
Exploring novel ways in building botnets

Daniel Mende & Enno Rey

{dmende,erey}@ernw.de

Notice

� Everything you are about to see,

hear, read and experience is for

educational purposes only. No

warranties or guarantees implied or

otherwise are in effect. Use of these

tools, techniques and technologies tools, techniques and technologies

are at your own risk.

Who we are

� Old-school network geeks.

� Working as security researchers for Germany based

ERNW GmbH.

� Fiddling around with devices and protocols makes the � Fiddling around with devices and protocols makes the

majority of our days.

� We really like Shmoo ;-)

Motivation

� This talk is a loose collection of techniques that can

somehow play a role in botnets.

� Presenting those is a bit for “pure academic research”,

but also for a better understanding of “modern distributed

threats”.threats”.

� And, of course, demos are always fun/

Agenda

� A few botnet basics

� Nearly untraceable master-bot communication

� An elegant bot2master channel

� Perform DDoS without p0wning hosts

� Conclusions

What is a bot

� A bot typically is some kind of malware that uses the

compromised system for remote controlled actions like

� Sending spam

� Performing DDoS attacks

� Clicking banners for fun and profit

� Etc(� Etc(

� There are some common phases a bot runs through

� Initial Infection

� Contact to botmaster(s)

� Download of payloads / instructions

� Malicious actions

Phases of a Bot – Phase 1

� Initial Infection

� Contact to botmaster(s)

� Download of payloads / instructions

� Malicious actions

e.g. mail attachment

Infected systems

Phases of a Bot – Phase 2

� Initial Infection

� Contact to botmaster(s)

� Download of payloads / instructions

� Malicious actions
BotmasterContact

to botmaster

Infected systems

Phases of a Bot – Phase 3

� Initial Infection

� Contact to botmaster(s)

� Download of payloads / instructions

� Malicious actions
BotmasterPayload /

Instructions

Infected systems

Phases of a Bot – Phase 4

� Initial Infection

� Contact to botmaster(s)

� Download of payloads / instructions

� Malicious actions
Botmaster

e.g DDoS attack

against a server

Infected systems

Malicious Actions

� Infection of other systems (Recruiting)

/

� Relaying of spam

Malicious Actions

� Implementation of proxies for various services (e.g.

SOCKS)

� Automated clicks on (paid) advertisement banners
Proxy

Proxy

� Automated clicks on (paid) advertisement banners

IRC Communication

(the traditional way)

What means fast flux?

� There is a service (e.g. some kind of malicious website)

� High availability

� Register some name(s) with a few DNS A records

� The registered IP addresses are the proxying flux-bots

� Two flavors

� Single Flux

� Proxying services with the help of the flux-bots

� Double Flux

� Proxying services with the help of the flux-bots

� Even the NS records are on flux-bots

How does fast flux work?

Goals of Fast Flux

� Simplified management

� Potentially only the botmaster has a complex setup

� No need to setup / hack / maintain many servers

� Additional protection layers for hiding the botmaster � Additional protection layers for hiding the botmaster

� Extends the lifespan of the critical backend core server(s)

� The botmaster / mothership

Enough basics

Now we gonna show some ideas/novel approaches how

some of these steps could be done more efficiently.

� Nearly untraceable master-bot discovery and

communicationcommunication

� An elegant bot2master channel

� Perform DDoS without p0wning hosts

Abuse someone’s else infrastructure

for fast flux

� MS got a bunch of new, tricky peer to peer protocols all

starting with Vista Windows distribution

� Some of them are dealing with the IPv6 migration

� Like Teredo� Like Teredo

� Others with new link-local and P2P node discovery or

service distribution

� The “Bonjour-killer” PNRP for example

PNRP – Peer Name Resolution

Protocol

� Distributed name resolution protocol

� Provides dynamic “peer name” publication and resolution

� _requires IPv6_

� Enabled by default on WinVista (+ somehow in XP SP3)

� Two flavors of names

� Secure names -> PUBKEYHASH.NAME

� Keypair is generater on the fly (the first time only)

� Used for signing the registration request

� Unsecure names -> 0.NAME

� Can easily be spoofed

PNRP

“PNRP is, by my definition, a truly peer-to-peer protocol.

There is no central state server, no central registration

server. If you publish a peer name registration globally

through PNRP, you do not need to have a single central

server on which to place that record.” – MSDN

� No mandate for a central host.

� Companies can run own PNRP servers.

� Currently the main centralized (“internet scale”) PNRP

servers are operated by Microsoft itself.

PNRP

� It is amazingly fast to register a name.

� At that point fast flux ideas are coming into play.

PNRP – fast flux

� Bots have a shared salt.

� The botmaster uses PNRP to register an hostname.

This hostname is a hash of:

� The shared salt

� The system-time (updated in a 10 or 15 minute window, to get around

clock jitter and dispose of an update interval for fast-flux)clock jitter and dispose of an update interval for fast-flux)

� This hostname is calculated by all drones.

� It gets resolved via PNRP.

� It disappears after the interval timeout.

The naming logic

The naming logic

� Build a string based on:

� The entropy / shared secret of the bots and the master

� current date and time

� Make a hash of this string� Make a hash of this string

� Register the hash as the peername

PNRP – fast flux

PNRP - Demo

The source

� Written in C# with .NET Framework 3.5

� Available for Windows Vista and Server 2008

� Windows XP

� With the P2P network packet

� 80 lines of code for registration� 80 lines of code for registration

� 100 lines of code for resolving

� 70 lines of code for a simple echo service

PNRP – future improvements

� Extended payload
� Gets registered with your peer name

� Can fit up to 4K

� As your name it can get cryptographically signed

� Only transmitted if someone resolves your name

� _PERFECT_ approach for hidden communication� _PERFECT_ approach for hidden communication
channels within a fast-flux network.

� Can also be used to store + distribute payloads.

� -> PeerPnrpRegister() with the payload as
PEER_PNRP_REGISTRATION_INFO structure

Scared ?

Go watch your names:

netsh p2p pnrp cloud show names

And look out for ‘unseasonably formatted’ names ;-)

Project ET

Project ET

� ET is the codename for an internal research project and

environmental testing tool to build a hidden

communication to the “outside world”

(say, from within a company network).

� It can be used for elegant bot2master channel as well/� It can be used for elegant bot2master channel as well/

� ET really phones home :-)

The goals

� Get a bi-directional connection that works

� Trough firewalls

� Behind proxies

� Use the few open holes

� DNS lookup� DNS lookup

� Dedicated HTTP proxies

� Runs on (almost) every Windows box.

The source

� Written in C# with .NET Framework 2.0.

� Distributed in two parts, the server and the client

component.

� Not in a fully productive state, yet.

The client

� Has a GUI to keep the user informed about the different

connection tests (if user should be informed ;-)

� Uses only high frequently used system calls which don’t

need special privileges (like raw sockets)

� E.g. the DNS communication only needs the

System.Net.Dns.GetHostEntry() .NET call.

The client

The server

� Implements a pseudo DNS and a HTTP Server

� Does not implement “real” DNS and HTTP functionality

but merely one endpoint of the communication flow.

� Includes a GUI to visualize the connected clients and � Includes a GUI to visualize the connected clients and

interact like

� send (cmd) commands

� collect system information

The server

The server

The DNS channel

� Nothing new. Everyone tunnels everything through DNS ;-)

� Still possible, even in LARGE company networks.

� Your way home is to resolve a hostname like

DEADBEEF.test.ernw.de

� The server component needs to be registered as the name � The server component needs to be registered as the name

server for the appropriate sub domain (test.ernw.de in this

example).

� Data is hidden in the hostname (DEADBEEF),

� The server gets your data and answers your request.

The DNS channel

The DNS channel

� The way back into the company network is the answer

package of your server.

� The data is hidden in the address fields of the DNS answer � The data is hidden in the address fields of the DNS answer

package.

The DNS channel

The DNS channel

The DNS channel

� The code must take care of some details:

� Getting the requests in the right order

� Disallowing caching

� Don’t get packets larger than 512B otherwise TCP will be

used for transport (in our test-environment we actually used for transport (in our test-environment we actually

found a limitation around 24B user data per request).

The HTTP channel

� Works almost like the DNS channel

� Request some URL like

� www.ernw.de/test/DEADBEEF, encode the data in the URL or

� www.ernw.de/test.cgi?data=DEADBEEF, encode the data in the

parameterparameter

� The server answer will hold the data encoded in the html-

body

� Not yet implemented

Find the HTTP proxy

� Read Windows system configuration and Internet Explorer

proxy settings.

� Get (thanks .net) an instance of Internet Explorer object

and abuse cached proxy authentication credentials.and abuse cached proxy authentication credentials.

� Use a logged on user context to pass proxy NTLM auth.

How to encode the data

� We use BASE64 encoding for HTTP and BASE32 encoding

for DNS because both are ASCII based.

� To transfer binary data we need to encode them to ASCII

data to avoid detection by application layer inspection.

Some problems left

� Both, DNS and HTTP, are user initiated protocols

� On DNS you need to resolve a hostname to receive data.

� On HTTP you need to request a webpage to receive data.

� -> Client needs to implement some polling mechanism to

check for data to receive.check for data to receive.

Project ET – Demo

Conclusions and outlook

� The next step is to improve the file transfer mechanism.

� When that’s done one can reflect on all sorts of evil botnet

functions like dynamic byte code distribution and

execution.

� Note: best way to detect this stuff are anomaly / statistics

based approaches (feed Netflow data into analysis).

Build botnets without OS compromise

� When deployment of client (bot) component not an option.

� Potentially no need for communication infrastructure.

� You have to (ab-)use flawed protocols

� Remember SNMP ;-)

� See also:

http://www.ernw.de/content/e7/e181/e671/download690/ER

NW_026_SNMP_HitB_Dubai_2007_ger.pdf

Well known SNMP vulnerabilities

� Communities are transmitted in clear text

� Communities have well-known defaults (“public“ for RO,

“private“ for RW)

� Protocol is UDP-based => packets may be spoofed

� Usually no logging of failed access attempts� Usually no logging of failed access attempts

� Corporate password change policies are rarely enforced

with SNMP community strings (“Don‘t touch them, we will

lose NW mgmt!“ ;-)

SNMPv3

� Nobody uses v3 (“Laziness“)

� v3 not fully supported by major NMS vendors (CWorks, HP-OV)

� Why?

- V3 completely different architecture

- Design weaknesses in v3

- e.g. Configuration must not be visible

=> is not displayed in “sh run“=> is not displayed in “sh run“

=> repository tools/version diffs won‘t work for this

� Security-wise SNMPv3 strongly recommended since many years

� But suffers own problems, see next slide(

The SNMPv3 bug

Scanning the internet, some statistics (2007)

� Of 240.000 alive addresses...

� ~ 16.000 with SNMP “public“ (one out of 15 !!!)

� ~ 700 with SNMP “private“ (3 out of 1000)

� => in 350 million alive nodes approx 1.000.000 privates

� There are big regional differences:

RIPE

ARIN

APNIC

LACNIC

Findings from Operator Space

dmende@ws23$ grep private results.txt | grep

extremenetworks | wc -l

462

Mainly:

� Summit48si� Summit48si

� Alpine 3804

dmende@ws23$ grep private results.txt | grep

Alpine | wc -l

83

So here are your bots (

(and here are even more !!!

(D)DoS

� Amplification Attacks (remember “Smurf“?)

� Steps needed:

- compile list of devices (will even be fast enough without due to UDP)

- write some long strings to chosen places (e.g. sysContact)

- perform snmpbulkwalk on these places

- spoof source address of this operation with victim‘s IP

� Bytes needed for “command+control“ packet: approx. 60 bytes

� Bytes sent back (in some tests): up to 1500

� => with one 2 MBit (upstream) line, 50 MBit of victim can be saturated

� Probably even much better ratios possible

=> more research needed.

Amplification Attack – SNMP

Scenario: SET command

Victim – e.g. Router

Attacker
SNMP-write enabled network devices

Amplification Attack – SNMP

Scenario: spoofed GET request

60bytes request packet

with spoofed source

address

S S

S S

S S

SNMP GET request

Spoofed with address

of the victim

Victim – e.g. Router

Attacker
SNMP-write enabled network devices

S S

S S

S = up to 1500 bytes answer payload

Amplification Attack – SNMP

Scenario: flood of GET responses

Victim gets flooded by

the responses,

up to 1500 bytes (MTU)

Answer bytes, per box!

S S

S S

S S

Victim – e.g. Router

S SNMP GET responses

Attacker
SNMP-write enabled network devices

S S

S S

S = 1500 bytes answer payload

A tool for PoC: snmpattack.pl

usage: snmpattack.pl [-FhIlrv] [-A type] [-c comm1,comm2] [-C tftp] [-f target] [-s type]
[-l delimiter] {ip/range | input file}

-A type : Do APC specific attacks (type: 1 = allON, 3 = allOFF, 4 = allREBOOT)

-c comm : Add communities to check for (comma separated)

-C tftp : Do Cisco specific attacks and specify a tftp server for config upload

-f target : Switch to flood-mode

-F : Don't ask for involving flood-hosts. Start them all.

-h : Print this help

-I : Do InnoMedia specific attacks

-l : Parse IPs from file, seperatet with the given delimiter

-p port : The port for tcp syn scan (default = 80)-p port : The port for tcp syn scan (default = 80)

-r : Test for RO / RW community

-s type : Scans the given ip/range (type: snmp, icmp, syn | default = snmp)

-t num : Count of parallel scans (default = 10)

-v : Be verbose

scan and attack all found devices:

snmpattack.pl -I 10.0.0.0/24

scan and use all founds as relay hosts:

snmpattack.pl -s syn -p 21 -v -f 1.2.3.4 10.0.0.0/24

http://www.ernw.de/download/snmpattack.pl

Summary

� There are quite some protocols that can be used in a way probably not

intended by their designers.

� Some of these protocols are present from the early days of the

internet and have been designed without too much security in mind.

� You should know and understand those mechanisms.

� Many functions of traditional botnets might be performed more � Many functions of traditional botnets might be performed more

efficiently with novel approaches.

� So, again, the mitigating controls have to be adapted.

� At tomorrow’s sunrise all the code shown will be available at:

www.ernw.de/download/shmoobots.tar

Questions?

We want to thank (

� / Dominick Baier, for pushing us onto PNRP

� / the ShmooCon staff for inviting us

� / and, for sure, all of you for listening to us

Thanks for your attention!

