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Keep me away from the wisdom

which does not cry,
the philosophy which does not laugh,

and the greatness

which does not bow before children ...

KuaALIL GIBRAN
Handful of Beach Sand

Preface

This textbook is an introduction to theoretical computer science with a focus
on the development of its algorithmic concepts. It is based on a substantially
extended translation of the German textbook “Algorithmische Konzepte der
Informatik” written for the first introductory course to theoretical fundamen-
tals of computer science at the University of Aachen. The topics have been
chosen to strike a balance between classical fundamentals related to automata,
computability, and NP-completeness and modern topics such as approxima-
tion algorithms, randomization, cryptography, and interconnection networks.
In contrast to the technical and applied areas of computer science, theo-
retical computer science is strongly related to fundamental questions about
the existence of algorithmic solutions, physical limits of computing, method-
ology of algorithm design, etc. Since these topics are strongly connected with
mathematics and not always directly related to applications, students often
consider theoretical computer science too difficult and not motivating enough.
The main goal of this book is to change this negative opinion on the theory.
Theoretical computer science is a fascinating scientific discipline. Through its
spectacular, deep results and high interdisciplinarity, it has made great con-
tributions to our view of the world. On the other hand, there is no doubt
about its relevance to practice. It provides methodology as well as particular
concepts and techniques that can be applied throughout the entire process
of design, implementation, and analysis of software systems. Moreover, with-
out the know-how of theoretical fundamentals many everyday applications of
enormous economic importance (such as E-commerce) would be impossible.
The right choice of topics and related motivations is not the only effort
we make to stimulate the reader’s interest for theoretical computer science.
Despite the fact that there is no easy way to develop a deep understanding
and mastery of methods that have significant and impressive applications,
we try to provide an easy route into the fundamentals of computer science,
and show that matters strongly related to mathematical rigor can be readily
accessible even for beginners. Simplicity and transparency are the main edu-
cational features of this book. All ideas, concepts, analysis, and proofs are first
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explained in an informal way in order to build t}.le right intuition. Theﬁ/ are
then carefully specified in rigorous detail. Fpllowmg this strategy we ct oosl,e
to illustrate the main concepts and ideas using the most. transparentl,) sxmpte
examples rather than to present the best, but too tech.mca.d res-ults. ] resent-
ing the main concepts of the theory in the order of t.helr' h}sto_ncal d1shc.ox{{e'ry,
we aim to teach the development of the computer scientist’s kind of thinking
days to the present. ‘
frOIil vt};?llfiafillz,e tob;xpress nfy deepest thanks to Dirk Bongartz, Hans-J F)achlm
Béckenhauer, Alexander Ferrein, and Yvonne Moh for care'fully reading t'hei
whole manuscript and their numerous comments and suggestions. Ve.ry sp:m}z:
thanks go to Yvonne Moh for her help during the whole prep_aratm;n} ok d e
English manuscript. I am also indebted to Volker Claus, Gahr%a .]1ra,lsk ova,
Bagdat El Abdouni Khayari, Georg Schnitger, Karol Taul:.)er, Erich Va em}zla,,
and Manuel Wahle for various comments and support during the work on the
booi{;vould like to cordially thank Ingrid Zémeénikové for }{er illustrations, the
only perfect part of this book. The excellent cooperation with Alfred Hofmel),)nr;
and Ingeborg Mayer from Springer-Verlag is gratefully ackn.owledged‘ Last U
not least I would like to express my deepest thanks to Tanja for her collection

of citations.

Aachen,

September 2003 Juraj Hromkovi¢
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When you want to build a ship, N p
then do not drum the men together
in order to procure wood, 7
to give instructions or to distribute the work ~
but teach them longing for the wide endless sea.
A. de Saint-Exupéry
1
Introduction o ,___-—;v_ & L
Al — S~

1.1 What Is Computer Science?

Computer science and informatics are the most common terms used to name
the science, to whose fundamentals this textbook is devoted. Everybody study-
ing or practicing this scientific discipline should now and then think about how
one would define computer science, and contemplate its contributions to sci-
ence, education and daily life. It is important to realize that learning more
and more about a scientific discipline and going deeper and deeper into the
understanding of its nature always results in the development of our opinion
on the role of this particular science in the context of all sciences. Hence, it
is especially important for students to consistently review their perception of
computer science. Here, we do not hesitate to provoke a conflict between your
current opinion of computer science and the viewpoints presented in this in-
troduction and so to initialize a discussion that could lead to the development
of your understanding of informatics.
Let us first attempt to answer the question

“What is computer science?”

It is difficult to provide an exact and complete definition of a scientific disci-
pline. A commonly accepted definition is:

Computer science is the science of algorithmic processing, repre-
sentation, storage and transmission of information.

This definition presents information and algorithm as the main objects
investigated in computer science. However, it neglects to properly reveal the

nature and methodology of computer science. Another question regarding the
substance of computer science is

“To which scientific discipline does computer science belong? Is it
a meta science such as mathematics and philosophy, a natural science
or an engineering discipline?”
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An answer to this question serves not only to clarify the objects of .the
investigation, it also must be determined by the methodology and COIltrlbtl)l—
tions of computer science. The answer is that computer s'c1encej cannot be
uniquely assigned to any of these disciplines. Computer science }ncludes asli
pects of mathematics, and natural sciences as well as of engineering. We wi

briefly explain why. . : :
Si}r,nilar to philosophy and mathematics, computer science investigates gen-

eral categories such as

determinism, nondeterminism, randomness, information, truth,
untruth, complezity, language, proof, knowledge, communication, ap-
prozimation, algorithm, simulation, etc.

and contributes to the understanding of these categories. Computer scier.lce
has shed new light on and brought new meaning to many of t.hese catfagorles.

A natural science, in contrast to philosophy and mathematics, studies con-
crete natural objects and processes, determines the border between possible
and impossible and investigates quantitative rules of n.atural processes. It
models, analyzes, and confirms the credibility of hyp'othesmed mode'ls through
experiments. These aspects are similarly prevalent in computer science. T‘he
objects are information and algorithms (programs, Comp.uters) and the in-
vestigated processes are the physically existing computa‘mgms. Let. us '?ry to
document this by looking at the development of computer science. Hlstonca.lly,
the first important research question in computer science was the following

one with philosophical roots.

“Are there well-defined problems that cannot be automatically (by
a computer, regardless of the computational powers of contemporary
computers or futuristic ones) solved?”

Efforts to answer this question led to the founding of computer science as
an independent science. The answer to this question is positive. We are now
aware of many practical problems that we would like to solve al.gorlthmlcally,
but which are not algorithmically solvable. This conclusion is based on a
sound mathematical proof of algorithmic nonsolvability (i.e., on a proof of
the nonexistence of algorithms solving the given problem), and not on the
fact that no algorithmic solution has been discovered so far. :

After developing methods for classifying problems according to their algo-
rithmic solvability, one asks the following scientific question:

“How difficult are concrete algorithmic problems 27

This difficulty is not measured in the difficulty of developing an a%gorithrm.c
solution, or in the size of the designed program. Rather, this dl_fﬁcul‘ty is
measured in the amount of work necessary and sufficient to algorlthr‘mcally
compute the solution for a given problem instance. One learns of the e?clstence
of hard problems, for which computing solutions needs energy exceeding that
of the entire universe. There are algorithmically solvable problems such that

1.1 vvilatl 15 LUOIIIpuLer oscience:’

the execution of any program solving them would require more time than
has passed since the Big Bang. Hence the mere existence of a program for a
particular problem is not an indication that this problem is solvable within
practical limits.

Efforts to classify problems into practically solvable (tractable) and practi-
cally insolvable led to the most fascinating scientific discoveries of theoretical
computer science.

As an example, let us consider randomized algorithms. Most programs
(algorithms), as we know them, are deterministic. By deterministic, we mean
that the program and the input completely determine all steps of the work
on the problem. At every moment, the next action of the program is un-
ambiguously determined and depends only on the current data. Randomized
programs may have several options for the next action. Which option is taken
is randomly chosen. The work of a randomized algorithm may be viewed as
if the algorithm tosses a coin from time to time to determine its next action,
i.e., to choose the next strategy in its search for the correct answer. Hence,
a randomized program can have many different computations for an input.
In contrast to deterministic programs that reliably deliver the right solution
for any input, randomized programs may give erroneous results. The aim is
to suppress the probability of such false computations, which under some
circumstances means to decrease the proportion of false computations.

At first sight, randomized programs may seem unreliable, as opposed to
their deterministic counterparts. Why then the necessity for randomized pro-
grams? There are important problems whose solution by the best known de-
terministic algorithm require more computer work than one can realistically
execute. Such problems appear to be practically insolvable. But a miracle can
happen: this miracle can be a randomized algorithm that solves the problem
within minutes, with a miniscule error probability of one in a trillion. Can one
ban such a program as unreliable? A deterministic program that requires a
day’s computer work is more unreliable than a randomized program running
in a few minutes, because the probability that a hardware error occurs during
this 24 hours of computation is much higher than the error probability of the
fast randomized program. A concrete example of utmost practical significance
is primality testing. In the ubiquitous use of cryptographic public-key proto-
cols, huge prime numbers (approximately 500 digits long) must be generated.
The first deterministic algorithms for primality testing were based on test-
ing the divisibility of the input n. Alone, the number of primes smaller than
v/n for such huge values of n exceeds the number of protons in the universe.
Hence, such deterministic algorithms are practically useless. Recently, a new
deterministic algorithm for primality testing running in time O(m!2) for n
of binary length m was developed. But it needs to execute more than 1032
computer instructions in order to test a 500-digit number and so the amount

of time since the Big Bang is not sufficient to execute such a computation
on the fastest computers. However, there are several randomized algorithms
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that test primality of such large numbers within minutes or even seconds on
p reiilrlll(?trhle:’rcs'pectacular example is a commun?cation p.rotocol for comparll-
son of the contents of two databases, stored. in .two dlstanfc cqmputers. tl
is mathematically provable that every deterministic communication pro‘toco
that tests the equivalence of these contents, nfaeds t;)sex'chang.e as many bits as
those within the databases. For a database with 10'¢ bits, this vx.rould prove to
be tedious. A randomized communication protocol can .test thlS. equlvglelnce
using a message of merely 2000 bits. The error probability of this test is less
in a trillion. ;
tharlllgilzeilsnt?lis possible? It is difficult to explain this withc?ut some basic
knowledge of computer science. The search f'or t}le explanation l?ehmd ‘?he
strengths of randomized algorithms is a fascmatm.g research project, going
into the deepest fundamentals of mathematics, philosophy, and na‘.cural sci-
ences. Nature is our best teacher, and randomness plays a larger role in nature
than one would believe. Computer scientists can cite many systen.ls where tllle
required characteristics and behaviors of such systems are achlevabk? only
through the concept of randomization. In such examples, every deterministic
reliable system is made up of billions of subsystems, and these subsystems
must interact correctly. Such a complex system, highly dependent on numer-
ous subcomponents, is not practical. In the case that an error occurs, }t would
be almost impossible to detect it. Needless to say, the costs of developing such
a system is also astronomical. On the other hand, one can d.evelop srpall ran};
domized systems with the required behavior. Because of their s.rnall size, suc
systems are inexpensive and the work of their components 1s easﬂj'y V(?rlﬁ-
able. And the crucial point is that the probability of a wrong behavior is so
miniscule that it is negligible. . . ;
Despite its above-illustrated scientific aspects, c.om_puter science is a t_ypl—
cal problem-oriented and practical engineering discipline for many sc'lentlsts.
Computer science not only includes the technical aspects of engineering such
as:

organization of development processes (phases, .milestones', docu-
mentation), formulation of strategic goals and limits, '.mod'elmg, de—
scription, specification, quality assurance, tests, integration into exist-
ing systems, reuse, and tool support,

it also encompasses the management aspects such as:

team organization and team leadership, costs estimation, planning,
productivity, quality management, estimation of time plan§ and dead-
lines, product release, contractual obligations, and marketing.

A computer scientist should also be a true pragmatic practitioner. When
constructing complex software or hardware systems, one must often make qe—
cisions based on one’s experience, because one does not have any opportunity
to model and analyze the highly complex reality.

4.4 A Lastlllabilly 1 HCOLY

Considering our definition of computer science, one may get the impression
that the study of computer science is too difficult. One needs mathematical
knowledge as well as the understanding of the way of thinking in natural sci-
ences, and on top of that, to be able to work like an engineer. This may really
be a strong requirement, but it is also the greatest advantage of this educa-
tion. The main drawback of current science is in its overspecialization, which
leads to an independent development of small subdisciplines. Each branch
has developed its own language, often incomprehensible even for researchers
in a related field. It has gone so far that the standard way of arguing in one
branch is perceived as superficial and inadmissible in another branch. This
slows down the development of interdisciplinary research. Computer science
is interdisciplinary at heart. It is focused on the search for solutions for prob-
lems in all areas of sciences and in everyday life, wherever the use of computers
is imaginable. While doing so, it employs a wide spectrum of methods, ranging
from precise formal mathematical methods to experience-based “know-how”
of engineering. The opportunity to concurrently learn the different languages
of different areas and the different ways of thinking, all in one discipline, is
the most precious gift conferred on a computer science student.

1.2 A Fascinating Theory

This book is devoted to an elementary introduction to the fundamentals of
theoretical computer science. Theoretical computer science is a fascinating sci-
entific discipline. Through its spectacular results and high interdisciplinarity,
it has made great contributions to our view of the world. However, theoretical
computer science is not the favorite subject of students, as statistics would
confirm. Many students even view theoretical computer science as a hurdle
that one has to overcome in order to graduate. There are several reasons for
this widespread opinion. One reason is that amongst all areas of computer
science, theoretical computer science is the mathematically most demanding
part and hence the lectures on theoretical fundamentals belong to the hardest
courses in computer science. Not to forget, many computer science students
start their study with a wrong impression of computer science, and many
lecturers of theoretical computer science do not present their courses in a suf-
ficiently attractive way. Excessive pressure for precise representation of the
minute technical details of mathematical proofs plus a lack of motivation, a
lack of relevance, a lack of informal development of ideas within the proper
framework and a lack of direct implementation and usage, can ruin the image
of any fascinating field of science.

In our previous depiction of computer science as a science with many
faces, we have already indirectly brought attention to the importance of their
theoretical fundamentals. Because there are several important reasons for the

indispensability of theoretical fundamentals in the study of computer science,
we would like to list them in what follows.
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Philosophical depth
Theoretical computer science explores knowledge and develops new con-

cepts and notions that influence science in its very core. The'oretical com-

puter science gives partial or complete answers to philosophical questions

such as: : :

o Are there problems that are not automatically (algorlthrl}lcally) s.o.lv-
able? If so, where does the boundary lie between automatic solvability
and automatic insolvability?

e Are nondeterministic and randomized processes capable of what de-
terministic processes are incapable? Is nondeterminism and random-
ization better (more efficient) than determinism?

How does one define the difficulty (hardness) of problems?

e Where are the limits of “practical” algorithmic solvability? !
What is a mathematical proof? Is it more difficult to find mat'hema,tmal
proofs algorithmically than to verify the correctness of a given proof
algorithmically?

e How to define a random object?

It is important to note that many of these questions cannot be propf:rly

formulated without the formal concepts of algorithm and computa.tlon.

Thus, theoretical computer science has enriched the language of science

through these new terms, contributing to its development. Many known

basic categories of science, such as determinism, c.hance, and nonfieter-
minism have gained new meanings, and through this, our general view of
the world has been influenced.

. Applicability and spectacular results

Theoretical computer science is relevant to practice. On one hafnd, it pro-
vides methodological insights that influence our first strategl‘c dec1§1on
over the processing of algorithmic problems. On the o.ther hagd, it provides
particular concepts and methods that can be appl}ed during the whole
process of design and implementation. Moreover, without .the'knowledge
and concepts of theoretical computer science many apphcatlons would
be impossible. Besides the concept of randomized algorlthrr{s (as alrez_idy
mentioned), there are many other “miracles” that were born in theoretical
computer science. . :
There are difficult optimization problems for which a simple relaxation
of their constraints and requirements decreases the hardness of the prob-
lem so much that this decrease corresponds to a gigantic leap from an
unrealistic computational demand to that of a few minutes. Often, this
relaxation is so small that it is practically negligible.

Do you believe that it is possible to convince somebO(.iy of tl41e know.ledge
of a secret (password), without having to reveal a single bit of Fhls se-
cret? Do you believe that two persons can determine who of ?;hem is older
without revealing their ages to the other party? Do you behev.e that one
can almost with certainty check the correctness of mathematical proofs

1.2 A FaSCinating lLneory

of several thousand pages, without reading it, only by looking at a few
randomly chosen bits of them? All these things are possible. This not only
shows that, thanks to theory, things are made possible though previously
they were believed to be impossible, it also shows that research in theo-
retical computer science is exciting and full of surprises, and so one can
be inspired and enthused by theoretical computer science.

. Lifespan of knowledge

Through the rapid development of technology, the world of applied com-
puter science continuously evolves. Half of the existing information about
software and hardware products is obsolete after 5 years. Hence, an educa-
tion that is disproportionately devoted to system information and current
technologies, does not provide appropriate job prospects. Whereas the
concepts and methodology in theoretical computer science have a longer
average lifespan of several decades. Such knowledge will serve its owner
well for a long period of time.

. Interdisciplinary orientation

Theoretical computer science is interdisciplinary in its own right and can
take part in many exciting frontiers of research and development — genome
projects, medical diagnostics, optimization in all areas of economy and
technical sciences, automatic speech recognition, and space exploration,
just to name a few.

As much as computer science contributes to all other fields, it also benefits
from the contributions from other fields. The study of computations on
the level of elementary particles, whose behavior follows the rules of quan-
tum mechanics, focuses on the efficient execution of computations in the
microworld whose execution in the macroworld has failed. The theoretical
model of a quantum computer already exists, but its implementation is
a huge challenge to physicists. Currently, nobody can overview all conse-
quences of a successful construction of quantum computers. Independent
of the success of this project, the rules of the microworld are so surpris-
ing and counterintuitive for those who have gained their experience in
the macroworld, that one expects many more “miracles” from the use
of quantum theory. It is already obvious today that reliable and secure
communication exists in the microworld, since every attempt to learn the
message submitted will be detected and warded off by the sender. Another
exciting area is computing with DNA molecules. DNA molecules are infor-
mation carriers, and hence, it is not surprising that one can exploit them
for information storage and transmission. Today, we are aware that DNA
molecules are capable of imitating the work of electronic computers. This
is not only theoretically obvious, several simulations of computations by
chemical operations over DNA molecules have been performed in labora-
tories. One cannot exclude the emergence of DNA molecular computers,
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where a few DNA molecules can take over the work of an electronic com-

puter.

of thinkin, '
¥ l\v/[I/:i?,/he{naticiang attribute the special role mathematics play ir} e(.iucafjlon
through development, enrichment and shaping the way ?f thmklng., ie.,
through contributing to the general development of one’s personality. If
this contribution by mathematics is so highly regarded, then one must a.lso
acknowledge the importance of computer science for the general education
and the enrichment of the way of thinking. ;
Theoretical computer science encourages creating and analyzing mathe-
matical models of real systems and searching for concepts and m'ethods‘ to
solve concrete problems. Remember that precisely understanding wh%ch
features of a real system are exactly captured by one’s model and '_whlch
characteristics are only approximated or even neglected is the main as-
sumption for a success in science and engineering. Because qf this, theo-
retical computer science calls attention to teaching the evolution of math-
ematical concepts and models in a strong relation to rgal problems. Th}ls,
studying computer science, one has the chance of learning how to combine
theoretical knowledge with practical experience and so to develop a way of
thinking that is powerful enough to attack complex real-world problems.

1.3 To the Student

This book has been written primarily for you. The aim of this book is not
only to introduce some basic concepts of computer science, ?t also attempts
to inspire. We leave it to you to decide how successful we are in our e.ndeavor.

In the first sections of this chapter we have attempted to convince you
that computer science is a fascinating science, full of fun, exc.itement, z.md
joy. As a proof that there are people who truly enjoy the work in theoretical
computer science, I would like to quote one of my friends from various lectures
and research seminars.

“And if, after our pressure, this stupid error probability still hesitates
to go below 0.5, then we will consider other levers. It will deeply re-
pent for having the courage to steal into my model.”

“Today, we have forced an € to its knees. Let me tell you, this was a
high pressure steam. First, we set an approximation on it. It nervously
twitched, but unfortunately only a bit. And then the heavy blows of
a semidefinite matrix made it impassive. It was wonderful!”

“You say it! No stingy, around knocking A will profane our p without
paying for it. We will dress it down pretty well. It will never under-
stand how this happened to it.”

1.0 10 the Student o

Do you consider such emotions for a rigorous topic too excessive? Person-
ally, I do not. It is great fun to participate in such lectures where one realizes
immediately the difficulties one has to surmount. Passion is the main driving
force behind education and research. Once you have developed a passion for
a topic, you have already won half the race. If you have not found a passion
till now, it is high time to start looking. Should this search come to a dead
end, then it would be appropriate to extend your search to other scientific
disciplines or activities beyond computer science.

This textbook is devoted to some fundamental areas of theoretical com-
puter science. Why is the study of theoretical computer science considered
difficult? There is no easy way to the development of a deep understanding
and mastery of methods that have significant and impressive applications.
This should not come as a surprise. Should one hope to accomplish the 100
meter dash under 10 s, or jump over 8 m, one has to invest years of hard train-
ing. To achieve something exceptional, one has to put in exceptional effort.
The acquisition of knowledge is no exception. Perhaps you may even face more
resistance during this pursuit, because in contrast to sports your motivation
may falter as you lose sight of your aims.! It also demands endurance, espe-
cially readiness to repetitively explore every topic in order to gain a deeper
understanding for the interconnection between them for the context of the
whole theory.

This book seeks to facilitate the entry into some fundamental parts of
theoretical computer science. For this purpose we use the following three con-
cepts.

1. Simplicity and transparency

We will explain simple notions in simple terms. We avoid the use of unnec-
essary mathematical abstractions. Hence, we attempt to be as concrete as
possible. Through this, we build the introduction on elementary mathe-
matical knowledge. Presenting complicated arguments and proofs, we will
first explain the ideas in a simple and transparent way before providing
the formal proofs.

Sections marked with a “*” are more involved and technical. Undergrad-
uates are advised to skip these sections. The technical discussion of the
Turing machine in the computability section is also optional, since the
understanding of computability can be established on any programming
language.

Clarity takes priority over the presentation of the best known results.
When a transparent argument of a weaker result can bring across the
idea succinctly, then we will opt for it instead of presenting a strong but
technically demanding and confusing argument of the best known result.

1 Maybe, you even do not see your aims clearly at the beginning of the process of

learning.
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Throughout this book, we will work systematically, taking small st.eps to
journey from the simple through to the complicated. We will avoid any
interruptions in thoughts.

Less is sometimes more or a context-sensitive presentation

Many study guides and textbooks falsely assume that the first and fore-
most aim is the delivery of a quantum of information to the reaﬁdex:. He?lc.e
they often go down the wrong track: maximum knowledge w1th1n.m1m—
mum time, presented in minimal space. This haste usually results in ’Fhe
presentation of a great amount of individual results, and thus neglecting
the context of the entire course. : .

The philosophy behind this book is different. We would 11}<e to bl.llld ?:md
influence the student’s ways of thinking. We are interested in t.he historical
development of computer science concepts and ways of tbmkmg, and the
presentation of definitions, results, proofs, and methods is only a means
to the end. Hence, we are not overly concerned about the amount‘ of
information, preferring to sacrifice 10 to 20% of the teaching mater}al.
In return, we dedicate more time to the motivation, aims, con.nectlon
between practice and theoretical concepts, and especially to the 1nterf1al
context of the presented theory. We place special emphasis on the creation
of new terms. The notions and definitions do not appear out of the blue3 as
seemingly so in some lectures using the formal language of mathemat{cs.
The formally defined terms are always an approximation or an abstraction
of intuitive ideas. The formalization of these ideas enables us to make
accurate statements and conclusions about certain objects and event's.
They also allow for formal and direct argumentation. We strive to expl;'zm
our choice of the formalization of terms and models used and to point
out the limitations of their usage. To learn to work on the level of terr_ns
creation (basic definitions) is very important, because most of the essential
progress happens exactly on this level.

. Support of iterative teaching

The strategy of this book is also tailored to cultivate repetiti\.re reco.nsi(,i,-
eration of presented concepts. Every chapter opens with a section “A1m§ :
in which the motivations, teaching objectives, and relations to the topics
of previous chapters are presented. The core of the chapter is dedicated
to the formalization of informal ideas by theoretical concepts and to the
study within the framework of these concepts. At every essential develc?p—
ment, we will pinpoint its relevance to our aims. We end each chapter with
a short summary and an outlook. Here, the major highlights of the chapt(?r
are informally summarized and the relevance to other parts of theory is
once again reviewed. We also briefly mention some further developments-of
the presented theoretical concepts, survey more advanced results :'a,nd.dls—
cuss the gap between the achieved knowledge and the research ob J'ectlves.
As usual, the learning process is supported by exercises. The exercises are

1.4 Structure of the Book § 911

not moved to some special subsections but they are distributed in the text
with our recommendation to deal with them immediately after one has
reached them while reading this textbook. They serve to learn to success-
fully apply the presented concepts and methods as well as to deepen the
reader’s understanding of the material.

Our aim is not only to introduce to you the exciting world of computer sci-
ence, but also to offer a “simply applicable, context-sensitive ticket” into the
fundamentals of computer science. The simplicity of the presentation does
not imply that this book is not sufficiently rigorous, but that the matters
presented in this introductory material are presented so transparently that
you can absorb the knowledge of the book in an unusually short time. The
assumptions for a successful use of this ticket are minimal — some experience
with programming (equivalent to the course work of one semester) and some
basic mathematical knowledge. Standard course work such as Computer Ar-
chitectures, Algorithms and Data Structures are not necessary, although they
can be helpful for understanding of conceptual relationships.

1.4 Structure of the Book

This book is divided into nine chapters, counting this introduction. Chapter 2
serves as a springboard. Here, the formal language of computer science and the
ways of representing objects and problems are introduced. Any computation
of a computer can always be viewed as the transformation of a text into
another text, since we represent the input data and output data as texts.
Chapter 2 provides the fundamentals for working with texts and uses them to
develop a formal specification of algorithmic problems. Additionally, Chapter
2 contemplates the questions how one can measure the information content
of a text, and when a text can be considered to be random.

Chapter 3 introduces the finite automaton as the simplest computing
model. The aim is not to provide an introduction to automata theory. In-
stead, it is to prepare the reader for the complex definition of a formal model
of algorithms (programs). We use finite automata for a simple introduction
of the key terms of computer science, such as states and configurations of
computing model, computation, computation step, determinism, nondeter-
minism, descriptional complexity, and simulation. This helps to simplify the
understanding of these terms in the general framework of the Turing-machine
model discussed later.

Chapter 4 is devoted to the Turing machine, which is the formal model of
the intuitive notion algorithm. Since the technical behavior of Turing machines
mirrors that of programming in computer machine code, we will try to restrict
this section to the bare minimum required for understanding and dealing with
the above-mentioned basic terms.

Chapter 5 is an introduction to computability theory. Here we pose the
question
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“Which problems are algorithmically solvable and which are not?”
We present some methods that one can successfully apply for answering this
question for concrete problems of interest. Here, we work on two levels. The
first level performs the argumentation only by using an intuitive understand-
ing of the term program. The second level involves the formal proofs based
on the model of Turing machines.

Chapter 6 is an introduction to the complexity theory. The main questions

posed here are:

“How to measure the hardness of algorithmic problems?”

and
“Do there exist arbitrarily hard problems?”

The hardness of a computing problem is measured in its computational com-
plexity which is the amount of computer work sufficient and necessary for
solving the problem by an algorithm. First we present fundamental results
about complexity measures and complexity classes. Some of the proofs of
these results are too technical for an introductory material and so we omit
them. We learn here that there exist problems of such a high computational
complexity that the energy of the whole universe does not suffice to solve
them by an algorithm. The kernel of this chapter is the presentation of the NP-
completeness concept that can be viewed as a method for classifying problems
into “practically solvable” (tractable) and “practically unsolvable” problems.
This concept is based on the study of the relation between nondeterministic
and deterministic computations, one of the core research topics in theoretical
computer science. Any known deterministic simulation of a nondeterministic
algorithm requires an exponential increase of time complexity and one does
1ot believe that there exists an efficient simulation of nondeterminism by de-
terminism. Here, we provide an important argument for this belief, which
touches the philosophical fundamentals of mathematics. We show in some
framework that the complexity of solving a problem by a deterministic algo-
rithm corresponds to the complexity of creating a proof of a mathematical
theorem, while the complexity of solving a problem in a nondeterministic
way corresponds to the complexity of verifying the correctness of a given
mathematical proof. Hence, the question of whether nondeterminism is more
powerful than determinism is equivalent to the question of whether it is easier
to verify given proofs than to find them.

Chapter 7 presents some jewels of algorithmics.? This chapter is a contin-
uation of Chapter 6 and asks

“What can one do with difficult problems, for which the best algo-
rithms take years to solve?’

2 Here, we are not referring to parts of the lectures algorithm and data structures or
classical lectures on algorithms, but only to algorithm design for hard problems.
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We present here concepts such as the pseudopolynomial algorithm, local
search, approximation algorithms, and heuristics such as simulated annealing.
We will explain the methodology of these concepts, which are based on the fact
that a slight relaxation on the constraints can lead to an enormous leap from
unrealistic computational complexity of the original problem to a matter of a
few min.utes of computer work. For instance, if one relaxes the requirement of
computing an optimal solution of an optimization problem to the requirement
to compute a feasible solution whose quality does not differ too much from that
of an optimal solution, then one can substantially reduce the computational
complexity of the optimization problem considered.

In the case of randomized algorithms, as previously mentioned in Section
1.1, we relax the demand for guaranteeing the correct solution to compute one
that has a large probability of being correct. The concept of randomization
belongs undoubtedly to the basic concepts of algorithmics for hard problems
and from this point of view it should be a part of Chapter 7. However, since
it is of essential importance for many theoretical and practical core areas of
computer science, we dedicate an entire chapter to it. In Chapter 8, we shall
not limit ourselves to merely presenting some impressive examples of efficient
randomized algorithms (e.g. randomized primality testing). We, furthermore,
attempt to highlight some of the reasons leading to the success of randomized
algorithms. Within this framework, we introduce methods such as abundance
of witness and fingerprinting to illustrate the basic design paradigms of ran-
domized algorithms.

The final chapter concentrates on communication problems. Thanks to
the recent technological breakthroughs over the past years, we are now able
to transfer large amounts of data and information. Hence, the algorithmics to
solve communication problems has become a dynamic and flourishing part of
computer science. Chapter 9 first presents an overview of secure communica-
tion. We start with a few examples of cryptosystems and introduce the concept
of public-key cryptosystems. We use these concepts to show the forgery-safe
usage of signatures. We then present the concept of zero-knowledge proof sys-
tems, which plays an important role in cryptography. We conclude with the

design of an interconnection network to illustrate the problems in the area of
network communication.
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2

Alphabets, Word's, Languages, and Algorithmic
Problems

2.1 Objectives

Looking more carefully at machine computations we observe that computers
work on texts that are nothing more than sequences of symbols over a given
alphabet. The programs are texts over the alphabet of the computer key-
board, all data are saved in a computer as sequences of zeros and ones, inputs
and outputs are texts or can at least be represented as texts over a suitable
alphabet. From this point of view every program transforms input texts into
output texts.

The first aim of this chapter is to introduce a formalism that is suitable
for working with texts viewed as information representations. The basic terms
introduced here are alphabet, word, and language. These terms are ne-
cessary as a starting point for formally specifying the fundamental notions of
computer science such as algorithm (program), computer, computation, etc.
In Section 2.2 we learn to work with these basic terms, use them to represent
data, and practice some basic operations over texts.

The second aim of this chapter is to learn how to use the terms introduced,
and how they can be applied to get formal representations of algorithmic prob-
lems. Here we focus especially on two problem classes — decision problems
and optimization problems.

The third and last aim of this chapter is to deal with the questions related
to text compression. We introduce the notion of Kolmogorov complexity. This
notion can be used not only to define the shortest representation of texts
(data), but also to measure the amount of information in a text and to find
a reasonable definition of the notion of random text. This is a contribution
of computer science to science on the philosophical (very fundamental) level
because it reasonably explains when an object or an event can be declared
random. Another very important point is that Kolmogorov complexity is a
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powerful instrument for investigating computations and we will be using it
several times in the later chapters.

2.2 Alphabets, Words, and Languages

In information processing one represents data and objects by sequences of
symbols. Exactly in the same way as in the development of natural languages
we start by fixing the set of symbols used to represent data. In what follows
N = {0,1,2,...} denotes the set of natural numbers.

Definition 2.1. Any nonempty finite set is called an alphabet. Every ele-
ment of an alphabet X is called a symbol of X.

The meaning of an alphabet is the same as for natural languages. The
alphabet is applied to create a script (written representation of a language).
For our purposes it is only important to know that one can choose arbitrary,
but finitely many, symbols in order to create representations of the studied
objects.

In what follows we list some of the more frequently used alphabets.

Zhool = {0,1} is the Boolean alphabet used in computers.
Dias = {a,b,¢c,...,z} is the Latin alphabet.
D coyboard = ilat U A B T < G 1B the alphabet of all
symbols of the computer keyboard, where u denotes the blank.

B —10,1,2,...,m — 1} for'any m 2 115 an alphabet for the m-ary
representation of numbers.

S 0,15, (), 0V, 5 19 an alphabet that can be used to represent
Boolean formulae.

In what follows we define words as sequences of symbols. In contrast to
natural languages, where a word is a verbal unit of a language, a word in
computer-science terminology corresponds to an arbitrary text.

Definition 2.2. Let X be an alphabet. A word over X is any finite sequence
of symbols of . The empty word A is the only word consisting of zero
symbols® .

The length of a word w over X, denoted by |w], is the number of symbols
in w (i.e., the length of w as a sequence).

The set of all words over X is denoted by X™. X+ = 3* — {\} denotes
the set of words without the empty word.

The sequence 0,1,0,0,1, 1is a word over the alphabets Dbool and Yyeyboard-
The length of this word is |0,1,0,0,1,1| = 6. The empty word )\ is a word
over every alphabet and |A| = 0.

! In some literature, € is used in place of A.
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Agreement. In what follows we omit the commas in the representations of
words, i.e, we write

DiTrtiey, insteadiof 23} 2o .0, T

Thus we use 010011 to represent 0,1,0,0,1, 1.
The symbol blank |, over Zyeyboard is different from A because | is a symbol

of Zxeyboard, and hence || = 1. Using |, the content of a book or a program
can be considered as a word over Zyeyboard-

(Zboot)™ = {A,0,1,00,01, 10, 11,000,001, 010, 100,011, .. .}
= {/\}U{Il.’ljg...:vi lie]N, IS D oonidor gi= 1,...,i}.
From the above example we see that a possibility of enumerating all words

over a given alphabet is to write all words of lengths 7 = 0,1,2,..., one after
the other.

Exercise 2.3. Let X be an alphabet. Estimate, for every i € IN, how many
words over X of length 7 exist.

Exercise 2.4. Let ¥ = {0,1,#}, and let k and n be positive integers, such
that k < n.

(i) Estimate the number of words of length n that contain exactly k occur-
rences of the symbol 0.

(ii) Estimate the number of words of length n that contain at most k occur-
rences of the symbol 0.

Words can be used to represent different objects such as numbers, formu-
lae, graphs, and programs. A word

Ti= 2120 o T € (Dnosl ) Fimi € T for i=1,...,n

can be viewed as the binary representation of the nonnegative integer

Number(z) = 22"4 gy

=1
For any nonnegative integer m, we denote by
Bin(m) € Xy .01
the shortest binary? representation of m. Hence,

Number(Bin(m)) = m.

2 . . 5
The requirement, that Bin(m) is the shortest representation of

Nymber(Bin(m)) = m, means nothing more than that the first symbol of
Bin(m) must be 1.
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Exercise 2.5. The binary representation of every positive integer m begins
with 1. What is the length of Bin(m) for a positive integer m?

Exercise 2.6. Let z € (Z,)" for a positive integer m. Let « be the m-ary
representation of a nonnegative integer Number,,(z). How does one compute

Numbery,(z) from z?

A sequence of integers a1,a2,...,0m, with m € IN and a; € IN for ¢ =
1,...,m, can be represented as

Bin(ay)#Bin(a)# - - - #Bin(am) € {0, 1, #}".

In what follows we usually use this representation for sets and sequences
of integers. ;

Let G = (V, E) be a directed graph with the set V' of vertices an(.i the set
E C {(u,v) | u,v € V, u # v} of edges. Let |[V| = n be the cardinality of V.
Recall that one can represent G by its adjacency matrix Mg. The Boolean
matrix Mg = [a;;] has the size n X n and

aij; = iR — (Ui,Uj) € E.

Hence, a;; = 1 means that G has an edge (vi,v;) from v; to v; and a;j =0
means that there is no edge leading from v; to v; in G. A Boolean matrix
M can be represented as a word over the alphabet {0,1, #} as follows. One
writes the rows of M one after another and the symbol # is used to mark the
end of every row. Consider the graph in Figure 2.1.

v
v1 2

V3 V4

Fig. 2.1.

The corresponding adjacency matrix is

0F 0241
QIO
0 IOk
0000

The proposed representation of this matrix is the word (over {0,1,#})

0011#0011#0101#0000% .
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It is obvious that this representation is unambiguous, meaning that given a

graph representation,?® one can unambiguously reconstruct the corresponding
graph.

Exercise 2.7. The proposed representation of a graph as a word over {0,1,#}
has the length n(n + 1) for any graph of n vertices. Can you design a shorter
(and different) unambiguous representation of graphs?

Exercise 2.8. Design a representation of graphs over the alphabet 01

The inputs of many algorithmic problems are often weighted, undirected
graphs G = (V, E, h) where h is a function from E to IN — {0}. This means
that a weight (cost) h(e) is assigned to every edge e € E. We know that such
graphs can also be represented by adjacency matrices. Analogously a;; =0
implies that the edge! {v;,v;} is not present in G. If {v;,v,;} € E, then the
matrix element

aij = h({vi,v;}),
is the weight of the edge {v;,v;}.

Fig. 2.2.

In this case one can take the binary representations of the weights aij =
h({vi,v;}) and separate them by the symbol #. To mark the end of a row
of the adjacency matrix one can choose to use the word ##. The resulting
adjacency matrix of the graph in Figure 2.2 is

07061
70110
01060
61605
10050

® In what follows the term representation is always connected with unambiguity.
* The undirected edge between u and v is denoted by {u,v}. For the directed edge
from u to v we use the usual notation (u,v).
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and its representation as a word over {0,1,#} is

04111404 1104 1## 111404 110 404 1404 1104 0# #1107+ 17#110#

0# 1014 # 140404 101#0.
For the adjacency matrix Mg = [as;] of any undirected graph G we have
obviously a;; = aj for all i,j. This implies a redundancy in the above-

proposed representation of G' because all edges are recorded twice. Therefore
it is sufficient to consider only the elements above the main diagonal of Mg.
The resulting representation of G over {0,1,#} is

111#0# 1104144141404 # 1104044 101.

The last example that we consider here is the representation of Boolean
formulae over the Boolean operators negation (—), disjunction (V) and con-
junction (A). In what follows we denote Boolean variables in formulae by
Z1,T2,T3,.... The number of possible variables is infinite, therefore we can-
not use the symbols z, s, T3, ... as symbols of the alphabet. Instead we use
the alphabet

Diogic = {0, TS ATV —1}

to code the Boolean variable z; as the word
zBin(i)
for all i € IN — {0}. All other symbols of the formula are projected one to one
to its representation. Therefore, the formula
(z1 V 27) A ~(212) A (T4 V 28 V 2(22))
has the following representation
(z1V £111) A =(21100) A (100 V £1000 V —(210)).
A useful operation over words is the simple concatenation of two words.

Definition 2.9. Let X be an alphabet. A concatenation with respect to X
is the mapping K : X* x X* — X* given by

K(w,y) =L ==
for all xz,y € X*.

Let z = Oaalbb and y = 111b for ¥ = {0,1,a,b}. Then K(z,y) =z -y =
0aalbbl11d.

Remark 2.10. The concatenation K for X is an associative operation over L™,
because

Ku,Kv,w)) =u-(v-w) =vww=(u-v) w= K(K(u,v),w)
for all u,v,w € X*. Furthermore, for every z € X*:
T RN =S —

Therefore (X*, K, \) is a monoid with the neutral element A.
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Clearly, the concatenation is commutative only for alphabets of cardinality
i

Remark 2.11. For all z,y € X*,

lzy| = |z - y| = |=| + |y].

In what follows we prefer the notation zy over the notations K (z,y) and

Deﬁpition 2.12. Let X be an alphabet. For all x € X* and all positive inte-
gers i, we define the i-th iteration = of x as

gt = ert

where z° = ).
Thus, for instance, K (aabba, aaaaa) = aabbaaaaaa = a?b*a® = a®b?(aa)’.

We see that the above-introduced notation allows us to find a shorter repre-
sentation of some words.

In what follows we define subwords of a word = as connected parts of z.

lab... [pb...clac...b] ab...5b...a] a...b[bb...ab

) ST S, e,
subword prefix suffix
Fig. 2.3.

Definition 2.13. Let v,w € X* for an alphabet X.

v is a subword of w < 3Jz,y € X* : w = zvy.

v is a suffix of w & Ir e X*: w = zv.

v is a prefix of w & Jy € T* 1w = vy.

v # X is a proper subword [suffiz, prefiz] of w iff v # w and v is a subword
[suffiz, prefiz] of w (Figure 2.9).

We have (abc)® = abcabeabe, and the word abe is a proper prefix of (abe)®.
The word b is a proper suffix of (abc)®.

Exercise 2.14. Let X be an alphabet and let z € Z* with |z| = n for an
n?E IN — {0}. Which is the maximal possible number of different subwords of
z? Count all different subwords of the word abbcbbab.

Definition 2.15. Let € £* and let a € for an alphabet X. We define
|z, as the number of occurrences of a in x.

_ For each set A, |A| denotes the cardinality of A and P(A) = {S | S C A}
is the powerset of A. K
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Hence |(abbab)|, = 2 and |(11b50)|o = 1. For all z € £ we have

EEDI M

a€X

There are several parts of this textbook where one needs a fixed order of
all words over a given alphabet. The most convenient way is to consider the
canonical order defined below.

Definition 2.16. Let £ = {s1,82,...,8m}, m > 1, be an alphabet and let
§1 < 83 < -+ < Sy, be a linear order of elements of . We define the canon-
ical order over I* for all u,v € X* by:

(lul <o)

V(ul=pAu=z-s v Av=x 50

u<ve

for some z,u',v' € * and i < j).
Now, we define the term language as any set of words over a fixed alphabet.

Definition 2.17. A language over an alphabet X is any subset of X*. The
complement L€ of the language L with respect to X is the language L™ — L.
Ly = 0 is the empty language. -
Lx = {)\} is the language that contains only the empty word.
Let Ly and Lo be languages over X. Then

L1'L2=L1L2={’U’U)|UEL1 andwELz}

is the concatenation of L1 and Lo. Let L be a language over X. We define

L9 =il
LY =L'. L for alli € N,
L =l ik
ieIN

U LHe LT
ieIN—{0}

L=

L* is called the Kleene star of L.

The following sets are examples of languages over X = {a, b}:

L, = 07
L2 == {/\},
L3 = {\, ab, abab},

B = e D L e i

2.2 Alphabets, Words, and Languages 23

Lsi = daibieasad

L¢ = {a}* ={) a,aqa,aaq,...} = {a' | i € N},
L7 = {a”|pis prime },

Ly = {a'b?*'a’ | i € IN},

Lg = Z,

Lio = 2% = {aaa, aab, aba, abb, baa, bab, bba, bbb}.

The set of all grammatically correct texts in English is a language over
Zeyboard, and the set of all syntactically correct programs in JAVA is also a
language over Xyeyboard-

Observe that

Zi={oe 2" ||z =1,
and that
LyL=Ly=10

and
Bxsli—=iL;

Exercise 2.18. Let Ly = {), ab,b%a} and Ly = {ab, b, ab?,b*}. Which words
belong to the language L; L7

Our next aim is to practice working with languages. Since languages are
sets, the standard set operations union (U) and intersection (N) are used.
We add the concatenation and the Kleene star to these set operations. The
first question we pose is whether the distributive laws with respect to U and
concatenation (with respect to N and concatenation) hold. For U and concate-
nation the following lemma provides a positive answer. To prove the equality
of two sets A and B we use the standard methods of set theory, where we
usually show A C B and B C A separately, which then implies A = B. To
show A C B it is sufficient to prove for every element x € A, that z belongs
to B (z € B).

Lemma 2.19. Let Ly, Ly, and L3 be languages over an alphabet . Then
LiLy,ULiLs = LI(L2 U L3)

Proof. First we show Ly Ly ULy Lz C Ly(Ly U L3). The comments in brackets
explain the step executed.
LiLy C Li(L2 U L3) holds because

LiLy = {zy |z € L1 Ay € Ly} {definition of concatenation}
@ {a:y | zeli Ay € L2UL3} {since Ly C L2UL3}

= Ly - (L2 U L3) {definition of concatenation}.

In the same way one can show LiL3 C Li(Ly U L3). Therefore L;L, U
LiL3 C Ly(Ly U Ls).
Now we prove the inclusion Ly(Ls U L3) € Ly Ly U Ly Ls.
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Let x € Ly (L2 U L3) Then

ze€{yz|ye€LiAz€ LyULs}
{definition of concatenation}
= Jy € Ly A3z € Lo U L3, such that z = yz
= Jy € Ly A(Fz € Ly V Iz € L3), such that z = yz
{definition of U}
o @yeliAIzelyiz=yz)V(ByeLiAIz€ Ly : x = yz)
{distributive law for A, V}
<:>(IeijIyELlAZELz}J)V(IEiyzlyELl/\ZELg})
£ T s
{definition of concatenation}
&€ L1LyUL Ly {definition of U}.

a

Now, we would like to deal with the question of whether the distributive
law holds for concatenation and intersection. It may be a surprise at the first
glance that the answer to this question is negative. Only one inclusion of the
distributive law equality holds and we show it in the next lemma.

Lemma 2.20. Let Ly, Ly, L3 be languages over an alphabet . Then
Li(LyNL3) C LyLyN Ly Ls.
Proof. Let z € Li(Ly N L3). This is equivalent to

rz€{yz|y€Li ANz € LyNL3}
{definition of concatenation}
& Jy,z2€ X*,ye€ Ly A (2 € Ly Az € L), such that z = yz
{definition of N}
Sy,zeX* (yeLinzeLo))AN(yeLiAz€Ls):x=yz
= Jy,z2€ X* (yz € L1 L) A (yz € L1L3) : z = yz
{definition of concatenation}
&z €L LyNLiLy {definition of N}.

]

To show that Ly (LaNL3) D LiLyN Ly L3 is not always true, it is sufficient
to find three concrete languages U, Uz, and Us such that

Ul(Uz n U3) c U1 Uy NULUs.
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When searching for convenient languages U;, U, and Us, one can base
one’s strategy on the fact that there is only one implication in the proof of
Lemma 2.20 that cannot be converted (exchanged by equivalence). If a word
z belongs to L; L, as well as to L; L3, then one may not conclude in general
that © = yz with x € L; and z € L, N L3. This happens, for instance, when
z is written as

T = y121 = Yazz With y; # ya(ie., 21 # 22)

where y1,y2 € L1, 21 € Ly, and 22 € L3. Here we have z € L1 L, N L1 L3, but
there is no evidence that = has to be in L;(Ls N L3).

Lemma 2.21. There exist Uy, Us, Us € (Zbool)*, such that
Ul(U2 n U3) g U,U; NULU3.

Proof. First, we choose Us = {0} and Us = {10}. Hence, we obtain Uy NU3 =
(0, and thus
U1(Uz2 N Uny) = 0

for any language U;. Now, it is sufficient to find a U; such that U;U, N U U3
would not be empty. We set U; = {\,1}. Then

U Uy = {0,10}, U1Us = {10,110}

and hence

U U, NULU3 = {10} = 0.
0O

Exercise 2.22. Let L;, Ly and L3 be languages over the alphabet {0}. Is the
equality
Ll(Lz M L3) =LiLy, N L1L3

valid?

Exercise 2.23. Let L; C X} and Ly, L3 C 53 for alphabets X} and £ with
21N X, = 0. Is the equality

Ll (L2 @) Lg) = L1L2 N L1L3
valid?

E)fercise 2.24. Do languages Ly, L;, and L exist, such that L;(Ly N L3) is
finite and L, L, N L; L3 is infinite?

In what follows we will work with the Kleene star.
Ezample 2.25. The following equality holds,

{a}*{b}* = {a'¥’ | i,j € N}.
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Proof. First we show {a}*{b}* C {a't’ | i,j € IN}.
Let « € {a}*{b}*. Then
x = yz, where y € {a}* Az € {b}"
{definition of concatenation}
= z=yz, where (Gke N:y € {a}*) A@meN:z e {h}™)
{definition of the Kleene star}
&z =yz where (ke N:y=a*)A@meN:z=b")
& Jk,m € IN, such that z = il
= ¢ € {a'¥’ | i,j € N}.

Next, we show {a’d’ | 4,5 € N} C {a}*{b}".
Let z € {a’b’ | i,j € IN}. Then

z = a"b' for some integers r,l € IN
= z € {a}*{b}*, since a” € {a}",b' € {b}*.

Exercise 2.26. Prove or disprove the truth of the equality

({a}*{b}")" = {a,b}".

Definition 2.27. Let ¥; and X, be two arbitrary alphabets. A homomor-
phism from X to X5 is any function h : X} — X5 that satisfies the following
conditions:

(i) h(A) = X and
(1) h(uv) = h(u) - h(v) for all u,v € X7.

One can easily observe that to specify a homomorphism it is sufficient to
fix h(a) for all symbols a € 2.

Exercise 2.28. Let h be a homomorphism from ¥; to Y. Prove by induction
that for all words £ = 122 ... Zm, 2; € Xy fori=1,...,m,

h(z). = h(z1)h(z2). <. h(Zm).
Consider a mapping h given by
h(#) = 10,h(0) = 00 and h(1) = 11.
Clearly h specifies a homomorphism from {0, 1, #} to Zyoo- For instance,

h(011#1014) = A(0)h(1)A()h(#)h(1)A(0)h(1)h(F)
= 0011111011001110.

One can use h to transfer a representation of some objects over {0,1,#} to a
new representation of these objects over Yool
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Exercise 2.29. Define a homomorphism from {0,1,#} to Zpoor that maps
infinitely many words over {0,1, #} to one word from (Zpo01)".

Exercise 2.30. Define an injective homomorphism from Dlogic t0 Zpool that
provides an unambiguous representation of Boolean formulae over Xy oo1.

Exercise 2.31. Let Xy and Y5 be alphabets. Let h be a homomorphism from
X to Xs. For any language L C X'f we define

h(L) = {h(w) | w € L}.
Let L1, Ly C XY. Prove or disprove the following equality:
h(Ll)h(Lz) - h(Lle)

2.3 Algorithmic Problems

Before giving the formal definition of the notion “algorithm” by the Turing-
machine model in Chapter 4 we view algorithms as programs. We assume
that the reader knows what a program is. For our purposes, the specific pro-
gramming language is irrelevant. When using the synonym “program” for
“algorithm” we require that the program computes a correct output for each
feasible input. This means that an algorithm is considered to be a program
that halts for any input (i.e., does not have any infinite computation) and
solves the given problem. Given this assumption a program (an algorithm) A
performs a mapping
A: X} - X5
for some alphabets ¥; and ¥,. This means that

(i) the inputs are represented as words over an alphabet X,
(ii) the outputs are represented as words over an alphabet X, and
(iii) A unambiguously assigns an output to every input.

For any algorithm A and any input = we denote by A(z) the output of the
algorithm A for the input z. We say that two algorithms (programs) A and
B are equivalent if they work over the same alphabet £ and A(z) = B(z)
forall = € I*.

Definition 2.32. The decision problem (¥, L) for a given alphabet X' and
a given language L C X* is to decide for any x € X*, whether

x€Lorzx¢L.
An algorithm A solves the decision problem (L, X)), if, for all x € X*:

2 e e L,
A(z)_{o,if z¢L.

We also say that A recognizes L.
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If, for a language L, there exists an algorithm that recognizes L, we say
that the language L is recurswe5 We often use a language L C X™* to specify
a concrete property of words from X* (or objects that are represented by the
words). Words in L satisfy this property and words from Lt = £* — L do not

have this property.
Usually we describe a decision problem (X, L) in the following way:

(Z,L)

Input: © € X*.
Output: A(z) € Zpool =

{0,1}, where

1,if z € L (Yes, = has the property),
0,if z ¢ L (No, = does not have the property).

Az) = {

For instance, ({a,b},{a™" | n € IN}) is a decision problem that can be
also specified as follows:

({a,b},{a"b" | n € N})
Input: z € {a,b}*.
Output: Yes, if z = a™b™ for an n € IN.
No, otherwise.

Ezample 2.33. A well-known decision problem of large practical importance
is primality testing

(Zbool, {T € (Zbool)* | Number(z) is a prime}).

The usual representation is

(Zbools {7 € (Zboot)* | Number(z) is a prime})
Input: € (Zbool)-
Output: Yes, if Number (z) is a prime,

No, otherwise.

Ezample 2.34. Let L = {z € (Zkeyboard)* | T is a syntactically correct program
in C++}. We consider the following problem that is a subproblem of any
compiler for C++.

Input: T € (Zkeyboard)” -
Output: Yes, if x € L,
No, otherwise.

5 Recursion is one of the fundamental terms of computer science. Therefore we
use later a formal model of computation (algorithm) in order to give a formally
precise definition of this term.
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Ezample 2.35. The Hamiltonian Cycle Problem (HC) is (X, HC), where
9= {0,1,7#} and

HC = {z € X" | z represents an undirected graph that
contains a Hamiltonian cycle®}.

Ezample 2.36. The Satisfiability Problem (SAT) is (Ziogic, SAT) with
SAT = {z € (Ziogic)" | = represents a satisfiable Boolean formula}.

An important subclass of decision problems is the class of equivalence
problems. For instance, the equivalence problem for programs is to decide
whether two given programs A and B of the same programming language
(i.e., the input is (A,B) € (Zkeyboard)*) are equivalent. Another example
of an equivalence problem is to decide whether two given Boolean formulae
represent the same Boolean function.

Definition 2.37. Let X and I" be two alphabets. We say that an algorithm A
computes a function f : ¥* — I'*, if for all x € X*

A(z) = f(2).

Decision problems are a special case of computing functions, because solv-
ing a decision problem is equivalent to computing the characteristic function
of a language.”

At first glance one may think that computing functions is the most general
representation of algorithmic problems. The following definition shows that
this is not true.

Deﬁnition 2.38. Let X' and I" be alphabets and let R C X* x I'* be a relation
in I* and I'*. An algorithm A computes R (or A solves the relation
pProblem R), if, for every z € X*:

(z,A(z)) € R

_ From Definition 2.38 we see that to solve a relation problem R for a given
mnput z, it suffices to find one y from a possibly infinite set of ys with the
property (z,y) € R. The following examples show that the relation problems
are not only an abstract generalization of computing functions,® but that
many practical problems are problems about computing a relation.

6 ]
A Hamiltonian cycle of a graph G is a cycle (a closed path) that contains every
vertex of G exactly once.
" The characteristic function fr of a language L C X* is a function from X* to
E 80,1) with fr(z)=1iff 2 € L.
Remember that functions are special relations with the property that for every x
there exists exactly one y with (z,y) € R.
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Let Reac € (Zbool)* X (Zbool)*, where (z,y) € Ry if and only if Number(y)

is a factor? of Number(z) or y = 1 when Number(z) is a prime. A transparent
representation of this relation problem follows.

Rfac
Input: £ € (Zbool)™.
Output: y € (Zpoot)*, where y = 1, if Number(z) is a prime, and Number (y)
is a factor of Number(z) if z is composite.

Another hard problem is the search for a proof to a theorem. Let Rproof C
(Ekeyboard)”= X (Zkeyboard)*; where (w,y) € Rproof if

e ecither z is a code of a true assertion in a mathematical theory considered
and y is the representation of a proof of this assertion, or
e y = and z does not represent any true assertion of the considered theory.

In what follows we introduce optimization problems that can be viewed
as a special case of relation problems. Optimization problems are of central
interest in practice as well as in theory. In order to give a transparent repre-
sentation of optimization problems, we use the following description instead
of the representation of a relation problem. Informally, an input instance of
an optimization problem determines a set M(z) of feasible solutions for z.
Thus, we can say we have a relation R with

(z,y) € R iff y is a feasible solution for .

But this R is not the relation problem one has to solve. The input z addition-
ally determines the cost of every y in M(z). The output for 2 must be one of
the feasible solutions with the most favorable (maximal or minimal) cost.

Definition 2.39. An optimization problem is a 6-tuple U = (X1, Xo,
L, M, cost, goal), where

(i) X1 is an alphabet, called the input alphabet.
(ii) Yo is an alphabet, called the output alphabet.
(iii) L C X% is the language of feasible inputs (as inputs one allows only
words that have a reasonable interpretation,).
An z € L is called a problem instance of U.
(iv) M is a function from L to P(X}), and for each x € L, the set M(z) is
the set of feasible solutions for .
(v) cost is a function cost : J,cp(M(z) X {z}) = IR*, called the cost func-
tion.
(vi) goal € {minimum, mazimum} is the objective.

® A positive integer a is a factor of an integer b if a divides b and a ¢ {1,b}.
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A feasible solution o € M(z) is called optimal for the problem instance
T of U; Zf

cost(a, z) = Opty (x) = goal{cost(B,z) | B € M(z)}.

We say that an algorithm A solves U, if for any x € L

(1) A)(:z:) € M(z) (A(z) is a feasible solution for the problem instance z of
U), and
(ii) cost(A(z), z) = goal{cost(B,z) | B € M(z)}.

If goal = minimum, U is called a minimization problem,
if goal = mazimum, U is called @ maximization problem.

To understand why we define optimization problems in this way, let us
have a look at the above formal definition of an optimization problem as a
6-tuple U = (X1, Xo, L, M, cost, goal). The input alphabet X; has the same
meaning as the input alphabet of decision problems, i.e., X1 is used for the
representation of input instances of &. Analogously, the output alphabet Yo
is used for representing the outputs (feasible solutions). The language L C X}
is the set of correct representations of problem instances. We assume that no
word from Lt = X7 — L will occur as an input. This means that we focus
on determining the complexity of the optimization and not on solving the
decision problem (Xr, L).

A problem instance z usually specifies a set of constraints and M(z) is the
set of objects (feasible solutions for z) that satisfy these constraints. In the
typical case the problem instance z also determines the cost(a, z) for every
solution a € M(x). The task is to find an optimal solution in the set M(z) of
feasible solutions for z. The typical difficulty of solving U lies in the fact that
the set M(z) has such a large cardinality that it is practically'® impossible
to generate all feasible solutions from M(z) in order to pick the best one.

To make the specification of optimization problems transparent, we of-
ten omit the specification of Xy and Yo and the specification of coding the
data over X7 and Y. We simply assume that the typical data such as inte-
gers, graphs, and formulae are represented in the way described above. This
:cllso simplifies the situation in that we can now address these objects directly
instead of working with their formal representation. Therefore one can trans-
Parently describe an optimization problem by specifying

the set L of problem instances,

the constraints given by any problem instance z € L and the corresponding
set M(z) for any z € L,

the cost function, and

the goal.

—_—
10 :
In an efficient way
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Ezample 2.40. Traveling Salesman Problem (TSP)

ISP

Input: A weighted complete graph (G, c), where G = (V) Vo=, o )
for ann € IN — {0}, and c: E = IN — {0}.

{More precisely, an input is a word = € {0,1, #}* that codes (represents)
a weighted complete graph (G, c)}.

Constraints: For any problem instance (G, c), M(G,c) is the set of all Hamil-
tonian cycles of G. Each Hamiltonian cycle can be represented as a se-
qUENCe i, Vig, - - - Uiy , iy Of vertices,!* where (i1,12,...,in) iS 8 permu-
tation of (1,2,...,n).

{A strictly formal representation of M(G,c) is the set of all words
viFyo# ... #yn € {0,1,#}* = L5 where y; € {0,117 for 4= 1,2,...50
with

{ Number(y1), Number(y2), - - -, Number(y,)} = {1,2,...,n},

and Number(y1) = 1.}
Costs: For every Hamiltonian cycle H = vi,, Vij, - - -, Vi, , Viy € M(G,¢),

c ({Uij’vi(,- mod n)+1}) )
1

cost((Viy,- - -, iy, Viy), (G, €)) =

n

]:
i.e., the cost of every Hamiltonian cycle is the sum of the weights of all
its edges.

Goal: minimum.

For the problem instance of TSP in Figure 2.4 we have

cost((v1,va,3,4,05,01), (G,0)) =8+ 1+7+2+1=19
cost((v1,vs,V3,v2,v4,01),(G,¢)) =1+1+1+14+1= 5

The Hamiltonian cycle vy, vs,vs, V2, v4,: is the only optimal solution for
this problem instance of TSP.

TSP is a hard optimization problem. But in many applications, we are
only interested in problem instances that have some special nice properties
that can make searching for an optimal solution easier. We say that an op-
timization problem U; = (X1, Xo, L', M, cost, goal) is a subproblem of an
optimization problem U, = (X1, Xo, L, M, cost, goal) if L' C L, i.e., when U
can be obtained from U, by restricting the set of feasible (allowed) inputs. We
define the metric TSP (A-TSP) as a subproblem of TSP. This means that
the constraints, costs, and goal of A-TSP remain the same as in TSP and
that only the set of input instances is reduced to a special subclass of inputs.

11 Note, that this formalism assigns several different correct representations to any
Hamiltonian cycle.
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Fig. 2.4.

We require that every input instance (G,c) of A-TSP satisfies the so-called
triangle inequality, i.e.,

c({u,v}) < c({u, w}) + c({w, v})

for all vertices u, v, w of G. The triangle inequality can be viewed as a natural
property of problem instances because it states that the direct connection
between the vertices © and v may not be more expensive than any other path
(detour) between u and v. Thus, if the vertices of G represent places (towns),
the edges represent connections (roads) between these places, and the costs
correspond to the distances, the triangle inequality may be a natural property
of this model of reality. Observe, that the problem instance in Figure 2.4 does
not satisfy the triangle inequality.

Exercise 2.41. Prove that |[M((G,c))| = (n — 1)!/2 for any graph G with n
vertices where n > 2.

A vertex cover of a graph G = (V, E) is any set U of vertices of G (i.e.,
U C E) such that every edge from E is incident!? to at least one vertex from
U. For instance, the set {v2, vy, vs} is a vertex cover of the graph in Figure 2.5,
because each edge of this graph is incident with at least one of there three
vertices. The set {v1,vs,vs} is not a vertex cover of the graph in Figure 2.5,
because the edge {v4,vs} is not covered by any of the vertices v, v2, and vs.

E?(e.rc.ise 2.42. The minimum vertex cover problem, MIN-VCP, is a
n}lmr.mzatlon problem, where one searches for a vertex cover of minimal car-
dinality for a given graph G.

(1) Estimate the set oflall vertex covers of the graph in Figure 2.5.
(ii) Give a formal spec1ﬁcatiop of MIN-VCP as a 6-tuple. Use the alphabet
{0, 1, #} to represent the input instances and the feasible solutions.
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v1

v
Vs 2

V4 v3

Fig. 2.5.

Ezample 2.48. The maximum clique problem (MAX-CL)
A clique of a graph G = (V, E) is any set U C V, such that

{{u,v} |u,ve U, u#v} CE,

i.e., any set U whose vertices build the complete subgraph of G of size |U].
The maximum clique problem is to find a clique of the maximal size in a given
G. The formal representation of MAX-CL as an optimization problem follows.

MAX-CL
Input: A graph G = (V, E).
Constraints: M(G) = {S C V | {{u,v} | u,v € S,u # v} C E}, ie, M(G)
contains all cliques of G.
Costs: For every S € M(G), cost(S,G) = |S]|.

Goal: mazimum.

Exercise 2.44. A graph T = (V, E') is called a spanning tree of a graph
G = (V,E) if T is a tree (a cycle-free connected graph) and E' C E. The
weight of a spanning tree T = (V,E') of G is ), c(e), i-e., the sum of
the weights of all edges in E’. The minimum spanning tree problem is to
find a spanning tree of the minimal weight in a given graph G. Give a for-
mal specification of the minimum spanning tree problem as an optimization
problem.

Ezample 2.45. The maximum satisfiability problem (MAX-SAT)

Let X = {z1,Z2,...} be the set of Boolean variables. The set of all lit-
erals over X is Litx = {z,T | = € X}, where T is the negation of z for
every variable z. The values 0 and 1 are called Boolean values (constants). A
clause is any finite disjunction over literals (for instance, 1 V Z3 V 4 V Z7).
A (Boolean) formula F' is in the conjunctive normal form (CNF), if F is
a finite conjunction of clauses.

12 An edge is incident to a vertex if this vertex is one of the two endpoints of this
edge, i.e., the edge {u,v} is incident to the vertices » and v.
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An example of a formula over X in CNF is:
D= (1 VT)AN(T1 VT VI3) AT2 A (22 V 23) Az3 A (T1 V T3).

The maximum satisfiability problem, MAX-SAT, is to find an input assign-
ment to the variables of a given formula in CNF such that the number of
satisfied clauses is maximized.

MAX-SAT

Input: A formula & = Fy AFy A--- A Fy, over X in CNF, where F; is a clause
fori=1,...,m, meN - {0}.

Constraints: For every formula & over a set {z;,, i,,...,zi, } of n Boolean
variables, the set of feasible solutions is

M(®) = {0,1}"

{Every a = a; ...an € M(®), a; € {0,1} for j = 1,...,n, represents an
assignment where the value o; is assigned to the variable z;;.}

Costs: For every formula ¢ and any a € M(®P), cost(a, P) is the number of
clauses of @ satisfied by a.

Goal: mazimum.

For the formula @ described above, Table 2.1 presents all eight assignments to
the variables z;, x2, £3 and we can easily observe that the assignments 001,
011 and 101 satisfy five clauses each and hence they are optimal solutions for
P,

Table 2.1.
T1 T2 T3|T1 V T2|T1 VTo VI3|T2|z2 V 23|T3|T1 V T3|# of satisfied clauses
i O 0 i 1 0 0 1 3
0 01 0 1 1 1 1 1 5
el 0 ik 1 0 1 0 1 4
Bl 1 1 1 0 1 1 1 5
0. 0 1 1 1 0 0 1 4
a0 2 1 1 i | 1 0 5
117857 B o) i 1 0 1 0 1 4
105 I | 1 0 0 3 3 0 3

Ezample 2.46. Integer linear programming (ILP)

Given a system of linear equations and a linear function over variables of
this linear equation system, the task is to find a solution to the system of
equations such that the value of the linear function is minimized. ILP can be
phrased as an optimization problem as follows.
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ILP
Input: A m x n matrix
P R L AT SR,

and two vectors
b= (byy e ybi ) and’e =iletientn )

for n,m € IN — {0}, where a;j, b;, c; are integers for i = 1,...,m and
Gl .

Constraints: M(4,b,¢) = {X = (z1,...,3,)" € N" | AX =b}.
{M(A,b,c) is the set of all solutions (vectors) that satisfy the system
AX = b of linear equations determined by A and b.

Costs: For every X = (z1,...,%n) € M(4,b,¢),

cost(X,(A,b,¢)) =c- X = Zcixi.

a=
Goal: minimum.
Aside from the decision problems and optimization problems introduced
above we also consider algorithmic problems of another nature. These prob-

lems require no input. Their only task is to generate a word or an infinite
sequence of symbols.

Definition 2.47. Let X be an alphabet and let x € X*. We say that an algo-
rithm generates the word z, if A outputs z for the input A.

The following program A generates the word 100111.

A: begin
write(100111);
end

For every positive integer n, the following program A, generates the word
(o1)™:

Ay begin
for.i = 1 toinido
write(01);
end

A program that generates a word = can be viewed as an alternative rep-
resentation of z. Thereby one can save some words in memory as programs
that generate these words.

.7 DULLIUVEUL0V VUL PITALLY vl

Definition 2.48. Let X' be an alphabet, and let L C X*. A is an algorithm

enumerating L, if, for every positive integer n, A outputs x1,%s,..., Ty,
where T1,%s,...,%, are the first n words of L with respect to the canonical
order.

Ezample 2.49. Let ¥ = {0} and let L = {0? | p is a prime}.

Input: n
Output: 02,02%,05,07,...,0P, where p, is the n-th smallest prime.

Exercise 2.50. Prove that a language is recursive if and only if there exists
an algorithm that enumerates L.

2.4 Kolmogorov Complexity

In this section we consider words as information carriers and we focus on
finding a reasonable way to measure the information contents of words. We
do this only for words over the basic alphabet Xpo0. An informal idea can
be to say that a word w has a small information content if there is a short
representation of this word (i.e., if it is compressible), and that a word w has
a large information content if there does not exist any short representation of
w (i.e., there is no representation shorter than |w|). The intuition behind this
is that a word with small information content is regular and hence easy to
describe, and a word with high information content is irregular.'® Therefore
the only way of representing it is to write it completely bit by bit. Based on
this idea, the word
011011011011011011011011

with a short representation (011)® has a smaller information content than the
word
0101101000101101001110110010.

The process of producing a representation of w that is shorter than |w| or
the previous representation of w is called the compression!* of w.

The next idea could be to fix a convenient compression method and use
the length of the resulting compressed representation of w as a measure of its
information content. Clearly, one has to assert that the compressed represen-
tation of w is again a word over X},,01 because the use of a larger alphabet to
obtain a shorter representation of a given word yields no true compression.

Exercise 2.51. Find an injective mapping H from (Zpo01)* to {0,1,2,3,4}* =
X% such that
lz| > 2-|H(z)|

13 A chaotic distribution of 0s and 1s

' Formally, a compression can be viewed as an injective mapping from (Zhoo1)* to
(Ebool)*-
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for every z € (Zbool)*, |2| > 4. Which compression factor can be achieved, if
instead of X5 one uses the alphabet X, for an integer m > 57

If one uses the representations for the compression of words, then one can
start with the alphabet {0,1,(,)} and represent

w® by (w)Bin(a)
for any w € (Zboo1)*. Thus, for instance, (011)1000 stands for (011)® or
(0)1010(010)1(01)1101 stands for (0)'°(010)*(01)*.

To get finally a representation over Zpool, One can use the homomorphism
from {0,1,(,)} to Zpoo defined by

h(1) =11, h(() =10, and h())=01.

h(0) = 00,
In this way, the compressed representation of (011)8 becomes
100011110111000000.

Note, that this compression method is correct because each compressed rep-
resentation of w unambiguously determines the original word w. .

The problem is that one can propose infinitely many different compression
mechanisms. Which is the right one? For instance, one can further improve the
compression method introduced above by compressing the.: representault()ii)sr;7gf
powers. Thus, (011)220 can be used as a shorter representation of (011) i
Using this strategy, the compression can be arbitrarily improved by generating
the representations such as

on
22

0157 a5 L

for regular words over Zhool. This means that for any of our compression
methods M, there exists another compression method that is better than
M for infinitely many words over Lpool- Therefore, if one wants to have an
objective and robust measure of information content in words, one cannot
take any of the above strategies. :

Matters can get worse. Let us consider the following compression method.

For every z € (Zpoo1)*, the nonnegative integer Number(z) can be repre-
sented as its factorization

pitpi. .. pi
for primes p; < p2 < +*+ < Pk, il;i2;-:i-,ik eN - {0} for j = 1,2,...,k A
possible representation p}* - pi - -+ - p* over {0,1, (,),} can be

Bin(p:)(Bin(i1)) Bin(ps) (Bin(iz)) - . - Bin(pk) (Bin(ix))-
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Applying the above-introduced homomorphism h one obtains a binary
representation of . The bad news is that this compression method is in-
comparable with the method based on subword repetitions in the sense that
compression by subword repetitions can perform better than compression by
factorization and vice versa.

Exercise 2.52. Find two words z,y € (Zbo01)* such that

1. the compression by subword repetitions provides a substantially shorter
representation of z than the compression method by factorization, and
2. the compression by factorization results in a substantially shorter repre-

sentation of y than the compression by repetitions.

A definition of a complexity measure must be robust, in the sense that
the measured complexity has to have a broad validity, to be applicable in
a general framework. Considering the dependence of the size of word repre-
sentations on a particular compression method, it is obvious that fixing one
compression method for the definition of the size of the information content
of a word leads to a situation where one does not have any possibility to
formulate generally valid assertions about the information content of words.
The following definition by Kolmogorov provides a way out of this apparent
deadlock. It is important to observe that the introduction of the algorithm
(program) is the crucial point that enables one to find a way of information-
content measurement.

Definition 2.53. For any word z € (Zbo01)*, the Kolmogorov complexity
K (z) of the word x is the binary length!® of the shortest Pascal program
that generates x.

We know that any compiler for Pascal generates the machine code of every
syntactically correct program written in Pascal and that the machine code of
a program is nothing other than a word over (Zy,01)*. Hence, for every word
Z € (XZboo1)*, we consider all (infinitely many) machine codes of programs that
generate x and the length of the shortest one is the Kolmogorov complexity
of r.

Is K(x) a good candidate for the size of the information content of z?
When one wants to include all compression methods, then surely, yes. For
every compression method M that computes a compression M (z) to any word
Z, one can write a program that contains M (z) as a parameter (a constant of
the program) and generates « from M (z). But before analyzing the definition
of K (z) in depth, we present some basic properties of Kolmogorov complexity
to deepen our understanding of this concept.

The first property of K(z) guarantees that K (z) cannot be substantially
larger that |z|. Obviously, this property is highly valued.

e
1 :
® More precisely, the length of the shortest binary code of a program generating z
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Lemma 2.54. There ezists a constant d, such that for every z € (Zboo1)*
K(z) £ |z| +d.

Proof. For any z € (Zpeo1)* we consider the following program'® A;:

begin
write(x);
end

The parts begin, write, end and commas of the program A, are the
same for every £ € (Zboo1)* and the length of their representation in the
machine code is bounded by a small constant d independent of z. The word
 is represented in A, as x and therefore its contribution to the length of the
(binary) machine code of A4, is exactly |z|. o

Obviously, regular words with many subword repetitions have small Kol-
mogorov complexity. Let y, = 0™ € {0,1}* for any n € IN—{0}. The following
program Y,, generates yp.

begin
for'i=il"to*nido
write(0);
end

All parts of programs Y, are the same, except the number n. The length
of Bin(n) is exactly [log,(n+1)] and thus the contribution of n to the binary
representation of Y, is at most [log, n] + 1. Hence, there exists a constant ¢
such that

K (yn) < [ogy n] + ¢ = [log, lya[] + ¢

for all n € IN — {0}.
Now, consider z, = o € {0,1}* for any positive integer n. The following
program Z, generates the word 2.

begin
mhi=m;
m:=m X1m;
fori=1tomdo
write(0);
end

All programs Z,, are similar, except for the integer n. If the length of the
binary code of all parts of Z, except n is d, then

16 For simplicity we use a Pascal-like programming language, where, for instance,
the declaration of variables is omitted.

4
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K(zn) < [logy(n +1)] +d < [logy(v/|2n[] + d + 1.

Note, that the crucial point in our calculation is that the program Z,, does
not need to store the value n? as a constant. Instead, Z,, stores the smaller
value n, and the value n? is computed during the execution of the program.
Since the size of the memory during the computation of Z, is not included
in the length of the description of Z,, we have saved approximately [log, n]
representation bits in this way.

Exercise 2.55. Prove the following assertion. There exists a constant ¢ such
that, for every positive integer n,

K ((01)2") < logy(n+1)]+c= [log2 log, (f(Ol)zn ‘ /2)] +c.
Exercise 2.56. Find an infinite sequence of words y1,¥s2,¥s, ..

that satisfies the following conditions:

(1) lyi| < |yit1]| for all ¢ € IN — {0}, and
(ii) there exists a constant ¢ such that, for all i € IN — {0},

. over Xyool

K(y;) < [log, log, log, |yil] + c.

Exercise 2.57. Prove that for each positive integer m there exists a word w,,
such that

|wm| — K (W) > m.

One can also measure the information content of positive integers by sim-
ply taking the Kolmogorov-complexity of their binary representations.

l?eﬁnition 2.58. The Kolmogorov complexity of a positive integer n
is
K (n) = K(Bin(n)).
Exercise 2.59. Let n = pq be a positive integer. Prove
K(n) < K(p)+K(q) +c

for a constant ¢, that does not depend on n, p, and q.

The next fundamental result shows that there exist words that are not
compressible with respect to Kolmogorov complexity.

Lemma 2.60. For every positive integer n there exists a word w,, € (Xhool)”,
such that

K(wn) > |wn| = n,

i.e., for any positive integer n there is a noncompressible word of length n.
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Proof. The proof is based on the following simple combinatorial idea. We have
exactly 2" words z1, ..., Ton in (Zpoot)™. Let, fori =1,2,...,27, C-Prog(z;) €
{0,1}* be the machine code of the program Prog(z;) that generates z; and
K(z;) = |C-Prog(z:)|, i.e., Prog(z;) is one of the shortest'” programs that
generate ;.

Clearly, for i # j, C-Prog(z;) and C-Prog(z;) must be different because
z; and z; are different. This means that we have 2" different machine codes

C-Prog(z1), C-Prog(zs), . .., C-Prog(za»)

of shortest programs for z1,z2,...,Z2~. It is sufficient to show that at least
one of these program machine codes has length at least n.

Our combinatorial argument simply says that one cannot have 2" different
machine codes (words), all shorter than n. Each machine code is a word over
(Zboo1)*- The number of words of length i over Shool is exactly 2¢. Hence the
number of all nonempty words over Zhoo1 of length at most n — 1 is

n—1 :
W 8 =22 2l
=1
Therefore, there is at least one word among C-Prog(z1), . . . , C-Prog(z2~ ) with

a length of at least n. Let C-Prog(z;) be such a word with
|C-Prog(z;)| > n.

Since
|C-Prog(z;)| = K(;),

z; is not compressible. ]

Exercise 2.61. Prove that for all i,n € IN — {0}, i < n, there exist 2" — 2"~
different words z in (Zpoo1)” such that

K(z)>n=

Exercise 2.62. Prove that there are infinitely many positive integers m such
that
K(m) > [logym] — 1.

Let us now return to the question of whether Kolmogorov complexity is
a sufficiently robust measure for the information content of words. Instead
of choosing a special compression method we have taken a formal model of
programs that implicitly involves all possible compression methods. But one
can regard fixing of the programming language Pascal as a restriction. Is it
not possible that another language, for instance Java or C++, would provide

17 Note, that there may exist several shortest programs that generate x; and we
simply fix one of them.

=
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shorter representation than the representation by Pascal programs for some
words? Does the commitment to Pascal decrease the robustness of measuring
the information content of words?

The answers to these questions are negative. In the following theorem we
show that fixing a programming language exerts only a limited influence on
the Kolmogorov complexity of words and hence the Pascal-based definition of
Kolmogorov complexity is a reasonable formalization for the intuitive notion
information content.

For every word z over Y001 and any programming language A, let K(z)
be the Kolmogorov complexity of z with respect to the programming lan-
guage A, i.e., the length of the shortest machine code of a program in A that
generates x.

Theorem 2.63. Let A and B be programming languages. There ezists a con-
stant ca,B depending only on A and B, such that

|Ka(z) — Kp(z)| < ca,B
for all z € (Zpoo1)*.

Proof. We know that we can construct an interpreter U4_, g for any arbitrary
programming languages A and B. U4, p is a program in B that translates
any program P4 (written in the programming language A) into an equivalent
program Pp of the programming language B. U4, p then executes program
Ppg on the input z of P4. Considering the word generation we can simplify this
by assuming that U4_, g receives a program P, in the programming language
A as an input parameter and that Uy_,p executes the same computational
(generation) as P4 does.

Hence, Ug_,p with input P, is a program in the programming language
B that generates the same words as Py4. Let c4_, g be the binary length of the
program Uy, p (without its input). Let P, be a program in A that generates
Z. Then Uy, p with input P, generates x, too. Since Ua_, g is a program in
B we have

Kp(z)< Ki(z)+casp: (2:1)

. If one takes an interpreter Up_, 4 from the programming language B to A
with the binary length cp_, 4, then one obtains

Ka(2) < Kp(z) + cpsa (2.2)

_for every T € (Xpoo1)*. Taking c4 g as the maximum of c4_,p and cp_, 4, the
Inequalities (2.1) and (2.2) imply

|Ka(z) — Kp(z)| < ca,B-
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Now that we have accepted Kolmogorov complexity as a reasonable mea-
sure of the information content of words, let us show its usefulness as an instru-
ment for investigating important relationships in mathematics and computer
science. The power of Kolmogorov complexity lies especially in the derivation
of transparent combinatorial arguments. In what follows we present three
applications of Kolmogorov complexity that can be understood without any
special previous knowledge. Further fundamental applications are provided in
the chapters on automata and computability.

The first application is on the fundamental level of the notion formation.
“Chance” is one of the basic notions of science and we will deal with this term
in Chapter 8 about randomized algorithms. Here, we would like to pose the
following question:

“Which object or its word representation can be considered to be
random?”

The classical probability theory cannot help us to answer this question
because it only assigns the occurrence probability to every possible event. If
one has a random choice from the set of all words in (Zboo1)", then each
word of this set has equal probability of being chosen. Could one relate the
probability of choosing a word to its degree of randomness? If yes, then 0"
would be exactly as random as any irregular word and this does not correspond
to the intuitive meaning of the adjective “random”. According to the BBC
English dictionary

“something is random if it is done without a definitive plan or
pattern”,

i.e., a random object has a chaotic structure, it is completely irregular. Now
our considerations about compression and information content come in handy.
A word is random when it does not have any representation shorter than its
length, i.e., it does not allow for any compression. In other words,

a word is random if any description of its creation is at least as
large as its full representation bit by bit.

Therefore, the following definition is considered to be the best-known formal-
ization of the word “random”.

Definition 2.64. A word z € (Zboo1)* is said to be random,'8 if
K(z) > |a|.
A positive integer n is said to be random, if

K(n) = K(Bin(n)) > [logy(n+1)] — 1.

18 Note that we subtract 1 from [log,(n + 1)] because we know that each binary
representation of an integer begins with the digit 1.
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The next application shows that the existence of a program (algorithm)
solving a decision problem (X0, L) provides some information about the
Kolmogorov complexity of words in L. For instance, when no two words in L
have the same length, then the Kolmogorov complexity of each word in L is
at most log, |z|.

Theorem 2.65. Let L be a language over Xpoo1. Let z, be the n-th word in
L with respect to the canonical order for any positive integer n. Furthermore,
assume that there exists a program (algorithm) Ap that decides (Zpool, L).
Then there ezists a constant c independent of n, such that

K(zn) < [logy(n+1)] +¢,
for all positive integers n.

Proof. For any positive integer n we design a program C,, that generates z,.
Each C), contains Ay, as a subroutine. The program C,, can be described as
follows.

begin
7=
Ii—= 0
while % <7 do begin
(Compute Ap(z) with the program Ay);
if Ar(z) =1 then begin
Ta='4 1
Zh=tr
end;
z := the successor of z in the canonical order;
end
write(z);
end

We observe that C,, generates the words from (Z}001)* in the canonical
order. For each z, C,, checks whether z € L with the help of subroutine Ay,.
While doing this C,, counts the number of words accepted by Az. Clearly, the
output of C), is the n-th word 2, of L.

We again observe that all programs C,, are identical except the parameter
n. Let ¢ be the length of the binary machine code of C,, except for the part
coding n. Then, the binary length of C,, is exactly

¢+ logy(n + 1)]

for all positive integers n. Since C,, generates z,,, K (z,) is at most the binary
length of C,,. O




46 2 Alphabets, Words, Languages, and Algorithmic Problems

A typical misunderstanding of the Kolmogorov complexity is that the bi-
nary length of C, is dependent on the size of the memory needed to save
the values of the variables ¢, i, and 2z during the computation of C,. We re-
fute this by pointing out the fact that saving the values of the variables of
C,, may need more bits (a longer binary representation) and that the binary
representation of C,, does not matter, since these values are not a part of the
representation of C,,. In the description of C,, we only need to code the names
of the variables. The only value that is a part of C,, is the value n. For a
program C),, the value n is a constant whose binary representation is a part
of the machine code of C,,. In the next chapter we will develop the proof idea
of Theorem 2.65 to get a method for proving that some languages cannot be
recognized by finite automata.

Exercise 2.66. Let p be a polynomial of one variable. Let L C (Zpo01)* be
an infinite recursive language with the property |L N (Zpo01)"| < p(n) for all
positive integers n. Let, for any positive integer m, z,, be the m-th word in
L with respect to the canonical order. What is the upper bound on K (2zp,) in
terms of |z, | for any m?

The last application of Kolmogorov complexity presented in this section
is related to a fundamental result of the number theory of enormous impor-
tance for the design of randomized algorithms. For any positive integer n, let
Prim (n) denote the number of primes smaller than or equal to n. The follow-
ing fundamental theorem says that primes are densely distributed among the
integers. One can observe the density of primes among the positive integers
in the following sequence of smallest natural numbers:

1520304506, 789, 10 1T 1201 3P4 (15 16 17, 1871952082122 23 . 0,
Theorem 2.67. Prime Number Theorem

lim PTL(R) =l
nsco n/lnn
The prime number theorem is one of the most remarkable discoveries in
the whole of mathematics. It tells us that the number of primes!® grows ap-
proximately as fast as the function n/Inn. For “small” values of n the exact
value Prim (n) can be computed. Table 2.2 shows some of these values.
The following inequality shows how close Prim (n) and n/Ilnn are for

n > 67.
lnn—§< ——n—<lnn——1—
2 ~ Prim(n) 2

19 Note, that the prime number theorem provides only this average density value
and we do not know anything more about the distribution of the individual primes
among the integers, except that this distribution is extremely irregular.
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Table 2.2.
n | Prim(n) 4—1{:}1:)
10° 168|~ 1.161

108 78 498|~ 1.084
10°]50 847 478|~ 1.053

Exercise 2.68. Let p; denote the i-th smallest prime for 4 = 1,2,.... Use
Theorem 2.67 to prove that

lim =% = 1

n—co nlnn

Gauss, based on an empirical study of prime number tables, was the first
to conjecture that Prim (n) /n is approximately 1/Inn especially for large
n. But a rigorous proof of Gauss’ conjecture was far beyond the power of
mathematical methods during his time. The first strategic ideas for attack-
ing this open problem were drawn by Riemann in the mid-19th century and
the final, very complicated proof was given independently by Hadamard and
Vallée Pousson in 1896. An interesting point is that they needed the “unnatu-
ral” concept of complex numbers in order to prove this theorem about natural
numbers and it took yet another half century before Norbert Wiener was able
to modify the proof so as to avoid the use of complex numbers. Another im-
portant point is that the question as to how fast Prim (n) /(n/lnn) converges
to 1 is strongly related to the famous extended Riemann’s hypothesis, one of
the most spectacular open problems in mathematics.

Now, we arrive at the point where we want to show the usefulness of the
concept of Kolmogorov complexity by giving a simple combinatorial proof of a
weaker version of the prime number theorem. This weaker version of the prime
number theorem is still strong enough for all our applications in the design of
randomized algorithms, and the presented simple proof helps us to understand
why there are so many primes. The crucial idea is to show that if the density
of primes is essentially smaller than n/Inn, then one could represent any
integer in such a short way that it would contradict the injectivity of this
representation.2°

First, we show a fundamental result that says there are infinitely many
Primes with a special property. '

Lemma 2.69. Let S = nj,n2,ns3,... be an increasing infinite sequence of
Positive integers with K (n;) > [logy,ni]/2. Let, for i = 1,2,..., q; be the
largest prime factor of n;. Then, the set

Q={alieN-{0}}
8 infinite.

e —— A 4 ;
We have already seen that it is impossible to provide a compressed representation
for each word (number).
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Proof. We prove Lemma 2.69 by contradiction. Assume that Q@ = {¢; | i €
IN—{0}} is a finite set. Let p,, be the largest prime in (). Then, every positive
integer n;,7 € IN — {0}, of the sequence S can be unambiguously expressed as

ng = prit - plia L .. prim
for some nonnegative integers i 1,7i2,...,7,m € IN. Since p1,p,...,pm are
fixed for the representation of every integer in S, n; is determined by the
exponents 151,742, - - -, Ti,m. Hence, one can write a program A; that generates
n; for given 7;1,...,7im. Let ¢ be the binary length of the program A;,
excluding the representation of the parameters r;1,...,7;m (i.e., the binary
length of the representation of that part of A; that is the same for all programs
Aj;). Since the binary length of A; gives an upper bound on K (n;), we obtain
for all ¢ € IN — {0},

K(n;) < c+ [logy(rin +1)] + [logy(riz + 1)] + - -+ + [logy(ri,m + 1)].
Since r; ; < logy n; for all j € {1,2,...,m} we have, for all i € N — {0},
K(n;) < c+m- [log,(logy n; + 1)].
Since m and c are constants with respect to ¢, the inequality
[logyni]/2 < ¢+ m - [logy(logy ni + 1)]

can be true for only finitely many i. However, this contradicts our assumption
that

K (n;) > [logy ni]/2
for all positive integers n. O

Exercise 2.70. In Lemma 2.69 we assume that there exists an increasing
infinite sequence of positive integers ni, n2,ns, ... with the property K(n;) >
[log, m;]/2. How far can you weaken this assumption without touching the
validity of the conclusion of Lemma 2.697

Exercise 2.71. Let t be a positive integer. How big is the subset of integers
in the interval [2¢,2! +1,...,2¢%1 — 1], that does not satisfy

K(n) > [logyn]/2?

Lemma 2.69 not only shows that there exist infinitely many primes, but
also that the set of the largest prime factors of any infinite sequence of positive
integers with nontrivial Kolmogorov complexity is infinite. We will use this
assertion for proving the following lower bound for Prim (n).

Theorem 2.72* For infinitely many k € IN,

k
Prim (k) > '
Tim ( ) =64 lng k- (lng 10g2 k)2
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Proof. Recall that p; denotes the j-th smallest prime for j = 1,2,.... Let
n > 2 be an arbitrary integer, and let p,, be the largest prime factor of n.
Obviously, n can be generated from (pm,, n/pm) by simply multiplying p,, with
n/pm- This can even be done with the smaller information (m,n/p,,) because
there is a program that, for a given m, generates p,, by simply enumerating
the first m primes.

Let us now think about how to (unambiguously) represent the pair
(m,n/pm) as a word over Zpoo1. One cannot simply concatenate Bin(m) and
Bin(n/pm) because the boundary between Bin(m) and Bin(n/p,) cannot
be identified, resulting in several interpretations of Bin(m)Bin(n/pmy). The
solution is to consider coding Bin(m) in the following way. Let

Bm(m) = ayasas... a“og?(mﬂ)]

for a; € Zpool for i =1,2,..., [logy(m + 1)]. Then we define
Eﬁ(m) = a10a20a30 PN aﬂogz(m+1)]_10a[10g2(m+1)‘| 14

The word Bin (m)Bin(n/p,,) is an unambiguous representation of (m,n/py,),
and hence of n, because the end of the code Bin(m) of m is unambiguously
indicated by the first 1 on an even position in Bin (m)Bin(n/py,). The length
of this representation is

2 [logy(m +1)] + [logz(% +1)].

But this length is still too large for us and we try to decrease it by coding

(m,n/pm) by B 00
Bin([logy(m + 1)) Bin(m) Bin(n/pm).

This representation is unambiguous because the end of Bin ([log,(m +1)]) is
marked by the first 1 on an even position and Bin([log,(m + 1)]) says that
the following [log,(m + 1)] bits belong to the representation of Bin(m). The
length of this coding of (m,n/py,) is

2[log, [log, (m + 1)]] + [log,(m + 1)] + [log, (f— L)1,

Using the above-introduced strategy one can perform infinitely many improve-
ments, but for our theorem it is sufficient to make only one more. Definitively,
We represent (m,n/pn,) as

Word(m,n/pm) =
Bin (1o, log, (m + 1)11) Bin([logy (m + 1)1)Bin(m) Bin(n/pm).
Hence,
| Word(m,n/pm)| = 2 - [log,[log; [logy (m + 1)111

+[log, [logy (m + 1)1] (2.3)
+[logy(m +1)] + |'log2(p1 +1)].
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Now, the word Word(m,n/pm) is considered as a compression of Bin(n). Since
we consider a fixed, uniform compression strategy for every n, using the same
arguments as in Lemma 2.60 and Exercise 2.61, we obtain, for all s € IN— {0},
that more than half of the integers n in

p= 0t gty | avl g
have
| Word(m,n/pm)| > [logy(n+1)] — 1.

Analogously, more than half of the integers n in S; have
K(n) 2 [logy(n+1)] - 2.

This implies that, for every positive integer i, there exists an integer n; € S
(ie., 2¢ < n; < 24! — 1) such that

| Word(m, ni/pm)| > [logy(ni +1)] — 1
and
K(n) > [logy(n; +1)] — 2.

In other words there are infinitely many positive integers n satisfying the
inequalities
| Word(m, n/pm)] > logs(n +1)] - 1 (2.4)

and
K(n) > [logy(n+1)] — 2. (215)

Combining inequalities (2.4) and (2.3), one obtains

[logy(n +1)] — 1 < 2[log,[log, [log,(m + 1)]7]
+[log, [log,(m + 1)1] + [log, (m + 1)] + [log, (;”— +1)].

Because log,(n/pm) = logy n — log, pm we get

log, pm < 2 - [log, log, log,(m + 1)] + [log, log, (m + 1)] + [log,(m + 1) + 2
< 2 -log, log, log, m + log, log, m + log, m + 6.

Therefore
Pm < 64-m - log, m - (log, log, m)®. (2.6)

Because of inequality (2.5) the infinite sequence nj,n2,ns, ... satisfies the
assumptions of Lemma 2.69. Therefore inequality (2.6) holds for infinitely
many m (infinitely many primes p,,). This means, that the m-th smallest
prime is smaller than

64 - m - log, m - (log, log, m)?
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for infinitely many m. This is equivalent to saying that there are at least m
primes among the first 64 - m - log, m - (log, log, m)? positive integers, i.e.,

Prim (64 - m - log, m - (log, log, m)?) > m (2.7)

for infinitely many m.
We substitute k = 64 - m - log, m - (log, log, m)? in the inequality (2.7).
Since k > m, we obtain
A k
" 64 log, m - (log, log, m)?
s k
~ 64 -log, k - (log, log, k)2°

Prim (k) > m

O

Exercise 2.73. Consider Bin([log, m]) - Bin(m) - Bin(n/pn,) as the com-
pressed representation of n = pp,(n/pm). Which lower bound on Prim (k)
would be derived if one takes this representation of n in the proof of Theo-
rem 2.677

Exercise 2.74. Which assertion could be made if one takes

Bin([log, [log, [log, (m + 1)111) Bin( [logz [log, (m + 1)17)
Bin([log,(m + 1)]) Bin(m) Bin(n/pm)

as the representation of n = py, - (n/py,) in the proof of Theorem 2.677

Exercise 2.75* What is the tightest possible lower bound on Prim (k) that
is achievable by the argument used in the proof of Theorem 2.677

Exercise 2.76* Let p;,ps,ps,... be the increasing sequence of all primes.
Apply the Prime Number Theorem to prove that there exists a constant c
such that

K (pm) < [logy pm] — [logz log, pm] + ¢

for all positive integers m.

2.5 Summary and Outlook

In this chapter we have introduced the fundamental terms such as alphabet,
Wword and language. An alphabet is an arbitrary nonempty finite set of symbols
€quivalent to the script of a natural language. The term word over an alphabet
Corresponds to any text that is comprised of symbols of this alphabet. Any
Set of words (texts) over the same alphabet is called a language.

These basic terms are used in all areas of data processing. We begin with
the specification of algorithmic tasks, where inputs and outputs are always
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represented as words. A decision problem is in fact specified by a language L.
The task is to decide whether a given word is in L or not. An optimization
problem has a more complex, structured definition. Any input word codes a
set of constraints and determines costs of objects (feasible solutions) that sat-
isfy these constraints. The constraints are typically satisfied by many feasible
solutions and the objective is to find a solution that is optimal in terms of the
cost.

Kolmogorov complexity is a reasonable concept for measuring the size of
the information content (the amount of information) of words over the alpha-
bet Zhoot = {0,1}. The Kolmogorov complexity of a word z is the binary
length of the shortest Pascal program that generates z. We can consider a
program that generates a word = as a compression (a compressed represen-
tation) of z. Hence, the Kolmogorov complexity of z is the length of the
shortest compressed representation of z over {0,1}. Incompressible words are
very irregular words and such words are considered to be random. There are
infinitely many random words over {0,1}, at least one for every length. The
Kolmogorov complexity helps not only to measure the size of information con-
tent of a word and the degree of randomness of a word. It is also used as a
powerful, transparent instrument for proving results in many areas of com-
puter science and mathematics. We have applied the Kolmogorov complexity
argument not only to show that there are many primes, but also to explain
why there must be so many. A small density of primes among positive integers
would imply the existence of compressed representations for all words, which
contradicts the proven existence of random (incompressible) words.

The study of alphabets, words, languages, and their representations is the
topic of the formal language theory. This theory is one of the oldest and most
classical areas of computer science. Since key computer science objects such
as information, data, programs, theorems, communication messages, memory
contents, proofs, and computations are represented as words, the formal lan-
guage theory provides a basis for other fundamental areas of computer science
such as computability, compiler design, etc. In this introductory material we
reduced the presentation of the knowledge of the formal language theory to a
minimum necessary and sufficient for following the main topics of this book
presented in the next chapters. One reason for this is that there are already
many excellent textbooks on formal language theory and we do not see any
reason for writing the ‘101-st’ book on this topic. We warmly recommend “In-
troduction to Automata Theory, Language, and Computation” by Hopcroft
and Ullman [28] as one of the most successful classical textbooks in theoretical
computer science to the reader interested in fundamentals of formal language
theory. Note that there is also a new edition of this book [27] that is extended
by some new current topics. Another wonderful classical textbook specialized
on formal languages is that by Salomaa [60]. The main feature of the text-
books we mentioned above is the excellent, transparent way of introducing
new concepts and explaining the arguments at the intuitive level as well as
rigorously in detail. It is precisely this feature that made these books mile-

2.5 Summary and Outlook 53

stones in the development of computer science education. Among the more
recent German textbooks we would recommend Erk and Priese [18], Schoning
[62], and Wegener [71].

The idea of introducing Kolmogorov complexity as a measure of the infor-
mation content of words was discovered in the 1960s independently by Kol-
mogorov [39, 40] and Chaitin [9, 10, 11]. An exhaustive survey on this topic
is provided by the monograph [43] written by Li and Vitanyi. Unfortunately
this book is primarily written for researchers and so it is not easily readable
for beginners. Transparent and exciting examples of Kolmogorov complexity
applications can be found in Schéning [62].




The proof of a high education ®
is the ability

to speak about complex matters
as simple as possible. ;
R. Emerson * /

: /

Finite Automata

)

3.1 Objectives )

A finite automaton is the simplest computing model considered in computer
science. In fact, finite automata correspond to special restricted programs that
solve decision problems without the use of any variable. Finite automata work
in real time in the sense that the input word is read only once from the left
to the right and the output (result) is fixed immediately after the last symbol
of the input has been read.

The main reason for introducing finite automata here is not to present
the fundamentals of automata theory. Instead, this chapter serves a didactic
purpose — finite automata provide a very transparent and simple way for ex-
plaining how to model computations. Introducing the basic notions of theoret-
ical computer science such as configuration, computation step, computation,
simulation, determinism, and nondeterminism for the finite automaton model
gives one a reasonable intuition about the general meaning of these funda-
mental terms and also some experience in working with them. This intuition
helps us later in simplifying the way of explaining the exact meaning of these
terms in the framework of general models of algorithmic computations.

Thus, in this chapter we will learn how to rigorously but transparently
investigate and model a subclass of algorithms. Besides the first encounter
with the above-mentioned fundamental terms of computer science, we also
learn what proving the unsolvability of a concrete task in a restricted subclass
of algorithms means.

3.2 Different Representations of Finite Automata

When defining a computing model, one should answer the following questions:

1. Which elementary operations are allowed, i.e., what instructions are avail-
able for building a program?
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2. How large is the available memory and how may one work with (access)
it?

3. How do inputs enter the computer (computing model)?

4. How is the output (result) determined?

A finite automaton does not have any memory, except the memory where
the program is saved and the pointer showing the currently executed row
(instruction) of the program. This means that the program may not use any
variable. At first glance this may seem to be surprising because one can ask
how can a program compute without the use of variables. The idea is that
the content of the pointer, i.e., the number of the actual (executed) program
row is the only changing information and the program computes with this
pseudovariable.

If © = {a1,as,...,ax} is the alphabet over which the inputs are repre-
sented, then a finite automaton may only use the following instructions:

select input = a; goto i;

input = ay goto i

input = ap goto iy

The meaning of this instruction (elementary operation) select is that the
program reads the next input symbol and compares it with all a3, as,...,ak.
If the input symbol read is equal to a;, then the program continues to work in
row i; (i.e., the next instruction executed is the instruction written in row ij)-
The execution of this instruction is automatically coupled with the deletion of
the symbol read, allowing the finite automaton to read the next input symbol
in row ;. Every row of the program contains exactly one instruction of the
above type. The rows of the program are numbered by 0,1,2,3,... and the
work (computation) of the program always starts in row 0. When X consists
of two symbols only (for instance, 0 and 1), one could use the following simpler
instruction if ...then ...else instead of select.

if input = 1 then goto i else goto j.

Such programs are used for solving decision problems. The answer is deter-
mined by the row numbers. If a program consists of m rows {0..1,.2 msiin < 1},
then one could choose a subset F' C {0,1,2,...,m — 1}. We can interpret F
as the accepting set. Upon reading the last symbol of the input word, and the
program reaches a row j € F', then the program accepts this word (i.e., the
program gives the answer ‘yes’ for this input). If j € {0, 4,25l Y- F,
then the program does not accept the input (i.e., the answer is ‘no’). The set
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L of all words accepted by such a program (finite automaton) is the language
recognized by this program. In other words, we say that a finite automaton
solves a decision problem (X, L) if it recognizes the language L.

To illustrate the above description of a finite automaton, consider the
following program (finite automaton) A that works over the alphabet Xy,

0: if input = 1 then goto 1 else goto 2
il if input = 1 then goto 0 else goto 3
2: if input = 0 then goto 0 else goto 3
3t if 4nput = 0 then goto 1 else goto 2

Let us choose F' = {0,3}. The program A works on the input 1011 as
follows. It starts in row 0 and moves to row 1 after reading the first 1 of the
input. After that it reads the symbol 0 in row 1 and moves to row 3. In row
3 it reads 1 and goes to row 2. Finally after reading the last symbol 1 of the
input, it moves back to row 3. The computation is over and since 3 € F, the
word 1011 is accepted.

Figure 3.2 presents a schema that is often used to introduce a finite au-
tomaton as a computing model. Here, we see the three main components
of this model — the program saved in the memory, the tape (as the input
medium) that contains the input word, and the reading head that may move
on the tape from left to right only.! The tape, also called the input tape, can
be viewed as a linear memory for the input. The tape consists of a sequence
of squares (cells). A square is considered to be a basic memory unit that
may contain exactly one symbol of the alphabet. The actual tape always has
exactly as many squares as the number of symbols of the input word.

WSS TR A input tape
reading head

program

Fig. 3.1.

——
1
The schema of components of general computing models involves additionally a
memory and the description of possibilities for accessing the memory (for reading,

Writi_ng, deleting, and inserting data). A general model may contain an output
medium, too.
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The class of programs described above is seldom used to define finite au-
tomata, because these programs use the goto instruction and hence they usu-
ally lack a nice structure.2 Therefore, this way of modeling finite automata is
not very transparent and is unwieldy for most purposes. The idea of a user-
friendly definition of a finite automaton is based on the following visualization
of our special programs. To any program A we assign a directed labeled graph
G(A). G(A) has exactly as many vertices as the numbers of rows of A. Each
vertex of G(A) corresponds to exactly one row of A, and the order of this row
is the name (label) of this vertex. If program A moves from the row ¢ to the
row j upon reading an input symbol b, then G(A) contains the directed edge
(i, 7) that is labeled by b. Because our special programs without variables have
the instruction goto for each symbol a € X' in every row,3 each vertex of G(4)
has the outdegree? | X|. Figure 3.2 shows the graph G(A) that corresponds to
the above-presented program A of 4 rows. The vertices corresponding to the
rows 0 and 3 in F are drawn as double rings in order to distinguish them from
the others. The vertex that corresponds to the row 0 is distinguished by an
additional, special pointer (arc) entering it (Figure 3:2):

Starting with this graphic representation of programs without variables we
will develop a standard formal definition of finite automata. But we continue
to use this graphic representation since it provides a very transparent and
unambiguous way of describing a finite automaton. However, the following
definition is more convenient for studying the properties of finite automata
and for proving results about them. For this purpose we shall slightly modify
the standard terminology employed in automata theory. The terms “row of

2 In terms of program schemas

3 BEvery row is a select instruction over all symbols of the alphabet.

4 The outdegree of a vertex of a directed graph G is the number of di-
rected edges (arcs) leaving this vertex, ie., the outdegree of a vertex v is
|{(v,u) | (v,w) is an edge in G}|.
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a program” or equivalently “vertex of the corresponding graph” will be ex-
changed for (renamed by) the notion state of a finite automaton. The directed
edges of the graph corresponding to the goto instructions of the program will
be described by the so-called transition function that assigns a new state for
each current state and the symbol read.

- We bring attention to the important fact that the following definition of
a finite automaton follows a general schema that can be applied for defining
all computing models. First, one defines a structure that provides an exact
description of every object of the modeled class of algorithms. Then, the se-
mantic of this structure is fixed and explained. This is done in the following
order. First, one defines the term configuration. A configuration is a com-
plete description of the current situation (of the current general state) of our
machine. Then one defines a step as a movement from one configuration to
another determined by the execution of an actual instruction (elementary op-
eration) of the machine (program). A computation is viewed as a sequence of
steps. When the term of computation has been defined, one can assign the
result of the computation of the machine on any input v to this input.

Definition 3.1. A (deterministic) finite automaton (FA) is a 5-tuple
M= (QaEaJa quF)y where

(i) Q is a finite nonempty set of states
{formerly, the set of all rows of a program without variables},

(i) X is an alphabet, called the input alphabet of M
{i.e., feasible inputs are all words over X },

(1) o € Q is the initial state
{previously, the row 0 of a program without variables},

(iv) F C Q is the set of all accepting states,® and

(v) 6 is a function from Q X X to Q, called the transition function of M
{6(g,a) = p states that M moves from the state q to the state p when the
symbol a has been read (Figure 3.3)}.

A configuration of M is any element from Q x X*.

{When M has reached a configuration (p,w) € @ x X*, which means that
M is in the state p and M has still to read the suffizx w of an input word (i.e.,
the reading head is adjusted on the first symbol of w as depicted in Figure 3.8.}

A configuration (go, ) € {go} X X* is called the initial configuration of
M on z.

® Some authors also use the term final state instead of the term accepting state.
But th‘is can be misleading. First, a computation can finish in any state and then
the adjective final is not very appropriate. Second and mainly, the meaning of the
terms final state and accepting state do not overlap in more general computation
models such as Turing machines. Thus, we discourage the use of the term final
state when dealing with automata.
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{ The work (computation) of M on x must start in the initial configuration
(qo, .’5)} 4
Any configuration from Q x {)} is called a final configuration.

A step of M is a relation (on configurations)

lar (@ x Z%) x (@ x X%),
defined by
(¢,0) |5 (9.2) & w =0z, a€ T and §(g,0) = .

{A step corresponds to an application of the transition function on the
actual configuration, in which M is in a state q and reads an input symbol a
on the tape.}

A computation C of M is a finite sequence C = Cy,C1,...,Cn of con-
figurations such that C; |57 Ciy1 for alli,0<i<n—1.

{Thus, one can also view a computation as a sequence of steps of M. Some-

times we may even prefer the description Co |37 C1 I31 - - |57 Cn instead of
001017' "7011'}

C is the computation of M on an input x € X*, if Co = (qo, ) and
Cn €0 x {A}.

{ The computation on z has to start in the initial configuration (g0, z) of
M on = and may terminate only when all input symbols have been read.}

If Cp, € F x {\}, we would say that C is an accepting computation of
M on z and equivalently that M accepts x.

If C, € (Q—F) x {\}, we would say that C is a rejecting computation
of M on z and equivalently that M rejects x.

{Note, that M has ezactly one computation for any input T € Aot

The language L(M) accepted by M is defined as

L(M) := {w € Z* | the computation of M on w finishes in
a final configuration (g, ) with ¢ € F'}
= {w € X" | M accepts w}.
The class of regular languages
L(FA) = {L(M) | M is an FA}
is the class of all languages that are accepted by finite automata. Any language
L from L(FA) is regular.

Let us once again use the program A to illustrate the above definition of a
finite automaton. The formal description of the corresponding finite automa-
ton is M = (Q, X, 9, qo, F'), where

¥
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| tliellv o) ik vl HY |

Fig. 3.3.

Q= {%7‘11;@;‘13},
Z=Ho;
F = {q07q3}) and
6(q0)0) = q2, 5((]07 1) = 5 5((]170) = qs, 5(‘11, 1) = qo,
5(‘12,0) = qo, 6(q27 1) = (3, 6((1350) = 41, 6(‘13) 1) =5
A transparent description of the above-described transition function § is
presented in Table 3.1.

Table 3.1.
State[Input
0yl

qo (92 1
q1 |93 Qo
q2 |90 g3
g3 |91 q2

! The graphic representation G(A) of A in Figure 3.2 is, as previously men-
tlf)ned, a transparent representation of A. In what follows we shall use the
slightly modified® representation of A in Figure 3.4 as the standard represen-

Fation of the corresponding finite automaton. The computation of M on the
Input 1011 is

Since g3 € F, we have 1011 € L(M), i.e., M accepts 1011.
The following definition introduces some notation that is useful for the

fOrmal. work with finite automata, especially for giving a short, elegant pre-
Séntation of some proofs.

E—

® The only modification is labeling vertices using the names of the states instead
of natural numbers corresponding to the order of program rows. This kind of
lal?eling can sometimes increase the degree of transparency (Figure 3.6), since
Suitably chosen names of the states may provide more information than the orders
of any linear ordering of the states.
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4 L(M) = {w € Z* | (g0, w) |37 (p,\) with p € F}
= {w € Z* | §(qo, w) € F}.

Now, we will try to recognize which language is accepted by the finite
automaton M in Figure 3.4, i.e., to determine L(M). We observe that the
computation of M on words with even [odd] number of 1s finishes either in go
or in gy [either in ¢; or in g3]. Similarly, if the numbers of 0s in an input word
z is even [odd], then d(qo, ) € {go0,q1} [6(g0,Z) € {g2,g3}]. This observation
leads to the following assertion.

Lemma 3.3. L(M) = {w € {0,1}* | |w|o + |w|; =0 (mod 2)}.

Proof. First we observe that every FA partitions £* in |Q| classes

5. .l ={w e Z" | (g, ) l3r (p,2)}
and it is obvious that for all p,q € Q, p # ¢,
Definition 3.2. Let M = (Q, X, 4, q0, F) be a finite automaton. We define U Kl[p] = X* and Kl[p] N Kl[g] = 0.
|7 as the reflezive and transitive closure of the step relation |5 of M, i.e., peQ
* fil Using this terminology
(qaw) I_ (p,'ll:) < (q =1 and w = U)
M L(M) = | Ki[p).
or 3k € IN — {0}, such that pEF
7 i AL Sl ) PO In other words, the following relation
1 = Qai1az...axu, a; S A g el ey o %
() Ir1,ra,...,r5—1 € Q, such that | e TRsy & 0(qo, ) = 6(qo,y)
vl = (re,a3...a5u) |57 -« (rk—1, axu) |57 (p, ). ' : ' ‘ )
(9, w) bz (Tl’@ axt) [ar (12,05 ...040) bz s v 1s an equivalence relation on X*, which determines finitely many classes Kl[p]
We define § : Q X X* = Q by (Figure 3.5).
G ta it 6 B @sumd ' Thus, a sure way of successfully determining L(M) is to determine the
i = ;

sets Kl[go], Kl[g1], Kl[g2], and Kl[g3] for our FA M. To do so we propose the

(i) (g, wa) = 6(3(g, w),a) for alla € X, w € X7, ¢ € Q. following induction hypothesis,

The meaning of

(0 w) lar (p,u) Kl[go] = {w € {0,1}* | |w|o and |w]|; are even},
is that a computation of M starting in the configuration (g, w) reaches the Kl[q:] = {w € {0,1}* | |w|o is even, |w|; is odd},
configuration (p, u). The equality Kl[gz] = {w € {0,1}* | |wlo is odd, |w|; is even}, and
5ol Bap Kl[gs] = {w € {0,1}* | |w|o and |w|; are odd}.

means that if M has started to read the word w in the state g, then M finishes E .
its work in the state p, i.e.,
Kl[go] U Kl[gs] = {w € {0,1}* | Jw|o + |w|; = 0 (mod 2)},

the claim of Lemma, 3.3 is a direct consequence of the above hypothesis. Hence,
to complete the proof of Lemma 3.3 it is sufficient to proof this induction
hypothesis. We shall do it by induction over the input length.

(g, w) = p is equivalent to (g, w) |57 (p, A).

Hence, we obtain the following equivalent descriptions of L(M):
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E!

Chia

Fig. 3.5.

1. Induction basis.
We prove the induction hypothesis for all words of at most length 2.

8(g0,X) = 90 = A € Kl[go].

0(go,1) = ¢1 = 1 € Kl[q1].

6(go,0) = g2 and so 0 € Kl[gs].

(40, 00) |57 (g2,0) I37 (90, A) = 00 € Kl[go]-

(40,01) b7 (g2,1) 37 (g3, ) = 01 € Kl[gs].

(g0, 10) |57 (a1,0) |37 (g3, A) = 10 € Kl[gs].

(q0,11) I57 (a1, 1) I57 (g0, A) = 11 € Kl[go].

Hence, the induction hypothesis is true for the words of length 0, 1, and
2:
2. Induction step.

Let i > 2 be an integer. Assume that the induction hypothesis holds for

all z € {0,1}*, |z| < i. Our aim is to show that it also holds for the

words of length i+ 1. If we prove the induction step for all ¢ > 2, then the

induction hypothesis would hold for all words from (Zpeo1)*- ‘Let w be an

arbitrary word from (Zbo01)*!. Then, w = za, where z € X* and a € .

We distinguish four possibilities with respect to the parities of |z|o and

|21

(a) |z|o and |z|; are both even.

(b) |z|o and |z|; are both odd.

(c) |z|o is even and |z|; is odd.

(d) |z|o is odd and |2|; is even.

We now deal with each possibility.

(a) Let both |z|o and |z|; be even. Following the induction hypothesis for
z (note that |z| = i), we obtain (g0, 2) = qo, i.e., z € Kl[go]. Therefore

i ) griifar =1,
6(q07za) I (S((S(QO,Z),(I) i;_d(qo,a) o {q;, ita'=0"
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Since |z1|o is even and |z1|; is odd, the result §(go,21) = qi corre-
sponds to the induction hypothesis z1 € Kl[g1].
Since |20|p is odd and |20|; is even, the above result S(qo,zO) =5
agrees with the induction hypothesis 20 € Kl[g.].

(b) Let both |z|o and |z|; be odd. Applying the induction hypothesis for
z we obtain S(qo,z) = g3, i.e., z € Kl[gs].

2 g ~ 1 i q2; ifia = 1,
San, ) = 832 0) = dlan,) = { 1= 0
This result agrees with the induction hypothesis that claims z0 €
Kl[g1] and z1 € Kl[go].

The cases (c) and (d) are similar and we leave it to the reader to complete
the proof. O

Exercise 3.4. Complete the proof of the validity of the induction hypothesis
in Lemma 3.3, i.e., solve the cases (c) and (d).

Exercise 3.5. Rewrite the proof of Lemma 3.3 using the notation |37 and
|5 instead of é (i.e., the notation ¢ is forbidden).

Exercise 3.6. Let L = {w € (Zbool)* | |w|o is odd}. Design an FA M with
L(M) = L and prove L(M) = L.

Exercise 3.7. Design finite automata for the languages 0, £* and X't for an
arbitrary alphabet X. Give the formal 5-tuple representations as well as the
corresponding graphic representations.

If a transparent and detailed description of an FA A is present, then one
can also determine L(A) without proving it formally. Usually one dispenses
with the kind of formal proofs’ as given in Lemma 3.3. But reading the proof
of Lemma 3.3 we have learned something very important for the design of
finite automata. A good design strategy is to partition the set £* of all inputs
into subclasses with respect to some properties of the words and to determine
the transitions between these classes in the context of concatenating a symbol
from X to the words in these subclasses. Consider this strategy for the design
of an FA for the language

U = {w € (Zbool)* | |lw]o =3 and (Jw|; > 2 or |w|; =0)}.

To check if |w|o = 3, every FA B with L(B) = U has to be able to
distinguish the cases

4 Note, that this situation is similar to designing programs. Because of an enormous

amount of work one usually dispenses with proving the formal correctness of one’s
program.
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|lwlo =0, |w|o =1, |w|o =2, |wlo =3 and |w|o > 4

for any word w (i.e., B has to count the number of Os (up to four) in all prefixes
read). Simultaneously, A has to start to count the number of the occurrences
of the symbol 1 in order to be able to distinguish the following three cases

|lwji =0, |wj; =1 and |w|; > 2.

The result of the above consideration is the idea to take the following set
of states (the following partition of {0,1}* into subclasses):

Q = {q‘i,j | 1E {0v1a2’374},j £ {071’2}}

The meaning of these states is as follows:
For all 4 € {0,1,2,3} and all j € {0,1},

Kl[gi ;] = {w € (Zboo1)” | |w]o =i and |w]; = j},
Kl[gi2] = {w € (Zboo1)” | |w|o =4 and |w|; > 2},
Kl[gs,;] = {w € (Zboo1)* | [w]o > 4 and |w|; = 5}, and
Kl[g4,2] = {w € (Zboot)* | |w|o > 4 and |w|; > 2}.

Clearly, go,o is the initial state of B. The transition function of B can be
directly determined from the meaning® of the states g; ; as we have done in
Figure 3.6. One easily observes that

U = Kl[g3,0] U Kl[g3 2]

and fixes F' = {g3,0,93,2}

qOO

8 More precisely, from the definition of the classes Kli[g;,;]

0.0 Slmuiations o/

Exercise 3.8. (a) Prove that L(B) = U for the finite automaton B in Fig-
ure 3.6.

(b) Design an FA A such that L(A) = U and A has a smaller number of states
than B. Determine the class Kl[g] for every state g of your FA A.

Exercise 3.9. Design an FA for each of the following regular languages:

(a) {w € {0,1,2}* | w = 0021222, & € (Zpoo1)*},

(b) {w € {a,b,c}* | w = zabcabe, = € {a,b,c}*},

(C) {w € {(I,b, C}* I w = zaabby, z,y € {a,b: C}*,

(d) {w € {0,1}* | |lwlo =1 (mod 3) and w = =111y for z,y € {0,1}*},

(e) {abbzb®y | z,y € {a,b}*}, and

(f) {w € {a,b}* | w = abbz for a z € {a,b}* and w = ub®v for u,v € {a,b}*}.

It is sufficient to give a graphic representations of these automata. Give
the class Kl[g] for every state ¢ of each designed FA.

3.3 Simulations

Simulation is one of the most frequent terms in computer science. Despite
its importance nobody has tried to provide a formal definition of this term.
The reason for this is that this notion has different interpretations within
different frameworks. The most narrow definition of the simulation of a com-
putation requires for every (elementary) step of the simulated computation
to be mimicked by exactly one step of the simulating computation. A slightly
weaker requirement is that a step of the simulated computation may be mim-
icked by several steps of the simulating computation. One can also simulate
without mimicking every step and only require that the counterparts to some
important configurations of the simulated computation are reached. The most
general definition only requires the same input-output behavior and it does
not matter how the outputs to given inputs are computed.

In this section we show a simulation in the narrow sense. We do this by
constructing an FA that can simultaneously simulate the computations of two
other finite automata in a step-by-step manner.

Lemma 3.10. © be an alphabet and let My = (Q1, X, 61,901, F1) and My =
(Q2, X, 62, q02, F») be finite automata. For each set operation ® € {U,N,—}
there exists an FA M, such that

L(M) = L(M,) © L(My).

Proof. The idea of the proof is to construct the FA M in such a way that
M can simultaneously simulate the work of both finite automata M; and M,
on the same word.? The simulation idea is simple. The states of M are pairs

®In fact, there is no other possibility, because M may read the input only once
and thus M cannot simulate first M; and then M.
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Fig. 3.7.

(g,p), where g is a state of M; and p is a state of M. The first element of
(¢,p) has to be g exactly when M; has reached the state g. Analogously, the
second element of the state of M should have to be p when M, is in the state
p. (Figure 3.7).

We present the formal proof'® in two steps. First, we give the formal
construction of the FA M and then we prove that M simulates both AM; and
M.

The construction of M.

Let M = (Q, X, 6, qo, Fo), where

(i) Q=01 %x0Qs,

(i) g0 = (go1,902),

(111) for all q'c Qla pE Q2 and a € Za 5((qap)’a‘) = (él(qva)762(p7 a’))a
(IV) if ® =U, then F' = F] X QzUQl X Fy

{At least one of M; and M, stops in an accepting state.},
1f®=ﬂ, thenF:Fl XF2

{Both M; and M, must accept}, and

if®=——,thenF=F1 X (Qz—Fg)

{M; must accept and M, may not accept.}.

Proof of the claim L(M) = L(M;) ® L(M3).
To prove the claim for any ® € {U,N, -}, it is sufficient to prove that for
all z € X%,

—

8((qo1,902), ) = (81(qo1, %), 82(qo2, ). (3.1)
We prove (3.1) by induction according to |z|.

1. Induction basis.
If z = ), then it is obvious that (3.1) holds.

10 As usual in such cases

J.2 10015 Ol INUILICAILISLCIILC VI

2. Induction step.
For each positive integer ¢, we prove that the validity of (3.1) for all z € X*
with |z| < i implies the validity of (3.1) for all w € X**1.

Let w be an arbitrary word from X¢+1. We can express w as
w = za where 2 € £* and a € X.

Following the definition of 4, we obtain

8((go1, 902), w)

8((‘101, 402), za)

~

8(9((go1, g02), 2), @)
) 8((81(qo1, 2), 92(go2, 2)), @)

(3.1

= (61(81(go1,2),a),82(82(qo2, 2), a))
Def.é

(3(401, za), 5(‘102, za))
= (8(q01 ) ’LU), S(qOZ’ ’U)))
O

Exercise 3.11. Let L C X* be a regular language. Prove that I =1
is also a regular language.

3.4 Proofs of Nonexistence

To prove that a concrete language L is not regular, it is sufficient to show
that there does not exist any finite automaton that accepts L. Usually, show-
ing that a given problem is not solvable in a specific class of algorithms (i.e.,
that no program from this class solves the problem) belongs to the hardest
tasks in theoretical computer science. The proofs of such assertions are called
nonexistence proofs. In contrast to constructive proofs, where one proves the
existence of an object with required properties by simply constructing such
an object (for instance, one constructs an FA M with four states for a given
regular language), proving the nonexistence of an object with required prop-
erties in an infinite set of candidates (for instance, all finite automata) cannot
be done by checking whether each candidate fulfills the required property.
To prove the nonexistence of an object with given properties in an infinite
class of candidates, one typically has to uncover a deep understanding of this
candidate class that contradicts the required properties.

Since the class of finite automata is a class of very strongly restricted
Programs, the nonexistence proofs of the kind “there does not exist any FA
that accepts a given language L” are relatively easy. We use this fact to
present a simple and transparent introduction to the methodology of creating
honexistence proofs.



70 3 Finite Automata

We know that finite automata are called finite because their only possible
memory content!! is the actual state (the order of the actual row of the
program). The consequence is that if an FA A has reached the same state

when reading two different words z and y (ie., (o, z) = 8(qo,y)), then A
can no longer distinguish z from y. Formally, this means that

8((]07 1‘) = 3((10,?!)
implies that, for all z € X'*,
84 (g0, 72) = b4(q0,y2).

We formulate this important property of finite automata in the following
lemma.

Lemma 3.12. Let A = (Q, X,04,q0, F) be an FA. Let, for some z,y € L*,

T#y,
(g0, 2) B (p,A) and (q0,9) - (0, A)

for ap € Q (ie., 8a(q,7) = da(q0,y) = p (2,y € Kl[p])). Then for any
2 € X* there exists an r € Q, such that zz and yz € Kl[r] and consequently

rz € L(M) & yz € L(M).
Proof. The existence of the computations

(qﬂ’x) % (pv A) and (qo’y) % (p7 A)

of A on z and y implies the existence of the following computations on zz
and yz

(g0,22) - (p,2) and  (g0,y2) b (p, 2)

forallz € Z*. Whenr = 4 (p, 2) (i-e., when (p, z) Fr (r, A) is the computation
of A on z from the state p), then the computation of A on zz is

(QO, :vz) }':4_ (p, z) % (T, )‘)
and the computation of A on yz is
((Io,yz) l_:?_ (p’ Z) l% (Ta )‘)

If r € F, then both words zz and yz belong to L(A). If r ¢ F, then both zz
and yz do not belong to L(A). O

Lemma 3.12 is a special property of all deterministic computing models.
If a deterministic machine (algorithm) has reached the same configuration'?

11 Only possibility of saving information

12 This is true only if a configuration is considered as a complete description of the
general state of the machine that also includes the still accessible part of the
input.
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in computations on two different inputs, then the remaining parts of both
computations are identical. In the case of decision problems, the consequence
is that either both inputs are accepted or both inputs are rejected.

One can easily apply Lemma 3.12 to show that some languages are not
regular. Let us illustrate this for the language

L={0""|ne N}

Intuitively, L should be too hard for any finite automaton because to compare
the number of zeros with the number of ones it is necessary first to memorize
(count) the number of zeros. But the number of zeros in the prefix 0 can be
arbitrarily large and since every FA has a fixed size (a fixed number of states),
no FA can count the number of zeros in input words. One only needs to give
a formal argument why this counting is necessary in order to accept L. We
show by contradiction that L ¢ L(FA).

Assume L € L(FA). Let A = (Q, Zvool, 04,90, F) be an FA with L(A) = L.
Consider the words

0H80% 0%, oL

Since the number of these words is |Q|+ 1, there exist 4, j € {1,2,...,|Q|+1},
i < j, such that

8A(q0a0i) i SA(Q0,0j).
Following Lemma, 3.12 '
0'zeLe0ze Ll

for all z € (Zpo01)*. But this is not true because for z = 1¢,
0’1 € L and 071° ¢ L.

Izi‘lzcercise 3.13. Prove by Lemma 3.12 that the following languages are not in
FA):

(a) {w € {a,0}* | |w]a = |w]s},

(b) {a™b™c™ | n,m € N},

(c) {w € {0,1,#}* | w = z#x for an z € {0,1}*},
(d) {z1y € {0,1}" | |z| = |y]}.

To give a simple and transparent method for proving nonregularity of
concrete languages, one can search for easily verifiable properties [conditions]
that every regular language has [satisfies]. If a language does not have this
Property, one can directly conclude that L is not regular. In what follows we
present two methods for proving claims of the kind L ¢ L(FA). The first
method is called “pumping”. It is based on the following idea. If

(p,z) B (p, V),

for a state p and a word z, then
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(p,2") Hi (2, )

for all natural numbers i (Figure 3.8). This means that A cannot memorize
how often it has read the word z and hence A cannot distinguish between
words with different numbers of repetitions of z. Therefore, if 04(go,y) = p
for ay € X* and 84(p,2) =r for an z € L* (Figure 3.8), then

(QO, yxiz) '7*4— (p’ ziz) *—;— (pa z) I%‘ (’I‘, )‘)
is the computation of A on yziz for all : € IN, i.e.,
{yz'z | i € N} CKlr]

for an r € Q. This means that A either accepts all ‘words yz'z for any i € IN
(if r € F), or A does not accept any word from {yz*z|i e N} (ifr € Q- F).

Lemma 3.14. The pumping lemma for regular languages
For every regular language L, there exists a constant no € IN such that
every word w € X* with |w| > ng can be expressed as

w = YTz,
where
(i) lyz| < o,

(ii) |z| > 1, and
(iii) either {yz*z | k € N} C L or {yz*z |k e N}NL =0.

I\

Proof. Let L C X* be a regular language. Then there exists an FA A
(Q,X,084,q0,F), such that L(A) = L. We set

10— |Q|

Let w be an arbitrary word over X with |w| > ng. Then w can be expressed
as
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W=wWws...WnpU,

where w; € X fori =1,...,n9 and u € X*. Consider the computation

(qo,w1w2w3 ST wno) }T (ql,wzwg 3 wno)

I'A_ (Q27w3 .. -wno) }T * 3 ’T (Qno—lawno) I’T (qnoa/\) (32)

of A on wiws ... wy,. We have ng + 1 states qo,q1,92,--.,qn, in the ng + 1
configurations of this computation. Since |Q| = no,

there exist ¢,j € {0,1,...,n0}, ¢ < j, such that ¢; = g;.
Hence computation (3.2) can be written as

(g0, w1 - - - Wno) Hi (€ Wit1 -+ - Wno) H (€5, Wjt1 -+ Wno) Hf (€5 ). (3.3)

Now we set
Y= Wik s Wiy & = Wi 10ses Wy 'and (2 =g . < W U.

It is obvious that w = yzz. We check that properties (i), (ii), and (iii) are
fulfilled for this partition of w into the three subwords y, z, and z.

e — w ... wWiwiy . .. w; and so Jyz| = j.< ne.
(i1) Since i < j and |z| = j — i, we obtain z # A (Jz| > 1).
(iii) If one exchanges the notation y for w;...w; and the notation z for
Wit1 ... w; in computation (3.3), then the computation of A on yz could
be written as follows:

(gos YE VT (g5, 2) i (522 (3.4)

Hence, computation (3.3) implies that for all £ € IN,

(qivzk) ﬁ- (ql,)‘)

Then !
(g0, u="2) b (@i, 25 2) b (gi02) H (8algi, 2), A)

is the computation of A on yz*z for any k € IN. We see that, for all k € IN,
the computation ends in the same state d4(g;, 2).

If §4(qi, 2) € F, then A accepts all words from {yz*z | k € N}.

If §4(qi, z) ¢ F, then A does not accept any word from {yz*z | k € N}.

This completes the proof of Lemma 3.14. a

How do we apply Lemma 3.14 to show that a specific language is not
regular? Let us again use the language L = {0"1" | n € IN} to illustrate
the application of this method. OQur aim is to show that L does not have the
property of regular languages formulated in the pumping lemma. We do this
by contradiction. Assume L is regular. Then there exists a constant ny with
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the properties formulated in Lemma 3.14. This means that for every word of
length at least ng, a partition of w with the properties (i), (ii), and (iii) must
exist. Therefore, to prove that L ¢ L£(FA) it is sufficient to find a word w with
|w| > no such that none of its partitions satisfies all three properties (i), (ii),
and (iii). For instance, choose the word

gii= 1000

Obviously, |w| = 2ng > np and so y, z, and z must exist such that w = yzz
satisfy properties (i), (ii), and (iii). Following (i) we have |yz| < no and hence
y = 0! and = = 0™ for some I, m € IN. Following (ii), m # 0. Since

w=0"1" = yzz € L and yzz € {yzFz | k € N},
the property (iii) implies
{yz*z | k € N} = {omo—™tkmm0 | k¢ N} C L.
This is a contradiction since
yzlz =yz =00 ™10 ¢ L

(it is even so that 0”°1™ is the only word in {yz*z | k € IN} that belongs to
L) and hence L is not regular.

The crucial point in the application of the pumping lemma is that we
have the choice of a sufficiently large word w, because the pumping lemma
holds for all sufficiently large words. This choice is especially important for
the following two reasons. First, one can make a bad choice that is not helpful
in proving L ¢ L(FA). For the language L = {0"1" | n € IN}, an example of
a bad choice is the word '

w=0m ¢ L.

One can partition w as

w=yzz withy =0, =0 and z = 0""2

Obviously, the pumping lemma holds for such w because all words in
{yzFz | k € N} = {0™~1tF | k € IN}

do not belong to L and so all three properties (i), (i), and (iii) are satisfied
for w = yz=.

Secondly, a choice may help to prove L ¢ L(FA), but which is not as
good as others in the sense that one has to do more work to prove that every
partition of the chosen word does not satisfy all the properties (i), (ii), and
(iii) than for a convenient choice. For instance, consider the word

w = 0fm0/211[n0/2]
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This word can be used to prove that L = {0"1" | n € IN} is not regular, but
considering all possible partitions yzz of w one has to consider at least three

(a) y = 0%, z = 0™, z = 0[mo/21-m—i1[n0/2] for any i € IN and any m €
IN — {0}, i.e., = consists of zeros only.
{In this case property (iii) is not satisfied using a similar argument as
above for the choice w = 0"01m0.}

(b) y = 0Mmo/21=m g = om14, » = 1[0/21~7 for any positive integers m and
J, i.e., T contains at least one 0 and at least one 1.
{In this case property (iii) is not satisfied because r = yzz € L and
yz®z ¢ L because yz?z does not have the form a*b*.}

ic) v = 0fmo/211t g = 1™ z = 1[ne/21-i-m o any ¢ € IN and any m €
IN - {0}.
{In this case one can pump 1s without increasing the number of Os and
analogously to the case (a) property (iii) is not satisfied.}

Thus, we see that the use of the word 0/™0/211[m0/21 for proving L ¢ £(FA)
by the pumping lemma requires more work than the use of the word 0”017,

Exercise 3.15. Prove by the pumping lemma that the following languages
are not regular.

(i) {ww | w € {0,1}*}

(ii) {a™b™c" | n € N}

(iii) {w € {0,1}" | |wlo = |w]1}
(iv) {a”n | n € IN}

(v) {a*" | n € N}

(vi) {w € {0,1}* | [wlo = 2w}
(vii) {z1y | 2,y € {0,1}*, |z] = |y}

Exercise 3.16. For every language over X001 from Exercise 3.15, find a word
u such that every partition of u into yzz satisfies all three conditions (i), (ii),
and (iii) of the pumping lemma.

Exercise 3.17. Prove the following version of the pumping lemma.
For every regular language L C X*, there exists a constant ng € IN, such
that every word w € £* with |w| > ng can be expressed as w = yzz, where

(i) |(L'Z| S No,
(ii) |z| > 1, and
(iif) either {yz*z | k € N} C L or {yz*z | k€ N} n L = 0.
Exercise 3.18* Formulate and prove a general form of the pumping lemma

that involves Lemma 3.14 and the pumping lemma from Exercise 3.17 as
Special cases.

L
13 aetipe ; !
For the word 0"°1"°, property (i) ensures that z consists of Os only. However, for
the word w = 0f™0/21 1Mmo/21 ¢ may be any subword of w.
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The next method for proving L ¢ L(FA) for a given language L is based
on the Kolmogorov complexity argument. In some sense this method shows
with the aid of a different combinatorial argument that finite automata cannot
count arbitrarily far (or cannot save too much information of the word that has
been read). This method is based on the following theorem that shows that all
suffixes of words of a regular language have a small Kolmogorov complexity.
This can be viewed as a refinement of Theorem 3.19 that claims that all
words of a recursive language with a small density have a small Kolmogorov
complexity.

Theorem 3.19* Let L C (Zboo1)* be a regular language. For each x € X*,
let

Then there exists a constant const, such that, for all z,y € L*,
K (y) < [logy(n +1)] + const

if y 1s the n-th word in the language L.

Proof. Since L is regular, there exists an FA M with L(M) = L. The idea of
the proof is somewhat (though not entirely) similar to the idea of the proof
of Theorem 2.65, but not the same. If one follows the proof of Theorem 2.65
exactly, one would generate all words z from X* in the canonical order, and
simulate the computation of M on every zz in order to determine whether
zz € L = L(M) (i.e., whether z € L;). Finding the n-th word zz with the
fixed prefix & corresponds to the fact that z is the n-th word in L, and so
one has a program for generating z. The drawback of this approach is that
the resulting program that generates the n-th word y in L, needs to obtain
not only n and M, but also z. But the word z can have an arbitrarily large
Kolmogorov complexity K (z) in comparison with K (y).

The crucial point is that in fact the program generating y does not need to
obtain the full information about =. It is sufficient to include the state & (go, )
into the program and then to start the simulation of the computation of M
on the generated words z always from the state ) (go, z) (instead of simulating
the work of M on zz from the initial state go for every generated z).

Let y be the n-th word in L, for an z € *. The program A , generating
y can be described as follows:

A begin
Ze= X =0
while 2 < n do begin
Simulate the work of M from the state 8(go,z) on 2;
if 6(8(qo,z),z) € F then
begini:=i+1;
=z

z,y"
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end;
2 := the canonical successor of z.
end;
write(y);

end

For all z,y € X*, the program A, , is the same except n and the state
4(qo, ). The special role of 4(go, z) can be marked within the description of
the FA M by a special pointer to & (go, z). Since there are only |@Q| possibilities
for the pointer, there exists a constant constps that is an upper bound on the
binary length of the representation of M with the pointer to a special state
(it does not matter to which one). The length of the binary representation of
A,y except the parameters n, M, and 6(qgo, z) is a constant d independent of
z and y. Since the positive integer n can be binary coded by [log,(n + 1)]
bits, one obtains

K(y) < [logy(n + 1)] + constar +d.
This completes the proof of Theorem 3.19. O
We apply Theorem 3.19 in order to show once again that
L={0"1"|neIN} ¢ L(FA).

The proof is done (as usual) by contradiction. Assume, L is regular. For every
m € IN, the word 1™ is the first word in the language

Lom = {y | 0™y € L} = {071™+ | j € N}.

Following Theorem 3.19 there exists a constant ¢ independent of m (i.e., in-
dependent of the word 1™), such that

KQ™) < K()+ec
Since K (1) is constant too,
K1™) <d (3.5)

for the constant d = K (1) + ¢ and all m € IN — {0}. But this leads to the
contradiction between the following facts:

(i) the number of all programs whose binary length is at most d is finite!* ,
and
(ii) the set {1™ | m € IN} is infinite.

.Instead of using the argument that finitely many programs cannot generate
infinitely many different words, one can alternatively apply the assertion in

4 More precisely, at most 2¢



78 3 Finite Automata

Exercise 2.29. This assertion guarantees the existence of infinitely many pos-
itive integers m with

K(m) > [logy(m+1)] — 1. (3.6)

Since there exists a b € IN such that |K(1™) — K (m)| < b for all m € IN, the
inequality (3.6) contradicts inequality (3.5) for infinitely many m € IN.

Exercise 3.20. Prove that there exists a constant b such that, for all m € IN,
|K(1™) — K(m)| < b.

Exercise 3.21. Apply Theorem 3.19 to prove that the following languages
are not regular.

(i) {0~ | n e N}
(ii) {02 | n € IN}
(i) {w € {0,1}" | fwlo = 2 - w1}
(iv) {w € {0,1}* | w = zz for an z € {0,1}*}

3.5 Nondeterminism

The usual programs as well as the introduced finite automata are models of
deterministic computations. Determinism means that in every configuration
it is unambiguously determined what will happen in the next computation
step. Therefore a (deterministic) program and its input determine unambigu-
ously the computation of A on z. In contrast to determinism, nondeterminism
allows in each configuration a choice from several (finitely many) possible ac-
tions.!5 The consequence is that a nondeterministic program can have many
different computations on the same input. The only requirement is that at
least one of these possibilities yields the correct result. This may seem like an
artificial rule because it corresponds to the assumption that a nondetermin-
istic program always chooses the right computation. This choice from several
possibilities is called a nondeterministic decision. For a decision problem
(2, L), it means that a nondeterministic program (a nondeterministic FA) A
accepts the language L if, for every = € L, there is at least one accepting
computation of A on z, and, for every y € X* — L, none of the computations
of A on y is an accepting one. Although a nondeterministic program does
not seem to be useful for practical purposes,'® the study of nondeterminism
and nondeterministic computations has essentially contributed to our under-
standing of deterministic computations and especially to the investigation of

15 That is, to have several possibilities how to continue in the computation
16 This is because we do not have any oracle that would help us to take the right
nondeterministic decisions.
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the limits for solving problems by algorithms. As we will see later, nondeter-
minism has become a very powerful instrument for investigating quantitative
laws of computing and this is one of the main reasons for introducing it and
learning to work with it here.

The goal of this section is to introduce and to study nondeterminism for
the model of finite automata. Our main interest is devoted to answering the
following questions. Can one simulate nondeterministic computations using
deterministic ones? If yes, what is the price!” of being able to do so? One can
introduce nondeterminism for programs by simply allowing the additional
instruction

“choose goto i or goto j”.

For finite automata, this simply corresponds to allowing several transitions
from a state by reading the same input symbol (i.e., by allowing several di-
rected edges labeled by the same alphabet symbol from a state (Figure 3.9)).

Fig. 3.9.

Definition 3.22. A nondeterministic finite automaton (NFA) is a 5-
tuple M = (Q, X, 0, qo, F'), where

(i) Q is a finite set, called the set of states,

(i) X is an alphabet, called input alphabet,
(iii) go € Q is the initial state,

(iv) F C Q is the set of accepting states, and

(v) § is a function'® from Q x X to P(Q), called the transition function.

{ We note, that Q, X, qo, and F have the same meaning as for a (determin-
istic) FA. But following (v), for a state ¢ and a symbol b read, an NFA can
have several successor states or none, i.e., 8(q,b) is a set of states (possible
actions) in contrast to having ezactly one state (action) in the case of an FA.}

A configuration of M is an element from Q x X*. The configuration
(go,z) is the initial configuration of the input word z.

17 The size of the additional computational effort (resources)
8 Alternatively, one can define § as a relation on (Q x ¥) x Q.
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A step of M is a relation
a S@xZ")x(@x2X)
defined by

(¢,w) |57 (p,7) & w=az forana € X and p € 6(q,a).

A computation of M is a finite sequence D1, Da, ..., Dy of configura-
tions, such that D; |5 Diy1 fori=1,...,k—1.
A computation on z is a computation Co,Ch, .. .,Cm of M, where

(i) Co = (qo, ), i-e., Co is the initial configuration of M on z, and
(ii) either Cm € Q X {A\}
or Cp, = (g,az) for ana € X, and a q € Q such that d(g,a) = 0.

{A computation of M on z can stop when the whole input has been read, or
(in contrast to FAs) if there is no possibility of continuing the computation
for some argument (g¢,a).}

Co,Cl,...,Cp is an accepting computation of M on z, when Cp, =
(p,X) fora pe F.
{M accepts = in a computation C only if the whole word = has been read in
C and the computation finishes in an accepting state.}

If there exists an accepting computation of M on , then one says that M
accepts the word .

The relation |3 denotes the reflezive and transitive closure'® of the re-
lation |57 .

The language accepted by M is

L(M) = {w € Z* | (q,w) |37 (p,A) for ap € F}.

For the transition function §, we define the function 6 from Q x X* to
P(Q) forallg€ Q,a € ¥ and w € L*:

(i) 8(g,\) = {a},

(ii) 8(q, wa) = {p| there exists an T € (g, w), such that p € 6(r,a)}
=3 U'res(q,w) 6(7" a)‘

We see that a word z € L(M) if M has at least one accepting computation
on z. For any accepting computation, one requires that all symbols of the input
are read and that M reaches an accepting state immediately after reading the
last symbol.2% In contrast to (deterministic) finite automata, a nonaccepting
computation can finish without reading the whole input. This would happen
when there is no transition for the given argument, i.e., if (g, a) = ( for the
current state ¢ and symbol a read.

19 FEyactly as in the definition of finite automata
20 This requirement is the same as for (deterministic) finite automata.
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Following the definition 4, we see that §(go,w) is the set of all states from
@, which can be reached after reading the whole word w from the state qo,
ie., I
d(q0,w) ={p € Q| (g0, w) l57 (P, N)}-
Therefore 2
L(M) = {w € Z* | 6(q0,w) N F # 0}

is an equivalent definition of the language accepted by an NFA M.
Consider the following example of an NFA. Let M = (Q, X, 6, qo, F'), where

Q = {qoaquq2},
4 00L),
F ={g¢2} and

6(‘10,0) = {qO}v 5(‘10) 1) i {quql}a
6(q1,0) =0, 6(q1,1) = {g2},
d(g2,0) = {2}, 6(g2,1) = {a=}.
Using the same procedure as for (deterministic) finite automata, one
can derive a graphic representation of nondeterministic finite automata. The
above-presented NFA M is depicted in Figure 3.10.

(10 0.1

Fig. 3.10.

The word 10110 is in L(M), because

(g0,10110) |57 (g0,0110) |57 (g0, 110) l57 (a1, 10) I57 (g2,0) I57 (g2, A)

is an accepting computation of M on 10110.

To decide whether an NFA M accepts a word z one has to follow all
computations of M on z. A transparent representation of all computations
of M on z can be given by the so-called computation tree Bps(z) of M
on z. The vertices of this tree are configurations of M. The root of B (z)
is the initial configuration of M on z. The sons of a vertex (g,a) are all
configurations that are reachable in one computation step from (g, @), i.e., all
configurations (p, 8) such that (g, @) |57 (p, B). A leaf of Bas(z) is either a final
configuration (r,\) or a configuration (s,af) with an a € X and 6(s,a) = 0.
Hence the leaves are configurations from which no further computation step
is possible. In this representation, any path of Bas(z) from the root to a leaf
corresponds to a computation of M on z, and vice versa. Therefore the number

. of leaves of Ba(z) equals the number of different computations of M on z.
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Exercise 3.23. Design an NFA that has exactly 21zl distinct computations
on any input z € (Zpool)*.

b (g0, 10110) | {g0}
(g1, 0110) (g0,0110) {q0, a1}
o
(g0,110) {g0}
™ |ﬁ
l/(qo’ 10)\| (q1,10) {q0,q1}
brs 074 ‘ o
(ql’ 0) (q07 0) (qz) 0) {QO, q1, q2}
’ lar lsr
(90,2) (g2,A) {90,492}
Fig. 3.11

Let M be the NFA depicted in Figure 3.10. The computation tree Bas(z)
of M on the input z = 10110 is depicted in Figure 3.11. The tree Bys(10110)
has four leaves. Two leaves (g1,0110) and (g1, 0) correspond to computations,
for which M fails to read the whole input word (because d(g1,0) = @). Hence,
these two computations are not accepting. The leaves (go, A) and (g2, A) corre-
spond to two computations, in which the 10110 has been entirely read. Since
g2 € F, the corresponding?! computation is an accepting computation, and
hence 10110 € L(M).

Since g5 is the only accepting state of M and the only possibility of reaching
g2 from g is to read the subword 11, one can guess that L(M) is the set of
all words of the form z1ly, where z,y are arbitrary words in (Zpeo1)*. The
following lemma confirms our hypothesis.

Lemma 3.24. Let M be the NFA from Figure 3.10. Then
L(M) i {.’L'].ly | z,y € (Zbool)*}-

Proof. We prove the equality of these two sets by proving the corresponding
two inclusions.

(i) First, we prove {zlly | £,y € (Zboo1)*} C L(M).

21 The computation that finishes in the configuration (g2, A)
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Let w € {zlly | z,y € (Zboo1)*}, i-e., w = z1ly for some z,y € (Lpool)*-
It is sufficient to prove the existence of an accepting computation of M
on w.
Since go € d(go,0) N &(go, 1), we have the following computation of M on
every € (XZhool)*:

(q07 .’E) |7*W_ (qO, A) (37)

Since g2 € 6(g2,0) N d(ge, 1), there exists the following computation of M
on every ¥ € (Zhool)*:
(¢2,9) 37 (@2, V). (3.8)

Hence, the computation

(90, 211y) 57 (20, 11y) |37 (a1, 1y) I3 (22, %) 37 (2, A)

is an accepting computation of M on z11y.

(i) We prove L(M) C {z1ly | z,y € (Zboo1)*}.
Let w € L(M). Hence, there exists an accepting computation C' of M on
w. Since this accepting computation C on w must start in the initial state
go and finish in the only accepting state g2, and the only path from gy to
@2 goes via g, the computation C has the following form:

(90, ) 57 (41, 2) I3 (g2, A). (3.9)
Every computation of M may contain at most one configuration with the
state q; because

(a) ¢1 ¢ 6(q1,0a) for any a € Zyee1, and
(b) if M has left g1, then M can return to ¢; no longer.

As such, one can express the accepting computation C' as follows:

(0, w) 37 (20, abu) 37 (g1, bu) I3 (a2, w) 57 (g2, N), (3.10)

where a,b € Yhoo1 and u € X ;. The only possibility to reach ¢; is to
apply the transition ¢; € 6(go,1), i.e., by reading 1 in the state go. This
implies a = 1 in computation (3.10). Since (¢1,0) = 0 and 6(¢1,1) = {g2},
the only possibility to execute a computation step from g¢; is to read 1,
and hence b = 1. Rewriting?? computation (3.10), we obtain that C' must
have the following form:

(qO,w) I-]\tj'— (qu llu) |ﬁ ((h, 1U) |-1\T (an u) Iﬁ (q2) )‘)
The consequence is that w must contain the subword 11 and hence

w € {zlly | z,y € (Zboo1)*}

i Inserting 1 for @ and b in computation (3.10)
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Exercise 3.25. Design nondeterministic finite automata for the following lan-
guages.

(a) {1011200y | z,y € (Zboor)*}

(b) {01,101}*

(c) {z € (Zboot)* | = contains the subwords 01011 and 01100}
(d) {z € (Z10)* | Numberio(z) is divisible by 3}

Try to construct as simple NFAs as possible, i.e., minimize the number of
states (vertices) and the number of transitions (edges).

Let
L(NFA) = {L(M) | M is an NFA}.

The central question of this section is whether L(NFA) = L(FA), more pre-
cisely, whether finite automata can simulate the work of nondeterministic
finite automata. This question is also crucial for general computing models.
From widespread scientific experience, we know that the simulation of non-
determinism by determinism is executable only if there is a possibility of
mimicking all computations of a given nondeterministic model on an input by
one deterministic computation. This is also the case for finite automata.

The idea of the simulation of an NFA M by an FA A is based on the
breadth-first search in the computation trees of M. The first important as-
sumption for this simulation is that all configurations of a computation tree at
the same distance i from the root have the same second element, because they
are reached after reading the first ¢ symbols of the input word. Thus, these
configurations at the same distance from the root may differ only in states.
Although the number of configurations at a distance i from the root can be
exponential in ¢, it does not mean that one needs to simulate exponentially
many different computations. The NFA M has only finitely many states and
so there are only finitely many different configurations at a distance i from the
root for any i € IN. If two different vertices u and v of the computation tree
are labeled by the same configurations then the subtrees rooted by u and v
are identical and hence it is sufficient to search for an accepting configuration
in only one of the trees (Figure 3.12). This means that for a simulation of the
work of the NFA M on an input z, it suffices to determine the set of all states
reachable after i steps of M on z for any i € {0,1,...,|z|}. For any 1, this set
is none other than S(qg, z), where z is the prefix of z of length i. From the right
border of Figure 3.11 one sees the sets (g0, 10) = {q0}, 6(g0,101) = {q0, a1}
5(go,1011) = {go, 41,92}, and 4(go,10110) = {go, g2}, which correspond to the
sets of reachable states after i = 0,1,...,5 steps (i.e., after reading the prefix
of length ¢).

This observation triggers the idea to take subsets of the set of states @ of
a given NFA M = (Q, %,4,qo, F) as states of the simulating (deterministic)
FA A. Therefore, the following construction of the FA A is called the powerset
construction in the automata theory. A state (P) of A for a set P C @ has the
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interpretation that exactly the states of P are reachable®® in the computations
of M on an input z, i.e., that P = d(qo, 2). A computation step of A from a
state (P) by reading a symbol a is determined by

U é®,0),

peEP

%.e., by the set of all states that can be reached when M reads the symbol a
in a state from P. A formalization of this idea is given by the next theorem.

: Theorem 3.26. For any NFA M, there ezists an FA A, such that

E Proof. Let M = (Q, X, 0n,q0, F) be an NFA. We construct an equivalent FA
. A= (Qua,%4,04,q04,F4) as follows:

- ) Qu={(P)| PCQ)},
- (iii) goa = ({0}),
BUY) Fy = {(P)| PCQand PNF #0},

.}' (v) 64 isza function from Q4 X X4 to Q4, such that for any (P) € Q4 and
a€ 2y,

6A(<P>’a’) — <U (SM(p7a)>

pEP
= ({g € Q| 3p € P, such that q € dp(p,a)}).

23 ! :
We use the notation (P) instead of P to clearly distinguish between a state (P)

of the FA A that corresponds to the set P of reachable states of M, and a set P
of states of M. ’
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Clearly, A is an FA. Figure 3.13 shows the FA A that is created by the powerset
construction?* from the NFA M in Figure 3.10. To prove that the FA A is
equivalent to the NFA M, it is sufficient to prove that for all z € X,

~

8r(g0,x) = P <= dalqoa,z) = (P). (3.11)

We prove (3.11) by induction according to |z|.

(i) Induction basis. f
Let |z| = 0, i.e.,, z = A. Since dp(go, A) = {q0} and goa = ({go}), equiva-
lence (3.11) is true for z = A.

(ii) Induction step.
Let equivalence (3.11) hold for all z € 2* with |z| < m where m € IN. We
prove that equivalence (3.11) also holds for all words from Z™+1.
Let y be an arbitrary word from Z™*!. Then, y = za for an z € X™ and
a symbol a € X. Following the definition of the function d4, we have

34(g04,a) = 64(6a(g04, %), 0). (3.12)
Applying the induction hypothesis (3.11) for z, we obtain
34(q04,2) = (R) ¢ du(q0,2) = R,
and thus
balao, ) = ($n(a0,9)) (3.13)

According to (v) of the construction of A, we obtain for all R C @ and

a € X, that
64((R),a) = <U 6M(p,a)> :

PER

(3.14)

Summarizing,

64(gon,za) = 8a(6a(goa,x),a)
(3.12)

= 5a({bu(a,2)) @)

(3-13)

< U

p€Sm (q0,z)

= <8M(q0,:1:a)> 3

oM (p7 a’)>

This completes the proof of the equivalence (3.11) and hence the proof of
Theorem 3.26. o
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~ In what follows we say that two automata A and B are equivalent if
L(A) = L(B).

;fercise 3.27. Apply the powerset construction of Theorem 3.26 in order to
uild an FA that is equivalent to the NFA in Figure 3.14.

xercise 3.28. Applying the powerset construction, construct finite automata
at are equivalent to the nondeterministic finite automata you have designed
r Exercise 3.25 (b) and (d).

A consequence of Theorem 3.26 is that
L(FA) = L(NFA),

., finite automata are as powerful as nondeterministic finite automata with
pect to language recognition. But we observe that the finite automata con-
ructed by the powerset construction are essentially (exponentially) larger
an the corresponding nondeterministic finite automata. We now deal with
e following questions. Is there an alternative simulation of NFAs by FAs
at guarantees the existence of an FA that is small with respect to the size

Note, that the states (), ({g1}), ({gz}), and ({g1,92}) of A in Figure 3.10 are
- Dot reachable from the initial state ({go}), i.e., there is no word whose handling
- by A would finish in any of these states. Hence, the removal of these states does
. not change the language accepted by A.
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of its nondeterministic counterpart? Or, are there any regular languages for
which the simulation of nondeterminism by determinism inevitably results in
an exponential growth in the number of states? We show that one cannot
improve on the powerset construction. To do this, we consider the following
regular language

Ly = {.’L‘ly ‘ TE (Zbcol)*,y € (Ebool)k—l}

for any finite integer k. The NFA Ay in Figure 3.14 accepts Ly by guessing in
the state go, for every symbol 1 of the input, whether this symbol is the k-th
symbol from the end of the input word. Ay, then checks in a deterministic way
whether this guess was correct.

L e . S

Fig. 3.14.

Exercise 3.29. Give a formal description of the NFA Ay in Figure 3.14 and
prove that Ay accepts the language L. Construct, for every positive integer
k, an FA By, such that Ly = L(By).

The NFA Ay has k + 1 states. We prove that every FA accepting Ly, has
a number of states that is exponential in the size of Ay.

Lemma 3.30. For any positive integer k, every finite automaton accepting
Ly, has at least 2 states.

Proof. Let By = (Qk, Zbool, Ok, ok, Fr) be an FA with L(By) = L. To show
that By has at least 2% states, we use the same proof technique as in Sec-
tion 3.4 for proving the nonexistence?® of finite automata accepting some
specific languages. If 4 4

0k (qok> ) = Or(qok, y)

for some words z and y over X0, then for all z € (Zpoo1)*,
zz € L(By) < yz € L(By). (3.15)

The idea of this proof is to find a large set Sy, of words, such that for any
two different words z,y € Sk, the equality dx(qok,z) = x(qok,y) does not
hold, because there exists a word z such that

%5 This is not surprising because we are creating a nonexistence proof. More pre-
cisely, we are proving that there does not exist any FA that accepts Ly with fewer
than 2F states.
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zz € L(By) and yz ¢ L(By).

. Then, the FA By has to have at least | S| different states.?®

We choose
Sk 5 (Z1b001)’c

and show, that & (qok, u) must be pair-wise different states of By, for all u € Sy.

. We prove this by contradiction. Let

T =T1T2...T andy:ylyz...yk,

be two different words from S; = (Z‘bool)k, where z;, y; € Xhoo! for i =

1,...,k. Assume y "
Ok (qok, ) = Ok(qok, Y)-

Since z # y, there exists a j € {1,...,k}, such that z; # y;. Without loss of
generality we may assume

zj=1and y; =0.
Now consider the word z = 0°~1. Then
2= 2y ... 5y 1Ty .. 3507 T and y2 = 31 oo W52 08500+ oo UR0T T

and thus
zz € Ly, and yz ¢ Ly.

This contradicts equality (3.15), i.e., &k (qox, «) and 8k (qok,y) must be differ-
ent. Hence, By, has at least |Sy| = 2F states. 0

Lemma 3.30 presents a simple technique for proving lower bounds on the
sizes of finite automata for recognizing concrete regular languages. To practice
this technique in a transparent way, we prove now a lower bound for the simple
regular language

L = {zlly | z,y € {0,1}"}

used to illustrate the powerset construction in Figure 3.10. To prove that every
finite automaton accepting L has at least three states, we choose the following
three words:

DA LA B

For any of the three pairs (z,y) of different words from S = {), 1,11} we have
to show that there exists a word z such that exactly one of the words zz and
Yz isin L (i.e., that £ and y do not satisfy the equivalence (3.15)).

For z = A and y = 1 we choose z = 1. Then

zz=1¢ Landyz=11€ L

%% If | Sy| is infinite, then we would prove the nonexistence of finite automata recog-
nizing the language considered.
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and thus 8(qo, z) # 5(qo,y) for any finite automaton accepting L.
For z = X and y = 11 we choose z = 0. Then

zz=0¢ L and yz = 110 € L.
For z = 1 and y = 11 we choose z = A. Then
zz =1 ¢ L and yz=11e"L:
Hence, the states
5(a0,)), (g0,1) and §(go, 11)
have to be pair-wise different for any A = (Q, Zvool, , qo, F') that accepts L.

Exercise 3.31. Consider the language L = {zlly | z,y € {0,1}*} and the
three words A, 1,11. For any pair ,y of different words from S = {}, 1,11},
estimate the set Z(z,y) C (Zbool)* such that for any z € Z(z,y)

(zz¢ Landyz € L) or (zz€ Land yz ¢ L).

Exercise 3.32. Prove that any FA accepting L = {zlly | z,y € {0,1}*} has
at least three states by choosing three words different from A, 1, and 11.

Exercise 3.33. Let L = {z011y | z,y € {0,1}*}.

(i) Construct an NFA M with 4 states for L and prove L = L(M).
(ii) Prove that there is no FA M with 3 states and L = L(M).
(iii) Apply the powerset construction to construct an FA that accepts L.

Exercise 3.34* An FA A is called minimal for the regular language L(A),
if there is no smaller (with respect to the number of states) finite automaton
that accepts L(A). Construct minimal finite automata for the languages from
Exercise 3.25 and prove their minimality.

Exercise 3.35. Design an NFA with at most six states, such that L(M) =
{0z | z € {0,1}* and z contains at least one of the subwords 11 and 100}.

3.6 Summary

In this chapter we have introduced finite automata as a model of simple com-
putations that does not use any variable and hence does not have any memory-
The main goal was not the study of finite automata, but a transparent 1n-
troduction to modeling of computers (algorithms). A standard definition of a
computing model starts with the description of the components of the model
and the fixing of the instructions (elementary actions) of the model. Then the
term configuration, which is a complete description of the general state of the
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computing model in a time unit, is defined. The execution of a (computation)
step corresponds to the application of an instruction (elementary operation
of the model) on the current configuration. Hence, a step is a movement from
a configuration C to a configuration D. The difference between C' and D can
be achieved by the execution of an elementary operation. A computation on
an input z starts in an initial configuration that includes z as the input. The
end configuration determines the output (result).

Finite automata correspond to a subclass of simple algorithms for language
recognition (for solving decision problems). A finite automaton does not use
any variable (memory). A finite automaton moves only among its finitely
many states (rows of the program) and accepts the input word if it finishes in
an accepting state after reading the whole input.

To prove that a problem is not solvable by any algorithm from a special
subclass of algorithms, one needs to perform a nonexistence proof. This usually
requires a deep understanding of the nature of the considered subclass of
algorithms. In the case of finite automata, the proof of L ¢ £(FA) is based
on showing that the structure of L is too complex to be described by a finite
equivalence relation on X*. Differently phrased, finitely many states are not
sufficient to save all important characteristics of the read prefix of an input.
This argumentation can also be used for proving a lower bounds on the number
of states of any finite automaton that recognizes a given regular language L.

In contrast to their deterministic counterparts, nondeterministic comput-
ing models (algorithms) allow a choice from finitely many possible actions
in any computation step. In this way a nondeterministic algorithm can have
exponentially many (with respect to the input length) computations on an
input. The interpretation of nondeterminism is an optimistic one. We assume
that a nondeterministic algorithm would always makes the right choice, if such
a choice exists. This means that a nondeterministic algorithm is considered
to be successful in solving a problem if there exists a computation on every
problem instance z that outputs the correct result. For a decision problem
(Z,L), it means that the nondeterministic algorithm A solving (X, L) has to
have an accepting.?” computation for every z € L and, for any y ¢ L, all
computations of A on y are not accepting.?®

In general, we do not have any more efficient simulation of a nondetermin-
istic algorithm A by a deterministic algorithm B, other than to let B simulate
all computations of A for any input. This is also the case for finite automata,
where B performs the breadth-first search in the computation tree of A on
the given input. Since B on reading z saves the set of all states of A reachable
in computations of A in which z has been read, the construction of the FA B
for a given NFA A is called the powerset construction.

This chapter is devoted to some elementary aspects of automata theory
only and should not be viewed as an exhaustive introduction to this area. Es-

A computation with the output z € L

A N Computations with the output y ¢ L
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pecially when it comes to regular languages, we have provided a very selective
introduction. Regular languages can be described and represented not only
by finite automata, but by several further formal concepts that are not based
on computing models. The most important examples of such concepts are the
regular grammars as generation mechanisms and regular expressions as an al-
gebraic representation. Further reading on the class of regular languages can
be found in the textbook by Hopcroft, Motwani and Ullman [27].




Only those who have the patience

to do simple things perfectly

will acquire the skill ’\k"’:i.\?

to do difficult things easily. — .
F. Schiller & /\/?

4

Turing Machines

4.1 Objectives

A long time ago, if one had had to explain an approach for solving some
specific problems in mathematics, one had to describe it as a mathematical
method in a formal way. A painstaking formal description of a method has
the advantage that the user does not need to understand why the method
works and can nevertheless successfully apply this method to solving her/his
specific problem instance. The only assumption for a successful application
is understanding the formal language, in which the method is represented.
The development of computers led to the description of methods for solving
problems by programs. The mathematical formalism’ is given here by the pro-
gramming language used. But the crucial feature of the original description
remains. A computer does not posses any intellect and hence understands
neither the problem nor the methods for solving it. Despite this, the com-
puter can execute the program on the given input, solving the corresponding
problem instance. Because of this, one can speak of automatic solvability or
algorithmic solvability of problems. To show that a problem is automatically
solvable it suffices to find a method solving the problem and to express this
method in the form of a program (algorithm). Therefore one does not need to
fix any formal definition of the term algorithm (program) when formulating
positive assertions about algorithmic (automatic) solvability of problems. It
suffices to give a rough, partially informal description of a method (algorithm)
and the method can obviously be implemented as a program. Hence it is no
surprise that the mathematics has connected the solvability of mathemati-
cal problems with the existence of general solution methods? in the sense of
automatic solvability long before the discovery of computers.

The necessity for giving exact formal definition of the notion “algorithm”
as a method for solving problems did not arise until mathematicians started

! The formal language
? Today we would say algorithms
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to consider proving unsolvability of some specific problems. With this in mind,
several formal definitions have been proposed and developed, and all reason-
able ones have been shown to be equivalent to each other. Also, any program-
ming language is a feasible formalization of automatic (algorithmic) solvabil-
ity. But such formalizations are not very convenient for proving nonexistence
of algorithms for concrete problems, because due to their user friendliness they
contain instructions that are too complex. For this purpose one needs models
of algorithms that are very simple and use only elementary instructions, but
yet have the full computational power of programs of any high programming
language. The Turing machine is such a model that has became the standard
model of the computability theory. The aim of this chapter is to introduce
this model and hence to build the basis for the presentation of the theory of
algorithmic solvability® and the complexity theory in the next chapters.
This chapter is organized as follows. Section 4.2 introduces the formal
model of Turing machines and practices working with them. Section 4.3 is
devoted to the multitape version of Turing machines which is the fundamen-
tal computing model of the complexity theory. In this section we also discuss
the equivalence between Turing machine models and programming languages.
Section 4.4 introduces nondeterministic Turing machines and investigates pos-
sible simulations of nondeterministic Turing machines by deterministic ones. A
coding of Turing machines over the alphabet Xy,q is presented in Section 4.5.

4.2 The Turing Machine Model

A Turing machine can be viewed as a generalization of a finite automaton. It
consists of (Figure 4.1):

(i) a finite control that contains the program,
(ii) a tape that serves as an input tape and simultaneously as a memory, and
(iii) a read/write head that may move in both directions.

The similarity to an FA lies in the control by a finite set of states (a
program) and in the tape that contains an input word at the beginning of
a computation. The main difference between a Turing machine and a finite
automaton is the use of the tape. While a finite automaton may only read from
the tape, a Turing machine may use the tape as a memory and write symbols
on the tape. The tape is considered to be infinite in the sense that a Turing
machine can use an arbitrary large finite part* of the tape in any computation.
Technically, this difference is achieved by exchanging the reading head of an
FA by a read/write head and additionally allowing the head to also move to

# Called the computability theory

4 This means that a Turing machine can use as many tape squares (memory cells)
as it needs. This is similar to real programs, where one can use as many variables
as necessary and the number of variables may grow with the input length.
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the left. An instruction (an elementary operation) of a Turing machine can
be described as the following action. The arguments are

(i) the current state of the Turing machine, and
(ii) the symbol of the square (cell) of the tape, on which the read/write head
is adjusted.

Depending on the values of these arguments, the Turing machine does the

following activities:

(i) it changes its state (we can also say, it moves to a new state),

(i) it writes a symbol in the square of the tape where the read/write head is
adjusted (this can also be viewed as an exchange of the symbol read by a
new one), and

(iii) it moves the read/write head one square to the right or the left, or it does
not move the head.

0 1 2 3 i—-1 § §+1 n "tlgga
|'¢|I1IIE|13| 15—1]25‘.' II.'-HI Ixnlu |._. I
infinite - Lreadfwritehea.d
tape
finite
control
(program)
Fig. 4.1.

Some important technicalities are as follows:

1. The leftmost symbol of the tape is the so-called left endmarker ¢. This
symbol may not be exchanged for another one by the Turing machine and
the Turing machine may never go to the left when it has read ¢, The use
of the left endmarker ¢ enables the enumeration of the tape squares from
the left to the right starting with 0 on the square tape that contains ¢.

2. The tape is infinite in the direction to the right.®

Now, we give a formal definition of a Turing machine in the same way as
we have done for finite automata. First, we describe the main components

Note that within a finite time, a Turing machine can visit at most finitely many

cells of the tape and thus the size of the actual memory (the number of the squares
that contain symbols different from ) is always finite. The sense of taking an

unbounded-sized memory (an infinite tape) is to always have as large a memory
as needed.
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and the set of instructions (elementary operations). Then, we choose a repre-
sentation of configurations and define the computation step as a relation on
configurations. Finally, the definitions of a computation and of the language
accepted by the given Turing machine follow.

Definition 4.1. A Turing machine (TM for short) is a T-tuple
M = {Q; Efr'rﬁ}ql:!:q}mcepﬁrqwjm]: tUhE!"E

(i) Q is a finite set, called the set of states of M,

(ii) X is the input alphabet, where ¢ and the blank symbol ; are not in X
{Z is used for the representation of input words in the same way as for
finite automata},

(iti) I is an alphabet, called working alphabet, where Z C I', and ¢,y €T
{I" contains all symbols that may occur in the squares of the tape, i.e., all
symbols used as variable values in the memory.},

(iv)d: (@ — {Gaccept, Greject}) X I’ = Q x I' x {L,R,N} is a mapping, called
the transition function of M, with the property

3(g,¢) € Q@ x {¢} x {R,N}

for all g € Q- '[Qacceph "I‘reject}
{6 determines the instructions of M. M may perform an instruction
(g, X,Z2)e@QxTI'x {L,R,N}, if M is in a state p, reads a symbol Y € I’
and 6(p,Y) = (g, X, Z). Ezecution of this instruction implies moving from
state p to state g, replacing the symbol Y by X, and moving the read /write
head according to Z. If Z =L, then M should move one square to the left,
if Z =R, then M should move one square to the right, and Z = N means
that the head remains stationary. The property §(g,¢) € @ x {¢} x {R,N}
assures that M neither rewrites the left endmarker ¢ mor moves outside
the tape to the left.},
(v) go € Q is the initial state,

(Vi) Gaccept € @ is the accepting state
{M has exactly one accepting state. If M enters the accepting state Gaccepts
then it would accept the input regardless of the position of its read/write
head on the tape. Once Qaccept 15 reached, there is no possibility of contin-
uing the computation.”},

(vii) Greject € @ — {Qaccept} 19 the rejecting state
{If M has reached greject then M stops the computation and rejects (does
not accept) the input.}.

A configuration C of M is an element from
conf(M) = {¢} - " -Q-T*UQ-{¢} - I".

® Among others, it means that in contrast to finite automata M does not need to
read the whole input before deciding about its acceptance or its rejection.

4.2 lhe lunng viachime odel g

{A configuration wygaws, wy € {¢}™*, we € I, a € ]

is a complete description of the following situati’.an. M ,t'sq ii %f;ﬁ: q‘;-j?é

;antent of the tape is Cwyawayuy - .. , and the head is adjusted on the {|i;1i +
)-th square of the tape and reads the symbol a. A configuration” péw, p € Q

w € I'" describes the situation in which the content of the tape is ¢ﬂ;fuu. ’

and the head is positioned on the 0-th positio )
endmafker ¢’} pos‘ n ﬂ_f the tﬂpe t«hﬂs mdl-ﬂg the Iﬁﬁ

Fig. 4.2.

The initial cmftﬁguration of M on an input word T is goéz.
A step of M is a relation |5 on the set of configurations, i.e.
s C conf(M) x conf(M), defined by T

(i) 2123.. .25 1QEiTipy ... T |5
: i iTifl ---Tn |y T2 .- . Ti-1PYTit1--.Tn,
(i) if J{Q: zi) = (p,y, N] (F‘.gﬂm ‘{-3‘;}:
i) Z1Ta ... Ti_1QTiTip1 .. . Tn |57 T1T2 - . . Ti2PTi—1 YT
: e T oPTi 1YTie1 - Ty
iy 150.5) = B L) (Figue 4.0, il
i) 21%a ... Tio1QTiTipy .. . Tn |37 T1T2 .. i1 YD
: n wonwalif— i+l e Ty
if 8(q, z:) = (p,y,R) for i < n (Figure {.3c) and
I1Tp...Cn—19%n !F T1Z2 ... Tn-aYPu

if d(q,z,) = (p,y,R) (Figure 4.3d).
A computation of M is a 1 infini
potentially infinite sequence of confi ]
gqurations
Co,C1,Cy, ..., such that C; |57 Ciy1 for alli=0,1,2,.... If
Colar Cilar -+ lar Gi
for an i € N, then we write
Co I3 Ci.
The computation of M on an in i 1
_ ormy : put x is a computation that starts
with the initial configuration Cy = gotx and it is either infinite or stops in a

configuration wyquws, where g € {Gaccept, Greject } -

7 .
an: %als.a choice I?etween §everal appropriate ways of representing configurations
s 1-1111‘?'I machme‘.F_or instance, one can choose the representation (g, w,i) €
x IN for describing the general state, where M is in the (internal) stt;te q

wyyuy .- .. 1S the content of the ta; i j i
e s o pe, and the head is adjusted at the i-th squares
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I?;|31|=zi ] f:;-1| z.'|=.'+1| |Zniu| |¢E31|=2| izi—lilr [:H—ll l3n|u |

—_—

(a) d(g.z:) = (3, N)

Rl el =] [f[m]e] - et o o] = [za]u] -

(b) 8(g,z:) = (p,w, L)

5 B e P

é] I

(¢) 6(g,zi) = (p,y, R)

I¢!:r1|=2| Izn—]iznlul i¢|x1|zz| —!;,._1[3[1_1'

—_—

() 6(g.zx) = (p,y, R)
Fig. 4.3.

The computation of M on z is called accepting if it finishes in an accept-
ing configuration wiQacceptwz. The computation of M on z is called rejecting,
if it ends in a rejecting configuration Wy Grejectwz. If the computation of M on
T is accepting [rejecting] we say that M accepts [rejects] z. If the computa-
tion of M on z is rejecting or infinite then we say that M does not accept®
T

The language L(M) accepted by M is defined by

L(M:I = {w e X" | goCw |tF Yaccept 2, for some y,2 € F}
={we X" | M accepts w}.
We say that M computes a function F : Z* — I'*, if

for all z € 17 : godx I;f_ Gaccept$F ().

A language is called recursively enumerable, if there erists a TM M
such that L = L(M).
The set

® Note that we distinguish between rejecting and not accepting. More precisely, the
rejection is a special subcase of nonacceptance.

.o LA LUNINE NMacthine Niodel
= {L(M) | M is a TM}

is called the class of recursively enumerable languages.
A language L C E* is called recursive or the decision problem (X, L) is
called decidable, if L = L(M) for a TM M, such that, for all z € X*,

l{i/’ foCT L;T Y9acceptZ, ¥,2 € I'*, if z € L, and
(i) go¢ |57 Wgrejectv, w,v € I'*, if x ¢ L.

{ This means that M does not have any infinite computations.}

If (i) and (i) hold, we would say that M halts on every input or that
M always halts.

{A Turing machine that always halts is a formal model of the notion
“algorithm™.}

The set

Ly ={L(M) | M is a TM, that always halts}

is the class of recursive (algorithmically recognizable) languages.
A function F : Zf — I3 for two alphabets X, Xy is called computable,
if there exists a TM M that computes ® F.

Turing machines, that always halt, represent algorithms, i.e., programs
that always terminate and output the right answers. So, recursive languages
(decidable decision problems) are exactly languages (decision problems) that
are algorithmically recognizable (decidable).

Exercise 4.2. Reformalize the definition of a TM using the triple (g, ¢w, i) €
Q x {¢}I' x IN to represent the configurations. A triple (g, ¢w,i) describes
the situation in which the Turing machine is in the state g, the content of the
tape is ¢wyyuy ..., and the head is adjusted at the i-th square of the tape.
Give the definition of a (computation) step and of a computation using this
representation.

In what follows we present a few concrete Turing machines and, similarly
as for finite automata, we develop a transparent graphic representation of
Turing machines. Let

Lisiddie = {tu € [Em;:]* ] w = xly, where |I| = |y|}

Hence, Lpyjaqle contains all words of an odd length with the symbol 1 in
the middle.

Exercise 4.3. Prove that Lyiaqie ¢ C(FA).
9 Note that M always halts.
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Now we shall describe a TM M such that L(M) = Lmiadle- The idea
is to first check whether the input length is odd and then estimate the
middle position of the input and check the symbol at this position. Let
M= {Qr Ei F} E) o, Jaccepts ‘Ireject}: where

Q= {Q'U: Geven, Jodd: Gaccepts Grejects @A, 4B J1, Qlefts Jright» QmiddieL
5={0,1}, e
r'=2u{¢u}u(Zx{4,B}) = {0,1,¢u(3)(5):(4):(5) and

8(q0,¢) = (geven ¢, R),

(g0, ) = (reject,a, N) for all @ € {0,1,u},
E(Qe\-en: b)= [Q'udd, b, R} forallbe X,
J(Qevemuj = [:*Qreject:u:N}1
3(qodds ) = (geven,b,R) for all b e X,
(goad,u) = (g8,u,L)-

Applying the above transitions we see that, after reading a prefix of an
even [odd] length, M enters the state geven [goaa]. Hence, if M reads the symbol
u in the state geven, then the input word is of an even length and must be
rejected. If M reads the symbol , in the state goga, then M moves to the state
gp in which the second phase of the computation starts.

In the second phase M determines the middle of the input and by al-
ternatively replacing (rewriting) the leftmost symbol a € {0,1} for (3) and
the rightmost symbol b € X with (}). This can be executed by applying the
following transitions:

d(gs,a) = (a1, (g),L) for all a € {0,1},
8(q1,a) = (e, a,L) for all a € {0,1},
8(g1,€) = (gmiddie; &, B) for all e € {¢, (3), (1)},
d(gmiddie, {_ﬂg]) = (Qreject, 0, N),
8(grmidates (5)) = (Zaccepts 1, N),
§(qlests @) = (Qlert, @, L) for all a € {0,1},
8(qete, ) = (g4, ¢, R) for all c € {(3), (4) ¢}
5(qa,b) = (@rigne, (5),R) for all b€ {0,1},
8(gright, b) = (gright, b, R) for all b € {0, 1},
8(geight, d) = (a5,d, L) for all d € {(5), (5)}-
The missing arguments such as the pair (gright,¢) cannot occur in any
computation and hence one can complete the formal definition by assigning

these missing arguments to the state greject-
If one takes the graphic representation of Figure 4.4 of the instruction

d(g,a) = (p,b, X)

e LU LULIHME WL IVLULUIL U1

for any ¢,p € @, a,b € X and X € {L,R,N}, then one would obtain the
graphic representation of M depicted in Figure 4.5.

a—+bX
© ()

Fig. 4.4.

The graphic representation of Turing machines is similar to that of finite
automata. The difference lies only in the labeling of the edges because now
we have to include for each symbol a read, both the new symbol b and the
direction X of the head movement on the tape.

(2) = 0,N

(3) = ()L
0L (5) ~ ()L

()= Q)R 050
(4) = ()R e

L ;) = LN

Fig. 4.5.
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Let us consider the work of M on the input word z = 1001101. The first
phase of the computation on z is as follows:

q¢1001101 | ¢geven1001101 57 ¢1¢044001101 b ¢10geven01101
li ¢100goga1101 [57 ¢1001gevenl01 | ¢10011g04401
|z 100110geven] 7 ¢1001101¢0aau |5 ¢100110g51

i is of an odd length. Now,
snishing in the state gg has the meaning that x is o
M zﬁfniﬁt:ll;r exchanges symbols a on the right side (b;)undary] of the tape
by (&) and on the left side (boundary) of the tape by (D)-

¢100110gp1 b5 ¢10011g:0(3) I ¢1001g1ee:10( )
b ¢100gien110(5) i ¢10gies0110( )
i ¢1qen00110(p) 57 ¢1er 100110 (2)
b 100110 (5) I ¢44100110(5)
b ¢()ngnt00110(5) b ¢(3) 0arigne0110(5)
i ¢(5)00110gagn: (3) b7 ¢(3)0011450(5)
b ¢(3)001g:1(3) (5) b ¢(3)00gen11(5) ()
2 eqrese(3)0011(3) (3) bar ¢(3)240011(5) (5)
b ¢(3) (2)grignt011 (%) (5)
b ¢(3) (3)011gngne (5) (5)
bar () (2)01a81(5) (5)
b ¢(3) (0@l (z) (3) ()
Hr ¢(D)aen(2)01(5) (5) ()
(%)2401(5) (3) (5)
(9) (%) angn1(5) (3) (5)
(9) () 1gsigne () (3) (5)
(%) (Das1(s) (5)(5)
b ¢()(Qa(3) () () (6) ()
]F ¢(.14} (g} {1)Qmiddle[;} [11;} {:03] {.-13}
e ¢(3)(8) (5) gaccept(5) () (5)-
i i meaning that the middle position is occupied
by gll;es:‘tﬁ{b flnis: ha:esdmag:a:;:tl: ’the wo rdglﬂ[] 1101.

ar ¢()
e ()
e ()
b ()

Exercise 4.4, Write the computations of the TM M in Figure 4.5 on the
input words 010011 and 101.
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Exercise 4.5. The TM M in Figure 4.5 works in such a way that the complete
information about the original input word is saved. Use this property in order
to extend M to a TM M’ that accepts the language L(M') = {w € {0,1}" |
w=zlz foraze {0,1}}.

a—a,R

Fig. 4.6.

Consider now the language Lp = {0*" | n € IN — {0}}. A Turing machine
accepting L can adopt the following strategy:

1. Run on the tape from the left endmarker ¢ to the first u symbol on the
right, deleting every second 0 on the tape (more precisely, exchanging
every second 0 for the symbol a). If the number of Os on the tape is odd,
then stop in the state Greject- Otherwise, continue with step 2.

2. In one run from the right (from the symbol .)) to the left (to the left
endmarker ¢) check whether the number of Os on the tape is 1 or more.
 If there is exactly one symbol 0 on the tape, then accept.

o If there are at least 2 occurrences of 0s on the tape, then continue with
step 1.

The idea of this strategy is that for any positive integer i, a number 2* can
be divided by 2 without remainder as long as one gets 1. A possible execution
of this strategy in the formalism of a Turing machine is given by the TM 4 =

{{QD: evens Qodd, J1, 925 43, accepts "?rejeet}: {0}1 {U: a, ¢, u }r 94, G0 Qaccept» Qrejectj
shown in Figure 4.6.
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Exercise 4.6. Another strategy for recognizing L is to rewrite an input 0¢
by 0919 if i = 2j is an even natural number. Next, one checks whether j
is even and if it is then one rewrites 041/ by 08171/, The input would be
accepted only if this halving strategy results in the content 01°~! of the tape.
To implement this halving by a TM, one can use the above-described way of
searching for the middle of an input. Give an explicit construction of a TM
that accepts Ly using this strategy.

Exercise 4.7. Design Turing machines for the following languages:

(i) {a™b" | n € N},
(i) {0" | n € N},
(iii) {w#w | w € {0,1}7},
(iv) {z#y | =,y € {0,1}*, Number(z) = Number(y) + 1}.

Exercise 4.8. Design Turing machines that, for every input word z € (Zboot)™

finish in the state gaccept With the following tape content:

(i) ¥ € (Zboot)*, such that Number(y) = Number(z) + 1,
(ii) z#z,
(iii) z € (Dboot)", such that Number(z) =2- Number(z),
(iv) ###e.

4.3 Multitape Turing Machines and the Church-Turing
Thesis

Due to their simplicity, Turing machines represent the standard computing
model in the computability theory, i.e., for the classification of problems with
respect to their recursivity or recursive enumerability. But this model is not
always convenient for the purpose of the complexity theory. The main draw-
back of the introduced Turing machine model is that it does not fit into the
general framework of a computer model given by Von Neumann.'® The Von
Neumann computer model requires that all main components of a computer,
namely memory where the program is saved, memory for data, CPU, and
input medium are physically independent parts of the computer. Whereas in
Turing machines, the input medium and the memory are the same thing —
the tape. The second drawback of using Turing machines in the complexity
theory is the linearity of the memory, i.e., the restricted access to the tape.
If one wants to compare the contents of two different squares (cells) of the
tape, one would need to execute as many operations (computation steps) as
the distance!! between these two squares.

19 Called also a Von Neumann computer
11 If the distance is large, too much work would be needed for the execution of a
simple comparison.
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T_he following model of multitape Turing machines overcomes the above-
Ilflenhl{}]]ed drawbacks of Turing machines to some extent and it is hence con-
sidered to be the fundamental computing model of the complexity theory.?
For any positive integer k, a k-tape Turing machine has the following compo-
nents (Figure 4.7):

» a finite control involving a program,
¢ a finite tape with a read-only head as an input medium, and

. za ::riﬂ'ng tapes, each accompanied by a read/write head as memory for

¢ ¥ $ | the input tape

a read-only head

program
L read/write heads
v
oo e ' the 1st working tape
r
o2 T Pl SO the 2nd working tape
Y
¢ lu w ... the k-th working tape
Fig. 4.7.

Bt?fora_a starting the computation on an input word w, a k-tape Turing
machine is always in the following general state (initial configuration).

e The finite iﬂpt%t tape contains ¢w$, where ¢ and $ are the symbols that
mark the left side and the right side of the input, respectively.

¢ The read-only head on the input tape is adjusted on the left endmarker ¢.

12 . : y i
More discussion about suitability of the multitape Turing machine model for the
purposes of the complexity theory is given in Chapter 6.
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e The content of each working tape is Guuu .- - and .a:ll‘rez\:,d,.lr write heads of
the working tapes are adjusted on the square containing G
e The finite control is in the initial state go.

:ne the computation, all heads may move to the left i?]ld to the n,_ght,
excz;;nr]r]lgm;ng to fhe left from a left endmarker ¢ or moving t];: eat(limn;‘ﬂf]]::
on the input tape from the right endmarker §. The rea,c.i-only A
input tape may not write, so the initial content (:w? of the mputrtape r o
unchanged during the whole computation on w. Similar to Turing mt;a.cl ﬁon;
the content of any cell (square) of the working tapes may be ;1. s::in&o o
the working alphabet I'. The cells of allk+1 tage? are number dm;l]:;r y
left to the right, starting with 0 for the cell cfonta.lmng the left en g .,;
Hence, one can take the following representation of configurations of a p
Turing machine. A configuration

{QTwsi:ulgih 1'.52,1:2, v :ﬂkit’k}

i element from
o Qx Z* x N x (I x N)~.

It represents the following general state of the machine M:

M is in the state g, _ .
the content of the input tape is ¢w$ and read-only head is adjusted on the

i-th cell of the input tape (i.e., when w = a1a2...an for a; € X, then the
: : ; d
ecad-only head is reading the symbol a;), an : -
. ;or any ;_fe {1,2,... ,k}, the content of the j-th tape is ¢u_,-.:“_.u.. . a:ud
i; < |uj| is the position of the cell visited by the head on the j-th working
tape.

A (computation) step M can be described by a transition function
§:Qx(ZU{¢,8)}) xI'* = Qx {L,R,N} x(I'x {L,R,N}*
The arguments (g,a,b1,...,bx) € Q x (XU {¢,8)) x I'* are:

the actual state g, .
: the symbol a € £ U {¢,$} read by the read-only head on the input tape,

e the k symbols by, ..., b read on the k working tapes.

Following these arguments the execution of a step of M corresponds to
the following actions.

e Any of the k symbols by, ..., by read on the working tapes can be replaced
for another symbol.

M moves to a new state. A
Any of the k + 1 heads can move one square to the left or to the right,

except when endmarkers are read.
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If the computation of M on w finishes in the state Jaccept, then M accepts
w. M does not accept w when the computation of M on w is infinite or finishes
in the state greject. We continue using the term “M rejects w” if M reaches
Greject When computing on w.

We omit the presentation of the formal definition of a k-tape Turing ma-
chine. Given the above description, the specification of a formal definition for

a k-tape Turing machine is a matter of routine, and thus we leave this to the
reader as an exercise.

Exercise 4.9. Give an exact formal definition of a k-tape Turing machine,
following the definition of a Turing machine step-by-step.

For any positive integer k, we use the abbreviation k-tape-TM to denote
a k-tape Turing machine. For any k € IN — {0}, any k-tape-TM is called a
multitape Turing machine, MTM. Since the instructions of an MTM are
slightly more complex than the instructions of a TM, one could expect that
multitape Turing machines are able to solve some problems in a simpler or
more efficient way than Turing machines. Consider the language

Lequal = {w#w J we (Ehuolr}-

Let z#y be an input. A TM that compares = (the prefix before the first
occurrence of the symbol #) with y (the suffix after the first occurrence of #)
has to run many times the long distance to and fro on its tape.

l¢] = [#] v [s] Ii[flf[ylﬂ
i [ ]

I¢| |¢r T I“u

Fig. 4.8.

A 1-tape-TM A accepts Leqya using the following strategy.

L. A checks whether the input has the form'® z#y with z,y € (Zpoot)®. If
not, A rejects the input.

2. For the input z#y, A makes a copy of z on the working tape, i.e., the
working tape contains ¢z at the end of this step (Figure 4.8).

3. A adjusts the head of the working tape on the left endmarker ¢ while the
head of the input tape is adjusted on #. Then, A simultaneously moves
both heads to the right and compares z and y in this way. Should the

'3 This means that A checks whether the input contains exactly one symbol #.
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heads read different symbols in a step, then A knows that = # y and
rejects the input. If all pairs of symbols are equal and both heads reach
the symbol ,, in the same step, then A accepts the input.

. n,b—!X,d,Y.

Fig. 4.9.

The graphic representation of the transition
é(p,a,b) = (g, X,d,Y)

of a 1-tape-TM is depicted in Figure 4.9. The transition from state p to state
g happens when a is read on the input tape and b is read on the working
tape. The symbol b is replaced by the symbol d. X € {L, R, N} determines the
movement of the head on the input tape, and Y € {L,R, N} determines the
movement of the head on the working tape.

Following the graphic representation of an instruction (transition) shown
in Figure 4.11, we can construct the graphic description Figure 4.12 of the
1-tape-TM presented above, which recognizes the language Lequai- The states
G0, 1, g2 and Greject are used to execute the first phase of this strategy. If the
input contains exactly one #, M reaches state g» with the head of the input
tape adjusted on the last symbol of the input. Else, M finishes in greject. State
go is used to return the read-only head to the left endmarker ¢. With the
help of geapy, M copies the prefix of the input up to # on the working tape
(Figure 4.10). Then state gagjust is used for returning the head of the working
tape to the left endmarker ¢. The comparison of z and y of the input x#y is
executed by using the state geompare- If T = y, M stops in Gaccept- If = and y
differ on a position or = and y have different lengths, the computation ends
1N Greject-

Exercise 4.10. Describe 1-tape Turing machines informally as well as graph-
ically for the following recursive languages:

1. L = {a™" | n € N},

2. L = {w € (Zhoot)" | |wlo = |wh},
3. L = {a"b"c" | n € N},

4. L = {www | w € (Zpoat)*}
5.L={a" | neN}.

Now, we have two different computing models — the Turing machine and
the multitape Turing machine. In order to use them interchangeably in the
computability theory, one needs to prove their equivalence with respect to
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the -::]asses of languages accepted by them. Let A and B be two machines
(Turing machines, multitape Turing machines, or others) that work over the
same input alphabet X. In what follows we say that A is equivalent to B
if, for every input z € (Lypo0)*, the following conditions hold:

(i) A accepts z iff B accepts z,
[u) A rejects z iff B rejects z, and
(iii) the computation of A on z is infinite iff the computation of B on z is
infinite.
Clearly, the equivalence of A and B implies L(A) = L(B), but L(A) = L(B)
alone does not imply that A and B are equivalent.
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Lemma 4.11. For any TM A, there exists a 1-tape-TM B such that A and
B are equivalent.

Proof. We describe a simulation of A by B without giving any formal con-
struction'* of B. The 1-tape-TM B works in the following two phases.

1. B copies the whole input w on the working tape.

9 B simulates the work of A on w on its working tape in a step-by-step
manner. {This means that B does exactly the same work on its working
tape as A does on its input tape.}

1t is obvious that A and B are equivalent. n}

Exercise 4.12. Give a formal construction of a 1-tape-TM B, which is equiv-
a.ietlt t-D a TM A = (Q, E: F: 5} QD, Q'al:oept: QI'EjeﬂJ =

In what follows we will usually dispense with the formal constructions of
Turing machines and with formal proofs of facts like L(A) = L(B) for two
machines A and B. The reason is similar to when describing algorithms or
arguing for the correctness of programs. We save a lot of detailed work when
doing away with formal proofs in situations where things are intuitively clear
(for instance, that a TM accepts a given language or that a program executes
the job required).

Lemma 4.13. For every multitape Turing machine A, there ezists a Turing
machine B, such that A end B are equivalent.

Proof. Let A be a k-tape-TM. We show how to construct a TM B that sim-
ulates A step-by-step. A convenient way of explaining a simulation is to first
show how configurations of the simulated machine A can be represented by the
configurations of the simulating machine B, and then explain the simulation
of particular steps of A.

The idea of the representation of a configuration of A by a configuration of
B is transparently described in Figure 4.11. B saves the contents of all k+1
tapes of A on its only tape. A visual interpretation is that B splits its tape
into 2(k + 1) tracks and uses these tracks to save the contents of particular
tapes of A and its head positions. Technically, it can be done as follows. If T'a
is the working alphabet of A, then

PB‘ = (EU {¢r$1u}} = {IJ:T} x (FA o {U:T}}k U EA U {¢}
is chosen to be the working alphabet of B. For a symbol
a = (ag, 01,02, .- ,02641) € ['B

we say that the symbol g; lies on the i-th track. So, the i-th elements of the
symbols on the tape of B determines the content of the “hypothetical” i-th
track.

4 A formal construction requires a lot of routine work.
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A configuration
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can be saved by B as follows. The state q of A is saved in the finite control of
B too Track 0 of B contains ¢w$, i.e., the content of the input tape of A. For
all i € {1,...,k}, the (2i)-th track of the tape B contains the word ¢z;, i.e.
the content of the i-th working tape of A. The position of the only symiao] ‘F
Olfl ;!he (2i + 1)-th track determines the position of the head on the i-th tape
of A

A step of A can be simulated by the following procedure of B.

1. B reads the whole content of its tape from the left to the right. During
this scan of the tape B saves all k+ 1 symbols,'® read by the k + 1 heads
of A (these k symbols are exactly those symbols on even tracks, below
them the symbols 1 are positioned on the odd tracks).

2. After the first phase B knows the whole argument'® of the transition
function of A and is thus able to perform the corresponding activities
(move the symbols 1 with respect to the head movements of A, replace

the symbol read and change the internal state) in one run over its tape
from the right to the left.

Exercise 4.1fl. Give a formal construction of a TM that executes the first
phase of the simulation of a step of A in the proof of Lemma 4.13.

15 ;
Formally, this means that the set of states of B contains the set Q x (2'U{¢, $}) x

I'®, which is allowed, because this set is finite.
'8 Remember, that the state of A is saved in the state of B too.
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Definition 4.15. Two machine models (machine classes) A and B for solving
decision problems are equivalent if

(i) for every machine A € A, there erists a machine B € B that is equivalent
to A, and ‘ ‘

(i) for every machine B € B, there ezists a machine A € A that is equivalent
to B.

Exercise 4.16. First give a formal definition of the equivalence of two ma-
chines that compute functions from £* to I'*. Then give the definition of the
equivalence of machine classes for computing functions.

Following Lemma 4.11 and Lemma 4.13 we directly obtain the following
assertion.

Theorem 4.17. The machine models of Turing machines and multitape Tur-
ing machines are equivalent.

The knowledge that these two computing models are interchangeable with re-
spect to the algorithmic solvability makes our next work easier. If one wants
to prove that a language is recursive or recursively enumerable, it is suffi-
cient to construct a multitape Turing machine, which is usually easier than
to construct a Turing machine. But, if we aim to show that a language is
not recursive (or recursively enumerable) then we will argue with the nonex-
istence of a Turing machine for this language. This strategy is similar tc using
a high-level programming language for showing the algorithmic sulvahi’hty r;frf
a problem and an assembler or even machine code to prove the algmrlthnuc
unsolvability of a problem. This topic will be handled in the next section.

Therefore it is of interest to show the equivalence between Turing machines
and a high-level programming language. A formal proof of this equiva.}elnce
would require a lot of detailed, technical work which is too time consuming,.
Hence, we explain only the idea of how such an equivalence can be proved.

We hope that every reader, who has some experience in programming,
believes that for any Turing machine M, we can write a program equivalent
to M. We can go further by writing an interpreter Cy for Turing machines.
The interpreter Cy obtains a description'” of a TM M and a word w over
the input alphabet of M as the input and then simulates the work of M on
w.

How does one build a TM that is equivalent to a given program in a pro-
gramming language with computer instructions? To answer this question ‘13t
us look at the development of programming languages. At the very begin-
ning, programs were written in an assembler or even in machine code. Th_e
only available instructions were a comparison of two integers and arithmeti-
cal operations. All complex instructions of high-level programming la.nguag:es
were created as small programs consisting of these elementary instructions in

7 In a fixed formal representation
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order to ease the work of a programmer. Therefore, we have no doubts that
any assembler and any programming language are equivalent. Additionally, re-
member that compilers translate programs written in high-level programming
languages into programs in machine codes.

Thus, it is sufficient to show the equivalence between an assembler and the
Turing machine model. A possibility is to model an assembler by the so-called
register machines and then show a step-by-step simulation of register machines
by Turing machines. But this way is also too technical and so we will not use
it. We simplify our task of simulating an assembler by a Turing machine. The
operations multiplication and division can be executed by a program that
consists of additions, subtractions, and integer comparisons only.

Exercise 4.18. Write a program that, for given integer variables I and .J,
computes the product I-J. The program may only use the operations addition,
subtraction, and the comparison of two integer in the framework of the if
...then ...else instruction.

Furthermore, we can omit the comparison of two integers by simulating it
by a program that uses only the operations +1 T=I+4+1),-1(I:=1-1),
and the test on 0 (if 7 =0 then... else...)

Exercise 4.19. Write a program that executes the instruction
if I > J then goto 1 else goto 2
by using the operations +1, —1, and the test on 0 only.
Finally, we can do away with addition and subtraction.

Exercise 4.20. Write programs that, for given two integer variables I' and
J, compute the subtraction I — J and the addition T + J by using only the
operations +1, —1, and the test on 0.

The task of simulating programs consisting of instructions

e JT:=I+1
i To=1=—1
o ifI=0then... else...

by a multitape Turing machine does not take such great pains. The variables
of such a program can be saved on the working tapes of an MTM in the
form z#y, where z is the binary code of the name of the variable I, and y
is the binary representation of the current value of I;. The operations +1,
—1, and the test y = 0 can be easily executed by an MTM. The only case
when an MTM has to do more work is when the content of a working tape
is cx#y##2#ud## ... and the memory (the number of cells) for the value
y of the variable I, is too small for saving the current value y. When this
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happens,'® the MTM has to move the suffix ##z#u#+ . .. of the tape content
one square to the right in order to get one more bit for saving y.

In theoretical computer science hundreds of formal models (not only ma-
chine models) were designed for specifying the term of algorithmic solvability.
All reasonable models are equivalent to the Turing machine model. This ex-
tensive experience led to the formulation of the famous Church-Turing thesis.

Church—Turing thesis

The Turing machines are the formalization of the notion “algorithm”,
i.e., the class of recursive languages (decidable decision problems) cor-
responds to the class of algorithmically (automatically) recognizable
languages.

The Church-Turing thesis is not provable because it deals with the for-
malization of an intuitive term “algorithm”, i.e., it is nothing more than a
new axiom, which together with the axioms of mathematics build the funda-
mentals of theoretical computer science. An axiom cannot be proven because
it formally fixes the interpretation of a fundamental notion and this is done
with respect to our experience and belief only. Thus with this formalization of
the notion algorithm, it is not possible to prove the nonexistence of another
formal definition of the term algorithm such that

(i) it agrees with our intuition of the term algorithm, and
(ii) enables us to algorithmically solve decision problems that are not solvable
by Turing machines.

The only thing that may happen is that such a stronger model of algo-
rithms is found. Then, the fundamentals of theoretical computer science will
have to be revised. However, the search for such a powerful model has yet
been successful, and we even know that Turing machines are equivalent to the
physical model of quantum computers.!® So, there is a widespread belief that
no model of algorithms that is more powerful than Turing machines exists.

Summarizing, the current state of theoretical computer science is similar
to the situation in mathematics and physics. We accept the Church-Turing
thesis because it agrees with our experience and we postulate it as an axiom.
As already mentioned, the Church-Turing thesis has the characteristics of
axioms of mathematics. It cannot be proven, but may be rebuttable, i.e.,
one cannot exclude the possibility that it might be disproved.?? The Church-

18 After adding 1 to I,

1% Quantum computers work on the principles of quantum mechanics.

2 Disproving an axiom of a thesis should not be considered a disaster. Results of this
kind are an unavoidable part of the development of science. The theory based on
a disproved axiom need not be thrown out. Its results have to be only relativized
because they are true assuming the axiom holds and there are certainly many
frameworks where this axiom is true. Moreover, the revision of the theory by
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Turing t?lesis is the only specific axiom of theoretical computer science. All
other axioms stem from mathematics.

4.4 Nondeterministic Turing Machines

h{ondetertyinism can be introduced to Turing machines in the same way as we
dld.fﬂl' finite a_utamata. For every argument, there exists the possibility of a
choice fmlza_ﬁmteiy many actions. On the formal level of transitions it means
that transition function é no longer maps from

@xTItoQxTI x{L,R,N},
but rather, from
Qx I to P(Q x I" x {L,R,N}).
Another possibility is to consider § as a relation on

(@ xTI') x(Q x I" x {L,R,N}).

A nondeztermjnistic Turing machine M accepts an input word w if and only if
there exists an accepting computation of M on w. This definition of acceptance
corresponds to the optimistic point of view that M always makes a right
choice. The formal definition of a nondeterministic Turing machine follows.

Definition 4.21. A nondeterministic Turing machine (NTM) is a 7-
t‘ll'.pIE M= (Q1 E}P161%:QMl‘ept: Qreject}s where

(1) Q, Z, I, qo, Gaccept Greject have the same meaning as in the definition of a
(deterministic) TM, and

(ii) & : (Q.— {accepts Greject}) X ' = P(Q x I' x {L,R,N}) is the transition
function of M, that satisfies

(p.¢) C {(9:¢, X) | g€ Q, X € {R,N}}

forallpe Q- {‘Iacceptr '?reject}-
{ The left endmarker may not be replaced (overwritten) by another symbol
and the head may not move to the left when positioned on ¢.}

A configuration of M is an element from
conf(M) = ({¢}-I'"-Q - I )u(Q- {¢} - I').

{The meaning is tfhe same as that for (deterministic) TM.}
[ The configuration gyéw is the initial configuration of M on w for any
input word w € Z*. A configuration is called accepting if it contains the state

Qaccept- A configuration is called rejecting, if it contains the state Tieject-

using a new axiom usually belongs among the most important and big steps i
the development of science. il
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A step of M is a relation |57 that is defined over the set of configura-
tions (i.e., (|57 C conf(M) x conf(M)) as follows. For all p,q € Q and all

T P 3Ty Y EF:

e IT1T3...Ti—19TiTiy1.-..-Tn IF T1X9 .o Li—1PYTi41 - - - Ty

".f {.p: U NJ € 'E{q: Ii}:
® IT3...Ti-2,Ti-10TiTit1---Tn |}T I1Z9...Ti—2PTi-1YTit1 - --Tn,y

t.f {.?15’:]“} = ‘5{"3131'}:
& T1Tp...Ti_1QTiTip1l . -Tn |F I1T2 ... Li—1YPEi+1 +--Lny

if (p,y,R) € d(q, zi) fori<n and
® I1T3...Tn-19Tn |5 7122 Ta1¥PL,

if (p,y, R) € d(q, zn).

The relation |37 is the reflexive and transitive closure of b

A computation of M is a sequence Co,Ch,... of configurations such
that

Cilzr Cina

fori=0,1,2,.... {Sometimes we use the notation Co b Ci b Ca b -
instead of the shorter Cp,C1,Cs... for a computation.} :

A computation of M on an input = is any computation that starts with
the initial configuration qo¢x and is either infinite or halts in a configuration
wyqws with ¢ € {accepts Greject }- A computation of M on x is called acr:eptiug
if it ends in an accepting configuration. A computation of M on x is called
rejecting if it halts in a rejecting configuration. .

We say that M accepts an input word w if there ezists an accepling
computation of M on w. Else, we say that M does not accept w (i.e., if all
computations of M on w are rejecting or infinite).

The language L(M) accepted by the NTM M is

L(M) = {w € £ | qo¢w |37 ¥Gacceptz for some y,z € I'"}
={we X*| M accepts w }.
Exercise 4.22. Describe both informally and formally a nondeterministic &-
tape Turing machine.

Exercise 4.23. Let M be a nondeterministic multitape Turing machine. De-
scribe the construction of an NTM M’ such that L(M) = L(M').

Similarly as for finite automata, nondeterminism can simplify the compu-
tation strategies of Turing machines. For instance, consider the language

Lunequal = {I#y‘l T,y € {Ebool}.sz FAT #y}

A deterministic TM has to compare z and y symbol-by-symbol in order to
determine a possible difference between = and y. Let £ = T1@2...2p and
Y=y .Ymforzjme Zforj=1,...n, 1 =1,2,...m. If z and y are
different, an NTM can guess a position i at which z and y differ and then check
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its guess by comparing x; with ;. We describe a nondeterministic 1-tape-TM
A that accepts Lunequal in what follows. A formal representation of A is given
in Figure 4.12. For any input word w, A works in four phases (Figure 4.12):

1. A deterministically checks whether there is exactly one occurrence of the
symbol # in w. This can be easily done by a single run on the input tape.
(The states go, g1, Greject are used for this purpose.) If w does not contain
exactly one #, A rejects the input w. If w = z#y for some z, y € (Lyo01)*,
then A continues on with phase 2 and enters state g.

2. A positions both heads on the left endmarkers ¢ of the input and working
tapes. A is currently in state go.

3. A simultaneously moves both heads to the right and replaces the symbols _
u on the working tape by a symbol a € I' — {0,1,#}. In every such
step A nondeterministically guesses whether the current position in z is
the position where x and y differ (the state gguess). If A reads a symbol
b € {0,1} on its input tape and guesses that this is the position where z
and y differ, then A saves b in its state and continues with the phase 4 to
check the correctness of this nondeterministic decision (A moves to one
of the states py or py). If A reads # on the input tape, then it continues
with phase 4 to check whether |z| # |y|.

4. The current situation assures that the distance between ¢ and the head
position on the working tape is equal to the position i (i € N —{0}) of the
symbol b € {0,1,#} in z#. Now, A moves its read-only head to the right
until it reaches # without moving the head on the working tape (using
states pp and p; ). After that A simultaneously moves the head of the input
tape to the right and the head of the working tape to the left (using states
sg and s;). When the head on the working tape reaches ¢, then the head
of the input tape is adjusted on the hypothesized position i in y. If the
memorized symbol b of s; differs from the currently read symbol of y on
the input tape, then A accepts the input w = z#y. A accepts w too, if
|z] < |yl UQacceth:‘::N} € 6(}7#,1‘:, N) for all ¢ € {ﬂ=1}} or if |Il > |yl
(0(ss,8,d) = {(gaccept: N,d,N)} for all b € {0,1},d € {a,¢}).

The above-described strategy of nondeterministic guessing followed by its

deterministic verification is typical®! for nondeterministic computations. An-
other example is a nondeterministic 2-tape-TM B that accepts the language

Lquad = {ﬂnz I ne ]N}

For a given input w, B first guesses a positive integer n by adjusting the head
of the first working tape on the position n. It then checks whether |w| = n®
or not.

Exercise 4.24. Give a detailed description of the work of a nondeterministic
2-tape-TM B that accepts Lgyag and present B graphically.

*! In Chapter 6 we will learn how strongly nondeterminism can be characterized in
this way.
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Now the principal question is whether nondeterministic Turing machines
can accept a language that is not accepted by any (deterministic) Turing
machine. Similarly as for finite automata, the answer is negative and the
simulation strategy is based on the breadth-first search of the computation
trees of the nondeterministic Turing machine.

Definition 4.25. Let M = (Q, 2, I, 0,90 Qaccept: Greject) be an NTM and let
z be a word over the input alphabet £ of M. The computation tree Tz
of M on z is a (possibly infinite) directed rooted tree defined as follows.

(i) Every vertez of Ty, is labeled by a configuration.
(i) The root is the only vertez of Thy, with indegree 0 and it is labeled by the
initial configuration go¢x of M on z.
(iii) Every vertez of Ty, labeled by a configuration C' has ezactly as many
sons*? as the number of successor configurations of C' and these sons are
labeled by the successor configurations of C.

Clearly, the definition of a computation tree can be used for nondetermin-
istic multitape Turing machines too.

Exercise 4.26. Draw the computation trees of the nondeterministic 1-tape-
TM in Figure 4.12 on the inputs 01#01#1 and 014£0.

There are two essential differences between the computation trees of an
NFA and an NTM. While the computation trees of nondeterministic finite
automata are always finite, computation trees of nondeterministic Turing ma-
chines may be infinite. Secondly, the configurations with the same distance to
the root of Ths . of an NTM M on z need not show any similarity and hence
in contrast to finite automata they may have the head on different positions,

Theorem 4.27. Let M be an NTM. There exists a TM A, such that

(i) L(M) = L(A), and
(ii) if M does not have any infinite computation on a word from (L(M))E,
then A always halts.

Proof. Following Lemma 4.13 it is sufficient to comstruct a 2-tape TM A
with the properties (i) and (ii). We explain the work of A without giving
a formal construction of A. The strategy of A is the breadth-first search in
the computation trees of M,

Input: a word w

Phase 1. A copies the initial configuration go¢w of M on w on its first working
tape.

Phase 2. A checks whether the first tape contains an accepting configuration?®
of M. If yes, A accepts w. Else, A continues with phase 3.

22 Children nodes
* In fact, it suffices to look whether the accepting state gaccept is written on a cell
of the first working tape.




12U 4 lurnng Machines

Phase 3. A writes all successors of the configurations written on the first
working tape on the second working tape. Note, that any configuration
has only a finite number of successors (for any argument the set of possible
actions of M is finite), so A can execute this in a finite time. If there is no
successor for any configuration written on the first tape (i.e., the second
working tape remains empty), then A halts in the state greject. Else, A
continues with phase 4.

Phase 4. A erases the content of the first working tape and copies the content
of the second working tape onto the first working tape. Then, A erases
the content of the second working tape and continues with phase 2.

‘We see that after the i-th execution of phases 3 and 4 the first working tape of
A contains all configurations of the computation tree Tas ,, with the distance
i to the root (i.e., all configurations of M that are reachable after i steps of
M).

If w € L(M), then there exists an accepting computation C' of M on w.
Since any accepting computation is finite, one may assume that C consists of
j steps for a j € IN — {0}. So, after j executions of phases 3 and 4, A finds an
accepting configuration in phase 2 and accepts w.

If w ¢ L(M), it is obvious that A does not accept w. Moreover, since Tas
is finite, then A halts in the state greject (i-€., A rejects w). O

Exercise 4.28. Let A be the NTM in Figure 4.13.

(i) Give the first 6 levels (all configurations up to at most 5 steps of M) of
the computation tree T4(z) for z = 01 and for x = 0010.
(ii) Determine the language L(A).

4.5 Coding of Turing Machines

Every program has a binary representation determined by its machine code.
The job of translating a program from the alphabet Xieyboara into its ma-
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Chi]-le codt-a over Lyoo1 is done by a computer. The goal of this chapter is to
design a simple binary coding (representation) of Turing machines. We start
by developing codes for Turing machines over the alphabet {0,1, #}.

Let M = (Q,Z,T,4,qo, Qaccept; Greject) be a TM, where

Q= {901‘31? +++ 3 @my Qaccepts Qreject} and I' = {Ala AZ: e ,A..,-}
First, we define the codes of specific symbols as follows:

Code(g;) = 10" 1 for i = 0,1,...,m,
Code(gaccept) = 10™+21,
Code(greject) = 10™31,
Code(A;) = 11011 for j =1,...,r,
Code(N) = 1110111,
Code(R) = 1110%111,
Code(L) = 1110%111.

The codes of symbols are used for assigning the following codes to any par-
ticular transition.

COde(‘g(p: AIJ — {q: Amfa]}
= #Code(p)Code(4;)Code(g)Code(A,, ) Code(a)#
for any transition d(p, 4;) = (g, A, @), where p € {
1 1 ) q 2 q rrr=aym [y E 1
I,mE{1,..,,r},andaE{N,L,R}. =4 gk
Our code of a Turing machine M begins with the global information,

namely the number of states (|Q|) and the number of symbols of the working
alphabet (|I']) of M and the list of all transitions follows. Hence,

Code(M) = #0™ 3 #0™#4#Code( Transition, )#Code( Transitions)# . . ..

b—+bhN
b S {1I¢:Ll}
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Exercise 4.29. Let M be the TM in Figure 4.14.

(i) Give Code(M) of M. Do so transparently by commenting any part of
Code(M) between two # symbols.
(i) Determine the language L(M).
(iii) Is L(M) regular? Prove your answer.

To get a code over Dy one uses the following homomorphism
h: {Ur 1: #}' = (25001}*1'

where
h(#) =01, h(0) =00, h(1)=11.

Definition 4.30. For any Turing machine M,
Kod(M) = h(Code(M))
is the code of the TM M.
KodTM = {Kod(M) | M is a TM}
denotes the set of the codes of all Turing machines.

Clearly, the mapping assigning the code Kod(M) to any TM M is injective,
s0 Kod(M) unambiguously describes the TM M.

Exercise 4.31. Design a program that, for any formal description of a TM
M according to Definition 4.30, computes Code(M).

Exercise 4.32. Design and implement a program that, for an =z € {0,1}",
decides whether z € KodTM for a TM M (i.e., whether z is the code of a
Turing machine) or not.

In what follows A,er denotes an algorithm (a TM) that decides the deci-
sion problem (Lo, KodTM), i.e., that, for any given x € (Lpoa)”, decides
whether z is the code of a TM.

An observation of crucial importance is that by fixing the binary repre-
sentation (codes) of Turing machines one obtains a linear order on the set of
all Turing machines.

Definition 4.33. Let £ € (Zyom)*. For every positive integer i, we say that
x is the code of the i-th TM if

(i) z = Kod(M) for a TM M, and ‘
(ii) the set {y € (Zvoal)” | y is before = with respect to the canonical order}
contains ezactly i — 1 words that are codes of Turing machines.

If z = Kod(M) is the code of the i-th TM, then M is the i-th Turing
machine M;. The positive integer i is the order of the TM M;.
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We observe that it is not hard to compute the code Kod(M;) of the i-th
Turing machine for any given positive integer i. Let Gen be a function from
N — {0} to (Zboo)* defined by Gen(i) = Kod(M;).

Lemma 4.34. The function Gen is recursive, i.e., there exists an algorithm
(a Turing machine) that computes Kod(M;) for any given positive integer i.

Proof. A program computing Gen can work as follows.

Input: an i € IN — {0}
Step 1:

z:=1 {z is a word over (Zy01)*}

Fz=)
Step 2:
while I < i do
begin perform A, to decide whether = € KodTM;
if z € KodTM then begin

I=1I+41;
Y=
end;
 :=the successor of z in the canonical order on (Zpea)*
end
Step 3:
output(y).

Exercise 4.35. Write a program that, for the code Kod(M) € (Zpe01)* of a
TM M, computes the order of the TM M.

4.6 Summary

The Turing machine is an abstract computing model whose computational
power is equal to the computational power of real computers. The components
of a TM are an infinite tape, a finite control, and a read/write head. The tape
consists of cells (squares) and every cell contains a symbol of the working
alphabet. So, a cell corresponds to a register of a real computer and the
symbols of the working alphabet correspond to all possible computer words
(allowed contents of a register). The tape is considered to be an input medium
as well as the memory of the TM. The instructions (elementary actions) of
a TM are called transitions. The arguments of a transition are the actual
state of the finite control and the symbol read by the head on the tape. In
the corresponding action, the TM can change its state, replace the symbol
read by another one, and move its head one cell to the left or to the right.
A computation is given by a sequence of such elementary actions. A TM
accepts [rejects] a word z if it ends the computation on z in the special state
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i We say that a TM does not accept x if it rejects z or 1f the
gaoi:pp:xgaq:%f]t;n T is iﬁmbe For a given TM M, the lamgw.;.age L(M) is t]iie
set of all words accepted by M. A language is called re-:::u:m:vel}' En;m:;af e
if L = L(M) for a TM M. A language L is called.recur.swe if L =L{ 3 or
a TM M that does not have any infinite ﬁomputatmns (i.e., all computations

finishes either in gaccept OF 1N Greject )- . o
2 j"’;]:Le model of a multitape Turing machine has instead cf‘a.n mﬁmt.e tapﬂe
(used for an input as well as for memory) a finite tape as the input mEdJ.l]IFl
and a finite number of infinite working tapes as a memory. The com}::;:mg
models of Turing machines and multitape Turing machines are equi ent
in the sense that every TM can be simulated by an MTM_ and vice vfirsa;
These Turing machine models are equivalent to programs in any standar

amming | E. ) Feb
pmﬁ‘[he Churchafg’l'luliu'g:lg thesis says that a Turing ma-:_:hine mthc-u.t- mﬁmte;
computations (a Turing machine that will always halt) is the fnrmalzz?.tmn o
the intuitive notion “algorithm”. Hence, all problems solvable by Turing r:;a.-
chines are algorithmically (automatically) solvable, and all problems u';}hs;:: V-
able by Turing machines are algorithmically u.us::olvable. The .Churr,h— 1Eg
thesis is the only specific axiom of computer science and so it can nevefsi:n dz
proved. The only open possibility would be to revise it when somebf:d}r
a stronger (more powerful) and nevertheless realistic r.uode_l of algorithms.

Nondeterminism can be introduced to Turing machines in the same way as
we have done for finite automata in the previous t:]]aptx?r‘ A nonde?ernumstlc
Turing machine may have several different®® cnmg:-utatmns on an m.put.. The
input z is accepted if there is at least one computation on x that ends in Gaccept-
Any nondeterministic Turing machine can be simulate% by a_(deiiermlmstlc}
Turing machine. Similarly as for finite automata, the simulation is based on
a breadth-first search in the computation trees of the NTM. .

Turing machines can be unambiguously coded® as words over {ﬂ., 1}. Since
the words over {0,1} are linearly ordered with respect t? the canonical or_der,
one obtains a linear order of all Turing machines in this way. For any given
positive integer, one can compute the code of the i-th TM. :\flce versa, for any
given TM, one can compute the order of this Turing machine.

The introduction of a formal model of algorithms was the first step ‘ti.mat
led to the founding of theoretical computer science: This progress was initial-
ized by the seminal work [20] of Kurt Godel. This paper presents the flrsg
ever proof of the existence of mathematical problEfms that cannot be solve
algorithmically (by any method®”). This result motivated Church [_1_2], Kleene
[38], Post [51], and Turing [68] to design formal models of the intuitive _notml.:
algorithm. All these models and many others discovered later are equivalen

% Gimilarly as a finite automaton

%% Even infinitely many computations are pumiblel

26 Gimilarly as every program has its binary machine code
2" Today, we would say by any algerithm.

4.6 Summary 125

to each other. The consequence of this experience is the Church-Turing thesis.
The model of Turing machine [68] has become the basic model of algorithms
(computers) in theoretical computer science although the original concept of
this model is not related to computers. The aim of Turing was to formalize
the methods (algorithms) for symbol manipulation. Instead of thinking about
a computer he pictured a man (a human computer or a mathematician) who
executes a calculation with a pen on a sheet. The one-dimensional (linear)
tape of a TM is motivated by writing on a sheet row-by-row. The finitely
many symbols used determine the working alphabet. To do it systematically,
Turing partitioned the tape into cells such that each cell may contain exactly
one symbol. The content of the tape (the size of the sheet) is considered to

be unbounded. Turing assumed that the human brain is finite and therefore

can only be in one of finitely many states. The finite set of states of a TM is

the consequence of this consideration. Turing used similar arguments to adopt

the assumption that one action of the human computer (mathematician) can

influence a part of the tape whose size is bounded by a constant indepen-

dent of the length of the whole content of the tape. Since any such activity

can be performed by a sequence of elementary instructions, each of them act-
ing on one symbol only, Turing decided to use transitions (as introduced in
Section 4.2) as basic instructions of a TM.

The multitape Turing machine was introduced by Hartmanis and Stearns

[25]. Tt became the basic computing model of the complexity theory. An ex-
citing discussion on the topic of this chapter is presented by Harel [23].



Hundreds of talents show

the greatness of their epoche,
but only a genius realizes,
what they are lacking.
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5

Computability

5.1 Objectives

The computability theory is the first theory developed in computer science.
It discovered methods for the classification of problems into algorithmically
solvable and algorithmically unsolvable. This means that the computability
theory provides techniques for proving the nonexistence of algorithms for solv-
ing concrete tasks. The main aim of this chapter is to learn these techniques.

We restrict our attention to decision problems in this chapter. Qur first
aim is to show that there are languages that cannot be accepted by any Turing
machine. This can be easily seen when one is able to grasp that the number
of languages is much larger than the number of Turing machines. Since both
numbers are infinite, we have to learn how to prove that an infinite number is
larger than another. To do this we present the diagonalization method from
the set theory in Section 5.2. Moreover, the diagonalization technique enables
us to prove that a specific language, called the diagonalization language, does
not belong to the set of recursively enumerable languages, £Lre.

QOur second aim is to introduce the reduction method. This method enables
us to prove nonrecursivity of many concrete languages, provided that we al-
ready have at least one language that does not belong to Lrg. This is our main
instrument for proving undecidability of languages. We apply this method to
prove undecidability of some decision problems about Turing machines (pro-
grams) in Section 5.3. In this way, we learn that the well-motivated tasks
of the verification of program correctness are not algorithmically solvable.
Section 5.4 is devoted to the theorem of Rice that says that each nontrivial
problem involving Turing machines (programs) is undecidable. In Section 5.5
we show that the method of reduction can also be used to prove undecid-
ability of problems other than decision problems about Turing machines. As
an example of such a problem we consider the Post correspondence problem
that can be viewed as a domino game. Section 5.6 presents another method
for proving undecidability of concrete problems. This method is based on the
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Kolmogorov complexity and can be considered as an alternative to the diago-
nalization method in the sense that one can develop the computability theory
by first proving the undecidability result using the Kolmogorov complexity
argument and then applying the reduction method.

5.2 The Diagonalization Method

Qur first aim is to show the existence of languages that are not recursively
enumerable. To do this we use the following counting argument. We show that

the cardinality |KodTM| of the set of Turing machines is smaller than
the cardinality of the set of languages over Xygq-

Remember that KodTM is the set of binary representations of all Turing
machines as defined in Section 4.5.

The number of Turing machines is infinite and can be upper bounded by
|(Zboot)*|, because KodTM C (Zioe1)*. The cardinality of all languages over
Fhoot 18 |P((Zhoot)*)|, which is clearly an infinite number. To prove that

|(Zboot)”| < [P ((Zboa) "))l s

we need a method for comparing the sizes of two infinite numbers (the sizes
of two infinite sets).

The following concept of Cantor for comparison of the cardinalities of two
infinite sets touches the philosophical and axiomatical roots of mathematics
and provides the fundamentals of the modern set theory.

Definition 5.1. Cantor’s concept
Let A and B be sets. We say that

|A| < |BJ,
if there exists a one-to-one' function f from A to B. We say, that
|A| = |B],

if |[A] < |B| and |B| < |A| (i.e., there exist a one-to-one, onto® function
between A and B). We say that

|A| < |B],
if |A| < |B| and there does not exist any one-to-one mapping from B to A.

' A function f is a one-to-one mapping from A to B, when, for alla, b€ 4, a #b
implies f(a) # £(b).

* A function f is an onto mapping from A to B, when, for every b € B, there exists
an a € A such that f(a) =b.
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First, we observe that for finite sets Definition 5.1 agrees with our un-
derstanding of the comparison of the cardinalities of two sets 4 and B (Fig-
ure 5.1). If, for all z,y € A, z # y implies f(z) # f(y), then B has to have at
least as many elements as A. If f is a one-to-one mapping and?

{f(z) |z A} =B

then f determines a pairing (z, f(z)) of elements of A and B, hence

|4] = |B|.
¥
A B
Fig. 5.1.

Following Definition 5.1, it is sufficient to prove that there is no one-to-one
mapping from the set of languages over Ly, to the set of Turing machines.
The consequence is that there is no mapping* from P({Zh0a1)*) to KodTM,
that assigns a TM M to any language L in such a way that L = L(M).

Exercise 5.2. Let A, B, and C be sets. Prove that
|B| < |4| and |C| < |B| imply |C] < |A].
Exercise 5.3. Let A and B be sets. Prove that A C B implies |4| < |B|.

Definition 5.1 also has consequences that may seem paradoxical in the
“finite world”. Let

INeven = {2i | i € IN}.
From Cantor’s concept in Definition 5.1
IIN| = [INEWRL
because the function f : IN — Neyen defined by

fli) =2

3 f is also onto.

* Because such a mapping must be one-to-one
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for all i € IN is a one-to-one® mapping from IN to INeven- T]ns is apara.do:x for
the finite world because the finite world renders it impossible. The experience
of the finite world says that an entity is always more than one of its parts,
so a proper subset B of a finite set A cannot have the same size as-..l!.. Fut
this is no reason for saying that Cantor’s concept for comparing cardinalities
of two sets is flawed. It only says that the world of infinite setsi and numbers
can be controlled by laws that do not correspond to our experience from the
finite world. The result |IN| = |INeyen| seems to be correct in il;he worl{'i of
infinite objects because the one-to-one, onto mapping f (i) = 2i determines
the pairing (i, 2i) of the elements from IN and Neven and so both sets seem to
be of the same cardinality. At this moment it may be mnable to say that
Cantor’s concept lies on the axiomatic level of mathematics. Hence_, fl?)b{}d}f
can prove that Cantor’s concept is the only reasonable (correct) possibility i:or
comparing sizes of infinite sets. Definition 5.1 is only an.attempt to ff)rma.hze
the intuitive understanding of cardinality comparison in mathemaiizcs. One
cannot exclude that another convenient formalization e:dsts:ﬁ !3ut indepen-
dent of this possibility, the importance of Cantor’s concept is its usefulness
for proving the existence of languages that are recursively _enumerablfa.

In what follows we consider IN as the “smallest” infinite set. This poses
the questions as to which infinite sets have the same cardinality as IN, and
whether there exists an infinite set A with |4] > |IN|.

Definition 5.4. A set A is called countable (denumerable),” if A is finite
or |4] = |IN].

The intuitive meaning of countability of a set A is that the-eiement.s of
A can be ordered (denumerated) as the first, the second, the third, . -y €tC.
This is obvious because any one-to-one mapping f : A =+ IN determm&i.: a
linear order® on A, which is a denumeration.? Therefore it is not surprising
that (Zpe)* and KodTM are countable.

Lemma 5.5. Let £ be an alphabet. Then * is countable.

Proof. Let & = {ay,...,an} be afinite, nonempty set. Let us fix a linear or_der
a; < ag < -+ < G on X. This linear order on ¥ determines the canonical

® Even one-to-one, onto mapping ‘ _

% This is similar to our discussion about the Church-Turing thesis. . )

7 An equivalent definition of countability (denumerability) of a set A is the following
one.

A is denumerable < there exists a one-to-one function f: A — IN.

This means that there does not exist any infinite set B with |B| < |IN|, i.e., IN is
one of the smallest infinite sets. We omit the proof of this fact here.

& An object a € A is before an object b € B if and only if f(a) < f(b).

% A denumeration of a set A determines a linear order with the property that there
are finitely many elements of A between any two elements of A.
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order on I* (Definition 2.16). The canonical order on £* is a denumeration
on L* and hence it determines a one-to-one function from £* to IN. O

Theorem 5.6. The set KodTM of Turing machine codes is countable.

Proof. Theorem 5.6 is a direct consequence of Lemma 5.5 and the fact
KodTM C (Dyoa)*. ]

Exercise 5.7. Give explicitly the denumeration of (Zboot)™ that agrees with
the canonical order on (Zpga1)*.

Exercise 5.8. Prove that the set Z of natural numbers is countable.

Exercise 5.9. Let A be a countable set and let a be an element that does
not belong to A. Prove that the set of AU {a} is also countable.

Exercise 5.10. Let A and B be countable sets. Prove that 4 U B is also
countable.

The next result may be slightly surprising.’® We prove that the cardinality
of the set @ of positive rational numbers is equal to the cardinality of IN.
The surprise is that one knows that the rational numbers have a high density
on the real axis, namely, there are infinitely many rational numbers lying
between any two different rational numbers. On the other hand, the natural
numbers lies on the axis with the distance 1 and so there are always finitely
many natural numbers between any two natural numbers. Since each positive
rational number can be represented as § for some p,q € IN— {0}, one can guess
that |Q| is approximately |IN x IN|, which looks like infinity times infinity.
In the finite world one could speak about the comparison between n? and
n. However, |Q*| = [IN| because one can denumerate!! the elements of Q*.
The following method for the denumeration of rational numbers is simple and
transparent, and it also has applications in the computability theory. In what
follows, let N™ = IN — {0}.

Lemma 5.11. (IN") x (IN") is countable.

Proof. Consider the infinite matrix My+,p+ depicted in Figure 5.2. The
matrix Mp+ym+ has infinitely many rows and infinitely many columns that
are labeled by the positive integers 1,2,3,.... The element (i,j) € (IN') x
(INT) lies on the intersection of the i-th row and the j-th column. Obviously,
M+ v+ contains all elements of (INT) x (INT).

The attempt to order the elements of (IN") x (IN*) by taking the elements
of the first row, then the elements of the second row, etc., cannot be successful

10 At least at first glance.

! Obviously not with respect to their values because if b would be a successor of a
rational number a in such a denumeration, then one would have a contradiction
with the existence of infinitely many rational numbers between a and b.
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Fig. 5.2.

because the first row is infinite and so the denumeration of its elements will
never end, i.e., the denumeration of the elements of the second row will never
start. A convenient possibility of denumerating the elements of the matrix
Mpy+ .+ s to use the zigzag line depicted in Figure 5.3. In this way one
takes one finite diagonal after another one starting with the element (1,1) in
the upper-left corner. The resulting denumeration is

ay = {1, 1), da = {2, 1}, ag = (1,2}, a4 = {3, 1).,.
as =1{2,2), ag =(1,3), ar =(4,1), .

Fig. 5.3.

Formally, one defines the following linear order on (IN*) x (IN*):

(a,b) < (e,d) @ a+b<c+dor (a+b=c+dandb<d).
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The corresponding denumeration f is explicitly defined by

fla,b) = (“;_1) +b,

because the element (a, b) is the b-th element on the (a + b — 1)-th diagonal
and the number of elements in the first a + b — 2 diagonals is

a+b—2

i_[:-.'.':+51|—2}-[1+r1+£a—2}_ a+b-—1
z - 2 ‘( 2 )

i=1

Clearly, f is a one-to-one, onto mapping from (IN*) x (IN*) to IN.

Fig. 5.4.

Exercise 5.12. To prove the countability of the set (IN*) x (IN'), one can
also use the denumeration depicted in Figure 5.4. Determine the corresponding
one-to-one, onto mapping from (IN*) x (IN*) to IN.

How many different one-to-one mappings from (IN*) x (INV) to IN exist?

Theorem 5.13. Q" is countable.

Proof. Let h be the following mapping from Q@* to (IN*) x (INT):

{(2)-00
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for all p, g with the greatest common dl'ﬂ.SOr i. .
Clearly, h is a one-to-one mapping. Since (IN*) x (IN¥) is countable
(Lemma 5.11), @ is countable too. O

Exercise 5.14. Prove that IN x IN x IN is countable.

Exercise 5.15. Let A and B two countable sets. Prove that A x B is also a
countable set.

Despite its density on the real axis, the positive rational n_:lm!:ers are de-
numerable. Following the assertion in Exercise 5.15, the set (@ : ) is countable
for every positive integer i. Now, one could conjecture that all infinite sets are
countable. But in what follows, we show that the set of real numbers, IR, is
not countable. Hence IR possesses a different kind of infinity from IN and Q™.

Theorem 5.16. The set [0,1] is not countable.

Proof. We have to show that there is no one-to-one mapp'fng from [0, 1! to
INt. We prove this in the indirect way. Assume, that [0, 1]+1s countabli.e, ie.,
that there exists a one-to-one mapping f from [0,1] to IN™. f detemune;s a
denumeration of real numbers from [0, 1] as depicted in Figure 5.5. The i-th
number from [0, 1] is

a; = 0.0i10i22i30455 - . -

(ie., f(a;) = 1), where a;; € {0,1,2,...,9} for j = 1,2,....

f(z) z € [0,1]

1 |0. M @12 @13 G4 ...
2 10. a=n @23 424 ...
3 |D. @31 @32 34 ...
4 (0. ag1 a4z a4z

i (0. ain @iz @iz @iy

Fig. 5.5.

Now, we apply the so-called diagonalization methed in order to show
that at least one real number from [0, 1] is missing in the table of Figure 5.5
and hence f is not a mapping from [0, 1] to IN* (i.e., f does not provide any
denumeration of real numbers from [0, 1]). The denumeration of real numbers
in Figure 5.5 can be viewed as an infinite matrix

M= Eﬂij] £=1,:::,00,0=1,...,00-
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Our aim is to construct a real number
c=0.cicacscycs . ..

that differs from any row in M (i.e., from any real number in the denumeration
given by f). The idea is to choose ¢ in such a way that

¢ # a;i and ¢; ¢ {0,9}

for every i € IN*. To do that we simply consider the diagonal a;;as2a33. .. of
M and choose a digit

Ci € {112:3$415163 ?rs} & - {aii}

for every positive integer i. Hence, the representation of ¢ is different from the
representation of any a; in Figure 5.5, namely, the representation of ¢ differs
from a; at least in the i-th decimal digit a;;. Since the representation of ¢ does
not contain the digits 0 and 9, this representation is unique'? for ¢ and so

C -}'E a;
for any phsitive integer i. Hence, ¢ is not represented in Figure 5.5 and con-
sequently f is not a denumeration of real numbers from [0, 1]. O

We have shown that the set of Turing machines (algorithms) is countable.
In order to prove the existence of problems that are not algorithmically solv-
able, it is sufficient to prove the uncountability of the set of all languages
(decision problems) over {0,1}. We do this in two different ways. First, we
show that

|[D) 1" < |P{{Ehnol}*;||-

Then applying the diagonalization method, we directly construct a language
that is not accepted by any Turing machine.

Theorem 5.17. P((Zyo01)*) is not countable.
Proof. Since [0,1] is not countable (Theorem 5.16), it suffices to show
IP((Zboa1)*)] 2 |[0,1]| (5.1)
by finding a one-to-one mapping from [0,1] to P((Zvoa1)*).
Every real number from [0, 1] can be represented in the binary form as
follows. The representation
b= 0.bybabs...

with b; € Dy for i = 1,2, 3,... codes the real number

2 Note, that 1.000 and 0.999 are two different representations of the same number

1. Similarly, 0.1429 and 0.1430 represent the same number 0.143.



O
Number(b) = 3 "a,27".

=1

We use this binary representation of real numbers to define the mapping
g [ﬂT 1] — P{{Ebuol}‘] as follows. Let

a = 0.ajasazasasasay . ..
be the binary representation of a real number in [0,1]. Then, we define
f{a} = {ﬂl, AaQ3, A40506, . . . ,a[:;}_'_la{;:Hg L G(n;—]}, 5 }

Observe, that f(a) is a language over I}, that contains exactly one word of
length n for any positive integer n. Therefore, any difference in a bit between
two binary representations b and ¢ implies

f(b) # f(c).

Hence, f is a one-to-one mapping, so the inequality (5.1) holds, i.e., P((Zyo01)*)
is not countable. |

Corollary 5.18. |[KodTM| < [P((Zboot)*)| and hence there are infinitely
many languages over Xyoq1 that are not recursively enumerable.

Exercise 5.19. Prove |[0, 1]| = |P((Zhoo1)*)|.

Now, we use the diagonalization method in order to construct a specific
language that is not recursively enumerable. Let

Wy, Wy, W3, Wy, Ws, ...
be the canonical order of all words over Lbool, and let
Ml: ME: ME? M-l: *ﬂ"fé reim

be the sequence of all Turing machines.!® We define an infinite Boolean matrix
(Figure 5.6)

A = [dijli j=1,....00
by

dij = 1 < M; accepts the J-th word w;.

In this way the i-th row
dirdiadizdigd;s . ...
of the matrix A determines the language

L(M;) = {w; | dij = 1 for all j € Nt}
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wy wa g et U e
M|ldia| diz dis ... dii ...
M2 dn Eiz:; dz.' P

Ms| da1  daz dai ...

fr-*fi din diz dia

Fig. 5.6.

Analogously to the construction of a real number that is not involved
in the hypothetical denumeration of real numbers in Figure 5.5 (proof of
Theorem 5.16), we construct the diagonalization language L.z, which
does not agree with any language L(M;). We define

Ldiag = {w € (Zpoot)® | w = w; for an i € N* and
M; does not accept w;}
= {w € (Zvoot)* | w = w; for an i € Nt and d;; = 0}.

Theorem 5.20.
Ldiag e LRre .

Proof. We prove Lgijag ¢ Lre by contradiction. Assume Lgjag € Lre. Then,
Lgiag = L(M) for a TM M. Since M is one of the machines in the denumer-
ation of Turing machines, there exists a positive integer i such that M = M;.
But Lgjag cannot be equal to L(M;) because

w;ELdiag @djizﬂﬁwiﬁLI{Mi}.

Exercise 5.21. Consider the language
Lagiag = {w € (Zpoo1)* | w = wy; for an i € N — {0} and
M; does not accept wa; (di2i =0)}.

Prove that Lagiag € Lge.
Exercise 5.22. Let for any k € IN

L diag = {w € (Zpoo1)” | w = wiyk for an i € N — {0} and

M; does not accept wix (diipxe = 0)}.

Prove that L giag ¢ Lre for any k € IN.
mﬂdi denotes the i-th Turing machine.
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5.3 The Reduction Method

The reduction method is the most common method for classifying decision
problems with respect to their algorithmical solvability. The idea is very sim-
ple. Let A be a problem, for which one wants to show algorithmical unsolv-
ability. If one finds a problem B such that

1. one knows already that B is not algorithmically solvable, and
2. the algorithmical solvability of A would imply the algorithmical solvability
of B,

then one can conclude that A is not algorithmically solvable. This way of
proving the algorithmical unsolvability of A is called a reduction from B to
A

Definition 5.23. Let L, C £}, and Ly C X} be languages for some alphabets
¥, and E5. We say that Ly is (recursively) reducible to Lz, L1 <r La,

if
Loe Lp= L €Ly

The notation
L <g Lq

corresponds to the intuitive meaning that
“To is at least as hard as L with respect to algorithmical solvability”,

because if Lo is algorithmically solvable (i.e., Lz = L(A) for an algorithm
A), then L; would also be algorithmically solvable (i.e., L; = L(B) for an
algorithm B).

We already know the diagonalization language Lgiag as the example of
a language that is not in Lre and hence not in Lgr either. To get further
nonrecursive languages, we need concrete techniques for proving results of
the kind L; <g Ls. In what follows we introduce two such techniques that
correspond to the framework of the recursive reducibility.

The first technique corresponds to a very straightforward interpretation of
the term reduction as converting of a problem P; to be solved into another
problem P;. The idea is that the solution for P, can be directly used as
a solution for P;. The corresponding technique is called mapping reduction
because the whole reduction is simply the transformation of an input of P
to an input of P;. Formally, we search for a TM (an algorithm) M that, for
any input z of a decision problem (X, L, ), computes an input y of a decision
problem (X3, Lg) such that the solutions for input instances = (of (£, L))
and y (of (22, L2)) are the same. This means that if one has an algorithm A
for (25, Ly), then the concatenation of M and A (Figure 5.7) is an algorithm
for (31, Ll:l
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Definition 5.24. Let Ly C X} and Ly C T be languages for some alpha-
bets Xy and X, respectively. We say that the language L, is mapping'?

reducible to the language Ly, Ly <., La, if there exists a TM M that com-
putes a mapping

fM :E; =} E;
with the property (Figure 5.7)
ze L & ful(z) € Ly

for every x € X7, The function far is colled the reduction of L; to Ly and
we also say that M reduces the language L; to the language L.

TM B with L(B) = L,

z € Xf — M(z) — A(M (=)

SreLyeMz)eLy"”

Fig. 5.7.

The following lemma shows that the relation <,, is a special case of the
relation <g , which means that it is sufficient to prove L; <, L2 so as to
prove Ly <gr Lq.

Lemma 5.25. Let Ly C X* and Lo C ™ be languages for some alphabets X
and Xy, If Ly <n Lo, then Ly <g Lo.

Proof. Let Ly <y Ls. To prove Ly <gr I it is sufficient to show the existence
of an algorithm A4 (a TM A that always halts) that decides Ly (Lz € Lgr) under
the assumption that an algorithm B deciding L, exists.

Let A be a TM that always halts and L(A4) = Ly. Assuming L; <;, Ls,
there is a TM M that, for each z € I}, computes a word M(z) € 3 such
that

z € L & M(z) € La.

We construct a TM B that always halts and accepts L; (Figure 5.7). The TM
B works on an input x € I} as follows:

1. B simulates the work of M on z until the word M (z) is written on the
tape.

2. B simulates the work of 4 on M(z).
If A accepts M(z), then B accepts its input z.
If A rejects M(z), then B rejects its input z.

' The mapping reducibility is also called “many-one-reducibility” in the literature.
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Obviously, L(B) = L;. Since A always halts,'®> B halts for every input too.
Therefore L, € Lg. o

Exercise 5.26. Prove that <,, is a transitive relation, i.e.,
{Ll <m L"J and L2 Sm LS} = Ll Sm LS}'

We observe that the TM B with L{B) = L, uses the TM A as a subroutine.
The subroutine 4 is executed exactly once (Figure 5.7) and B takes the output
of A as its own output. But this is an unnecessary restriction. In general, one
can build B in such a way that B executes A on several different inputs
and uses the outputs of A to finally decide whether its input = € L; or not
(Figure 5.8).

TM B mit L(B) = L,

e Xy T™ A €l -
B L) = 1 | =es
Fig. 5.8.

Now, we are ready to prove results of the kind “L ¢ L£g” for concrete
languages L. We start with a general observation saying that L belongs to Cg
if and only if the complement of L belongs to £g.

Lemma 5.27. Let X be alphabet. For every language L C X*
L <gr L® and L® <g L.

Pm-::-{. It is sufficient to only prove It <g L for every language L, because
{Lc] = L, so L¥ <g L implies the relation (L®)® <g L® (if one substitutes
the language L® for L in the relation L° <gr L).

Let A be an algorithm that decides the decision problem (L, X). An al-
gorithm B deciding L® is described in Figure 5.9. B simply gives its input
z € X" to the subroutine A and negates the decision of A on z.

Now, we give an alternative proof of L® <y L in the formalism of Turing
machines. Let A = (Q, X, I, 4, go, Gaccept, Greject) be @ TM that always halts
and accepts L;. We construct a TM B = (@, X, I, 4, qo, Q‘;mepn‘fmject} with

— ! —
qja,ccept = Greject A0 Grejoct = Gaccept

!5 Remember that M computes M(z) for every r € Xy, so M also halts for any
input.
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by simply exchanging the roles of the accepting and rejecting states of A.
Since A always halts, B also always halts and hence L(B) = (L(A))t. Thus,
t]:Ee existence of an algorithm for L implies the existence of an algorithm for
L. o

TM B with L(B) = L*

ze 5 zelL z € L°
T™ A c¢L z ¢ L°
Fig. 5.9.

Corollary 5.28. (Laiag)® ¢ L.

Proof. We have proved in Theorem 5.17 that Lgiag ¢ Cre and consequently
Lgiag ¢ Lr. Lemma 5.27 claims

Laiag <r (Ldiag)®-
Following the definition of the relation <g ,
(Ldiag)® € L implies Laiag € Lr.
Thus, we conclude that (Lgiag)® ¢ Lr. u|

Following the above assertions we are not able to conclude that [L.ﬁa,g]ﬂ
does not belong to Lrg. In fact, the contrary is true. Proving {Ldiagjc € LrE,
we obtain Lr C Lrg (Figure 5.10).

Lemma 5.29. (Ld_-.ag}n € Lre.
Proof. Following the definition of Lgiag we obtain
(Laiag)® = {2 € (Zboot)” | if z = w; for an i € N — {0},
then M; accepts w;}.

A TM D that accepts {Ldiag]c can work as follows:

Input: an z € (Xpea)™-

Phase 1. Compute i such that z is the i-th word w; in the canonical order
with respect to Zpgol-

Phase 2. Generate the code Kod(M;) of the i-th TM M;.



142 2 Lompusabmlity

Phase 3. Simulate the computation of M; on the word w; = .
If M; accepts wi, then D accepts x too.
If M; rejects'® w;, then D rejects ¢ = w; too.
If the computation of M; on w; is infinite, (i.e., w; ¢ L(M;)), then D
simulates this infinite computation forever. Hence, D does not halt on z,
so x ¢ L(D).

Clearly, L(D) = (Laiag)". o
Corollary 5.30. (Ldiag}n € Lrg — LR, hence
Lr G Lgg.

In what follows we present further languages that are not recursive, but
belong to Lre (Figure 5.10).

Definition 5.31. The universal language is the language
Ly = {Kod(M)#w | w € (Zyoa1)* and M accepts w}.
Theorem 5.32. There is a TM U, called the universal TM, such that
L(U) = Ly.
Conseguently, Ly € LrE.

Proof. Tt is sufficient to construct a 2-MTM U with L(U) = Ly. U works as
follows:

Input: An z € {0,1,#]}".

Phase 1. U checks whether z contains exactly one #. If not, U/ rejects its
input z. If yes, I continues with phase 2.

Phase 2. Let z = y#z, y,2 € (Zbool)*. U verifies whether y is a code of a
TM. If y does not represent any TM, then U rejects its input z = y#z. If
y codes a TM, then U continues with phase 3.

Phase 3. If y = Kod(M) for a TM M, then U writes the initial configuration
of M on z on its first working tape and continues with phase 4.

Phase 4. U simulates the computation of M on z step-by-step as follows:

while the state of the configuration of M on the first working
tape is different from gaccept and greject of M do
simulate one computation step of M
{U does it simply by reading the code Kod(M) on its input
tape}
if the state of M is gaccept
then U accepts z = Kod(M)#z
else U rejects z = Kod(M)#=x

* Remember that to reject an input means to halt in the state greject.
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Note, that the infinite computation of M on z causes an infinite computa-
tion'” of U on Kod(M)#z. Therefore, U does not accept Kod(M)#z in such
a case. Hence, L(U) = Ly. o

What does the fact Ly € Lgg imply? It guarantees the existence of a Tur-
ing machine (a program) that can simulate an arbitrary TM (program) on any
given input, but without halting assurance. This is a very natural property of
Turing machines that is required for any formal'® definition of algorithms. In
the world of programming languages the universal Turing machine is nothing
other than an interpreter. We cannot have a computer system that is unable
to execute a syntactically correct program on a given input if the correspond-
ing programming language'® is a part of the system. In what follows, we prove
that Ly ¢ Cg. The implication of this result is that the only general strategy
(algorithm) for determining the result of the computation of a TM M on an
input z is to simulate the computation of M on z. But, if the computation
of M on z is infinite, one does not know at any instance of the simulation,
whether the computation of M on z is infinite or M will halt after the next
computation step and output the result. Therefore, one is not able to decide
in finite time, whether € L(M) or z € L(M) for any given M and z.

Lar

* Ldiag

Fig. 5.10.

The following proofs are based on the reduction method. Most claims will
be proved twice. First, we give a transparent proof on the level of algorithms
as programs in a programming language by using the general reduction from
Figure 5.8. Then we present a proof in the formalism of Turing machines by
the mapping reduction (Figure 5.11).

7 Simulation

'® There is a system of axioms that must be satisfied by a computing model. The
existence of the universal machine is one of the axioms.

' Remember that any programming language is a formal model of algorithms.
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Theorem 5.33. Ly ¢ Lg.

Proof. It suffices to show that (Ldiag}c < Ly, because Corollary 5.28 pro-
vides (Laisg)" € Lr, 50 Lu ¢ Lr.

Let A be an algorithm (program) that decides Ly;. We construct an algo-
rithm B, that uses A as a subroutine for deciding (Lgiag)®. The structure of
the algorithm B is given in Figure 5.11. For any input & € (Xy01)", the sub-
program C first computes an integer i, such that x = w;. Then, C' computes
the code Kod(M;) of the i-th TM. C provides its outputs w; and Kod{ ;)
as inputs®® for the subroutine A. Finally, B inherits the output “accept” or
“reject” of A as its own output. Obviously, L(B) = (Lgiag)” and B always
halts, because both €' and A always halt and provide their outputs. Thus,
(Lﬂiag)c <gr Ly and the proof is completed.

algorithm B with L(B) = (Lajag)"

T = uy w; € L{M;) w; € I:Ldgas}lc

T Elmnl A A
€ (Zboot) C |Kod(M) | 1(4) =Ly | @ € LOM) | wi ¢ (Laing)°

Fig. 5.11.

Now, we give an alternative proof in the formalism of Turing machines.

We prove that
[Ldiag}c Sm LU-
We describe a TM M that computes a mapping far from (Zpea)* to {0,1, #}*
such that
A S {L&iag}n < fuml(z) € Ly.

M works as follows. For any input «, M first computes an i such that z = w;.
After that M computes the code Kod(M;) of the i-th TM. M halts with

the content Kod(M;)#z on its tape. Since £ = w;, the definition of (Ldiag}u
implies:

© = w; € (Laiag)® & M; accepts w;
& wi € L(M;)
& falz) = Kod(M;)s#x € Ly.

" Formally, the input of A is Kod(M;)#w;.
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Exercise 5.34. Show that the following language

{Kod(M)#z#0" | z € {0,1}*, i € N, M has at least i + 1 states,
and during the computation of M on z the TM
M reaches the i-th state at least once}

is not recursive.

We see that the basic problems of the computability theory are strongly
related to the halting of Turing machines (i.e., finiteness of computations).
For the languages (Ldiagjn and Ly we have Turing machines (programs) that
accept these languages, but there are no Turing machines that decide these
languages (i.e., accept these languages and do not have any infinite computa-
tions). Therefore, we consider the following central problem.

Definition 5.35. The halting problem is the decision problem
{{Ur I,#]‘*,LHL where

Ly = {Kod(M)#z | z € {0,1}" and M halts on z}.
Exercise 5.36. Prove that Ly € CgE.

The following result shows that there is no algorithm that can test whether
a given program terminates or not.

Theorem 5.37. Ly ¢ Lg.

Proof. First, we give a proof on the level of programs and general reductions
of Figure 5.8. We show
Ly <g Ly.

Assume Ly € Lg, i.e., there is an algorithm A that decides Ly. We describe
an algorithm B (Figure 5.12) that uses A as a subroutine in order to decide
the universal language Ly. For any input w, B uses a subprogram C to verify
whether w has the form y#z, where y = Kod(M) for a TM M and z €
(Ebnul}k-

If y does not have this form, then B rejects w.

If y = Kod(M)#z, then B gives y as the input to the subroutine A.

If A outputs “M does not halt on z” (“reject”), then B knows that z ¢
L(M) and can immediately reject its input w = Kod(M)#z.

If A answers “M halts on z", then B simulates the work of M on z in
the subroutine U. Since the computation of M on z is finite, U performs its
simulation in a finite time.

If the answer of U is “M accepts z”, then B accepts its input y#z =
Kod(M)#=. If the output of U is “M rejects z", then B rejects its input
Kod(M)+#z.

Clearly, L(B) = Ly and B always halts. This completes the proof.



146 a2 Lomputabllity
algorithm B for Ly

x M accepts ¢ | ¥#r € Lu
y Kod(M) Kod(M)#z

A M haltson z| U M rejects = y#z{Lu

c >
z z L(A) = Ln M does not halt onx/

y#z ¢ Lu
Y if y does not code any TM
Fig. 5.12.
Next, we prove
Ly <g Ln

in the formalism of Turing machines and thus provide an alternative proof of

Ly <um Lu given above. :
We describe a TM M, that reduces Ly to Ly. M works for any input w

as follows. It verifies whether w is of the form
w = Kod(M)#z

for a TM M and an = € (Epoal)*-

(i) If w does not have this form, M generates the code Kod(M,) of a TM
M, that, for any input, runs in a cycle?! (§(go,¢) = (g0, ¢, N)). Then, M
halts with the tape content

M{w) = Kod(M, )#=.

(ii) If w = Kod(M)#=, then M modifies the code of the TM M to the follow-
ing TM Mj with L(M3) = L(M). The TM M, works exactly as M, except
all transitions to the state greject of M are replaced by transitions to a new
state p with §(p,a) = (p,a,N) for all a € L. Hence, M> never rejects an in-
put and runs an infinite computation for every input y ¢ L(M) = L(M3z).
M finishes its work with the tape content

M(w) = Kod(M,)#s.
Now, we prove for all w € {0,1,#}", that
w € Ly & M(w) € Ly.

# Te., M; does not halt for any input.
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Let w € Ly. Hence, w = Kod(M)#z for a TM M and a word z € {0,1}*,
and z € L(M). Since L(M;) = L(M), M halts on = and accepts . Hence,
M(w) = Kod(M:)#x belongs to Ly.

Let w ¢ Ly. We distinguish two possibilities. If w does not have the form
Kod(M)#z for any TM M, then M(w) = Kod(M, )#z, where M; does not
halt on any input. Hence, M; does not halt on z, so M(w) does not belong to
Ly. If w has the form Kod(M)#z for a TM M and Kod(M)#z ¢ Ly, then
z ¢ L(M). In this case M(w) = Kod(M;)#z, where M> does not halt for any
input from (Zyoe1)* — L(M). Since = ¢ L(M), M does not halt on = and so
Kod(M)#z does not belong to L. o

Exercise 5.38. Prove the following claims:

1. Ly <g (Laiag)®,
2. Ly < (Laiag)",
3. Lgiag <r Lu,

4. (Ldiag)® <r Lu,
5. Ly <g Lvy.

Now, we consider the following language
Lempty = {Kod(M) | L(M) = 0},

that contains the codes of Turing machines accepting the empty language (not
accepting any input). Clearly,

(Lempty)® = {z € (Zboot)® |  # Kod(M) for all TM M or
z = Kod(M) and L(M) # 0}.

Lemma 5.39. (Lempty)® € Lag.

Proof. We give two different proofs of the fact {Lempty]n € Lrg. The first
proof shows that it is useful to have the model of nondeterministic Turing
machines. The second proof shows how to apply the idea of the set theory
used for proving [N| = || in Lemma 5.11.

Since, for any NTM M, there exists a TM M5 such that L(M;) = L{Mzg,
it is sufficient to show that there exists an NTM M; with L(M;) = (Lempty)"-
The NTM M; works on every input z as follows.

Phase 1. M, deterministically verifies whether z = Kod(M) for a TM M. If
z does not code any TM, M; accepts z.

Phase 2. If z = Kod(M) for a TM M, M nondeterministically generates a
word y € (Zpeol)* and deterministically simulates the computation of M
on y.

Phase 3. If M accepts y (i.e., L(M) # 0), then M, accepts its input z =
Kod(M).
If M rejects y, M; does not accept z in this computation.
If the computation of M on y is infinite, then M does not halt on z and
thus does not accept the word z = Kod(M) in this computation on z.
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Because of phase 1, M; accepts all words that do not code Turing machines.
If z = Kod(M) for a TM M and L(M) # @, then there exists a word
y with y € L(M). Hence, there exists an accepting computation of M; on
z = Kod(M).
If £ € Lempty, then there is no accepting computation of M} on x =
Kod(M), so
L(My) = (Lempty)"-

Now, we give a second proof of the fact {me;y}c € Lrg. Here, we directly
construct a deterministic TM A that accepts (Lempw}c. A works on every
input w as follows.

Phase 1°. If w is not a code of a TM, then A accepts w.

Phase 2'. If w = Kod(M) for a TM M, then A works as follows:
A systematically generates (in the order given in Figure 5.3 or Figure 5.4)
all pairs (i, j) € (IN = {0}) x (N — {0}).
For each pair (i,j), A generates the i-th word w; in the canonical order
over the input alphabet of the TM M and simulates j computation steps
of M on w;.
If for a pair (k,1), the TM M accepts the word wg in [ steps, then A
accepts its input w = Kod(M). Otherwise, A works infinitely and hence
does not accept w.

The kernel of the simulation idea is that when there exists a y with y €
L(M), then y = w for a positive integer k and the accepting computation of
M on y has a finite length I. Hence, the exhaustive search over all pairs (i, i)
in phase 2" of A assures that A will accepts w. O

Next we show that {Lemp;,)c ¢ Lr. This corresponds to proving the nonex-
istence of an algorithm that would verify whether a given program accepts an
empty set. The consequence is that one is unable to algorithmically test the
correctness of programs. Moreover, testing is impossible even for trivial tasks
such as computing a constant function.

Lemma 5.40. {Lempt,.}ﬂ ¢ Lq.

Proof. We show
LU Sm (Lempty}c'

We describe a TM A that reduces Ly to (Lempty)® (Figure 5.13). For each
input = € {0,1, #}, A works as follows:

(i) If = does not have the form Kod(M)#w for a TM M and a word w €
(Zboot)*, then A writes the output A(z) = Kod(B;) on its tape, where
B, is a TM that works over Xpoo and accepts the empty set? 0 (i.e.,
L{B:) =0).
22 4 can construct B, easily by taking (go,¢) = (Greject, ¢, N) for the transition
function 4 of B-.
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(ii) Ifz = Kod(M)#w for a TM M and a word w € (Zpo01)", then A generates
the code Kod(B;) of a TM B;. For any input y of B, the TM B, works
independently®? of y as follows:

a) B generates z = Kod(M)#w on its tape.
{The word z is finite, so it can be described by the states and the
transition function of B,}.

b) B. simulates the work of M on w step-by-step.
If M accepts w, then B, accepts its input y.
If M rejects w, then B, rejects its input y.
If M does not halt on w, then B, does not halt on 3. Thus B, does
not accept y.

Now, we prove that
z € Ly ¢ A(z) = Kod(B:) € (Lempty)®

for all z € {0,1,#]}".

Let x € Ly. Hence, z = Kod(M)#w for a TM M and w € L(M). In this
case L(B;) = (Zyoot)* # 0, 50 Kod(B;) € (Lempty)°.

Let ¢ Ly. Then, either  does not have the form Kod(M')#z for a TM
M'and a z € {0,1}* or z = Kod(M)#w fora TM M and w ¢ L(M). In both

cases L(B;) = 0, so Kod(B.) € (Lempty)®- o
Kod(M
r |Kod(M) Kod(5,)| TME L(B:)#0 | M accepts w o
w A L(E)= | L(B:)=0 | M does not accept w
)
Fig. 5.13.

Corollary 5.41. Leppey € L.
Proof. Lemma 5.27 claims that Lempty € Lr implies (Lempty)® € Cr. O
Exercise 5.42* Prove that the following languages are not in Lgg:

1. Lemplya

2. (Ly)®, and

3. (Ly)C.

%3 This means that B either accepts @ or (Zhool)"-
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The next consequence of Lemma 5.40 is that the equivalence problem for
Turing machines is undecidable. Thus, one cannot design a program that
would be able to decide whether two given programs solve the same problem.

Corollary 5.43. The language Leq = {Kod(M)#Kod(M) | L(M) = L(M)}
is undecidable (i.e., Leq ¢ Lr).

Proof. The proof idea is simple because Lempty can be viewed as a special
case of Lgq. Formally, it is sufficient to show

L‘empty S m LEQ .

It is easy to construct a TM A that, for a given input Kod(M), constructs
the output
Kod(M)#Kod(C),

where C is a fixed, trivial TM with L(C) = . Obviously,
Kod(M)#Kod(C) € Lgq & L(M) = L(C) = B & Kod(M) € Lempsy-

Exercise 5.44. Prove that the language {Kod(M)#Kod(M) | L(M) C
L(M')} does not belong to Lg.

5.4 Rice’s Theorem

In the previous section we have learned that testing programs is a hard prob-
lem. For a program A and an input z of 4, it is not decidable whether A halts
on z or not. Therefore, one cannot test whether a program terminates for any
input, i.e., whether the program is an algorithm. The trivial decision problem
whether a given program does not accept any input (i.e., whether L(M) = @
for a TM M) is also undecidable. This leads us to suspect that there are
not many test problems about programs that could be decidable. The aim of
this section is to show that all (in a specific sense) nontrivial problems about
programs (T'Ms) are undecidable. What the term “nontrivial” means in this
context is specified in the following definition.

Definition 5.45. A language L C {Kod(M) | M is a TM} is a semanti-
cally nontrivial decision problem about Turing machines, if the fol-
lowing conditions hold:

(i) There is a TM My, such that Kod(M,) € L ( i.e., L #0).
(ii) There exists a TM Mz, such that Kod(M,) ¢ L (i.e., L does not contain
the codes of all Turing machines).
(iii) For any Turing machines A and B, L(A) = L(B) implies

Kod(A) € L < Kod(B) € L.

o LWL & LUIcill ddl

Before proceeding on to the proof of the undecidability of semantically
nontrivial decision problems, we still need to consider the following language

Ly, = {Kod(M) | M halt on A}

as a special version of the halting problem.
Lemma 5.46.

LH‘)‘ é Lr.

Proof. We show
Lu €m L.

A TM A can reduce Ly to Ly y as follows. For every input z that does not
have the form Kod(M)#w, A generates a simple TM H, that does not halt
for any input.

If £ = Kod(M)#w for a TM M and a word w, then A generates the code
Kod(H;) of a TM H, that works as follows:

1. Independent of its own input, the TM H, generates the word z =
Kod(M)#w on the tape.

2. H, simulates the work of M on w. If M halts on w, then H. also halts
and accepts its input. If the computation of M on w is infinite, then H,
does not halt.?4

Clearly,
z € Ly & = Kod(M)#w and M halt on w
& H, always halts (for every own input)
< H, halts on A
& Kod(H;) € Lu,»
for every = € {0,1,#}". O

Theorem 5.47* Rice's Theorem
Every semantically nontrivial decision problem over Turing machines is
undecidable.

Proof. Let L be an arbitrary semantically nontrivial decision problem about
Turing machines. We show

either Ly <m L or Lux <m L.

Let My be a TM with L(My) = 0. We distinguish two possibilities with respect
to the membership of Kod(My) in L.

22 In this way either H; always halts (if A halts on w) or H. does not halt for any
input (if M does not halt on w).
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Let Kod(Mjp) € L. In this case we show
Lux €m L%

Because of Definition 5.45(ii), there exists a TM M, such that Kod(M) ¢
L.

Now, we describe the work of a TM S (Figure 5.14) that reduces Ly » to
LE. For every input € (Zpoa1)*, S computes either

(i) S(z) = Kod(M') with L(M') = L(Mg) = 0 (i.., Kod(M') ¢ LY if

i H ﬁ LH_),, or
(i) S(z) = Kod(M') with L(M') = L(M) (i.e., Kod(M') € LY ifze
Ly

Thus, we see that the idea of the reduction is essentially based on the
semantic nontriviality of L. S performs the computation as follows (Fig-
ure 5.14):
Input: An z € (Zpoal)”-
Phase 1. S checks whether z = Kod(M) for a TM M. If = is not a code
of a TM, then S writes S(z) = Kod(Mp) as its output on the tape.
Phase 2. If z = Kod(M) fora TM M, then S generates the code Kod(M")
of a TM M' that works as follows.
(a) The input alphabet of M" is X7 (the input alphabet of the TM
31 with Kod(M) ¢ L, i.e., with Kod(M) € L%).
(b) For every input y € (Z37)*, M' generates the word z = Kod(M)
on the tape to the right of y (i.e., y is not rewritten) and simulates
the work of M on A.
If M does not halt on A (i.e., Kod(M) ¢ Lg,»), then M’ does not
halt on y either, so y € L(M').
{Since the simulation of the computation of M on A by M' runs
independently of the input y of M’, L(M') = 0 = L(Mp), so
Kod(M') € L (i.e., Kod(M') ¢ L%).}
If M halts on A (i.e., if Kod(M) € Ly ), then M’ generates the
code Kod(M) of the TM M on its tape. After that M’ simulates
the work of M on its own input y € (Z47)°. M' accepts y if and
only if M accepts y.
{Hence, L(M") = L(M), so Kod(M") ¢ L (i.e., Kod(M") € 5.}
We see that
€ L& S(z) e L*

for all T € (Zhoo1)* and hence Ly <m Lt

. Let Kod(Mp) ¢ L.

Because of Definition 5.45(i), there exists a TM M such that Kod(M) € L.
Now, one can prove Lg x <m L in the same way that we proved Lg s <m
LC in part I. The Turing machine M plays the role of M in this proof.

O

oz LWUE o L IO DeErr Lod

aTM for Ly

z is no code of a

™ S

if z = Kod(M) for a TM M,
S generates a TM M.
M' simulates M on M.
If M halts on A, then

M’ simulates the work of M
on its own input.

S(z) = Kod(M")
S(z) = Kod(Mjy)
{Kod(My) ¢ L} {L(M') = @ = L(M;) when
M does not halt on A}

{L(M') = L{(M) with
Kod(M) e L*

when M halts on A.}
1 ]

a TM, that
accepts i
YES NO
S(z) € L® S(z) ¢ L®

Y Y

| ]

M halts on A M does not halt on A.
Fig. 5.14.

Exercise 5.48. Perform a detailed proof of L <m L in IT wh
T H)Y <m case II where

Rice’s theorem has the following consequence. Let L be an arbitrary re-
cursive language, and let

Kodz = {Kod(M) | M isa TM and L(M) = L}
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be the langnage of the codes of all Turing machines that accept the language
L. Since L is recursive, Kodg # 0. Clearly, there exist Turing machines whose
code is not in Kody, (Definition 5.45(ii)) and Kody, satisfies Definition 5.45(iii).
Thus, Kod,, is a semantically nontrivial problem about Turing machines and
Rice’s Theorem implies that Kody ¢ Lg. The interpretation of this result
is that one is unable to test whether a given program is a correct algorith-
mic solution of the problem specified. Hence, program verification is a very
hard task and therefore a well-structured, modular design of programs is of
enormous importance for the development of reliable software products.

Exercise 5.49. Prove that, for any alphabet X' and every L C X*,
L,L% € Lrg © L € L.

5.5 Post Correspondence Problem

In the previous sections we have showed that almost all problems about Tur-
ing machines (programs) are undecidable. A good question is, whether there
exist also undecidable problems outside of the world of Turing machines. The
answer to this question is positive and the aim of this section is to show how
the reduction method can be applied to transform the undecidability results
about Turing machines to the world of games.

T T2 T

mn Y2 Yn

Fig. 5.15.

Consider the following domino game. One has a finite collection of domino
types (Figure 5.15), where each domino type represents a pair (z,y) of words
z and y over a fixed alphabet X. For each domino type (z,y) one has arbitrary
many?® dominos (z,y). The question is whether it is possible to place the same
dominos side by side in such a way that the upper text (the word determined
by the concatenation of the first elements of the dominos) is the same as the
lower text (determined by the concatenation of the second elements of the
dominos). We illustrate this using the following example.

Let

81 = (1! #{])1 83 = (U, [}1}, 83 = (#{]:U)! 84 = {ul#:#)

be the allowed domino types over {0,1,#}. A graphic representation of domi-
nos $3, S2, S3, and sy is given in Figure 5.16.

25 Infinitely many
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1 0 #0 014
#0 01 0 #
S1 82 83 54

Fig. 5.16.

.This domino game has a solution, namely the sequence s3, 51, 53, 52, 54.
This sequence determines the word (text) 01#0001# as depicted in Fig-
ure 5.17 and Figure 5.18 in two different ways.

0 1 #0 0 01
01 #0 0 01 #
89 81 83 52 84

Fig. 5.17.

uu# U\Lﬂl#

Sa 51 83 82 84

Fig. 5.18.

There is no solution for the domino game
s1 = (00,001}, sz = (0,001), s = (1,11),

because all second elements (words) of dominos are longer then their corre-
sponding first counterparts.
This domino game is called the Post correspondence problem.

Definition 5.50. Let T be an alphabet. An instance of the Post corre-
spondence problem over X' is a pair (A, B), where
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A=w, ...,wpand B=x, ..., Tk

for a positive integer k, wi, z; € L* fori= 1,...,k. Foreachi€ {1,...,k},
the pair (w;, z:) is called a domino.

We say that the instance (A, B) of the Post correspondence problem has a
solution, if there ezist a positive integer k and positive integers $14925 -y Sms
such that

Wi, Wiy -« - Wi, = Tjy Tiy - - e

The Post correspondence problem (PKP) is to decide whether a given

instance of PKP has a solution or does not have any solution.

Lemma 5.51. If an instance (A, B) of PKP has a solution, then (A, B) has
infinitely many solutions.
Proof. If
5:11 iip '*-:ik

is a solution for the instance (A, B) of PKP, then

(i1, 2, -y 88
is a solution of (A, B) for every positive integer j. O
Exercise 5.52. Define PKP as a decision problem (Lpkp, Zbool) for a lan-
guage Lpkp C (Zboot)”. Prove that Lpkp € LRrE.

Exercise 5.53. Prove that the instance ((10,011,101), (101,11,011)) of PKP
does not have any solution.

Exercise 5.54. Does the instance ((1,1110111,101), (111, 1110, 01)) of PKP
have a solution?

Our goal is to show that PKP is undecidable. The significance of this un-

" decidability proof is that the domino game has enough expressive power to

simulate Turing machine computations. Due to technical limitations, we intro-
duce a modified version of PKP, where the first domino was predetermined.

Definition 5.55. Let X be an alphabet. An instance of the modified Post
correspondence problem over L is a pair (C, D), where

C=up, ..,u;, ond D=wy, ..., %

for a positive integer k and u;,v; € £* fori=1,...,k

We say that the instance (C, D) of the modified Post correspondence prob-
lem has a solution, if there ezists a positive integer m and m positive integers
J11J2; -+ - s Jms Such that

Uy Uy u_,-g Uy, = V1V, Vg - - eV

The modified Post correspondence problem (MPKP) is to decide
whether a given instance of MPKP over I has a solution.
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Consider the following instance (A, B) of PKP. Let
A =0,11,;1,'B.=001,1,11,

i.e., 81 = (0,001), s = (11,1) and s3 = (1, 11).

Clearly, s2s; is a solution of this PKP instance. If one considers (A, B) as an
instance of MPKP, then one observes that (A4, B) does not have any solution.
This means that there may be a difference whether (A, B) is considered as an
instance of PKP or as an instance of MPKP.

Exercise 5.56. Prove that the instance ((0,11,1), (001, 1, 11)) of MPKP does
not have any solution.

Lemma 5.57. If PKP is decidable, then also MPKP is decidable.

-Pmaﬁ We prove this assertion by the reduction method. Let (A, B) be an
instance of MPKP. We construct an instance (C, D) of PKP, such that

MPKP(A, B) has a solution < PKP(C, D) has a solution.

Let
A=y o WE B=m1, ax, Bt
where X' is an alphabet, k is a positive integer, w;, z; € X* fori = 1,...,k.

Let §,¢ ¢ X. We will construct an instance (C, D) of PKP over the alphabet
B =Xu{¢ 8]

First we define two homomorphisms hy, and hg from £* to I} as follows.
For every a € X,

hi(a) = ¢a and hg(a) = a¢.
We see that hy inserts the symbol ¢ on the left side of any symbol and hg

inserts the symbol ¢ on the right side of any symbol. For instance, for the
word 0110,

hi,(0110) = ¢0¢1¢1¢0 and hg(0110) = 0¢1¢1¢0¢.

We set
C=vy1.92 ..., Yktz and D =21, 23, ..., Zps3,
where
y1 = ¢hprlw) 21 = hy(z1)
y2 = hr(w) 2y = hy(z;)

y3 = hr(ws) z3 = hy(z2)

Vi+1 = hplw;)

zip1 = ho(zi)

Ve+1 = hp(ws) Zg41 = hp(zx)
Yet2 =8 Zkto = ¢85,
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For example, for the instance
((0,11,1), (001,1,11))
of MPKP, the constructed instance of PKP is
((¢0¢,0¢, 1¢1¢, 1¢, 8), (¢0¢0¢1, ¢0G0¢1, ¢1, ¢1¢1, ¢8)).

It is obvious that there is an algorithm (a TM) that can construct (C, D)
from any given (A, B). It remains to show that either both MPKP(A, B)
and PKP(C, D) have solutions, or neither MPKP(A, B) nor PKP(C, D) has
a solution.

1. First, we prove that every solution for MPKP(A, B) determines a solution
for PKP(C, D). Let iy,is,... ,im be a solution for MPKP(A, B). Hence
U =W Wy, L, =TT T . B
The sequence of indices
2,41+ 1,é2+1, ..., i+ 1,
for PKP(C, D) corresponds to applying hg on wyw;, wi, ... w;,, and hy
OB E[ Ty Tiy - - - Tt « L 1S
¢hr(u) = ¢yaliy 41 - - Yin+1 = 222041 - - - Zipy 1€ = hi(u)e.
Hence, the difference between
he(u) = ¥oWiy 41 - - - Yi+1 and hp(u) = 222441 -+ Zi 41

lies only in the first symbol®® ¢ and the last symbol®” ¢. Following the
construction of (C, D), 41 = ¢y2 and z; = 2. Thus, we can replace the
first index 2 by the index 1. In this way we obtain the sequence

Lig+1,éa+1, ..., im +1,
for which

Y1l +1Vig 41 - Yim+1 = 210341 %ip 41 « - - Biy 416
Now, the only difference between the left side and the right side is the
additional symbol ¢ at the end of the upper text. To obtain a solution for
PKP(C, D), we add the (k + 2)-th domino (¢, ¢$). Thus,
Vi 1Wig 41 - - - Vi H1¥k4+2 = 212541 ig 41 -+ - Tip +1 2542
and consequently
Lig+lia+1, cooyim+ 1, k+2
is a solution of PKP(C, D).

6 In hy(u), but not in hg(u)
*T In hr(u), but not in Ar(u)
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2. We have to show that the existence of a solution for PKP(C, D) implies
the existence of a solution for the original MPKP(A, B) instance. First,
we observe that all words z; begin with the symbol ¢ and that y; is the
only word among the y;s that begins with the symbol ¢. Hence, every
solution for PKP(C, D) has to start with the first domino. On the other
hand, the only domino whose both words end with the same symbol is
the (k+2)-th domino type. Therefore, every solution for PKP(C, D) must
end with the index &k + 2.

Let

1! jl:j?] ey jm, k+2
be a solution for PKP(C, D). We claim that

lmjl_]-: .2—11-'-1jm"1

is a solution of MPKP(C, D). The arguments are that

(i) deleting the symbols ¢ and $ from y1y;, 5, - - - ¥4, Ye+2 results in the
word U Wiy 1 Wyp—1 ... Wy, —1, and

(ii) deleting the symbols ¢ and $ from 2 zj, 2;, . . . 2j,, Zk+2 Tesults in the
word 1%, 18451 . - - Tj, —1Tk42-

Since 1, ji,-..Jm,k + 2 is a solution of PKP(C, D),

Y1, UinUsg -« - Vi k42 = 2125, %55+« « Zjpy Bk42-

Together with (i) and (ii), this implies

Wy Wy, —1Wip—1 .- Wi -1 = 01T -1T5—1 - - o Lj—1-
Hence, 1,j; — 1,52 — 1,...,jm — 1 is a solution for MPKP(A, B).
O

Exercise 5.58. Prove that the decidability of MPKP implies the decidability
of PKP.

Now, we prove the undecidability of MPKP by showing that this domino
game can be used to simulate computations of Turing machines.

Lemma 5.59" The decidability of MPKP implies the decidability of Ly.

Proof. Let x € {0,1,#}*. We construct an instance (A, B) of MPKP such
that

z € Ly & MPKP(A, B) has a solution.

If z does not have the form Kod(M)#w for a TM M and a word w € {0,1}*
(ie., z ¢ Ly), then we set A = 0 and B = 1. Obviously, the domino game
with only the domino type (0,1) does not have any solution.
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Let z = Kod(M)#w fora TM M = (Q, &, T, 8, go, Gaccept Greject) and a
word w € E*. Without loss of generality one may assume that M moves its
head in every computation step. We describe the construction of MPKP(C, D)
in four steps. Every step determines a group of domino types with a specific
meaning. The rough idea of the construction is using the B-words (the lower
part) to simulate the computation of M on w and using the A-words to follow
this simulation with the delay of one configuration. Due to this delay one can
use dominos where the upper part corresponds to an argument (the state and
the symbol read) and the lower part corresponds to the result after applying
the transition function § of M on this argument. Using special dominos the
delayed upper part can overtake the lower part, if and only if the computation
ends in Gaccept-

Let # be a new symbol that is not contained in I'.

1. The first group contains only one domino type
(#, #q0¢wi).

This domino starts the simulation of the the computation of M on w.
The lower part corresponds to the initial configuration of M on w and the
upper part has the “delay” go¢w#.

2. The second group contains the following |I'| + 1 domino types:

(X,X) foral X e’
(#.#)-

This group is used to copy these parts of configurations (symbol by sym-
bol) from the lower text to the upper text that do not change in the next
computation step.

3. The third group is built to simulate the computation step of M. For all
g € Q—{gaccept}, P € Q, X,Y, Z € I', we take the following domino types:

(¢X,Yp) if é(g. X) = (p,Y;R)
(ZgX,pZY) if 8(g, X) = (p,Y,L)
(g#, Yps#) if d(g, u) =Y, R)
[Zq#,pZY#} if d(q, u) = (p,Y,L).

These dominos make it possible to copy the configuration parts containing
a state from the lower text to the upper text and to generate the next
configuration in the lower part.

4. The fourth group enables the upper text to reach {overcome) the lower
part if the computation of M on w has finished in the state gaccept- Using
the following dominos, the state gaccept CaI “swallow™ the symbols from
ru{¢}. For all X,Y € I'U {¢}, we take

(XE'accept-Ys Qaccept.:]
{X‘-}a.ccept: Q'acoept.}
(Qaccept Y Qaccept ).

J.0 IOSt LOTrrespondence rroblem 1ol

If gaccept in the lower text has “absorbed” all tape symbols, the delay of
the upper part is reduced to gaccept#- The following domino

(Gaccept ##, #)

enables us to finally balance the lengths of the upper text and the lower
text.

Do 1.8 1-+1L,R

0—=0R

u—}u,L LI"}l_lfL

Fig. 5.19.

Let us illustrate the construction of the MPKP(A, B) instance for the TM

M = ({!‘Iﬂ, q1, qaﬂc'?‘iﬂ-iqmj‘!ﬂt-}! {ﬂ? 1}! {¢7 0,1, LI} 200, Jaccept, Qreje-ct}

in Figure 5.19. The constructed domino types for the input word w = 01 are
the following ones:

(i) The first group:
(#, #4q0¢013).
(ii) The second group:

(0,0),(1,1),(¢,¢), (3,9), (#, #)-
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(iii) The third group:
(g0, 1g0), (g00, Og1 ), (go¢, ¢q1),
(1go#, Qawcepll#J , (Ogo#, JacceptOF)
(‘II 1, ]-f]'l}, {{hﬂ, an]: {]-QI #, q:ajactl#]'r (u‘h #: Qrejectn#)-
(iv) The fourth group:
(UQamept 0, Qaccept]: {IQacceptI: ‘i'acoept] ) (lqmptﬂg Q'a.cuept];
(Uﬁ'aecept]-: Q'amept): {ﬂfi'acceph Qaccept}; {IG'a.ccept.: Q'au:ept}:
(‘Iacceptﬂr Qaccept.)r {Qacoept 1, Qaccept):
(¢qaccept; Gaccept), (Qaccept®, Gaccept),
(Caccept®; Gaccept); (@accept; Gaccept) for all a € {0,1}
(Qaccept##} #}

The beginning of the simulation of the computation of M on 01 is presented
in Figure 5.20.

#ffnf:nl#-:qrnl#tuqul#-:ﬂlm#\m\]
#9 ¢ 01 #¢@|0|1|#[¢|0®1|#|¢|0]|1 go|#|¢[0|gaccepe 1 #

Fig. 5.20.

# ¢ [0 Gaccepr 1 M F# | Qaccept F F#
\
m #

# ¢ 0 Jaccept 1 # ¢ I Gaccept

Fig. 5.21.

Figure 5.21 shows the phase of shortening, where the upper text overcomes
the lower text.

It is obvious that the MPKP(A, B) instance can be algorithmically con-
structed from the given code of a TM M.

It remains to prove that

M accepts w <> MPKP(A, B) has a solution.

To save unnecessary techmnical details, we argue for the validity of this
equivalence informally.

If w € L{M), then there exists an accepting computation of M on w. We
use this computation to build a solution to the MPKP(A, B) instance. The
solution starts with the first domino type (#, #go¢w+#) of the first group.
Then, we use the dominos of the second group in order to copy symbols of
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the lower text to the upper text, if these symbols remain unchanged in the
next computation step. The dominos of the third group are used to derive
the successor configuration in the lower text. After any symbol #, the text
below is always one configuration longer than the text above.2® If the text
below contains the whole computation that finishes in the state Gaccept; then
the dominos of the fourth group enable the text above to overcome the text
below. Thus, we obtain a solution for MPKP(A, B).

Let w ¢ L(M). Every potential solution of MPKP(A, B) has to start with
the first domino (#, #go¢w#). Since the dominos of the groups 2 and 3 allow
only such changes of the first configuration that correspond to a computation
step of M, the symbol guccept Will never occur in the text below. Then the
text below always remains longer than the upper text, so MPKP(A, B) does
not have any solution. O

Exercise 5.60. Write the MPKP(A, B) for the TM in Figure 4.6.

Exercise 5.61. Let (A, B) be an instance of MPKP for a TM M and a word
w according to the construction presented in the proof of Lemma 5.59. Prove
the following claims by induction:

If w € L(M), then there exists a sequence of indices, such that

(i) the lower text contains the complete computation of M on w, where the
configurations are separated by the symbol #, and

(ii) the upper text is a proper prefix of the lower text and the upper text
contains the whole computation except the last configuration.

Theorem 5.62. PKP is undecidable.

Proof. Lemma 5.59 implies that MPKP is not decidable and Lemma 5.57
claims that PKP is at least as hard as MPKP. O

Exercise 5.63 Consider a restricted version of PKP, where all dominos are
over the one-element alphabet {0}. Is this problem decidable?

5.6 The Kolmogorov-Complexity Method

In Section 5.2 we applied the diagonalization method in order to find the
first algorithmically unsolvable problem Lgiag. By proving the nonrecursivity
of Lgiag, We obtained the starting point (basis) for building the computabil-
ity theory. We used this basis for proving undecidability of further decision
problems by the reduction method in Sections 5.3, 5.4, and 5.5. The aim of
this section is to give an alternative way of building the computability theory.
Without assuming the existence of undecidable problems (i.e., without using
any of the undecidability results proved in the previous sections) we use the

** Remember, that the text above is always a prefix of the text below.
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Kolmogorov-complexity theory to show that there is no algorithm that can
compute the Kolmogorov complexity K (z) of a given word & € (Zyoo1)*. Tak-
ing this unsolvability result as an alternative starting point®® we again show
using the reduction method that the halting problem is undecidable. Having
this result we can continue in the same way as presented in Sections 5.3 and
5.4 to prove the undecidability of other concrete decision problems.

Theorem 5.64. The problem of computing the Kolmogorov complexity K(z)
for any given T € (Zyool)® is not algorithmically solvable.*

Proof. We prove Theorem 5.64 by contradiction. Let A be an algorithm that,
for a given z € (Zpo01)*, computes K (z). Let z, be the first word with respect
to the canonical order over X4 with

K(zn) 2 n.
Now, for any positive integer n, we describe an algorithm By, that

(i) uses A as a subroutine, and
(ii) computes z,, (for an empty input A).

B, works as follows.

B, begin x:= A
Compute K(z) by the algorithm A;
while K(z) < n do
begin z := the successor of = in the canonical order;
Compute K(z) by the algorithm A4
end;
output(z)
end
Obviously, for every positive integer n, B, computes the word z,,. We
observe that all algorithms B,, are identical, except the number n. Let ¢ be
the length of the machine code of B,, excluding n. Then, the binary length of
B, is at most
[logy(n +1)] +¢

for all n € IN and the constant®' ¢, which is independent of n. Since B,
generates the word z,,,

K(z,) < [loga(n+1] +c¢

29 Instead of the diagonalization language

30 If one considers K as a function from (Zyoo1)” to (Zhoeot)” instead of a function
from (Epoa)” to IN (i.e., K(z) is the binary representation of the Kolmogorov
complexity of =), then Theorem 5.64 says that the function K is not recursive.

3! Note also that the binary length of the algorithm A is a constant with respect to
n.
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for all positive integers n. But following the definition of z,,, we have
K(z,)>n
for all n € N — {0}. The inequality
Mogy(n +1)] + ¢ > K(za) > n

can be satisfied for at most finitely many positive integers. Therefore, we have
a contradiction to the assumption that there is an algorithm A computing
K(z) for any z. O

Exercise 5.65. Prove that the problem of computing the first word z,, with
K(z,) > n for any given positive integer n is not algorithmically solvable.

To show that one can use the reduction method to advance from Theo-
rem 5.64 to the undecidability of fundamental languages (such as Ly, Ly,
Lempty, etc.), we reduce the problem of computing the function K to the halt-

ing problem. The following lemma provides an alternative proof of the fact
Ly ¢ Lg from Theorem 5.37.

Lemma 5.66. If Ly € Lg, then there exists an algorithm that computes the
Kolmaogorov complezity K (z) for any given = € (Zpoa)*.

Proof. Let Ly € Lg and let H be an algorithm that decides Ly. The following
algorithm A (Figure 5.22) computes K (z) for every z € (Zpoq)*.

A generates the words w;,ws,ws,... in the canonical order. For every
positive integer ¢, A checks whether w; is a binary code of a Pascal program
M. If w; is not the code of any program, then A continues with w;;;. If
w; = Kod(M) for a Pascal program M, then A applies H in order to learn
whether M halts on A or not.

If M halts on A, then M simulates the work of M on A.

If M halts with the output u = M(A), then A checks whether u = = or
u # . If u = z, then A outputs

K{z) = |wi]-

If u # z, then A continues with wyy,.
If |w;| is the output of A for an input z, then w; is the shortest word with
the property

w; = Kod(M)
for a Pascal program M and M generates x. Therefore, A computes the Kol-
mogorov complexity K(z) for any given z € (Lyo01)". o

Exercise 5.67. Prove the following assertions:

(i) If Ly € Lr, then there exists an algorithm that computes K (x) for any
e (Zbunlj*-

(ii) If Lempty € Lr, then there exists an algorithm for computing K {(z) for
any z € (Zuool)”-
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Fig. 5.22.

5.7 Summary

The fundamentals of proof methods in the computability theory lie in the set
theory. The main concepts (instruments) are

e The comparison of infinite numbers (the cardinalities of infinite sets)

i el AN

e The diagonalization method
¢ The reduction method

A set A has a cardinality that is at least as large as the cardinality of a
set B, if there exists a one-to-one mapping from B to A. For any infinite set,
|A] = |A x A| and hence |[IN| = |Q*|. The smallest infinite set is IN, and every
set C with |C| < |IN| is called countable. Every set B with |B| > |[IN| is called
uncountable.

The set of all Turing machines (programs) is countable and the set of all
languages (problems) over the alphabet {0,1} is not countable. Therefore,
most computing problems are not solvable.

If |A| < |B| for two infinite sets A and B, the diagonalization techniques
can help to construct an element from B — A.

A language L accepted by a Turing machine is called recursively enumer-
able. A language L with L = L(M) for a TM M that halts in one of the states
Gaccept aNd Greject for every input, is called recursive (or decidable). The diago-
nalization method makes it possible to construct the so-called diagonalization
language Lgiag, which is not recursively enumerable.

Applying the reduction method one can show that some problems are at
least as hard®? as Lgisg and hence they are not recursive. The most important
examples of undecidable decision problems are the universal language and the
halting problem. The universal language contains all words that code a TM
M and a word w, and w € L(M). The problem is to decide whether a given
TM M accepts a given input w. The halting problem is to decide, whether a
given TM M halts on a given input w.

Rice’s Theorem says that each nontrivial decision problem about Turing
machines (programs) is not decidable. Hence, there are are no algorithms for
testing correctness and termination of programs. Thus, one cannot algorith-
mically decide whether a given Turing machine (program) is an algorithm®3
for a given problem, even if the problem is trivial like computing a constant
function. Applying the reduction method one can also extend the proofs of un-
decidability beyond the world of problems about Turing machines (programs).
A nice example of such a problem is the Post correspondence problem that
can be viewed as a special domino game.

The first motivation for studying decidability and undecidability of math-
ematical problems came from the famous mathematicians David Hilbert. At
the beginning of the 20th century he formulated a research project for math-
ematics, whose aim was to develop a formalism (a mathematical theory) in
which one can solve all mathematical problems. Kurt Godel [20] proved in
1931 that the objectives of Hilbert are unrealistic, because each nontrivial**
mathematical theory is undecidable (i.e., that one can formulate problems in

*2 With respect to algorithmical solvability

*> Remember that an algorithm terminates (halts) for every input with the correct
result.

34 Nontrivial means that the theory contains at least formal arithmetics.



e = e s IR T b

a given theory that cannot be solved in the framework of this theory). This
seminal work [20] led to the formalization of the notion of an “algorithm” and
subsequently to the building of the fundamentals of the computability theory.

The undecidability of the universal language was established by Turing
[68]. In 1953, Rice [57] published the result that is now known as Rice’s The-
orem. The undecidability of the Post correspondence problem was proved by
Post [52].

For a more extensive and detailed study of elementary fundamentals of the
computability theory, the corresponding chapters of the textbooks [27, 28, 65]
are strongly recommended.

If one applies the mapping reduction in order to define the equivalence
of problems with respect to recursivity, then one partitions the set of nonre-
cursive languages into infinitely many classes £;, i = 1,2,.... The meaning
of the fact “a language L belongs to £;” is that L remains undecidable even
when all languages from the classes £y, Ls, ..., £i_; were to be decidable. An
interesting point is that there are problems of practical interest that belong to
higher classes of this hierarchy. To deepen the knowledge in the computabil-
ity theory we warmly recommend the classical textbooks of Trakhtenbrot [67]
and Rogers [59].
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Complexity Theory

6.1 Objectives

The computability theory provides methods for classifying problems with re-
spect to their algorithmic solvability. A problem is algorithmically solvable
when there exists an algorithm that solves this problem. A problem is not
algorithmically solvable if there does not exist any algorithm that solves it.

The complexity theory can be viewed as a continuation of the computabil-
ity theory in the sense that one tries to partition the class of algorithmically
solvable problems into several subclasses with respect to the achievable effi-
ciency of solving them. Since the 1960s when the use of computers was no
longer restricted to a few research institutes, many practitioners have learned
that the existence of an algorithm (program) for a problem is not sufficient for
solving this problem by a computer. Many practical, algorithmically solvable
problems were discovered, for which all designed algorithms had run so long
that the computers had crashed before any result was computed. The resulting
question was whether this is a consequence of our incapability to find an effi-
cient algorithmic solution to the given problem or a consequence of an inherent
property of the given problem that does not allow for any efficient algorithmic
solution. These considerations led to the idea of measuring the hardness of
computing tasks with respect to the amount of computer resources necessary
and sufficient to compute them. This in turn led to the classification of al-
gorithmically solvable problems according to their computational degree of
hardness.

The complexity theory is the theory of guantitative laws and limits of
algorithmic information processing. This theory also has a physical dimension.
For instance, one could consider an algorithmically solvable problem to be
“practically unsolvable” (intractable) if the execution of any algorithm solving
the problem for realistic input instances needs more energy than the energy
of the whole known universe.
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The main goals of the complexity theory are as follows:

(i) To estimate the computational complexity (time complexity being the
number of computer instructions or space complexity being the size of the
computer memory) necessary and sufficient to solve concrete algorithmic
problems.

(ii) To specify the notion of the class of “practically (efficient) solvable” prob-
lems and to develop methods for classifying algorithmic problems into
“practically solvable” (tractable) problems and “practically unsolvable”
(intractable) problems.

(iti) To compare the efficiency (computational power) of deterministic, nonde-
terministic and randomized algorithms.

During our first encounter with the complexity theory in this chapter we
will confine ourselves to the following objectives.

In Section 6.2 we learn how to measure the computational complexity
of Turing machines and programs. We also look at some properties of these
complexity measures.

In Section 6.3 the problem of determining the hardness of algorithmic
problems is discussed. The fundamental complexity classes of decision prob-
lems (languages) are defined as classes of languages that are decidable within
a given complexity. We also discuss how to specify the class of practically solv-
able (tractable) decision problems, and provide the reasons to take the first
“approximation” of the class of tractable problems as the class of problems
solvable in time polynomial in the length of inputs.

Section 6.4 shows how to measure the complexity of nondeterministic Tur-
ing machines and introduces the fundamental nondeterministic complexity
classes.

Section 6.5 is devoted to the comparison of the efficiency of nondetermin-
istic computations and deterministic ones. This comparison touches the philo-
sophical fundamentals of mathematics. We show that the time complexity of
nondeterministic computations corresponds to the complexity of determinis-
tic verification of the correctness of a given mathematical proof of a claim,
whereas the deterministic time complexity corresponds to the complexity of
inventing a mathematical proof of the given claim. Consequently, the question
of whether nondeterministic algorithms can be more efficient than determin-
istic ones is equivalent to the question whether verifying the correctness of
mathematical proofs is easier than their algorithmic creation.

Section 6.6 presents the concept of NP-completeness that is currently the
main instrument for showing that specific problems are hard in the sense that
they do not belong to the class of tractable problems. This is the first example
showing that such a computationally nonrealistic concept as the concept of
nondeterministic computation may be useful as a powerful instrument for
investigating deterministic computation.
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6.2 Complexity Measures

For the definition of the basic complexity measures, we use the model of
multitape Turing machines. The main reasons for this choice are that this
model is, on one hand, simple enough and, on the other hand, corresponds
to the basic framework given by the von Neumann computer model. We will
see later that the model of multitape Turing machines is robust enough such
that the fundamental results about complexities defined by MTMSs hold for
the complexity of the performance of computer programs implemented in
an arbitrary programming language. Especially, all classification results with
respect to Turing machine tractability are of general validity.

Here, we define two fundamental complexity measures — the time com-
plexity and the space complexity. The time complexity of a computation is
the number of elementary instructions (Turing machine steps) executed in
this computation. Consequently there is a linear relation between the time
complexity of a computation and the energy needed to executed the compu-
tation. The space complexity is the size of memory used, where the size is
measured in the number of computer words. For Turing machine models the
size of computer words is determined by the working alphabet because the
symbols of a working alphabet represent the allowed contents of computer
words (registers).

Definition 6.1. Let M be an MTM or a TM that always halts. Let X be the
input alphabet of M. Let x € £* and let D = C,Cs,...,Cr be a computation
of M on z. The time complexity Timeps(z) of the computation of M
on x is defined as

Timep(z) =k —1,

i.e., the number of steps of D.
The time complexity of M is the function Timeps : IN — IN, defined as

Timepr(n) = max{Timey(z) | z € Z"}.

Note, that Timeps(n) is defined such that every input of size n (i.e., every
input from X") is decided by M in time of at most Timeps(n) and that
there exists an input z of length n with Times(z) = Timey(n). Phrased
differently, Timeas(n) is the time complexity of the longest computation on
an input of length n. Therefore this kind of complexity measurement is called
the worst-case complexity. The worst-case complexity may not be a good
measure, for instance, when describing a TM with very different complexities
on inputs of the same length. In such a case, one might contemplate using
the average case analysis instead, where the complexity is averaged over all
inputs of length n. However, the worst-case complexity is generally preferred
for two major reasons. First, determining the average time complexity of an
algorithm is usually a much harder problem than determining Timejs(n). In
many cases one might even be unable to perform the average case analysis.
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Secondly, people have an affinity for guarantees. The worst-case complexity
measurement assures that M can solve any problem instance z of length n
in time Timepr(n). Hence, we will restrict our attention to the worst-case

complexity in this book.

Definition 6.2. Let k € IN — {0}. Let M be a k-tape-TM that always halts.
Let

C= (q,x,i,ﬂ11!:1,&2,i2,- oy :ai1ift}
with0<i<|z|+1and 0<i; <|aj|+1forj=1,....,k

be a configuration of M. The space complexity of C is !
Space(C) = max{|ai| |i=1,...,k}.

Let C1,Cs,...,C; be a computation of M on x. The space complexity of
M on x is

Space s (x) = max{Spacey (Ci) | i =1,...,1}.
The space complexity of M is a function Spaceys : IN — IN defined by
Space,,(n) = max{Spacey(z) |z € Z"}.

It may seem surprising that we define the space complexity of a mnﬁgu-ra-
tion to be the maximum over the lengths of nonblank contents of all working
tapes instead of taking the sum of the lengths of all working tapes. We point
out that it does not matter which of these possibilities is chosen. Lemma 4.13
states that for any & € IN, k tapes can be simulated by one tape of length
bounded by the maximum of the lengths of these k tapes. The following lemma
is a direct consequence of this observation.

Lemma 6.3. Let k be a positive integer. For any k-tape-TM A that always
halts, there erists an equivalent 1-tape-TM B, such that

Space(n) < Space,(n).

This property of space complexity is credited to the fact that the cardinal-
ity of the working alphabet of M (the length of the computer words of a real
computer) does not have any influence on the definition of Space,(n). Hence,
our definition of space complexity is not suitable for measuring differences of
a multiplicative constant factor.

Lemma 6.4. Let k be a positive integer. For any k-tape-TM A there exists a

k-tape-TM B such that L(A) = L(B) and

Space 4 (n)
2

! Note that the space complexity does not depend on the size of the working al-
phabet.

Spaceg(n) < + 2.
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Proof. We will only describe the idea behind the proof. Let 'y be the working
alphabet of A. We construct the working alphabet I'g of B in such a way that
I'p contains all symbols from I'y x ['y. If

1,02, ..., Ay

is the content of the i-th working tape of 4, i € {1,2,...,k}, and the head is
adjusted on a; for a j € {1,2,...,m}, then the content of the i-th tape of B

is the word
¢(a1) (ﬂ3) (am_l) , if m even, and
L 5] Oy O

¢(“1) (“3) 8.4 (“"“1), if m odd.
Qo ey u

a The head of the i-th working tape of B is adjusted on the pair® that contains
a@; and B stores in its state on which of the two symbols of this pair the head
of the i-th tape of A is adjusted. Thus, B can unambiguously represent any
configuration of A in space 1+ [Space,(n)/2].

It is not difficult to find a strategy that simulates the work of A step-by-
step on B. Here, the head movements of A are modeled by either a corre-
sponding head movement on B or a state change. A state change refers to the
change of the indicator that tracks which symbols of the read pairs are read
by A. In this way, one can construct the MTM B with

Space 4 (n)

L(A) = L and Spaceg(n) < 2

+ 2.

0

Applying Lemma 6.4 iteratively, one can construct, for any constant & and
any MTM M, an equivalent MTM whose space complexity is bounded by

Space4(n) &

2.
k

Observe that this can happen only because the size of the working alphabet
of Turing machines is irrelevant in the measurement of space complexity.

One can do a reduction of time complexity in a similar way as the reduction
of space complexity in Lemma 6.4. If one stores a larger number of symbols
of an MTM A in one symbol of an MTM B then the transition function of B
defined over complex symbols determines more complex operations than the
transition function of B. This provides the possibility to simulate several steps
of A by a few steps of B, achieving a constant speed-up of computations. We
formulate this result in the following exercise.

2 This is {a:q} for i odd, and ("‘a:lj for i even.
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Exercise 6.5. Prove the following claim:
For any MTM M there exists an equivalent MTM A such that

Timepy(n)
2

The assertions of Lemma 6.4 and Exercise 6.5 show that the introduced
complexity measurement is rough. But this is no drawback to our objectives
because the differences between the complexity measures of different comput-
ing models are often larger than differences expressible by a constant mul-
tiplicative factor. We want robust classification results that are valid for all
reasonable computing models. For this reason we are interested in the asymp-
totic growth of Timeps and Spacey,; and not in the exact estimation of the
values of these complexity functions. For the asymptotic analysis of complex-
ity functions we use the standard 12, 0, @ and o-notation.

Definition 6.6. For any function f : IN = R we define

O(f(n)) ={r:N—->R" |3Ing € N,3c € N, such that
¥n > ng : r(n) < c- f(n)}.

For any function v € O(f(n)) we say that r does not asymptotically grow
faster than f.
For any function g : IN = IRT we define

2(g(n)) = {s:IN = R" | Ing € N,3d € N, such that

¥n > ng: s(n) > é -g(n)}.

Timea(n) < + 2n.

For any function s € (2(g(n)) we say that s grows asymptotically at least
as fast as g.
For any function h: N = R* we define

O(h(n)) ={g: N -+ R" | 3c,d,ng € N, such that ¥n > ng :
= +h(n) < gfn) < c- h(n))
= O(h(n)) N 22(h(n)).

If q € ©(h(n)) we say that ¢ and h are asymptotically equivalent.
Let f and g be functions from IN to R™. If
o0l ()

=0,
n—o00 g(n}

then we say that g grows asymptotically faster than f and we write
f(n) = o(g(n)).

Exercise 6.7. Which of the following claims are true? Give detailed reasons
for your choice.
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(i) 2" € ©(2"*2) for any positive constant a € IN.
(ii) 2™ € @(2™) for any positive constant b € IN.
(iii) logy n € B(log, n) for all positive real numbers b,¢ > 1.
(iv) (n+1)! € O(n!).
(v) log(n!) € O(n - logn).

Eﬁercise 6.8. Prove the following assertions for all functions f and g : IN —
R™.
(i) f € O(g) and g € O(h) = f € O(h)
(ii) f € O(g) & g € 2(f)
(iii) f € ©(g) & g € O(f) & O(f) = 6(g)

Consider the Turing machine M in Figure 4.5 that accepts the language
Linigdie- M repetitively runs from the left tape boundary to the right tape
boundary and back, during which it moves the left tape boundary one square
to the right and the right boundary one square to the left. Using this strategy,
M estimates the position of the square in the middle of the tape. Clearly the
time complexity of M is in O(n?).

Exercise 6.9. Give an exact analysis of Timeas(n) of the TM M from Fig-
ure 4.5.

Exercise 6.10. Design a 1-tape-TM B with L(B) = Luiddle and Timeg(n) €
O(n).

Exercise 6.11. Give an asymptotic analysis of the time complexity of the
TM A from Figure 4.6, that accepts the language Lp.

The 1-tape-TM A from Figure 4.10 accepts the language Lequa = {w#w |
w € (Zhga1)*} by copying the prefix of the input word up to # to the working
tape and then comparing the contents of the input tape and of the working
tape. We see that Times(n) < 3-n € O(n) and Spacey;(n) € O(n).

Exercise 6.12. Design a 2-tape-TM M with L(M) = L.qua, Timea(n) €
2
O(i5g, ) and Spacey(n) € O(log, n).

Above we defined and considered time complexity and space complexity
of multitape Turing machines. Since the main goal of complexity theory is to
classify algorithmic problems according to their computational difficulty we
are interested in defining time and space complexities of problems. A natu-
ral idea could be to define the time complexity of a problem U as the time
complexity of an asymptotically “optimal” MTM (algorithm) M for U. The
optimality of M for U can be defined by requiring

Time 4(n) € 2(Timeys(n))

for each MTM A that also solves U (i.e., there does not exist any MTM for
U that solves U asymptotically faster than M). Although the idea of saying




176 o Complexity 1 heory

that the time complexity of U is the complexity of the best algorithm solving
[/ seems to be reasonable, unfortunately it does not work. The next theorem
explains why.

Theorem 6.13. There erists a decision problem (L, Eyo01), such that for ev-
ery MTM A that decides (L, Zpoal), there exists an MTM B that decides

{L} Ebﬂﬂl) aﬂd
Timeg(n) < log,(Time4(n))

for infinitely many positive integers n € IN.

Theorem 6.13 tells us that there are problems for which one can essentially
improve any algorithm for them. This implies the existence of an infinite
sequence of algorithm improvements. Thus, there are no asymptotically best
(optimal) algorithms for such problems and hence it is impossible to define
the complexity of problems in the above-proposed way. What should we do
now? We can classify problems without defining their complexity, simply by
defining lower and upper bounds on the problem complexity as proposed in
the following definition.

Definition 6.14. Let L be a language and let f and g be functions from IN
to R™. We say that O(g(n)) is an upper bound on the time complexity
of L if there exists an MTM (an algorithm) A such that

L = L(A) and Timea(n) € O(g(n)).

We say that 2(f(n)) is a lower bound on the time complexity of L
if
Timeg(n) € 2(f(n))
holds for every MTM (algorithm) B with L(B) = L.
An MTM (an algorithm) C' is optimal for L if and only if

L(C) = L and 2(Timec(n)) is a lower bound on the time complezity of L.

To establish an upper bound on the complexity of a problem UV it is suf-
ficient to find an algorithm that solves I/ and to analyze its complexity. Es-
tablishing a nontrivial lower bound on the complexity of U is a very hard
task because it requires proving that each of the infinitely many known and
unknown algorithms solving U must have its time complexity in £2(f(n)) for
some function f. This is a nonexistence proof because one has to prove the
nonexistence of any algorithm solving U7 with the time complexity asymp-
totically smaller than f(n). The best illustration of the hardness of proving
lower bounds on problem complexity is the fact that we know thousands of
algorithmic problems for which

(i) the time complexity of the best known algorithm is exponential in the
input size, and

|
|
!
|
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(ii) no super-linear lower bound like f2(nlogn) is known for any of them.

Thus, we conjecture, for many of these problems, that there does not exist
any algorithm solving them within polynomial time of the input size, but we
are unable to prove that one really needs more than O(n) time to solve them.
Missing a sufficiently powerful mathematical machinery to prove lower bounds
on complexity makes classifying problems with respect to their hardness re-
ally difficult. In Section 6.6 we will show how to overcome this difficulty by
making a reasonable assumption that enables us to prove the nonexistence of
polynomial-time algorithms for given algorithmic problems (languages). We
give a detailed discussion about the validity of this assumption in Sections 6.5
and 6.6.

Above we have explained how to measure complexity on abstract ma-
chine models. Before finishing this section about complexity measurement we
would like to discuss the complexity measurement of programs in an arbitrary
programming language. We distinguish two basic complexity measurements,
namely the uniform-cost measurement and the logarithmic-cost mea-
surement.

The approach based on uniform-cost measure is the simpler, but rougher
one. The measurement of time complexity includes determining the overall
number of elementary? instructions executed in the considered computation,
and the measurement of space complexity includes determining the number of
variables used in the computation. The advantage of this measurement is that
it is simple in the sense that it simplifies the complexity analysis of a program
(an algorithm). The drawback of uniform-cost measurement is that it is not
always adequate because it assumes cost 1 for any arithmetic operation over
two integers regardless of their size. When the operands are integers whose
binary representations consist of several hundreds of bits, none of them can be
stored in one computer word (16 or 32 bits). Then the operands must be stored
in several computer words (i.e., one needs several space units to save them)
and the execution of the arithmetic operation over these two large integers
corresponds to the execution of a special program performing an operation
over large integers by several operations over integers of the computer word
size. Thus, the uniform-cost measurement may be applied to the cases where
one can assume that all variables contain values whose representation sizes
are bounded by a fixed constant (hypothetical computer word length) during
the entire computation.

To see how a serious anomaly can appear when using the uniform-cost
measurement, we present the following example. Let k and a > 2 be two
positive integers of sizes that do not exceed the size of a hypothetical computer
word. Consider the task of computing the number a?*. This value can be
computed by the following program.

* Elementary instructions are arithmetic instructions over integers, comparison of
two integers, reading, writing, loading integers and symbols, etc.
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fori=1tokdoa:=a-a.

This program computes the value o by executing the following k multipli-
cations:

3 2 8 4 4 2*

k=1 k-1
a®:=a-a,a*:=a%.0% a®:=at-at, ..., a® i=a® a® .

Thus, the uniform-cost time complexity is in O(k). The uniform-cost space
complexity is 3 because three variables are sufficient to execute the program.
This contrasts with the fact that one needs at least 2 bits to represent the
result a®* and to write 2% bits any machine needs £2(2*) operations on its
machine words. Since this is true for every positive integer k, we have an
exponential gap between the uniform-cost time complexity and any realis-
tic time complexity, and an unbounded gap between the uniform-cost space
complexity and any realistic space complexity.

The solution to such a situation, where the values of variables grow un-
boundedly, is to use the logarithmic-cost measurement. With respect to
this measurement the cost of every elementary operation is the sum of the
sizes of the binary representations of the operands* and the time complexity
of a computation is the sum of the costs of all operations executed in the
computation. The space complexity is the sum of the lengths of the represen-
tations of the values of all variables used. The logarithmic-cost measurement
is always realistic. Its drawback is that a proper logarithmic-cost measurement
may be too complicated or excessively time consuming in many situations.

6.3 Complexity Classes and the Class P

To define complexity classes we use the computing model of the multitape
Turing machine. The complexity classes considered here are language classes,
i.e., sets of decision problems.

Definition 6.15. For all functions f, g from IN to R" we define:
TIME(f) = {L(B) | B is an MTM with Timeg(n) € O(f(n))},
SPACE(g) = {L(A4) | A is an MTM with Space4(n) € O(g(n))},
DLOG = SPACE(log, n),
P = | J TIME(n®),

ceEIN

PSPACE = | | SPACE(n°),
ceIN

EXPTIME = | | TIME(2"").
deN

* To be theoretically exact, one has to add the binary length of the addresses of
the variables (operands) in memory to the complexity.
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In what follows we study some fundamental relations between these com-
plexity classes and some basic properties of time and space complexity.

Lemma 6.16. For any functiont : N - R*
TIME(t(n)) C SPACE((n)).

Proof. Each MTM M, which works in time Timeps(n), can visit at most
Timeps(n) squares of any working tape. So, Space,,(n) < Timeas(n) for every
MTM M. O
Corollary 6.17.

P C PSPACE

To get further relationships between complexity classes we need the notion
of constructible functions. The idea behind this notion is that we would like to
construct multitape Turing machines that are able to take care of themselves,
in the sense that they count the amount of computational resources that
they use and never use more than a prescribed upper bound. To be able to
do this self-control, the upper bounds on complexity must be given by some
well-behaved functions.

Definition 6.18. A function s : IN — IN is called space constructible, if
there exists a I-tape-TM M, such that

(i) Spaceps(n) < s(n) for all n € IN, and
(i) for each input 0", n € IN, M generates the word 0°™) on its working tape
and halts in gaccept-

A function t : N — IN is called time constructible, if there ezists an
MTM A, such that

(1) Timea € O(t(n)), and
(ii) for any input 0°, n € IN, A generates the word 0*") on the first working
tape and halts in gaceept.

Common monotone functions with f(n) > log,(n+1) [f(n) > n] are space
[time] constructible. For instance, a 1-tape-TM A can construct the function
[logy(n + 1)] as follows. A reads 0™ from the left to the right on the input
tape, during which A writes the actual position of the reading head on the
input tape in binary coding on the working tape. This can be done easily
by adding 1 to the content of the working tape for each step to the right on
the input tape. If the head on the input tape has reached ,,, then the binary
word on the working tape has exactly the length [log,(n + 1)]. After which
it is sufficient to exchange all 1s of the working tape by 0s to obtain the word
0Mega(n+1)1 on the working tape.

We note that it does not matter whether a 1-tape-TM M or an MTM
is used for the definition of space constructibility because any MTM can be
simulated by a 1-tape-TM within the same space complexity.
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In what follows we describe the work of an MTM M that constructs the
function [/n]. The idea of M is to consecutively test for i = 1,2,... whether

i <n< @@+

A test for a fixed i can be done by M in the following way. M writes 0F on the
first two tapes. To check whether ¢ -7 > n, M tries to go i - i steps from ¢ to
the right on the input tape. M can execute this as follows. At the beginning
the head on the input tape and the head on the first working tape move
simultaneously to the right and the head on the second working tape does not
move. When the head on the first working tape has reached ., it returns to the
left endmarker ¢ and the head on the second working tape moves one square
to the right. Then, the heads on the input tape and the first working tape can
continue to move simultaneously to the right. In this way the number of the
steps to the right on the input tape is the product of the lengths of the tape
contents of the two working tapes and so M finds the smallest ¢ with i-i > n.

Exercise 6.19. Give formal descriptions (e.g., diagrams) of the multitape
Turing machines used above for the construction of the functions

[logy(n +1)] and [v/n].

Note that the above-described multiplication of two tape lengths can be
used to show that the function f{n) = nf is time constructible for any q € IN.

Exercise 6.20. Prove that the following functions are space constructible.

(i) [/n]? for any positive integer g
(ii) [n]
(iii) [n#] for any positive integer g > 2
(iv) 2»

Exercise 6.21. Show that the following functions are time constructible.

(i) n? for any j € IN — {0}
(ii) ¢ - n for any c € N — {0}
(i) 2"

(iv) ¢® for any c € N — {0,1}

Exercise 6.22. Let s(n) and t(n) be space [time] constructible. Prove that
the function #(n) - s(n) is also space [time] constructible.

Let s be a space-constructible function. The following lemma shows that
to prove the existence of an MTM M accepting a language L(M) = L within
space complexity s(n) (i.e., an MTM M with L = L(M) and Space,(z) <
s(|z|) for every input € I*), it suffices to construct an MTM A that accepts
L and does not use more than s(|z|) space on words from L only (i.e., the
computations on words from LC may have an unbounded space complexity).

0.4 ‘omplexity \lasses and the (Ulass P 15l

Lemma 6.23. Let s : IN = IN be a space-constructible function. Let M be an
MTM with Spaceys(x) < s(|z|) for all z € L(M). Then there exists an MTM
A with L(A) = L(M) and

Spacey(n) < s(n),
i.e., Space,(y) < s(ly|) for all y over the input alphabet of M.

Proof. Let M be a k-tape-TM for a k € IN — {0} with Space,(z) < s(|z|) for
all z € L{M). Let B be a 1-tape-TM that constructs s. We describe the work
of a (k + 1)-tape-TM A with L(A) = L(M) and Spaces(n) < s(n). Let z be
an input.

1. A views = as 0/*! and simulates the computation of B on 0¥ on the
(k+ 1)-th working tape. The simulation finishes when the word 0°(1*!) has
been written on the (k + 1)-th tape.

2. A writes a special symbol # ¢ I'ss on the position s(|z|) of all working
tapes.

3. A performs a step-by-step simulation of the work of M on z by using
the first & working tapes. If simulating M the machine A was required to
move to the right from the symbol # on a working tape, then A halts in
Greject- If A was able to simulate the whole computation of M on z, that
A accepts z iff M accepts z.

Clearly, Space 4(z) < s(|z|) for all inputs z. We show now, that
L(A) = L(M).

If x € L(M), then Space,,(z) < s(|z|). Thus A simulates the whole com-
putation of M on z and finishes in accept. Hence z € L(A).

If y ¢ L(M), we distinguish two cases.

If Spaceys(y) < s(|y|), then A simulates the whole computation of M on
y and rejects y.

If Space, (y) > s(|y|), then A stops the simulation in the first moment
when M tries to use more than s(|y|) squares on a working tape, upon which
A stops in greject and hence y & L(A). u]

The following Lemma 6.23 provides an analogous assertion to Lemma 6.23
for time complexity.

Lemma 6.24. Let t : N — IN be a time-constructible function. Let M be an
MTM with Timens(z) < t(|z]) for all x € L(M). Then, there ezists an MTM
A with L(A) = L(M) and

Time4(n) € O(t(n)).

Exercise 6.25. Prove Lemma 6.24.
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Lemma 6.23 and Lemma 6.24 show that for a space-constructible function
s and a time-constructible function ¢, the complexity classes SPACE(s) and
TIME(t) do not change when we exchange our definition

Spaceys(n) = max{Spaceys(z) | z € £™} and
Timep (n) = max{Timep(z) | z € Z"}

of classes Spaceys and Timey for the following definition

Spaceys(n) = max{Spaceys(z) | z € L(M) and |z| = n} and
Timepr(n) = max{Timey () | x € L{M) and |z| = n}.

The next results shows an important relationship between space complex-
ity and time complexity.

Theorem 6.26. For every space-constructible s with s(n) > log, n,

SPACE(s(n)) C | J TIME(c*(™).
celN

Proof. Let L € SPACE(s(n)). Following Lemma 6.4 there exists a 1-tape-TM
M = (Q, Z,T,0,qo0, Gaccept; Greject); such that L = L{M) and Space,(n) <
s(n).
For every configuration € = (g,w,i,z,j) of M we define the internal
configuration of C as
m(C) = (3,4,3, ).

An internal configuration In(C') contains only those parts of C that can change
during a computation. Hence, In(C) does not contain the content w of the
input tape that remains unchanged during the whole computation on w.

Let InConf(n) denote the set of all possible internal configurations that
can occur during computations of M on input words of length n for n € N.
Our idea is to show that to check whether M accepts an input w or not,
it is sufficient to simulate at most |InConf(|w|)| steps of the computation of
M on w, because each computation longer than |InConf(|w|)| is an infinite
computation. Using this fact one can construct an MTM A simulating M that
works in time

O(|InConf(Ju)).

First, let us estimate |InConf(n)|. For every internal configuration
(9,1, ,j) € InConf(n),

we have 0 < i < n+1, |z| < Spacey(n) < s(n) and 0 < j < Spacey(n) <
s(n). Hence

0.0 Lomplexity Llasses and the Class P

|InConfa(n)] < |Q] - (n + 2) - |I[¥P2ces(™) . Space,, (n)
< (max{2,|Q|, [T})*=
< cs{n}

for ¢ = (max{2,|Q|, |I'(})".

Let w be an input word of length n. Obviously, every computation D =
C1,C,,C, ... of M on w that is longer than |InConf s (n)| must contain two
configurations C; and C} such that In(C;) and In(C;) are identical. Applying
the definition of an internal configuration we obtain that C; and C; are also
identical. Since M is deterministic

D =04,.+3C521, 0, Ciry - --:C5-1, G5y Cigy - o0, C=1,Cis - - .

is an infinite computation with the cycle C;, Ciyy,...,C;. Hence, any finite
computation of M on an input w has length at most [InConf s (|w|)|. This
means that the length of each accepting computation on an input of length n
is at most [InConf s (n)|.

Now, we describe the work of a 3-tape-TM A with L(A4) = L(M) and
Timey(n) € O(k*™) for a constant k. For any input w, A computes as
follows.

1. A simulates the construction of s and writes 0°(I*l) on the first working
tape.

{Since a 1-tape-TM constructing s uses at most s(|w|) squares of the work-
ing tape, there exists a constant d such that Timeg(n) < d*") Hence, A
generates 0°(") in time d%(") }

2. A writes 0°""" on the second working tape in ¢*(*]) steps.

{A uses the third tape to speed this up.}

3. A simulates the work of M on w step-by-step on the first working tape.
After each simulation step A erases one 0 on the second working tape.
If there is no more 0’s on the second tape and the simulation has not
finished, then A halts in greject-

If the computation of M on w consists of at most ¢*!*) steps, then the
simulation succeeds and A accepts iff M accepts.

As already observed, computation phases 1 and 2 of A run in time O(d*(I*))
and O(c*!"!)) respectively. Phase 3 of A runs in O(c*(/“!)) time. Hence

Timea(n) € O((max{c,d})**D).

If z € L(M), then the length of the computation of M on z is at most
c**D | hence after a successful simulation A accepts z too. If z ¢ L(M), A
rejects x (it does not matter whether the computation of M is infinite or a
rejecting one). 0

Corollary 6.27.
DLOG C P and PSPACE C EXPTIME
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Applying Corollaries 6.17 and 6.27 we obtain the following fundamental
hierarchy of deterministic complexity classes:

DLOG C P C PSPACE C EXPTIME.

The following hierarchy theorems belong to the fundamental results of
complexity theory. Their proofs are based on a more elaborated version of the
diagonalization method and so we omit their presentation here.

Theorem 6.28F Let 51 and s; be two functions from IN to IN that satisfy
the following properties:

(i) s2(n) > logy n,
(ii) 82 is space constructible, and
(iii) s1(n) = o(s2(n)).
Then
SPACE(s;) C SPACE(s;).

Theorem 6.29° Let t; and ty be functions from IN to IN that satisfy the
following properties:

(i) t2 is time constructible and
(i) ti(n) - logy(t1(n)) = o(tz(n)).

Then
TIME(t;) C TIME(t,).

The complexity hierarchies presented in Theorem 6.28 and 6.29 show the
existence of arbitrarily “hard” problems. For instance, there are computing
problems that are not in TIME(2") (i.e., all algorithms solving such problems
have a time complexity larger than 2™). Table 6.1 documents the fact that the
execution of algorithms for hard problems may exceed the boundary of what
is physically possible. For time complexity functions 10n, 2n2, n?, 2® and n!
Table 6.1 shows how many operations have to be executed for input lengths
10, 50, 100 and 300. Where the numbers are too large, the length of these
numbers are stated instead.

Table 6.1.
n 10 50 100 300
fn)
10n 100 500 1000 3000
2n? 200 5000 20 000 180 000

n® 1000 125000 1000000 27 0DO 00O
2" | 1024 16 digits 31 digits 91 digits
nl |=3.6-10° 65 digits 158 digits 615 digits

(Y
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Let us assume that we have a PC that executes 10° operations per second.
Then an algorithm A with Time4(n) = n® can compute the results for the
largest input length n = 300 within 3 seconds. If Times(n) = 2®, then A
needs for inputs of length 50 more than 3 years, and for n = 100 more than
3-10" years of computation. Comparing the values of 2" and n! for a realistic
input size between 100 and 300 with the suggested number of seconds since
the “Big Bang” (21 digits), then it is obvious that the execution of algorithms
of exponential complexity on realistic inputs is beyond the border of physical
reality.

Moreover, we call attention to the following properties of functions n® and
2". If t is the time you can wait for the results, then developing a better
computer that executes twice as many instructions per time unit has the
following consequences.

(i) For an algorithm working in time n?, the size of tractable input instances
can be increased by a factor of +/2 from t'/3 to ¥/2 - t'/3 (i.e., one can
compute on V2 times larger sizes of input instances than before).

(ii) However, for an algorithm running in time 2", the size of tractable input
instances can only be increased by a meager one bit.

Thus, an algorithm of an exponential time complexity cannot be con-
sidered practical, and algorithms of a polynomial-time complexity O(n®) for
small cs are considered to be practical. Hence, any problem that does not be-
long to TIME(2") can be considered intractable and any problem in TIME(n?)
may be considered tractable (practically solvable).

As already mentioned, the main objectives of the complexity theory are

to find a formal specification of the class of practically solvable
(tractable) problems

and

to develop methods that enable one to classify algorithmic problems
with respect to their membership in the class of tractable problems.

The first efforts in searching for a reasonable specification of the intuitive
notion of tractable problems resulted in the following definition.’ In what
follows, any algorithm A with Time4(n) € O(n®) for a constant ¢ is called a
polynomial-time algorithm.

A problem is practically solvable (tractable) if and only if there
exists a polynomial-time algorithm that solves it. The complexity class
P is the elass of tractable decision problems.

The two main reasons for connecting polynomial-time computations with
the intuitive notion of practical solvability are the following;

& Currently, this specification of algorithmic tractability is not accepted in this
restrictive form. We will give a more detailed discussion on this matter in the
next chapter.
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Applying Corollaries 6.17 and 6.27 we obtain the following fundamental
hierarchy of deterministic complexity classes:

DLOG C P C PSPACE C EXPTIME.

The following hierarchy theorems belong to the fundamental results of
complexity theory. Their proofs are based on a more elaborated version of the
diagonalization method and so we omit their presentation here.

Theorem 6.28* Let 3; and sy be two functions from IN to IN that satisfy
the following properties:

(i) s2(n) > logy n,
(ii) s2 is space constructible, and

{ﬂt} 31(?’1} = U{Sg{'ﬂ]].
Then
SPACE(s;) C SPACE(s2).

Theorem 6.29* Let t, and t; be functions from IN to IN that satisfy the
following properties:

(i) t2 is time constructible and
(ii) t1(n) - logy(t1(n)) = oft2(n)).

Then
TIME(t,) C TIME(ts).

The complexity hierarchies presented in Theorem 6.28 and 6.29 show the
existence of arbitrarily “hard” problems. For instance, there are computing
problems that are not in TIME(2"™) (i.e., all algorithms solving such problems
have a time complexity larger than 2™). Table 6.1 documents the fact that the
execution of algorithms for hard problems may exceed the boundary of what
is physically possible. For time complexity functions 10n, 2n%, n®, 2" and n!
Table 6.1 shows how many operations have to be executed for input lengths
10, 50, 100 and 300. Where the numbers are too large, the length of these
numbers are stated instead.

Table 6.1.
n 10 50 100 300
f(n)
10n 100 500 1000 3000
2n? 200 5000 20 000 180 000

n® 1000 125000 1 000 000 27 000 00O
b 1024 16 digits 31 digits 91 digits
n! |~ 3.6-10° 65 digits 158 digits 615 digits
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Let us assume that we have a PC that executes 10° operations per second.
Then an algorithm 4 with Time4(n) = n® can compute the results for the
largest input length n = 300 within 3 seconds. If Timey4(n) = 27, then A4
needs for inputs of length 50 more than 3 years, and for n = 100 more than
3-10'% years of computation. Comparing the values of 2® and n! for a realistic
input size between 100 and 300 with the suggested number of seconds since
the “Big Bang” (21 digits), then it is obvious that the execution of algorithms
of exponential complexity on realistic inputs is beyond the border of physical
reality.

Moreover, we call attention to the following properties of functions n® and
2" If t is the time you can wait for the results, then developing a better
computer that executes twice as many instructions per time unit has the
following consequences.

(i) For an algorithm working in time n3, the size of tractable input instances
can be increased by a factor of /2 from t/3 to ¥/2 - t'/3 (i.e., one can
compute on +2 times larger sizes of input instances than before).

(ii) However, for an algorithm running in time 2", the size of tractable input
instances can only be increased by a meager one bit.

Thus, an algorithm of an exponential time complexity cannot be con-
sidered practical, and algorithms of a polynomial-time complexity O(n®) for
small ¢s are considered to be practical. Hence, any problem that does not be-
long to TIME(2") can be considered intractable and any problem in TIME(n?)
may be considered tractable (practically solvable).

As already mentioned, the main objectives of the complexity theory are

to find a formal specification of the class of practically solvable
(tractable) problems

and

to develop methods that enable one to classify algorithmic problems
with respect to their membership in the class of tractable problems.

The first efforts in searching for a reasonable specification of the intuitive
notion of tractable problems resulted in the following definition.® In what
follows, any algorithm A with Times(n) € O(n®) for a constant c is called a
polynomial-time algorithm.

A problem is practically solvable (tractable) if and only if there
erists a polynomial-time algorithm that solves it. The complezity class
P is the class of traciable decision problems.

The two main reasons for connecting polynomial-time computations with
the intuitive notion of practical solvability are the following:

% Currently, this specification of algorithmic tractability is not accepted in this
restrictive form. We will give a more detailed discussion on this matter in the
next chapter.
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(i) The first reason is practical and based on experience. We have already
observed that algorithms with exponential complexity are not practical
and that polynomial-time algorithms with a small degree of polynomials
are practical. But what about a running time of nl0%0? Of course, an al-
gorithm with n'° time complexity is unlikely to be of any use, because
nl000 5 91 for all reasonable input sizes n. Nevertheless, experience has
proved the reasonability of considering polynomial-time computations to
be tractable. In almost all cases, once a polynomial-time algorithm has
been found for an algorithmic problem that formerly appeared to be hard,
some key insight into the problem has been gained. With this new knowl-
edge new polynomial-time algorithms with a lower degree than the former
polynomial were designed. There are only a few known exceptions of non-
trivial problems for which the best polynomial-time algorithm is not of
practical utility.

(ii) The second reason is of a theoretical nature. Any definition of an impor-
tant problem class has to be robust such that the defined class is invariant
with respect to all reasonable models of computation. We cannot allow
that a problem is tractable for a programming language (e.g. JAVA) but
not for MTM. Such a situation would arise if we define TIME(n®) as the
set of tractable problems. The crucial fact is that the class P is robust with
respect to all reasonable computing models. The proof of this assertion
is based on the notion of polynomial-time reducibility between models of
computation. A computing model 4 is polynomial-time reducible to a
computing model B, if there exists a polynomial p such that for every al-
gorithm A € A there is an algorithm B € B that solves the same problem
as A and

Timeg(n) € O(p(Timex(n))).
If one considers .4 as the class of TMs and B as the class of MTMs, then
Lemma 4.11 provides a polynomial-time reduction from A to B for p(n) =

n. The simulation in Lemma 4.11 gives a polynomial-time reduction form
B to A.

In fact, for all pairs of reasonable computing models, the known polynomial-

time reducibilities work with p(n) € O(n®). Thus, if one designs a
polynomial-time algorithm for a program U in JAVA, then there is a
polynomial-time algorithm for U in any reasonable formalism. On the
other hand, if one proves that there is no polynomial-time Turing machine
accepting a language L, then one can be sure that there is no polynomial-
time computer program deciding L. We see that this kind of robustness is
very important and it has to be required for any reasonable specification
of the class of tractable problems.

Exercise 6.30. Analyze the simulation of Lemma 4.13 in order to prove the
following assertion.

0.4 INondeterministic Lomplexity Hleasures lai

For every MTM A with Time4(n) > n there exists an equivalent TM B
such that

Timeg(n) € O((Times(n))?).

6.4 Nondeterministic Complexity Measures

Nondeterministic Turing machines (algorithms) can have many® different com-
putations on an input, and these complexities may substantially differ from
each other. So how does one define the complexity of a nondeterministic ma-
chine (algorithm) M on an input w? When working with nondeterminism,
we take the optimistic view that a nondeterministic machine always takes the
“best” possible choice from the given possibilities. The best choice implies not
only that this choice provides the correct solution, but also that it results in a
c_umputation of minimal complexity. Interpreting nondeterminism in this op-
timistic way, one can define the complexity of the work of a nondeterministic
algorithm M on an input w as the complexity of the most efficient computa-
tion of M on w yielding the correct result. In the case of decision problems
(language recognition) we consider only the complexity on inputs that are in
the language.

Definition 6.31. Let M be an NTM or a nondeterministic MTM. Let z €
L(M) C X*.

The time complexity of M on =z, Timeps(x), is the length of the
shortest accepting computation of M on x.

The time complexity of M is the function Timeys : IN = IN, defined as
Timeps(n) = max{Timex(z) | z € L(M) N Z"}.
Let C = C1,Cs,...,Cp be an accepting computation of M on z. Let

Space (C;) be the space complexity of the configuration Cj.
We define

Space s (C) = max{Spacey(Ci) | i =1,2,...,m}.
The space complexity of M on = is

Space, (x) = min{Space,,(C) | C is an accepting

computation of M on z}.
The space complexity of M is the function Space,, : IN — IN defined as

Spacejs(n) = max{Spacey,(z) | z € L(M)N Z"}.

% Even infinitely (but countable) many
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Definition 6.32. For all functions f,g: IN =+ R*,

NTIME(f) = {L(M) | M is a nondeterministic MTM
with Timepr(n) € O(f(n))},
NSPACE(g) = {L(M) | M is a nondeterministic MTM
with Spacey (n) € O(g(n))},
NLOG = NSPACE(log, n),
NP = | | NTIME(n®), and
cEN
NPSPACE = | | NSPACE(n").
ceN

First, we show the relations between nondeterministic time and nondeter-
ministic space. Observe that these relations are the same as in the determin-
istic case (Lemma 6.16 and Theorem 6.26).

Lemma 6.33. For all space-constructible functions t and s,

(i) NTIME(t) C NSPACE(t), and

(ii) NSPACE(s) C NTIME(c*™) for a constant c.

Proof. First, we prove (i) and then (ii).

(i) Assume L € NTIME(t), i.e., there exists a nondeterministic MTM M
with

L(M) = L and Timep(n) < d-t(n)

for a constant d and all sufficiently large n. Hence, for any sufficiently long
x € L(M), there is an accepting computation C; of M on z of length of

at most d - t(|z|). Since M can visit at most d - t(n) squares of a tape in
d - t(n) steps, we have

SWEM{Ca) <d- t”II]
Thus
Spaceyy(n) < d-t(n)

for all sufficiently large n and thus L € NSPACE(t).
(if) Let L € NSPACE(s) and let s be space constructible. Then there exists a
nondeterministic MTM A with

L = L(M) and Space(z) < d - s(|=|)

for a constant d and all sufficiently long words * € L{A) = L. This
means that for all sufficiently long £ € L(A) there exists an accepting
computation C,; with

Space, (C:) < d- s(|z]).
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Let C; be the shortest accepting computation of A on x with this property.
Using the same argument as in the proof of Theorem 6.26, we obtain that
there exists a constant k such that the length of C; is at most

[InConfa(jzf)| < k**(=D

for all sufficiently large = € L(A). If the length of C; is greater than
[InConf 4 (|z])|, there would exist i, j € IN — {0}, i # j, such that

C: =Cllcﬂr---:C'i—i?ci:C{+1:'":Cj:Cj-l-l:"':Cm?
and C; and C; are identical. Then
C; =CI,CZ,...,C,-_1,C1-,CJ-+;,...,Cm

is also an accepting computation of A on z. Since C\, is shorter than C; we
have a contradiction to the assumption that C; is the shortest accepting
computation of A on x with Space,(C;) < d- s(|z|).

Hence, for every sufficiently large # € L(A) there exists an accepting
computation of A4 of length of at most

ke s(lzl) _ gs(lal)
where ¢ = k? for constants k and d. Thus
Timea(n) € O(c*™)
and we have L € NTIME(c*(™).
]

Exercise 6.34. Let M be a nondeterministic MTM with Timeps(n) < #(n)
for a time-constructible function ¢. Prove that there exists a nondeterministic
MTM A with

(i) L(4) = L(M) and
(ii) there exists a constant d such that for every w € Z* all computations of
A on w have a length of at most d - t(|w]).

The following theorem shows fundamental relationships between determin-
istic complexity measures and nondeterministic ones.

Theorem 6.35. For any function t : IN — IR™ and any time- and space-
constructible function s : IN = IN with s(n) > log, n

(i) TIME(t) C NTIME(t),

(i) SPACE(t) € NSPACE(t), and
(iii) NTIME(s(n)) C SPACE(s(n)) C |J TIME(c5(™).
ceN
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Proof. The assertions (i) and (ii) are obvious, because every MTM is also a
nondeterministic MTM.
The relation
SPACE(s(n)) C | J TIME(c¢*™)
c€lN

has been proved in Theorem 6.26. Thus, to prove (iii), it is sufficient to show
NTIME(s(n)) € SPACE(s(n)).

Let L € NTIME(s(n)), i.e., there exists a nondeterministic k-tape-TM M =
{Q:EstJM: oy Jaccepts Qreject} with

L = L(M) and Timeps(n) € O(s(n)).
Obviously,
r = rar = max{|8p(U)] | U = (,0,b1, ..., b) € @ x (ZU {¢,8}) x I}

is the upper bound on the number of possible distinct actions of M from any
configuration. Let Ty, be the computation tree of M on an input z € *. If
one orders the nondeterministic choices of dp for any argument [/, then one
can assign these orders 1,2, ..., as labels to the corresponding edges of Ths, -
(Figure 6.1). In this way we have unambiguously assigned a word

z=znz...0€{1,2,...,r}"

to any computation of M on z with [ nondeterministic decisions. Then hav-
ing M and z, a sequence z either unambiguously determines a prefix of some
computations of M on z (for instance, z = r322 in Tz in Figure 6.1 de-
termines the computation prefix where one takes the r-th possibility for the
first choice, the second possibility for the third choice, and the second possi-
bility for the fourth choice) or is nonsense (for instance, no computation in
Figure 6.1 corresponds to z = 24... because there is no fourth possibility for
the second choice).

Without loss of generality (Exercise 6.34) we assume that there exists a
constant d such that all computations of M on an input w have a length of
at most d - s(|w|). Hence, no computation of M on w uses more than d- s(|w|)
space.

Now, we describe a (k 4 2)-tape-TM A that simulates all computations of
M of length of at most [InConfas(n)]-

For any input w € I*, A works as follows:

1. A writes 0°U*1) onto the (k + 2)-th tape.
9. A writes 0%%(*) onto the (k + 1)-th tape and erases the content of the

(k + 2)-th tape.
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Fig. 6.1.

3. A consecutively generates all words z € {1,2,...,rar}* with a length of
at most d - s(|w|) in the canonical order on the (k + 2)-th tape. For each
generated z it simulates the corresponding computation of M on w (if
E«m}r} by its first k working tapes. If M has reached its accepting state
in any of the simulated computations, then A accepts w. If all simulated
Fumputatiuns of M are not accepting (the state gaccepr Was not reached
in any of these computations), then M rejects w.

l‘{]learly, L(A) = L(M), because the length of any computation of M
on inputs of length n is bounded by d - s(n), thus for any input w, A
checks all computations of M on w. Since Space,,(n) < Timeps(n), we have
Spaces(n) < d-s(n), therefore A never uses more than Spacey,(n) < d- s(n)
squares on thi first k working tapes. The (k + 1)-th tape uses exactly d - s(n)
squares for 0%*(*l), The same holds for the (k + 2)-th tape that always con-
tains one word from {1,2,...,r}* with a length of at td- i
simulation. Thus ERL R e

Spacey(n) < d- s(n).

This completes the proof of Theorem 6.35. a

Corollary 6.36.
NP C PSPACE

Exercise 6.37. Analyze the time complexi
ercis plexity of the (k + 2)-tape-TM A de-
scribed in the proof of Theorem 6.35. E e 5

-Unfortunatefy, Wwe are unaware of any more efficient deterministic simu-
lation of non_determlmstlc algorithms other than to systematically simulate
all computations of the nondeterministic algorithm on the given input. This
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was the case in the proof of Theorem 6.35 where we performed the breadth-
first search in the computation tree as well as in Theorem 4.27 where the
depth-first search in the computation tree was used. Both simulations take an
exponential time in the time complexity of the nondeterministic machines, be-
cause the number of computations in a computation tree may be exponential
in its depth. Currently, most researchers believe that there is no possibility of
simulating nondeterminism within a polynomial increase of time complexity,
but nobody has been able to prove the nonexistence of such a simulation.”

Exercise 6.38. Estimate the time complexity of the deterministic MTM from
the proof of Theorem 4.27, i.e., estimate the time complexity of the breadth-
first search deterministic simulation of nondeterminism.

The following theorem presents the most efficient known simulation of
nondeterministic space by deterministic time. Observe that this simulation is
as efficient as the simulation of deterministic space by deterministic time in
Theorem 6.26.

Theorem 6.39F For any space-constructible function s with s(n) > log, n,
NSPACE(s(n)) € | | TIME(c*™).
cEN

Proof. Let M be a nondeterministic MTM with
L(M) = L and Spaceys(n) € O(s(n)).

Without loss of generality we may assume:

(i) There exists a constant d such that for any input w, all computations of
M on w have a space complexity of at most

d- s(n).
(ii) For each input w € L(M), M has only one accepting configuration
(Qacceph ’I.I'J, 0: JH pass, :r‘l:r 0}:

i.e., before reaching gaccept, M erases the contents of all its working tapes
and adjusts all heads on the left endmarker ¢.

Following (i) we know (Lemma 6.33) that there exists a constant ¢ such
that, for any input w, the number of all distinct configurations with w on the

input tape is at most
[InConf(Juw])] < e*(1=D.

One can order all these configurations in a sequence

7 This problem will be discussed in detail in the next two sections.
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Co, C, ... » ClinConf(ju))|

with respect to the canonical order. Wi inisti
o ey rder. We shall construct a (deterministic) MTM

For any input w, A computes as follows:

1. A constructs the adjacency matrix M(w) of the directed graph G(w)
:whase vertices are the [InConf(jw|)| many configurations with w on thn;
;I:i;;:t f::pe Snfﬂ s;éacefoou‘;plexity bounded by d - s(n). There is a directed

m C; i if an if C; i (1
i 5’! ; only if C; |3 Cj (i.e., C; can be reached from

2. Let Cy be the only accepting configuration of M with w on the input
ta;_:e. Let Cy l?e the initial configuration of M on w. Clearly, M accepts
w if and only if there is a directed path from Cj to C} in G(,wj. Using a
standard aPpruach (Floyd algorithm, for instance) A verifies whether the
vertex Cy is reachable from the vertex Co. If Cy, is reachable from C,
then A accepts w. A rejects w otherwise. "

Clearly, L(A) = L(M). Now, we anal e 3 ;
construct M(w), A has to compute i ime complexity of A. To

ItaCon(jw)| - [InConf(juw])| < e* (v . cssllu) < G2es(hul

elements m;; of the matrix M (w). To determine m;;, one has to generate Cj
and C;. Any configuration can be generated in time 1

d - s(|w]) - [InConf (Jw|)| < c2d(lwl),
Whether C; can be reached from C; in one step of M can be verified in time

Ef ;g[;uu, Thus, the time complexity of part (i) of the computation of M is
s

c2dsllwl), (gp2ds(lw]) 4 9. s(|w])) < et2dsllwl),
The verification of the path existence from C, i
he - of | 2 o to Ck in G(w) can be done
W‘l.th]ll pn.lynomla.l time with respect to [InConf(|w|)|. An MTM can perform
this task in O(|InConf(|w|)|*) steps. Since
{cd-Sle}}*! = ptd-s(]u])

it is obvious, that
Timea(n) € O(!%(n)),

Corollary 6.40.

NLOG C P and NPSPACE C EXPTIME.
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A slightly more involved search® in the graph G(w) of all possible config-
urations on w provides the following result.

Theorem 6.41* Savitch’s Theorem
Let s with s(n) > log, n be a space-constructible function. Then

NSPACE(s(n)) C SPACE(s(n)?).
Corollary 6.42.
PSPACE = NPSPACE.

For all of the above-presented deterministic simulations of nondeterminis-
tic computations, it is still unknown whether a more efficient simulation exists.
The following fundamental complexity hierarchy of sequential computa-
tion

DLOG C NLOG C P C NP C PSPACE C EXPTIME
is the consequence of the above simulation results. It is open whether each
of these inclusions is proper or not. However, some proper inclusions must
be present because DLOG C PSPACE and P C EXPTIME are direct con-
sequences of the hierarchy theorems. The verification of proper inclusions in
the fundamental complexity hierarchy has been the central open problem of
theoretical computer science over the past 30 years.

6.5 The Class NP and Proof Verification

The central open problem of the fundamental complexity hierarchy is the
relation between P and NP. The question of

whether P = NP or P C NP

is the most famous research problem of computer science and recently it was
put among the most important open problems of mathematics. There are
several reasons for this large interest. One relates polynomial time and so
the class P to the practical solvability. On the other hand, we know more
than 4000 algorithmic problems in NP such that there is no (deterministic)
polynomial-time algorithm for any of them. One would like to know whether
all these problems are in P or in NP —P (i.e., outside of P). Another reason for
our interest in the study of the classes P and NP is related to formal proofs
as the fundamental concept of mathematics. In some framework, the time
complexity of deterministic computations corresponds to the complexity of
algorithmically creating (finding) a mathematical proof for a given theorem,
while the time complexity of nondeterministic computations corresponds to

8 The search is executed without constructing G{w), because this would require
too much space.
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the {;omplezdty of an algorithmic verification of the correctness of a given
proof.

Therefore, the comparison of P and NP is equivalent to the question of
whether verifying a given formal proof is “easier” than creating it.

The main aim of this section is to show the relationship between the class NP
and the algorithmical polynomial-time proof verification.

First, we outline the relationship between computations and proofs. Let C
be an accepting computation of a TM on an input z. Without any doubt, one
can view C' as the proof of the claim “z € L{M)". Analogously, a rejecting
computation of a (deterministic) TM M on a word w is the proof of the claim
“x ¢ L(M)”. This point of view is not too far from the classical view on
mathematical proofs. Consider L to be a language that contains all correct
theorems* of a mathematical theory. The proof'® of “z € L(M)” is nothing
other than the proof of the truth (validity) of the assertion x, and the proof of

“r ¢ L(M)” is the proof of untruth of the assertion z. For instance, consider
L = SAT, where

SAT = {z € (Ziogic)" | = codes a satisfiable formula in CNF}.

Then, the claim “® € SAT" is equivalent to the claim “& is a satisfiable
formula”.

Tus

guessing
an assignment

Ty =0\ zn=1 Ta=0 A zu=1
d b + 2" computations

1 | deterministic
verification

Fig. 6.2.

Now, let us search for a relation between nondeterministic computations
and proof verification. A typical nondeterministic computation starts with a
guess and continues with the verification of the correctness of this guess. The
Buess of a computation can be a proof of “z € L(M)". We illustrate this
consideration by the satisfiability problem. Consider the following NTM M

® More precisely, the representations of all theorems

'® An accepting computation of M on z is a proof of “z € L(M)".
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with L(M) = SAT. For a formula ¢ over n Boolean variables zy,...,2n, M
guesses an assignment Qi,...,0q for the variables zi,...,T, in the first n
steps of the computation. Then M computes the value @(a, ... , @ty ) in order
to verify whether the guessed assignment a;,...,0n satisfies the formula &
(Figure 6.5). If @, . . ., an satisfies &, then it is obvious that the proof of the
claim “& is satisfiable” can be efficiently created if the witness aj,...,an
is given. The proof is nothing other than the evaluation of @ for the values
@1,...,05. Therefore, ay,...,a, is called a certificate or a witness of the
claim “& is satisfiable”. The time complexity of M is the time complexity
of guessing a witness plus the time complexity of the verification. Since the
complexity of guessing is less than the input length, the complexity of M is
asymptotically equal to the complexity of the verification.

Qur aim is to show that any polynomial-time nondeterministic Turing
machine accepting a language L can be transformed to an equivalent NTM
that first nondeterministically guesses a candidate w for a proof (a witness)
of “z € L” and then deterministically verifies whether w is really a proof
(witness) of the claim “z € L”. In this way one reduces the time complexity
of nondeterministic algorithms to the time complexity of deterministic proof
verification. To do this, we need the following formal concept.

Definition 6.43. Let L C £* be a language and let p : IN — IN be a mapping.
We say that a MTM (an algorithm) A working over inputs from Z* X (Zpoa)”
is a p-verifier for L, denoted by V(A) = L, if the following three conditions
hold:

(i) Time 4 (w, z) < p(Jw|) for every input (w,z) € Z* X (Zpoat)*

(ii) For every w € L there exists an x € (Zpool)®, such that

|| < p(lw]) and (w,z) € L(A) (i.e., A accepts (w,z)).
The word = is called the proof or the witness of the claim “w € L".
(iii) For every y € L, (y,2) € L(A) for all z € (Zhoa)".

If pln) € O(n*) for some positive integer k, then we say that A is a
polynomial-time verifier. We define the class of polynomially veri-
fiable languages as

VP = {V(4) | A is a polynomial-time verifier}.

Note, that for a p-verifier A, L(A4), and V(A) are different languages.
Following Definition 6.43 we have

V(A) = {w € Z* | there exists an z with |z]| < p(Jw]),
such that (w,z) € L(A)}.
Thus, a verifier A for a language L is a deterministic algorithm that verifies

for each input (w, ) whether z is a witness (proof) of the claim “w € L”. The
word w belongs to V(A) if there exists a proof z for “w € L” with |z| < p(|w|).

Wad LUE uddoos YD allld Il VellnCation L

Ezample 6.44. A polynomial-time verifier A for SAT can work as follows. For
any input (w, r), A first checks whether w is a code of a formula &,, in CNF.
If not, A rejects the input. Otherwise, A estimates the number n of Boolean
variables in @,, and checks whether the length of = € {0,1}" is at least n. If
|z| < n then A rejects the input. Otherwise, |x| > n and A considers the first
n bits of x as an assignment to the Boolean variables of &,,. Obviously, A
accepts (w, z) if and only if this assignment satisfies ,,. We observe that 4
is a polynomial-time verifier for SAT because for any w, there exists a witness
z such that
|z| < |w| and (w,z) € L(4),

and one can efficiently!! evaluate a Boolean formula in CNF for a given as-
signment of its variables.

Ezample 6.45. A k-clique of a graph G with n vertices, k < n, is a complete
subgraph of k vertices on G. Let

CLIQUE = {z#y | =,y € {0,1}", z codes a graph G,
that contains a Number(y)-clique}.

A polynomial-time verifier B for CLIQUE can work as follows. For any
input (w,z), B checks whether w = z#y, where z is a representation of a
graph G; and y € (Zyoa)". If this is not true, B rejects (w, z). Otherwise, B
estimates the number n of vertices of G. Let vy,...,v, be the vertices of G,.
Now, B verifies whether Number (y) < n and |z| > [log, n]- Number(y). If not,
B rejects its input (w, z). Otherwise, B interprets the prefix of z of the length
[logy n] - Number(y) as a code of Number(y) numbers from {1,2,...,n}. B
verifies whether all these Number(y) are pair-wise different. If not, B rejects
the input. Let iy,42,...,iNumber(y) be Number(y) different positive integers.
Then, B verifies whether the vertices vi,,vi,,. ., Viy, .., build a complete
subgraph of G;. Obviously, B accepts (w, z) iff this verification was successful.

Exercise 6.46. Design a polynomial-time verifier for the language
COMPOSITE = {z € (Zboa1)” | Number(x) is composite}.
Exercise 6.47. Design a polynomial-time verifier and a polynomial-time

NTM for the language HC (the problem of a Hamiltonian cycle from Ex-
ample 2.35).

The following theorem shows that every polynomial-time NTM can be
transformed into an equivalent!? polynomial-time NTM that does all its non-
deterministic decisions at the very beginning of its computations and then

verifies the correctness of its decisions.

' A MTM can do it in quadratic time, but using a convenient data structure an
algorithm can even do it in linear time.

2 Nondeterministic Turing machines are called equivalent if they accept the same
language
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Theorem 6.48.
VP = NE.

Proof. We prove VP = NP by proving NP C VP and VP C NP.

(i) First, we show NP C VP.
Let L € NP, L C £* for an alphabet X'. Then there exists a polynomial-
time NTM M with L = L(M) and Timeys(n) € O(n*) for a positive inte-
ger k. Without loss of generality one may assume that, for any argument
of its transition function, M has a choice from at most two possibilities.
‘We describe a verifier A, that works for any input (z,¢) € £* x (Epoal)”
as follows:

a) A interprets ¢ as a navigator for the simulation of nondeterministic
choices of M. A simulates the work of M (step-by-step) on w. If M
has a choice of two possibilities, then A takes the first one if the next
bit of ¢ is 0, and the second possibility if the next bit of x is 1. In this
way A simulates exactly one of the computations of M on z.

{This is the same simulation strategy as used in the proof of The-
orem 6.35 where one simulates nondeterminism by the depth-first
search in the computation trees.}

b) If M still has a choice and A has used already all bits of ¢, then A
halts and rejects the input (z,c).

¢) If A succeeds in simulating a complete computation of M on z, then A
halts and accepts (z,c) if and only if M accepts z in the computation
determined!?® by c.

Now, we have to show that A is a polynomial-time verifier with

L(A) = L(M).

If z € L(M), then a shortest accepting computation Ca,z of M on r runs
in time O(|z|F). Hence, there exists a witness (navigator) ¢ that determines
Cum,z and || < |Cm,z| € O(|z|*). Since A simulates the computation Cay,z
step-by-step, the computation of A on (z,c) runs in time O(|z|*).
If z ¢ L(M), then there does not exist any accepting computation of M
on x, so A rejects the inputs (z,d) for all d € (Zpoa)*.
We conclude that 4 is an O(n*)-verifier'* for L(M).

(ii) We show VP C NP.
Let L C £* (for an alphabet X') be a language from VP. Hence, there
exists a polynomial-time verifier A such that V(A) = L. One can design
a polynomial-time NTM M that simulates A as follows.
Input: Az € L7
Phase 1 M nondeterministically generates a word ¢ € (Zho01)".
Phase 2 M simulates step-by-step the work of A on (z,¢).

13 In the simulated computation
14 That is, that V(A) = L(M)
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Phase 3 M accepts z if A accepts (z,c), and M rejects z if A rejects
(z,c).
Clearly, L(M) = V(A) and

Timeps(z) < 2- Timey(z, )

for every = € L(M) and a shortest witness ¢ of z € L(M). Hence, M is a
polynomial-time NTM and hence L € NP.

O

Following Theorem 6.48 the class NP is the class of all languages L such
that for every x € L there exits a witness (proof) ¢; of the claim z € L with
the following properties:

(i) ¢ is of a length polynomial in the length of z.
(ii) One can verify whether ¢, is a witness of z € L in polynomial time.

6.6 NP-Completeness

In contrast to the computability theory that provides a well-developed method-
ology for classifying problems into algorithmically solvable and algorithmi-
cally unsolvable, one has been unable to develop any successful mathematical
method for classifying algorithmic problems with respect to practical solvabil-
ity (to the membership to P) in the complexity theory. Sufficiently powerful
techniques for proving lower bounds on the complexity of concrete problems
are missing. The following fact shows how far we are from proving that a
concrete problem from NP cannot be solved on polynomial time. The highest
known lower bound on the time complexity of multitape Turing machines for
solving a concrete problem from NP is the trivial lower bound!® 2(n) (i.e.,
we are unable to prove a lower bound 2(n - logn) for a problem from NP),
though the best known algorithms for thousands of problems in NP run in
exponential time. Hence, our experience lets us believe that 12(2") is a lower
bound on the time complexity of many problems, but we are unable to prove
a higher lower bound than f2(n) for them.

To at least partially overcome the gap between the mathematical reality
(the unsatisfiable state of the proof techniques development) and the belief in
the existence of exponential lower bounds for some problems, some computer
scientists proposed to develop a method for the classification of problems
with respect to the class P (practical solvability) by allowing one to assume
the validity of an unproved, but believable assertion. The consideration has
resulted in the creation of the concept of NP-completeness that enables one
to prove that some problems are not solvable in polynomial time under the

!5 The time one needs to read the whole input at least.
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assumption that P is a proper subset of NP. The aim of this section is to
introduce this concept.

First, let us discuss the credibility of the assumption P C NP. A theo-
retical argument for assuming P C NP has been explained in Section 6.5.
It is not believed that proof verification is as hard as proof creation. Addi-
tionally, despite intensive efforts, no simulation technique of nondeterminism
by determinism that would essentially differ from a systematic investigation
of all nondeterministic computations on a given input has yet been discov-
ered. Since the computation trees of nondeterministic algorithms may contain
exponentially many different computations in the tree depth, and the compu-
tation tree depth is the time complexity of the nondeterministic algorithm, it
seems that the exponential blow up of the time complexity by a deterministic
simulation is unavoidable.

A practical reason for the assumption P C NP is based on our experience
in designing algorithms for hard problems. We are aware of more than 3000
problems in NP, many of them have been investigated for 40 years, for which
no deterministic polynomial-time algorithm is known. It is not very probable
that this is only the consequence of our disability to find efficient algorithms
for them. Even if this had been the case, for the current practice, the classes
P and NP are different!® because we do not have polynomial-time algorithms
for numerous problems from NP.

Note that assuming P C NP is not the same as assuming the validity of
the Church-Turing thesis. While the Church-Turing thesis is an axiom that
cannot be proved, the truth or the untruth of P C NP may be provable and
hence the assumption P C NP cannot be considered to be an axiom.

We assume P C NP for the rest of this section. How does this assumption
help to prove results of the kind L ¢ P for concrete languages L? The idea is to
specify a subset of the hardest problems in NP. This specification of hardness
has to be done in such a way that the membership of a hard problem in P
would directly imply P = NP. Since we assume P C NP, none of the hardest
problems in NP may be in P.

Similarly as in the complexity theory, we use the classical mathematical
concept of reduction in order to specify the subclass of hard problems with
respect to polynomial-time solvability. A language (decision problem) L is
hard if the recognition of any language from NP (solving any decision problem
from NP) can be efficiently reduced to recognizing L.

Definition 6.49. Let L, C £ and Ly C X3 be some languages. We say that
L, is polynomial-time reducible to Lz, L1 <p Lo,

if there ezists a polynomial-time TM (algorithm) A (Fig. 6.6) that computes
a mapping from Ef to X3 such that, for every z € L7,
16 Thus, if one proves the nonexistence of a polynomial-time algorithm for a problem

under the assumption P C NP, then it really means that this problem is hard for
the current practice.
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zely & A{I] € Lo
A is called the polynomial-time reduction from L, to L,.

We observe that the reduction <, can be obtained from the reduction

<m by an additional requirement on the efficiency of the reduction (Fig.
6.6). Again,

Ll SpLi

means that Lo is at least as hard as L, but the hardness is considered with
respect to polynomial-time solvability instead of with respect to pure solv-

ability.
‘ ze Xy

A
with a polynomial
Time 4 (n)
Alz) € X3
with z € L, & algorithm B
y A €L with L(B) = L,
C
with L(C) = Ly
Alz) € La Alz) ¢ L2
Y Y
x €Ly ¢ Ly
Y
Fig. 6.3.

Definition 6.50. A language L is NP-hard, if , for every L' € NP,
<, 1.

A language L is NP-complete, if

(i) L € NP, and
(ii) L is NP-hard.
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Now, the set of NP-complete languages is considered to be the subclass of
the hardest problems in NP we have been searching for. The following lemma
shows that our specification of hardness satisfies the aimed property of hard
problems, namely that the intersection of P and the set of hard problems is

empty (Fig. 6.6) if P # NP.

NP

NP-complete languages
Fig. 6.4.

Lemma 6.51. If L € P and L is NP-hard, then P = NP.

Proof. Let L be a NP-hard language and let L € P. The fact L € P implies
the existence of a polynomial-time TM M with L = L(M). We prove that for
every U € NP, U C X* for an alphabet ¥, there is a polynomial-time MTM
(algorithm) Ay with L(Ay) = U, i.e., that U € P. Clearly, this would imply
P = NP.

Since U <, L for each language U € NP, there exists a polynomial-time
TM By, such that

z € U & By(z) € L.

Now, we describe the work of a polynomial-time MTM Ay with L(Ay) =
U. For any input z € £*, Aycomputes as follows.

1. Ay simulates the computation of By on z and computes By (z).
2. Ay simulates the work of M on By (z). Ay accepts x iff M accepts By(z).

Since z € U & By(z) € L, we have L(Ay) = U. Since

(i) Timea, (z) = Timeg, (z) + Timep (By(z)),
(ii) |By(zx)| is polynomial in |z|, and
(ili) both By and M work in polynomial time,

we obtain that Ay also works in polynomial time. 8]

Now, we have the desired specification of the hardest problems in NP,
provided that the set of the NP-complete languages is not empty. The next
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theorem shows this danger does not exist, because SAT is NP-complete!” and
so the concept of NP-completeness is reasonable.

The NP-hardness of SAT says that the language of Boolean formulae is
powerful enough to express any decision problem in NP. More precisely, it
means that, for any language L € NP, one can express the question

Isxz in L?
as the question
Is a specific Boolean formula &, 1 satisfiable?

The expressional power of the language of Boolean formulae should not
come as a surprise because one can use formulae to describe any text and texts
can be used to represent arbitrary objects such as theorems, proofs, compu-
tations, graphs, etc. We present a simple example to guide this intuition.

We want to construct a Boolean formula in CNF that can be used to
describe matrices of the size 3x 3 over {—1,0, 1}. A formula is satisfiable if and
only if the corresponding matrix has exactly one element 1 in every row and
every column. To do that, we consider 27 variables z; j for all i, € {1,2, 3}
and all k € {~-1,0,1}. The following meaning of the assignments of values to
these variables enables us to describe any 3 x 3 matrix A = (ai;)i j=1,2.3-

Tija =1l a;=1
Tijo=1%a;=0

Ti5—1 = 1& ai; = -1.

Using the above interpretation, one can unambiguously describe the matrix

100
=101
010

by the following assignment of values to the 27 variables.

zraa=1,Z100=0,%12-1=0,
121 =0,3120=1,212,1 =0,
T131=0,7130=1,7131=0,
211 =0,%210=0,%23,-1 =1,
ZT221=0,2220=1,722,1=0,
o231 = 1,223 =0,223,1 =0,
311 =0,7310=1,233,-1 =0,
321 =1, 2320 =0,2332,1 =0,

331 =0,2330=1,%33 -1 =0.

17 Remember that we have already proved that SAT € NP and so it remains only

to prove that SAT is NP-hard.
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Note, that there exist assignments that do not represent any matrix. For

instance, the assignment
e e l=z110

has the interpretation that the element a1, of a matrix takes both values 1 and
0, which is impossible. To exclude such possibilities, we start by constructing a
Boolean formula that can be satisfied only by assignments that correspond to
a representation of a 3 x 3 matrix over {—1,0,1} (i.e., only b-_r.r assignments t?iat
determine exactly one value from {—1,0,1} to every position of the matrix).
For all i, € {1,2,3}, the formula
Fij = (i1 V Tijo V Tij-1) A
(Zija V Figo) A (Fija V Fij—1) A (& jo V Fig—1)
guarantees that exactly one of the variables
I‘-:j!l" zi,j‘,ﬂ! zi:j1_]
takes!® the value 1, so the content of the position (i, j) of the matri-x is- unam-
biguously determined. Using this approach, every assignment satisfying the
formula
g= N Fy
1<i,j<3
unambiguously determines a 3 x 3 matrix over {—1,1, 0}.
For i = 1,2,3 the formula
Zi= (Ziaa V Tiza V Tiza) A
(Fina V Tiza) A (Fiaa V Tiza) A (Tioa V Tis)
guarantees that the i-th row contains exactly one 1. Analogously, the formula
S; = (z151 V Ta,50 V Z3,51) A
(Z1,50 V Ba,5,0) A (B0 V Ts,51) A (T30 V Ts,51)
guarantees that the j-th column contains exactly one 1 for j =1,2,3. Hence,
P A A Zi A A Sj
i=1,2,3 j=1,2,3
is the Boolean formula in CNF we are searching for.

Exercise 6.52. Give a set of Boolean variables that is sufficient for describing
any state (situation) in chess. Describe the construction of a formula over these
variables that takes the value 1 if and only if there are no chessmen on the
chessboard, other than 8 queens and no queen attacks any other.

'8 The elementary disjunction %:,j,1 V @i j,0 V Z1,j,~1 assures that at least one of the
forthcoming variables is true. The elementary disjunction (Zij,1 V Tij,0) assures
that at least one of the variables x; j,1 and z; ;0 takes the value 0.
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Using the strategy introduced above one can describe texts on a sheet.
The sheet can be partitioned into n x m squares that form a matrix (a two-
dimensional field) over symbols from Zyeyboard. Then, n-m-| Sieyboara| Boolean
variables are sufficient to express any text on this sheet.

Exercise 6.53. Give a set of Boolean variables that suffices to describe any
text on the sheet of the size 33 x 77. Describe the construction of a formula
that has exactly one satisfiable assignment and this assignment corresponds
to the text of the second page of the textbook “The Design and Analysis of
Computer Algorithms” by Aho, Hopcroft and Ullman.

We see that one can describe (express) arbitrary texts by formulae. Since
a configuration of a TM is also a text (word) over an alphabet, one can use
formulae to describe configurations. The kernel of the proof of the following
theorem is that it is even possible to use the satisfiability of Boolean formulae
for describing semantic relationships of different parts of a text such as a
configuration is reachable from another configuration in one computation step.
The ability to express the relation of a computation step allows one to describe
any consistent computation. Another crucial point of the following proof is
that such formulae can be constructed by an algorithm and that their length
is polynomial in the length of the described computation.®

Theorem 6.54F Cook’s Theorem
SAT is NP-complete.

Proof. We have already used Example 6.1 (see also Figure 6.5) to show that
SAT belongs to the class VP, which is equal to the class NP.

It remains to show that all languages in NP are polynomial-time reducible
to SAT. Following the definition of the class NP, for every language L € NP,
there is an NTM M with

L(M) = L and Timeps(n) € O(n°)

for a ¢ € N. We view M as a finite representation of L and hence consider M
as an input part of the polynomial-time reduction to be designed. Thus, we
aim to show

“For any polynomial-time NTM M, L(M) <, SAT.”
Let M = (Q, Z, T, 6, qo, Qaccept; Greject) be an arbitrary NTM with
Timen (n) < p(n)

for a polynomial p. Let Q = {go,q1,..-,9s-1,0s}, Where gs_1 = Greject and
Js = Qaccept, and let I' = { X35 --;Xm}: with X, = u.

% Le., if the computation is polynomial in the length of the input, then the length
of the formula is polynomial in the length of the input too.
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We design a polynomial reduction Bas : £* — (Ziggic)™, such that for all
e X*:
z € L(M) & By(z) € SAT

Let w be an arbitrary word from E*. By has to construct a formula B (w)

such that
w € L(M) & Bp(w) is satisfiable,

We construct the formula Bas(w) in such a way that one can use different
value assignments to the variables of Bys(w) in order to describe all possi-
bilities (computations) of how M can act on w. The basic idea is to choose
the meaning of the Boolean variables in such a way that one can describe any
configuration of M at any time (after any number of computation steps when
starting from the initial configuration on w). Remember that

Spacey(|w|) < Time (|w]) < p(lw]),

so any configuration can be described by a word of a length®® of at most
pl|w|) + 1. Note, that for a fixed input w, p(|w|) +2 is a fixed positive integer.
To simplify the description of configurations we represent any configuration

(¢hhYz...YiaqY;... Ya)
for a d < p(jw|) as
(chYz...YiagYi.. . Ya¥Yaur ... Yo(up)

where YJ.H = 1":1.'_2 =i = YP{FWH = -

In this way the representations of all configurations have the same length
p(|w|) + 1. To simplify searching for an accepting configuration, we extend the
definition of the transition function 4§ by

J(‘i’acceph X} == (Qa.ocepts X; N}

for any X € I', which does not change L{M). Thus, when M has reached the
state Gaccept, it TemAins in gaccept forever without changing any part of the
current configuration. Now, to recognize whether w is in L(M), it suffices to
search for gaccept Only in configurations reachable in exactly p(|w|) steps of
M.

The formula Bas(w) will be constructed from the following variable classes.

e Cliyjit) for 0<i<p(lul), 1<j<m,0<t< p(lul).
The meaning of C(i, j, t) is as follows:
C(i,j,t) = 1 & the i-th cell of the tape of M contains the symbol X; € I’

in time ¢ (after ¢ computation steps from the initial confi-
guration of M on w).

20 The representation of a configuration involves the content of tape cells on the
positions 0,1, ...,p(|w|) and the state.
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Note, that the number of such variables is exactly

m - ((p(lw]) +1)* € O((p(|w)))?)-

o S{k,t)for0<k<s 0<t<p(w).
The meaning of the Boolean variable S{k, t) is:
S(k,t) =1 ¢ The NTM M is in the state g in time ¢.
The number of such variables is

(s+1) - (pllwl) + 1) € O(p(|w])).

e H(i,t) for 0 <i < p(|wl), 0 <t < p(lw]).
The meaning of H{i, ) is:

H{i,t) = 1 & The head of M is on the i-th position of the tape in time t.

There are exactly
(p(lwl) +1)* € O((p(Jw]))*)

such variables.

We observe that one can describe an arbitrary configuration by choosing
an appropriate value for all variables with a fixed parameter . For instance,
the following configuration

(Xjo Xy - K1 @ K+ Xjpuyy)
can be described by

o C0,jo,t) = CLji,t) = ... = Clp(w]), pfrury,t) = 1 and Clk,1,8) = 0
for all remaining variables from this class,
H{i,t) =1 and H(j,t) =0 for all j € {0,1,...,p(|lw|)},j # i, and
S(r,t) =1 and S{I,t) =0 for all l € {0,1,...,s},l #r.

Thus, by fixing one configuration for any possible time ¢, one can describe
any computation of M on w of the length p(|w|) by assigning appropriate
Boolean values to the variables. It is also important to observe that there are
assignments to the variables that do not have any interpretation on the level
of computations of M on w. For instance,

S(1,3) = 5(3,3) = S(7,3) =1 and C(2,1,3) = C(2,2,3) = 1

would mean that after 3 computation steps M is at once in the states g1, g3,
and g7 and the second position of the tape contains the symbol X; as well
as the symbol X5. Clearly, this assignment to variables for ¢ = 3 cannot
correspond to any configuration.

To explain the situation in a transparent way, consider a sheet of the size
(p(Jw]) + 2) = (p(Jw]) + 1). An assignment to variables can be used to fix a
symbol for any position (7, §), 0 < 4, < p(|w|). The result of this assignment
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may be nonsense, but there are also assignments such that every row of the
sheet corresponds to a configuration and the sequence of the rows corresponds
to a computation. This transparent view of what we are aiming for is outlined
in Fig. 6.6.

Now, our task is to construct a formula Bas(w) in CNF over the variables
Cli,j,t), S{k,t) and H{i,t), such that

Bag(w) is satisfiable < there exists an accepting computation
of M on w.

The algorithm Bjys constructs the formula
Bu(x)=AABANCADANEANFAG

in CNF in the following seven steps (phases). To explain the concept in a
transparent way, we first describe the meaning of the particular formulae A,
B,C,D,E, F,and G.

A: A has to guarantee that, at any time t, the head is adjusted exactly on
one cell (position) of the tape.

More precisely, the meaning is that A should be satisfied by an assignment
if and only if the value 1 is assigned to exactly one of the variables H (i, t)
for any fixed t.

- B takes the value 1 if, for any time ¢, there is exactly one symbol from I"

on any position of the tape.

. O takes the value 1 if, for any time £, M is exactly in one state.

. D assures that only the symbol visited by the head may be changed in

any step from a configuration to the next.

. E assures that for any computation step, the change of the state, the
movement of the head and the exchange of a symbol on the tape agree
with a possible activity of M in the given configuration (i.e., agree with
é).

F: F assures that the variables with ¢ = 0 determine the initial configuration

of M on w.
G: G assures that the last (((p(Jw|) + 1)-th) configuration is an accepting

configuration.

We see that the satisfiability of A A B A C guarantees that every row of
our sheet in Fig. 6.6 contains a configuration. The part D A E of the formula
By (z) has additionally to assure that the context of the sheet corresponds to
a computation of M. F guarantees that this computation is a computation of
M on w and G guarantees that this computation reaches the state gaccept-

In the following construction we often need a formula over several variables
that takes the value 1 if and only if exactly one of its variables takes the
value 1. Let y,2Z2,...,2, be Boolean variables. The following formula has
the above-formulated property with respect to x1,xa,...,Zn.

H 90 ®
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initial configuration 0
1 :
st configuration 1| time
2nd configuration 2
3rd configuration 3
p(|w])-th configuration
L b p(lwl)) +1

tape cells (states, head positions)

Fig. 6.5.

U(z1,22,...,20) = (m VE V... VZ)A( N\ (@ V).
1<ii<n
g
The first part z; V22 V... Vx, of U(xy,Z2,...,T,) guarantees that the value
1 has to be assigned to at least one of the variables z;, s, ...z, in order to
satisfy U(x;,22,...,%,). Since the second part of U(z;, z3,...,7,) contains
elementary clauses T; V Z; for all i,j € {1,...,n},i # j, one may not assign
the value 1 to both variables z; and z;. Hence, any assignment satisfying the
second part of the formula U(zy,z3,...,T,) contains at most one value 1.

Note, that the length of U(z;,z3,...,,) is quadratic in the number n of
variables.

Now we construct the formulae A, B,C, D, E, F, and G.
(a) For each t € {0,1,2,...,p(Jw|)} we construct

Ay = U(H(0,t), H(1,t),..., H{p(|Jw|),t)).

Th:? .forr:?ula A is satisfied only if the head is adjusted on exactly one
position i € {0,1,...,p(|w])} of the tape in time &.
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To satisfy the formula
A:Aﬂhﬂlﬁ’..hﬂpﬂwnz A A;

0<Li<p(lwl)

any assignment has to guarantee that, for any time ¢ € {0,1,.. .p(|w])}, the
head is adjusted on exactly one position of the tape.
The number of literals in 4 is in O((p(Jw|))?) because the number of literals
in A; is quadratic in p(Jw|) + 1.

(b) For all i € {0,1,2,...,p(Jlw|)}, t € {0,1,...,p(lw])} we define

B;; = U(C{i,1,1),C(i,2,t),...,C{i,m,1}).

The formula B; ; is satisfied if the i-th tape cell contains exactly one symbol
after ¢ computation steps. Since |I'| = m is a constant, the number of
literals in B is in O(1), too. Satisfying the formula

B= A Bi
0<i,t<p{|w|)

one gets the assurance that all cells of the tape contain exactly one symbol
at any time t € {0,1,...,p{Jw|)}. Obviously, the number of literals in B
is in O((p(lw])?)-

(c) For all £ € {0,1,...,p(|w])} we define

Cy = U(S(0,8),S(1,1),...,5(s, 1))

If an assignment to the variables ${0,),...,S(s,t) satisfies the formula
Cy, then M is exactly in one state in time ¢. Since |Q| = s+1 is a constant,
the number of literals in C; in in O(1). Clearly

c=" N\ G,

o<e<p(lwl)

assures that M is in one state at each time. The number of literals in C

is in O(p(Jwl))-
(d) The formula

Di.j,t = [C{:i,_f,ﬂ A4 O'l:!:,j,i ¥+ 1” VH(iit)

for 0 < i < p(Jw]),1 < j < m,0 < t < p(|w|) — 1 says that the only symbol
that may be changed on the tape in the computation step ¢ + 1 is the
symbol on which the head is adjusted (more precisely, if H {i,t) = 0, the
symbol on the i-th tape cell may not be rewritten in the next computation
step). Obviously, D; j can be transformed®! in CNF in such a way that
its length remains in O(1).

21 The formula r ¢ y is equivalent to the formula (T V y) A (z V¥). Hence, D; .« +
(Cli,3.8) V Cli, j, t + 1) v H{i,£)) A (Cli, 5, t) ¥V C(i, 5, t + 1) V H{i,1)).
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Hence, the formula we are searching for is

D= /\ D; ;s
o<i<p(|w])
1€5<m
o<eLp(iml)—1

and D contains O((p(|w|))?) literals.??
(e) For all i € {0,1,2,...,p(lw])}, 7 € {1,...,m}, t € {0,1,...,p(|w|)} and
ke {0,1,...,s}, we consider the formula
Ei,j,,k,l = C(ﬂ j! t} W H(‘:t} W S{k: t}v
\;!(C{i,j;,t + 1) A S{ki,t + 1) A H(iy, t + 1))

where [ runs over all possible actions of the NTM M for the argument
(g, X;) with

(x,, X1, z1) € 8(gk, X;),21 € {L,R, N} and

it =i+ p(z),p(L) = -1,p(R) = 1,p(N) = 0.

E; j.k: can be treated as a disjunction of the following four conditions:
- Cli, j,t), i.e., the i-th position of the tape does not contain X in time

2
- Hi{i,t), i.e., the head is not on the i-th position in time .
—  S{k,t}, i.e., M is not in the state g; in time ¢.
— The change of the t-th configuration corresponds to a possible action

for the argument (gx, X;) and the head position i.
Now, the idea of the construction of Ej ;; ; is obvious. If none of the first
three constraints is fulfilled, then (gg, X;) is the actual argument for the
(t + 1)-th step and the head is adjusted on the i-th position of the tape.
In such a case the changes have to follow the transition function 4 for the
argument (gx, X;). If one chooses the I-th possible action (g, , X}, ) for
the argument (gx, X;), then X; has to be exchanged by X, in the i-th cell.
M has to move to the state g, and the head has to move with respect to
21
Since [ is a constant, E; j : contains O(1) literals, even if transformed to
CNF. Hence,

E= /.\ E; j
0<i t<pllel)

1<5<m
Xk

and E consists of O((p(|w]))?) literals.

(f) The initial configuration of M on w contains ¢w on the tape, the head has
to be adjusted on the position 0, and M has to be in the state gp. Let w =
X;, X, ... X;, for some j, € {1,2,...,m}, n € N and let X; = ¢. Then,

*2 Note that m is a constant.
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the requirement to start the computation with the initial configuration of
M on w in time t = 0 can be formulated by the following formula:

F = §(0,0) A H{0,0) A C(0,1,0)
AN\ Crinon A Cld,m,0)

1<r<n n+1<d<p(|w])

The number of literals in F is in O(p(Jw|)) and F is in CNF.
(g) The simple formula
G = S(s,p(lw)))

assures that the last (p(Jw|)-th) configuration of the computation contains
the state gaccept-

Following the construction of the formula Bys{w) we see that

(i) every assignment satisfying Bas(w) corresponds to an accepting compu-
tation of M on w and so By (w) is satisfiable iff there exists an accepting
computation of M on w, and

(ii) the formula Bas(w) can be algorithmically created from the data M,w
and p(|w|) in a time that is linear in the length of Bas(w).

The number of literals in Bas(w) is O((p(|w|))?). If one represents Bas(w) over
the alphabet Ziogic, then every variable has to be represented in binary form.
Since the number of variables is in O({p(|Jw|))?), each variable can be coded
by O(log,(|w|)) bits. Hence, the length of Bar(w) and so the time complexity
of the reduction Bjs are in

O((p(|w])? - log(|w])).
Thus Bys is a polynomial-time reduction from L(M) to SAT. |

The proof of Theorem 6.54 shows that all languages (decision problems)
from NP are polynomial-time reducible to SAT. The main consequence is
that every instance of any decision problem in NP can be represented as the
problem of satisfiability of a Boolean formula. A possible interpretation of this
fact is that the language of Boolean formulae is powerful enough to describe
any problem in NP.

The NP-completeness of SAT is the starting point®? for classifying de-
cision problems with respect to their membership to P. To prove the NP-
completeness of other languages we use the method of reduction that is based
on the following observation.

Lemma 6.55. Let L, and Lo be two languages. If Ly <, La and L; is NP-
hard, then Lo is NP-hard too.

23 GAT has in the complexity theory the same role as Lgiag in the computability
theory.
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Exercise 6.56. Prove Lemma 6.55.

We use Lemma 6.55 for proving NP-completeness of some other languages
from NP in the following. Our first aim is to show that the language of graphs
(the language of relations) is also powerful enough to describe any problem
from NP. To present the polynomial-time reductions in a transparent way we
shall work directly with the terms graph and formula instead of using the
words representing graph and formula. Thus,

SAT = {# | & is a satisfiable formula in CNF},
35SAT = {@ | @ is a satisfiable formula in 3CNF},
CLIQUE = {(G,k) | G is a graph that contains,
a k-clique}, and
VC = {(G,k) | G is a graph that has a
vertex-cover of size k},

where a vertex-cover of a graph G = (V, E) is any set U C V such that every
edge in F has at least one endpoint in U.

Let @ be a formula and let ¢ be an assignment to the variables of &. In
the following we denote the truth value of & for the assignment ¢ by ().
Hence, € is satisfiable iff there exists as assignment  with (&) = 1.

Lemma 6.57.

SAT <, CLIQUE.

Proof. Let
P=FAFRA ... ANF,

be a formula in CNF, where
Fi=(laVigV--- Vi), k € N— {0}

fori=1,2,...,m.
We construct an instance (G, k) of the clique problem, such that

¢ € SAT & (G, k) € CLIQUE.

We set

k=m

G = (V, E), where

V={[i,j]|1<i<m,1<j<k},ie., we take a vertex for each occurrence
of a literal in &,

E = {{[i,j].[r,s]} | for all [i,3],[r,s] € V, withi # r and Li; # s}, ie.,
an edge .{u, v} connects vertices that correspond to literals from different
clauses, if the literal of u is not the negation of the literal of v.
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Fig. 6.6.

For instance, consider the formula
$= (1 V 1‘2] ! {Il VT2 VI3) A (T WV x3) A Ta.

Then, k = 4 and the corresponding graph G is depicted in Figure 6.6.
Obviously, (G, k) can be constructed from @ in polynomial time.
Now, we show that

& is satisfiable < G contains a cligue of size k =m. (6.1)

The proof idea is the following. Two literals [;; and I, are “connected” in
G iff they are from different clauses (i # r) and both can obtain the value
1 simultaneously.?* Therefore, a clique in G corresponds to assignments to
variables of &, that assign the value 1 to all literals of the vertices of a clique.
For instance, the clique

{[1,1],[2,1],[3,2], [4, 1]}

in Figure 6.6 determines the assignment z; =1, z, =0 (Tz = 1), and z3 = L.
We prove the equivalence (6.1) by proving the corresponding implications

separately.

(i) “=7: Let ¢ be a satisfiable formula. Then, there exists as assignment
¢ to the variables of @, such that (®) = 1. Hence, @(F;) = 1 for all
i€ {1,...,m}. So, for any i € {1,...,m} there exists an index a; €
{1,...,k:}, such that p(lis;) = 1. We claim that the set

24 There exists an assignment i such that @(li;) = p(l-s) = L.
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{li;e5] | 1 < <m}
is a clique in G.
Clearly, the vertices [1, a1],[2, @3], ... ,[m, am] correspond to literals from
different clauses.
For any i, j with i # j, the equality lia, = l;a, implies w(lis,) # w(lja,)
for every assignment w to the variables of &. Since p(lia,) = ¢(lja;) = 1
foralli,j € {1, ... ,m}, Lip, # lja; must be true for all pairs (i, j) with
i # j, thus
{[i,a,-], [j! a.ii]' €eE
1 foralli,j € {1, ... ,m}. Hence, {[i,a;] | 1 <i < m} is a clique of size m.
(ii) “<": Let Q be a clique of G with k = m vertices. Since two vertices are
mnne{:te_:d in G only if they correspond to literals from different clauses,
there exist oy, 0z,...,am, o, € {1,2,. .. kp} for p=1,...,m, such that

Q={[l,m)],[2,az],...,[m,am]}.

Following the construction of G, there exists an assignment  to the vari-
ables of @, such that

Plha,) = ¢llaay) = -+ = ¢(lma.) = 1.
The direct consequence is
plF1) =p(F2) = = p(Fn) =1,

s0 ¢ satisfies the formula @. Hence, & is satisfiable.

Lemma 6.58.

CLIQUE <, VC.

Proof. Let G = (V, E) and k be an input instance of the clique problem. We
construct an input instance of the vertex-cover problem as follows:

m:= ]V|_— k
G = (V, E), where E = {{v,u} | u,v € V,v # u, {u,v} ¢ E}.

Figure_ 6.7 illustrates the construction of the graph G from a given graph
G. Since G can be obtained from G by converting 1s to 0s and 0s to 1s in the
adjacency matrix of G, it is obvious that this construction can be executed in
linear time.
To prove
“(G,k) € CLIQUE « (G, |V| - k) € VC"

it is sufficient to show that
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Fig. 6.7.

S CV isacliguein G & V — 8 is a vertez-cover G.

In Figure 6.7 we see that the clique {v;,vs,vs} of G determines the vertex-
cover {vg,v4} in G. Similarly, the clique {vy,vs,vs} determines the vertex-
cover {vg,v3}, and the clique {vz,v3} determines the vertex-cover {vy,vs,vs}.

We prove this equivalence by proving the corresponding implications sep-
arately.

(i) “=7: Let S be a clique in G. Hence, there is no edge between any pair of
vertices from S in @, so every edge in G is adjacent to at least one vertex
in V — 8. Thus, V' — § is a vertex-cover in G

(ii) “«<": Let C C V be a vertex-cover in G. Following the definition of vertex-
cover, every edge in G is adjacent to at least one vertex in C. Hence, there
is no edge {u,v} in E with both u,v € V — C. Therefore {u,v} € E for
allu,v € V—-C, u#v,and so V —C is a clique in G.

O

The following result shows that the satisfiability problem remains hard
even when restricting the set of problem instances to a special subclass of
formulae. We say that a Boolean formula is in 3CNF, if it is in CNF and
each clause consists of at most three literals. The 3CNF decision problem is
to decide whether a given formula in 3CNF is satisfiable.

In the following we consider an assignment ¢ to the Boolean variables in
aset X = {z1,...,%n} as a mapping ¢ : X — {0,1}. Let Y = {g1,...,ur} be
a set of Boolean variables, X NY = 0. We say that w: YUY — {0,1} is an
extension of ¢ : X — {0,1}, if

w(z) = p(z) for all z € X.
Lemma 6.59.
SAT <, 3SAT.
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Prf.:raﬁ Let F=FiAFa A ... AFy, be a formula in CNF over a set of Boolean
variables {1, ..., z,}. We construct a formula C in 3CNF such that

F is satisfiable (F € SAT) « C is satisfiable (C' € 3SAT).

The polynomial-time reduction from F to C is executed for each of the clauses
F,...,Fq in the same way.

If F; contains at most three literals, then one sets C; = Fj.
Let

Fi=zVoav---Vz

with k& > 4, z; € {#1,%,-- -,Iﬂ,fn}.
We construct C; over the set of variables

{Z1, oor 1T Ui, Y2 - oo Wisk—3 ),

v:*here Yi,1,¥i2s - Ui k—3 are new variables that are not used in the construc-
tion of any C; with j # i. We set

Ci=(aVaVya) AT VaVyi) ATz V2 V)
A AN(Tig—gV2zk—2VYik—3) A ([Tip_g Vzr—1 V 2).

For instance, for F; =T, V x3 V T2 V x7 V Ty, one constructs
Ci=(@T1Va3Vyia) A[Tig VT2 Vi) ATia V21 VTg).
To show that
“F'=F M- AF, is satisfiable & C =Cy A--- A Cy, is satisfiable”

it is sufficient to prove the following assertion:

“A_ﬂ assignment  to the variables {zy, ... ,z,} satisfies F; iff there
m an extension ' of ¢ to {z1, ... Tn,Yil1,s..-,Yik—3} that sat-
isfies C;."

(i) “=7: Let v be an assignment to the variables {z,,zs,...,2,}, such that
@(F;) = 1. Hence, there exists a j € {1,...,k} with ¢(z;) = 1. We choose

l’,{.’.?J - {1’1,. seaBny Yidye . .,yi.j;_;;} — {U, 1},

such that
a‘ll ?(mf) = 1,0‘[:5;} for | = L...,n,
b) ¢'(yi1) =--- = ¢'(yi,j—2) = 1, and

¢} @' (¥ij-1) = =@ (yix—3) =0.
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Since ¢'(2;) = 1, the (j—1)-th clause of C; is satisfied. :p’ (ir) % 1 assures
that the r-th clause of C; is satisfied for r = 1,...,7 — 2 @ {;-.rt,) =
(i.e. J;, = 1) assures that the (s + 1)-th clause of C; is satisfied for
s=j—' 1,3,...,k — 3. Hence, ' satisfies all k — 2 clauses if C; and hence
©'(Cy) = L. "y _

(ii) “&": We prove this implication by the indirect proof. Let ¢ l:n_a an assign-
ment such that @(F;) = 0. We have to show that no extension i of ¢
exists such that ¢'(C;) = 1. @(F;) = 0 implies

@(z1) = @(z2) = -+ lzx) = 0.

To satisfy the first clause of C;, one has to assign the valu.e 1 to the vari;{bie
yi1. Then ¢'(F; ) = 0 and one has to set ¢'(yi2) = 1in order to satisfy
the second clause of C;. Using the same argument

¢ (i) = @' (giz) = = ¢ (Wir—3) =1

in order to satisfy the first k — 3 clauses of C; Then, ¢'(¥; t—s) =0 a'nd
since @(zx—1) = w(zx) = 0, the last clause J; 3V 2k—1V 2k of C; remains
unsatisfied.

]}

Exercise 6.60. Prove the following polynomial-time reducibilities.

(i) VC <, CLIQUE
(i) 3SAT <, VC

The concept of NP-completeness became the basic instrument for classi-
fying algorithmic problems with respect to their hardness. Currently, we are
aware of more than 3000 NP-complete problems. Above we showed how to
apply this concept for decision problems. In the following we show that we
can modify this approach for classifying optimization problems too. In_ order
to do this we first need some counterparts for the classes P and NP in the
world of optimization problems.

Definition 6.61. NPO is defined as the class of optimization problems,
where
U= (X5, Lo,L, M, cost, goal) € NPO,
if the following conditions are met:
i)LeP. . .
. {One can efficiently verify whether a word z € X} is a feasible input (the
representation of an instance of the problem ).}
(ii) There exists a polynomial py, such that
(a) for every = € L and every y € M(a), vl <pulz)
{ The size®® of any feasible solution is polynomial in the input length.},
and
23 The representation length

6.6 NP-Completeness 219

(b) there exists a polynomial-time algorithm A that, for any y € X5 and
any = € L with |y| < pu(|z]), decides whether y € M(z) ory ¢ M(z).
(iii) The function cost can be computed in polynomial time.

We see that an optimization problem I is in NPO, if:

1. One can efficiently check whether a given word is an instance of the prob-
lem U (i.e., the hardness of U does not rely on solving the decision problem
(Zr, L))

2. The size of all feasible solutions to an input is polynomially bounded in
the input size and one can efficiently verify whether a candidate for a
solution is really a feasible solution (i.e., the hardness of U does not rely
on solving the decision problem (Zg, M(z)) for any z).

3. The cost of any feasible solution can be efficiently computed (i.e., the

estimation of the “quality” of a feasible solution does not influence the
hardness if UT).

Observe, that the condition (ii.b) is the main analogy between NPQ and
VP. But the crucial point is that conditions (i), (ii), and (iii) are natural
because they reduce the hardness of solving an optimization problem U to
the pure optimization process (i.e., to the search for the best solutions among
the feasible solutions) and make the hardness of U independent of decision
problems such as checking whether an input represents a problem instance of
U and whether a solution candidate is a feasible solution for the input.

The following considerations show that MAX-SAT belongs to NPO.

1. One can efficiently decide whether an z € L ogic codes a Boolean formula
in CNF.

2. For every input z, each assignment e € {0,1}* to the variables of the
formula &, has the property |a| < |z| and one can verify whether |o] is
the number of variables in @, in linear time.

3. For any given assignment « to the variables of ¢,, one can compute the
number of satisfied clauses of €, in time linear in |z| and hence efficiently
estimate the cost of a.

Now, let us consider the following optimization problems. The maximum
cut problem, MAX-CUT, is to find for a given graph G = (V, E), a cut of
the maximal cardinality in G. A cut of G = (V, E) is any pair (V, V) with

Vivla=Vand ViNnV =0.
The cost of a cut (V, V3) of G is the number of edges between V] and 1%, ie.,
cost(V1,Va) = |EN {{v,u} | v € Vi, u € V3}].

The minimum vertex cover problem, MIN-VC, is to find a vertex
cover of minimal cardinality for any given graph.
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Exercise 6.62. Give formal definitions of the above-defined optimization
problems MAX-CUT and MIN-VC and show that both belong to NPO.

The following definition introduces the class PO of optimization problems,
which is a natural analogy of the class P.

Definition 6.63. PO is the class of optimization problems U = (£, Lo, L,
M, cost, goal), such that

(i) U € NPO and
(ii) there exists a polynomial-time algorithm A, such that, for every x € L,
A(z) is an optimal solution for .

Now, we obtain the concept of NP-hardness for optimization problems by
considering a simple reduction from specific decision problems to optimization
problems.

Definition 6.64. Let U = (X, g, L, M, cost, goal) be an optimization prob-
lem from NPO. We define the threshold language of U as

Lﬂﬂgu 7 {(I,ﬂ} €Lx E;uol | Gth[‘t] < Number[“‘)}}

if goal = minimum, and

Lﬂ-ﬂgu = {(E,G]I €Lx El;onl I Oth(x) 2 Number[a}},

if goal = mazimum.
We say that U is NP-hard if Langy is NP-hard.

First we show that Definition 6.64 provides a concept for proving hard-
ness of optimization problems. More precisely, we show that proving the NP-
hardness of Langy; is a way of showing U ¢ PO under the assumption P # NP.
An important point of this concept is that we do not need to make a new as-
sumption like PO # NPO for this purpose.

Lemma 6.65. If an optimization problem U € PO, then Langy € P.

Proof. If U € PO, then there is a polynomial-time algorithm A that, for every
input instance ¢ of U, computes an optimal solution for = and therefore the
value Opty (z). Hence, 4 can be used to decide Langy. u]

Theorem 6.66. Let U € NPO. If Langy is NP-hard and P # NP, then
U ¢ PO.

Proof. We give an indirect proof. Assume the contrary, i.e., U € PO. Applying
Lemma 6.65, Lang; € P. Since Langy is NP-hard, Langy; € P implies P =
NP. O
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_To- i111:1strate the simplicity of this method for proving the hardness of
optimization problems with respect to the polynomial time, we present the
following examples.

Lemma 6.67. MAX-SAT is NP-hard.

Proof. Following Definition 6.64 we have to prove that Langy,x.gar is NP-
hard. Since we know that SAT is NP-hard, it is sufficient to prove

SAT <p Langyax-sat-

The reduction is straightforward. Let x code a formula @, of m clauses. Take
(z,m) as the input instance of the decision problem (Langy sx-gat, Z*). Ob-
viously,

(z,m) € Langysx-sar < P is satisfiable.

o

The maximum clique problem, MAX-CL, is to find a clique of max-
imal size in a given graph G.

Lemma 6.68. MAX-CL is NP-hard.

Proof. Observe, that CLIQUE = Langyax.cp- Since CLIQUE is NP-hard,
the proof is completed. O

Exercise 6.69. Prove that the MAX-CUT and MIN-VC are NP-hard.

6.7 Summary

The main goal of complexity theory is the classification of algorithmic prob-
lems with respect to the amount of computer resources needed to solve them.
The results of this investigation are quantitative laws of information process-
ing and the limits of tractability (practical algorithmic solvability).

The most fundamental complexity measures are time complexity and space
complexity. The multitape Turing machines is the basic computing model of
the abstract complexity theory. The complexity of an MTM (an algorithm) is
considered as a function f of the input length, where f(n) is the maximum of
the complexities of all computations on inputs of length n. This complexity
measurement is called the worst-case complexity measurement.

There exist algorithmically solvable problems with an arbitrary large com-
plexity. Algorithms of exponential complexity are usually not considered to
be executable in practice.

The tractability of problems is connected with the polynomial-time com-
plexity. The class P is the set of all decision problems that can be solved
by polynomial-time algorithms. The definition of the class P is robust in the
sense that it is independent of the choice of the computing model.



¥ 0 Lomplexaty 1neory

The time complexity of a nondeterministic MTM M on an input w is the
length of the shortest correct computation of M on w. The typical work of a
nondeterministic algorithm starts with nondeterministic guesses and continues
with a deterministic verification of the guesses. The class NP is the class
of all languages that can be accepted by polynomial-time nondeterministic
algorithms. The question of whether P is a proper subset of NP is the most
famous open problem of theoretical computer science. The class NP contains
many interesting, practical problems and one does not know whether they are
in P or not. One can show that the question of whether P is a proper subset
of NP, is equivalent to the question of whether verifying the correctness of
given mathematical proofs is easier than creating mathematical proofs for a
given theorem.

There has been no essential success in developing methods for proving
lower bounds on complexity of concrete problems and so we lack a method-
ology for classifying problems into tractable problems and intractable ones.
The concept of NP-completeness enables us to prove results of the kind of
“L ¢ P" (L is not tractable) under the assumption P # NP. The basic idea
of this concept is that the NP-complete problems are the hardest problems in
NP in the sense that if a NP-complete problem would be in P, then P would
be equal to NP.

The complexity hierarchies were proven by Hartmanis, Stearns and Lewis
[24, 25]. The concepts of polynomial-time reducibility and of NP-completeness
were introduced in the seminal works by Cook [13] and Karp [35]. The classical
book by Garey and Johnson [19] provides an excellent, detailed presentation of
the theory of the NP-completeness. A fascinating discussion about “practical
solvability” can be found in Lewis and Papadimitriou [42] and Stockmayer
and Chandra [66].

There are several good textbooks devoted to complexity theory. The text-
books by Hopcroft and Ullman [28] and Sipser [65] present an excellent in-
troduction to complexity theory. An extensive presentation of the complexity
theory is given, for instance, by Bovet and Crescenzi [7], Papadimitriou [49]
and Balcézar, Diaz, and Gabarrd [2, 3]. As for literature written in the German
language we warmly recommend the textbook by Reischuk [56].
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Algorithmics for Hard Problems

When a scientist says:
“This is the very end,
nobody can do anything more here,”
then he is no scientist.

7

7.1 Objectives

The complexity theory provides methods for the classification of algorithmic
problems with respect to their hardness which is measured in the amount of
computational resources (computational complexity) needed to solve them.
The theory of algorithms is devoted to the design of efficient algorithms for
solving concrete problems. In this chapter we restrict our attention to the
design of algorithms for hard (for instance, NP-hard) problems. This may be
slightly surprising, because Chapter 6 claims that solving NP-hard problems
is beyond physical limits. For instance, the execution of an algorithm of time
complexity 2" for inputs of size n = 100 takes more time than the age of
the known universe. However, there are many hard problems of enormous
importance for everyday practice, which explains why computer scientists have
been searching for at least some small progress for over the past 30 years.
The central idea is to make a hard problem easier’ by slightly modifying
the problem specification or weakening some requirements. The true art of
algorithmics consists of discovering the possibilities of obtaining an enormous
gain from infeasible computations, reducing it to a matter of a few minutes on
a common PC by an as small as possible change of the problem constraints.
To achieve such effects enabling the practical solvability of hard problems, one
(or a combination) of the following concepts can be used.

1. Hard problem instances versus typical problem instances
We measure the time complexity as the worst-case complexity, which
means that the time complexity Time(n) is the complexity of the hardest
problem instance of size n. Often the hardest problem instances are far
from being natural and hence they do not appear in applications. There-
fore, it may be helpful to deepen the complexity analysis by classifying
particular problem instances with respect to their hardness. A successful

! Solvable in polynomial time
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classification can lead to a specification of a large subclass of efficiently
solvable problem instances of a hard problem. If the typical problem in-
stances of an application belong to such an easy subclass, then one can
successfully solve the problem for this application.
2. Ezxponential algorithms

One does not try to design a polynomial algorithm for the hard problem.
Instead one attempts to discover a practical exponential algorithm. The
idea is that some exponential functions do not take excessively large values
for realistic input sizes. Table 7.1 shows clearly, that the execution of (1.2)™
computer intructions for n = 100, or of 10 - 2v™ operations for n = 300
terminates within a matter of seconds.

Table 7.1.
Complexity|n =10 n=50 n=100 n =300
2 1024 16 digits 31 digits 91 digits
2% 32 =~ 33-10° 16 digits 46 digits

(142)® ~6 ~9100 ~83-10° 24 digits
10-2Y" | ~89 =~1345 10240 =~ 1.64-10°

3. Weakening of requirements

One can deviate from the requirement to guarantee the computation of
the correct result in different ways. Typical representants of this concept
are randomized algorithms and approximation algorithms. In the case of
randomized algorithms, one exchanges the deterministic control for a ran-
domized one. The cost for this exchange is the loss of the assurance of
computing correct solutions, i.e., a positive probability of computing a
wrong result. The gain of this exchange can be an essential decrease of
the complexity. If the error probability is below 107° for every input,
then there is no practical difference between the reliability of a determin-
istic algorithm and that of the randomized one. Thus one has solved the
problem efficiently. Approximation algorithms are used for solving opti-
mization problems. Instead of requiring an optimal solution, one accepts
feasible solutions whose cost (quality) does not essentially differ” from the
cost of the optimal solutions. The gain of this approach can also be an
exponential decrease of computational complexity.

The aim of this chapter is to present some concrete applications of these
concepts. In Section 7.2 we introduce the pseudopolynomial algorithms that
represent an exemplary application of the first concept searching for a large
class of easy problem instances of hard problems. The concept of approxi-
mation algorithms is explained and illustrated in Section 7.3. Section 7.4 is
devoted to local algorithms that provide the possibility of applying all three

2 Are not much worse than the optimal cost
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concepts mentioned above. The local search is the base for several heuristics.
In Section 7.5 we present the simulated annealing heuristic, which is based on
an analogy to the optimization of physical systems. Because of the importance
of the concept of randomization we devote the entire of Chapter 8 to it.

7.2 Pseudopolynomial Algorithms

In this section we consider a special class of problems, whose inputs can be
viewed as sequences of natural numbers. Such problems are called integer
problems. In fact, one can interpret any input from {0, 1, #}* with an un-
bounded number of symbols # as an integer problem. Let

T = EiF ot dit e o e 010 ford =11,2, .. . n
be a word over {0, 1, #}*. We interpret z as the following vector

Int(x) = (Number(z1), Number(zs),. .., Number(z,))

of n natural numbers. Each graph-theoretical problem?® whose problem in-
stances can be represented by adjacency matrices is an integer problem, be-
cause every adjacency matrix can be represented as a sequence of Os and 1s.
The TSP is an integer problem where the sequence of integers represents the
costs of particular edges.

We define for any = z1#x2# ... #x, with z; € {0,1}* fori =1,2,...,n,

MaxInt(xz) = max{Number(z;) |i=1,2,...,n}.

The idea of the concept of pseudopolynomial algorithms is designing algo-
rithms that are efficient for problem instances £ whose MaxInt(z) is not sub-
stantially larger than |z|. Since an integer Number(y) is exponentially larger
than the length of its binary representation y, this requirement is a real re-
striction. '

Definition 7.1. Let U be an integer problem and let A be an algorithm that
solves U. We say that A is a pseudopolynomial algorithm for U, if there
exists a polynomial p of two variables, such that

Time4(z) € O(p(|z|, MaxInt(z)))
for all problem instances = of U.

We observe immediately that for problem instances with MaxInt(z) <
h(|z|) for a polynomial h, the time complexity Time4(z) is polynomial in |z|.

3 Such as the vertex cover problem or the clique problem
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Definition 7.2. Let U be an integer problem and let h be a mapping from
IN to IN. The h-value-bounded subproblem of U, Value(h)-U, is the
subproblem of U whose instances are all instances x of U satisfying

MaxInt(z) < h(|z|).

The following theorem shows that one can specify large classes of easy
instances of a hard problem in this way.

Theorem 7.3. Let U be an integer problem and let A be a pseudopolynomial
algorithm that solves U. Then, for any polynomial h, there exists a polynomial-
time algorithm for the problem® Value(h)-U.

Proof. If A is a pseudopolynomial algorithm for I/, then there exists a poly-
nomial p of two variables, such that

Timea(z) € O(p(|z|, MaxInt(z))

for any instance  of the problem Y. Since h is a polynomial function, there
exists a constant ¢ such that

MaxInt(z) € O(|z|°)

for all instances z of the problem Value(h)-U.
Therefore,
Timex(z) € O(p(|zl, |z]%))-
Hence, A is a polynomial-time algorithm for Value(h)-U. O

We show an application of the concept of pseudopolynomial-time algo-
rithms for solving the knapsack problem, an NP-hard optimization problem.

Knapsack problem

Input: 2n + 1 positive integers wy, wa, ..., Wn,C1,C2,..-,Cn,b forann € IN —
{0}. {These positive integers provide information about n objects, where
w; is the weight of the i-th object and ¢; is the cost of the i-th object for
i=1,2,...,n. The number b is the limit® on the weight of the knapsack
content, where the content of the knapsack may consist of a subset of
these m objects only.}

Feasible solutions: For every I = (wy,ws,...,Wn,C1,...,Cn,b)

Z w; < b}
€T

M(I):{T(_Z{l,...,n}

is the set of feasible solutions.
{A feasible solution for I is any subset of the n objects, whose total weight
does not exceed b.}

4 If U is a decision problem, then Value(h)-U € P. If U is an optimization problem,
then Value(h)-U € PO.
5 Upper bound
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Cost: For all inputs I and all T € M(I),

cost(T,I) = Z ci.

ieT

{The cost of a feasible solution T is the total cost of all objects in the
knapsack.}
Goal: mazimum.

Now, we design a pseudopolynomial algorithm for the knapsack problem
using the method of dynamic programming. To compute an optimal solution
for the instance I = (wy,ws,...,Wn,C1,...,Cn,b), we start with the subin-
stance Iy = (wy,¢1,b) and continue via the subinstances

I'i =(w17w2,---,wi,CI,...,Ci,b)

for i = 2,3,...,n to reach I = I,,. More precisely, for every I; and every
¢ {0,1,2,..., Z;=1 c;j}, we compute the triple

(ks Wik, Tioa) € $00,1,2,040 5T egt8 %i{0,1, 200 Kibd % B{LL.....,4));
j=1

where W j is the minimal weight with which one can reach the cost k for the
subinstance I;. The set T; x C {1,...,i} is a set of indices that determines the
cost k with the weight W; g, i.e.,

Z Cj = k and Z wj; = Wi,k-

JET: k JE€T: u

We note that several different sets of indices that determine the same cost k
and the same weight W; ; may exist. In such cases we simply take an arbitrary
one in order to confirm the reachability® of (k, W; ;). On the other hand it
can happen that a cost & is not reachable for the instance I;. In this case, we
do not have any triple with the first element k. In what follows, we denote
the set of all triples of I; as TRIPLE;. Observe that

ITRIPLE;| < ) "¢; + 1.

Jj=1

. An important point is that one can compute TRIPLE;; from TRIPLE;
in time O(TRIPLE;). To compute TRIPLE;,;, we first compute

SET;;; = TRIPLE; U {(k ey, Wae b i, T U {1, + 1}) |
(k, Wi, Tix) € TRIPLE; and W; j, + wiy1 < b}

6 Of the cost k by the weight W &
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by adding the (i + 1)-th object to any triple in TRIPLE;, if this addition does
not cause the total cost to exceed b. TRIPLE;;, is then a subset of SET; 41
that is obtained by choosing a triple of minimal weight for every achievable
cost k. Obviously the triple with the maximal cost in TRIPLE,, estimates
an optimal solution for the problem instance I = I,,. Thus we can formally
describe the designed algorithm as follows.

Algorithm DPR

Input: I = (wy,ws,...,Wn,C1,...,Cn,D) € (IN—{0})?"*! for a positive integer
n.
Phase 1. TRIPLE(1) = {(0,0,0)} U {(c1,w1,{1})} | if wa < b}
Phase 2.
fori=1ton—1do
begin SET(i + 1) := TRIPLE();
for every (k,w,T) € TRIPLE(i) do
begin if w + wiy1 < b then
SET(i + 1) :=SET(i + 1)
U{(k+cip1,w +wipr, TU{i + 1D}
end
Determine TRIPLE(i + 1) as a subset of SET(i + 1),
where, for every reachable cost k in SET(i + 1) contains
exactly one triple with the cost k by taking a triple with
the minimal weight for the cost k.
end
Phase 3. Compute

c:=max{k € {1,2,...,» e} | (k,w,T) € TRIPLE(n)}.

i=1
Output: The set of indices T, such that (c,w,T) € TRIPLE(n).

We illustrate the work of the algorithm DPR for the problem instance
I = (wi,wa,...,Ws,C1,-..,Cs5,b), where

wy = 23, wy = 15, w3 = 15, wy = 33, ws = 32,

c1 =33, =23, c3=11, ¢4 =35, s =11, and
b = 65.

Obviously I; = (23,33,65) and the only reachable costs are 0 and 33. There-

fore,
TRIPLE; = {(0,0,0), (33,23,{1})}.

I, = (23,15,33,23,65) and the only reachable costs for I are 0, 23, 33, and
56. Hence we obtain

TRIPLE, = {(0,0,0), (23,15, {2}), (33,23, {1}), (56,38,{1,2})}.
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The subinstance I3 = (23,15, 15, 33,23, 11, 65). The addition of a third object
is possible for every triple in TRIPLE; and by doing so we always obtain a
new cost. Thus, the cardinality of TRIPLE; is twice that of TRIPLE, (i.e.
SET; = TRIPLEs) and ’

TRIPLE; = {(0,0,0), (11,15, {3}), (23,15, {2}),
(33,23, {1}), (34,30,{2,3}), (44, 38,{1,3}),
(56,38, {1,2}), (67,53,{1,2,3})}.

For the triples (44,38,{1,3}), (56,38,{1,2}) and (67,53,{1,2,3}) from
TRIPLE3, one cannot pack a fourth object into the knapsack. Hence,

TRIPLE4 = TRIPLE; U {(35, 33, {4}), (46,48, {3,4}),

(58,48, {2,4}), (68,56, {1,4}), (69,63,{2,3,4})}.
Finally, we obtain for the instance I = I
TRIPLEs = {(0,0,0), (11,15, {3}), (22,47, {3,5}),

(23,15, {2}), (33,23,{1}), (34,80, 12/3}),
(35,33, {4}), (44,38,1{1,3}), (45,62,{2,3,5}),
(46,48, {3,4}), (56,38, {1,2}), (58,48,{2,4}),
(677 535 {]-a 2; 3})1 (687 561 {1’ 4})7 (697 637 {25 33 4})}

: Hence {2, 3,4} is the optimal solution for I, since (69, 63, {2, 3,4}) is the
triple with the maximal cost 69 in TRIPLE;s.

Exercise 7.4. Simulate the work of the algorithm DPR. for the problem in-
stance (1,3,5,6,7,4,8,5,9) of the knapsack problem.

In what follows we analyze the time complexity of the algorithm DPR.
Theorem 7.5. For every instance I of the knapsack problem,
Timeppr(I) € O(|I]* - MaxInt(I))
and hence DPR. is a pseudopolynomial algorithm for the knapsack problem.

Proof. The time complexity of the first phase is in O(1). For the prob-
lem instance I = (w;,ws,...,wn,c1,...,Cn,b), DPR computes n — 1 sets
TRIPLE(: + 1). The computation of TRIPLE(: + 1) from TRIPLE(:) can be
executed in time O(|TRIPLE(: + 1)|). Since

ITRIPLE(i +1)| < ) ¢; < n- MaxInt(1)
J=1

for every i € {0,1,...,n}, the time complexity of the second phase is in
O(n? - MaxInt([I)).
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The time complexity of the third phase is in O(n-MaxInt(I)), because one
has to estimate a maximum of at most n - MaxInt(J) values. Since n < |1,

Timeppr(Z) € O(|I|* - MaxInt(I)).
0

We observe that pseudopolynomial algorithms can be very successful in
many applications. The weights and costs are usually from a fixed interval and
thus independent of the number of parameters of problem instances. Hence,
one can efficiently compute solutions for typical” instances of the knapsack
problem.

The interest in designing pseudopolynomial algorithms also poses a classi-
fication question. For which NP-hard integer problems do pseudopolynomial
algorithms exist? Which hard problems are so hard that they do not allow
any pseudopolynomial algorithm solution? Now, we are searching for a method
that enables us to prove that concrete problems do not possess pseudopolyno-
mial algorithms if P # NP. We will see that the concept of NP-completeness
also works for this purpose.

Definition 7.6. An integer problem U is called strongly NP-hard, if there
ezists a polynomial p such that its subproblem Value(p)-U is NP-hard.

The following assertion shows that the strong NP-hardness provides the
instrument for proving the nonexistence of pseudopolynomial algorithms for
concrete problems.

Theorem 7.7. Let U be a strongly NP-hard integer problem. If P # NP, then
there exists no pseudopolynomial algorithm for U.

Proof. Since U is strongly NP-hard, there exists a polynomial p such that
the problem Value(p)-U is NP-hard. Assume that there is a pseudopolyno-
mial algorithm for /. Then Theorem 7.3 implies, for every polynomial h, the
existence of a polynomial-time algorithm for the problem Value(h)-I{. This
implies the existence of a polynomial-time algorithm for the NP-hard prob-
lem Value(p)-U and hence P = NP. This contradicts our assumption P # NP.
O

One can again apply the reduction method to prove the nonexistence of a
pseudopolynomial algorithm for a given problem. In what follows we present
an application of the strong NP-hardness by showing that TSP is strongly
NP-hard. To do this we use the fact that to decide whether a graph contains
a Hamiltonian cycle® (the Hamiltonian cycle problem, HC) is NP-complete.

" Typical in the above sense
8 Remember that a Hamiltonian cycle (tour) of a graph G is a cycle that visits
every vertex of G exactly once.
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Lemma 7.8. TSP is strongly NP-hard.

Proof. Since HC is NP-hard, it is sufficient to show that

HC <, Langvaiye(p)-1sp

for a polynomial p(n) = n.

Let G = (V, E) be an instance of HC. Let [V| = n for a positive integer n.
We construct a weighted complete graph (Kn,c) with K, = (V, Ecomplete) a8
follows. -
Ecomptete = {{u, v} | u,v € V,u # v},

and the weight function c : Ecomplete — {1, 2} is defined by

cle)=1if ce E, and
éle)='2if' ¢ ¢'B|

We observe that G' contains a Hamiltonian cycle if and only if the cost of an
optimal solution of the TSP instance (K, c) is exactly n, i.e., when

((Kn,c),n) € Langyyiye(p)-sp-

Hence, every algorithm that decides Langvaiue(p)-Tsp can be used to solve
HC. O

Exercise 7.9. Consider the following generalization of the vertex cover prob-
lem. Let G = (V, E) be a graph, andlet w : V — IN be a mapping that assigns
a weight to every vertex of G. For any vertex cover S, the cost of S is the sum
of the weights of vertices in S. The minimum weighted vertex cover problem
is to find a cheapest vertex cover in G. Prove that the minimum weighted
vertex cover problem is strongly NP-hard.

7.3 Approximation Algorithms

Here, we introduce the concept of approximation algorithms for solving hard
optimization problems. The idea is to jump from an exponential-time com-
plexity to a polynomial-time complexity by weakening the requirements. In-
stead of forcing the computation of an optimal solution, we are satisfied with
an “almost optimal” or “nearly optimal” solution. What the term “almost
optimal” means is defined below.

Definition 7.10. Let U = (21, 2o, L, M, cost, goal) be an optimization prob-
lem.

We say that A is a consistent algorithm for U if, for every x € L, .the
output A(zx) of the computation of A on z is a feasible solution for z (i.e.,

A(z) € M(x)).
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Let A be a consistent algorithm for U. For every x € L, we define the
approximation ratio Ra(z) of A on z as

cost(A(z)) Opty(z) }
Opty(z)  cost(A(z)) |’

Ra(z) = max{

where Opty,(z) is the cost of an optimal solution for the instance T of U.
For any positive real number § > 1, we say that A is o 6-approximation

algorithm for U if
Ra(z) <96

for every z € L.

First we illustrate the concept of approximation algorithms for the min-
imum vertex cover problem. The idea is to efficiently find a matching® in
a given graph G and then to take all vertices incident to the edges of the
matching as a vertex cover.

Algorithm VCA

Input: A graph G = (V, E).

Phase 1. C := §;
{During the computation, C is always a subset of V and at the end of the
computation, C is a vertex cover of G 21
A= 0;
{During the computation, A is always a subset of E (a matching in G)
and when the computation has finished, then A is a maximal matching. }
Bli= B
{During the computation, the set E' C E contains exactly those edges,
which are not covered by the actual C. At the end of the computation
E'=§}

Phase 2.

while E' # () do
begin take an arbitrary edge {u,v} from E';

C:=C Ui, u}s

A bz e i

E' := E' — {all edges incident to u or v};
end

Output: C

Consider a possible run of the algorithm VCA on the graph in Fig-
ure 7.1(a). Let {b,c} be the first edge chosen by VCA. Then

C = {b,c}, A= {{b,c}} and E' = E — {{b, a}, {b,¢}, {c,e}, {c,d}}

9 A matching in G = (V,E) is a set M C E of edges such that there is no vertex
incident to more than one edge from M. A matching is maximal, if for every
e € E — M, the set M U {e} is not a matching in G.
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as depicted in Figure 7.1(b). If the second choice of an edge from E' by VCA
is the edge {e, f} (Figure 7.1(c)), then

C={bce f},A={{bc}, {e,f}} and E' = {{d, h}, {d, g}, {h,9}}.
If the last choice of VCA is the edge {d, g} then
C=1be e fdglA={{be}, {e [}, {d g}} and E'=0.
Hence, C is a vertex cover of cost 6. We observe that {b, e, d, g} is the optimal

vertex cover and this optimal vertex cover cannot be achieved by any choice
of edges by the algorithm VCA.

c

6‘6

g A

Exercise 7.11. Find a choice of edges in the second phase of VCA, such that

\  the resulting vertex cover C contains all vertices of G in Figure 7.1(a).

Theorem 7.12. The algorithm VCA is a 2-approzimation algorithm for
MIN-VCP and Timeyca(G) € O(|E|) for any instance G = (V, E).

Proof. The claim
TimeVCA(G') € O(|E|)

is obyious because every edge from E is manipulated exactly once in VCA.
_ Since E' = ) at the end of any computation, VCA computes a vertex cover
in G (i.e., VCA is a consistent algorithm for MIN-VCP).

To prove

Rvca(G) <2

for every graph G, we observe that
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1. |C| =2-]|4|, and
2. A is a matching in G.

To cover the |A| edges of the matching A, one has to take at least | Al
vertices. Since A C E, the cardinality of any vertex cover of G is at least |A|,
1€,

Optyn-ver(G) 2 |4[-

Hence

C] g

Optyin-ver(G) ~ Optyin-ver(G) ~
O

Exercise 7.13. Construct, for any positive integer 7, a graph G, such that
the optimal vertex cover has the cardinality n and the algorithm VCA can
compute a vertex cover of the cardinality 2n.

Whether the guarantee of an approximation ratio of 2 is sufficient, depends
on particular applications. Usually one tries to achieve smaller approximation
ratios, which requires much more demanding algorithmic ideas. On the other
hand, one measures the approximation ratio of an algorithm in the worst-case
manner, so a 2-approximation algorithm can provide solutions of essentially
better approximation ratios than 2 for typical problem instances.

There are optimization problems that are hard also for the concept of
approximation. Here, to be hard means that under the assumption Pyt NP,
there does not exist any polynomial-time d-approximation algorithm for the
given problem for any positive integer d. In Section 7.2 we have showed that
TSP is too hard for the concept of pseudopolynomial algorithms. In what
follows, we show that TSP cannot be attacked by the concept of approximation
algorithms either.

Lemma 7.14. If P # NP, then, for any positive integer d, there does not
exist any polynomial-time d-approzimation algorithm for TSP.

Proof. We prove this by contradiction. Assume that we have a positive integer
d, such that there exists a polynomial-time d-approximation algorithm A for
TSP. Then, we show that there exists a polynomial-time algorithm B for the
NP-complete HC problem, which contradicts the assumption P # NP. The
algorithm B for HC works for each input G = (V, E) as follows.

1. B constructs an instance (KIVI,C) of TSP, where
Ky =, E"), with E' = {{u,v} |w,v € V,u # v},
cle)=1, if e€ E,and
cle) = (d-1)-|V[+2, if e¢ E.
9. B simulates the work of A on the input (Kv),c)- If the feasible solution

computed by A is a Hamiltonian cycle of cost exactly |V|, then B accepts
its input G. Otherwise, A rejects G.
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The construction of the TSP instance (K|y|,c) can be executed in time
O(|V|?). The second phase of B runs in polynomial time, because A works in
polynomial time and the graphs G and K|y, are of the same size.

It remains to show that B really decides the HC problem. First, we observe
the following facts.

(i) If G contains a Hamiltonian cycle, then Kjy| has a Hamiltonian cycle of
cost |V], i.e.,
Optrsp(Kv|,c) = [V].
(ii) Every Hamiltonian cycle in K)y| containing at least an edge from E' — E,
has cost of at least

V|-1+@-1)-|V|+2=d-|V|+1>d-|V]
Now we prove
G = (V,E) € HC & the output of B is a solution of cost [V].

Let G i (V,E) be in HC, i.e., G contains a Hamiltonian cycle C. Following
the definition of the weight function c, the cost of C in K|y, is |V, so

Optrsp (Kjv|,¢) = |V|.

Fact (ii) implies that any Hamiltonian cycle in K|y, of cost larger than |V|
has cost at least

d-|V|+1>d-|V].
Hence, the d-approximation algorithm A must compute a feasible solution of
cost |V|, i.e., B accepts G.

Let G = (V, E) not be in HC. Consequently, every feasible solution for
(K|v|,c) has a cost larger than [V, ie., cost(A(K|v|,c)) > |V|. Therefore B
rejects G.

Thus, B is a polynomial-time algorithm that solves the NP-hard HC prob-
lem, which contradicts our assumption P # NP. O

In order to attack the TSP problem, we will combine the approximation
concept with the concept of searching for a set of easy TSP instances. In what
follows we consider the metric TSP, A-TSP, that allows only TSP instances
that satisfy the triangle inequality (Example 2.40). The triangle inequality is
a natural restriction that is satisfied!? in many applications. Next we show a
polynomial-time 2-approximation algorithm for A-TSP.

Algorithm SB

Input: A complete graph G = (V, E) with the weight function c : E - INT,
that satisfies the triangle inequality

c({u,v}) < c{u, w}) + c({w,v})

for all pair-wise different vertices u,v,w € V.

10 Or almost satisfied
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Phase 1. SB computes a minimal spanning tree'! T of G with respect to c.

Phase 2. SB chooses an arbitrary vertex v from V and performs the depth-
first search in T from v. Doing this, SB enumerates the vertices of T' in
the order in which they are visited. Let H be the resulting sequence of
vertices that corresponds to this enumeration.

Output: The Hamiltonian cycle H=—Ha

We illustrate the work of the algorithm SB for the problem instance B in
Figure 7.2(a). A minimal spanning tree

T = ({v1,v2,v3,v4,v5}, {{v1,vs}, {v1,v5}, {v2,v3}, {vs,va}}

of G is depicted in Figure 7.2(b). Figure 7.2(c) shows the depth-first search
in T from vs. We observe that every edge in T' is used exactly twice in the
depth-first search. This depth-first search determines the sequence

H = v3,v4,v1,05,02
of vertices, so
H= V3, V4,V1,Vs5,V2,V3 = Hav3

is the output of the algorithm SB (Figure 7.2(d)). The cost of His2+3+
2+ 3+ 1 =11. An optimal solution is

V3, V1, Vs, V4, V2,V3
with the cost 142+ 2+ 2+ 1 =8 (Figure 7.2(e)).

Theorem 7.15. The algorithm SB is a polynomial-time 2-approzimation al-
gorithm for A-TSP.

Proof. First we analyze the time complexity of SB. A minimal spanning tree
of a graph G = (V, E) can be found in time O(|E|). The depth-first search in
a tree T = (V, E') runs in time O(|V|). Hence,

Timess (G) € O(|E|),

i.e., SB works in linear time.

Now we prove that the approximation ratio of SB is at most 2. Let Hopt be
an optimal Hamiltonian cycle with cost(Hopt) = Opta-1sp(G) for a A-TSP
instance I = ((V, E),c). Let H be the output SB(I) of the algorithm SB for
the input I. Let T' = (V, E') be the minimal spanning tree constructed in the
first phase of SB. First, we observe that

cost(T) = E c(e) < cost(Hopt), (7.1)
cEE!

11 A spanning tree of a graph G = (V, E) is a tree T = (V, E') with E' C E. The
cost of T is the sum of the costs of all edges in E'.
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(b)

ve @ @ s V4 Us
() (d)

v2

U3 V1

N 2 vs
(e)
Fig. 7.2.

because by deleting an edge from Hgpt, one obtains a spanning tree of G and
T is the optimal spanning tree in G.

Consider W to be the path that corresponds to the depth-first search of
T. W goes exactly twice via every edge of T' (once in every direction of every
edge!?). If cost(W) is the sum of the costs of all edges of W, then

cost(W) = 2 - cost(T). (7.2)
Both inequality (7.1) and equality (7.2) imply

cost(W) < 2 - cost(Hopt)- (7.3)

12 Note that W can be considered as an Eulerian tour of a multigraph T» that is

constructed from 7' by doubling every edge.
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We observe that H can be obtained from W by exchanging!® some sub-
paths w,v1,...,vk,v in W by the edges {u,v} (i.e., by the direct connections
u,v). In fact, this can be done by the successive application of a simple oper-
ation that exchanges subsequences of three vertices u, w,v of W by the direct
connection u,v (this exchange happens if the vertex w has already occurred
in the prefix of W). This simple operation does not increase the cost of the
path because of the triangle inequality

c({u,v}) < c({u, w}) + c({w,v}).

Hence

cost(H) < cost(W). (7.4)
The inequalities (7.3) and (7.4) provide
cost(H) < cost(W) < 2 - cost(Hopt)

and hence

SB(I) ., eost(H)

= <'2.
Opta-tsp(I)  cost(Hopt)

a

Exercise 7.16. Find, for any positive integer n > 3, a weight function c,
for the complete graph K, of n vertices, such that there exist at least two
different weights on the edges of K, and the algorithm SB always computes
an optimal solution.

Exercise 7.17* For every positive integer n > 4, find an instance I,, of
A-TSP with the property

SB(I,) o — 2
b .
Opta-tsp(ln) — n+1

7.4 Local Search

Local search is an algorithm design technique for optimization problems. The
idea of this technique is to first compute a feasible solution « for a given input
z, and then improve a by small (local) changes of a. What the term “small
changes” means is defined by the following notion of neighborhood.

Definition 7.18. LetU = (X1, o, L, M, cost, goal) be an optimization prob-
lem. For every z € L, a neighborhood on M(x) is any mapping fr :
M(z) - P(M(z)) such that

13 This happens when v1,. .., v were already visited before u has been visited, but
v is visited for the first time in W.
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(i) @ € fz(a) for every a € M(z)
{The solution « is always in the neighborhood of a.},
(ii) if B € fo(a) for &, B € M(z), then a € f,(B)
{If B is in the neighborhood of c, the a is in the neighborhood of .}, and
(iii) for all o, f € M(x) there exist a positive integer k and vy1,72,...,V €
M(z), such that

M € fo(@),%i+1 € fo(yi) fori=1,...,k—1, and B € fo(n).

{For all feasible solutions a and [, it is possible to reach B from a by
successively moving from a neighbor to another neighbor.}

Ifa € f,(B) for some o, f € M(z), we say that o and 3 are neighbors
in M(z). The set fz() is called the neighborhood of a in M(x).

A feasible solution a € M(z) is called a local optimum for z with
respect to the neighborhood f,, if

cost(a) = goal{cost(B) | B € fz(a)}.

For every x € L, let the function f, be a neighborhood in M(x). The
function
f:J{z} x M(2)) = |J PM(2))
zel z€L
defined by
f(z,0) = fo(a)
for all z € L and all @ € M(z) is a neighborhood for U.

Because of condition (ii) of Definition 7.18, any neighborhood on M(z) can
be viewed as a symmetric relation on M(z). When one wants to define a
neighborhood on M(z) in an application, then one usually does not work
in the formalism of functions or relations. The common way to introduce a
neighborhood on M(z) is to use the so-called local transformations on
M(z). The term “local” is important in this context. The meaning of a local
transformation of a solution « is that only a local part of the specification of o
is changed in order to get another feasible solution. For instance, flipping the
Boolean value assigned to a variable is a local transformation for MAX-SAT.
Then, the neighborhood of a feasible solution « is the solution « itself and
all feasible solutions that can be obtained by an application of chosen local
transformations. Thus, for a formula of 5 variables,

{01100, 11100, 00100, 01000, 01110,01101}

is the neighborhood of a = 01100 with respect to the local transformation of
flipping one Boolean value (bit) of the assignments.

Exercise 7.19. Prove that the local transformation of bit flipping for the
problem MAX-SAT satisfies the definition of a neighborhood.
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The most famous neighborhood for TSP is the so-called 2-Exchange
neighborhood (Figure 7.3). The simplest way to define it is to describe the cor-
responding local transformation. A 2-Exchange local transformation consists
of

1. removing two edges {a,b} and {c,d} with |{a,b,c,d}| = 4 from a given
Hamiltonian tour o that visits these 4 vertices in the order a,b, ¢, d, and
2. adding two edges {a,d} and {b,c} to c.

We observe (Figure 7.3) that the resulting object is again a Hamiltonian
tour and that the edges {a,b} and {c,d} cannot be exchanged by edges other
than {a,d} and {b,c} if one wants to get a new Hamiltonian tour.

C: _____ b a b
et 3 c d
Fig. 7.3.

Exercise 7.20. Does 2-Exchange satisfy the conditions of Definition 7.187
Give formal arguments for your answer.

Exercise 7.21. Let H be a Hamiltonian tour in a graph G. Remove three
edges {a,b}, {c,d} and {e, f} such that |{a,b,c,d, e, f}| = 6 and H visits these
6 vertices in the order a,b,c,d, e, f. Draw all possible triples of edges whose
addition to H results again in a Hamiltonian tour. How many possibilities are
there, if k edges forming a matching are removed for k > 37

The local search with respect to a neighborhood is nothing other than
an iterative movement in M(z) from a feasible solution to a better feasible
solution. This iterative procedure stops when it reaches a feasible solution f
whose neighbors are not better than 3. Thus, one can present the scheme of
the local search as follows.

Local Search Scheme according to a neighborhood Neigh
LS(Neigh)

Input: An input instance z of an optimization problem U.
Phase 1. Find a feasible solution a € M(z)
Phase 2.
while a is not a local optimum according to Neigh, do
begin
find a B € Neigh, (), such that
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cost(B) < cost(a) if U is a minimization problem, and
cost(B) > cost(a) if U is a maximization problem;
(6 =5
end
Output: «

We observe that LS(Neigh) always computes a local optimum with respect
to the neighborhood Neigh. If all local optima are also global optima, then the
local search guarantees solving the optimization problem. For instance, this
is the case for the minimum spanning tree problem, where the neighborhood
is determined by the local transformation of exchanging an edge.

If the costs of local optima do not differ too much from the cost of optimal
solutions, then one can use the local search for designing approximation algo-
rithms. This is the case for the maximum cut problem, MAX-CUT, defined
as follows. The input is a graph G = (V, E). Every pair (V;, V) with

ViuVa=Vand VNV =0

is a cut of G. The cost of the cut (V;,V3) is the number of edges leading
between the vertices from V; and Vs, ie.,

cost((V1,V2),G) = |[EN {{u,v} | u € V1,v € Va}|.

The goal is maximization. To define a neighborhood, we consider a local trans-
formation that moves a vertex from one side to the other side. Applying the
local-search schema for this neighborhood one obtains the following algorithm.

Algorithm LS-CUT

Input: A graph G = (V, E).
Phase 1. S =0.
{During the computation we always consider the cut (S,V — S). At the
beginning the cut is (0, V).}
Phase 2.
while there exists v € V such that
cost(S U {v},V — (SU{v})) > cost(S,V - S), or
cost(S — {v},(V = S) U {v}) > cost(S,V — S) do
begin
move v on the opposite side of the cut;
end

Output: (S,V —S).
Theorem 7.22. LS-CUT is a 2-approzimation algorithm for MAX-CUT.

Proof. Obviously, the algorithm LS-CUT computes a feasible solution for
MAX-CUT.
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It remains to show that
Ris-cut(G) <2

for every graph G = (V,E). Let (¥1,Y2) be the output of LS-CUT. Since
(Y1,Y2) is a local minimum with respect to moving a vertex from one side
to the other side, every vertex v € Y; [V2] has at least as many edges to the
vertices in Y [Y1] as the number of edges from v to vertices'* in Y; [Y2]. This
simple counting argument assures that the cut (Y1,Y2) contains at least half
of all edges in G. Since Optyn-cur(G) cannot exceed |E|,

Optyin-cut(G) < |E| Uity
cost((Y1,Y2)) ~ |E|/2

Ris-cur(G) =

Exercise 7.23. Prove that LS-CUT is a polynomial-time algorithm.

Exercise 7.24. Consider the so-called maximum weighted cut problem,
MAX-WEIGHT-CUT, which is the following generalization of MAX-CUT.
An input of MAX-WEIGHT-CUT is a graph G = (V,E) and a weight func-
tion ¢ : E — IN, that assigns the weight c(e) to every edge e. The cost of a
cut is the sum of the weights of all edges in the cut. The goal is to find a cut
with the maximal cost. Clearly, MAX-WEIGHT-CUT is an integer problem.
Design a local-search algorithm for MAX-WEIGHT-CUT that would be a
pseudopolynomial 2-approximation algorithm.

Algorithms based on the local search are also called local algorithms. Local
algorithms are more or less determined by the choice of a neighborhood. The
only free parameters of the local search scheme are

1. the strategy of searching for better neighbors, and

2. the decision whether to accept the first better neighbor found or to ul-
timately estimate one of the best solutions in the neighborhood as the
successive feasible solution.

Assuming P # NP, there are no polynomial-time local algorithms for NP-
hard optimization problems. We observe that the time complexity of a local
algorithm can be roughly estimated as

(the time of searching in the neighborhood)

x (the number of iterative improvements).

Now, the following question is of interest.

For which NP-hard optimization problems does a neighborhood
Neigh of a polynomial size exist such that LS (Neigh) always computes
an optimal solution?

14 In the opposite case the vertex v would be moved to the other side.
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This means that we are willing to accept an exponential number of iterative
improvements in the worst case, if every iteration runs in polynomial time
and the convergence to an optimal solution is guaranteed. The idea behind
this is that increasing the size of a neighborhood on the one hand decreases
the probability of getting stuck in a poor local optimum, but on the other
hand, increases the time complexity of an iteration. The question is whether
a neighborhood of a reasonable size exists such that every local optimum is a
global optimum too. This question can be formalized as follows.

Definition 7.25. Let U = (X1, X0,L, M, cost,goal) be an optimization
problem and let Neigh be a neighborhood for U. The neighborhood Neigh is
said to be exact if, for every x € L, every local optimum for x with respect
to Neigh,, is an optimal solution for x.

A neighborhood Neigh is called polynomial-time searchable!® if there
is a polynomial-time algorithm!® that, for every z € L and every a € M(z),
finds one of the best feasible solutions in Neigh,(a).

Thus for an optimization problem & € NPO, our question can be reformulated
in the terminology of Definition 7.25 as follows:

Does an ezact polynomial-time searchable neighborhood exist for
u?e

A positive answer to this question means that the hardness of the problem
from the local search point of view is in the number of iterative improve-
ments needed to reach an optimal solution. In many cases, it means that local
search may be suitable for /. For instance, if U is an integer-valued opti-
mization problem, then the existence of a polynomial-time searchable exact
neighborhood Neigh usually implies that LS(Neigh) is a pseudopolynomial
algorithm'” for U. The famous positive example is the Simplex algorithm for
linear programming. It is based on the existence of an exact, polynomial-time
searchable neighborhood, but one cannot exclude the necessity of exponen-
tially many iterative improvements.

A negative answer to this question implies that no polynomial-time search-
able neighborhood can assure the success of local algorithms in searching for
an optimal solution. Hence, one can at most try to obtain a local optimum in
polynomial time in such a case.

15 Note that if a neighborhood is polynomial-time searchable, this does not neces-
sarily mean that this neighborhood is of a polynomial size.

16 Note that we consider optimization problems from NPO only, and hence any algo-
rithm working in polynomial time according to || is a polynomial-time algorithm
according to |z| too.

17 For an integer-valued problem, any iterative step improves the solution cost at
least by 1 and the cost of any solution is usually bounded by the sum of all input
values.
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Exercise 7.26. Let k-Exchange be the neighborhood for TSP, in which k
edges may be exchanged when moving from a Hamiltonian tour to another
one. What is the cardinality of the neighborhood k-Exchange(H) of a Hamil-
tonian tour H when G has n vertices?

Exercise 7.27* Prove that, for any positive integer k, k-Exchange is not an
exact neighborhood for TSP.

Our next aim is to introduce a technique that can be successfully applied
for proving the nonexistence of exact, polynomial-time searchable neighbor-
hoods for concrete optimization problems. Again, we will see that the concept
of NP-hardness works for this purpose.

Definition 7.28. Let U = (21, X0, L, M, cost, goal) be an integer-valued op-
timization problem. We say that U is cost-bounded, if for every instance x
with Int(z) = (41,%2,...,0n), i EN for j=1,2,...,n,

n
cost(a) € ¢ 1,2,.. .,Zij
j=1

for every feasible solution o € M(z).

We observe that almost all known integer-valued optimization problems
are cost-bounded and hence this requirement does not place any serious re-
striction on the applicability of the following method.

Theorem 7.29. Let U € NPO be a cost-bounded integer-valued optimization
problem. If P # NP and U is strongly NP-hard, then there does not exist any
ezact, polynomial-time searchable neighborhood for U.

Proof. We give an indirect proof of Theorem 7.29. Assume that U possesses an
exact, polynomial-time searchable neighborhood Neigh. Then for any input
z, one iteration step of LS(Neigh,) can be executed in a polynomial time
of p(|z|). Since U € NPO, the initial feasible solution can also be computed
in a polynomial time. In every iteration step of LS(Neigh,) the cost of the
actual feasible solution is improved by at least 1, because the costs of feasible
solutions are integers. Moreover, all possible costs are from the integer interval

from 0 to Z j < |z| - MaxInt(z)
j€Int(z)

because U is a cost-bounded integer-valued optimization problem. Conse-
quently, the number of iterative improvements is bounded by

|z| - MaxInt(z).

Therefore, the overall time complexity of LS(Neigh) is in
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O(p(|«]) - |2| - MaxInt(z)).

Since Neigh is an exact neighborhood, LS(Neigh) computes an optimal
solution for z. Hence LS(Neigh) is a pseudopolynomial algorithm for I. Since
U is strongly NP-hard, the existence of a pseudopolynomial algorithm for U/
contradicts the assumption P # NP (Theorem 7.7). 0

In Chapter 6 we proved that TSP and MAX-CL are strongly NP-hard.
We observe that both problems are cost-bounded, integer-valued optimization
problems. Hence they do not possess any exact, polynomial-time searchable

neighborhood. One can even prove that there is no exact neighborhood of size
297 for TSP.

7.5 Simulated Annealing

In this section we introduce simulated annealing as a heuristic for solving
hard optimization problems. The term heuristic in the area of combinatorial
optimization is ambiguously specified and is used with different meanings. A
heuristic algorithm in a very general sense is a consistent algorithm for an
optimization problem that is based on some transparent, usually simple idea
of searching in the set of all feasible solutions, and that does not guarantee
finding any optimal solution. In this context people speak about local search
heuristics, or a greedy heuristic, even if these heuristics provide approxima-
tion algorithms. In a narrow sense considered here, a heuristic is a technique
providing a consistent algorithm for which nobody is able to prove that it
provides feasible solutions of a reasonable quality in a reasonable time (for
instance, polynomial time), but the idea of the heuristic seems to promise
good behavior for typical instances of the optimization problem considered.
Despite its lack of any general assurance of a reasonable behavior, heuris-
tics became very popular and widely used. Two main reasons for this are:

1. Heuristics are usually simple and hence easy to implement and test. Thus
the investment for developing a heuristic algorithm is usually much lower
than the cost of designing technical, very specialized algorithms for the
given problem.

2. Heuristics are robust, which means that a heuristic can successfully work
for a large class of problems, even if these problems have very different
combinatorial structure. The consequence is that a change of the prob-
lem specification during the process of algorithm design does not cause
any serious problems. Usually it is sufficient to change or readjust a few
parameters of the heuristic. For the design of a very specific problem-
oriented optimization algorithm, a change of the problem specification is
often accompanied by an essential change of the combinatorial structure
that requires to move back to the very beginning of the algorithm design.
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If one applies local search for a hard problem and is unable to analyze
the behavior of the resulting algorithm, then one can consider local search as
a heuristic. We see that it has the property of robustness because it can be
applied to almost any optimization problem and there is no doubt about its
simplicity. The main drawback of local search is that it finishes the work in a
local optimum, regardless of how good or bad it is. Our next aim is to improve
the local search method by enabling the departure from a local optima, in order
to search for a better solution. The idea is to mimic the physical optimization
based on the laws of thermodynamics.

In condensed matter physics, annealing is a process for obtaining low-
energy states of a solid in a thermal bath. This process can be viewed as an
optimization process in the following sense. At the beginning, one has a solid
material with a number of imperfections in its crystal structure. The aim is
to get the perfect structure of the solid, which corresponds to the state of
the solid of minimal energy. The physical process of annealing consists of two
steps.

1. The temperature of the thermal bath is increased to a maximum value at
which the solid melts. This causes all the particles to arrange themselves
randomly.

2. The temperature of the thermal bath is slowly decreased according to
a given cooling schedule until a low-energy state of the solid (a perfect
crystal structure) is achieved.

The crucial point is that this optimization process can be successfully mod-
eled by the so-called Metropolisalgorithm that can be viewed as a randomized
local search. In what follows, for a given state s of the solid, E(s) denotes the
energy of this state. The Boltzmann constant is denoted by cg.

Metropolis Algorithm

Input: A state s of the solid with energy E(s).
Phase 1. Choose the initial temperature T of the thermal bath.
Phase 2.
Generate a state g from s by applying a perturbation mechanism,
which transfers s into ¢ by a small random distortion (for
instance, by a random displacement of a small particle).
if E(q) < E(s) thens:=g¢q
{accept ¢ as a new state}

else accept g as a new state with the probability
__E(9)—E(s
prob(s 2 ¢g) =e =T ;

{i.e., remain in the state s with the probability
1 — prob(s — q)}
Phase 3.
Decrease T' appropriately.
if T is not too close to 0 then goto Phase 2;
else output(s);
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First of all, we observe a strong similarity between the Metropolis algo-
rithm and the local search scheme. To move from the current state s, one
considers only a small, local change in the description of s so as to generate
g. If the generated state ¢ is at least as good as s (or even better), then q is
considered as the new state.

The main differences between the Metropolis algorithm and the local
search scheme are:

(i) The Metropolis algorithm may accept a deterioration with the probability

_E(q)—E(s
prob(s +¢q) =e 8T

(i) The value of the parameter T' decides the termination of the Metropolis
algorithm while the local optimality is the criterion for stopping in the
local search scheme.

The probability prob(s — ¢) obeys the laws of thermodynamics that claim
that at temperature T, the probability prob(AE) of an increase in energy of
magnitude AE is given by

prob(AE) = e T,

This probability is essential for proving the convergence of the Metropolis
algorithm to an optimal state. For our applications, the most important prop-
erties of prob(s — q) are:

(i) The probability prob(s — ¢) of the movement from the state s to the
state ¢ decreases with increasing E(q) — E(s), i.e., large deteriorations are
less probable than small deteriorations.

(ii) The probability prob(s — ¢) increases with T, i.e., large deteriorations
are more probable at the beginning (when T is large) than later (when T'
becomes smaller and smaller).

The crucial point is that one allows deteriorations in order to get a pos-
sibility of leaving local optima. Without allowing deteriorations, one cannot
guarantee the convergence to an optimum. More precisely, this means that at
the beginning (when T is high), it is possible to overcome “high hills” around
very deep local optima in order to reach some deep valleys, where later only
some not too deep local optima are left. Intuitively, this optimization approach
can be viewed as a recursive procedure in the following sense. First, one climbs
to the top of a very high mountain and looks for the most promising areas
(deep valleys). Then one goes to such an area and recursively continues to
search for the minimum in this area only.

If one aims to use the strategy of the Metropolis algorithm in combina-
torial optimization, then one has to use the following one-to-one correspon-
dence between the terms of thermodynamic optimization and combinatorial
optimization.
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the set of system states = the set of feasible solutions
the energy of a state = the cost of a feasible solution
perturbation mechanism = a random choice of a neighbor
an optimal state = an optimal feasible solution
temperature = a control parameter
The simulated annealing algorithm is a local-search algorithm that is based
on the analogy to the Metropolis algorithm. If one fixes a neighborhood f
for a minimization problem U = (X, Lo, L, M, cost, Minimum), then the
simulated annealing algorithm can be described as follows.

Simulated Annealing for Y with respect to f
SA(f)

Input: A problem instance z € L.

Phase 1. Compute a feasible solution o € M(zx).
Select an initial temperature 7.
Select a temperature-reduction function g as a mapping of two parameters
T and the number of iterations I (time).

Phase 2.
k=10
while T' > 0 (or T is not too close to 0) do
begin
choose randomly a f from f.(a);
if cost(B) < cost(a) then a := f;
else
begin
generate a random number 7 uniformly in the range
[Oa 1] H
nla s k<l e_ﬂ@%ﬂﬂ then a := (;
end
I:=1+1;
T :=g(T, D);
end
end
Output: a.

Taking a “reasonable” neighborhood, and selecting an appropriate tem-
perature 7' and temperature-reduction function g, one can prove that SA(f)
converges to an optimum. The problem is that the number of iterations needed
to reach an optimum cannot be bounded. Even attempts to give a guarantee
of a good approximation ratio by SA(f) led to situations in which one needs
more iterations of SA(f) than |M(z)| in order to assure a reasonable ap-
proximation ratio. Nevertheless, there are many applications where simulated
annealing provides acceptable solutions and, due to its small implementation
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costs, it is preferred over other methods. Another positive property of sim-
ulated annealing is that the choice of the parameters T' and g and of the
termination criterion can be left to the user. Therefore the user alone can
decide about the priorities with respect to the tradeoff between the running
time and the solution quality.

7.6 Summary

Algorithm design techniques are crucial for the success in solving hard prob-
lems, because the quantitative jumps in the requirement on computer re-
sources (for instance, from an exponential-time complexity to a polynomial
one) are not achievable by any improvements in hardware technologies. To
get efficient algorithms for hard problems, one has to pay on the level of re-
quirements attached to the problem specification. Either one reduces the set
of feasible inputs to a subclass to typical'® inputs (i.e., one does not solve
the problem in its general formal setting) or one solves the problem without
the guarantee of always getting the correct or optimal solution. The art of
algorithm design is in getting a big gain on the level of efficiency by paying a
small “discount” on the level of problem setting (requirements).

Pseudopolynomial algorithms run in polynomial time on instances of in-
teger problems, where the values of the integers are polynomial in the in-
put length. One can design a pseudopolynomial algorithm for the knapsack
problem. The concept of NP-completeness is also helpful here for proving the
nonexistence of pseudopolynomial algorithms for concrete problems under the
assumption P # NP.

Approximation algorithms are algorithms for optimization problems, that
provide feasible solutions whose costs do not differ too much from the costs
of optimal solutions. One can design approximation algorithms for the metric
TSP, MAX-VC, and MAX-CUT. If P # NP, then there is no approximation
algorithm for the general TSP. This negative result can be again obtained by
a suitable application of the NP-hardness concept.

For an optimization problem, the local search scheme starts with an arbi-
trary feasible solution and tries to get a better solution by iteratively improv-
ing the current solution. One iteration consists of searching for a neighbor of
the actual solution a that is better than « itself. The neighbors of a feasible
solution « are defined by applying local transformations to @, where a local
transformation may change only a local part of the specification of a. Local
algorithms end always in a local optimum with respect to the neighborhood
(allowed local transformations). Since the costs of local optima may essen-
tially differ from the costs of optimal solutions, local search does not provide
any guarantee for the quality of the solutions computed for many problems.
Simulated annealing is a heuristic that is based on local search, but allows

18 With respect to the application considered
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the departure from local optima. Simulated annealing is robust and easy to
implement and hence it is commonly used in many applications.

The concept of pseudopolynomial algorithms for integer problems and of
strong NP-hardness stemmed from Garey and Johnson [19]. The pseudopoly-
nomial algorithm for the knapsack problem was designed by Ibarra and Kim
[34]. The first approximation algorithm was proposed by Graham [22]. Bock [6]
and Coes [15] present the first local-search algorithms. The concept of exact,
polynomial-time searchable neighborhood was introduced by Papadimitriou
and Steiglitz [50]. The Metropolis algorithm for the simulation of the anneal-
ing process was discovered by Metropolis, A.W and M.N. Rosenbluth, A.M.
and E. Teller [46]. The idea of applying the Metropolis algorithm in combina-
torial optimization was independently presented by Cerny [8] and Kirkpatrick,
Gellat and Vecchi [37].

A systematic survey of methods for solving hard problems is given in [30].
For further reading on different algorithm design techniques, we strongly rec-
ommend Papadimitriou and Steiglitz [50], Cormen, Leiserson and Rivest [14]
and Schoning [63]. Extensive sources about the theory of approximation al-
gorithms are Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela and
Protasi [1], Hochbaum [26], Mayr, Promel and Steger [45] and Vazirani [69].




The tissue of the world
is built from necessities and randomness;
The intellect of men places itself between both
and can control them;
It considers the necessity
as the reason of its existence; j
it knows how randomness can be
managed, controlled, and used ...
J. W. von Goethe

8

Randomization /

8.1 Objectives

The notion of “randomness” is one of the most fundamental and most dis-
cussed terms in science. The fundamental question is whether randomness
really exists or do we use this term only to model objects and events with
unknown lawfulness. Philosophers and scientists dispute about the answer to
this question since ancient times. The opinion of Demokrit was that

the randomness is the unknown,
and that the nature is determined in its fundamentals.

Thus, Demokrit asserted that order conquers the world and that this order is
governed by unambiguous laws. In contrast to Demokrit, Epikur claimed that

the randomness is objective,
it 1is the proper nature of events.

Before the 20th century, the worldly view of people was based on causal-
ity and determinism, because of religions and later optimism caused by the
success of natural sciences and mechanical engineering.

This belief in determinism also had emotional roots, because people related
randomness to chaos and uncertainty, which were always connected with fear,
so the possibility of random events was not accepted. Even Albert Einstein
blamed randomness on insufficient knowledge and claimed that each random-
ized model of physical reality could be exchanged for a deterministic one, if
the appropriate knowledge is discovered. The development of science (espe-
cially, physics and biology) in the 20th century returned the world to Epikur’s
view on randomness. Experimental physics confirmed the theory of quantum
mechanics, whose core is based on random events.

Today, evolutionary biology considers the random mutation of DNA as a
crucial instrument of the evolution. A nice, modern view on randomness is
given by the Hungarian mathematician Alfréd Rényi.
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Randomness and order do not contradict each other; more of less, both
may be true at once The randomness controls the world and due to
this in the world there are order and laws, which can be expressed in
measures of random events that follow the laws of probability theory.

For us as computer scientists, it is important to realize that it can be very prof-
itable to design and implement randomized algorithms and systems instead of
completely deterministic ones. This realization is nothing other than the ac-
ceptance of nature as a teacher. It seems to be the case that nature always uses
the most efficient and simplest way to achieve its goal, and that randomization
of a part of the control is an essential concept of nature’s strategy. Computer
science practice confirms this viewpoint. In many everyday applications, sim-
ple randomized systems and algorithms do their work efficiently with a high
degree of reliability and we do not know any deterministic algorithms that
would do the same with a comparable efficiency. We even know of examples
where the design and use of deterministic counterparts of some randomized
algorithms is beyond physical limits. This is also the reason why currently one
does not connect the tractability (the class of practically solvable problems)
with deterministic polynomial time, but with randomized polynomial time.

In this chapter, we do not aim to present the fundamentals of the design
and analysis of randomized algorithms and the complexity theory of ran-
domized computations, because this would require too much knowledge in
probability theory, complexity theory, algebra, and number theory. Instead,
we prefer to present three simple examples of randomized algorithms that
transparently explain the randomization concept and even help to build the
intuition why randomization may be more powerful than any deterministic
control.

This chapter is organized as follows. We present some elementary fun-
damentals of probability theory in Section 8.2. In Section 8.3 we design a
randomized communication protocol for comparing the contents of two large
databases, that is substantially more efficient than any deterministic commu-
nication protocol for this purpose. Section 8.4 uses the randomized protocol
designed in Section 8.3 in order to introduce the method of abundance of wit-
nesses as a paradigm of the design of randomized algorithms. We apply this
method once again to show how an efficient randomized algorithm for primal-
ity testing can be developed. Note that primality testing is one of the most
important decision problems of current practice and that we do not know of
any efficient! deterministic algorithm for this task. In Section 8.5 the finger-
printing method as a special case of the method of abundance of witness is
presented. We apply this method to efficiently decide the equivalence of two
polynomials. As usual, we close this chapter with a short summary.

1 Note that recently [44] a first deterministic polynomial-time algorithm for primal-
ity testing has been discovered. This result is of enormous theoretical importance,
but the time complexity of the algorithm is in O(n'?) and so it is not practical.
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8.2 Elementary Probability Theory

If an event is an inevitable consequence of another event, then one speaks
of causality or determinism. As already mentioned in the introduction, there
may exist events that are not completely determined. Probability theory was
d§veloped in order to model and analyze situations and experiments with am-
biguous outcomes. Simple examples of such experiments are tossing (flipping)
a coin or rolling a 6-sided dice. If there is no (apparent) possibility of predicting
the outcome of such experiments, then one speaks of random events. When
modeling a probabilistic experiment, one considers all possible outcomes of
the experiment, called elementary events. From the philosophical point of
view it is important that these elementary events are atomic. Atomic means
that an elementary event cannot be viewed as a collection of other? events of
the experiments and so one elementary event excludes any other elementary
events. For the tossing of a coin, the elementary events are “head” and “tail”.
For the rolling of a 6-sided dice the elementary events are “1”, “2”, “3”, “4”,
“5” and “6”. An event is a set of elementary events (i.e., a subset of the set
of elementary events). For instance, {2,4,6} is an event of dice rolling, that
corresponds to rolling an even number. Since elementary events can be also
considered as events, we represent elementary events as one-element sets.

In the following we consider only experiments with finitely many elemen-
tary events, which increases the transparency of the next definition. Our aim
now is to develop a reasonable theory that assigns a probability to every
event. This aim was not easy to achieve. The probability theory took almost
300 years to advance from the works of Pascal, Fermat and Huygens in the
middle of the 17th century to the currently accepted axiomatic definition of
probability by Kolmogorov. Limiting the set S of elementary events to a finite
set here is helpful in removing the technicalities connected with a possible un-
countability of S in the general definition of Kolmogorov. The basic idea is to
define the probability of an event E as

the ratio between the sum of probabilities of (favorable) ele-
mentary events involved in E to the sum of the probabilities of (8.1)
all possible elementary events.

Fixing the probability of events in the above way one standardizes the
probability values in the sense, that the probability 1 corresponds to a certain
event® and the probability 0 corresponds to an impossible (empty*) event.

Another important point is that the probabilities of elementary events
unambiguously determine the probabilities of all events. For symmetric ex-

periments such as tossing a coin, one wants to assign the same probability to
all elementary events.

2 Even more elementary

3 To the event S consisting of all elementary events
4 (alled also null event



254 8 Randomization

Let Prob(E) be the probability of an event E. In our model the result of the
experiment must be one of the elementary events, hence we set Prob(S) o 1
for the set S of all elementary events. Then, for the rolling of a 6-sided dice,

we have
Prob({2}) + Prob({4}) + Prob({6})

Prob({2,4,6}) =

Prob(S)
= Prob({2}) + Prob({4}) + Prob({6})
L Al L
AT

i.e., the probability of getting an even number is exactly 1 /2. Following the
concept (8.1) of measuring probability, we obtain

Prob(X UY) = Pmb(gr)oz (I;;"b(y)

= Prob(X) + Prob(Y)

for all disjoint events X and Y. These considerations result in the following
axiomatic definition of probability.

Definition 8.1. Let S be the set of all elementary events of a probability
ezperiment. A probability distribution on S is every function

Prob : P(S) — [0,1]

that satisfies the following conditions (probability azioms):

(i) Prob({z}) > 0 for every elementary event z,

(ii) Prob(S) = 1, and :
(iii) Prob(XUY') = Prob(X)+Prob(Y) for all events X,Y C S with XNY = 0.
Prob(X) is called the probability of the event X. The pair (S, Prob) is
called a probability space. If

Prob({z}) = Prob({y})

for all z,y € S, Prob is called the uniform probability distribution on
S,

Exercise 8.2. Prove that the following properties hold for every probability
space (S, Prob):

(i) Prob(0) = 0.
(i) Prob(S — X) = 1 — Prob(X) for every X C S.
(iii) Prob(X) < Prob(Y), for all X,Y C S with X C Y.
(iv) Prob(X UY) = Prob(X) + Prob(Y") — Prob(X N V)
< Prob(X) + Prob(Y) for all X,Y C S.
(v) Prob(X) = 3, cx Prob(z) for all X C S.
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We observe that all properties from Exercise 8.2 correspond to our intu-
ition, and hence to the informal concept (8.1) of probability. Thus the addition
of probabilities corresponds to the idea that the probability of several pair-
wise exclusive (disjoint) events is the sum of the probabilities of these events.

To what does the multiplication of two probabilities correspond? Con-
sider two probabilistic experiments that are independent in the sense that the
result of an experiment has no influence on the result of the other experi-
ment. An example of such a situation is the rolling of a dice twice. It does
not matter, whether one rolls two dice at once or whether one uses the same
dice twice, because the results do not influence each other. For instance, the
elementary event “3” of the first roll does not have any influence on the re-
sult of the second roll. We know that Prob(i) = & for both experiments and
for all i € {1,2,...,6}. Consider now joining both probabilistic experiments
into one probabilistic experiment. The set of elementary events of this joined
experiment is

SZ = {(Z’]) | 7‘7.7 € {1521"'76}}’

where for an elementary event {(i, )} of Sa, 7 is the result of the first roll and j
is the result of the second roll. What is the fair probability distribution Prob,
on Sy, that can be determined from the basic experiment({1,2,...,6},Prob)?
We consider our hypothesis that the probability of an event consisting of two
fully independent events is equal to the product of the probabilities of these
events, so

1ER | 1

Proba({(i,)}) = Prob({i}) - Prob({j}) = ¢ - ¢ = 35
for all 4,5 € {1,2,...,6}. We verify the correctness of this hypothesis. The set
Sy contains exactly 36 elementary events and each of these elementary events
is equally probable. Hence

Proby ({(i,5)}) = ==
for all (z,7) € Ss.

Exercise 8.3. Let k be a positive integer. Let (S, Prob) be a probability space
where Prob is a uniform probability distribution over S = {0,1,2,...,2%¥—1}.
Create (S, Prob) from k coin tossing experiments.

It remains to explain how the probability theory can be used to model,
design, and analyze randomized algorithms. One possibility is to start with
the model of an NTM with finite computations and replace each nondeter-
ministic branching (guess) by a random experiment. This means that for a
nondeterministic choice from k possibilities one considers the k possibilities as
k elementary events each of probability % Then the probability of a compu-
tation is the product of probabilities of all random decisions of this computa-
tion. Let Sa,s be the set of all computations of an NTM (a nondeterministic
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program) A on an input z. Assigning the probability Prob(C') to any compu-
tation C from S4 . in the above-described way, one obtains the probability
space (S4,z,Prob).

Exercise 8.4. Prove that (S4 ., Prob) is a probability space.

The sum of the probabilities of the computations from S4,, with a wrong
output for the input z is called the error probability of the algorithm
A on an input z, denoted Error4(z). The error probability of the
algorithm A is defined as a function Errors : IN — IN with

Error 4 (n) = max{Errors(z) | |z| = n}.

Modeling randomized algorithms by probabilistic experiments can also be
used for analyzing the probability® that a computation of A on z finishes in
at most t(n) steps for a given function ¢, hence judging the efficiency of a
randomized algorithm.

Another simple possibility of modeling randomized algorithms is to con-
sider a randomized algorithm as a probability distribution over a set of de-
terministic algorithms. This corresponds to the idea of giving a TM A (of a
deterministic algorithm) an additional tape containing a sequence of random
bits as an addition input. Each sequence of random bits determines unambigu-
ously a (deterministic) computation of A on the given input z. Considering
the random bit sequences as elementary events corresponds to considering the
set Sa,, of all computations of A on z as the set of elementary events. Usually,
all random sequences have the same probability, so the randomized algorithm
is a uniform probability distribution over all computations from S4 ;. The ex-
amples of randomized algorithms presented in the next sections are based on
this simple modeling of randomized control. In these examples the sequences
of random bits are viewed as random numbers (primes) that decide the choice
of a deterministic strategy for solving a given problem.

8.3 A Randomized Communication Protocol

The main aim of this section is to show that randomized algorithms can be
much more efficient than their most efficient deterministic counterparts. Con-
sider the following task. We have two computers C1 and Cr; that are very
far apart (for instance, one in Europe and the other one in America). Origi-
nally, both computers contained the same database, but then they developed
independently with the aim of getting the complete information about the
database subject (for instance, genome sequences) in both locations. After
some time, we want to check whether this process is successful, i.e., whether

5 This probability is nothing other than the sum of the probabilities of all compu-
tations shorter than ¢(|z|) + 1.
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C1 and Cy; contain the same data. Let n be the size of the database in bits.
For instance, n can be approximately 10¢, which is realistic for biological
applications. Our goal is to design a communication protocol between Ci and
Cn that is able to determine whether the data saved in both computers are
the same or not. The complexity of the communication protocol is the number
of bits that has to be exchanged between Ci and Cfyr in order to solve this
decision problem, and obviously we try to minimize this complexity.

One can prove that every deterministic communication protocol solving
this task must exchange at least n bits® between C and Ciy, i.e., there exists
no deterministic protocol that solves this task by communicating n — 1 or
fewer bits. Sending 10'6 bits and additionally assuring that all arrive safely”
at the other side is a practically nontrivial task, so one would probably not
do it in this way.

A reasonable solution can be given by the following randomized protocol,
which is based on the prime number theorem (Theorem 2.67).

R = (C1,C1) (Randomized Communication Protocol for Equality)

Initial situation: Ct has a sequence z of n bits, z = z; ...z,
C11 has a sequence y of n bits y = y1 ... Yn.

Goal: Determine whether x =y or z # y.

Phase 1. C chooses uniformly a prime p from the interval [2,n%] at random.
{Note, that there are approximately Prim (n?) ~ n?/Inn? primes in this
interval, and hence [log, n?] < 2 - [log, n] random bits are sufficient for
this choice (representation).}

Phase 2. C1 computes the number

" s = Number(z) mod p

and sends the binary representation of s and p to Cir.

{Since the binary representations of s and p consist of at most [log, n?]

bits (s < p < n?), the length of the message is at most 4 - [log, n]. }
Phase 3. After reading s and p, Ci1 computes the number

q = Number(y) mod p.

If q # s, then Cpy outputs “x # y”.
If ¢ = s, then Ciy outputs “z = y”.

Now, we analyze the work of R = (C1,Cr1). First we look at the complex-
ity measured in the number of communication bits and then we analyze the
reliability (error probability) of R = (Ct, Chr).

8 This means that sending all data of C; to Cy for the comparison is an optimal
communication strategy.
7 Without flipping a bit



258 8 Randomization

The only communication of the protocol involves submitting the binary
representations of the positive integers s and p. As we have already observed,
s < p < n?, hence the length of the message is at most

2 [logy n*] < 4- [logy n].

For n = 10, the binary length of the message is at most 4-16-[log, 10] = 256.
This is a very short message that can be safely transferred.

Now we not only show for most inputs (initial situations) that this ran-
domized strategy works, but also that the probability of providing the right
answer is high for every input. Analyzing the error probability we distinguish
two possibilities with respect to the real relation between z and y.

(i) Let z = y. Then
Number(z) mod p = Number(y) mod p
for all primes p. Therefore, Ci1 outputs “equal” with certainty, i.e., the
error probability is equal to 0.

(ii) Let = # y. One obtains the wrong answer “equal” only if Ct has chosen a
prime p such that

z = Number(z) mod p = Number(y) mod p.

This means that
Number(z) = z' - p+ z and Number(y) =y’ -p+2
for some natural numbers 7’ and y'.
This implies that
Number(z) — Number(y) =2’ -p—y'-p=(a' —¢') - p,
i.e., p divides the number
w = | Number(z) — Number(y)|.
Thus, the protocol R = (C1, Ci1) outputs a wrong answer only if the chosen
prime p divides w. The prime p is randomly chosen from the Prim (n?)
primes from {2,3,...,n%} with respect to the uniform probability distri-

bution. Thus, to estimate the error probability it is sufficient to estimate
how many primes from these

Prim (n?) ~ n?/Inn’?
primes can divide w. Since the length of the binary representations of z
and y is equal to n,
w = | Number(z) — Number(y)| < 2.

Obviously,? we can factorize w to get

8 We know from elementary number theory that every positive integer has a unique
factorization.
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where p; < po < -+ < py are primes and 41,19, ..., are positive integers.
Our aim is to prove
k<n-1.

We prove it by contradiction. Assume k > n. Then
W PR D 20D a2 s 208 o i RLS R,

which contradicts the fact that w < 2™. In this way we have proved that w
has at most n—1 different prime factors. Since every prime in {2, 3, ...,n%}
has the same probability of being chosen, the probability of choosing a
prime p dividing w is at most

n-1 n-1 Inn?
Prim (n*] “'nela” 4

for sufficiently large n.
Thus the error probability of R for two different inputs = and y is at most

Inn?

n
which is at most 0.36892 - 10~ for n = 10'.

An error probability of this size is no real risk, but let us assume that
a pessimist is not satisfied with this error probability and wants to have an
error probability below all physical limits. In such a case one can execute the
work of the protocol R = (Ci,Chr) ten times, always with an independent,
new choice of a prime.
Protocol Rqg
Initial situation: Cp has n bits z =z ...z, and Cyy has n bitsy = y1 ... yn.
Phase 1. Cp chooses uniformly 10 random primes

P1,D2,.--,P10

from {2,8,...;n%}.
Phase 2. C1 computes
8; = Number(z) mod p;

for s =1,2,...,10 and sends the binary representations of

D1,D2,.-.,P10,51,82,---,510

to Cii.
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Phase 3. Upon receiving pi, P2, - - -, P10, 81,52, - -, 510, Ch1 computes

g; = Number(y) mod p;

foridi =2, 10,

If there exists an i € {1,2,...,10} such that g; # si, then Cn1 outputs
“y # y”. Else (if ¢; = s; for all j € {1,2,...,10}), then Ci1 outputs
“x — y”.

We observe that the communication complexity of Ry is 10 times larger

than those of R. But for n = 106, the message consists of at most 2560 bits,
which is no issue for discussion.

What is the gain with respect to the error probability?

If z = y, then we have again the situation that the protocol Rio provides
the right answer “z = y” with certainty, i.e., the error probability is 0.

However, if £ # y, Rio outputs the wrong answer “z = y” only if all 10
chosen primes belong to the maximal n — 1 primes that divide the difference

w = | Number(z) — Number(y)|.

Since the 10 primes are chosen in ten independent experiments, the error
probability is at most

PO IO Tk Inn2\"® 210.(Inn)0
—_— < R
Prim (n?) TR n0

For n = 109, the error probability is smaller than

DATIT 10T

If one takes into account that the number of microseconds since the big bang
is a number of 24 digits, and that the number of protons in the known uni-
verse is a number of 79 digits, an event with a probability below 107'*! is a
real wonder. Note that also in the case when a deterministic protocol com-
munication 1016 would be executable, the costs speak clearly in favor of the
implementation of the above randomized protocol.

We can learn a lot from the construction of the protocol R that consists of
independent repetitions of R. We see that the error probability of an algorithm
A can be substantially pushed down by executing several independent runs of
A. In cases such as the above communication protocol, even a few repetitions
result in an enormous decrease in the error probability.

Exercise 8.5. Let k be a positive integer. Consider the protocol Ry that is
based on the choice of k primes (i.e., on k independent runs of R). Estimate
the error probability of Ry as a function of k.
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Exercise 8.6. Another approach for decreasing the error probability is to
change R for a protocol @, r € IN — {0, 1,2}. The protocol @, works exactly
as R, except it randomly chooses a prime from the set {2,3,...,n"} instead of
taking it from the set {2,3,...,n%}. Estimate the communication complexity
and the error probability of @, for each positive integer r > 2.

Exercise 8.7. Let § > 1 be a positive integer. Design a randomized protocol
for the comparison of two databases of size n that works with an error proba-
bility of at most 1/8. Which of the two approaches from Exercises 8.5 and 8.6
is more efficient with respect to the communication complexity? Is it better
to choose a few small primes or one large prime?

8.4 Abundance of Witnesses and Randomized Primality
Testing

In this section we first aim to explain (or at least provide an intuition) why the
randomized protocol R is exponentially more efficient than any deterministic
protocol solving the same task. We show that we have designed the protocol
R by a simple application of the method of abundance of witnesses. We now
introduce this method of abundance of witnesses.

Consider an arbitrary decision problem, where the task is to decide whether
a given input has a specific property or not. Assume there exists no efficient
algorithm for this problem (or at least, no efficient algorithm for this decision
task has yet been successfully designed). Applying the method of abundance
of witnesses, one starts with the search for a suitable definition of a witness. A
witness (see Definition 6.43) has to be an additional information to an input,
which is helpful for efficiently proving that the input has the required property
or that the input does not have the required property. In the design of the
protocol R, a prime p is the witness of z # y if

Number(z) mod p # Number(y) mod p.

If one has an oracle that provides such a p, then one can efficiently prove
that “z is different from y”. Obviously, one does not have such an oracle, but
the main point is that one cannot efficiently compute such a witness because
it would result in an efficient deterministic algorithm for the hard decision
problem. To design an efficient randomized algorithm we need a set of witness
candidates for any input and this set of candidates has to contain sufficiently
many witnesses.

In the example of the protocol R, the witness candidates are the

Prim (n?) ~ n?/lnn?
many primes from the interval [2, n2]. From these Prim (n?) candidates, there

are at least Prim (n?) — (n—1) witnesses of “z # y” for any pair-wise different
inputs z and y.
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Hence, the probability of choosing a witness from the set of witness can-

didates is at least Y

L — (n—1 Inn?
In n2? nz(’ ) 21_ nn .
In n2 %

This is very favorable because this value is very close to 1. But even in a
situation where the probability of choosing a witness is only 1/2, the abun-
dance of witnesses is still more than sufficient. It is enough to simply choose a
few candidates at random. In this way the probability of getting at least one
witness grows quickly.

Now, we ask how is it possible that we are unable to find a witness effi-
ciently in a deterministic way, when there are so many witnesses in the set of
witness candidates. An approach would be to try to systematically check the
set of candidates in such a way that a witness would be found in a short time.
But the kernel of the problem is that, for each input, the distribution of wit-
nesses among the candidates may be completely different. For each proposed
search strategy, one can always find inputs where this strategy fails.?

Let us consider our previous example. Here, we can even prove that no
strategy exists for C1 and Cir to efficiently find a witness for any input (z,y).
We omit the presentation of the technical proof of this fact, but we can give a
transparent idea by considering a simple search strategy that looks for primes
in the order from the smallest one to the largest one. Clearly, after n probes,
the strategy finds a witness because there are at most n — 1 nonwitnesses.
Unfortunately n probes cause the communication complexity n - 4 - log, n,
which is more than sending all bits of C; to Cr;. Why is there no assurance of
finding a witness after a few probes of this strategy? Because for inputs (z,v)
with

Number(z) — Number(y) =py -pa- -+ - pg,

where k = N_OZW and p; < pa -+ < py are the smallest primes, the strategy
needs k+1 probes to find a witness. One can easily imagine that for any other
denumeration of primes one can find inputs that require many probes in order
to find a witness.

The method of abundance of witnesses is a successful and powerful method
for designing randomized algorithms. Efficient randomized primality testing'®
is one of the exemplary applications of this method. The best-known determin-
istic algorithms for primality testing would need billions of years for checking
numbers of sizes typical for the current cryptographic applications. Explaining
how to define suitable witnesses for primality testing is a too complex task
for this introduction. Instead we will only solve a subproblem of primality
testing. We show how to design a randomized algorithm that tests primality
for all odd numbers with odd 251.

® Is not efficient enough
1 Note that primality testing belongs to the most fundamental algorithmic tasks of

enormous practical importance.
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First, let us explain what the term “efficient” means for number theoretical
problems. For a number n, the input size of n is [log, n]. This means that a
polynomial-time algorithm for primality testing must have a time complexity -
that is polynomial in log, n. In many applications, one needs to test numbers
of several hundred digits (for instance, log;on ~ 500) and hence one can
accept neither an exponential nor a high degree polynomial complexity.

The naive deterministic algorithm that checks whether a number from
{2,3,..., [v/n]} divides the given number n is of exponential-time complexity
in log, n (at least of \/n = 2b‘322‘") For this approach, a witness of the fact “p
is composite” is every positive integer m > 1,m # p, that divides n. But such
witnesses'! are not sufficiently abundant in general. When n = p - q for two
primes p and g, then there are only two witnesses p and q of the compositeness
of n and the number of candidates is at least £2(/n). Therefore, one has to
look for another definition of witnesses.

Theorem 8.8. Fermat’s Theorem
For every prime p and every natural number a with ged(a,p) =1,

a®! mod p=1.

Proof. We use the fact that every positive integer has a unique factorization.
Since p is a prime, we have

c-d mdp=0sc modp=0ord modp=10 (8.2)

for all natural numbers ¢ and d.

Let a be an arbitrary positive integer with ged(a,p) = 1. Consider the
numbers

m1=1-a, m2=2-a,

We claim that

’mP—lz(p—l)'a“

my mod p #m, mod p

for all w,v € {1,...,p— 1} with u # v. We prove this by contradiction.
Assume

my, mod p =m, mod p

for some u,v € {1,...,p— 1}, u > v. Then p divides the number
My —My =uU-a—v-a=(u—v)-a.

But this is not possible because

(i) u—v < p, so p cannot divide u — v, and
(ii) ged(a,p) = 1, and hence p cannot divide a.

! That are based on the classical definition of primes
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Therefore
|[{m1 mod p, my; modp, ..., mp_; modp}|=p—1.

Now, we claim that each number m; mod p is different from 0 (i.e., that
p does not divide any m;). Assume the opposite

my modp= (u-a) modp=0
for a u. Applying (8.2), we obtain
u mod p=0ora modp=0.

But the prime p divides neither u nor a, because u < p and ged(a,p) = 1.
Hence

{m; mod p,my; modp,...,mp_1 modp}={1,2,...,p—1}. (8.3)
Now, consider the number
Mm=my Mg~ Mp_1.
(From the definition of m;, we get
m=1-a-2-a-+--(p=1)-a=1-2---- -(p—1)-a L. (8.4)
The set equality (8.3) implies
m modp=1-2-----(p—1) mod p. (8.5)
The equalities (8.4) and (8.5) imply
e -(p—l)-a”’l modp=1-2-----(p—1) mod p,

ie.,
1

aP7 'mod'p = 1.

The following assertion strengthens Fermat’s theorem.

“p is a prime” < a"T mod p € {1,p— 1}
foralla e {1,...,p—1}.

This assertion provides a new definition of primes. Following this defini-
tion, one can obtain the following new kind of witnesses of compositeness.

A number a € {1,...,n — 1} is a witness of the compositeness of
naf g
az modn¢ {1,n—1}.
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The following theorem shows that for odd composite numbers n with odd
”T*l, one has an abundance of witnesses of n’s compositeness.

Theorem 8.9. For every odd positive integer n with odd “T‘l (i.e., with
n mod 4 = 3),

(i) if n is a prime, then
0™ modn € {1,n—-1} foralla € {1,...,n—1} and
(%) if n is composite, then
a™7 modn ¢ {l,n-1}
for at least half of the numbers a from {1,...,n — 1}.

Exercise 8.10* Prove Theorem 8.9.

In this way, for any composite number m with m mod 4 = 3, the prob-
ability of choosing a witness of m’s compositeness is at least % To be really

satisfied with this concept of witnesses, one still has to fix that a"* modn
can be efficiently computed. Obviously, one cannot do it by —";—1 multiplica-
tions with a because the time complexity would be exponential in [log, n].
If one has to compute a’® mod p for b = 2*, then one can do it easily with &
multiplications by the following method of repeated squaring:

a’ modp=a-a mod p,

a4 2

mod p = (a®> mod p) - (a> mod p) mod p,

a® mod p = (a* mod p) - (a* mod p) mod p,

@ modp=(a®" modp)? mod p.

Let us consider the general case, where

k
bi= Z b; - Ve
i=1

(i.e., b = Number(bgbg—1...b1)) for a k € IN — {0} and b; € {0,1} for i =
1,...,k. Then, we can express a’ as

.90 9l
b 51-2° | bo2!

2 k—1
a:=iq Bl | . gbkd T

a

Note, to compute a® mod p, one first computes all numbers

a; =a® modp
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by repeated squaring. After that one computes the product mod p of all num-
bers a;, for which b; = 1. Applying this approach for computing a™z modn
for ana € {1,...,n—1} has the advantage that during the whole computation
one works with numbers from {0,1,...,n — 1} only, i.e., with numbers whose
binary representation length is at most [log, n]. The number of multiplica-

tions of such numbers in the computation of a™%" mod n is smaller than

n

-1
2 - [log, 5 1 € O(logy n).

Taking the logarithmic cost measurement of time complexity, the complexity
of the whole computation is in O((log, n)?).

In this way we obtain the following efficient randomized algorithm for
primality testing.

Solovay—Strassen algorithm

Input: An odd number n with odd ﬂg—l-

Phase 1. Choose uniformly at random an a € {1,2,...,n — 1}.
Phase 2. Compute z := a"7" (mod n).
Phase 3.

if z € {1,n — 1} then output (“prime”);
else output (“composite”);

Let us now analyze the error probability of this randomized primality
testing.
If n is a prime, then Theorem 8.9 (i) claims that

& 5 (modn) € {1,n -1}

for all @ € {1,...,n — 1} and hence the output of the algorithm is always
“prime”, i.e., the error probability is 0.

If n is composite, Theorem 8.9 (ii) asserts that a uniformly chosen a €
{1,2,...,n — 1} is a witness of n’s compositeness with a probability of at
least % Hence, the error probability is at most % This error probability is
clearly too large. But independently choosing twenty numbers ay, . . . , ago from
{1,...,n — 1} at random instead of one, and giving the answer “prime” only
if

n=1
a;? modne {1,n—1}

2

for all i € {1,...,20}, one reduces the error probability to

1 -6

(2—2‘6 < 10%,
Exercise 8.11. Let k > 2,k € IN. How far can one reduce the error probabil-
ity of the Solovay—Strassen algorithm by k independent runs? Present careful

arguments for your answer.
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8.5 Fingerprinting and Equivalence of Two Polynomials

In Section 8.3 we have applied the method of abundance of witnesses in order
to design an efficient randomized communication protocol for the compari-
son of two large numbers Number(z) and Number(y). This special kind of
abundance of witnesses application is also called fingerprinting and it can be
generally described as follows.

Fingerprinting Method

Task: Decide the equivalence of two objects O; and O, whose complete rep-
resentation is very large.

Phase 1. Let M be a “suitable” set of mappings from the full descriptions
of considered objects to a partial representation (fingerprint) of these ob-
jects.

Choose a mapping h from M at random.
Phase 2. Compute h(O1) and h(O2).
h(O;) is called the fingerprint of O; for i =1, 2.
Phase 3.
if h(01) = h(O2) then output “O; and O, are equivalent” ;
else output “O; and O, are not equivalent” ;

For the designed randomized protocol in Section 8.3, O; and O, are two
large numbers of n bits (n = 1016). The set M was

{hp | hp(m) = m mod p for all m € IN, pis a prime, p < n?}.
For a randomly chosen prime p,
hy(01) = O1 mod p and h,(03) = O3 mod p

are the fingerprints of O; and O,, respectively.

The main idea of this method is that h,(O;) has a substantially shorter
representation than O;, so the comparison of h,(01) and hy(0s) is signifi-
cantly simpler than the direct comparison of O; and O,. But this gain can be
achieved only if h,(O;) is not a full description of O;, so one has to take into
account the possibility of a wrong decision. The rest of the idea is based on the
method of abundance of witnesses. The set M is the set of candidates for wit-
nesses of the nonequivalence of O; and O,. If, for any pair of objects (O, 0s),
there are many'? witnesses of “O; # O,” in M, then one can suppress the
error probability to an arbitrary small size.

The art of applying the fingerprinting method is based on a convenient
choice of the set M. On the one hand, the fingerprints have to be as short as
possible in order to make their comparison efficient. On the other hand, they

!2 With respect to |M|
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have to contain as much information about the objects as possible!3 in order
to suppress the probability of losing vital information that distinguishes two
objects in their fingerprints. Therefore, an algorithm designer has to take care
with the tradeoff between the compression degree from O to h(O) and the error
probability. In Section 8.3 we succeeded in getting an error probability tending
towards 0 with growing input size, and gaining a logarithmic compression from
O to h(0).

Next, we consider an equivalence problem for which no deterministic
polynomial-time algorithm is known and that can be solved efficiently by
fingerprinting. The problem is to decide on the equivalence of two polynomi-
als of several variables over a finite field Z,, for a prime p. Two polynomials
Piley yorirs Tn) a0 PalZ1, 06 ,,) are said to be equivalent over Zp, if for all

(ala"‘)an) & (Zp)n’
Pl(al,...,an)EPz(al,...,an) (mod p).

One does not have any polynomial-time algorithm for this problem. A
naive observer may deny this by pointing out that the comparison of two
polynomials is easy because it it simply done by comparing the coefficients
of the corresponding terms. We know that two polynomials P; and P are
identical if and only if the coefficients of P, are the same as those of P». But,
the real problem is that in order to perform this coefficient comparison, one
has to first transform the polynomials in their normal form. The normal form
of a polynomial of n variables z1,Z2,...,Tn and a degree'* d is

d:bind d
SR i
E E E (AR gl L

11=012=0 in=0

However the input polynomials for our equivalence test may be in an arbitrary
form, for instance, as

P(:cl,zz,xg,u,xs,xﬁ) = (z1 + 562)10 (23 — $4)7 - (x5 + z6)20-

Applying the binomial formula

n
@ et = () ok o
k=

0

it is obvious that P(z1,Z2,T3,T4,Ts, z6) has exactly 10-7-20 = 1400 terms
with nonzero coefficients. Thus the normal form of a polynomial can be ex-
ponentially longer than its input representation and hence, in general, one

13 This is the reason for the name of this method, because fingerprints are considered
to be almost an unambiguous means of identification.

14 The degree of a polynomial of several variables is the maximum of degrees of
particular variables.
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cannot compute the normal form from a given form in polynomial time. If
one wants to be efficient, one has to find a way of comparing two polynomi-
als without creating their normal forms. To do this, we apply the method of
fingerprinting. L.et Pi(zy,...,z,) and Py(zy,...,2,) be polynomials over the
ﬁ;eld Z,, for a prime p. We say that an a = (a1,...,an) € (Zp)" is a witness
0
“Pl(.’tl, A ,.’L'n) ¢ P2(.’E1, “es ,:En)”
if
Pi(a1,...,a,) mod p # Py(ay,...,a,) mod p.

In the language of fingerprints

ho(P1) = Pi(04,...,a,) mod p

is the ﬁngerprint of P;. The above definition of a fingerprint (of a witness of
nonequivalence) directly specifies the following randomized algorithm.

Algorithm AQP

Input: A prime p and two polynomials P; and P, over n variables zi,...,z,
for a positive integer n and of a degree of at most d for a d € IN.
Phase 1. Choose randomly!® an a = (a1,...,an) € (Zp)™.
Phase 2. Compute the fingerprints
ho(P1) = Pi(a,...,0,) mod p, and
ha(Pz) = PQ(Oll, wibe ,an) mod D
Phase 3.
if ha(P;) = ha(P,) then output “P; = P”;
else output “P; # B”;

Now we analyze the error probability of the algorithm AQP. If P, and P,
are equivalent over Z,, then

Pi(ai,...,a,) = Py(aq,...,a,) (mod p)

for all (a1,as,...,an) € (Zp)". Hence, the error probability for inputs Py
and P, with P, = P; is equal to 0.

Let P; and P, be two polynomials that are not equivalent over Z,. We
show that if p > 2nd, then the error probability of AQP is smaller than %
The question whether

Pl(.’L'l,. dis ,.’En) = Pz(.’tl, o ,.'L'n)
is equivalent to the question whether

Qs 8 Ve iB (T . vy T, = Pollai iy ) = 0

i . !
5 With respect to the uniform probability distribution over (Z,)™
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This means that if P; and P are not equivalent then the polynomial @ is not
identical to 0 (zero polynomial). Now, we show that the number of roots ofa
polynomial @ # 0 over n variables and of a degree d is bounded. This means
that there are sufficiently many witnesses a € (Zp)™ with

Q(a) 0 (mod p) (i.e., Pi(a) # P2(a) (mod D)).

We start with the well-known theorem about the number of roots of polyno-
mials over one variable.

Theorem 8.12. Let d be a nonnegative integer. Every polynomial P(z) of a
single variable x over any field and of degree d has either at most d roots or
is equal to 0 everywhere.'®

Proof. We prove this claim by induction with respect to the degree d.

(i) Let d = 0. Then P(z) = c for a constant c. If ¢ # 0, then P(z) does not
have any root.

(ii) Assume that Theorem 8.12 holds for d — 1, d > 1. Now we prove this for
d. Let P(x) Z 0 and let a be a root of P. Then

P(z) = (z - a) - P'(2),

where P'(z) = (%(_% is a polynomial of degree d — 1. Following the in-

duction hypothesis P'(z) has at most d — 1 roots. Therefore P(z) has at
most d roots.

0O
Now we are ready to prove that there are sufficiently many witnesses'”

of the nonequivalence of different P; and P, over Z, for a sufficiently large
prime p.

Theorem 8.13. Let p be a prime, and let d, and n be positive integers. Let
Q(z1,...,2zn) Z 0 be a polynomial over Z, in n variables z1,...,n, where
each variable has degree of at most d in Q. Then, Q has at most

n-d-p"!

T00tSs.

Proof. We prove Theorem 8.13 by induction with respect to the number n of
variables in Q.

(i) Let n = 1. Then Theorem 8.12 implies that @(z1) has at most
d=n-d-p" ! (forn=1)

roots.

16 Ts a zero polynomial
17 Nonroots of Q(z1,...,Zn) = Pi(z1,...,2Zn) — P2(T1,...,%n)

3.0 Fingerprinting and Equivalence of Two Polynomials 271

(ii) Assume that the assertion of Theorem 8.13 is true for n — 1, n € IN — {0}.
We prove it for n. We can express @ as

Q(zl,zg,...,a:n) =Q0($2,...$n)+$1 'Ql(.’L'g,...,z‘n)-{-...
it Raldos s e isin)

d
= Zx} WG (st T )
1=0

for some polynomials

Qo((Ez,...JTn), Ql(ﬂ?g,...,zn), oo il Qd(xz,...,lln)‘

If Q(ay,z,...,a,) = 0 (mod p) for an a = (aq,...,an) € (Z,)", then

either

(a) Qi(az,...,an) =0 (modp) for all : = 0,1,...,d, or

(b) there exists a j € {0,1,...,d} with Q;(az,...,a,) # 0 (mod p) and
a; is a root of the polynomial.

Q(z1) = Qo(az,...0n) + cQ1(ag,...,an) + ...
+zf-Qd(a2,...,an)

in the variable z;.
Now we count the number of roots in cases (a) and (b) separately.
(a) Since Q(z1,...,z,) # 0, there exists a k € {0, 1,...,d}, such that

Qr(z2,...,z,) 0.

The induction hypothesis implies that the number of roots of Qy is at
most

(n—1)-d-p™ 2.
Hence, there are at most (n—1)-d-p"~2 elements @ = (az,...,an) €
(Z,)"!, such that
Qi(a) =0 (mod p)
for all © € {0,1,2,...,d}. Since the value a; of z; does not have

any influence on the condition (a), a; can be chosen arbitrarily from
{0,1,...,p— 1}. Thus there are at most

p-(n-1)-d-p"2=(n-1)-d-p"!

elements a = (a1, as,...,an) € (Z,)" that have the property (a).
(b) Since Q(z1) # 0, the polynomial @ has at most d roots!® (i.e., at most
d values oy € Z, with Q(ay) = 0 (mod p)). Therefore, there are at
most
d: pn——l

values'® a = (a1, a9,...,0,) € (Z,)", that satisfy the property (b).

18 Theorem 8.12

19
Note that the values ai,as,..., o, can be chosen arbitrarily.
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Combining (a) and (b), Q(z1,--.,Zn) has at most

(n—l)'d'pn—l-l'd'pn-l'—‘ﬂ'd'pn—l

roots.

O

Corollary 8.14. Let p be a prime, and let n and d be positive integers. For
every polynomial Q(z1,...,Tn) # 0 over Zy of degree at most d, the number
of witnesses of “Q #Z 07 is at least

(1_u) e
p

Proof. The number of elements in (Zp)" is exactly p” and Theorem 8.13
implies that at most n-d- p"~ ! of them are not witnesses. Hence, the number
of witnesses is at least

-d

|

Thus the probability of choosing uniformly a witness of “Q # 0” at random
from p" elements of (Zp)" is at least

(-52)

For p > 2nd, the probability of choosing a witness is at least 1/2. By
executing several independent random choices from (Z,)", the probability of
finding at least one witness of @ # 0 (i.e., of Py (ereis segl o Bolaeshs Tn))
can be brought arbitrarily close to 1.

For some applications of the algorithm AQP, it is important that the prime
p can be appropriately selected. This degree of freedom can be achieved in
situations when one can reduce an equivalence problem to the comparison of
two polynomials without giving any requirements on the field over which the
polynomials are considered.

8.6 Summary

One can view a randomized algorithm as a nondeterministic algorithm with 2
probability distribution over every nondeterministic choice or as a probability
distribution over a set of deterministic algorithms. Random control is a na-
ture of physical and biological processes. Its main characteristics are simplicity
and efficiency. This is the case also in algorithmics, where simple randomized
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algorithms are often much more efficient than their best deterministic coun-
terparts.

Designing a communication protocol for the comparison of the contents of
two databases we have an instructive example of the power of randomization.
The complexity of the best possible deterministic protocol for this task is
exponential in the complexity of the randomized protocol presented. The idea
behind the design of this randomized protocol is based on the method of
abundance of witnesses. A witness is an additional information to the input,
such that a witness allows one to efficiently compute the result despite the
fact that no efficient deterministic approach?® (without the use of a witness)
for solving the problem is known. For a successful application of this method
it is important to be able to find a set of witness candidates, such that the
set of witnesses is a nonnegligible portion of it.”! Then, one can get a witness
by a (repeated) random choice from the set of witnesses. The reason why one
is unable to find a witness efficiently in a deterministic way, lies in the highly
irregular (random) distribution of witnesses among the candidates. Because
of this chaotic structure of the set of witness candidates, every deterministic
search strategy risks a large number of false attempts. The art of using this
method is in the search for a suitable definition of witnesses. We have shown
how to define witnesses for a randomized primality testing algorithm that
works for all odd numbers n with odd Qi;—ll The presented definition of a
witness for compositeness can be extended to work for any positive integer.

A special case of the method of abundance of witnesses is the method of
fingerprinting for solving equivalence problems. The idea is to assign a fin-
gerprint (a short, but involved/relevant partial description) to any complex®?
object and thus reduce the equivalence test to the efficient comparison of
fingerprints. The randomly chosen mappings from complex objects to their
fingerprints play the role of witnesses in this scenario. Using fingerprinting
one can develop an efficient (polynomial-time) randomized test for the equiv-
alence of two polynomials. This is of interest because one does not know of
any polynomial-time deterministic algorithm for this equivalence problem and
there are several other equivalence problems of practical importance that can
be reduced to the comparison of two polynomials.

Motwani and Raghavan provide a most exhaustive overview of the de-
sign of randomized algorithms in their seminal work [48]. Unfortunately, this
excellent monograph can barely be recommended for beginners because of a
nontrivial degree of the hardness of the topic. An introduction to the design
of randomized algorithm is given in Chapter 5 of [30, 32]. More information
about randomized protocols is presented in [29, 31]. Sipser [65] provides a
very transparent presentation of an application of the randomized algorithm
testing the equivalence of two polynomials for solving the problem of semantic

20 Or even no efficient approach exists
21 Te., such that there are many witnesses among the candidates
22 Or to an object of a very long full representation
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comparisons of two data structures used for the representations of Boolean
formulae. An impressive survey on ideas and concepts related to the develop-
ment of randomized algorithms is given by Karp [36].

The first randomized polynomial-time algorithms for primality testing
were discovered by Solovay and Strassen [53], Miller [47] and Rabin [54, 55].
In summer 2002, a fascinating breakthrough was achieved by Agrawal, Kayal
and Saxena [44], who designed a deterministic polynomial-time algorithm for
primality testing. This algorithm works in time O((log, n)'?) for any input?3
n, so it cannot be considered as a serious competitor to the randomized algo-
rithms?* for real applications.

23 Recall that the input length for a positive integer n is [log,(n +1)].
24 Running in time O((log, n)?)




Your idea is really crazy.
The principal question is,
whether it is crazy enough
to could be truth.

N. Bohr N~

Communication and Cryptography

9.1 Objectives

In the last century theoretical computer science mainly focused on the inves-
tigation of the sequential computing models that fit the framework given by
von Neumann. What are the main problems of future computer science inter-
est? Computer networks confront users not only with a particular computer,
but also with an unclear, complex interconnected world full of asynchronous
and unpredictable actions. The current understanding of computing in the
interconnected world is not very deep and improving it is one of the main
research tasks in computer science.

The manifoldness of research questions arising in the relation to distribu-
tive computing — cooperation and communication between computers, pro-
cesses, and men — can hardly be presented in a short survey. For instance,
the problems related to the design and analysis of communication algorithms
(protocols) and to the design of reliable and capable networks depend strongly
on the available technologies. These technologies rapidly developed from clas-
sical telephone networks to optical networks and every new technology opens
up a new world of optimization and design problems. Since we do not see any
possibility of giving a short, understandable overview of this topic, we restrict
ourselves to presenting an instructive example of an interconnection network
design in order to at least illustrate the problem formulations and techniques
used in this area. The main focus of this chapter is on cryptography, which
deals with the problems of secure communication in networks.

Our first objective is to provide the fundamental concepts of cryptography
that aim to design cryptographic protocols (encryption methods) that assure
that the messages exchanged over worldwide publicly accessible computer
networks are

1. kept confidential (nobody can read them, except the right receiver), and
2. protected against manipulation.
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We do not present these basic concepts of cryptography only because of their
enormous importance in current practice.! The concept of modern cryptogra-
phy is a natural continuation of concepts and ideas developed in the previous
chapters of this book, especially the concepts of complexity theory, algorith-
mics for hard problems, and randomization. Moreover, cryptography is one
of the fields that produces surprising, to some extent counterintuitive? results
that open impressive possibilities considered before to be unrealistic dreams.
Thus, cryptography is exactly the computer science discipline that can fas-
cinate and consequently win the interest of young people for the study of
theoretical computer science much more than any other area of computer
science does.

This chapter is organized as follows. Section 9.2 is devoted to the introduc-
tion of the concept of classical cryptosystems. Section 9.3 presents the concept
of the public-key cryptosystems and illustrates it with the famous RSA cryp-
tosystem. In Section 9.4 we show how to use public-key cryptosystems for
designing communication protocols for digital signatures. In Section 9.5 the
concepts of interactive protocols and zero-knowledge proof systems are in-
troduced in order to learn how one can verify mathematical proofs without
reading them. Finally, Section 9.6 presents the design of a capable communi-
cation network as solving of a particular optimization task.

9.2 Classical Cryptosystems

Cryptology is the name of the science (teachings) of secret writing. In cryptol-
ogy, we distinguish between cryptography and cryptoanalysis. Cryptography
is devoted to the design of cryptosystems, while cryptoanalysis is devoted
to the art of attacking cryptosystems (illegally intercepting messages). Here,
we deal with cryptography only. The considered scenario is presented in Fig-
ure 9.1.

. ke ke :
plain- o crypto- 4 plain-
cryptoanalyst

Fig. 9.1.

A person, called the sender, aims to send a secret message to another
person, called the receiver. The secret message can be represented as a text,

! Digital signatures, E-commerce, electronic elections, etc.
2 In the sense of being in contradiction with the present experience
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called a plaintext. There is no other possibility besides communicating the
secret through a publicly accessible network, where one cannot exclude the
possibility that other persons can “listen” to the communication messages of
the network. To exclude the possibility that an unauthorized person listening
to the message learns about the secret, one sends the message in an encrypted
form. The kind of encryption (decryption) is a common secret between the
sender and the receiver, and the encryption is performed using the so-called
key. The encrypted text is called the cryptotext. The cryptotext is sub-
mitted via the public network. Upon receiving the cryptotext, the receiver
decrypts the cryptotext and obtains the original plaintext.
Formally, a cryptosystem is a triple (K, A, S), where

(i) K is the set of all allowed (feasible) plaintexts,
(ii) A is the set of all possible cryptotexts, and
(iii) S is the set of keys.

Often, K = X™ for a positive integer m and an alphabet Y. The meaning is
that the plaintext has to be partitioned into blocks® of length m and every
block is then encrypted separately. In such a case, we usually also have A4 = I'*
for a positive integer k and an alphabet I.

Every key a € S unambiguously determines a one-to-one mapping E,
from K to A. Thus, the encryption corresponds to computing E,(z) for a
plaintext z € K and the decryption corresponds to computing EZ!(c) for a
cryptotext ¢ € A. Usually, one uses D, to denote the function E! (inverse
to Ey).

The common requirements on a cryptosystem are:

(i) The functions E, and D, have to be efficiently computable.
(i) Without the knowledge of a, it should be “hard”* to compute the plaintext
z from a given cryptotext E,(z).

CAESAR is probably the simplest cryptosystem. The set IC of plaintexts
as well as the set A4 of cryptotexts is the set of all words over the Latin
alphabet with 26 symbols.® The set of keys S is {0,1,2,...,25}. For a given
key k € S, the encryption consists of replacing every symbol of the plaintext
for the symbol that is k steps to the right in the alphabetical order. If the end
of the alphabet is reached, one continues cyclically from the beginning.

For instance, if k¥ = 3, then given the plaintext

CRYPTOGRAPHYISFASCINATING,
one obtains the cryptotext

FUBSWRJUDSKBLVIDVFLQDWLQJ.

3 Words of length m.
4 At least in the sense of the complexity theory

® One can also consider K and A to be the Latin alphabet. Then the basic plaintext
blocks have length 1, i.e., consist of 1 symbol.
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Obviously the corresponding decryption is to go k symbols to the left in the
alphabet. This cryptosystem is weak. If one knows that the cryptosystem used
is CAESAR, then the cryptoanalyst simply tries all keys. This means that a
cryptosystem with a small number of keys is useless in practice. The number
of possible keys should be at least so large that trying all keys would be in-
tractable. CAESAR can be improved by considering keys from {0,1,...,26}™
for a sufficiently large positive integer m. For a key

a=01,02,...,0np

one partitions the plaintext into blocks of length® m and replaces the i-th
symbol of each block by the symbol being a; positions after this symbol in
the alphabetical order. If @ = 3,1, 6, then one gets for the plaintext

TP IO R AT Y
3163 1716/ 3" 11786, ST 6

the cryptotext
FLSTEISIITE JESI @ SN

This cryptosystem can be cracked too. For instance, the knowledge about
the statistical density of the occurrence of particular symbols in texts of a
natural language considered can be helpful for attacking such cryptosystems.
But, there are also classical cryptosystems that are fast in encryption as well as
in decryption, which nevertheless cannot be cracked given the current knowl-
edge. The drawback of the classical cryptosystems is that they are usually
based on a common secret between the sender and the receiver. Knowledge of
the encryption mechanism directly implies knowledge of the decryption mech-
anism.” The consequence is that the sender and the receiver have to agree on
a fixed key (secret) before using the cryptosystem, hence before having any
secure channel for exchanging this secret. The main topic of the next section
is how to solve this problem.

9.3 Public-Key Cryptosystems and RSA

The classical cryptosystems introduced in Section 9.2 are also known as sym-
metric cryptosystems, because the knowledge about the encryption [decryp-
tion] procedure provides the knowledge about the decryption [encryption] pro-
cedure. Due to this the sender and the receiver are equivalent and share a
common secret. Besides the problem of having to agree on the common se-
cret key without the help of any secure channel, symmetric cryptosystems
have one other drawback. If one has a communication system with several

6 That is, K and A are sets of words of length m over the alphabet.
7 Often, the keys for the encryption and for the decryption are the same.
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parties, then one traitor is sufficient to break the security of the entire secret
communication exchange.

The revolutionary idea of the public-key cryptography overcoming the
above-mentioned drawback is based on the following complexity-theoretical
consideration. One searches for a one-way function f that has the following
properties:

(i) f can be efficiently computed.
(i) f~! cannot be efficiently computed.
(iii) f=* can be efficiently computed if one knows a special secret (called a
trapdoor) which is analogous to the term witness (certificate) used in
the previous chapters.

If the receiver has a one-way function f, then she/he can publicize f
and each sender can use f to encrypt messages for this receiver. Through the
publication of f (for instance, in a telephone list), property (ii) of f guarantees
that nobody can decrypt the cryptotexts f(z). Only the receiver, who has a
trapdoor for f can compute f~! and thus decrypt the messages. Obviously,
such systems are not symmetric and because of the publication of f, we call
them public-key cryptosystems.

The question is whether such one-way functions exist at all. One could even
expect a negative answer because properties (i), (i), and (iii) together seem
somewhat contradictory. The following simple idea shows that the concept of
one-way function is not so crazy.

Table 9.1.

Name Telephone number
C|Cook 00128143752946
R|Rivest 00173411020745
Y|Yao 00127345912233
P |Papadimitriou 00372453008122
T |Turing 00192417738429
0|Ogden 00012739226541
R|Rabin 00048327450028
A|Adleman 00173555248001
P [Papadimitriou 00372453008122
H|Hopcroft 00013782442358
Y|Yao 00127345912233

Let us consider the following encryption mechanism. Every symbol will
be separately encrypted by a sequence of 14 digits. For every symbol of the
plaintext, one nondeterministically chooses a name from a telephone book
that begins with this symbol, and takes the corresponding telephone num-
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ber® as the encryption. Table 9.1 provides an example of the encryption of
the word “CRYPTOGRAPHY”. Despite the fact that the encryption pro-
cedure is nondeterministic and many different cryptotexts may be assigned
to a given plaintext, each cryptotext unambiguously determines the .original
plaintext. Now, the trapdoor of the receiver is a special telephone directory
that is sorted with respect to the telephone numbers and hence the receiver
can efficiently execute the decryption. Without the knowledge of the trapdoor
(i.e., without possessing the special telephone directory sorted with respect
to telephone numbers), the cost of decrypting one symbol corresponds to the
exhaustive search in an unsorted list, i.e., to the complexity, which is pro-
portional to the size of the telephone directory. Since the encryption method
can be published, one can view this cryptosystem as a game on a public-key
cryptosystem. We say “a game” only because anyone can sort the telephone
directory with respect to the numbers, hence obtaining the trapdoor for this
encryption function.

Thus, the above example cannot be seriously considered as a good candi-
date for a cryptosystem, but it shows that there may be a reasonable intuition
behind the notions of a one-way function and its trapdoor. The following def-
inition formalizes the notion of a one-way function in terms of computational
complexity.

Definition 9.1. Let ¥ and I" be alphabets. A function f : X* — I'* is called
a one-way function, if it satisfies the following properties:

(i) There exist constants ¢ and d from IN — {0}, such that for all z € X*,
1
Ll < lf@I < d ol

{ This means that |z| and |f(z)| are in a linear relation.}

(ii) The function f can be computed in polynomial time.

(iii) For every randomized polynomial-time algorithm A and every k € N—{0},
there ezists a constant na k, such that for alln > nag and a randomly
chosen w € X™, the probability’ that A(f(w)) = w is smaller than n=k.
{ This property assures that polynomially many independent runs of a raztl-
domized polynomial-time algorithm cannot provide the computation of f

with a constant error probability.}

Up till now, nobody has been able to prove for any concrete function that
it is'® a one-way function. This is related to the hardness of proving lolwer
bounds on the computational resources necessary for solving a problem, i.e.,

8 If the telephone number is shorter than 14 digits one adds leading 0s to get the
required 14 digits.

9 The probability is taken over the random choices of A as well as over the random
choice of w.

10 myen the existence of a one-way function has not been proved.

J.0 ublic-Key Lryptosystems and oA 201

proving!! property (iii) for f=. Nevertheless, we are aware of some plausible
candidates for one-way functions. The most famous ones are:

() The multiplication of two numbers, i.e., the computation f(z,y) = z - y.
Obviously f can be computed efficiently. The inverse function to f is
the factorization of a given number n. There is no known randomized
polynomial-time algorithm for factorization of a given number and this
problem is considered to be hard.!?

(ii) One can compute f(z) = a® mod n = b efficiently as already shown in
Chapter 8 using the method of repeated squaring. The inverse function
corresponds to solving the equality a® = b mod n, for given a, b and n.
This problem is called the discrete logarithm problem and it is considered
to be hard (not solvable in randomized polynomial time).

Next, we present the famous RSA public-key cryptosystem!® whose se-
curity is based on the assumption that factorization is hard. Let ged(a, b)
denote the greatest common divisor of numbers a, b € IN in what follows.

The receiver determines the encryption procedure and the decryption pro-
cedure by the following calculation. She/He generates two large!* random
primes p and ¢ and computes

n=p-qgand p(n)=(p-1)-(¢-1).

Here, ¢ is the so-called Eulerian function. For every positive integer n, ¢(n)
is the number of integers a from 1,2,...,n — 1 with ged(a,n) = 1.
After that the receiver randomly chooses a large d > 1, such that

ged(d, o(n)) = 1. (9.1

The equality 9.1 implies that d has a unique multiplicative inverse e. Thus
the receiver computes!® this e with the property

e-d mod p(n) = 1. (9.2)

The numbers n and e build the public key, and the numbers p, g, ¢(n),
and d are the secret keys of the receiver. This is also why p, ¢, and d are
randomly generated.

Now, we allow only numbers smaller than n as a plaintext. If the plaintext
is larger or represented in another way, one first has to transform it into a
sequence of digits of length [log,, n] — 1, then encrypt these digits separately.

! Remember that we are even unable to prove a weaker requirement that fir
cannot be computed in deterministic polynomial time.

1?2 The factorization is not known to be NP-hard and one does not even believe that
its hardness is so strong.

3 The name RSA come from the names of its inventors River, Shamir, and Adleman.

14 A few hundred digits long

15 Computing e can be done efficiently by the Euclidean algorithm.
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For a given number w € {0,1,...,m — 1} the encryption is given by the
encryption function
Een(w) = w®* mod n.

For a given cryptotext c, the decryption function is
Dgn(c) = ¢¢ mod n.

As previously shown in Chapter 8, the functions Ee, and Dy, are ef-
ficiently computable by the method of repeated squaring. With the help of
efficient randomized primality testing algorithms (see Section 8.4) one can
efficiently generate large random numbers. The number d is randomly cho-
sen. Then, one verifies whether ged(d, o(n)) = 1, i.e., whether d and ¢(n)
are coprimes. If not, one chooses another d and tests again. Since there is an
abundance of coprimes to ¢(n), the number d can be efficiently found. As al-
ready mentioned, e can be efficiently determined by the Euclidean algorithm.
Hence, the entire RSA public-key cryptosystem can be created efficiently.

We do not know of any efficient (randomized) algorithm capable of com-
puting one of the numbers p, ¢, ¢(n), and d for a given public key (e,n).
The knowledge of one of these four numbers p, ¢, ¢(n), and d is sufficient to
crack the RSA cryptosystem. There is also no efficient algorithm known that
can determine the plaintext = from the cryptotext Ee »(z) and the public key
(e,n).

Now, we want to show that RSA really works in the sense that

Dd,n(Ee,n(w)) =w

for all w < n. To prove that Dy, is the inverse function to E, , for arguments
from {0,1,...,n—1}, we need Euler’s theorem that is a generalization of the
Fermat’s theorem.

Theorem 9.2. Euler’s Theorem Let w and n be two positive integers with
ged(w,n) = 1. Let p(n) = |{a € {1,2,...,n} | ged(a,n) = 1}| be the Eulerian
number of n. Then

w?™ modn =1.

Euler’s theorem can be viewed as a consequence of the results of group theory
that

(i) the order of every element of the group divides the order of the group,
and
(i) the cyclic multiplicative group (Z/(n))* has the order p(n).

Following the definition of the order of an element of a group,

w® modn=1

holds for every w € (Z/(n))* with the order k.

J.o LI UDUC=IACY Ul ypPuLusystitlils allld 1w «0J

Since (i) implies
p(n)=Fk-b
for a positive integer b, one obtains

k-

w?™ modn = w*® modn

= (w* modn)® modn
={1)? imedn=1.

Exercise 9.3. Give an alternative proof of Euler’s theorem by generalizing
the proof of Fermat’s theorem (Section 8.4) restated below.

Let 1,Z2,...,Zy(n) € {1,2,...,n—1} be all numbers z; with the property
ged(z;,n) = 1. Then, for every a € {1,2,...,n — 1},

(azq mod n,azs mod n,...,az,,) mod n)
is a permutation of z1,Zs,...,ZTy(n)-
Now we are ready to prove the correctness of RSA.

Theorem 9.4. Let p,q,n,e, and d have the properties as described in the
construction of RSA. Then for all w < n

Dd,n(Ee,n(w)) = wed mod n = w.

Proof. Following the choice of d and e with respect to equalities (9.1) and
(9.2), we have

e-d=j-p(n)+1 (9.3)
for a j € IN — {0}. Thus we have to prove
w ™M+ modn =w (9.4)

for all w < n. We distinguish three possibilities with respect to the relation
between p, ¢ and w.

(i) Neither of the primes p,q divides w.
If p and q do not divide w and w < p- g, then

Hence the assumptions of the Euler’s theorem for n = p-q and w are
fulfilled. Therefore
w?™ modn =1

and consequently
w*™ modn = 1. (9.5)

If one multiplies both sides of equality (9.5) by w, one obtains the desired
equality (9.4).
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(i) Only one of the primes p and ¢ divides w.
Without loss of generality we assume that p divides w and ¢ does not
divide w. Fermat’s theorem'® implies

w?™! modg=1
and hence
w1 (=Y mod g =1, i.e.,w“’(“) modg=1.
Consequently,
wi*™ modg=1. (9.6)
Since p divides w, the equality (9.6) holds for modulo n = p- ¢ too, i.e.,
wi®*™ modn=1.

Multiplying this equality by w, we obtain the claim of the theorem.
(iii) Both primes p and q divide w.
This case cannot arise because p and ¢ are primes and p-q > w.

O

Public-key cryptosystems have many advantages compared with symmet-
ric cryptosystems. Besides those already mentioned, they are a basis for creat-
ing different communication protocols (for instance, digital signatures), that
cannot be built by symmetric cryptosystems. On the other hand, classical sym-
metric cryptosystems also have an important advantage over public-key cryp-
tosystems. Due to possible hardware implementations, the symmetric cryp-
tosystems are often hundreds of times faster than public-key ones. Thus, it is
common to use a public-key cryptosystem only for exchanging of the key of a
symmetric cryptosystem. The rest of the communication!” is then performed
using the symmetric cryptosystem.

9.4 Digital Signatures

To show some transparent applications of the public-key cryptosystems, ?ve
present two simple protocols for digital (electronic) signatures. From the ju-
ridical point of view, the handwritten signature is a form of authenticity guar-
antee. Obviously, one cannot provide handwritten signatures by electronic
communication. Moreover, we would like to have digital signatures that are
harder to forge than handwritten ones.

16 Note, that this is a special case of Euler’s theorem because ¢(q) = ¢ —1 for the
prime gq.
17 That is, the main part of the communication
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Consider the following scenario. A customer K wants to sign an electronic
document for her/his bank B. For instance, K has to give the bank B an
identity authentication for a money transfer from her /his account. One has the
following natural requirements on communication protocols for such digital
signatures.

(i) B must have a possibility of verifying the correctness of the digital sig-
nature of K, i.e., to authenticate K as the owner of the digital signature.
This means that both K and B should be protected against attacks by a
third party (a falsifier) F' who pretends to be K in a communication with
B

(ii) K must be protected against messages forged by B, who claims to have
received them properly signed from K. Furthermore, it means that B
cannot be able to forge the signature of K.

Exercise 9.5. Design a communication protocol for digital signatures that is
based on a symmetric cryptosystem and fulfills requirement (i).

Satisfying both requirements (i) and (ii) seems to be harder than satisfying
the requirement (i) alone, because requirements (i) and (ii) are seemingly con-
tradictory. On the one hand, property (i) requires that B has some nontrivial
knowledge about K’s signature for verification purposes. On the other hand,
property (ii) requires that B should not know so much about K’s signature
(especially about the signature procedure) as to be able to forge it.

The following simple solution to our problem is provided by public-key
cryptosystems.

The customer K has a public-key cryptosystem with an encryption func-
tion Ex and a decryption function Dx. The bank B knows the public encryp-
tion function Ex. Then K can sign a document as follows.

1. K computes Dg (w) for the document w and sends the pair (w, Dk (w))
to B.
9. B checks whether w = Ex (Dk (w)) with the help of the public key Exk.

Let us verify that this communication protocol satisfies our requirements.

(i) Since nobody except K can compute Dk (w), B is certain that K has
signed w. Moreover, since Eg is public, B also has the possibility of con-
vincing anybody'® that K has signed w with the pair (w, Dk (w))-

(ii) Requirement (ii) is also satisfied because knowing Ex and the pair
(w, Dk (w)) is not helpful for signing another document u by Dk (u).

Note that it is important that this electronic signature changes the entire text
w of the document, i.e., the signature is not only an additional text on the
end of the document.

18 Who knows Ex and is sure that Ex is the public key of K
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Exercise 9.6. The protocol presented above does not try to work with w as
a secret. Anybody listening to the communication can learn about w. The
following additional requirement (iii) can be essential for many applications.

(iii) A third party may not learn about the contents of the signed document,
even if it is able to listen to the entire communication.

Design a communication protocol that satisfies all three requirements (1), (i)
and (iii).

Now we consider a harder digital signature problem called the authenti-
cation problem. Here, one does not aim to sign a document, but rather to
convince somebody about her/his identity. The requirements on a communi-
cation protocol for the authentication are as follows:

(i’) as (i), and
(i") K should be protected against the activities of B, where B attempts to
convince!® a third party that she/he is K.

The above-presented communication protocol is not satisfactory for au-
thentication, because B learns the signature (w, Dk (w)) in this protocol and
can use it to convince a third party that she/he is K. Obviously, there are
situations where this is undesirable. Moreover, anybody listening to the com-
munication between K and B learns the signature (w,Dg(w)) of K too.
Then, the adversary, with the knowledge of Ex, can check the correctness of
the signature (w, Dk (w)) and use this to masquerade as K.

The authentication problem can be solved by taking an additional public-
key cryptosystem. Exactly as before, K possesses a public-key cryptosys-
tem (Dg,Ex). Additionally, B possesses another public-key cryptosystem?°
(Dp,Eg). Both encryption functions Ex and Ep are public, hence they are
known to both B and K. The decryption function D is the secret of K and
the decryption function Dp is the secret of B. Now, K signs in the following
way.

1. B chooses a random number w and sends Ex (w) to K.
2. K computes w = Dg (Ex(w)).

K computes ¢ = Eg(Dk (w)) and sends it to B.
3. B checks whether

w = Ex(Dz(c)) = Ex(Ds(Es(Dk (w))))-

Clearly, B is convinced about the identity of K in this way. K is the only
person who knows Dg and can compute the number w from Ex(w) and the
message Dk (w) from w.

19 Thus (ii’) is similar to (ii), because both are requirements restricting the possi-
bility of forgery by B.

20 Here, one requires that both cryptosystems are commutative, i.e., that w =
Dx (Ex(w)) = Ex (Dk(w)) and w = Dp(Ep(w)) = Es(Dp(w)).
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The message Ex(w) can be decrypted by K only and the message
Ep(Dk(w)) can be decrypted by B only. Therefore a third party (a falsifier)
cannot learn and check the signature (w,Ep(Dxk(w))), satisfying condition
().

B learns the signature (w,Ep(Dg(w))) of K in this communication.
Through several executions of this authentication protocol between B and
K, B can learn several such pairs. But this is not sufficient for B to convince
a third party that she/he is K. If all parties in the interconnection network use
this protocol, than each third party C sends the message Ex (u) for a random
u to K. If B as an active adversary?! takes this message from the network,??
then in general B cannot learn u because B does not know the secret D of
K. The only attempt B can make is to compute Ex (w) for all saved pairs
(w,Eg(Dk(w))) of K’s signatures, and compare these with Ex (u). If B gets
lucky and finds Ex (w) = Ex(u) for a saved u, then B can convince?® C' that
she/he is K. But if u is a random number of several hundred digits, then the
success probability of B is smaller than 1 over the number of protons in the
known universe. This probability can be further reduced by a regular change
of the keys of the public-key cryptosystems used.?4

Exercise 9.7. Consider the authentication problem where one signs in order
to convince everybody that she/he is K, but not to sign a document. The
above-presented protocol for this purpose is reliable with a high probability.
Introduce a small change to this protocol in such a way that the probability
of a falsification attempt by B is reduced to 0. This has to hold independent
of the size of B’s list of saved signatures from K.

9.5 Interactive Proof Systems and Zero-Knowledge
Proofs

In Chapter 6 we learned that every language from NP has a polynomial-time
verifier. This means that all claims z € L for a L € NP have proofs of poly-
nomial length in |z| and the correctness of these proofs can be verified in
polynomial time. Thus the languages from NP are easy with respect to proof
verification. In Chapter 8 we argued that the practical solvability should be re-
lated to randomized polynomial time rather than to deterministic polynomial
time. In this way, the following question arises

For which languages can one “practically” verify the proofs?

21 Who wants to convince C that she/he is K

22 That is, Ex (u) never reaches K

23 By sending the corresponding signature E¢(Dk (w)) to C

24 There are also more elaborate protocols for the authentication problem, but their
presentation is beyond the framework of this book.
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To investigate this question we consider the following communication protocol
model.

We have two parties — the prover and the verifier. The prover is an
algorithm (a TM) with an unbounded computational power.?®> The verifier
is a randomized polynomial-time algorithm (a randomized polynomial-time
TM). Let L be a language. At the beginning both parties get the same input
z. The verifier and the prover may communicate by exchanging messages of
a polynomial length in |z|. The prover with an unbounded computational
power aims to convince the verifier about the truth of the claim “z € L”.
For this purpose, the prover is also allowed to lie (make false claims). The
task of the verifier is to pose questions to the prover in order to estimate with
high probability whether the prover has the proof of “z € L” or not. The
number of communication rounds®® is at most polynomial in |z| and the entire
computation of the verifier runs in polynomial time. The verifier must finish
the communication with the decision z € L or z ¢ L. This communication
protocol between the prover and the verifier is called an interactive proof
system.

Definition 9.8. Let L C X* for an alphabet . We say that L possesses
an interactive proof system, if there ezists a verifier (a randomized
polynomial-time algorithm) V such that for all z € X* the following con-
ditions hold:

(i) If = € L, then there exists a prover B such that V after communicating
with B decides to accept = with probability greater than %
{If x € L, then there exists a prover that has a proof of the claim “z € L”
and V can efficiently®” check this proof in a communication with B 3

(i) If x ¢ L, then for every prover B, the communication between V and B
ends with the rejection of x with a probability of at least %
{If z ¢ L, then there is no proof of “c € L”, hence every strategy to
convince V' about the false claim "z € L” has to be detected with a high

probability.}
We define the class IP by

IP = {L | L possesses an interactive proof system}.

The precise value of the probability bounds in Definition 9.8 is not essen-
tial. After O(|z|) independent repetitions of the communication between the
prover and the verifier, the error probability can be reduced to 22!, Thus,
forcing the probability 1 — 2~12l instead of % for the correct decision does not
change anything on the class IP.

The following result follows directly from Definition 9.8.

5 Without any bound on complexity
26 The number of messages exchanged
%7 1t does not matter how long the proof is.

9.5 Interactive Proof Systems and Zero-Knowledge Proofs 289

Lemma 9.9.
NPo@ IP:

Proof. Since NP = VP, there exists a polynomial-time verifier for each lan-
guage L € NP. This means that for every language L and every z € L, there
exists a witness (a proof) c of the fact “z € L” and ¢ has a polynomial length
in |z|. Hence, the prover that possesses ¢ can send the entire ¢ to the veri-
fier and the verifier can deterministically verify whether c is the witness of
“z € L” in polynomial time. If z ¢ L, there is no witness (proof) of “z € L”,
so there is no possibility of convincing the deterministic verifier that “z € L”.

O

The next question is whether there are languages outside NP that possess
interactive proof systems. Consider the following problem. Given two graphs
Gy and G2, one has to decide whether G; and G are isomorphic.2® The
graph isomorphism problem is in NP, because the isomorphism can be nonde-
terministically guessed and deterministically verified in polynomial-time. The
complementary problem of graph nonisomorphism is not known to be in NP.
We conjecture that it is not in NP, because we do not see how nondetermin-
istic guessing can help to prove the nonexistence of an isomorphism between
two graphs in any way. Let

NONISO = {(G1,G>) | G1 and G are not isomorphic}.

Now we describe an interactive proof system for NONISO. Let (G1, G3)
be the input known to both V and B.

1. The verifier V' checks whether G; and G- have the same number of edges
and vertices. If not, V' rejects the input with certainty.

2. If G; and G5 have the same number of vertices and edges, V chooses an
i € {1,2} and a permutation (ji,ja,...,45n) of (1,2,...,n) randomly,?®
where n is the number of vertices. Then V converts the Graph G;
to Gi(ji,J2,..-,Jn) according to the permutation. After that V sends
Gi(j1,J2,---,Jn) to the prover B and asks B to determine whether
Gi(j1,J2;- - -,Jn) is isomorphic to Gy or Gs.

3. If G1 and G are not isomorphic, then B can determine i (i.e., to compute
which of the graphs G; and G is isomorphic to G;(ji, jz, . . - , jn) and sends
1.t0.V
If G; and G, are isomorphic, then B does not have any possibility of
computing i. B can only guess i, so B is forced to choose a random
k € {1,2} and sends this to V.

?® Two graphs are isomorphic if one can label the vertices of one of the graphs in
such a way that both graphs become identical.
% Both i and the permutation are chosen with the uniform probability distribution.
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4. If k # 1, then V rejects the input (G, Gs).
If k = i, then V repeats 2 sending an s € {1, 2} and a random permutation
of G, to B and B sends an ! € {1,2} to V according to 3.
Now if [ # s, then V rejects the input (G, Gs).
If k = s, then V accepts the input (G1,G2).

We show that the above protocol is an interactive proof system for
NONISO.

If (G1,G2) € NONISO, there is a prover that can distinguish between G
and G2 and therefore this prover always gives the right answer. Hence, the
verifier accepts (G1,G3) with certainty.

If (G1,G2) ¢ NONISO, there is no prover that can distinguish between
G; and Gy with respect to homomorphism. The probability that a prover
correctly guesses the two randomly chosen values ¢ and s from {1,2} is at
most 3 - 3 = 7. Thus the error probability is at most 1. One can reduce this
to 2% by considering k independent questions of the verifier on the prover.

The next result shows the enormous power of randomized verification.
Theorem 9.10* Shamir’s Theorem

IP = PSPACE.

The most fascinating consequence of this theorem is that the shortest proofs
of the claims “z € L” for languages L € PSPACE may have an exponential
length®® in |z|, and hence the prover cannot send them (not even a nonnegligi-
ble portion of them) to the verifier. Thus one can verify proofs of exponential
length without reading them with high probability in randomized polynomial
time.

We close our elementary introduction to cryptography by introducing the
zero-knowledge proof systems. We omit the formal definition. The idea
is to place an additional requirement on a proof system, namely that the ver-
ifier may not learn any bit (anything) in the communication with the prover,
except the information that the verifier can compute itself without commu-
nication with the prover. This “learning nothing” during the communication
can be formalized in such a way that the entire communication between B
and V is modeled as a probability space where the probability distribution
is determined by the random choices of V. An interactive proof system is
zero-knowledge, when there exists a randomized polynomial-time TM M that
generates the entire communication with the same probability distribution.
The consequence of this requirement is that the verifier does not learn any bit
of the prover’s proof in a zero-knowledge protocol.

Zero-knowledge proof systems have many cryptographic applications. An
interesting application is related to the following scenario. One wants to design

30 The fact L € PSPACE says only that the proofs of “z € L” have a polyno-
mial breadth, where the breadth of a proof is the length of the longest assertion
occurring in a sequence of proof implications.
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an access control for a computer that allows only users with a valid password
to work, but at the same time, the users remain anonymous. This means the
user takes the role of a prover that tries to convince the access control (the
verifier) that she/he possesses a valid password without revealing any bit of
the password to the access control.

Another important application of zero-knowledge proof systems is using
private data of another person in a computation without learning them. As-
sume that the verifier V' seeks to compute the value f(zr,y) and possesses
the value y only. The prover B knows z and is willing to help V under the
condition that V' does not learn any bit of z.

To determine the class of functions and decision problems for which one
has zero-knowledge proof systems is a challenging research problem. It is really
surprising how many problems can be solved in this way. For instance, we know
that all languages in NP possess a zero-knowledge proof system. Because of
technical limitations, we do not present the proof of this result. To illustrate
the work of zero-knowledge proof systems we only present an example of such
systems for the graph isomorphism problem.

Input: A pair of graphs (G1,G>) for B and V. Let n be the number of vertices
in G1 and G2.

B: The prover randomly chooses an ¢ € {1,2} and a permutation 7 =
(J1,d25+--5Jn) of (1,2,...,n). Then B applies 7 on G; and sends the
resulting graph G;(7) to the verifier.

V. The verifier randomly chooses an j € {1,2} and sends it to the prover.
This message j corresponds to the requirement of providing a proof of the
homomorphism between G;(7) and G;.

B: If G; and G, are isomorphic, the prover computes an isomorphism § such
that G;(6) = Gi(m) and sends 4 to the verifier.

If G1 and G2 are not isomorphic and ¢ = j, then the prover sends the
random permutation § = w. Else (if 1 # j and there is no isomorphism
between G; and G;(r)), the prover sends 7 too.

V: The verifier accepts (G1, G2) iff G;(d) = G;(n).

First we show that this protocol is an interactive proof system. If G; and
G are isomorphic, then the prover always finds a permutation J such that
G(0) = Gi(m). Therefore, V accepts the input (G1,G2) with certainty. If G;
and G2 are not isomorphic, then B can send a § with G;(6) = Gi(m) only
when i = j. The probability that ¢ = j for two random numbers i, j € {1,2}
is exactly % By executing k independent repetitions of this protocol and
accepting only if all answers are correct, one obtains an iterative proof system
with an error probability of at most 2.

Since we omitted the presentation of a formal definition of zero-knowledge
proof systems, we cannot give a formal proof that our protocol has the zero-
knowledge property. However, we can intuitively understand why this protocol
is a zero-knowledge proof system. The communication between B and V does
not provide any information about the isomorphism (if any) between G; and
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G>. The first message G;(w) can be considered to be a random event that is
determined by the random choice of 2 and 7. The second message is a random
number j. The last message ¢ is also determined by the random permutation
7 (8 is either exactly 7 or a composition of m and the homomorphism be-
tween G and G3). Hence, for a fixed (G1,G3), the set of all communications
(Gi(r), j,6) between B and V is a probability space. One can show that a
randomized polynomial-time TM can generate the triples (G;(w),j,d) with
the same probability distribution.

9.6 Design of an Interconnection Network

The communication between different subjects such as men, computers, pro-
cessors of a parallel computer, etc., can be executed by different kinds of com-
munication media. Each communication technology provides different possi-
bilities and has its limitations and hence one has to solve different tasks when
designing telegraph networks, telephone networks, optical networks or archi-
tectures of parallel computers. The magnitude of problems appears also in
designing communication strategies in given networks. The magnitude is so
large that one cannot aim to present it systematically in one section. There-
fore, we prefer to illustrate the problems of network communication by an
exemplary design of a network only.
Consider the following task. We have 2n parties

Zo,T1y-+-yTn-1,Y0,Y1,---,Yn—-1,

that are represented as 2n nodes®! of a network. We have to build a network
between the n z-parties g, z1,...,Zn—1 and the n y-parties yo,y1,...,Yn—1
in such a way that at any time each z-party can obtain a connection for a call
to any y-party. The network is considered as a graph

G = (V7E)’ Zoy;Z1y-+3Tn—-1,Y0,Y15---,Yn—1 eV

Connecting z; and y; means finding and reserving a path z;,v1,...,vnm,Y;
between z; and y; in G in such a way that no edge of this path is simulta-
neously used for another communication between other pairs of nodes. This
means that at any time, every edge of G can be used exclusively for only one
call.

The simplest solution to this problem is to create an edge from each z-
party to each y-party. In this way one obtains a complete bipartite graph as
depicted in Figure 9.6 for n = 4. But this solution is not practical. First, one
has n? edges for 2n parties. This means for n = 10 000, the number of wires
(physical connections) increases to 100 million. Besides the high production

31 When speaking about networks we prefer to use the term “node” instead of the
term vertex used in graphs.

9.6 Design of an Interconnection Network 293

Zo x T2 x3

Yo Y1 Y2 Y3

Fig. 9.2.

costs and the large number of connections rendering the network obscure, one
cannot build such a network because of technological reasons. The number of
connections to a node (the degree of a node) has to be bounded by a constant,
i.e., the degree of the network may not grow with the number of parties.

LO(v) RO(v) LO(v) RO(v)
vin LLRR vin LRRL
state state

LU (v) RU(v) LU (v) RU(v)

(a) (b)
Fig. 9.3.

Now let us exactly formulate the requirements on an acceptable practical
solution of our communication problem.

(i) Every node of the network has a degree bounded by 4, the nodes corre-
sponding to parties have a degree of at most 2.

(ii) The nodes of the network that do not correspond to the parties are
called the switching nodes. The structure of all switching nodes is the
same (Figure 9.6). Every switching node v has exactly four incident edges
LO(v), LU(v), RO(v) and RU(v) and it can be in one of the two (switch-
ing) states LLRR or LRRL. If v is in the state LLRR then one considers
that there is a fixed connection between the edges LO(v) and LU (v) and a
fixed connection between RO(v) and RU (v) (see Figure 9.6(a)). If v is in
the state LRRL, then LO(v) and RU (v) lie on a common communication
path and the connected edges RO(v) and LU(v) are a part of another
communication path (see Figure 9.6(b)).
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(iii) An z-party node u has only two incident edges L(u) and R(u) and it can
decide which of them it wants to use for the communication. Hence, u has
two possible states L and R with respect to the active edge (Figure 9.6).

(iv) A feasible requirement of the network is given by a permutation (io, i1, .. .,
in_1) of (0,1,...,n —1). A communication task

(7:0,1;1, . ots ain—l)

means that the z-party z; wants to speak with the y-party y;; for
j = 0,1,...,n — 1. We assert that for each of the n! permutations
(40,%1,---,in—1) there exists an assignment of states to the nodes of the
network that all the n calls

($O,yio)a (‘Tl,yh)’ +afe 5 (xn—layin—1)

can be simultaneously performed. The guarantee of the simultaneous per-
formance of the calls should be given by fixing (switching) n edge-disjoint
paths between z; and y;; for j =0,1,...,n—1.

A network with 2n parties that can execute all communication tasks given
by permutations of (0,1,...,n — 1) is called an n-permutation network.
Observe that identifying (joining) vertices z; and y; results in a telephone
network, where any party can at any time communicate with another party.

The cost of a permutation network is the number of switching nodes®? and
obviously we seek to minimize this cost. Another parameter, which we would
also like to minimize, is the length of the longest path between an z-party
and a y-party. It would also be nice to create a regular, transparent structure
of the network. The modularity of the designed network could be of special
importance. The modularity means that networks for 2n parties can be used
as basic components for building networks of more (for instance, 4n) parties.
Clearly, modularity decreases the cost of the future expansion of the network,
so it is important for the cost calculation.

The network in Figure 9.6 is a (reasonable) low priced solution for 8 par-
ties zo, 71, T2, T3, Yo, Y1,Y2,y3. The number of switching nodes is only 4 and
all communication paths between an z-party and an y-party have the same
length of exactly 2. The states of the modes of the 4-permutation network in
Figure 9.6 determine the execution of the permutation (3,0, 2, 1).

Exercise 9.11. Prove that the network in Figure 9.6 is a 4-permutation net-
work.

Now, we aim to design an asymptotically optimal network for the com-
munication problem considered. First, we show that every network with 2n
parties has to have at least £2(nlogn) switching nodes.

32 Note, that it does not matter whether one considers the number of switching
nodes or the number of edges as the descriptional complexity measure.
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Zo 1 T2 T3
(0,00) [R (0,01) (L (0,10) (R (01T
(1,00) (1,01) (1,10) (1)
(2,00) (2,01) (2,10) (2,11)
Yo Y1 Y2 Y3
Fig. 9.4.

Theorem 9.12. Let n be a positive integer. Every n-permutation network has
at least 2(nlogn) switching nodes.

Proof. We prove the theorem by a simple counting argument. Let n be a
positive integer and let Net,, be an n-permutation network. If one wants to
perform a communication task in Net, given by a permutation, then one has
to find an assignment of states to the nodes of Net,,. Clearly, the different
permutations force different assignments of states to the nodes. Thus, the
number of possible assignments of states in Net, must be at least

n!,

which is the number of all different communication tasks (permutations of n
elements).

Let m be the number of switching nodes in Net,,. Hence, the number of
different assignments of states to the nodes of Net,, is exactly

2% 2,

Therefore, we obtain

|
2. 2% >l (ie., 2™ > ),
2n

and hence33

m > logy(n!) —n>n-logn—n-(Ine+1) € N(nlogn).

%3 With respect to Stirling’s formula n! &~ 2 - \/277.

en
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Exercise 9.13. Prove that each n-permutation network contains at least one
path of a length of log, n between z-parties and y-parties.

To design an n-permutation network of a size in O(nlogn), we start with
the so-called r-dimensional butterflies But, for any natural number n.
But, = (V,, E,), where

Ve =, w)ae {01, .o, rk w e {0,117} and
E, = {{(i,w),i +1,w)} | i€ {0,1,...,r—1}}U
{{G,zay), (i + L, 2by)} | i € {0,1,...,r — 1}, = € {0, 1},
a,be€ {0,1},a # b,y € {0,1}" "1},

The 2-dimensional butterfly But, is shown in Figure 9.6. A transparent
representation of But, lay the (r + 1) - 2" nodes of But, as a matrix of r + 1
rows and 2" columns. The position (7, ) of the matrix contains exactly the
vertex (i, w) with Number(w) = j. An edge is between (i,z) and (i + 1,y)
only if either

(i) ¢ = y (the vertical edges that run in every column from the first row to
the last row), or

(ii) the only difference between z and y is the i-th bit of their representation
(Figure 9.6).

If, for j = 0,1,...,2"—1, one assigns the z-party z; to the node (0, w) with
Number (w) = j and the y-party y; to the node (r,w’) with Number(w') = j,
then, for every pair

PRI T 1 A, T

one can find the following path between x4 and y..
Let

d = Number(aoa; ...ar—1) and ¢ = Number(bob; ...b,_1)

for some ag, by € {0,1} fork =0,1,...,7—1. Hence, the node (0, apa; ...a,—_1)
corresponds to the z-party z4 and the node (r,bgb; ...br—1) corresponds to
the y-party y.. If ag = bo, then the path starts with the vertical edge

100,2001 - .. @p—1); (1, 8001 5 .- 0r_1)}.
If ap # b = 0, then the path starts with the “cross” edge

{00081 Va0 0), (Y boat .. ey} B
Thus, one reaches in both cases the vertex

(1,b0a1 ces a,._l).
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In general, the path from (0,a; ...ar—1) to (r,bpb; ...b.—1) reaches the node
(k,boby - . .bg_10kGk+10k+2 - - - Q7)
after k edge choices and continues with the (k + 1)-th edge
{(k,bob1 ... bg—10kQk+1 ...ar—1), (kK + 1,b0b; .. .bkaK+1 .. -aQr—1)}.

Thus, the s-th edge of the path is responsible for flipping the s-th bit as to
bs.

We showed that one can connect every z-party to an arbitrary y-party by
a path of length r in But,. Unfortunately, But, is not able to perform each
permutation by edge-disjoint paths. In our strategy, the node

(L5, b0b1 ... b|r/2/G(r/2)41 - - - Gr—1)

is used in all paths with the endpoint in the set

{(r, bob; . "blr/2jelr/2j+1 : ..e,-_l) | e; € {0,1}
for § =I[5] + 147 0r = 1}

and with the starting point from the set

{(0, fof1--- fir/2101r/2)41 - - - Gr—1 | fs €{0, 1} fir i =0,1,....,|5]}-

There are 231 such paths, and we may use a switching node for at most 2
paths.

We use the r-dimensional butterflies as components for building a 2"-
permutation network, that is well known as the Benes-network. One obtains
the r-dimensional Benes-network Benes, from two But, networks A and B by
pair-wise joining the corresponding nodes of the last (r-th) rows of A and B.
Figure 9.6 shows Beness. We observe, that Benes, has 2r + 1 rows, where the
first 7 + 1 rows®* build the r-dimensional butterfly A and the last r + 1 rows
build the r-dimensional butterfly B. Figure 9.6 shows a recursive definition of
Benes, by building Benes, from two Benes,_1 networks and some additional
nodes and edges.

Exercise 9.14. Give, for every positive integer r, a formal description of
Benes, as a graph.

Theorem 9.15. For every positive integer v, Benes, is a 2" -permutation net-
work.

Proof. We show that, for every permutation

(t05 - cispdora1);

34 With corresponding edges
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one can choose 2" paths from z; to yi; for j =0,1,...2" — 1 in such a way
that no edge is used for more than one path and every node lies exactly on
one path.®® Obviously, such a set of paths guarantees that one can find an
assignment of the states to the nodes that exactly corresponds to these 27
paths, solving the communication task (i, ...,i2_1).

We prove this claim by induction with respect to r.

(i), Let»=1,
Clearly (Figure 9.6), Benes; is a 2-permutation network.3®

(ii) Let r > 2.
We assume,®” that for every permutation of (0,1,...,2"~1 —1) there exist
27! node-disjoint paths between the 2”1 z-parties and the 2"~ y-parties
in Benes,_;. Now, we view Benes, as a network depicted in Figure 9.6,

35 Such groups of paths are called pair-wise node-disjoint paths.
36 Note, that for » = 1 even But, is a 2-permutation network.
37 With respect to our induction hypothesis
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(0,0) (0,1)
(1,0) (1,1)
(0,0) (2,1)
Yo Y1
Fig. 9.6.

that consists of two Benes,_; networks A and B and two “first rows” of
But.

Zo z1 Tor il o Tor—1 Lor—141 Tor—1
Benesr—1 Benes,—1
A B
Yo Y1 Yor-1_1 Yor-1 Yor-1p1 Yor—1
Fig. 9.7.

Due to the induction hypothesis it is sufficient to find a communication
strategy that fulfils: B

a) Exactly half of the paths go via the component Benesy_1 A.

b) The communication tasks for A and B can be given by two permuta-

tion 'of (0,1, /.0, 271 —1). ' "

To assure this it is sufficient to choose the paths in the first row and the
last row of Benes, in such a way that no node in the first row of A and
B (i.e., in the second row of Benes;) lies on two paths3® and analogously

38 That is, only one edge between v and the first row (row 0) of Benes, may by

used.
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no node u from the last row of A and B lies on two paths.3® Formally, we
can express these requirements as follows:

(1) For alli € {0,1,...,2"71}, the two paths starting in
z; and ;4 9r-1

have to use different Benes,_;-networks (a path must go via A and
another via B) (Figure 9.6(a)).
(2) For all j € {0,1,...,2771}, the two paths leading to

yj and y;qor—

must be routed via different components Benes,_; (Figure 9.6(a)).

Yj
i K
C/ \\3 yj+2r— 1
zi+2r—1 J S B
(a)
— A1 8
Zo o

/) Yigr—1

/‘) Yio+27—1 mod 27

Ber sl O\J
\° Yigr1+2r-1

pig gl

(b)
Fig. 9.8.

39 That is, only one edge from u to the y-parties may be used.
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In the following we show that the paths can be determined one after the
other. Let

(36, fmslalivs, Baniid)

be an arbitrary permutation of (0,1,...,2" — 1). We consider now the pairs

(%o, ¥i,) and (Tar-1,Yip, 1)

and determine the path from g to y;, via A and the path from z,--1 to y;
via B (Figure 9.6(b)).
If

or—1

lige-1 — g} = 2774,

there are no consequences that would pose a requirement of routing other
paths.
If

|igr-1 — o] # 27!
we have to lay (because of (2)) the path to

Yip+27-1 mod 27

via B and the path to
Yiyp_ 14271 mod 27
via A. Doing this, the consecutive requirements on the layout of two paths
from the nodes
Tgyor—1 mod 20 aNd ZTsior—1 mod 2r

for
tq ='(t3r—1 + 2""1) mod 2" and i, = (io +2"71) mod 27

can be posed.*?

We see that continuing with this strategy, each layout of the paths can
place at most one requirement on the layout of another pair of paths and this
requirement can be easily satisfied. Thus, the proposed strategy assures the
construction of node-disjoint paths for performing the given telephone calls.
O

Exercise 9.16. Estimate the paths in Beness, for the permutations (7,2,1, 3,
03/53654)37(0:18 2:8746Y 51 4) and (037, 156512,61344):

Theorem 9.15 provides a solution to our problem of designing n-permutation
networks. The network Benes, is a 2"-permutation network with

(2r 4+ 1) - 2" nodes and r - 2”12 edges.

Thus, the number of switching nodes is in O(n - log, n) if the number of z-
parties is 2". Moreover, the Benes networks have a regular structure with a
high degree of modularity (Figure 9.6). The distance between any z-party and
any y-party is exactly 2r and hence logarithmic in the number of parties.

01 |((@+ 27 }) med 27) = ((s + 27~%) mod 27} #£ 271,
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Exercise 9.17* Let G = (V, E) be a graph. A balanced cut of G is a pair
(V1,V2), such that

i) V=ViUV,, VinV, =0, and
(i) =1 < [Vi| — Vel < L.

The cost of a cut (V, V) are
cost(V1, Vo) = |[EN {{v,u} | v € V1,u € V2}|,

i.e., the number of edges between V; and V5. The bisection width of G is
the minimum over the costs of all balanced cuts of G. In the area of network
design, one searches for networks with a high bisection width. A large bisection
width assures that, for any partition of the network into two almost equal-
sided parts, there are sufficiently many communication channels between these

two parts.
Prove that But, and Benes, have a bisection width*! in 2(27).

9.7 Summary

Cryptography deals with the design of cryptosystems that enable a secret
information exchange via public communication channels. For the classical
(symmetric) cryptosystems, the key determines the encryption mechanism as
well as the decryption mechanism, so the key is the common secret between
the sender and the receiver. Public-key cryptosystems work with a public
encryption key, because knowledge of it does not help to learn the decryption
key. The idea of public-key cryptosystems is based on the concept of one-way
functions. A one-way function is efficiently computable, but the corresponding
inverse function is not efficiently computable without an additional knowledge
(a secret, owned by the receiver only). Candidates for one-way functions are
the multiplication, which inverse function is the factorization, and computing
a® (mod n), which inverse function is the discrete logarithm.

Interactive proof systems enable an efficient verification of proof existence
by randomization. All languages in PSPACE have interactive proof systems.
Zero-knowledge proof systems can be used to verify whether another person
owns a proof or a secret without revealing any bit of this secret. All languages
in NP have zero-knowledge proof systems.

The capability of interconnection networks is measured by the amount of
transferred data or by the amount of satisfied communication requests in a
short time interval. The design of a network that should be optimal or almost
optimal with respect to some quality parameters, usually leads to nontrivial

41 The bisection width is approximately as high as the number of parties. Expressed
in another way, the bisection width is in Q(ﬁ), where m is the number of
nodes of these networks.
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optimization problems. One tries to solve such problems using methods of
discrete mathematics.

. The revolutionary concept of public-key cryptosystems was proposed by
Diffie and Hellman [17] in 1976. The famous RSA cryptosystems was discov-
ered by Rivest, Shamir and Adleman [58]. The concepts of interactive and
zero-knowledge proof systems are attributed to Goldwasser, Micali and Rack-
off [21]. Shamir [64] was the first to prove IP = PSPACE.

The Benes network was proposed by Benes in his seminal papers [4, 5]
about the design of telephone networks. The fact that Benes networks 7are
permutation networks has been proved by Waksman [70].

For a transparent, very well-written introduction to the cryptography we
warmly recommend Salomaa [61]. Another excellent, modern textbook on
cryptography is by Delfs and Knebl [16]. An extensive well-written survey
about interactive systems is given by Bovet and Crescenzi [7] and Sipser [65].
Leighton [41] is the seminal textbook and monograph on network design and
communication problems. An introduction to communication problems in in-

’[c:(;;}:onnection networks is given by Hromkovi¢, Klasing, Monien and Peine
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