger m) {

if (m.compareTo(ZERO)<=0)

throw new IllegalArgumentException(“Modulus must be positive.”);

BigInteger answer=b.mod(m);

return (answer.compareTo(ZERO)<0)?answer.add(m):answer;

}

We would like to be able to form some rules of algebra for congruences. Many rules that
hold for equations also hold for congruences.

PROPOSITION 19. Let a, b, and c be integers, and let m be a positive integer. Suppose
a � b (mod m). Then

a. a + c � b + c (mod m)

b. a � c � b � c (mod m)

c. ac � bc (mod m).

Proof.

a. We prove the first here. We have a � b (mod m), so m|(a � b). But a � b = (a + c) �
(b + c), and this is divisible by m, hence a + c � b + c (mod m).

b. (For you to prove.)

c. (For you to prove.) �

We can do even better than the properties of proposition 19 when dealing with congru-
ences. That is, we do not have to add, subtract, or multiply by the same element on both sides
of a congruence to preserve it, but only by elements that are congruent modulo m. These
properties are easily established, and are left to you to prove.

PROPOSITION 20. Let a, b, c, and d be integers, and let m be a positive integer. Sup-
pose a � b (mod m), and c � d (mod m). Then

a. a + c � b + d (mod m)

b. a � c � b � d (mod m)

c. ac � bd (mod m).

96 Chapter 4 Linear Diophantine Equations and Linear Congruences

EXAMPLES. Note that 9 � 2 (mod 7). Then all of the following are true:

• (7 + 9) � (�7 + 2) (mod 7)

Check: (7 + 9) � 16 � 2 (mod 7) and (�7 + 2) � �5 � 2 (mod 7)

• (3 � 9) � (�4 � 2) (mod 7)

Check: (3 � 9) � �6 � 1 (mod 7) and (�4 � 2) � �6 � 1 (mod 7)

• (3 � 9) � (�4 � 9) (mod 7)

Check: (3 � 9) � 27 � 6 (mod 7) and (�4 � 2) � �8 � 6 (mod 7)

Note that a similar property for division does not appear in proposition 19 or proposition
20. This is because it isn’t true in general. For example, note that 16 � 4 (mod 12), but that
16/2 = 8 is not congruent modulo 12 to 4/2 = 2. However, if we take the gcd of 12 and 2,
note that 8 and 2 are congruent modulo 6 = 12/(12, 2). This is true in general, and we prove
it thus:

PROPOSITION 21. Let a, b, and c be integers, and let m be a positive integer. Let d =
(c, m), and suppose ac � bc (mod m). Then a � b (mod m/d).

Proof. Since ac � bc (mod m), m|(ac � bc) = c(a � b). Thus, there is an integer k such
that c(a � b) = km. Divide both sides by d to get (c/d)(a � b) = k(m/d). Proposition 7 says
c/d and m/d are relatively prime, so (m/d)|(a � b) by proposition 13. Thus, a � b (mod
m/d). �

A special case occurs in the previous theorem when c and m are relatively prime, for
then division by the integer c preserves the congruence modulo m. For example, note that
50 � 15 (mod 7), and that 50 = 10 � 5, and 15 = 3 � 5. Since 5 is relatively prime to the mod-
ulus 7, we can factor it out on both sides of the congruence and still preserve it; that is, 10
� 3 (mod 7).

EXAMPLES.

• 10 � 4 (mod 3), so

10/2 � 4/2 (mod 3), or

5 � 2 (mod 3)

• 30 � 12 (mod 18), so

30/3 � 12/3 (mod 18/3), or

10 � 4 (mod 6).

4.2 Linear Congruences 97

We now have enough artillery in our arsenal to solve linear congruences. A linear con-
gruence in one variable is of the form ax � b (mod m) where x is unknown. The following
are examples of such congruences:

a. 9x � 1 (mod 45)

b. 21z � 9 (mod 30)

Some of these congruences have solutions, while others do not. For example, the con-
gruence (b) has all of the following solutions for z:

z � 9 (mod 30), since 21 � 9 = 189 � 9 (mod 30)

z � 19 (mod 30), since 21 � 19 = 399 � 9 (mod 30)

z � 29 (mod 30), since 21 � 29 = 609 � 9 (mod 30)

However, the congruence (a) has no solutions for x. Why? The following tells us when
solutions exist, and how to find them.

PROPOSITION 22. Suppose ax � b (mod m), where b is an integer, and a and m are
nonzero integers. Let d = (a, m). If d � b, the congruence has no solution for x. If d|b, then
there are exactly d incongruent solutions modulo m, given by x = x0 + tm/d, where x0 is a
particular solution to the linear diophantine equation ax + my = b, and t = 0, 1, . . . , d � 1.

Proof. Proposition 7 says that the linear congruence ax � b (mod m) is equivalent to the
linear diophantine equation ax � mz = b, or ax + my = b where y = �z. The integer x is a
solution of ax � b (mod m) iff ∃ an integer y such that ax + my = b. By proposition 16 we
have no integer solutions to this equation if d � b, but when d|b, we have infinitely many
solutions given by

x = x0 + mt/d, y = y0 + at/d, where x = x0, y = y0 is a particular solution.

These values for x are then solutions to ax � b (mod m). To determine which solutions
are congruent modulo m, suppose

x0 + mr/d � x0 + ms/d where r and s are integers.

Subtract x0 from both sides to get

(m/d)r � (m/d)s (mod m)

and note that (m, m/d) = m/d since (m/d)|m. We then use proposition 21 to see that

r � s (mod d).

This says that two solutions x0 + mr/d and x0 + ms/d are congruent modulo m exactly when
r and s are congruent modulo d. Thus, the complete set of incongruent solutions x = x0 + mt/d
is obtained as t spans the integers 0, 1, . . . , d � 1. �

Just stating proposition 22 sounds like a mouthful, but using it to solve linear congruences
is actually easy, as we’ll see in the following examples. Note that for linear congruences,
as with linear diophantine equations, we concern ourselves only with congruences where all

98 Chapter 4 Linear Diophantine Equations and Linear Congruences

the constants are positive. Congruences not in this form can easily be put so by replacing
the values for a and b with their least nonnegative residues modulo m. For example, the
congruence 143x � �11 (mod 121) yields exactly the same set of incongruent solutions as
22x � 110 (mod 121).

EXAMPLES.

• Find all incongruent solutions to 9x � 7 (mod 12). Note that (9, 12) = 3, and that 3 � 7.
Therefore, there are no solutions.

• Find all incongruent solutions to 16x � 12(mod 20). We compute (16, 20) = 4, and note
that 4|12. Thus, 4 incongruent solutions modulo 12 exist. We first find a particular solu-
tion by noting that solving 16x � 12 (mod 20) for x is the same as solving the linear dio-
phantine equation 16x � 20y = 12. Note that we may just as well solve the equation
16x + 20y = 12 because we will discard the value obtained for y anyway. We find a par-
ticular solution to be x = x0 = �3, y = y0 = 3. The set of all incongruent solutions can be
computed as

x = �3 + 0 � (20/4) = �3 � 17 (mod 20)

x = �3 + 1 � 5 � 2 (mod 20)

x = �3 + 2 � 5 � 7 (mod 20)

x = �3 + 3 � 5 � 12 (mod 20).

The validity of each of these solutions is easily checked, and you are invited to do so.

Java Algorithm. Surely you have noticed that solving a linear congruence simply
means solving the appropriate linear diophantine equation. Therefore, writing a solveLin-
earCongruence() method in the BigIntegerMath class should be a snap.

public static BigInteger[] solveLinearCongruence(BigInteger a, BigInteger b,

BigInteger m) {

BigInteger[] answers=solveLinearDiophantine(lnr(a,m),m,lnr(b,m));

return answers;

}

I have written an applet called TestLinearCongruenceApplet which you can run from
the book’s website. Some screen shots are shown in Figures 4.2, 4.3, and 4.4.

Note that if there are multiple solutions, you can repeatedly press the “Next Solution” but-
ton to see the others.

4.3 MODULAR INVERSES

Congruences of the form ax � 1 (mod m) are considered special. Solutions for a to such con-
gruences are called inverses of a, when they exist. The following definition formalizes this
concept.

4.3 Modular Inverses 99

FIGURE 4.3

FIGURE 4.2

100 Chapter 4 Linear Diophantine Equations and Linear Congruences

FIGURE 4.4

Definition
Note that the solution to ax � 1 (mod m) exists only when a is relatively prime to m,
since (a, m) must divide 1. When such solutions exist, there is only one incongruent solu-
tion modulo m. A solution to such a congruence is called an inverse of a modulo m, and
we write such an inverse as a�.

EXAMPLES.

• 19 is an inverse of 4 modulo 25, since x � 19 (mod 25) solves 4x � 1 (mod 25). (Verify.)
Thus, we write 4� � 19 (mod 25).

• A solution to 7x � 1 (mod 8) is x � 7 (mod 8). Thus, 7 is its own inverse modulo 8, or
we can write 7� � 7 (mod 8). This is easily checked, since 7 � 7� � 7 � 7 � 49 � 1 (mod
8).

• Now, consider the congruence 9x � 1 (mod 15). Note that 9 has no inverse modulo 15,
since 9 and 15 are not relatively prime.

EXERCISES

1. Find all integer solutions to the following linear diophantine equations, if any exist:

a. 42x + 30y = 20

Exercises 101

b. 42x + 30y = 18

c. 252x + 198y = 90

d. 11x + 17y = 23

e. 12x + 32y = 10

f. 12x + 32y = 92

g. 36x + 81y = 117

h. 252x + 198y = 414

2. Suppose for the apples and oranges example in this chapter that you have instead the
following amounts of money:

a. 2 dollars and 66 cents

b. 3 dollars

c. 7 dollars and 42 cents

d. 91 cents

Find all feasible solutions to the number of apples and oranges you should buy to exactly
exhaust your money.

3. Dr. Fonebone goes to the post office to buy some 32¢ stamps and some 5¢ stamps. If
the doctor spent $3.45, how many stamps of each type could he have bought?

4. Alien Commander Freenbean returns to her planet after a trip to Southeast Asia. If she
exchanges her foreign currency and receives a total of 941 gznardls, where she receives
37 gznardls for each Philippine peso and 63 gznardls for each Thai baht, how much of
each type of currency did she exchange? Are there multiple answers?

5. You are at a classy restaurant with only $18.17 in your pocket, and you are starving.
Everything on the menu costs more than $20, except the following two items: bread-
sticks at $1.89 each, and large mountain oysters at $2.50 each. How much of each item
should you buy to spend all your money?

6. What combination(s) of quarters and dimes totals $2.95?

7. Write a GUI or an applet to enter the values of a, b, and c for the linear diophantine equa-
tion ax + by = c. Display a particular solution x = x0, y = y0 in the window when the user
presses a “compute” button. Subsequent presses of the same button should produce an
alternate solution; the nth press should give the solution x = x0 + bn/d, y = y0 � an/d.

8. Solve all of the following congruences for x, when solutions exist. If solutions do not
exist, explain why.

a. 6x � 4 (mod 14)

b. 9x � 7 (mod 15)

c. 9x � 21 (mod 24)

d. 21x � 9 (mod 24)

e. 35x � 21 (mod 56)

f. 8x � 7 (mod 15)

g. 348975893461x � 1 (mod 9238745892364)

102 Chapter 4 Linear Diophantine Equations and Linear Congruences

h. 46873258738754865x � 3 (mod 9283765872587542121751)

9. Find an inverse of

a. 10 modulo 21

b. 5 modulo 8

c. 6 modulo 21

d. 13 modulo 30

e. 13 modulo 143

f. 14 modulo 15

g. 33 modulo 121

h. 985 modulo 2527

i. 8 modulo 27

j. 9 modulo 14

when such an inverse exists. If it does not exist, state the reason.

10. Prove proposition 18.

11. Prove proposition 19.

12. Prove proposition 20.

13. Consider how you might solve linear diophantine equations in more than two variables;
for example, the equation

3x + 2y + 5z = 26

has x = 5, y = 3, z = 1 as a particular solution. How might you find this particular solu-
tion? Or any other? One approach you might take is to solve the equation

3x + 2y + 5z = 1

where (3, 2, 5) = 1, and remember that (3, 2, 5) = ((3, 2), 5). That is, you can solve

3x + 2y = (3, 2) = 1

then use these values for x and y to solve the equation in three variables using the proper
substitutions.

14. What combination(s) of quarters, dimes, and nickels equals 85¢?

15. How many ways can change be made for a dollar using

a. quarters and dimes?

b. quarters, dimes, and nickels?

16. What time does a 12-hour clock read

a. 35 hours after 8 o’clock?

b. 73 hours after 5 o’clock?

c. 58 hours before 1 o’clock?

Exercises 103

17. A satellite orbits the earth with period p hours, where 0 < p < 24, and p is an integer. If
the satellite is directly overhead at 1300 (on a 24-hour clock), then 7 orbits later is again
directly overhead at 1800, what is p, the orbital period of the satellite?

18. Old Faithless is a geyser in Tibet that erupts every 5 hours. If it erupted at exactly 12
noon on June 2, 2000, when did it next erupt at exactly 12 noon?

19. The Screechids is a meteor shower through which the planet Mongo passes every 143
of its days. Mongo passed through the Screechids on its New Year’s day in its year
10793. If the orbital period of Mongo is 299 of its days, when did Mongo next pass
through the Screechids on New Year’s day? (Mongo has no leap years, nor any other
calendar adjustments.)

20. Consider now how you may solve a system of linear diophantine equations, as in the
system

3x + 3y + 2z = 11

5x + y + 3z = 10

which has as a particular solution x = 1, y = 2, z = 1. Explain how such a solution (or
any other particular solution) could be found. Does this system have infinitely many
solutions?

21. Solve the following system of linear diophantine equations.

3x + y + 7z = 14

4x + 3z + z = 12

22. Solve the following system of linear diophantine equations.

3x + y + 7z = 14

4x + 3z + z = 12

2x + 5z + z = 10

23. Solve the following system of linear diophantine equations.

3x + y + 7z = 14

4x + 3z + z = 12

2x + 5z + z = 9

C H A P T E R 5
Linear Ciphers

105

TABLE 5.1

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

The earliest cryptosystems were simple character substitution ciphers; that is, ciphers
which mapped individual characters to characters. These were the predecessors of

stream ciphers. Stream ciphers may encipher characters, or they may encipher quantities as
small as a single bit. What characterizes most modern stream ciphers is that the encipher-
ing transformation enciphers quantities differently based on their position in the stream.
The cipher that follows actually does not fit this definition, since its enciphering transfor-
mation always maps any particular character to the same character.

5.1 THE CAESAR CIPHER

The earliest known cipher is the Caesar cipher. This cipher simply replaces each letter in the
plaintext with the letter three characters down. That is, if we are using the alphabet A thru
Z, A is replaced with D, B is replaced with E, and so on, with the substitution wrapping
around for letters near the end of the alphabet. (See Chapter 1, “A History of Cryptography.”)

For convenience, each letter–number pair of the ordinary alphabet is shown in Table 5.1.
We can represent the enciphering transformation as

C � P + 3 (mod 26) 0 ≤ C < 26

where C represents the ciphertext character, and P represents the plaintext character. To
decipher, it is obvious that we solve the above congruence for P to get

P � C � 3 (mod 26) 0 ≤ P < 26.

106 Chapter 5 Linear Ciphers

In general, if we use an alphabet of size n, the enciphering transformation of a shift cipher
is

C � P + s (mod n) 0 ≤ C < n.

We allow the shift s to be any number between 1 and n � 1.

EXAMPLE. Encipher the message

THIS MESSAGE IS TOP SECRET

using the ordinary alphabet and a Caesar cipher with a shift of 3. When each letter is con-
verted to a number, and we group into blocks of length 5, we get

19 7 8 18 12 4 18 18 0 6 4 8 18 19 14 15 18 4 2 17 4 19.

(Here, we group the items in blocks for readability.) After applying the enciphering trans-
formation, each number becomes

22 10 11 21 15 7 21 21 3 9 7 11 21 22 17 18 21 7 5 20 7 22

and the ciphertext message is sent as

WKLVP HVVDI HLVWR SVHFU HW.

Hopefully you can see that by shifting each of the ciphertext letters back three letters; that
is, by applying the deciphering transformation

P � C � 3 (mod 26),

the plaintext is regained.

When writing programs to encipher/decipher, we will rarely use the ordinary alphabet.
Computers already have a character–number association, since everything must be stored
as a binary number inside a digital computer. There are various character representation
schemes out there; most notable are ASCII, and EBCDIC. Java uses a character mapping
called Unicode; programs using Java over the Internet usually encode characters in Unicode.
The following is a partial listing of the Unicode sequence (the first 255 characters happen
to be the same characters as in the ASCII sequence). The characters and their associated num-
ber code are listed. The first 32 characters (0 through 31) are nonprintable characters, and
character #32 is the space. Thus, they are not shown here. (See Table 5.2.)

We will call the previous character–number association the “ASCII alphabet.” In general,
however, we will regard a message as merely an array of bytes, and will not concern our-
selves with what the bytes represent.

Java Algorithm. To see the character encoding used by your system, the following
Java program will help.

5.1 The Caesar Cipher 107

Partial ASCII - Unicode Table

33 !

43 +

53 5

63 ?

73 I

83 S

93]

103 g

113 q

123 {

34 "

44 ,

54 6

64 @

74 J

84 T

94 ^

104 h

114 r

124 |

35 #

45 -

55 7

65 A

75 K

85 U

95 _

105 i

115 s

125 }

36 $

46 .

56 8

66 B

76 L

86 V

96 `

106 j

116 t

126 ~

37 %

47 /

57 9

67 C

77 M

87 W

97 a

107 k

117 u

38 &

48 0

58 :

68 D

78 N

88 X

98 b

108 l

118 v

39 '

49 1

59 ;

69 E

79 O

89 Y

99 c

109 m

119 w

40 (

50 2

60 <

70 F

80 P

90 Z

100 d

110 n

120 x

41)

51 3

61 =

71 G

81 Q

91 [

101 e

111 o

121 y

42 *

52 4

62 >

72 H

82 R

92 \

102 f

112 p

122 z

TABLE 5.2
Partial
ASCII–Unicode
Table

-33 ! -34 " -35 # -36 $ -37 % -38 & -39 ' -40 (-41) -42 *

-43 + -44 , -45 - -46 . -47 / -48 0 -49 1 -50 2 -51 3 -52 4

-53 5 -54 6 -55 7 -56 8 -57 9 -58 : -59 ; -60 < -61 = -62 >

-63 ? -64 @ -65 A -66 B -67 C -68 D -69 E -70 F -71 G -72 H

-73 I -74 J -75 K -76 L -77 M -78 N -79 O -80 P -81 Q -82 R

-83 S -84 T -85 U -86 V -87 W -88 X -89 Y -90 Z -91 [-92 \

-93] -94 ^ -95 _ -96 ` -97 a -98 b -99 c -100 d -101 e -102 f

-103 g -104 h -105 i -106 j -107 k -108 l -109 m -110 n -111 o -112 p

-113 q -114 r -115 s -116 t -117 u -118 v -119 w -120 x -121 y -122 z

-123 { -124 | -125 } -126 ~ -127 ⌂ -128 ? -129 ? -130 ? -131 ? -132 ?

-133 ? -134 ? -135 ? -136 ? -137 ? -138 ? -139 ? -140 ? -141 ? -142 ?

public class DisplayCharacterSet {

public static void main(String[] args) {

for (int i=33;i<256;i++) System.out.print(i+” “+(char)i+”\t-”);

}

}

Here is the output of the program when I ran it:

108 Chapter 5 Linear Ciphers

-143 ? -144 ? -145 ? -146 ? -147 ? -148 ? -149 ? -150 ? -151 ? -152 ?

-153 ? -154 ? -155 ? -156 ? -157 ? -158 ? -159 ? -160 á -161 í -162 ó

-163 ú -164 ñ -165 Ñ -166 ª -167 º -168 ¿ -169 ⌐ -170 ¬ -171 ½ -172 ¼

-173 ¡ -174 « -175 » -176 ░ -177 ▒ -178 ▓ -179 � -180 � -181 ╡ -182 ╢

-183 ╖ -184 ╕ -185 ╣ -186 ║ -187 ╗ -188 ╝ -189 ╜ -190 ╛ -191 � -192 �

-193 � -194 � -195 � -196 � -197 	 -198 ╞ -199 ╟ -200 ╚ -201 ╔ -202 ╩

-203 ╦ -204 ╠ -205 ═ -206 ╬ -207 ╧ -208 ╨ -209 ╤ -210 ╥ -211 ╙ -212 ╘

-213 ╒ -214 ╓ -215 ╫ -216 ╪ -217
 -218 � -219 █ -220 ▄ -221 ▌ -222 ▐

-223 ▀ -224 α -225 ß -226 Γ -227 π -228 Σ -229 σ -230 µ -231 τ -232 Φ

-233 Θ -234 Ω -235 δ -236 � -237 φ -238 ε -239 -240 � -241 ± -242 ≥

-243 ≤ -244 ⌠ -245 ⌡ -246 ÷ -247 ≈ -248 ° -249 · -250 · -251 � -252 ⁿ

-253 ² -254 � -255 -

FIGURE 5.1

Java Algorithm. Writing a program to encipher and decipher using shift transforma-
tions is very easy. In our Java programs, we will map bytes to bytes. The following is a pro-
gram to encipher with shift transformations in Java. The modulus, however, is now 256.
This is because the numeric range of a single byte is 0 through 255.

I have written an applet called TestCaesarCipherApplet which shows how the Caesar
cipher operates. It can be found on, and run from, the book’s website. Two pictures are
shown in Figures 5.1 and 5.2.

5.1 The Caesar Cipher 109

FIGURE 5.2

The code for this applet follows:

import java.math.*;

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class TestCaesarCipherApplet extends Applet implements ActionListener {

int shift=0;

byte[] msgArray=null;

byte[] encmsgArray=null;

Label titleLabel=new Label(“Caesar Cipher Demonstration”);

Label Label1=new Label(“Plaintext”);

TextField msg=new TextField(40);

Label Label2=new Label(“Ciphertext”);

TextField encmsg=new TextField(40);

Label shiftLabel=new Label(“Shift value (0-255):”);

TextField entryShiftValue=new TextField(40);

Button encipherButton=new Button(“Encipher”);

Button decipherButton=new Button(“Decipher”);

public void init() {

setLayout(new GridLayout(9,1));

add(titleLabel);

add(Label1);

add(msg);

add(Label2);

add(encmsg);

encmsg.setEditable(false);

add(shiftLabel);

110 Chapter 5 Linear Ciphers

add(entryShiftValue);
add(encipherButton);
encipherButton.addActionListener(this);
add(decipherButton);
decipherButton.addActionListener(this);
decipherButton.setEnabled(false);

}

public void actionPerformed(ActionEvent e) {
if (e.getSource()==encipherButton) {

try {
shift=Integer.parseInt(entryShiftValue.getText());

} catch (NumberFormatException nfe) {
shift=0;

}
msgArray=msg.getText().getBytes();
encmsgArray=caesarEncipher(msgArray,shift);
encmsg.setText(new String(encmsgArray));
msg.setText(“”);
encipherButton.setEnabled(false);
decipherButton.setEnabled(true);

} else if (e.getSource()==decipherButton) {
msgArray=caesarDecipher(encmsgArray,shift);
msg.setText(new String(msgArray));
encmsg.setText(“”);
decipherButton.setEnabled(false);
encipherButton.setEnabled(true);

}
}

//The enciphering method.
private static byte[] caesarEncipher(byte[] message,int shift) {

byte[] m2=new byte[message.length];
for (int i=0;i<message.length;i++) {

m2[i]=(byte)((message[i]+shift)%256);
}
return m2;

}

//The deciphering method.
private static byte[] caesarDecipher(byte[] message,int shift) {

byte[] m2=new byte[message.length];
for (int i=0;i<message.length;i++) {

m2[i]=(byte)((message[i]+(256-shift))%256);
}
return m2;

}

}

5.3 Affine Transformation Ciphers 111

Note that in this program, the BigInteger class (or the Int class) is not used. This is
because it isn’t necessary to use large integers when we are only shifting a single byte up
or down by a maximum of 255. Regular Java ints work just fine. In the program, the user
enters a shift value, and then the plaintext. It enciphers this as an array of bytes, and then
converts the enciphered byte array back to a string and displays the ciphertext. Next it
reverses the process and recovers the plaintext.

Note also that the message need not be text. Any type of data can be enciphered and
deciphered, as long as it is first converted into an array of bytes.

5.2 WEAKNESSES OF THE CAESAR CIPHER

The Caesar Cipher is a secret key cryptosystem; that is, revealing the enciphering key makes
decryption simple. In the Caesar cipher, the shift value is the enciphering key. Anyone know-
ing it can immediately decrypt, so it must be protected from unauthorized persons.

Ciphertext Only Attack. Whenever a cryptosystem can be broken by examining
only the ciphertext, we call this a ciphertext only attack. As discussed previously, frequency
analysis of the ciphertext can be used to break the Caesar cipher. Any cipher vulnerable to
ciphertext only attack is considered completely insecure and should never be used.

Exhaustive Key Search. There is yet another method for breaking the Caesar cipher:
simply try all the possible keys! After all, there are only 25 viable keys in the ordinary alpha-
bet, and only 255 useful keys in the ASCII alphabet! This kind of attack is called an exhaus-
tive search. An exhaustive search is rarely effective against all but the simplest of
cryptosystems.

Seeing that the Caesar cipher is so vulnerable, we endeavor to develop stronger cryp-
tosystems.

5.3 AFFINE TRANSFORMATION CIPHERS

After the Caesar cipher, the simplest type of enciphering transformation is the affine trans-
formation, which multiplies each plaintext value by another number and then adds a shift.
This may be represented by the congruence

C � mP + b (mod n)

where n is the size of the alphabet. The multiplier m in the above congruence must be rel-
atively prime to n, otherwise decryption is not possible. For in order to decrypt, we must solve
the above congruence for P. A unique solution exists only if an inverse of m modulo n
(denoted m�) exists, which further only exists when (m, n) = 1. The inverse m� of m mod-
ulo n is easily obtained by using the extended Euclidean algorithm, and hence we have the
deciphering transformation

P � m�(C � b) (mod n).

112 Chapter 5 Linear Ciphers

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

TABLE 5.3

The plaintext message, when the letters are converted to their numerical equivalents,
yields

22 0 17 11 14 18 19

We then compute the following congruences:

C � 7P + 10 � 7 � 22 + 10 � 8 (mod 26)

C � 7P + 10 � 7 � 0 + 10 � 10 (mod 26)

C � 7P + 10 � 7 � 17 + 10 � 25 (mod 26)

C � 7P + 10 � 7 � 11 + 10 � 9 (mod 26)

C � 7P + 10 � 7 � 14 + 10 � 4 (mod 26)

C � 7P + 10 � 7 � 18 + 10 � 6 (mod 26)

C � 7P + 10 � 7 � 19 + 10 � 13 (mod 26)

The results of these calculations produce the ciphertext (in numbers)

8 10 25 9 4 6 13

or, the corresponding letters,

IKZJE GN

To recover the plaintext, we must solve the congruence

C � 7P + 10 (mod 26)

for P. Since 7 is relatively prime to 26, an inverse of it exists modulo 26, and it can be found
solving the congruence

7x � 1 (mod 26)

for x. Quick calculations using the extended Euclidean algorithm yield

x � 15 (mod 26).

EXAMPLE. Encipher

WAR LOST

using an affine transformation with the ordinary alphabet. Use 7 as the multiplier, and 10
as the shift. Then recover the plaintext. The ordinary alphabet associations are shown in
Table 5.3:

5.4 Weaknesses of Affine Transformation Ciphers 113

This value for x is an inverse of 7 modulo 26, and this is easily verified:

7x = 7(15) = 105 � 1 (mod 26).

Thus, to recover the plaintext from the ciphertext, we crank it through the deciphering
transformations:

C � 15P � 10 � 15 � (8 � 10) � 15 � �2 � 22 (mod 26)

C � 15P � 10 � 15 � (10 � 10) � 15 � 0 � 0 (mod 26)

C � 15P � 10 � 15 � (25 � 10) � 15 � 15 � 17 (mod 26)

C � 15P � 10 � 15 � (9 � 10) � 15 � �1 � 11 (mod 26)

C � 15P � 10 � 15 � (4 � 10) � 15 � �6 � 14 (mod 26)

C � 15P � 10 � 15 � (6 � 10) � 15 � �4 �18 (mod 26)

C � 15P � 10 � 15 � (13 � 10) � 15 � 3 � 19 (mod 26)

which gives us

22 0 17 11 14 18 19

or

WARLO ST.

5.4 WEAKNESSES OF AFFINE TRANSFORMATION CIPHERS

Clearly, affine ciphers are secret key ciphers, since if m and b in the enciphering transfor-
mation C � mP + b (mod n) are revealed, it is easy to compute the inverse of m modulo n,
and then decipher.

Ciphertext Only Attack–Frequency Analysis. As with the Caesar cipher, break-
ing affine ciphers is easy. We may proceed as follows:

1. Suppose the message is English text, and we are using the ordinary alphabet A = 00,
B = 01, . . . , Z = 25. (Of course, the message may not be English text, or even text at all,
but the principle remains the same.)

2. Note that the most common letter appearing in English text is “E”(= 4), followed by
“T”(= 19).

3. Examine as much ciphertext as possible. The character appearing most often is proba-
bly the character “E” enciphered, and the second most frequent character is probably
“T” enciphered.

4. Knowing what “E” and “T” map to allows us to calculate a and b, and thus the mapping
of all the other letters.

114 Chapter 5 Linear Ciphers

Choices for:

A

2

5

B

2

4

C

2

3

D

2

2

E

2

1

F

2

0

G

1

9

H

1

8

I

1

7

J

1

6

K

1

5

L

1

4

M

1

3

N

1

2

O

1

1

P

1

0

Q

9

R

8

S

7

T

6

U

5

V

4

W

3

X

2

Y

1

Z

0

TABLE 5.4

This can be easily seen with an example. Suppose the letter appearing most frequently
in a large amount of ciphertext is “V,” followed by “E.” Then “E”(= 4) probably maps to
“V”(= 21), and “T”(= 19) probably maps to “E”(= 4). We can then form the two congruences

21 � 4a + b (mod 26) (*)

4 � 19a + b (mod 26).

Now, subtract the first congruence in (*) from the second (we can do this by proposition
20) to obtain

�17 � 9 � 15a (mod 26)

Solving this congruence (for a) yields:

a � 11 (mod 26).

We can then replace a with 11 in one of the congruences in (*), then calculate the value
for b. For example, solving 21 � 4(11) + b (mod 26) for b yields

b � 21 � 44 = �23 � 3 (mod 26).

We can then calculate 11�, an inverse of 11 modulo m. This we determine quickly to be

11� � 19 (mod 26)

We can use this value along with b to decrypt a message. If it works, congratulations! If
not, then our guesses for the mappings of “E” and “T” were incorrect.

Exhaustive Key Search. Note that using ciphers which map single characters to char-
acters in this way are simply not practical. If we are using a Caesar cipher with the ordinary
alphabet, there are only 25 choices for the shift value b, and if we know that an affine cipher
with the ordinary alphabet is being used, there are only 12 choices for the multiplier and 25
choices for the shift. A computer could test all of the possible combinations very quickly.

Monoalphabetic substitution ciphers should never be used. Even if we allow every pos-
sible character to character mapping in the ordinary alphabet, there are 25! =
15,511,210,043,330,985,984,000,000 such mappings. (To see this, note that when we map
the letter “A” to another letter, we have 25 choices, assuming we want to map no letter to
itself). When we map “B” we have 24 choices remaining (the mapping must be one-to-one;
no two letters may map to the same letter), and so on. This makes a total of 25 � 24 . . . 2 �
1 = 25! mappings. (See Table 5.4.)

5.5 The Vigenere Cipher 115

A

0

B

1

C

2

D

3

E

4

F

5

G

6

H

7

I

8

J

9

K

10

L

11

M

12

N

13

O

14

P

15

Q

16

R

17

S

18

T

19

U

20

V

21

W

22

X

23

Y

24

Z

25

TABLE 5.5 Table of character-to-number associations for the ordinary
alphabet

Certainly, 25! seems like a huge number (and it is), but even these generalized charac-
ter-to-character mappings are vulnerable to the same frequency analysis used on Caesar
ciphers. If enough ciphertext is examined, we can determine what most letters map to, then
can fill out the rest of the letters by simply guessing.

5.5 THE VIGENERE CIPHER

As described in Chapter 1, the Vigenere cipher maps characters to characters based on a key
which specifies multiple shifts. A key of length n represents a series of shifts s0, s1, . . . , sn�1.
The enciphering transformation maps the ith character of the plaintext message P = p0, p1,
. . . , pt�1 to the ith ciphertext character of the ciphertext message C = c0, c1, . . . , ct�1 in this
way:

ci � pi + sr (mod m) (0 ≤ ci < m, 0 ≤ i < t)

where

r � i (mod n) (0 ≤ r < n).

EXAMPLE. For convenience in the following example, we provide a table of character-to-
number associations for the ordinary alphabet. (See Table 5.5.)

We will use the ordinary alphabet, and the keyword SPACE representing the shifts s0 =
18, s1 = 15, s2 = 0, s3 = 2, and s4 = 4. The plaintext message is

DANGER WILL ROBINSON.

So using the Vigenere transformation, we compute the following (see Table 5.6).
Thus, the ciphertext message (grouped in blocks of 5 characters) is

VPNII JLINP JDBKR KDN

Vigenere ciphers fall prey to frequency analysis, just like monoalphabetic substitution
ciphers. See Chapter 1 to see how this is done.

To get around the weaknesses posed by ciphers which map single characters to single char-
acters, we may wish to construct mappings that deal with entire blocks of characters. There
are certainly many more ways to construct such a mapping; these are called block ciphers.

116 Chapter 5 Linear Ciphers

TABLE 5.6

5.6 BLOCK AFFINE CIPHERS

We construct an affine transformation that maps four-letter blocks to other four-letter blocks.
We will call this a block affine cipher. Suppose we are using the numerical alphabet 00, 01,
. . . , 99, and suppose the numerals 00 through 25 represent the letters A through Z, respec-
tively. (For now, we’ll just say that 26 through 99 are unassigned; the reason we’ve extended
the ordinary alphabet in this way will become clear soon.) The message to send (in charac-
ters) is

HOWDY DOO

i r sr pi ci

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

18

15

0

2

4

18

15

0

2

4

18

15

0

2

4

18

15

0

3

0

13

6

4

17

22

8

11

11

17

14

1

8

13

18

14

13

21

15

13

8

8

9

11

8

13

15

9

3

1

10

17

10

3

13

5.6 Block Affine Ciphers 117

First, regroup the letters into blocks of size four,

HOWD YDOO

and convert each letter into its numerical equivalent, grouping the digits together to form a
large integer. Each character gets two digits; A = 00, B = 01, and so on. Leading zeros are
significant.

07142203 24031414

Note that the largest integer which can appear in a block of size four in the ordinary
alphabet is ZZZZ = 25252525. Thus, we will choose 25252526 as our modulus. To construct
an affine cipher mapping,

C � mP + b (mod 25252526)

we choose any shift b between 1 and 25252525, and any multiplier m relatively prime to
25252526. Say we choose b = 23210025 and m = 21035433. (Verify that this choice of m
is relatively prime to 25252526.) We use these values to map each block to another. For the
first block we get

C � 21035433 � 7142203 + 23210025 = 150239355888924 � 8007496 (mod 25252526)

and for the second we compute

C � 21035433 � 24031414 + 23210025 = 505511222302287 � 20470469 (mod
25252526).

This gives us the enciphered message

08007496 20470469

and this is the message that is sent. Note that no digit pair greater than 25 has an equivalent
in the ordinary alphabet, and the digit pairs 74, 96, 47, and 69 all appear in the above mes-
sage. (Now you can see why we took 00, 01, . . . , 99 as our alphabet.) Note that if there are
less than eight digits in the block, we add leading zeros. To decrypt, we must find an inverse
modulo 25252526 of m = 21035433. A quick computation with the extended Euclidean
algorithm reveals m� = 5174971. Using this value and the congruence

P � m�(C � b) (mod n)

we can convert the first enciphered block back to its plaintext form,

P � 5174971(8007496 � 23210025) � 7142203 (mod 25252526)

and then the second

P � 5174971(20470469 � 23210025) � 24031414 (mod 25252526)

which returns us to our plaintext message

HOWD YDOO

118 Chapter 5 Linear Ciphers

5.7 WEAKNESSES OF THE BLOCK AFFINE CIPHER–KNOWN
PLAINTEXT ATTACK
This cipher, though not vulnerable to frequency analysis, is vulnerable to a different kind
of attack, called a known plaintext attack. This is when the cryptanalyst has both the cipher-
text and the corresponding plaintext for a particular message. (This is not so unlikely; one
plaintext message getting into enemy hands is good enough for this to work. We always
assume that the cryptanalyst has easy access to every ciphertext message.) Say the analyst
has ciphertext blocks C1 and C2, and their corresponding plaintext blocks P1 and P2. These
values are known, and it is only left to calculate m and b from the two congruences

C1 � mP1 + b (mod n)

C2 � mP2 + b (mod n).

We assume that the block size, and hence the value of the modulus, is also known to the
cryptanalyst. (If not, it shouldn’t be hard to figure out simply by trying different values.)

EXAMPLE. Suppose we use the message HOWDY DOO, as previously presented, with the
same values for the multiplier m = 21035433 and shift b = 23210025. Suppose someone
eavesdrops on our transmission and easily gets the ciphertext

08007496 20470469.

But somehow, through devious means he also gets the plaintext message

HOWDY DOO

or

07142203 24031414.

To obtain the values for m and b, he must simply solve the two congruences

8007496 � 7142203 m + b (mod 25252526)

20470469 � 24031414 m + b (mod 25252526)

for m and b. He subtracts the first congruence from the second to get

12462973 � 16889211 m (mod 25252526)

which he can solve quickly to get m � 21035433 (mod 25252526). Replacing m in the first
congruence with 21035433, he gets

8007496 � 7142203 � 21035433 + b (mod 25252526),

which is then easily solved for b to yield

b � 23210025 (mod 25252526).

Though a known plaintext attack may be thought unlikely, especially by egomaniacs
running a “secure” facility, it is dangerous to use block affine ciphers for this reason, even

5.8 Padding Methods 119

FIGURE 5.3

00000011 00000011 00000011

Message Padding

........

though they are used in many applications today. Thus, we continue to develop better enci-
phering methods. However, before we move on to the next topic, we need to address the topic
of padding.

5.8 PADDING METHODS

Note that when we use block ciphers, the size of the message we are sending may not be a
multiple of the block size. For example, when we are using a block size of four,

HOWDY DOO = HOWD YDOO

is a perfect multiple of the block size, but

HOWDY FOLKS = HOWD YFOL KS

is not. When this happens, we must pad the end of the message so that it becomes a perfect
block. We may choose to pad with some character, such as the letter X, as in

HOWD YFOL KSXX

or we may pad with zeros once we have converted the message into its numerical equiva-
lent, like

07142203 24051411 10180000.

This is not really satisfactory, as the characters or digits that we choose to pad with may
well be a valid part of the message, and not padding at all. This might possibly create con-
fusion at the receiving end. One solution to this problem is PKCS#5, a proposed standard
method of padding.

PKCS#5 Padding. This type of padding works like this: suppose the block size is 64
bytes, and the message is 125 bytes long. This makes 1 complete block, plus 61 bytes, 3 bytes
short of a full block. To complete the block, we append 3 bytes, each containing the num-
ber 3, as seen in Figure 5.3 (in binary):

The message is now encrypted, and sent. On the receiving end, the message is decrypted.
The last block is inspected, and the last 3 bytes, each containing the number 3, are removed.
In general, if our message is N bytes short of a full block, we append N blocks, each con-
taining the number N.

What if our last block is complete? With PKCS#5, we add padding anyway! If our block
size is 64 bytes, and our message is 128 bytes, we will still append 64 bytes (each byte con-
taining the number 64) to the message! Why is this done? Suppose the message being sent
is an exact multiple of the block size. Now, suppose the last 6 bytes of the message happen
to contain the number 6. How is the receiver to know whether this is padding or part of the

120 Chapter 5 Linear Ciphers

FIGURE 5.4
11111111 11111111 11111111(message)

255 bytes of padding

message? She doesn’t. This is why we append an entire block to messages that are already
perfect multiples of the block size.

Note that PKCS#5 padding has a limitation: It cannot be used for ciphers in which the
ciphertext block size exceeds 255 bytes. This should be simple to see if you note that each
byte of padding in PKCS#5 contains a binary number revealing the number of bytes of
padding. Clearly, 11111111(base 2) = 255 is the largest number we can write in a byte, so a com-
plete block of 255 bytes would be padded as shown in Figure 5.4.

Java Algorithm. Block ciphers are difficult to write, not because the enciphering trans-
formations are any more difficult, but because you must pad/unpad and block/unblock the
messages. To do all this, we will write a Ciphers class; it will contain methods to do all the
blocking and padding activities, and methods to encipher and decipher using various trans-
formations. The first will be the block affine transformation. For better readability (hope-
fully), the explanation for the code is interspersed with the code:

import java.math.*;

public class Ciphers {

The following is the padding method. You pass in the message and the block size. It
computes the number of blocks, then pads using the PKCS#5 scheme. This means padding
is added even if the message is a perfect multiple of the block size. It also means that any
ciphers using this method are effectively limited to a maximum block size of 255 bytes.

private static byte[] pad(byte[] msg,int blockSize) {

//Check that block size is proper for PKCS#5 padding

if (blockSize<1||blockSize>255) throw new

IllegalArgumentException(“Block size must be between 1 and 255.”);

//Pad the message

int numberToPad=blockSize-msg.length%blockSize;

byte[] paddedMsg=new byte[msg.length+numberToPad];

System.arraycopy(msg,0,paddedMsg,0,msg.length);

for (int i=msg.length;i<paddedMsg.length;i++) paddedMsg[i]=(byte)numberToPad;

return paddedMsg;

}

This method takes a padded message, then converts it to a 2-dimensional byte array.
Each “vector” in this 2D array is a block. The enciphering methods will work with this 2D
array.

5.8 Padding Methods 121

private static byte[][] block(byte[] msg,int blockSize) {

//Create a 2D array of bytes corresponding to the message-all blocks should be

//full

int numberOfBlocks=msg.length/blockSize;

byte[][] ba=new byte[numberOfBlocks][blockSize];

for (int i=0;i<numberOfBlocks;i++)

for (int j=0;j<blockSize;j++)

ba[i][j]=msg[i*blockSize+j];

return ba;

}

This method “unblocks” the message; that is, after the enciphering or deciphering trans-
formation, it takes the 2D array of blocks, then converts it back to a linear array of bytes.
The method must be careful to take into account that the enciphering or deciphering trans-
formation may produce an integer smaller than the block size. In that case, it fills in the lin-
ear array from the rear of the block.

private static byte[] unBlock(byte[][] ba,int blockSize) {

//Create the 1D array in which to place the enciphered blocks

byte[] m2=new byte[ba.length*blockSize];

//Place the blocks in the 1D array

for (int i=0;i<ba.length;i++) {

int j=blockSize-1;

int k=ba[i].length-1;

while (k>=0) {

m2[i*blockSize+j]=ba[i][k];

k--;

j--;

}

}

return m2;

}

This method removes the padding. All it has to do is examine the numerical value in the
last block, then remove exactly that many blocks.

private static byte[] unPad(byte[] msg,int blockSize) {

//Determine the amount of padding-just look at last block

int numberOfPads=(msg[msg.length-1]+256)%256;

//Chop off the padding and return the array

byte[] answer=new byte[msg.length-numberOfPads];

System.arraycopy(msg,0,answer,0,answer.length);

return answer;

}

122 Chapter 5 Linear Ciphers

Finally, here are the enciphering and deciphering methods for the block affine cipher. Each
accepts a message, the block size, and the values of a and b from the enciphering transfor-
mation

C � aP + b.

public static byte[] affineEncipher(byte[] msg,int blockSize,BigInteger a,BigInteger

b) {

//Compute the modulus

BigInteger modulus=BigInteger.valueOf(2).pow(8*blockSize);

//Check the multiplier

if (!(modulus.gcd(a).equals(BigIntegerMath.ONE))) throw new

IllegalArgumentException(“Enciphering key is not relatively prime to the

modulus.”);

byte ba[][]=block(pad(msg,blockSize),blockSize);

//Begin the enciphering

for (int i=0;i<ba.length;i++)

ba[i]=getBytes(a.multiply(new BigInteger(ba[i])).add(b).mod(modulus));

return unBlock(ba,blockSize);

}

public static byte[] affineDecipher(byte[] msg,int blockSize,BigInteger a,BigInteger

b) {

//Compute the modulus

BigInteger modulus=BigInteger.valueOf(2).pow(8*blockSize);

//Check the multiplier

if (!(modulus.gcd(a).equals(BigIntegerMath.ONE))) throw new

IllegalArgumentException(“Enciphering key is not relatively prime to the

modulus.”);

//Compute inverse of a

BigInteger ainv=a.modInverse(modulus);

byte[][] ba=block(msg,blockSize);

//Begin the deciphering

for (int i=0;i<ba.length;i++)

ba[i]=getBytes(BigIntegerMath.lnr(ainv.multiply(new

BigInteger(ba[i]).subtract(b)),modulus));

//Go from blocks to a 1D array, and remove padding; return this

return unPad(unBlock(ba,blockSize),blockSize);

}

This following method is necessary. In order to encipher or decipher, at some point we
convert BigIntegers back into an array of bytes using the toByteArray() method from the
BigInteger class. This method, in addition to returning the binary representation of the Big-
Integer, also returns a sign bit in the high order bit position. This can screw up everything
if the BigInteger already fills up the block; in this case the extra sign bit forces another byte
to be created. When this happens, we must remove the forward byte. This is never a prob-
lem for us, as all of the BigIntegers we use are positive; thus the sign bit is always 0.

5.8 Padding Methods 123

FIGURE 5.5

//Method to rectify the extra bit problem of the toByteArray() method

private static byte[] getBytes(BigInteger big) {

byte[] bigBytes=big.toByteArray();

if (big.bitLength()%8!=0) return bigBytes;

else {

byte[] smallerBytes=new byte[big.bitLength()/8];

System.arraycopy(bigBytes,1,smallerBytes,0,smallerBytes.length);

return smallerBytes;

}

}

This is the end of the Ciphers class. More methods will be added later, as we develop more
cryptosystems.

}

I have written an applet called TestBlockAffineCipherApplet to test this cipher. The
applet can be viewed online at the book’s website. Two screen shots are shown in Figures
5.5 and 5.6.

124 Chapter 5 Linear Ciphers

FIGURE 5.6

EXERCISES

1. Writing a program to encipher and decipher individual characters using affine trans-
formations is very easy. All you need do is use a method that computes inverses mod
n, and the rest is as easy as writing the Caesar cipher. Write a TestAffineCipherApplet
class which tests the two static methods affineEncipher(), and affineDecipher(). These
last two methods should accept an array of bytes (a message), along with the enci-
phering key(s), and return an array of bytes. You must use primitive ints, so you need
to write a method to compute inverses modulo n for ints.

2. Encipher, and then decipher, the following messages using Caesar shift transforma-
tions with the ordinary alphabet, and where the shift b = 23.

a. KENNEDY IS DEAD

b. HITLER IN PERU

c. BIG BROTHER

3. Repeat the previous exercise but use a single character affine cipher with a multiplier
of 15 and a shift of 6.

4. Repeat the previous exercise, but use a block affine cipher with a block size of 4 char-
acters per block. Use 25252526, the appropriate value for the modulus (using the ordi-
nary alphabet), and use 1542327 for the multiplier, and 9923411 for the shift. Pad
messages that are not multiples of the block size with the letter X.

C H A P T E R 6
Systems of Linear Congruences—
Single Modulus

125

In this chapter we will discuss systems of linear congruences. The systems we consider
will be of two types:

1. Multiple linear congruences consisting of several variables, modulo a single modulus.

2. Multiple linear congruences consisting of a single variable, modulo different moduli.

Here, we discuss systems of type 1. For these types of systems, you should know how
to handle systems of equations, as well as matrices. Take the following example of a sys-
tem of linear congruences with multiple variables modulo a single modulus:

5x + 3y + 2z � 2 (mod 7)

3x + 4y + 6z � 1 (mod 7) (*)

2x + y + z � 4 (mod 7)

6.1 MODULAR MATRICES

Note that we can write this in matrix notation as AX � B (mod 7) where A is
∣
∣
∣
∣
∣
∣

5 3 2
3 4 6
2 1 1

∣
∣
∣
∣
∣
∣

X is the column vector
∣
∣
∣
∣
∣

x
y
z

∣
∣
∣
∣
∣

and B is the vector
∣
∣
∣
∣
∣

2
1
4

∣
∣
∣
∣
∣

126 Chapter 6 Systems of Linear Congruences—Single Modulus

TABLE 6.1

where congruence for matrices and matrix multiplication are defined as follows:

Definition
We say two kx p matrices A and B are congruent to each other modulo n if each entry
ai, j � bi, j (mod n) for i = 1, . . . , k, j = 1, . . . , p.

EXAMPLES. Here are some examples of congruent matrices.
∣
∣
∣
∣

3 4
1 −8

∣
∣
∣
∣
≡

∣
∣
∣
∣

13 −6
21 2

∣
∣
∣
∣
(mod 10)

∣
∣
∣
∣
∣

0 1 2
1 1 1
2 0 0

∣
∣
∣
∣
∣
≡

∣
∣
∣
∣
∣

6 7 8
−2 −5 1
11 9 15

∣
∣
∣
∣
∣
(mod 3)

∣
∣
∣
∣
∣
∣
∣

6 5 4 3
0 0 6 4
1 2 3 3
0 0 1 7

∣
∣
∣
∣
∣
∣
∣

≡

∣
∣
∣
∣
∣
∣
∣

0 −1 −2 −3
0 −6 0 −2
7 2 −3 −9
6 0 −5 1

∣
∣
∣
∣
∣
∣
∣

(mod 6)

Definition
If A is an m � n matrix, and B is an n � p matrix, the matrix product C = AB is the m � p
matrix

∣
∣
∣
∣
∣
∣
∣

c1,1 c1,2 · · · c1,p

c2,1 c2,2 · · · c2,p

· · · · · · · · ·
cm,1 cm,2 · · · cm,p

∣
∣
∣
∣
∣
∣
∣

where the i, jth entry of C is �ai, kbk, j k = 1, 2, . . . , n.

This simply means we multiply the entries of the ith row of A by the entries of the jth col-
umn of B, then sum them up to get the i, jth entry of C = AB. This also means, of course,
that the number of columns of the first matrix must be the same as the number of rows in
the second matrix. An example illustrating this process is shown in Table 6.1.

To use matrices to solve linear systems of congruences, we must determine whether or
not the operations we use for ordinary matrices representing systems of equations still hold

1 2 5 1

2 4 0 0

1•1+2•7+5•1+1•2=22
• =

3

1

0

0

3

0

1

1

1

7

1

2

5

10 30

9

6

6.1 Modular Matrices 127

for matrices when used for congruences. Recall from linear algebra the three basic row
operations that are permitted on matrices; we will modify these rules slightly:

1. Any two rows may be exchanged.

2. Any row may be multiplied by a nonzero scalar.

3. A multiple of any row may be added to another row.

We redefine the three elementary row operations for matrices used to represent a system
of congruences:

Definition
The three elementary row operations for matrices modulo n are:

1. Any two rows may be exchanged.

2. Any row may be multiplied by an integer scalar relatively prime to the modulus.
(Call this a multiple of a row.)

3. A multiple of a row may be added to another row.

We will show now that when the elementary operations are defined this way, they do not
affect the solutions to a system of congruences.

PROPOSITION 23. When matrices are used to represent a system of linear congru-
ences, the three elementary row operations for matrices do not affect the solution(s) of the
corresponding system of congruences modulo n.

Proof. Operation 1 clearly still holds if the matrices are representing congruences, for
switching the order of the congruences in a system does not affect the solution. If scalars
are always understood to be integers, then multiplying both sides of a congruence by a scalar
that is relatively prime to the modulus will not alter the solution. To see this, consider the
congruence

acx + bcy � dc (mod n) ($)

where c is relatively prime to n. Suppose x = x�, y = y� is a solution to this congruence; that
is,

acx� + bcy� � dc (mod n).

Then we have

ax� + by� � d (mod n)

by Proposition 21, and so x = x�, y = y� is also a solution to the congruence

ax + by � d (mod n). ($$)

Clearly, the reverse is also true: If x = x0, y = y0 is a solution to ($$), then it is also a solu-
tion to ($). So, the solutions to ($) and ($$) are identical when (c, n) = 1, so operation 2 also

128 Chapter 6 Systems of Linear Congruences—Single Modulus

holds for matrices representing congruences, provided the scalar multiple is relatively prime
to the modulus. Lastly, it is clear from proposition 20 that operation 3 is still valid for matri-
ces when they are used to represent congruences. Proposition 20 says we can add congru-
ent items to both sides of a congruence without changing the congruence. �

Thus, we can solve the previous system (*) using elementary row operations on the aug-
mented matrix. We will attempt to produce an upper triangular matrix, then use back sub-
stitution to obtain values for the variables. When this is done using matrices defined over
the real numbers it is called Gaussian elimination; we may as well call it that in this setting,
too.

∣
∣
∣
∣
∣

5 3 2 2
3 4 6 1
2 1 1 4

∣
∣
∣
∣
∣

The augmented matrix A|B.
∣
∣
∣
∣
∣

5 3 2 2
6 1 5 2
2 1 1 4

∣
∣
∣
∣
∣

Multiply second row by 2; all operations are done modulo 7 and the least nonnegative
residue is retained.

∣
∣
∣
∣
∣

5 3 2 2
0 5 2 4
2 1 1 4

∣
∣
∣
∣
∣

Subtract 3 times third row from second row.
∣
∣
∣
∣
∣

5 3 2 2
0 5 2 4
5 6 6 3

∣
∣
∣
∣
∣

Multiply third row by 6.
∣
∣
∣
∣
∣

5 3 2 2
0 5 2 4
0 3 4 1

∣
∣
∣
∣
∣

Subtract first row from third row.
∣
∣
∣
∣
∣

5 3 2 2
0 5 2 4
0 5 2 4

∣
∣
∣
∣
∣

Multiply third row by 4.
∣
∣
∣
∣
∣

5 3 2 2
0 5 2 4
0 0 0 0

∣
∣
∣
∣
∣

6.2 Modular Matrix Inverses 129

x 3 2 1 0 6 5 4
y 5 6 0 1 2 3 4
z 0 1 2 3 4 5 6

TABLE 6.2

Subtract second row from third row. Here we obtain a row of all zeros (mod 7), so we can-
not get a unique solution in this case. (Here, of course, we take a unique solution to mean
that all other solutions are congruent to it).

∣
∣
∣
∣
∣

1 2 6 6
0 1 6 5
0 0 0 0

∣
∣
∣
∣
∣

Multiply both the first and second rows by 3, an inverse of 5 modulo 7. This gives the fol-
lowing solutions for the system:

y � �6z + 5 � z + 5 (mod 7), and

x � �2y � 6z + 6 � 5y + z + 6 � 5(z + 5) + z + 6 � 6z + 25 + 6 � 6z + 3 (mod 7).

If we allow z to range from 0 through 6, we can list all of the incongruent solutions to
this system. They are presented in Table 6.2, and you are asked to recompute each solution
and to verify each of them.

The preceding example teaches us an important lesson: that systems of congruences may
have multiple solutions due to linear dependence, as it is in linear algebra. Of course, when
dealing with congruences, we have finitely many incongruent solutions, rather than infi-
nitely many solutions as when dealing with systems of equations defined over the real num-
bers.

6.2 MODULAR MATRIX INVERSES

Later on it will be useful for us to be able to obtain the inverse of a square m�m matrix A
modulo n. That is, we will wish to find the matrix M such that MA � AM � I (mod n),
where I is the m�m identity matrix.

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

Of course, an inverse modulo n of a matrix A may not exist, but when it does, we denote
it as A�. We should be able to find it by forming the augmented matrix A|I, and using
Gauss–Jordan elimination with elementary row operations. We illustrate how this will be
done with an example; we will attempt to find an inverse modulo 5 of the 2�2 matrix A,
which is

∣
∣
∣
∣

1 4
2 2

∣
∣
∣
∣

130 Chapter 6 Systems of Linear Congruences—Single Modulus

Specifically, we are looking for a matrix A� such that

A�A � AA� � I (mod 5).

We begin by joining the matrix A with the 2�2 identity matrix.
∣
∣
∣
∣

1 4 1 0
2 2 0 1

∣
∣
∣
∣

The augmented matrix A|I.
∣
∣
∣
∣

1 4 1 0
0 4 3 1

∣
∣
∣
∣

Subtract twice the first row from the second row. All operations are done modulo 5, and the
least nonnegative residue is retained.

∣
∣
∣
∣

1 0 3 4
0 4 3 1

∣
∣
∣
∣

Subtract the second row from the first row.
∣
∣
∣
∣

1 0 3 4
0 1 2 4

∣
∣
∣
∣

Multiply the second row by 4, an inverse of 4 modulo 5. Now, we have A�, an inverse of A
modulo 5; it is the matrix

∣
∣
∣
∣

3 4
2 4

∣
∣
∣
∣

To verify that this is an inverse of A modulo 5, take the product AA� (you could also take
A�A), and verify that you get the 2�2 identity matrix. We do this here:

∣
∣
∣
∣

1 4
2 2

∣
∣
∣
∣

∣
∣
∣
∣

3 4
2 4

∣
∣
∣
∣
≡

∣
∣
∣
∣

1 0
0 1

∣
∣
∣
∣
(mod 5)

Now that we have discussed finding inverses, we discuss how they may be used. When
an inverse modulo n of a square matrix A exists, it is quite useful in solving linear systems
of congruences, for if

AX � B (mod n),

then by finding A�, an inverse of A modulo n, we can find the solutions by multiplying both
sides of the congruence by A�:

A�AX � A�B (mod n).

The left-hand side of the above simplifies to

A�AX � IX � X (mod n),

which then yields

X � A�B (mod n).

6.2 Modular Matrix Inverses 131

The matrices A� and B are both known; we simply take the product A�B modulo n to get
our solutions for X. (Note: Linear algebra says that when I is the identity matrix, IX = X, so
certainly IX � X (mod n).)

EXAMPLE. Find the solutions to AX � B (mod 5) by finding A� where A is the matrix∣∣∣∣
1 4
2 2

∣∣∣∣
X is the vector ∣∣∣∣

x
y

∣∣∣∣
and B is the vector ∣∣∣∣

3
2

∣∣∣∣ /

We already found the inverse A� of A modulo 5 earlier; it is the matrix∣∣∣∣
3 4
2 4

∣∣∣∣
and to use it to find X, we simply take the product A�B:∣∣∣∣

3 4
2 4

∣∣∣∣
∣∣∣∣
3
2

∣∣∣∣ ≡
∣∣∣∣
17
14

∣∣∣∣ ≡
∣∣∣∣
2
4

∣∣∣∣ (mod 5)

We now verify that x � 2 (mod 5) and y � 4 (mod 5) is actually a solution to the system
of congruences

x + 4y � 3 (mod 5)

2x + 2y � 2 (mod 5).

Substitution reveals

2 + 4 � 4 = 18 � 3 (mod 5)

2 � 2 + 2 � 4 = 12 � 2 (mod 5)

and the solution checks.

You may have noticed something amiss in multiplying both sides of the congruence
AX � B (mod n) by some matrix A� in order to solve for X. Namely, how do we know that
multiplying both sides of a matrix congruence by a matrix preserves the congruence? That
is, if two n�k matrices A and B are such that A � B (mod m), is it true that AC � BC (mod
m) for any k�p matrix C, and that DA � DB (mod m) for any q�n matrix D? The next
proposition shows that this is the case, and thus vindicates our seeming recklessness.

PROPOSITION 24. Suppose two n�k matrices A and B are such that A � B (mod m). Then
AC � BC (mod m) for any k�p matrix C, and DA � DB (mod m) for any q�n matrix D.

132 Chapter 6 Systems of Linear Congruences—Single Modulus

Proof. Suppose the matrices are as stated. Note that the i, jth entries in the product matri-
ces AC and BC are �ai, tct, j and �bi, tct, j, respectively. Since A � B (mod m), we have ai, t �
bi, t (mod m) ∀ i and t, and so

�ai, tct, j � �bi, tct, j (mod m)

by proposition 20, which says congruent items (mod m) can be added to both sides of a
congruence (mod m) and preserve the congruence. Thus, AC � BC (mod m). The proof that
DA � BA (mod m) is nearly identical to the previous; you are invited to do it. �

Java Algorithm. In this chapter we discussed modular arithmetic and congruences for
matrices. This is a perfect opportunity to define a useful class for these purposes. We can
call it the ModMatrix class; it represents a matrix whose elements are all taken modulo m.

ModMatrix objects need not be square; we will define how to add, subtract, and multi-
ply them. There will be exceptions thrown if the matrices are of the improper size. Of course,
matrices are not invertible unless they are square (and sometimes not even then), so we will
develop a subclass of ModMatrix called ModSquareMatrix. It will have the appropriate
methods for inverting matrices. Finally, we will also define a ModIdentityMatrix class,
which extends ModSquareMatrix.

First, the ModMatrix class: its data items will consist of a two dimensional array of Big-
Integers, a BigInteger representing the modulus, and ints to record the number of rows and
number of columns in the matrix.

import java.math.BigInteger;

import java.security.*;

public class ModMatrix {

//A ModMatrix is a 2D array of BigIntegers

BigInteger[][] array;

//Number of columns/rows recorded here

int numRows, numCols;

//The modulus of the ModMatrix

BigInteger modulus;

The ModMatrix constructors are of different types. The first produces either a matrix of
all zeros or of random entries, the second reads a one-dimensional array into a two-dimen-
sional matrix, and the third simply copies another matrix. The last constructor is the default
constructor, which accepts no arguments. It does nothing, but is used by the subclasses we
define.

//Creates a matrix with random entries having r rows, c columns,

//Or, it creates a matrix of all zeros

//Matrices start indexing at 1,1. Zeroth column and row are not used.

public ModMatrix(int r,int c,BigInteger m,boolean makeZero) {

SecureRandom sr=new SecureRandom();

modulus=m;

array=new BigInteger[r+1][c+1];

6.2 Modular Matrix Inverses 133

numRows=r;

numCols=c;

for (int i=0;i<r;i++) {

for (int j=0;j<c;j++) {

//If makeZero set to true, make the zero matrix

if (makeZero) array[i+1][j+1]=new BigInteger(“0”);

//otherwise, make matrix with random entries

else array[i+1][j+1]=new

BigInteger(modulus.bitLength(),sr).mod(modulus);

}

}

}

//Creates a matrix getting its values from the 1D array a.

//If array is not long enough to fill matrix, zeros are used.

public ModMatrix(int r,int c,BigInteger[] a, BigInteger m) {

modulus=m;

//Make the 2D array larger than specified-indices start at 1,1

array=new BigInteger[r+1][c+1];

numRows=r;

numCols=c;

for (int i=0;i<r;i++) {

for (int j=0;j<c;j++) {

int pos=i*c+j;

//Set values for the matrix from the array

if (pos<a.length&&a[pos]!=null)

array[i+1][j+1]=BigIntegerMath.lnr(a[pos],m);

//If we have run out of input from the array, fill rest of matrix

//with zeros

else array[i+1][j+1]=new BigInteger(“0”);

}

}

}

//Makes a copy of another ModMatrix

public ModMatrix(ModMatrix m) {

array=new BigInteger[m.numRows+1][m.numCols+1];

numRows=m.numRows;

numCols=m.numCols;

modulus=m.modulus;

for (int i=1;i<=m.numRows;i++) {

for (int j=1;j<=m.numCols;j++) {

array[i][j]=new BigInteger(m.array[i][j].toString());

}

}

}

134 Chapter 6 Systems of Linear Congruences—Single Modulus

//This is the default constructor; it does nothing-required for subclass

public ModMatrix() {}

The methods of this class must provide us with the ability to retrieve the number of rows
or columns, the modulus, and individual elements in the matrix. We should also be able to
set entries in the matrix. Thus, the following methods are provided.

//Methods declared here-get rows or columns or modulus of the ModMatrix

public int rows() {return numRows;}

public int columns() {return numCols;}

public BigInteger getModulus() {return modulus;}

//Allows one to retrieve an element.

public BigInteger getElement(int row,int column) {return array[row][column];}

//Allows one to set the value of an element-least nonnegative residue always used

public void setElement(int row,int column,BigInteger value) {

array[row][column]=BigIntegerMath.lnr(value,modulus);

}

These are the methods that will be most useful; those that add, subtract, and multiply two
matrices. The least nonnegative residue modulo m is always maintained.

//Adds two matrices together and returns result.

public ModMatrix add(ModMatrix m) throws MatricesNonConformableException {

ModMatrix result;

//Matrices must be the same dimensions and have same modulus to be added

//together

if (!modulus.equals(m.modulus)) throw new MatricesNonConformableException

(“These matrices cannot be added; different moduli.”);

if (numRows==m.numRows&&numCols==m.numCols) {

//Make a new ModMatrix for the sum-start with zero matrix

result=new ModMatrix(numRows,numCols,modulus,true);

//Add i,j-th entries of each to get i,j-th entry of result

for (int i=1;i<=numRows;i++) {

for (int j=1;j<=numCols;j++) {

result.array[i][j]=BigIntegerMath.lnr(array[i][j].add(m.array[i][j]),modulus);

}

}

} else throw new MatricesNonConformableException

(“These matrices cannot be added; different dimensions.”);

return result;

}

//Subtracts 2nd matrix from 1st and returns result.

6.2 Modular Matrix Inverses 135

public ModMatrix subtract(ModMatrix m) throws MatricesNonConformableException {

//Multiply the 2nd matrix by the scalar -1 then add them-see

//multiply(BigInteger) method

return this.add(m.multiply(new BigInteger(“-1”)));

}

//Multiplies two matrices.

public ModMatrix multiply(ModMatrix m) throws MatricesNonConformableException {

ModMatrix result;

//Both matrices must be using the same modulus

if (!modulus.equals(m.modulus)) throw new MatricesNonConformableException

(“These matrices cannot be multiplied; different moduli.”);

//If # rows in 2nd matrix = # columns in 1st matrix, they can be multiplied

//together

if (m.numRows==numCols) {

result=new ModMatrix(numRows,m.numCols,modulus,true);

//Move down the rows in outer loop

for (int i=1;i<=numRows;i++) {

//Multiply i-th row of 1st by j-th column of 2nd

for (int j=1;j<=m.numCols;j++) {

//Start the i,j-th entry of result at zero

result.array[i][j]=new BigInteger(“0”);

//i,j-th entry is sum of i,k-th entry of 1st times k,j-th

//entry of 2nd for all k

for (int k=1;k<=m.numRows;k++)

result.array[i][j]=BigIntegerMath.lnr

(result.array[i][j].add(array[i][k].multiply(m.array[k][j])),modulus);

}

}

} else throw new MatricesNonConformableException

(“These matrices cannot be multiplied!”);

return result;

}

//Multiplies a matrix by a scalar.

public ModMatrix multiply(BigInteger scalar) {

ModMatrix result=new ModMatrix(numRows,numCols,modulus,true);

for (int i=1;i<=numRows;i++)

for (int j=1;j<=numCols;j++)

//Multiply i,j-th entry by the scalar

result.array[i][j]=BigIntegerMath.lnr(array[i][j].multiply(scalar),modulus);

return result;

}

136 Chapter 6 Systems of Linear Congruences—Single Modulus

FIGURE 6.1

Many of the methods of ModMatrix throw a MatricesNonConformableException; this
means the matrices were simply of the wrong dimensions to do the operation.

public class MatricesNonConformableException extends Exception {

public MatricesNonConformableException() {super();}

public MatricesNonConformableException(String s) {super(s);}

}

The following test applet, called TestModMatrixCalculatorApplet, just verifies that the
arithmetic methods as we have defined them actually work. It is a calculator for modular
matrices. The applet and its source code can be found on the book’s website. A screen shot
is shown in Figure 6.1.

The ModSquareMatrix inherits all methods from the ModMatrix class, and supplies other
methods to do Gaussian elimination modulo n. It also uses these same methods to produce
an inverse modulo n. Of course, if the Gaussian elimination fails an exception will be thrown;
namely, either a SingularMatrixException or an ArithmeticException. The gaussianSolve()
method I have written here only works when the modulus is prime; you will be asked in the
exercises to modify the method so that it works with a composite modulus.

public class SingularMatrixException extends Exception {

public SingularMatrixException() {super();}

public SingularMatrixException(String s) {super(s);}

}

The ModSquareMatrix class definition follows:

import java.math.BigInteger;

import java.security.*;

import java.util.*;

//ModSquareMatrix objects inherit all methods from ModMatrix

public class ModSquareMatrix extends ModMatrix {

//Creates a square matrix with random entries

//Or, it creates a matrix with all zeros

6.2 Modular Matrix Inverses 137

//Another parameter specifies whether or not you wish the random

//matrix to be invertible; if NOT, matrix may still be invertible by accident

public ModSquareMatrix(int s,BigInteger m,boolean makeZero,boolean

makeInvertible)

throws MatricesNonConformableException {

//Call a superconstructor from ModMatrix-make the zero matrix,

// or a matrix with random entries

super(s,s,m,makeZero);

//Zero matrix is not invertible

if (makeZero&&makeInvertible) throw new IllegalArgumentException

(“Zero matrix cannot be inverted!”);

//A random invertible matrix is desired

if (makeInvertible) {

Random r=new Random();

SecureRandom sr=new SecureRandom();

boolean done=false;

//Do this until the matrix inverts

while (!done) {

try {

//Try to take the inverse-may throw an exception if not

//invertible

this.inverse();

done=true;

} catch (SingularMatrixException sme) {

//Change a random entry in the matrix

int row=Math.abs(r.nextInt())%numRows+1;

int col=Math.abs(r.nextInt())%numCols+1;

BigInteger value=new

BigInteger(modulus.bitLength(),sr).mod(modulus);

this.setElement(row,col,value);

} catch (ArithmeticException ae) {

//Change a random entry in the matrix

int row=Math.abs(r.nextInt())%numRows+1;

int col=Math.abs(r.nextInt())%numCols+1;

BigInteger value=new

BigInteger(modulus.bitLength(),sr).mod(modulus);

this.setElement(row,col,value);

}

}

}

}

138 Chapter 6 Systems of Linear Congruences—Single Modulus

//Makes a square matrix from a 1D array of values

public ModSquareMatrix(int s,BigInteger[] a,BigInteger m) {

super(s,s,a,m);

}

//Makes a copy of a matrix

public ModSquareMatrix(ModSquareMatrix m) {

array=new BigInteger[m.numRows+1][m.numCols+1];

numRows=m.numRows;

numCols=m.numCols;

modulus=m.modulus;

for (int i=1;i<=m.numRows;i++) {

for (int j=1;j<=m.numCols;j++) {

array[i][j]=new BigInteger(m.array[i][j].toString());

}

}

}

//Method which uses Gaussian elimination to solve AX=B mod m for X

//A is the ModSquarematrix calling the method

//B is the Modmatrix constants - need not be a Vector

//X is the ModMatrix returned

public ModMatrix gaussianSolve(ModMatrix constants) throws

MatricesNonConformableException,SingularMatrixException {

//This method only works when the modulus is prime

if (!modulus.isProbablePrime(16)) throw new IllegalArgumentException

(“Gaussian elimination method currently requires modulus to be prime!”);

//Copy the matrices and modify the copies

ModSquareMatrix mat=new ModSquareMatrix(this);

ModMatrix b;

//If the ModMatrix constants is square, the answer should also be a

//ModSquareMatrix object

//(not just a ModMatrix)

//Check for this here

if (constants instanceof ModSquareMatrix)

b=new ModSquareMatrix((ModSquareMatrix)constants);

else b=new ModMatrix(constants);

//Check if matrices are of compatible size first

if (b.numRows!=mat.numRows) throw new MatricesNonConformableException

(“Matrix of coefficients and matrix of constants have different # of rows!”);

//Work the rows, starting with the first row

int currentRow=1;

while (currentRow<=mat.numRows) {

6.2 Modular Matrix Inverses 139

int i=currentRow;

//Make sure diagonal element is nonzero, if possible, by swapping

while

(i<=mat.numRows&&mat.array[i][currentRow].equals(BigIntegerMath.ZERO))

i++;

if (i>mat.numRows) throw new SingularMatrixException

(“Linear dependence exists here!”);

//Swap with a row not having zero in diagonal position

if (currentRow!=i) swapRows(mat,b,currentRow,i);

//Now, you must produce all zeros below and above the diagonal element

i=1;

//Multiply each row by the proper scalar

while (i<=mat.numRows) {

if (i!=currentRow) {

BigInteger scalar=mat.array[i][currentRow];

if (!scalar.equals(BigIntegerMath.ZERO)) {

multiplyRow(mat,b,i,mat.array[currentRow][currentRow]);

multiplyRow(mat,b,currentRow,scalar);

//Replace row i with row i minus diagonal row

subtractRow(mat,b,i,currentRow);

}

}

i++;

}

currentRow++;

}

//Now, produce 1’s along main diagonal by multiplying by an inverse

for (int index=1;index<=mat.numRows;index++) {

multiplyRow(mat,b,index,mat.array[index][index].modInverse(modulus));

}

//Remember, b may be a square matrix-polymorphism takes care of this here

return b;

}

//This method exists in case the answer is actually a square matrix

public ModSquareMatrix gaussianSolve(ModSquareMatrix constants)

throws MatricesNonConformableException,SingularMatrixException {

return (ModSquareMatrix) gaussianSolve((ModMatrix)constants);

}

//Used by gaussianSolve to multiply a row by some scalar

private void multiplyRow(ModSquareMatrix mat,ModMatrix b,int i,BigInteger

scalar) {

//Multiplies row i by scalar-answer replaces i-th row

for (int k=1;k<=mat.numCols;k++)

mat.array[i][k]=BigIntegerMath.lnr(mat.array[i][k].multiply(scalar),mat.modulus);

140 Chapter 6 Systems of Linear Congruences—Single Modulus

for (int k=1;k<=b.numCols;k++)

b.array[i][k]=BigIntegerMath.lnr(b.array[i][k].multiply(scalar),mat.modulus);

}

//Used by gaussianSolve to subtract one row from another

private void subtractRow(ModSquareMatrix mat,ModMatrix b,int i,int j) {

//Subtracts row j from row i; answer replaces row i

for (int k=1;k<=mat.numCols;k++)

mat.array[i][k]=BigIntegerMath.lnr(mat.array[i][k].subtract(mat.array[j][k]),mat.

modulus);

for (int k=1;k<=b.numCols;k++)

b.array[i][k]=BigIntegerMath.lnr(b.array[i][k].subtract(b.array[j][k]),mat.modulus)

;

}

//Used by gaussianSolve to swap two rows

private void swapRows(ModSquareMatrix mat,ModMatrix b,int r1,int r2) {

BigInteger temp;

for (int j=1;j<=mat.numCols;j++) {

temp=mat.array[r1][j];

mat.array[r1][j]=mat.array[r2][j];

mat.array[r2][j]=temp;

}

for (int j=1;j<=b.numCols;j++) {

temp=b.array[r1][j];

b.array[r1][j]=b.array[r2][j];

b.array[r2][j]=temp;

}

}

//Method produces an inverse of A (if possible) by using gaussianSolve on AX=I

//mod m

//where I is an identity matrix

public ModSquareMatrix inverse() throws

MatricesNonConformableException, SingularMatrixException {

//See the ModIdentityMatrix class-subclass of ModSquareMatrix

return gaussianSolve(new ModIdentityMatrix(numRows,modulus));

}

}

Finally, we define a ModIdentityMatrix class, which is a subclass of the ModSquare-
Matrix class. We use it in the inverse() method of ModMatrix, by generating the augmented
matrix A|I to produce an inverse of A.

import java.math.BigInteger;

//ModIdentityMatrix objects inherit all methods from ModSquareMatrix, and from

ModMatrix

Exercises 141

public class ModIdentityMatrix extends ModSquareMatrix {

//Make a ModSquareMatrix whose diagonal elements are all 1, zeros elsewhere

public ModIdentityMatrix(int n,BigInteger mod) throws

MatricesNonConformableException {

//Call a super constructor first, making zero matrix

super(n,mod,true,false);

//Set the diagonal elements to 1

for (int i=1;i<=n;i++) array[i][i]=new BigInteger(“1”);

}

}

I have written a test applet called TestLinearSystemSolveApplet to test Gaussian elimi-
nation modulo m. Consider the congruence AX � B (mod m). The user enters the modulus
m, the square matrix of coefficients A, and a vector of constants B. If a unique solution X
exists modulo m, the applet will compute and display it. The applet and its source code can
be found on the book’s website. A screen shot is shown in Figure 6.2.

EXERCISES

1. Solve the following systems of linear congruences, if any solutions exist. For any sys-
tems that have multiple solutions, report all the solutions.

a. 2x + 5y � 1 (mod 11)

3x + 2y � 7 (mod 11)

b. 2x + 5y � 1 (mod 11)

3x + 2y � 6 (mod 11)

c. 4x + 3y + z � 2 (mod 7)

y + 3z � 5 (mod 7)

2x + 6y + 3z � 0 (mod 7)

FIGURE 6.2

142 Chapter 6 Systems of Linear Congruences—Single Modulus

d. 11x + 12y + z � 1 (mod 23)

15x + 20y + 22z � 11 (mod 23)

3x + 9y � 12 (mod 23)

e. 11x + 12y + z � 1 (mod 23)

15x + 20y + 22z � 11 (mod 23)

3x + 9y � 10 (mod 23)

2. Find an inverse of the matrix A modulo n, if such an inverse exists.

a. n = 26, and matrix A follows:
∣∣∣∣
2 7
5 1

∣∣∣∣
b. n = 25, and matrix A follows:

∣∣∣∣∣
1 2 0
3 0 1
4 3 2

∣∣∣∣∣

c. n = 7, and matrix A follows:
∣∣∣∣∣
2 0 0
3 3 0
6 1 2

∣∣∣∣∣

d. n = 13, and matrix A follows:
∣∣∣∣∣∣∣

1 0 9 0
0 2 3 0
3 4 0 1
10 1 2 1

∣∣∣∣∣∣∣

3. Write a transpose() method for the ModMatrix class which returns the transpose of a
matrix. The transpose of a matrix is simply the matrix “flipped over”; that is, the m�n
matrix becomes an n�m matrix where the i, jth element in the transpose is just the j,
ith element of the original. For example, the transpose of

∣∣∣∣∣
1 2
3 4
5 6

∣∣∣∣∣

is
∣∣∣∣
1 3 5
2 4 6

∣∣∣∣
4. Modify the gaussianSolve() method so that it works for matrices whose modulus is not

prime.

C H A P T E R 7
Matrix Ciphers

143

Matrices offer us an alternative way to implement a linear block cipher. We will call
such a matrix-based cryptosystem a matrix cipher. In the matrix ciphers, we use an

enciphering transformation

C � AP + B (mod n)

but now A is a m�m matrix (called the enciphering matrix), P is a column vector of num-
bers corresponding to a block of plaintext letters of length m, and B is a column vector of
length m. (When B is the zero vector, these are called Hill ciphers.) To decipher, we must
again solve for P:

AP + B � C (mod n)

AP � C � B (mod n)

P � IP � A�AP � A�(C � B) (mod n).

(Proposition 24 allows us to multiply both sides of a congruence by a matrix and preserve
the congruence.) A� represents an inverse of A modulo n; that is, A� must satisfy the con-
gruence

A�A � I (mod n)

where I represents the identity matrix. A must be chosen, of course, so that it has an inverse
modulo n.

EXAMPLE. We use the ordinary alphabet, so n = 26. Let the enciphering matrix A be
∣
∣
∣
∣

5 17
4 15

∣
∣
∣
∣

let the shift vector B be
∣
∣
∣
∣

5
2

∣
∣
∣
∣

144 Chapter 7 Matrix Ciphers

and the message is THE END, which we split into blocks of size 2 to get TH EE ND. To
encipher the plaintext TH, we use the vector P, which is

∣
∣
∣
∣

19
7

∣
∣
∣
∣

and crank it through the transformation AP + B � C (mod 26).
∣
∣
∣
∣

5 17
4 15

∣
∣
∣
∣

∣
∣
∣
∣

19
7

∣
∣
∣
∣
+

∣
∣
∣
∣

5
2

∣
∣
∣
∣
≡

∣
∣
∣
∣

11
1

∣
∣
∣
∣
(mod 26)

The number pair 11, 1 corresponds to the letter pair LB, and so this is the ciphertext. We now
encipher the pair EE

∣
∣
∣
∣

5 17
4 15

∣
∣
∣
∣

∣
∣
∣
∣

4
4

∣
∣
∣
∣
+

∣
∣
∣
∣

5
2

∣
∣
∣
∣
≡

∣
∣
∣
∣

15
0

∣
∣
∣
∣
(mod 26)

which yields the ciphertext PK. Finally, we encipher the pair ND
∣
∣
∣
∣

5 17
4 15

∣
∣
∣
∣

∣
∣
∣
∣

13
3

∣
∣
∣
∣
+

∣
∣
∣
∣

5
2

∣
∣
∣
∣
≡

∣
∣
∣
∣

17
21

∣
∣
∣
∣
(mod 26)

to get the ciphertext RV. Thus, the message sent is

LB PA RV.

To decipher, compute an inverse A� of A modulo 26; verify that the following is such a
matrix.

∣
∣
∣
∣

17 5
18 23

∣
∣
∣
∣

To decipher, crank the ciphertext through the inverse transformation P � A�(C � B)
(mod 26). If we send the letter pair LB back through,

∣
∣
∣
∣

17 5
18 23

∣
∣
∣
∣

∣
∣
∣
∣

11 − 5
1 − 2

∣
∣
∣
∣
≡

∣
∣
∣
∣

19
7

∣
∣
∣
∣
(mod 26)

we note that we have the pair 19, 7 corresponding to the letter pair TH, the original plain-
text. You are invited to do the subsequent letter pairs.

Note that we can make the block size m as large as desired by choosing large m�m
encryption matrices. When m ≥ 10, cryptanalysis of such systems is quite difficult.

7.1 WEAKNESSES OF MATRIX CRYPTOSYSTEMS

Matrix cryptosystems, like the block affine system, are resistant to frequency analysis. In
general, when using the ordinary alphabet with blocks of size n, there are 26n different ways
to map an n-block of text to another. Maintaining a frequency table of these blocks when n
is large quickly becomes infeasible. For example, when the enciphering matrix is 10 by 10,
that is, the block size n = 10, there are 2610 � 1.4 � 1014 possible blocks. A table of that size

7.1 Weaknesses of Matrix Cryptosystems 145

would quickly exhaust the space and exceed the search time of even the greatest comput-
ers. For this reason, matrix ciphers (where the size of the block is reasonably large) are still
used today, and are relatively secure for most purposes.

Of course, these matrix cryptosystems are secret key. The enciphering matrix A is the enci-
phering key, and must be given only to authorized users, since anyone in possession of it
can quickly compute the inverse deciphering matrix A� and decipher messages.

Known Plaintext Attack. You will notice that the matrix ciphers are vulnerable to
a known plaintext attack, for if a cryptanalyst manages to acquire enough plaintext P = p1,
p2, . . . , pm corresponding to known ciphertext C = c1, c2, . . . , cm, she can compute the
inverse A� of the enciphering matrix A, and the shift vector B, by solving the matrix con-
gruence AP + B � C (mod n) for A and B, or equivalently, by solving the corresponding sys-
tem of congruences

a1,1p1 + a1,2p2 + . . . + a1,mpm + b1� c1 (mod n)

a2,1p1 + a2,2p2 + . . . + a2,mpm + b2 � c2 (mod n)

. . .

am,1p1 + am,2p2 + . . . + am,mpm + bm � cm (mod n)

using different plaintext to ciphertext mappings.

EXAMPLE. Suppose a cryptanalyst knows we are using a matrix cipher of block length 2, with
the ordinary alphabet. She has some ciphertext,

BT GT HM

and its corresponding plaintext

AT TA CK.

The job of the cryptanalyst is to get what she doesn’t know, namely A and B. Suppose
she denotes the enciphering matrix A as

∣
∣
∣
∣

a b
c d

∣
∣
∣
∣

and the shift vector B as
∣
∣
∣
∣

s
t

∣
∣
∣
∣

The first mapping takes the pair AT to BT, or

0a + 19b + s � 1 (mod 26)

0c + 19d + t � 19 (mod 26)

146 Chapter 7 Matrix Ciphers

and the second and third mappings follow:

19a + 0b + s � 6 (mod 26)

19c + 0d + t � 19 (mod 26)

2a + 10b + s � 7 (mod 26)

2c + 10d + t � 12 (mod 26)

She then rearranges the congruences to get two systems

0a + 19b + s � 1 (mod 26)

19a + 0b + s � 6 (mod 26)

2a + 10b + s � 7 (mod 26)

and

0c + 19d + t � 19 (mod 26)

19c + 0d + t � 19 (mod 26)

2c + 10d + t � 12 (mod 26).

She solves the first system to obtain values for a, b, and s, and the second system to get
the values for c, d, and t. Since the coefficients of the two systems are the same, she can solve
them simultaneously.

∣
∣
∣
∣
∣

0 19 1 1 19
19 0 1 6 19
2 10 1 7 12

∣
∣
∣
∣
∣

She then proceeds to reduce the matrix, say first by multiplying row 2 by 11, an inverse
of 19 modulo 26, then by swapping row 2 with row 1, then by subtracting row 1 from row
3. This yields

∣
∣
∣
∣
∣

1 0 11 14 1
0 19 1 1 19
0 10 5 5 10

∣
∣
∣
∣
∣
.

She then multiplies row 2 by 11, then subtracts 10 times row 2 from row 3
∣
∣
∣
∣
∣

1 0 11 14 1
0 1 11 11 1
0 0 25 25 0

∣
∣
∣
∣
∣
.

7.1 Weaknesses of Matrix Cryptosystems 147

She then multiplies row 3 by 25 (which is its own inverse mod 26), then subtracts 11 times
row 3 from both row 1 and row 2. This gives the desired solutions.

∣∣∣∣∣
1 0 0 3 1
0 1 0 0 1
0 0 1 1 0

∣∣∣∣∣

She now knows that

a � 3 (mod 26) c � 1 (mod 26)

b � 0 (mod 26) d � 1 (mod 26)

s � 1 (mod 26) t � 0 (mod 26)

and so an enciphering matrix A is ∣∣∣∣
3 0
1 1

∣∣∣∣
and its corresponding shift vector B is ∣∣∣∣

1
0

∣∣∣∣ /

(You should test these values to ensure that A and B actually map the given plaintext to the
ciphertext.) Once our cryptanalyst has A, it is simple to compute the inverse A� modulo 26
to obtain ∣∣∣∣

9 0
17 1

∣∣∣∣ /

EXAMPLE. Earlier we enciphered the message

TH EE ND

to the ciphertext

LB PA RV.

Suppose the cryptanalyst knows we are using matrix ciphers of block size m = 2 with the
ordinary alphabet. She acquires both the plaintext message and the ciphertext message.
Now,

“TH”(=19 7) corresponds with “LB”(=11 1),

“EE”(=4 4) corresponds with “PA”(=15 0),

“ND”(=13 3) corresponds with “RV”(=17 21).

Using the same procedure described above, she solves the first system to obtain values
for a, b, and s, and the second system to get the values for c, d, and t. You should be able to
do this, and to verify that an enciphering matrix A is∣∣∣∣

5 17
4 15

∣∣∣∣

148 Chapter 7 Matrix Ciphers

and the corresponding shift vector B is
∣∣∣∣
5
2

∣∣∣∣ /

It is now a simple matter for her to compute A�, an inverse of A modulo 26.
∣∣∣∣
17 5
18 23

∣∣∣∣

In these examples we have chosen the block size to be artificially small to simplify the
computations. In reality larger block sizes would be used; the computations involved are the
same, there are only more of them.

Java Algorithm. You will be asked in the exercises to develop some classes to perform
encryption and decryption with matrices, but before you do that, we review a couple of con-
structors, one from ModMatrix, and the other from ModSquareMatrix. I refer to the con-
structors which produce a ModMatrix or a ModSquareMatrix with random entries; here is
the code for review:

//Creates a matrix with random entries having r rows, c columns,

//Or, it creates a matrix of all zeros

//Matrices start indexing at 1,1. Zeroth column and row are not used.

public ModMatrix(int r,int c,BigInteger m,boolean makeZero) {

SecureRandom sr=new SecureRandom();

modulus=m;

array=new BigInteger[r+1][c+1];

numRows=r;

numCols=c;

for (int i=0;i<r;i++) {

for (int j=0;j<c;j++) {

//If makeZero set to true, make the zero matrix

if (makeZero) array[i+1][j+1]=new BigInteger(“0”);

//otherwise, make matrix with random entries

else array[i+1][j+1]=new

BigInteger(modulus.bitLength(),sr).mod(modulus);

}

}

}

//Creates a square matrix with random entries

//Or, it creates a matrix with all zeros

//Another parameter specifies whether or not you wish the random

//matrix to be invertible; if NOT, matrix may still be invertible by accident

7.1 Weaknesses of Matrix Cryptosystems 149

public ModSquareMatrix(int s,BigInteger m,boolean makeZero,boolean makeInvertible)

throws MatricesNonConformableException {

//Call a superconstructor from ModMatrix-make the zero matrix,

//or a matrix with random entries

super(s,s,m,makeZero);

//Zero matrix is not invertible

if (makeZero&&makeInvertible) throw new IllegalArgumentException

(“Zero matrix cannot be inverted!”);

//A random invertible matrix is desired

if (makeInvertible) {

Random r=new Random();

SecureRandom sr=new SecureRandom();

boolean done=false;

//Do this until the matrix inverts

while (!done) {

try {

//Try to take the inverse-may throw an exception if not invertible

this.inverse();

done=true;

} catch (SingularMatrixException sme) {

//Change a random entry in the matrix

int row=Math.abs(r.nextInt())%numRows+1;

int col=Math.abs(r.nextInt())%numCols+1;

BigInteger value=new

BigInteger(modulus.bitLength(),sr).mod(modulus);

this.setElement(row,col,value);

} catch (ArithmeticException ae) {

//Change a random entry in the matrix

int row=Math.abs(r.nextInt())%numRows+1;

int col=Math.abs(r.nextInt())%numCols+1;

BigInteger value=new

BigInteger(modulus.bitLength(),sr).mod(modulus);

this.setElement(row,col,value);

}

}

}

}

The ModSquareMatrix constructor has an additional boolean variable to allow the user
to specify whether or not they wish to enforce invertibility on the new matrix. If so, we can
use this to generate random invertible square matrices modulo n; perfect for use as keys
with this cryptosystem.

150 Chapter 7 Matrix Ciphers

FIGURE 7.1

There is an applet called TestRandomModSquareMatrixApplet which can be found on
the book’s website. It generates random invertible matrices for a specified size, and modu-
lus. Pressing a button allows you to invert the matrix. A screen shot of this applet is shown
in Figure 7.1.

7.2 TRANSPOSITION CIPHERS

As you recall, transposition ciphers simply permute the characters in a plaintext message.
Matrices provide us with a convenient way of specifying permutations for this purpose.
Thus, we make the following definition:

7.2 Transposition Ciphers 151

Definition
A square matrix A is a transposition matrix if each column and row of A contain a sin-
gle 1; all other entries are 0.

EXAMPLE.

A =

∣
∣
∣
∣
∣
∣

0 0 1 0
0 0 0 1
0 1 0 0

∣
∣
∣
∣
∣
∣

.

Note that an identity matrix is a transposition matrix (but one which we would never
use). These types of matrices do exactly what we want. Note that if we take the product

V = AX

where V and B are column vectors, and A is a transposition matrix, then

• since each row of A contains a single 1, each entry in V will merely be an entry from X,
and

• since each column of A contains a single 1, each entry of V will be a different entry from
X.

Thus, the entries of V are merely a permutation of the entries of X.

EXAMPLE. Suppose we have the following:

and we take V = BX. Then we see that

.

V =

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

12
5
23
8
6

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

5
6
12
23
8

∣
∣
∣
∣
∣
∣
∣
∣
∣

B =

∣
∣
∣
∣
∣
∣
∣
∣
∣

12
5
23
8
6

∣
∣
∣
∣
∣
∣
∣
∣
∣

A =

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

152 Chapter 7 Matrix Ciphers

We can now specify in terms of matrices what we mean by a transposition cipher. A
transposition cipher having block length n maps a plaintext block P (as a column vector) to
a ciphertext block C (also a column vector) by the transformation

C = AP.

EXAMPLE. Suppose we wish to encrypt the message THIS IS NIRVANA using the transpo-
sition matrix

and the ordinary alphabet. First, we group the plaintext into blocks of length 5,

THISI SNIRV ANAXX

and, if necessary, pad with X’s (or random letters, if desired). This corresponds to the mes-
sage

19 7 8 18 8 18 13 8 17 21 0 13 0 23 23.

If we consider each block as a column vector, we derive each enciphered block by mul-
tiplying A by each plaintext vector. So we get this for the first, second, and third blocks:

Thus, the enciphered message is

8 8 18 7 19 8 21 17 13 18 0 23 23 13 0

∣∣∣∣∣∣∣∣∣

0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

0
13
0
23
23

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

0
23
23
13
0

∣∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣∣

0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

18
13
8
17
21

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

8
21
17
13
18

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

19
7
8
18
8

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

8
8
18
7
19

∣∣∣∣∣∣∣∣∣

A =

∣∣∣∣∣∣∣∣∣

0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0

∣∣∣∣∣∣∣∣∣

7.2 Transposition Ciphers 153

or

IISHT IVRNS AXXNA

Of course, we must ensure that transpositions are reversible. It seems natural to think that
they are, but how do we do this in the setting of matrices? Of course, what we seek is an
inverse A� of the transposition matrix A so that

P = A�C.

Transposition matrices are easily invertible using Gauss–Jordan elimination with the
augmented matrix A|I. Since a transposition matrix is chosen so that each row and column
contains a single 1, and nothing else, any such matrix can be reduced to an identity matrix
simply by swapping rows! Thus, an inverse A� of any transposition matrix A always exists.

EXAMPLE. Let A be defined as the same matrix used in our transposition cipher example; that
is

To find an inverse A� of A, first form the augmented matrix A|I.

By simply swapping the rows so that we obtain the identity matrix on the left hand side,
we get

Thus, the inverse A� of A that we seek is

A′ =

∣∣∣∣∣∣∣∣∣

0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

∣∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0

∣∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣∣

0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣

A =

∣∣∣∣∣∣∣∣∣

0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0

∣∣∣∣∣∣∣∣∣
.

154 Chapter 7 Matrix Ciphers

We will use this inverse to regain the plaintext of our ciphertext example. We get for the
first block

for the second we get

and for the third we get

This produces the plaintext blocks

19 7 8 18 8 18 13 8 17 21 0 13 0 23 23

or

THISI SNIRV ANAXX.

7.3 COMBINATION SUBSTITUTION/TRANSPOSITION CIPHERS

When substitution ciphers are combined with transposition ciphers, the resulting cipher can
be very hard to crack, especially when the block sizes are different. Now that we have a con-
venient vehicle (matrices) for representing these ciphers, we will discuss how this is done.

Suppose we use a matrix cipher to map blocks of n characters from the plaintext P to the
ciphertext C�. Then we regroup this ciphertext into blocks of size m and apply a transposi-
tion cipher to these blocks to produce another ciphertext C �. This, of course, permutes the
characters in each m character block, and since the first encryption was done for n charac-
ter blocks, some characters find themselves in different blocks. Finally, to put another nail
in the coffin, we can encrypt C� again using the first matrix cipher to produce the final
ciphertext C. For many ciphers, multiple encryption does not strengthen the cipher; hence
it is often just a waste of time, but in this case, it strengthens the cipher considerably. This
type of cryptosystem confounds any attempt at frequency analysis, and even makes a known
plaintext attack more difficult.

∣∣∣∣∣∣∣∣∣

0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

0
23
23
13
0

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

0
13
0
23
23

∣∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣∣

0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

8
21
17
13
18

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

18
13
8
17
21

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

8
8
18
7
19

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

19
7
8
18
8

∣∣∣∣∣∣∣∣∣

7.3 Combination Substitution/Transposition Ciphers 155

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

TABLE 7.1

Note that if we are using this type of cipher, we must be careful about how we pad the
message. We must pad enough characters so that the message is divisible by both n and m
(the block size of the first and second ciphers, respectively.) Thus, we wish to ensure the size
of the message is divisible by the least common multiple of m and n.

EXAMPLE. Suppose we are using the ordinary alphabet, and we wish to encipher the fol-
lowing message

SCOOBY DOO WHERE ARE YOU

using first the matrix cipher transformation C� � AP + B (mod 26) where the enciphering
matrix A is

∣
∣
∣
∣

5 17
4 15

∣
∣
∣
∣

and the shift vector B is
∣
∣
∣
∣

5
2

∣
∣
∣
∣

Secondly, we wish to perform a transposition C � = TC�, where the transposition matrix
T is

Note that the substitution cipher uses a block size of 2 characters, whereas the transpo-
sition cipher uses a block size of 5 characters. Thus, the length of the plaintext needs to be
divisible by lcm(2, 5) = 10. Finally, we apply once again the previous matrix substitution
to get the final ciphertext.

C � AC� + B (mod 26).

We will first group the plaintext P into letter pairs:

SC OO BY DO OW HE RE AR EY OU

and note that in this case, no padding is necessary. (See Table 7.1.)

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

156 Chapter 7 Matrix Ciphers

P 18 2 14 14 1 24 3 14 14 22 7 4 17 4 0 17 4 24 14 20
C� 25 0 1 8 2 2 24 16 7 24 4 12 2 0 8 23 17 14 25 20

TABLE 7.2

C� 25 0 1 8 2 2 24 16 7 24 4 12 2 0 8 23 17 14 25 20
C � 8 25 2 0 1 7 2 24 24 16 0 4 8 12 2 25 23 20 17 14

TABLE 7.3

C � 8 25 2 0 1 7 2 24 24 16 0 4 8 12 2 25 23 20 17 14
C 2 19 15 10 25 7 7 6 7 0 21 10 15 6 24 21 18 4 16 20

TABLE 7.4

Converted to numbers (using Table 7.1) the message is

18 2 14 14 1 24 3 14 14 22 7 4 17 4 0 17 4 24 14 20.

When we apply the matrix transformation C� � AP + B (mod 26), we get the results
shown in Table 7.2.

Now, we regroup the ciphertext into blocks of length 5.

25 0 1 8 2 2 24 16 7 24 4 12 2 0 8 23 17 14 25 20

We apply the transposition cipher C� = TC�. (See Table 7.3.)
Finally, we regroup the ciphertext into blocks of length 2, and reapply the first matrix

transformation. (See Table 7.4.)
The final ciphertext is

CT PK ZH HG HA VK PG YV SE QU.

What makes ciphers like this so difficult for anyone doing frequency analysis is that the
blocks are split up by the enciphering transformation. You should verify that the plaintext
is regained by applying the inverse matrix transformation (at the beginning and the end)
using

A′ =
∣∣∣∣
17 5
18 23

∣∣∣∣

7.3 Combination Substitution/Transposition Ciphers 157

and

the inverse of the transposition matrix T.

EXAMPLE. Here we encipher the message

BLOW ME DOWN

using the ordinary alphabet, a 3�3 substitution matrix, and a 4�4 transposition matrix.
Here, though, the transposition is done by taking C� = C�T, instead of C� = TC�.

Enciphering matrix:
7 19 22

a = 15 11 1

0 21 17

The inverse of the enciphering matrix modulo 26:
14 23 5

ainv = 7 21 5

25 23 0

The transposition matrix:
0 1 0 0

0 0 0 1

t =

1 0 0 0

0 0 1 0

The inverse of the transposition matrix:
0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

T ′ =

∣∣∣∣∣∣∣∣∣

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0

∣∣∣∣∣∣∣∣∣

158 Chapter 7 Matrix Ciphers

The plaintext “BLOW ME DOWN,” padded with X’s:
1 22 3 13

p = 11 12 14 23

14 4 22 23

Do the first substitution:
4 2 17 20

20 24 13 3

1 8 18 16

Do the transposition:
17 4 20 2

13 20 3 24

18 1 16 8

Do the second substitution.
The final ciphertext is “IAH OVV DLX WQQ”.
8 14 3 22

0 21 11 16

7 21 23 16

Begin decryption—reverse second substitution:
17 4 20 2

13 20 3 24

18 1 16 8

Reverse the transposition:
4 2 17 20

20 24 13 3

1 8 18 16

Now reverse the first substitution, and the recovered plaintext is “BLO
WME DOW NXX.”
1 22 3 13

11 12 14 23

14 4 22 23

Exercises 159

EXERCISES

1. Using the ordinary alphabet and a block size of 2, encipher and decipher the following
messages:

a. GREY LADY DOWN

b. WHERE EAGLES DARE

c. TOKYO IN FLAMES

Pad with the letter X if necessary. Use the enciphering matrix
∣∣∣∣
2 7
5 4

∣∣∣∣
and shift vector

∣∣∣∣
21
19

∣∣∣∣
2. Repeat the previous exercise, but use a block size of 3 with the enciphering matrix

and the shift vector

3. Repeat the previous exercise, but use a block size of 5 with the enciphering matrix

and the following shift vector

4. Suppose that you are a cryptanalyst trying to find the enciphering matrices used in the
previous exercises. Recover the enciphering matrix A and shift vector B from each of

∣∣∣∣∣∣∣∣∣

14
12
13
9
21

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

20 15 3 1 5
4 23 16 4 3
3 8 13 10 8
12 15 4 3 2
5 6 7 8 9

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
19
5
6

∣∣∣∣∣

∣∣∣∣∣
12 21 9
7 8 18
3 23 6

∣∣∣∣∣

160 Chapter 7 Matrix Ciphers

the exercises using only knowledge of the modulus, the block size, and the plain-
text–ciphertext message pairs. If you are unable to obtain these matrices, state why.

5. Show that if T is a transposition matrix, then the inverse of T is the same as the trans-
pose of T.

6. Encipher and decipher the following messages:

a. GREY LADY DOWN

b. WHERE EAGLES DARE

c. TOKYO IN FLAMES

Pad with the letter X if necessary. Use the transposition matrix

7. Repeat the previous exercise, but first encrypt with matrix A, given by

then with the transposition matrix, then again with matrix A.

8. Implement a matrix cipher program by adding a matrixEncipher() method and a
matrixDecipher() method to the Ciphers class.

∣∣∣∣∣∣∣∣∣

20 15 3 1 5
4 23 16 4 3
3 8 13 10 8
12 15 4 3 2
5 6 7 8 9

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

C H A P T E R 8
Systems of Linear Congruences—
Multiple Moduli

161

Now we proceed with the next type of linear systems of congruences. These systems
involve a single variable with multiple moduli, as in the following example:

x � 3 (mod 4)

x � 0 (mod 5) (*)

x � 0 (mod 7)

x � 8 (mod 9).

We wish to find all integers x which solve all four of the congruences in (*). We can go
about finding solutions as follows: first, rewrite the first congruence as an equality

x = 4t + 3

where x is an integer (proposition 17 allows this). Insert this expression into the second
congruence to get

4t + 3 � 0 (mod 5),

then solve for t to get

t � 3 (mod 5).

We can now rewrite the previous as an equation

t = 5u + 3

which we can then substitute for x in the next congruence, since

x = 4t + 3 = 4(5u + 3) + 3 = 20u + 15.

Doing this, we see that

20u + 15 � 6u + 1 � 0 (mod 7)

162 Chapter 8 Systems of Linear Congruences—Multiple Moduli

or that

u � 1 (mod 7).

Again, rewrite this congruence as an equation; namely

u = 7v + 1

which we can then substitute for x in the last congruence since

x = 20u + 15 = 20(7v + 1) + 15 = 140v + 35.

Replace x with this expression in the last congruence

140v + 35 � 5v + 8 � 8 (mod 9)

to obtain solutions for v, which are all v such that

v � 0 (mod 9).

Finally, rewrite this congruence as an equation

v = 9w + 0.

Once we back substitute this value for x, we get

x = 140v + 35 = 140(9w) + 35 = 1260w + 35

or, written as a congruence,

x � 35 (mod 1260).

These are exactly the solutions desired, for note that if x � 35(mod 1260), we certainly
have all of the following:

x � 35 � 3 (mod 4)

x � 35 � 0 (mod 5)

x � 35 � 0 (mod 7)

x � 35 � 8 (mod 9).

8.1 THE CHINESE REMAINDER THEOREM

This method of solving these types of congruences is very effective, but we can develop an
even faster method of solving such systems if we only require that the moduli be pairwise
relatively prime. Note, however, that the previous method has no such requirement. The
proof of proposition 27 describes the new method; it is called the Chinese Remainder The-
orem, since the Chinese have known its results since ancient times. However, we must first
establish the two following facts:

PROPOSITION 25. Suppose integers a1, a2, . . . , an are pairwise relatively prime. Then
(a1a2 . . . an)|c if and only if a1|c, a2|c, . . . , an |c.

8.1 The Chinese Remainder Theorem 163

Proof. Clearly, if the product p = (a1a2 . . . an) divides c, then each ai, i = 1, 2, . . . , n
likewise divides c, since each ai|p, and p|c. Conversely, suppose each ai divides c. Then
the prime factorization of c must contain the prime factorization of each ai, and since
these are pairwise relatively prime, no ai can have a prime factor in common with any
other. Thus, the prime factorization of c contains the prime factorization of the product
p, and so p|c. �

The next proposition is what we really need for the Chinese Remainder Theorem, and
using the previous result makes its proof very simple. You are requested to do this.

PROPOSITION 26. Let a � b (mod m1), a � b (mod m2), . . . , a � b(mod mn) where
a1, a2, . . . , an are pairwise relatively prime. Then we have a � b (mod m1m2 . . . mn).

PROPOSITION 27. (THE CHINESE REMAINDER THEOREM.)
Suppose m1, m2, . . . , mn are pairwise relatively prime. Then the system of congruences

x � a1 (mod m1)

x � a2 (mod m2)

. . .

x � an (mod mn)

has a unique solution modulo M = m1m2 . . . mn; namely,

x � a1M1M1� + a2M2M2� + . . . + anMnMn� (mod M)

where Mi = M/mi and Mi� is an inverse of Mi modulo mi ∀ i = 1, 2, . . . , n.

Proof. Let all the quantities be defined as stated in the proposition. First, note that Mi =
m1m2 . . . mi�1mi�1 . . . mn and mi are relatively prime for any i. To see this, note that each
mi is relatively prime to mk ∀ i ≠ k, and so if we have an integer p greater than 1 which
divides mi, it cannot divide any other mk, and hence cannot divide the product m1m2 . . .
mi�1mi�1 . . . mn = Mi. Thus, proposition 22 says that an inverse Mi� of Mi modulo mi exists.
Then the integer given by

x = a1M1M1� + a2M2M2� + . . . + anMnMn�

simultaneously solves the system of congruences

x � a1 (mod m1)

x � a2 (mod m2)

. . .

x � an (mod mn).

To see this, note that mk|Mi when i � k, hence giving us Mi � 0 (mod mk). Thus, all terms
of x modulo mk vanish except the kth term, and so we have

x � akMkMk� � ak � 1 � ak (mod mk)

164 Chapter 8 Systems of Linear Congruences—Multiple Moduli

for any k. That is, x is also a solution to the individual congruences of the system. To show this
solution is unique (in the sense that all other solutions are congruent to it modulo M), let x and
y both be simultaneous solutions to the previous system. Note now that we have x � y � ak

(mod mk) ∀ k, and proposition 26 tells us then that x � y (mod M), as desired. �

EXAMPLE. We’ll use the Chinese Remainder Theorem (CRT) to solve the same system (*);
that is, the system

x � 3 (mod 4)

x � 0 (mod 5)

x � 0 (mod 7)

x � 8 (mod 9).

(Note that the moduli are pairwise relatively prime.) The proof of CRT shows us how to get
our solutions very quickly by computing M = 4 � 5 � 7 � 9 = 1260, and

M1 = 1260/4 = 315, M2 = 1260/5 = 252, M3 = 1260/7 = 180, M4 = 1260/9 = 140.

We then compute inverses yi of each Mi modulo mi:

M1� = 3 (an inverse of 315 modulo 4)

M2� = 3 (an inverse of 252 modulo 5)

M3� = 3 (an inverse of 180 modulo 7)

M4� = 2 (an inverse of 140 modulo 9)

To get our solution, we now simply form the sum

x = a1M1M1� + a2M2M2� + a3M3M3� + a4M4M4�

= 3 � 315 � 3 + 0 � 252 � 3 + 0 � 180 � 7 + 8 � 140 � 2

= 5075

� 35 (mod 1260).

This is exactly the same solution we obtained earlier, only perhaps less directly but cer-
tainly more quickly. (Note that computing M2, M3, y2 and y3 isn’t even necessary in this
example, because they vanish in the final computation.)

Java Algorithm. Suppose we write a static method in the BigIntegerMath class to
solve such sets of congruences; we can call it solveCRT(). We can make it solve systems of
the form

8.1 The Chinese Remainder Theorem 165

x � a1 (mod m1)

x � a2 (mod m2)

...

x � an (mod mn).

If any individual congruence does not have a unique solution, we will throw an excep-
tion; likewise if the moduli are not pairwise relatively prime. We will pass in the values of
ai and mi as arrays of BigIntegers, and the solution will be returned as an array of two Big-
Integers, say answer[]. Then answer[0] will contain the residue solution, and answer[1] will
contain M, the product of the individual moduli.

Here is the program:

//Finds simultaneous solutions to a linear system of congruences

//involving only one variable and multiple moduli.

public static BigInteger[] solveCRT(BigInteger[] residue, BigInteger[] modulus) {

//See if the number of moduli and residues match

if (residue.length!=modulus.length) throw new IllegalArgumentException

(“Residues and moduli are in different amounts.”);

//See if the moduli are pairwise relatively prime

for (int i=0; i<modulus.length-1; i++) {

for (int j=i+1; j<modulus.length; j++) {

if (!(modulus[i].gcd(modulus[j]).equals(ONE)))

throw new IllegalArgumentException

(“Moduli are not pairwise relatively prime.”);

}

}

//Form the product of the individual moduli

BigInteger M=new BigInteger(“1”);

for (int i=0; i<modulus.length; i++)

M=M.multiply(modulus[i]);

//Form the solution as in the Chinese Remainder Theorem

BigInteger solution=new BigInteger(“0”);

for (int i=0;i<modulus.length; i++) {

BigInteger Mi=M.divide(modulus[i]);

solution=solution.add(residue[i].multiply(Mi).multiply

(Mi.modInverse(modulus[i])));

}

solution=lnr(solution,M);

166 Chapter 8 Systems of Linear Congruences—Multiple Moduli

FIGURE 8.1

//Answer must be returned as a two dimensional array.

BigInteger[] result=new BigInteger[2];

result[0]=solution;

result[1]=M;

return result;

}

I have written an applet called TestCRTApplet which allows you to solve these types of
systems using the Chinese Remainder Theorem. It can be run from the book’s website, and
a screen shot follows (see Figure 8.1). The Chinese Remainder Theorem has many impor-
tant applications in cryptography, and it is equally useful to both the cryptographer and the
cryptanalyst. We will investigate many of these applications in upcoming chapters.

EXERCISES

1. Solve the following systems of linear congruences using the Chinese Remainder The-
orem (CRT).

a. x � 23 (mod 26)

x � 2 (mod 31)

x � 5 (mod 17)

b. x � 1 (mod 26)

x � 1 (mod 33)

x � 1 (mod 35)

c. 5x � 3 (mod 18)

3x � 4 (mod 7)

2x � 5 (mod 25)

6x � 10 (mod 11)

Exercises 167

2. Solve the previous systems of linear congruences without using the Chinese Remain-
der Theorem.

3. Willie the woodchuck is building a dam for his family. After gnawing down trees all
day he stacks the logs in the mud in rows of 5, and notices he has 1 left over. Disgrun-
tled, he stacks them in rows of 6 and notices he has 2 logs remaining. Highly upset
now, Willie chews one of the logs to bits in a fit of rage (so he has 1 less log now), then
stacks the logs in rows of 7 and has none remaining. What is the minimum number of
logs Willie produced that day?

4. Francine the dancing gorilla is dividing up coconuts for her family. If she divides them
up equally among all her 46 children, she has 3 coconuts left over, but if she divides
them up only among her 25 favorite children, she has 2 coconuts remaining. What is
the minimum number of coconuts Francine has?

5. Redneck Slim is planting petunias for his sweetheart Daisy Mae. If he places them in
9 rows, he has 2 plants left over. If he puts them in 10 rows, he has 3 plants left over,
but if he puts them in 11 rows he has exactly 1 plant left over for his date Saturday
night. What is the minimum number of petunia plants?

6. Show that the system of congruences

x � a1 (mod m1)

x � a2 (mod m2)

�

x � an (mod mn)

has a solution iff the gcd of mi and mk divides ai � ak where 1 ≤ i < k ≤ n. This can serve
as a check for systems which do not have moduli that are pairwise relatively prime.

7. Solve the following systems of linear congruences:

a. x � 7 (mod 24)

x � 23 (mod 56)

b. x � 80 (mod 95)

x � 4 (mod 38)

x � 50 (mod 60)

8. Write a static solveMultipleModuli() method in the BigIntegerMath class to find a par-
ticular solution to linear systems of congruences with multiple moduli that need not be
pairwise relatively prime. (Thus, you cannot use the Chinese Remainder Theorem.)

C H A P T E R 9
Quadratic Congruences

169

9.1 QUADRATIC CONGRUENCES MODULO A PRIME

The type of congruences we will first investigate here are those of the form

x2 � a (mod p)

where p is prime. (Later on, we will allow the modulus to be composite.) Not all such con-
gruences have solutions; for example,

x2 � 5 (mod 11)

has two solutions, x � 4 (mod 11), and x � �4 � 7 (mod 11). (Verify.) But the congruence

x2 � 2 (mod 5)

has no solutions. (Verify by trying all values from 0 through 4.) It turns out that such con-
gruences either have no solutions, or exactly two, as the next theorem shows.

PROPOSITION 28. If p is an odd prime and p � a, then the congruence x2 � a (mod p)
has either no solutions or exactly two incongruent solutions modulo p.

Proof. Suppose the congruence has a solution, say x = z; that is, z2 � a (mod p). Then
clearly, x = �z is also a solution, since (�z)2 = z2 � a (mod p). Also, z � �z (mod p),
because if z � �z (mod p), this would imply that 2z � 0 (mod p), which cannot be because
p is odd and does not divide z (since z2 � a (mod p) and p � a).

Now we must show these two solutions (when they exist) are the only solutions. Suppose
x = z, x = y are two solutions to this quadratic congruence, hence z2 � y2 � a (mod p) and
so z2 � y2 = (z + y)(z � y) � a � a � 0 (mod p). This says that p|(z + y) or p|(z � y), which
further implies then that z � �y (mod p) or z � y (mod p). Either way, we are left with only
two distinct solutions, x � z (mod p) and x � �z (mod p). �

Note that the previous only applies to odd primes, so quadratic congruences modulo 2
(the only even prime) are handled somewhat differently. We will not have occasion to do
this.

170 Chapter 9 Quadratic Congruences

9.2 FERMAT’S LITTLE THEOREM

How do we find solutions to quadratic congruences? When the modulus is a prime of the
form 4k + 3, that is, congruent to 3 modulo 4, these solutions are easily obtained. But before
we do this, we must first prove Fermat’s Little Theorem, an extremely useful result.

PROPOSITION 29. (FERMAT’S LITTLE THEOREM.) Let p be prime and b an inte-
ger such that p � b. Then bp�1 � 1 (mod p).

Proof. Note first that p divides none of the integers b, 2b, . . . , (p � 1)b, for if p|kb for
some k between 1 and p � 1 (inclusive), then by proposition 13, p|k since p � b, and this is
impossible. Now we want to show that no two of the integers b, 2b, . . . , (p � 1)b are con-
gruent modulo p. Assume two of them are; that is,

jb � kb (mod p) where 1 ≤ j < k ≤ p � 1.

Then proposition 21 says j � k (mod p) since b and p are relatively prime. But this can-
not be since j and k are positive integers both less than p � 1.

Thus, the sequence of integers 1, 2, . . . , p � 1 has the same number of members as the
sequence b, 2b, . . . , (p � 1)b, and the least nonnegative residues of the latter (modulo p)
must therefore be a permutation of 1, 2, . . . , p � 1. Thus we must have

1 � 2 . . . (p � 1) � b � 2b . . . (p � 1)b (mod p), or

(p � 1)! � bp�1(p � 1)! (mod p).

Since (p � 1)! is relatively prime to p, we can divide it out and preserve the congruence
by proposition 21. This yields the desired result; namely,

bp�1 � 1 (mod p). �

Now we can find the solutions to x2 � a (mod p) when p is a prime congruent to 3 mod-
ulo 4. These solutions are in the next proposition, which you can prove quickly with the aid
of Fermat’s Little Theorem. Solutions to quadratic congruences when the modulus is a prime
of the form 4k + 1 are more difficult to obtain, and we will not cover such congruences
here.

PROPOSITION 30. Let p be a prime congruent to 3 modulo 4, and a an integer such that
p � a. Then if the congruence x2 � a (mod p) has solutions, they are x � a(p�1)/4 (mod p),
and x � �a(p�1)/4 (mod p).

(Hint: First show that a(p�1)/2 � 1 (mod p); this is called Euler’s criterion. It may not
be clear to you when proving proposition 30 why p must be congruent to 3 modulo 4; it is
simply the only way (p + 1)/4 can be an integer.)

9.3 Quadratic Congruences Modulo a Composite 171

EXAMPLES. We will solve all of the following congruences. Note that the modulus is prime
and congruent to 3 modulo 4.

• x2 � 2 (mod 23)

Solutions: x � �2(23�1)/4 = �26 = �64 � �5 (mod 23)

If you prefer to always use least nonnegative residues, the solutions are:

x � 5 (mod 23), and x � �5 � 18 (mod 23)

• x2 � 17 (mod 19)

Solutions: x � �17(19�1)/4 = �175 � �6 (mod 19)

• x2 � 2 (mod 7)

Solutions: x � �2(7�1)/4 = �22 � �4 (mod 7)

9.3 QUADRATIC CONGRUENCES MODULO A COMPOSITE

We are now ready to attempt solving congruences when the modulus is not prime. Let n =
pq, where p and q are distinct primes of the form 4k + 3, and consider the congruence

x2 � a (mod n) (*)

where 0 < a < n. Suppose (*) has a solution, say x = y. Then it has four solutions, accord-
ing to the following proposition.

PROPOSITION 31. Let n = pq where p and q are primes congruent to 3 modulo 4, and
let a be an integer such that 0 < a < n. Suppose the equation x2 � a (mod n) has a solution.
Then all the solutions are given by

x � �(zqqp� � wppq�) (mod n)

where z = a(p�1)/4, w = a(q�1)/4, qp� is an inverse of q modulo p, and pq� is an inverse of p mod-
ulo q.

Proof. We will show it has exactly four solutions as follows. Note that x = �y are solu-
tions to x2 � a (mod n) iff they are solutions to both x2 � a (mod p) and x2 � a (mod q).
This is easy enough to see if you use the definition of congruence:

y is a solution to x2 � a (mod n)

iff y2 � a (mod n)

iff n|(y2 � a)

iff p|(y2 � a) and q|(y2 � a) (since n = pq and clearly p|n and q|n)

iff y2 � a (mod p) and y2 � a (mod q)

iff y is a solution to both x2 � a (mod p) and x2 � a (mod q)

172 Chapter 9 Quadratic Congruences

Now let z be the least nonnegative residue of y modulo p, and let w be the least nonneg-
ative residue of y modulo q. So x = �z are solutions to x2 � a (mod p), and x = �w are solu-
tions to x2 � a (mod q). We can combine these solutions in four different ways to get four
sets of simultaneous congruences:

1. x � z (mod p) and x � w (mod q)

2. x � p � z (mod p) and x � q � w (mod q)

3. x � p � z (mod p) and x � w (mod q)

4. x � z (mod p) and x � q � w (mod q).

Using the Chinese Remainder Theorem (CRT) on each of sets 1 through 4, we can find
the value for x which solves the two congruences simultaneously, and these four values are
thus solutions to (*). For congruences 1 and 2, we use CRT to construct the two solutions

x � �(zqqp� + wppq�) (mod n)

where qp� is an inverse of q modulo p, and pq� is an inverse of p modulo q. Similarly, using
CRT on congruences 2 and 3 we arrive at the other pair of solutions

x � �(zqqp� � wppq�) (mod n).

We then can write the four solutions quickly as

x � �(zqqp� � wppq�) (mod n).

and the proof is complete. �

EXAMPLE. Suppose we wish to solve

x2 � 23 (mod 77).

Note that the prime factorization of 77 is 7 � 11, and both of these primes are congruent
to 3 modulo 4. We first obtain the solutions to

a. x2 � 23 � 2 (mod 7), and

b. x2 � 23 � 1 (mod 11).

The solutions to (a) are x � �3 (mod 7), and the solutions to (b) are x � �1 (mod 11).
Using the Chinese Remainder Theorem, we then separately solve the four sets of congru-
ences

1. x � 3 (mod 7) and x � 1 mod 11)

2. x � �3 (mod 7) and x � �1 mod 11)

3. x � �3 (mod 7) and x � 1 mod 11)

4. x � 3 (mod 7) and x � �1 mod 11).

Each yields a solution to x2 � 23 (mod 77). We can do all of these at once, as denoted in
the formula of proposition 31:

x = �(3 � 11 � 2 � 1 � 7 � 8) (mod 77)

9.3 Quadratic Congruences Modulo a Composite 173

which yields the four solutions

x � �122 � �45 (mod 77),

or

x � �10 (mod 77).

(Here 2 is an inverse of 11 mod 7, and 8 is an inverse of 7 mod 11.) If you prefer to have
the solutions in terms of least nonnegative residues modulo n, they are

x � 45 (mod 77),

x � 32 (mod 77),

x � 10 (mod 77),

x � 67 (mod 77).

You should verify that each solution satisfies the congruence x2 � 23 (mod 77).

We see from the previous development that solving quadratic congruences when the
modulus is not prime involves obtaining the prime factorization of n, solving the congru-
ences for the prime moduli, and then recombining the solutions using CRT. This will work
even when the solutions we seek are for quadratic congruences more complicated than the
simple congruence x2 � a (mod p).

To continue with this, we will now consider quadratic congruences of the form

ax2 + bx + c � 0 (mod p)

where p is a prime of the form 4k + 3, and a is not divisible by p. Solving such a congru-
ence can go quickly by completing the square, almost the same way we do in algebra. First,
multiply both sides by an inverse of a modulo p. This inverse exists because (a, p) = 1:

x2 + a�bx + a�c � 0 (mod p).

Now move a�c to the RHS:

x2 + a�bx � �a�c (mod p).

Next, add the exact quantity to both sides to make the LHS a perfect square:

x2 + a�bx + (2�a�b)2 � �a�c + (2�a�b)2 (mod p).

The value desired is 2�a�b, where 2� is an inverse of 2 modulo p, which exists since p is
an odd prime. Now, rewrite the LHS as a square, and factor the RHS:

(x + 2�a�b)2 � a�((2�b)2a� � c) (mod p).

Proposition 30 now tells us the solutions to the previous congruence:

x + 2�a�b � �(a�((2�b)2a� � c))(p�1)/4 (mod p).

Thus, we finally arrive at our solutions for x:

x � �(a�((2�b)2a� � c))(p�1)/4 � 2�a�b (mod p).

174 Chapter 9 Quadratic Congruences

The previous formula can be used to solve these types of quadratic congruences, but
often it is easier to complete the square yourself and simplify as you proceed.

EXAMPLE. We wish to solve the congruence

3x2 + 10x + 7 � 1 (mod 19).

Move the 7 to the RHS:

3x2 + 10x � �6 � 13 (mod 19).

Multiply both sides by 13, an inverse of 3 modulo 19:

x2 + 10 � 13x � 13 � 3x2 + 13 � 10x � 13 � 13 � 169 � 17 (mod 19).

Now, add (10 � 13 � 2�)2 to both sides. 10 is an inverse of 2 modulo 19:

x2 + 10 � 13x + (10 � 13 � 10)2 � 17 + (16 � 10)2 � 17 + 82 � 5 (mod 19).

Write the LHS as a square:

(x + 10 � 13 � 10)2 � (x + 8)2 � 5 (mod 19).

Proposition 30 gives us the solutions to (x + 8)2 � 5 (mod 19); they are

x + 8 � �5(19�1)/4 � �55 � �9 (mod 19), or

x � �9 � 8 (mod 19).

This yields the two solutions

x � 1 (mod 19), and x � �17 � 2 (mod 19).

You should verify that each of the solutions is correct. We will solve this congruence
once again however, this time using the quadratic formula:

x � �(a�((2�b)2a� � c))(p�1)/4 � 2�a�b (mod p).

The congruence to solve is

3x2 + 10x + 7 � 1 (mod 19),

or in standard form,

3x2 + 10x + 6 � 0 (mod 19),

so a = 3, b = 10, c = 6, a� = 13, and 2� = 10.
Substituting these values into (††) we get

x = �(13((10 � 10)2 � 13 � 6))(19�1)/4 � 10 � 13 � 10

� �(13(10000 � 13 � 6))5 � 8

� �(13(15))5 � 8

� �55 � 8

� �9 � 8 (mod 19).

9.3 Quadratic Congruences Modulo a Composite 175

This yields x � 1 (mod 19), and x � �17 � 2 (mod 19), the same solutions obtained by
completing the square.

We are finally ready to solve the type of congruence which we will find most useful;
those of the type

ax2 + bx + c � 0 (mod n)

where (a, n) = 1, n = pq, and where p and q are both primes congruent to 3 modulo 4.

PROPOSITION 32. Let n = pq, where p and q are primes congruent to 3 modulo n.
Suppose a is an integer relatively prime to n, and that the congruence

ax2 + bx + c � 0 (mod n)

has a solution. Then all the solutions are given by

x � (�(a�((2�b)2a� � c))(p�1)/4)qqp� + (�(a�((2�b)2a� � c))(q�1)/4)ppq� � 2�a�b (mod n).

(Again, qp� means an inverse of q modulo p, and pq� is an inverse of p modulo q.)

Proof. Most of the work involved in finding the solutions has already been done. As
before, use some algebra to rewrite the congruence as

(x + 2�a�b)2 � a�((2�b)2a� � c) (mod n).

As before, this splits up into two congruences

(x + 2�a�b)2 � a�((2�b)2a� � c) (mod p), and

(x + 2�a�b)2 � a�((2�b)2a� � c) (mod q),

and proposition 30 tells us the solutions:

x + 2�a�b � �(a�((2�b)2a� � c))(p�1)/4 (mod p), and

x + 2�a�b � �(a�((2�b)2a� � c))(q�1)/4 (mod q)

We then use CRT to recombine these solutions and obtain solutions to ax2 + bx + c � 0
(mod n):

x + 2�a�b � (�(a�((2�b)2a� � c))(p�1)/4)qqp� + (�(a�((2�b)2a� � c))(q�1)/4)ppq� (mod n),

or

x � (�(a�((2�b)2a� � c))(p�1)/4)qqp� + (�(a�((2�b)2a� � c))(q�1)/4)ppq� � 2�a�b (mod n).

Here qp� is an inverse of q modulo p, and pq� is an inverse of p modulo q. These are the
values claimed in the proposition. �

The formula may appear quite horrifying at first, but it provides the solutions we seek
very nicely. We demonstrate this now:

EXAMPLE. We solve the congruence

2x2 + 3x + 16 � 0 (mod 21).

176 Chapter 9 Quadratic Congruences

Note that 21 = 3 � 7. The congruence is already in standard form, so we have a = 2, b =
3, c = 16, a� = 11, and 2� = 11. We first calculate the quantities �(a�((2�b)2a� � c))(3�1)/4 (mod
3), �(a�((2�b)2a� � c))(7�1)/4 (mod 7), and 2�a�b (mod 3 and mod 7):

�(a�((2�b)2a� � c))(3�1)/4

� �(11((11 � 3)211 � 16))(3�1)/4

� �(2((2 � 0)22 � 1))(3�1)/4

� �2 (mod 3).

�(a�((2�b)2a� � c))(7�1)/4

� �(11((11 � 3)211 � 16))(7�1)/4

� �(4((4 � 3)24 � 2))(7�1)/4

� �0 (mod 7).

2�a�b

� 11 � 11 � 3

� 2 � 2 � 0

� 0 (mod 3)

2�a�b

� 11 � 11 � 3

� 4 � 4 � 3

� 6 (mod 7)

The four solutions we seek (actually two, because of �0 below) are then

x � (�1 � 0) � 7 � 1 + (�0 � 6) � 3 � 5 (mod 21).

Here, 1 is an inverse of 7 mod 3, and 5 is an inverse of 3 mod 7. If we provide the answers
in terms of least nonnegative residues, we get

x � 7 � 6 � 1 (mod 21),

x � �7 � 6 � �13 � 8 (mod 21).

The methods we have discussed here can be easily extended to solve quadratic congru-
ences modulo n = p1p2 . . . pn where the factors are all distinct primes congruent to 3 mod-
ulo 4. You may wish to attempt this.

Java Algorithm. We should write a solveQuadratic() method (in the BigIntegerMath
class, of course) to solve quadratic congruences of the forms described above. That is, the

9.3 Quadratic Congruences Modulo a Composite 177

modulus must be a product of distinct primes of the form 4k + 3. If we are going to deal with
truly large integers, then we must take many things into consideration:

• We cannot send in the modulus n as a parameter directly; rather, we must send in the
prime factorization n = pq. This is because factoring n when n has large prime factors is
an intractable problem. (We will discuss this more later.)

• We must test each factor of n first to see if each one is a probable prime, using the isProb-
ablePrime() method of the BigInteger class. (This method of determining primality does
not involve attempted factoring and will execute quickly.) If the factor is probably prime,
we must also test whether it is congruent to 3 modulo 4. If either is not the case, our
method is unusable and we must throw an exception.

• We must check that no factor of the modulus n is repeated; that is, the two primes p and
q must be unique if we are to use the Chinese Remainder Theorem to produce the solu-
tions. (CRT requires that the moduli be pairwise relatively prime; if any two moduli are
equal this condition is certainly violated.) If p = q, we throw an exception.

• We must check the solutions we obtain. It is possible the quadratic congruence we are try-
ing to solve has, in fact, no solutions! Thus, any values we obtain must be checked against
the original congruence. If any solution fails to check, we must again throw an exception.

The method as we have outlined has many rules to follow, but if we take the proper pre-
cautions, this method can produce very satisfactory results. The code follows:

import java.math.BigInteger;

import java.security.SecureRandom;

public class BigIntegerMath {

//Define zero as a BigInteger; this is handy for comparisons

static final BigInteger ZERO=new BigInteger(“0”);

static final BigInteger ONE=new BigInteger(“1”);

static final BigInteger TWO=new BigInteger(“2”);

static final BigInteger THREE=new BigInteger(“3”);

static final BigInteger FOUR=new BigInteger(“4”);

//Other methods......

//Solves quadratic congruences ax^2+bx+c congruent to 0 mod n=pq

//Returns four solutions when they exist

public static BigInteger[] solveQuadratic(BigInteger a, BigInteger b, BigInteger

c,

BigInteger p, BigInteger q, int primeTolerance) {

//Check that the factors of the modulus are distinct

if (p.equals(q))

throw new IllegalArgumentException(“The modulus factors are not unique!”);

//Check that the factors are congruent to 3 modulo 4

BigInteger n=p.multiply(q);

if (!lnr(p.mod(FOUR),n).equals(THREE))

178 Chapter 9 Quadratic Congruences

throw new IllegalArgumentException(p+” is not of form 4k+3!”);

if (!lnr(q.mod(FOUR),n).equals(THREE))

throw new IllegalArgumentException(q+” is not of form 4k+3!”);

//Check that the factors of the modulus are prime

if (!p.isProbablePrime(primeTolerance))

throw new IllegalArgumentException(p+” is not prime!”);

if (!q.isProbablePrime(primeTolerance))

throw new IllegalArgumentException(q+” is not prime!”);

//Create the array of solutions

BigInteger[] result=new BigInteger[4];

//Start forming the terms

BigInteger aInv=a.modInverse(n);

BigInteger pInv=p.modInverse(q);

BigInteger qInv=q.modInverse(p);

BigInteger twoInv=TWO.modInverse(n);

BigInteger term1=

aInv.multiply(twoInv.multiply(b).modPow(TWO,n).multiply(aInv).subtract(c));

BigInteger term2=twoInv.multiply(aInv).multiply(b);

BigInteger t1=

lnr(term1.modPow(p.add(ONE).divide(FOUR),n)

.subtract(term2).multiply(q).multiply(qInv),n);

BigInteger t2=

lnr(term1.modPow(q.add(ONE).divide(FOUR),n)

.subtract(term2).multiply(p).multiply(pInv),n);

BigInteger t3=

lnr(term1.modPow(p.add(ONE).divide(FOUR),n).negate()

.subtract(term2).multiply(q).multiply(qInv),n);

BigInteger t4=

lnr(term1.modPow(q.add(ONE).divide(FOUR),n).negate()

.subtract(term2).multiply(p).multiply(pInv),n);

//Form the solutions

result[0]=lnr(t1.add(t2),n);

result[1]=lnr(t1.add(t4),n);

result[2]=lnr(t3.add(t2),n);

result[3]=lnr(t3.add(t4),n);

//Check the solutions; if any are bad, throw an exception

BigInteger x;

for (int i=0;i<4;i++) {

x=result[i];

if (!lnr(a.multiply(x.multiply(x)).add(b.multiply(x)).add(c),n).

equals(ZERO))

throw new IllegalArgumentException(“Solution x=”+x+” does not check!”);

}

return result;

}

}

Exercises 179

FIGURE 9.1

I have written an applet test program of the solveQuadratic() method, which can be run
from the book’s website. You enter the values a, b, c, p, and q for the quadratic congruence
ax2 + bx + c � 0 (mod pq). The primes p and q must both be congruent to 3 modulo 4. A
screen shot of the applet, called TestSolveQuadraticApplet, is shown in Figure 9.1.

EXERCISES

1. Solve the following quadratic congruences:

a. x2 � 1 (mod 7)

b. x2 � �2 (mod 11)

c. x2 � 6 (mod 19)

d. x2 � �3 (mod 19)

e. x2 � 3 (mod 23)

f. x2 � 7 (mod 31)

Check the solution(s) you obtain.

2. Solve the following quadratic congruences:

a. x2 � 7 (mod 93)

b. x2 � �17 (mod 33)

c. x2 � �8 (mod 57)

d. x2 � 23 (mod 77)

180 Chapter 9 Quadratic Congruences

e. x2 � 12 (mod 69)

f. x2 � 8 (mod 217)

Check the solution(s) you obtain.

3. Solve the following quadratic congruences:

a. 3x2 + 2x � 0 (mod 7)

b. 2x2 + 3x + 9 � 5 (mod 7)

c. 5x2 + 10x + 13 � 18 (mod 23)

Check the solution(s) you obtain.

4. Solve the following quadratic congruences:

a. 3x2 + 2x � 12 (mod 77)

b. 2x2 + 3x + 9 � 106 (mod 133)

c. 5x2 + 10x + 13 � 101 (mod 209)

Check the solution(s) you obtain.

5. Prove proposition 30.

6. Solve the following quadratic congruences:

a. 4x2 + 2x + 100 � 58 (mod 231)

b. 2x2 + 3x + 182 � 0 (mod 1463)

Check the solution(s) you obtain.

7. The solveQuadratic() method can be written in a much “cleaner” way. First, write a
method to solve quadratic congruences of the form

x2 � a (mod p)

where p is a prime congruent to 3 modulo 4. Use this method in conjunction with the
solveCRT() method, and use the Chinese Remainder Theorem to produce the solutions.

8. Suppose the quadratic congruence ax2 + bx + c � 0 (mod n) has solutions, and that n
= p1p2 . . . pm, where each prime factor pi is unique, and each congruent to 3 modulo 4.
Explain how you would find the solutions.

9. Revise the solveQuadratic() method to compute and return solutions of quadratic con-
gruences as described in the previous exercise.

C H A P T E R 10
Quadratic Ciphers

181

The cryptosystems we are about to cover in this chapter are called public key cryp-
tosystems. All the cipher systems we’ve looked at so far have been secret key schemes.

This is the classical view of cryptography; it means that both the enciphering key and deci-
phering key must be kept secret, for knowing one is equivalent to knowing the other. For
example, consider a block affine transformation

C � aP + b (mod m)

where (a, m) = 1. The enciphering key are the numbers a, m, and b. If an unauthorized user
captured these values, she could certainly encrypt messages to you, but even worse (obvi-
ously), she can easily derive the decryption key a� (where a� is an inverse of a modulo m)
and decrypt any messages.

With public key cryptography, the situation is somewhat different. Public key means that
two keys are involved: a public key used for enciphering, and a private key used for deci-
phering. But knowing the encryption key is not equivalent to knowing the decryption key,
and this is the crucial difference. With public key cryptography, each user generates a pub-
lic key, which they distribute to everyone, and a private key, which they do not divulge to
anyone. Anyone who wants to send a message to some user must look up their public encryp-
tion key and use it to encrypt the message. On the receiving end, the user decrypts the mes-
sage with their private key. No one else can decrypt because only the intended recipient
knows the private key, and the private key is very difficult to calculate from the encryption
key.

10.1 THE RABIN CIPHER

The encryption process of the following cipher, known as the Rabin cipher, involves pro-
ducing ciphertext C from plaintext P as follows:

C � P2 (mod n). (0 ≤ P < n, 0 ≤ C <n) (†)

Here n is the product of two distinct large primes, say p and q, both congruent to 3 mod-
ulo 4. At current levels of computing power, n should be at least 1024 bits in length. The

182 Chapter 10 Quadratic Ciphers

public key in this cipher is n. What is not made public is the prime factorization of n; that
is, the two primes p and q are kept secret. These two values are necessary for decryption;
thus, they are the private key.

The enciphering process is described in (†). Anyone knowing the value of n can send mes-
sages. Now, in order to decipher, we must solve the congruence

C � P2 (mod n)

for the plaintext P. We know from previous work that these solutions are obtained by form-
ing the two congruences

C � P2 (mod p)

C � P2 (mod q)

and solving them. We then combine these solutions using CRT to obtain solutions for P. Thus,
we can only solve (†) for P by factoring the modulus n = pq (at least, no other way to solve
these congruences is known). This is why the prime factors of n are kept secret. Only the
individual possessing them can decipher. From proposition 31, we get the solution(s) to (†)
as

P � �(zqqp� � wppq�) (mod n)

where z = C (p�1)/4, w = C (q�1)/4, qp� is an inverse of q modulo p, and pq� is an inverse of p
modulo q.

The obvious drawback to this method is that solving such congruences can produce four
distinct square roots P for C. That is, it reports four possible plaintext messages during the
decryption phase. If the message is text, it is easy to identify the correct one; it’s the one that
doesn’t look like garbage! However, if the message is some type of binary stream, for exam-
ple, the messages must be tagged in some way so this tag will reappear in the decryption
process.

Why is it that we can reveal the value of n to everyone? We know that if someone man-
ages to factor n into its prime factors p and q, our cryptosystem and we will be, metaphor-
ically, up the creek without a paddle! Anyone knowing p and q can decrypt; the question is,
how easy is it to factor n? If n is the product of two sufficiently large primes (say a few
hundred digits each), then it is nearly impossible to factor n in a reasonable period of time.
In fact, it will take somewhere on the order of a few billion years! We may find this hard to
believe since we routinely factor integers in our math classes, but we simply don’t appre-
ciate the size of the numbers involved here. Indeed, factoring has become a huge study
involving many techniques, some of which we shall study in upcoming chapters.

EXAMPLE. To see how the Rabin cipher works, we use the ordinary alphabet A = 00, B = 01,
. . . , Z = 25. We will use a block size of four characters. With our choice of alphabet and
block size, the largest possible block corresponds to ZZZZ = 25252525. We must pick a mod-
ulus n greater than this, and furthermore, n must be the product of 2 primes congruent to 3
modulo 4. Let p = 6911 and q = 6947. (You may wish to verify that p and q are both primes
of the form 4k + 3.) These two values are the private key, and must not be made public. We

10.1 The Rabin Cipher 183

then compute n = 6911 � 6947 = 48010717. The value of n can be made known to anyone,
and in fact is necessary for encryption.

We wish to encipher the message

SHOOT NOW GEEK

which we will regroup into blocks of four letters each,

SHOO TNOW GEEK

then convert the characters into their numerical equivalents. Leading zeros are important:

18071414 19131422 06040410.

Notice that should our messages not be evenly divisible into blocks of size 4, we should
use some type of padding scheme. We proceed to encrypt the first block:

C � 180714142

� 1339280 (mod 48010717)

This residue is the first ciphertext block. The second block we encrypt as follows:

C � 191314222

� 22338923 (mod 48010717)

and the third as:

C � 60404102

� 40412478 (mod 48010717)

The transmitted enciphered message is the sequence of numbers

01339280 22338923 40412478.

Now, if you have done the job right and haven’t told anyone about the two secret num-
bers, p = 6911, and q = 6947, you should be the only individual able to decrypt. (Of course,
in this example, n = 48010717 is easily factorable into n = 6911 � 6947; in reality we would
use a much larger block size, and much larger primes.) To decrypt the first enciphered block,
you must solve the congruence

1339280 � P2 (mod 48010717)

for P. Using the Chinese Remainder Theorem, we derive the four roots

→ P � 18071414 (mod 48010717)

P � 16274554 (mod 48010717)

P � 29939303 (mod 48010717)

P � 31736163 (mod 48010717).

184 Chapter 10 Quadratic Ciphers

The correct root is marked. We decrypt the second block by solving

22338920 � P2 (mod 48010717)

for P. We get the following roots, with the correct one again marked:

P � 39784853 (mod 48010717)

P � 28879295 (mod 48010717)

P � 8225864 (mod 48010717)

→ P � 19131422 (mod 48010717).

We solve this third congruence

40412478 � P2 (mod 48010717)

for P to decrypt the third block. The roots we obtain are:

P � 36711428 (mod 48010717)

→ P � 6040410 (mod 48010717)

P � 11299289 (mod 48010717)

P � 41970307 (mod 48010717).

You can surely see the problem of deciding between four roots during decryption. In this
case, deciding was easy because of our alphabet (no character ≥ 26). In general, how do we
know which solution for P is the correct one? The answer is, if we didn’t write the message,
we don’t know. The correct root may be any of the four roots, and there is no way of know-
ing in advance which one it will be. This poses a problem for this cryptosystem: What if two
(or more) roots could both be construed as a valid message? One solution may be to tag the
blocks with special character(s) which do not otherwise appear in the messages. For instance,
in our example we use only the characters A = 00 through Z = 25; we could use the num-
ber 26 to tag the beginning of each block, as in:

SHOO TNOW GEEK

converts to

28705651 20676817 47296051.

Now, in front of each block, we place the tag, 26:

2628705651 2620676817 2647296051

and encipher this message. Thus, the block size of the enciphered message is greater than
that of the plaintext. This is not a problem; many cipher systems exhibit different plain-
text/ciphertext block sizes. When we decrypt, the tags will reappear, which we then remove
from the message and convert back to characters. Similar tagging schemes can be used for
messages that use ASCII character encoding and Unicode. You should remember that some
messages, however, are not text at all, but may be any type of binary stream whatsoever.

10.2 Weaknesses of the Rabin Cipher 185

Careful planning is necessary to ensure that a tagging scheme will work properly; that is,
will not cause confusion on the receiving end. We will soon discuss a type of tagging which
is most often employed with Rabin cipher implementations.

We actually have been rather presumptuous throughout this chapter, and we should cor-
rect this now. The Rabin cipher says both primes p and q must be of the form 4k + 3. A nat-
ural question to ask now is, “OK, we know there are infinitely many primes, but are there
infinitely many primes of the form 4k + 3?” This is important because we must be able to
freely select such primes for this cipher. But what if such primes eventually “run out,” and
we are left only with primes of the form 4k + 1? The next result assures us that this does not
happen.

PROPOSITION 33 There are infinitely many primes of the form 4k + 3.

Proof. First note that if we have any two integers both of the form 4k + 1, their product
is also of the form 4k + 1, since if m = 4j + 1 and n = 4i + 1 we have

mn = (4j + 1)(4i + 1) = 16ji + 4i + 4j + 1 = 4(4ji + i + j) + 1. (*)

Hence, mn is also of the form 4k + 1 (where k here is equal to 4ji + i + j). Given this, we
now assume there are finitely many primes congruent to 3 modulo 4. Thus, we can list them
in a finite sequence starting with the smallest prime congruent to 3 modulo 4, and pro-
gressing through them in order to the largest, say p0 = 3, p1 = 7, p2 = 11, . . . , pn. Now, con-
sider the integer

N = 4p1p2 . . . pn + 3

which must contain a prime factor of the form 4k + 3, for if not, its prime factors would all be
congruent to 1 modulo 4, and hence their product N would also be congruent to 1 modulo 4, a
contradiction. However, now note that 3 � N; for if 3|N, we also have 3|(N � 3) = 4p1p2 . . . pn,
another contradiction (since p0 = 3 does not appear in the sequence 4p1p2 . . . pn). Likewise, none
of the other primes pi (1 ≤ i ≤ n) divides N, since if we have some pi|N, we then also have pi|(N
� 4p1p2 . . . pn) = 3, which is ridiculous because all of the primes pi (i = 1, 2, . . . , n) are larger
than 3. Since no prime of the form 4k + 3 in the list p1, p2, . . . , pn can divide N, and N must
have such a prime as a factor, we can only conclude that our assumption is incorrect. There must
be infinitely many primes congruent to 3 modulo 4. �

10.2 WEAKNESSES OF THE RABIN CIPHER

The Rabin cipher is quite secure, provided the proper precautions are taken. (Of course, the
necessity of taking the proper precautions is true of any cipher.) As presented here, the Rabin
cipher has certain weaknesses which can be exploited. We describe these weaknesses below.

Chosen Ciphertext Attack A chosen ciphertext attack is when an adversary has
the ability to pass a single ciphertext message (of his choice) through an individual’s
decryption machine. The adversary may even have access to the decryption machine

186 Chapter 10 Quadratic Ciphers

himself, but this does not necessarily mean he has access to the private key; these values
may be secured inside the hardware in such a way that their retrieval by unauthorized
means is not possible.

Suppose the Rabin decryption machine returns all 4 plaintext message values, and leaves
it up to the application to decide which message is correct. If the Rabin decryption machine
works this way, the analyst can factor n. To see this, suppose the analyst chooses a random
integer, say z, and encrypts it using the public key value n:

C � z2 (mod n).

He then runs this ciphertext C back through the decryption machine, and receives 4 mes-
sages in return. One of the returned values will be congruent to z modulo n, and another will
be congruent to �z modulo n. However, the other 2 roots, say r and r�, are congruent to nei-
ther z nor �z modulo n. Take either root, say r; he can derive one of the prime factors of n
by simply noting that since z � r (mod n), n � (z � r), and so

(z � r, n) ≠ n.

But if he can also show that z � r and n are not relatively prime, he will then have found
a nontrivial divisor of n; that is, p or q. He can do this in the following way; note that n can-
not divide z + r = z � (�r) since z � �r (mod n). Hence, n divides neither z + r nor z � r.
However, since z2 � r2 (mod n) he has

n | (z2 � r2), or n | (z + r)(z � r)

which implies n is not relatively prime to z � r. Thus, (z � r, n) yields a nontrivial divisor
of n; namely, p or q.

EXAMPLE. Here we show a chosen ciphertext attack on Rabin. The adversary does not know
the first two values p and q listed here; she only knows n, the product of p and q. She sub-
mits a message m to the decryption machine and gets four roots: x1, x2, x3, and x4. She is inter-
ested only in a root congruent to neither m nor �m modulo n. The first root, x1, is such a
root. She calculates (m � x1, n), and in this case, obtains the factor q. She then derives p by
taking p = n/q.

p is unknown to adversary:

p =
179769313486231590772930519078902473361797697894230657273430081157732675
805500963132708477322407536021120113879871393357658789768814416622492847
430639474124377767893424865485276302219601246094119453082952085005768838
150682342462881473913110540827237163350510684586298239947245938479716304
835356329624224137859

q is unknown to adversary:

q =
359538626972463181545861038157804946723595395788461314546860162315465351
611001926265416954644815072042240227759742786715317579537628833244985694

10.2 Weaknesses of the Rabin Cipher 187

861278948248755535786849730970552604439202492188238906165904170011537676
301364684925762947826221081654474326701021369172596479894491876959432609
670712659248448276687

n = pq is public:

n =
646340121426220146014297533773399039208882053394309680642606908550493102
777357817863944028230458269273774359218437960389882391183009818421901763
047728965662412617547346019921835003955007793042135921152767681351365535
844372852395123236761886769523409411632917040726100857751517830821316172
151047982478607716803918058340827477683169176315227971638380003141234015
213715286981934574126958310812212353843734392842382104560615275941849712
736764525520559801471208444488841303619868703237828364738114662819239227
238184943188233259835607113670605755573747578481214665113626049865412769
43834825366579731809108470421496863793133.

Here is the bogus plaintext message that the adversary creates:

m =
327562836508236509237590237590823750923875098275908237590827359082375908
723095873209875093285790328750932875093248750983275098327509832759082375
098370957309287509328750923858723658972365892365930275094327590342857326
589726598235698236598235689265892365095780936723985689236598236598236598
236598236598256982569823569826539823659826985273209568923658923793286598
2365982365987263986598236589726895698236598236598723658972.

The adversary computes the ciphertext by squaring the plaintext modulo n, and submits
this to the decryption machine:

C =
633117525812174963141726511411569613510692954921413433904834216758854296
633124876624725803389226024659872532640785232933916621224271521661591779
805056806132874825319189837524810853175640040181499810175228697753511769
733199644184786773309701377090720855844334771741032864292654831554262834
830106099159752454122074338825214233151941406426968586422774039868803500
958440877983431882318911204475101540253926424708618519209984525553968321
269537413569633044293116969006410634311794364957784418800457585030758560
064753995190942293115578955198138212298271399040518748965782046565242764
02217687340373577434217196605168494458628.

The decryption machine calculates and returns four roots to the adversary (knowing p and
q you should be able to do this yourself and verify these calculations):

x1=
136581210291743377386869067901142217233939214683424267658172999911458881

101371791334898587390563770149554181160653931381289940174632065720864984
160705717053140111529287690003371923252603929801830917529072031239306598
040700753365794505657513929226515691686332665760750657196364168456902823
203050625077910855586397879032295214458991406870906366079175118986933410
937238944950649256489852723734538971811075264323866647349340157867181964
926088594958034247340186513722802386107673559315549871858881556554492677
028840739965027167600998102077221105161298549116520718707937296912166955
06923066755098517382626285867590850161814

x2 =
646340121426220146014297533773399039208882053394309680642606908550493102
777357817863944028230458269273774359218437960389882391183009818421901763
047728965662412617547346019921835003955007793042135921120011397700541884
920613828636040861669499259695818587873834304817863266879208243500328662
822468949603514429294593183242499967850418193039319734128542907410305264
280840194596062208229721721575619326334301633808096371901642616118279889
076940956593970564961630350816442734696208879578004704914454839159413528
981202586205579277469624415143284798681381686101886005289966226205540129
57236588776852836110871872184898140134161

x3 =
509758911134476768627428465872256821974942838710885412984433908639034221
675986026529045440839894499124220178057784029008592451008377752701036778
887023248609272506018058329918463080702403863240305003623695650112058937
803672099029328731104372840296893719946584374965350200555153662364413348
947997357400696861217520179308532263224177769444321605559204884154300604
276476342031285317637105587077673382032659128518515457211275118074667747
810675930562525554131021930766038917512195143922278492879233106264746550
209344203223206092234609011593384650412449029364693946405688752953245814
36911758611481214426482184553906013631319

x4 =
327562836508236509237590237590823750923875098275908237590827359082375908
723095873209875093285790328750932875093248750983275098327509832759082375
098370957309287509328750923858723658972365892365930275094327590342857326
589726598235698236598235689265892365095780936723985689236598236598236598
236598236598256982569823569826539823659826985273209568923658923793286598
2365982365987263986598236589726895698236598236598723658972.

Two of these roots will yield a nontrivial divisor of n. We begin with x1 by calculating
(m � x1, n).

188 Chapter 10 Quadratic Ciphers

10.2 Weaknesses of the Rabin Cipher 189

(m � x1, n) =
359538626972463181545861038157804946723595395788461314546860162315465351
611001926265416954644815072042240227759742786715317579537628833244985694
861278948248755535786849730970552604439202492188238906165904170011537676
301364684925762947826221081654474326701021369172596479894491876959432609
670712659248448276687.

This is certainly not a trivial divisor of n. We have found one of its prime factors, and in
this case, we found q. To find p, the adversary simply divides n by q (of course).

p = n/q =
179769313486231590772930519078902473361797697894230657273430081157732675
805500963132708477322407536021120113879871393357658789768814416622492847
430639474124377767893424865485276302219601246094119453082952085005768838
150682342462881473913110540827237163350510684586298239947245938479716304
835356329624224137859.

You will be asked to write a program to execute such attacks in Java. A slight modifica-
tion to the chosen ciphertext attack yields the adaptive chosen ciphertext attack, described
below.

Homomorphic Property—Adaptive Chosen Ciphertext Attack Note that
the Rabin cipher has the following behavior: If we encrypt a plaintext message P to C, note
that if we separate P into 2 parts, say m and m*, which individually encrypt to c and c*,
respectively, we have

P2 � (mm*)2 � m2m*2 � cc* � C (mod n).

This is referred to as the homomorphic property of the Rabin transformation. This can
be exploited to employ an adaptive chosen ciphertext attack on this cipher. This attack is
when a cryptanalyst has access to the decryption machine, as in the chosen ciphertext attack,
but does not have total freedom to choose any message. That is, suppose the analyst chooses
an integer z and computes

C � z2 (mod n),

but the decryption machine has been instructed to reject this message. The analyst must
then “adapt” by trying to disguise the message C as another message. She can do this by
selecting a random integer x relatively prime to n, and then computing

C* � Cx2 (mod n)

and submitting the message C* to the decryption machine. Now, note that

Cx2 � z2x2 � (zx)2 (mod n)

by the homomorphic property, and so

C* � (zx)2 (mod n).

190 Chapter 10 Quadratic Ciphers

Thus, the decryption machine will return 4 square roots modulo n of C*, say s1, s2, s3,
s4. One of these 4 values will be congruent to zx modulo n, and another will be congruent
to �zx modulo n. However, the remaining 2 roots will be congruent to neither zx nor �zx
modulo n. Choose one from the latter category, say si, and compute si x� where x� is an
inverse of x modulo n. This value six� is congruent to neither z nor �z modulo n, and can
be used in the same manner as the chosen ciphertext attack described previously to obtain
a prime factor of n.

Redundancy One solution to the chosen ciphertext problem and the adaptive chosen
ciphertext problem is to ensure that the decryption machine returns only the correct plain-
text message and withholds the other 3 roots. We can do this by padding with redundancy.
For example, we can pad each block with 8 characters, where these characters are the first
8 characters of that block. Using this, the decryption machine will be able to distinguish the
correct root from the other roots, as (with very high probability) only one root will possess
the required redundancy.

Another form of redundancy is to append a “digest” of each block. A digest, in this case,
is a fixed-size compressed version of the block. See Chapter 16 on cryptographic applica-
tions for more information about message digests/hashes.

Now, if an adversary computes an enciphered message from some random plaintext mes-
sage z to the decryption machine, it will only return the correct root z, giving him no new
information. This is also the case even if he attempts to disguise the message in the manner
described using an adaptive chosen plaintext attack.

Weak Primes If the primes p and q for the Rabin cipher are not chosen carefully, the
Pollard p � 1 method can be used to factor n (see Chapter 12 on factorization techniques).
Specifically, p (also q) must be chosen so that p � 1 does not consist entirely of small fac-
tors.

For example, consider the prime p = 10888869450418352160768000001 = 27! + 1. Then
p � 1 = 27!, and so the largest factor of p � 1 is 27—a very small integer when compared
to p. The Pollard p � 1 method of factorization uses this fact to find the prime p. One solu-
tion to this problem is to choose p so that p = 2t + 1, where t is prime. Then we have p � 1
= 2t, and so p � 1 has a large prime factor, namely t.

For similar reasons, we also want to avoid primes p such that p + 1 consists entirely of
small factors. When we generate primes with the intent of avoiding these weaknesses to
factoring methods, we call such primes strong primes.

10.3 STRONG PRIMES

Definition
A prime number p is said to be a strong prime if integers r, s, and t exist such that:

(a) p � 1 has a large prime factor r

(b) p + 1 has a large prime factor s

(c) r � 1 has a large prime factor t.

10.3 Strong Primes 191

Prime Generator—Gordon’s Algorithm This algorithm produces strong primes.
When we produce integers that are the product of large strong primes, these integers are
highly resistant to factoring methods.

1. Generate two large random primes s and t of approximately the same size. (Use an appro-
priate random number generator and primality test; see Chapter 11 on primality testing.)

2. Choose an integer i*, then find the first prime r = 2it + 1, where i = i*, i* + 1, i* + 2,

3. Compute z = the lnr of sr�2 (mod r).

4. Calculate p* = 2zs � 1.

5. Choose an integer k*, then find the first prime p = p* + 2krs, where k = k*, k* + 1, k* +
2,

6. p is a strong prime.

To see that p is indeed a strong prime, note that by FLT we have sr�1 � 1 (mod r). Thus,

p* = 2zs � 1 � 2sr�2 � s � 1 � 2 � 1 � 1 � 1 (mod r), and

p* = 2zs � 1 � �1 (mod s).

This immediately gives us what we need:

(a) p � 1 = p* + 2krs � 1 � 0 (mod r); → r = 2it + 1 is a large prime factor of p � 1

(b) p + 1 = p* + 2krs + 1 � 0 (mod s); → s is a large prime factor of p + 1

(c) r � 1 = 2it � 0 (mod t); → t is a large prime factor of r � 1.

and we establish that p is a strong prime.

EXAMPLE. The following demonstrates finding a strong prime using Gordon’s algorithm. First
we generate s and t, two primes of about the same size.

s =
649257745123755764564298232583183358105018398492925296182752230219795813
315606717730413881037389513739598704819556327738654940708820981641744821
701213543

t =
459229816351936145409407672206871372046265685062392744762039282823998800
862208949389232433994508929505925943890562601701058936427954733705485851
046387127

Now, we look for the first prime r of the form 2it + 1, where i begins at 1. In this case,
we get:

r =
596998761257516989032229973868932783660145390581110568190651067671198441
120871634206002164192861608357703727057731382211376617356341153817131606
36030326511

192 Chapter 10 Quadratic Ciphers

Now, we compute z, the lnr of sr�2 modulo r:

z =
665230492072090237201496662581252085144747143014640731643715847110536584
592217084417720567412260139505217601163389933696724796030966764997614576
5260549183

We compute p* as 2zs � 1:

p* =
346084307903560664425684232051486131077315397498633595581688753937826631
433322997849280623926140157753141972793817951619368163028361404889048627
525470705306956391991968534559962944356650024630432157045548591633214550
857822086145412115926942830031833676001801967113277394757571799217642094
28697654507474370737

We search now for the first prime p of the form p* + 2krs, where here k starts with the
value 1. This yields a strong prime, and, in this case, we get:

p =
136859550991023357674233837751193444637145211672745580838508211454534324
823686210424604005719046718052981484190707562992713417956940416543355152
315219159854859002395777579635185385039269578229009584384066590554210488
182334714799737615710384650453125076807810092764555005612188062536100529
729582192738972213180427

Java Algorithm I have created a PrimeGenerator class for the purpose of generating
strong primes. One creates a PrimeGenerator object, then calls a getStrongPrime() method.
The primes generated by this method are of sufficient size and quality to thwart modern
factorization methods.

import java.security.*;

import java.math.*;

import java.util.*;

public class PrimeGenerator {

//To find primes, we first specify the minimum bit length

//The methods will produce primes 1 to 3 bits larger than requested, but never

// smaller

int minBitLength;

//certainty is the number of primality tests to pass

int certainty;

SecureRandom sr;

public PrimeGenerator(int minBitLength, int certainty, SecureRandom sr) {

//The bit length of the prime will exceed minBitLength

10.3 Strong Primes 193

if (minBitLength<512) throw new IllegalArgumentException

(“Strong/Safe primes must be at least 64 bytes long.”);

//Set the values

this.minBitLength=minBitLength;

this.certainty=certainty;

this.sr=sr;

}

//This method finds and returns a strong prime

public BigInteger getStrongPrime() {

//The strong prime p will be such that p+1 has a large prime factor s

BigInteger s=new BigInteger(minBitLength/2-8,certainty,sr);

//t will be a large prime factor of r, which follows

BigInteger t=new BigInteger(minBitLength/2-8,certainty,sr);

BigInteger i=BigInteger.valueOf(1);

//p-1 will have a large prime factor r

//r is the first prime in the sequence 2t+1, 2*2t+1, 2*3t+1,...

BigInteger r;

do {

r=BigIntegerMath.TWO.multiply(i).multiply(t).add(BigIntegerMath.ONE);

i=i.add(BigIntegerMath.ONE);

} while (!r.isProbablePrime(certainty));

BigInteger z=s.modPow(r.subtract(BigIntegerMath.TWO),r);

BigInteger pstar=BigIntegerMath.TWO.multiply(z).multiply(s).

subtract(BigIntegerMath.ONE);

BigInteger k=BigInteger.valueOf(1);

//The strong prime p is the first prime in the sequence 2rs+p*, 2*2rs+p*,

//2*3rs+p*,...

BigInteger p=BigIntegerMath.TWO.multiply(r).multiply(s).add(pstar);

while (p.bitLength()<=minBitLength) {

k=k.multiply(BigIntegerMath.TWO);

p=BigIntegerMath.TWO.multiply(k).multiply(r).multiply(s).add(pstar);

}

while (!p.isProbablePrime(certainty)) {

k=k.add(BigIntegerMath.ONE);

p=BigIntegerMath.TWO.multiply(k).multiply(r).multiply(s).add(pstar);

}

return p;

}

}

An applet that tests the getStrongPrime() method follows; it is called TestPrimeGenera-
torApplet, and can be run from the book’s website. A screen shot of the applet is shown in
Figure 10.1.

194 Chapter 10 Quadratic Ciphers

FIGURE 10.1

This applet also allows you to generate a probable prime using what is called the
Rabin–Miller test. We have been using the constructor provided in Java from the BigInte-
ger class:

public BigInteger(int bitLength, int certainty, Random r).

This constructor generates random BigIntegers of the specified bitlength, until one passes
a primality test for a certain number of trials. The probability that this number is prime is

1 � (1/2)certainty.

This constructor does not use the Rabin Miller primality test. However, we will cover the
Rabin–Miller test in the chapter on primality testing. This applet also allows you to gener-
ate what are called safe primes, suitable for other types of cryptosystems. The PrimeGen-
erator class has a getSafePrimeAndGenerator() method, and a getSafePrime() method. Look
in the chapter on exponential congruences for the definitions of safe prime, and generator.

There are other properties a prime may have that would make it vulnerable to certain fac-
toring algorithms; see the chapter on factorization techniques for more information.

Square Root Problem The Chinese Remainder Theorem can help an adversary if
Rabin is used to send the same message to multiple entities. Suppose someone wants to

10.3 Strong Primes 195

send the same message P to 2 entities, having moduli n, and n*. They would compute the
lnr’s of

C � P2 (mod n)

C* � P2 (mod n*).

Since it is very likely that these 2 moduli are pairwise relatively prime, one can easily
compute a simultaneous solution modulo M = n � n* for x to the set of congruences

x � C (mod n)

x � C* (mod n*).

Since P2 < n � n*, by CRT we must have x = P2. Thus, by merely taking the normal pos-
itive square root of x, one can obtain P.

EXAMPLE. In this example, we will use parameters which would be feasible in actual prac-
tice. I think this is important for examples in cryptanalysis, to give you an idea of the scope
of the problem. Suppose we wish to send the message

m =
327562836508236509237590237590823750923875098275908237590827359082375908
723095873209875093285790328750932875093248750983275098327509832759082375
098370957309287509328750923858723658972365892365930275094327590342857326
589726598235698236598235689265892365095780936723985689236598236598236598
236598236598256982569823569826539823659826985273209568923658923793286598
2365982365987263986598236589726895698236598236598723658972

to two different entities using Rabin. The first entity uses the public modulus

n =
646340121426220146014297533773399039208882053394309680642606908550493102
777357817863944028230458269273774359218437960389882391183009818421901763
047728965662412617547346019921835003955007793042135921152767681351365535
844372852395123236761886769523409411632917040726100857751517830821316172
151047982478607716803918058340827477683169176315227971638380003141234015
213715286981934574126958310812212353843734392842382104560615275941849712
736764525520559801471208444488841303619868703237828364738114662819239227
238184943188233259835607113670605755573747578481214665113626049865412769
43834825366579731809108470421496863793133,

and the second uses the modulus

n* =
827315355425561786898300843229950770187369028344716391222536842944631171
555018006865848356134986584670431179799600589299049460714252567580034256
701093076047888150460602905499948805062409975093933979075542632129747885

196 Chapter 10 Quadratic Ciphers

880797251065757743055215064989964046890133812129409097921942823451284700
353341417572617870433870197661339699702384692398942940091526767537122407
294622549228222879740566332018250812637451109162228995890265099106862175
129783360538190048124955153727405933205488194213497935668384446131585719
769748108125895563260802289655241774630887967226547180792062432701705774
9253168131337219010124364276404953144761357.

To compute the ciphertext C � m2 (mod n) for the first entity, we obtain

C =
633117525812174963141726511411569613510692954921413433904834216758854296
633124876624725803389226024659872532640785232933916621224271521661591779
805056806132874825319189837524810853175640040181499810175228697753511769
733199644184786773309701377090720855844334771741032864292654831554262834
830106099159752454122074338825214233151941406426968586422774039868803500
958440877983431882318911204475101540253926424708618519209984525553968321
269537413569633044293116969006410634311794364957784418800457585030758560
064753995190942293115578955198138212298271399040518748965782046565242764
02217687340373577434217196605168494458628,

and we apply the transformation C* � m2 (mod n*) to obtain the ciphertext for the second
entity:

C* =
394135248113853837239995785378155119660436161585799942724612487297884404
632745939484613684148169252487434528179060956986090118025870479973165415
807243287982752578261206149474414115340822662855315835762700720048234558
712444543617330299373057364169102752460252141023980586511691405908268083
588138459388456857535076380649491418151420595527403167925459720523465715
021500179306273478205638799251490159856470610252397459099946884001280830
252629399799543352087268619877293435351018907962347103035620025259332348
275482523386757262089321203787452631835007817304852012889299139015826664
7501363641100908149923744524224707388555291.

An eavesdropper captures both messages C and C*, and knows their plaintext equivalents
are the same. He has access to the public moduli n, and n*, so he simply needs to find the
simultaneous solution x to

x � C (mod n)

x � C* (mod n*).

CRT tells him exactly how to compute this solution; it is

x � Cn*(n*)� + C*nn� (mod n � n*)

where (n*)� is an inverse of n* modulo n, and n� is an inverse of n modulo n*. Both of these
values are easily computable using the extended Euclidean algorithm. The values he obtains
for n� and (n*)� are

10.3 Strong Primes 197

n� =
103263461981882861062786663752777462175094289042793826073777660932064239
421442774128148179956149383630351472101383901416222437739428120537496844
245199079442668017154702976062842089841568938071479001427994543188554221
115276088728567455684565042964557431421107222436249019878609266108175858
124361197755381114937973572181548712613409747227913581319056985394852398
084487124970716064947426472124245378223284977468290053203588152259348515
625046935987244280800174540272797917758248171254341207690298062481216167
528333934836121894789925388081585752480608066799998740549915224135659234
5912472109440411430331086757929071611556082,

and

(n*)� =
565665541752874160808995452716541646884589640079627004022468110947317915
729355650576328262639716563312562271639231787408458611699081599251982353
481167184847828229145234319872739621266282060173792951287146944485307550
598063408075929912008320329707348918335177023197781310971354341674303782
991390796732216220068702660726645223525825601204462280782794956836356123
348142830696396398621571457726481064542977798874551230913235978372189710
059519841017844537104921977286499738353103100370267565323698898530108734
170588312885569924743018308407355426370867568374322691255471122749516099
67399232498190089468651608956593592819968.

He then combines these values using the CRT formula to obtain

m2 � x �
107297411861321680907514861384339217765295082808206114325123089381136015
524701635341161871377007555148580336419555532871152609983017836612563487
591327437743663832845605641026043394022012578434187301314894547456727730
257625586451817991411251446477064513852860540591300380302198128398350095
008517337820821682833970271741889770829366774041010862939865154136215583
576547154338003222682025233175666362486458726928146033065226496988099344
946501245683372299902380475067363053365780390691996437208014464278584234
314944962513348436839550335887834620312109611730644090035255616166589958
290436903597929892282050969055549903864227200176485400546369403199956019
817111464120200227052607334143654876555969639885312017068888815665743235
084504551643813143206463824739078205795097842594282570823541551058657452
56509992538572757424398951566596819756096784 (mod n � n*).

Since he knows m2 is less than n � n*, x must in fact equal m2 (rather than some residue
of m2). He merely needs to compute the positive square root of x to regain the plaintext:

m = √x =
327562836508236509237590237590823750923875098275908237590827359082375908
723095873209875093285790328750932875093248750983275098327509832759082375
098370957309287509328750923858723658972365892365930275094327590342857326

198 Chapter 10 Quadratic Ciphers

589726598235698236598235689265892365095780936723985689236598236598236598
236598236598256982569823569826539823659826985273209568923658923793286598
2365982365987263986598236589726895698236598236598723658972.

Note that nowhere did the eavesdropper have to use any private information of either of
the intended recipients! You will be asked to program this attack in Java.

A similar situation to the repeated message problem occurs if the message P is small
when compared to a modulus n. For, in this case, it may turn out that P2 is still less than n.
Thus, the ciphertext C = P2, and one can derive the plaintext P by simply taking the posi-
tive square root of C.

EXAMPLE. Suppose we want to send the message

P =
239018479210648921764876589475621934521754012450100521345271645216354721
645782153478215784521784587216547821547264765686587157161289768792648947
56345234

to someone using Rabin. Their public modulus is

n =
646340121426220146014297533773399039208882053394309680642606908550493102
777357817863944028230458269273774359218437960389882391183009818421901763
047728965662412617547346019921835003955007793042135921152767681351365535
844372852395123236761886769523409411632917040726100857751517830821316172
151047982478607716803918058340827477683169176315227971638380003141234015
213715286981934574126958310812212353843734392842382104560615275941849712
736764525520559801471208444488841303619868703237828364738114662819239227
238184943188233259835607113670605755573747578481214665113626049865412769
43834825366579731809108470421496863793133.

By applying the enciphering transformation, we obtain the ciphertext

C = P2 =
571298334041714108108345643190462228642901026856795346055535425667278441
850934824793736487150968102492632521428140126182308141623561315311127797
093705545511982088097169004995193640628781309718698309201990365156015487
814518004431530143866988010770332236034011312080519927953939004687628572
888504994514756.

The ciphertext is still smaller than the modulus; thus, all one needs to do is take the
square root of the ciphertext message to derive P:

P = √C =
239018479210648921764876589475621934521754012450100521345271645216354721

10.4 Salt 199

645782153478215784521784587216547821547264765686587157161289768792648947
56345234.

A remedy to this problem, called salt, is described shortly.

Forward Search Attack This attack is useful when the number of possible messages
is small or predictable in some way. If this is the case, an adversary simply needs to encrypt
all suspected messages (using public information) until a result is obtained that matches
some ciphertext.

10.4 SALT

Salt simply refers to adding random data to the end of each block. This helps solve certain
problems; in the case of the Rabin cipher, it certainly foils the forward search attack, as the
messages are no longer predictable. It also solves the square root problem for small mes-
sages, if enough salt is used. To solve the square root problem posed by using the Chinese
Remainder Theorem, we simply salt each block of each message differently (randomly)
every time the message is sent. Thus, no 2 entities will receive the same message because
of the random data tagged on the end. One who has the decrypting keys knows how much
salt has been added (this is agreed on beforehand), and so removes it after decryption. At
current levels of computing power, at least 64 bits of salt should be used (per block).

EXAMPLE. To foil a small message attack, we will add some salt to the small message in the
previous example. We will encipher using the same modulus.

P =
239018479210648921764876589475621934521754012450100521345271645216354721
645782153478215784521784587216547821547264765686587157161289768792648947
563452343204985729038750923487509238750932759063428568293658792658926502
345732904573029875903245790234592437590279023457902709270927908270927309
827032198749812648917264891276489127648912764982136489721634897126984621
8946.

By applying the enciphering transformation, we now obtain the ciphertext

P2 � C �
362553151149932290693370397428556816309612860797213471999021301363970532
507759737177005742323020709244386843096963830437628218686278812350788061
965619398198903437544832410128148805922800361293406046652128918390329775
694836555904101302789331938629983720911345280340650671106530527991109007
492490780768265310413373267274165164009328331195722273832191470040406895
818936053712468645971674045864005833135144807356844179852541177298341854
811520524357320450008042254589982743442715951668881225417413416712356390
000533491929103491130866508303679188401345886873831467662712090878394709
91344857388135329931312052597944482054859 (mod n).

200 Chapter 10 Quadratic Ciphers

FIGURE 10.2
Repeat first 4 bytes

H I !

H I ! H O W

FIGURE 10.3
Random Data

$ % &@

H I ! H I !

FIGURE 10.4

Salt
4 Redundancy

4

263 bytes

Message + Padding
255

The plaintext is now large enough so that when squared modulo n, we obtain a residue
different from P2. An attacker is now forced to compute the modular square root.

Java Algorithm I have written methods to encrypt and decrypt using Rabin. To ensure
only the correct message is returned out of the four possible roots obtained in the decryp-
tion phase, I add 4 bytes of redundancy to the beginning of each block; that is, before a
block is encrypted, the first 4 bytes of the blocks are repeated at the front. (See Figure 10.2.)

Then, to protect against attacks commonly used on Rabin ciphers, I add 4 bytes of salt
to the head of each block before encrypting it. This means a different ciphertext will be pro-
duced each time the message is encrypted. (See Figure 10.3.)

Of course, after decrypting, the receiver knows these bytes are simply random data, and
throws them out.

I also use PKCS#5 padding, and so that the addition of redundancy and salt does not
further restrict the block size, I do not include it in the padding. Thus, the maximum plain-
text block size (including salt and redundancy) is 255 + 8 = 263 bytes. (See Figure 10.4.)

10.4 Salt 201

public class Ciphers {

public static byte[] rabinEncipherWSalt(byte[] msg,BigInteger n,SecureRandom sr)
{

//Compute the plaintext block size-take 4 bytes salt and 4 bytes redundancy
//into account
int blockSize=(n.bitLength()-1)/8;
if (blockSize<12) throw new IllegalArgumentException

(“Block size must be >= 12 bytes”);
byte[][] ba=block(pad(msg,blockSize-8),blockSize-8);
//Begin the enciphering
for (int i=0;i<ba.length;i++) {

ba[i]=addRedundancyAndSalt(ba[i],sr);
ba[i]=getBytes(new BigInteger(1,ba[i]).modPow(BigIntegerMath.TWO,n));

}
//Return to a 1D array. The ciphertext block size is one byte greater than
//plaintext block size.
return unBlock(ba,blockSize+1);

}

public static byte[] rabinDecipherWSalt(byte[] msg,BigInteger p,BigInteger q) {
//Compute inverse of p mod q, and of q mod p
BigInteger n=p.multiply(q);
BigInteger pinv=p.modInverse(q);
BigInteger qinv=q.modInverse(p);
BigInteger pexp=(p.add(BigIntegerMath.ONE)).divide(BigIntegerMath.FOUR);
BigInteger qexp=(q.add(BigIntegerMath.ONE)).divide(BigIntegerMath.FOUR);
//Compute the ciphertext block size
int blockSize=(n.bitLength()-1)/8+1;
byte[][] ba=block(msg,blockSize);
//Begin the deciphering
for (int i=0;i<ba.length;i++) {

//Get the four roots
BigInteger term1=new BigInteger(1,ba[i])

.modPow(pexp,n).multiply(q).multiply(qinv);
BigInteger term2=new BigInteger(1,ba[i]).

modPow(qexp,n).multiply(p).multiply(pinv);
byte[][] msgroot=new byte[4][0];
BigInteger sum=term1.add(term2);
BigInteger difference=term1.subtract(term2);
msgroot[0]=getBytes(BigIntegerMath.lnr(sum,n));
msgroot[1]=getBytes(BigIntegerMath.lnr(sum.negate(),n));
msgroot[2]=getBytes(BigIntegerMath.lnr(difference,n));
msgroot[3]=getBytes(BigIntegerMath.lnr(difference.negate(),n));
boolean[] isCorrectRoot=new boolean[4];
for (int k=0;k<4;k++) {

isCorrectRoot[k]=true;

202 Chapter 10 Quadratic Ciphers

for (int j=4;j<8;j++) if (msgroot[k][j]!=msgroot[k][j+4]) {
isCorrectRoot[k]=false;
break;

}
}
boolean correctFound=false;
for (int k=0;k<4;k++) if (isCorrectRoot[k]) {

if (!correctFound) {
correctFound=true;
ba[i]=msgroot[k];

} else {
ba[i]=null;
throw new IllegalArgumentException

(“Multiple messages satisfied redundancy requirement!”);
}

}
if (!correctFound) throw new NoSuchElementException

(“No message satisfied redundancy requirement!”);
ba[i]=removeRedundancyAndSalt(ba[i]);

}
//Go from blocks to a 1D array, and remove padding; return this
return unPad(unBlock(ba,blockSize-9),blockSize-9);

}

//Method to add redundancy and salt to blocks using Rabin
private static byte[] addRedundancyAndSalt(byte[] b,SecureRandom random) {

byte[] answer=new byte[b.length+8];
byte[] salt=new byte[4];
random.nextBytes(salt);
//Put salt in front
System.arraycopy(salt,0,answer,0,4);
//Follow with 1st 4 bytes of message-redundancy
System.arraycopy(b,0,answer,4,4);
//Copy the message over
System.arraycopy(b,0,answer,8,b.length);
return answer;

}

private static byte[] removeRedundancyAndSalt(byte[] b) {
byte[] answer=new byte[b.length-8];
//Copy the message over
System.arraycopy(b,8,answer,0,answer.length);
return answer;

}

//Other methods. . .

}

10.4 Salt 203

Following is an applet called TestRabinCipherApplet, which demonstrates the Rabin
cipher. It can be found on, and run from, the book’s website. (See Figure 10.5.) The applet
requests you to enter a desired size for the modulus. Two strong primes are found, and the
modulus is their product.

FIGURE 10.5

204 Chapter 10 Quadratic Ciphers

TABLE 10.1 x y x � y

0 0 0
0 1 1
1 0 1
1 1 0

You first type a plaintext message in the plaintext area, then click a button to encipher.
Clicking this button again regains the plaintext. If you encipher again, you will see that an
entirely different ciphertext is generated. This is, of course, because salt is used.

Take note of the block sizes with Rabin; that is, the ciphertext block size is one byte
greater than the plaintext block size. Why? This is easy to see if you recall that the message
(as an integer) in a block must be less than the modulus. Suppose, for example, that the
modulus (as a binary integer) is 26 bits long. We would then choose the plaintext block size
as the largest byte smaller than 26 bits, or 3 bytes. However, once the encryption takes place
on this block, it may produce a number as long as 26 bits (certainly greater than 3 bytes) in
length; thus, the ciphertext block size needs to be one byte greater than the plaintext block
size, or in this case, 4 bytes.

Static Ciphers The Rabin cipher, like many other block ciphers, has a weakness in that
it always maps the same plaintext to the same ciphertext. We call these ciphers memoryless,
or static. Common plaintext in these cryptosystems can expose itself by appearing often
(encrypted) in the ciphertext. When a block cipher is being used in this way, we say it is run-
ning in electronic code book, or ECB, mode.

A solution to this is to modify these ciphers so that a particular plaintext maps to differ-
ent ciphertexts, usually depending on its position in the data. When a cipher is modified to
behave this way, it is called a stream cipher. There are many ways to do this; the standard
method for public key ciphers is called chaining.

10.5 CIPHER BLOCK CHAINING (CBC)

Cipher block chaining refers to a method of enhancing block enciphering. It employs a
mask using exclusive–or at the bit level. You should be familiar with how an exclusive–or
works, but we will review it here in Table 10.1. Suppose x and y are bits, and we represent
the exclusive–or operation with the symbol �.

One should note that the � operation is commutative, and reversible, in the sense that if
x, y, and z are bits, then

z = x � y iff x = y � z iff y = x � z.

EXAMPLE. Suppose x = 0, and y = 1. Then z = x � y = 0 � 1 = 1. We can recover x by tak-
ing z � y = 1 � 1 = 0 = x. It should be clear to you that this is possible no matter what val-
ues are used for x and y. For completeness, all possible values are in the Table 10.2; note
that the appropriate columns match.

10.5 Cipher Block Chaining (CBC) 205

TABLE 10.2

We will also use the � operator to denote the exclusive–or operation on quantities larger
than a bit; for example, if X = x0x1 . . . xn, Y = y0y1 . . . yn are two bit sequences of length n,
then

X � Y

denotes

xi � yi i = 0, 1, 2, . . . , n.

Now we can describe CBC, which uses exclusive–or in its operation. It can be used with
any block cipher to change how enciphering is done. This is how it works:

Before the first plaintext block P1 is enciphered, it is �-ed with a block of random bits
called an initialization vector, or IV. The IV does not need to be secret. The result of this plus
operation is then enciphered; this produces the first ciphertext block C1.

C1 = E(P1 � IV)

We do not specify which block enciphering transformation to use, because it doesn’t
matter; CBC is intended to work with any block cipher.

Subsequent plaintext blocks are �-ed with the previous ciphertext block, then enciphered
to produce the next ciphertext block. That is,

C2 = E(P2 � C1)

C3 = E(P3 � C2)

�

Cn = E(Pn � Cn�1)

It should be clear to anyone that this avoids the problem of identical plaintext blocks
always mapping to the same ciphertext blocks, for any particular block will be enciphered
differently depending on whether it is first, second, . . . , or last.

Since � is reversible, and since enciphering transformations are intended to be reversible,
we can recover the plaintext by simply doing what we did earlier in reverse. To decrypt the

x y

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

y z+ x z+ yz=x +

206 Chapter 10 Quadratic Ciphers

FIGURE 10.6

FIGURE 10.7

first ciphertext block, we run it through the deciphering transformation, then � it with the
IV; this yields the first plaintext block P1 = D(C1) � IV, since

D(C1) � IV

= D(E(P1 � IV)) � IV

= P1 � IV � IV

= P1 � 0

= P1

We can then regain each subsequent plaintext block Pi, because we just use the decryp-
tion transformation, and the previous ciphertext block Ci�1,

D(C2) � C1 = D(E(P2 � C1) � C1 = P2 � C1 � C1 = P2 � 0 = P2

D(C3) � C2 = P3

�

D(Cn) � Cn�1 = Pn

Figure 10.6 shows a diagram showing CBC encryption:
It should be clear that by reversing this operation, decryption coupled with CBC regains

the plaintext. (See Figure 10.7.)

Cipher Block Chaining - CBC

E = enciphering transformation
+ = exclusive–or

IV = initialization vector
P(i) = i-th plaintext block
C(i) = i-th ciphertext block

+

C(0) = IV

P(i)

C(i–1) E C(i)

Cipher Block Chaining - CBC

E' = deciphering transformation
+ = exclusive–or

IV = initialization vector
P(i) = i-th plaintext block
C(i) = i-th ciphertext block

+

C(0) = IV

P(i)

C(i–1) E' C(i)

10.5 Cipher Block Chaining (CBC) 207

EXAMPLE. For simplicity’s sake, we’ll do an example of CBC using a simple shift Vigenere
cipher with a block size of one byte. Since we are using a bitwise operation (namely, exclu-
sive–or), we will be mapping bytes. Some numbers will be in base 2.

The plaintext message is

p = I LOVE YOU = [73, 76, 79, 86, 69, 89, 79, 85] = [01001001, 01001100, 01001111,
01010110, 01000101, 01011001, 01001111, 01010101].

(The last quantity is the binary representation.) The key is

k = CROAK = [67, 82, 79, 65, 75] =

[01000011, 01010010, 01001111, 01000001, 01001011],

and the initialization vector is one byte long, given in binary by

iv = 10110010.

(Throughout the rest of this example, all numbers will be represented in binary.) The first
ciphertext block is enciphered as

c1 = E(p1 � iv)

= E(01001001 � 10110010)

= E(11111011)

� 11111011 + 01000011 (mod 100000000)

� 00111110 (mod 100000000)

where we represent the enciphering transformation as E. The resulting ciphertext block is
used as input for enciphering the next ciphertext block. This yields

c2 = E(p2 � c1)

= E(01001100 � 00111110)

= E(01110010)

� 01110010 + 01010010 (mod 100000000)

� 11000100 (mod 100000000).

The enciphering continues, with each block’s value dependent on the previous ciphertext
block.

c3 = 11011010

c4 = 11001101

c5 = 11010011

c6 = 11001101

c7 = 11010100

c8 = 11010000

208 Chapter 10 Quadratic Ciphers

Some ciphers do not need to use chaining, for they are already stream ciphers. The fol-
lowing public key cipher is a perfect example.

10.6 BLUM–GOLDWASSER PROBABILISTIC CIPHER

This is another public key cipher based on quadratic congruences, which uses a mask at the
bit level with an exclusive–or operation. This cipher qualifies as a stream cipher, which
encrypts the same block differently depending on its position in the plaintext. Note that
Rabin and most of the other block ciphers presented thus far do not have this property; that
is, they always map a particular plaintext to the same ciphertext, unless we employ some
type of chaining.

To generate keys for Blum–Goldwasser, one must choose two large primes, p and q, both
congruent to 3 modulo 4, and let n = pq. At current levels of computing power, n should be
at least 1024 bits in length. Then, using the extended Euclidean algorithm, find two integers
a and b such that

ap + bq = 1.

The public key is the integer n, and the private key is the 4 values a, b, p, and q.
To encrypt a message (anyone can do this with the public key n), one does the follow-

ing.

1. Let k be the largest integer not exceeding log2n, and let h be the largest integer not exceed-
ing log2k. Represent the plaintext message P as an array m1m2 . . . mt of length t where
each mi is a binary number of length h.

2. Select a random square x0 modulo n. One can do this by selecting a random integer r
between 1 and n � 1, then setting

x0 � r2 (mod n) (0 < x0 < n)

3. Now, for i = 1 to t (in order) do

• Let xi � xi�1
2 (mod n) (0 < xi < n)

• Let pi be the h least significant bits of xi.

• Let ci = pi � mi.

4. Compute xt�1 � xt
2 (mod n) (0 < xt�1 < n)

5. Send the ciphertext message C = c1c2 . . . ct and the integer xt�1.

Note that only knowledge of n is required to encrypt. Now, to decrypt, the individual
possessing the private key values a, b, p, and q proceeds as follows.

1. Let d � ((p + 1)/4)t�1 (mod p � 1) (0 ≤ d < p � 1)

2. Let e � ((q + 1)/4)t�1 (mod q � 1) (0 ≤ e < q � 1)

3. Let u � xt�1
d (mod p) (0 ≤ u < p)

4. Let v � xt�1
e (mod q) (0 ≤ v < q)

5. Retrieve x0 by taking x0 � vap + ubq (mod n) (0 < x0 < n)

10.6 Blum–Goldwasser Probabilistic Cipher 209

6. Now, for i from 1 to t do:

• Let xi � xi�1
2 (mod n) (0 < xi < n)

• Let pi be the h least significant bits of xi.

• Compute mi = pi � ci.

and the plaintext message P = m1m2 . . . mt is regained.

Why does this scheme work? In particular, how does the recipient retrieve the random
value x0 chosen by the sender? Decryption hinges on this, for once the receiver computes
x0, she can compute each successive xi, and consequently compute each mi = pi � ci. First,
observe that since xt is a square modulo n, that is, xt � xt�1

2 (mod n), has a solution, then
xt � xt�1

2 (mod p) also has a solution (see the proof of proposition 31). Thus, we have

xt
(p�1)/2 � 1 (mod p).

(This is called Euler’s criterion; you were asked to prove this in order to prove proposition
30). Given this, note that

xt�1
(p�1)/4 � (xt

2)(p�1)/4 � xt
(p�1)/2 = xt

(p�1)/2+1 � xt
(p�1)/2xt � xt (mod p)

In the same way, xt
(p�1)/4 � xt�1 (mod p) and hence

(xt�1
(p�1)/4)2 � xt�1 (mod p).

Continuing in this way, we obtain

u � xt�1
d � (xt�1

(p�1)/4)t�1 � x0 (mod p).

We obtain a similar result for v:

v � xt�1
e � (xt�1

(q�1)/4)t�1 � x0 (mod q).

Note that we have not yet obtained x0; only 2 residues of x0 congruent to u and v mod-
ulo p and q, respectively. We need the lnr of x0 modulo n, for this is x0 itself. To achieve this,
we note that since

ap + bq = 1

we have both of the following:

bq � 1 (mod p)

ap � 1 (mod q).

Thus, using the above two congruences, we derive the two congruences

vap + ubq � x0 (mod p)

vap + ubq � x0 (mod q)

and hence, by proposition 26, we know that

vap + ubq � x0 (mod n)

and hence the random seed x0 is discovered, making decryption possible.

210 Chapter 10 Quadratic Ciphers

Since the intended recipient is the only one with knowledge of a, b, p, and q, she should
be the only individual able to compute x0. For without these values, it appears necessary to
obtain x0 by computing the sequence xt, . . . , x2, x1 by taking successive square roots mod-
ulo n beginning with xt�1. As we have mentioned, this is an intractable problem without
knowledge of the prime factors of n.

Why is this called a “probabilistic” cipher? It has to do with the apparent “randomness”
of successive squares modulo n. Note that encryption is done by taking successive squares
modulo n, and “masking” (via �) the h least significant bits of the ith square with the ith
plaintext unit. This produces a ciphertext that appears random, in the same sense that squares
modulo n appear random. That is, if we could examine a square modulo n and notice some
pattern in its binary digits, we could use this information to help us find the square root
modulo n. We know of no other way to find solutions to quadratic congruences modulo n
without factoring n into its prime factors; thus, a square modulo n looks merely like random
data.

EXAMPLE. We will do an example of this type of encryption using small values for p and q;
in practice we would use primes hundreds of digits long. Say the recipient chooses two
primes, p = 503, and q = 563. (Note that both p and q are congruent to 3 modulo 4). Using
the extended Euclidean algorithm, she computes two values a and b such that ap + bq = 1.
These are a = �122, and b = 109. She computes n = pq = 503 � 563 = 283189, and makes
public the value of n.

Now suppose someone wishes to send the message (seen as a binary integer)

P = 10011100001011111010

to this recipient. He knows the value n = 283189, and so uses it to select a random square
x0 = 258507 � 7362 (mod 283189). (The value 736 was chosen randomly.) Now, to block
the message, he computes log2n � 18.11140570189, and so chooses k = 18. He then com-
putes log2k � 4.169925001442, and then chooses h = 4. (Note the recipient can also com-
pute these values, so she also knows the appropriate block size.) He then splits the message
up into 4 bit blocks, to get

m1 = 1001

m2 = 1100

m3 = 0010

m4 = 1111

m5 = 1010.

Now he must compute the successive squares x1, x2, x3, x4, x5 modulo n, and mask (via
�) the h least significant bits of the ith square with the ith plaintext unit to get the ith cipher-
text unit. We show this in Table 10.3.

Finally, the sender must compute x6 � x5
2 � 67738 (mod n). He then sends to the recip-

ient the ciphertext message

C = (1000, 1101, 0001, 1010, 0100, 67738).

10.7 Weaknesses of the Blum–Goldwasser Probabilistic Cipher 211

TABLE 10.3

TABLE 10.4

To decrypt the message, the recipient must retrieve the random seed that the sender chose.
Then she can compute the same sequence of squares x1, x2, x3, x4, x5 and retrieve the plain-
text by �-ing the 4 least significant bits of the squares with the ciphertext. She does this by
computing

d � ((503 + 1)/4)6 � 302 (mod 502)

e � ((563 + 1)/4)6 � 101 (mod 562)

u � 67738302 � 468 (mod 503)

v � 67738101 � 90 (mod 563).

Finally, she obtains x0, the lnr of vap + ubq modulo n.

x0 � 90 � �122 � 503 + 468 � 109 � 563 � 258507 (mod 283189)

For completeness, Table 10.4 shows the recovery process.
Thus, the plaintext P = 1001 1100 0010 1111 1010 is regained.

10.7 WEAKNESSES OF THE BLUM–GOLDWASSER PROBABILISTIC
CIPHER
This cipher can be broken if the following weaknesses are not dealt with. First, the primes
must be chosen carefully; for example, we must avoid primes p for which the factorization

i

1

2

3

4

5

61585

245137

9347

144197

188862

1111000010010001

111011110110010001

10010010000011

100011001101000101

101110000110111110

1001

1100

0010

1111

1010

1000

1101

0001

1010

0100

0001

0001

0011

0101

1110

xi xi (in binary) pi mi mici=pi +

i

1

2

3

4

5

61585

245137

9347

144197

188862

1111000010010001

111011110110010001

10010010000011

100011001101000101

101110000110111110

1000

1101

0001

1010

0100

1001

1100

0010

1111

1010

0001

0001

0011

0101

1110

xi xi (in binary) pi ci cimi=pi +

212 Chapter 10 Quadratic Ciphers

of p � 1 consists entirely of small factors. Also, as with Rabin, Blum–Goldwasser is vul-
nerable to a chosen ciphertext attack. You should consider how such an attack may be posed.

EXERCISES

1. Use Rabin to encipher the following messages:

a. TORPEDO AWAY

b. FIRE AT WILL

c. WILL GONE BELAY MY LAST

Use p = 11027, q = 10859, and the ordinary alphabet. Use a tagging scheme for the sake
of decryption. Block and pad as necessary, but do not use salt. Then decipher.

2. Explain how Blum–Goldwasser probabilistic encryption is vulnerable to a chosen
ciphertext attack.

3. Write a Java program to execute a chosen ciphertext attack on Rabin.

4. Write a Java program to execute a square root attack on an unsalted enciphered mes-
sage sent to multiple recipients using the Rabin transformation.

5. Write a rabinEncipherWCBC() method and a rabinDecipherWCBC() method for the
Ciphers class.

6. Write enciphering and deciphering methods for the Blum–Goldwasser cipher.

C H A P T E R 11
Primality Testing

213

Note that we are now using cryptosystems that require us to find and use large prime
numbers. How do we find large prime numbers? Do we pick a large random odd inte-

ger and try to factor it? No. Factoring takes a lot of time, and is not a good way of deter-
mining whether or not an integer is prime. In fact, this is exactly what makes the Rabin
cipher and others like it secure. If factoring the public key n was not extremely difficult, any-
one could factor n and obtain the private key values p and q (the factors of n). You may have
assumed that attempted factoring is the only way to determine whether or not a number is
prime. It isn’t. We develop alternative methods to do this now.

First recall Fermat’s Little Theorem (FLT): If p is prime and p � a, ap�1 � 1 (mod p). (Note
that the contrapositive of FLT says that if ap�1 � 1 (mod p), p must be composite.) What about
the converse of FLT? That is, if ap�1 � 1 (mod p), can we conclude that p is prime? Sur-
prisingly, this is often true. We can see this if we raise 2 to some integer powers, as shown
in Table 11.1.

It appears that when n is prime, we always get a value congruent to 1, and when n is
composite, we get a value not congruent to 1. However, this doesn’t always hold. There are
composite integers n for which 2n�1 � 1 (mod n). Take the composite number 341 = 11 � 31.
When we raise 2 to the 340 power, we get a least nonnegative residue of 1 modulo 341. (Ver-
ify.) If the converse of FLT were true, we could conclude that 341 is prime; but it obviously
isn’t, so the converse of FLT is not true.

There isn’t anything special about the choice of 2 as our base, so we might want to sim-
ply try another base. For example, we apply “Fermat’s test” on 341 using 3 as the base. We
get

3340 � 56 (mod 341).

This establishes immediately that 341 is composite. So, we might think we can get around
the failure of Fermat’s test by just trying different bases modulo n until we either

1. Obtain a least nonnegative residue not equal to 1, and conclude that n is composite.

2. Do not obtain a residue congruent to 1 modulo n after many tries with different bases,
and conclude that n is probably prime since we can’t prove it isn’t using this test.

214 Chapter 11 Primality Testing

TABLE 11.1

This isn’t a bad idea, actually, if it weren’t for the existence of Carmichael numbers;
these are very rare composite integers that fool Fermat’s test for any base b relatively prime
to n. The integer 561 = 3 � 11 � 17 is a Carmichael number, and we can prove it in this way:
Take any base b relatively prime to 561; so (b, 3) = (b, 11) = (b, 17) = 1. FLT tells us then
that b2 � 1 (mod 3), b10 � 1 (mod 11), and b16 � 1 (mod 17). This tells us then that

b560 = (b2)280 � 1 (mod 3),

b560 = (b10)56 � 1 (mod 11), and

b560 = (b16)35 � 1 (mod 17).

Proposition 26 now implies that b560 � 1 (mod 561) for any base b such that (b, 561) =
1, and so 561 is a Carmichael number.

Though Carmichael numbers are very rare (much rarer than primes), there are still infi-
nitely many of them. However, we will not prove this. The fact that they exist at all is enough
to avoid using Fermat’s test for primality, especially when we can develop better tests which
Carmichael numbers cannot fool. An example of such a test is Miller’s test. Miller’s test is
based on Fermat’s test, but carries it a bit further. In order to prove that it works, we will need
the following, which you should easily be able to prove.

PROPOSITION 34 Let p be prime, and suppose x2 � 1 (mod p). Then x � 1 (mod p)
or x � �1 (mod p).

Proposition 34 says the only square roots of 1 modulo a prime are 1 and �1. This fact
will be immensely helpful. Now we can discuss Miller’s test, which is based on proposition
34.

n 2n–1 ≡ x(mod n)

3

4

5

6

7

8

9

10

11

22 ≡ 1 (mod 3)

23 ≡ 0 (mod 4)

24 ≡ 1 (mod 5)

25 ≡ 2 (mod 6)

26 ≡ 1 (mod 7)

27 ≡ 0 (mod 8)

28 ≡ 4 (mod 9)

29 ≡ 2 (mod 10)

210 ≡ 1 (mod 11)

Yes

No

Yes

No

Yes

No

No

No

Yes

Is n prime?

11.1 Miller’s Test 215

11.1 MILLER’S TEST

Definition (Miller’s Test.)
Let n be a positive integer with n � 1 = 2st where s is a nonnegative integer, and t is an
odd positive integer. We say that n passes Miller’s test for the base b if either bt � 1 (mod
n) or bkt � �1 (mod n) for some k = 2j, 0 ≤ j ≤ s � 1.

Let’s discuss in detail how Miller’s test works. Suppose you are testing the integer n for
primality, and obtain bn�1 � 1 (mod n). This doesn’t tell you if n is prime or not, so consider
the quantity y = (n � 1)/2, and evaluate x � by (mod n). If n is prime we must have x � 1
(mod n), or x � �1 (mod n), since x2 = x � x = (b(n�1)/2)(b(n�1)/2) = b(n�1) � 1 (mod n) by Fer-
mat’s Little Theorem, and Proposition 34 says the only square roots of 1 modulo a prime
are 1 and �1. So, when we compute x we have the following cases to consider:

1. x is congruent to neither 1 nor �1 modulo n. In this case, x has a square root that is con-
gruent to neither 1 nor �1; hence n cannot be prime by Proposition 34 and so fails the
test.

2. x � �1 (mod n). This case says that n may be prime. We can go no further with the test
once we obtain a residue of �1, so we conclude that n passes the test.

3. x � 1 (mod n) This also says that n may be prime, and furthermore we can continue to
test n for primality in this way:

a. If 2|y, divide y by 2 (again) and evaluate x � by (mod n). Then consider as before the
three cases above.

b. If y is not divisible by 2, the last value for x was congruent to 1 modulo n. We can go
no further with the test, and conclude that n passes the test for primality.

Note that the previous procedure must eventually terminate, since

• we must eventually obtain a residue not equal to 1, or

• during each iteration we divide the value of y in half, and at some point y must fail to be
divisible by 2.

It should be clear to you that if you run a prime number through Miller’s test, it will
pass.

PROPOSITION 35 If n is prime and b is a positive integer such that n � b, then n passes
Miller’s test for the base b.

Proof. If n is prime in the algorithm described above, you must eventually

1. Obtain a value for x � �1 (mod n), or

216 Chapter 11 Primality Testing

TABLE 11.2]}

TABLE 11.4]}

TABLE 11.3]}

2. Fail to be able to divide y by 2 any further

Either way, the prime n passes the test. At no point can you generate a square root of 1
that is congruent to neither 1 nor �1 modulo n, for this is demanded by Proposition 34. �

EXAMPLES.
1. Take the prime n = 29 and a base b = 5; we will see that n passes Miller’s test. Start with

the exponent y = (n � 1)/2 = (29 � 1)/2 = 14 and compute 514 � 1 (mod 29). So far, this
is a pass; divide y by 2 to get y = 7 and compute 57 � 28 � �1 (mod 29). This is also a
pass, and we can continue no further since we obtained a residue of �1. (Had we obtained
a residue of 1, we still could not have proceeded since y cannot be halved any further;
regardless, n = 7 passes Miller’s test for the base 5.)

2. Take the prime n = 257, and the base b = 22, and note the progression of Miller’s test in
Table 11.2.

3. We repeat the above test for n = 257, but using a different base b = 17. (See Table 11.3.)

4. We repeat the test one more time for n = 257, but using a base b = 4. (See Table 11.4.)

Exponent y 22y ≡ ?(mod 257)

128

64

32

1

1

–1

Pass–continue

Pass–continue

Pass–STOP

Conclusion

Exponent y 17y ≡ ?(mod 257)

128

64

32

16

1

1

1

–1

Pass–continue

Pass–continue

Pass–continue

Pass–STOP

Conclusion

Exponent y 4y ≡ ?(mod 257)

128

64

32

16

8

4

1

1

1

1

1

–1

Pass–continue

Pass–continue

Pass–continue

Pass–continue

Pass–continue

Pass–STOP

Conclusion

11.2 The Rabin–Miller Test 217

TABLE 11.5

You are invited to verify the values obtained here. When an integer n fails Miller’s test,
n is definitely composite, but if it passes, we still don’t know for sure whether or not it is
prime. However, there exist no composite integers that can fool Miller’s test to every base
b; even Carmichael numbers must eventually fail Miller’s test for some base b. We will not
prove this, but will state a proposition to this effect. The proposition actually says something
much stronger; it puts an upper bound on the number of bases for which a composite inte-
ger can fool Miller’s test.

PROPOSITION 36 Suppose n is an odd, composite positive integer. Then n fails Miller’s
test for at least 75 percent of the test bases b where 1 ≤ b ≤ n � 1.

For example, take the Carmichael number 561; it passes Fermat’s test, but fails Miller’s
test for the base 2. (See Table 11.5.)

The failure of Miller’s test establishes definitely that 561 is composite. Note that Propo-
sition 36 says that there can be nothing akin to Carmichael numbers for Miller’s test. In
fact, Proposition 36 allows us to establish a “probability” that an integer is prime. Suppose,
for example, that we take a very large integer n and it passes Miller’s test for some base b
between 1 and n � 1. Since n can pass Miller’s test for at most 75 percent of such bases,
there is no more than a 25 percent chance that n is composite, or equivalently, no less than
a 75 percent chance that n is prime.

11.2 THE RABIN–MILLER TEST

If we then repeat Miller’s test on n with different bases, we can either discover that n is
composite, or force the probability that it is prime as close to 1 as desired. This is in fact what
modern computers do when searching for large primes, and this particular method of find-
ing “probable” primes is called the Rabin–Miller test.

Succinctly: if an integer n passes Rabin–Miller for q different bases, then the probabil-
ity that n is prime is no less than 1 � (1/4)q. It is important to note that the bases used for
the Rabin–Miller test be chosen as randomly as possible. The study of pseudo-random num-
ber generation is a broad topic of great interest to cryptographers; see Chapter 16 on cryp-
tographic applications.

Java Algorithm The Java BigInteger class provides a constructor to generate probable
primes. The test used is different than Rabin–Miller as we have presented it; their version
establishes after q passes that n is prime with probability 1 � (1/2)q. (Most likely, they are

Test Status

2560 ≡ 1 (mod 561)

2280 ≡ 1 (mod 561)

2140 ≡ 67 (mod 561)

Passes Fermat’s test

Pass

FAIL–STOP

218 Chapter 11 Primality Testing

using the Solovay–Strassen primality test, which uses what are called Jacobi symbols; there
is no reason for us to learn it, since Rabin–Miller does just as well, and provides higher
probability with fewer trials.) We will write a method called primeProbability() to perform
Rabin–Miller’s test on an integer n. It will return the probability that n is prime, given a cer-
tain number of passes requested. If n fails any pass, primeProbability() will return 0.

import java.math.BigInteger;
import java.security.SecureRandom;
public class BigIntegerMath {
//. . .
static final BigInteger TWO=new BigInteger(929);
//. . .

//Implements the Rabin-Miller test.
//Number of different bases to try is passed in as an int
//If the BigInteger passes all tests, returns the probability it is prime as a
//double.
//Returns zero if the BigInteger is determined to be composite.
public static double primeProbability(BigInteger n,int numPasses) {

if (numPasses<=0) throw new IllegalArgumentException
(“Number of bases must be positive!”);

BigInteger b,x;
SecureRandom sr=new SecureRandom();
BigInteger nMinusOne=n.subtract(ONE);
for (int i=0;i<numPasses;i++) {

//Choose a random base smaller than n
b=new BigInteger(n.bitLength()-1,sr);
//Check Fermat’s condition first
x=b.modPow(nMinusOne,n);
if (!x.equals(ONE)) return 0.0;//not prime
//Divide n-1 by 2
BigInteger[] dr=nMinusOne.divideAndRemainder(TWO);
//Perform the root tests
while (dr[1].equals(ZERO)) {

x=b.modPow(dr[0],n);
//if you get -1, this is a PASS; get out
if (x.equals(nMinusOne)) break;//pass
//Now, if its not -1 or 1, this is a FAIL, return 0
if (!x.equals(ONE)) return 0.0;//not prime
//If its 1, so far its a pass
//We can continue with the test; divide by 2
dr=dr[0].divideAndRemainder(TWO);

}
}
//Only way to get here is by passing all tests
return 1.0-Math.pow(0.25,numPasses);

}

}

Exercises 219

FIGURE 11.1

The applet called TestPrimeGeneratorApplet generates probable primes of a specified byte
length. It generates random numbers of the requested length, and tests each for primality until
one passes, using the number of tests specified. The screen shot in Figure 11.1 is of the
applet generating a probable prime using Rabin–Miller.

This particular prime is just a probable prime. It was not constructed to be a strong prime,
or a safe prime, though it may be either purely by accident. See the chapters on quadratic
ciphers (Chapter 10) and on exponential congruences (Chapter 13) for an explanation of the
terms strong prime and safe prime.

EXERCISES

1. Using the Rabin–Miller primality test, determine the probability that the integer is
prime for each of the following numbers. Choose your own bases (as randomly as you
can). You should be able to do the calculations without the aid of a computer.

220 Chapter 11 Primality Testing

2. Repeat the previous exercise using these larger numbers. A program may be used.

3. Test the following number for primality; use 5 different random bases:

1358298529049385849277351428359266778603493846931744549748519669727813
0927542418487205392083207560592298578262953847383475038725543234929971
1555483428006287218857634994063903317828641441646807307668371605262231
7651279843577212995655335528603220308038077575973232019898509488400406
9116123084147875437183658467465148948790552744167567.

Integer to test Number of random
bases to use

1186913492875024326501274951491498649

5239876572574765437612433386478252751

884388835127254389485860540719510049

930940866280690607285036868096531589

899476440042092355083033089040210287

10

15

20

30

33

Integer to test Number of random
bases to use

19

101

103

97

3

5

4

3

C H A P T E R 12
Factorization Techniques

221

The Rabin cipher, like some other modern ciphers, is believed secure because break-
ing it seems to involve factoring a huge integer having two large prime factors. This

certainly appears to be the case; finding large prime factors is an intractable problem. Hence,
research into better factorization techniques is a very serious endeavor now, often involv-
ing fair sums of money.

Many factorization methods have been developed over the years, but unfortunately, they
are not widely known to the public. In fact, it is likely that trial division is the only method
of factoring most people will learn in their lives.

Recall how the trial division method works; to factor an integer n, do trial divisions of n
by integers between 2 and the square root of n. A factor, say d, of n is guaranteed to lie in
this range by proposition 6. We can then take n1 = n/d, then continue to factor n1 by look-
ing for factors between 2 and the square root of n1. We continue in this way, reducing the
size of n by producing a smaller number ni to factor, at iteration i. We will eventually obtain
the full factorization of n. The trial division method is quite simple, but is very inefficient
when n has only large prime factors, since it may be necessary to try factors very near √n.
When n is very large, its square root is also very large; a loop passing through all the primes
less than √n could take virtually an eternity. However, it is important to note that when n does
have small prime factors, this sequential search for factors is quite efficient, and often finds
small factors well before an alternative factoring method would.

We will cover a few alternative methods of factoring here; many are quite innovative, and
the fact that they actually work may seem surprising to you. Though none of the methods
covered here are nearly fast enough to break ciphers based on the factoring problem, inves-
tigating them is undoubtedly worthwhile, for they may provide insight into even better fac-
torization methods.

12.1 FERMAT FACTORIZATION

This method is named after Pierre de Fermat. Though it can be even more inefficient than
the trial division method, it is valuable in that it provides you with an alternative view of
factoring.

222 Chapter 12 Factorization Techniques

To see how it works, consider an odd positive integer n, and suppose that

n = ab

where a and b are integers. (Note that since n is odd, both a and b must be odd.) Now, note
that we can write n as the difference of two squares

n = s2 � t2

if we have

s = (a + b)/2, and

t = (a � b)/2.

Note that both s and t are integers, since both a and b are odd. Similarly, if we have an
odd positive integer n that is the difference of two squares, say

n = x2 � y2

then we can factor this integer into

n = cd

where

c = (x + y), and

d = (x � y).

Thus, we can approach the problem of factoring an odd positive integer n by looking for
squares whose difference is n, rather than looking directly for factors of n. That is, we look
for integer solutions of the equation

n = x2 � y2.

We can do this by rewriting the previous equation in this way:

y2 = x2 � n.

and search for perfect squares of the form x2 � n. We can do this sequentially; we start with
m, the smallest integer greater than the square root of n, and look for perfect squares in the
sequence

m2 � n, (m + 1)2 � n, (m + 2)2 � n, . . .

This search is guaranteed to end, since m will have to go no further than m = (n + 1)/2,
since:

((n + 1)/2)2 � n = ((n � 1)/2)2

and all the terms are integers. To see that the previous equation is true, note that

((n + 1)/2)2 � ((n � 1)/2)2 = (n2 + 2n + 1)/4 � (n2 � 2n + 1)/4 = 4n/4 = n.

(However, if we do go this far, note that we have only obtained the trivial factorization
n = n � 1.)

12.1 Fermat Factorization 223

EXAMPLES. We will use Fermat factorization to factor the following integers:

a) 3811. We begin with m = 62 > 61.73 � √3811 and look for perfect squares in the sequence

622 � 3811 = 3844 � 3811 = 33

632 � 3811 = 3969 � 3811 = 158

642 � 3811 = 4096 � 3811 = 285

652 � 3811 = 4225 � 3811 = 414

662 � 3811 = 4356 � 3811 = 545

672 � 3811 = 4489 � 3811 = 678

682 � 3811 = 4624 � 3811 = 813

692 � 3811 = 4761 � 3811 = 950

702 � 3811 = 4900 � 3811 = 1089 = 332

Thus we obtain a factorization of 3811 by noting that

3811 = 702 � 332 = (70 + 33)(70 � 33) = 103 � 37.

b) 6077

Begin with m = 78 > 77.95 � √6077 and examine the sequence

782 � 6077 = 6084 � 6077 = 7

792 � 6077 = 6241 � 6077 = 164

802 � 6077 = 6400 � 6077 = 323

812 � 6077 = 6561 � 6077 = 484 = 222

And we see that 6077 = 812 � 222 = (81 + 22)(81 � 22) = 103 � 59.

c) 11

Begin with m = 4 > 3.32 � √11 and examine the sequence

42 � 11 = 16 � 11 = 5

52 � 11 = 25 � 11 = 14

62 � 11 = 36 � 11 = 25 = 52

And here we obtain the trivial factorization 11 = 62 � 52 = (6 + 5)(6 � 5) = 11 � 1.

Hopefully you can see how inefficient this method of factoring can be. It can be even
worse than the trial division method, for trial division never has to test more than √n inte-
gers, but with the Fermat method it may be necessary to search as many as (n + 1)/2 � √n
integers before the procedure is guaranteed to terminate. As the integer n gets larger, the quan-
tity (n + 1)/2 � √n becomes much larger than √n. (See Table 12.1.)

The Fermat factorization method is most efficient when the two factors of n, say

n = ab = x2 � y2 = (x + y)(x � y)

224 Chapter 12 Factorization Techniques

TABLE 12.1

are close together (thereby making x and y close together). This keeps the search of the
sequence

m2 � n, (m + 1)2 � n, (m + 2)2 � n, . . .

relatively short.

Java Algorithm To develop a method to extract factors of n using Fermat factorization,
we need to be able to compute √n. The BigInteger class contains no square root method, so
we must write our own. We wish this method to return the largest integer whose square
does not exceed n. To compute the integer square root of a positive number, we will approach
the real root using a numerical algorithm known as Newton’s method. Suppose we wish to
find the square root of n; i.e., a solution to

x2 = n.

We will do this by trying to find a root (or a zero) of the function

f(x) = x2 � n.

To use Newton’s method, we need the derivative of f(x), which, in this case is

f�(x) = 2x.

We begin with an initial guess for the root, say r0. Suppose, for convenience, that this
guess overestimates the true root. (See Figure 12.1.) We compute subsequent guesses by com-
puting

rk = rk�1 � f(rk�1)/f�(rk�1) k = 1, 2, 3, . . .

These guesses approach a true root of f(x) rather quickly. If the root we seek is irrational,
we truncate the result to produce the integer square root. I have written a sqrt() method and

n s = square root of n

101

1001

10001

100001

1000001

10000001

100000001

1000000001

10000000001

10.04987562

31.63858404

100.0049999

316.2293472

1000.0005

3162.277818

10000.00005

31622.77662

100000

40.95012438

469.361416

4900.995

49684.77065

499000.9995

4996838.722

49990001

499968378.2

4999900001

(n+1)/2–s

12.1 Fermat Factorization 225

FIGURE 12.1

placed it in the BigIntegerMath class. It makes use of the BigDecimal class, which allows
us to compute with arbitrarily large numbers using arbitrary precision.

public static BigInteger sqrt(BigInteger m) {

//Uses the Newton method to find largest integer whose square does not exceed m

//We search for a zero of f(x)=x^2-p ==> note that derivative f’(x)=2x

int diff=m.compareTo(ZERO);

//Throw an exception for negative arguments

if (diff<0) throw new IllegalArgumentException

(“Cannot compute square root of a negative integer!”);

//Return 0 in case m is 0

if (diff==0) return BigInteger.valueOf(0);

BigDecimal two=new BigDecimal(TWO);

//Convert the parameter to a BigDecimal

BigDecimal n=new BigDecimal(m);

//Begin with an initial guess-the square root will be half the size of m

//Make a byte array at least that long, & set bits in the high order byte

byte[] barray=new byte[m.bitLength()/16+1];

barray[0]=(byte)255;

//This is the first guess-it will be too high

BigDecimal r=new BigDecimal(new BigInteger(1,barray));

100

10–10 20–20 30–30

–100

200

–200

300

–300

r1

r0

f(x)=x^2 – 300

226 Chapter 12 Factorization Techniques

FIGURE 12.2

//Next approximation is computed by taking r-f(r)/f’(r)

r=r.subtract(r.multiply(r).subtract(n).divide

(r.multiply(two),BigDecimal.ROUND_UP));

//As long as our new approximation squared exceeds m, we continue to approximate

while (r.multiply(r).compareTo(n)>0) {

r=r.subtract(r.multiply(r).subtract(n).divide

(r.multiply(two),BigDecimal.ROUND_UP));

}

return r.toBigInteger(); //Method truncates any fractional part of a BigDecimal

}

We will test the method with the following applet, TestSQRTApplet, from the book’s
website. (See Figure 12.2.)

Once we have this square root finding method, writing a program to find factors using
Femat’s method should be simple.

12.2 MONTE CARLO FACTORIZATION

Another method of factoring was developed by J. M. Pollard, who called it the Monte Carlo
method, due to the type of numbers generated in the method. Here we will not prove that
this works; we will only describe the algorithm.

Say n is composite, and that p is its smallest prime divisor. We wish to choose a sequence
of integers, say m0, m1, m2, . . ., mk such that their lnr’s are distinct modulo n, but not all dis-
tinct modulo p. Though we will not prove the following, this happens when

• k is large compared to √p,

• k is small compared to √n, and

• the mi (where 0 ≤ i ≤ k) are chosen randomly.

12.2 Monte Carlo Factorization 227

Suppose we generate a sequence of random integers as mentioned, and we come across
a pair mq, mr such that

mq � mr (mod p)

but

mq � mr (mod n).

It follows then that the gcd of mq � mr and n; that is, (mq � mr, n), is a nontrivial divi-
sor of n, since

p|(mq � mr)

but

n � (mq � mr).

The question is, how quickly can we find such a pair of numbers? As mentioned earlier,
this pair will surface relatively quickly if we generate the sequence randomly. We do this
in the following way:

• Start with an initial, randomly generated integer, m0.

• Generate successive terms in the sequence by computing

mi � mi�1
2 + 1 (mod n), 0 ≤ mi < n

This, of course, is not a random sequence, but it “appears to be,” and for our purposes it
will suffice. (See the chapter on cryptographic applications.) Once we have generated m2i

in the sequence, we check the greatest common divisor of m2i � mi and n; if we have

(m2i � mi, n) = d, 1 < d < n,

then, as we mentioned before, we have found a nontrivial divisor of n.

EXAMPLE. We will attempt to factor n = 356659679. Start with an initial value for m0, say
1260345256, and proceed to generate numbers in the sequence.

m1 = 12603452562 + 1 � 72342499 (mod 356659679)

m2 = 723424992 + 1 � 278250477 (mod 356659679)

Now we can compute

(m2 � m1, 356659679) = 1.

This fails to help us, so we continue to compute numbers in our sequence.

m3 = 2782504772 + 1 � 66447814 (mod 356659679)

m4 = 664478142 + 1 � 333376938 (mod 356659679)

Now we compute (m4 � m2, n), which again is 1. This gives us nothing, so we continue
to compute the next two values, m5 and m6, then m7 and m8, and so on. We obtain a nontrivial

228 Chapter 12 Factorization Techniques

TABLE 12.2

TABLE 12.3

divisor when we compute (m8 � m4, n) = 359. A complete listing of these values can be seen
in Table 12.2.

EXAMPLE. Let n = 72133. We apply the Monte Carlo method to obtain the values shown in
Table 12.3.

i mi

0

1

2

3

4

5

6

7

8

1260345256

72342499

278250477

66447814

333376938

52340019

274018250

212607484

181355157

1

1

1

359

(mi–mi/2,n)

i mi

0

1

2

3

4

5

6

7

8

1868187221

71909

50177

1098

51477

3642

63826

47102

3724

1

1

1

53

(mi–mi/2,n)

12.2 Monte Carlo Factorization 229

TABLE 12.5

TABLE 12.4

EXAMPLE. Let n = 9090909091. We apply the Monte Carlo method to obtain the values
shown in Table 12.4.

EXAMPLE. Let n = 992387659879678689176986897665716567855813467857777. We
apply the Monte Carlo method to obtain the values shown in Table 12.5.

Java Algorithm The monteCarloFactor() method will be quite interesting to write. We
will make an array of integers to hold the generated sequence, and compute gcd’s at every
other iteration of the number–generating loop. The code to do this is elementary. (This
method is in the BigIntegerMath class):

//Monte Carlo factorization method returns a Monte Carlo factor.

//An array holds a sequence of random numbers; must specify max

//size of this array.

//This puppy returns null if no factor is found.

public static BigInteger monteCarloFactor(BigInteger n,int maxArraySize)

throws IllegalArgumentException, ArrayIndexOutOfBoundsException {

if (n.compareTo(THREE)<=0)

throw new IllegalArgumentException(“Number to factor must be > 3”);

BigInteger[] m=new BigInteger[maxArraySize];

m[0]=BigInteger.valueOf(new Random().nextInt());

BigInteger g;

for (int i=1;i<maxArraySize;i++) {

m[i]=m[i-1].multiply(m[i-1]).add(ONE).mod(n);

i mi

0

1

2

3

4

44016065

4887155761

4763918935

842766808

1750315397

1

11

(mi–mi /2,n)

i mi

0

1

2

169995877

28898598196999130

835128977751601367248137220756901 57

(mi–mi /2,n)

230 Chapter 12 Factorization Techniques

if (i%2==0) {

g=m[i].subtract(m[i/2]).gcd(n);

if (g.compareTo(ONE)>0&&g.compareTo(n)<0) return g;

}

}

return null;

}

This method is unsatisfactory for integers having truly “large” factors (say, greater than
1015). You can verify this by testing the method with numbers having factors of this size;
the method starts to fail at around this point. Recall that the length of the sequence k should
be large compared to √p. In the previous case, k = 100000, and √p = √900383347 �
30006.39, which is why the method succeeded in finding the factor. But for factors exceed-
ing, say, 240, k would need to be at least as high as 220, and will thus require storage space
for around a million BigIntegers. This is already beginning to test the capacity of some
machines, and factors of much larger size are common in modern cryptography.

12.3 THE POLLARD p � 1 METHOD OF FACTORIZATION

This method of factorization was also developed by J. M. Pollard. It can be effective in
finding large factors p if the choice of p is such that the integer p � 1 consists of only small
prime factors. This is certainly not unusual, and in fact is quite common. It may seem strange
to you that the factorization of p � 1 can help us find the factor p, but it can.

Suppose n is a large composite integer, and that n has a factor p such that (p � 1)|k! for
some k. Now, if the prime factorization of p � 1 consists entirely of small prime factors, this
number k will not be excessively large (and k! will be computable).

Now, by Fermat’s Little Theorem (FLT), we have

2p�1 � 1 (mod p)

and since (p � 1)|k! for some integer k, we have k! = (p � 1)q for some integer q. This then
yields

2k! = 2(p�1)q = (2(p�1))q � 1q = 1 (mod p). (FLT is used here.)

This says that p|(2k! � 1). Now, let Z be the least nonnegative residue of 2k! � 1 mod-
ulo n.

If n �(2k! � 1)

we have

Z = (2k! � 1) � ni, for some integer i.

Note, now that p|Z, since it divides both 2k! � 1, and n. Thus, we see that a divisor of n
can be found simply by computing (Z, n). Should Z and n not be relatively prime; that is,
(Z, n) = d > 1, then d is a nontrivial factor of n.

Note that if n|(2k! � 1), the p � 1 method will fail, since then we would have Z � 0
(mod n), and computing the gcd of Z and n would only yield the trivial factor n since (Z, n)

12.3 The Pollard p – 1 Method of Factorization 231

= (0, n) = n. It turns out that this is unlikely when n has large prime factors (we will not prove
this), but should it happen, we can simply choose a base b other than 2 when computing bk!

� 1, and start over.

EXAMPLE. We will attempt to find a factor of n = 632887. (Note that 632887 = 769 � 823,
and that 768 = 28 � 3, so that the smallest value of k for which 768|k! is k = 10. (To see this,
note that 10! = 10 � 9 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1 = (2 � 5) � 9 � (23) � 7 � (2 � 3) � 5 � (22) � 3
� 2 � 1 = 4275 � 28 � 3 = 4275 � 768.)

We start by choosing a random base, say b = 261482. We then proceed to compute the
least nonnegative residue ri � bi! modulo n, for i = 1, 2, 3, When we have found a non-
trivial gcd of (ri � 1, n), we have found a nontrivial divisor of n.

r1 = 261482 (mod 632887)

r2 = r1
2 � 155053 (mod 632887) (r2 � 1, n) = 1

r3 = r2
3 � 386889 (mod 632887) (r3 � 1, n) = 1

r4 = r3
4 � 181843 (mod 632887) (r4 � 1, n) = 1

r5 = r4
5 � 293940 (mod 632887) (r5 � 1, n) = 1

r6 = r5
6 � 630444 (mod 632887) (r6 � 1, n) = 1

r7 = r6
7 � 249467 (mod 632887) (r7 � 1, n) = 1

r8 = r7
8 � 234544 (mod 632887) (r8 � 1, n) = 1

r9 = r8
9 � 422180 (mod 632887) (r9 � 1, n) = 1

r10 = r9
10 � 582903 (mod 632887) (r10 � 1, n) = 769

In the 10th step, we find that 769 is a nontrivial divisor of 632887, exactly as we expected,
since 768 divides 10!, but no smaller value of the factorial function.

EXAMPLE. Here we try to factor n = 559374799933 starting with the base b = 557566181343.
The values have been placed in Table 12.6.

This says a factor of 559374799933 is found; namely, 740279. Apparently, this also says
559374799933 divides 23!, but no smaller value of the factorial function.

Java Algorithm A method to extract factors using the p � 1 method follows. It is also
in the BigIntegerMath class.

public static BigInteger pMinusOneFactor(BigInteger n)

throws IllegalArgumentException {

if (n.compareTo(THREE)<=0)

throw new IllegalArgumentException(“Integer must be larger than three!”);

Random rand=new Random();

BigInteger power=BigInteger.valueOf(1);

232 Chapter 12 Factorization Techniques

TABLE 12.6
i bi !

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

557566181343

436541389360

155204284985

538254521186

224074559848

556398555479

461773086408

524373376099

528286461332

257084687919

553469773152

378473232758

281899611802

377823757725

263895130902

262689042015

286305785793

489134478513

96491246483

194503288400

141727500886

97401438906

173399991845

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

740279

(bi !–1,n)

12.3 The Pollard p – 1 Method of Factorization 233

BigInteger residue=lnr(BigInteger.valueOf(rand.nextInt()),n);

BigInteger test=residue.subtract(ONE);

BigInteger gcd=test.gcd(n);

while (true) {

while (gcd.equals(ONE)) {

power=power.add(ONE);

residue=residue.modPow(power,n);

test=residue.subtract(ONE);

gcd=test.gcd(n);

}

if (gcd.equals(n)) {

power=BigInteger.valueOf(1);

residue=lnr(BigInteger.valueOf(rand.nextInt()),n);

test=residue.subtract(ONE);

gcd=test.gcd(n);

} else return gcd;

}

}

The Pollard p � 1 method can be used to break cryptosystems based on factoring num-
bers having large prime factors if the primes are chosen carelessly. To prevent this method
from factoring quickly, one must make sure that the choice of a prime p must be such that
p � 1 has at least one large prime factor. For example, consider the following prime:

p = 160086307116559738155869925798757514626756457565007398646711114857005
992922967078590696196618658161690735876437589642027120745407208793588072
404971617007494843354135377095406066154855880767615610812537786121677226
656934787295293329889991101773874178363226192550806087278026993983201987
753863431668129069694725023374409414275815875828834913374670967078348380
060934470394466978765779646756545675424549350157457563271478245865405680
761395848801899028763255590217026083243137987131686080581096674871056010
581499513879026589855942403498079792835159647491344925369568016515800543
448680025803391561534522694855761493401748918989590240396787824784555716
446448873404044136201133055019564546002121091038978073635688462008895936
295056689750153498900363988015318027982295262581227520000000000000000000
00
000001.

If you run the Pollard p � 1 method on a large integer having this prime p as a factor, p
will be found in only 399 iterations! Why? It turns out that this particular prime p = 399! +
1. Though these primes are rare, there are many other primes q not specifically of this form
such that q � 1 divides k! for a relatively small value of k. To ensure this does not happen,
we must choose such primes such that q � 1 has a large prime factor, forcing k to also be
large.

I have written an applet (called TestFactorApplet), which demonstrates both the Monte
Carlo method, and the Pollard p � 1 method of factorization. You enter an integer, then

234 Chapter 12 Factorization Techniques

FIGURE 12.3

press a button to find a factor. You may choose either method, and the applet is threaded so
that you can search for a Monte Carlo factor and a Pollard p � 1 factor at the same time.
(See Figure 12.3.)

EXERCISES

1. Write a fermatFactor() method and place it in the BigIntegerMath class.

2. Write a trialDivisionFactor() method in the BigintegerMath class to work with BigIn-
tegers.

3. Write a test program to compare the performance of the factoring methods for numbers
having factors of small, intermediate, and large sizes. How does the trial division method
compare to the other methods when factors are small?

C H A P T E R 13
Exponential Congruences

235

This chapter involves solving congruences of the form

ax � b (mod n)

for x. If there is a solution for x, we call x a discrete logarithm modulo n of a to the base b,
and we write

x = logb,na.

When the modulus n is clear from the context, we often simply write

x = logba.

If p is a large prime, these congruences can be very difficult to solve; this is formally
known as the discrete logarithm problem, or DLP. To help us understand the nature of these
problems, we’ll need to do some development. As a review, recall Fermat’s Little Theo-
rem:

If p is prime, and b is an integer such that p � b, then

bp�1 � 1 (mod p).

However, could bz be congruent to 1 modulo p for some value z smaller than p � 1? We
can see this is possible just from the following simple example: let p = 7, and examine the
powers of each integer greater than 0 but less than 7. (See Table 13.1.)

Note that the integers 2, 4, and 6 (and also 1, obviously), yield powers which are con-
gruent to 1 modulo 7 for values smaller than 6.

236 Chapter 13 Exponential Congruences

TABLE 13.1

13.1 ORDER OF AN INTEGER

Definition
Let n be a positive integer and b an integer. Then the least positive integer z for which
bz � 1 (mod n) is called the order of b modulo n. We denote this as |b|n. If the modulus
n is clear from the context, we simply write |b|.

EXAMPLES. From the previous table, we see that

|2|7 = 3, |3|7 = 6, |4|7 = 3, |5|7 = 6, and |6|7 = 2.

Using this property, we can derive the following propositions:

PROPOSITION 37 If p is prime and b an integer such that p � b, then

a) the positive integer x is a solution to bx � 1 (mod p) iff |b|p divides x.

b) |b|p divides p � 1.

Proof.

a) Suppose |b| divides x; then x = k|b| for some positive integer k. Thus,

bx = bk|b| = (b|b|)k � 1 (mod p).

On the other hand, suppose bx � 1 (mod p). Then, if

x = q|b| + r 0 ≤ r < |b|

b b2 b3

All operations done mod 7;
Inr is retained

b4 b5 b6

1

2

3

4

5

6

1

4

2

2

4

1

1

1

6

1

6

6

1

2

4

4

2

1

1

4

5

2

3

6

1

1

1

1

1

1

13.2 Generators 237

we see that

bx = bq|b|�r = (b|b|)qbbr � br (mod p).

Now, since bx � 1 (mod p), br � 1 (mod p) also. But since 0 ≤ r < |b|, we must have r =
0 since |b| is the least positive integer k such that bk � 1 (mod p). Hence, |b| divides x.

b) (Exercise. Hint: use FLT and part (a).) �

PROPOSITION 38 Suppose p is prime and b an integer such that p � b. Then, if i and
j are nonnegative integers, bi � bj (mod p) iff i � j (mod |b|p).

Proof. Suppose i � j (mod |b|) and 0 ≤ j ≤ i. Then i = j + k|b| for some positive integer k.
Thus,

bi = bj�k|b| = bj(b|b|)k � bj (mod p).

On the other hand, if bi � bj (mod p), where i ≥ j, we have p � bj since p � b. Then, note
that since

bi � bjbi�j � bj (mod p)

we can divide this congruence by bj using proposition 21 to obtain

bi�j � 1 (mod p).

By proposition 27, we then know that |b| divides i � j, or i � j (mod |b|). �

13.2 GENERATORS

Definition
An integer g such that the prime p does not divide g is called a generator modulo p if
|g|p = p � 1.

EXAMPLE. Note from the previous example that 3 and 5 are generators modulo 7; 1, 2, 4, and
6 are not.

Most cryptosystems that depend on the difficulty of DLP use generators. Thus, we prove
some important facts about generators.

PROPOSITION 39 If g is a generator modulo p, then the sequence of integers g, g2, . . .,
gp�1 is a permutation of 1, 2,, p � 1.

Proof. To show this, we need only show that none of the p � 1 members of the former
sequence are congruent to 0 modulo p, and that none are congruent to each other modulo

238 Chapter 13 Exponential Congruences

p. Note that since p � g, p likewise does not divide gk for any positive integer k. So, none
of the integers g, g2, . . . , gp�1 are congruent to 0 modulo p. Now, suppose

gi � gj (mod p)

for some positive integers i and j, where 0 < i ≤ j < p. By proposition 38, we then have i �
j (mod |g|). But since i and j are both no greater than |g| = p � 1 (recall that g is a genera-
tor), we must have i = j. Thus, no two members of g, g2, . . . , gp�1 are congruent modulo p,
and so these integers must simply be a permutation of the positive integers not exceeding
p � 1. �

It is important to be able to find generators, since the discrete logarithm problem is most
intractable when generators are used as the base. Note that proposition 39 says that when
we have gx � b (mod p) for prime p and generator g, the solution (when it exists) is unique,
and, it turns out, harder to find.

PROPOSITION 40 If |b|p = t and u is a positive integer, then |bu|p = t/(t, u).

Proof. Let s = |bu|, v = (t, u), t = t�v for some integer t�, and u = u�v for some integer u�.
By proposition 7 we have

(t�, u�) = 1.

Thus, we have

(bu)t� = (bu�v)t/v = (bt)u� � 1 (mod p)

since |b| = t. Then, by proposition 37, s|t�. But since

(bu)s = bus � 1 (mod p)

we have t|us, which is equivalent to t�v|u�vs. Thus we derive the fact that t�|u�s, and since t�
and u� are relatively prime, we have t�|s by proposition 13. Now, since s|t�, and since t�|s,
we have
|bu| = s = t� = t/(t, u). �

We will now prove that if a prime p has a generator, then it has many generators. This is
important, since if there are too few generators (or none at all) to choose from when pick-
ing a generator for a cipher, one may be hard (or impossible) to find.

PROPOSITION 41 Let r be the number of positive integers not exceeding p � 1 which
are relatively prime to p � 1. Then, if the prime p has a generator, it has r of them.

Proof. Let g be a generator modulo p. By proposition 40, we know that

|gu|p = |g|p/(u, |g|p) = (p � 1)/(u, p � 1)

for any positive integer u. Furthermore, from the previous equation, we can say that

gu is a generator modulo p iff |gu|p = p � 1 iff u and p � 1 are relatively prime. (*)

13.3 Generator Selection 239

Now, from proposition 39 we know that the sequence

g, g2, . . . , gp�1

is simply a permutation of 1, 2, . . . , p � 1. Since there are exactly r integers in the first set
that are relatively prime to p � 1, there are exactly r integers in the former sequence of the
form gi where i is relatively prime to p � 1. But, from the previous development (*), these
are exactly the generators modulo p. �

This tells us that when a prime has a generator, it has quite a few, since there are always
many positive integers smaller than p which are relatively prime to p � 1.

EXAMPLE. Consider the prime p = 101; since p � 1 = 100 = 22 � 52, any positive integer
smaller than 100 not having a 2 or a 5 in its factorization will be relatively prime to 100. There
are clearly many such integers.

Note that proposition 41 does not tell us that every prime has a generator; it only says
that if it has a generator, it has a certain number of them. We need this fact, but will not prove
it.

PROPOSITION 42 Every prime has a generator.
Proposition 41 also says that if we find a generator g modulo p, we can find another by

simply calculating the lnr of gi modulo p for some i relatively prime to p � 1. But how do
we find a generator in the first place? This isn’t difficult to do in practice, since we will
choose our primes carefully. For example, if prime p is such that p � 1 consists entirely of
small factors, such a prime p is susceptible to some discrete logarithm finding algorithms
(like Pohlig–Hellman). If we choose p so that p � 1 has at least one large prime factor, we
call it a safe prime.

A solution is to choose primes of the form p = 2Rt + 1 where t is prime, and R is a rela-
tively small positive integer. We first select integers t at random, and subject them to pri-
mality testing, until a particular value of t passes. We then select small values of R (say, ≤
1 billion) at random and submit p = 2Rt +1 to primality testing, until p passes with some value
of R. Since R is small, it can be easily factored, and since p � 1 = 2Rt, the factorization of
p � 1 is known. Thus, we present a method of finding generators.

13.3 GENERATOR SELECTION

Suppose p is prime, and p1
e1 � p2

e2 � . . . � pn
en is the prime factorization of p � 1. To find a

generator g modulo p, do the following:

1. Choose a random integer x between 2 and p � 2.

2. For i = 1 to n do

a) Compute z = p/pi

240 Chapter 13 Exponential Congruences

b) Calculate the lnr of xz modulo p. If the least nonnegative residue is 1 modulo p, x is
not a generator. Return to step 1.

3. x is a generator modulo p.

EXAMPLE. Here we generate a safe prime p, and then a generator for p. This will be simple
because we will know the factorization of p � 1 by our method of construction. We begin
by finding a large random prime t:

t = 106134897172928103943918854073295879814210153054070185316305605667648
115167285318268319586681005150020607472483671576748374031351891166746019
548973818467282112460367080990486066014392977005040386442558294459608658
668158933760001311189926258441385295561653708006547249455162460344775949
000288933247779568497479.

We will now search for the first prime of the form 2rt + 1, where r begins with the value
1, and increments by 1 for each iteration. It turns out that this happens when r reaches the
value 362, and the target safe prime p is

p = 768416655531999472553972503490662169854881508111468141690052585033772
353811145704262633807570477286149198100781782215658227986987692047241181
534570445703122494213057666371119117944205153516492397844122051887566688
757470680422409493015066111115629539866372845967402086055376212896177870
76209187671392407592174797.

(You may wish to verify that p is, indeed, 2 � 362 � t + 1, and is prime.) Since r = 362 is a
relatively small integer, it can be easily factored. The prime factorization of r is:

r = 362 = 2 � 181

Now we generate another random integer x between 2 and p � 2. Let us choose x = 2.
We test if x is a generator by raising it to all of the following powers modulo p:

x(p�1)/2 �
768416655531999472553972503490662169854881508111468141690052585033772353
811145704262633807570477286149198100781782215658227986987692047241181534
570445703122494213057666371119117944205153516492397844122051887566688757
470680422409493015066111115629539866372845967402086055376212896177870762
09187671392407592174796 (mod p)

x(p�1)/181 �
759610078033092819549168009542029758562732552302229095079700578685006509
781787175350810699575676555672711591634685786263572318673572188350335378
422741882791298343532264353436668160520311489609485712535342907357206171
457774990867629982901232534301789080080079058523455688622892974408888364
96564879035543972034961 (mod p)

13.3 Generator Selection 241

x(p�1)/t �
882504362096317967796596513188946207297298097453617976463563103394591821
987874531220585600311009374053405582968213748930663530270586997171133297
840152170658259623778588348787678947522653969852413674174837135790739292
16 (mod p).

None of these yield a residue of 1, so we conclude 2 is a generator of this safe prime p.

Java Algorithm In my PrimeGenerator class, there is a method called getSafePrime-
AndGenerator(), which finds a safe prime p and a corresponding generator. There is also a
method called getSafePrime(), which finds and returns a safe prime but does not find a gen-
erator for it.

import java.security.*;

import java.math.*;

import java.util.*;

public class PrimeGenerator {

int minBitLength;

int certainty;

SecureRandom sr;

public PrimeGenerator(int minBitLength, int certainty, SecureRandom sr) {

//The bit length of the prime will exceed minBitLength

if (minBitLength<512) throw new IllegalArgumentException

(“Strong/Safe primes must be at least 64 bytes long.”);

this.minBitLength=minBitLength;

this.certainty=certainty;

this.sr=sr;

}

//This method returns a safe prime of form 2rt+1 where t is a large prime,

//and the factorization of r is known

//It also returns a generator for the safe prime

//The zero-th slot in the resulting array is the safe prime

//Slot 1 of the result is the generator

public BigInteger[] getSafePrimeAndGenerator() {

BigInteger[] p=new BigInteger[2];

BigInteger r=BigInteger.valueOf(0x7fffffff);

BigInteger t=new BigInteger(minBitLength-30,certainty,sr);

//p is the first prime in the sequence 2rt+1, 2*2rt+1, 2*3rt+1,...

do {

r=r.add(BigIntegerMath.ONE);

p[0]=BigIntegerMath.TWO.multiply(r).multiply(t).add(BigIntegerMath.ONE);

242 Chapter 13 Exponential Congruences

} while (!p[0].isProbablePrime(certainty));

//We must get the prime factors of p-1=2rt

//Put the prime factors in a Vector-list each prime factor only once

Vector factors=new Vector();

//Add t to the vector, since t is a prime factor of p-1=2rt

factors.addElement(t);

//We know 2 is a factor of p-1=2rt, so add 2 to the Vector

factors.addElement(BigInteger.valueOf(2));

//r may be prime-don’t factor it if you don’t have to

if (r.isProbablePrime(10)) factors.addElement(r);

//otherwise, find the factors of r and add them to the Vector

else {

//Divide all the 2’s out of r, since 2 is already in the Vector

while (r.mod(BigIntegerMath.TWO).equals(BigIntegerMath.ZERO)) {

r=r.divide(BigIntegerMath.TWO);

}

//We now get the prime factors of r, which should be small enough to

//factor

//Start with 3 - 2 is already in the Vector

BigInteger divisor=BigInteger.valueOf(3);

//Do not search for factors past the square root of r

//Square the divisor for comparison to r

BigInteger square=divisor.multiply(divisor);

while (square.compareTo(r)<=0) {

//If this divisor divides r, add it to the Vector

if (r.mod(divisor).equals(BigIntegerMath.ZERO)) {

factors.addElement(divisor);

//Divide r by this divisor until it no longer divides

while (r.mod(divisor).equals(BigIntegerMath.ZERO))

r=r.divide(divisor);

}

divisor=divisor.add(BigIntegerMath.ONE);

//Do not search for factors past the square root of r

//Square the divisor for comparison to r

square=divisor.multiply(divisor);

}

}

13.4 Calculating Discrete Logarithms 243

//Now, start looking for a generator

boolean isGenerator;

BigInteger pMinusOne=p[0].subtract(BigIntegerMath.ONE);

BigInteger x,z,lnr;

do {

//Start by assuming the test # is a generator

isGenerator=true;

//Pick a random integer x smaller than the safe prime p

x=new BigInteger(p[0].bitLength()-1,sr);

for (int i=0;i<factors.size();i++) {

//Compute z as p-1 divided by the i-th prime factor in the Vector

z=pMinusOne.divide((BigInteger)factors.elementAt(i));

//Raise x to the z power modulo p

lnr=x.modPow(z,p[0]);

//If this equals 1, x is not a generator

if (lnr.equals(BigIntegerMath.ONE)) {

isGenerator=false;

//break-no reason to try the other prime factors for this failed x

break;

}

}

//While x is not a generator, go back and pick another random x

} while (!isGenerator);

//If we get here, we found a generator-set it and return it

p[1]=x;

return p;

}

//getSafePrime() is identical to this, but does not search for a generator.

}

The TestPrimeGeneratorApplet class allows us to retrieve safe primes. Here is a shot of
it, displaying a safe prime and its generator. (See Figure 13.1.)

13.4 CALCULATING DISCRETE LOGARITHMS

There are a variety of discrete log finding algorithms known; however, none of them are fast
enough to break the cryptosystems based on DLP. However, those implementing such ciphers
should take care that the primes they use do not have certain weaknesses, which some of these
algorithms exploit.

244 Chapter 13 Exponential Congruences

FIGURE 13.1

Exhaustive Search for Discrete Logs The most obvious solution to finding a dis-
crete logarithm (and by far the slowest) is to search by taking successive powers. For exam-
ple, to solve

bx � z (mod n) 0 < z < n

for x, we simply calculate the lnr’s of the sequence

b, b2, b3, . . .

until we derive z.

EXAMPLE. Suppose we wish to solve the congruence

257x � 369 (mod 1009)

for x. We calculate the successive powers until we obtain a least nonnegative residue of 369
modulo 1009. (See Table 13.2.)

(The successive powers of 257x go across from left to right.) There are 10 columns in the
table; the last entry (369) is the 104th entry, so

257104 � 369 (mod 1009).

13.4 Calculating Discrete Logarithms 245

TABLE 13.2
Column

R
o

w
1

2

3

4

5

6

7

8

9

10

11

1

257

924

990

340

76

658

705

395

207

438

181

2

464

353

162

606

361

603

574

615

731

567

103

3

186

920

265

356

958

594

204

651

193

423

237

4

379

334

502

682

10

299

969

822

160

748

369

5

539

73

871

717

552

159

819

373

760

526

6

290

599

858

631

604

503

611

6

583

985

7

873

575

544

727

851

119

632

533

499

895

8

363

461

566

174

763

313

984

766

100

972

9

463

424

166

322

345

730

638

107

475

581

10

938

1005

284

16

882

945

508

256

995

994

This example alone should suggest to you that exhaustive search is obviously not the
way we want to go about finding discrete logs. However, an exhaustive search may be
worthwhile if the base is an integer of low order modulo n.

Java Algorithm I have written a method to calculate discrete logs using exhaustive
search. The code is in the BigIntegerMath class:

public static BigInteger logExhaustiveSearch

(BigInteger base, BigInteger residue, BigInteger modulus) {

//This algorithm solves base^x = residue (mod modulus) for x using exhaustive

//search

BigInteger basePow=BigInteger.valueOf(1);

BigInteger j;

for (j=BigInteger.valueOf(1);j.compareTo(modulus)<0;j=j.add(ONE)) {

basePow=basePow.multiply(base).mod(modulus);

if (basePow.equals(residue)) break;

}

if (j.equals(modulus)) throw new NoSuchElementException(“No solution”);

return j;

}

246 Chapter 13 Exponential Congruences

Baby-step Giant-step Algorithm The next algorithm is an improvement of exhaus-
tive search in that it doesn’t cycle through all exponents. It is based on the fact that if m is
the smallest integer no less than √n, where n is the modulus, and

ax � b (mod n)

we can write

x = im + j

where 0 ≤ i and j < m. This yields

ax = aim � aj,

implying that

b((am)�)i � aj (mod n),

where (am)� is an inverse of am modulo n (if this inverse exists). The baby-step giant-step
algorithm exploits this: The algorithm finds a discrete log (if one exists) of

ax � b (mod n)

1. Let b be an integer between 1 and n � 1.

2. Let m be the smallest integer no less than √n.

3. Make a table whose entries are (j, gj) for j = 0, 1, 2, . . ., m � 1. The entries for gj should
be the least nonnegative residues modulo n.

Compute (g m)�, an inverse of g m modulo n. (Of course, this assumes g m is invertible
modulo n; if not, this method will fail. Of course, if the modulus is prime, this will not
be a problem.)

5. Set y = b.

6. For i from 0 to m � 1 do:

• Search the second components in the table for a gj such that gj = y for some index j.

• If such an entry is found, compute and return x = im + j.

• If no such entry is found, set y equal to the lnr of y(gm)�.

This algorithm will usually be superior in running time to exhaustive search because it
only checks a maximum of m = √n exponents (whereas exhaustive search may cycle through
n exponents). However, the table required can be quite large, obviously, if n is very large.
Also, the method we use to search the table is important. A sequential search is out of the
question, and a binary search on a sorted table will also be time-consuming; a much prefer-
able alternative is to use a hash table.

EXAMPLE. We’ll use baby-step giant-step to solve the congruence

43x � 140 (mod 307).

(Note 43 is a generator modulo the prime 307.) First, since √307 � 17.5214, we’ll set m =
18. Hence, Table 13.3 will have 18 entries:

13.4 Calculating Discrete Logarithms 247

TABLE 13.3

(We will not sort the table by second component; we will assume that an efficient method
is being used to search the table.) Now, we must compute an inverse of 4318 modulo 307:

(4318)� � 299� � 115 (mod 307).

We now set y = 140, and begin the loop. We show the iterations in the following table.
At each iteration y is set equal to the lnr of its old value times 115 modulo 307. (See Table
13.4.)

We now compute and return the value of x = 4(18) + 15 = 87. You should check that
indeed,

4387 � 140 (mod 307).

j Inr of
43j mod 307

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

43

7

301

49

265

36

13

252

91

229

23

68

161

169

206

262

214

248 Chapter 13 Exponential Congruences

TABLE 13.4

Java Algorithm The BigIntegerMath class also contains a method to compute discrete
logs using baby-step giant-step. The code follows:

public static BigInteger logBabyStepGiantStep

(BigInteger base, BigInteger residue, BigInteger modulus) {

//This algorithm solves base^x = residue (mod modulus) for x using baby step

//giant step

BigInteger m=sqrt(modulus).add(ONE);

//Use a hash table to store the entries-use Java Hashtable class

Hashtable h=new Hashtable();

BigInteger basePow=BigInteger.valueOf(1);

//Build the hash table base^j is the key, index j is the value

for (BigInteger j=BigInteger.valueOf(0);j.compareTo(m)<0;j=j.add(ONE)) {

h.put(basePow,j);

basePow=basePow.multiply(base).mod(modulus);

}

//Compute an inverse of base^m modulo p

BigInteger basetotheminv=base.modPow(m,modulus).modInverse(modulus);

BigInteger y=new BigInteger(residue.toByteArray());

//Search the hashtable for a base^j such that y=base^j for some j

BigInteger target;

for (BigInteger i=BigInteger.valueOf(0);i.compareTo(m)<0;i=i.add(ONE)) {

target = (BigInteger)h.get(y);

if (target!=null) return i.multiply(m).add(target);

y=y.multiply(basetotheminv).mod(modulus);

}

throw new NoSuchElementException(“No solution”);

}

I have written TestDiscreteLogApplet to test these log finding methods. It can be run
from the book’s website. Figures 13.2 and 13.3 show two screen shots.

i y

0

1

2

3

4

140

136

290

194

206

No

No

No

No

Yes (index 15)

y in table?

13.4 Calculating Discrete Logarithms 249

FIGURE 13.3

FIGURE 13.2

Pohlig–Hellman Algorithm for Discrete Logs The Pohlig–Hellman algorithm
is only effective when a prime modulus p is such that p � 1 consists entirely of small fac-
tors. But in this case, it is very effective. Consider the prime p, and let the prime factoriza-
tion of p � 1 be given by

p � 1 = p1
e1 � p2

e2 � . . . � pn
en.

250 Chapter 13 Exponential Congruences

Let g be a generator modulo p, and suppose we wish to solve

gx � b (mod p)

for x. To do this, we will first determine each residue xi such that

x � xi (mod pi
ei) ∀ i.

To compute each of these residues, we will compute the digits of each xi in terms of its
pi-ary representation; that is, we will construct each xi as a base pi number:

xi = dei�1 � pi
ei�1 + dei�2 � pi

ei�2 + . . . + d2 � pi
2 + d1 � pi + d0. (

*)

Once we have determined each xi, we have a system

x � x1 (mod p1
e1)

x � x2 (mod p2
e2)

···

x � xn (mod pn
en)

which we can then solve for x = loggb using the Chinese Remainder Theorem (notice the
moduli are pairwise relatively prime). The trick, of course, is to obtain the representation
given by (*); this is described in the following algorithm.

Suppose p, g, and the prime factorization of p � 1 are as described previously. We wish
to find x = logg,pb:

1. For i = 1 to n do:

(a) Let q = pi, e = ei, c = 1, and d�1 = 0.

(b) Compute g* = g(p�1)/q.

(c) For k = 0 to e � 1 do:

I. Set c = cgdk � 1qk�1

II. Set b* = (bc�)n/(qk�1) (where c� is an inverse of c modulo p)

III. Compute dk = logg*b
*

(d) Let xi = de�1 � qe�1 + de�2 � qe�2 + . . . + d2 � q2 + d1 � q + d0

2. Use CRT to compute a simultaneous solution x to the system

x � x1 (mod p1
e1)

x � x2 (mod p2
e2)

···

x � xn (mod pn
en)

13.4 Calculating Discrete Logarithms 251

One step may require clarification; namely, step 1.(a).III: How do we know that

dk = logg*b
*

is indeed the kth digit in the pi-ary representation of xi? Note first that if q = pi and e = ei

as in the algorithm, we have |g*| = q. During the kth loop of step 1.(a).III, we have

c = gd
k−1k−1+···+d1q+d0

and so

b* = (b/c)n/qk�1

= (gx�dk � 1qk�1 � d1q�d0)n/qk�1

= (gn/qk�1) xi�dk � 1qk�1�d1q�d0 (switch order of exponents)

= (gn/qk�1)de � 1qe�1 � . . . � dkqk

= (gn/q) de � 1qe�1�k � . . . � dk (divide and multiply by qj)

= (g*)dk (since |g*| = q)

Thus, we indeed have dk = logg
b.

Note that in order for us to compute a logarithm with Pohlig–Hellman, we need to know
the prime factorization of p � 1, and to compute other logarithms (specifically, step 1.(c).III.).
We must use another algorithm to compute these logs; for example, baby-step giant-step.
If one of the factors of p � 1 is large, then computing this “sublogarithm” is also an
intractable problem.

Admittedly, the notation in this algorithm looks virtually labyrinthine; however (as usual),
an example will show how straightforward it really is. We will use small parameters.

EXAMPLE. Let the prime p = 41. We can easily obtain the prime power factorization of
p � 1:

p � 1 = 40 = 23 � 5

We want to find log6,415; that is, the solution to 6x � 5 (mod 41).
To do this, we must compute each of the following:

1. x1 � x (mod 23) → x1 = d0 + d12 + d22
2

2. x2 � x (mod 5) → x2 = d0

We begin with x1:

g* = 640/2 � 40 (mod 41).

252 Chapter 13 Exponential Congruences

Let c = 1 and compute b* = (5 � 1�)40/2 � 1 (mod 41).

Compute d0 = log401 = 2 (by using, for example, baby-step giant-step).

Now, let c = 1 � 62 � 36 (mod 41) and compute b* = (5 � 36�)40/4 � 1 (mod 41).

Compute d1 = log401 = 2 (by using, for example, baby-step giant-step).

Now, let c = 1 � 61�2 � 36 (mod 41) and compute b* = (5 � 36�)40/8 � 1 (mod 41).

Compute d2 = log401 = 2 (by using, for example, baby-step giant-step).

This yields

x1 = 2 + 2 � 2 + 2 � 22 = 14.

Now, to compute x2:

g* = 640/5 � 10 (mod 41)

Let c = 1 and compute b* = (5 � 1�)40/5 � 18 (mod 41).

Compute d0 = log1018 = 2 (by using, for example, baby-step giant-step).

This immediately yields

x2 = 2.

Thus, we seek a solution to the system of congruences

x � 14 � 6 (mod 23)

x � 2 (mod 5).

By using the Chinese Remainder Theorem, we derive the solution

x � 22 (mod 40).

Thus, log6, 415 = 22. (Verify!)

Now, to the index-calculus algorithm. But before we describe it, we should cover some
properties which discrete logarithms possess; they are very similar to properties of logarithms
of real numbers.

PROPOSITION 43 Let p be prime, and let g be a generator modulo p. Suppose a and b
are positive integers not divisible by p. Then we have all of the following:

a) log1 � 0 (mod p � 1)

b) log(ab) � loga + logb (mod p � 1)

c) log(ak) � k � loga (mod p � 1)

where all logarithms are to the base g modulo p.

13.4 Calculating Discrete Logarithms 253

Proof.

a) From FLT, we have gp�1 � 1 (mod p). Since g is a generator modulo p, no smaller power
of g is congruent to 1 modulo p, and thus log1 = p � 1 � 0 (mod p � 1).

b) Note that from the definition of discrete logarithms,

glog(ab) � ab (mod p),

and

gloga � logb � gloga � glogb � ab (mod p).

Thus,

glog(ab) � gloga � logb (mod p),

and by using proposition 38, we conclude that

log(ab) � loga + logb (mod p – 1)

c) Exercise. �

EXAMPLES. Take the prime p = 13, and note that 2 is a generator modulo 13 (this is easily
checked). Note that since 20 � 212 � 1 (mod 13) by FLT, we have

log2,131 =12 � 0 (mod 12).

Also, note that

log2,1312 = 6,

log2,139 = 8, and

log2,13(9 � 12) = log2,13(108) = log2,13(4) = 2.

(Since 108 � 4 modulo 13.)

This gives us

log2,13(9 � 12) = 2 � 6 + 8 = log2,1312 + log2,139 (mod 12).

Also, note that

10 � log2,1312 = 10 � 6 = 60,

and

log2,131210 = log2,1361917364224 = log2,131 = 12.

(Since 61917364224 � 1 modulo 13.)
This yields

log2,131210 = 12 � 0 � 60 = log2,131210 (mod 12).

254 Chapter 13 Exponential Congruences

Index–Calculus Algorithm An optimized variant of this algorithm is the fastest
known algorithm to date for computing discrete logarithms to the base g modulo a prime p,
where g is a generator.

To compute logg, pb where gx � b (mod p) using the index–calculus algorithm:

1. Select from the numbers 2, 3, . . . , p � 2, a subset of the first t primes S = {p1, p2, . . . ,
pt} such that “many” of the elements gi where 1 ≤ i < p � 1 can be written as a product
of elements from S.

2. Select a random integer j such that 0 ≤ j ≤ p � 2 and compute the lnr of gj modulo p.

3. Attempt to write gj as a product of elements from S:

gj = p1
c1 � p2

c2 � . . . � pt
ct, ci ≥ 0 ∀i.

If this is not successful, return to step 2; otherwise, continue.

4. Take the logarithm modulo p of both sides to produce a congruence;

j � log(g) � j � c1 � log(p1) + c2 � log(p2) + . . . + ct � log(pt) (mod p � 1).

(Simplify using the properties of discrete logarithms, as shown.)

5. Repeat steps 2 through 4 to make a system of at least t such congruences. Attempt to
find a unique solution for each logarithm by solving the system. If the system is linearly
dependent, go back to step 2 and generate new congruences to replace those that are lin-
early dependent on the others.

6. Select a random integer k such that 0 ≤ k ≤ p � 2, and compute the lnr of b � gk modulo
p.

7. Attempt to write b � gk as a product of elements from S:

b � gk = p1
d1 � p2

d2 � . . . � pt
dt, di ≥ 0 ∀i.

If this attempt is not successful, return to step 6; otherwise, continue.

8. Take the logarithm to the base g of both sides; this yields

log(b � gk)

� log(b) + k � log(g)

� log(b) + k

� d1 � log(p1) + d2 � log(p2) + . . . + dt � log(pt) (mod p � 1).

which we then solve for logg, pb:

log(b) � d1 � log(p1) + d2
. log(p2) + . . . + dt � log(pt) � k (mod p � 1).

EXAMPLE. We will use the index–calculus algorithm to find a solution to 6x � 57 (mod
107). Note that 107 is prime, and that 6 is a generator modulo 107 (verify). So, the parameters

13.4 Calculating Discrete Logarithms 255

are p = 107, g = 6, and b = 57. We will choose S = {2, 3, 5, 7}. Now, we generate some ran-
dom integers, and attempt to write powers of g = 6 as products of elements from S.

lnr of 624 modulo 107: 42 = 2 � 3 � 7

lnr of 66 modulo 107: 4 = 22

lnr of 633 modulo 107: 15 = 3 � 5

lnr of 634 modulo 107: 90 = 2 � 32 � 5

By taking the logarithm base 6 modulo 107 of both sides, and using the properties of dis-
crete logarithms (from proposition 43), we get the following system of congruences:

24 � log2 + log3 + log7 (mod 106)

6 � 2 � log2 (mod 106)

33 � log3 + log5 (mod 106)

34 � log2 + 2 � log3 + log5 (mod 106)

To solve this system, we need to reduce the following matrix to row echelon form using
an analogue of Gauss–Jordan elimination for matrices representing congruences.

∣
∣
∣
∣
∣
∣
∣

1 1 0 1 24
1 0 0 0 6
0 1 1 0 33
1 2 1 0 34

∣
∣
∣
∣
∣
∣
∣

When this is done, we achieve this reduced matrix. (Verify.)
∣
∣
∣
∣
∣
∣
∣

1 0 0 0 3
0 1 0 0 104
0 0 1 0 35
0 0 0 1 23

∣
∣
∣
∣
∣
∣
∣

Thus, we have

log62 = 3

log63 = 104

log65 = 35

log67 = 23

Now, we try to evaluate log6,10757 (the purpose of all this work, remember?). First, we
pick a random integer k = 38, and try to write b � gk as a product of members of S. It turns
out that we can:

lnr of 57 � 638 modulo 107 = 35 = 5 � 7.

256 Chapter 13 Exponential Congruences

Taking the logarithm base 6 of both sides, and by using the properties of discrete loga-
rithms, we get

log57 + 38 � log5 + log7

� 35 + 23

� 58 (mod 106).

Thus, we obtain our final result,

log6,10757 = 58 � 38 = 20. (Verify!)

Some parts of this algorithm are not clear; for instance, how many primes t should be in
the set S? The answer is not clear, since it depends on the abilities of the computing device.
If t is too large, the corresponding system of congruences may take up too much memory,
and take too long to solve. On the other hand, if t is too small, it will be harder to find ele-
ments which can be written as a product of members of S; the search for these elements
could take too long. This type of time–memory tradeoff always depends on the hardware
being used; thus, we leave this part of the algorithm unspecified.

Another part of the algorithm that is unclear is when it directs one to “attempt to write
the element as a product of members from S.” If we are using the first t primes, we can do
this by simply taking the prime factorization of the element (say E), and checking if each
factor of E is in the set S. However, if E is a large prime, or is composite but is difficult to
factor because it has large prime factors, the time to do this could be prohibitive. Thus, we
should probably submit E to a primality test; if it turns out to be a probable prime, we should
reject E and choose another random integer. Otherwise, we can try to factor E, but enforce
some time limit to do this.

Many of these decisions for the index–calculus algorithm are heavily dependent on the
hardware, and the software, such as the implementation of large integer arithmetic. Thus,
the decisions on how to implement the index–calculus algorithm are often made based on
experimentation.

EXERCISES

1. Prove part (b) of proposition 37.

2. Write a logPohligHellman() method in the BigIntegerMath class to compute discrete
logs using the Pohlig–Hellman algorithm.

3. Prove part (c) of proposition 43.

4. The BigInteger class provides a modPow() method to perform modular exponentia-
tion, but you should consider how to write such a method. Write an efficient method to
perform modular exponentiation, say a modPow(BigInteger base, BigInteger exponent,
BigInteger modulus) method. Put it in the BigintegerMath class. For help, refer to the
following:

Exercises 257

Implementing Modular Exponentiation. Notice that many cryptosystems require us to
raise integers to large powers modulo n. It is easy to write an algorithm that does a
poor job of this. Consider the relatively easy problem of raising 2 to the 340th power
modulo 341; that is, compute the lnr x of

2340 � x (mod 341).

Do we compute 2340, then compute the least nonnegative residue? Of course not; if the
numbers involved were only moderately larger, the storage space of computers would
be quickly maxed out trying to contain such a large number.

Our second alternative may be to write a loop which executes 339 times, begins with
a value of the base 2, then multiplying the product times 2 each time and taking the lnr
modulo 341 on each iteration. This is better, but only moderately larger exponents could
make this far too slow. For example, an exponent larger than a trillion would cause the
loop to execute more than a trillion times, and even supercomputers would take a while
to crank through such a loop.

A much better alternative is to do repeated squarings and multiplications, taking
the lnr after each operation. To see this, we rewrite 2340 as

2340

= 2170 � 2

= (2170)2

= ((285)2)2

= (((242�2�1)2)2)2

= (((2(242)2)2)2)2

= (((2(221�2)2)2)2)2

= (((2((221)2)2)2)2)2

= (((2((210�2�1)2)2)2)2)2

= (((2((2(210)2)2)2)2)2)2

= (((2((2(25�2)2)2)2)2)2)2

= (((2((2((25)2)2)2)2)2)2)2

= (((2((2((22�2�1)2)2)2)2)2)2)2

= (((2((2((2(22)2)2)2)2)2)2)2)2.

Computing 2340 modulo 341 then becomes a matter of calculating

(((2((2((2(22)2)2)2)2)2)2)2)2

� (((2((2((2(4)2)2)2)2)2)2)2)2

� (((2((2((32)2)2)2)2)2)2)2

258 Chapter 13 Exponential Congruences

� (((2((2(1)2)2)2)2)2)2

� (((2(22)2)2)2)2

� (((2(4)2)2)2)2

� ((322)2)2

� (12)2

� 1 (mod 341).

Writing these computations out is far uglier than actually doing them. You will notice
that calculating 2340 modulo 341 this way only requires 9 squarings, and only 3 multi-
plications by the base 2. This is a dramatic improvement over 339 multiplications, and
this improvement becomes even more obvious as we use much larger exponents.

To do this, it may help to look at the binary representation of 340; that is,

340 = 101010100(base 2)

When calculating the lnr x of

2340 � x (mod 341)

You may see an efficient way to determine when to square, and when to multiply by
the base.

5. Write the following constructor for the Int class.

public Int(int bitlength, int certainty, Random r);

It should generate probable primes of the desired bitlength. They should be prime with
probability exceeding 1 � 0.25certainty.

C H A P T E R 14
Exponential Ciphers

259

In the last chapter, we discussed how to solve congruences of the form

ax � b (mod p)

for x, where a and b are known, and p is prime. Cryptosystems based on exponential con-
gruences can be quite difficult to crack. We will consider such ciphers now.

14.1 DIFFIE–HELLMAN KEY EXCHANGE

The first public key scheme was invented by Diffie and Hellman. Though it could not be
used to send messages, it could establish secret keys for use in secret key cryptosystems. An
eavesdropper “tapping the line” would be unable to determine what the generated key was.

The steps to Diffie–Hellman (DFH) are as follows:

1. Two users agree on using a large prime p, and g, a generator modulo p. At current lev-
els of computing power, p should be at least 1024 bits in length. It doesn’t matter if a third
party hears this exchange and knows these numbers g and p.

2. Next, user 1 chooses a private number, say x. User 2 chooses his own secret number, say
y.

3. User 1 then calculates gx (mod p) and sends this quantity to User 2. User 2 similarly
computes gy (mod p) and sends this to User 1.

4. User 1 then takes the value received from User 2 and raises it to his x power, and User
2 likewise computes the value received from User 1 to his y power. Thus, they both com-
pute K � (gx)y � gxy � (gy)x (mod p). This value K can then be used as a key in subse-
quent secret key sessions.

260 Chapter 14 Exponential Ciphers

14.2 WEAKNESSES OF DIFFIE–HELLMAN

Why is this secure? Note that even if a third party is listening, and hears all of the follow-
ing transmissions, he will know the value of g, p, gx, and gy. Is this enough to compute the
K value? No! In order to compute K, the eavesdropper must do either of two things:

• Raise gx to the y power (mod p), which he cannot do because he does not know y, or

• Raise gy to the x power (mod p), which he cannot do because he does not know x.

Note that though the eavesdropper does not know x or y, he does know gx and gy. How
easy is it to obtain x, for example, if you know what gx is? Nearly impossible! This is, of
course, the discrete logarithm problem, and it means solving a congruence of the form

z � gx (mod p)

for x. We know this problem is intractable when the modulus p is large, and when g is a gen-
erator modulo p. Thus, anyone using DFH with confidence in the difficulty of the discrete
logarithm problem can generate as many keys as desired and use them with other cryp-
tosystems.

Later we will see a Diffie–Hellman Key Exchange. To do this, we will need to cover
some of the Java networking classes, so I’ve saved this topic for the upcoming chapter,
Establishing Keys and Message Exchange.

14.3 THE POHLIG–HELLMAN EXPONENTIATION CIPHER

This cipher is based on Fermat’s Little Theorem (FLT), and is called the Pohlig–Hellman
exponentiation cipher. Let p be a large safe prime, and let e be some integer relatively prime
to p � 1. At current levels of computing power, p should be at least 1024 bits in length. Our
plaintext message P is a nonnegative integer less than p. The enciphering transformation is

C � Pe (mod p), 0 ≤ P < p, 0 ≤ C < p.

To decrypt, we must first find an inverse of e modulo p � 1, call it d. We know this
inverse exists because e is relatively prime to p � 1; thus, d must satisfy the congruence

ed � 1 (mod p � 1).

This congruence has a unique solution for d modulo p � 1 and is easily solved using the
extended Euclidean algorithm. Once d is calculated, one may decrypt in the following way:

P � Cd (mod p).

Why does this work? Why does raising the ciphertext to the d power recover the plain-
text? If we recall Fermat’s Little Theorem, it is easy to show why:

Cd

� (Pe)d

� Ped

14.4 Weaknesses of the Pohlig–Hellman Cipher 261

� Pk(p � 1) � 1 (Since ed � 1 (mod p � 1), ed = k(p � 1) + 1 for some integer k.)

� (Pp � 1)kP

� 1kP (Here is where FLT comes in.)

� P (mod p).

Note that the conditions in the hypothesis of Fermat’s Little Theorem are satisfied; that
is, p is prime and does not divide P, a nonnegative integer less than p.

14.4 WEAKNESSES OF THE POHLIG–HELLMAN CIPHER

Suppose we are using Pohlig–Hellman and manage to get our hands on the plaintext P asso-
ciated with some ciphertext C. Finding the encryption key e then means solving the con-
gruence

C � Pe (mod p)

for e. This is an exponential congruence, and as we know, these are quite difficult to solve.
Thus, when using this cipher, even if we obtain some plaintext knowing that it corresponds
to certain ciphertext, it still does not help us in cracking the cipher. Hence, the Pohlig–Hell-
man cipher is resistant even to a known plaintext attack. It is very important that a cipher
not be vulnerable to such an attack, since it is considered too great a security risk. This
exponentiation cipher is quite resistant to cryptanalysis, provided the proper precautions
are taken. We list some of the potential weaknesses of this cipher.

Inadequate Block Size The block size (and thus the prime modulus p) must be cho-
sen large enough; say greater than 500 decimal digits for the prime p.

Weak Primes The quantity p � 1 should have at least one large prime factor, otherwise
p could be vulnerable to certain discrete log finding algorithms.

Low Order Messages modulo p Since we encrypt with Pohlig–Hellman using the
transformation

C � Pe (mod p),

the plaintext message may not be a generator modulo p, and in fact may have low order. This
makes the discrete logarithm problem easier to solve. Some method must be employed to
ensure the message is of high order modulo p; perhaps by judicious use of salt. Note finally
that Pohlig–Hellman is a secret key cipher. Divulging the encryption key e to anyone is the
same as handing them the decryption key d, since finding it merely means solving the con-
gruence ed � 1 (mod p � 1) for d, which is very easily done.

Memoryless Cipher Pohlig–Hellman is a static cipher. That is, it always maps a par-
ticular plaintext block to the same ciphertext block. We discussed CBC earlier to cope with

262 Chapter 14 Exponential Ciphers

FIGURE 14.1

this problem, but here we will cover a different solution. It has some advantages over CBC,
but can only be used for a secret key cipher.

14.5 CIPHER FEEDBACK MODE (CFB)

Like CBC, CFB uses an initialization vector (IV) to start the encryption and decryption.
What may seem strange is that only the encryption transformation is used for both encryp-
tion and decryption; the decryption key is never needed. (This makes CFB unsuitable for
public key ciphers, of course.)

Suppose the cipher maps m-bit blocks to n-bit blocks, where m ≤ n. Let Ek(x) denote the
encipherment of x using the secret encryption key k. The IV is an m-bit quantity that need
not be secret. Let r be a positive integer not exceeding n, and divide the plaintext message
into r-bit blocks, x1, x2, . . . , xw. We proceed as follows:

1. Let I1 = IV

2. For i from 1 through w do:

a) Let Ui = Ek(Ii).

b) Let ti be the r least significant bits of Ui. (Suppose the least significant bits are to the
right.)

c) Let ci = xi � ti.

d) Shift Ii toward the left r bit positions, and append ci; assign this value to Ii+1.

The ciphertext is the set of r-bit blocks c1, c2, . . . , cw. Figure 14.1 is a diagram of the CFB
mode of operation.

To decrypt, we go through nearly the same process, with only the ciphertext blocks and
plaintext blocks exchanging roles in step 2.(c).

Cipher Feedback Mode - CFB
IV = initialization vector
E = encryption transformation

+ + + +

IV c(1) c(2) c(w–1)

m r r

rr

r r

r

t(1)

E E

E

E

x(1) x(2) x(3)

c(1) c(2) c(3)

x(w)

c(w)

t(3)

t(2) t(w)

14.5 Cipher Feedback Mode (CFB) 263

1. Let I1 = IV

2. For i from 1 through w do:

a) Let Ui = Ek(Ii).

b) Let ti be the r least significant bits of Ui. (Suppose the least significant bits are to the
right.)

c) Let xi = ci � ti.

d) Shift Ii toward the left r bit positions, and append ci; assign this value to Ii+1.

This cipher mode has a great benefit; using it we can process message blocks which are
smaller than the cipher block length. This is necessary for some applications, in which a sin-
gle byte (or even a bit) must be processed as soon as it enters the stream. (Many networked
applications work this way; telnet, for example.)

CFB has an advantage over CBC, in that errors do not propagate very far down the
stream. With CBC, each ciphertext block is produced based on the previous ciphertext block,
and a single bit inversion in one of these blocks changes all of the blocks following it. This
is not likely to happen during the encryption phase, but is quite possible on the receiving end
of the message, after it has passed possibly thousands of miles over a noisy channel. One
incorrect bit in any block destroys all the blocks following.

A bit error using CFB propagates only a small distance. If you see how each ciphertext
block is used, you will see why. In the ith step of the algorithm, a ciphertext block ci is
appended to a left-shifted Ii, then continues to be shifted left until it is eventually shifted out
of the m-bit register. If the bit error is in block ci, for example, then it will only affect those
blocks processed while ci remains in the register.

EXAMPLE. We will use CFB with Pohlig–Hellman, using a small prime. In reality, a safe
prime at least a thousand bits in length should be used. The quantities will be expressed in
binary. We will process 3 bits of the message at a time. Suppose the prime modulus is

p = 1101011111111,

the encryption exponent is

e = 111111110000,

the initialization vector is

iv = 10110011,

and the message (divided into 3-bit blocks) is

x1 = 101, x2 = 110, x3 = 011.

We begin by setting I1 = to the initialization vector:

I1 = iv = 10110011.

We then compute

u1 � I1
e � 0101101100011 (mod p),

264 Chapter 14 Exponential Ciphers

and t1 is the three rightmost bits:

t1 = 011.

This is �-ed with the first plaintext block to yield the first ciphertext block.

c1 = t1 � 101 = 011 � 101 = 110

We now form the next value I2 by shifting I1 to the left three bits, and appending c1. The
three most significant bits of I1 are lost.

I2 = 10011110.

From here on out, the process goes exactly the same way:

U2 � I2
e � 111101111 (mod p)

t2 = 111

c2 = t2 � 110 = 001

I3 = 11110111

U3 � I3
e � 1011100100 (mod p)

t3 = 100

c3 = t3 � 011 = 111

The final ciphertext message (in 3-bit blocks) is:

c1 = 110, c2 = 001, c3 = 111

Java Algorithm Using the BigInteger class in Java, it is easy to write code to perform
Pohlig–Hellman exponentiation encryption/decryption. Here, we add a couple of methods,
pohligHellmanEncipher() and pohligHellmanDecipher(), to our Ciphers class. It calls the
same pad(), block(), unPad() and unBlock() methods we defined earlier, but it does not use
salt, or CFB. You will be asked to do CFB in the exercises.

import java.math.*;

public class Ciphers {

public static byte[] pohligHellmanEncipher(byte[] msg,BigInteger e,BigInteger p)

{

//Compute the plaintext block size

int blockSize=(p.bitLength()-1)/8;

//Check the enciphering exponent

if (!(p.subtract(BigIntegerMath.ONE).gcd(e).equals(BigIntegerMath.ONE)))

throw new IllegalArgumentException

(“Enciphering key is not relatively prime to (modulus minus one).”);

byte ba[][]=block(pad(msg,blockSize),blockSize);

//Begin the enciphering

14.5 Cipher Feedback Mode (CFB) 265

for (int i=0;i<ba.length;i++) ba[i]=getBytes(new

BigInteger(1,ba[i]).modPow(e,p));

//Return to a 1D array.

//The ciphertext block size is one byte greater than plaintext block size.

return unBlock(ba,blockSize+1);

}

public static byte[] pohligHellmanDecipher(byte[] msg,BigInteger d,BigInteger p)

{

//Compute the ciphertext block size

int blockSize=(p.bitLength()-1)/8+1;

//Check the deciphering exponent

if (!(p.subtract(BigIntegerMath.ONE).gcd(d).equals(BigIntegerMath.ONE)))

throw new IllegalArgumentException

(“Deciphering key is not relatively prime to (modulus minus one).”);

byte[][] ba=block(msg,blockSize);

//Begin the deciphering

for (int i=0;i<ba.length;i++) ba[i]=getBytes(new

BigInteger(1,ba[i]).modPow(d,p));

//Go from blocks to a 1D array, and remove padding; return this

return unPad(unBlock(ba,blockSize-1),blockSize-1);

}

//…Other methods

}

An applet (called TestPohligHellmanCipherApplet) to view the behavior of this cipher
can be run from the book’s website. The applet generates a safe prime to use as the modu-
lus. The applet actually uses a salted version of Pohlig–Hellman. You will see that if you enci-
pher the same plaintext multiple times, you will receive a different ciphertext each time. The
methods to encipher/decipher this way are in the Ciphers class.

public static byte[] pohligHellmanEncipherWSalt

(byte[] msg,BigInteger e,BigInteger p,SecureRandom sr) {

//Compute the plaintext block size

int blockSize=(p.bitLength()-1)/8;

if (blockSize<5) throw new IllegalArgumentException

(“Block size must be >= 5 bytes”);

//Check the enciphering exponent

if (!(p.subtract(BigIntegerMath.ONE).gcd(e).equals(BigIntegerMath.ONE)))

throw new IllegalArgumentException

(“Enciphering key is not relatively prime to (modulus minus one).”);

byte[][] ba=block(pad(msg,blockSize-4),blockSize-4);

//Begin the enciphering

for (int i=0;i<ba.length;i++) {

ba[i]=addSalt(ba[i],sr);

ba[i]=getBytes(new BigInteger(1,ba[i]).modPow(e,p));

}

266 Chapter 14 Exponential Ciphers

//Return to a 1D array. The ciphertext block size is one byte greater than

//plaintext block size.

return unBlock(ba,blockSize+1);

}

public static byte[] pohligHellmanDecipherWSalt(byte[] msg,BigInteger d,BigInteger

p) {

//Compute the ciphertext block size

int blockSize=(p.bitLength()-1)/8+1;

//Check the deciphering exponent

if (!(p.subtract(BigIntegerMath.ONE).gcd(d).equals(BigIntegerMath.ONE)))

throw new IllegalArgumentException

(“Deciphering key is not relatively prime to (modulus minus one).”);

byte[][] ba=block(msg,blockSize);

//Begin the deciphering

for (int i=0;i<ba.length;i++) {

ba[i]=getBytes(new BigInteger(1,ba[i]).modPow(d,p));

ba[i]=removeSalt(ba[i]);

}

//Go from blocks to a 1D array, and remove padding; return this

return unPad(unBlock(ba,blockSize-5),blockSize-5);

}

You can see that these methods call a couple of helper methods, addSalt() and
removeSalt(), also in the Ciphers class.

//Method to add salt to blocks

private static byte[] addSalt(byte[] b,SecureRandom random) {

byte[] answer=new byte[b.length+4];

byte[] salt=new byte[4];

random.nextBytes(salt);

//Put salt in front

System.arraycopy(salt,0,answer,0,4);

//Copy the message over

System.arraycopy(b,0,answer,4,b.length);

return answer;

}

//Method to remove salt

private static byte[] removeSalt(byte[] b) {

byte[] answer=new byte[b.length-4];

//Copy the message over

System.arraycopy(b,4,answer,0,answer.length);

return answer;

}

14.6 The ElGamal Cipher 267

FIGURE 14.2

Figure 14.2 is a screen shot of TestPohligHellmanCipherApplet. Give it a try and see
how it works.

14.6 THE ELGAMAL CIPHER

Since DFH, there has been an explosion of public key algorithms. The proposed national
standard, backed by the National Security Agency (NSA), is called ElGamal. Though it is
a very interesting algorithm, it is possible that NSA has already broken it, which could
explain their enthusiasm for it. ElGamal is similar to Diffie–Hellman key exchange and
Pohlig–Hellman in that breaking it requires solving the discrete logarithm problem. This is
opposed to RSA (which we will soon discuss), which depends on the intractability of fac-
toring integers with large prime factors.

This is how ElGamal works: First, the recipient of a message must choose a large ran-
dom safe prime p, and a generator g modulo p. At current levels of computing power, p
should be at least 1024 bits in length. Then he selects a random integer a such that 1 < a <
p � 1, and computes the least nonnegative residue r of ga modulo p. That is,

r � ga (mod p) (0 ≤ r < p).

He makes public the values p, g, and r. The private key is a.
Now, for someone to send a message to this individual, she must do the following: Sup-

pose P is the plaintext message, considered as an integer, with 0 ≤ P < p. The sender then

268 Chapter 14 Exponential Ciphers

selects a random integer k such that 1 ≤ k ≤ p � 2 (it is very important that the sender choose
a different random value for each message); then she computes the two values

c � gk (mod p) (0 ≤ c < p)

d � Prk � P(ga)k (mod p) (0 ≤ d < p).

The ciphertext to send is the pair of values c and d; that is,

C = (c, d).

The intended recipient decrypts C by using the private key a to first compute the lnr z of
an inverse of ca modulo p; that is,

z � (ca)� (mod p) (0 ≤ z < p).

He then recovers the plaintext P by computing

P � zd (mod p) (0 ≤ P < p).

Why does this last computation recover the plaintext? If one references how each quan-
tity was created, it becomes obvious:

zd � (ca)� � P � rk � ((gk)a)� � P � (ga)k � (gak)� � gak � P � P (mod p).

EXAMPLE. We will now demonstrate ElGamal using very small numbers. The intended
recipient first chooses a prime p = 2357, and g = 2, a generator modulo 2357. She then
chooses a random integer a = 2001 which will serve as the private key. She then computes

r = 2034 � 22001 (mod 2357).

She makes public the values of p, g, and r.
Suppose now someone wishes to send the message (regarded as an integer)

P = 1622

to the aforementioned recipient. She must first generate a random integer k = 835 then com-
pute the two values

c = 731 � 2835 (mod 2357)

d = 1326 � 1622 � 2034835 (mod 2357)

She then sends these 2 values; the ciphertext is

C = (731, 1326)

To decrypt, the recipient must first find an inverse of ca modulo p; that is,

z = 794 � 1980� � (7312001)� (mod 2357).

She then retrieves the plaintext by computing the lnr of zd modulo p.

P = 1622 � 794 � 1326 (mod 2357).

14.7 Weaknesses of ElGamal 269

Note that ElGamal basically doubles the size of the message. For this reason, cryptog-
raphers often ignore the national standard in favor of other cryptosystems.

System-Wide Parameters Note that there is no particular reason why everyone in
a system could not use the same values for the prime p and the generator g with ElGamal.
Each individual would only then need to choose a private value for a. This has been sug-
gested, and has received limited use in practice.

14.7 WEAKNESSES OF ELGAMAL

ElGamal can be broken provided proper precautions are not taken. We describe the most
important weakness here.

Equal Encryption Exponent Attack It is very important that when enciphering
using the transformations

c � gk (mod p) (0 ≤ c < p)

d � Prk � P(ga)k (mod p) (0 ≤ d < p).

that the sender choose a different random value of k for each plaintext message. If the mes-
sage must be separated into blocks, a different value of k must be used on each block. If not,
plaintext can be easily derived by an adversary. To see this, suppose the same value for k
was used to encipher the plaintext messages P and P*. Their corresponding ciphertext pairs
are (c, d), and (c*, d*). Note then that we have

d � (d*)� � P(ga)k � (P*(ga)k)� (mod p),

where d� and (d*)� are inverses of d and d* modulo p, respectively. Thus

P* � d � (d*)� � P (modulo p).

Thus, if either message, P or P*, were known to an adversary, they could easily derive
the other message. Thus, this is a known plaintext attack coupled with carelessness on the
part of the sender. If the sender always used the same value for k, an adversary would need
only one plaintext message to retrieve any others.

EXAMPLE. Here we see this type of attack, which you will be asked to program in Java. We
begin by finding a safe prime:

p = 3213876088517980551083924184682325205044405987565585670609523

It turns out that g = 2 is a generator for this prime. The sender’s private ElGamal key will
be:

a = 1897456254164942343917965235766273117568497123443633417036846

We compute the sender’s public key value r as the lnr of ga modulo p:

r = 2063540830854289477395627063716322702415230040026373835561574

270 Chapter 14 Exponential Ciphers

To execute this attack we have two plaintext messages; suppose the first is unknown to
the adversary:

P = 30249875309285709328759302875930285709327590347524096346

The second plaintext message, however, is known to the adversary:

P* = 9238652389765892365982365826589265892569823659826892659823

We will choose a random k for encryption, but we will make the mistake of using the same
k for both messages:

k = 2388424515437026664851549783676880762378680269832085250306583

We now compute the ciphertext values for both messages, and send them. The adversary
now has both ciphertext messages.

c � gk (mod p) �
1642888020851138839985143747652209853264823298182518021833998

d � P � rk (mod p) �

2423699272959365071299919696965347809128019098341877537393147

c* = c � gk (mod p) �

1642888020851138839985143747652209853264823298182518021833998

d* � P* � rk (mod p) �
1394500791523696367305442526712905312818729871045966459248084

With this information, the adversary computes inverse of d* modulo p; this is easily done:

(d*)� = 171164269300021014098269930428606194139335616620654362864166

The adversary can now obtain the first plaintext message without decrypting, by com-
puting the lnr of P* � d � (d*)� modulo p:

30249875309285709328759302875930285709327590347524096346.

This should convince you that you should never use the same value for k to encrypt mul-
tiple messages.

14.8 THE RSA CIPHER

Rivest, Shamir, and Adleman created the RSA cipher (hence the acronym RSA). They were
among the first to patent their work in public key cryptography, and they even claimed their
patent included all forms of public key cryptography! Regardless, their patent has now
expired.

RSA works like this:

1. The receiver of a message generates two large strong primes, p and q, forms their prod-
uct, say n = pq, and makes public the value of n. At current levels of computing power,

14.8 The RSA Cipher 271

n should be at least 1024 bits in length. Everyone knows n, but not its two factors, p or
q.

2. The receiver then chooses an integer e < n, such that (e,(p � 1)(q � 1)) = 1. The value
for e is made public.

3. The receiver also computes a decryption key, d, which is an inverse of e modulo
(p � 1)(q � 1). This inverse exists since e was chosen relatively prime to (p � 1)
(q � 1). That is, d must satisfy the congruence

ed � 1 (mod (p � 1)(q � 1)).

The sender of the message can send a message P < n by computing with the encipher-
ing transformation

C � Pe (mod n) 0 ≤ C < n.

5. The receiver gets the ciphertext message C, and can retrieve the plaintext by computing

P � Cd (mod n).

This cipher looks remarkably similar to the Pohlig–Hellman exponentiation cipher.
Decryption worked in that case because of Fermat’s Little Theorem. FLT will also help us
prove that decryption works here. Note that since

ed � 1 (mod (p � 1)(q � 1))

there is an integer k such that ed = 1 + k(p � 1)(q � 1). Now, suppose the plaintext mes-
sage P is relatively prime to p; that is, (P, p) = 1. Then, by FLT,

Pp�1 � 1 (mod p).

Thus, we also have the following:

Ped � P1�k(p�1)(q�1) � P(P(p�1))k(q�1) � P � 1k(q�1) � P (mod p).

On the other hand, even if P is not relatively prime to p, we still have

Ped � P (mod p),

since both sides are congruent to 0 modulo m. Similarly, we can also show that in all cases,

Ped � P (mod q).

Now, since p and q are certainly relatively prime, by proposition 26 we have

Ped � P (mod n).

Now, simply note that

Cd � (Pe)d � Ped � P (mod n)

and we have our proof that decryption always works, whether or not the plaintext message
P is relatively prime to the modulus n.

272 Chapter 14 Exponential Ciphers

EXAMPLE. We will demonstrate RSA using small numbers. To establish a public and private
key, an individual first selects two primes, say p = 563 and q = 2357. So, n = 563 � 2357 =
1326991. Finally, he selects an integer e = 3 relatively prime to (p � 1)(q � 1) = 1324072,
and computes the inverse of e modulo (p � 1)(q � 1) by solving

3d � 1 mod (1324072)

for d. This yields

d � 882715 (mod 1324072).

The values for n and e are made public; d, p, and q remain private.
Suppose someone wants to send the message (regarded as an integer)

P = 1107300

to the aforementioned individual. They must simply calculate and send the ciphertext

C = 875102 � 11073003 (mod 1326991).

To decrypt, the recipient uses the decryption key to derive the plaintext thus:

P = 1107300 � 875102882715 (mod 1326991).

14.9 WEAKNESSES OF RSA

RSA can be compromised given certain conditions. We will examine these issues here.

Small Encryption Exponent It has been suggested that a small encryption expo-
nent in RSA be used since it speeds up encryption. For example, all users could use e = 3
as their public encryption key. This doesn’t help recover their decryption exponents, since
this still seems to involve factoring each of their moduli (each still chooses a different mod-
ulus). However, a small common value for e allows one to compute the eth root (with the
aid of the Chinese Remainder Theorem) when the same message is sent to multiple entities.
Recall that a similar problem occurs with the Rabin cipher.

Suppose e = 3 for some individual, and they send the same message m (enciphered) to
three different entities, having respective moduli n1, n2, and n3. The ciphertext sent to each
entity will be denoted c1, c2, and c3. An eavesdropper intercepting these messages merely
has to find the simultaneous solution x to the system

x � c1 (mod n1)

x � c2 (mod n2)

x � c3 (mod n3).

Since m3 < n1n2n3, (and these moduli are almost certainly pairwise relatively prime) the
lnr of the x obtained using CRT is in fact, m3. Thus, to recover m, one needs only compute

14.9 Weaknesses of RSA 273

the ordinary cube root of x. The eavesdropper needs no knowledge of the private decryp-
tion keys.

EXAMPLE. Here we see this type of attack. You will be asked to program this in Java. We
will use e = 3, a small RSA encryption exponent. The private primes p1 and q1 for the first
recipient will be

p1 = 1797693134862315907729305190789024733617976978942306572734300811577
326758055009631327084773224075360211201138798713933576587897688144166224
928474306394741243777678934248654852763022196012460941194530829520850057
688381506823424628814739131105408272371633505106845862982399472459384797
16304835356329624224137859

q1 = 3595386269724631815458610381578049467235953957884613145468601623154
653516110019262654169546448150720422402277597427867153175795376288332449
856948612789482487555357868497309705526044392024921882389061659041700115
376763013646849257629478262210816544743267010213691725964798944918769594
32609670712659248448276687

and so the public modulus of the first recipient is

n1 = 6463401214262201460142975337733990392088820533943096806426069085504
931027773578178639440282304582692737743592184379603898823911830098184219
017630477289656624126175473460199218350039550077930421359211527676813513
655358443728523951232367618867695234094116329170407261008577515178308213
161721510479824786077168039180583408274776831691763152279716383800031412
340152137152869819345741269583108122123538437343928423821045606152759418
497127367645255205598014712084444888413036198687032378283647381146628192
392272381849431882332598356071136706057555737475784812146651136260498654
1276943834825366579731809108470421496863793133.

The private primes p2 and q2 of the second recipient will be

p2 = 2876309015779705452366888305262439573788763166307690516374881298523
722812888015410123335637158520576337921822077942293722540636301030665959
885558890231585990044286294797847764420835513619937505911249327233360092
301410410917479406103582609768653235794613608170953380771839155935015675
460877365701273987586195643

q2 = 2876309015779705452366888305262439573788763166307690516374881298523
722812888015410123335637158520576337921822077942293722540636301030665959
885558890231585990044286294797847764420835513619937505911249327233360092
301410410917479406103582609768653235794613608170953380771839155935015675
460877365701273987586198999

and so the public modulus of the second recipient is

n2 = 8273153554255617868983008432299507701873690283447163912225368429446
311715550180068658483561349865846704311797996005892990494607142525675800
342567010930760478881504606029054999488050624099750939339790755426321297

274 Chapter 14 Exponential Ciphers

478858807972510657577430552150649899640468901338121294090979219428234512
847003533414175726178704338701976613396997023846923989429400915267675371
224072946225492282228797405663320182508126374511091622289958902650991068
621751297833605381900481249551537274059332054881942134979356683844461315
857197697481081258955632608022896552417746308879672265471807920624327017
057749253168131337219010124364276404953144761357.

The values for the third recipient follow:

p3 = 35411102995737846719623366518168333594298050196755774758706943392443
663542487462097467662172989830451401744506827257811098971539574175429169
040491337203319097489754734608074368268882013823897755753670014930080870
848303015557260084193760775969411802919046594091514825570101726091141999
7232757607696740744402061

q3 = 5372505775803011191699027186229436115154643737621173737244331649963
839718830571435136309031205287665049557609629101429655500045920075361837
470441790476989175818634152591423832165782821767069215312532720454065486
795987726325808014350172260902692229856033303728223284940139917347963269
3304050579950116162025577

n3 = 1902463553721568939032257823502926001674773697587598247139701501558
833032560573732156154986990101160748711956621018724350255640687762304205
144517420437252812678611421725439723210501596142807702910144484328413464
009410879198942831308327834478772050471428586982951345191112660759887497
098234128606203524070530199477782074583416481614110088865594576679523571
008070891377916006088569389740523909478410532054423032367945632587585577
649911547160430568562503586541625305374277808808231279409769887944404948
587431526155196203679667198209757558869929282570299557397858226950493053
5780212065956740098961873155687720229453514197.

Here is the plaintext message, which will be enciphered using the public information of
all three recipients, and sent to each of them.

P = 3275628365082365092375902375908237509238750982759082375908273590823
759087230958732098750932857903287509328750932487509832750983275098327590
823750983709573092875093287509238587236589723658923659302750943275903428
573265897265982356982365982356892658923650957809367239856892365982365982
365982365982365982569825698235698265398236598269852732095689236589237932
865982365982365987263986598236589726895698236598236598723658972

The three ciphertext messages follow (remember that all three recipients are using the
same encryption exponent e = 3):

c1 = 2985228835528562083388427674196356206282147873827945558991685797078
077854306787783992568624318014109425772341743388920108913938591038814111
839772619456653274001839218157096089847009660629844237128793654287567350

14.9 Weaknesses of RSA 275

240401106933796831238382712726065503420969945031934587505960500202039271
010204205064906015443161021845653786752636025260799122554299333085262937
754681616948053574596664948180936338471404599519393350947311750249336602
566373054085085654466968467435173138677842771269107786076764683104725159
085803399247689839480710024231899552955240866564500416082461325382912856
3981127997579924735517785176219721209395629732

c2 = 16286983518735228505840113496918055700047960329750616066339974975250
894466786593649586940796439731971714973648579964628952756390697386846725
808247246350123364251824728684405000577233656908306660838469990709494371
183440981716872319937648396756921247290698985908758743411248226003010386
914137647769501871476851826732558313018035079597905992082481553177956845
505791440702248084940208130754599931889430653577464075295729219681632788
900620750598115948837855900651606672958729969095386594621689577676203663
696374637520566486504552000041248343493856740588118792122227244169316401
46389299122604098725356865820444366292947816563

c3 = 12567783837800213521200299914797114622076420797206177684473093808580
938325308332512752655068693755790871997590027458508437110805679513183420
442283465242611891567416821943641070051981230872763796105042888016717025
300494644541461194457425228032425313318614186520722586565382438019917243
091905720890203872957452684366165431133548225626913824877304107770894899
866371960770489484155556132768782853292020545589228629366651712164492852
409158186141379757758419440311040383774470301077963093119315090023781825
727351989076473102076691623614368347638568431352532118619990795887055439
812204212124790288640996535404057617561041475.

The adversary now simply needs to apply the Chinese Remainder Theorem to find a
unique solution for P3 modulo n1 � n2 � n3. In this case, the value obtained for P3 is:

P3 = 35146644579287030560978762514660233813201904405872999705932115768696
905737782928494123424667693810639154098057179494678341604252064480085930
448873399913510559180840627391661278513747773824532131736429578868180533
546596973051679447607224498688779103441643557427932944735844102120065513
450152647261203797382245638092253606052730256469061716464027241288668992
664846323926601472426171907548221063300008782269770133937503368215361341
424695299633422970257709050340398184758688361230894677215671248555876252
443718216841326453679475853867288182326358282946314703313981226936021432
181551344885263869383227262609681750731967113205459444397137846013122862
368427908741920030361275067287900463396928835345577244527199407924861646
312092052422402960394100282941179465457702698040031492383614192133451124
256650262335384033971798138589528092667727448073755938420554419216151431
513983340263604768937226944910380656153269128104985487494450080601939672
203312127933868265041404967517875435486001476509867909690981955130557982

276 Chapter 14 Exponential Ciphers

048471316097956116875784447664313597829828076647064321398304080292861040
181121981874584035357384531261940870073590132259507075848608542622897132
965830205493142649925057238587095855015428120910267486856492069160267899
700588571140797942067121441946048.

Since the adversary knows that P3 must be less than n1 � n2 � n3, she simply needs to take
a normal cube root to retrieve the plaintext.

P = (P3)1/3= 32756283650823650923759023759082375092387509827590823759082735
908237590872309587320987509328579032875093287509324875098327509832750983
275908237509837095730928750932875092385872365897236589236593027509432759
034285732658972659823569823659823568926589236509578093672398568923659823
659823659823659823659825698256982356982653982365982698527320956892365892
37932865982365982365987263986598236589726895698236598236598723658972.

Note that nowhere during this attack does the adversary need to know any of the private
info of any of the recipients. Of course, this attack can be circumvented by salting mes-
sages. Another way of getting around this attack is NOT to use a small encryption exponent
with RSA.

Common Modulus Attack It has also been suggested for RSA that all entities in a
system could use the same modulus n. Each user would choose their own distinct enci-
phering exponent e and its corresponding deciphering exponent d. However, a common
value for n is far worse than everyone using the same value for e, as it allows anyone know-
ing a single pair (e*, d*) of exponents to determine the private keys of everyone using the
same modulus. You should consider how this is done.

Java Algorithm Following are two methods in the Ciphers class to do encryption and
decryption using RSA. Neither salt nor CBC is used. Of course, these methods use the
helper methods in the Ciphers class to block, unblock, pad and unpad.

public static byte[] RSAEncipher(byte[] msg,BigInteger e,BigInteger n) {

//Compute the plaintext block size

int blockSize=(n.bitLength()-1)/8;

byte[][] ba=block(pad(msg,blockSize),blockSize);

//Begin the enciphering

for (int i=0;i<ba.length;i++) ba[i]=getBytes(new

BigInteger(1,ba[i]).modPow(e,n));

//Return to a 1D array. The ciphertext block size is one byte greater than

plaintext block size.

return unBlock(ba,blockSize+1);

}

public static byte[] RSADecipher(byte[] msg,BigInteger d,BigInteger n) {

//Compute the ciphertext block size

14.9 Weaknesses of RSA 277

int blockSize=(n.bitLength()-1)/8+1;

byte[][] ba=block(msg,blockSize);

//Begin the deciphering

for (int i=0;i<ba.length;i++) ba[i]=getBytes(new

BigInteger(1,ba[i]).modPow(d,n));

//Go from blocks to a 1D array, and remove padding; return this

return unPad(unBlock(ba,blockSize-1),blockSize-1);

}

The methods to encipher/decipher with salt are also in the Ciphers class.

public static byte[] RSAEncipherWSalt

(byte[] msg,BigInteger e,BigInteger n,SecureRandom sr) {

//Compute the plaintext block size

int blockSize=(n.bitLength()-1)/8;

if (blockSize<5) throw new IllegalArgumentException

(“Block size must be >= 5 bytes”);

byte[][] ba=block(pad(msg,blockSize-4),blockSize-4);

//Begin the enciphering

for (int i=0;i<ba.length;i++) {

ba[i]=addSalt(ba[i],sr);

ba[i]=getBytes(new BigInteger(1,ba[i]).modPow(e,n));

}

//Return to a 1D array. The ciphertext block size is one byte greater than

//plaintext block size.

return unBlock(ba,blockSize+1);

}

public static byte[] RSADecipherWSalt(byte[] msg,BigInteger d,BigInteger n) {

//Compute the ciphertext block size

int blockSize=(n.bitLength()-1)/8+1;

byte[][] ba=block(msg,blockSize);

//Begin the deciphering

for (int i=0;i<ba.length;i++) {

ba[i]=getBytes(new BigInteger(1,ba[i]).modPow(d,n));

ba[i]=removeSalt(ba[i]);

}

//Go from blocks to a 1D array, and remove padding; return this

return unPad(unBlock(ba,blockSize-5),blockSize-5);

}

TestRSACipherApplet is on the book’s website to test the RSA methods. The applet actu-
ally uses a salted version of RSA. You will see that if you encipher the same plaintext mul-
tiple times, you will receive a different ciphertext each time. (See Figure 14.3.)

278 Chapter 14 Exponential Ciphers

FIGURE 14.3

EXERCISES

1. Write a pohligHellmanEncipherWCFB() and pohligHellmanDecipherWCFB() method
in the Ciphers class to use CFB.

2. Write the elGamalEncipher() and elGamalDecipher() methods in the Ciphers class.

3. Write the RSAEncipherWCBC() and RSADecipherWCBC() methods in the Ciphers
class to use CBC.

4. Write a Java program to retrieve ElGamal messages using the equal enciphering expo-
nent attack.

5. Write a Java program to retrieve RSA messages when all entities use the same small
encryption exponent.

6. It has been proposed that each entity using RSA use a common modulus (but distinct
encryption and decryption exponents). Why is it crucial that each entity choose its own
modulus?

C H A P T E R 15
Establishing Keys and
Message Exchange

279

15.1 ESTABLISHING KEYS

Since its appearance, public key cryptography has been used to establish secret keys over
an unsecure connection. Thus, communicants with no secret key to share can establish one
by using a public key protocol, and some public keys generated “on the fly.”

To demonstrate this key exchange I have written a couple of classes. However, in order
to see how they work we must cover some of the methods of the Java networking classes.
To get two computers to talk to each other, we will use two classes from the java.net pack-
age: Socket and ServerSocket. A socket represents an abstraction of a connection between
computers. The way data is transferred between machines is quite complicated, and a socket
insulates the programmer from this. Thus, socket I/O in most languages is similar to key-
board I/O, or file I/O. In Java, this is certainly the case.

To set up a socket between machines, one machine starts out by listening for a connec-
tion on a designated port (the server) and one starts out by talking to the server (the client).

In Java, we set up a server by doing something like this:

ServerSocket ss = new ServerSocket(54321);

Socket connectionServerSide = ss.accept();

This server will listen on port 54321 for a request from a client. When it receives such a
request, the accept() method from the ServerSocket class will create (and return) a socket
between the server and the client.

There are 65535 logical ports that a server can use; however, some are set aside for use
with standard protocols. A list of some of these standardized ports follows. (See Table 15.1.)
Do not use them unless you are writing a server for that purpose.

Most standard protocols are on the low end of the range of 1 thru 65535. If you use a port
greater than 10000, say, you will probably be fine. Another potential problem with running
a server is that you may not have permission to bind to (listen on) a port. You may need to
see your system administrator to obtain permission to do this.

Setting up the client side of a socket is simple. You simply request a connection to a
server running on a specified port.

280 Chapter 15 Establishing Keys and Message Exchange

TABLE 15.1
Protocol Port

echo

discard

daytime

ftp-data

ftp

telnet

smtp

time

whois

finger

http

pop3

nntp

RMI registry

7

9

13

20

21

23

25

37

43

79

80

110

119

1099

TABLE 15.2
ServerSocket() Socket()

IOException

BindException

IOException

UnknownHostException

Socket connectionClientSide =

new Socket(“WupAssGameMachine”,54321);

The server’s name can be any of the following:

1. Its name on a network (if the client is also part of that network),

2. Its domain name on the Internet (if it has one), or

3. Its IP (Internet Protocol) address (this is a number in dotted quad format, like 127.0.0.1).
Any computer connected to the Internet will have an IP address.

If anything goes wrong in setting up, the ServerSocket and socket constructors can throw
various exceptions, as listed in Table 15.2.

15.2 Diffie–Hellman Key Exchange Application 281

How these exceptions are handled is up to the application. Once the socket exists between
client and server, both client and server can prepare for input and output by using the get-
InputStream() and getOutputStream() methods from the Socket class. Each returns an Input-
Stream object, and an OutputStream object, respectively. We usually pass these objects into
constructors, which transform the streams into objects that can be more easily read from or
written to; for example, if the server needs to send text data to the client, the programmer
may do something like this:

PrintStream toClient =

new PrintStream(connectionServerSide.getOutputStream());

To send text data, we can use any of the methods from the PrintStream class:

toClient.println(“Howdy, client!”);

The client can set up output in the same way. To receive text data, the client can set up
a BufferedReader object, like this:

BufferedReader fromServer = new BufferedReader(

new InputStreamReader(connectionClientSide.getInputStream());

To receive the text data, we have now at our disposal any of the methods from the Buffered-
Reader class:

String greetings = fromServer.readLine();

One should close a socket prior to exiting a program, or at any time during the program
when we wish to break the connection. Either the client or the server can close the socket,
using the close() method from the socket class, as the server does here:

connectionServerSide.close();

In Java, attempting to close a Socket which has already been closed does nothing. Server-
Sockets should also be closed (once the Socket has been closed, of course):

ss.close();

15.2 DIFFIE–HELLMAN KEY EXCHANGE APPLICATION

You now know everything you need to know to set up a line of communication between com-
puters using Java. Hence, I will now show you a couple of programs called DiffieHell-
manListener (the server) and DiffieHellmanInitiator (the client), which set up a connection
with each other and establish a secret key over an unsecure line. Here is the code for the
server side.

import java.security.*;

import java.math.*;

import java.net.*;

import java.io.*;

public class DiffieHellmanListener {

public static void main(String[] args) throws IOException {

282 Chapter 15 Establishing Keys and Message Exchange

//Start by listening on port 11111

ServerSocket ss=new ServerSocket(11111);

//Wait for a connection

Socket socket=ss.accept();

//Open input and output streams on the socket

BufferedReader in=new BufferedReader(new

InputStreamReader(socket.getInputStream()));

PrintStream out=new PrintStream(socket.getOutputStream());

//Capture p,g,gtox values from client

BigInteger p=new BigInteger(in.readLine());

BigInteger g=new BigInteger(in.readLine());

BigInteger gtox=new BigInteger(in.readLine());

//Produce your own secret exponent

SecureRandom sr=new SecureRandom();

BigInteger y=new BigInteger(p.bitLength()-1,sr);

//Raise g to this power

BigInteger gtoy=g.modPow(y,p);

//Send this to client

out.println(gtoy);

//Raise gtox to y power-this is the secret key

BigInteger key=gtox.modPow(y,p);

System.out.println

(“The secret key with “+socket.getInetAddress().toString()+” is:\n”+key);

int c=System.in.read();

}

}

The client side of this connection is equally simple:

import java.security.*;

import java.math.*;

import java.net.*;

import java.io.*;

public class DiffieHellmanInitiator {

static BufferedReader k=new BufferedReader(new InputStreamReader(System.in));

public static void main(String[] args) throws IOException {

//Make a safe prime and generator

SecureRandom sr=new SecureRandom();

PrimeGenerator pg=new PrimeGenerator(1025,10,sr);

BigInteger[] pandg=pg.getSafePrimeAndGenerator();

//Make your secret exponent

BigInteger x=new BigInteger(pandg[0].bitLength()-1,sr);

15.2 Diffie–Hellman Key Exchange Application 283

//Raise g to this power

BigInteger gtox=pandg[1].modPow(x,pandg[0]);

//Open a connection with a server waiting for info

System.out.println(“Enter host name or IP address of server:”);

String host=k.readLine();

//Server should be listening on port 11111

Socket socket=new Socket(host,11111);

//Open input and output streams on the socket

BufferedReader in=new BufferedReader(new

InputStreamReader(socket.getInputStream()));

PrintStream out=new PrintStream(socket.getOutputStream());

//Send the values p,g,gtox to server

out.println(pandg[0]);

out.println(pandg[1]);

out.println(gtox);

//Get the gtoy value from server

BigInteger gtoy=new BigInteger(in.readLine());

//Raise gtoy to x power-this is the secret key

BigInteger key=gtoy.modPow(x,pandg[0]);

System.out.println(“The secret key is:\n”+key);

k.readLine();

}

}

Here is a sample run of the server (which was started first) and the client (started second
on a different machine).

Server:

The secret key with **********/********** is:

12114199636606924797266840610171527288281060629502849488049381607979

21289097119134252210652032462292962890192274749104820619339989532999

29747753068016087465910738004515719368489010404514526849086194982928

86796661064671158843778504644018420014267514586262260562581776028857

52446509603402778647138069775001533301

Client:

Enter host name or IP address of server:

The secret key is:

12114199636606924797266840610171527288281060629502849488049381607979

284 Chapter 15 Establishing Keys and Message Exchange

21289097119134252210652032462292962890192274749104820619339989532999

29747753068016087465910738004515719368489010404514526849086194982928

86796661064671158843778504644018420014267514586262260562581776028857

52446509603402778647138069775001533301

Here, for reasons of anonymity, I have replaced the computers’ names and/or IP addresses
with asterisks.

15.3 MESSAGE EXCHANGE

Certainly, the most common use of cryptography has been to exchange messages. A natural
question to ask is, “which cryptographic method is best?” This is a loaded question, because
the answer is, “It depends.” Most algorithms are superior in some ways, but inferior in oth-
ers. We can make a table of the ciphers we have covered, as shown in Table 15.3, listing the
advantages, disadvantages, and weaknesses of each. (I consider a weakness different than
a mere disadvantage.) Some of the weaknesses can be described as potential weaknesses,
since they can be corrected.

15.4 CIPHER CHAT APPLICATION

I have written a chat program to pass enciphered messages back and forth between a machine
running as a client, and another running as a server. The two chatters do not need to share
a secret key, since the client and the server each generate a public key/private key pair, then
send the public key to the other. It doesn’t matter if anyone “listening in” captures either of
these public keys. After the client and the server know the other’s public key, either can
send encrypted messages.

I should note that the messages in this application are not text, but arrays of bytes. Of
course, this is because the messages are enciphered. Thus, the PrintStream and Buffered-
Reader classes are not appropriate for doing IO. We must use something appropriate for
reading/writing raw bytes, like DataInputStream, and DataOutputStream.

To create these, we would do something like this:

DataInputStream in=new

DataInputStream(connection.getInputStream());

and

DataOutputStream out=new

DataOutputStream(connection.getOutputStream());

To write an array of bytes to the stream, we could use one of the write() methods from
DataOutputStream, like this.

byte[] msg = new byte[100];

…

out.write(msg);

15.4 Cipher Chat Application 285

TABLE 15.3

To read bytes from the input stream into a byte array, we could use one of the read()
methods from DataInputStream:

byte[] buffer = new byte[100];

…

int numBytes = in.read(buffer);

After execution of the last statement here, the array buffer will be filled up with as many
bytes that were read, and this read() method returns how many bytes were read. You should

Algorithm Advantages Disadvantages Weaknesses

Rabin

Blum-
Goldwasser

Pohlig-
Hellman

El Gamal

RSA

Quick encryption—only
a modular scanning is
required.
Can sign messages.

Relatively slow
decryption—correct
root must be found.
Must be padded with
redundant bits for
deciphering.

Must use strong primes.
Static cipher—salt or
CBC required.
If salt not used,
vulnerable to chosen
ciphertext attack,
adaptive chosen
ciphertext attack, and
square root attack.

Vulnerable to chosen
ciphertext attack.

Must use safe primes.
Message may be of
low order modulo p.
Static cipher—salt or
CFB required.

Must use safe primes.
Must use a different
random value k for
each block.

Must use strong primes.
Message may be of
low order modulo n.
Static cipher—salt or
CFB required.
If small encryption
exponent is used
without salt, vulnerable
to a root attack.
Vulnerable to common
modulus attack if multiple
entities choose to use
the same modulus.

Secret key cipher—
distribution of keys
difficult.

Ciphertext is at least
twice as long as the
plaintext.

Decryption relatively
slow due to modular
exponentiation to
large powers.
Encryption may also
be slow if a small
encryption exponent
is not used.

Quick encryption.
Stream cipher—can
work with small quantities.
Randomization is part of
the encryption process.

Not a static cipher—
randomization is part of
the encryption process.
Can sign messages.

Quick encryption if a
small enciphering
exponent is used.
Can sign messages.

286 Chapter 15 Establishing Keys and Message Exchange

FIGURE 15.1

make the input buffer at least as long as the number of bytes you expect to receive, or not
all the bytes will be read in. This should be adequate for you to understand the byte IO in
the chat program that follows.

I’ll start with a screen shot of the CipherChat Server, because looking at the GUI helps
to explain the components we will see later in the code. (See Figure 15.1.) It has a button
to disconnect from the client (it starts out disabled), a field to type messages in, and an out-
put area which displays incoming messages, plus information on the connection.

Here is the code for CipherChatServer, which can be found on the book’s website. I will
explain the code as I present it.

import java.io.*;

import java.net.*;

import java.awt.*;

import java.awt.event.*;

import java.math.*;

import java.security.*;

public class CipherChatServer extends Frame implements ActionListener {

The following are all the objects the server will need. They are:

1. The graphical components for the chat window.

2. The objects used for input and output.

3. The networking objects required to establish a connection.

15.4 Cipher Chat Application 287

4. The crypto objects to store the server’s public and private keys, and to store the public
key of the client. Two variables store the length of the ciphertext, and the length of the
plaintext.

private Button disconnectButton=new Button(“Disconnect Client”);

private TextField enterField=new TextField();

private TextArea displayArea=new TextArea();

private Panel top=new Panel();

private Panel bottom=new Panel();

private DataOutputStream output;

private DataInputStream input;

private String message=””;

private static ServerSocket server;

private Socket connection;

private BigInteger p,q,modulus,decipherExp,recipModulus;

private SecureRandom sr=new SecureRandom();

private int ciphertextBlockSize;

private int plaintextBlockSize;

The constructor does the typical thing for a GUI; it lays out all the components on the
frame, and displays it. However, this constructor also produces the public and private keys
of the server when it calls the makeKeys() method, which we will see later.

public CipherChatServer() {

//Lay components on frame and display it

super(“Cipher Chat Server”);

//Establish keys for RSA cipher

makeKeys();

setLayout(new GridLayout(2,1));

top.setLayout(new GridLayout(2,1));

bottom.setLayout(new GridLayout(1,1));

add(top);

add(bottom);

disconnectButton.setEnabled(false);

disconnectButton.addActionListener(this);

top.add(disconnectButton);

enterField.setEnabled(false);

enterField.addActionListener(this);

top.add(enterField,BorderLayout.NORTH);

bottom.add(displayArea);

setSize(400,300);

show();

}

288 Chapter 15 Establishing Keys and Message Exchange

The makeKeys() method is called early by the constructor to set up the sender’s public
and private keys. Since we use RSA with salt, each communicant can use the enciphering
exponent e = 3. Of course, each has its own modulus, and deciphering key, which are cre-
ated here. Strong primes are used.

private void makeKeys() {

PrimeGenerator pg=new PrimeGenerator(513,10,sr);

do {

p=pg.getStrongPrime();

} while(p.subtract(BigIntegerMath.ONE).mod(BigIntegerMath.THREE).equals

(BigIntegerMath.ZERO));

do {

q=pg.getStrongPrime();

} while(q.subtract(BigIntegerMath.ONE).mod(BigIntegerMath.THREE).equals

(BigIntegerMath.ZERO));

modulus=p.multiply(q);

//Use 3 as enciphering exponent - OK since we are using salt

decipherExp=BigIntegerMath.THREE.modInverse

(p.subtract(BigIntegerMath.ONE).multiply(q.subtract(BigIntegerMath.ONE)));

ciphertextBlockSize=(modulus.bitLength()-1)/8+1;

plaintextBlockSize=ciphertextBlockSize-6;

}

Note that the plaintext block size is computed as 6 bytes less than the ciphertext block
size. This is because we need to take off 1 byte to get the plaintext under the modulus (all
plaintext blocks must be smaller than the modulus), 4 bytes for the salt, and 1 byte for a pad
byte (remember that the decipher method always removes padding).

Once the keys exist, they can be sent to the other communicant. This task is handled
here by the exchangeKeys() method. It will be called from a point in the program soon after
a socket has been set up between the two parties.

private void exchangeKeys() {

try {

byte[] buffer=new byte[ciphertextBlockSize];

input.read(buffer);

recipModulus=new BigInteger(1,buffer);

output.write(modulus.toByteArray());

} catch (IOException ioe) {

System.err.println(“Error establishing keys”);

}

}

Two components on this window can generate an ActionEvent object:

1. The user hit the enter key while in the message entry field. This means a message is to
be sent. The text is captured from the field, enciphered using the recipient’s public key,
and sent down the output stream.

15.4 Cipher Chat Application 289

2. The user clicked on the disconnect button. This sends a final one byte message of ZERO
(enciphered) to the recipient. This special message signifies that this is the last trans-
mission for the connection.

These cases are handled here in the actionPerformed() method.

public void actionPerformed(ActionEvent e) {

Object source=e.getSource();

//User pressed enter in message entry field-send it

if (source==enterField) {

//Get the message

message=e.getActionCommand();

try {

//Encipher the message

if (message.length()>plaintextBlockSize)

message=message.substring(0,plaintextBlockSize);

byte[] ciphertext=Ciphers.RSAEncipherWSalt

(message.getBytes(),BigIntegerMath.THREE,recipModulus,sr);

//Send to the client

output.write(ciphertext);

output.flush();

//Display same message in output area

displayArea.append(“\n”+message);

enterField.setText(“”);

} catch (IOException ioe) {

displayArea.append(“\nError writing message”);

}

//Server wishes disconnect from the client

} else if (source==disconnectButton) {

try {

byte[] lastMsg=new byte[1];

lastMsg[0]=0;

output.write(Ciphers.RSAEncipherWSalt

(lastMsg,BigIntegerMath.THREE,recipModulus,sr));

output.flush();

closeAll();

} catch (IOException ioe) {

displayArea.append(“\nError in disconnecting”);

}

}

}

Note that before a message is encrypted and sent, it may be truncated so that it does not
exceed the plaintext block size.

The go() method is where the server does most of its work. It continually loops (until
someone closes the application) listening for incoming connections. When the accept()

290 Chapter 15 Establishing Keys and Message Exchange

method returns a Socket object, a connection exists. The server then opens up its IO streams,
and exchanges its public key (just the modulus—both parties will use 3 as their encipher-
ing exponent) with the client. It then enables the disconnect button on the frame, and makes
the message entry field editable. Finally, it enters into a loop, listening for messages from
its input stream. If the disconnect message 0 is sent from the client, or if there is no more
input to be read, the server disconnects by calling the closeAll() method, which you will soon
see. The server then loops back up to the top, and waits for another connection.

public void go() {

try {

while (true) {

displayArea.setText(“Waiting for connection”);

//accept() halts execution until a connection is made from a client

connection = server.accept();

displayArea.append(“\nConnection received from:”

+connection.getInetAddress().getHostName());

//Set up the IO streams

output = new DataOutputStream(connection.getOutputStream());

output.flush();

input = new DataInputStream(connection.getInputStream());

//Exchange public keys with the client-send yours, get theirs

exchangeKeys();

//Send connection message to client

message = connection.getLocalAddress()

.getLocalHost()+”:Connection successful”;

byte[] ciphertext=Ciphers.RSAEncipherWSalt

(message.getBytes(),BigIntegerMath.THREE,recipModulus,sr);

//Send to the client

output.write(ciphertext);

output.flush();

//Enable disconnect button

disconnectButton.setEnabled(true);

//Messages may now be entered

enterField.setEnabled(true);

try {

//Read as long as there is input

byte[] buffer=new byte[ciphertextBlockSize];

boolean disconnectMsgSent=false;

while (!disconnectMsgSent&&input.read(buffer)!=-1) {

15.4 Cipher Chat Application 291

//Decipher the bytes read in

byte[]

plaintext=Ciphers.RSADecipherWSalt(buffer,decipherExp,modulus);

if (plaintext.length==1&&plaintext[0]==0) {

disconnectMsgSent=true;

closeAll();

} else {

//convert to a string and display

message = new String(plaintext);

displayArea.append(“\n”+message);

}

}

//Socket was closed from client side

} catch (SocketException se) {

//close connection and IO streams, change some components

closeAll();

}

closeAll();

}

} catch (Exception exc) {

exc.printStackTrace();

}

}

Here is the closeAll() method. It puts a “Connection closing” string in the display area,
then shuts down its IO streams, then the socket. It turns off the message entry field, and
disables the disconnect button.

//Close socket and IO streams, change appearance/functionality of some components

private void closeAll() throws IOException {

displayArea.append(“\nConnection closing”);

output.close();

input.close();

connection.close();

//Disable message entry

enterField.setEnabled(false);

//We are not connected-turn off the disconnect button

disconnectButton.setEnabled(false);

}

Of course, here is the main() method of CipherChatServer, which simply sets up the
GUI, binds to a port for listening, then calls the go() method.

public static void main(String[] args) throws IOException {

CipherChatServer ccs=new CipherChatServer();

ccs.addWindowListener(

new WindowAdapter() {

292 Chapter 15 Establishing Keys and Message Exchange

FIGURE 15.2

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

server = new ServerSocket(55555);

ccs.go();

server.close();

}

}

The client side of the chat program is pretty much the same, except it must initiate the
connection with the server. Either the client or the server can break the connection, but the
client must reinitiate, if desired. Figure 15.2 shows a screen shot of the client.

It contains an area to type in the name of the server to connect to, and a button to con-
nect. This button changes appearance once a connection exists; the label changes to “Dis-
connect from server above.” The client also contains a field to type messages in, and an
output area for incoming messages, and connection information.

import java.io.*;

import java.net.*;

15.4 Cipher Chat Application 293

import java.awt.*;

import java.awt.event.*;

import java.math.*;

import java.security.*;

public class CipherChatClient extends Frame implements ActionListener {

The following are all the objects the client will need. They are:

1. The graphical components for the chat window.

2. The objects used for input and output.

3. The networking objects required to establish a connection.

4. The crypto objects to store the client’s public and private keys, and to store the public key
of the server. Two variables record the length of the ciphertext, and the length of the
plaintext.

5. A Thread object. Since the client’s go() method (which just reads the input stream) can-
not be called from the main method (since a connection may not yet exist), but is called
from the actionPerformed() method, it does not exist in a separate thread from the frame.
Thus, the read() method will block execution and won’t allow interactivity with the
frame, unless it runs in a separate thread. (Note that the chat server does not have this prob-
lem.)

private TextField serverField=new TextField();

private Button connectButton=new Button(“Connect to server above”);

private TextField enterField=new TextField();

private TextArea displayArea = new TextArea();

private Panel top=new Panel();

private Panel bottom=new Panel();

private DataOutputStream output;

private DataInputStream input;

private String message=””;

private String chatServer;

private Socket connection=null;

private InetAddress clientName;

private InetAddress serverName;

private BigInteger p,q,modulus,decipherExp,recipModulus;

private SecureRandom sr=new SecureRandom();

private int ciphertextBlockSize;

private int plaintextBlockSize;

private static Thread listener=null;

294 Chapter 15 Establishing Keys and Message Exchange

The constructor does the typical thing for a GUI; it lays out all the components on the
frame, and displays it. However, this constructor also produces the public and private keys
of the client when it calls the makeKeys() method, which we will see later.

public CipherChatClient() {

super(“Cipher Chat Client”);

//Establish keys for RSA cipher

makeKeys();

//Lay out the components and display the frame

setLayout(new GridLayout(2,1));

top.setLayout(new GridLayout(3,1));

add(top);

bottom.setLayout(new GridLayout(1,1));

add(bottom);

connectButton.addActionListener(this);

enterField.setEnabled(false);

enterField.addActionListener(this);

top.add(serverField);

top.add(connectButton);

top.add(enterField);

bottom.add(displayArea);

setSize(400,300);

show();

}

The client does a lot of work in its actionPerformed() method. The ActionEvents gener-
ated here may mean more than one thing. The events are:

1. The user hit enter in the message entry field, and wants to send the message. We send this
message down the output stream the way we did for the server.

2. The user pressed the connect/disconnect button. This can mean one of two things:

a) We are currently connected, and the client wishes to disconnect. To disconnect, we
must first send the terminate message 0 (enciphered) to the server. Then we call the
closeAll() method, which closes the streams and sockets, and changes the appear-
ance/functionality of components on the GUI.

b) We are currently disconnected, and the client wishes to connect. To connect (or recon-
nect) the client must attempt to establish a socket with the specified server, open its
IO streams, exchange public keys with the server, and enable the message entry field.
It then calls the go() method, which listens for input in a separate thread.

All of these cases are handled here.

public void actionPerformed(ActionEvent e) {

Object source=e.getSource();

//Client pressed enter in the message entry field-send it

if (source==enterField) {

15.4 Cipher Chat Application 295

//Get the message

message=e.getActionCommand();

try {

//Encipher the message

if (message.length()>plaintextBlockSize)

message=message.substring(0,plaintextBlockSize);

byte[] ciphertext=Ciphers.RSAEncipherWSalt

(message.getBytes(),BigIntegerMath.THREE,recipModulus,sr);

//Send to the server

output.write(ciphertext);

output.flush();

//Display same message in client output area

displayArea.append(“\n”+message);

enterField.setText(“”);

} catch (IOException ioe) {

displayArea.append(“\nError writing message”);

}

} else if (source==connectButton) {

if (connection!=null) { //Already connected-button press now means disconnect

try {

//Send final message of 0

byte[] lastMsg=new byte[1];

lastMsg[0]=0;

output.write(Ciphers.RSAEncipherWSalt

(lastMsg,BigIntegerMath.THREE,recipModulus,sr));

output.flush();

//close connection and IO streams, change some components

closeAll();

} catch (IOException ioe) {

displayArea.append(“\nError closing connection”);

}

} else {//Not connected-connect

//Get name of server to connect to

chatServer=serverField.getText();

displayArea.setText(“Attempting connection to “+chatServer);

try {

//Set up the socket

connection = new Socket(chatServer,55555);

displayArea.append

(“\nConnected to: “+connection.getInetAddress().getHostName());

//Set up the IO streams

output = new DataOutputStream(connection.getOutputStream());

output.flush();

296 Chapter 15 Establishing Keys and Message Exchange

input = new DataInputStream(connection.getInputStream());

//Exchange public keys with the server-send yours, get theirs

exchangeKeys();

//Change appearance/functionality of some components

serverField.setEditable(false);

connectButton.setLabel(“Disconnect from server above”);

enterField.setEnabled(true);

//Set up a thread to listen for the connection

listener = new Thread(

new Runnable() {

public void run() {

go();

}

}

);

listener.start();

} catch (IOException ioe) {

displayArea.append(“\nError connecting to “+chatServer);

}

}

}

}

The makeKeys() method here is the same as the one in CipherChatServer.

private void makeKeys() {

PrimeGenerator pg=new PrimeGenerator(513,10,sr);

do {

p=pg.getStrongPrime();

} while(p.subtract(BigIntegerMath.ONE).mod(BigIntegerMath.THREE).equals

(BigIntegerMath.ZERO));

do {

q=pg.getStrongPrime();

} while(q.subtract(BigIntegerMath.ONE).mod(BigIntegerMath.THREE).equals

(BigIntegerMath.ZERO));

modulus=p.multiply(q);

//Use 3 as enciphering exponent - OK since we are using salt

decipherExp=BigIntegerMath.THREE.modInverse(p.subtract(BigIntegerMath.ONE)

.multiply(q.subtract(BigIntegerMath.ONE)));

ciphertextBlockSize=(modulus.bitLength()-1)/8+1;

plaintextBlockSize=ciphertextBlockSize-6;

}

The exchangeKeys() method here is the same as the one in CipherChatServer, except
the client sends its key first, then waits for the public key of the server.

15.4 Cipher Chat Application 297

private void exchangeKeys() {

try {

output.write(modulus.toByteArray());

byte[] buffer=new byte[ciphertextBlockSize];

input.read(buffer);

recipModulus=new BigInteger(1,buffer);

} catch (IOException ioe) {

System.err.println(“Error establishing keys”);

}

}

The go() method is where the client enters into a loop, listening for messages from its input
stream. It then proceeds to read input; if the disconnect message 0 is sent from the server,
or if there is no more input to be read, the client disconnects by calling its closeAll() method,
which you will soon see. This method will be called whenever the client clicks on “Connect
to server above.”

private void go() {

try {

//Read as long as there is input

byte[] buffer=new byte[ciphertextBlockSize];

boolean disconnectMsgSent=false;

while (!disconnectMsgSent&&input.read(buffer)!=-1) {

//Decipher the bytes read in

byte[] plaintext=Ciphers.RSADecipherWSalt(buffer,decipherExp,modulus);

if (plaintext.length==1&&plaintext[0]==0) {

disconnectMsgSent=true;

closeAll();

} else {

//convert to a string and display

message = new String(plaintext);

displayArea.append(“\n”+message);

}

}

} catch (IOException ioe) {

//Server disconnected-we can reconnect if we wish

}

}

The closeAll() method for the client is similar to the one for the server. It closes its IO
streams, then the socket. It ensures to set the socket to null, since this is how the client tests
for a connection. The client then changes its button to say “Connect to server above” again,
and shuts off the message entry field.

//Close socket and IO streams, change appearance/functionality of some components

private void closeAll() throws IOException {

displayArea.append(“\nConnection closing”);

output.close();

298 Chapter 15 Establishing Keys and Message Exchange

input.close();

connection.close();

//We are no longer connected

connection=null;

//Change components

serverField.setEditable(true);

connectButton.setLabel(“Connect to server above”);

enterField.setEnabled(false);

}

Here is the main() method of CipherChatClient, which simply sets up the GUI.

public static void main(String args[]) throws IOException {

final CipherChatClient ccc = new CipherChatClient();

ccc.addWindowListener(

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

}

}

Note that this chat program makes no attempt to authenticate its users. That is, you don’t
know if the person on the other end of the socket is actually whom he or she claims to be
(without, perhaps, asking a few personal questions). To provide authentication, the keys
would not be generated for each connection, but would already be on file with a Trusted Third
Party, or TTP (see the chapter on cryptographic applications for discussion of a TTP). Each
communicant can check the received public keys against this database. It would be virtu-
ally impossible for a chatter to pretend to be someone else without knowledge of his or her
decryption keys. (They certainly would have a hell of a time trying to carry on an intelli-
gent conversation with you without being able to decrypt your messages!)

EXERCISE

Realistically, a chat program should function both as a multithreaded server, and a multi-
threaded client. This would allow you to start your chat program and initiate connections
with multiple chatters, while at the same time listening for connections from other chatters
wishing to connect with you. Write an enciphered chat program with this capability, and use
a cipher other than RSA.

C H A P T E R 16
Cryptographic Applications

The classical use of cryptography was to use it to pass secret messages between enti-
ties. More recently, cryptography has shown its usefulness in many other ways. We will

investigate some of these topics in this chapter.

16.1 SHADOWS

The Chinese Remainder Theorem has many important applications in cryptography. One of
these applications is the protection of vital information from both disclosure (whether inten-
tional or not), and from loss. Suppose there is a secret that must be protected from exposure.
This might be done by giving separate individuals (who may not even know each other) a
piece of the information. To retrieve it, everyone supplies his or her piece and the secret is
recovered. However, if one of these persons dies, or if his piece of the information has
become somehow inaccessible, we must be able to protect the secret from being lost. That
is, we should require that any subset of these individuals (of a predetermined minimum
size) be able to reconstruct the secret. CRT provides us with a way to do this.

Let the secret be represented by N, a large integer. From this N we will construct a
sequence of integers s1, s2, . . . , sr, called “shadows,” and give them to r different individ-
uals. We generate the shadows thus: Choose a prime p greater than N, and a sequence of pair-
wise relatively prime integers not divisible by p, say m1, m2, . . . , mr such that m1 < m2 < . . .
< mr, and such that

m1m2. . .mr� > pmrmr�1. . .mr�r��2.

This last inequality says that if we take the smallest r� integers, their product must be
greater than p times the largest r� � 1 integers. This implies that if M = m1m2 . . . mr�, then
M/p is greater than the product of any subset of r� � 1 integers from {m1, m2, . . . , mr}.
Now, choose a random integer u < M/p � 1, and let

N� = N + up,

299

300 Chapter 16 Cryptographic Applications

so that 0 ≤ N� < M. This is so since

0 ≤ N� = N + up < p + up = (u + 1)p < (M/p)p = M.

Now, this is how to produce the shadows, s1, s2, . . . , sr; let sj be the least nonnegative
residue of N� (mod mj); that is,

sj � N� (mod mj) 0 ≤ kj < mj, and i = 1, 2, . . . , r.

In order to recover the secret N from the shadows, we will need at least r� of them, so
say we have some subset of the shadows sj1

, sj2
, . . . , sjr�

}. Using CRT, we can find the least
nonnegative residue of N� modulo Mj where Mj = mj1

mj2
. . . mjr�

. Now, note that M ≤ Mj

(since M = m1m2 . . . mr� is the product of the r� smallest integers), and thus, since

0 ≤ N� < M ≤ Mj,

the least nonnegative residue obtained by using CRT is in fact N�, the very integer we seek.
We then recover the secret N by computing

N = N� � up.

However, if we have fewer than r� shadows to work with, we cannot determine N�, and
hence cannot retrieve the secret N. To see this, suppose we only have r� � 1 shadows si1

,
si2

, . . . , sir�
�1. CRT allows us to determine the lnr (say z) of N� modulo Mi where Mi = mi1

,
mi2

, . . . , mir�
�1, and so we know that

N� = z + yMi where y = 0, 1, . . . , M/Mi.

Now, we know (by our choice of p and the moduli) that M/p is greater than any product
of r� � 1 of the moduli, so since

M/p > Mi

we have

M/Mi > p.

This tells us that as y traverses the integers smaller than M/Mi, y takes on every value mod-
ulo p, and so also does N�, since N� = z + yMi and since Mi is relatively prime to p. (Recall
that all of the moduli are chosen so that they are not divisible by p.) Thus, we cannot pin N�
(and hence N) down to any value, because N� could be in any of the residue classes mod-
ulo p.

EXAMPLE. Suppose we want to hide the secret number N = 10 from prying eyes. (Of course,
we are choosing an example with ridiculously small values so that you can readily observe
how this works.) We choose a prime greater than the secret, say p = 11. Now, suppose we
want to have r = 5 shadows, and we wish to be able to recover the secret N from at least r�
= 3 of the shadows. We choose the moduli as

m1 = 17

m2 = 19

m3 = 23

m4 = 24

m5 = 25.

Note that none of the moduli are divisible by 11, and that the product of the 3 smallest
moduli is greater than the prime p = 11 times the two largest moduli:

M = 17 � 19 � 23 = 7429 > 6600 = 11 � 24 � 25.

Now, we choose a random integer u smaller than M = 7429/11 � 675.36, say u = 439,
and then we compute

N� = N + up = 10 + 439 � 11 = 4839.

The shadows are the least nonnegative residues of N� modulo each modulus mi. Thus,

s1 � 11 (mod 17)

s2 � 13 (mod 19)

s3 � 9 (mod 23)

s4 � 15 (mod 24)

s5 � 14 (mod 25).

Now, suppose we wish to reconstruct the secret N from any 3 of the shadows, say s2 =
13, s3 = 9, and s5 = 14. First we find N� using the Chinese Remainder Theorem, as follows:

N� = 13 � 575 � 575� + 9 � 475 � 475� + 14 � 437 � 437�

= 13 � 575 � 4 + 9 � 475 � 20 + 14 � 437 � 23

= 256114

� 4839 (mod 10925) (10925 = 19 � 23 � 25)

Once we have N�, we recover the secret N by taking

N = N� � up

= 4839 � 439 � 11

= 10.

It doesn’t matter which 3 shadows we use to reconstruct N; any 3 will do, as you may
like to verify. However, if we try to pull the secret N out of only 2 shadows, we should fail.
Suppose we try to reconstruct N from s1 = 11, and s4 = 15. We use CRT to form the quan-
tity

N� = 11 � 24 � 24� + 15 � 17 � 17�

= 11 � 24 � 5 + 15 � 17 � 17

= 5655

� 351 (mod 408).

16.1 Shadows 301

302 Chapter 16 Cryptographic Applications

TABLE 16.1

This is, of course, an incorrect value for N�. We will see that if we try any other pair of
shadows, a similarly hopeless situation results. Consult Table 16.1, which shows all the
combinations of shadow pairs, and the corresponding values for N�.

None of the values obtained here for N� are correct. Because of the requirements in our
choice of the moduli and the prime p, two shadows simply do not provide us with enough
information to reconstruct N� (and thus N).

Java Algorithm We can write programs to demonstrate shadow making and key recon-
struction. To do this, we will define two classes:

The ShadowBuilder Class This will define a constructor that will accept a master
key, and the number of shadows to generate. It generates the shadows and their respective
moduli, plus the values of u, and the prime p as described above. Methods are provided to
retrieve all these values. This class exhibits some differences from the scheme described
above. First, it sets the minimum number of shadows required for reconstruction at just over
half the total number of shadows; for example, if the total number of shadows generated
is 7, 4 of them will be required to recover the master key, and if 8 shadows are produced,
5 will be required for reconstruction. Second, the class produces a sequence of prime num-
bers for the moduli; these will certainly fulfill the requirement to be pairwise relatively
prime.

The KeyRebuilder Class This class is for recovering the master key. It will define a
constructor that accepts some shadows and their respective moduli, plus the values of u and
p. It assumes that enough shadows are being used, and that the moduli are pairwise relatively
prime. It reconstructs the master key from the shadows using the Chinese Remainder The-
orem, and provides a method to return the master key as a BigInteger.

1st Shadow 1st Modulus 2nd Shadow 2nd Modulus Value for N'

11

11

11

11

13

13

13

9

9

15

17

17

17

17

19

19

19

23

23

24

13

9

15

14

9

15

14

15

14

14

19

23

24

25

23

24

25

24

25

25

317 (mod 323)

147 (mod 391)

351 (mod 408)

164 (mod 425)

32 (mod 437)

279 (mod 456)

89 (mod 475)

423 (mod 552)

239 (mod 575)

39 (mod 600)

16.1 Shadows 303

The ShadowBuilder class definition follows:

import java.math.*;

import java.security.*;

public class ShadowBuilder {

//The shadows

BigInteger[] shadow;

//The moduli

//The i-th modulus is for the i-th shadow

BigInteger[] modulus;

//Two other values needed to reconstruct the master key

BigInteger randomMultiplier;

BigInteger reconstructingPrime;

//This constructor accepts the master key, the number of shadows to

//generate, and the tolerance to set for the primes. These will be

//used for the moduli, rather than a set of pairwise relatively prime

//integers. The minimum number of shadows required to reconstruct

//is set at r/2+1.

public ShadowBuilder(BigInteger K, int r, int primeTolerance) {

int s=r/2+1;

int KeySize=K.bitLength();

//Generate a probable prime reconstructingPrime larger than K

SecureRandom sr=new SecureRandom();

reconstructingPrime=new BigInteger(KeySize+1,primeTolerance,sr);

//Generate r primes for the moduli

modulus=new BigInteger[r];

for (int index=0;index<r;index++) {

modulus[index]=new BigInteger(KeySize+2,primeTolerance,sr);

}

//Choose a random multiplier less than the product of any s of the primes.

//This will be so if the bitlength is less than (s-1)*(KeySize-1).

randomMultiplier=new BigInteger(s*(KeySize-1)-KeySize-1,sr);

//Compute K0=K+randomMultiplier*reconstructingPrime

BigInteger K0=K.add(randomMultiplier.multiply(reconstructingPrime));

//Generate the r shadows

shadow=new BigInteger[r];

for (int index=0;index<r;index++) {

shadow[index]=K0.mod(modulus[index]);

}

}

//Methods to return the values the constructor generated.

304 Chapter 16 Cryptographic Applications

public BigInteger[] getShadows() {

return shadow;

}

public BigInteger[] getModuli() {

return modulus;

}

public BigInteger getRandomMultiplier() {

return randomMultiplier;

}

public BigInteger getReconstructingPrime() {

return reconstructingPrime;

}

}

Here is the KeyRebuilder class definition:

import java.math.*;

public class KeyRebuilder {

BigInteger masterKey;

//This constructor reconstructs the master key from a sequence of shadows

//and moduli. It is assumed that enough shadows are being used to do this.

//It is further assumed that the moduli are pairwise relatively prime

public KeyRebuilder(BigInteger[] shadow, BigInteger[] modulus,

BigInteger randomMultiplier, BigInteger reconstructingPrime) {

//Produce a parallel array for each Mi, product of all mj where i!=j for CRT

BigInteger[] M;

M=new BigInteger[modulus.length];

//BigM is the product of all the moduli

BigInteger BigM=new BigInteger(“1”);

for (int index=0;index<modulus.length;index++) {

//Multiply BigM by modulus[index]

BigM=BigM.multiply(modulus[index]);

//Start forming each M[index]

M[index]=new BigInteger(“1”);

for (int index2=0;index2<modulus.length;index2++) {

//If index=index2, do not multiply M[index] by m[index2]

if(index!=index2) {

M[index]=M[index].multiply(modulus[index2]);

}

}

}

BigInteger K0=new BigInteger(“0”);

//Produce K0 using the Chinese Remainder Theorem with the shadows

16.1 Shadows 305

for (int index=0;index<modulus.length;index++) {

BigInteger MInv=M[index].modInverse(modulus[index]);

K0=K0.add(shadow[index].multiply(M[index].multiply(MInv))).mod(BigM);

}

//The master key is K0 - tp where t is multiplier, p is reconstructing prime

masterKey=K0.subtract(randomMultiplier.multiply(reconstructingPrime));

}

//Method to return the master key

public BigInteger getMasterKey() {

return masterKey;

}

}

Figure 16.1(a)–(d) shows an applet (called TestShadowApplet) to test the ShadowBuilder
and KeyRebuilder classes.

(a)

(b)

FIGURE 16.1

306 Chapter 16 Cryptographic Applications

(c)

(d)

FIGURE 16.1

16.2 DATABASE ENCRYPTION

The Chinese Remainder Theorem can also play a role in enciphering databases. It can be
done so that a particular user only has access to their data. A database is a collection of
records R1, R2, . . . , Rn. We can regard each record as an integer, for they are basically stored
this way.

We first choose a sequence p1, p2, . . . , pn of distinct primes with pi > Ri for i = 1, 2, . . . ,
n. As the enciphered database we will use an integer C that is congruent to Ri modulo pi ∀
i. Such an integer exists and is computable by the CRT. Let M = p1p2 . . . pn and let Mi = M/pi

for each i. Now, let wi = MiM�i where M�i is an inverse of Mi modulo pi.
We compute the enciphered database as

C � � wiRi (mod M) 0 ≤ C < M, i = 1, 2, . . . , n.

We call w1, w2, . . . , wn the write subkeys of the database cipher, for these will be required
to write to the database; that is, they are required to construct C. The moduli, however, p1,

16.2 Database Encryption 307

p2, . . . , pn are all that is needed to read a record from the database; thus, we call them the
read subkeys. Note that C, by construction, is congruent Ri modulo pi for any i; that is,

C � Ri (mod pi) i = 1, 2, . . . , n.

Each individual i gets the pair of values wi, and pi; this gives them read/write access to
only their data.

EXAMPLE. Suppose the records in our database are

R1 = 234

R2 = 201

R3 = 147.

We choose 3 primes, each greater than their associated record; say

p1 = 499

p2 = 503

p3 = 563.

To encipher the database, we must find an integer C that simultaneously solves

C � 234 (mod 499)

C � 201 (mod 503)

C � 147 (mod 563).

Thus, we compute

M = 141311311

M1 = 141311311/499 = 283189

M2 = 141311311/503 = 280937

M3 = 141311311/563 = 250997.

and we find inverses of each Mi modulo pi.

M1� = 283189� � 384 (mod 499)

M2� = 280937� � 350 (mod 503)

M3� = 250997� � 301 (mod 563)

Thus, the write subkeys are

w1 = 283189 � 384 = 108744576

w2 = 280937 � 350 = 98327950

w3 = 250997 � 301 = 75550097.

308 Chapter 16 Cryptographic Applications

TABLE 16.2

Using the write subkeys, we encipher the records by forming the sum

C � w1R1 + w2R2 + w3R3

� 108744576 � 234 + 98327950 � 201 + 75550097 � 147

� 56316012993

� 74111215 (mod 141311311).

To retrieve a particular record Ri from the database, we simply compute the least non-
negative residue of C modulo pi. Table 16.2 shows all the retrieved records.

Editing a Record Note that modifying some record Ri to some new value Ri� with this
scheme is particularly easy, for it does not involve recomputing the entire sum

C � � wiRi (mod M) 0 ≤ C < M, i = 1, 2, . . . , n.

All we have to do is compute the difference between the new value and the old value:

D = Ri� � Ri,

then add this to the sum to get a new enciphered value for the database.

C� � C + wiD (mod M).

This works because

C� � C + wiD

� w1R1 + w2R2 + . . . + wiRi + . . . + wnRn + wiD

� w1R1 + w2R2 + . . . + wiRi + . . . + wnRn + wi(Ri� � Ri)

� w1R1 + w2R2 + . . . + wiRi � wiRi + . . . + wnRn + wiRi�

� w1R1 + w2R2 + . . . + wiRi� + . . . + wnRn (mod M).

EXAMPLE. Suppose in our previous example that individual 2 wishes to change

R2 = 201

to the new value

R2� = 103.

i C is congruent to Ri modulo pi

1

2

3

74111215

74111215

74111215

234

201

147

499

503

563

16.3 Large Integer Arithmetic 309

TABLE 16.3

We compute the difference

D = 103 � 201 = �98

and form the modified sum

C� � 74111215 + 98327950 � (�98) � �9562027885 � 47141263 (mod 141311311).

To verify that this works see Table 16.3, in which we have once again recovered the 3
records.

16.3 LARGE INTEGER ARITHMETIC

CRT provides us with a particularly novel way to do arithmetic with very large nonnega-
tive integers. We usually represent numbers using a single radix, like

4231 = 4 � 103 + 2 � 102 + 3 � 101 + 1 � 100

or

100011base 2 = 1 � 25 + 0 � 24 + 0 � 23 + 0 � 22 + 1 � 21 + 1 � 20.

The Chinese Remainder Theorem tells us that the representation of an integer x such that

x � a1 (mod m1)

x � a2 (mod m2)

�

x � an (mod mn),

where the moduli are pairwise relatively prime, is unique modulo M = m1m2 . . . mn. Thus,
we can either represent x in its “composed” representation, or in its “decomposed” repre-
sentation. Using multiple moduli to represent an integer in this way is called a mixed radix
system, or a residue number system.

i C is congruent to Ri modulo pi

1

2

3

47141263

47141263

47141263

234

103

147

499

503

563

310 Chapter 16 Cryptographic Applications

EXAMPLE. Take the integer 73, and note that

73 � 9 (mod 64)

73 � 19 (mod 27)

73 � 23 (mod 25)

73 � 24 (mod 49).

We can thus represent the integer 73 as the vector

(9, 19, 23, 24)

where the moduli are here understood to be 64, 27, 25, and 49. There is no other positive
integer less than M = 64 � 27 � 25 � 49 = 2116800 that is represented by this vector. In fact,
every integer between 0 and 2116799 has a unique such representation.

This motivates us to consider perhaps representing integers in this way; we can do arith-
metic with such integers by instead doing the arithmetic with their smaller residues.

EXAMPLE. We take now the integer 1907833, and note that

1907833 � 57 (mod 64)

1907833 � 13 (mod 27)

1907833 � 8 (mod 25)

1907833 � 18 (mod 49).

Using this representation, and the representation of 73 given earlier, we can then com-
pute 1907833 � 73 by computing

57 � 9 � 48 (mod 64)

13 � 19 = �6 � 21 (mod 27)

8 � 23 = �15 � 10 (mod 25)

18 � 24 = �6 � 43 (mod 49)

This gives the vector

(1, 4, 9, 40)

which is, in fact, the decomposed representation of 1907760 = 1907833 � 73. Taking the
lnr of 1907760 modulo, each of the moduli easily checks this. We can multiply, add, and sub-
tract (as long as the result of the subtraction is nonnegative) with numbers as large as
M � 1 = 2116799 using this mixed radix representation. This works because of propositions
20 and 21.

16.3 Large Integer Arithmetic 311

But why should we do this? There are two good reasons:

1. We can reduce arithmetic with very large integers to arithmetic with much smaller inte-
gers. If we choose the moduli carefully, we can arrange it so that none of the integers
exceeds the word size of our computer. Thus, we can work quickly with a language’s prim-
itive integer type. Integer need to be converted to and from their “large” representation
only for input and output purposes.

2. The arithmetic operations with the decomposed representation are completely indepen-
dent of each other, so they can be done in parallel, significantly reducing operation time
on multiprocessor machines. This is not true with arithmetic using normal radix repre-
sentation.

The IntCRT Class This class represents nonnegative integers as a series of residues
modulo a series of moduli, where the moduli are all unique primes. It adds/multiplies two
IntCRT objects together by adding/multiplying their residues together. The moduli are all
primes not exceeding the largest value for a Java int, and hence the residues do not exceed
the maximum int value either. This allows us to implement the moduli and residues as dual
arrays of primitive type long (we use long since a multiplication of two residues may exceed
the maximum int value). Here is an outline of the IntCRT class, with descriptions inter-
spersed with the code.

import java.util.*;

import java.math.*;

public class IntCRT {

IntCRT objects will consist of

1. The moduli, which are stored in a static array of type long. Once they are set up, they are
used by all subsequently declared IntCRT objects. Since they use the same moduli, they
must all specify the same maximum modulus bit length (the bit length of the product of
all the moduli) to be added or multiplied together.

2. The residues, which are the corresponding residues for each modulus.

3. A variable to record the maximum modulus bit length.

//IntCRT objects are based on a series of ints modulo a series of long primes

//The primes are stored here in this static array-all IntCRT objects will share

this array

static long[] moduli=null;

//A parallel array of residues for each IntCRT object holds its mixed radix

representation

long[] residues=null;

//The maximum size of the modulus - computations must not exceed this modulus

int maxModulusBitLength=0;

312 Chapter 16 Cryptographic Applications

There is a single public constructor, which reads in a string of digits, and parses it as a
BigInteger, say n. If this is the first IntCRT object created, we must set up the moduli. We
begin with the largest odd primitive int value, and test it for primality. If it succeeds, we add
it to the moduli, and if not, we subtract two from this number and continue in the same way
until we have a product of moduli whose bit length exceeds the maximum modulus bit
length specified in the constructor. We then produce the residues by taking the BigInteger
n modulo each modulus. We convert each residue to a primitive long. Do not be concerned
that we use the BigInteger class here (it seems like cheating). We only use it for input/out-
put purposes. The addition/multiplication of IntCRT objects (the bulk of processing time for
crypto purposes) will be done entirely with the primitive type residues.

//This constructor produces the residues from the string of decimal digits

//Also produces the prime moduli

public IntCRT(String digitString, int maxModulusBitLength) {

//If modulus<=64 bits, we might as well be using ints

if (maxModulusBitLength<65) throw new IllegalArgumentException

(“The maximum modulus bit length must be at least 65 bits”);

this.maxModulusBitLength=maxModulusBitLength;

//If the prime moduli are not yet set up, set them up

if (moduli==null) setupModuli();

//The residues are long, but each will be no larger than an int

//This is because multiplication of residues may exceed the size of an int,

//requiring a long to store

residues=new long[moduli.length];

//Get the string and make it into a BigInteger; BigInteger only used for IO

//conversions,

//not for calculations

BigInteger n=new BigInteger(digitString);

if (n.compareTo(BigIntegerMath.ZERO)<0) throw new IllegalArgumentException

(“IntCRT objects must be nonnegative.”);

if (n.bitLength()>=maxModulusBitLength) throw new IllegalArgumentException

(“IntCRT objects must be less than maximum modulus bit length = ”

+maxModulusBitLength+”.”);

//Make each residue

for (int i=0;i<residues.length;i++)

residues[i]=n.mod(BigInteger.valueOf(moduli[i])).longValue();

}

//Private constructor to make IntCRT object by passing in residues

private IntCRT(long[] residues) {

this.residues=residues;

}

16.3 Large Integer Arithmetic 313

//Set up the prime moduli

private void setupModuli() {

//Don’t know how long array should be-start with a Vector

Vector vector=new Vector();

BigInteger two=BigInteger.valueOf(2);

//Start with the largest possible int-this is an odd number

BigInteger test=BigInteger.valueOf(Integer.MAX_VALUE);

//bigBubba will be the product of all the primes

BigInteger bigBubba=BigInteger.valueOf(1);

//When this product is big enough (has long enough bit length) we have enough

//primes

while (bigBubba.bitLength()<maxModulusBitLength) {

//If test is prime, add it to the vector, and multiply bigBubba by it

if (test.isProbablePrime(10)) {

vector.addElement(test);

bigBubba=bigBubba.multiply(test);

}

//Subtract two from the test number-test is always odd

test=test.subtract(two);

}

//We know the size of our array of primes-create the array

moduli=new long[vector.size()];

//Copy the prime moduli into the array

for (int i=0;i<vector.size();i++)

moduli[i]=((BigInteger)vector.elementAt(i)).longValue();

}

The addition and multiplication methods follow. Note that the work is done entirely with
primitive types. The code is not written to do these operations in parallel; however, this
would be a great exercise for you.

public IntCRT add(IntCRT other) {

//IntCRT objects must be using the same moduli

if (maxModulusBitLength!=other.maxModulusBitLength) throw new

IllegalArgumentException

(“IntCRT objects must have same maximum modulus bit length to be added together”);

long[] answer=new long[residues.length];

//Add i-th residue of this to i-th residue of other, take residue mod i-th

//moduli

for (int i=0;i<residues.length;i++)

answer[i]=(residues[i]+other.residues[i])%moduli[i];

return new IntCRT(answer);

}

public IntCRT multiply(IntCRT other) {

//IntCRT objects must be using the same moduli

314 Chapter 16 Cryptographic Applications

if (maxModulusBitLength!=other.maxModulusBitLength) throw new

IllegalArgumentException

(“IntCRT objects must have same modulus bit length to be multiplied together”);

long[] answer=new long[residues.length];

//Multiply i-th residue of this by i-th residue of other, may produce a long

//Take residue mod i-th moduli

for (int i=0;i<residues.length;i++)

answer[i]=(residues[i]*other.residues[i])%moduli[i];

return new IntCRT(answer);

}

The toString() method takes the residues and moduli, and “recomposes” the BigInteger
using the solveCRT() method from the BigIntegerMath class. We then convert it to a string
by calling the toString() method from the BigInteger class.

public String toString() {

//Make an array of BigIntegers for each modulus

BigInteger[] m=new BigInteger[moduli.length];

//We reconstruct a BigInteger from the residues by using the Chinese Remainder

//Theorem

for (int i=0;i<moduli.length;i++) m[i]=BigInteger.valueOf(moduli[i]);

//Make an array of BigIntegers for each residue

BigInteger[] r=new BigInteger[residues.length];

for (int i=0;i<residues.length;i++) r[i]=BigInteger.valueOf(residues[i]);

//Reconstruct the BigInteger and return it as a string

BigInteger whopper=BigIntegerMath.solveCRT(r,m)[0];

return whopper.toString();

}

}//End of IntCRT class

Figures 16.2, 16.3, and 16.4 are shots of TestIntCRTApplet.

FIGURE 16.2

16.4 Random Number Generation 315

FIGURE 16.3

FIGURE 16.4

16.4 RANDOM NUMBER GENERATION

Many cryptosystems depend on the ability to generate random numbers, where random
means in the sense that the values could not be easily predicted by an adversary. Perhaps sur-
prisingly, this is difficult to do in practice. Without special hardware, a computer cannot
truly generate random numbers; they can merely produce what we call pseudorandom num-
bers based on some deterministic mathematical algorithm, and an initial number called a
seed. If either the seed or the transformation is not chosen carefully enough, an adversary
can predict, to a high degree of accuracy, the pseudorandom numbers produced.

EXAMPLE. Conventional random number generators are insufficient for protecting the secrecy
of the numbers they generate. An example is a linear congruential generator, which pro-
duces a sequence x1, x2, ... of pseudorandom numbers given by the affine transformation

xn � axn�1 + b (mod m) n ≥ 1, 0 ≤ xn < m.

316 Chapter 16 Cryptographic Applications

The values a, b, and m are parameters which define the generator; x0 is the seed which
generates the sequence. If any of these values are compromised, or can be guessed, this
generator cannot produce unpredictable numbers. It turns out that with this particular trans-
formation, this is rather easy to do; given a partial sequence of these random numbers, the
rest of the sequence can often be constructed even when a, b, m, and x0 are unknown.

It should come as no surprise that many of the same transformations that we use to
encrypt data can also be used to generate random numbers. After all, the purposes of dis-
guising messages and the purposes of disguising the previous numbers and the seed in a
sequence of pseudorandom numbers are very similar. A random number generator able to
produce integers that cannot be predicted by an adversary are suitable for cryptography;
these are called cryptographically secure pseudorandom bit generators (CSPRBG). Descrip-
tions of two such generators follow; the first resembles Rabin, while the second resembles
RSA.

Blum–Blum–Shub Pseudorandom Bit Generator To generate pseudorandom
numbers or bitstreams:

1. Choose two secret strong primes, p and q, both congruent to 3 modulo 4. Form n = pq.
Choose j as a positive integer not exceeding log2(log2n)

2. Select a random integer seed s such that

• 2 ≤ s < n

• s and n are relatively prime.

Compute x0 = the lnr of s2 modulo n.

3. Repeat for as long as desired:

• Compute xi = the lnr of xi�1
2 modulo n.

• Let zi be the j least significant bits of xi.

4. The output sequence is z1, z2, z3,

EXAMPLE. For this example we will use small primes; in reality, we must use large, strong
primes. Suppose we choose p = 11351, q = 11987. So n = 136064437. We compute j as 4,
the largest integer not exceeding log2(log2(n)) = 4.75594, and we will select as our seed
s = 80331757. We wish to generate a stream of 2 blocks, each of bit length 4; we compute
the values

x0 � s2 � 803317572 � 131273718 (mod 136064437)

x1 � x0
2 � 1312737182 � 47497112 (mod 136064437)

z1 � 47497112 � 8 � 1000base 2 (mod 24) (the 4 least significant bits of x1)

16.4 Random Number Generation 317

x2 � x1
2 � 474971122 � 69993144 (mod 136064437)

z2 � 69993144 � 8 � 1000base 2 (mod 24) (the 4 least significant bits of x2)

The final “random” bitstream produced is

10001000.

Admittedly, it isn’t much to look at. We need to generate a much larger stream, and will
do so in the next example.

EXAMPLE. Here we produce a much longer stream of 100 blocks, each of bit length 4. We
will use exactly the same parameters p = 11351, q = 11987, n = pq = 136064437, j = 4, and
the seed s = 80331757.

1000 1000 0101 1111 1110 0101 1101 0001 0000 0000 0000 1000 1100 1101

0001 0101 0110 1010 1110 0110 0110 0000 1011 0011 1000 1010 1100 1010

0000 1101 1110 0100 0111 1111 1010 0000 1011 1001 1110 1001 1100 0100

0011 1000 0101 1000 0010 1001 0100 0101 1111 0001 0110 1100 0101 0000

0110 1011 1001 0001 0000 0101 0011 1100 0111 0011 0101 0111 0000 1000

0010 1111 1111 1100 0110 0001 0011 1110 0111 0001 1111 0010 1111 1100

1011 0011 1111 1111 1110 1010 1000 1001 0111 0111 0010 0100 1001 0010

1100

You may wish to check these values, or write a program to check them. (I recommend
the latter.)

The CSPRBG Class I have designed a class which implements the Blum–Blum–Shub
algorithm for generating random bitstreams. For convenience, the modulus n = pq will be
fixed at 1025–1026 bits. Using this bit length for n, we should choose no more than 10 of
the least significant bits after each squaring. For convenience again, we will choose the 8
least significant bits, allowing us to easily place them in a byte array using the method fill-
Bytes(). We can also retrieve a single byte using the getRandomByte() method. The code
for the CSPRBG class follows.

import java.math.*;

import java.security.*;

public class CSPRBG {

BigInteger p,q,n,seed;

public CSPRBG(byte[] seed) {

this.seed=new BigInteger(seed);

if (this.seed.bitLength()<515) throw new

IllegalArgumentException(“Seed too small”);

SecureRandom sr=new SecureRandom(seed);

//Use a secureRandom object to get the strong primes

PrimeGenerator pg=new PrimeGenerator(513,16,sr);

do {p=pg.getStrongPrime();}

318 Chapter 16 Cryptographic Applications

FIGURE 16.5

while (!p.mod(BigIntegerMath.FOUR).equals(BigIntegerMath.THREE));

do {q=pg.getStrongPrime();}

while (!q.mod(BigIntegerMath.FOUR).equals(BigIntegerMath.THREE));

n=p.multiply(q);

}

//Fills an array of bytes with random data

public void fillBytes(byte[] array) {

for (int i=0;i<array.length;i++) {

//Seed is continually squared

seed=seed.multiply(seed).mod(n);

//Least significant byte of residue is the i-th random byte

byte b=seed.byteValue();

array[i]=b;

}

}

//Returns a single byte of pseudorandom data

public byte getRandomByte() {

seed=seed.multiply(seed).mod(n);

return seed.byteValue();

}

}

Figures 16.5, 16.6, and 16.7 are screen shots of the test applet (TestCSPRBGApplet).
You first enter a seed as a large integer, then press the button repeatedly to get random bytes,
which are displayed as decimal integers in the range �128 thru 127.

Micali-Schnorr Pseudorandom Bit Generator To generate pseudorandom num-
bers or bitstreams:

1. Choose two secret strong primes, p and q, and form n = pq.

Let N equal the bit length of n.

16.4 Random Number Generation 319

FIGURE 16.6

FIGURE 16.7

Choose an exponent e such that

• 1 < e < (p � 1)(q � 1)

• e is relatively prime to (p � 1)(q � 1)

• 80e ≤ N.

Let k be the largest integer not exceeding N(1 � 2/e).

Let r = N � k.

2. Select a random seed x0 of bitlength r.

3. For i = 1, to Z do:

• Compute yi = the lnr of xi�1
e modulo n.

• Let xi be the r most significant bits of yi.

• Let zi be the r least significant bits of yi.

4. The output sequence is z1, z2, z3, . . . , zZ.

The numbers zi may not be large enough for an application’s purposes; in this case, one
concatenates as many of the numbers together as necessary to form a sufficiently large inte-
ger.

320 Chapter 16 Cryptographic Applications

16.5 SIGNING MESSAGES

Signing messages is a concept which arose with public key cryptography. When you receive
a message encrypted with your public key, how do you know the message is from whom
claims to have sent it? After all, your encryption keys are public, and so anyone can encrypt
messages to you. Signing is a way for the sender to modify the message in a way that could
only be done by her.

Each public key scheme usually defines a method to perform signing. Sometimes the
signing closely resembles the enciphering mechanism, but often it does not. We will first
cover signing with RSA, the first system to propose this concept.

Signing with RSA Suppose individual A wants to send a message P to individual B
using RSA in such a way so that B knows the message could only have come from individual
A. Suppose A uses the RSA modulus n = pq, and the exponents e and d, while individual B
uses n* = p*q*, and the exponents e* and d*. Of course, neither party knows the other’s pri-
vate key. Individual A does the following:

1. Individual A computes

C1 � Pd (mod n)

using her decryption exponent. (No one else can do this if A is protecting her private
key.)

2. If C1 ≥ n*, it is necessary for A to separate C1 into blocks before applying the transfor-
mation

C � C1
e* (mod n*)

and form the final ciphertext to send to B.
To decrypt the message sent by A, B does the following:

1. B decrypts the message C by applying

C1 � Cd* (mod n*)

to regain C1.

2. B then computes

P � C1
e (mod n)

using A’s public information to recover the plaintext.

Actually, it isn’t necessary for A to encrypt the message a second time using B’s public
information if she isn’t concerned with who reads the message. B could simply decrypt
with A’s public key to retrieve the plaintext. However, anyone else could do the same thing.
If privacy (in addition to integrity) is an issue (and it usually is), both transformations are
involved.

Is this all there is to it? No. Establishing one’s identity couldn’t possibly be this easy. For
example, is it possible someone could publish his or her public key values using someone
else’s identity? If this is not regulated in some way, the answer is yes. Most public key

16.5 Signing Messages 321

schemes in use provide a mechanism by which individuals must establish their identity with
an entity called a “Trusted Third Party” or TTP, when publishing their keys. If necessary,
these TTPs can establish that the individual using a certain set of keys is actually the per-
son he or she claims to be. The TTP does not need to know anyone’s private keys to do this.

EXAMPLE. For simplicity’s sake, we will use small parameters, and so that blocking will
not be an issue, we will arrange it so that n < n*.

Suppose individual A (the sender) chooses p = 7 and q = 19, so that n = 133. Individual
A chooses e = 5 as the encryption exponent, and computes d = e� = 5� � 65 (mod 108).

Individual B (the recipient) chooses p* = 11 and q* = 23, so that n* = 253. Individual B
chooses e = 9 as the encryption exponent, and computes d = e� = 9� � 49 (mod 253).

A wishes to send the message P = 93 to B with a signature. Individual A first computes

C1 � 9365 � 4 (mod 133)

No one else can do this because A’s decryption exponent is private. Individual A then
encrypts using B’s public encryption exponent and modulus:

C � 49 � 36 (mod 253).

This is the final ciphertext, which is sent to B. C1 is first recovered by decrypting with
B’s private decryption exponent:

3649 � 4 � C1 (mod 253).

No one can do this except B, and so privacy is assured. Finally, B uses A’s public expo-
nent and modulus to recover the plaintext P:

45 � 93 � P (mod 133).

Java Algorithm Writing the methods to sign with RSA in this way are easy since most
of the work has already been done. The methods to do this (from the Ciphers class) follow.

public static byte[] RSAEncipherSigned(

byte[] msg,

BigInteger dSender,

BigInteger nSender,

BigInteger eRecip,

BigInteger nRecip,

SecureRandom sr) {

return RSAEncipherWSalt

(RSAEncipherWSalt(msg,dSender,nSender,sr),eRecip,nRecip,sr);

}

public static byte[] RSADecipherSigned(

byte[] msg,

BigInteger dRecip,

BigInteger nRecip,

322 Chapter 16 Cryptographic Applications

BigInteger eSender,

BigInteger nSender) {

return RSADecipherWSalt(RSADecipherWSalt(msg,dRecip,nRecip),eSender,nSender);

}

Of course, the variables eSender, dSender, and nSender refer to the message sender’s
key information, while eRecip, dRecip, and nRecip refers to the recipient’s keys. Note that
neither the sender nor the recipient needs to know the other’s private info for message
exchange. Also, note that enciphering is an application of RSAEncipher() twice, first using
the sender’s private exponent, then using the recipient’s public exponent. It is done this way
so that padding and blocking issues will be handled correctly. Because of the symmetric
nature of the RSA enciphering and deciphering transformations, this works. Likewise, deci-
phering involves applying RSADecipher() twice with different exponents. You will find that
writing methods to sign using other algorithms won’t be quite so easy.

Following is the output of a simple console program TestRSACipherSigned. The code
can be found on the book’s website:

Plaintext message:

Little Willy Willy won’t GO HOME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Sender’s keys:

n=47782317390949840599719361406282787031971169706340889205910600511651090
1324842762783453285232353074783464254995516764280738329563279965438228948
9280441812866482827362912397521119899724567407854726573606946785783804821
1490867893827447459512197749446350191839654657188532964841056340856133204
8607351598198101709

e=83312974644643859903267946834708159485647858625179212485115616222287237
1938788281455011764149010812987977689838516046837523319281290153766339312
0677513551158027200673951042206830189406463160246696648959448501005242846
6888908193934245905541876379902315861267261663565682552051628101445975498
10696099572097327

d=46848389164242330225071449666604637411224713799115112040609272701499826
8502130258770328850822705030787904612308076555045283496664108139377795438
1875804833671832013034092429080034687115183115320067520484468472483902330
5828867419996923021611059513161144563449042171090062883791376144836807314
5108476860945640143

Recipient’s keys:

n=40030064890131045556164143906639977210278139426559384091698962934025781
2870529067795493232933422841793524046547588390029559846808892299192424339
2777303590896263511254432673090184816373225509026440453562416752000207951

16.5 Signing Messages 323

9356433725290818322063237477659539960679619018282576265414797224176810239
4461794720293192639

e=10738975467716313016226411982616063375096935280096973378820148373901000
0377470313772198875565203421763473641679025697618732906800200949388901714
4337965064160547094535922354431198904536464821168309068889027430457499760
1091047270120113110989646463412317973823604744394241847030235719949845268
584917833408071651

d=34120427819749165542258873630680243843885206912393395291704730575235416
8499010091359026204518569891972265492221968149078409284214574471096638649
6508925391380739896819274937783290922865761442395151744157771365693061239
9916291158832430035510226908257536825863178385774457780384766899733604450
9358887363459579267

Doubly enciphered signed message:

Ü¡… ??-au¡?(dRc(µß¶s«ÙáàóR.K>; ¸> ÿÍSE–ÌC9B ¿cd_øT»%ìß?{ ŒW9�Q
n1⁄2?Á?‡ü¿/CH30ôÜ

Áµ?)ÙjÁ™<R-1@øA
£µ ù¯{èüÜ\±by|© -R,ÙèYpL0â?Sú Ò Æôs22!H3ˆÕaKP � Ë)´ ã¬–1⁄4
ëkû Õ ŸÛf¨––P ú pR MY9@/+ áœ1«%Q�¶v2y E=ùu–¸Zcê™7ß–
Ñqp�?± _?W1⁄2ÍúŸæœ p MÓíË xa=z}©xÅG âñaB ” Ýå Ý Àè
†™1

Doubly deciphered signed message:
Little Willy Willy won’t GO HOME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Signing with Rabin Rabin signatures are simple to produce. Suppose individual A
wants to send a message P to individual B using Rabin in such a way so that B knows the
message could only have come from A. Suppose A uses the Rabin modulus n = pq, while
B uses n* = p*q*. (The primes involved now are all congruent to 3 modulo 4, as required by
Rabin.) Of course, neither party knows the other’s private key. A does the following:

1. A computes a square root of P modulo n (if P has such a square root); that is, she com-
putes a value, say C1, such that

C1
2 � P (mod n).

This transformation can produce up to four roots; it doesn’t matter which root she chooses.
(No one else can do this if A is protecting her primes p and q, as computing a square root
modulo n without its prime factorization is an intractable problem.)

Note that a particular message may not have a square root modulo n. The sender
must salt the message (or salt each block) in such a way that the salted result has a square
root modulo n. This isn’t difficult, because the odds of some random integer having a
square root modulo n is quite likely. The amount of salt to use for this purpose is agreed
on beforehand.

^ ^

324 Chapter 16 Cryptographic Applications

2. If C1 ≥ n*, it is necessary for A to separate C1 into blocks, and add redundancy before
applying the transformation

C � C1
2 (mod n*)

and form the final ciphertext to send to B.
To decrypt the message sent by A, B does the following:

1. B decrypts the message C by sending it through his decryption machine to regain C1. That
is, it computes the square roots of C modulo n*. If redundancy was added at the proper
point, his decryption machine can determine the correct root congruent to C1 out of the
four possible roots calculated.

2. B then computes

P � C1
2 (mod n)

using A’s public modulus to recover the plaintext.

Once again, the enciphering and deciphering transformations are used not only to ensure
that the message was from the sender, but also to ensure that no one other than the intended
recipient can decipher it.

EXAMPLE. For simplicity’s sake, we will use small parameters. Suppose individual A (the
sender) chooses p = 10259, and q = 10739, so that n = 110171401. Individual B (the recip-
ient) chooses p* = 10691, and q* = 11351, so that n* = 121353541. Note that all primes are
congruent to 3 modulo 4. (There is a table in the appendices listing all primes less than
12000, plus their lnr’s modulo 4.)

A wishes to send the message P = 1696082 to B with a signature. This message may not
have a square root modulo n. A first checks this, and discovers that it does not; so by adding
salt (just a single digit will do here), she eventually obtains a value that has a square root;
namely,

P� = 16960824

A then computes the square roots of 16960824 modulo 110171401. B does this by com-
puting

x � �P(p�1)/4qqp� � P(q�1)/4ppq� (mod n)

where qp� is an inverse of q modulo p, and pq� is an inverse of p modulo q. The values desired
are

pq� = 1320

qp� = 8998

This yields the four roots

x � 50253700 (mod 110171401)

x � 40866715 (mod 110171401)

16.5 Signing Messages 325

x � 59917701 (mod 110171401)

x � 69304686 (mod 110171401).

No one else can do this since only A knows the values of p and q. A selects one of these
roots (it doesn’t matter which), say x = 59917701. To compute the final ciphertext, it is nec-
essary that A reblock the text and add redundancy so that B’s decryption machine can select
the correct root out of the four possible roots generated by the decryption transformation.
Thus, the message is split into

x1 = 59915991

x2 = 77017701

A then encrypts using B’s public modulus:

C1 � 599159912 � 20072206 (mod 121353541).

C2 � 770177012 � 11711668 (mod 121353541).

This is the final ciphertext, which is sent to B. To recover the plaintext, B must first solve
for the square roots of C1 and C2 modulo 121353541:

x � �C (p�1)/4q*q*p*� � C (q�1)/4p*p*q*� (mod n*)

where q*p*� is an inverse of q* modulo p*, and p*q*� is an inverse of p* modulo q*. The val-
ues desired are

p*q*� = 2253

q*p*� = 8569

This yields the four roots for C1:

x � 36623739 (mod 121353541)

x � 61437550 (mod 121353541)

x � 84729802 (mod 121353541)

→ x � 59915991 (mod 121353541).

Since the last root is the one possessing redundancy, it is chosen as the correct root. The
redundancy is discarded to yield x1 = 5991. It is highly unlikely that another root will pos-
sess this redundancy (especially if we use large redundant blocks).

The four roots for C2 are:

x � 28117593 (mod 121353541)

x � 44335840 (mod 121353541)

x � 93235948 (mod 121353541)

→ x � 77017701 (mod 121353541)

326 Chapter 16 Cryptographic Applications

It so happens that the last root is again the correct one. The redundancy is discarded to
give x2 = 7701. Since no one can do this except B, privacy is assured. Finally, B reforms the
message x = 59917701 and uses A’s public modulus to recover the plaintext P� (with salt):

599177012 � 16960824 � P� (mod 133).

The salt is removed, and the plaintext is regained:

P = 1696082.

16.6 MESSAGE DIGESTS

A message digest is basically a fixed-size compressed version of an arbitrary length mes-
sage. This compression is done by way of something called a digest function, which is really
a special type of hash function.

You have probably heard the term hash function before, for we use them when we con-
struct hash tables. A hash table is a way of storing data so that it can be retrieved very
quickly. The hash function maps a data item to an index in a table; a “good” hash function
is one that very rarely maps two different data items to the same index. This property is
known as collision resistance.

EXAMPLES. Suppose we represent the data as large integers, and suppose the hash function
is defined as

h(x) = lnr of x modulo 264.

Thus, the hash value is merely the trailing 64 bits of the binary representation of x. If the
data items are evenly distributed, this may be a suitable mapping for a hash table.

For example, if x = 200900995406429488306921947010403054300, then

h(x) = 12493796564522152668

� 200900995406429488306921947010403054300 (mod 264)

or

h(x)=1010110101100010111000011100011111001100010101101011001011011100base 2.

However, since data are rarely evenly distributed, we might choose a hash function such
as this one:

g(x) = lnr of x modulo p

where p is a large prime. Since any message x not divisible by p will be relatively prime to
p, an overabundance of messages having the same trailing digits will tend to be spread out
among the range of hash values.

Most of these “classical” hash functions are not suitable for cryptography, however. For
reasons which will become apparent, a hash function, say h, used to produce message digests
must also satisfy the following properties:

16.6 Message Digests 327

Definition
A hash function h is a digest function if it satisfies all of the following properties:

1. Given a hash value h(m), it must be extremely difficult to determine m.

2. Given a message m, it must be extremely difficult to find another message m� such
that h(m) = h(m�).

3. It must be extremely difficult to find any two messages, say m and m�, for which h(m)
= h(m�).

Property 2 looks very much like property 3, but they are quite different. The former says
that if we start with a given message, we can’t find another that maps to the same hash
value. The latter does not specify that we start with a particular message; it only requires that
we cannot find any two messages that map to the same digest.

A hash function that satisfies these three properties will be called a digest function. Some-
times we will also refer to the function as a digest, but we also use the word digest to refer
to the output of a digest function; the intended meaning should be clear from the context.

If we take the hash functions from the previous examples, it is easy to see that they could
not be digest functions, since they fail some of the required properties. For example, any two
messages with the same trailing 64 bits will map to the same hash value using function h.
The function g likewise fails to have property 2.

Digest functions are very much like good ciphers, in that the values they produce must
look random to the point that an adversary cannot tell what the originating data was. There
are three important differences between digest functions and ciphers, however; they are:

1. A cipher is intended to be reversible, given a certain secret key. Digests are specifically
intended not to be reversible, no matter what information one has.

2. A digest function compresses the data, whereas a cipher generally does not. In fact, a
cipher usually expands the data.

3. Digest functions use no keys; the scrambling effect that they produce comes about by the
nature of the mathematical transformation itself. Such a digest is referred to as a Modi-
fication Detection Code (MDC); the name signifies the basic purpose. However, other
digests use keys; such a digest is called a Message Authentication Code (MAC).

Now we will cover a specific digest function; namely, the Modular Arithmetic Secure
Hash, Algorithm 2 (MASH–2).

MASH–2 The following produces an n bit digest of a message x of bitlength b such that
0 ≤ b < 2n/2.

1. Choose two primes such that their product, M, is m bits in length.

2. The integer n is chosen as the largest multiple of 16 not exceeding m; n is the bitlength
of the digest.

3. H0 = 0 is an initialization vector; we will define another n bit constant A, such that

A = 11110000 . . . 0000base 2.

328 Chapter 16 Cryptographic Applications

4. Pad the message x with zeros, if necessary, to make the bitlength of x a perfect multiple
of n/2. Divide x up into t blocks, each of bitlength n/2 (t may be 1). Add another n/2 bit
block, which is the (n/2) bit representation of b. We represent this as:

x = x1, x2, . . . , xt, xt�1.

Note that each of the blocks is a multiple of 8.

5. For each i from 1 through t, divide xi into 4-bit blocks; insert the bits 1111 before each
4-bit block. This produces an n-bit block, say yi, from each xi. Then divide xt�1 into 4-
bit blocks, but this time, insert the bits 1010 before each 4-bit block. This yields the
expanded message

y = y1, y2, . . . , yt, yt�1.

6. Now, to compute the digest. For i from 1 through t + 1 do the following:

• Compute Fi = lnr of ((Hi�1 � yi) OR A)257 modulo M (where OR means bitwise inclu-
sive–or, and � represents bitwise exclusive–or).

• Let Gi be the n rightmost bits of Fi.

• Compute Hi = Gi�Hi�1.

7. The digest is Ht�1.

EXAMPLE. We will again use very small numbers. Let the message be x = 45 = 101101
(binary), and so the bitlength b of x is b = 6 = 110 (binary). Let p = 6911 and q = 6947; thus,
M = 48010717 = 10110111001001010111011101 (binary). The bitlength m of M is 26, so
we choose n = 16. The IV (initialization vector) H0 is 0, and the constant A is
1111000000000000 (binary). We pad the message with zeros so that it is a multiple of 16/2
= 8; that is,

x = 10110100.

Now we divide this up into 8 bit blocks; in this case, there is only one such block (t = 1).
We append another block, which is the 8-bit representation of b, or 00000110. So, we have

x1 = 10110100

x2 = 00000110.

We divide the message up by splitting each block xi (where i ≤ t) into 4-bit blocks, and
inserting 1111 before each such 4-bit block. For x1 this yields

y1 = 1111101111110100.

The last block is split in the same way, but 1010 is inserted before each block. Hence,
for x2 we have

y2 = 1010000010100110.

Now, to produce the digest:

16.6 Message Digests 329

F1 � ((H0 � y1) OR A)257 � ((0000000000000000 � 1111101111110100) OR
1111000000000000)100000001 � (1111101111110100 OR 1111000000000000)100000001 �
1111101111110100100000001 � 101011011010010100101011 (mod
10110111001001010111011101).

G1 is taken to be the 16 rightmost bits of F1; so

G1 = 1010010100101011.

We take H1 by computing

H1 = G1 � H0 = 1010010100101011.

We compute H2 in the same way:

F2 � ((H1 � y2) OR A)257 � ((1010010100101011 � 1010000010100110) OR
1111000000000000)100000001 � (0000010110001101 OR 1111000000000000)100000001 �
1111010110001101100000001 � 10001000101100100000010111 (mod
10110111001001010111011101).

G2 = 1100100000010111

H2 = G2 � H1 = 1100100000010111 � 1010010100101011 = 0110110100111100.

The final digest value is 0110110100111100.
Of course, this was a lot to go through for such a tiny message; in fact, in this case, the

digest is larger than the message! Of course, we could have used a message up to 28 � 1 =
255 bits in length for this example.

The MASH2 Class I have designed a class to generate digests of messages using the
MASH–2 algorithm. The digestOf() method accepts a message as a byte array, and returns
the digest as a byte array.

import java.math.*;

import java.security.*;

public class MASH2 {

//Define some handy values

static BigInteger two=BigInteger.valueOf(2);

static BigInteger ten=BigInteger.valueOf(10);//=binary 1010

static BigInteger fifteen=BigInteger.valueOf(15);//=binary 1111

static BigInteger sixteen=BigInteger.valueOf(16);

static BigInteger exp=BigInteger.valueOf(257);

BigInteger modulus;

public MASH2(BigInteger modulus) {

this.modulus=modulus;

}

330 Chapter 16 Cryptographic Applications

public byte[] digestOf(byte[] msg) {

//Convert message to BigInteger-easier to work with

//Ensure the BigInteger is positive using BigInteger(int signum,byte[] b)

//constructor

BigInteger msgInt=new BigInteger(1,msg);

//b is bitlength of msg

BigInteger b=BigInteger.valueOf(msgInt.bitLength());

//n is largest multiple of 16 not exceeding bitlength of modulus

int n=modulus.bitLength()/16*16;

//Check that msg is not too large for use with MASH2

if (b.compareTo(two.pow(n/2))>0) throw new IllegalArgumentException

(“Message is too large”);

//Pad msg with enough zeros to make it a multiple of n/2

int amountToShift=msgInt.bitLength()%(n/2)==0?0:(n/2)-

msgInt.bitLength()%(n/2);

msgInt=msgInt.shiftLeft(amountToShift);

//Define variable for 2 raised to n power

BigInteger twon=two.pow(n);

//Define initialization vector H

BigInteger H=BigInteger.valueOf(0);

//Define n bit binary numeric constant A=11110000...0000

BigInteger A=BigInteger.valueOf(15).multiply(two.pow(n-4));

//Process the first t blocks

int t=msgInt.bitLength()/(n/2);

BigInteger prevH;

for (int i=0;i<t;i++) {

prevH=H;

H=BigInteger.valueOf(0);

//Process the 4 bit nybbles-there are n/8 of them

BigInteger rem;

for (int j=n/2-4;j>=0;j-=4) {

//Each byte begins with 1111B

H=H.shiftLeft(4).or(fifteen);

//Shift msg to right and keep last 4 bits

rem=msgInt.shiftRight(j+n/2*(t-1-i)).mod(sixteen);

//Append this remainder to H

H=H.shiftLeft(4).or(rem);

}

16.6 Message Digests 331

//Compute the new digest value for H

H=prevH.xor(H).or(A).modPow(exp,modulus).mod(twon).xor(prevH);

}

//Process the t+1 block

prevH=H;

H=BigInteger.valueOf(0);

//Process the 4 bit nybbles

BigInteger rem;

for (int j=n/2-4;j>=0;j-=4) {

//Each byte in last block begins with 1010B

H=H.shiftLeft(4).or(ten);

//Shift b to right and keep last 4 bits

rem=b.shiftRight(j).mod(sixteen);

//Append this remainder to H

H=H.shiftLeft(4).or(rem);

}

//Compute the final digest value as a BigInteger

H=prevH.xor(H).or(A).modPow(exp,modulus).mod(twon).xor(prevH);

//Convert to a byte array and return-call helper method getBytes().

return getBytes(H);

}

//Converting BigInteger to a byte array may force an extra byte for a sign bit.

//We remove this byte if it is produced

private static byte[] getBytes(BigInteger big) {

byte[] bigBytes=big.toByteArray();

if (big.bitLength()%8!=0) return bigBytes;

else {

byte[] smallerBytes=new byte[big.bitLength()/8];

System.arraycopy(bigBytes,1,smallerBytes,0,smallerBytes.length);

return smallerBytes;

}

}

}

TestMASH2Applet is an applet on the book’s website you can use to view the behavior
of MASH–2. A modulus about 1024 bits in length is generated. You enter a message, then
press a button to see its digest. The digest is displayed as a base 10 integer. (See Figure
16.8.)

One of the drawbacks of MASH–2 is that the digest it produces can be rather large. To
be secure, the size of the modulus should be at least 1024 bits, which implies that the digest
will likewise be 1024 bits, or 128 bytes long. For most applications, digests should be around
128 bits long.

332 Chapter 16 Cryptographic Applications

FIGURE 16.8

Uses of Message Digests Digests are most commonly used for two purposes:

1. Ensuring data integrity. This refers to methods that the recipient of data can use to deter-
mine whether or not this data has been modified. It is sometimes possible for an adver-
sary, even without knowledge of keys, to modify a message in such a way so that it
appears valid to the recipient.

2. Providing authentication of the origin of data. This means that the recipient can ascer-
tain whether or not a message is from the entity that claims to have sent it. Signing mes-
sages in the manner described earlier can do this.

When you think about it, each of these two objectives is necessary for the other. To argue
this, consider a message of which origin you cannot be sure; then knowing whether or not
it has been modified is not useful information. On the other hand, if you cannot be sure
whether or not a message has been modified, then knowing its true origin does not help. Thus,
a digest must always be used to provide assurances of both the integrity and the authentic
origin of data.

Here are some examples of how a digest can be used to do this.

Transmission of a Digest by Secure Means The sender of a message computes
a digest for the plaintext message. The message is sent (probably encrypted, but perhaps not

16.6 Message Digests 333

if privacy is not a concern) via an insecure channel, whereas the digest is sent by way of a
secure channel. Here, a secure channel may mean:

• An electronic means of data communication known to be safe.

• The telephone, where voice recognition provides the authentication.

• Transporting the data by trusted physical means.

When this is done, the recipient of a message can compute the digest for it, then com-
pare this to the digest received. If they match, the recipient accepts the message as authen-
tic and unmodified (since the digest was sent via secure means.)

Due to the logistical problems involved, this type of assurance is rarely used. The mere
problem of not being able to guarantee a “secure” channel is the reason cryptography evolved
in the first place. However, this example is given to make you realize the importance of
never sending a digest along the same lines of communication as a message. An adversary
can capture both the message and the digest. He can then construct a new message, com-
pute a digest for it, and then send them to you. This is easily done even if a public key
encryption scheme is being used. (Think about it; everyone knows your public key, and
everyone knows the digest function.)

Signing the Digest One of the problems with signing messages in the manner
described earlier is that basically, the sender does double encryption, and double decryption
is done by the recipient. This may be too costly in terms of computer resources, especially
if messages are being transmitted in real time (like an audio or video signal).

One solution is for the sender, say A, to produce a digest from the plaintext. A then singly
encrypts the message using the public key of the recipient, say B. A then doubly encrypts
only the digest, first using the private key of A, then B’s public key. The message and the
digest are then sent. It doesn’t matter now if the digest is sent with the message. B decrypts
the message, then decrypts the digest first using B’s private key, then A’s public key. B then
calculates a digest of the decrypted message. If it matches the decrypted digest, B accepts
the message. See Figure 16.9.

Why does this work? Could an adversary capture the message and the digest, and pro-
duce a new message and digest? Since the digest was first encrypted using A’s private key,
an adversary has no way to duplicate this. The best she can do is “guess” a digest value for
her modified message, in the hopes that it will match the digest computed by B from her
bogus message. If the digest size is large enough, say 128 bits, this is extremely unlikely;
in this case, the probability of all 128 bits matching is 1/2128, or less than 2.939 � 10�39.

Encrypting Digest with Message The situation of sending a digest along the same
line of communication as the message is not necessarily unique to public key cryptosystems.
Data authentication is also important for secret key cryptosystems. Even with secret key
ciphers, it is sometimes possible for an adversary to modify a message so that it appears
meaningful to the recipient. This is actually quite easy if the message possesses little struc-
ture; for example, a series of widely ranging numbers in binary format. The adversary does
not need to know the secret key to do this. (If they knew the secret key, you would be up
the creek anyway!)

334 Chapter 16 Cryptographic Applications

FIGURE 16.9
Sender A

P

Receiver B

hash function = h Accept msg iff
these match

xmit

xmit

Ex - Encipher with x's
public info

DX - Decipher with x's
private info

C C P

h(P)

h(P)

DA EB

EB

DB

DB

EA

We deal with this very simply: we compute a digest for the plaintext message, then
append it to the message. This larger message is then encrypted, and sent. The decryptor
checks that the tail end of the decrypted message is the digest of the data that precedes it.
Without knowledge of the secret key, it is highly unlikely that an adversary can construct a
message that decrypts to a message having this special structure; that is, with the tail of the
message being a perfect digest of the rest of the data. (See Figure 16.10.)

Note here that we cannot attach a digest to a message in this way if we are using a pub-
lic key system, and encrypting using only the recipient’s public information. It should be
obvious why this is so.

16.7 SIGNING WITH ELGAMAL

The ElGamal signature scheme was specifically intended to work with digests. Suppose a
sender, say A, is using the public key (p, g, y), and the private key a, where p is a large, safe

FIGURE 16.10

Sender

P P

Receiver

h

Accept msg iff X = h(P)

xmit

E - enciphering
transformation
D - deciphering
transformation
h - hash function

P
C C

h(P)

h(P)

E D

X

16.7 Signing with ElGamal 335

prime, g is a generator modulo p, and y is the lnr of ga modulo p. Suppose d is a public mes-
sage digest function. To generate a signed digest of a message P, A must do the following:

1. Select a random integer k between 1 and p � 2 (inclusive), such that k is relatively prime
to p � 1.

2. Calculate r, the lnr of gk modulo p.

3. Find k�, an inverse of k modulo p � 1. (This inverse exists due to our choice of k.)

4. Calculate s, the lnr of k�(d(P) � ar) modulo (p � 1). (Only A can do this step, as only A
knows the private key a.)

5. The signature is the pair of integers, r and s.

To verify that this signature is valid, the recipient B must do this:

1. Verify that r is between 1 and p � 1; if not, reject the signature.

2. Using A’s public information, calculate v, the lnr of yrrs modulo p.

3. Calculate d(P), the digest of the message P.

4. Compute w, the lnr of gd(P) modulo p.

5. If v = w, accept the signature as valid; otherwise, reject it.

Why does this work? Well, because

s � k�(d(P) � ar) (mod p � 1),

we have

ks � k k�(d(P) � ar)

� d(P) � ar (mod p � 1).

Thus, by subtracting ar from both sides, we have

d(P) � ar + ks (mod p � 1).

Because of the properties of discrete logarithms, this then yields

gd(P) � gar�ks (mod p).

But note that by construction of v and w, and because of the previous congruence, we must
have

w � gd(P) � gar�ks � (ga)rrs � yrrs � v (mod p).

Thus, the signature is valid iff v = w.

EXAMPLE. For this example, we will use a simple hash function, but unsuitable for crypto-
graphic purposes. For simplicity’s sake, we will not use salt, or CBC. Suppose A is using
the public prime

p = 768416655531999472553972503490662169854881508111468141690052585033772
353811145704262633807570477286149198100781782215658227986987692047241181
534570445703122494213057666371119117944205153516492397844122051887566688

336 Chapter 16 Cryptographic Applications

757470680422409493015066111115629539866372845967402086055376212896177870
76209187671392407592174797.

This choice of p is a safe prime; we know the factorization of p � 1, which has at least
one large prime factor; in this case, p � 1 = 2zt, where

z = 362,

and

t = 106134897172928103943918854073295879814210153054070185316305605667648
115167285318268319586681005150020607472483671576748374031351891166746019
548973818467282112460367080990486066014392977005040386442558294459608658
668158933760001311189926258441385295561653708006547249455162460344775949
000288933247779568497479.

A chooses a generator modulo p,

g = 2.

A chooses a private value for a:

a = 45366932286305017454823998962543872234171279575807307127836833791199
106589647221361411404680513932826550438110018938792808421883674318765239
855541004504826749690514434467452187115574562871476458097782440492959459
114595918998192357354718847375845084259186299700677238352348768625876330
302043529365424071172153676.

A computes the public value of y, the lnr of ga modulo p:

y = 724055273252881509576588841040152725840811907267226166652168857689817
926487564907954651926297199335221112806345258137591945857251048343201130
805689635851693738336967838518779547772897009773874067873510422086447659
524797666800500925069823070582327783189100853134197262953696156421360406
76327159300158548622476503.

The plaintext message which A must sign is

P = 47495233644665988426542797641862170747046710526789245391156504620320
517515571648723939384358595186200968673256615798341680398991554123874397
908150043241195926795222914754565141859355539104925268550584190056601904
838582629751247671428189205507655795265722620866029099708789775077073512
480224582285200694189809167.

We will assume P has already been encrypted using public information of the recipient
B, and sent to B. A creates a signature for this message by doing the following:

A selects a random integer k such that 0 ≤ k ≤ p � 2 and (k, p � 1) = 1; say

k = 828569173899706322862537866306640776566352364751963244609011965664662
488417460387862608694420472286305311556299061959003482409233005037723040
325579207521157865540839175624706248094985512559552109060621372261182159

16.7 Signing with ElGamal 337

073674266728597908901785500052357159821947443150603075554861577713129845
7166748765201121009594717.

A then calculates r, the lnr of gk modulo p:

r = 754980689309015967134652122289681073011337085880931754788354434950465
868945202772744073062829346744777955627154546239814497986673097913596618
187706415730448305962740003790259873593478841192742794988274985183707335
088576870708479793565047483444344434823417504303091568416797285536744959
93894473633702658894519225.

The value for r is the first part of the signature. Now, A must find an inverse of k mod-
ulo p � 1; this is easily done using the extended Euclidean algorithm:

k� = 41476618378700412297173224500420810670339064876850101272695099201480
409096613565495099867137782188429871575488175498185490101859098759692392
347429741878039564964082396789943865344588220167170614361150870833650116
512052394573930927553494824898854134339214385016217721200185633500260411
302215163263988431152856749.

A must compute a digest of the plaintext message. A uses the public hash function

d(x) � x (mod q) 0 ≤ d(x) < q

where the prime q is:

q = 10931809682175872911

= 1001011110110101100101101111110010011010010001001100111110001111base 2.

(Note that the binary representation of q is 64 bits; it will produce a 64-bit digest.) A cal-
culates d(P):

d(P) � 7763193083250062093 (mod q).

Now, A calculates the final part of the signature:

s � k�(d(P) � ar) �
504129645472912448866079239459312209155283159891818206116181584336284774
060877780128027574808314656854901317166655437096228316557996491503697413
041178568111884781202739723644461510362506102063431227543591653744230589
232661184347273905109607430598564690942443238612401218536035199345301596
39900593535677309588849 (mod p � 1).

The values of r and s are sent to B. To verify that this signature is valid, B must first
check that r is between 1 and p � 1. This checks, so B continues in this way:

B then calculates the two values v and w. B can compute w because the hash function is
public:

v � yrrs �
438908365050492172112141159266916014689430122622767850409990603339138565
278995621692689044958914233869339458908488816024934068379856100514306151

338 Chapter 16 Cryptographic Applications

Figure 16.11
User 5 login:

Tutti:
Enter password:

Allow login iff h(X) = h(P(5))

X

h

h(X)

hashed password user

h(P(1))

h(P(2))

h(P(3))

h(P(4))

h(P(5))

1 - Billy

2 - Kenton

3 - Mandy

4 - Seth

5 -Tutti

641194989852455577634720396702065575387017714394831539504200403961645096
728072726095322023421112943523393879161424144304336692169642791406419470
91918468321515459948865 (mod p)

and

w � gd(P) �
438908365050492172112141159266916014689430122622767850409990603339138565
278995621692689044958914233869339458908488816024934068379856100514306151
641194989852455577634720396702065575387017714394831539504200403961645096
728072726095322023421112943523393879161424144304336692169642791406419470
91918468321515459948865.

B takes note of the fact that v and w are equal, and accepts the signature.

Storing Passwords or Passphrases as Digests A system administrator has a
peculiar problem. She must store the passwords or passphrases of all her users, so that she
can compare these entries to the entered passwords when a user attempts a login. However,
she must be able to protect these passwords, so unauthorized users cannot obtain them. Ide-
ally, it would be best if the system administrator herself could not obtain the passwords.

Cryptographically secure digest functions provide a solution. A user’s password is not
stored, but rather, a digest of the password is stored. When a user attempts a login, a digest
of the password is taken, then compared against this user’s entry in a table. If an adversary
somehow obtains the hashed password list, it does him little good if the digest function is
a good one; that is, it will be nearly impossible for him to obtain any particular password
from its digest. Even the system administrator does not know any particular password; only
the user who created it knows (assuming he or she didn’t forget it). Various operating sys-
tems grant access based on such an idea; Figure 16.11 illustrates this process:

16.8 ATTACKS ON DIGEST FUNCTIONS

There are various approaches to defeating a digest function. To defeat a digest function,
one must be able to produce a bogus message, say P�, which hashes to the same value as

16.8 Attacks on Digest Functions 339

the message P. In addition to other parties, both the verifier (receiver), and the signer (sender)
of a message may wish to have this ability. Why?

If a third party is able to produce a bogus message P�, such that h(P) = h(P�), he may be
able to convince the signer to sign P�, then later claim this signature is for P. The meanings
of P and P� may be totally different. For example, suppose you want your secretary to draft
a message P that orders your company bank to transfer funds to more conservative stocks.
Instead, by careful construction, he drafts a fraudulent message P� which orders the bank
to transfer 1.3 million company dollars to his Swiss bank account! By virtue of this careful
construction, it so happens that h(P) and h(P�) are equal. The bank receives the bogus mes-
sage, accepts it as authentic, and the next day your secretary is nowhere to be found. The
verifier (an employee of the bank, in this case) may also want to be able to do this (if he also
leans toward dishonest activity).

The signer can also do this. Suppose you are a high-ranking official of your government,
and you want to send a message P� ordering the death of millions of innocent civilians. By
careful construction, you are able to produce a message P that instead conveys great love
and affection for the masses. It so happens that h(P) = h(P�). You send the message P� to
your generals, who accept it as genuine, and then carry out your orders. Later, when NATO
is trying you for crimes against humanity, you whip out the message P, claiming that it was
the message you really sent. You claim that some adversary confiscated the message P and
sent P� in its place. The act of denying that you sent a signed message is known as repudi-
ation. A good digest function enforces nonrepudiation; that is, it makes it far too difficult for
a signer to find a bogus message to use in place of the real one.

Now do you see why a digest function must have the three required properties? If you
recall, they are:

1. Given a hash value h(m), it must be extremely difficult to determine m.

2. Given a message m, it must be extremely difficult to find another message m� such that
h(m) = h(m�).

3. It must be extremely difficult to find any two messages, say m and m�, for which h(m) =
h(m�).

The Birthday Attack The following illustrates a method to defeat a digest function,
known as the birthday attack. It is based on the following well-known principle: If you
select (with replacement) from a set of m objects, with high probability, you can expect to
draw some element twice within √m selections.

The way we normally hear this is from the birthday problem: If you select randomly
from the population, the odds are high that you will encounter 2 people with the same birth-
day within about 19 � √365 selections.

In the birthday attack, we assume the individual with bad intent can make modifications
to both the real message (P), and the bogus message (P�). Suppose the digest function pro-
duces an n-bit hash. Thus, there are 2n possible hashes (2 choices for each bit.) Note before
we begin that √(2n) = 2n/2. This is what to do:

1. Generate a table of t = 2n/2 minor modifications to the message P (add a space, delete a
semicolon, use a similar word, etc., etc. . .). Label these modified messages P1, P2, . . . ,
Pt.

340 Chapter 16 Cryptographic Applications

2. For i from 1 through t, generate the hash h(Pi), and store it with the message Pi.

3. Generate a minor modification of the bogus message P�, say P*. Search the table for a
message Pk such that h(Pk) = h(P*) for some k. (The search of the table can be done in
constant time if a hash table is used.)

4. If the search is successful, stop. The current P* is the fraudulent message, to send in place
of Pk. If the search is not successful, return to step 3.

Depending on n (the hash size), the birthday attack can have enormous storage require-
ments. If n = 64, the table will contain 232 � 4 billion elements. If each modified message
and its hash takes, say, one thousand bytes each, then we are talking storage space of about
4 terabytes. Though this seems large, it is feasible, or soon will be. Thus, digest functions
which produce 128 bit (or larger) hashes are preferable.

Note that it may be possible for the “bad guy” to modify only the bogus message. This
considerably increases the amount of selections one should make before expectations of
finding a match are high. As an example, suppose your birthday is July 15. How many peo-
ple should you randomly sample from the population so that the odds are greater than 50
percent that you will find someone with your birthday?

There are many other attacks on digest functions. Unfortunately, due to space consider-
ations, we cannot cover them here. An excellent reference for this topic (and many other top-
ics in cryptography) is The Handbook of Applied Cryptography, by Menezes, van Oorschot,
and Vanstone, published by CRC.

16.9 ZERO KNOWLEDGE IDENTIFICATION

Sometimes all that is desired in an exchange between two parties is that one be assured of
the identity of the other. (This is common among military protocols.) There are various
ways to do this, but one of the most interesting ways is to use “Zero Knowledge Identifi-
cation.” This refers to convincing someone that you are who you claim to be by convinc-
ing them that you know certain information that only you could know, but without revealing
that information to anyone, including the entity you are trying to convince! In these types
of exchanges, the entity trying to prove their identity is called the respondent, and the entity
trying to establish the identity of the respondent is called the challenger.

For example, suppose individual A is known to be using a public modulus n, where n is
the product of two large strong primes both congruent to 3 modulo 4, say p and q. A can con-
vince another individual, say B, that he knows these primes, without revealing them to B.
If A can do this, B is assured that A is really who he claims to be. A and B proceed in this
way:

1. Let A (the respondent) choose n as the product of two strong primes, p and q. A also
chooses some integer s such that s has a square root modulo n. The integers s and n are
public, and registered with a Trusted Third Party (TTP). A computes t, the lnr of a square
root of s modulo n; that is, he computes t such that

t2 � s (mod n) 0 ≤ t < n.

16.9 Zero Knowledge Identification 341

The value of t is kept private. Note that only A should be able to calculate t, as only he
knows the prime factors of n.

2. A chooses a random positive integer r less than n, and sends to B (the challenger) two
values:

z1 = lnr of r 2 modulo n, and

z2 = lnr of sz1� modulo n,

where z1� is an inverse of z1 modulo n.

3. B checks that z1z2 � s modulo n. He then randomly chooses either c = 0 or c = 1 and sends
c to A.

4. A will respond in one of two ways:

• If c = 0, A sends the message r to B.

• If c = 1, A sends the lnr of tr� modulo n, where r� is an inverse of r modulo n.

5. B now computes the lnr of m2 modulo n, and does one of two things:

• If c = 0, he checks that r2 � z1 (mod m).

• If c = 1, he checks that (tr�)2 = t2r�
2 � sz1 � z2 (mod n).

After this process, B knows that A can compute t, a square root of s modulo n, but he can-
not compute t himself, and t is never revealed to him. These are the only values that B knows
(modulo n): z1 � r2, z2 � s(r2)� � sr�

2
, s, and exactly one of r or tr�. Note that B can never

be given both r and tr�, for this allows him to calculate t. This process can be repeated as
often as necessary with different random values for r until B is convinced that A knows t.
However, it is absolutely vital that A choose a different value for r every time. Why?

EXAMPLE. Suppose A is using the public modulus

n =
274767815982245548988790206801956651309342982830065216921948667831130363
270253391613297772360579492679629996501029139838682116550051160900059917
252079335683044082645443287136361829237904549448424168235143278727967298
537931735369900497614908459888542386548176723918689759709749816846741951
438624571462267660236650416857894422109721140233441189969425961870588371
894903496708435357401553646260714625504652954935134556139340783655294871
737383374223242600468713011439066059016281996201542058384927054227873607
471972731775123706246506154077712330891353812432890865488929521246586593
80550940695643273559171683514261677617772051153

which is the product of two large, strong (and private) primes congruent to 3 modulo 4;
namely,

p =
200766270232954088077041575959108612757411238838003505144742064111712514
438539012193632244782163192814569872158475903654023762579506771732582156

342 Chapter 16 Cryptographic Applications

267397112859457940993929421837932531439318164366606200390751778729265037
950855560496259965189976512124408069020047445498322443733964180877589666
180519936116197326763539

q =
136859550991023357674233837751193444637145211672745580838508211454534324
823686210424604005719046718052981484190707562992713417956940416543355152
315219159854859002395777579635185385039269578229009584384066590554210488
182334714799737615710384650453125076807810092764555005612188062536100529
729582192738972213180427.

A is using the following public identifier:

s =
655888759462533346896099455125955297863619815052059946417712093279459636
342631365262945091607400505266438654108015109512874780341338294558609172
896025941074322477348130744475860903009531008960970411054610662280224501
660338817707042363199903874446894924326459533810656402488896490602481754
670208321628711511660442363295704362838936281451766918918230371219558149
385417339919129898962756076179525208607677979542348282535347567620941558
147949717798991715469439796914202792913405951608628308879284162599741791
439709118592992294885567487226707477594154920388849028073235350461353895
1357097063700167482750883742174106086454102797.

This value for s has a square root modulo n; let’s say,

t =
165939251694010184592593767485127540635808807933739119951718497170488592
148972055777285530210620518273692388315164078449283411444102820207961683
880417477924017600541987600931639085385971444581959989319417992193306141
335450460118404029149636306714968895603334454397709463970275583243016901
423853053941948601770260591458870529845193261034683705291970236037633310
907364071581496095213148290413871725043392307378067658837187041433121406
416290503339428815946362864700618273596792458170735372510429224074039038
301648162396953994412378543760633875395589555679973650286550990104663372
81692939001856637528820509003569587098467436984.

This value for t is kept private. To convince B that he can indeed compute t, without
revealing t, A first chooses a random integer less than n, say

r =
173651607556993658543074931792348037298652767890536649836378803212048174
119600416703769869733860342049288372423745801528669105373390624108185926
747940578397289745643201766424420162191119041288192344657982273471518628
215332496677780952733934200916926981810730240920232847296029476965497809
662739704519945187970453408466395941396051840775986075125108182246279299
702785594609410635181141522115473272018306542018693995053351421839424696
911117540694875175647980201822766135826987878547070039026905448088441503
482709036662431574895978524539775437034803554754381419475994272847508134
83730877286437180056765310582867370836696334060.

16.9 Zero Knowledge Identification 343

A computes z1, the lnr of r2 modulo n, then sends this to B.

z1 =
636907372916630417639950660028166281719492055429217364220457489593037866
165333459379315772875787773370375419072451906191820268566508799568022731
737276532379327302367995409491660366403960670960063687902082639535214517
045720899834810899222021096792723663168335105157383677283412810909888900
179491908626568577017870853324071917713448484526818434606091908128397432
395391731852501588490032870693623410766981003941348635411619193549032114
405481488544612831083993700764578354603810601080608921028150953269184186
219061408040286430527370708983876150599535584027175567558557848017906083
1579922562038044043747049460663818567470875382.

A then computes an inverse of z1 modulo n; this is easily done using the extended Euclid-
ean algorithm:

z1� =
246861721516894764252857411577867113106454940350062866347313323253750006
309210441793579823771625445834016495579963542682581812777362375425095701
318904290767164397489938749611564580089961691014202886617184187465096281
631499614795929225020721256594603297285157756882085472837738293484795666
944305502745974610118790479938567928569294792138203329433501519459756404
164108998150168996044258670546338629889604324314333379678354812911262934
584061508732936864208392730118708935918087007332226648604671082131679750
509595497578449495620684634767310513103044947716489026578148063839872078
42481163589332254584942264924258171668574862418.

A needs this value to compute z2, the lnr of sz1� modulo n. A sends z2 to B:

z2 =
127475513685566725446890852720613095360327187603988651941231415853157578
331456597153209494004736210977699578916999466032456677595127519634159990
521540837957056538345106025673773524185786635004052033863289249942948679
351840188229397744858421574833317348003660917673550353744822055165736111
234512904116889272699406948842755115609086788122010131676983531175952081
153644282751762038948324143832454354255524095948364303252903127278566455
867876654842411687623918210589300351425145699108311147796242254029159776
570872196619284791816763597060378966996431439737466965332522784477229827
90267877957407209494836944774782001306385230738.

B receives the two values z1 and z2, then checks that the lnr of their product is equal to
s. If you care to do the calculations, you will see this is true.

z1z2 =
246861721516894764252857411577867113106454940350062866347313323253750006
309210441793579823771625445834016495579963542682581812777362375425095701
318904290767164397489938749611564580089961691014202886617184187465096281
631499614795929225020721256594603297285157756882085472837738293484795666
944305502745974610118790479938567928569294792138203329433501519459756404

344 Chapter 16 Cryptographic Applications

164108998150168996044258670546338629889604324314333379678354812911262934
584061508732936864208392730118708935918087007332226648604671082131679750
509595497578449495620684634767310513103044947716489026578148063839872078
42481163589332254584942264924258171668574862418

�
127475513685566725446890852720613095360327187603988651941231415853157578
331456597153209494004736210977699578916999466032456677595127519634159990
521540837957056538345106025673773524185786635004052033863289249942948679
351840188229397744858421574833317348003660917673550353744822055165736111
234512904116889272699406948842755115609086788122010131676983531175952081
153644282751762038948324143832454354255524095948364303252903127278566455
867876654842411687623918210589300351425145699108311147796242254029159776
570872196619284791816763597060378966996431439737466965332522784477229827
90267877957407209494836944774782001306385230738

�
655888759462533346896099455125955297863619815052059946417712093279459636
342631365262945091607400505266438654108015109512874780341338294558609172
896025941074322477348130744475860903009531008960970411054610662280224501
660338817707042363199903874446894924326459533810656402488896490602481754
670208321628711511660442363295704362838936281451766918918230371219558149
385417339919129898962756076179525208607677979542348282535347567620941558
147949717798991715469439796914202792913405951608628308879284162599741791
439709118592992294885567487226707477594154920388849028073235350461353895
1357097063700167482750883742174106086454102797

� s (mod n).

B then decides randomly whether to send a 0 or 1 back to A; suppose he sends the value
1. Based on this, A returns the least nonnegative residue modulo n to tr� where r� is an
inverse of r modulo n. First, A computes r�:

r� =
764099968690517121353391255537826929750924022145231920293817937632484200
823244999038441517299580887466057364940456674813820681845030102296572043
247418709740901233920492877082722195586964133943577932846049127187555913
363875968625100568262434936406068829493394067017187494181655556329697789
932580011860799983102455166834397186103513262877061007687879555815158196
016324784295136230869266483953750781133922821173790858487694810620347648
301792150686779513226606176017404800599220202167204333402307816537714588
876092282949731916637465773977250127289684352419427943174791878195060338
5903656057778952993572766763597517719600882926.

The value which A sends to B is therefore

tr� �
806863988054169024920301405295203174706259473118276369760225652423019997
525913534708697658713793930280015474876469073032943300741644028317049787
631296437500635771334741355725945454918382262962438730708821951004673206

16.9 Zero Knowledge Identification 345

322198267702768221957464447815659664803425920162579425858987136337152043
957803039846247255965834154373962038550549430345349851187184745315084581
188882729078285545220915858184790787483769803775031226136431317486562458
350418482048617177445510205736750992758785167201864291032454946661656281
680207992840332684179070444405599563611590222800165616449226040755917391
1635634931359062322458271768089779844860822413 (mod n).

Finally, B squares this, and since he sent a 1, he checks that the lnr of (tr�)2 is z2. If you
do the computation, you will see that this is so:

(tr�)2 �
127475513685566725446890852720613095360327187603988651941231415853157578
331456597153209494004736210977699578916999466032456677595127519634159990
521540837957056538345106025673773524185786635004052033863289249942948679
351840188229397744858421574833317348003660917673550353744822055165736111
234512904116889272699406948842755115609086788122010131676983531175952081
153644282751762038948324143832454354255524095948364303252903127278566455
867876654842411687623918210589300351425145699108311147796242254029159776
570872196619284791816763597060378966996431439737466965332522784477229827
90267877957407209494836944774782001306385230738

� z2 (mod n).

Java Algorithm I have written a couple of Java programs to do this kind of exchange.
Here the respondent acts as a client, sending a request for approval from the challenger,
which acts as a server. The respondent connects to the challenger, sends the values for n and
s, then generates r, z1, and z2. It sends z1 and z2 to the challenger, then waits for the challenge,
a 0 or a 1. It responds to the challenge, then waits for a response from the challenger, either
“Y” meaning approved, or “N” meaning not yet approved. If the respondent is not yet
approved, it generates new values for r, z1, and z2, and begins again. Here is the Respondent
class.

import java.math.*;

import java.net.*;

import java.io.*;

import java.security.*;

public class Respondent {

static BufferedReader k=new BufferedReader(new InputStreamReader(System.in));

public static void main(String[] args) throws IOException {

//Define some handy values

BigInteger zero=BigInteger.valueOf(0);

BigInteger one=BigInteger.valueOf(1);

BigInteger two=BigInteger.valueOf(2);

BigInteger three=BigInteger.valueOf(3);

BigInteger four=BigInteger.valueOf(4);

346 Chapter 16 Cryptographic Applications

//Generate two strong primes congruent to 3 mod 4

SecureRandom sr=new SecureRandom();

PrimeGenerator pg=new PrimeGenerator(513,10,sr);

BigInteger p=null,q=null;

do {

p=pg.getStrongPrime();

} while (!p.mod(four).equals(three));

do {

q=pg.getStrongPrime();

} while (!q.mod(four).equals(three));

//Form the modulus as the product of these primes

BigInteger modulus=p.multiply(q);

//Choose a random value t and square it modulo the modulus to form s

BigInteger t=new BigInteger(modulus.bitLength()-1,sr);

//s is your identifying number

BigInteger s=t.modPow(two,modulus);

//The values of s and the modulus should be made publicly available

//with a Trusted Third Party (TTP)

System.out.println(“Enter host name or IP address of challenger:”);

String host=k.readLine();

Socket socket=new Socket(host,12345);

PrintStream out=new PrintStream(socket.getOutputStream());

BufferedReader in=new BufferedReader(new

InputStreamReader(socket.getInputStream()));

//Send the values for the modulus, and s, to the challenger-we do not send t

//of course

out.println(modulus.toString());

out.println(s.toString());

String approved=”N”;

//The challenges begin

do {

System.out.println(“You have yet to be approved.”);

//Generate the random value r

BigInteger r=new BigInteger(modulus.bitLength()-1,sr);

//Compute z1 and z2

BigInteger z1=r.modPow(two,modulus);

BigInteger z2=s.multiply(z1.modInverse(modulus)).mod(modulus);

//Send z1 and z2 to the challenger

out.println(z1.toString());

out.println(z2.toString());

16.9 Zero Knowledge Identification 347

//Challenger will send back a 0 or a 1

int challenge=Integer.parseInt(in.readLine());

//If a 0 was sent, return r to the challenger

if (challenge==0) out.println(r.toString());

//Otherwise, send tr� modulo the modulus to the challenger

else

out.println(t.multiply(r.modInverse(modulus)).mod(modulus).toString());

//Challenger will now either send “Y” (approved) or “N” (not approved)

approved=in.readLine().toUpperCase();

} while (!approved.equals(“Y”));

//If we get here, we succeeded

System.out.println(“Your claim of identity has been accepted.”);

k.readLine();

}

}

The Challenger class is a server which loops forever simply listening for connections on
port 12345. (I didn’t choose this port for any particular reason.) It establishes a socket with
a respondent using the accept() method. So that the challenger can deal with multiple respon-
dents at once, it is threaded. It will produce a new Challenger object (a subclass of Thread)
for each new connection. If any response from a respondent does not check, the challenger
closes the connection immediately.

import java.math.*;

import java.net.*;

import java.io.*;

import java.security.*;

public class Challenger extends Thread {

static BufferedReader k=new BufferedReader(new InputStreamReader(System.in));

//socket is the connection between challenger and respondent

Socket socket=null;

//trials is the number of challenges the respondent must satisfy

static int trials=0;

static SecureRandom r=null;

//The constructor only sets the socket field

public Challenger(Socket s) {

socket=s;

}

public static void main(String[] args) throws IOException {

348 Chapter 16 Cryptographic Applications

System.out.println
(“Enter the number of challenges to issue per respondent:”);

trials=Integer.parseInt(k.readLine());
r=new SecureRandom();
//Bind the challenger to port 12345
ServerSocket ss=new ServerSocket(12345);

//Loop forever
while (true) {

//Create a new thread for every incoming connection
//this allows challenger to handle multiple respondents
Challenger c=new Challenger(ss.accept());
c.start();

}
}

public void run() {
try {

System.out.println(“Request received from “
+socket.getInetAddress().toString());

//Create the IO streams
PrintStream out=new PrintStream(socket.getOutputStream());
BufferedReader in=new BufferedReader

(new InputStreamReader(socket.getInputStream()));

//Read in modulus and s key values
//These should be checked against a database with a TTP
BigInteger modulus=new BigInteger(in.readLine());
BigInteger s=new BigInteger(in.readLine());
BigInteger[] z=new BigInteger[2];

//Begin challenging the respondent
for (int i=0;i<trials;i++) {

//Read in z1 and z2; here labeled z0 and z1 for convenience
z[0]=new BigInteger(in.readLine());
z[1]=new BigInteger(in.readLine());
//Check that their product = s
if (!z[0].multiply(z[1]).mod(modulus).equals(s)) {

System.out.println(“Product not congruent to s-closing connection”);
break;

}

//Issue the challenge-a random 0 or 1
int challenge=Math.abs(r.nextInt())%2;
out.println(challenge);

//Get the response
BigInteger response=new BigInteger(in.readLine());

16.9 Zero Knowledge Identification 349

//Check the response, based on the value of challenge

if (!response.modPow(BigIntegerMath.TWO,modulus).equals(z[challenge]))

{

System.out.println(“Response does not check-closing connection”);

break;

}

if (i<trials-1) out.println(“N”);

else {

out.println(“Y”);

System.out.println(“Respondent approved.”);

}

}

//Close the connection with this respondent

socket.close();

} catch (IOException ioe) {

System.out.println(ioe.toString());

}

}

}

Here is a test run of Respondent and Challenger running on two different computers.

Respondent:

Enter host name or IP address of challenger:

You have yet to be approved.
You have yet to be approved.
You have yet to be approved.
You have yet to be approved.
You have yet to be approved.
Your claim of identity has been accepted.

Challenger:

Enter the number of challenges to issue per respondent:
5
Request received from **********/**********
Respondent approved.

Note that I have crossed out the names/IP addresses of the machines running these pro-
grams.

350 Chapter 16 Cryptographic Applications

I should mention that the Respondent and Challenger programs fail to do something
important. First, the respondent would not generate new values of n and s for each exchange.
These values should already exist and be published with a TTP. Secondly, the challenger
should check received values for n and s against values in a database maintained by the
TTP. This way, the respondent can be verified as having a certain set of keys, and that an
impersonator would have a very tough time “pretending” to be that person without knowl-
edge of their private information. (In this case, this means being able to compute a square
root of s modulo n without knowing the prime factors of n.)

EXERCISES

1. Here, a set of shadows and their corresponding moduli are given, plus values for the
reconstructing prime p and the random multiplier u. Use all the shadows given to recon-
struct the master key, which will be immediately recognizable.

Shadows Moduli

1835256971 2142418429

298859542 1247760289

611228613 2061443389

1052969410 1817116199

1343567939 1614361069

1045659651 1250119291

1399180591 1478137559

1725515793 2084068787

The random multiplier is: 724799153237188128058363304731475

The reconstructing prime is: 764018977

2. Modify the ShadowBuilder constructor so that the user can specify the minimum num-
ber of shadows required for construction (as opposed to just over half, as I have writ-
ten it), and to compute the values for u and p accordingly.

3. Design a Java class to produce random bitstreams according to the Micali–Schnorr
method.

4. Write a RabinEncipherSigned() and RabinDecipherSigned() method for the Ciphers
class to perform encryption and decryption of signed messages.

5. Write methods in the Ciphers class to send and receive signed messages with ElGamal.

6. When two parties, B (the challenger) and A (the respondent) are using zero knowledge
identification as described in the text, A must be sure never to repeat a random value
for r. Why?

7. Consider how you could modify the IntCRT class to handle negative integers, sub-
traction, and division, then do this modification.

8. Modify the CSPRBG class (or write your own) to generate random bitstreams using the
Micali–Schnorr method.

A P P E N D I X I
List of Propositions

Proposition 1. If x, y, and z are integers with x|y and y|z, then x|z.

Proposition 2. If c, x, y, m, and n are integers such that c|x and c|y, then c|(mx + ny).

Proposition 3. (The Division Algorithm.) If y and b are integers such that b >
0, then ∃ unique integers q and r such that 0 ≤ r < b and y = bq + r. This q is called the quo-
tient, r the remainder, b the divisor, and y the dividend.

Proposition 4. Every positive integer greater than 1 has a prime divisor.

Proposition 5. There are infinitely many primes.

Proposition 6. If n is composite, then n has a prime factor not exceeding the square root
of n.

Proposition 7. Let x, y, and z be integers with (x, y) = d. Then

a. (x/d, y/d) = 1

b. (x + cy, y) = (x, y).

Proposition 8. The gcd of integers x and y, not both zero, is the least positive integer
that is a linear combination of x and y.

Proposition 9. (a1, a2, a3, . . . , an) = ((a1, a2), a3, . . . , an).

Proposition 10. If c and d are integers and c = dq + r where q and r are integers, then
(c, d) = (d, r).

351

352 Appendix I

Proposition 11. (The Euclidean Algorithm.) Let r0 = c and r1 = b be integers
such that c ≥ b > 0. If the division algorithm is successively applied to obtain rj = rj�1qj�1

+ rj�2 with 0 < rj�2 < rj�1 for j = 0, 1, 2, . . . , n � 2 and rn�1 = 0, then (c, b) = rn.

Proposition 12. Let x and y be positive integers. Then

(x, y) = snx + tny

where the sn and tn are defined recursively as

sj = sj�2 � qj�1sj�1 for j = 2, . . . , n

s0 = 1

s1 = 0

tj = tj�2 � qj�1tj�1 for j = 2, . . . , n

t0 = 0

t1 = 1

and the qj and ri are as in the Euclidean algorithm.

Proposition 13. If a, b, and c are positive integers with a and b relatively prime, and
such that a|bc, then a|c.

Proposition 14. Suppose a1, a2, . . . , an are positive integers, and p is a prime which
divides a1a2 . . . an. Then there is an integer i such that 1 ≤ i ≤ n and p|ai.

Proposition 15. (The Fundamental Theorem of Arithmetic.) Every posi-
tive integer n greater than 1 can be written in the form n = p1p2 . . . pn where each pi is prime,
i = 1, 2, . . . , n. Furthermore, this representation is unique.

Proposition 16. Let a and b be integers with d = (a, b). If d|c, the integer solutions x
and y of the equation ax + by = c are x = x0 + bn/d, y = y0 � an/d, where x = x0, y = y0 is a
particular solution. If d � c, the equation has no integer solutions.

Proposition 17. Integers a and b are congruent modulo m iff ∃ an integer k such that
a = b + km.

Proposition 18. Let a, b and c be integers, and let m be a positive integer. Then

a. a � a (mod m)

b. a � b (mod m) implies b � a (mod m)

c. a � b (mod m) and b � c (mod m) implies a � c (mod m).

Proposition 19. Let a, b, and c be integers, and let m be a positive integer. Suppose
a � b (mod m). Then

List of Propositions 353

a. a + c � b + c (mod m)

b. a � c � b � c (mod m)

c. ac � bc (mod m).

Proposition 20. Let a, b, and c be integers, and let m be a positive integer. Suppose
a � b (mod m), and c � d (mod m). Then

a. a + c � b + d (mod m)

b. a � c � b � d (mod m)

c. ac � bd (mod m).

Proposition 21. Let a, b, and c be integers, and m a positive integer. Let d = (c, m),
and suppose ac � bc (mod m). Then a � b (mod m/d).

Proposition 22. Suppose ax � b (mod m), where a, b, and m are all positive integers.
Let d = (a, m). If d � b, the congruence has no solution for x. If d|b, then there are exactly
d incongruent solutions modulo m, given by x = x0 + tm/d, where x0 is a particular solution
to the linear diophantine equation ax + my = b, and t = 0, 1, . . . , d � 1.

Proposition 23. When matrices are used to represent a system of linear congruences,
the three elementary row operations for matrices do not affect the solution(s) of the corre-
sponding system of congruences modulo n.

Proposition 24. Suppose two n � k matrices A and B are such that A � B (mod m).
Then AC � BC (mod m) for any k � p matrix C, and DA � DB (mod m) for any q � n matrix
D.

Proposition 25. Suppose integers a1, a2, . . . , an are pairwise relatively prime. Then
(a1a2 . . . an)|c if and only if a1|c, a2|c, . . . , an|c.

Proposition 26. Let a � b (mod m1), a � b (mod m2), . . . , a � b (mod mn) where a1,
a2, . . . , an are pairwise relatively prime. Then we have a � b (mod m1m2 . . . mn).

Proposition 27. (The Chinese Remainder Theorem.) Suppose m1, m2, . . . , mn

are pairwise relatively prime. Then the system of congruences

x � a1 (mod m1)

x � a3 (mod m3)

...

x � an (mod mn)

has a unique solution modulo M = m1m2 . . . mn, namely,

x � a1M1y1 + a2M2y2 + . . . + anMnyn (mod M)

354 Appendix I

where Mi = M/mi and yi is an inverse of Mi modulo mi ∀ i = 1, 2, . . . , n.

Proposition 28. If p is an odd prime and p ≠ a, then the congruence x2 � a (mod p)
has either no solutions or exactly two incongruent solutions modulo p.

Proposition 29. (Fermat’s Little Theorem.) Let p be prime and b an integer
such that p � b. Then bp�1 � 1 (mod p).

Proposition 30. Let p be a prime congruent to 3 modulo 4, and a an integer such that
p � a. Then if the congruence x2 � a (mod p) has solutions, they are x � a(p�1)/4 (mod p),
and x � �a(p�1)/4 (mod p).

Proposition 31. Let n = pq where p and q are primes congruent to 3 modulo 4, and let
a be an integer such that 0 < a < n. Suppose the equation x2 � a (mod n) has a solution. Then
all the solutions are given by

x � �(zqqp� � wppq�) (mod n)

where z = a(p�1)/4, w = a(q�1)/4, qp� is an inverse of q modulo p, and pq� is an inverse of p mod-
ulo q.

Proposition 32. Let n = pq, where p and q are primes congruent to 3 modulo n. Sup-
pose a is an integer relatively prime to n, and that the congruence

ax2 + bx + c � 0 (mod n)

has a solution. Then all the solutions are given by

x � (�(a�((2�b)2a��c))(p�1)/4 � 2�a�b)qqp� + (�(a�((2�b)2a� � c))(q�1)/4 � 2�a�b)ppq�

(mod n).

Proposition 33. There are infinitely many primes of the form 4k + 3.

Proposition 34. Let p be prime, and suppose x2 � 1 (mod p). Then x � 1 (mod p) or
x � �1 (mod p).

Proposition 35. If n is prime and b is a positive integer such that n � b, then n passes
Miller’s test for the base b.

Proposition 36. Suppose n is an odd, composite positive integer. Then n fails Miller’s
test for at least 75 percent of the test bases b where 1 ≤ b ≤ n � 1.

Proposition 37. If p is prime and b an integer such that p � b, then

a. the positive integer x is a solution to bx � 1 (mod p) iff |b|p divides x.

b. |b|p divides p � 1.

Proposition 38. Suppose p is prime and b an integer such that p � b. Then, if i and j
are nonnegative integers, bi � bj (mod p) iff i � j (mod |b|p).

List of Propositions 355

Proposition 39. If g is a generator modulo p, then the sequence of integers g, g2, . . . ,
gp�1 is a permutation of 1, 2, . . . , p � 1.

Proposition 40. If |b|p = t and u is a positive integer, then |bu|p = t/(t, u).

Proposition 41. Let r be the number of positive integers not exceeding p � 1 that are
relatively prime to p � 1. Then, if the prime p has a generator, it has r of them.

Proposition 42. Every prime has a generator.

Proposition 43. Let p be prime, and let g be a generator modulo p. Suppose a and b
are positive integers not divisible by p. Then we have all of the following:

a. log1 � 0 (mod p � 1)

b. log(ab) � loga + logb (mod p � 1)

c. log(ak) � k � loga (mod p � 1)

where all logarithms are taken to the base g modulo p.

A P P E N D I X II
Information Theory

357

Information theory is closely related to cryptography. Cryptanalysts use results obtained
by information theorists to help them crack ciphers, and cryptographers use similar

results when crafting cryptosystems and choosing keys. Information theory provides tools
that allow us to measure the amount of information in a message. Cryptographers attempt
to keep this information to a minimum, while cryptographers exploit this tiny amount of
information to help them determine a probable plaintext for a given ciphertext.

AII.1 ENTROPY OF A MESSAGE

If we define the amount of information in a message as the minimum number of bits (includ-
ing fractions of a bit!) needed to encode all possible meanings of the message, we can obtain
a measure of that information. For example, suppose we are looking at the following bit
stream message

1010011010001010101000001010100010001010100110101000010010
00101010100100

which we know indicates a month of the year. Regardless of the actual length of the mes-
sage, we could say that the message contains only about 3 or 4 bits of information, since it
only takes that many bits to code up all possible months. (See Table A2.1.)

We define the entropy E(M) of a message M as

E(M) = log2n

where n is the number of possible meanings of M, where each meaning is equally likely. Thus
the entropy of a message M� signifying the month is

E(M�) = log212 � 3.5849625007211561814537389439478.

358 Appendix II

TABLE A2.1
Month Code

January

February

March

April

May

June

July

August

September

October

November

December

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

Questions
What is the entropy of a message that signifies

1. A day of the week?

2. A day in the month of May?

3. A time of day in hours, minutes, and seconds?

What entropy means to a cryptanalyst is that the analyst needs only to learn at most only
4 bits of a message representing a month to discern the month. For example, consider the
12 messages in Table A2.2, which represent all of the months in a year:

In this case, examining only the first 2 bits and the last 2 bits of one of these messages
will tell you the month. We say that the number of bits required to determine the meaning
of a message is the uncertainty of a message. In general, entropy and uncertainty are equal.
Obviously, for the cryptanalyst, the lower the entropy, the better.

AII.2 RATE OF A LANGUAGE

What is the entropy of any English message? This is what the analyst really wants to know.
If we are using only upper case letters (there are 26 such letters), then certainly the entropy
is no more than

Information Theory 359

TABLE A2.2

Month Message

January

February

March

April

May

June

July

August

September

October

November

December

00010100100000101001110010101010100000010101001000101101000000000000

000011001000101010000100101001001010101010000010101001011001000000001

010110101000001010100100100001101001000000000000000000000000000000000010

010000101010000010100100100100101001100000000000000000000000000000000011

00011010100000101011001000

00010100101010101001110010001010000000000000000000000000000000000000001

010101001010101010011000101100100000000000000000000000000000000000000010

010000101010101010001110101010101010011010101000000000000000000000000011

101001101000101010100000101010001000101010011010100001001000101010100100

100111100100111101010110010001010100110101000010010001010101001000000001

100111001001111010101100100010101001101010000100100010101010010000000010

100010001000101010000110100010101001101010000100100010101010010000000011

R = log226 � 4.7004397181410921603968126542567.

This upper bound R of the entropy is called the absolute rate of a language. For English,
the value above says that each letter contains about 5 bits of information. In truth, the actual
amount of information in each letter is much lower than this.

To find a better estimate of the entropy of a language, we may want to compute the
entropy for messages of size 1, 2, . . . , N, and use some averaging technique to obtain an
estimate.

rN = [E(M1)/1 + E(M2)/2 + . . . + E(MN)/N]/N

Here Mi represents messages of length i. If we use large values of N, and if we assume
the entropy converges to some value as N approaches infinity, we can get a good estimate
of the entropy of a language.

r = lim rN (as N → �).

We call this value r the rate of a language. Many studies have been done to compute r
for English, and the best estimates obtained so far are around

r = 1.3.

360 Appendix II

This means each letter in an English message contains only slightly more than a single
bit of information. If we express the redundancy of a language as its absolute rate minus its
rate, i.e.,

D = R � r

then clearly English is a very redundant language, for we have in this case

D = R � r � 4.7 � 1.3 = 3.4.

This means that on the average, English messages are only about 28 percent real infor-
mation, and 72 percent wasted space. Such a low value is beneficial to a cryptanalyst, since,
conceivably, it means the analyst only has to determine around a single bit for each letter
in a message to determine the message. If we encode characters in bytes (as we usually do),
the analyst would only need to determine 1 out of every 8 bits to successfully recover a
plaintext message. (Of course, finding these bits, and making them hard to find is the con-
tinuing battle between cryptanalyst and cryptographer!)

If we want to measure the entropy of a cipher, we can simply measure the entropy of its
key space K. If each key in a key space K is equally likely for a 64-bit cipher, then, since
there are 264 possible keys to use, the entropy of the cipher is

E(K) = log22
64 = 64

Of course, for a cryptographer, the higher the entropy of a cipher, the better.

AII.3 CRYPTOGRAPHIC TECHNIQUES

In general, a cryptographer wants to decrease the redundancy in messages (likewise, increase
the entropy), since as we have seen, the more redundant a language is, the easier messages
are to cryptanalyze. This is done using techniques that can be separated into categories:
confusion, and diffusion.

AII.4 CONFUSION
This technique is intended to make statistical analysis more difficult by replacing plaintext
items with ciphertext items possessing less redundancy (hence, greater entropy).

This is commonly done through simple substitution. For example, the Caesar cipher
substitutes letters with other letters, though, as we have seen, the substituted letters contain
as much redundancy as the plaintext letters, so do little to protect the information. Other sub-
stitution methods replace entire blocks of characters with other blocks. If, on the average,
half of the bits of a substituted block change with every bit change in a plaintext block, and
if one is unable to predict which bits will change, we have ciphertext that appears to have
greater entropy than the plaintext.

In practice, however, the conditions required for a successful substitution are often not
met; that is, sometimes the analyst is able to predict how many bits of ciphertext will change
for some bit change in the plaintext, and can even know which ciphertext bits will change.
They can do this with careful study of the ciphertext, and of the mathematical transforma-
tion used.

Information Theory 361

AII.5 DIFFUSION

Diffusion spreads the redundancy in the plaintext throughout the ciphertext. That is, it makes
the crucial bits that the cryptanalyst seeks harder to find. Most often, transposition is used
to accomplish this. Early transposition ciphers, which mapped characters to characters,
obviously did not diffuse the redundancy of messages well, since the same characters were
simply rearranged. A statistical analysis of the ciphertext yielded much the same frequency
distribution as normal text, and rearranging the letters was often quite simple. When trans-
position was eventually used with fractionation (i.e., moving single bits, or parts of the
plaintext different than the size of a character), it was much more effective.

AII.6 COMPRESSION

There is a good technique for generally decreasing the redundancy in a message: compress
it. A compressed message contains the same amount of information as the original in less
space. That is, compressed messages contain less redundancy. For this reason, cryptogra-
phers often compress messages before enciphering them. This also has the added benefit of
yielding a shorter message that can be stored and transmitted using less resources.

There are many excellent compression techniques. Often, the compression method is
linked to the type of data it is intended to compress. For example, a compression algorithm
intended to compress text would be different from one intended to compress a bit map
image. Good compression algorithms exploit the particular redundant characteristics of the
data they are supposed to compress.

EXAMPLE. Here is a simple example of compressing text consisting of only upper case Eng-
lish letters. The typical encoding of characters is 1 byte each; however, we know that we can
reduce this to 5 bits per character, because we can code up each character as shown in Table
A2.3.

The last character in the table will be a special marker character we may pad our bytes
with when compressing. We will remove it should we decompress the message. Given the
length of these characters, we should be able to fit 3 characters into 2 bytes. We can do this
in the simplest way; suppose we want to compress the message “DOG.”

We skip the first bit of the first byte, and place the character bits after that, as shown in
Table A2.4.

If we have a message that is not a multiple of 3 bytes, we use the pad character for the
last 1 or 2 characters. Random salt can be placed in the unused bit.

Java Algorithm Here is a Java program that compresses text according to this scheme:

import java.math.*;

public class CharCompressDemo {

static int posA=’A’;

public static void main(String[] args) {

String incoming=args[0].toUpperCase();

if (incoming.length()%3==1) incoming+=”{[”;

362 Appendix II

TABLE A2.3
Character Code

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

<pad character>

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

Information Theory 363

TABLE A2.4
Bit 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Unused

0

D O G

0 0 0 1 1 0 1 1 1 0 0 0 1 1 0

else if (incoming.length()%3==2) incoming+=”[”;

byte[] original=incoming.getBytes();

BigInteger origNum=new BigInteger(1,original);

System.out.println(“Original string in binary:\n”+origNum.toString(2));

byte[] compressed=new byte[2*incoming.length()/3];

compress(original,compressed);

BigInteger compNum=new BigInteger(1,compressed);

System.out.println(“Compressed string in binary:\n”+compNum.toString(2));

}

public static void compress(byte[] o,byte[] c) {

for (int i=0,j=0;i<o.length-2;i+=3,j+=2) {

int c1=o[i]-posA;

int c2=o[i+1]-posA;

int c3=o[i+2]-posA;

int res1=0,res2=0;

//Do the first compressed byte

//Put 1st value shifted 2 bits up

res1=res1|(c1<<2);

//Put first 2 bits of 2nd value in lo position

res1=res1|(c2>>>3);

//Do the second compressed byte

//Put last 3 bits of 2nd value in high position-mask out first 5 bits

res2=res2|((c2&7)<<5);

//Put 3rd value in lo position

res2=res2|c3;

364 Appendix II

c[j]=(byte)res1;

c[j+1]=(byte)res2;

}

}

}

Here is a sample run of the program. Check its results for correctness (bear in mind that
the program does not display the leading zeros).

C:\ java>java CharCompressDemo LOULOUSKIPTOMYLOUSKIPTOMY
LOUMYDARLIN

Original string in binary:

1001100010011110101010101001100010011110101010101010011010010
1101001001010100000101010001001111010011010101100101001100010
0111101010101010100110100101101001001010100000101010001001111
0100110101011001010011000100111101010101010011010101100101000
1000100000101010010010011000100100101001110

Compressed string in binary:

1011011101010000101101110101000100100101001000001111100110111
0001100110000101100111010100100100010100100001111010011011100
1100011000010110111001010001100110000000110000010001001011010
0001101

You may want to write a program that decompresses messages of this type; consider
how you might do this. The topic of compression is as interesting as anything in cryptog-
raphy, and I encourage you to study it.

Recommended Reading

Kaufman, Charlie, Radia Perlman and Mike Speciner. Network Security—Private Communication in a Pub-
lic World. Upper Saddle River: Prentice Hall, 1995.

Knudsen, Johnathan. Java Cryptography. Sebastopol: O’Reilly, 1998.

Koblitz, Neal. A Course in Number Theory and Cryptography, 2d ed. New York: Springer-Verlag, 1994.

Menezes, Alfred, Paul van Oorschot and Scott Vanstone. Handbook of Applied Cryptography. CRC Press, 1997.

Rosen, Kenneth. Elementary Number Theory and Its Applications. Boston: Addison-Wesley, 1993.

Rosing, Michael. Implementing Elliptic Curve Cryptography. Greenwich: Manning, 1999.

Smith, Richard. Internet Cryptography. Boston: Addison-Wesley, 1997.

Stallings, William. Cryptography and Network Security, 2d ed. Upper Saddle River: Prentice Hall, 1999.

Stephenson, Neal. Cryptonomicon. New York: Perennial, 2000.

Trappe, Wade and Lawrence Washington. Introduction to Cryptography with Coding Theory. Upper Saddle
River: Prentice Hall, 2002.

Wayner, Peter. Disappearing Cryptography. Chestnut Hill: AP Professional, 1996

365

Index

367

A
absolute rate of language, 359
adaptive chosen ciphertext attack, 189–190, 285
addition, 41–44
ADFGVX cipher, 28
affine cipher, 113, 114, 116, 118, 120
affine transformation, 111–115, 116, 120, 181, 316
arithmetic methods, 41–51
ASCII alphabet, 106, 107
attacks on digest functions, 338–340
auto-key Vigenere cipher, 17–18

B
baby-step giant-step algorithm, 246
BigInteger class, 33, 51
BigInteger constructors, 51–54
BigIntegerMath class, 81–82
birthday attack, 339–340
block affine ciphers, 116–117
block cipher, 26, 115, 116–117, 143, 204, 205, 207
Blum-Blum-Shub pseudorandom bit generator, 316
Blum-Goldwasser probabilistic cipher, 208–212
boolean data field, 33

C
Caesar cipher, 3–4, 105
Carmichael number, 214, 217
CBC (cipher block chaining), 204–208
chaining, 204
challenger, 340, 341, 342, 343, 347, 349–350

Chinese Remainder Theorem (CRT), 162–166,
172, 173, 177, 182, 183, 194–195, 199, 250,
252, 272, 275, 299, 300, 301, 304, 306, 309,
353–354

chosen ciphertext attack, 185–189, 189–190, 212,
285

cipher, 1, 3, 4, 7, 10, 11, 12, 16, 17, 22, 23, 26, 28,
105, 111, 113, 114, 115, 116, 117, 118, 120,
143, 145, 152, 153, 154, 155, 156, 181, 184,
185, 189, 204, 205, 206, 207, 209, 213, 221,
259, 260, 261, 263, 266, 270, 272, 284, 285,
286, 306, 327, 360. See also specific ciphers

cipher block chaining (CBC), 204–208
cipher chat, 284–298
CipherChatClient, 292, 298
CipherChatServer, 286, 291, 296
cipher feedback mode-CFB, 262–264
Ciphers class, 120–123, 264, 265, 266, 276, 277,

321
ciphertext, 1, 3–4, 6, 7, 8, 10, 11, 12, 16, 18, 19,

20, 21, 22, 23, 25, 28, 105, 106, 112, 113, 114,
115, 118, 144, 145, 147, 152, 154, 155, 156,
181, 183, 187, 189, 190, 196, 198, 199, 205,
206, 207, 209, 210, 260, 262, 264, 265, 268,
269, 270, 272, 274, 276, 277, 287, 288, 293,
320, 321, 324, 325, 360

ciphertext only attack, 111, 113–114
codebook, 2–3
codes, 2–3
code wheel, 10–11

368 Index

codeword, 2
collision resistance, 326
combination substitution/transposition cipher,

26–28, 154–158
common modulus attack, 276
comparison methods, 38–40
comparisons, 60
compression, 326, 361
confusion, 119, 185, 360
congruence, 92–93, 94, 96–98, 105, 112, 114, 118,

125, 126, 128, 129, 141, 143, 145, 161–162,
163, 169, 170, 171, 172, 173, 174, 175, 181,
183, 184, 237, 244, 246, 252, 253, 255, 260,
335, 353, 354

congruent, 93, 96, 126, 128, 129, 132, 164, 170,
171, 172, 173, 174, 175, 181, 208, 209, 213,
235, 237, 253, 306, 308, 316, 323, 341, 352,
353, 354

constructors, 34–38, 51–54
contrapositive, 89, 213
CRT. See Chinese Remainder Theorem
cryptanalyst, 1, 2, 4, 16, 118, 144, 145, 147, 166,

189, 195, 261, 358, 360, 361
cryptography, 2, 33, 56, 65, 68, 166, 181, 230, 270,

284, 299, 316, 320, 326, 333, 338, 358, 361
cryptosystem, 1, 20, 23, 111, 143, 149, 154, 181,

184
CSPRBG class, 316, 317

D
database encryption, 306–309
DiffieHellmanInitiator, 281
Diffie-Hellman key exchange, 259–260, 267
DiffieHellmanListener, 281
diffusion, 361
digest function, 327
digraph, 23
diophantine equation, 79, 89–92, 97, 353
discrete logarithm problem, 235, 239, 243–256,

260, 261, 267
division, 47–51
division algorithm, 66–77, 94, 351

E
electronic code book-ECB, 204
ElGamal cipher, 267–270

ELGamal signature scheme, 334–338
entropy, 357–358, 359, 360
equal encryption exponent attack, 269
equals(Int) method, 40
establishing keys, 279–281
Euclidean algorithm, 76, 77–82, 352
Euler’s criterion, 170, 209
exhaustive key search, 111, 114–115
exhaustive search for discrete logs, 244–245
exponential congruence, 219, 261

F
factorization, 83–84, 163, 182, 240, 250, 251, 323
Fermat factorization, 221–226
Fermat’s Little Theorem (FLT), 170–171, 213, 354
forward search attack, 199
fractionation, 28
frequency analysis, 3, 4–6, 11–12, 18, 20, 23, 24,

111, 113, 115, 118, 144, 156
full Vigenere cipher, 14–16
Fundamental Theorem of Arithmetic, 82–86, 352
fundamental theorem of arithmetic, 82–86

G
Gaussian elimination, 128, 136, 141
Gauss-Jordan elimination, 129, 153, 255
generator, 191, 237–238, 250, 253, 254, 259, 260,

261, 335, 336, 355
generator selection, 239–241
German wartime cipher, 28
Gordon’s algorithm, 191
greatest common divisor, 69, 70, 73, 75, 227

H
hash function, 326, 327
Hill cipher, 143
homomorphic property, 189–190
homophonic substitution cipher, 24–26

I
index-calculus algorithm, 254–256
initialization vector, 205, 206, 262, 263, 327, 328
Int class data fields, 33
Int() constructor, 35
IntCRT class, 311–312
IntException, 35–37

Index 369

J
Jacobi symbols, 218
Java Language Specification, 61
Jefferson cylinder, 23–24

K
Kaisiski method, 12–14
key length, 12–14
keyphrase, 5, 10, 14, 21
KeyRebuilder class, 302
keyword, 10, 11–12, 13, 14, 16, 21, 115
known plaintext attack, 118–119, 145

L
large integer arithmetic, 309–315
least common multiple, 84–85, 155
least nonnegative residue, 94, 95, 128, 130, 134,

170, 172, 173, 213, 231, 240, 244, 246, 267,
300, 301, 308

lessThan(Int) method, 39–40
letter-number associations, 16, 17
linear ciphers, 105
linear combinations, 74–75
linear congruence, 92–98, 125, 127, 130, 353
linear diophantine equation, 89–92

M
MAC (Message Authentication Code), 327
MASH-2 (modular arithmetic secure hash, algo-

rithm 2), 327, 329
MASH2 Class, 327, 329–331
matrix cipher, 143, 145, 147, 155
MDC (Modification Detection Code), 327
memoryless cipher, 261–262
Message Authentication Code (MAC), 327
message digests, 326–334
message exchange, 284
Michall-Schnorr pseudorandom generator,

318–319
Miller’s test, 214, 215–217
mixed radix representation, 309, 310
ModIdentityMatrix class, 132, 140
Modification Detection Code (MDC), 327
ModMatrix class, 132–136, 148
modPow()method, 56
ModSquareMatrix class, 132, 136, 140, 148–149

modular arithmetic secure hash, algorithm 2
(MASH-2), 327, 329

modular exponentiation, 285
modular matrices, 125–129
modular matrix inverses, 98–100, 129–141, 171
moduli, 94, 96–97, 125, 131, 161, 163, 164, 173,

195, 250, 272, 300, 301, 302, 303, 304, 306,
307, 308, 310, 311, 312

modulus, 94, 95, 117, 118, 125, 127, 129, 130, 131,
134, 136, 141, 148, 149, 161, 163, 169, 170,
172, 173, 182, 195, 196, 198, 204, 235, 237,
246, 247, 250, 260, 261, 264, 272, 273, 276,
285, 288, 301, 303, 304, 311, 312, 316, 320,
321, 323, 324, 326, 328, 340, 341, 342

monoalphabetic substitution ciphers, 3–4, 7–8, 28,
114, 115

Monte Carlo method, 226–230, 233
multiplication, 44–47

N
Newton’s method, 224
NumberFormatException, 51–53

O
one-time pad, 18–19
Order of an Integer, 236–237

P
pairwise relatively prime, 76, 162–163, 164, 195,

250, 272, 299, 302, 303, 304, 309, 353
password, 338
PKCS#5 Padding, 119–120, 200
plaintext, 1, 2, 3, 6, 8, 11, 13, 14, 16, 17, 18, 19,

21, 22, 23, 24, 25, 26, 28, 105, 106, 112, 113,
115, 118, 143, 144, 145, 147, 150, 152, 154,
155, 156, 181, 182, 186, 187, 190, 196, 197,
199, 204, 205, 206, 208, 209, 210, 260, 261,
262, 264, 265, 267, 268, 269, 270, 272, 274,
276, 277, 285, 287, 288, 289, 293, 320, 321,
324, 325, 326, 332, 333, 334, 336, 337, 360

Playfair cipher, 20–22
Pohlig-Hellman algorithm for discrete logs,

249–253
Pohlig-Hellman exponentiation cipher, 260–262
Pollard p-1 Method of Factorization, 230–231
polyalphabetic substitution cipher, 8–10, 18

370 Index

polygram substitution cipher, 20
primality test, 191, 194, 218, 219, 239, 256
prime, 67–69, 83, 84, 96, 100, 117, 127, 136, 163,

169, 170, 171, 172, 173, 175, 181, 182, 185,
189, 190–191, 194, 209, 213, 214, 215, 219,
221, 226, 233, 236, 239, 240, 241, 243, 246,
249, 250, 251, 252, 254, 256, 259, 260, 261,
263, 268, 269, 271, 272, 299, 300, 302, 303,
304, 316, 324, 326, 335, 336, 337, 340, 352,
353, 354, 355

PrimeGenerator class, 192–193, 194, 241
private key, 1, 181, 182, 186, 208, 213, 268, 272,

276, 285, 287, 288, 293, 320, 321, 323, 333,
335

propositions, 351–355
public key, 1, 181, 186, 208, 213, 262, 267, 269,

270, 285, 287, 288, 290, 293, 296, 298, 320,
333, 334, 335

Q
quadratic cipher, 219
quadratic congruence, 169, 170, 171–179, 173,

208, 210

R
Rabin Cipher, 181–185, 186
Rabin-Miller test, 194, 217–218
random number generator, 315–319
rate of a language, 358–360, 360
redundancy, 190, 200, 202, 324, 325, 326, 360, 361
relative frequency, 7, 8, 16, 20, 23, 24
relatively prime, 72, 76, 82–83, 96, 100, 112, 117,

127, 162–163, 165, 170, 186, 189, 214, 239,
250, 260, 271, 272, 299, 300, 302, 303, 304,
309, 316, 326, 335, 353

respondent, 340, 342, 343, 345, 349–350
RSA cipher, 270–276
running key, 17–18

S
safe prime, 194, 219, 240, 241, 243, 260, 263, 267,

269, 285, 335, 336
salt, 199–200, 199–204, 261, 265, 277, 285, 288,

323, 326, 335

secret key, 1, 10, 113, 145, 181, 259, 262, 279, 281,
284, 285, 327, 333

ServerSocket, 279
shadow, 301, 304
ShadowBuilder class, 302
shift Vigenere cipher, 10–11, 207
Sieve of Eratosthenes, 69
signing messages, 320–326
small encryption exponent, 272–273, 274, 276, 285
socket, 279–281
Solovay-Strassen primality test, 218
square root problem, 194–195
static cipher, 204, 261, 285
static ciphers, 204
stream cipher, 16, 105, 204, 208
strong prime, 190–191, 192, 203, 219, 270, 285,

316, 340, 341
subtraction, 41–44
system of congruences, 125, 129, 163

T
table of homophones, 25
tagging schemes, 184
TestIntConstructors, 37–38
toString() method, 37
transmission, 332–333
transpose, 142
transposition cipher, 19–20, 28, 150–154, 155, 156,

361
trial division, 68, 221
Trusted Third Party (TTP), 298, 321, 340, 350

U
Unicode, 106

V
Vigenere cipher, 10–11, 115–116

W
weak prime, 190, 261

Z
zero knowledge identification, 340–350

