




































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Dynamically Driven 
Recurrent Networks 

15.1 INTRODUCTION 

As mentioned in the previous chapter, recurrent networks are neural networks with 
one or more feedback loops. The feedback can be of a local or global kind. In this chap- 
ter we continue the study of recurrent networks with global feedback. 

Given a multilayer perceptron as the basic building block, the application of 
global feedback can take a variety of forms. We may have feedback from the output 
neurons of the multilayer perceptron to the input layer. Yet another possible form of 
global feedback is from the hidden neurons of the network to the input layer. When 
the multilayer perceptron bas two or more hidden layers, the possible forms of global 
feedback expand even further. The point is that recurrent networks have a rich reper- 
toire of architectural layouts. 

Basically, there are two functional uses of recurrent networks: 

Associative memories 
Input-output mapping networks 

The use of recurrent networks as associative memories is considered in detail in 
Chapter 14. In the present chapter, we will study their use as input-output mapping 
networks. Whatever the use, an issue of particular concern in the study of recurrent 
networks is that of stability; that issue is also considered in Chapter 14. 

By definition, the input space of a mapping network is mapped onto an output 
space. For this kind of an application, a recurrent network responds temporally to an 
externally applied input signal. We may therefore speak of the recurrent networks con- 
sidered in this chapter as dynamically driven recurrent networks. Moreover, the appli- 
cation of feedback enables recurrent networks to acquire state representations, which 
make them suitable devices for such diverse applications as nonlinear prediction and 
modeling, adaptive equalization of communication channels, speech processing, plant 
control. and automobile engine diagnostics. As such, recurrent networks offer an alter- 
native to the dynamically driven feedforward networks described in Chapter 13. 
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Because of the beneficial effects of global feedback, they may actually fare better in 
these applications. The use of global feedback has the potential of reducing the mem- 
ory requirement significantly. 

Organization of the Chapter 

The chapter is organized in four parts: architectures, theory, learning algorithms, and 
applications. Part 1, consisting of Section 15.2, deals with recurrent network architectures. 

Part 2, consisting of Sections 15.3 to 15.5, deals with theoretical aspects of recur- 
rent networks. Section 15.3 describes the state-space model and the related issues of 
controllability and observability. Section 15.4 derives an equivalent to the state-space 
model known as the nonlinear autoregressive with exogenous inputs model. Section 15.5 
discusses some theoretical issues pertaining to the computational power of recurrent 
networks. 

Part 3, consisting of Sections 15.6 to 15.12, is devoted to learning algorithms and 
related issues. It starts with an overview of the subject matter in Section 15.6. Then 
Section 15.7 discusses back-propagation through time that builds on material pre- 
sented in Chapter 4. Section 15.8 discusses another popular algorithm: real-time recur- 
rent learning. In Section 15.9 we present a brief review of classical Kalman filter 
theory, followed by a description of the decoupled extended Kalman filtering algo- 
rithm in Section 15.10. A computer experiment on this latter algorithm for recurrent 
learning is presented in Section 15.11. Gradient-based recurrent learning suffers from 
the vanishing gradients problem, which is discussed in Section 15.12. 

The fourth and last part of the chapter, consisting of Sections 15.13 and 15.14, 
deals with two important applications of recurrent networks. Section 15.13 discusses 
system identification. Section 15.14 discusses model-reference adaptive control. 

The chapter concludes with some final remarks in Section 15.15. 

15.2 RECURRENT NETWORK ARCHITECTURES 

As mentioned in the introduction, the architectural layout of a recurrent network 
takes many different forms. In this section we describe four specific network architec- 
tures, each of which highlights a specific form of global feedback.' They share the fol- 
lowing common features: 

They all incorporate a static multilayer perceptron or parts thereof. 
They all exploit the nonlinear mapping capability of the multilayer perceptron. 

Input-Output Recurrent Model 

Figure 15.1 shows the architecture of a generic recurrent network that follows natu- 
rally from a multilayer perceptron. The model has a single input that is applied to a 
tapped-delay-line memory o f q  units. It has a single output that is fed back to the input 
via another tapped-delay-line memory also of q units, The contents of these two 
tapped-delay-line memories are used to feed the input layer of the multilayer percep- 
tron. The present value of the model input is denoted by u(n) ,  and the corresponding 
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FIGURE 15.1 Nonlinear 
autoregressive with 
exogenous inputs 
(NARX) model. 

value of the model output is denoted by y(n + 1 ) ;  that is, the output is ahead of the 
input by one time unit. Thus, the signal vector applied to the input layer of the multi- 
layer perceptron consists of a data window made up as follows: 

Present and past values of the input, namely u(n),  u(n - I ) ,  ..., u(n - q + I ) ,  
which represent exogenous inputs originating from outside the network. 
Delayed values of the output, namely, y(n), y(n - I ) ,  ..., y(n - q + I), on which 
the model output y (n + 1 )  is regressed. 

Thus the recurrent network of Fig. 15.1 is referred to as a nonlinear autoregressive with 
exogenous inputs (NARX) modeLZ The dynamic behavior of the NARX model is 
described by 

y(n + 1) = F(y(n) ,  ..., y(n - q + l ) ,  u(n) ,  ..., u(n - q + 1 ) )  (15.1) 
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~n + 1) ' I layer I 1 I unit delays I 
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Multilayer perceptron with 
single hidden layer 

FIGURE 15.2 State-space model. 

where F is a nonlinear function of its arguments. Note that in Fig. 15.1 we have 
assumed that the two delay-line memories in the model are both of size q; they are 
generally different.The NARX model is explored in greater detail in Section 15.4. 

State-Space Model 

Figure 15.2 shows the block diagram of another generic recurrent network, called a 
state-space model. The hidden neurons define the state of the network. The output of 
the hidden layer is fed back to the input layer via a bank of unit delays.The input layer 
consists of a concatenation of feedback nodes and source nodes. The network is con- 
nected to the external environment via the source nodes. The number of unit delays 
used to feed the output of the hidden layer back to the input layer determines the 
order of the model. Let the m-by-1 vector u(n) denote the input vector, and the q-by-1 
vector x(n) denote the output of the hidden layer at time n. We may then describe the 
dynamic behavior of the model in Fig. 15.2 by the pair of coupled equations: 

x(n + 1) = f(x(n), u(n)) (15.2) 

~ ( n )  = Cx(n) (15.3) 

where f(. ,  .) is a nonlinear function characterizing the hidden layer, and C is the matrix 
of synaptic weights characterizing the output layer. The hidden layer is nonlinear, but 
the output layer is linear. 

The recurrent network of Fig. 15.2 includes several recurrent architectures as 
special cases. Consider, for example, the simple recurrent network (SRN) described in 
Elman (1990) and depicted in Fig. 15.3. Elman's network has an architecture similar to 
that of Fig. 15.2 except for the fact that the output layer may be nonlinear and the bank 
of unit delays at the output is omitted. 

Elman's network contains recurrent connections from the hidden neurons to a 
laqer of context units consisting of unit delays. These context units store the outputs of 
the hidden neurons for one time step, and then feed them back to the input layer.The 
hidden neurons thus have some record of their prior activations, which enables the net- 
work to perform learning tasks that extend over time. The hidden neurons also feed 
the output neurons that report the response of the network to the externally applied 
stimulus. Due to the nature of feedback around the hidden neurons, these neurons may 
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FIGURE 15.3 Simple Recurrent network (SRN). 
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FIGURE 15.4 Recurrent multilayer perceptron. 

continue to recycle information through the network over multiple time steps, and 
thereby discover abstract representations of time. The simple recurrent network is 
therefore not merely a tape recording of past data. 

Elman (1990) discusses the use of the simple recurrent network shown in Fig. 15.3 
to discover word boundaries in a continuous stream of phonemes without any built-in 
representational constraints. The input to the network represents the current pho- 
neme. The output represents the network's best guess as to what the next phoneme is 
in the sequence. The role of the context units is to provide the network with dynamic 
memory so as to encode the information contained in the sequence of phonemes, 
which is relevant to the prediction. 

Recurrent Multilayer Perceptron 

The third recurrent architecture considered here is known as a recurrent multilayer 
percepzron (RMLP) (Puskorius et al., 1996). It has one or more hidden layers, basically 
for the same reasons that static multilayer perceptrons are often more effective and 
parsimonious than those using a single hidden layer. Each computation layer of an 
RMLP has feedback around it, as illustrated in Fig. 15.4 for the case of an RMLP with 
two hidden layers.3 
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Let the vector x,(n) denote the output of the first hidden layer, x,,(n) denote the 
output of the second hidden layer, and so on. Let the vector x,(n) denote the output of 
the output layer.Then the dynamic behavior of the RMLP, in general, in response to an 
input vector u(n)  is described by the following system of coupled equations: 

where c p , ( . ,  .), Q,,(., .), . . ., Q,(., .) denote the activation functions characterizing the first 
hidden layer, second hidden layer, ..., and output layer of the RMLP, respectively; and 
K denotes the number of hidden layers in the network. 

The RMLP described herein subsumes the Elman network of Fig. 15.3 and the 
state-space model of Fig. 15.2 since the output layer of the RMLP or any of its hidden 
layers is not constrained to have a particular form of activation function. 

Second-Order Network 

In describing the state-space model of Fig. 15.2 we used the term "order" to refer to the 
number of hidden neurons whose outputs are fed hack to the input layer via a bank of 
unit delays. 

In yet another context, the term "order" is sometimes used to refer to the way in 
which the induced local field of a neuron is defined. Consider, for example, a multi- 
layer perceptron where the induced local field v, of neuron k is defined by 

where x, is the feedback signal derived from hidden neuron j and ui is the source signal 
applied to node i in the input layer; thew's represent the pertinent synaptic weights in 
the network. We refer to a neuron described in Eq. (15.5) as a first-order neuron. 
When, however, the induced local field.u, is combined using multiplication$ as shown by 

we refer to the neuron as a second-order neuron. The second-order neuron k uses a sin- 
gle weight, w,,,, that connects it to the input nodes i and ]. 

Second-order neurons constitute the basis of second-order recurrent networks 
(Giles et al., 1990), an example of which is shown in Fig, 15.5.The network accepts a 
time-ordered sequence of inputs and evolves with dynamics defined by the following 
pair of equations: 
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Inputs 

Unit delays 

FIGURE 15.5 Second-order recurrent network; bias connections to the neurons are 
omitted to simplify the presentation. The network has 2 inputs and 3 state neurons, 
hence the need for 3 x 2 = 6 multipliers. 

and 

xdn + 1) = ip(vk(n)) 

- - 1 (15.8) 

1 + exp (-v,(n)) 

where v,(n) is the induced local field of hidden neuron k, b, is the associated bias,x,(n) 
is the state (output) of neuron k, u,(n) is the input applied to source node ;,and wk, is a 
weight of second-order neuron k. 

A unique feature of the second-order recurrent network in Fig. 15.5 is that the 
product x,(n)u,(n) represents the pair (state, input) and that a positive weight w,, rep- 
resents the presence of the state transition, (state, input) + (next state], while a nega- 
tive weight represents the absence of the transition.The state transition is described by 

6(x;, u;) = x, (15.9) 
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In light of this relationship, second-order networks are readily used for representing 
and learning deterministic finite-state automata4 (DFA); a DFA is an information pro- 
cessing device with a finite number of states More information on the relationship 
between neural networks and automata is found in Section 15.5. 

The recurrent network architectures discussed in this section emphasize the use 
of global feedback. As mentioned in the introduction, it is also possible for a recurrent 
network architecture to have only local feedback. A summary of the properties of this 
latter class of recurrent networks is presented in Tsoi and Back (1994); see also 
Problem 15.7. 

15.3 STATE-SPACE MODEL 

The notion of state plays a vital role in the mathematical formulation of a dynamical 
system. The state of a dynamical system is formally defined as a set of quantities that 
srrmmarizes all the information about the past behavior of the system that is needed to 
uniquely describe its future behavior, except for the purely external effects arising from 
the applied input (excitation). Let the q-by-1 vector x(n) denote the state of a nonlinear 
discrete-time system. Let the m-by-1 vector u(n) denote the input applied to the sys- 
tem, and the p-by-l vector y(n) denote the corresponding output of the system. In 
mathematical terms, the dynamic behavior of the system, assumed to be noise free, is 
described by the following pair of nonlinear equations (Sontag, 1996): 

where W, is a q-by-q matrix, W, is a q-by-(m + 1) matrix, C is a p-by-q matrix; and 
Q : R9+ Rq is a diagonal map described by 

for some memoryless, component-wise nonlinearity q :  R+ R. The spaces Rm, R4, and 
[WP are called the input space, state space, and output space, respectively.The dimension- 
ality of the state space,namely q,is the order of the system.Thus the state-space model 
of Fig. 15.2 is an m-input, p-output recurrent model of order q. Equation (15.10) is the 
process equation of the model and Eq. (15.11) is the measurement equation. The 
process equation (15.10) is a special form of Eq. (15.2). 

The recurrent network of Fig. 15.2, hased on the use of a static multilayer per- 
ceptron and two delay-line memories, provides a method for implementing the non- 
linear feedback system described by Eqs. (15.10) to (15.12). Note that in Fig. 15.2 
only those neurons in the multilayer perceptron that feed back their outputs to the 
input layer via delays are responsible for defining the state of the recurrent network. 
This statement therefore excludes the neurons in the output layer from the defini- 
tion of the state. 
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For the interpretation of matrices W,z, W,, and C, and nonlinear function q(.), we 
may say: 

The matrix W, represents the synaptic weights of the q neurons in the hidden 
layer that are connected to the feedback nodes in the input 1ayer.The matrix W, 
represents the synaptic weights of these hidden neurons that are connected to 
the source nodes in the input layer. It is assumed that the bias terms for the hid- 
den neurons are absorbed in the weight matrix Wh. 
' h e  matrix C represents the synaptic weights of the p linear neurons in the out- 
put layer that are connected to the hidden neurons. It is assumed that the bias 
terms for the output neurons are absorbed in the weight matrix C. 
The nonlinear function q(.)  represents the sigmoid activation function of a hid- 
den neuron. The activation function typically takes the form of a hyperbolic tan- 
gent function: 

or a logistic function: 

An important property of a recurrent network described by the state-space 
model of Eqs. (15.10) and (15.11) is that it can approximate a wide class of nonlinear 
dynamical systems. However, the approximations are only valid on compact subsets of 
the state space and for finite time intervals, so that interesting dynamical characteris- 
tics are not reflected (Sontag, 1992). 

Example 15.1 
To illustrate thc compositions ol matrices W,, W, and C. consider the fully connected recurrent 
network shown in Fig. 15.6, where the feedback paths originate from the hidden neurons. In this 
example we have m = 2, q = 3, andp = 1 .The matrices W, and W, are defined as follows: 

W,, w12 W l i  

w = I ! ,  w,, w,, 

[u!31 w32 

and 

where the first column of W, consisting of b, ,  b,, and h, represents the hias terms applied to ncu- 
rons I , ? ,  and 3, respectively.The matrix Cis a row vector defined by 
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Inputs 

Input Computation 
layer layer 

FIGURE 15.6 Fully connected recurrent network with 2 inputs, 2 hidden neurons, 
and 1 output neuron. 

Controllability and Observability 

In the study of system theory, stability, controllability, and observability are prominent 
features, each in its own fundamental way. In this section we discuss co~~trollability and 
observability since they are usually treated together; stability is discussed in the previ- 
ous chapter and will therefore not be pursued further. 

As mentioned earlier, many recurrent networks can be represented by the state- 
space model shown in Fig. 15.2, where the state is defined by the output of the hidden 
layer fed back to the input layer via a set of unit delays. In that context, it is important 
to know whether or not the recurrent network is controllable and observable. 
Controllability is concerned with whether or not we can control the dynamic behavior 
of the recurrent network. Observability is concerned with whether or not we can 
observe the result of the control applied to the recurrent network. In that sense, 
observability is the dual of controllability. 
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A recurrent network is said to be controllable if an initial state is steerable to any 
desired state within a finite number of time steps; thc output is irrelevant to this defin- 
ition. The recurrent network is said to be observable if the state of the nelwork can be 
determined from a finite set of inputloutput measurements. A rigorous treatment of 
controllability and observability of recurrent networks is beyond the scope of this 
book." Here we confine ourselves to local forms of controllability and observability, 
local in the sense that these notions apply in the neighborhood of an equilibrium state 
of the network (Levin and Narendra, 1993). 

A state x is said to be an equilibrium state of Eq. (15.10) if, for an input u, it satis- 
fies the condition: 

x = Q ( A X  + Bu) (15.15) 

Without loss of generality, we may set x = 0 and u = 0. The equilibrium state is then 
described by 

0 = Q(0) 

In other words, the equilibrium point is represented by the origin (0,O). 
Also without loss of generality, we may simplify thc exposition by limiting our- 

selves to a single input, single output (SISO) system. We may then rewrite Eqs. (15.10) 
and (15.11) as follows, respectively: 

x(n + 1)  = ~ ( W , x ( n )  + whu(n)) (15.16) 

y (n)  = cTx(n) (15.17) 

where both w, and c a r e  q-by-l vectors, u(n)  is the scalar input, and y(n)  is the scalar 
output. Since Q is continuously differentiable for the sigmoid function of Eq. (15.13) or 
that of Eq. (15.14), we may lineurize Eq. (15.16) by expanding it as a Taylor series 
around the equilibrium point x = 0 and u = 0 and retaining first-order terms as fol- 
lows: 

6x(n + 1) = Q'(o)w,sx(n) + Q ' ( 0 ) ~ ~ 6 u ( n )  (15.18) 

where 6x(n) and Su(n) are small displacements applied to the state and input, respec- 
tively,and the y-by-q matrix ~ ' ( 0 )  is the Jacobian of ~ ( v )  with respect to its argument v, 
evaluated at v = 0. We may thus describe the linearized system by writing 

6x(n + 1) = ASx(n) + b6u(n) (15.19) 

6y(n) = &x(n) (15.20) 

where the q-by-q matrix A and the y-by-l vector b are respectively defined by 

A = Q'(O)W, (15.21) 

and 

b = q'(0)wh (15.22) 

The state equations (15.19) and (15.20) are in the standard linear form. Wz may there- 
fore make use of well-known results on the controllability and observability of linear 
dynamical systems that are a standard part of mathematical control theory. 
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Local Controllability 

From the linearized equation (15.19), we readily find that its repeated use yields the 
following equations: 

where q is the dimensionality of the state space.Accordingly, we may state that (Levin 
and Narendra, 1993): 

The linearized system represented by Eq. (15.19) is controllable if the matrix 

M, = [AV1b, . . ., Ab, b] (15.23) 

is of rank q, that is, full rank, because then the linearized process equation (15.19) would 
have a unique solution. 

The matrix M, is called the controllability matrix of the linearized system. 
Let the recurrent network described by Eqs. (15.16) and (15.17) be driven by a 

sequence of inputs uq(n) defined by 

Hence we may consider the mapping 

where G : R2"+ IWQ. In Problem 15.4, it is shown that: 

The state x(n + q )  is a nested nonlinear function of its past value x(n) and the 
inputs u(n),  u(n + I ) ,  ..., u(n + q - 1). . The Jacobian of x(n + q )  with respect to uq(n), evaluated at the origin, is equal to 
the controllability matrix M, of Eq. (15.23). 

We may express the Jacobian of the mapping G with respect to x(n) and u,(n), evalu- 
ated at the origin ( O , O ) ,  as follows: 

where I is the identity matrix, 0 is the null matrix, and the entry X is of no  interest. 
Because of its special form, the determinant of the Jacobian J$!,) is equal to the prod- 
uct of the determinant of the identity matrix I (which equals 1) and the determinant of 
the controllability matrix M,. If M, is of full rank, then so is .I$:,,. 
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To proceed further, we need to invoke the inverse function theorem, which may 
he stated as follows (Vidyasagar, 1993): 

Consider the mapping f :  Wq+IWV. and suppose that each component of the mapping f is 
differentiable with respect to its argument at the equilibrium point x, E Rq, and let 
yo = f(x,,).Then there exist open sets Q U. Rq containing x, andLV U. Rq containing yo such 
that f is a diffeomorphism of Q onto T. Ii. in addition f is smooth, then thc inverse map- 
ping f-' : R4-tRn is also smooth. that is,f is a smooth diffeomorphism. 

The mapping f : OU + Sr is said to be a diffeommorphisn of % onto lr if it satisfies the fol- 
lowing three conditions: 

1. f(OU) = lr. 
2. The mapping f : ql -t Y is one-to-one (i.e., invertible). 
3. Each component of the inverse mapping f-' : Ir + "U, is continuously differen- 

tiable with respect to its argument. 

Returning to the issue of controllability, we may identify f@) = Ir in the inverse 
function theorem with the mapping defined in Eq. (15.25). By using the inverse func- 
tion theorem, we may say that if the controllability matrix M, is of rank q, then locally 
there exists an inverse mapping defined by 

x(n + 9)) = G-'(x(n), uq(~l)) (15.27) 

Equation (15.27), in effect, states that there exists an input sequence (u,(n)} that can 
locally drive the network from state x(n) to state x(n + q) in q time steps.Accordingly, 
we may formally state the local controllabilitj theorem as follows (Levin and 
Narendra, 1993): 

Let a recurrent network he defined by Eqs. (15.16) and (15.17), and let its linearized ver- 
sion around the origin (i.e., equilibrium point) he defincd by Eqs. (15.19) and (15.20). If 
the linearized system is controllable, then the recurrent network is locally controllable 
around the origin. 

Local Obse~abil i ty 

Using the linearized equations (15.19) and (15.20) repeatedly, we may write 

where q is the dimensionality of the state space. Accordingly, we may state that (Levin 
and Narendra, 1993): 
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Tbe linearized system described by Eqs. (15.19) and (15.20) is observable if the matrix 

M, = [c, cAT, ..., C(A')~-'1 (15.28) 

is of rank q, that is full rank. 

The matrix M, is called the observabiliry matrix of the linearized system. 
Let the recurrent network described by Eqs. (15.16) and (15.17) be driven by a 

sequence of inputs defined by 

~ , - ~ ( n )  = [u (n ) ,  u(n + I ) ,  ..., u(n + q - 2)IT (15.29) 

Correspondingly, let 

y,(n) = [ y ( n ) , y ( n  + 11% ..., y(n + q - 1)IT (15.30) 

denote the vector of outputs produced by the initial state x(n)  and the sequence of 
inputs u,- ,(n).  We may then consider the mapping: 

H i u , - ~ i n ) ,  x in))  = i u , - ~ ( n ) ,  y,in)) (15.31) 

where H : R2~~ '+ IW2q~ ' .  In Problem 15.5 it is shown that the Jacobian of y,(n) with 
respect to x(n) ,  evaluated at the origin, is equal to the observability matrix M, of 
Eq. (15.28).  We may thus express the Jacobian of H with respect to u , - , (n )  and x(n) ,  
evaluated at the origin (O,O), as follows: 

( a q  ("""1 
au,-,(n) (O.Ol auq-l(n) JI:!~, = 

) (0.0, (3.N) ax(n) (0.0) 1 (15.32) 

= [ I  
0 M,, 

where again the entry X is of no interest. The determinant of the Jacobian J$'!,, is equal 
to the product of the determinant of the identity matrix I (which equals 1)  and the 
determinant of M,. If M, is of full rank, then so is ~ l ! ~ ~  Invoking the inverse function 
theorem, we may therefore say that if the observability matrix M, of the linearized sys- 
tem is of full rank, then locally there exists an inverse mapping defined by 

(uq-l(n),  x (n ) )  = H-' (u , -~ (n ) ,  y,(n)) (15.33) 

In effect, this equation states that in the local neighborhood of the origin, x(n)  is some 
nonlinear function of both u,- ,(n) and yq(n), and that nonlinear function is an 
observer of the recurrent network. We may therefore formally state the local observ- 
ability theorem as follows (Levin and Narendra, 1993): 

Let a recurrent network be defined by Eqs. (15.16) and (15.17), and let its linearized ver- 
sion around the origin (i.e., equilibrium point) be defined by Eqs. (15.19) and (15.20). If  
the linearized system is observable, then the recurrent network is locally observable 
around the origin. 
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Example 15.2 
Consider a state-space model with matrix A = a1, where a is a scalar and I is the identity matrix. 
Then the controllability matrix M, of Eq. (15.23) reduces to 

The rank of this matrix is 1. Hence, the linearized system with this value of matrix A is not con- 
trollable. 

Putting A = a1 in Eq. (15.28), we obtain the observability matrix 

M,, = a[c ,c ,  . . ,  c]  

whose rank is also 1.The linearized systcm is also not observable. 

15.4 NONLINEAR AUTOGRESSIVE WITH EXOGENOUS INPUTS MODEL 

Consider a recurrent network with a single input and single output, whose behavior is 
described by the state equations (15.16) and (15.17). Given this state-space model, we 
wish to modify it into an input-output model as an equivalent representation of the 
recurrent network. 

Using Eqs. (15.16) and (15.17), we may readily show that the output y(n + q) is 
expressible in terms of the state x(n) and the vector of inputs u,(n) as follows (see 
Problem 15.8): 

where q is the dimensionality of the state space, and @ : R2% R. Provided that the 
recurrent network is observable, we may use the local observability theorem to write 

where 'V : IWZR-' + W. Hence, substituting Eq. (15.35) in (15.34), we get 

where u ,  ,(n) is containcd in u,(n) as its first (q - 1)  elements, and the nonlinear map- 
ping F:  R29 + R takes care of both @ and *. Using the definitions of y,(n) and u,(n) 
given in Eqs. (15.30) and (15.29), we may rewrite Eq. (15.36) in the expanded form: 

Replacing n with n - q + 1, we may equivalently write (Narendra. 1995): 

Stated in words, some nonlinear mapping F: R2" R exists whereby the present 
value of the output y(n + 1) is uniquely defined in terms of its past values y(n), ..., 
y(n - q + 1) and the present and past values of the input u(n), ..., u(n - q + 1). For 
this input-output representation to be equivalent to the state-space model of Eqs. (15.16) 
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Input 
u(n) 

FIGURE 15.7 NARX network with a = 3 hidden neurons. 

Output 
~ ( n )  

and (15.17). the recurrent network must be observable. The practical implication of 
this equivalence is that the NARX model of Fig. 15.1, with its global feedback limited 
to the output neuron, is in fact able to simulate the corresponding fully recurrent state- 
space model of Fig. 15.2 (assuming that m = 1 and p = 1) with no difference between 
their input-output behavior. 

Example 15.3 
Consider again the fully connected recurrent network of Rg. 15.6. For the purpose of our present 
discussion, suppose that one of the inputs, u,(n) say, is reduced to zero, so that we have a single 
input,single output network.We may then replace this fully connected recurrent network by the 
NARX model shown in Fig. 15.7, provided that the network is locally observable. This equiva- 
lence holds despite the fact that the NARX model has limited feedback that originates only from 
the output neuron, whereas in the fully connected recurrent network of Fig. 15.6 the feedback 
around the multilayer perceptron originates from the three hiddenloutput neurons. 

15.5 COMPUTATIONAL POWER OF RECURRENT NETWORKS 

Recurrent networks, exemplified by the state-space model of Fig. 15.2 and the NARX 
model of Fig. 15.1, have an inherent ability to simulate finite-state automata. Automata 
represent abstractions of information processing devices such as computers. Indeed, 
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automata and neural networks share a long history."n his 1967 book (p. 5 9 ,  Minsky 
makes the following consequential statement: 

"Every finite-state machine is equivalent to, and can be 'simulated' by, some neural net. 
?hat is, given any finite-state machine A, we can build a certain neural net N-a which, 
regarded as a black-box machine, will behave precisely like A!" 

The early work on recurrent networks used hard threshold logic for the activation 
function of a neuron rather than soft sigmoid function. 

Perhaps the first experimental demonstration of whether or not a rzcurrent net- 
work could learn the contingencies implied by a small finite-state grammar was 
reported in Cleeremans et a1. (1989). Specifically, the simple recurrent network (Fig. 15.3) 
was presented with strings derived from the grammar and required to predict the next 
letter at every step.The predictions were context dependent since each letter appeared 
twice in the grammar and was followed in each case by different successors. It was 
shown that the network is able to develop internal representations in its hidden neu- 
rons that correspond to the states of the automaton (finite-state machine). In Kremer 
(1995) a formal proof is presented that the simple recurrent network has a computa- 
tional power as great as that of any finite-state machine. 

In a generic sense, the computational power of a recurrent network is embodied 
in two main theorems: 

Theorem I (Siegelmann and Soutag, 1991). 

All Turing machines may be simulated by fully connected recurrent networks built on 
neurons with sigmoid activation functions. 

The Turing machine is an abstract computing device invented by Turing (1936). It con- 
sists of three functional blocks as depicted in Fig. 15.8: (1) control unit that can assume 
any one of a finite number of possible states; (2) linear tape (assumed to be infinite in 
both directions) that is marked off into discrete squares with each square available to 
store a single symbol taken from a finite set of symbols; and (3) read-write head that 
moves along the tape and transmits information to and from the control unit (Fischler 
and Firschein, 1987). For the present discussion it suffices to say that the Turing 
machine is an abstraction that is functionally as powerful as any computer.This idea is 
known as the Church-Turing hypothesis. 

Control 

Read-write i(eSj f l  
head :. 

Movement 

Square for 
storing a 
symbol 

FIGURE 15.8 Turing Machine. 
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Theorem I1 (Siegelmann et al., 1997) 

NARX networks with one layer of hidden neurons with bounded, one-sided saturated 
activation functions and a linear output neuron can simulate fully connected recurrent 
networks with bounded, one-sided saturated activation functions, except for a linear slow- 
down. 

A "linear slowdown" means that if the fully connected recurrent network with N neu- 
rons computes a task of interest in time T, then the total time taken by the equivalent 
NARX network is (N + 1)T. A function q(.) is said to be a bounded, one-sided satu- 
rated (BOSS) fimction if it satisfies the following three conditions: 

1. The function q(.) has a bounded range; that is, a 5 q(x) 5 b, a # b, for all x E R. 
2. The function q(.) is saturated on the left side; that is, there exist values s and S 

such that q(x) = S for all x 5 s. 
3. The function q(.) is nonconstant; that is, q(x,) + q(x,) for some x, and x,. 

The threshold (Heaviside) and piecewise-linear functions satisfy the BOSS conditions. 
However, in a strict sense, a sigmoid function is not a BOSS function because it does 
not satisfy condition 2. Nevertheless, with a minor modification, it can be made into a 
BOSS function by writing (in the case of a logistic function) 

where s E R. In effect, the logistic function is truncated for x 5 s. 
As a corollary toTheorems I and 11, we may state the following (Giles, 1996): 

NARX networks with one hidden layer of neurons with BOSS activations functions and a 
linear output neuron are Tbring equivalent. 

Figure 15.9 presents a portrayal of Theorems I and I1 and this corollary. It should, how- 
ever, be noted that when the network architecture is constrained, the computational 
power of a recurrent network may no longer hold, as described in Sperduti(l997). 
References to examples of constrained network architectures are presented in note 7. 

FIGURE 15.9 Illustration of 
network Thereoms I and II, and 

corollary to them. 
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15.6 LEARNING ALGORITHMS 

We now turn to the issue of training recurrent networks. From Chapter 4 we recall that 
there are two modes of training an ordinary (static) multilayer perceptron: batch mode 
and sequential mode. In the batch mode, the sensitivity of the network is computed for 
the entire training set before adjusting the free parameters of the network. In the 
sequential mode, on the other hand, parameter adjustments are made after the presen- 
tation of each pattern in the training set. Likewise, we have two modes of training a 
recurrent network, as described here (Williams and Zipser, 1995): 

1. Epochwise training. For a given epoch, the recurrent network starts running 
from some initial state until i t  reaches a new state, at which point the training is stopped 
and the network is reset to an initial state for the next epoch. The initial state doesn't 
have to be the same for each epoch of training. Rather, what is important is for the ini- 
tial state for the new epoch to be different from the state reached by the network at the 
end of the previous epoch. Consider, for example, the use of a recurrent network to 
emulate the operation of a finite-state machine, that is, a device whose distinguishable 
internal configurations (statcs) are finite in number. In such a situation it is reasonable 
to use epochwise training since we have a good possibility for a number of distinct ini- 
tial states and a set of distinct final statcs in the machine to be emulated by the recur- 
rent network. In epochwise training for recurrent networks the term "epoch" is used in 
a sense different from that for an ordinary multilayer perceptron. In the current termi- 
nology, thc cpoch for the recurrent network corresponds to one training pattern for 
the ordinary multilayer perceptron. 

2. Continuous training. This second method of training is suitable for situations 
where there are no reset states available andor  on-line learning is required.The distin- 
guishing feature of continuous training is that the network learns while signal process- 
ing is being performed by the network. Simply put, the learning process never stops. 
Consider. for example. the use of a recurrent network to model a nonstationary 
process such as a speech signal. In this kind of situation. continuous operation of the 
network offers no convenient times at which to stop the training and begin anew with 
different values for the frec parameters of the network. 

Keeping these two modes of training in mind, in the next two sections we will 
describe different learning algorithms for recurrent networks as summarized here: 

The back-propagation-through-time algorithm, discussed in Section 15.7, oper- 
ates on the premise that the temporal operation of a recurrent network may be 
unfolded into a multilayrr perccptron.This would then pave the way [or applica- 
tion of the standard back-propagation algorithm. Back-propagation through 
time can be implemented in the epochwise mode, continuous (real-time) mode, 
or combination thereof. 
The real-time recurrent learning algorithm, discussed in Section 15.8, is derived 
from the state-space model described by Eqs. (15.10) and (15.11). 

These two algorithms share many common features. First, they are both based on the 
method of gradient descent, whereby the instantaneous value of a cost function (based 
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on a squared-error criterion) is minimized with respect to the synaptic weights of the 
network. Second, they are both relatively simple to implement, but can be slow to con- 
verge. Third, they are related in that the signal-flow graph representation of the back- 
propagation-through-time algorithm can be obtained from transposition of the 
signal-flow graph representation of a certain form of the real-time recurrent learning 
algorithm (Lefebvre, 1991; Beanfays and Wan, 1994). 

Real-time (continuous) learning, based on gradient descent, uses the minimum 
amount of available information, namely an instantaneous estimate of the gradient of 
the cost function with respect to the parameter vector to be adjusted. We may acceler- 
ate the learning process by exploiting Kalman filter theory, which utilizes information 
contained in the training data more effectively. In Section 15.10 we describe the decou- 
pled extended Kalman filter, by means of which we are able to tackle dynamic learning 
tasks that would be very difficult for gradient-descent based methods. A brief review of 
Kalman filters is presented in Section 15.9. Note that the decoupled extended Kalman 
filter is applicable to both static feedforward networks as well as recurrent networks. 

Some Heuristics 

Before proceeding to describe the new learning algorithms mentioned, we will list 
some heuristics for the improved training of recurrent networks that involve the use of 
gradient-descent methods (Giles, 1996): 

Lexigraphic order of training samples should be followed, with the shortest 
strings of symbols being presented to the network first. 
The training should begin with a small training sample, and then its size should be 
incrementally increased as the training proceeds. 
The synaptic weights of the network should be updated only if the absolute error 
on the training sample currently being processed by the network is greater than 
some prescribed criterion. 
The use of weight decay during training is recommended; weight decay, a crude 
form of complexity regularization, is discussed in Chapter 4. 

The first heuristic is of particular interest. If implementable, it provides a proce- 
dure for alleviating the vanishing gradients problem that arises in recurrent networks 
trained by means of gradient-descent methods. This problem is discussed in Section 
15.12. 

15.7 BACK-PROPAGATION THROUGH TIME 

The back-propagation-through-time (BPTT) algorithm for training a recurrent net- 
work is an extension of the standard back-propagation a lgor~thm.~ It may be derived 
by unfolding the temporal operation of the network into a layered feedfornard net- 
work, the topology of which grows by one layer at every time step. 

To be specific, let Ndenote a recurrent network required to learn a temporal task, 
starting from time no all the way up to time n. Let N* denote the feedforward network 
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that results from unfolding the temporal operation of the recurrent network N. The 
unfolded network N* is related to the original network N as follows: 

1. For each time step in the interval (no, n], the network N* has a layer containing K 
neurons, where K is the number of neurons contained in the network N. 

2. In every layer of the network JV* there is a copy of each neuron in the network N. 
3. For each time step 1 E [no, n], the synaptic connection from neuron i in layer 1 to 

neuron j in layer 1 + 1 of the network JV* is a copy of the synaptic connection 
from neuron i to neuron j in the network N. 

These points are illustrated in the following example. 

Example 15.4 
Consider the two-neuron recurrent network N shown in Fig. 15.lOa.To simplify the presentation 
we have omitted unit delay operators z-' that should be inserted in each of the synaptic connec- 
tions (including the self-loops) in Fig. 15.10a. By unfolding the temporal operation of this net- 
work in a step-by-step manner, we get the signal-flow graph shown in Fig. 15.10b where the 
starting time n, = 0. The graph of Fig. 15.10b represents the layered feedforward A'*, where a 
new layer is added at each step of the temporal operation. 

Application of the unfolding procedure leads to two basically different imple- 
mentations of back-propagation through time, depending on whether epochwise train- 
ing or continuous (real-time) training is used. These two methods of recurrent learning 
are now described in that order. 

Time 0 1 2 . . . n n + l  

(b) 

FIGURE 15.10 (a) Architectural graph of a two-neuron recurrent network H. 
(b) Signal-flow graph of the network H unfolded in time. 
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Epochwise Back-propagation through Time 

Let the data set used to train a recurrent network be partitioned into independent 
epochs, with each epoch representing a temporal pattern of interest. Let n, denote the 
start time of an epoch and n, denote its end time. Given this epoch, we may define the 
cost function 

where d is the set of indices j pertaining to those neurons in the network for which 
desired responses are specified, and e,(n) is the error signal at the output of such a 
neuron measured with respect to some desired response. We wish to compute sensi- 
tivity of the network, that is, the partial derivatives of the cost function %,,,,,(no, n,) 
with respect to synaptic weights of the network. To do so, we may use the epochwise 
back-propagation-through-time (BPTT) algorithm, which builds on the batch mode of 
standard back-propagation learning that is described in Chapter 4. The epochwise 
BmT algorithm proceeds as follows (Williams and Peng, 1990): 

First,a single forward pass of the data through the network for the interval (n,,n,) 
is performed. The complete record of input data, network state (i.e., synaptic 
weights of the network), and desired responses over this interval is saved. 
A single backward pass over this past record is performed to compute the values 
of the local gradients 

for all j E d and no < n 5 n,.This computation is performed by using the formula: 

cp1(v,(n))e,(n) forn = n ,  
&,(n) = 

1 
(15.40) 

qt(v,(n)) [.,in) + 2 wjk8,(n + I) for no < n < n, 
k E d  

where q'(.) is the derivative of an activation function with respect to its argu- 
ment, and v,(n) is the induced local field of neuron j. It is assumed that all neu- 
rons in the network have the same activation function q(.).The use of Eq. (15.40) 
is repeated, starting from time n, and working back, step by step, to time no; the 
number of steps involved here is equal to the number of time steps contained in 
the epoch. 
Once the computation of back-propagation has been performed back to time 
no + 1, the following adjustment is applied to the synaptic weight wji of neuron j: 
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where .rl is the learning-rate parameter and x,(n - I) is the input applied to the 
ith synapse of neuron j at time n - I. 

Comparing the procedure just described for epochwise BPTT with the batch mode of 
standard back-propagation learning, we see that the basic difference between them is 
that in the former case the desired responses are specified for neurons in many layers 
of the network because the actual output layer is replicated many times when the tem- 
poral behavior of the network is unfolded. 

Truncated Back-propagation through Time 

To use back-propagation through time in a real-time fashion, we use the instantaneous 
value of the sum of squared errors, namely, 

1 
%(n) = - x e? (n) 

2 j G d  

as the cost function to be minimized. As with the sequential (stochastic) mode of stan- 
dard back-propagation learning, we use the negative gradient of the cost function %(n) 
to compute the appropriate adjustments to the synaptic weights of the network at each 
time instant n. The adjustments are made on a continuous basis, while the network is 
running. However, in order to do this in a computationally feasible manner, we only 
save the relevant history of input data and network state for a fixed number of time 
steps, called the truncation depth. Henceforth the truncation depth is denoted by h. 
Any information older than h time steps into the past is considered irrelevant, and may 
therefore be ignored. If we were not to truncate the computation, thereby permitting it 
to go back to the starting time, the computation time and storage requirement would 
grow linearly with time as the network runs, eventually reaching a point where the 
whole learning process becomes impractical. 

This second form of the algorithm is called the truncated back-propagation- 
through-time (BPTT(h)) algorithm (Williams and Peng, 1990). The local gradient for 
neuron j is now defined by 

a%([) for all j E d 
8,(1) = -- 

d?>,(l) and n - h < I 5 n 

which in turn leads to the formula: 

Once the computation of back-propagation has been performed back to time n - h + 1, 
the following adjustment is applied to the synaptic weight w,, of neuron j: 
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where q and xi ( [  - 1) are as defined previously. Note that the use of wk,(l) in Eq. (15.43) 
requires that a history of weight values be maintained. The use of w,, in this equation 
may be justified only if the learning-rate parameter is small enough to ensure that the 
weight values do not change significantly from one time step to the next. 

In comparing Eq. (15.43) with (15.40), we see that, unlike the epochwise BPTT 
algorithm, the error signal is only injected into the computation at the current time n. 
This explains the reason for not keeping a record of past values of the desired 
responses. In effect, the truncated back-propagation-through-time algorithm treats the 
computation for all earlier time steps similar to the way in which the stochastic back- 
propagation algorithm (discussed in Chapter 4) treats the computations for hidden 
neurons in a multilayer perceptron. 

Some Practical Considerations 

In real-life applications of BPTT, the use of truncation is not as artificial as it may 
sound. Unless the recurrent network is unstable, there should be a convergence of the 
derivatives J%(l)/aw,(l) because computations farther back in time correspond to 
higher powers of feedback strengths (roughly equal to sigmoid slopes multiplied by 
weights). In any event, the truncation depth h must be large enough to produce deriva- 
tives that closely approximate the actual values. This requirement places a lower 
bound on the value of h. For example, in the application of dynamically driven recur- 
rent networks to engine idle-speed control, the value h = 30 is considered to be a rea- 
sonably conservative choice for that learning task to be accomplished (Puskorius 
et al., 1996). 

One other practical matter needs to be discussed. The unfolding procedure 
described in this section for back-propagation through time provides a useful tool for 
picturing it in terms of a cascade of similar layers progressing forward in time, thereby 
helping us to develop an understanding of how the procedure functions. This strong 
point is unfortunately the cause of its weakness.The procedure works perfectly fine for 
relatively simple recurrent networks consisting of a few neurons. However, the under- 
lying formulas, particularly Eq. (15.43), become unwieldy when the unfolding proce- 
dure is applied to more general architectures that are typical of those encountered in 
practice. In situations of this kind, the preferred procedure is to use the more general 
approach described in Werbos (1990,) in which each expression in the forward propa- 
gation of a layer gives rise to a corresponding set of back-propagation expressions. An 
advantage of this approach is its homogeneous treatment of forward and recurrent 
(feedback) connections. 

To describe the mechanics of this particular form of BPTT(h), let F-k denote an 
ordered derivative of the network output at node I with respect to x .  To derive the back- 
propagation equations, the forward propagation equations are considered in reverse 
order. From each equation we derive one or more back-propagation expressions 
according to the following principle: 

If a = q(b ,  c ) ,  then F& = *F!~ and F!c = *F 
ab ac " 

(15.45) 
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Example 15.5 
To clarify the notion of ordered derivatives, consider a nonlinear system described by the follow- 
ing pair of equations: 

x, = logu + x: 

y = x: + 3x, 
The variable s, influences (he output y in two ways: directly via the second equation, and indi- 
rectly via the first equation. The ordered derivative of y with respect to x, is defined by the total 
causal impact that includes the direct and indirect effects of x, on y, as shown by 

In programming the ordered derivatives for BPTT(h), the quantity on the right-hand 
side of each ordered derivative in Eq. (15.45) is added to the previous valuz of the left- 
hand side. In this way, the appropriate derivatives are distributed from a given node in 
the network to all the nodes and synaptic weights that feed it in the forward direction, 
with due allowance being made for any delays that may be present in each connection. 
The simplicity of the formulation described herein reduces the need for visualizations 
such as unfolding in time or signal-flow graphs. In Feldkamp and Puskorius (1998) and 
Puskorius et al. (1996), this procedure is used to develop a pseudocode for implement- 
ing the BPTT(h) algorithm. 

15.8 REAL-TIME RECURRENT LEARNING 

In this section we describe another learning algorithm referred to as real-time recurrent 
learning (RTRL).9 The algorithm derives its name from the fact that adjustments are 
made to the synaptic weights of a fully connected recurrent network in real time, that is, 
while the network continues to perform its signal processing function (Williams and 
Zipser, 1989). Figure 15.11 shows the layout of such a recurrent network. It consists of 
q neurons with m external inputsThe network has two distinct layers: a concatenated input- 
feedback layer and aprocessing layer of computation nodes. Correspondingly, the synaptic 
connections of the network are made up of feedfonvard and feedback connections 

The state-space description of the network is defined by Eqs. (15.10) and (15.11). 
The process equation (15.10) is reproduced here in the following expanded form: 
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State 
vector 
x(n)  

Output 
vector 
y(n+ 1)  

FIGURE 15.11 Fully connected recurrent network for formula 
tion of the RTRL algorithm. 

where it is assumed that all the neurons have a common activation function q(.).  The 
(q + m + 1)-by-1 vector w, is the synaptic weight vector of neuron j in the recurrent 
network, that is, 

where w , ~  and whj are the jth columns of the transposed weight matrices WT and W;, 
respectively.The (q + m + 1)-by-1 vector c(n) is defined by 

where x(n) is the q-by-l state vector and u(n) is the (m + 1)-by-1 input vector.The first 
element of u(n) is +1  and, in a corresponding way, the first element of w,, is equal to 
the bias b, applied to neuron j. 
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To simplify the presentation, we introduce three new matrices A,(n), U,(n), and 
4(n) .  described as follows: 

1. A,(n) is a q-by-(q + m + 1) matrix defined as the partial derivative of the state 
vector x(n) with respect to the weight vector w,: 

2. U,(n) is a 9-by-(q + m + I )  matrix whose rows arc all zero, except for the jth row 
that is equal to thc transpose of vector t ( n ) :  

t j t h  row, j = I ,  2, ..., q (15.50) 

3. @(n) is a q-by-q diagonal matrix whose kth diagonal element is the partial dcriv- 
alive of the activation function with respect to its argument, evaluated at w:.$(n): 

With these definitions, we may now differentiate Eq. (15.46) with respect to w,.Then, 
using the chain rule of calculus, we obtain thc following recursive equation: 

This recursive equation describes the nonlinear state dynamics (i.e., evolution of the 
state) of the real-time recurrent learning process. 

To complete the description of this learning process, we need to relate the matrix 
A,(n) to the gradient of the error surface with respect to w,.To do this, we first use the 
measurement equation (15.11) to define the p-by-l error vector: 

The instantaneous sum of squared errors at time n is defined in terms of e ( n )  bq 

The objective of the learning process is to minimize a cost function obtained by sum- 
ming %(n) over all time n; that is, 

To accomplish this objective we may use the method of steepest descent, which 
requires knowledge of the gradienl matrix, written as 
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where V,%(n) is the gradient of %(n) with respect to the weight matrix W = {w,] .  We 
may, if desired, continue with this equation and derive update equations for the synap- 
tic weights of the recurrent network without invoking approximations. However, in 
order to develop a learning algorithm that can be used to train the recurrent network 
in real time, we must use an instantaneous estimate of the gradient, namely V,%(n), 
which results in an approximation to the method of steepest descent. 

Returning to Eq. (15.54) as the cost function to be minimized, we differentiate it 
with respect to the weight vector w,, obtaining 

The adjustment applied to synaptic weight vector wj(n) of neuron j is therefore deter- 
mined by 

where q is the learning-rate parameter and Aj(n) is itself governed by Eq. (15.52). 
The only remaining item is that of specifying the initial conditions to start the 

learning process. For this purpose we set 

A, (0) = 0 for all j (15.57) 

the implication of which is that initially the recurrent network resides in a constant state. 
Table 15.1 presents a summary of the real-time recurrent learning algorithm. The 

formulation of the algorithm as described here applies to an arbitrary activation func- 
tion q(.) that is differentiable with respect to its argument. For the special case of a sig- 
moidal nonlinearity in the form of a hyperbolic tangent function, we have 

x,(n + 1) = v(w!(n)) 

= tanh (wi(n)) 
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TABLE 15.1 Summary of the Real-Time Recurrent Learninq Alqorithm 

Parameters: 

m = dimensionality of input space 
q = dimensionality of state space 
p = dimensionality of output space 

w, = synaptic weight vector of neuron j. j = 1,2,.  . ., y 

1. Set the synaptic weights of the algorithm to small values selected 
from a uniform dktribution. 

2. Set the initial value of the state vector x(0) = 0. 
3. SetA,(O)=Oforj=1,2 ,..., q. 

Computations: Compute for n = 0,1,2, .... 

A,(n + 1) = @(n)W',(n)A,(n) + U,(n)l 

e(n) = d(n) - Cx(n) 

Aw,(n) = rlcA,(n)e(n) 

The definitions of x(n), A,(n), U,(n), and *(n) are given m Eqs. (15.46) 
(15.49), (15.50), and (15.51),res~ectivclv. 

and 

where v,(n) is the induced local field of neuron j andx,(n + 1) is its state at n + 1. 
The use of the instantaneous gradient V,%(n) means that the real-time recur- 

rent learning algorithm described here deviates from a non-real-time one based on 
the true gradient V,%,,,,,. However, this deviation is exactly analogous to that encoun- 
tered in the standard back-propagation algorithm used in Chapter 4 to train an ordi- 
nary multilayer perceptron, where weight changes are made after each pattern 
presentation. While the real-time recurrent learning algorithm is not guaranteed to 
follow the precise negative gradient of the total error function %,,,,,(W) with respect 
to the weight matrix W, the practical differences between the real-time and non-real- 
time versions are often slight; these two versions become nearly identical as the learn- 
ing-rate parameter 11 is reduced. The most severe potential consequence of this 
deviation from the true gradient-following behavior is that the observed trajectory 
(obtained by plotting %(n) versus the elements of the weight matrix W(n)) may itself 
depend on the weight changes produced by the algorithm, which may be viewed as 
another source of feedback and therefore a cause of instability in the system. We can 
avoid this effect by using a learning-rate parameter y small enough to make the time 
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scale of the  weight changes much smaller than the  t ime scale of the network opera- 
tion (Williams and Zipser, 1989). 

Example 15.6 
In this example we formulate the RTRL algorithm for the fully recurrent networkshown in Eg. 15.6 
with two inputs and single output. The network has three neurons, with the composition of 
matrices W,, W,, and C as described in Example 15.1. 

With m = 2 and q = 3, we find from Eq. (15.48) that 

Lu,(n)j 
u2(n) 

Let A,,,,(n) denote the kl-th element of matrix A,(n). The use of Eqs. (15.52) and (15.56) then 
yields, respectively, 

Awk,(n) = rl(dl(n)) - x~(n))A~,k~(n) 

where Skj is the Kronecker delta, which is equal to 1 fork = j and zero 0thenvise;and (j, k) = 1,2,3 
and I = 1, 2, ..., 6. Figure 15.12 presents a sensitivity graph determining the evolution of the 
welght adjustment Aw,(n). Note that W, = {w,] for (j, i) = 1,2,3,  and W, = [w,) for j = 1 ,2 ,3  
and1 = 4 , 5 , 6 .  

A n w n  -1 A n 

FIGURE 15.12 Sensitivity graph of the  fully recurrent network of Fig. 15.6. 
Note: The three nodes labeled &(n) are  all t o  be  viewed as a single input. 
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Teacher Forcing 

A strategy that is frequently used in the training of recurrent networks is teacher forc- 
ing (Williams and Zipser, 1989,1995); in adaptivc filtering, teacher forcing is known as 
the equation-error method (Mendel, 1995). Basically, teacher forcing involves replacing 
the actual output of a neuron, during training of the network, with the corresponding 
desired response (i.e., target signal) in subsequent computation of the dynamic behav- 
ior of the network, whenever that desired response is available. Although teacher forc- 
ing is being described under the RTRL algorithm, its use applies to any other learning 
algorithm. For it to be applicable, however, the neuron in question must feed its output 
back to the network. 

Beneficial effects of teacher forcing include (Williams and Zipscr, 1995): 

Teacher forcing may lead to faster training. The reason for this improvement is the 
use of teacher forcing amounts to thc assumption that the network has correctly 
learned all the earlier parts of the task that pertain to the neurons where teacher 
forcing has been applied. 
Teacher forcing may serve as a corrective mechanism during training. For exam- 
ple, the synaptic weights of the network may have the correct values, but some- 
how the network is currently operating in the wrong region of the state space. 
Clearly, adjusting the synaptic weights is the wrong strategy in such a situation. 

A gradient-based learning algorithm that uses teacher forcing is in actual fact 
optimizing a cost function different from its unforced counterpart. The teacher forced 
and unforced versions of the algorithm may therefore yield different solutions, unless 
the pertinent error signals are zero, in which case learning is unnecessary. 

15.9 KALMAN FILTERS 

As mentioned previously, continuous learning based on gradient descent, exemplified 
by the real-time recurrent learning algorithm, is typically slow due to reliance on instan- 
taneous estimates of gradients. We [nay overcome this serious limitation by viewing the 
supervised training of a recurrent network as an optimum filtering problem, the solu- 
tion of which recursively utilizes information contained in the training data in a manner 
going back to the first iteration of the learning process. Tne idea described here is the 
essence of Kalmanfiltering (Kalman, 1960). Novel features of Kalman filters include: 

The theory is formulatcd in terms of state-space concepts, providing efficient uti- 
lization of the information contained in the input data. 
Estimation of the state is computed recursively; that is, each updated estimate of 
the state is computed from the previous estimate and the data currently avail- 
able, so only the previous estimate requires storage. 

In this section we present a brief review of Kalman filter theory1" to pave the way 
for the derivation of the decoupled extended Kalman filter described in the next sec- 
tion. The development of the theory usually begins with linear dynamical spstems.To 
extend its use to nonlinear dynamical systems, a form of linearization is applied to the 
system: this latter part of the discussion is deferred to the next section. 
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w(n + 1) z-'I w(n) C(n)  
FIGURE 15.13 Signal-flow M) ~ r a ~ h  of linear, discretetime u d 
- ,  

dynamical system for 
v(n) describing the Kalman filter. 

Consider then a linear, discrete-time dynamicul system described by the signal- 
flow graph shown in Fig. 15.13.The time-domain description of the system presented 
here is along similar lines to the state-space formalism presented in Section 15.3. In 
mathematical terms, Fig. 15.13 embodies the following pair of equations: 

The various quantities in the process equation (15.59) and the measurement equation 
(15.60) are described as follows: 

w(n) is the state vector of the system. 
d(n) is the observation vector. 
C(n) is the measurement matrix. 
v(n) is the measurement noise. 

In the process equation (15.59) we have made two simplifying assumptions. First, the 
process equation is noiseless. Second, the transition matrix relating the states of the sys- 
tem at times n + 1 and n is equal to the identity matrix. We have also used a new nota- 
tion for the state in Fig. 15.13 for reasons that will become apparent in the next section. 

The Kalman filtering problem may now be stated as follows: 

Use the entire observed data, consisting of fhe set of vectors (d(i)]:=,, fo find for each n 2 I 
the minimum mean-square error estimate of the stuie w(i). 

Note that information on the state vector is not available. The problem is called filter- 
ing if i = n,prediction if i > n, and smoothing if 1 i i 5 n.The solution to the problem 
is derived on the basis of the following assumptions (beyond the assumed linearity of 
the system): 

1. The measurement noise u(n) is a zero mean, white noise process whose covari- 
ance matrix is defined by 

2. The initial value of the state, w(O), is uncorrelated with v(n) for all n 2 0, 

For an elegant derivation of the Kalman filter, we may use the notion of innova- 
tions (Kailath, 1968). Specifically, the innovations process associated with the observa- 
tion vector d(n) is defined by 

where G(n n - 1) is the minimum mean-square error estimate of d(n), given all past 
values of the observation vector starting at time n = 1 and extending up to time n - 1. 
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By the "minimum mean-square error estimate" we mean that particular estimate that 
minimizes the mean-square error measured with respect to d(n) .  The innovations 
process a ( n )  may be regarded as a measureof the new information contained in d(n)  
that is not available in the predictable part d ( n  1 n - 1 ) .  The innovations process a ( n )  
has some nice properties as summarized here (Kailath, 1968): 

1. The innovations process a ( n )  associated with d(n)  is uncorrelated to all past 
observations d ( l ) ,  d (2 ) ,  . . ., d ( n  - I), as shown by 

~ [ a ( n ) d ~ ( k ) ]  = 0 for 1  5 k  5 n - 1 

2. The innovations process consists of a sequence of random vectors that are uncor- 
related with each other,as shown by 

~ [ a ( n ) a ' < k ) ]  = 0 for 1 5 k  5 n - l  

3. There is a one-to-one correspondence between the sequence of random vectors 
representing the observed data and the sequence of random vectors representing 
the innovations process, as shown by 

We may now replace the correlated sequence of observed data with the uncorre- 
lated (and therefore simpler) sequence of innovations without any loss of information. 
In so doing, the derivation of the Kalman filter is simplified by expressing the estimate 
of the state at time i ,  given the set of innovations (a (k) ]Z=, .  In carrying out the analysis 
on this basis, we may derive the standard Kalman filter as summarized in Table 15.2. 
There are three new quantities in this algorithm that need to be defined: 

K(n,  n  - 1) is the error covariance matrix defined by 

where the state error e(n,n - 1) is itself defined by 

where w ( n )  is the actual state and 6 ( n  I n - 1 )  is its one-step prediction based on 
past values of the observed data up to time n - 1. 

TABLE 15.2 Surnmarv of the Kalrnan Filter 

Computefm n = 1,2,3, ... 

r (n)  = [C(n)K(n, n - l)CT[n) + R(n)]-' 

G(n)  = K(n, n  - l)CT(n)r(n) 

m(n) = y(n) - C(n)&(nJn - 1 )  

G[n + lln) = G(nln - 1 )  + G(n)a(n) 

K(n + 1 ,  n) = K(n, n  - 1 )  - G(n)C(n)K(n, n  - 1)  
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T(n) is the conversion factor that relates the filtered estimation error e(n) to the 
innovations a(n)  as shown by 

e(n) = R(n)T(n)a(n) 

where 

e(n) = d(n) - h(n 1 n) 

where h(n In) is the estimate of the observation vector d(n) given all the 
observed data up to time n. 
G(n) is the Kalman gain, which determines the correction used to update the esti- 
mate of the state. 

The type of Kalman filter summarized in Table 15.2 is designed to propagate the 
error covariance matrix K(n, n - 1). This algorithm is therefore called the covariance 
Kalman filtering algorithm. 

Square Root Kalman Filter 

The covariance Kalman filter is prone to serious numerical difficulties. In particular, 
the updated matrix K(n + 1, n) is determined by the Riccati equation, which is defined 
by the last line of computation in Table 15.2. The right-hand side of the Riccati equa- 
tion is the difference between two matrix quantities. Unless the numerical accuracy 
employed at every iteration of the algorithm is high enough, the updated matrix 
K(a + 1, n) resulting from this computation may not be nonnegative definite. Such a 
solution is clearly unacceptable because K(n + I, n) represents a covariance matrix, 
which by definition is nonnegative definite. The unstable behavior of the Kalman filter, 
which results from numerical inaccuracies due to the use of finite word length arith- 
metic, is called the divergence phenomenon. 

This problem may be overcome by propagating the square root of the error covari- 
ance matrix. K'I2(n, n - I), rather than K(n, n - 1) itself. Specifically, using the Cholesky 
factorization, we may express K(n, n - 1) as follows (Golub and Van Loan, 1996): 

K(n, n - 1) = K'12(n, n - l ) ~ " ~ ( n ,  n - 1) (15.68) 

where ~ ' / ~ ( n ,  n - 1) is a lower triangular matrix, and ~ ' "* (n ,  n - I) is its transpose. In 
linear algebra, the Cholesky factor K'I2(n, n - 1) is commonly referred to as the 
square root of K(n, n - l).Thus a Kalman filter based on the Cholesky factorization is 
called a square root Kalman filter." The important point is that the matrix product 
~ ' " ( n ,  n - 1)KV2(n, n - 1) is much less likely to become indefinite because the prod- 
uct of any square matrix and its transpose is always positive definite. 

15.10 DECOUPLED EXTENDED KALMAN FILTER 

Our primary interest in the Kalman filter is to exploit its unique properties to perform 
the supervised training of a recurrent network.I2 Given the architectural complexity of a 
recurrent network (e.g., recurrent multilayer perceptron), the important issue is how to 
proceed with this approach in a computationally feasible manner without compromising 
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the application of Kalman filter theory.The answer is found in using a decoupled form of 
the extended Kalman filter, in which the computational complexity is made to suit the 
requirements of a particular application and of available computational resources 
(Puskorius and Feldkamp, 1991). 

Consider a recurrent network built around a static multilayer perceptron with W 
synaptic weights and p output nodes. Let the vector w(n) denote the synaptic weights 
of the entire network at time n. With adaptive filtering in mind, the state-space equa- 
tions for the network may be modeled as follows (Singhal and Wu, 1989; Haykin, 1996): 

w(n + 1) = w(n) (15.69) 

d,(n) = c(w(n), u(n), v(n)) + v(n) (15.70) 

where the weight vector w(n) plays the role of a state. The second argument u(n) and 
third argument v(n) pertaining to the vector valued function c(.;;) denote the input 
vector and vector of recurrent node activities, respectively. In effect, Eq. (15.69) states 
that the model is residing in its "optimum" condition, with the transition matrix that 
takes the weight vector w(n) at time n and transforms it into w(n + 1) at time n + 1 
being equal to the identity matrix. The optimum condition described here refers to a 
local or global minimum on the error surface of the recurrent network. The only 
source of nonlinearity in the model resides in the measurement equation (15.70). The 
vector d,, denotes the desired response of the model. With Eq. (15.70) representing the 
input-output equation of the model, it follows that c(.;;) is the overall nonlinearity 
from the input layer to the output layer of the multilayer perceptron. The measure- 
ment noise vector v(n) in Eq. (15.70) is assumed to be a multivariate white noise 
process with zero mean and diagonal covariance matrix R(n). 

It is important to note that in applying the extended Kalman filter to a recurrent 
network, there are two different contexts in which the term "state"is used: 

Evolution of the system via adaptive filtering, which manifests itself in changes to 
the recurrent network's weights through training: the vector w(n) takes care of 
this first notion of state. 
Operation of the recurrent network itself, exemplified by the recurrent node 
activities on which the function c depends; the vector v(n) takes care of this sec- 
ond notion of state. 

By comparing the model dcscribed in Eqs. (15.69) and (15.70) with the linear 
dyuamical model of Eqs. (15.59) and (15.60), we see that the only difference between 
these two models is in the nonlinear form of the measurement equation. To prepare 
the way for the application of Kalman filter theory to the state-space model just 
described, we must therefore first linearize Eq. (15.70) and recast it in the form 

d(n) = C(n)w(n) + v(n) (15.71) 

where C(n) is the p-by-W measurement matrix of the linearized model, and we have 
used d(n) to distinguish it from d,(n) in Eq. (15.70). The linearization consists of the 
partial derivatives of thep  outputs of the whole network with respect to the W weights 
of the model as shown by 



Section 15.10 Decoupled Extended Kalman Filter 767 

where ci ,  i = 1,2, . . . ,p  denotes the ith element of the nonlinearity c(w(n), u(n), v(n)). 
The partial derivatives in Eq. (15.72) are evaluated at w(n) = +(n), where 6 ( n )  is the 
estimate of the weight vector w(n) computed by the extended Kalman filter at time n, 
given the observed data up to time n - 1 (Haykin, 1996). In practice, these partial 
derivatives are computed by using the back-propagation-through-time or real-time 
recurrent learning algorithm. In effect, the extended Kalman filter builds on one or 
the other of these two algorithms described in Sections 15.7 and 15.8.This implies that 
c must be a function of the recurrent node activities as stated. In fact, for a single- 
layer recurrent network the matrix C(n) can be composed from the elements of the 
matrices A,(n) as computed by the RTRL algorithm in Eq. (15.52).Thus the measure- 
ment matrix C(n) is the dynamic derivative matrix of the network outputs with 
respect to the network's free parameters. Just as the recurrent node activities of the 
network at time step (n + 1)  are a function of the corresponding values from the pre- 
vious time step n, in an analogous manner we find that the derivatives of recurrent 
node activities with respect to the network's free parameters at time step (n + 1) are 
a function of the corresponding values from the previous time step n as expressed in 
the RTRL equations. 

Suppose now the synaptic weights of the network are partitioned into g groups, 
with group i containing k, neurons, for example.The measurement matrix C defined in 
Eq. (15.72) is the p-by-W matrix of derivatives of network outputs with respect to all 
the weights in the network.The dependence of matrix C(n) on the input vector u(n) is 
implicitly defined in Eq. (15.72). The matrix C(n) thus defined contains all the deriva- 
tives that are necessary for any decoupled version of the extended Kalman filter. For 
example, if the global extended Kalman filter (GEKF) is used (i.e., we have no decou- 
pling), g = 1 and the whole C(n) is as defined in Eq. (15.72). On the other hand, if the 
decoupled extended Kalman filter (DEKF) is used, then the "global" measurement 
matrix C(n) must be arranged so that the weights corresponding to a given neuron in 
the network are grouped as a single block within C(n), where each block is identified 
by index i = 1,2, . . ., g. In the latter case, the matrix C(n) is merely the concatenation of 
the individual C;s, as shown here 

C(n) = [Cl(n), C&), ..., C,(n)l 

In any event, regardless of the level of decoupling employed, the entire matrix C(n) 
must be computed as defined in Eq. (15.72). 
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The stage is now set for the application of the Kalman filtering algorithm sum- 
marized in Table 15.2. In particular, for the linearized dynamic model described by 
Eqs. (15.69) and (15.71) we have (Puskorius and Feldkamp, 1991): 

where i = 1,2, ..., g.The parameter vectors and signal vectors in Eq. (15.73) to (15.77) 
are described as follows: 

T(n) = p-by-p matrix, denoting the glohal conversion factor for the entire 
network 

G,(n) = W,-by-p matrix, denoting the Kalman gain for group i of neurons 

a(n)  = p-by-l vector, denoting the innovations defined as the difference 
between the desired response d(n) for the linearized system and 
its estimate d(nln; 1) based on input data available at time 
n - 1; the estimate d(n1n - 1) is represented by the actual output 
vector y(n) of the network residing in state (iv,(nin - I)), which is 
produced in response to the input u(n) 

wI(nln - 1) = W-by-l vector, denoting the estimate of the weight vector w,(n) 
for group i at time n, given the observed data up to time n - 1 

K,(n, n - 1) = k,-by-k, matrix, denoting the error covariance matrix for group i 
of neurons 

The summation included in the definition of the global conversion factor T(n) in 
Eq. (15.73) accounts for the decoupled nature of the extended Kalman filter. 

It is important to understand that in the DEKF algorithm the decoupling 
really determines which particular elements of  the global error covariance matrix 
K(n, n - I )  are to be maintained and updated. In fact, all computational savings are 
due t o  ignoring the maintenance and updates associated with those off-diagonal 
blocks of the global error covariance matrix K(n, n - I), which would otherwise 
correspond to coupling o l  different groups of synaptic weights. 

The DEKF algorithm encoded by Eqs. (15.73) to (15.77) minimizes the cost 
function: 
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where e ( j )  is the error vector defined by 

e ( j )  = d ( j )  - y ( j ) ,  j = 1,2,  ..., n 

where y ( j )  is the actual output of the network using all available information up to and 
including time j. Note that, in general, e ( j )  # a(j).  

Artificial Process Noise 

The nonlinear dynamical system modeled in Eqs. (15.69) and (15.70) is unforced, in 
that the process equation (15.69) has no external inputs. This deficiency can lead to 
serious numerical difficulties, and therefore the divergence of the Kalman filter when 
it operates in a finite precision environment. As explained in Section 15.9, the diver- 
gence phenomenon may be overcome through the use of square root filtering. 

Another way of circumventing the divergence phenomenon is to use a heuristic 
mechanism that involves artificially adding process noise to the process equation, as 
shown by 

where g ( n )  is the process noise. It is assumed that w,(n) is a multivariate white noise of 
zero mean and diagonal covariance matrix Q,(n).  The artificially added process noise 
w,(n) is naturally independent of both the measurement noise v ( n )  and the initial state of 
the network.The net effect of adding w,(n) to the process equation (15.79) is to modify 
the Riccati equation for updating the error covariance matrix as follows (Haykin, 1996): 

Provided that Q,(n) is large enough for all i, then Ki(n + 1, n )  is assured of remaining 
nonnegative definite for all n. 

In addition to overcoming these numerical difficulties, the artificial insertion of 
process noise wi(n)  into the process equation has the following beneficial effect:There 
is less likelihood for the algorithm to be trapped at a local minimum during the train- 
ing process.This in turn results in a significant improvement in training performance in 
terms of rate of convergence and quality of solution (Puskorius and Feldkamp, 1991). 

Summary of t h e  DEKF Algorithm 

Table 15.3 presents a summary of the DEKF algorithm based on Eqs. (15.73) to (15.76), 
and Eq. (15.80).711is table also includes details of initialization of the algorithm. 

A final comment on the extended Kalman filter is in order.The DEKF algorithm 
summarized in Table 15.3 refers to an entire family of possible infortrzation-preserving 
learning procedures, including the GEKF. As a general rule, we expect the DEKF to 
produce a performance, in terms of solution quality, that approaches the GEKF but is 
not expected to surpass it. On the other hand, the DEKF is always computationally 
less demanding than the GEKF. Notwithstanding this computational advantage, cur- 
rent computer speeds and memory sizes have now made GEKF feasible for some 
practical problems, especially in off-line training of recurrent networks. 
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TABLE 15.3 Summary of the DEKF Algorithm 

Initialization: 

1. Set the synaptic weights of the recurrent network to small values selected 
from a uniform distribution. 

2. Set the diagonal clements of the covariance matrix Q(n)  (characterizing 
the artificially inserted process noise o ( n ) )  equal to 10-'to 10--2. 

3. Set K(1.0)  = 6-'1, 6 = small positive constant. 

Computations: 

For n = 1,2,  . . ,  compute 

r ( n )  = 2 C,(n)K,(n, n - 1) C: (n)  + R(n)  [ ,:, 
G,(n) = K,(n, n - l )C:(n)r(n)  

u (n )  = d(n) - - 1) 

G,(n + l ln )  = G,(nln - 1 )  + G , ( ~ ) u ( n )  

K,(n + 1 ,n )  = Kj(n ,n  - 1) - G,(n)C,(n)K,(n, n - 1 )  + Q,(n) 

where in the third line. &nln - 1) is the actual output vector y(n) of the net- 
work produced in response to the input vector u(n). 

N o t e  For8 = 1 (i.e.,no decoupling). the OEKFalgurithrn hecomes the 
gluhal extended Kalmdn tillering (GEKF) algorithni. 

Computational Complexity 

Table 15.4 presents a comparison of the computational complexity of the three learn- 
ing algorithms discussed in this chapter: back-propagation through time, real-time 
recurrent learning, and decoupled extended Kalman filter. The computational com- 
plexity of these algorithms increases in the order arranged here. 

15.11 COMPUTER EXPERIMENT 

In this experiment we revisit the simulation of the nonlinear time series studied in 
Section 13.5. The time series is defined by the frequency-modulated signal: 

We will investigate two different structures for the simulation: 

Recurrent multilayer perceptron (RMLP) consisting of 1 input node,first hidden 
layer of 10 recurrent neurons, second hidden layer of 10 neurons, and 1 linear 
output neuron. 
Focused time lagged feedforward network (TLFN), consisting of a tapped-delay- 
time memory with 20 taps and a multilayer perceptron with 10 hidden neurons 
and 1 linear output neuron. 

The RMLP has slightly more synaptic weights than the focused TLFN, but half the 
memory (10 recurrent nodes versus 20 taps). 
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TABLE 15.4 Comparison of the Computational Complexity of Learning 
Algorithms for Recurrent Networks 

S = number of states 
W = number of synaptic weights 
L = length of training sequence 

1. Back-propagation-through-time (BP'IT) algorithm: 
Time, storage space requirements: O(WL + SL), O(WL + SL) 

2. Real-time recurrent learning (RTRL) algorithm: 
Time, storage space requirements: O(WSZL), O(WS) 

3. Decoupled extended Kalman filtering (DEKF) algorithm: 
At the minimum, DEKF incurs the same expense (in both time and space) for 
computing derivatives via RTRL or BP'IT;for B P r r  the time and space 
requirements are scaled by p, the number of network outputs, relative to the 
standard B P r r  for which derivatives of a single scalar error term are computed. 

* In addition, DEKF requires time complexity O(p2W + p C:=, k l )  and storage 
space O(Zf=, k:) ,  where g is the number of groups and k,  is the number of neu- 
rons in group i. In the limit of a single weight group as in GEKF, these require- 
ments become time and space storage: O(pW9 and O(W2), respectively. 

The RMLP was trained using the D E W  algorithm.The TLFN was trained using 
two versions of the extended Kalman filter: (1) the GEKF algorithm (i.e., global ver- 
sion), and (2) the DEKF algorithm (i.e., decoupled version). The details of these two 
algorithms are: 

GEKF: 
6 = parameter used to initialize the error covariance matrix K(n, n - I) 

= 0.01 
R(n) = covariance matrix of measurement noise v(n) : R(0) = 100 at the start of 

training and then annealed to R(n) = 3 at the end of training 
Q(n) = covariance matrix of artificial process noise w(n) : Q(0) = at the 

start of training and then annealed to Q(n) = 10-%t the end of training 
The annealing of R(n) and Q(n) has the effect of accelerating the learning rate as 
the training progresses. 
DEKF: 
g = number of groups 

21 for the RMLP 

= { 11 for the focused TLFN 

All other parameters are the same as those used for the GEKF. 
The training was performed on a sequence of 4000 samples. For the RMLP, subsets of 
length 100 were used, with the processing of 30,000 subsets over the entire training 
run. Each data point in the training set of 4000 samples was processed approxi- 
mately 750 times. For the focused TLFN, each data point in the training set was also 
processed about 750 times. In both cases the testing was performed on 300 data 
points. 

Figure 15.14 presents the one-step predicted waveform j(n) computed by the 
RMLP trained on the DEKF algorithm. This figure also includes the actual waveform 
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FIGURE 15.14 Superposition of actual waveform (solid) and predicted wave- 
form (dashed) for the computer experiment on modeling; the predicted 
waveform was computed using the RMLP trained on the DEKF algorithm. 

y(n). These two waveforms are hardly distinguishable from each other. Figure 15.15a 
shows the prediction error 

e(n) = ?(n) - );(n) 

produced by the RMLP. The corresponding prediction errors produced by the focused 
TLFN trained on the GEKF and DEKF algorithms are shown in Figs. 15.15b and 
15.15c, respectively. By comparing the results presented in Fig. 15.15 among them- 
selves and also against the simulation results reported in Section 13.5, we may make 
the following observations: 

1. The most accurate simulation in a mean-square error sense was produced by the 
RMLP trained on the DEKF algorithm; the variance of the prediction error was 
1.1839 X computed over 5980 samples. 

2. For the focused TLFN, the most accurate simulation in a mean-square error sense 
was produced by using GEKF training. For GEKF training the variance of the pre- 
diction error was 1.3351 X whereas for DEKF training it was 1.5871 X 

Both computations were again made using 5980 samples. 
3. For the focused TLFN trained on the standard back-propagation algorithm, the 

variance of the prediction error reported in Section 13.5 was 1.2 X an order 
of magnitude worse than that obtained with the GEKF and DEKF algorithms. 

The superior learning performance of the extended Kalman filter over back-propagation 
is due to its information-preserving property. 
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FIGURE 15.15 Prediction error waveforms for three different simulationr: (a) RMLP with 
DEKF training, error variance = 1.1839 X (b) Focused TLFN with GEKF training, 
error variance= 1.3351 X (c) Focused TLFN with DEKF training, error variance 
= 1.5871 X lo-? 

15.12 VANISHING GRADIENTS IN RECURRENT NETWORKS 

A problem that may require attention in practical applications of a recurrent network 
is the vanishing gradients problem, which pertains to the training of the network to 
produce a desired response at the current time that depends on input data in the dis- 
tant past (Hochreiter, 1991; Bengio et al., 1994).The point is that because of the com- 
bined nonlinearities, an infinitesimal change of a temporally distant input may have 
almost no effect on network training. The problem may arise even if a large change in 
the temporally distant input has an effect, but the effect is not measurable by the gra- 
dient. This vanishing gradients problem makes the learning of long-term dependen- 
cies in gradient-based training algorithms difficult if not virtually impossible in 
certain cases. 

In Bengio et al. (1994), it is argued that for many practical applications it is neces- 
sary that a recurrent network be able to store state information for an arbitrary duration 



774 Chapter 15 Dynamically Driven Recurrent Networks 

and to do so in the presence of noise. The long-tcrm storage of definite bits of informa- 
tion in the state variables of the recurrent network is referred to as information latch- 
ing. The information latching must be rob~lst  so that the stored statc information 
cannot be easily deleted by events that are unrelated to the learning task at hand. In 
specific terms, we may state the following (Bengio et al.. 1994): 

Robust information latching in a recurrent network is accomplished if  the states of the 
network are contained in the reduccd attracting set of a hyperbolic attractor. 

The notion of a hyperbolic attractor was discussed in Chapter 14. The reduced attract- 
ing set of a hyperbolic attractor is the set of points in the basin of attraction for which 
all the eigenvalues of the associated Jacobian have an absolute value less than 1.The 
implication here is that if a state x(n) of the recurrent network is in the basin of attrac- 
tion of a hyperbolic attractor but not in the reduced attracting set, then the size of a 
ball of uncertainty around x(n) will grow exponentially with increasing time n, as illus- 
trated in Fig. 15.16a. Therefore, small perturbations (noise) in the input applied to the 
recurrent network could push the trajectory toward another (possibly wrong) basin of 
attraction. If, however, the state x(n) remains in the reduced attracting set of the hyper- 
bolic attractor, a bound on the input can be found that guarantees x(n) to rcmain 
within a certain distance of the attractor, as illustrated in Fig. 15.16b. 

P: hyperbolic 
attractor 

Domain of state x(n)  p: basin of 
attraction 

(a) OL P 

FIGURE 15.16 (a) State x(n) 
resides in the basin of 
attraction p but outside the 
reduced attration set u. 
(b) State x(n) resides inside 

7: rcduced 
attraction 
he1 of P 

the reduced attraction set 7. (b) 
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Long-Term Dependencies 

To appreciate the impact of robust information latching on gradient-based learning, we 
note that the adjustment applied to the weight vector w of a recurrent network at time 
n is defined by 

where 7 is the learning-rate parameter and a%,,,,,/aw is the gradient of the cost func- 
tion %,,,,, with respect to w.The cost function %,,,, is typically defined by 

where d,(n) is the desired response and y,(n) is the actual response of the network at 
time n for the ith pattern. Hence, we may write 

where in the second line we have used the chain rule of calculus; the state vector x,(n) 
pertains to the ith pattern (example) in the training sample. In applying algorithms 
such as back-propagation through time, the partial derivatives of the cost function are 
computed with respect to independent weights at different time indices. We may 
expand on the result in Eq. (15.81) by writing 

Applying the chain rule of calculus a second time yields 

We now recognize that in light of the state equation (15.2), we have 

Hence, we may interpret ax,(n)/ax,(k) as the Jacobian of the nonlinear function Q(.;) 
expanded over n - k time steps, as shown by 
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In Bengio et al. (1994), it is shown that if the input u(n) is such that the recurrent net- 
work remains robustly latched to a hyperbolic attractor after time n = 0, then the 
Jacobian J,(n, k) is an exponentially decreasing function of k so that 

det(J,(n, k)) --1 0 as k -1 .a for all n (15.84) 

The implication of Eq. (15.84) is that a small change in the weight vector w of the net- 
work is experienced mostly in the near past (i.e., values of k close to the current time n). 
There may exist an adjustment Aw to the weight vector w at time n that would permit 
the current state x(n) to move to another possibly better basin of attraction, but the 
gradient of the cost function%,,,,, with respect to w does not carry that information. 

To conclude. assuming that hyperbolic attractors are used to store state informa- 
tion in a recurrent network by means of gradient-based learning, we find that either 

the network is not robust to the presence of noise in the input signal or 
the network is unable to discover long-term dependencies (i.e., relationships 
between target outputs and inputs that occur in the distant past). 

Possible procedures for alleviating the difficulties that arise due to vanishing gradients 
in recurrent networks include the following:" 

Increased temporal span of input-output dependencies by presenting the net- 
work, during training, with the shortest strings of symbols first; see the heuristics 
presented in Section 15.6 
Use of the extended Kalman filter or its decoupled version for a more efficient 
use of available information than gradient-based learning a1gorithms;the extended 
Kalman filter is discussed in Section 15.10 
Use of elaborate optimization methods such as pseudo-Newton and simulated 
annealing (Bengio et al., 1994); second-order optimization methods and simu- 
lated annealing are described in Chapters 4 and 11, respectively 

15.13 SYSTEM IDENTIFICATION 

System identification is the experimental approach to the modeling of a process or a 
plant of unknown parameters.14 It involves the following steps: experimental planning, 
the selection of a model structure, parameter estimation, and model validation.The pro- 
cedure of system identification, as pursued in practice, is iterative in nature in that we 
may have to go back and forth between these steps until a satisfactory model is built. 

Suppose then we have an unknown nonlinear dynamical plant, and the requirement 
is to build a suitably parameterized identification model for it. We have the choice of bas- 
ing the identification procedure on a state-space model or an input-output model. The 
decision as to which of these two representations is used hinges on prior information of the 
inputs and observables of the system. In what follows both representations are discussed. 

System Identification Using t h e  State-Space Model 

Suppose that the given plant is described by the state-space model: 

x(n + 1) = f(x(n), u(n)) 

~ ( n )  = h(x(n)) 
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where f(.;) and h(.)  are vector-valued nonlinear functions, both of which are assumed 
to be unknown; Eq. (15.86) is a generalization of Eq. (15.11). We use two neural net- 
works to identify the system, one for dealing with the process equation (15.85) and the 
other for dealing with the measurement equation (15.86), as depicted in Fig. 15.17. 

We recognize that the state x(n) is the one-step delayed version of x(n + 1). Let 
c(n + 1) denote the estimate of x(n + 1) produced by the first neural network, labeled 
network I in Fig. 15.17a. This network operates on a concatenated input consisting of 
the external input u(n) and the state x(n) to produce k(n + 1). The estimate k(n + 1) 
is subtracted from the actual state x(n + 1) to produce the error vector 

where x(n + 1) plays the role of desired response. It is assumed that the actual state 
x(n) is physically accessible for it to be used in this way.The error vector e,(n + 1) is in 

Unknown 
Input s stem 
M.1 

signal e,(n 

Unknown 
system 

State 
~ ( n )  

signal e,,(n) 

(b) 

FIGURE 15.17 State-space solution for the system identifi. 
cation problem. 
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turn used to adjust the synaptic weights of neural network I. as indicated in Fig. 15.17a, 
so as to minimize the cost function based on the error vector e,(n + 1) in some statisti- 
cal sense. 

The second neural network, labeled network 11 in Fig. 15.17b, operates on the 
actual state x(n) of the unknown plant to produce an estimate i (n )  of the actual out- 
put y(n).The estimate $(n) is subtracted from y(n) to produce the second error vector 

ell(n) = ~ ( n )  - i (n)  

where y(n) plays the role of desired response. The error vector e,,(n) is then used to 
adjust the synaptic weights of network 11 to minimize the Euclidean norm of the error 
vector e,,(n) in some statistical sense. 

The two neural networks shown in Fig. 15.17 operate in a synchronous fashion 
to provide a state-space solution to the system identification problem (Narendra and 
Parthasarathy, 1990). Such a model is referred to as a series-parallel identification 
model in recognition of the fact that the actual statc of the unknown system (rather 
than that of the identification model) is fed into the identification model, as depicted 
in Fig. 15.17a. In light of the discussion presented at the end of Section 15.9, this form 
of training is an example of teacher forcing. 

The series-parallel identification model of Fig. 15.17a should be contrasted 
against a parallel identification model where the x(n) applied to thc neural network 1 is 
replaced with k(n); the k(nj is derived from the network's own output k(n + 1) by 
passing it through a unit delay z-'I .  The practical benefit of this alternative model of 
training is that the neural network model is operated in exactly the same way as the 
unknown system, that is, the way in which the model will be used after the lraining is 
completed. It is therefore likely that the model developed via the parallel training 
mode may exhibit an autonomous behavior that is superior to the autonomous behav- 
ior of the network model developed via the series-parallel training mode. The disad- 
vantage of the parallel training mode, however, is that it may takc longer than the 
series-parallel training mode; see the discussion on teacher forcing in Section 15.9. 
Specifically, in our present situation, the estimate ;(n) of the state used in the parallel 
training model is ordinarily not as accurate as the actual state x(n) used in the series- 
parallel training mode. 

Input-Output Model 

Suppose next that the unknown plant is only accessible through its output.To simplify 
the presentation, let the system be of a single input,single output kind. Let y(n) denote 
the output of the system due to the input u(n) for varying discrete-time n.Then, choos- 
ing to work with the NARX model, the identification model takes the form: 

where q is the order of the unknown system. At tlme n + 1, the q pas1 values o l  the 
input and the q past values of the output are all available. The model output j(n + 1) 
represents an estimate of the actual output y(n + 1). The estimate ?;(n + 1) is sub- 
tracted from y(n + 1) to produce the error signal 
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where y(n + 1) plays the role of desired response.The error e(n + 1) is used to adjust 
the synaptic weights of the neural network so as to minimize the error in some statisti- 
cal sense.The identification model of Fig. 15.18 is of a series-parallel form (i.e., teacher 
forcing form) because the actual output of the system (rather than that of the identifi- 
cation model) is fed back to the input of the model. 

FIGURE 15.18 NARX solution for the system identification 
problem. 
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15.14 MODEL REFERENCE ADAPTIVE CONTROL 

Another important application of recurrent networks is in the design of feedback con- 
trol systems where the states of a plant are coupled nonlinearly with imposed controls 
(Puskorius and Feldkamp, 1994; Puskorius et al., 1996).The design of the system is fur- 
ther complicated by other factors such as the presence of unmeasured and random dis- 
turbances, the possibility of a nonunique plant inverse, and the presence of plant states 
that are unobservable. 

A control strategy well suited for the use of neural networks is the model reference 
adaptive control (MRAC)," where the implicit assumption is that the designer is suffi- 
ciently familiar with the system under consideration (Narendra and Annaswany, 1989). 
Figure 15.19 shows the block diagram of such a system, where adaptivity is used to 
account for the fact that the dynamics of the plant are unknown.The controller and the 
plant form a closed loop feedback system, thereby constituting an externally recurrent 
network. The plant receives an input u,(n) from the controller along with an external 
disturbance u,(n). Accordingly, the plant evolves in time as a function of the imposed 
inputs and the plant's own state x,,(n).The output of the plant,denoted by yp(n + ]),is a 
function of x,(n).The plant output may also be corrupted by measurement noise. 

The controller receives two inputs: an externally specified reference signal r(n), 
and y,(n) representing a one-step delayed version of the plant output y,(n + 1). The 
controller produces a vector of control signals defined by 

u,(n) = fi(x,(n), y,(n), r(n), w) 

where x,(n) is the controller's own state and w is a parameter vector that is available 
for adjustment. The vector-balued function f,(.;;;) defines the input-output behavior 
of the controller. 

The desired response d(n + 1 )  for the plant is supplied by the output of a stable 
reference model, which is produced in response to the reference r(n). The desired 
response d(n + 1) is therefore a function of the reference signal r(n) and the reference 
model's own state x,(n), as shown by 

d(n + 1) = f,(x,(n),r(n)) 

I 

FIGURE 15.19 Model reference adaptive control using direct control. 
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The vector-valued function f,(.;) defines the input-output behavior of the reference 
model. 

Let the output error (i.e., the error between the plant and model reference out- 
puts) be denoted by 

The design goal is to adjust the parameter vector w of the controller such that the 
Euclidean norm of the output error e,(n) is minimized over time n. 

The method of control used in the MRAC system of Fig. 15.19 is said to be direct 
in the sense that no effort is made to identify the plant parameters, but the parameters 
of the controller are directly adjusted to improve system performance. Unfortunately, 
at present, precise methods for adjusting the parameters of the controller based on the 
output error are not available (Narendra and Parthasarathy, 1990).This is because the 
unknown plant lies between the controller and the output error.To overcome this diffi- 
culty, we may resort to the use of indirect control, as shown in Fig. 15.20. In this latter 
method, a two-step procedure is used to train the controller: 

1. A model of the plant P, denoted by 6, is obtained to derive estimates of the dif- 
ferential relationships of the plant output with respect to plant input, prior plant 
outputs, and prior internal states of the plant.The procedure described in the pre- 
vious section is used to train a neural network to identify the plant; the model P 
so obtained is called an identification model. 

FIGURE 15.20 Model reference adaptive control using indirect control via an 
identification model. 
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2. The identification  model^ is used in place of the plant to derive estimates of the 
dynamic derivatives of the plant output with respect to the adjustable parameter 
vector of the controller. 

In indirect control, the exter~zully recurrent network is composed of the controller and 
an inputloutput representation of the plant via the identification model P . 

The application of a recurrent network to the controller design in the general 
structure of Fig. 15.20 has been demonstrated in a series of example control problems 
ranging from the well-known cart-pole and bioreactor benchmark problems to an 
automotive subsystem, namely engine idle-speed control (Puskorius and Feldkamp, 
1994, Puskorius et al., 1996). The recurrent network used in those studies was a recur- 
rent multilayer perceptron similar to that described in Section 15.2.The training of the 
network was performed using the DEKF algorithm described in Section 15.11. Note, 
however, that for the engine idle-speed control a lineur dynamical system was chosen 
for the identification model since the imposed controls (over appropriately chosen 
ranges) appear to influence engine speed monotonically. 

15.15 SUMMARY AND DISCUSSION 

In this chapter we discuss recurrent networks that involve the use of global feedback 
applied to a static (memoryless) multilayer perceptron. The application of feedback 
enables neural networks to acquire state representations. making them suitable 
devices for diverse applications in signal processing and control. Four main network 
architectures belonging to the class of recurrent networks with global feedback are 
identified: 

Nonlinear autoregressive with exogenous inputs (NARX) networks using feed- 
back from the output layer to the input layer. 
Fully connected recurrent networks with feedback from the hidden layer to the 
input layer. 
Recurrent multilayer perceptron with more than onc hidden layer, using feed- 
back from the output of each computation layer to its own input. 
Second-order recurrent networks using second-order neurons. 

In all of these recurrent networks, the feedback is applied via tapped-delay-line 
memories. 

The first three recurrent networks permit the use of a state-space framework for 
studying their dynamic behavior. This approach, rooted in modern control theory, 
provides a powerful method for studying the nonlinear dynamics of recurrent net- 
works. 

We describe three basic learning algorithms for the training of recurrent net- 
works: back-propagation through time (BPTT), real-time recurrent learning (RTRL), 
and decoupled extended Kalman filtering (DEKF). The BPTT and RTRL algorithms 
are gradient based, whereas the DEKF algorithm uses higher-order information more 
efficiently. It is therefore able to converge much faster than the BPTT and RTRL algo- 
rithms, but at the expense of a corresponding increase in computational complexity. 
Indeed, the DEKF algorithm may be viewed as an enabling technology, which makes it 
possible to solve difficult signal processing and control problems. 



Notes and References 783 

In theory, a recurrent network with global feedback (e.g., recurrent multilayer 
perceptron trained with the DEKF algorithm) can learn the underlying dynamics of a 
nonstationary environment and do  so by storing the knowledge gained from the train- 
ing sample in a fixed set of weights. Most importantly, the network can truck the statis- 
tical variations of the environment provided that two conditions are satisfied. 

The recurrent netwark does not suffer from underfitting or overfitting. 
The training sample is representative of the nonstationary behavior of the 
environment. 

Throughout this chapter we emphasize the use of recurrent networks for tempo- 
ral processing. Recurrent networks may also be used to process sequentially ordered 
data that do  not have a straightforward temporal interpretation (e.g., chemical struc- 
tures represented as trees). In Sperduti and Starita (1997) it is shown that recurrent 
networks can represent and classify structured patterns that are represented as 
directed, labeled, acyclic graphs. The main idea behind the approach described therein 
is the "generalized recursive neuron," which is a structural generalization of a recur- 
rent neuron (i.e., neuron with local feedback). By using such a model, supervised learn- 
ing algorithms such as back-propagation through time and real-time recurrent learning 
can be extended to deal with structured patterns 

NOTES AND REFERENCES 

1. For other recurrent network architectures, see Jordan (1986), Back and Tsoi (1991), 
Frasconi et al. (1992). and Robinson and Fallside (1991). 

2. The NARX model encompasses an important class of discrete-time nonlinear systems 
(Lcontaritis and Billings, 1985). In the context of neural networks it is discussed in Chen 
et al. (1990),Narendra and Parthasarathy (1990), Lin et al. (1996), and Sieglemann et al., 
(1997). 

It has been demonstrated that the NARX model is well suited for modeling nonlin- 
ear systems such as heat exchangers (Chen et al., 1990). waste water treatment plants (Su 
and McAvoy, 1991; Su et al., 1992), catalytic reforming systems in a petroleum refinery 
(Suet al., 1992) nonlinear oscillations associated with multilegged locomotion in biologi- 
cal systems (Venkataraman, 1994) and grammatical inference (Giles and Hornc, 1994). 

The NARX model is also referred to as the nonlinear autoregressive-moving aver- 
age (NARMA) model, with "moving average" referring to the inputs. 

3. The recurrent multilayer perceptron in Fig. 15.4 is a generalization of the recurrent net- 
work described in Jordan (1986). 

4. Omlin and Giles (1996) show that, using second-order recurrent networks, any known 
finite-state automata can be mapped into such a network, and the correct classification of 
temporal sequences of finite length is guaranteed. 

5. For a rigorous treatment of controllability and observability, see Zadeh and Desoer 
(1963), Kailath (1980), Sontag (1990),and Lewis and Syrmos (1995). 

6. The first work on neural networks and automata (actually sequential machines-automata 
implementations), also referenced as the first paper on finite-state automata, artificial 
intelligence, and recurrent neural networks, was the classic paper by McCulloch and Pitts 
(1943). Tne recurrent network (with instantaneous feedback) in the second part of this 
paper was interpreted as a finite-state automaton in Kleene (1956). Kleene's paper 
appeared in the book "Automata Studies" edited by Shannon and McCarthy (authors in 
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this amazing book include Moore,Minsky,von Neumann, Uttley, McCarthy, and Shannon 
among others). Sometimes Kleene's paper is cited as the first article an finite-state 
machines (Perrin, 1990). Minsky (1967) discusses automata and neural networks in his 
book entitled "Computation: Finite and Infinite Machines." 

All of the early work on automata and neural networks was concerned with syn- 
thesis, that is, how automata are built or designed into neural networks. Because most 
automata (when implemented as sequential machines) require feedback, the neural net- 
works were necessarily recurrent ones. Note that the early work (with thz exception of 
Minsky) did not make a clear distinction betwezn automata (directed, labeled, acyclic 
graphs) and sequential machines (logic and feedback delays), and was mostly concerned 
with finite-state automata. There was little interest (with the exception of Minsky) in 
moving up the automata hierarchy to push down automata andTuring machines. 

After the dark ages of neural networks, research on automata and neural networks 
started again in the 1980s. This work could be broadly classified into three areas: 
(1) learning automata, (2) automata synthesis, extraction, and refinement of knowledge, 
and (3) representation.The first mention of automata and neural networks was in Jordan 
(1986). 

7. A single-layer recurrent network using McCulloch-Pitts neurons cannot simulate any 
finite-state machine (Goudreau et al., 1994) but Elman's simple recurrent network can 
(Krcmcr, 1995). Recurrent nelwurks with only local feedback cannot represent all finite- 
state machines (Frasconi and Gori, 1996; Giles et al., 1995; Kremer, 1996). 

8. The idea behind back-propagation through time is that for every recurrent network it is 
possible to construct a feedforward network with identical behavior over a particular time 
interval (Minsky and Papert, 1969). Back-propagation through time was first described in 
the Ph.D. thesis of Werbos (1974);see also Werbos (1990).The algorithm was rediscovered 
independently by Rumelhart et al. (1986b). A variant of the back-propagation through 
time algorithm is described in Williams and Peng (1990). For a review of the algorithm and 
related issues, see Williams and Zipser (1995). 

9. The real-time recurrent learning algorithm was described in the neural network litera- 
ture for the first time by Williams and Zipser (1989). Its origin may he traced to an earlier 
paper by McBride and Narendra (1965) on system identification for tuning the parame- 
ters of an arbitrary dynamical system. 

The derivation given in Williams and Zipser is for a single layer of fully recurrent 
neurons. It has been extended to more general architectures; see, for example, Kechriotis 
et al. (1994):Puskorius and Feldkamp (1994). 

10. Kalman filter theory owes its origin to the classic paper by Rudolf E. Kalmau (1960). It 
has established itself as an essential part of signal processing and control with numerous 
applications in highly diverse fields. For a detailed treatment of the standard Kalman fil- 
ter, its variants, and its extended form dealing with nonlinear dynamical systems, see 
Grewal and Andrews (1993) and Haykin (1996). The book by Grewal and Andrews is 
devoted entirely to the theory and practice of Kalman filtering.The book by Haykin dis- 
cusses Kalman filter theory from the perspective of adaptive filtering. Two other impor- 
tant books on the subject are Jazwinski (1970) and Maybeck (1979,1982). 

11. For a detailed treatment of the square root Kalman filter and efficient methods for its 
implementation, see Haykin (1996). 

12. Singhal and Wu (1989) were perhaps the first to demonstrate the improvedmapping per- 
formance of a supervised neural network using the extended Kalman filter. Unfor- 
tunately, the training algorithm described therein is limited by its computational 
complexity. To overcome this limitation, Kollias and Anastassiou (1989) and Shah and 
Palmieri (1990) tried to simplify the application of extended Kalman filtering by parti- 
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tioning the global problem into a number of subproblems, each of which addresses a sin- 
gle neuron. However, the treatment of each neuron as an identification problem does not 
rigorously adhere to Kahnan filter theory. Moreover,such an approach may lead to unstable 
behavior during training, and may result in solutions that are inferior to those obtained 
by other methods (Puskorius and Feldkamp, 1991). 

13. Other methods for dealing with the vanishing gradients problem involve bypassing some 
of the nonlinearities in the recurrent network so as to provide improved learning of long- 
term dependencies. Examples of this approach include the following: 

Use of long time delays in the network architecture (El Hihi and Bengio, 1996;Lin et al., 
1996;Giles el al., 1997) 
Hierarchically structuring of the network in multiple levels associated with different 
time scales (El Hihi and Bengio, 1996) 
Using gating units to circumvent some of the nonlinearities (Hochreiter and 
Schmidhuber, 1997) 

14. System identification has an extensive literature. For a treatment of the subject in hook 
form, see Ljung (1987), and Ljung and Glad (1994). For an overview of the subject with 
an emphasis on neural networks, see Sjoberg et al. (1995), and Narendra (1995).The first 
detailed study of system identification using neural networks appeared in Narendra and 
Parthasarathy (1990). 

15. For detailed treatment of model reference adaptive control, see the book by Landau 
(1979). 

PROBLEMS 

State-space model 
15.1 Formulate the state-space equations for Elman's simple recurrent network shown in 

Fig. 15.3. 

15.2 Show that the recurrent rnultilayer perceptron of Fig. 15.4 can be represented by the 
state-space model: 

x(n + 1) = f(x(n), u(n)) 

where u(n) denotes the input, y(n) denotes the output, x(n) denotes the state, and f(.;) 
and g(,;) denote vector-valued nonlinear functions. 

15.3 1s it possible for a dynamic system to be controllable and unobservable, and vice versa? 
Justify your answers. 

15.4 Referring to the local controllability problem discussed in Section 15.3, show that 
(a) the state x(n + q) is a nested nonlinear function of its past value x(n) and the input 

vector u,(n) of Eq. (15.24), and 
(b) the Jacobian of x(n + q) with respect to u,(n), evaluated at the origin, is equal to the 

controllability matrix M, of Eq. (15.23). 
15.5 Referring to the local observability problem discussed in Section 15.3, show that the 

Jacobian of the observation vector y,(n) defined in Eq. (15.30) with respect to the state 
x(n), evaluated at the origin, is equal to the observability matrix M, of Eq. (15.28). 

15.6 The process equation of a nonlinear dynamical system is described by 

where u(n) is the input vector at time n and x(n) is the corresponding state of the system. 
The input u(n) appears in the process equation in a nonadditive manner. In this problem 



786 Chapter 15 Dynamically Driven Recurrent Networks 

Model of neuron 

Input 

system Activation I 

function / 

(a) Local activation feedback architecture 

Model of neuron 
I 

I Bias I 
I ! 

! ______-_~_-- - - - - - - -J  

(b) Local output iecdback architecture 

FIGURE P15.7 

we wish to reformulate the process equation so that the input u(n) appears additively. 
This is done by writing 

xa(n + 1) = f,,,(x'(n)) + u'(n) 

Formulate definitions for the vectors x'(n) and u'(n), and the function f,,,(.). 

15.7 Figure P15.7 presents two examples of recurrent network architectures using local feed- 
back at the neuronal level. The architectures shown in parts a and h of the figure are 
called local acrivalion feedback and locrrl outputfeedback, respectively (Tsoi and Back, 
1994). Formulate state-space models for these two recurrent network architectures. 
Comment on their controllability and observability. 

Nonlinear autoregressive with exogenous inputs (NARX) model 
15.8 Referring to the NARX model discussed in Section 15.4, show that the use of Eqs. (15.16) 

and (15.17) leads to the following expression for the output y(n + q) of the NARX 
model in terms of the state x(n) and input vector u,(n): 

where Q, : W2q+ W, and u, is defined in accordance with Eq. (15.29). 

15.9 (a) The derivation of the NARX model in Section 15.4 is presented for a single input, 
single output system.Discuss how the theory described therein can be extended for a 
multiple input, multiple output system. 
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Bias 

Output 
Y(" + 1) 

FIGURE P15.10 

(b) Construct the NARX equivalent to the two input, single output state-space model in 
Fig. 15.6. 

15.10 Construct the NARX equivalent for the fully recurrent network shown in Fig. P15.10. 
15.11 In Section 15.4 we showed that any state-space model can be represented by a NARX 

model. What about the other way around? Can any NARX model be represented by a 
state-space model of the form described in Section 15.3? Justify your answer. 

Back-propagation through time 
15.12 Unfold the temporal behavior of the state-space model shown in Fig. 15.3. 
15.13 The truncated BPT"T(h) algorithm may be viewed as an approximation to the epochwise 

BPTT algorithm. The approximation can be improved by incorporating aspects of 
epochwise BFTT into the truncated BPTT(h) algorithm. Specifically, we may let the net- 
work through h'  additional steps before performing the next BPTT computation, where 
h' < h. The important feature of the hybrid form of back-propagation through time is 
that the next backward pass is not performed until time step n + h'. In the intervening 
time, past values of the network input, network state, and desired responses are stored in 
a buffer, but no processing is performed on them (Williams and Peng, 1990). Formulate 
the local gradient for neuron j in this hybrid algorithm. 

Real-time recurrent learning algorithm 
15.14 The dynamics of a teacher forced recurrent network during training are as described in 

Section 15.8, except for this change: 

u,(n) if i E sl 

y,(n) if  i E 93 - % 
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where .d denotes the set of indices i for which 5, is an external input, ?h denotes the set of 
indices i for which E ,  is the output of a neuron, and % denotes the set of output neurons 
that are visible. 
(a) Show that for this scheme, the partial derivativc ayj(n + I)/ilwIII(~) is given by 

(Williams and Zipser, 1989) 

(h) Derive the training algorithm for a teacher forced recurrent network. 

Deconpled Extended Kalman Filtering (DEKF) algorithm 
15.15 Describe how the DEKF algorithm can be used to train the simple recurrent network 

shown in Fig. 15.3. You may also invoke the use of the B P l T  algorithm for this training. 
15.16 In its usual form. DEKF training is carried out with weight updates, instance by instance. 

By contrast, in standard back-propagation, simple gradient updates are performed. 
enahling us to choose to apply the updates immediately or else accumulate the updates 
for some time and then apply them as a single composite update.Although such an accu- 
mulation could be attempted in the DEKF algorithm, doing so would cause inconsis- 
tency between the weight vector and the error covariance matrix, which is updated each 
time a recursion is performed to generate a weight update.Thus the use of DEKF train- 
ing appears to preclude batch updating. However,it is possible to use mulrisrream DEKF 
training, which allows for multiple training sequences and yet remains consistent with 
Kalman filter theory, as described in Feldkamp et al. (1997) and Feldkamp and Puskorius 
(1998). 
(a) Consider the training problem with N;, inputs,N,,, outputs, and a fixed training sam- 

ple of Nexamples. From the training sample, form M I N data streams which feed M 
networks constrained to have identical weights. At each training cycle, one pattern 
from each stream is presented to its respective network and the No,, network outputs 
for each stream are computed.A single weight update is then computed and applied 
identically to each stream's network. Derive the multistream form of the DEKF 
algorithm. 

(h) For example, consider the standard XOR problem with four training patterns. 
Assume that we have a feedforward network that is augmented with a delay-line 
memory connected to the output layer. We thus effectively have four network out- 
puts: the actual network output fed into the delay-linc memory, and three delayed 
versions of it with each one of them constituting a new network output. Now apply 
each of the four training patterns in some order to this network structure, hilt do not 
perform any weight updates. After the presentation of the fourth training pattern, we 
have four network outputs that represent the processing of the four training patterns 
performed through anetwork with identical weights. lf we consider performing a sin- 
gle weight vector update with DEKF on the basis of these four training patterns and 
four network outputs, we havc a four-stream problem. Chcck this example out. 

Second-order recurrent networks 
15.17 In this problem we explore the construction of the parity finite-state arrtomaton using a 

second order recurrent network.This automaton recognizes an odd number of 1's in an 
arbitrary length sequential string of 0's and 1's. 

Figure P15.17 shows a two-state automaton. States are represented by circles, and 
transitions by arrows. S means we start in that state, state A in the case shown here. The 
thick circle means that whenever we are in that state, shown as state B in the figure, we 



0 

F 

FIGURE P15.17 

accept the string.The automaton starts seeing strings in state A and loops back to state A 
if we see a 0 and loops to state B if we see a 1. Similarly, when in state B, it loops to state 
B if we see a 0 and loops back to state A if we see a 1. In this way, the automaton is always 
in state A if we have seen an even (including zero) number of 1's and in state B if we have 
seen an odd number of 1's. 

More formally, we define the states as Q = (A,  B ] ,  S = A as the start state, the 
input alphabet as Z = (0,1), the accepting state as F = B,  and the state transition func- 
tion as: 

These are the equations needed for the application of Eq. (15.9) pertaining to the second- 
order recurrent network. For more details on finite-state automata, see Hopcroft (1979). 

Encode the above transition rules into the second-order recurrent network. 

15.18 In Section 15.8 we derive the real-time recurrent learning (RTRL) algorithm for a fully 
connected recurrent network using first-order neurons. In Section 15.2 we describe a 
recurrent network using second-order neurons. 

Extend the theory described in Section 15.8 by deriving the RTRL algorithm for the 
training of a second-order recurrent network. 
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