

Successful Software Development 2nd Edition

Scott E. Donaldson
Stanley G. Siegel

Publisher: Prentice Hall PTR

Second Edition December 27, 2000

ISBN: 0-13-086826-4, 784 pages

A systematic approach to consistently successful software development.

In the age of the Internet, where software is more mission-critical than ever, it’s no longer
enough for your development projects to succeed some of the time. You need to deliver
excellence, consistently—and you must do it faster than ever.

Successful Software Development proceeds from the fact that there is no one way to develop
software systems and introduces a model for a mature software development process that
accommodates flexibility, the Systems Engineering Environment (SEE). This model
comprises two fundamental, interlocked elements: the policies and procedures that define how
software development is performed and the technologies available to get the job done. Using
the SEE framework, learn how to: understand and "sell" the business case for software
improvement; establish and nourish an ongoing, productive dialogue between developers and
customers; manage the multiple constituencies, personalities, issues, and egos that complicate
software development; create plans that reflect the need for change—and take into account
real-world risks; write clearer, more useful contracts and statements of work

Successful Software Development includes over 200 figures, process diagrams, and annotated
outlines—all designed to help you understand and implement better processes quickly and
with less resistance.

This book’s techniques will work with any software quality methodology you choose, as well
as SEI’s capability maturity models and ISO 9000. They will work with any development
technology, from CASE to object-oriented design to rapid prototyping. And they will work
for you whether you’re a programmer, manager, or customer. When it comes to delivering
better software, if you need to get results, you need this book.

Table of Contents
Preface ...
 Successful Software Development means "the ability to produce "good" software
 systems "consistently"" ..
 Making It Happen means "implementing a "way" of successful software development"
 Who Should Read This Book?
 How Is This Software Development Book Different from Other Such Books?
 How Is the Book Organized?
 What Are the Book's Main Features?
 How Does an Organization Institutionalize Its Engineering and Process Principles? ..

1

1
1
1
3
4

14
14

Authors' Biographies ...
 Scott E. Donaldson Corporate Vice President Science Applications International
 Corporation (SAIC) ..
 Stanley G. Siegel Vice President Science Applications International Corporation
 (SAIC) ..

16

16

17

Science Applications International Corporation

19

Acknowledgments ..

20

1. Business Case ...
 1.1 Introduction ...
 1.2 Business Case Key Ideas
 1.3 What Makes Good Business Sense?
 1.4 Software Systems Development Concepts
 1.5 Product "Goodness" and Process "Goodness"
 1.6 Requisite Software Systems Development Disciplines
 1.7 Generic Four-Stage Software Systems Development Life Cycle
 1.8 User, Buyer, and Seller Organizations Involved in Software Systems Development
 1.9 Obstacles to Improving Software Systems Development Cultures
 1.10 Alternative Approaches to Software Process Improvement
 1.11 Preview of the Rest of Book

22
22
27
31
44
50
52
58
60
62
67
72

2. Project Planning Process
 2.1 Introduction ...
 2.2 Project Planning Key Ideas
 2.3 Life Cycle Role in Project Planning
 2.4 Ideal, Real, and Realistic Project Planning
 2.5 Risk Assessment and Project Planning
 2.6 Project Planning Process
 2.7 Project Plan Contents ..
 2.8 Project Planning Summary

77
77
78
80
90

107
112
122
128

3. Software Systems Development Process
 3.1 Introduction ...
 3.2 Software Systems Development Process Key Ideas
 3.3 Software Systems Development Process Overview
 3.4 Customer ..
 3.5 Seller Process Engineering Group
 3.6 Customer/Seller Development Team and Change Control Board (CCB)
 3.7 Seller Senior Management
 3.8 Software Systems Development Process Summary

132
132
136
138
144
148
150
173
174

4. Change Control Process ..
 4.1 Introduction ...
 4.2 Change Control Process Key Ideas
 4.3 Planned and Unplanned Change
 4.4 The Processing of Changes
 4.5 Examination of the Change Control Board
 4.6 Paperwork Support of the Change Control Board
 4.7 Change Control Process Summary

182
182
185
188
195
212
227
258

5. Product and Process Reviews
 5.1 Introduction ...
 5.2 Product and Process Reviews Key Ideas
 5.3 A Taxonomy of Product and Process Reviews
 5.4 Combining Reviews for Software Audits
 5.5 Product and Process Reviews Summary

262
262
265
267
292
362

6. Measurement ...
 6.1 Introduction ...
 6.2 Measurement Key Ideas
 6.3 Product Integrity ...
 6.4 Process Integrity ..
 6.5 Capability Maturity Model (CMM) for Software
 6.6 Other Process-Related Measurements
 6.7 Measurement Summary

370
370
380
383
405
421
430
444

7. Cultural Change ...
 7.1 Introduction ...
 7.2 Cultural Change Key Ideas
 7.3 Process Engineering Group (PEG)
 7.4 Seller Project Participants and Project Managers
 7.5 Buyer/User Project Management
 7.6 Buyer/User Senior Management
 7.7 Seller Senior Management
 7.8 Cultural Change Summary

459
459
472
473
505
511
512
515
516

8. Process Improvement Planning
 8.1 Introduction ...
 8.2 SEE Implementation Planning Key Ideas
 8.3 Key SEE Implementation Planning Issues
 8.4 Making Successful Software Development Happen

519
519
527
530
627

A. How to Measure Strategic Information Management (SIM)
 A.1 Strategic Information Management
 A.2 Quantifying Strategic Information Management
 A.3 Diagnostic Areas and Diagnostic Criteria
 A.4 OM Measurement Map and Measurement Trends
 A.5 Summary ..

630
630
634
636
640
644

B. List of Figures ..
 Preface ..
 Chapter 1-Business Case ...
 Chapter 2-Project Planning Process
 Chapter 3-Software Systems Development Process
 Chapter 4-Change Control Process
 Chapter 5-Product and Process Reviews
 Chapter 6-Measurement ...
 Chapter 7-Cultural Change
 Chapter 8-Process Improvement Planning

646
646
646
648
650
653
657
663
668
670

 Appendix A-How to Measure Strategic Information Management (SIM)

677

C. List of Tables ...

678

Bibliography ...
 Journals Containing Articles Bearing on Software Process Improvement
 Organizations That Can Help You in the Software Process Improvement Area
 1. Government Publications
 2. Magazine/Journal Articles
 3. Books

679
680
680
682
684
687

Successful Software Development, Second Edition

1

Preface
We must not promise what we ought not, lest we be called on to perform what
we cannot.

——Attributed to Abraham Lincoln, speech delivered before the first
Republican convention of Illinois, May 29, 1856, The Writings of Abraham
Lincoln, ed. Arthur B. Lapsley, vol. 2, p. 249 (1905).

Successful Software Development means "the ability to produce
"good" software systems "consistently""

Customers want software systems to do what they are supposed to do, to be delivered on time,
to be delivered for the agreed-upon cost, and to satisfy any other criteria they may specify.
Sellers want the systems they develop to do what the customer wants, to be delivered ahead of
schedule or on time, to earn them a reasonable profit, and to satisfy any other criteria that may
govern the way they do business. Software systems satisfying both customer and seller
criteria are "good." Customers and sellers also want their criteria satisfied "consistently."
The software development business should not be a lottery.

This book is a practitioner's guide for achieving successful software
development.

Making It Happen means "implementing a "way" of successful
software development"

There is no one "way" to develop software systems. If there were, software systems
development would have been reduced to an assembly-line process long ago. People with
diverse experiences and educational disciplines contribute to advances in software
development methodologies, processes, techniques, practices, and tools. This rich diversity
brings about different "ways" to develop "good" software systems "consistently."

This book is a practitioner's guide for making successful software development
happen in a way that makes sense for your environment.

Who Should Read This Book?

The software development business is centered on a relationship between a customer and a
seller of software products and services. So, this book is for both software customers and
software sellers. More specifically, the intended audience is anyone who performs one or
more of the following activities:

• Develops software products and software-related products
• Directly manages people who do the above
• Manages the above managers
• Buys/uses products from the above
• Educates the people above

Successful Software Development, Second Edition

2

Individuals have used the first edition of this book to complement their particular expertise.
Customers have used this book to refine their business dealings with sellers. Sellers have used
this book to establish or refine their "way" of developing software systems for their
customers. Sellers have also used the book to provide in-house training to their marketing
personnel so the marketers better understand what their businesses are selling. Customers and
sellers have used the book to train their human resource personnel so they better understand
what skill sets are needed for the software development business. Universities have used the
book in graduate schools to teach how to be successful in the software development business.

For the software customer, we explain and illustrate mechanisms to effectively communicate
to the software seller (1) what you want, (2) when you want it, and (3) how much you want to
pay for it.

For the software seller, we explain and illustrate the mechanisms to effectively communicate
(1) to your customer your understanding of what the customer wants and (2) among your
project team members how you are going to give the customer what the customer wants.

For the educator, we provide supplemental training materials for the classroom. This material
is packaged in a separately available study guide that consists of the following items:

• Over 500 pages that recast the book's contents as presentation material. This material
is organized by chapter and lays out the material in the order that it appears in the
chapter. Most of the book's figures, or adaptations of these figures, appear in this
material.

• Sample questions for homework assignments.
• Sample class project.
• Sample course syllabus.

Educators can use the above material in conjunction with the companion Web site at
http://www.phptr.com/ptrbooks/ptr_0130868264.html to develop courses based on the book's
material. These courses can be part of a corporate training program or a college or university
curriculum. The study guide material is adapted from our teaching experience in both of these
environments.

Regarding the presentation material in the study guide, we note that students can use this
material without an instructor as a companion to the book. Example uses of this material as
a companion to the book include:

• Before reading a chapter or part of a chapter from the book, the student can go to
the corresponding study guide pages to get a quick look at the chapter or chapter part.

• While reading a chapter or chapter part, the student can, in parallel, look at the
corresponding study guide pages. Sometimes a different look at the same material can
facilitate learning.

• After reading a chapter or chapter part, the student can go to the corresponding study
guide pages for review purposes and quickly recall key points, concepts, and book
illustrations.

Successful Software Development, Second Edition

3

How Is This Software Development Book Different from Other Such
Books?

Lots of things go into making successful software development happen. Among the important
things, effective communication, risk reduction, and an organizational "way" of successful
software development stand out and are threaded throughout this book.

Effective communication means "transmitting information, thought, or feeling so that it is
satisfactorily received or understood [emphasis added]."[1] At the risk of oversimplification,
people understand the mechanics of creating software code, but both the customer and seller
have trouble understanding each other. Customers have said, "We thought we told the
developers what we thought we wanted, but what they delivered is not what we wanted."
Sellers have said, "We thought we understood what the customer was trying to tell us, but
come to find out, what we delivered is not what the customer wanted." Therefore, for us,

Successful software development is first and foremost an ongoing exercise in effective
communication between the customer and the seller throughout a software project.

Risk reduction means "reducing the likelihood that software systems development products
will (1) not be delivered on time, (2) not be delivered within budget, and (3) not do what the
seller and customer mutually agreed that the products are supposed to do."

Simply stated, people understand there are risks with creating software code. However, many
people do not assess risk, allocate appropriate resources to mitigate risk, monitor risk, and
decide how to deal with risk. Customers have said, "We don't have documented requirements,
but we expect the system to do what it is supposed to do." In response to such customer
requests, sellers have said, "No problem! The software should do what you want and we will
deliver it on time." Therefore, for us,

Successful software development is also an ongoing exercise in risk reduction.

An organizational "way" of successful software development means "a set of processes that an
organization uses to develop and maintain software and software-related products." We
proceed from the premise that, as we said earlier, there is no one way to build software
systems. Again, at the risk of oversimplification, customers have said, "We don't have time to
stop and plan the work to be done, just get started coding." Sellers have said, "We know what
the users need, so let's get started." Therefore, for us,

A "way" of developing software systems consists of processes that (1) promote effective
communication throughout software systems development and (2) continually reduce
risk.

We present processes based on fundamental engineering and process principles that include
(1) project planning, (2) change control, and (3) product and process reviews. We present

1 This definition is adapted from words used in one of the definitions for "communicate" given in Merriam-Webster's Collegiate Dictionary, Tenth
Edition (Springfield, MA: Merriam-Webster, Inc., 2000). We note that some dictionaries include the notion of "effective" in the definition of
"communicate" (see, for example, Webster's II New College Dictionary [Boston, MA: Houghton Mifflin Company, 1995]; this dictionary actually
comments on the notion of "effectiveness"). We have chosen to risk redundancy in the eyes of some by coupling "effective" to "communication." Our
rationale is that we want to stress the notion that the person who transmits information, thought, or feeling is obliged to carry out this transmission so
that it is, in fact, satisfactorily received or understood.

Successful Software Development, Second Edition

4

a language-based measurement technology[2] for evaluating software processes and the
products they yield. We explain how to use such measurements to improve your processes
and products. We explain how to plan process improvement to help bring about improvement
in the way you develop software systems. We explain why the ideas presented work, give you
suggestions on how you can make them work, and offer in-sights into what may not work.

An organizational "way" of doing business needs to incorporate such things as the lessons
learned from people's experiences and previous software development projects. If the
organizational "way" includes such experiences and lessons learned, known and/or anticipated
risks are reduced, but not necessarily eliminated. Also, effective customer/seller
communication reduces misunderstandings, thereby reducing the risk that a software product
will not satisfy its criteria.

This book, therefore, presents you with techniques for effectively communicating and
reducing risk. We explain and illustrate fundamental engineering and process principles for
you to consider when Making It Happen in your environment.

We stress that these techniques have been successfully implemented on real-world software
systems development projects and programs. The size of these projects and programs ranges
from tens of thousands of dollars to hundreds of millions of dollars.

How Is the Book Organized?

Figure P-1 shows the title and purpose of each of the book's eight chapters. More specifically,
these chapters address the following topics:

Chapter 1 The first chapter presents the business case for setting up a
"consistent" way of doing software systems development. The chapter also
presents some fundamental concepts and terms used throughout the book.
These terms and concepts establish a working vocabulary to facilitate effective
communication.

Chapter 2 The second chapter presents techniques for project planning and
reducing risks. Many organizations develop project plans and then start
working. For us, planning is just one part of an organization's "way" of
developing software systems.

Chapter 3 The third chapter presents an organizational "way" (or process) for
developing software systems—an organizational software systems
development process. In effect, this "way" of doing business helps to set the
stage for the rest of the book. There are many "best practices" for software
development. The question is, "How do these practices interface with one
another?" The organizational "way" presented consists of a set of related
processes that embody fundamental engineering and process principles that
specifically address effective communication and risk reduction. The
organizational "way" presented contains a project planning process, a change
control process, product and process review processes, and a measurement
process. We define and explain roles, responsibilities, activities, and

2 Here, language-based measurement technology means "a measurement technology that associates language familiar to the intended audience with
numbers arranged on value scales."

Successful Software Development, Second Edition

5

communication linkages. We present this "way" of developing software
systems for your consideration when defining your way of doing business. We
stated above a key principle regarding software development— successful
software development is an ongoing exercise in risk reduction. In the third
chapter, when we present a "way" for developing software systems for your
consideration, we stress the following corollary to this key principle:

If you decide under certain particular circumstances that it may make better
sense not to follow your organizational way of doing business, then you should
keep in mind that you might be increasing software systems development risk.

Chapter 4 No matter how well a project is planned, it is almost axiomatic that
things will change once the project gets underway. Therefore, the fourth
chapter presents the fundamental process of change control. This chapter also
addresses the communications problems that plague any software systems
development project. Sometimes the customer believes that the requirements
were effectively communicated to the developer. Sometimes the developer
believes the customer requirements were understood. Subsequent to developer
implementation of the requirements, the customer and developer may have
vastly different perspectives regarding requirements satisfaction. This chapter
offers guidance for reducing the likelihood of such disconnects arising in your
environment.

Chapter 5 For us, "consistent" software development involves the systems
disciplines of management, development, and product assurance. The fifth
chapter presents product and process reviews from the perspectives of these
three systems development disciplines. This chapter focuses on how reviews
help customers and/or sellers gain visibility into project progress and risk so
that intelligent, informed decisions can be made with respect to what needs to
be done next.

Chapter 6 Measurement for the sake of measurement is a waste of time and
resources. The sixth chapter presents practical guidance on how to express
meaningful measurement in everyday language that the intended audiences
agree to and understand. Meaningful measurement contributes to (1) successful
software systems development projects and (2) improvements in the "way"
software systems are developed.

Chapter 7 Pressures such as competition generally push organizations to
continue to improve their skill sets, processes, and products. The seventh
chapter addresses people issues associated with maturing the organization's
"way" of doing business. Getting software systems development processes on
paper to document this "way" is a challenge. However, getting people in the
organization to help build this "way" and then follow it is an even more
imposing challenge. We present ideas for how to deal with this challenge.

Chapter 8 Finally, the eighth chapter presents guidance for planning
improvements to your "way" of developing software systems. This chapter
helps you select concepts from the preceding chapters to develop a process
improvement approach. We discuss how to factor lessons learned from

Successful Software Development, Second Edition

6

following your "way" of doing business or from not following your "way" into
improvement activities. Also, we present other candidate practices for your
consideration for improving your "way" of developing software systems.

Figure P-1. This eight-chapter book, organized as shown, gives you practical and proven
guidance for answering the question, "How can you make successful software systems
development happen?"

Table P-1 highlights in more specific terms what you will learn from each chapter.

Table P-1. Chapter Highlights

Successful Software Development, Second Edition

7

Chapter Title and Purpose What You Will Learn

1

Business Case—(1) makes the business
case for setting up a "consistent" way of
doing software systems development and
(2) introduces fundamental concepts
needed for the rest of the book.

• What successful software development
means.

• Why investing in software process
improvement to achieve consistently "good"
products makes good business sense.

• Business way refinement/transformation is
first and foremost a cultural change exercise.

• Successful software development must be a
customer/seller partnership, where the
"seller" is the software systems development
enterprise and the "customer" is the
buyer/user of what the seller provides.

• The ideas in the book are scalable—they
apply to customer/seller partnerships of
almost any size.

• The ideas in this book encompass
customer/seller partnerships in any business
environment (e.g., commercial,
government).

• Why the software development business
does not have to be a lottery.

• Why successful software development is not
inextricably tied to individual heroics to get
the job done.

• Why there is no one way to build software
systems and how this viewpoint influences
the way to achieve successful software
development.

• Why prescriptively applying an
organization's business way makes good
business sense.

• What "prescriptive application of an
organization's business way" means and
why prescriptive application holds the key
to institutionalizing the business way.

• Definitions of key terms needed for the rest
of the book (e.g., software, software process,
software process capability, software
process maturity, prescriptive application,
product and process "goodness," software
process improvement, life cycle, culture).

• The role of organizational commitment in
making successful software development
happen.

• Effective customer/seller communication is
a key element of successful software
development.

• A key mechanism for effecting good
customer/ seller communication is the
change control board (CCB).

• People are the most important success
factor—not automated tools.

• Requisite software systems development
disciplines for achieving success—
management, development, product
assurance.

• Obstacles to effecting cultural change.
• Making software development success

Successful Software Development, Second Edition

8

happen extends far beyond (1) management
edicts, (2) assembling a team of experienced
and good people, and (3) a five-minute
conversation with a customer and a three-
week coding frenzy.

• Alternative approaches to
refining/transforming an organization's
business way.

• A systems engineering environment (SEE)
provides a means for making successful
software development happen—whether
systems are developed sequentially or in
parallel.

• The SEE consists of a process component
(application development process
environment [ADPE]) and a technology
component (ADTE).

2
Project Planning Process—provides
practical guidance for effectively planning
software systems development work.

• The project plan is a living contract that
binds the customer/seller partnership by
setting forth the work that the seller's
management, development, and product
assurance disciplines accomplish and the
customer's management approves.

• Life cycle's role in project planning.
• Planning is an ongoing negotiation between

the buyer/user and seller.
• How to account for the interaction among

the requisite disciplines—management,
development, and product assurance—
throughout the project life cycle.

• How to plan for change.
• Contrasting views of work

accomplishment—ideal, real, and realistic—
and their impact on project planning.

• How to construct a simple, but powerful,
risk assessment approach for project
planning use.

• How to incorporate risk reduction explicitly
into a project plan budget.

• How to construct a risk-reduced project
plan.

• How to develop an ADPE element defining
an organization's project planning process.

3

Software Systems Development
Process—(1) defines principles for putting
together an organizationwide software
systems development process framework
that fosters success and (2) illustrates
these principles by defining a top-level
process that you can use as a starting
point for defining and a software
development business way for your
environment.

• Contractual agreements that can arise in the
software systems development business.

• How to write a "good" statement of work
(SOW), where the SOW is a customer
vehicle for communicating to the seller what
he/she wants.

• How the seller can constitute a project team
define associated responsibilities to
accomplish project plan work.

• How the customer can effectively interact
with the seller project team.

• How the seller can define a software
systems development process that (1)

Successful Software Development, Second Edition

9

explicitly includes the customer throughout
the process and (2) can incorporate any
product development life cycle.

• How to plug the seller organization and the
customer organization(s) into the software
systems development process so that both
sides know how business is to be transacted.

• More about "prescriptive application" of the
software systems development process.

• How to address process issues in those
environments where numerous software
systems development projects are unfolding
more or less in parallel.

• How does a life cycle plug into the software
systems development process.

• How level of detail and organizational scope
are two major considerations in defining an
organizational software systems
development process.

• How the software systems development
process can plug into a systems
development process.

• How to design a form that helps track a
product as it winds its way through the
software systems development process.

• What are the responsibilities of the customer
and the seller after the seller delivers the
product to the customer.

• How to develop an ADPE element defining
an organization's software systems
development process.

• Why this element is a good place to begin
setting up an ADPE.

4
Change Control Process—defines
change control board (CCB) mechanics
and provides practical guidance for setting
up CCBs for your software projects.

• Why miscommunication can plague any
software systems development project.

• How the customer and seller can have
dramatically different views of the state of a
product and what to do to reduce the
likelihood of such different views arising.

• How to manage unplanned change as well as
planned change.

• Why management of all change is crucial to
achieving successful software systems
development.

• How the need for managing all change
mandates a CCB concept that extends far
beyond the traditional configuration
management control board concept.

• Change control mechanics of the software
systems development process.

• How to establish seller and customer
accountability through the CCB.

• The three scenarios governing all of change
control:

1. Do we want something new or
different?

2. Is something wrong?

Successful Software Development, Second Edition

10

3. Should we baseline the product?
• CCB mechanics (e.g., what to record at

CCB meetings, CCB role in traversing a
project life cycle, who should be the CCB
chairperson, what should be the CCB voting
mechanism, what is contained in a CCB
charter, how is a CCB meeting conducted,
how frequently should the CCB meet).

• The information requirements for CCB
minutes.

• How to write CCB minutes.
• When are CCB hierarchies appropriate and

how they should be set up.
• How to design change control forms that

make sense for an organizational way of
doing business.

• How to develop an ADPE element defining
the workings of CCBs in a software systems
development process.

5

Product and Process Reviews—
describes the basic processes associated
with the various reviews called out in
Chapter 3 as a means for reducing
software systems development risk and
thereby achieving success.

• Principles pertaining to the purpose of
reviews.

• How to resolve key issues regarding the
review process involving peers.

• The mechanics of document reviews and
acceptance testing that an independent
product assurance organization conducts.

• How to make software requirements testable
so that the software systems development
process can be brought to a successful
conclusion.

• What a software audit is and its relationship
to reviews.

• The key role that acceptance testing plays in
harmonizing seller and customer
understanding of what the delivered
software system and supporting databases
are to contain.

• Senior management visibility needs and how
reviews can help meet these needs.

• How technical editing can be incorporated
into the software systems development
process to help prevent compromising good
engineering work.

• Technical editing suggestions that can be
used as a starting point for constructing an
organizational technical editing guide.

• How to develop ADPE elements addressing
(1) independent product assurance, (2) peer
reviews, and (3) the acceptance testing
cycle.

6

Measurement—provides practical
guidance for measuring product
"goodness" and the "goodness" of the
software systems development process
that produced the products. The focus is
on how to use measurement to achieve

• Knowing when it makes sense to try to
improve the software systems development
process.

• How to avoid "measurement for the sake of
measurement" activities.

• How to use an easy-to-learn and easy-to-

Successful Software Development, Second Edition

11

consistent product and process
"goodness."

apply measurement technique, called Object
Measurement, that you can use to measure
almost anything, including product and
process "goodness."

• How to establish benchmarks to give
meaning to product and process
measurements.

• How to measure customer satisfaction.
• How to quantify the concept of product

integrity as a means for assessing software
product "goodness."

• How to extend the quantified product
integrity concept to the software systems
development process domain to assess
process "goodness."

• How to use the product "goodness" metric to
track product evolution through the software
systems development process to head off
product development problems.

• How to set up value scales for measuring
product and process "goodness" in any
environment.

• How to measure the "goodness" of the
process described in Chapter 3.

• How to apply Object Measurement to
alternative software business improvement
approaches, such as those developed by the
Software Engineering Institute.

• How to develop other product and process
metrics in addition to those developed using
Object Measurement.

• How to integrate measurement into the
software systems development process.

• How to couple product and process
measurements to facilitate improvements in
the way software systems are developed.

• How to develop an ADPE element to (1)
quantify where an organization is
productwise and processwise, (2) quantify
differences from this baseline assessment,
(3) establish quantitative product and
process goals, (4) quantify progress toward
achieving these goals, and (5) define the
approach for incorporating process and
product improvements based on the
measurement activity.

7

Cultural Change—addresses human
issues bearing on bringing about
organizationwide cultural change during
implementation of your systems
engineering environment (SEE).

• How to anticipate and manage the cultural
changes that go hand in hand with any
program designed to refine or alter the
software systems development process
through the establishment of an SEE.

• The role in bringing about cultural change of
the organization responsible for writing the
ADPE elements and seeing to it that they are
implemented and continually improved.

• How to deal with the challenges to ADPE
implementation arising from the seller
project-level individuals who will have to

Successful Software Development, Second Edition

12

adapt to the ADPE practices that govern
their work.

• How to deal with the challenges to ADPE
implementation arising from those customer
individuals responsible for giving direction
to seller project managers for accomplishing
project work.

• The impact on customer senior management
that ADPE implementation brings about.

• The key role that seller senior management
plays in effecting software systems
development cultural change through ADPE
implementation.

• How business pressures affect seller senior
management support for ADPE
implementation and how to alleviate these
pressures.

• How "prescriptive application" of the
software systems development process
relates to empowerment and bringing about
cultural change.

• The customer's role in ADPE
implementation.

• The role of training in effecting cultural
change associated with ADPE
implementation.

• How to sell ADPE implementation as a
career growth opportunity.

• The organizational factors bearing upon how
long it takes to bring about cultural change.

• Why an ADPE element defining the ADPE
element development and updating process
is intimately tied to organizational cultural
change.

• How to develop an ADPE element defining
the ADPE element development and
updating process.

8

Process Improvement Planning—
provides practical guidance on how to
write an SEE implementation plan. This
plan serves as a roadmap for doing the
things discussed in the preceding
chapters.

• How to write an SEE implementation plan
whose accomplishment can bring about
organizationwide software process
improvement.

• Factors bearing on the following 19 key
SEE implementation issues and how to
address these issues in an SEE
implementation plan:

1. What are timeline considerations
for SEE implementation tasks and
their phasing?

2. How should ADPE elements be
phased in?

3. What ADPE elements should be
included in your SEE?

4. How should the ADPE be
constituted— (1) from a small
number of elements (i.e.,
approximately ten), each with tens
of pages or more, or (2) from a
large number of elements (i.e., tens

Successful Software Development, Second Edition

13

or more), each consisting of a
couple of pages, or (3) some
combination of (1) and (2)?

5. How frequently should an ADPE
element be updated?

6. What amount of detail should be
included in individual ADPE
elements?

7. How can you define a plan for an
application development
technology environment (ADTE)
for your organization?

8. How do you package ADPE
elements and related items?

9. How should ADPE implementation
be handled if your organization is
small?

10. What is an austere SEE
implementation approach?

11. How can mentoring and coaching
be leveraged to facilitate
implementation of ADPE
practices?

12. What strategies can be adopted to
meet the cultural change challenges
posed by SEE implementation?

13. How do you deal with the business
reality of the almighty dollar in
bringing about ADPE
implementation?

14. How do you account for the reality
that people within an organization
span a broad spectrum of
willingness to adapt to the
engineering environment?

15. Who should develop the SEE in
your organization?

16. How do you frame an SEE
implementation policy?

17. How do you plan ADPE
implementation improvement at the
project level?

18. How can process and product
measurement be integrated with
your organizational process?

19. How should you structure an SEE
implementation plan?

Appendix
A

How to Measure Strategic Information
Management (SIM)—provides you with
insight into applying Object Measurement
outside a software context.

• What strategic information management
(SIM) is.

• How to measure the improvements of an
organization's performance in terms of SIM.

• Why the quantification of SIM is of interest.

Successful Software Development, Second Edition

14

What Are the Book's Main Features?

This book features the following items to help you make successful software development
happen in your environment:

• Annotated outlines to help you overcome the blank-page syndrome in committing to
writing down your desired "way" of doing business.

• Over 200 figures to help you quickly assimilate ideas and their relationships.
• A list of key ideas at the outset of each chapter to help you work your way through the

chapter and organize what you want to take from it.
• Process diagrams that you can easily adapt to your environment so that (1) if you are a

seller, you can set up a way of consistently producing "good" software systems, and
(2) if you are a customer, you can direct a seller to work with you to give you what
you want, on time, and within budget.

• Worked-out examples containing sufficient detail so that you can adapt the concepts
illustrated to your organization.

• An easy-to-learn and easy-to-apply measurement technique, called Object
Measurement,[3] that you can use to measure almost anything, including product
"goodness" and process "goodness."

• Easy-to-assimilate techniques for analyzing your organizational culture and
determining how to evolve this culture toward achieving success in the software
business.

• A simple and powerful technique to (1) assess software project risk and (2) produce a
risk-reduced project plan, thereby increasing the likelihood of project success.

• Detailed treatment of 19 key process improvement issues that explains how to
construct a process improvement program that makes sense for your organization.

• An index that facilitates quick retrieval of concepts, outlines, and techniques.

At the end of the book, we include an annotated bibliography. Most of the bibliographic
entries have been selected because of their practitioner bent. This bibliography is intended to
(1) point you to alternative treatments of topics that we discuss, (2) help you gain greater
insight into topics that we address, and (3) help you pursue topics that we only touch upon
that may be of greater interest to you.

We stress that this book is not tied to the use of any particular software systems development
technology. You will find this book helpful whether you are using object-oriented technology,
Unified Modeling Language (UML), automated tools, prototyping, or some combination of
these and other technologies.

How Does an Organization Institutionalize Its Engineering and
Process Principles?

The book's central concept for housing an organization's "way" of doing software systems
development business is the systems engineering environment (SEE). The SEE consists of the
following two complementary components:

• An application development process environment (ADPE)
• An application development technology environment (ADTE)

3 Object Measurement®, or OM®, is a registered trademark owned by Scott E. Donaldson and Stanley G. Siegel.

Successful Software Development, Second Edition

15

The ADPE is that set of policies, guidelines, procedures, and standards defining an
organization's "way" of doing business. These entities we call "ADPE elements." The ADTE
is that set of technologies (e.g., personal computers, networks, and automated tools) used to
develop the organization's software products and software-related products.

The book focuses on the ADPE because its elements define the software systems development
process. We show you how to capture software development concepts in a handful of these
elements. We also give you practical guidance for taking the words in these elements and
infusing them into your organization. This infusion (i.e., institutionalizing) is perhaps the
most challenging aspect of maturing your organization's software systems development
capability—because change is mostly emotional, not cognitive.

Please join us now by turning to Chapter 1.

Successful Software Development, Second Edition

16

Authors' Biographies
Scott E. Donaldson Corporate Vice President Science Applications
International Corporation (SAIC)

Mr. Donaldson has spent over 24 years providing a broad range of software engineering
experience in the public, private, and commercial industries. His experience includes the
following:

• As chief technology officer for an SAIC organizational unit doing hundreds of
millions of dollars of business a year, he was involved with internal research and
development efforts within the organization. He also helped the organization increase
its business base through new customer contacts. Concurrently with these
responsibilities, he served as deputy to the manager of a $65 million business unit.

• As an SAIC program manager for a five-year, $400 million systems management and
integration program, he put in place many of the ideas described in this textbook. This
effort represented a significant cultural shift for the customer.

• As an SAIC deputy program manager of a $215 million information technology (IT)
program, he had significant management responsibilities and a demonstrated track
record in managing large IT programs. This program received 11 consecutive
"excellent" award fee ratings from the customer.

Concurrently, he served in the key role as the director of the Software Engineering
Process Group (SEPG). He was responsible for the technical content of the
approximately 100 delivery orders that produced more than 4,000 deliverables. He
was responsible for shaping the program's key technical approaches—with
responsibility for planning and staffing all delivery orders. He was also responsible for
developing and refining methodologies guiding the development of customer software
systems and over-saw quality and performance metrics.

• As the advanced systems director for Martin Marietta, he interacted with senior
engineering staff to develop and implement alternative technology transfer strategies
for speech/signal processing applications. He conducted senior-level technical
assessments of both state-of-the-art and cutting-edge underwater acoustic signal
processing systems. Actions included innovative activities, including assessing
advanced computer architectures such as single instruction, multiple data (SIMD)
stream designs for fine-grain parallelism, and multiple instruction, multiple data
(MIMD) stream designs for large-grain parallelism.

• As the deputy director of the Intelligent Systems Laboratory (ISL) for Gould, Inc., he
used artificial intelligence techniques to contribute to the design, development, and
implementation of advanced computing techniques for underwater acoustic signal
detection and classification. He used structured analysis, design, and construction
techniques. He also contributed to software prototyping efforts using a hybrid of
blackboard state representation and control combined with constraint-based and
model-based reasoning techniques.

• As the vice president and chief operating officer of Computer Dynamics Products,
Inc., he directed the software engineering team in the design and development of
microcomputer-based products, developed and produced supporting documentation,
established software distribution networks, and supervised the customer support

Successful Software Development, Second Edition

17

group. More than 1,250,000 copies of the product (a database system) have been
delivered to the installed customer base.

• As an associate director for System Planning Corporation, he developed and managed
IT and supporting applications systems. He acquired extensive experience in the
development and implementation of the Long-Range Resources Planning System
enabling fiscal planners to examine the feasibility of alternative Department of
Defense acquisition plans, and supporting defense planning activities such as the "Five
Year Defense Plan." This effort was a high-level, nationally visible effort involving
the Secretary of Defense and the White House.

• As a military officer, he worked as an information systems development officer for the
Defense Communications Agency and as an analyst supporting the Joint Chiefs of
Staff.

Mr. Donaldson holds a bachelor's degree in operations research from the United States Naval
Academy, as well as a master's degree in systems management from the University of
Southern California. He is an adjunct faculty member in the Department of Computer Science
and Information Systems at American University in Washington, DC.

Stanley G. Siegel Vice President Science Applications International
Corporation (SAIC)

Dr. Siegel is a recognized expert in software engineering methodologies and has 30 years of
progressive experience in systems analysis and software engineering. Trained as a physicist,
he has successfully applied problem-solving skills to a broad range of analysis tasks. He has
co-authored three software engineering textbooks and written software engineering articles
that have appeared in technical journals. He is also an international lecturer on software
product assurance and software process improvement. Dr. Siegel has served as a senior
technical advisor and director on a wide spectrum of projects in areas such as software
engineering methodology assessment, software requirements analysis, software testing and
quality assurance, mathematical support for software-algorithm development, and technology
assessment. His experience includes the following:

• As Chief Scientist for SAIC on a five-year, $400 million systems integration program,
he helped the program manager put in place many of the ideas in this textbook. He
helped shape the strategic direction of the program.

• As a senior software engineer for SAIC, he was a member of a Software Engineering
Process Group (SEPG) responsible for helping institute software systems development
cultural change throughout a large government agency. In support of the agency's
transition from disparate information software systems development to a more
homogeneous agencywide development environment, he developed and maintained
the software-related component of a systems engineering environment (SEE), which
consisted of software policies, standards, guidelines, and procedures that governed
development of the agency's information systems. He was responsible for
incorporating SEE concepts from the Software Engineering Institute's Capability
Maturity Model® for Software into the SEE. He was also responsible for presenting
seminars on software product assurance and software requirements specification in
support of SEE implementation.

• As a senior software engineer for SAIC, he did consulting work for a major
telecommunications firm, helping the firm set up an SEE.

Successful Software Development, Second Edition

18

• As a senior systems analyst for the Grumman Corporation (now Northrop Grumman),
he served as a senior technical advisor and quality assurance analyst on a $23 million
effort to produce a mobile command and control system for the Marine Corps. He
audited software requirements specifications, assisted in the development of a
software quality program plan according to DOD-STD-2168, assisted in planning and
reviewing software test documentation, and formulated an algorithm to perform
coordinate transformations in support of communications message processing.

• As a product assurance analyst and advisor for several intelligence agency projects for
the Grumman Corporation, he provided technical direction for the development and
implementation of a software quality assurance program. He reviewed software
requirements specifications for consistency and completeness with respect to
customer-specified system-level requirements. He was also responsible for overseeing
the development and execution of tests prepared from these software requirements
specifications.

• While at the Grumman Corporation, he co-authored a software product assurance
textbook that was published in 1987. A number of the ideas in the book Successful
Software Development have their roots in this 1987 book.

• As a senior systems analyst with a company that the Grumman Corporation
subsequently purchased, he analyzed the U.S. Navy Command and Control System
(NCCS). He defined measures of effectiveness, developed an evaluation methodology,
and performed an evaluation of alternative NCCS network concepts. As a software
quality assurance analyst, he audited software specifications for a carrier-based
command and control system, and audited mathematical specifications for the
Tomahawk and Harpoon cruise missiles. He co-authored the first textbook on software
configuration management. He was also product assurance manager for a ten-person
organization.

• As a computer specialist/mathematician for the U.S. Department of Defense, he did
performance evaluations of the Worldwide Military Command and Control System
(WWMCCS) Honeywell 6000 computers. He also analyzed strategic command and
control problems, with emphasis on simulation of the National Military Command
System (NMCS), which included analysis of the strategic warning sensor systems and
supporting communications networks. He was responsible for the management of the
development of a simulation model of NMCS operations and participated in the
development of a prototype simulation system to support NMCS free-play exercises
on limited nuclear exchanges.

• As a systems programmer for the National Oceanic and Atmospheric Administration
(NOAA), U.S. Department of Commerce, he did systems programming on NOAA's
Control Data Corporation (CDC) 6000 computer systems. He also served as an
instructor, training NOAA's meteorologists in the use of these systems. He wrote a
manual that CDC published describing the debugging features of the CDC FORTRAN
Extended compiler. He directed an effort to pinpoint deficiencies in the operation of
the NOAA computer systems and to improve their throughput.

Dr. Siegel holds a doctor's degree in theoretical nuclear physics from Rutgers University. He
is an adjunct faculty member in the Department of Computer Science and Information
Systems at American University in Washington, DC.

Successful Software Development, Second Edition

19

Science Applications International Corporation
Science Applications International Corporation (SAIC) is the largest employee-owned
research and engineering company in the United States. Based in San Diego and international
in scope, SAIC offers a broad range of expertise in technology development and analysis,
systems development and integration, technical support services, and high technology
hardware and software products. SAIC scientists and engineers work to solve complex
technical problems of significance to federal, commercial, and international customers in a
variety of market areas, including energy, environment, government, health care, technology,
information technology, Internet, and transportation.

Founded by a small group of scientists in 1969, SAIC, a Fortune 500 company, has had a
continuous record of growth in its financial performance and technical scope. SAIC attributes
its success to a decentralized, flexible working environment that promotes and rewards
technical excellence, individual initiative, and entrepreneurship. The company's ability to
attract and retain the best qualified people, coupled with an environment that fosters team
building, has led to over 30 years of sustained growth—with over 40,000 employees, offices
in over 150 cities worldwide, and annual revenues exceeding $5 billion.

Bob Beyster, SAIC's founder, chairman, and chief executive officer, credits the success of the
company to its employee ownership culture. The hallmark of SAIC through the years has
been the principle that "those who contribute to the company should own it, and the
ownership should reflect an individual's contribution and performance as much as feasible."

From the start, SAIC was established for professional people who sought to perform superior
scientific and technical work, who wanted a stake and a voice in the company's development
and direction, and who expected fair rewards for doing excellent work. SAIC's successful
track record demonstrates that employee ownership creates the incentives and the
environment for excellence and growth.

SAIC has a corporate commitment to software process improvement. The focus of this
commitment is to build software systems that do what customers want them to do and to
deliver these systems on time and within budget— consistently.

Successful Software Development, Second Edition

20

Acknowledgments
He who praises everybody, praises nobody.

——Attributed to Samuel Johnson, "Johnsonia," The European Magazine and
London Review, January 1785, p. 55.

Over the period of years that we worked on this book, many people helped or otherwise
supported us in our efforts. We acknowledge those individuals here.

We thank William Bryan for giving us carte blanche to use material that he previously
published with one of us. He unhesitatingly granted this permission at the outset of this
project.

Regarding the first edition, we wish to acknowledge the following individuals:

To Gary Donaldson, we are grateful for his insight into the social and cultural
factors governing organizational change. We especially appreciate his help
with Chapter 7. Our experience with the first edition showed us how far-
reaching was his guidance to us.

We thank the reviewers of early drafts of some chapters. Their comments
helped us adjust the book's tone and orientation.

We wrote this book while employed full time with Science Applications
International Corporation. We are grateful to many of our colleagues and co-
workers for helping us organize our thoughts and enrich our experience. To our
colleague Janet Vasak go our special thanks for her support from the time the
book was just an idea. We are grateful to Larry Peck for his support. We thank
Andy Meranda for his help reviewing the page proofs.

To Paul Becker, now with Addison Wesley (which is part of the Pearson
Education family), we wish to express our appreciation for his encouragement
and support throughout the first-edition project.

Regarding the second edition (which we wrote while employed full time with Science
Applications International Corporation), we wish to acknowledge the following individuals:

To Jeffrey Pepper, vice president of Prentice Hall PTR, we appreciate his
professional insight and thoughtful guidance regarding what helps make a
book successful in the marketplace. We are grateful for his willingness to
apply the resources of his organization to make this edition happen.

We thank Paul Petralia of Prentice Hall PTR, who was given the day-to-day
responsibility for making the second edition happen. His pleasant demeanor
throughout the project made the press of deadlines less painful than it might
otherwise have been. We acknowledge the enthusiastic support of his staff
throughout this project. They left no doubt in our minds that they were
committed to making this edition look good.

Successful Software Development, Second Edition

21

To Dr. Stefan Shrier, we are grateful for his keen insights regarding
mathematical issues associated with Chapter 6. He took time out from his busy
schedule to accommodate us. He made valuable suggestions regarding our
additions to Chapter 6 in the second edition.

To Lou Pearson go our thanks for her help with obtaining permissions for both
the first and second editions.

To our colleague Michael Bowers, we appreciate his encouragement and
understanding while we pushed hard to meet book production deadlines.

In the years following the appearance of the first edition, we received feedback
from co-workers, customers, and students. They offered us insights that helped
us augment and refine our thinking. We appreciate these insights.

Any book project cannot be accomplished without some impact on home life. To our families,
we express our gratitude for their patience while we took a lot of time away from them on
evenings and weekends to write the first edition and produce the second edition under a very
tight schedule. Because this time can never be reclaimed, we are grateful for their
understanding. Special thanks go to Bena Siegel. Not only did she offer encouragement
throughout the time spent on the first edition, she also offered encouragement during the
periods of intense activity associated with producing the second edition.

Successful Software Development, Second Edition

22

Chapter 1. Business Case
Method goes far to prevent Trouble in Business: For it makes the Task easy, hinders
Confusion, saves abundance of Time, and instructs those that have Business depending, both
what to do and what to hope.

—William Penn (1644–1718), Some Fruits of Solitude in Reflections & Maxims, no. 403, p.
70 (1903, reprinted 1976).

1.1 Introduction

The "ways" the software industry develops software systems and products need to be
changed. This assertion is not just our opinion. It is shared by many in the industry.

The following point/counterpoint examples echo this need for change:

"Deliver the software on time and within budget—for a change!"

"Stop making last-minute requests for new capabilities!"

"Make the software do what I asked for!"

"Help me out—state what you really want."

"Stop providing short-term fixes for long-term problems."

"Stop moving up the delivery date."

"Shipping six releases per month is not acceptable."

"Provide us the resources for adequate testing."

"Reduce the number of overlapping systems."

"Establish an architecture we can work toward."

"Reduce our organization's dependency on individuals."

"Provide them with additional professional mobility."

"Develop new systems with lower life cycle costs."

"Provide resources for implementing a new way of doing business."

The above examples are sound bites from customer/developer dialogues or from dialogues
within an organization in the software development business.

Successful Software Development, Second Edition

23

This book is an experience-based response to the need for change in the software industry.
That is, this book offers "how-to-do-it" guidance for refining or transforming the way an
organization develops software systems and products.

Customers want software systems to satisfy certain criteria. Although there are many criteria,
typically these include wanting systems that (1) do what they are supposed to do, (2) are
delivered on time, and (3) are delivered for the agreed-on costs. Likewise, sellers (i.e.,
companies that build software systems) want the systems they develop to satisfy certain
criteria, and typically these include developing systems that (1) do what customers want, (2)
are delivered ahead of schedule or on time, and (3) generate reasonable profits. We believe
that "good" software systems are those that satisfy both customer and seller criteria.

We also believe that customers and sellers want their criteria satisfied consistently. Success in
the software development business is not a one-shot deal. The software business should not be
a lottery. For us, successful software development means "the ability to produce "good"
software systems consistently."

Successful software development is a delicate balance among business factors such as the
following:

• There is no one "way" to develop software systems.
• Achieving organizational consistency is, in part, a planned cultural-change journey

that implements desired engineering behavior.
• People are the most important factor in software development.
• Software development is a customer/seller partnership where both parties actively

participate and agree on what needs to be done.
• Effective customer/seller communication increases the likelihood of satisfying the

agreed-on criteria.
• Software development is an ongoing exercise in risk reduction.
• People need to grow professionally and their experiences and knowledge should be

folded into the organization's way of doing software development.
• Documented organizational processes need to be applied in a way that makes sense for

a particular software development project.
• Measurement is a means for effecting software systems development improvement.
• Measurement needs to be expressed in everyday language used by the organization to

be meaningful; otherwise, measurement may be of little value.

This book addresses all the above factors.

If we take a 100,000-foot view of this book, it is an ordered compilation of lessons learned
regarding how to do the following:

• Communicate effectively throughout a software systems development effort.
• Reduce risk throughout a software systems development effort.
• Set up an organizational "way" of doing business that fosters consistency across

efforts.

Successful Software Development, Second Edition

24

The above three factors are intertwined in the following sense:

Setting up an organizational "way" of doing business that fosters consistency
means putting in place organizationwide mechanisms for communicating
effectively and reducing risk.

Thus, as Figure 1-1 illustrates, this book presents ideas for making a planned transition from
an ill-defined business way to a well-defined business way for developing software systems.
By ill-defined business way, we mean "an individual-based way of doing business that is (1)
not well understood organizationwide, and (2) undocumented." By well-defined business way,
we mean "an organization-based way of doing business that is (1) well understood
organizationwide, and (2) documented."

Figure 1-1 This book offers ideas on how to transition to well-defined software systems
development practices to make successful software development happen.

For many organizations, people produce software by some amorphous process. In fact,
software often emerges from the individual heroics of the people doing the work. As indicated
in Figure 1-1, Sam, Pam, and Ham each has his/her own way of getting the job done. Over
time, they undoubtedly learned how to interface with one another (spending long nights and
weekends together does breed familiarity). Sam, Pam, and Ham are undoubtedly very
capable—otherwise, they would probably be replaced. But, from the organization's
perspective, Sam's, Pam's, and Ham's ways of doing business are ill-defined. That is, it is not
clear how the organization would explain to an outsider how the organization does business.
For example, would the organization explain to a potential new customer, "Sam, Pam, and
Ham will work with you to build your software system"? Such an explanation would probably
not give potential customers much confidence that the organization is capable of producing
quality products. Nor does the explanation provide much insight into how the organization
develops software systems.

Successful Software Development, Second Edition

25

Software development is a customer/seller partnership. Therefore, once a potential new
customer becomes a customer, the former "outsider" is now part of the software systems
development process. If you were the customer, would you be concerned if, for example, Sam
couldn't make it to the office one day and only he knows how to do a time-critical part of your
job? Or, would you be concerned with what might happen if, midway through your job, Sam
and Pam get married and leave the company and no one knows what needs to be done to
finish your job?

In this book, we explain how to evolve the way a customer/seller partnership develops
software systems; (1) from one that may largely depend on heroes doing their own things, (2)
to one that blends individual heroic practices into an organizational way of doing business.
This organizational way we assign the label well-defined business way in Figure 1-1. This
well-defined "way" consists of software development methodologies, processes, techniques,
practices, and tools that people use to develop software systems. This book explains how
putting in place an organizational way of doing business serves to stabilize an organization.
As we explain, the organizational way is infused with checks and balances that act to keep
work on track (i.e., they foster consistency). Furthermore, an organizational way of doing
business promotes professional mobility, thereby reducing personnel turnover. Since there is
no one way to develop software systems, this book offers you guidance on how to achieve this
stability in a manner that makes sense for your organization.

What does "transitioning to a well-defined business way" mean? The short answer is that an
organization needs to incorporate into its culture (i.e., institutionalize) a well-understood and
documented way of doing business that people can then prescriptively apply to individual
software systems development projects. By prescriptively applied, we mean "application of
the documented way consistent with available time and resources.[1]

The concept of prescriptive application of the documented way of doing business is central to
this book. This concept has its roots in the first business factor listed earlier that bears on
making successful software development happen. That factor is "There is no one 'way' to
develop software systems." Regarding this factor, the following observation is borne out by
experience:

There is no one "way" to build software systems. If there were, software
systems development would have been reduced to an assembly-line process
long ago. However, we believe that there are fundamental principles whose
application can increase the likelihood that software systems development
projects will be successful.

Since there is no one "way" to build software systems, it therefore follows that, to achieve
consistency in building "good" software products, an organizationmust set up a way of doing
business that allows for adaptation to the situation at hand. That is, the organizational way of
doing business must be based on the principle of prescriptive application. How people choose
to prescriptively apply the way of doing business depends, in part, on their experience and
education. If an organization sets up a way of doing business that mandates that people put
aside their experience and education, people are likely to leave the organization.

1 As we subsequently explain, we use the word prescriptive in a sense that we borrow from a doctor's use of the term prescription. A doctor diagnoses
a patient's condition and, based on this diagnosis, the doctor prescribes a certain dosage of medication. Likewise, an individual working on a software
project diagnoses a particular situation and, based on this diagnosis, prescribes the process dosage that makes sense for that situation.

Successful Software Development, Second Edition

26

Furthermore, no "way" of doing business can anticipate all contingencies. Situations arise
where decisions are made to "not follow" one or more of the processes that define the
organization's way of doing business. Such situations can be viewed as a dynamic risk-
assessment exercise. That is to say, people should carefully consider the consequences of not
following the organization's way of doing business. Furthermore, "not following the
organization's way" is not an admission that the organization's way of doing business is not
needed. After all, if the people in the organization contribute to the definition of the business
way, then the business way should account for many, but not all, contingencies. Since some
emergencies can be anticipated, the business way can incorporate some emergency
contingencies. Over time, as the organization accumulates experience, additional
contingencies can be folded into the business way.

We need to stress another point about making the transition shown in Figure 1-1 happen.
Even with time and resources, the critical element of transitioning to well-defined
development processes is an organization's commitment to make the transition. Commitment
involves people. Top-down support and bottom-up action need to be visible, consistent, and
rewarded; else the critics are heard and the transition is delayed.

Without top-down support and bottom-up action, successful software
development, as we have defined it, will not happen—that is, "good" software
products will not be developed consistently.

We also need to make a point regarding the role of tools (i.e., the role of automation) in
making the transition shown in Figure 1-1 happen. Part of the institutionalized way of doing
business may involve automated development tools, such as computer aided software
engineering (CASE) tools. However, we believe that the need for change cannot be satisfied
simply with more automated development tools. Tools can help, but without commitment by
people to a "new way of doing business," the need for change will remain unfulfilled.

In closing this section, we make two additional observations regarding Figure 1-1. These
observations and supporting explanations are the following:

• The ideas in this book are scalable—that is, they apply to customer/seller partnerships
of almost any size.

o If you are a seller organization responsible for a couple of software projects,
we offer you guidance on how to pick and choose from the communication and
risk reduction techniques to set up a "way" to develop software systems that
makes sense for your situation.

o If you are a seller organization responsible for major programs, each consisting
of a number of software projects, we offer you guidance on how to set up a
process framework that can be adapted to any program and any project within
a program.

o If you are a customer soliciting a software seller for a major effort, we offer
you guidance on what you should include in your solicitation so that you and
the seller can work in partnership to give you the software systems that satisfy
your criteria.

o If you are an organization that formerly did software systems development in-
house but now wishes to outsource all or part of this work, we offer you
guidance on how to include in your outsourcing agreement requirements for
business processes that blend with your culture.

Successful Software Development, Second Edition

27

• The ideas in this book apply to organizations with (1) little or no documented
processes and a staff of heroes; (2) some documented processes and some heroes; and
(3) well-documented processes and some heroes.

o If your organization has already embarked on an effort to reduce staff turnover
because of burnout from repeated staff heroics to get the job done, we offer
you guidance on how to involve the staff in proceeding with the cultural
change underlying the "new way."

o If your organization is toward the right end of the spectrum in Figure 1-1 (i.e.,
you have largely achieved organizationwide consistency in software systems
development), we offer you guidance on how to refine what you have already
done so that, for instance, you can gain a competitive edge in the marketplace.

The plan for the remainder of this chapter is the following:

• In Section 1.2—Business Case Key Ideas, we present the key ideas that you can
expect to extract from this chapter.

• In Section 1.3—What Makes Good Business Sense?, we explore why it makes good
business sense for an organization to take the time to alter its way of doing software
development to achieve consistency.

• In Section 1.4—Software Systems Development Concepts, we define and explain
several fundamental concepts to help us effectively communicate the book's ideas.

• In Section 1.5—Product "Goodness" and Process "Goodness," we explain a key
aspect of our definition of successful software development, namely, what constitutes
product and process "goodness."

• In Section 1.6—Requisite Software Systems Development Disciplines, we
introduce the roles of those who should be involved in software projects if consistently
"good" products are to be produced.

• In Section 1.7—Generic Four-Stage Software Systems Development Life Cycle,
we introduce a life cycle concept that folds in the requisite software systems
development disciplines. We use this concept in subsequent chapters to define project-
specific life cycles.

• In Section 1.8—User, Buyer, Seller Organizations Involved in Software Systems
Development, we introduce the three archetypal parties that interact on most software
projects and relate these parties to the disciplines introduced in Section 1.6.

• In Section 1.9—Obstacles to Improving Software Systems Development Cultures,
we set the stage for the discussion in subsequent chapters on the relationship between
making successful development happen and cultural change.

• In Section 1.10—Alternative Approaches to Software Process Improvement, we
introduce the key concept of systems engineering environment (SEE); the SEE
provides the basis in subsequent chapters for offering guidance on how an
organization can improve the way it does software systems development to produce
"good" software products consistently.

• In Section 1.11—Preview of the Rest of the Book, wegive a summary of each of the
remaining chapters.

1.2 Business Case Key Ideas

Figure 1-2 lists the key ideas that you can expect to extract from this chapter. We begin each
chapter with such a list to facilitate your task of mining the chapter's contents to meet your

Successful Software Development, Second Edition

28

specific needs. To help you navigate through this chapter, we briefly explain these key ideas
here. Their full intent will become apparent as you read through the chapter.

Figure 1-2 Here are key ideas explained in this chapter. These ideas set the context for many of
the concepts addressed in the succeeding chapters.

1. Successful software development means "the ability to produce 'good' software
systems consistently."

Software development is a customer/seller partnership where both parties actively
participate and agree on what needs to be done. "Good" software systems are those
that satisfy both customer and seller criteria.

2. There is no one "way" to build software systems.

If there were, software systems development would have been reduced to
an assembly-line process long ago. There are, however, fundamental principles whose

Successful Software Development, Second Edition

29

application can increase the likelihood that software systems development will be
successful.

3. Even with time and resources, the critical element of transitioning to well-defined
development processes is an organization's commitment to make the transition.

Top-down support and bottom-up action need to be visible, consistent, and rewarded;
else the critics are heard and the transition is delayed. Without top-down support and
bottom-up action, successful software development is next to impossible to achieve.

4. Setting up an organizational "way" of doing business that fosters consistency means
putting in place organizationwide mechanisms for communicating effectively and
reducing risk.

These mechanisms include checks and balances that act to keep software development
work on track, thereby reducing risk and fostering consistency.

5. Key to making successful software development happen is prescriptively applying the
organizational "way" of doing business.

A doctor diagnoses a patient's condition and, based on this diagnosis, the doctor
prescribes a certain dosage of medication. Likewise, an individual working on a
software project diagnoses a particular situation and, based on this diagnosis,
prescribes a certain dosage of the organizational "way" that makes sense for that
situation.

6. To unify many software development management concepts that are scattered around
under different names, our concept of software extends beyond computer code (or
programs).

Our conceptual definition of software includes not only computer code but also all
associated documentation that represents an immature form of the code (e.g.,
requirements specification documentation and design specification documentation).
Therefore, planning for software process improvement encompasses activities other
than the "coding" activity.

7. As a software organization gains in software process maturity, it institutionalizes its
software process through a systems engineering environment (SEE).

This environment consists of policies, guidelines, procedures, and standards, as well as
hardware and software tools. Institutionalization entails building and refining an
infrastructure and a corporate culture that support the methods, practices, and
procedures of the business so that they endure after those who originally defined them
have gone.

8. "Goodness" is a multidimensional concept that depends on your point of view.

What is important to one person may not be important to another person. We take the
position that good people produce good products and that good processes produce
good products. The label we put on the concept of "goodness" is integrity. One

Successful Software Development, Second Edition

30

dictionary definition of integrity is "completeness." A customer/seller partnership
defines process "goodness" by mutually deciding on product characteristics that make
a product complete. Similarly, this partnership defines process "goodness" by
mutually deciding on those process characteristics that make a process complete.

9. Attaining and maintaining software product integrity on a software project requires
judicious application of three groups of disciplines—development, product assurance,
and management.

Proper understanding of process begins with a top-level understanding of the roles
these disciplines should play on a software project if the project is to turn out products
with integrity.

10. A fundamental principle underlying successful software systems development is that of
dividing the development effort into some set of stages.

Lacking physical characteristics, software is inherently difficult to see. One way of
raising the visibility of software systems development work is to divide the work into
pieces or stages. The idea of dividing a software project into smaller, more
manageable pieces gives rise to the notion of attributing a life cycle to software
development (and maintenance).There is no unique way to divide software systems
development into stages (i.e., there is no such entity as "the life cycle"). What is
important is that the development is divided into some set of stages to facilitate
development of the software and the management of the project.

11. Three archetypical parties interact on most software projects—the user, buyer, and
seller.

The user generally is the one with the requirements that the software is being
developed to satisfy. The buyer generally is the agent for the user and thus can be
thought of as a surrogate user. The seller is hired by the buyer to create the software
system for the user. If the user, buyer, and seller organizations have corresponding
development, product assurance, and management personnel, the likelihood of
achieving a software product with integrity is increased.

12. Cultivating successful software systems development (i.e., bringing about software
development cultural change) extends far beyond (1) management edicts, and (2)
assembling a team of experienced and good people.

Some people are receptive to change—others are not. People are not afraid of change,
they are afraid of what they will lose if change occurs.

13. The software business should not be a lottery.

Most people lose when they play a lottery. Occasionally, people win small amounts of
money and they may play again, hoping they will do better the next time or maybe
even win big. However, most people lose and rarely are there big winners.

14. The jury is still out on how to quantify the benefits associated with reshaping an
organization's culture so that it is capable of producing "good" software consistently.

Successful Software Development, Second Edition

31

People use such concepts as Return on Investment (ROI), Information Productivity,
Management Value-added, and Balanced Scorecard to quantify the business case for
reshaping an organization's software development culture. Because of the uncertainty
on how to quantify the business case, organizations may have trouble seeing the
benefits and convincing decision makers of the payoffs of striving for consistency.

15. The business world may change, but certain things do not change when it comes to
achieving software development success.

Certain fundamental software development principles are necessary for successful
software development.Chief among these principles are (1) effective communication,
(2) risk deduction, and (3) an organizational"way" of doing business.

1.3 What Makes Good Business Sense?

The purpose of this section is to discuss if investing in software process improvement to
achieve consistently "good" products makes good business sense. As we discuss, one of the
difficulties associated with quantifying what makes good business sense regarding software
process improvement activities is that the jury is still out on how this quantification should be
expressed.

The approach in this section is the following:

• We start from the dictionary definition of business.
• We explain why it makes good business sense to strive for consistency.
• We explain that the road to achieving consistency is paved with cultural change.
• We describe and contrast different viewpoints on how to express the value that

software process improvement activities add to the business of software systems
development.

• We explain why these contrasting viewpoints make it difficult for organizations to see
the benefits of such activities and express the payoffs of striving for consistency.

• We cite quantitative evidence that investing in software process improvement does
benefit an organization.

• We explain why (1) it is not cheap to reshape an organization's culture so that it is
capable of producing "good" software consistently, and (2) after an organization's
culture has been reshaped, it is not cheap to keep the culture where it is or make it
better.

• We assert that (1) the costs associated with software process improvement activities
are worth it, and (2) the succeeding chapters of the book illustrate why such costs are
worthwhile.

• We conclude the section by touching on the views of visionaries who assert that the
business world is changing dramatically. We assert that certain things do not change
when it comes to achieving software development success. Among all the important
things, effective communication, risk reduction, and an organizational "way" of doing
business stand out.

Successful Software Development, Second Edition

32

The dictionary gives the following as one definition of business:

A usually commercial or mercantile activity engaged in as a means of
livelihood.[2]

What does livelihood mean? From an individual's viewpoint, livelihood could mean "taking
home a pay check to use the money any way he/she wants." From an organization's
viewpoint, livelihood could mean "making a profit and growing the business." Therefore,
what makes good business sense depends, in part, on your viewpoint. This book presents
ideas for blending these two seller viewpoints for the benefit of both.

In addition to the seller perspective, we need to keep in mind that the customer perspective
also impacts what makes good business sense. As we stated at the outset of this chapter, the
software development business is a customer/seller partnership. In this book, sellers and their
customers encompass the following example partnerships:

• A company that responds to a customer solicitation (such as a request for proposal
[RFP]) for software products and services.

• A company that develops and sells software products and related services to the
general public.

• An organization within a company that provides software products and services to
other parts of the company.

In the first two cases above, competitive pressures often govern the extent to which the sellers
can earn a livelihood. In the third case, the extent to which the seller can earn a livelihood
often is governed by whether top company management perceives the organization as
contributing to the company's bottom line.[3] In all cases, if the customers have confidence that
they will get what they want consistently, they will generally give the sellers more business
and may even refer others to the sellers. The end result is that the sellers continue to stay in
business (and may even flourish doing so).

The software business is in its infancy when compared to businesses like construction, or even
relatively "young" businesses like aircraft and automobile manufacturing. We generally
expect that when houses or bridges are constructed, they will not collapse. We generally
expect that automobiles we drive and airplanes that we fly in will get us to our destinations.
Unfortunately, the same outlook regarding consistency cannot generally be projected for the
software business—for all three cases cited above.

Many people generally expect that Version 1.0 of the software that they buy for their personal
computers will have major bugs. Furthermore, customers who contract with software sellers
to build custom systems generally expect that the systems will not do what they are supposed
to do, will be delivered late, and will be delivered over budget.[4] Many companies outsource
work that internal organizations provided for reasons that include the following: (1) late
deliveries, (2) cost overruns, and (3) unsatisfied requirements.

2 Merriam-Webster's Collegiate Dictionary, Tenth Edition (Springfield, MA: Merriam-Webster, Inc., 2000).
3 In this third case, if top company management is not satisfied with this internal seller organization, the management may choose to do away with the
organization and hire an outside contractor to provide the software development support. This approach is referred to as outsourcing.
4 For an interesting counter view from someone who, by his own admission, has written extensively about software failure, see R. L. Glass, "Is There
Really a Software Crisis," IEEE Software, vol. 15, no. 1 (January/February 1998), pp. 104–105. We also note that Glass wrote a book in 1998 entitled
Software Runaways (Upper Saddle River, NJ: Prentice Hall PTR, 1998). The purpose of this book is to present lessons learned from massive software
failures (the book describes sixteen such failures). So that the intent of his book will not be misunderstood, Glass states on page 6 that "I do not believe
in the existence of a software crisis."

Successful Software Development, Second Edition

33

Given these expectations, one might wonder:

• Does it really pay for a company to outsource to another company that has an ill-
defined way of developing software systems?

• Does it make good business sense to strive for consistent software development?
• Is there a good business case for refining or transforming from an ill-defined business

way to a well-defined business way?

These questions do not have easy answers. The answers depend, in part, on your particular set
of circumstances. However, we believe that making successful software development happen
involves defining an organizational "way" of business that fosters consistency across an
organization.

In much of the remainder of this section, we address the above three questions as a group
using the following approach:

• We explain why striving for consistency benefits the customer, the seller organization,
and the individuals within the seller organization.

• We explain why there is a lack of agreement within the industry on how to quantify
the business case for process improvement. In particular, we briefly address alternative
ways for quantifying the business case. The alternatives we consider are Return on
Investment, Information Productivity, Management Value-added, and Balanced
Scorecard.

Consistency

To make a case for why it makes good business sense to strive for consistency, we look at
another business that offers dramatic insight into why consistency is important. That business
is the United States' space program, which, interestingly, is about the same age as the software
business. In its early days (1950s), the American public, if not the world at large, expected
America's rocket ships to blow up on the launch pads or otherwise fail. In the 1960s, as the
country pursued putting men on the moon, success seemed to have bred success. In 1969, the
stream of successes culminated in men landing on the moon—and returning home safely. In
the 1970s and 1980s, the space shuttle program enjoyed success after success, and the public's
expectation was that consistently good launches were a given. Then, in 1986, the Challenger
disaster occurred. Following the disaster, successful launches were no longer a given—at least
in the public's eye. An increasing number of launches were halted and subsequently
rescheduled because of the greater number of tests and checks that detected things that needed
to be fixed before the rockets could be fired. The bottom line here is that consistency was
restored—but at tremendous cost. And, it was apparently not until after the loss of life viewed
by people around the world that this cost was deemed acceptable.

Regarding the software business, it is uncertain whether disasters on the scale of Challenger
have occurred. However, it is not uncommon for newspapers to report on software failures
leading to business disruptions, people or institutions suffering large financial losses,[5] and
people getting killed or injured.

5 In the fall of 1985, the Bank of New York, acting as a clearing agent for government securities, had a computer system failure that prevented the
bank from delivering securities to buyers and making payments to sellers. The bank was forced to borrow $24 billion overnight, mostly from the
Federal Reserve Bank of New York, to balance its accounts. The interest on that borrowing amounted to about $5 million. This incident was the

Successful Software Development, Second Edition

34

We believe that developing software systems should not be a lottery. Most people lose when
they play a lottery. Occasionally, people win small amounts of money and they may play
again, hoping they will do better the next time or may even win big. However, most people
lose and rarely are there big winners.

The plain fact is that software is part of almost anything we come in contact with or use—
telephones, home appliances (e.g., bread-making machines), automobiles, medical devices
(e.g., pace makers, medicine dispensing devices such as IVs and insulin pumps), television
sets, and, of course, the Internet, to name a few. Because of software's ubiquity, more and
more people depend on software to get on with their lives. Therefore, the business reality
facing the software industry is the following:

While the general public may harbor doubts about the ability of software to
work as advertised, people expect more from software and will turn to those
software providers who can better meet their expectations.

As we stated at the outset of this chapter, many people also recognize the need for software
providers to better meet their customers' expectations. For example, in 1984, the U.S.
Department of Defense (DoD) established the Software Engineering Institute (SEI) at
Carnegie Mellon University through a competitive procurement process. The mission of the
SEI is to provide leadership in advancing the state of the practice of software engineering to
improve the quality of systems that depend on software. The SEI accomplishes this mission
by promoting the evolution of software engineering from an ad hoc, labor-intensive activity to
a discipline that is well managed and supported by technology.

During the 1990s, the SEI played a major part in introducing benchmarks into the software
community for assessing the capability of an organization to produce "good" software
systems consistently. These benchmarks took the form of a collection of models, each given
the primary designator of Capability Maturity Model®, or CMM® for short.[6] The most
prominent among these models is the CMM for Software. Both customers and sellers use this
model to improve and/or assess their software systems development practices. For example,
many sellers use the CMM for Software to assess how mature their organization's practices
are. Customers use this model as a means to compare various sellers against one another to
determine which seller is better able to produce software systems to meet the customers'
needs.

Even though the DoD chartered the SEI for national interests, the SEI's reach extends
worldwide. Commercial firms, as well as firms that do business with governments, strive to
get what is known as an "SEI rating." In some cases, customers soliciting bids for work they
want done may bar firms from competing for the work if the firms do not have a certain
minimum SEI rating.

In the beginning of the 21st century, the SEI built on its CMM efforts by integrating
the various CMMs to achieve consistency across the several models. The project, known as

subject of a congressional investigation ("The Federal Reserve Bank of New York Discount Window Advance of $22.6 Billion Extended to Bank of
New York," Hearing Before the Subcommittee on Banking, Finance, and Urban Affairs, U.S. House of Representatives, Serial No. 99-65, December
12, 1985). It was reported in computer trade journals (e.g., "Bank Blames Nightmare on Software Flop,"Computerworld, December 16, 1985, pp. 1,
12) and in newspapers such as the Wall Street Journal ("A Computer Snafu Snarls the Handling of Treasury Issues," November 25, 1985, p. 58) and
The Washington Post ("Computer Snarled N.Y. Bank," December 13, 1985, pp. D7–D8).
6 CMM, Capability Maturity Model, and Capability Maturity Modeling are registered in the U.S. Patent and Trademark Office to Carnegie Mellon
University.

Successful Software Development, Second Edition

35

Capability Maturity Model IntegrationSM (CMMISM), is a collaborative effort with
government and industry.[7]

Another example of the recognition of the need for software providers to better meet their
customers' expectations is the work done by the International Organization for Standards
(ISO). This organization produced a series of management standards labeled ISO 9000. Just as
firms in the 1990s strove to get an SEI rating, firms that compete in the international
marketplace strive to get what is known as ISO 9000 certification.[8]

Considerable controversy exists within the software industry as to the value of SEI ratings and
ISO 9000 certification in determining the ability of organizations to produce "good" software
consistently. In part, people having second thoughts about striving for these ratings and
certifications spur this controversy. Some organizations with elevated SEI ratings may do no
better in (1) delivering products on time, or (2) delivering "quality" products better than
organizations dominated by a collection of Sams, Pams, and Hams. This controversy provides
some insight into what is standing in the way of people in the software business producing
"good" software consistently.

Consider, for example, the following remarks regarding SEI ratings and ISO 9000
certification made by no less an authority than Bill Curtis, an author of the CMM for
Software:[9]

Software development organizations face an array of process standards, with
ISO 9000-3, ISO 15504, and several flavors of Capability Maturity Models
among the most prominent. Are all of these standards equally effective, or do
some provide better guidance for process improvement? Why do some
organizations with development processes "certified" under one or another of
these standards still suffer delivery and quality problems?

Curtis then answers his latter question:

...improving your processes is not enough— you must change your
organization [emphasis added]. The benefits from implementing a process
standard may prove elusive if an organization's most dysfunctional traits are
allowed to undermine new practices. Mandating quality practices is often not
sufficient to produce quality results. Improved processes must be nourished in
an organizational culture that perceives them as a logical implementation of
its professional values.

We are in full agreement with Curtis' assertions about the intimate relationship between
process improvement and cultural change. We devote Chapter 7 to this topic.

We have concluded our explanation of why striving for consistency benefits the customer, the
seller organization, and the individuals within the seller organization. Our explanation is
essentially that the alternative for striving for consistency is treating software development as

7 CMMI and CMM Integration are service marks of Carnegie Mellon University.
8 The centerpiece of the ISO 9000 series is ISO 9001, whose title is "Quality Systems—Model for Quality Assurance in Design/Development,
Production, Installation, and Servicing." To obtain certification, a firm calls in outside auditors. These auditors use the standard as a basis for
determining that the firm can design, develop, produce, etc., products (such as software) and services with quality. The definition of quality given in
the standard is linked to satisfying customer needs.
9 B. Curtis, "Which Comes First, the Organization or Its Processes?,"IEEE Software, vol. 15, no. 6 (November/December 1998), p. 10.

Successful Software Development, Second Edition

36

a lottery. We also explained that the road to achieving consistency is paved with cultural
change.

We now turn our attention to why there is a lack of agreement within the industry on how to
quantify the business case for process improvement. For this purpose, we address the concepts
of (1) Return on Investment, (2) Information Productivity®,[10] (3) Management Value-added,
and (4) Balanced Scorecard.

Return on Investment (ROI)

Changing an organization generally comes about only at great expense. The business question
that thus naturally arises is the following:

What can the organization expect to get in return for this considerable expense
associated with changing or refining the way it does software systems
development?

Often when making a business case to senior management for the need to improve the
organization's "way" of doing business, it is necessary to present the Return on Investment
(ROI) being proposed. Like many other issues in the software industry, there is no one way to
present ROI.

Controversy exists within the software industry regarding (1) how to measure ROI in this
context, and (2) whether ROI is, in fact, an appropriate metric for assessing the value of
changing the way an organization does software systems development. Our objective here is
to present you with alternative viewpoints about ROI to help you decide what makes sense for
your particular set of circumstances.

The effort and costs involved with reshaping an organization from one that may be dominated
by heroes to one that has an organizationwide way of producing software systems is
considerable. For example, industry experience shows that for an organization of several
hundred people doing tens of millions of dollars of software business a year, it costs hundreds
of thousands of dollars and several years to elevate the organization to the middle level of the
SEI rating scale (i.e., Level 3). In addition, keeping an organization at that level involves
ongoing expense that is not negligible. This example is not unique. Others in the software
industry encountered comparable expenses and time frames. The SEI reports that since 1987
the median time it has taken to move from (1) Level 1 to Level 2 is twenty-seven months, and
(2) Level 2 to Level 3 is twenty-four months.[11]

In 1998, a United States Air Force organization, the Software Engineering Division of the
Ogden (Utah) Air Logistics Center, achieved SEI Level 5 (the first known U.S. government
agency, federal or state, to achieve this level). This organization consists of approximately
420 people and is responsible for developing and maintaining software systems and managing
software projects. In particular, the organization develops and maintains aircraft operational

10 Information Productivity® is a registered trademark owned by Strassmann, Inc. It should be noted that Paul A. Strassmann, founder of Strassmann,
Incorporated, has been involved in the information industry since the 1950s. He has worked for commercial firms and the U.S. government. He has
published over 150 articles on information management and information worker productivity.
11 Software Measurement and Analysis Team, "Process Maturity Profile of the Software Community—1999 Mid-Year Update," Software
Engineering Institute and Carnegie Mellon University, August 1999. The CMM for Software consists of five levels—Level 1 being the lowest and
Level 5 being the highest. The focus of a Level 1 organization is on heroics to get work done; the focus of a Level 5 organization is on continuous
improvement to quantitatively refine how work gets done.

Successful Software Development, Second Edition

37

flight programs, mission planning systems, and automatic test equipment. The May 1999
issue of CrossTalk, the Journal of Defense Software Engineering, contained a series of articles
documenting the organization's rise up the CMM ladder. One of these articles was titled
"Benefits Realized from Climbing the CMM Ladder." The purpose of this article was to
"demonstrate the positive aspects of process improvement according to the... Capability
Maturity Model... for software."[12] Regarding the notion of ROI, the first page of this four-
page article contained the following statements:

The original title of this article was "The Return on Investment from Climbing
the CMM Ladder." The term return on investment, however, has a precise
definition within the business community that requires specific knowledge of
cause and effect regarding changes to processes or methods and the
accompanying improvements in cost and productivity. Unfortunately, it is only
when an organization reaches CMM Level 4 that the employees understand
their processes in quantitative terms and can tie specific actions to process
capability changes.

With the above caveat, the article goes on to describe the qualitative and quantitative benefits
the organization derived from ascending the CMM ladder. It should be noted that a
companion article reported that it took the organization approximately 7.5 years to go from
Level 1 to Level 5 (the organization began its process improvement program in 1991 and
achieved Level 5 in July 1998).[13]

To understand some of the issues associated with determining ROI, we provide the following
extracts from the Oldham et al. article cited to show in some detail how the Air Force
calculated and interpreted ROI:

• Although these figures [regarding the quantitative benefits] will be exact, we estimate
their accuracy to be within 20 percent. Even with this uncertainty, we will show that
the savings realized by the Air Force are worth the investment made (p. 7).

• This article is concerned with the overall investment in process improvement and the
returns and benefits realized within the two software developmental product lines [i.e.,
the aircraft operational flight programs and the mission planning systems].... our
experience has been that quantitative gains within the automatic test product line have
been difficult, if not impossible, to substantiate (p. 7).

• In an attempt to put a value on the return to the Air Force from the investment [the
organization] made in process improvement, a few basic tenets were established. First,
since this and most software maintenance organizations—including those in the
private sector—provide essentially a level-of-effort service to the customer, savings
were computed based on cost per unit of deliverable product multiplied by the number
of units delivered per year, i.e., cost per line of code or cost per test program set times
the number delivered per year. Second, based on general business practices, an
investment in process improvement for any given year will be assumed to be
responsible, in part, for actual and projected savings garnered in the following five
years. Third, ...we assume that most savings resulted from the process improvements
institutionalized through this program. With these conditions in mind, the estimated
return on investment for this division [i.e., the Software Engineering Division] was

12 L. G. Oldham, D. B. Putman, M. Peterson, B. Rudd, and K. Tjoland, "Benefits Realized from Climbing the CMM Ladder," CrossTalk, The Journal
of Defense Software, vol. 12, no. 5 (May 1999), p. 7.
13 P. W. Cosgriff, "The Journey to CMM Level 5: A Time Line," CrossTalk, The Journal of Defense Software, vol. 12, no. 5 (May 1999), p. 5.

Successful Software Development, Second Edition

38

a ratio of about 19-to-1. In other words, the Air Force received, in the form of
additional software enhancements to the F-16 aircraft weapons systems and other
weapons systems, nearly 20 dollars for every dollar invested[14] [in process
improvement]. To date, this is well in excess of $100 million worth of weapons and
test system enhancements and fixes (p. 9).

In the bibliography at the end of this book, we summarize an article that appeared in August
1995 entitled "Return on Investment (ROI) from Software Process Improvement as Measured
by US Industry." One section of the article is entitled "Return on Investment Definition." This
section, which spans more than one page of the article's thirteen pages, presents and discusses
textbook ROI definition, government ROI definition, and industry ROI definition. This
discussion offers interesting insight into the challenges associated with trying to determine
ROI from software process improvement. The article concludes with some statements
regarding the applicability of the ROI concept to the software industry. We give the following
extract from these statements:[15]

Many people, including the research participants [in the study reported on in
the article] and pundits from the literature, contend that ROI is non-
quantifiable—too many problems with it and not enough evidence to know
whether it is actually the process improvements that are causing the effects.
One assumption was made that productivity improvements will occur at a 5%
rate per year through technology improvements without doing anything to
improve process.... Other assumptions point to the Hawthorne effect that
anything under study will change.

Perhaps some of these assertions are valid in a limited sense, but until some
method of standardizing the collection and analysis of data is defined, there
will be no way of determining how accurately process improvement returns
can be predicted or measured [emphasis added]. What the research does show,
however, is that positive benefits for software process improvement based on
the CMM do exist. The extent of the benefits vary between organizations and
between maturity levels, but even level 1 organizations have experienced
productivity and schedule improvements....

Of course, there is another problem associated with determining ROI. Many businesses are
loath to publish ROI information because it straddles the line of proprietary information. After
all, if a company were to provide insight into how, and to what extent, it achieves ROI in its
software process improvement sphere, it might be compromising its competitive advantage.
However, in the case of a government agency, such as the one cited above, "proprietary" is
generally not an issue. The different business interests of commercial firms versus
government agencies make available ROI data somewhat skewed. These different interests
also underlie why the government may define ROI one way and industry may define ROI
another way, as indicated in the cited article.

14 Emphasis added.
15 J. Brodman and D. Johnson, "Return on Investment (ROI) from Software Process Improvement as Measured by Industry," Software Process—
Improvement and Practice, Pilot Issue (August 1995), p. 47.

Successful Software Development, Second Edition

39

Information Productivity

Further compounding the issue of costs associated with software process improvement is the
fact that others have proposed ways besides ROI to assess the value added of doing process
improvement. Notable in this area is work done by Paul Strassmann. In his book Information
Productivity: Assessing the Information Management Costs of US Industrial Corporations,
Strassmann builds a case for focusing on Information Productivity as a key, if not dominant,
indicator of the effectiveness of a company's "way" of doing business.

Strassmann provides the following very broad definition of information cost:[16]

It includes all costs of managing, coordinating, training, communicating,
planning, accounting, marketing and research. Unless an activity is clearly a
direct expense associated with delivering to a paying customer a product or
service it will be classified as an information expense.

We interpret information cost to include costs associated with software process improvement
activities.

Strassmann notes that a little more than half of the employees in the U.S. workplace devote
themselves to information creation, information distribution, and information consumption.
He argues that, prior to the information age (which manifests itself, in part, by this workplace
statistic), the U.S. economy relied on productivity of land, labor, and capital as its most
important resource. Now, he argues, what counts is Information Productivity. In explaining
the purpose of his book, he states the following:[17]

Until recently [the book was published in 1999] almost all the efforts on
measuring effectiveness have been concentrated on assessing the productivity
of every occupation except that of managers and professionals. The managers
evaluate everybody else. The owners of firms have now realized that it is the
managers and the professionals who make the critical difference in the
fortunes of a firm. Managerial and professional wages and salaries now
consume over forty percent of all compensation expenses. With recognition of
these facts comes the urgency to treat information management as if it were
any other resource. It is the purpose of this book to show how that can be done
by concentrating on measuring the productivity of information.

To set the stage for why he thinks businesses should start turning their attention to
Information Productivity (as opposed to ROI and other traditional business-health indicators),
Strassmann cites the following statistics regarding the characteristics of the thousands of U.S.
industrial corporations that he looked at:

• Ninety-two percent of firms incurred higher expenses for information management
than for the costs of ownership of their net capital assets. This makes the utility of
asset-based ratios (such as... ROI...) questionable as a measure of performance....

• There was no relationship between the costs of information management and
profitability...

16 P. A. Strassmann, Information Productivity: Assessing the Information Management Costs of US Industrial Corporations (New Canaan, CT:
The Information Economics Press, 1999), p. 62.
17 Ibid., p. x.

Successful Software Development, Second Edition

40

• There was no relationship between the estimated costs of information technology and
profitability...[18]

Thus, Strassmann's views on what is important regarding determining business effectiveness
in general (and from our viewpoint, software process improvement in particular) contrasts
markedly from the previously cited references on ROI.

Management Value-added

We need to make an additional observation about Strassmann's views. Approximately a
decade before he published his book on Information Productivity, he wrote a book titled The
Business Value of Computers: An Executive's Guide. In his introduction to this book,
Strassmann begins as follows:[19]

There is no relationship between expenses for computers and business
profitability. This book will show you why. You will find that similar computer
technologies can lead either to monumental successes or dismal failures.

My purpose is to shift your attention from information technology to the
executives who manage it. The difficulty in discovering the business value of
computers lies in their managerial applications. Computers on which you run
information systems can deliver productivity gains. In isolation, they are just
pieces of metal, plastic or glass. Therefore, my discussions will not deal with
the worth of computers. Only Management Value-added, with or without
computers, will tell you if computers produce a business payoff.

Strassmann discusses how Management Value-added is related to something he calls Return-
on-Management, or R-O-M. He goes on to explain that "R-O-M is an absolute measure of
[business] performance, in contrast to ROI or ROE [return on equity]" (p. 134). The point here
is that, by extending Strassmann's logic regarding the utility of conventional measures of
business effectiveness such as ROI, we might conclude the following:

If conventional measures such as ROI miss the boat regarding determining
overall business effectiveness, then it is probably not surprising that such
conventional measures miss the boat regarding determining the effectiveness
of specific aspects of a business. In particular, it is probably not surprising
that a measure such as ROI misses the boat in helping to determine the
effectiveness of software process improvement activities that are folded into
the business of developing software systems.

Balanced Scorecard

We mention briefly another approach to assessing business effectiveness that gained
prominence in the 1990s—the Balanced Scorecard.[20] This approach contrasts with
Strassmann's approach and the ROI approach previously discussed. It is an additional
indicator of the diversity of opinion that exists regarding how to determine whether decisions
to improve a business make good business sense. While the Balanced Scorecard addresses

18 Ibid., p. xiv.
19 P. A. Strassman, The Business Value of Computers: An Executive's Guide (New Cannan, CT: The Information Economics Press, 1990), p. xvii.
20 R. S. Kaplan and D. P. Norton, The Balanced Scorecard: Translating Strategy into Action (Boston, MA: Harvard Business School Press, 1996).

Successful Software Development, Second Edition

41

business performance in a context far broader than software process improvement, it has, in
fact, been used in a software process improvement context.[21]

The opening paragraph of the preface to The Balanced Scorecard explains the origins of the
approach. This paragraph reads as follows:[22]

The origins of this book can be traced back to 1990 when the Nolan Norton
Institute, the research arm of KPMG, sponsored a one-year multicompany
study, "Measuring Performance in the Organization of the Future." The study
was motivated by a belief that existing performance-measurement approaches,
primarily relying on financial accounting measures, were becoming obsolete.
The participants believed that reliance on summary financial-performance
measures were hindering organizations' abilities to create future economic
value. David Norton, CEO of Nolan Norton, served as study leader and Robert
Kaplan as an academic consultant [Norton and Kaplan authored the book].
Representatives from a dozen companies—manufacturing and service, heavy
industry and high-tech—met bi-monthly throughout 1990 to develop a new
performance-measurement model.

In a nutshell, the Balanced Scorecard measures business effectiveness (for the purpose of
giving corporate decision makers quantitative insight into how to improve the business) along
the following four dimensions (which the book calls "perspectives"):[23]

• Financial.

The generic measures of this perspective are ROI and economic-value added (EVA).

• Customer.

The generic measures of this perspective are satisfaction, retention, market, and
account share.

• Internal.

The generic measures of this perspective are quality, response time, cost, and new
product introductions.

• Learning and Growth.

The generic measures of this perspective are employee satisfaction and information
system availability.

We note that Strassmann incorporates EVA into his definition of Information Productivity.[24]
Thus, while Strassmann and Kaplan/Norton differ in their approaches to assessing business

21 P. Ferguson, G. Leman, P. Perini, S. Renner, and G. Seshagiri, "Software Process Improvement Works! Advanced Information Services Inc.,"
Software Engineering Institute and Carnegie Mellon University Technical Report CMU/SEI-99-TR-027 (November 1999), Appendix A ("The AIS
Approach to the Balanced Scorecard").
22 R. S. Kaplan and D. P. Norton, The Balanced Scorecard: Translating Strategy into Action (Boston, MA: Harvard Business School Press, 1996), p.
vii.
23 Adapted from R. S. Kaplan and D. P. Norton, The Balanced Scorecard: Translating Strategy into Action (Boston, MA: Harvard Business School
Press, 1996), p. 44.

Successful Software Development, Second Edition

42

effectiveness, their approaches and the ROI approach overlap to some extent. For example,
Kaplan and Norton incorporate ROI into their financial perspective, Strassmann incorporates
EVA into his key measure of Information Productivity, and Kaplan and Norton incorporate
EVA into their customer perspective.

So what is the bottom line regarding the preceding discussion of ROI, Information
Productivity, Management Value-added, and Balanced Scorecard for measuring business
effectiveness?

The jury is still out on how to quantify the benefits associated with reshaping
an organization's culture so that it is capable of producing "good" software
consistently.

Because of this uncertainty, organizations may have trouble seeing the benefits and
convincing decision makers of the payoffs of striving for consistency. However, as we briefly
discussed, there is quantitative evidence that investing in software process improvement does
benefit an organization.

There are costs associated with this investment. These cost include (1) people needed to guide
defining the "way" of developing software; (2) training of senior, program, and project
management; (3) implementation of organizational processes; (4) assessing the organization's
progress; and (5) maintaining the organizational "way." Because of these costs, it is not cheap
to reshape an organization's culture so that it is capable of producing "good" software
consistently. Furthermore, compounding the business case is another consideration. After an
organization's culture has been reshaped, it is not cheap to keep the culture where it is or make
it better.

Are these costs worth it? We think so. The succeeding chapters of this book illustrate why
such costs (and other costs) are worthwhile.

In closing this section, we address briefly one other topic bearing on what makes good
business sense in making successful software development happen. This topic has to do with
the way some people assert that the business world has changed because of the Internet and
related technologies such as e-mail.

Rapid Pace of Business

Richard Oliver, in his book The Shape of Things to Come: Seven Imperatives for Winning in
the New World of Business, writes the following in his opening chapter:[25]

Rapid globalization and technological change have affected the lives of every
person involved in business for at least the last half of this [20th] century....
Neither force alone, globalization nor technology, could have created this new
world of business, but together they have revolutionized the environment for
every individual, business, and organization around the world. I refer to this
new world of business as a "global village."

24 P. A. Strassmann, Information Productivity: Assessing the Information Management Costs of US Industrial Corporations (New Canaan, CT:
The Information Economics Press, 1999), p. 63.
25 R. W. Oliver, The Shape of Things to Come: Seven Imperatives for Winning in the New World of Business (New York: McGraw-
Hill/BusinessWeek Books, 1999), p. 1.

Successful Software Development, Second Edition

43

Davis and Meyer, in their book Blur: The Speed of Change in the Connected Economy,
express thoughts similar to those of Oliver's. In their opening remarks, Davis and Meyer
explain the book's title and write as follows:[26]

An "economy" is the way people use resources to fulfill their desires. The
specific ways they do this have changed several times through history, and are
shifting yet again—this time driven by three forces—Connectivity, Speed, and
the growth of Intangible value.

Because we are so newly caught up in the whirlwind of this transition, we are
experiencing it as a BLUR. The BLUR of Connectivity, as players become so
intimately connected that the boundaries between them are fuzzy [including the
boundary between customer and seller]; the BLUR of Speed, as business
changes so fast it's hard to get your situation in focus; and the BLUR of
Intangible value, as the future arrives at such a pace that physical capital
becomes more liability than asset. Increasingly, value resides in information
and relationships—things you can't see at all and often can't measure.

The arrangements we are all used to, like working for money, paying for goods
and services, and maintaining clear boundaries between one organization and
another are all blurring.

Even if we accept the above authors' assertions that the business world is changing
dramatically, we assert that certain things do not change when it comes to achieving software
development success. Among all the important things, effective communication, risk
reduction, and an organizational "way" of doing business stand out. Enterprisewide business
processes that promote these three things are therefore key to achieving software development
success. Furthermore, the "BLUR of Speed" that Davis and Meyer write about means, among
other things, that people conduct business at a markedly accelerated pace. Therefore, more
than ever, it has become a business imperative to increase the likelihood that software systems
development will be done right the first time.

We conclude this section with a recap of the following key points:

• We generally expect that when houses or bridges are constructed, they will not
collapse. We generally expect that automobiles we drive and airplanes that we fly in
will get us to our destinations. Unfortunately, the same outlook regarding consistency
cannot generally be said for the software business.

• It is not cheap to reshape an organization's culture so that it is capable of producing
"good" software consistently. Furthermore, after the organization's culture has been
reshaped, it is not cheap to keep the culture where it is or make it better. The road to
achieving consistency is paved with cultural change.

• Finally, there is no one way to build software systems. If there were, software systems
development would have been reduced to an assembly-line process long ago.
However, we believe that there are fundamental engineering and process principles
whose application can increase the likelihood that software systems development
projects will be successful. The remainder of this book explains and illustrates these
principles.

26 S. Davis and C. Meyer, Blur: The Speed of Change in the Connected Economy (New York: Warner Books, Inc., 1999), p. 1.

Successful Software Development, Second Edition

44

1.4 Software Systems Development Concepts

To understand more specifically how to transition to a "new way of doing business," we need
to establish a working vocabulary of concepts. We do not intend to present all software or
software-related concepts, but we do want to introduce or review some fundamental concepts.
This section presents the following concepts:

• Software
• Software-related products
• Software process, capability, performance, and maturity
• Systems engineering environment (SEE)
• Culture
• Software

What do we mean when we use the word "software"? Classically, software has been
looked on as computer code (or programs) that, once installed on computer hardware,
makes the hardware do its intended job. We find this viewpoint too restrictive in
presenting our ideas on software process improvement. To unify many existing
software systems development management concepts that are scattered around under
different names, we prefer to think of software in more panoramic terms.

Specifically, in this book, software is formally defined as "information that has the following
three distinguishing characteristics:

• Structured with logical and functional properties
• Created and maintained in various forms and representations during the software

systems development life cycle
• Tailored for machine processing in its fully developed state"

As shown in Figure 1-3,[27] we use a sponge to represent software. A sponge is used throughout
the book to portray software's susceptibility to change.

27 E. H. Bersoff, V. D. Henderson, and S. G. Siegel, Software Configuration Management: An Investment in Product Integrity (Englewood Cliffs, NJ:
Prentice Hall, 1980), p. 10. The discussion of the software concept in this chapter is adapted from W. L. Bryan and S. G. Siegel, Software Product
Assurance: Techniques for Reducing Software Risk (Englewood Cliffs, NJ: Prentice Hall PTR, 1988), pp. 36 ff.

Successful Software Development, Second Edition

45

Figure 1-3 Our concept of software consists of three characteristics that distinguish software
from other types of information.

Software systems development typically proceeds from broadly defined statements of
customer needs, to a specification of how these needs are to be designed into the system, to
the construction of the physical entity that is the system. In engineering parlance, this
evolutionary process is often described in terms of a life cycle. Such customer need
statements are frequently expressed in terms of what the customer wants done. Besides being
derived from a customer need statement (commonly called a "requirements specification"),
computer code is also based on a specification of how (commonly called a "design") the
customer need statements are to be implemented. Consequently, computer code operating in
the customer's environment can be viewed as the fully developed state of the information
embodied in design and requirements specifications tailored for machine processing. In other
words, these specifications and computer code—with its many possible representations, such
as source and object code on various media (e.g., disks, tapes, microprocessor chips, paper)—
can be viewed as different forms and representations of a set of information with logical and
functional properties (i.e., information specifying a sequence of functions to be
accomplished).

Consequently, our conceptual definition of software includes not only computer code but also
all associated documentation that represents an immature form of the code. For example, both
the software requirements specification documentation and the software design specification
documentation are considered software. Suppose we had defined software to be simply
"computer code." Then, strictly speaking, software systems development process
improvement would be restricted to consideration of computer code development. Such
development activities would involve only overseeing the activities of coding, testing,
recoding, retesting, etc., until the code is determined to be ready for customer delivery.

As illustrated in Figure 1-4, software is also the specification documentation that leads to
computer code. To understand the concepts presented in this book, you need to be constantly

Successful Software Development, Second Edition

46

aware of our definition of software. If you consider software only as computer code, you will
often be confused in the pages that follow. Examples of software include the following:

Figure 1-4 Our definition of software encompasses both specification documentation and
computer code. Computer languages and database languages are merging. Consequently, our
notion of computer code includes these blended languages.

• Requirements specification.

This document specifies what functions a system is to perform. In general, some
functions will be performed by hardware, people, and computer code. Thus, a
requirements specification usually consists of information, only some of which is
software.

• Design specification.

This document specifies how a requirements specification is to be implemented. In
contrast to the customer-oriented language of a requirements specification, the
language of a design specification is couched in computer terminology.

• Computer source code and computer object code.

Source code is the first step in a two-step process by which software physically
interacts with computer hardware. Source code is (or at least should be) produced
from a design specification and is written in one of the many source code languages.
These languages are based on logic constructs and syntax rules that bridge the gap
between the way people think in solving problems and the way computer hardware
functions in solving problems. To effect communication with this hardware, these
languages must be processed by other software called compilers and assemblers,
which produce object code. This latter code directly communicates with the hosting
computer hardware in the binary language of zeros and ones that the hardware can
understand.

Successful Software Development, Second Edition

47

With the advent of computer-aided software engineering (CASE) tools, source code
can be automatically generated from CASE design documentation. From this
perspective, source code can be viewed as if it were object code. In the future, CASE
technology may replace the coding activity, just as compilers and assemblers replaced
machine-level coding.

• Computer code executing on hardware.

This concept is perhaps the most difficult to visualize. It is the information embodied
in object code that streams through the logic circuits of computer hardware, making
the hardware do its intended job.

Computer languages and database languages are merging. In the past, computer code acted on
data. However, the distinction between these two complementary technologies is blurring.
Consequently, sometimes, we think of database management systems and their associated
databases as software.

Software-related Products

Besides considering the preceding examples of software, it is often convenient to discuss and
associate other software-related products with our concept of software. As shown in
Figure 1-5, these software-related products are not a form of software but rather serve to
provide additional insight into the software. Such software-related products include the
following:

Figure 1-5 A definition of "culture."

• User's manuals.

This documentation explains to a user how to use the system containing software.

Successful Software Development, Second Edition

48

• Test documentation.

This documentation describes the strategy and specific test steps for exercising the
system containing software to determine that the software is making the system do
what it is supposed to do.

• System concept documentation.

This documentation describes in broad terms what a system that is to contain software
is intended to do.

Given this definition of software (and software-related products), we address the concept of
"software process" and related concepts.[28] According to Merriam-Webster's Dictionary, a
process is "a series of actions or operations (leading to) an end."[29] The Institute of Electrical
and Electronics Engineers (IEEE) defines a process as "a sequence of steps performed for a
given purpose; for example, the software development process."[30]

Software Process

A software process can be defined as a set of activities, methods, practices, and
transformations that people use to develop and maintain software and associated products
(e.g., project plans, design documents, code, test cases, and user manuals). As an organization
matures, the software process becomes better defined and more consistently implemented
through the organization.

Software Process Capability

The range of expected results that can be achieved by following a software process can be
thought of as an organization's software process capability. This capability provides one
means of predicting the most likely outcomes to be expected from the next software project
that the organization undertakes.

Software Process Performance

The actual results achieved by following a software process can be referred to as software
process performance. This performance focuses on the results achieved, while software
process capability focuses on results expected. Based on the attributes of a specific project
and the context within which it is conducted, the actual performance of the project may not
reflect the full process capability of the organization; i.e., the capability of the project is
constrained by its environment. For instance, radical changes in the application or technology
undertaken may place a project's staff on a learning curve that causes their project's capability,
as well as performance, to fall short of the organization's full process capability.

Software Process Maturity

28 The discussion of software process and related concepts here is adapted from M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, "Capability
Maturity Model for Software, Version 1.1," Software Engineering Institute and Carnegie Mellon University Technical Report CMU/SEI-93-TR-24
(February 1993), pp. 3 ff.
29 This definition is adapted from Merriam-Webster's Collegiate Dictionary, Tenth Edition (Springfield, MA: Merriam-Webster, Inc., 2000).
The words "leading to" were substituted for "conducing to."
30 IEEE Std 610.12-1990, "IEEE Standard Glossary of Software Engineering Terminology," The Institute of Electrical and Electronics Engineers, Inc.
(1990), p. 57.

Successful Software Development, Second Edition

49

The extent to which a specific process is explicitly defined, managed, measured, controlled,
and effective can be thought of as an organization's software process maturity. Maturity
implies a potential for growth in capability. Also, maturity indicates both the richness of an
organization's software process and the consistency with which it is applied in projects
throughout an organization. This maturity is usually supported through documentation and
training, and the process is continually being monitored and improved by its users. Software
process maturity implies that the productivity and quality resulting from an organization's
software process are known and can be improved over time through consistent gains in the
discipline achieved by using its software process.

Systems Engineering Environment (SEE)

As a software organization gains in software process maturity, it institutionalizes its software
process through a systems engineering environment. As we subsequently discuss, this
environment consists of policies, guidelines, procedures, and standards, as well as hardware
and software tools. Institutionalization entails building and refining an infrastructure and a
corporate culture that support the methods, practices, and procedures of the business so that
they endure after those who originally defined them have gone.

Culture

Software process improvement is an ongoing exercise of elevating software process maturity.
Bringing about software process improvement requires bringing about cultural change within
an organization. Thus, to describe software process improvement techniques, an
understanding of the elusive term culture is needed. Figure 1-6 defines culture; this definition
is taken from the field of psychology.[31] Throughout this book, we expand on the notions
embodied in this definition of culture to explain software process improvement techniques.

Figure 1-6 A definition of "culture."

31 E. H. Schein, "Organizational Culture," American Psychologist, vol. 45, no. 2 (February 1990), p. 111.

Successful Software Development, Second Edition

50

1.5 Product "Goodness" and Process "Goodness"

What is a "good" software product? What is a "good" software systems development process?
"Goodness" is a multidimensional concept that depends on your point of view. What is
important to one person may not be important to another person. We take the position that
good people produce good products and that good processes produce good products. Evidence
abounds that "good" software(-related) products can be produced without a defined software
development process. Evidence also abounds that turning out such products consistently more
often than not depends on having a defined software systems development process.

A developer of software(-related) products wants to stay in business. It is axiomatic that
"staying in business" is strongly tied to customer satisfaction, which can be expressed in many
ways. First and foremost, a product should do what the customer wants it to do. In addition,
when a customer pays a developer to develop software products, the customer wants these
products to be delivered according to some established schedule and for some established
amount of money. In this book, we choose to fold considerations such as these into our
concept of "product goodness." More specifically, "product goodness" includes an attribute
related to the content of the product itself (i.e., it does what it is supposed to do) as well as
attributes related to the development of that product (e.g., being developed on time and within
budget).

For us, then, "product goodness" is a multidimensional concept. The label we put on this
concept is integrity. One dictionary definition of integrity is "completeness."[32] For us,
completeness is tied to multiple perspectives and attributes. Often people think of goodness
from one perspective (e.g., manager or developer) or in terms of an attribute (e.g., budget,
schedule, or requirements). Our integrity concept allows for blending multiple perspectives
and attributes. For example, a manager may think of product goodness as the product being
delivered on time and/or within budget. A developer may think of product goodness as the
product doing what the customer wants. We think of product goodness as product integrity
that folds in all of the perspectives and attributes. We say that the product has integrity if the
product is delivered on time, within budget, and doing what the customer wants. We believe
that it is not "good" enough to develop a product to do what the customer wants, if the product
is ten weeks late and costs three times its original estimate. Product integrity is tied to certain
attributes that characterize its content and the way it was developed.

We recognize that the attributes we may choose to fold into our notion of "product integrity"
would not necessarily be the same as the attributes that you would choose. Consequently, this
book allows you to mold the product integrity concept to the needs of your organization. To
help you do this molding, we introduce here one way to define product integrity based on the
considerations previously discussed. This definition provides you with a starting point to
define product integrity that makes sense for your organization. Therefore, one definition of a
software product with integrity[33] is one that:

• Fulfills customer needs
• Can be easily and completely traced through its life cycle
• Meets specified performance criteria

32 It should be noted that the dictionary gives a spectrum of definitions for integrity. For example, one dictionary defines the word integrity as
follows: 1. firm adherence to a code of especially moral or artistic value: INCORRUPTIBILITY; 2. an unimpaired condition: SOUNDNESS; and 3.
the quality or state of being complete or undivided: COMPLETENESS. Merriam-Webster's Collegiate Dictionary, Tenth Edition (Springfield, MA:
Merriam-Webster, Inc., 2000).
33 The discussion of the product integrity concept is adapted from Bryan and Siegel, Software Product Assurance, pp. 73 ff.

Successful Software Development, Second Edition

51

• Meets cost expectations
• Meets delivery expectations

In Chapter 6, we show you how to quantify product integrity. The approach there is to
illustrate this quantification in specific terms. We do that by using the preceding definition of
product integrity. However, the quantitative treatment given in Chapter 6 is general so that
you will be able to apply it to your definition of product integrity. Several observations of the
five integrity attributes are worth making.

Fulfills Customer Needs

A product that has the integrity attribute of fulfilling customer needs is one that satisfies stated
customer requirements. The point is that software systems development is a challenge to the
inventive nature of both the customer and the developer. They get ideas and try to flesh them
out during subsequent development stages. At any particular point in this development
process, they generally do not have all the answers regarding howwell the software system
will satisfy customer needs. Thus, to a certain extent, software systems development is a
process of trial and error in which each error makes the customer and the developer a little
smarter regarding how they should proceed (if they are willing to learn from their mistakes).
But this trial-and-error process is simply another way of saying that change is indigenous to
software systems development. The developer develops, and then the customer and the
developer analyze the results of this development. In response to the analytic results, they
change their minds. The developer develops some more, and the cycle continues until they
achieve what they want—or they run out of time or money. From the perspective of software
development management, achieving closure between the customer and the developer
includes other important considerations that should be constantly kept in mind. These
considerations are embodied in the other product integrity attributes.

Can Be Easily and Completely Traced Through Its Life Cycle

A product whose evolution lacks the integrity attribute of traceability lies at the heart of the
classical software maintenance problem. If the software life cycle is difficult or impossible to
trace, either the software must be forever frozen, or its subsequent evolution becomes a high-
risk venture with a small likelihood of a good return on the development investment.

Meets Specified Performance Criteria

A product that has the integrity attribute of meeting specified performance criteria can be
viewed as a special case of the first attribute—fulfilling the customer's needs. What are
performance criteria? Generally, performance criteria address such issues as the following:

• How many? For example, a customer may have a requirement for the software to
process ten thousand incoming messages.

• How often? For example, a customer may have a requirement for the software to
suffer no more than two failures during a month.

• How long? For example, a customer may have a requirement for the software to
operate eighteen hours a day.

On some software systems development projects, significance is attached to the difference
between a functional requirement (what the software is to do) and a performance criterion

Successful Software Development, Second Edition

52

(how well the software is to perform). For example, a developer may be paid a certain amount
for producing software that meets all functional requirements, and be paid a bonus for
producing software whose operation exceeds specified performance criteria. On other
software projects, there may be no reason to distinguish between "customer needs" and
"performance criteria," in which case our first (i.e., fulfills customer needs) and third (i.e.,
meets specified performance criteria) product integrity attributes merge into a single attribute.

Meets Cost and Delivery Expectations

A product that has the integrity attributes of meeting cost and delivery expectations focuses
attention on the effectiveness of the software systems development process that yields the
software products. Accordingly, these integrity attributes reflect management's effectiveness
in getting the job done. Part of the software manager's job is to plan the software development
cycle, direct others to produce software products, and control activities during plan execution.
This job, in part, is one of managing project budget and schedule. A product that has the
integrity attributes of meeting cost and delivery expectations can also be viewed as a special
case of fulfilling customer needs. Generally, a customer stipulates (1) what is to be done (and
how well), (2) how much he or she is willing to pay, and (3) how long he or she is willing to
wait for the software.

Now, just as we define product integrity in terms of attributes such as the ones previously
discussed, we can similarly define a concept called "process integrity" to characterize
"process goodness." What are the analogues to product attributes? In simple terms, a process
is made up of components, which in turn are made up of activities. An example of a process
component would be "project planning"; examples of activities associated with this process
component would be the following:

• The software developer reviews a customer statement of need, communicates with the
customer, and assembles a project planning team.

• The software developer formulates resource estimates based on the customer
statement of need.

• The software developer business manager calculates dollar estimates from the
resource estimates.

So, as we will show in Chapter 6, we can define process integrity in terms of process
components and associated activities. As we explain there, measuring product integrity and
process integrity enables you to measure the "goodness" of the products and the "goodness" of
the software systems development process used to develop the products.

1.6 Requisite Software Systems Development Disciplines

Proper understanding of process begins with a top-level understanding of the roles of those
who should be involved with a software project if it is to turn out products with integrity. For
this purpose, consider Figure 1-7.[34] This figure depicts three groups of related disciplines—
development, product assurance, and management. Attaining and maintaining software
product integrity on a software project requires judicious application of these three groups of
disciplines. We believe that achieving product integrity is accomplished with the interplay of
all three discipline groups.

34 Adapted from W. L. Bryan, C. Chadbourne, and S. G. Siegel, Tutorial: Software Configuration Management (Los Alamitos, CA: IEEE Computer
Society Press, 1980), p. 452.

Successful Software Development, Second Edition

53

Figure 1-7 The requisite software systems development disciplines for attaining and
maintaining software product integrity are development, product assurance, and management.

Development Disciplines

Development disciplines are typified by the following activities: analysis, design engineering,
production (coding), unit/subsystem testing, installation, documentation, and training. The
developers need to be disciplined technically and managerially to cope with a software project
at all stages of development—from requirements definition through operational use. Part of
this coping means knowing what technical and dollar resources are needed to get the job
done, when these resources are needed, and then applying them vigorously in the right mix at
the right time. These resource allocation tasks are typically the responsibility of management
within the development group. The developers need to ensure not only that adequate
documentation is produced but also that it is produced systematically.

What do we mean by "systematically"? Software in the form of documentation produced out
of sequence—for example, computer code developed before a design specification—can
disrupt traceability back to customer needs and thus detract from the product's integrity.
Systematically produced software, particularly in the form of documentation, serves to
maintain visibility of the evolving software product for management and the customer. We
believe such visibility increases the likelihood of a good return on the development
investment.

A frequent problem during software systems development is the development group's
reluctance to have someone review its work. The development group needs to accept and

Successful Software Development, Second Edition

54

support review activities as constructive, allied, and indispensable to the success of the
project. It is counterproductive for the developers not to have their work reviewed. For
example, if computer code is reviewed and it is discovered that several of the key customer
requirements have not been incorporated, then management can start working on the issue
before it becomes a problem. Management's job of making resource allocation decisions is
more difficult if managers cannot judge where the developers are in the development process.
Developers should take advantage of the review resources to increase the likelihood of
successfully meeting the customer's requirements. The development organization must be
ever cognizant of the customer and of the need for accurately and completely communicating
project progress—and problems—to management and to the customer.

Product Assurance Disciplines

The product assurance group's disciplines provide management with a set of checks and
balances with respect to the state of the software. These checks and balances offer a measure
of assurance that product integrity is attained and maintained. The product assurance group
includes four disciplines—quality assurance (QA), verification and validation (V&V), test
and evaluation (T&E), and configuration management (CM). As illustrated in Figure 1-8, the
product assurance disciplines of QA, V&V, and T&E can be represented as a set of
comparison activities where "what is expected" is compared to "what is observed." The fourth
discipline is the formal control (CM) of software changes. Product assurance acts as a
checking and balancing mechanism on the software systems development activities, and it
provides management with insight into the development process. This mechanism helps to
stabilize the software systems development process by giving it visibility and traceability.

Successful Software Development, Second Edition

55

Figure 1-8 Products assurance is the integrated application of the three comparison processes
of QA, V&V, and the CM process that formally controls changes.

In a constructive, nonconfrontational, nonjudgmental way, product assurance plays the role of
the devil's advocate. There is a natural inclination to view anyone who reviews someone else's
work as an adversary (the "bad guy"), but when performed properly, product assurance
supports and contributes to the software systems development process. By performed
properly we mean, for example, "benevolent (but probing) questioning of a software product's
contents." The object of the questioning should always be determination of the extent to

Successful Software Development, Second Edition

56

which the product conforms to customer requirements, thereby helping to achieve
convergence between the customer and the developer. By establishing agreed-upon
procedures for constructive interchange among the management, development, and product
assurance groups, product assurance can institutionalize a set of checks and balances serving
both management and the developers throughout the software life cycle.

Typically, the development disciplines and the product assurance disciplines perceive project
progress from different viewpoints. Developers tend to look for solutions that "work" but
often do not worry how the solutions "will not work." Product assurance tends to look at
developer solutions from the view of how the solutions "work" and "will not work." This
second look both helps to ensure that the customer's needs are being satisfied and increases
the likelihood of a good return on the development investment.

The product assurance disciplines provide management with insight as to the state of the
software. For example, it is Friday afternoon and the product assurance group has just
completed performing the agreed-upon acceptance test procedures for software code that is
due for installation at the customer's site on Monday morning. Assume that the product
assurance tester(s) recorded five instances (i.e., test incident reports) when "what was
expected" to happen was different from "what was observed." The test incident reports (TIRs)
are not judgmental but simply record the differences. Subsequently, the TIRs are provided to
management. Management can focus its attention and resources on those areas that must be
redone for Monday's release. Also, management may make a decision that directs the
developers to work on the two most important TIRs. Product assurance is directed to rerun the
acceptance tests and make sure new secondary and tertiary errors do not develop as a result of
the new or changed computer code. Assuming all goes well and no new errors are introduced,
on Monday morning the software code is released to the user community with accompanying
release notes. These release notes inform the users that (1) there are known problems that
exist and (2) resolutions to these problems are being sought. Through the use of agreed-upon
testing procedures, management was able to make an informed, intelligent decision as to
where to allocate project resources to meet the Monday morning deadline. At the same time,
management was able to (1) effectively communicate to the user community the state of the
software and (2) manage user community expectations of what the state was.

Product assurance also needs to confirm that product development is disciplined by providing
the procedures for creating and controlling baselines and baseline updates—configuration
management (CM).[35] To confirm that product development is disciplined, product assurance
needs to apply a balanced blend of product assurance activities commensurate with project
complexity and importance. How is this balanced blend realized? Management, developers,
and product assurance mutually agree on what makes sense to do consistent with project
schedules and resource constraints. That is, product assurance is prescriptively applied.

It is particularly important to note that product assurance does not normally address the
"goodness" of a product through subjective judgments. Product assurance primarily addresses
the degree to which a product satisfies customer requirements. Requirements satisfaction is
determined through objective comparisons. A software product is "good," by our definition, if

35 A baseline is an approved snapshot of the system at a given point in its evolution. As the word literally implies, baseline is a line that establishes
a formal base for defining subsequent change. Without a baseline (i.e., reference point), the notion of change is meaningless. While a baseline is being
established, it may be revised one or more times. These drafts are not baseline updates. As used in this book, baseline update refers to each "approved
reissue" of a baseline after the baseline is first established.

Successful Software Development, Second Edition

57

it embodies all customer requirements and does not embody anything the customer did not
ask for.[36]

Management

The disciplines in the management group provide direction to development and product
assurance activities to effect synergism among these activities. This group consists of the
disciplines of senior management and project management. Senior management provides
direction generally at the level above a particular project organization and promulgates
corporate guidelines and policies. Typically, this direction concentrates on sorting things out
with respect to two or more projects that may be competing for corporate resources. In this
book, when we refer to senior management, we mean (unless otherwise indicated) "the person
or organization to which the project manager reports."

Senior management has a key role to play at the outset of a project. It must see to it that a
project is given stature within the corporate structure commensurate with the project's
importance as perceived by senior management, its complexity, and its projected cost.
Lacking this stature, the project may be pushed to the bottom of the corporate stack and
thereby be stifled in the competition for limited corporate resources and thus lose visibility
within the overall corporate context. Senior management must also ensure that a qualified
project manager is assigned to lead the project. In addition, senior management must delineate
the project manager's responsibilities, particularly with respect to the product assurance
disciplines. It must give the project manager sufficient authority to marshal adequate
corporate resources to support product development. Senior and project management must
establish a well-defined accountability chain so that "who is supposed to do what for whom"
is clearly understood at project outset and throughout product development.

Project management provides direction to the development and product assurance groups at
the level of day-to-day activity associated with product development. Project management
must also adequately distribute project resources between development and product assurance
organizational entities. The practice in the software industry has too often been to dump
resources into the development disciplines in an attempt to meet fast-approaching product
delivery dates. The all-too-typical mad scramble to meet delivery dates often comes about
because management did not ensure a front-end investment, particularly in the product
assurance disciplines.

The principle of "pay now versus pay much more later" is an issue that both senior and project
management must face squarely at the outset of a project. Many managers probably do not
find it difficult to accept the need for front-end endeavors and concomitant expenditures in
order to increase the probability of project success. What is generally difficult for managers to
appreciate is the extent to which they must act to effect a disciplined approach to product
development and to effect a balanced application of available resources to the development
and product assurance disciplines. The project manager, in particular, must see himself or
herself as a catalyst to be added continually to project activity to stimulate interaction between
the development and product assurance disciplines and to make things happen effectively.
This book offers some techniques (but no formulas!) for performing this catalysis.

36 Remember, in Chapter 6, we will show you how to quantify product "goodness" in terms that make sense for your organization.

Successful Software Development, Second Edition

58

1.7 Generic Four-Stage Software Systems Development Life Cycle

Lacking physical characteristics, software is inherently difficult to see. This inherent lack of
visibility must be addressed to keep software systems development focused. One fundamental
way of raising the visibility of software systems development work is to divide the work into
pieces or stages. The idea of dividing a software project into smaller, more manageable pieces
gives rise to the notion of attributing a life cycle to software development (and maintenance).

The stages in a life cycle are analogous to courses in a meal. Just as a meal is divided into
courses so that it can be consumed without causing indigestion, so a software project is
divided into courses that individually are easier to manage than the uncut whole. There is no
unique way to divide software systems development into stages. What is important is that the
development is divided into some set of stages to facilitate development of the software and
the management of the project. The principle is to divide the development effort into some set
of stages. The life cycle concept became part of the computer sciences literature in the 1960s.
Since that time, a variety of life cycle concepts have appeared in the engineering literature. In
this book, our life cycle concept focuses on the interactions of the requisite disciplines of
development, product assurance, and management. Figure 1-9 illustrates our software
development life cycle model that has four generic development stages and a review area.

Figure 1-9 Our four-stage generic life cycle blends the requisite software systems development
disciplines of development, product assurance, and management.

The stages symbolize the activities of the development disciplines and the customer's use of
the developed software system. The review area symbolizes (1) the activities of the product
assurance disciplines associated with reviews, (2) the outputs from the development

Successful Software Development, Second Edition

59

disciplines, and (3) the activities of the management disciplines associated with deciding what
to do next based on the reviews and other factors. The review area also includes other
activities of the development discipline coupled to management decision making.

Each software systems development effort requires a unique set of the development, product
assurance, and management disciplines. These required disciplines will interact throughout
the development effort—i.e., throughout the life cycle.

Development

Reduced to the simplest terms, there are four development stages of software maturation:

• What—

Specification of WHAT the software is to do.

• How—

Specification of HOW the software is to do the WHAT.

• Build—

Development or BUILD of the computer code that implements the HOW.

• Use—

Operational deployment or USE of the computer code to perform the WHAT.

Although developers may not USE the software, they will probably need to provide software
maintenance. The arrows leading into the Review Area represent the development disciplines
submitting their work from each stage to independent ProductAssurance for review.

Product Assurance

Product assurance serves as a checking (nonjudgmental examination of results) and balancing
(alternative viewpoint of progress) mechanism on the product development activities
performed. Product assurance disciplines include the following four processes:

• Quality assurance (QA).

QA checks whether the software or software processes conform to established
standards and identifies software or software processes that do not conform to
standards.

• Verification and validation (V&V).

V&V checks for any oversights or deviations from customer requirements and
predecessor products and identifies them.

Successful Software Development, Second Edition

60

• Test and evaluation (T&E).

T&E, which exercises the coded form of software, checks for shortfalls from
requirements and design documents and identifies them. T&E is a special case of
V&V.

• Configuration management (CM).

CM balances the need to make changes with a visible, traceable, and formal way to
control those changes. The need for change arises primarily from the application of the
other three product assurance processes.

There is no uniformity in the software engineering community regarding the definitions of
QA, V&V, T&E, and CM. The preceding definitions have proven to be a useful way of
describing the control mechanism and the classes of review checks that need to be instituted
on software systems development efforts.

Management

Management, in concert with product developers and product assurers, uses product assurance
results to gain insight into product development work to make intelligent, informed decisions
about what to do next. It is essential to recognize that, unlike the stages in human
development, a software life cycle stage is not something that is passed through once, never to
be revisited. From the point of view of software systems development, any life cycle stage
may be revisited a number of times before the software is retired. This notion of stage revisits
is a key element of planning for, and accomplishing, any software systems development
effort. Therefore, a management decision may be made to revisit a previous or current life
cycle stage to modify work already accomplished or to proceed to a subsequent life cycle
stage. Thus, the life cycle is traversed by a series of one or more revisits to a life cycle stage.

For a particular software systems development effort, each generic stage unfolds into one or
more stages defining the particular work to be accomplished in terms that the customer and
developer mutually understand. This unfolding, or instantiation, gives visibility to that
particular effort, thereby helping the customer and developer mutually progress in their
understanding of the remaining work that needs to be accomplished. Note that the life cycle
concept implies a sequence of stages, but multiple stages may be ongoing in parallel. For
example, some members of the development effort may be working in the HOW stage on a
draft design specification, while other members are working on a refinement of the
requirements from the WHAT stage. Thus, software systems development proceeds iteratively
through a life cycle via synergistic interplay among the following: (1) product developers, (2)
product assurers, and (3) management.

1.8 User, Buyer, and Seller Organizations Involved in Software
Systems Development

As we explained, the development, product assurance, and management groups must interact
on any software project if software products with integrity are to result. However, to
appreciate more fully the implications of this concept in terms of an actual project
environment, we need to say something about the three archetypical parties that interact on
most software projects. As Figure 1-10 shows, these parties are the following:

Successful Software Development, Second Edition

61

Figure 1-10 The three archetypical organizations that interact on most software projects may or
may not have the requisite software systems development disciplines for attaining and
maintaining software product integrity.

• The user of the software system.

This party generally is the one with the requirements that the software is being
developed to satisfy.

• The buyer of the software system.

This party generally is the agent for the user and thus can be thought of as a surrogate
user. The buyer typically interacts with the seller in seeing to it that the software
system is being developed in accordance with user requirements. Sometimes the buyer
and the user are the same. The buyer and the user are the "customer" to whom we have
been referring in preceding discussions. In subsequent discussions, we generally use
the terms customer and buyer/user interchangeably.

• The seller of the software system.

This party is hired by the buyer to create the software system for the user.

If the user, buyer, and seller organizations have corresponding development, product
assurance, and management personnel, the likelihood of achieving a software product with
integrity is increased. For example, the seller should have a project manager and of course
developers who produce a product as requested by the customer. The seller should have a
product assurance group that reviews the products before they are shown to the customer.
Correspondingly, the buyer/user should have a project manager who should interface with the
seller project manager. Also, the buyer/user should have a staff skilled in the development
disciplines to support the buyer/user project manager. Finally, the buyer/user should have

Successful Software Development, Second Edition

62

a staff skilled in the product assurance disciplines to review the products received from
the seller.

1.9 Obstacles to Improving Software Systems Development Cultures

This book approaches software process improvement as a cultural change exercise that
modifies one or more of the factors making up the previously introduced definition of culture.
This section presents some of the impediments to effecting cultural change. This presentation
lays the groundwork for the technical issues that this book addresses.

As depicted in Figure 1-11, cultivating software development cultural change involves more
than the following elements:

Figure 1-11 Cultivating successful software systems developments extends far beyond (1)
management edicts, (2) assembling a team of experience and good people, and (3) a five-
minute conversation with a customer and a three-week coding frenzy.

• Management edicts
• Team of experienced and good people
• Casual conversations with the customer

Management Edicts

As discussed earlier, software systems development is an activity that requires many
disciplines. It is rare that one individual possesses all the required skills to effect successful
system development. In addition, it is basic human nature that creative people want to
contribute to the culture that they work and live in. Therefore, management edicts may result
in short-term gains. These gains are often nullified by mounting resistance and resentment
that management is not willing to listen to the people who actually have to do the work. On
the other hand, the antithesis of management edicts—pure democracy—is also not the answer;
a democratic approach to systems development can often result in not ever completing what
needs to be done. Someone has to be in charge. Thus, effecting software systems development
cultural change involves a careful blending of both extremes—dictatorship and democracy.

Let us illustrate the preceding remarks—first regarding dictatorship and then regarding
democracy. Many project managers view independent product assurance as an impediment to
getting the job done. Managers of project managers simply cannot edict that project managers
will do product assurance. Experience has shown that project managers will perform product

Successful Software Development, Second Edition

63

assurance in a perfunctory fashion or will state that the development staff will take care of
product assurance. It is thus senior management's job to sell project management on the idea
that independent product assurance contributes to a product's integrity. Project managers
believe that their senior management does not understand what really needs to be done to get
a product out the door and satisfy the customer. From their perspective, senior management is
too far removed from the day-to-day realities. Rather than through edict, senior management
needs to work with project managers to show in budget and schedule terms that independent
product assurance is necessary to get a product out the door and satisfy the customer. An
objective of this book is to provide senior management with insight into how to work with
their project managers to effect cultural change in the product assurance realm.

Regarding pure democracy, turning the running of the project ship over to the entire
development team is a recipe for shipwreck. Somebody has to be in charge to ensure that the
project stays on course. Thus, another objective of this book is to provide project management
(on both the developer and customer sides) with guidance on how to run a project like a
participatory democracy—that is, having someone in charge, and at the same time, having this
leader listening to the development team members. For this purpose, we detail a concept that
we call a change control board (CCB) where participatory democracy works. Project work
stays focused, and the participants definitely contribute.

Team of Experienced and Good People

Good people—that is, people with the applicable software systems development skills
highlighted earlier—need to be blended on a software systems development effort to achieve
success. The trend in the software industry is toward teaming—because, in part, systems are
increasing in complexity. Thus, in general, no one corporation has the full complement of
skills available to tackle the problem. (We also recognize that there are political reasons for
teaming.) Even if a corporation is stable, personnel turnover and technology advancements
demand continual examination of the corporate culture. Thus, assembling a team of good
people requires a careful blending of the associated cultural diversity.

Compounding the challenge is the fact that each company itself consists of various software
systems development cultures. For example, cultural clashes can arise in the independent
product assurance area. For some companies, this independent product assurance is not a part
of the culture. Senior management on both the development and customer side often
recognize that independent product assurance is one way of avoiding repetition of past
problems. Yet, at the working level, project managers on both the development and customer
side, as well as the development team members, are often reluctant to adapt to the "new" idea
of independent product assurance. Their past "successes" (without independent product
assurance) makes acceptance of this form of cultural change difficult. We hope to provide
management, developers, and product assurers with insight on how to blend corporate and
customer cultures to achieve software systems development success.

Casual Conversations with the Customer

Software systems development is a challenge to the inventive nature of both the customer and
the developer. They get ideas and try to flesh them out during subsequent development stages.
Software systems development is a partnership that requires continual participation by both
the customer and the developer. The notion that a customer states requirements and the
developers go away and produce a working system with little or no subsequent interaction

Successful Software Development, Second Edition

64

with the customer does not work. Both participants need continual visibility into the
development process and products. No matter how well each participant thinks he or she
understands the requirements at project outset, the reality is that both participants progress in
their understanding of what needs to be done as the project proceeds.

Sellers are in the business of solving problems and providing solutions. In the commercial
world, this approach translates into sellers making money. In the noncommercial or
government environment, this approach translates into career advancement. There is a
tendency in both environments for the developers to sign up for doing the job before the job's
scope of effort is well bounded. Consequently, the customer's expectations are set that the job
is well understood and that the necessary resources are in hand to complete the job. In the zeal
to make money or to advance a career, an effort to manage the customer's expectations of
what is really needed often falls by the wayside. Managing customer expectations is a culture
change problem. Another of our objectives is to provide guidance on managing customer
expectations.

To illustrate the preceding remarks, a commonly occurring software systems development
problem is that of producing "user friendly systems."Figure 1-12 illustrates, in the extreme,
how customer/developer misunderstandings regarding what "user friendly" means can lead to
customer dissatisfaction.

Figure 1-12 Customer/developer misunderstandings arising during software systems
development—such as the meaning of "use-friendly-system"—can adversely affect customer
expectations.

Software process improvement is a cultural change that takes time. It is an exercise that is
accomplished in concert with existing work. Senior management cannot afford to put today's
work on hold while a new development environment is established. However, progress is

Successful Software Development, Second Edition

65

needed in effecting the change to stay in business and advance careers. William Bridges, in
his work on effecting cultural change, stresses the following in this regard:[37]

When a business or industry is going through a profound transformation—and
there is hardly one that is not doing so today—competition blinds people to the
real challenge, which is capitalizing on that change. Competing for market
share in today's markets is like fighting for deck chairs on the Titanic.

In other words, many people do not capitalize on the change because of the realities of staying
in business and advancing individual careers. This constant change produces a wide spectrum
of obstacles. Figure 1-13 illustrates a frequently encountered problem in the software
industry—"I don't have time to document my computer code."

Figure 1-13 "My schedule simply doesn't permit me or my coworkers to document before we
code. Anyway, the documentation is too difficult to keep up to date because the code keeps
changing."

Too frequently, developers focus only on computer code, which is just one component of
software. Part of software systems development cultural change is institutionalizing the
software definition that encompasses both documentation and computer code. Once this
definition is institutionalized, project planning can account for the resources needed for the
documentation. Given the appropriate resources to develop documentation and computer
code, the likelihood of successful software systems development efforts increases.

Many people in the software industry believe that, with the advent of computer-aided
software engineering (CASE) technology, the documentation problem is a memory from a
bygone era. While CASE technology produces some of the required documentation form of
software, the technology generally does not produce documentation that senior management
readily understands. The technologists understand the matrices and engineering diagrams that
this technology turns out. Unfortunately, many of the people making the decisions regarding

37 William Bridges, Managing Transitions: Making the Most of Change (Reading, MA: Addison-Wesley Publishing Company), 1991, p. 82.

Successful Software Development, Second Edition

66

project resource allocation simply cannot relate to these CASE outputs. Sensitized to this
potential problem, project management can set aside the appropriate resources and plan for
the adaptation of CASE outputs to meet the needs of senior management and others.

Some people are receptive to change—others are not. In the latter category are those people
who have achieved success in the past doing development their way. As shown in
Figure 1-14, these people can be quite stubborn and disruptive to effecting software process
improvement. Often they have not bought into the organization's mission regarding software
process improvement. The Not-Invented-Here (NIH) syndrome manifests itself in different
flavors depending on where the individual is in the organization's hierarchy. If a senior
manager suffers from the NIH syndrome, the impact on an organization can be significant.
The senior manager exerts influence over immediate subordinates and others. The result is a
counterculture that can splinter the organization, causing it to work at cross purposes. If a
project manager suffers from the NIH syndrome, the organizational impact can be more easily
contained through senior management (assuming senior management does not suffer from the
NIH syndrome). One of the objectives of this book is to provide guidance on how to achieve
organizational buy-in from people who are resistant to change. However, it should be
recognized that not all people will accept change. There will always be outliers.

Figure 1-14 An impediment to software process improvement—the Not-Invented-Here (NIH)
syndrome.

Other cultural change challenges that we address in this book are highlighted by the following
quotations:

"Now is not the time to sit with the customer and my software development
staff to mutually agree on what needs to be done next. Besides, my customer is
paying me to figure out what he really needs. All I need to do is demonstrate
the system to him after we are finished coding—and then he will know what he
really wants."

Successful Software Development, Second Edition

67

"Our Software Engineering Process Group is tying my hands with this silly
procedure that defines the way we are supposed to do business with the
customer. Even my customer thinks the procedure is too bureaucratic. Besides,
before I came to this place to work, I already knew how to work with
customers who wanted me to produce working computer systems."

"Why do I need an independent product assurance group looking over my
shoulder? My engineering staff is experienced and knows how to turn out good
products. They are better able to write and execute acceptance test procedures
than any outsiders could."

"I don't see why I have to keep a written record of my interactions with the
customer. I trust her, and she trusts me. Besides, the only written record that
counts is the customer's letter of acceptance of the products that I and my staff
deliver."

"Another project is running into schedule and cost problems. The customer just
called and said that our development team is not building what the customer
needs." "I'm the government customer. Why can't I go around the contractor
management and tell the developers how to do their job?"

"I don't understand. I've worked with this company before, and this current
effort just doesn't match up with what they've done in the past."

"I don't care what our software development plan says. The customer wants the
system tomorrow. If we can't deliver, he'll take his business elsewhere."

"I told you what I wanted you to do, and I assumed that you understood what I
meant. But what you just delivered is not what I asked for!"

"How can you tell me that what you just delivered is what I asked for? This is
not what I asked for, and I am not going to accept it!"

People are not afraid of change, they are afraid of what they will lose if change occurs. One of
our objectives is to provide insight into how to overcome such fears.

1.10 Alternative Approaches to Software Process Improvement

How do we overcome the obstacles to effecting cultural change to realize software process
improvement? There is no simple answer. Many people in the software industry have been
working this problem. Early system development efforts were concerned with keeping the
hardware up and running. As the hardware stabilized and became less expensive, the
emphasis in systems development shifted to software engineering considerations.

The demand for more intelligent information technology systems is increasing as enterprises
attempt to implement effective knowledge strategies. What is needed are systems that process
data and produce information that enables the enterprise decision makers to make informed
decisions. Such systems are intertwined with many organizational facets of the enterprise, and
the life of a system generally exceeds the tenures of individuals within the enterprise. One
consequence of this continuing trend is that systems are increasing in their complexity, and

Successful Software Development, Second Edition

68

thus software systems development is resource intensive. Concomitant with the resource and
system complexity issues is the recognition by enterprises that they need to reduce their
dependence on transient system developers. The decision makers are searching for more
effective software systems development strategies. There are no simple solutions. Figure 1-15
illustrates three possible approaches for effecting software process improvement within an
enterprise—management edicts, corporate process improvement policy, and systems
engineering environment.

Figure 1-15 Alternative approaches to software process improvement—(1) management edict,
(2) organizational policy, and (3) systems engineering environment (SEE). This book focuses
on the SEE approach.

Management Edicts

As an enterprise grows, so does its complexity. An individual's capability to maintain pace
with the expansion correspondingly diminishes. Replicated across an enterprise, the
management edict approach often leads to the competing fiefdoms or subcultures. Over the
long term, the result undermines organizational effectiveness. More organizational resources
are poured into internecine struggles rather than being directed toward furthering the goals of
the enterprise.

Corporate Process Improvement Policy

As an enterprise recognizes its expanding requirements for effective knowledge strategies, it
often formalizes its vision for software process improvement with corporate policy. Such
policy heightens the corporate awareness of the need to change the way software systems are
developed. Often this approach does not reach down to the day-to-day working level of
activities. Changing how the "work in progress" needs to be accomplished is disruptive and
can lead to unhappy customers. While well-intentioned, this first step in software process
improvement often falls short of influencing how systems are actually developed.

Systems Engineering Environment (SEE)

This software process improvement approach extends down to the day-to-day development
activities. As discussed in this book, the SEE (1) accounts for the increasing complexity of
issues associated with enterprise growth, (2) accommodates the problems of transient
developers, and (3) serves to overcome development subcultures within an enterprise. The
SEE consists of two complementary components:

Successful Software Development, Second Edition

69

• Application Development Process Environment (ADPE)—

the set of those policies, guidelines, procedures, and standards defining the processes
for developing deliverable products (i.e., documents or computer code or databases).
A policy is a high-level statement of principle or course of action governing software
activity. A guideline stipulates a sequence of broadly stated steps for producing a
software product or accomplishing a software process. A procedure is a detailed
prescription for the sequence of steps to accomplish some software-related activity. A
standard stipulates format and content conventions for software products or stipulates
activity conventions for software processes. The ADPE is a framework for bringing
about consistent product development.

• Application Development Technology Environment (ADTE)—

the technology as embodied in hardware and software development tools, and
associated procedures for their use, required to develop products. These tools include,
but are not limited to, CASE tools, programming language compilers, LAN
application development tools, PC application development tools, database
management systems, configuration management tools, and project management tools.

This book provides guidance on how to develop and implement application development
process environment (ADPE) elements (i.e., policies, guidelines, procedures, and standards)
to support the practical development of software products. This environment helps to increase
the likelihood of developing usable products on time and within schedule by infusing
engineering discipline into the process. Through this discipline infusion, the development
process is transformed from an ill-defined process (i.e., lacking repeatability) to a well-
defined process (i.e., one that is visible and traceable). We believe that visibility and
traceability enable both customer and product developer management to communicate
effectively with one another. They can make intelligent, informed decisions regarding how
product development should proceed. This communication helps to remove ambiguities and
misunderstandings. We believe practitioners are better positioned to (1) provide the customer
with usable products, (2) repeat their successes and avoid their mistakes, and (3) reduce
reliance on individuals for these repeatable successes.

We recognize that some in the software industry have observed that software engineering is
not a discipline. Peter J. Denning, former President of the Association for Computing
Machinery (ACM), made the following observation:[38]

Software engineering is not a discipline. Its practitioners cannot systematically
make and fulfill promises to deliver software systems judged by their
customers as usable and dependable, on time and fairly priced. The illusion
that software engineers possess a discipline has produced the major
breakdown called the software crisis.

Denning's statements have much merit. However, we believe that software systems
development can be disciplined. This book is about the practical application of software
engineering principles. We describe techniques for injecting discipline into the software
systems development process. Since this book is intended for practitioners, our emphasis is on

38 P. Denning, "Designing a Discipline of Software Design," Proceedings of the 7th SEI CSEE Conference, San Antonio, Texas, January 1994
(Berlin, Germany: Springer-Verlag, 1994). Abstract of Keynote Address.

Successful Software Development, Second Edition

70

practical means for disciplining the process. By practical, we mean "application of techniques
consistent with available time and resources." We label this type of application "prescriptive
application." Software systems development is not a cookie-cutter exercise. Management skill
in applying available techniques is a key ingredient to achieving software systems
development success. This book offers guidance for prescriptively applying these techniques.

But this book is more than an exposition on the engineering techniques to select for building
usable software products. It is one thing to come up with ADPE elements. It is another thing
to have these elements adopted and practiced within an organization. Thus, this book delves
into the cultural change considerations needed to bring about ADPE adoption by the people
making up an engineering organization. We address organizational culture questions such as
the following:

• How do you involve the individuals in an organization in the definition of ADPE
elements to achieve their buy-in to the changes that ADPE implementation implies?

• How does a seller involve the customer in the ADPE development and
implementation?

• How does a seller extend the cultural change activity associated with ADPE
implementation beyond the seller's environment into the customer's environment?

• How can seller senior management support be orchestrated to facilitate ADPE
implementation?

• How frequently should promulgated ADPE elements be updated to tune their
effectiveness without disrupting the overall state of the development environment
associated with changing the elements?

• How do you promulgate ADPE elements? How many? How often? What sequence?
• Given that there are always organizational outliers, what are reasonable goals to set for

how much of an organization ADPE implementation should encompass?
• How do you sell engineering activities such as product assurance when seller

organizational players and/or customers question the value added of these activities?
• How do you encourage change within an organization while at the same time avoiding

organizational fragmentation into competing subcultures?
• How should sellers deal with customers who are not prepared to buy into one or more

key ADPE elements of the seller's process?
• How should customers negotiate with sellers on what makes sense to do on a

development effort?

As many of these questions suggest, transitioning to a software systems development process
that is repeatable, risk-contained, and businesslike involves blending (1) cultural, (2)
organizational, and (3) engineering considerations. As illustrated in Figure 1-16, our approach
to achieving this blending is through the development and implementation of a systems
engineering environment (SEE).

Successful Software Development, Second Edition

71

Figure 1-16 A systems engineering environment (SEE) provides a means for effecting
consistent software systems development—whether systems are developed sequentially or in
parallel. For parallel systems development, the SEE also provides a means for coordinating
these development activities, thereby potentially leveraging resources and adding value to
individual projects.

A feature of this book is the attention given to communications issues. More than anything
else, the software industry has unequivocally demonstrated that customer/seller faulty
communication underlies a majority of software systems development problems. This book
addresses techniques for improving customer/seller communication. In particular, this book
elaborates on how to improve communications by bringing the requisite disciplines (i.e.,
product assurance, development, and management) together in a businesslike forum. This
forum provides a management mechanism where issues are discussed, actions are assigned,
and decisions are made. Such mechanisms are easy to set up, and they are extremely
powerful.

Another feature of this book is our emphasis on the prescriptive application of the techniques
described. When it comes to applying almost any software engineering technique, there are no

Successful Software Development, Second Edition

72

fixed rules. After introducing techniques, we present specific suggestions for adapting these
techniques to different organizational setups. Clearly, what makes sense to do processwise on
a five-person project within an organization in all likelihood will not make sense to do on a
twenty-five-person project (and vice versa) without some adaptation. What makes sense for
an aging system scheduled for retirement does not necessarily make sense for a new
development effort. We address these adaptation considerations, which we put under the
umbrella of the previously described notion of "prescriptive application."

Another feature of this book is our approach to transitioning from ill-defined to well-defined
software development practices (i.e., improving process maturity). Practice within the
industry tends to focus on so-called maturity levels. Improving software process maturity is
correspondingly articulated in terms of achieving Process Maturity Level 1, 2, 3.... This book
focuses on what are termed by some in the software industry as key process areas or process
areas that make up a given maturity level. We describe software process improvement in
terms of ADPE elements that address these key process areas. From our perspective, software
process maturity improvement is an exercise in ADPE element implementation.
Implementation means "the promulgation of ADPE elements, and the prescriptive application
of these elements by an organization." And, as we stated previously, this prescriptive
application is tantamount to a cultural change within the organization.

Finally, another feature of this book is the scope of our cultural change perspective. The trend
in industry is for corporations to team to win business. Thus, when such wins occur, the
cultural change associated with setting up an ADPE extends beyond the confines of a single
corporation. More and more, winning sellers are a united nations in microcosm. Customers of
course are not interested in dealing with an engineering polyglot. The challenge to a winning
seller is to blend this corporate diversity so that a customer sees a unified engineering
organization. This book addresses the sticky issues associated with blending diverse corporate
cultures.

1.11 Preview of the Rest of Book

Figure 1-17 is an overview of the entire book. In the following paragraphs, we give a
summary of each of the remaining chapters.

Figure 1-17 This figure provides an overview of this book.

Successful Software Development, Second Edition

73

Successful Software Development, Second Edition

74

Chapter 2—Project Planning Process

The purpose of this chapter is threefold. First, it explains that there are key process elements
within any life cycle. Specifically, we show how the life cycle concept brings to the fore the
key process elements of (1) product assurance, (2) management review, (3) iteration within
the seller organization during product development, and (4) iteration between the seller and
buyer/user during product development. This section shows how this need for iteration
naturally arises from the interplay among the user, buyer, and seller as each refines his or her
understanding of what needs to be done as a project's life cycle unfolds. We stress that, at any
given point, a project may be in more than one life cycle stage. A consequence of this reality
for the practitioner is that this paralleling of activity needs to be accounted for in project
planning and project tracking.

Second, the chapter explains how the life cycle concept is a key element of the software
project planning process. We use life cycle examples to demonstrate this concept. We discuss
project risk assessment and the way to integrate this activity into project planning. We
introduce a matrix whose columns are life cycle stages and whose rows are the disciplines of
management, development, and product assurance. Each entry in the matrix is one or more
tasks associated with a life cycle stage and one of these disciplines. These tasks are the
entities that define the technical approach in a project plan. Three cases are illustrated: (1)
classical system development (including so-called "maintenance"), (2) prototyping, and (3)
information engineering.

Third, this chapter includes guidance on how to develop a project planning process for your
organization. We pull together the concepts discussed in the chapter and detail the project
planning process activities, major communication paths, and individual roles and
responsibilities. We then present an annotated outline for a project planning ADPE element.

Chapter 3—Software Systems Development Process

This chapter starts with a discussion of software process and software development
organizations. We present an example software systems development process. Also, we
discuss each of the process's major elements: customer, seller process engineering group,
customer/seller development team, change control board, seller senior management, and
major communication paths. We stress that an organization's software systems development
process should be "prescriptively" applied to each project because no two projects are the
same. In addition, we present an annotated outline for a development process ADPE element.

Chapter 4—Change Control Process

This chapter is devoted to answering the question, "What does the customer really want?" In
this chapter, we show how the CCB is used to address the communications problems that
plague any software project. We introduce the notions of planned change and unplanned
change and show how they are a natural fallout of any march around the life cycle. We
discuss how the classical configuration management CCB concept needs to be generalized to
consider both programmatic as well as product changes, so that the seller and user/buyer are
not surprised as the project life cycle unfolds. We talk about the inevitability of change and
the need to plan for change. We talk about the processing of software changes and illustrate
this processing for a design specification, a requirements document, and for an incident
report. Next we address who sits on the board, what decisions it makes, and how it operates.

Successful Software Development, Second Edition

75

Also, we describe the paperwork needed to support CCB operation. We close the chapter by
presenting an annotated outline for a CCB ADPE element.

Chapter 5—Product and Process Reviews

This chapter addresses the subject of software product reviews and software systems
development process reviews. The purpose of product and process reviews is to give decision
makers and other software systems development project participants visibility into the project
state of affairs. These reviews serve to lessen guesswork on what to do next. We present a set
of software product and project process review concepts organized by management,
development, and product assurance disciplines. We illustrate the review concepts with
examples drawn from the real world. This chapter presents annotated outlines for a peer
review guideline, an independent product assurance policy, and an acceptance testing cycle
procedure.

Chapter 6—Measurement

This chapter addresses the subject of metrics. Measurement for the sake of measurement is a
waste of time and resources. This chapter presents measurement techniques that enable you to
measure software products (i.e., product integrity measurement) and software systems
development processes (i.e., process integrity measurement) in everyday terms familiar—and
therefore meaningful—to your organization. We explain and illustrate general measurement
formulas. We also apply these techniques to the Software Engineering Institute's Capability
Maturity Model for Software. This chapter concludes with an annotated outline for a
measurement guideline. Appendix A contains material that illustrates how to measure items of
interest outside a software context. The intent of this appendix is to give interested readers
insight into how to measure almost anything. The example deals with measuring the extent to
which information technology contributes to the accomplishment of an organization's
mission.

Chapter 7—Cultural Change

This chapter deals with human issues bearing on effecting cultural change. The chapter
presents views from the following perspectives: (1) the organization responsible for
developing and promulgating process elements, (2) seller project participants and project
managers, (3) buyer/user project management, (4) buyer/user senior management, and (5)
seller senior management. Here we talk about what to expect when trying to implement an
SEE. We talk time scales for effecting change. We look at how to win people over, and we
talk about when it is prudent to give up on some individuals. Also, we discuss the key role
senior management plays in making cultural change happen. This chapter includes an
annotated outline for defining and improving ADPE elements.

Chapter 8—Process Improvement Planning

This chapter, which concludes the book, talks about SEE implementation planning. We
provide guidance on how to write an SEE implementation plan to establish the framework for
doing the things discussed in the preceding chapters. We have chosen to end the book by
discussing what should normally be done first in bringing about software process
improvement through an SEE—namely planning. It is simply easier to discuss SEE
implementation planning once you understand the key issues to address in the plan. We

Successful Software Development, Second Edition

76

present and discuss nineteen issues that may be important for an organization regarding SEE
implementation. We provide annotated outlines for an SEE implementation plan, a
configuration management guideline, a project tracking guideline, a software development
life cycle definition guideline, and a document templates standard.

Successful Software Development, Second Edition

77

Chapter 2. Project Planning Process
It's a bad plan that can't be changed.

—Publilius Syrus, Moral Sayings (First century b.c.e.).

2.1 Introduction

This chapter provides you with guidance for effectively planning software systems
development work. We refer to the document containing planning information as the "project
plan." In some systems development communities, the plan is called a "software development
plan." The project plan is a gauge used, in part, to think through what needs to be done, to
estimate how much the effort may cost, and to determine whether software systems
development work is unfolding as it was envisioned.

Just as the software systems development process is iterative, so too is the planning process.
No matter how well a project has been planned, there will always be changes. We stress that
the project plan should be a living document. Although many people agree with this point,
they still experience repeated difficulties in managing the anticipated, but unknown, change.
The message here is that project planning involves (1) planning the work to be accomplished
before the work begins and (2) planning how to manage the changes to this work as the work
is being accomplished. Thus, project planning, like software systems development, is an
exercise in change management.

The emphasis in this chapter is on the project planning process. We present the activities
involved with putting together a project plan, as well as the project plan's contents. Also, we
give you an outline for a project plan to help you overcome the blank-page syndrome. A key
to running any good business—software development or otherwise—is effective business
processes. In the software world, one element crucial to software systems development
success is the project planning process.

We need to stress one more point at the outset regarding project planning. While much of
what we have to say is from the seller perspective, wealso address the customer perspective.
The project plan is indeed a sellerdocument. However, the project plan is not developed in a
vacuum. Itis usually developed in response to a customer's or surrogate customer's (e.g.,
marketing organization or venture capitalist) statement of need.In this book, we refer to such a
statement as a "statement of work," or SOW for short. One key SOW issue that we address is
that of SOW risk assessment.

With no pun intended, the plan for this chapter is the following:

• In Section 2.2—Project Planning Key Ideas, we present the key ideas that you can
expect to extract from this chapter.

• In Section 2.3—Life Cycle Role in Project Planning, we bring together the Chapter
1 concepts of a generic life cycle, project disciplines, and project players to show you
how they bear on the planning process.

• In Section 2.4—Ideal, Real, and Realistic Project Planning, we discuss the planning
process in terms of three instantiations of a generic life cycle.

Successful Software Development, Second Edition

78

• In Section 2.5—Risk Assessment and Project Planning, we discuss project risk
assessment and how to integrate this activity into project planning.

• In Section 2.6—Project Planning Process, we present you with guidance for
developing an Application Development Process Element (ADPE) that defines the
project planning process for your organization's Systems Engineering Environment
(SEE).

• In Section 2.7—Project Plan Contents, we discuss project plan content. This
discussion pulls together the project planning process concepts introduced in the
preceding sections to give you ideas on how to generate a project plan.

• In Section 2.8—Project Plannning Summary, we summarize the chapter's key
points by presenting an annotated outline of an ADPE procedure as a starting point for
defining or refining your organization's project plan development process.

2.2 Project Planning Key Ideas

Figure 2-1 lists the key ideas that you can extract from this chapter. To introduce you to this
chapter, we briefly explain these key ideas. Their full intent will become apparent as you go
through this chapter.

Figure 2-1 Successful software systems development requires good planning. Here are key
project planning concepts explained in this chapter. These key ideas are your guide to
planning for software systems development success.

1. Planning requires a software systems development life cycle to provide a framework
for considering the specific tasks to be accomplished.

Here, we expand on the generic life cycle concept introduced in Chapter 1. From this
generic life cycle, we "derive" examples of project-specific life cycles. This chapter
offers you ideas for how such project-specific life cycles naturally bring to the fore the
tasks that need to be incorporated in the project plan to accomplish the work defined in
the customer's SOW.

2. Planning needs to account for the interaction among management, development, and
product assurance disciplines throughout the project life cycle.

Successful Software Development, Second Edition

79

How do you transform through project planning the software systems development
process into a business proposition in which both the customer and seller are
accountable for their decisions? This chapter offers you ideas for incorporating a
businesslike forum into your software systems development project. This forum—
which we call a change control board (CCB)—is a key element of dealing with the
inevitable change that arises during any software systems development effort. Our
CCB concept is a generalization of the classical configuration management concept of
configuration control board.

3. Planning is an ongoing negotiation between the CUSTOMER and the SELLER.

Underlying this negotiation process is the art of gaining closure between the customer
and seller regarding SOW content before the project begins, and regarding anticipated,
but unknown, changes during project plan accomplishment. This chapter offers to both
the user/ buyer and the seller ideas for accomplishing this negotiation in a win-win
manner.

4. Planning maps out the envisioned technical approach, resources, schedule, and
milestones for the transition from the current state to a desired state.

This transition sets the overall boundary conditions for the project planning activity.
This chapter offers you ideas for relating the project life cycle, project tasks, resource
and schedule constraints, and risk to planning for this transition.

5. Planning should incorporate the need for change.

It is evident from Syrus's quote at the start of the chapter that this is not a new idea.
However, too many people view the project planning process as an exercise in fantasy.
If you do not plan for change, your project will likely waste a lot of time and money in
thrashing instead of progressing. This chapter offers you ideas for making "plan for
change" integral to your project planning process.

6. Planning needs to assess risk to determine the appropriate mix of management,
development, and product assurance.

There is a strong correlation between project risk and the way resources should be
allocated during project planning to these three sets of disciplines to mitigate risks.
This chapter offers you ideas for doing this risk assessment and resource allocation.

7. Planning is required for any software systems development effort, and it is captured in
a project plan ranging from a one-page memo to a sizable document.

The world of software systems development spans orders of magnitude of complexity.
Just as it does not make sense to use a pile driver to crack a nut, so too it does not
make sense to shoehorn the project planning activity into a "one size fits all"
framework. Many contractual vehicles exist for establishing a formal working
relationship between a seller and a customer. The nature of these vehicles has some
impact on the software systems development process. We touch upon these different
vehicles.

Successful Software Development, Second Edition

80

2.3 Life Cycle Role in Project Planning

In what sense does software have a life cycle? At the beginning of a project, the software is in
a state of infancy—its features are outlines and sketchy definitions. Later in the project, these
outlines and sketches are filled in with detail on structure, processing, and data; the software
acquires a distinctive "personality." Ultimately (barring sickness, such as faulty design), the
software achieves its fully developed state when it becomes operational and ages gracefully
through a metamorphosis resulting from the incorporation of enhancements, new capabilities,
and fixes to latent defects.

The concept of life cycle can be viewed as a tool to explain the activities involved with
bringing software from a relatively amorphous state in someone's or some enterprise's head to
a finished state in which the operating software code does useful work. A life cycle helps
management acquire insight into the software systems development process. For example,
consider the situation depicted in Figure 2-2. Often the purpose of a software systems
development project is to bring about a transition from a manual or a legacy automated
system to a new/improved automated system. As Figure 2-2 indicates and as we subsequently
explain, a development life cycle integrates the systems disciplines of development, product
assurance, and management.

Successful Software Development, Second Edition

81

Figure 2-2 Software systems development projects transition manual or automated legacy
systems to new/improved systems. A development life cycle brings to the fore the disciplines
and tasks needed to (1) effect a successful transition and (2) respond to postdeployment
needs.

The numbered tasks (i.e., 1, 2, 3, 4, 5, 6) represent one software systems development path
that integrates development, product assurance, and management disciplines.
The development disciplines are represented by the four generic development stages of
WHAT (task 1), HOW (task 2), BUILD (task 4), and USE (task 5). Each stage yields one or
more software or software-related products. In the earlier stages of the software life cycle,
requirements specifications are typically produced. These specifications express the WHAT
that is to be done. In subsequent stages, design specifications (HOW) and computer code and
databases (BUILD) are typically produced.

Throughout this book, we rely on the life cycle concept to explain and amplify software
systems development process concepts. It is therefore important for you to realize at the outset
that a life cycle "stage" is not something that is passed through once, never to be revisited. As
we mentioned in Chapter 1, from the viewpoint of software systems development, any life
cycle stage may be revisited a number of times before the software system falls into disuse
(i.e., dies). We prefer to think of a revisit to a life cycle stage as the enhancing, correcting,
and/or adapting of what was done during the previous visit to that stage. Revisits are nothing
more than "maintenance" in the dictionary sense of the word (namely, "the act of keeping in

Successful Software Development, Second Edition

82

existence or continuance; the act of keeping in a specified state"[1]). In this book, we therefore
adopt the attitude that "maintenance" is an integral part of the activities associated with any
life cycle stage. Therefore, we do not distinguish between software systems development and
software systems maintenance. The required disciplines and processes are the same.

As shown in Figure 2-2, the product assurance disciplines are represented in the review area,
along with the management disciplines. Product assurance activities (task 3) provide
developers with alternative views of the product under development (e.g., requirements
specification), and management with insight to where the developers are in the development
process. Product assurance seeks to compare life cycle products with one another to deter-
mine the extent to which they logically follow from one another and the extent to which they
conform to the customer's stated needs. This comparison helps to build a thread that explicitly
traces a product to products from predecessor stages (or products from the same stage—such
as an earlier draft of a specification document)—which, in turn, raises the visibility of the
software systems development process. The management activities (task 6) include oversight
of the development activities and product assurance support activities. Management uses the
visibility provided by product assurance to make decisions on what to do next. For example,
after management reviews product assurance test results, the management may decide to
revisit the WHAT stage if it is believed that the customer needs are not being met by the
software code.

The number of life cycle stages utilized on a particular project is a function of how much
visibility is desired (and affordable). This number may also be a function of organizational
policies. For example, your organization may have a policy stipulating that for planning
purposes, all projects should be partitioned into a specified number of stages. Furthermore,
once a project is under way, it may be desirable to change the number of stages planned and
agreed to at the outset of the project. Examples that might change the number of stages
include the following: changes to the project budget, changes to the customer's desire to have
more visibility into the development process, or changes to customer delivery dates. The idea
of partitioning a software systems development effort into stages is useful for avoiding
management indigestion. Just as a number of factors govern how someone chooses to slice up
the elements of a meal before consuming it, so too there may be a number of factors
governing how a life cycle should be partitioned. The fundamental point is that there is no
single "preferred" partition of the life cycle that should be applied to all projects.

The project team members perform the following generic software systems development tasks
to transition from an existing system to a new/improved one:

• Analyze what needs to be done to effect the transition from the existing system to the
new/improved system.

• Convert the what to the how to proceed with the transition.
• Perform product assurance activities to gain additional insight into project progress.
• Construct the envisioned new/improved system from the how.
• Use the built system, analyze feedback, and decide what to do next.

We illustrate this fundamental point of transition with two examples: (1) off-the-shelf
software and (2) software maintenance (i.e., life cycle stage revisits). These examples provide

1 Random House Webster's College Dictionary (New York: Random House, 1999). We have conjoined words in the first definition given for
"maintenance" with words given in the first and third definitions of "maintain."

Successful Software Development, Second Edition

83

insight into what we mean by software systems development. This insight is needed to clarify
the scope of the project planning process as we deal with it in this book.

Example 1—Off-the-Shelf Software

Our first example deals with an enterprise or organization that decides to rid itself of
typewriters and bring in personal computers with word processing software. Here, the office
is effecting a transition from a manual system to an automated system. At this point, some of
you are saying, "This is not software systems development! It is just a simple equipment
purchasing exercise."

First, consider how the word processing vendor developed the word processing software. One
typical scenario is that the vendor's marketing organization assesses the marketplace to
determine WHAT the user community wants in a word processing package. This marketing
organization is a surrogate customer (i.e., surrogate buyer/user) for the vendor's product
development organization. The development organization, presumably working with the
marketing organization, transforms the vendor's WHAT into a HOW. Here, such things as the
nature of the user interface (e.g., pulldown menus) takes shape. Then, the product
development organization BUILDs to the HOW and WHAT to produce the word processing
product. Before releasing the product for sale, the vendor may test-market the product
(typically called "beta testing") to work out problems and refine features. Subsequently, the
vendor releases the product for sale where it is USEd by customers.

Now, consider things from the perspective of an actual customer purchasing the equipment
and word processing software. The purchase of this material presumably did not take place in
a vacuum. Someone in the customer's organization compiled a list of capabilities (i.e.,
requirements) that the equipment and word processing software needed to satisfy. Among
other things, then, somebody presumably needs to determine whether the installed system
satisfies the requirements. In addition, once the office personnel start using the installed
equipment, new requirements may emerge—which may or may not be satisfied by more off-
the-shelf software applications.

In terms of our generic life cycle, then, we say that the WHAT stage corresponds to compiling
the list of capabilities. What about the other stages in the generic life cycle? How do they
come into the picture? Typically, many personal computer software packages have to be
installed before they can be used. Installation typically involves the selection of various
combinations of options. Deciding which options to select depends on the buyer's WHATs.
These WHATs may include a need for grammar checking, synonym finding, and foreign
language spell checking. Thus, by comparing the WHATs to the available options, the buyer
selects the options needed to meet these requirements. This selection activity can be viewed as
the HOW stage of off-the-shelf systems development.

It should be noted that there may also be other factors governing this option selection—such
as hardware constraints (e.g., available memory, available hard disk space). Once this
selection is accomplished, the buyer enters the INSTALL command and BUILDs the word
processing system to USE the word processor thus developed that satisfies the requirements.
Since it is generally a good idea to check that the INSTALL proceeded properly, the installed
system should be turned over to product assurance to determine whether all the required
capabilities have been properly installed. Then, the word processing system can be turned
over to the enterprise/office users for training and for operational USE.

Successful Software Development, Second Edition

84

From the preceding discussion, it would seem that, in general, there is more to using off-
theshelf software than opening the shrink wrap and popping the media into the hardware.
Planning for activities such as those just discussedcan make the development of off-the-shelf
systems relatively free from pain.

One final comment about this off-the-shelf systems development example: Many offthe-shelf
purchases frequently evolve toward the use of software customized to the particular needs of
the purchaser (by means other than selecting vendor-supplied options)—either by modifying
vendor-supplied software or producing new software. If for no other reason, planning for such
inevitable migrations saves additional time and money. Furthermore, planning for such
migrations at the time of original purchase pays even greater dividends. Among other things,
the plan needs to address what happens if the vendor-supplied software does not do what was
asked for in the SOW.

Example 2—Software Maintenance (i.e., Life Cycle Stage Revisits)

Our second example deals with an enterprise or organization that currently has an automated
system and wants to upgrade this system to incorporate new features and fix latent defects. In
the software engineering literature, this scenario is frequently termed "software maintenance."
In this book, we choose to include this type of project in the domain of software systems
development. In other words, we believe that software maintenance requires the same
activities and disciplines as new software development.

For software maintenance, the WHAT stage is the (1) specification of the requirements for
new features, (2) restatement of the unsatisfied requirements (i.e., bugs), and (3) possible
modification (i.e., enhancements) of existing requirements. The HOW stage is the
specification of the design of the new features, the corrections to the design to correct the
bugs, and the augmentation of the design to incorporate enhancements. [2] The BUILD stage
corresponds to the development of code from the requirements and design specifications.

Thus, in this book, software systems development spans the gamut from the purchase of off-
theshelf software to classical maintenance. So, in terms of Figure 2-2, we see that software
systems development—whether it involves the (1) development of computer code where none
previously existed, (2) purchase of off-the-shelf code, or (3) maintenance of existing code—
involves the tasks shown in Figure 2-2. Every project plan, then, needs to incorporate these
tasks to some degree. As we subsequently explain, the particular character of these tasks is a
function of how the generic life cycle is instantiated.

To summarize the preceding discussion, the key project planning principal is the following:

The tasks in a project plan is the seller's "how-to-do-it" response to a
customer's statement of need (e.g., SOW). These tasks are simply a statement
of how (1) the products emerging from each life cycle stage are to be
developed, (2) this product development activity is to be managed, (3) the
products are to be checked for compliance with customer needs (i.e., product
assurance), and (4) project accomplishment is to be checked for compliance
with the project plan (i.e., process assurance).

2 For legacy systems with little or no documentation, it may be necessary for the developers to spend time examining the existing computer code to
understand how the code works before they specify a design for the new features. However, design options may be limited because of the existing
design.

Successful Software Development, Second Edition

85

Figure 2-3 lays out the preceding project planning principle in "tabular" form. The figure
illustrates that the tasks to be performed by management, development, and product assurance
can take place in one or more life cycle stages. In addition, the figure also shows that the
change control board (CCB) provides a forum for review of task accomplishment during the
project. The project plan is a description of the tasks that the seller team, working with the
customer, are to (iteratively) perform through the life cycle that transitions the customer from
the existing system to the new/upgraded system. During the project, no matter how well a
project is initially planned, the details of what actually happens differ from what was planned.
The change control board (CCB) provides a forum to discuss what needs to be done to
respond to the changes that occur. As decisions are made with respect to what needs to be
done next, the project plan is updated to reflect the refined understanding of what needs to be
done to ensure a successful project. Updating the project plan as the project unfolds is critical
to project success. The updated plan offers the seller the means for ensuring that the
development is proceeding profitably. In many instances, the updated plan offers the customer
the means for ensuring the development is proceeding within budget.

Successful Software Development, Second Edition

86

Figure 2-3 The generic software systems development life cycle provides a starting point for
identifying management, development, and product assurance tasks to be accomplished on
your project.

Another aspect about the life cycle concept needs to be stressed. A life cycle stage is a
conceptual way of visualizing a related set of software systems development activities. On an
actual software project, these activities are, in general, not restricted to a particular time
interval (even though in project planning they are typically assigned to a particular time from,
for example, the first two months of the project). Revisits make it clear that WHAT activities,
for example, may be performed during various time intervals throughout a project. Thus, on a
real software project, WHAT, HOW, BUILD, and USE activities will be interspersed with
one another.

Furthermore, at any given point within a project, some members of the project team may be
doing, for example, HOW work, while other members may be doing WHAT work.
Consequently, a project may be in more than one life cycle stage at the same time. Even

Successful Software Development, Second Edition

87

though we represent the life cycle concept as a sequence of stages, this sequencing of related
project activities does not, in general, occur on an actual software systems development
project.

A software life cycle is in reality a series of recycles through part or all of a sequence of
stages that begins with a statement of customer need and ends with customer acceptance of
software code and supporting databases operating in the customer's environment in
accordance with this need. Any software systems development process must explicitly
incorporate this series of recycles. Otherwise, it does not account for the customer/seller
mutual refinement of understanding that is integral to any software systems development
effort.

The following question naturally arises: What if I can't define a specific life cycle for my
project? Suppose, for example, that the customer tells the seller to code first and ask questions
later (a frequent occurrence in the real world). Alternatively, consider the case when a seller
does not define a life cycle for a project and tells the customer that the seller's developers are
going to code first and ask questions later. We assert that even in such circumstances, you can
use the generic life cycle to help identify the tasks to be accomplished. In fact, if defining a
life cycle proves to be a stumbling block, you can use the generic life cycle model during
project planning to work with a customer to help define a life cycle appropriate to the work at
hand. That is, the generic life cycle can be used as a tool for defining a project-specific life
cycle—and, in the process of defining this life cycle, the tasks to be performed will emerge.

The role of the life cycle as portrayed in Figure 2-3 can be viewed as a task definition
checklist. For example, by looking at the intersection of Management with the WHAT life
cycle stage, the following planning guidance naturally emerges:

Part of managing the project must include oversight of the development of a
requirements specification (or, in the case of a "maintenance" project, the
oversight of the development of a modification to an existing requirements
specification).

Similarly, by looking at the intersection of Product Assurance with the WHAT life cycle
stage, the following planning guidance naturally emerges:

Product assurance must include review of a requirements specification
(update), including drafts of this specification.

The following question also naturally arises: What if the customer does not care how the
product is developed?

We refer to this situation as one in which the customer lacks "visibility" into the seller's
development process. How does the seller know when the customer's needs are satisfied by
the developed software system? How does the seller know how much it will cost to develop
the required product? One way for the seller to approach this situation is to try to get the
customer to agree that no matter what the seller delivers, the product is acceptable and
payment is made. If the customer considers the risks associated with such an approach, a
possible solution may arise such that the seller gets the buyer to accept intermediate products
and partial payments are made. Other factors (e.g., possible customer job loss, untested
technologies, large sums of money, loss of life) may also influence the customer's thinking.

Successful Software Development, Second Edition

88

As the customer's risks increase, the customer's involvement often increases. To mitigate the
risks, the customer may even hire consultants to provide additional insight (i.e., visibility) into
the project. Since the project plan is a living document, the project plan provides both the
customer and seller a tool that gives them visibility into project progress or lack of progress.

Figure 2-4 provides you with the next level of detail regarding the perspectives of the
customer (i.e., user/buyer) and the seller. As shown in the figure, both the customer and the
seller can have management, development, and product assurance personnel. Each group of
disciplines has its own perspective with respect to what is required in a project plan that
covers the spectrum of development activities, yet remains flexible enough to respond to the
anticipated, but unknown, changes.

Successful Software Development, Second Edition

89

Figure 2-4 Consistent project planning records management, development, and product
assurance responses to what needs to be done. These responses are tasks that the different
disciplines are to accomplish. These tasks make up the heart of the project plan. In addition,
no matter how well planning is done, unknown, but expected, changes will arise. The change
control board (CCB) is a forum for systematically accounting for such changes. The project
plans needs to incorporate CCB activities to account for responding to these deviations.

Successful Software Development, Second Edition

90

One of the exceptions to this balance between customer and seller organizations is in product
assurance. The customer organization may not have product assurance personnel. If the
customer starts to question the value added of product assurance activities, the seller should
listen carefully. The customer may not truly understand what it is that product assurance does
to reduce the risk of not accomplishing the project. Conversely, the seller organization may
not have product assurance personnel. If the seller does not present product assurance
activities as part of the project plan, the customer should question whether or not the seller's
organization is mature enough in its systems development processes to ensure success.

The customer's senior- and project-level management evaluate the seller's "proposal to do
work" or "actual performance of agreed-upon work" in terms of whether or not the seller can
satisfy the requirements within the available resources (i.e., dollars, time, and people). As the
seller proceeds through the software systems development life cycle, the customer decides
whether the system is acceptable. From the customer's and seller's perspectives, the
fundamental question is the following: Are the requirements embodied in the software
system? Both the customer and seller interact throughout the visits and revisits to the life
cycle stages to answer this fundamental question. The notion that the customer hands over a
set of requirements and then comes back towards the end of the project to review what has
been done is a prescription for failure. From the beginning, the seller's product assurance
organization should be asking whether or not the requirements are testable. If the
requirements are testable, then it can be demonstrated to the customer that the fundamental
question is being partially answered as the project proceeds. As indicated in Figure 2-4, this
customer/seller interaction takes place, in part, at change control board meetings.

In Chapter 1, we introduced a generic four-stage life cycle. In the next section, we give
several illustrations of how to transform this generic life cycle into a specific set of stages and
associated tasks that can then be used to plan a specific software systems development effort.

2.4 Ideal, Real, and Realistic Project Planning

The planning process is essential to successful software systems development. As illustrated
in Figure 2-5, planning begins with the fundamental understanding of what is to be built, how
the software system is to be built, actually building the system, and how the system is to be
used in the operational environment. Critical to a successful development effort is reviewing
development activities on a periodic and event-driven basis to ensure that (1) customer
requirements are being incorporated correctly and (2) information is available for making
intelligent decisions on what to do next.

Successful Software Development, Second Edition

91

Figure 2-5 Using your experience to tailor the generic life cycle, you define the specific
management, development, and product assurance tasks to be accomplished, and associated
estimated resources, milestones, and schedule.

Figure 2-5 shows that the generic life cycle can be tailored to a life cycle that makes sense for
your particular situation. By utilizing seller and customer experiences, a specific set of
affordable life cycle stages and systems disciplines activities can be defined. Specific
management, development, and product assurance tasks, milestones, schedules, and resources
can be defined for each life cycle stage. Integral to the interaction between the customer and
seller is the CCB. The CCB is a business forum in which the customer and seller interact to
ensure that what the customer wants is built. Many, if not most, software systems
development projects suffer from poor communications— customer to seller, seller to
customer, developer to user, product assurance staff to managers, etc. The CCB helps to
reduce the communication risks. We cannot overemphasize the importance of the CCB. Plan
on establishing a CCB as soon as possible.

At this point, we describe, in a simplified way, the software development activities associated
with illustrative life cycles. In particular, we illustrate the following three potential life cycles:

• Traditional systems engineering.

A six-stage life cycle that uses systems engineering to produce detailed specification
documentation and computer code.

Successful Software Development, Second Edition

92

• Prototyping.

A three-cycle life cycle that uses prototyping to refine requirements that are not well
understood.

• Information engineering.

A six-stage life cycle that uses information engineering to develop a logical design
that is then used to generate the physical implementation using a computer-aided
software engineering (CASE) tool.

These three examples provide additional insight into the planning of software systems
development projects. The purpose here is merely to introduce these "tailored" life cycles for
your consideration when you define your own specific management, development, and
product assurance tasks. These life cycles are presented from the seller's perspective because
the seller is responsible for developing the product. In some instances, the SOW may specify
that a customer's life cycle is to be used. The seller's project plan should take into account a
learning curve for implementing what may be an unfamiliar software systems development
life cycle.

Traditional Systems Engineering Life Cycle Example

The first of our three life cycle examples is Figure 2-6. This figure depicts the generic four-
stage life cycle as the following six-stage systems engineering life cycle:

Successful Software Development, Second Edition

93

Figure 2-6 This six-stage life cycle gives added visibility to the design activity by dividing the
HOW into two separate stages—PRELIMINARY DESIGN and DETAILED DESIGN. Such added
visibility is desirable when the HOW is assessed to be particularly risky. The example activities
shown above need to be addressed in the project plan for each life cycle stage. The plan
should account for multiple iterations of the activities shown in correspondence with the risk
assessed for these activities.

• Requirements definition
• Preliminary design
• Detailed design
• Coding
• Production/Deployment
• Operational use

Each of the six stages is described below.

Successful Software Development, Second Edition

94

Requirements Definition Stage

Activity in this stage focuses on what the software is to do—that is, the functions to be
performed by the integrated operation of hardware, software, and people. At this stage of the
software life cycle, it may not be evident what each of these three generic system components
is to do. The boundaries separating these components from one another may be amorphous.
However, these boundaries will be better understood as the actual project work unfolds. Over
the life cycle of the system, the elements of this subset may change as decisions are made
regarding what the hardware is to do and what the people are to do (and hence what the
software is to do).

The management tasks include monitoring the assessed risk and planning risk-mitigation
strategies as needed. Management refines planned budgets and schedules. It is important to
establish the change control board (CCB) early on in the life cycle. As the project progresses,
both the customer and seller refine their understanding of what needs to be done. These
project dynamics result in the need torefine planned activities. To specify and agree to
refinements, the customer and seller use the CCB meetings as a forum for recording the
agreed-upon refinements. Assessing risk, planning risk-mitigation strategies, detailing
budgets, holding CCBs, etc., continue throughout the life cycle stages (as indicated by the
dashed arrow in the figure). Once the software system is built, management decides whether
the system is ready to ship to the customer. Input into this decision comes from the visibility
that the product assurance acceptance testing activities provide. Acceptance testing helps
management answer the following question: Does the built system do what it is supposed to
do? Once the system is shipped to the customer, seller management solicits customer
feedback to ensure, in part, proper system operation. During operational use, management
monitors customer feedback and determines if there is follow-on work.

The development tasks include developing an operational system concept. Depending on the
overall size of the project, the concept may consist of a one-page graphic, a detailed written
report, or something in between. The description of each software function embodied in the
operational system concept may simply be a one-sentence definition or one or more
paragraphs amplifying particular aspects of the function (e.g., its scope, qualitative
performance, characteristics, and/or subfunctions). For example, a requirements specification
for a system to count the number of rain days during a month may contain a statement such as
the following:

The software shall maintain monthly counts of the number of days during the
month when rain fell.

As the project unfolds, the Requirements Definition Stage may be revisited and the
requirements specification may be further detailed as follows:

If rain totaling at least 0.02 inch fell during the 24-hour period, the number of
rain days shall be incremented by one.

Various standards exist for writing software requirements specifications. The Institute of
Electrical and Electronics Engineers (IEEE) produces one such standard.[3] This standard, first
issued in 1984 and republished with revisions in 1994, defines eight characteristics of a good

3 "IEEE Recommended Practice for Software Requirements Specifications." IEEE Standard 830-1993 (New York: Institute of Electrical and
Electronics Engineers, Inc., April 8, 1994).

Successful Software Development, Second Edition

95

requirements specification. These characteristics include "unambiguous,""complete," and
"traceable." This standard provides guidance on how to write an unambiguous and complete
software requirements specification.

The product assurance tasks include examining the requirements for SOW congruency,
correctness, ambiguity, completeness, consistency, stability, verifiability, modifiability, and
traceability. The seller's product assurance personnel may begin preliminary testing work by
delineating a test strategy. The product assurance tasks include asking the following
fundamental question: Are the requirements testable? If the requirements are not testable, it is
hard, if not impossible, to demonstrate to the customer that the software system fulfills the
customer's needs.

Preliminary Design Stage

Activity in this stage focuses on making the transition from what the software is to do to how
the software is to accomplish the what.

The management tasks continue from the requirements definition stage. CCB meetings are
held as often as necessary to ensure the customer and seller agree on how the requirements are
designed into the envisioned computer code. The frequency of CCB meetings may increase
just before and just after agreed-upon milestones. The increased meeting frequency helps to
keep the management informed on the project's progress so that it can respond to any
potential problems immediately. We have found that when there is more communication, the
customer's expectations are met more often, and the seller's insight into what its project team
can actually accomplish is well understood. Consequently, the customer gets what is wanted,
and the seller does a better job of estimating what needs to be done to ensure successful
completion.

The development tasks include allocating the functions defined in the Requirements
Definition Stage to software and hardware (if this allocation was not performed in the
Requirements Definition Stage). The outline of what eventually will become computer code is
specified. Major subsystems are defined, and the top-level structure within each of these
subsystems is broken out. Data-flows into and out of the system are described together with
the processing within each subsystem that transforms inflows to outflows. Quantitative
performance criteria (e.g., how fast, how accurate, how frequent) are specified.[4]

The product assurance tasks include verifying and validating the requirements and
preliminary design, determining whether the requirements and preliminary design conform to
established project standards, and developing test procedures in accordance with the test
strategy.

Detailed Design Stage

Activity in this stage focuses on expanding the design outline from the preceding stage.

4 Such quantitative performance criteria may sometimes be specified in the Requirements Definition Stage. For example, a customer may want a
message processing system that, because of known message volumes, must be capable of processing a specified number of messages per hour.
Frequently, however, quantitative performance criteria derive from qualitative statements of customer requirements. These quantitative criteria thus
represent how to accomplish what the customer asked for—and thus represent design. For example, a customer may have a qualitative requirement for
display of realistic animation of human motion. From this (qualitative) requirement for realistic (as opposed to, say, freeze-frame or jerky) animation
may be derived a (quantitative) software design performance criterion of a specified number of display images that the software must produce each
second on a video device.

Successful Software Development, Second Edition

96

The management tasks are essentially the same as during the preliminary design stage.
Management needs to monitor closely the schedules and to get together with the customer as
soon as it is apparent that there is a schedule slip. Simply stated, good management is no
surprises.

The development tasks include prescribing the software structure in sufficient detail to permit
coding. Consider the following simple example. Assume that the preliminary design
specification contains the following statement:

Sum the hourly rainfall amounts [for day x]. If the sum is greater than 0.02
inch, add 1 increment the value of RAINDAYS in file PRECIPCOUNT.

Assume that the preliminary design specification is expanded during this stage and the
following additional detail (bolded text) is added:

Sum the hourly rainfall amounts [for day x]. If the sum is greater than 0.02
inch, add 1 to the value of RAINDAYS in file PRECIPCOUNT.

Ideally, the level of detail in the Detailed Design Stage should be such that the activity in the
Coding Stage is little more than a simple transcription into some computer language of the
words in the design documentation. The detailed design for software is like an engineering
drawing of a hardware component showing all the parts, their dimensions, their
interconnections, and the material from which they are to be constructed. Also during the
Detailed Design Stage, the databases needed for system operation are designed. In addition,
user documentation (i.e., manuals prescribing the commands and other procedures for
operating the software) is developed.

The product assurance tasks include verifying and validating the requirements with the
detailed design, and examining the design for detail adequacy. Product assurance also
prepares plans and procedures for testing the software code in subsequent stages. Completing
the test plans and procedures is a time-consuming exercise. In addition, many times the
development work does not finish as planned, and the product assurance schedules are
affected. Project planning activities should account for such potential schedule slippages.

Coding Stage

Activity in this stage focuses on turning the detailed design into language that computer
hardware can understand.

The management tasks include deciding whether the computer code is ready to ship to the
customer. This management decision is tied, in part, to the CCB meetings that take place, and
the testing that the developers and product assurance personnel conduct. Assume that early in
the life cycle the customer and seller management establish the CCB as one forum for
obtaining agreement. As the project life cycle unfolds, the customer and seller management
routinely meet to discuss and agree upon what needs to be done. The product assurance
personnel work with the developers both to ensure that the requirements are testable and that
the design specifications logically follow from the testable requirements. Test plans and
detailed test procedures are developed and presented to the customer. The test procedures lay
out the button-pushing steps to be performed. The procedures simply compare what is
specified to be seen (as detailed in the requirements and design specifications) with what is

Successful Software Development, Second Edition

97

actually observed (as detailed in the actual computer code) by the testers. If what is specified
matches what is observed, then the seller management can make an informed decision to ship
the product to the customer. This simple example illustrates an approach for determining
"acceptance criteria" that can be presented to a potential customer. Using this approach, both
seller and customer management can make an informed decision to ship and accept the
product.

The development tasks include coding activities that ultimately yield a product for end use by
the user in the user's own environment. CASE technology has blended the design and coding
stages; moreover, it helps the developers lay out the logical design and also provides an
automated capability to generate the physical computer code. In addition, CASE technology
has shifted some of the burden of computer code generation from the developers to software
tools. Regardless of how the computer code is generated, the code must be tested at multiple
levels as it is being put together and on completion of this integration. This testing helps to
assure that the computer code embodies the detailed design and the user's needs.

The product assurance tasks include acceptance testing, as well as examining the software or
softwarerelated products for mutual consistency. Customer-approved acceptance test plans
and procedures, in part, can help make acceptance of a product a moot point. From the seller's
perspective, acceptance testing is a value-added discipline. From the customer's perspective,
acceptance testing helps to reduce the risk of not getting what is needed.

Production/Deployment Stage

Activity in this stage focuses on (1) producing the software code after satisfactory completion
of all testing in the Coding Stage, (2) packaging the tested software code (with user
documentation), and (3) shipping it to the customer for operational use.[5]

The management tasks include monitoring the delivery of the product to the customer and
solicitating customer feedback on the project activities. Such feedback is used to improve the
overall software systems development process.

The development tasks include tailoring the product, if the product is intended for a range of
customers with specialized needs, from the Coding Stage to these needs. In conjunction with
this tailoring, testing similar to that performed in the Coding Stage is conducted to provide a
degree of assurance that the tailored product conforms to customer needs.

The product assurance tasks include performing on-site installation and acceptance testing, as
well as ensuring that the product(s) are baselined in accordance with organizational standards.

Operational Use Stage

Activity in this stage focuses on use of the software by the customer in her or his
environment.

The management tasks include monitoring customer feedback on the performance of the
product and determining potential follow-on work.

5 For some organizations, "producing" the software code may mean "mass-producing" the software code. Such organizations may produce hundreds,
thousands, or millions of copies of the software code for distribution to their customer community.

Successful Software Development, Second Edition

98

The development tasks include monitoring the operational use of the product, compiling and
analyzing customer feedback (particularly user feedback), and preparing development
proposals to respond to the user feedback. A by-product during this stage is customer
detection of latent software defects and customer definition of enhancements or new
capabilities that precipitate revisits to one or more of the preceding stages.

The product assurance tasks include testing bug fixes and archiving problems that were not
solved (test incident reports) and change requests that were not incorporated into the product.

Prototyping Life Cycle Example

Figure 2-7 depicts the following three-cycle prototyping life cycle:[6]

Figure 2-7 This prototyping life cycle gives added visibility to the (1) evolving customer
requirements, (2) most difficult requirements to be implemented, and (3) transition from the
development environment to the operational environment.

6 This discussion is an adaptation of D. A. Fern and S. E. Donaldson, "Tri-Cycle: A Prototype Methodology for Advanced Software
Development,"Twenty-Second Annual Hawaii International Conference on System Sciences (HICSS-22), IEEE Catalog No. 89TH0243-6, Volume II,
Software Track (Los Alamitos, CA: IEEE Computer Society Press, 1989), pp. 377-386. The conference, held in Hawaii on January 5-6, 1989, was
sponsored by the University of Hawaii in cooperation with the Association for Computing Machinery, the IEEE Computer Society, and the Pacific
Research Institute for Information Systems and Management.

Successful Software Development, Second Edition

99

• Definition Cycle.

The objective of this cycle is to define the overall system concept and the set of
requirements that the prototype is to satisfy. The user's perspective of the system via
the user's interface is specified. In addition to defining the human computer interface,
all other interfaces to the system's surrounding environment are established and
validated. The emphasis is on defining all data flowing in and out of the system, and
the format and manner of data transmission. The primary evaluators for this cycle are
from theend-user community. The end users' objectives are focused on evaluating the
needs and effectiveness of the human computer interface. The operational concept is
validated in terms of ease of use, ease of learning, timeliness and appropriateness of
outputs, and complementation of the users' abilities. The primary output of the
Definition Cycle is the skeleton version of the prototype.

• Application Cycle.

The object of this cycle is to evaluate the design of the system. This refinement cycle
is characterized by extensive knowledge acquisition efforts with the domain experts.
The design is evaluated in terms of both the chosen knowledge representation and the
accompanying problem-solving methods. The primary evaluators for this cycle are the
experts. The primary objective is to verify and validate the knowledge and problem-
solving methods as an accurate representation and model of cognitive skills brought to
bear in solving the stated problem. The main portions of the system architecture and
design are considered complete. The primary output of the Application Cycle is the
essential version of the prototype.

• Transition Cycle.

The objective of this cycle is to achieve customer acceptance of the system as a
deliverable product. This acceptance entails a detailed evaluation of the system design
as a whole. Additional functionality not deemed essential, and consequently deferred
until this cycle, is resolved. For example, issues such as the integration and handling
of exceptional cases are resolved and implemented during this cycle of system
evolution. Additional rounds of knowledge acquisition may be necessary to include
the deferred functionality. The increased depth of the software must be consistent with
design decisions made earlier in the process. Thus, some components of these so-
called "nonessential" software modules are addressed in this cycle. The primary output
of the Transition Cycle is the final version of the prototype.

This model of software development is a blend of evolutionary prototyping and classical
software management techniques that progresses through three refinement cycles (i.e.,
Definition, Application, and Transition). The entire process, which can consists of one or
more iterations through the three refinement cycles, culminates with a clear and concise
problem statement, a complete set of requirements and associated specifications, a succinct
statement of the system concept, and an operational (albeit, possibly incomplete) prototyped
system. This prototyping model attempts to instill increased discipline into the prototype
development process. This model also brings together four diverse groups of people: system
developers, domain experts, end users, and customers. Each group has different interests,
concerns, and motivations for the development of a system. The prototyped system provides a

Successful Software Development, Second Edition

100

common language through which they can communicate their views and serves as a tangible
means to analyze and evaluate system requirements and concepts.

Information Engineering Life Cycle Example

Figure 2-8 depicts the following six-stage information engineering (IE) life cycle:

Figure 2-8 This information engineering life cycle gives added visibility to enterprisewide (1)
information needed to support development of business systems, (2) data, (3) activities needed
to process the data, and (4) activity/data interaction.

Successful Software Development, Second Edition

101

• Information Strategy Planning
• Business Area Analysis
• Business Systems Design
• Technical Design
• Construction
• Retirement

In general, management, development, and product assurance systems disciplines come into
play during each IE life cycle stage. These three systems disciplines for IE software systems
development projects are described as follows:

• Management tasks involve both the senior and project management ensuring that
what is needed is built correctly. These tasks are the following:

o Work Planning.

Refining the work plan, including the scope of the work, schedule, staff, and
other resources required for the life cycle stage.

o Management Review. Verifying the completeness and consistency of each
stage's results.

• Development

tasks add increased detail and specificity as work in a given stage proceeds. These
tasks are the following:

o Information Gathering.

Obtaining the knowledge necessary to understand customer needs and the
relationship of those needs to the customer's overall business and obtaining
information about the data and activities associated with the business.

o Data Analysis.

Developing and refining information about the data—beginning with defining
high-level activities in the Information Strategy Planning and Business Area
Analysis Stages and continuing through construction of physical database
models during the Technical Design Stage.

o Activity Analysis.

Developing and refining information about business activities, from identifying
business functions to generating and maintaining source code.

o Interaction Analysis.

Assessing the effect of the business activities and data on each other.

• Product Assurance tasks provide the development project with a system of checks
and balances. These checks and balances are realized through the integrated
application of the following four processes:

Successful Software Development, Second Edition

102

o Quality Assurance.

Checks whether the software conforms to established standards and exposes
parts that don't conform. If under "standards" are included things like software
development plans, the QA process checks whether the product development
process itself conforms to what the software development staff said it was
going to do. Thus, with these definitions, product quality and process quality
mean, respectively, conformance with product standards and conformance with
process standards.

o Verification and Validation.

Checks for any oversights or deviations from customer requirements and
predecessor products and exposes them.

o Test and Evaluation.

Exercises software code and data, checks for shortfalls from requirements and
design documents and then exposes them. T&E is thus a special case of V&V.

o Configuration Management.

Balances the need to make changes with a visible, traceable, and formal way to
control those changes. The need for change arises primarily from the
application of the other three product assurance processes.

Figure 2-8 shows the individual tasks to be performed in a given life cycle stage. The
following is an interpretation of these tasks:

• For the Work Planning task during the Information Strategy Planning Stage (first
row, first column, of IE life cycle work stages), the scope of the work to be performed
and the standards to be followed during the life cycle stages are often defined by the
customer management, reviewed by seller project staff, and approved by both the
customer and seller management. The project plan is defined by the seller project
staff, then reviewed and approved by both customer and seller management.

• For the Management Review task during the Information Strategy Planning Stage
(second row, first column, of IE life cycle work stages), the information needs of the
organization, the project plan, and the supporting architectures are defined by project
staff, then reviewed and approved by both customer and seller management.

• For the Information Gathering task during the Information Strategy Planning Stage
(third row, first column, of IE life cycle work stages), the project team performs this
task using project work groups and facilitated workshop sessions, such as joint
requirements planning (JRP) and joint application design (JAD) sessions.
Programmatic experts and customer representatives supply information about the
customer's mission, organization, critical success factors, and information needs in
order to plan the project work group sessions. Seller project team members and
customer representatives jointly develop the agenda, invite the attendee list, and
conduct the workshops with middle-level customer organization managers.
Information is collected about the organization, information architecture, and technical
architecture. Quality assurance tables are constructed, capturing key quality

Successful Software Development, Second Edition

103

characteristics for organization data and activities. After the information has been
analyzed, workshops are conducted with the customer's top-level managers and staff.
Following each workshop, minutes are prepared and the information that has been
gathered is analyzed.

• For the Data Analysis task during the Business Area Analysis Stage (fourth row,
second column, of IE life cycle work stages), the data are analyzed for the customer's
business area. The subject areas identified in the Information Strategy Planning Stage
are expanded in detail and evolve into the definitions for entity types, relationships,
and attributes, which are captured in an entity relationship diagram (ERD).
Partitioning, attribute classification, and value derivation lead to an entity hierarchical
diagram (EHD). Together, these two types of diagrams form the logical data model
that is a picture of the data required and their relationships for the defined business
area.

• For Activity Analysis during the Business Area Analysis Stage (fifth row, second
column, of IE life cycle work stages), the functions and their dependencies defined in
the Information Strategy Planning Stage are further decomposed into processes (and
corresponding process dependencies). The hierarchical relationships of the activities
performed by the business are determined, as well as the description of what each
process does and what entity types each process affects. A dependency analysis is
performed to relate the lowest-level processes to each other to validate that all the
activities have been identified. The result of this activity analysis is a set of
dependency diagrams and an activity hierarchy diagram.

• For Interaction Analysis during the Business Area Analysis Stage (sixth row, second
column, of IE life cycle work stages), the processes are related to the entity types,
attributes, and relationships. Changes to each entity type by various processes—from
their creation to termination—are analyzed and documented in an entity life cycle or
entity state transition diagram (also referred to as life cycle analysis). This step
validates the data and processes by verifying that the entire life cycle of the particular
entity type is addressed. As part of the interaction analysis, the process logic for the
lowest-level processes is defined and represented as process action diagrams. These
process definitions are part of the building blocks for the Business Systems Design
Stage.

• For the Quality Assurance task during any IE life cycle stage, process and product
quality are checked, respectively, by (1) checking a product against a standard for that
product and (2) checking a process against a plan defining how the process is to be
carried out. For example, to check for process quality in the Business Area Analysis
Stage, a checklist is derived from the analysis plan and is used as the basis for
determining whether the engineering process defined in the plan is followed. An
example of a product QA check in the Business Area Analysis Stage would be
comparing an Entity Relationship Diagram (ERD) against a standard defining how
ERDs are to be constructed.

• For the Verification and Validation task during any IE life cycle stage, a product is
checked against predecessor products. For example, this activity checks that an ERD,
defined in the Business Area Analysis Stage, is carrying through the intent of the
subject areas, defined in the Information Strategy Planning Stage.

• For the Test and Evaluation task during early IE life cycle stages, test planning
documentation indicating what testing is to be performed is prepared; during later IE
stages, test procedure documentation indicating how the testing is to be performed is
prepared. For example, in the Business Systems Design Stage, a test plan is developed

Successful Software Development, Second Edition

104

that specifies what tests are to be performed to exercise user screens, on-line help, ...
that were defined during the Information Strategy Planning Stage.

• For the Configuration Management task during any IE life cycle stage, plans and
products are baselined and updated in a controlled manner. For example, the analysis
plan that is initially created in the Business Area Analysis Stage is baselined; the
initial version of the project plan (baselined during the Information Strategy Planning
Stage) is updated.

Project planning for traditional systems engineering, prototyping, or information
engineering systems development tasks not only entails a fundamental understanding
of life cycles but also requires insight into the hazards that typically arise in the real
world of software systems development. The following discussion describes
alternative project planning views of the work to be accomplished.

Project Planning Views

Figure 2-9 depicts these three views of project work accomplishment:

Successful Software Development, Second Edition

105

Figure 2-9 Although the shortest distance between two points is a straight line, project
planning needs to account for the hazards that typically arise inthe real world of software
systems development. Successful software systems development involves planning for the
hazards and establishing a means—the CCB—for managing the hazards that can jeopardize
project completion.

Successful Software Development, Second Edition

106

• Ideal view of work accomplishment.

The ideal view puts the seller project team (i.e., management, development, and
product assurance staff) on a straight-line development path from the first task to be
accomplished to the envisioned software system to be developed. The tasks are laid
out in a sequential and somewhat overlapping sequence from beginning to end. The
project team starts with the first task and drives towards the next task, then the next
task, etc. The ideal view of work accomplishment can result in ideal project plans that
understate what is needed to get the job done.

• Real view of work accomplishment.

It is difficult, if not impossible, to plan every step along the way. No matter how well
a plan is put together, there is always a difference between planned and actual. The
real view of work accomplishment puts the seller project team on a straight-line
development path, but the team realizes that there are real-life hazards in the way of a
successful development effort. One frequent hazard is personnel turnover. People
change jobs, move, get married, and retire. Another hazard is the lack of project
documentation, such as requirements specifications, domain knowledge, mission
statements, and so on. Then, of course, there are those unanticipated requirements that
the customer did not anticipate at project start. The seller project team is faced with
deciding what to do next to navigate around these hazards. The real view of work
accomplishment poses a planning challenge to account for these hazards.

• Realistic planning view of work accomplishment.

The realistic planning view puts the seller project team on a straight-line development
path, but the team realizes that the real-life hazards can be dealt with and/or avoided.
The team deals with these real-life hazards by planning a CCB mechanism into their
project plan. The CCB provides the team with a decision forum to review progress,
analyze hazards, and discuss alternative solutions. At this forum representatives from
both the seller and the customer meet to discuss and decide what to do next to respond
to and/or avoid real or potential hazards. If personnel turnover is a potential problem, a
CCB decision might be to cross-train personnel. If there is a lack of documentation
(e.g., requirements specification) for a legacy system, a CCB decision might be to
substitute an existing user's manual for the requirements specification and then to
develop a specification. If unanticipated requirements need to be addressed, then the
CCB can decide what to do next. We are not suggesting that every decision needs to
take place at a CCB. However, when decisions could affect project deliverables,
schedule, resources, or project plan accomplishment, then we recommend a meeting
between the customer and seller. Good management is no surprises. A subsequent
CCB meeting can record the fact that a customer/seller meeting did take place,
decisions were made, and action items assigned. People's memories fade quickly, and
writing things down helps to avoid potential misunderstandings. The point here is that
a project plan needs to account for CCB-like meetings to handle the changes and/or
hazards that are a part of any software systems development effort.

Successful software systems development projects involve (1) assessing the risk of
accomplishing the customer's statement of work, (2) allocating appropriate resources to
mitigate the identified risks, (3) monitoring the risks throughout the project, and (4) deciding

Successful Software Development, Second Edition

107

how to deal with the risks. The next section describes an approach for risk assessment and
risk-derived resource allocation while developing and maintaining a project plan.

2.5 Risk Assessment and Project Planning

Developing a project plan includes the determination that a project is high risk, medium risk,
or low risk. As shown in Figure 2-10, risk criteria are applied to a customer's SOW to help
determine the risk associated with the project. The assessed risk is represented by a propeller-
driven airplane. Hopefully, a good job is done assessing the risk, and the seller's project team
can see it coming. Appropriate management, development, and product assurance resources
can be allocated for risk reduction. We define risk reduction to mean "reducing the likelihood
that software systems development products will (1) not be delivered on time, (2) not be
delivered within budget, and (3) not do what the seller and customer mutually agreed that the
products are supposed to do."

Figure 2-10 Project planning involves assessing the risk of accomplishing the customer's
statement of work. Product assurance serves to mitigate the project risk and should therefore
be commensurate with the assessed risk.

Successful Software Development, Second Edition

108

Our approach for allocating appropriate management, development, and product assurance
resources is repeatable. This approach includes the following:

• A set of risk assessment criteria derived from both your organization's and industry-
wide experience correlating project characteristics with project outcome. [7]

• Iteration among the parties involved with applying these criteria to achieve consensus.

Figure 2-11 shows an example set of risk criteria used for risk assessment and corresponding
riskderived resource allocation percentages. Your organization will have its own set of risk
criteria. It is important to establish a database of risk criteria for your software systems
development projects. You should involve both the project team staff and your business and
finance staff in establishing your organization's risk criteria. Risk comes in many forms.

Figure 2-11 Assessing project risk during project planning is key to allocating dollar resources
for risk-reduced project plan accomplishment. The risk critieria show are examples illustrating
the approach. They are a starting point for constructing your own criteria tailored to the needs
of your environment.

7 One way to define a set of risk criteria is to review your organization's projects and compile a list of lessons learned.

Successful Software Development, Second Edition

109

Resource estimating is not an exact science, but if the risk assessment criteria provided in
Figure 2-11 are applied to a given SOW by different groups within your organization, the
outcomes of this risk assessment would be predominantly one of the three risk categories
(high, medium, and low). High-risk projects demand more risk reduction; therefore, product
assurance is allocated twenty percent of the resources, management is allocated fifteen
percent for oversight, and development is allocated sixty-five percent. Medium-risk projects
require less risk reduction, and low-risk projects require even less.

The rationale underlying the percentages in the pie charts is the following:[8]

1. K. Shere, Software Engineering and Management (Englewood Cliffs, NJ: Prentice
Hall, 1988), pp. 80-93.

2. R. Dunn, Software Defect Removal (New York: McGraw-Hill Book Company, 1984),
p. 60.

• The medium-risk pie chart is assumed to be the "average software systems
development project." Industry experience shows that allocating approximately ten
percent of the total project labor to product assurance is a good risk reduction strategy
for a broad range of projects. This experience is the basis for the medium-risk product
assurance percentage. It has been our general practice to allocate in the neighborhood
of ten percent of the project labor to management. This practice is reflected in the
medium-risk pie chart. Consequently, eighty percent of the project labor is allocated to
development.

• In general, the high-risk criteria that are listed substantially increase project risk over
the risks embodied in the medium-risk criteria. Thus, the high-risk product assurance
percentage is determined by doubling the medium-risk product assurance percentage
(i.e., 2*0.10 = 0.20). The high-risk management percentage is determined by
increasing the medium-risk management percentage by fifty percent (i.e., 0.10*1.5 =
0.15). Consequently, sixty-five percent of the project labor is allocated to
development.

• The low-risk product assurance percentage is determined by halving the corresponding
medium-risk percentage (i.e., 0.5*0.10 = 0.05). Since it has been our general practice
to allocate ten percent of the project labor to management, the low-risk management
percentage is the same as the medium-risk management percentage (i.e., 0.10).
Consequently, eighty-five percent of the project labor is allocated to development.

• The more criteria that apply within a given category, the more firmly established is the
risk for that category, and less leeway from the percentages shown should be
considered. For example, if four high-risk criteria apply to an SOW, then the greater is
the likelihood that the project may run into trouble. Consequently, the resource
allocation should be in close conformance to the high-risk percentages shown. If, on
the other hand, risk criteria apply to an SOW from more than one risk category, then
more leeway should be allowed in allocating resources to management, development,
and product assurance. For example, an SOW might have one high-risk criterion (e.g.,
unique application) and two medium-risk criteria (e.g., little schedule slack, some
major requirements uncertain). Even though this SOW would be classified as medium
risk, it may be prudent to allocate resources somewhere between the high-risk
percentages and the medium-risk percentages.

8 See, for example, the following references for insights into product assurance budget percentages:

Successful Software Development, Second Edition

110

It is important for the participants involved in the risk assessment process to achieve
consensus. The purpose of the consensus is to allow differences that may result from the
application of the risk criteria to be given visibility to all the participants. In this manner, all
the participants evolve toward a joint understanding of the risk associated with completing the
software systems development project on time, within budget, and in compliance with
documented customer requirements. In general, resource estimating is, at best, educated
guesswork. Despite the proliferation of resource-estimating models, estimating resources
required to do a software systems development effort cannot be solely reduced to an exercise
of plugging numbers into a set of formulas.

Figure 2-12 delineates our logic for applying risk criteria to a customer's SOW. The procedure
for applying these criteria is the following:

Successful Software Development, Second Edition

111

Figure 2-12 This logic illustrates how risk criteria can be applied to determine whether a project
is high, medium, or low risk. This logic offers you insight into developing your own risk
assessment approach on the basis of your own risk criteria. The assessed project risk is used
to allocate resources among the management, product assurance, and development
disciplines. The dollars allocated to product assurance serve to reduce project risk.

• The high-risk criteria are to be considered first. If any two of the listed criteria apply to
the SOW, the project is categorized as high risk, and the high-risk pie chart applies.
Consequently, sixty-five percent of the project labor dollars are to be assigned to
development, fifteen percent to management, and twenty percent to product assurance.
(Note: The high-risk criterion related to subcontractor labor hours is not known in
detail until the project planning staff lays out the detailed development approach.
However, in some cases, it is a priori known that subcontractor labor will be a
majority of the development team labor. If the amount of subcontractor labor is not a
priori known, then this criterion may be introduced in subsequent iterations of the cost

Successful Software Development, Second Edition

112

estimates, particularly if it is uncertain whether a project should be classified as high
risk or medium risk. A similar comment applies to the medium-risk criterion related to
subcontractor labor hours.)

• If the SOW is not determined to be high risk, then the medium-risk criteria are to be
considered. If any two of the medium-risk criteria shown apply to the SOW, the
project is categorized as medium risk and the medium-risk pie chart applies.
Consequently, eighty percent of the project labor dollars are to be assigned to
development, ten percent to management, and ten percent to product assurance.

• If the SOW is not determined to be high or medium risk, then the low-risk criteria are
to be considered. If any three of the low-risk criteria shown apply to the SOW, the
project is categorized as low risk, and the low-risk pie chart applies. Consequently,
eighty-five percent of the project labor dollars are to be assigned to development, ten
percent to management, and five percent to product assurance.

• If the preceding steps do not yield a criteria match, then the project is assumed to be
medium risk, and the medium-risk pie chart applies.

This risk assessment logic can also be applied at the task level, sub-task level, etc.
Furthermore, as the project unfolds, this logic can be applied on a periodic or event-driven
basis as a part of your overall risk management approach.

Our risk assessment approach folds experience into rules of thumb designed to provide top-
down, risk-derived resource allocation estimates. As subsequently explained, these risk-
derived resource allocations are compared with bottom-up, detailed task-derived resource
estimates. This top-down, bottom-up comparison typically involves several iterations to
reconcile the scope of work within perceived budget constraints.

In the next section, we integrate the project planning concepts of life cycle, change
management, risk assessment, and resource allocation, and discuss ideas on how to generate a
project plan.

2.6 Project Planning Process

The purpose of this section is to provide you with guidance for developing an ADPE element
that defines the project planning process for your organization. Our approach is to pull
together the concepts discussed in preceding sections of this chapter.

The heart of your project planning ADPE element should be a process flow diagram. Figure
2-13 presents such a diagram based on the ideas discussed earlier. You can use this diagram
as a starting point to define your project planning process. We walk you through this diagram
to give you specific insight into how you can adapt this diagram to your environment. The
discussion that follows is keyed to the numbers in the shaded boxes and the labeled arrows in
the figure.

Successful Software Development, Second Edition

113

Figure 2-13 The software project planning process is risk-based and development driven. The
planning process involves (1) assessing risks associated with meeting customer requirements,
(2) defining resource percentages for development, product assurance, and management
based on this assessment, (3) developing corresponding approaches and task-derived
resource estimates, (4) reconciling task-derived and risk-derived resource estimates, and (5)
integrating the approaches. The end result is a risk-reduced project plan with increased
likelihood for successful accomplishment.

Figure 2-13 consists of the following responsible agents, major project planning process
activities, and major communication paths:

• Responsible agents:
o Customer
o Seller Senior Management

Successful Software Development, Second Edition

114

o Seller Project Manager
o Seller Development Manager
o Seller Product Assurance Manager
o Seller Business Manager
o Seller Project Planning Staff consisting of Seller Development Manager, Seller

Product Assurance Manager, and Seller Project Manager
o Major project planning process activities:
o Provides SOW Containing Work Requirements to Seller
o Review SOW, Communicate with Customer, and Assemble Project Planning

Team
o Perform Risk Assessment and Determine Risk-Derived Resource Allocation
o Develops Development, Product Assurance, and Management Approaches and

Corresponding Task-Derived Resource Estimates
o Calculates Task-Derived Dollar Estimates
o Calculates Risk-Derived Dollar Estimates
o Reconcile Task-Derived Dollar Estimates with Risk-Derived Dollar Estimates

and Integrate Approaches
• Major communication paths:

o SOW (i.e., Statement of Work)
o Questions and Clarifications
o Risk-Derived Resource Allocation Percentages
o Risk-Assessed SOW
o Task-Derived Resource Estimates
o Development, Product Assurance, and Management Approaches
o Task-Derived Dollar Estimates
o Risk-Derived Dollar Estimates
o Integrated Approaches
o Reconciled Cost Estimates
o Risk-Reduced Project Plan

We walk you through Figure 2-13 in terms of the preceding elements and their interaction
during the project planning process. Also, we provide a simple example to clarify key points.

1. Provides SOW Containing Work Requirements to Seller.

The starting point for the project planning process is the statement of what the
customer wants the seller to do. The customer's requirements are packaged into an
SOW. The customer provides the seller with an SOW in which the level of detail can
vary from a list of simple one-line statements to a document spanning hundreds of
pages. No matter where in this spectrum an SOW lies, it will generally precipitate
questions from the seller.

2. Review SOW, Communicate with Customer, and Assemble Project Planning
Team.

The customer delivers the SOW to seller management. Depending on your
organization, this management may be the (1) software project manager, (2) software
project manager's boss, (3) manager responsible for generating business, (4) project
planning manager, or (5) some combination of these. This management carefully
examines the SOW contents. In general, this examination will generate a list of

Successful Software Development, Second Edition

115

questions that will require customer clarifications (e.g., what the meaning is of certain
deliverables requested, what the customer is to furnish to the seller, where the work is
to be performed, what is the schedule slack). Seller management needs to get answers
to these questions before a realistic project plan can be written. Depending on the
SOW size and complexity, seller management may have to iterate a number of times
with the customer before SOW questions are answered.

Generally, SOW examination is also coupled with the assembling of the project
planning team, which is responsible for putting the words on paper. Depending on
your organization, this team may consist of (1) individuals from a group dedicated to
writing project plans, (2) individuals who will perform and manage the work called
out in the project plan, or (3) some combination of these.

3. Perform Risk Assessment and Determine Risk-Derived Resource Allocation.

A candidate list of managers who make up this management is the (1) senior
management (e.g., a corporate vice president), (2) project manager, (3) development
manager(s), (4) product assurance manager, and (5) business manager (i.e., the
manager responsible for contractual matters). Depending on your organization, more
than one of these managers may be the same person.

Earlier in this chapter, we showed you how to set up criteria for doing risk assessment.
Your version of these criteria is to be applied here. The result of applying your risk
criteria to the SOW is a risk-assessed SOW. The purpose of this risk assessment is to
gauge the possibilities of not being able to accomplish the tasks set forth in the SOW.

Assume that you have performed the risk assessment and you have determined that the
project is medium risk.

As we showed earlier, this risk assessment should be coupled to the percentage of
project labor resources to be allocated respectively to the development, product
assurance, and management disciplines. Your version of these percentages should be
applied here to produce what we call risk-derived resource allocation percentages. As
explained earlier, these percentages are used as top-down guidance that are compared
with the development, product assurance, and management task-derived resource
estimates in subsequent activities of the project planning process.

Before we proceed to the next project planning process activity, several observations
are in order regarding the risk-derived resource allocation just described.

o If you are a seller, you need to ensure that the risk assessment criteria you use
are reasonably unambiguous so that the application of these criteria by
different people or organizations give repeatable results. Here, "repeatable"
means that if the criteria are applied by different individuals or organizations,
the results will cluster in one risk category. Earlier in this chapter, we gave you
three sets of example criteria defining high-, medium-, and low-risk projects.
These criteria are derived from actual project experience and did, indeed,
produce repeatable results in the sense defined here.

o Both sellers and customers need to understand what risks mean.

Successful Software Development, Second Edition

116

Since our example project is assumed to be medium risk, the risk-derived resource
allocation percentages are assumed to be eighty percent for development, ten percent
for product assurance, and ten percent for management. These percentages are used
later in the cost estimation calculations to compare this resource allocation guidance
with detailed planning estimates. The next step is to develop a development approach
that is supported with product assurance and management activities.

4. Develops Development, Product Assurance, and Management Approaches and
Corresponding Task-Derived Resource Estimates.

This box includes the activities associated with putting the words on paper to generate
the project plan document. The heart of this activity is the formulating of the technical
details of the (1) development approach the developers intend to follow to meet the
customer's SOW requirements, (2) product assurance approach to support this
development approach, and (3) management approach to guide the developers and
effect synergism between them and the product assurance team. These three
approaches are then used to develop task-derived resource estimates for
accomplishing the approaches.

The seller project planning staff is responsible for these activities. Ideally, this staff
should consist of the people who actually perform/manage the work set forth in the
plan. In some organizations, this ideal may not be realized because some of these
people are already performing on other projects. Some organizations in which work is
periodically or continually coming in may have a cadre of people dedicated to project
planning, or available on a part-time basis for project planning. Whatever the
organizational setup, the subprocess of writing the project plan consists of the
following activities (although described sequentially, actual accomplishment of these
activities may overlap depending on such factors as similarities between the project to
be planned and previously accomplished projects):

1. Defines Development Approach and Development Task-Derived Resource
Estimate.

The seller development manager defines the development approach by
tailoring the generic four-stage life cycle to the SOW content as discussed
earlier in this chapter. Remember that the purpose of adopting a life cycle for
the project is to bring to the fore a sequence of development tasks (and
corresponding product assurance and management tasks) that need to be
accomplished. The life cycle adopted is nothing more than a high-level task
template.

We note that this tailoring process is not necessarily unique. That is, depending
on how much visibility the seller and the customer may want into the
development process, it may be desirable to slice one or more stages into
multiple stages. For our simple example, Figure 2-13 shows a tailored life
cycle consisting of four stages. This four-stage life cycle shows a single stage
for requirements definition and a single stage for design. This fourstage
breakout may be a perfectly logical way to address SOW content. However, if,
for example, the software requirements are uncertain, it may be cost-beneficial
to break this single stage into a Preliminary Requirements Definition Stage and

Successful Software Development, Second Edition

117

a Detailed Requirements Definition Stage. With this approach, you can reduce
the risk of spending too much time trying to settle on requirements specifics by
first settling on broader requirements issues.

From the tasks called out in the development approach, the seller development
manager generates a task-derived resource estimate. This estimate is typically
expressed in terms of labor hours needed to accomplish the product
development tasks. To standardize this resource estimation process, you may
want to develop a set of worksheets that contains task names as rows and hours
as columns, where the hours columns may depend on project risk. For
example, for the development of a design document on a high-risk project, you
may want to produce multiple drafts for review before going final, whereas on
a low-risk project, a single draft may suffice. In your organization, you may
break out these hours into various labor categories (e.g., analyst, senior
designer, designer, trainer). Typically, each labor category has an hourly rate
associated with it so that the hours can be converted to dollars or whatever unit
of currency is used in your organization. The development approach becomes
the driver for the product assurance and management approaches.

2. Defines Product Assurance (PA) Approach and PA Task-Derived
Resource Estimate Based on Development Approach and Risk.

The seller product assurance manager defines the product assurance approach
by using the SOW and the tasks identified in the development approach. In
laying out this approach, this manager assures that all products called out in the
development approach are reviewed. This manager uses the SOW as a double
check on the developer's approach to ensure that no SOW requirements have
been overlooked.

Like the seller development manager, the seller product assurance manager
generates a task-derived resource estimate. Again, to standardize this resource
estimating within your organization, you may want to develop a set of
worksheets that contains product assurance task names as rows and hours as
columns, where the hours columns may depend on project risk. For example,
for a design document on a high-risk project, multiple drafts may be produced,
each one requiring a product assurance review, whereas on a low-risk project,
only one draft requiring product assurance review may be produced.

3. Defines Management Approach and Management Task-Derived Resource
Estimate Based on Development Approach and Risk.

The seller project manager defines the management approach by using the
SOW and the tasks identified in the development approach. In laying out this
approach, this manager assures that all products called out in the development
approach are given appropriate visibility through the development of an
adequate number of drafts. As part of laying out this approach, the seller
project manager needs to assure that the development approach calls out
adequate drafts. Like the product assurance manager, the project manager uses
the SOW as a double check on the developer's approach to ensure that no SOW
requirements have been overlooked.

Successful Software Development, Second Edition

118

Like the seller development manager, the seller project manager generates a
task-derived resource estimate. Again, to standardize this resource estimating
within your organization, you may want to develop a set of worksheets that
contains management task names as rows and hours as columns, where the
hours columns may depend on project risk. For example, for a high-risk
project, you may want to have weekly CCB meetings, whereas on a low-risk
project, monthly meetings may suffice for management visibility purposes.
The project manager should ensure that the resource estimate includes project
participation by the project manager's manager and other senior managers
within the organization. Again, the extent of this senior management
involvement is a function of project risk—the higher the risk, the greater the
need for senior management involvement.

We stress throughout this chapter the need to plan for anticipated, but unknown,
change throughout project accomplishment. To address this need, all three managers
involved with laying out the project plan must fold into their approaches CCB
meetings throughout the project. In particular, when doing resource estimates, these
managers need to ensure that they allocate hours for CCB participation and related
activities such as minutes preparation and presentation of responses to action items.
Furthermore, the project plan needs explicitly to address the role of the CCB in
managing project change. For example, it can specify a suggested format for CCB
minutes and call for the development of a CCB charter (or include the charter itself).
One shortcut way of handling the CCB role is to cite an ADPE element governing
CCB operation that your organization has incorporated into its engineering
environment. Chapter 4 gives details on how such an element can be put together.

5. Calculates Task-Derived Dollar Estimates.

This box includes the activities associated with converting the task-derived resource
estimates from labor hours to labor dollars. This conversion to task-derived dollar
estimates provides a common base for comparison, whereas labor hours by labor
category do not.

0. Calculates Task-Derived Development Labor-Dollar Estimate.

The seller business manager uses the development task-derived labor-hour
estimate to calculate the development task-derived labor-dollar estimate.
Assume that the development labor-dollar estimate is $100,000.

1. Calculates Task-Derived Product Assurance Labor-Dollar Estimate.

The seller business manager uses the product assurance task-derived labor-
hour estimate to calculate the product assurance task-derived labor-dollar
estimate. Assume that the product assurance labor-dollar estimate is $25,000.

2. Calculates Task-Derived Management Labor-Dollar Estimate.

The seller business manager uses the management task-derived labor-hour
estimate to calculate the management task-derived labor-dollar estimate.
Assume that the management labor-dollar estimate is $15,000.

Successful Software Development, Second Edition

119

At this point in our project planning process, the following has been assumed:

o The project is medium risk (development, product assurance, and management
resource allocation percentages are eighty percent, ten percent, and ten percent,
respectively).

o A four-stage life cycle is to be used for developing development, product
assurance, and management approaches.

o The development ($100,000), product assurance ($25,000), and management
($15,000) labordollar estimates total $140,000.

The next activity is to calculate risk-derived dollar estimates using the risk assessment
resource allocation percentages and the development labor-dollar estimate.

6. Calculates Risk-Derived Dollar Estimates.

This box includes the activities associated with using the risk-derived resource
allocation percentages and the task-derived development labor dollars to calculate
risk-derived dollar estimates.

0. Calculates Total Risk-Derived Project Labor-Dollar Estimate Based on
Development Labor Dollars.

The seller business manager simply divides the development labor-dollar
estimate by the risk-derived development resource allocation percentage to
calculate the total risk-derived project labor-dollar estimate.

Using the $100,000 development approach example given above, the total risk-
derived project labor-dollar estimate becomes $100,000/0.80 = $125,000. The
risk-derived guidance indicates that the total labor resources needed for the
project is the amount $125,000. This number does not include hardware,
software, communication lines, etc., that may be needed to accomplish the
SOW tasks.

1. Calculates Risk-Derived Product Assurance Labor-Dollar Estimate.

The seller business manager simply multiplies the total risk-derived project
labor-dollar estimate by the risk-derived product assurance resource allocation
percentage to calculate the riskderived product assurance labor-dollar estimate.

For the example just given, the risk-derived product assurance labor-dollar
estimate becomes $125,000*0.10 = $12,500.

2. Calculates Risk-Derived Management Labor-Dollar Estimate.

The seller business manager simply multiplies the total risk-derived project
labor-dollar estimate by the risk-derived management resource allocation
percentage to calculate the risk-derived product assurance labor-dollar
estimate.

Successful Software Development, Second Edition

120

For the example just given, the risk-derived management labor-dollar estimate
becomes $125,000*0.10 = $12,500.

At this point in the project planning process example, it has been assumed that the
task-derived dollar estimates versus the risk-derived dollar estimates are as follows:

o Development—$100,000 versus $100,000.

At this point in the project planning process, both development estimates are
always the same. As shown above, the task-derived development labor dollars
and the corresponding risk percentage are used to calculate the overall risk-
derived project labor dollars. The total risk-derived project labor dollars are
then multiplied by the product assurance and management risk-derived
resource allocation percentages to account for assessed risk. As shown next, it
may be necessary to revisit the development approach to rethink what needs to
be done. Such revisits trigger adjustments to the product assurance and
management approaches, as well as corresponding resource requirements.

o Product assurance—$25,000 versus $12,500.
o Management—$15,000 versus $12,500.

The next activity is to reconcile the differences between the task-derived estimates and
the risk-derived estimates for product assurance ($25,000 versus $12,500) and for
management ($15,000 versus $12,500).

7. Reconcile Task-Derived Estimates with Risk-Derived Estimates and Integrate
Approaches.

This activity integrates the work performed in the preceding steps. The responsible
agents for performing this integration are the development manager, product assurance
manager, project manager, and business manager. They review the approaches and
remove inconsistencies. They harmonize development and product assurance
approaches to ensure that all products developed are subjected to product assurance
review—unless there are extenuating circumstances (such as tight schedules that only
may permit cursory product assurance of some product drafts). They harmonize
development and management approaches to ensure that on all tasks, management has
insight into the status of the work through such activities as CCBs, scheduled audits,
and project reviews.

If the task-derived and risk-derived estimates are consistent (e.g., within ten percent of
each other), then the task-derived approaches and estimates are ready to be included in
the project plan. However, your organization will need to agree on the definition of
consistent. You may decide that consistency is described in absolute values, e.g.,
estimates within $5,000 of each other are considered consistent.

In the example given, the product assurance task-derived estimate ($25,000) is one
hundred percent greater than the risk-derived estimate ($12,500). In addition, the
management task-derived estimate ($15,000) is twenty percent greater than the risk-
derived estimate ($12,500). Clearly in this example, there appears to be a
misunderstanding of what needs to be done. The product assurance people may not

Successful Software Development, Second Edition

121

fully understand what the developers are proposing. Perhaps, the product assurance
people have had past experiences that they believe justify the $25,000.

If the estimates are not consistent (as in the example), the following three alternatives
are to be considered:

0. Bring Task-Derived Estimates (and Corresponding Approaches) into Line
with Risk-Derived Estimates.

In this case, the responsible managers need to reevaluate their respective
approaches and their resultant resource estimates to attempt to resolve these
differences. Resolution may include reconsideration of the risk-derived
resource percentages. For example, if it turns out that application of the risk
criteria leads to a project that is on the border between two risk categories
(such as being just barely high risk because it satisfied the minimum number of
criteria to place it in the high-risk category), it may be desirable to allow more
leeway in the consistency check between riskderived and task-derived
estimates. If the responsible managers and the project planning staff cannot
resolve their differences, then senior management should be brought in to
break the deadlock.

1. Redo Development Approach and Corresponding Estimate and Iterate.

After careful consideration of the existing estimates, it may be necessary to
revisit the development approach and iterate through the process to create a
new development approach and corresponding new resource estimate. This
rethinking process may help to clarify where the estimates significantly differ.

2. Combine Items 7a and 7b in Some Manner.

It may be necessary to combine some realignment of the task-derived and risk-
derived estimates, with a revisit to the development approach.

Once there is agreement, the managers review the integrated approaches and
coordinate the reconciled cost estimates for inclusion into the project plan.

The output of these seven activities is a risk-reduced project plan. This plan is then delivered
to the customer. After customer review of the plan, one or more of the listed activities may
have to be repeated—even though Activity 2 included interaction with the customer to clarify
SOW issues. The following are typical reasons why one or more drafts of a project plan may
have to be produced before the customer and the seller converge on project plan contents (part
of this process may include SOW revision):

1. The customer may not understand the risk assessment process (e.g., Who or what is at
risk—the seller's profit? The utility of the customer's products?).

2. The customer may not have sufficient money to buy the project plan's approach. In
this case, the customer may have to revise the SOW to reduce its scope (e.g., remove
deliverables).

3. The customer may not understand the value that the product assurance resources adds
to the project and may therefore balk at paying for these resources.

Successful Software Development, Second Edition

122

A project plan development process output is the risk-reduced project plan. As is indicated in
Figure 2-13, the project plan is a living contract between the customer and seller. The next
section presents suggestions on what you may want to put into your project plan.

2.7 Project Plan Contents

A project plan needs to respond to the customer's SOW. Some SOWs state the specific
format, down to the font, font size, margins, spacing, etc., and some SOWs leave the project
plan format up to the seller organization. Regardless of the SOW, we offer for your
consideration the information content delineated in Figure 2-14[9]

Figure 2-14 The project plan is a living contract between the CUSTOMER and SELLER that sets
forth the work that the seller's management, development, and product assurance disciplines
accomplish and the customer management approves. This figure shows suggested project
plan topics and a suggested order for these topics.

9 It should be noted that in some cultures what we call a "project plan" is referred to as a "software development plan."

Successful Software Development, Second Edition

123

Consider the following suggested project plan contents:

• Project Overview.

This section sets the project context.

o Purpose

—We recommend that you include a statement of the purpose for which the
project is planned to accomplish. This helps to communicate your high-level
understanding of the customer's requirements.

o Background

—Part of this understanding may be communicated in a historical summary of
how and why the project came into being. We recommend that you include an
overview graphic of the current software system, if appropriate.

o Project Goals

—To help highlight the specific goals to be achieved as a result of the project,
we recommend that you include an overview graphic of the envisioned
software system. In short, the graphic in the Background subsection and the
graphic in the Project Goals subsection represent where the system is today
and where the system will be when you are done. Such before and after
graphics help the project team to think through what needs to be done. Such
graphics also help to orient new staff.

o Project Scope

—The project scope defines the project boundaries and interfaces with other
entities, including other contractors and government agencies, if appropriate.

o Assumptions and Constraints

—The assumptions and constraints are listed, discussed, and form, in part, the
basis on which the project plan is written. For example, project deadlines
depend upon the receipt of information and/or feedback in a timely fashion. If
such an assumption does not hold, the plan may need to be changed to
accommodate the change in schedule. Constraints dealing with such things as
funding, time, and interfaces are also listed and discussed.

• Project Risk and Risk Mitigation.

This section specifies the technical and programmatic risks identified as a result of
your risk assessment.

Successful Software Development, Second Edition

124

o Identified Risks

—Each risk is listed, and an explanation of the potential impact it may have on
the accomplishment of the SOW tasks is presented.

o Risk Mitigation

—A risk mitigation approach is presented for each of the identified risks. If
appropriate, the mitigation approach may include customer actions that may
require some negotiation.

The next three sections of the project plan define the seller's overall technical approach. As
suggested in our risk assessment approach and project plan development process, the
management, development, and product assurance approaches are related to the perceived
project risks in terms of the tasks to be performed and the resources required to perform them.

• Management Approach.

This section defines the management oversight, coordination, and review activities for
the project.

o Project Team Organization

—We suggest that an organization chart detailing the project team be included
and described in terms of the specific organizational elements performing the
work. Key personnel, rationale for their selection, and corresponding résumés
are also recommended. If subcontractors are to be used, then their participation
is identified and reporting channels are discussed. If appropriate, for positions
that have not yet been staffed, identify the specific qualifications to be used in
your selection process.

o Management Oversight and Reviews

—This section details the types and frequency of management reviews, status
reports, and project meetings. For traditional systems engineering projects,
management activities include monitoring project risk and progress, soliciting
and monitoring customer feedback, and deciding whether the software system
is ready to be shipped to the customer. For prototyping projects, management
activities include obtaining end-user concurrence on human-to-computer
interfaces, domain expert concurrence on the software representation of the
problem being solved, and customer acceptance of the prototyped system. For
information engineering projects, management activities include reviewing the
information needs of the software system users; the business and design
models; and the module, system and acceptance test results. Regardless of
project type (e.g., traditional, prototyping, information engineering), we
recommend that you plan for a change control board (CCB) forum to help (1)
manage product development and project change, (2) record associated
decisions, and (3) manage expectations.

Successful Software Development, Second Edition

125

• Development Approach.

This section defines how the development team tailored the generic four-stage life
cycle to the SOW content. The development tasks drive the software systems
development effort; they need to be accomplished in order to respond to the
customer's needs. Rememberthat depending on how much visibility the seller and the
customer maywant into the development process, it may be desirable to slice one or
more life cycle stages into multiple stages. Each stage can be described in terms of the
tasks to be performed. We recommend that each task be described in terms of task
objectives, techniques, and tools to be used. Also, specific milestones to be achieved
and deliverables to be developed are detailed.

For traditional systems engineering projects, development activities include
developing operational system concepts, defining requirements, allocating
requirements to hardware and software, describing data flow, conducting peer reviews,
designing required databases, conducting code walkthroughs, providing training, and
monitoring operational use.

For prototyping projects, development activities include describing initial prototype
concepts, specifying prototype requirements, developing user interfaces, revising
concepts and requirements, developing major prototyping functionality, specifying
host environment modifications, and finalizing prototype concepts and requirements.

For information engineering projects, development activities include defining critical
success factors, information needs, subject areas, entity types, entity relationships,
processes and process dependencies, process action diagrams, procedure action
diagrams, physical database models, and establishing cutover schedules.

Remember, the development approach becomes the driver for the product assurance
and management approaches.

• Product Assurance Approach.

This section defines the product assurance approach by using the customer's SOW and
the tasks identified in the development approach. The product assurance approach
details the checks and balances to be used to help ensure that each developed software
systems product satisfies the customer's requirements. Checks and balances are
realized, in part, through quality assurance, verification and validation, test and
evaluation, and configuration management. Product assurance responsibilities are
detailed for and tied to the development tasks.

For traditional systems engineering projects, product assurance activities include
examining the requirements for SOW congruency, testability, and consistency;
preparing test plans; determining standards conformance; completing test procedures;
conducting acceptance testing; baselining products; and archiving incident reports and
change requests.

For prototyping projects, product assurance activities include defining test strategies
and test data; comparing prototype requirements with the skeleton prototype;
preparing acceptance test procedures; and performing acceptance testing.

Successful Software Development, Second Edition

126

For information engineering projects, product assurance activities include comparing
the information strategy plan with a project standard; writing the test strategy;
baselining the project documentation; comparing the entity relationship diagram with
identified subject areas for consistency; comparing procedure action diagrams with
process action diagrams for consistency; performing test procedures in the operational
environment; and comparing the implementation plan with a project standard.

The product assurance approach supports the development approach and provides
managers and developers with additional insight into the status of the development
activities.

• Project Work Schedule.

This section contains the integrated schedule of the management, development, and
product assurance approaches. A schedule of deliverables can be presented in a table.

• Project Resource Requirements.

This section identifies the resources required to perform the effort described by the
management, development, and product assurance approaches. We recommend that
your resource requirements take risk into account as just described.

A table detailing the staff hours by task can be provided. The required hardware and software
can be detailed. In addition, other appropriate costs, such as travel, can be presented.

As shown in Figure 2-15, the project plan is based on the customer statement of work.
Tailoring the generic four-stage life cycle to the specific situation helps you to plan what
needs to be done and what resources are required.

Successful Software Development, Second Edition

127

Figure 2-15 The project plan defines the seller's development, management, and product
assurance tasks that respond to a customer's statement of work (SOW). These tasks emerge
by considering the intersection of each life cycle stage with each system discipline.

As part of your organization's project planning process, we recommend you consider what
systems disciplines (i.e., management, development, and product assurance) are needed
during each tailored life cycle stage. This consideration helps to define the tasks to be
accomplished during the software systems development project.

Successful Software Development, Second Edition

128

2.8 Project Planning Summary

In this chapter, we focused on the concepts of life cycle, project disciplines, project players,
risk assessment, and a project plan development process. We also discussed the contents of a
project plan and suggested a plan outline. You can use this outline as a starting point for
defining specific project plans. These concepts can be integrated into an ADPE procedure that
details your organization's project plan development process.

As illustrated in Figure 2-16, you can use the following annotated outline of an ADPE
procedure as a starting point for defining your organization's project plan development
process.

Successful Software Development, Second Edition

129

Figure 2-16 This illustration shows an annotated outline for getting you started defining an
ADPE procedure for your project planning procedure.

The project planning procedure may consist of the following sections:

• Purpose.

This section states the purpose of the procedure. The purpose sets the context and
establishes the authority for the procedure. Specific purposes may include the
following:

Successful Software Development, Second Edition

130

o Activities performed by your organizational elements (e.g., your organization
may have a product test element that is responsible for what we call T&E).

o Roles of your organizational elements (e.g., your organization may have a
training element that supplies people to a project who write user's manuals and
give presentations to customers).

o Guidance on time spent for project planning activities (e.g., target time for
producing a project plan).

• Background.

This section provides an overview of the project planning responsibilities, project plan
structure, and possible project plan categories. These categories can help to establish
the types of work done by your organization. For example, your organization may
build only software systems using traditional systems engineering techniques or
information engineering methodologies. Regardless, it is important to define the
spectrum of project plans your organization develops or wants to develop.

• Project Plan Development Process Overview.

This section provides an overview of the high-level activities of your project plan
development process. We recommend that you develop an overview graphic that
depicts the high-level activities, their inputs and output, and their interactions with one
another. We also recommend that the detailed steps and individual responsibilities be
presented in an appendix. Critical to successful implementation of the project plan
development process is effective communication of the overall process that is
supported with the necessary detail for implementation.

• Project Plan Development Process.

This section provides the next level of detail of the project plan development process.
We recommend that you develop a graphic that depicts this level of process activity.
This section walks the reader through the entire process, but remember that the
appendix can contain additional details and responsibilities.

• Roles and Responsibilities.

This section provides a short description of the major organization units involved in
the planning process. We recommend that a matrix detailing individual responsibilities
by task be prepared. Depending upon the matrix size, you may want to make it an
appendix.

• Appendices.

Appendices are added as necessary. The main body of the procedure states the basics,
and the appendices can add additional detail that embodies lessons learned or can
provide tutorial information. As an organization matures in its engineering business
processes, we recommend that the lessons be captured and incorporated into your
ADPE elements. As people in your organization move on to other jobs, etc., their
knowledge can be incorporated into your ADPE elements that serve, in some degree,
as part of your organization's corporate memory.

Successful Software Development, Second Edition

131

Here are some project planning suggestions:

• Ensure that your project plan accounts for the resources required for revisits to other
life cycle stages.

• Use a life cycle and your experiences to help you establish realistic project planning
views of the work to be accomplished.

• Plan for a change control mechanism, such as a CCB, to help manage the anticipated,
but unknown, change that accompanies any software systems development project.

• Include risk assessment in your project planning process, and collect meaningful data
that help your organization increase its confidence in its resource estimates.

• Remember that risk assessment can be applied at the subtask level, as well as
throughout the software systems development life cycle.

• Educate your staff on your organization's project plan development process so that
they can understand what they are supposed to do, and contribute to and improve the
process.

We have completed our discussion of the project plan development process. The next chapter
assumes that you have a software systems development project, and shows you how to define
a process for moving products through your organization for delivery to your customer.

Successful Software Development, Second Edition

132

Chapter 3. Software Systems Development Process
All my life I've known better than to depend on experts. How could I have been so stupid, to
let them go ahead?

—President John F. Kennedy, conversation with Theodore C. Sorensen concerning the Bay of
Pigs invasion; Quoted in Sorensen, Kennedy, p. 309 (1965).

3.1 Introduction

One measure of successful software systems development is the ability to produce good
products (i.e., products with integrity) with good processes (i.e., processes with integrity)
consistently. Achieving this type of consistency depends primarily on the presence of the
following two factors:

• People with know-how.

Skilled people are the most important part of successful software systems
development. But having people with the necessary know-how to turn out good
products is not sufficient if good products are to be turned out consistently.

• An understanding of the "organizational way of doing business," that is,
"process" of building software systems.

Left to their own devices, people do things their own way. Consistency requires an
organizational way of doing things. Furthermore, from a long-term business
viewpoint, understanding the software process cannot be limited to a few key
individuals.

Successful software systems development is a delicate balance among (1) enabling people to
grow professionally, (2) documenting processes embodying the experiences and knowledge of
the people in the organization, (3) using know-how to apply such processes appropriately to a
set of circumstances, and (4) refining processes based on the experience gained by applying
the processes.

What do we mean by "software process"? In this book, we define a software process as "a set
of activities, methods, practices, and transformations that people use to develop and maintain
software and the associated products (e.g., project plans, design documents, code, test cases,
and user's manuals)."[1] Figure 3-1 illustrates people using a software process to develop and
maintain software and associated products. However, many software development
organizations do not follow a documented process or way of doing business. "Good" products
can be produced; nevertheless, without a documented process, it is difficult, if not impossible,
for an organization to institutionalize a software process that consistently produces products
that do what they are suppose to do, on time, and within budget.

1] M.C. Paulk et al., "Capability Maturity Model for Software, Version 1.1," Software Engineering Institute Report CMU/SEI-93-TR-24, Carnegie
Mellon University, Pittsburgh, PA, February 1993, p. 3.

Successful Software Development, Second Edition

133

Figure 3-1 People use a software process to develop and maintain software and associated
products.

Our concept of a software systems development process is tied to the concept of organization.
In this book, organization means "an administrative and functional structure that operates to
produce systems with software content." Figure 3-2 gives examples of this concept in terms of
five software project combinations. A software project is "a planned undertaking whose
purpose is to produce a system or systems with a software content."

Successful Software Development, Second Edition

134

Figure 3-2 This figure shows five example software organizations based on software project
groupings.

Project combination One represents an organization that consists of one software project,
whereas combination Two consists of two projects. Combination Three represents a program
that is "a collection of software projects bound by a common goal or a common
customer/seller agreement." Combination Four represents an organization with multiple
programs. Finally, combination Five represents an organization that may cut across company

Successful Software Development, Second Edition

135

(or government agency) lines. In the case of companies, this cross-cutting situation can arise
when multiple contractors support a program or project.

This chapter describes an example organizational software systems development process. You
can use this example as a starting point to formulate (or enhance) a corresponding process for
your environment. By formulate we mean "documenting a software systems development
process that your organization may already use or would like to use."

Such an organizational process provides an integrating framework for developing and
implementing a systems engineering environment (SEE). Once the process is documented in
an Application Development Process Environment (ADPE) element and implemented, other
elements can be developed to provide additional detail. For example, our example process
includes a change control board (CCB), but this chapter's discussion does not contain the
detailed guidelines one would expect for setting up and running a CCB. We recommend that
detailed guidance be contained in another ADPE element (e.g., a CCB guideline). Our
example process also requires peer reviews, but this chapter's discussion does not contain
detailed peer review guidance. The point is that once the organizational software systems
development process is defined, additional detail can be provided in other ADPE elements.[2]

The plan for this chapter is the following:

• In Section 3.2—Software Systems Development Process Key Ideas, we present the
key ideas that you can expect to extract from this chapter.

• In Section 3.3—Software Systems Development Process Overview, we introduce
key software systems development principles and a software systems development
process. This process sets the context of discussion for the rest of the chapter. The
process offers you a starting point for developing a similar software systems
development process for your place of business. Without a documented process,
heroes make "it" happen. When the heroes move on, the organization generally
regresses, and success becomes chancey until new heroes emerge. A documented
process helps an organization avoid an overreliance on heroic efforts. The following
major process elements are introduced: customer, seller process engineering group;
customer/seller development team; change control board (CCB); seller senior
management; and the major communication paths. Each of these elements is
subsequently described in following sections.

• In Section 3.4—Customer, we provide tips for the customer for writing a "good"
statement of work (SOW) that tells a seller what the customer wants. The SOW
initiates the software systems development process. Writing a "good" SOW is not
easy. Goodness is defined at the topmost level to mean "avoiding ambiguity and
stipulating deliverables consistent with available time and money." Without a good
SOW, a software systems development effort is in trouble at its inception. We call out
issues for the customer to consider when writing an SOW.

• In Section 3.5—Seller Process Engineering Group, we discuss how the
organizational software systems development process is taken into account when the
seller develops a project plan in response to a customer's SOW. This section augments
the Chapter 2 discussion of the project planning process. We point out those seller

2 In this book, we provide additional insight into our example organizational software systems development process in other chapters. For example,
Section 3.5 discusses the seller process engineering group's responsibility for project planning. However, Chapter 2 provides the lower-level planning
details and responsibilities. In effect, Chapter 3 is an ADPE element (i.e., Organizational Software Systems Development Process Policy) that is
supported by a Chapter 2 ADPE element (i.e., Project Planning Procedure).

Successful Software Development, Second Edition

136

activities that we believe should be planned for, regardless of specific life cycle. For
example, regardless of life cycle, we believe the seller should conduct peer reviews for
the evolving products.

• In Section 3.6—Customer/Seller Development Team and Change Control Board
(CCB), we focus the discussion on customer and seller communication and also on
seller development team activities. We address the following:

o Customer project manager
o Seller development team activities that include communicating with the

customer; evolving software products (i.e., documents, computer code,
databases); conducting peer reviews; providing independent product assurance;
performing technical editing; and performing project-level technical oversight

o Product tracking form
o Change control board (CCB)

Some of these concepts are treated in more detail in subsequent chapters (e.g., Chapter
4 examines CCB mechanics).

• In Section 3.7—Seller Senior Management, we highlight the organizational software
systems development process review and approval responsibilities of these managers.

• In Section 3.8—Software Systems Development Process Summary, we summarize
the key points developed in the chapter. We include an annotated outline of an
Application Development Process Environment (ADPE) policy for defining a software
systems development process.

3.2 Software Systems Development Process Key Ideas

Figure 3-3 lists the key ideas that you can expect to extract from this chapter. To introduce
you to this chapter, we briefly explain these key ideas. Their full intent will become apparent
as you go through the chapter.

Successful Software Development, Second Edition

137

Figure 3-3 Successful software systems development is repeatable if an organization has a
well-understood and documented product development process that it follows. Without such a
process, the organization must rely on the heroics of individuals. Here are key process
concepts exaplained in this chapter.

1. If you are a customer, specify in your request for proposal (RFP) that the seller define
a software systems development process that involves you via a CCB-like mechanism.

You should structure your RFP to require the seller to define the particulars of the
seller's software systems development process. Have the seller document this process
in an ADPE element signed by you and the seller. This element should be revisited
and updated no more frequently than every year.

2. The software systems development ADPE element should contain the following: (1)
generic activities performed by seller organizational elements (including the
development, management, and product assurance activities) in developing software
products for delivery to the customer and (2) the roles of the customer and the seller
organizational elements in performing these activities.

The generic activities should encompass the spectrum of activities from the receipt of
a customer SOW to customer feedback on the delivered products.

3. Include in the ADPE process element a figure showing the process in terms of the (1)
generic activities, (2) major communications paths connecting the activities, (3)
organization responsible for performing each activity, and (4) products produced.

The software systems development process figure establishes the "way" business is to
be conducted between the customer and seller. The explicit labeling of activities and

Successful Software Development, Second Edition

138

communication paths and detailing organizational responsibilities defines the terms to
be used by everyone. People understand what individual responsibilities are and how
their particular contribution fits into the bigger picture.

4. Seller senior management should empower the project manager to apply
prescriptively the generic activities in the ADPE process element.

The software systems development process element should therefore be written so that
it allows the project manager to perform the activities in the order and to the extent
consistent with project schedules and available resources. The process ADPE element
should not be written as a cookbook. There is no one way to build software. Step-by-
step processes that are to be mechanically followed simply cannot account for the
spectrum of contingencies that can arise during software systems development. People
are the most important part of the process. However, the process helps to provide
consistent software development. When people make a considered decision to apply
prescriptively the documented process, the decision needs to be communicated so that
everyone understands what resources the process requires and what products are to be
produced.

5. Concurrent with development of the process ADPE element, the seller should develop
and periodically present briefings to the customer and seller personnel on the
element's contents.

People need an opportunity to ask specific questions on how the software systems
development process affects their day-to-day activities.

6. To establish closure between the seller and customer regarding product delivery and
acceptance, include in the ADPE process element a form that the customer returns
upon product receipt and a form that the customer returns stating whether the product
is accepted as delivered or requires changes.

Customer satisfaction is tied, in part, to customer feedback. Customer acceptance
forms provide the customer (i.e., buyer/user) another opportunity to comment on the
delivered product. As subsequently explained, we suggest that customer feedback
concerning a delivered product can be expressed as (1) accepted as delivered, (2)
accepted with minor changes, or (3) rejected.

3.3 Software Systems Development Process Overview

As stated earlier, there is no one way to build software systems. If there were, software
systems development would have been reduced to an assembly-line operation long ago.
However, we believe there are fundamental development principles that help increase the
likelihood of software systems development success. Software systems development
principles provide the foundation for (1) examining an existing organizational software
systems development process, or (2) defining an organizational development process. As
subsequently described, we believe the following principles provide this foundation:

• Plan the work to be done before doing it.
• Obtain agreement on defined responsibilities.
• Establish and empower self-directed work teams.

Successful Software Development, Second Edition

139

• Establish checks and balances.
• Maintain continual customer and seller interaction.
• Monitor project progress.
• Mentor project managers and train work teams.
• Provide interim review on project progress.
• Provide feedback on deliverables.
• Improve the software systems development process.

We believe these principles are fundamental to an organization's way of doing software
systems development business.

In what sense does software systems development involve a "process" or "a way of doing
business"? If an organization is in its beginnings or infancy, there may be an idea or concept
of how to conduct the software systems development business, but the process may not be
welldefined. However, the concept may be well understood by a few key individuals. As the
organization matures, the development process may mature, and more individuals may
understand the process. At the other end of the spectrum are well-established organizations. In
such organizations, there may be a "defined" development process, but it may not be
documented. Of course, there are organizations, both new and well established, that do have
documented organizational software systems development processes. Regardless of what your
particular situation may be, the concept of "process" can be viewed as a tool to communicate
and explain the activities involved with consistently developing software systems that (1) are
delivered on time, (2) are delivered within budget, and (3) do what the customers want the
systems to do.

Figure 3-4 is an overview of our example organizational software systems development
process. Our example process starts with a customer's statement of work (SOW) and ends
with customer feedback regarding the delivered products (and supporting services). This
process allows for the planning, evolving, and reviewing of products (i.e., documents,
computer code, data) for delivery to the customer. The figure has round-edged rectangles,
rectangles, and labeled arrows. The round-edged rectangles represent customer-related
responsibilities, and the rectangles represent the seller-related responsibilities. The labeled
arrows represent major communication paths and associated information.

Successful Software Development, Second Edition

140

Figure 3-4 Our example organizational software systems development process is a closed-
looped process that starts and ends with the customer.

As shown in Figure 3-4, our example organizational process consists of the following major
elements:

• Customer
• Seller Process Engineering Group
• Customer/Seller Development Team (i.e., customer project manager, seller

development team)
• Change Control Board (CCB)
• Seller Senior Management
• Major communication paths

Successful Software Development, Second Edition

141

Figure 3-4 also shows the following responsible agents and associated process activities:

• Customer.

Prepares SOW, Negotiates Agreement, and Reviews Delivered Products for
Acceptance.

• Seller Process Engineering Group.

Plans the Work to Accomplish the Customer's SOW Tasks.

• Customer Project Manager.

Communicates with Seller Project Manager.

• Seller Project Manager.

Communicates with Customer Project Management and Evolves Software Product(s).

• Lead Developer.

Establishes Project Files.

• Lead Developer or Moderator.

Conducts Peer Reviews.

• Product Assurance Manager.

Provides Independent Product Assurance.

• Technical Editor.

Performs Technical Editing.

• Seller Management.

Performs Project-level Technical Oversight.

The software systems development process activities are linked together by the major
communication paths. As shown in Figure 3-4, along each communication path information is
transferred from one process element to another. The information transferred consists of the
following items:

• Statement of Work (SOW)
• Seller Project Plan
• Negotiated Agreement
• Items for the Record
• Technical Guidance and Evolving Products
• "Day-to-Day" Coordination and Technical Guidance

Successful Software Development, Second Edition

142

• Items for the Record and Issues for Customer Concurrence
• Evolving Products and Technical Guidance
• Tracking Form
• Evolving Products (i.e., documents, computer code, or data)
• Technical Feedback
• Audited Material
• Edited Material
• Reviewed Material
• Deliverable Coordinated at Project Level
• Items to Be Resolved
• Approved Deliverable
• Deliverable Status

As shown in Figure 3-4, the process starts in the upper right-hand cornerwhen the customer
prepares a statement of work (SOW) that details what the customer wants. The seller's process
engineering group "plans the work to accomplish the customer's SOW tasks" and provides the
customer with a seller project plan. Upon mutual agreement, the customer provides the seller
with a negotiated agreement which triggers the customer and seller development activities.[3]
These activities involve management, development, and product assurance systems
disciplines.

The seller project manager "communicates with the customer and evolves the software
product(s)." Regardless of how the products evolve, the seller development team (1)
establishes project files, (2) conducts peer reviews, (3) provides independent product
assurance,[4] (4) performs technical editing, and (5) performs project-level technical oversight.
The seller development team evolves the products and communicates with the customer
project manager to discuss issues that require customer concurrence.

The customer project manager "provides technical guidance to the seller project manager" as
the project unfolds. Both the customer and the seller project managers "hold project CCBs,
project reviews, and decide what to do next." After the project products are coordinated by the
customer and seller project managers, the products are sent to the seller senior management
for review and approval before being delivered to the customer.

The seller senior management may identify items to be resolved before the product is
delivered to the customer. In this case, the seller development team resolves the items and
resubmits the product to the seller senior management for approval. If all items are resolved,
the approved deliverable is provided to the customer for acceptance. The customer provides
feedback on the deliverable status with respect to its acceptability.

One question someone may ask is, "How could my existing organizational life cycle
development activities and technologies fit into the example organizational software systems
development process?" As shown in Figure 3-5, your existing life cycle development
activities plug into the following seller development team activities:

3 Notice that the customer/seller development team encompasses both customer and seller activities. We believe that both parties must actively
participate in the development process. Without such joint participation, the risk of the project failing increases. The notion that a customer provides
the seller with an SOW containing requirements and then checking on the project, say, six months later, is a prescription for disaster. At the same time,
the customer needs to be careful not to get so involved that such involvement gets in the way of the seller doing the job.
4 Notice that this seller rectangle has a drop shadow. As we subsequently explain, we use this shadow to denote independent product assurance
support provided to the Seller Project Manager.

Successful Software Development, Second Edition

143

Figure 3-5 The software systems development process is independent of product development
life cycle and specific product development technologies. The figure shows where you would
introduce your life cycle(s) to adapt the process to your organization.

• Seller Process Engineering Group.

Plans the Work to Accomplish the Customer's SOW Tasks.

• Seller Project Manager.

Communicates with the Customer Project Management and Evolves Software
Product(s).

Successful Software Development, Second Edition

144

Our example organizational process is independent of a specific life cycle. The process
requires, regardless of life cycle and supporting technology, that the preceding process
activities be performed to some degree. Your existing life cycle may be traditional systems
engineering, prototyping, or information engineering. As subsequently explained, regardless
of the life cycle, as a minimum, the project plan and the corresponding negotiated agreement
should take into consideration these process activities.

Each of the major elements, corresponding information, and their interaction with one another
is detailed in the next four sections.

3.4 Customer

Our organizational software systems development process begins with the customer. As
shown in Figure 3-4, the customer, among other responsibilities, prepares an SOW detailing
what the customer wants the seller to do. In the software industry, the SOW can manifest
itself in widely different ways. An SOW is called by a variety of different names, such as
request for proposal, request for contractor services, or solicitation. In some environments, the
SOW may be as short as one sentence or a couple of paragraphs. In other environments, the
SOW can manifest itself as a detailed document consisting of hundreds or even thousands of
pages. Other SOWs fall somewhere in between.

There are many types of SOWs. Specific SOW types include the following:

• Firm fixed price
• Fixed price redetermination
• Fixed price incentive
• Fixed price level of effort
• Time and material
• Cost plus incentive fee
• Cost plus award fee
• Cost plus fixed fee
• Letter contracts
• Delivery order
• Basic ordering agreement
• Government owned, contractor operated

Regardless of the type of SOW, in general, SOWs contain the same basic elements. Because
of the varying risks associated with software systems development efforts, SOWs may specify
different management approaches and incentives. However, writing a good SOW is difficult.
It is difficult to know exactly what is needed. We all get smarter about what we are doing as
we do it, but no matter how well an SOW is written, change happens. The flip side of this
situation is that writing a corresponding project plan is also difficult. Therefore, depending
upon the software systems development effort, the SOW can allow for change as the project
proceeds by calling for revisits to tasks to update previously developed products.

Figure 3-6 summarizes twelve tips that are intended to help people who are writing SOWs to
overcome the blank-page syndrome. These tips derive from lessons learned using SOWs to do
project planning.

Successful Software Development, Second Edition

145

Figure 3-6 The SOW (Statement of Work) is the customer's statement of what the customer
wants the seller to do. The figure gives tips to help buyers/users write an SOW.

SOW Tip 1—Background

The first tip encourages the customer to provide background on the organization, its mission,
policies, etc. Background establishes the authority for the work and lets the potential sellers
know the SOW is probably real. The background also helps to set some context for the seller.
However, as any experienced seller would say, if the SOW is the first time the seller
understands the potential customer's background, the likelihood the seller will "win" the work
is slim. It helps if the seller understands the potential customer.

Successful Software Development, Second Edition

146

SOW Tip 2—Points of Contact

The second tip is aimed at increasing effective communication between the customer and
potential seller. Single points of contact help to reduce the confusion of what is really wanted
and when.

SOW Tip 3—Task Specification

The third tip is the heart of what the customer wants the seller to do. Typically, it is useful if
the customer specifies what is required and the seller responds with how the what is to be
accomplished and with the dollar amount the customer is willing to spend. Allowing the seller
to respond with how enables the seller to relate previous successful projects and software
systems development processes to the work being requested. The customer can specify the
degree of innovation the potential seller should propose or even suggest the criteria for
evaluating the seller's proposal.

SOW Tip 4—SOW Writers

The fourth tip stresses the importance of the customer's internally coordinating buyer and user
requirements. Such coordination takes time and can affect schedules. Many false starts in
software systems development arise from inconsistent or uninformed understandings of what
the customer wants.

SOW Tip 5—Task Deliverables

The fifth tip suggests that each task produce a deliverable or provide a supporting service. For
example, a customer SOW task requires the seller to develop a requirements specification
document. The customer also wants to review interim progress on the specification's
evolution in terms of a topic outline and an annotated outline. The customer's dilemma, in
part, is to balance visibility into the deliverable's progress with cost and schedule implications
of requiring the seller to produce three deliverables instead of one final deliverable. Many
factors need to be considered when deciding how many deliverables should be required. In
general, the greater the up-front visibility into a product, the greater the likelihood that once
the final product is delivered it will not have to undergo significant change. However, with
less visibility into the product, the greater the likelihood that there will be a gross disconnect
in expectations and the deliverable will have to be reworked. To balance cost and visibility,
perhaps some of the deliverables can undergo less, but mutually agreed upon, review and
approval before delivery to the customer.

SOW Tip 6—Due Dates

The sixth tip is to set due dates for deliverables. However, this tip will also remind everyone
that, as the project unfolds, there may be a requirement to adjust the due dates. For many
contracts there may be only a few designated customer people (e.g., contracting official) who
can legally bind the customer with a seller. Furthermore, there may be cases in which any
changes to the negotiated agreement can be changed only by the contracting official. If the
contracting official is responsible for multiple contracts, it may be impractical to get the
contracting official to sign off on every schedule change. In such situations, we suggest that
the customer and seller project managers mutually agree to a new schedule, record the
agreement at a CCB, and subsequently report the change to the contracting official. We also

Successful Software Development, Second Edition

147

suggest that project managers be given this authority ifthe (1) schedule change is not outside
the overall negotiated agreement's period of performance, and (2) overall contract value does
not change.

SOW Tip 7—SOW Value

The seventh tip is aimed at trying to save everyone time and money. If it is possible, it is
useful for the customer to give some approximation of the dollar value of the SOW. It makes
little sense for a seller to give a million dollar answer to a hundred thousand dollar problem.
Just as it is difficult to write a good SOW, it is also difficult to write a responsive proposal
(e.g., project plan).

SOW Tip 8—Life Cycle

The eighth tip recommends that the seller either specify a preferred life cycle or let the seller
recommend one. It is important that the seller explain how either life cycle fits into the seller
organization's software systems development process or way of doing business.

SOW Tip 9—Existing Seller Practices

The ninth tip encourages the seller, if appropriate, to inform the customer of internal seller
practices, particularly policies and procedures that are to be followed. If the customer does not
want the seller to follow such practices, then the ones that are waived should be by mutual
agreement. There are certain engineering practices that many sellers require their
organizations to follow (this situation may be true for the customer as well). Not following
recognized engineering practices may open the seller to possible criticism, but if the customer
agrees, then there should not be a problem.

SOW Tip 10—Change Control Board (CCB)

The tenth tip encourages the use of a CCB to provide visibility into the project and a forum
for dealing with the unknown, but anticipated, change that accompanies any software systems
development project. In general, we suggest for projects of at least six months' duration, to
establish a CCB meeting frequency of no less than monthly. At the beginning, it is preferable
to meet more frequently—even weekly. Within these broad guidelines, allow meeting
frequency to vary as project events dictate. For projects shorter than six months, CCB
meetings held every two weeks is a good starting frequency for governing the project. As the
project unfolds, you can adjust this frequency as project events dictate—but try to meet at
least monthly. To maintain effective process control, CCB meetings must take place
throughout a project.

SOW Tip 11—Risk Assessment

The eleventh tip suggests that the customer require the seller to perform a risk assessment for
accomplishing the work specified in the SOW. The seller should explain the specific risk
criteria and corresponding risk mitigation strategies.

Successful Software Development, Second Edition

148

SOW Tip 12—SOW Revisions

The twelfth tip is offered as a planning factor. Multiple SOW revisions may be necessary, as
well as multiple proposals.

As explained in the next section, the SOW is eventually incorporated into a negotiated
agreement that authorizes the seller to start working. The person responsible for overseeing
the technical work to be performed is the customer project manager.

3.5 Seller Process Engineering Group

As shown in Figure 3-4, the customer interacts with the seller process engineering group
(PEG) that is responsible for planning the work to accomplish the customer's SOW tasks.[5]
The PEG is also responsible for (1) assessing management, development, and product
assurance methodologies, (2) establishing, coordinating, and implementing organization
policies, guidelines, standards, and procedures within an systems engineering environment
(SEE), and (3) providing technical training and project consultation.

Why give the PEG the responsibility for project planning? Would it not be better to make the
(eventual) project manager responsible for planning the project? Centralized planning by the
PEG (or the centralized coordination of the planning) enables the seller to develop and evolve
consistent procedures for responding to customers' SOWs.[6] The PEG is in a position to look
across multiple planning efforts and determine what works and what does not. Thus, the PEG
can help set in place consistent practices for (1) performing planning start-up activities, (2)
selecting the project team members, (3) determining the management, development, and
product assurance approaches, (4) establishing the cost estimate, (5) preparing and reviewing
the project plan for presentation to the customer, and (6) negotiating with the customer.

The PEG assembles a project planning team that uses the customer's SOW, the organizational
software systems development process, and a life cycle to develop a project plan containing
project-specific tasks for building the products the customer wants. The customer's SOW
details what the customer wants in terms of products and services. The organizational process
specifies processes that are to be performed during each project. For example, our
organizational process states, in part, that each project should have a CCB-like mechanism. In
addition, our process states that peer reviews, independent product assurance, technical
editing, etc., are to performed during each project. The project plan specifies how the what is
to be accomplished. Figure 3-7 presents an overview of this project planning concept and
consists of the following three panels:

5 There are a number of factors influencing how an organization decides to perform project planning. Such factors include: how long an organization
has existed, how experienced the people are in writing project plans, and how consistent each plan needs to be to be responsive to customers' SOWs. If
your organization is relatively new or is new at project planning, then you may want to have your PEG (usually consisting of experienced people) be
responsible for project planning as your organization starts up. Once the organization reaches critical mass and project teams settle into a routine with
their customers, the PEG's emphasis can shift from planning the projects to providing guidance to project management and quality assurance oversight
for project plans. As the organization matures, the project planning responsibilities can be reassessed.
6 As an organization matures its project planning practices, it may decide to transition the actual project planning details to the individual project
teams. The PEG can then serve as a (1) centralized coordinator of project planning, (2) quality assurance reviewer of each project plan, and (3)
coach/mentor for project planners. In other words, as the organization matures, project planning responsibilities can be delegated to other
organizational elements.

Successful Software Development, Second Edition

149

Figure 3-7 The customer's SOW, the organizational software systems development process,
and the life cycle set the context for planning project-specific work.

• Project-Specific Process Planning.

The seller project planning team "prescriptively applies" the organizational software
systems development process to the customer's SOW. Here, prescriptively applies
means "adapting organizational process activities to project realities (e.g., budget and
schedule constraints)." We use the qualifier "prescriptive" to convey that, once the
SOW is examined and diagnosed, the project planning team sets the organizational

Successful Software Development, Second Edition

150

process dosage (e.g., how many CCB meetings are needed, how many peer reviews
are needed, how many product assurance reviews are needed, how much technical
editing is needed, etc.).

• Project-Specific Management, Development, and Product Assurance Task
Planning.

Given the realities of the customer's SOW and an assessment of how much of the
organizational process should be applied, the project planning team constructs the
tasks to be performed. They lay out an appropriate life cycle and decide how to
integrate the organizational process activities. The life cycle is tailored to project
specifics for the management, development, and product assurance tasks necessary to
produce the products and services the customer wants. The result of the task planning
is two-fold: (1) a risk-reduced project plan, and (2) a corresponding project software
systems development process. Once a project plan is prepared, reviewed, and
approved by seller senior management, the plan is delivered to the customer for
consideration and subsequent negotiation.

• Project-Specific Planning Outputs.

The risk-reduced project plan contains specific tasks with a proposed schedule and
corresponding budget. The tasks express how the work is to be performed to produce
products and services that the customer asked for in the SOW. The project software
systems development process is embodied in the project plan and is consistent with the
planned schedule, budget, and work to be accomplished.

As a result of the PEG planning the work (or coordinating the planning), the organizational
process is adapted to an SOW to define management, development, and product assurance
tasks appropriate to the SOW. This adaptation, defined in the project plan, details the specific
life cycle steps, techniques, and tools needed to develop project-specific products. Once the
customer receives the project plan, negotiations take place. Once the negotiations are
concluded, a negotiated agreement (which embodies the project plan) is used by the
customer/seller development team to guide the work to be done.

3.6 Customer/Seller Development Team and Change Control Board
(CCB)

As shown in Figure 3-4, the customer/seller development team consists of the customer
project manager and the seller development team. Team members meet at the project change
control board (CCB) to hold project reviews and decide what to do next. CCB meetings
produce formal minutes that capture project decisions, action items, and discussion.

Customer Project Manager

The customer project manager is the counterpart to the seller project manager. Figure 3-8
shows how the customer and seller project managers interact with each other. The customer
project manager coordinates on a "day-to-day" basis with the seller project manager and
provides technical guidance to the seller development team, primarily through the seller
project manager. This relatively informal day-to-day communication happens through
conversations on the telephone or, for example, during a conversation when both people are

Successful Software Development, Second Edition

151

standing around the coffee machine taking a break. Many times these "informal"
communications affect project deliverables, schedule, and resources. Sometimes the customer
project manager receives technical guidance or insight from the seller project manager and/or
the development team. For example, the seller may provide the customer insight into the
technical feasibility of using computer aided software engineering (CASE) technology. The
customer may use this seller-provided technical guidance to assess the cost and schedule
impact on the project.

The customer project manager also provides more formal communication to the seller through
the CCB where specific action items, due dates, and responsibilities are assigned. The
customer/seller development team holds CCB meetings to discuss specific items for the
record. The customer may provide technical guidance to the seller regarding, for example,
required changes to the schedule. The customer project manager can also receive technical
guidance or recommendations from the seller development team. For example, the seller may
provide guidance to the customer regarding alternative approaches for meeting the new
schedule requirements. The seller may also seek technical guidance from the customer
regarding a particular product. For example, the seller may need clarification on specific
requirements that are to be incorporated into the requirements specification. Furthermore, the
CCB serves as a forum for the customer project manager to discuss seller items for the record
or issues that require the customer's concurrence.

Regardless of the communication paths shown in Figure 3-8, it is important that
customer/seller communications be captured and made a part of the project records. Informal
communications can be simply written down in a short memo (handwritten is okay) and be
incorporated into the more formal CCB meeting minutes.[7]

7 Chapter 4 discusses the CCB mechanism in detail.

Successful Software Development, Second Edition

152

Figure 3-8 The customer project manager and the seller project manager constantly
communicate with each other. Such communication includes technical guidance, day-to-day
coordination on project activities, items for the record, and issues for customer concurrence.
This type of manager-to-manager communication helps to increase the likelihood that the
evolving products will embody what the customer wants.

Seller Development Team

The seller development team is responsible for accomplishing the work specified in the
negotiated agreement. The team includes the following roles: (1) a seller project manager, (2)
a lead developer, (3) product assurance personnel, (4) a technical editor, and (5) management
for the project manager. Depending on the negotiated agreement, one team member may
perform one or more roles. For example, if the project is relatively small, the seller project
manager may also serve in the role of the lead developer. The project team performs the
following "generic" product development activities:

• Communicates with Customer Project Management and Evolves Software Product(s).
• Establishes Project Files.
• Conducts Peer Reviews.
• Provides Independent Product Assurance.
• Performs Technical Editing.
• Performs Project-level Technical Oversight.

We use the phrase "generic product development activities" for two reasons. First, as
previously discussed, when the project is being planned, the seller's organizational software
systems development process is prescriptively applied to the customer's SOW to account for
budget and schedule realities. An appropriate life cycle is tailored to contain project-specific
management, development, and product assurance tasks. The resulting project plan contains

Successful Software Development, Second Edition

153

the specific life cycle steps, techniques, tools, and resources needed to evolve and deliver
project-specific products. Second, the project plan then undergoes negotiation with the
customer, and the result (hopefully!) is a negotiated agreement. This agreement contains the
final project-specific details.

We now describe the generic activities just listed. Remember, our example organizational
process requires that the generic product development activities are to be performed to some
degree and in some order on any software systems development project. The degree and
sequence of these generic activities are a function, in part, of the project goals and scope, and
resource and schedule constraints. These generic activities are designed to help reduce the risk
inherent in any software systems development project. The following discussion provides
additional detail on the generic activities.

Seller Development Team: Communicates with Customer Project Management and
Evolves Software Product(s)

The seller project manager is the front-line manager responsible for carrying out the work
specified in the negotiated agreement. The seller project manager (1) is the "day-today"
primary point-of-contact with the customer project manager, (2) supervises the seller
development team, (3) updates the project plan (e.g., revises schedules as the project unfolds)
within the scope of the negotiated agreement, (4) works with the product assurance manager
to define and implement product assurance plans, (5) maintains cost/schedule control of
management and development resources,[8] and (6) is a participant in the evolution of the
required software products.

The seller project manager is a proactive management position in which the manager takes the
initiative to communicate with the customer as needed. The seller project manager frequently
communicates with the customer to verify assumptions, clarify understandings of what needs
to be done, and resolve known and/or anticipated risks. We use the term "frequently" to stress
the point that the software products are not to be evolved without the participation of the
customer. Again, the notion of the customer throwing a list of requirements over a fence to
the seller developers and then checking on progress, say, six months later, is a prescription for
failure. The seller project manager must be a proactive communicator.

The seller project manager also evolves the following software products:

• Document.

Words and graphics on paper packaged into a document.

• Computer code.

Computer code on magnetic media packaged into a system or system modification.

• Data.

Data packaged into a database on magnetic media.

8 In our organizational software systems development process, the product assurance manager controls project product assurance resources and the
scheduling of these resources. This control is one way of making product assurance "independent." In many organizations, the project manager
controls all project resources, including product assurance.

Successful Software Development, Second Edition

154

These products result from the accomplishment of the project-specific management,
development, and product assurance tasks detailed in the negotiated agreement. Figure 3-9
illustrates the notion of evolving the software products.

Figure 3-9 Evolves software product(s) means "applying the process activities that take a
product from a vaguely defined concept to a completely filled-in product that embodies
customer's requirements."

A software product typically starts out as a concept or idea. As the project unfolds, the
products take shape. For example, a requirements document evolves from a topic outline, to
an annotated outline, to a detailed specification. As the requirements specification takes
shape, the computer code also takes shape. Early in the project, there is a concept of what the
computer code will do and how it may be organized. As the requirements specification

Successful Software Development, Second Edition

155

evolves to a design specification, the computer code takes on additional shape. Equally
important is the evolution of data. Simply stated, as the project unfolds, data evolve.[9]

Often complementing the software products are services. Example services include training
the user community on the developed software product or providing hot-line support to users
who have questions on how to use the product in an operational environment. Typically, a
service is work that is required by the negotiated agreement and whose primary purpose is not
to produce a software product. Figure 3-10 illustrates example services. Other example
services include such things as conference support and demonstrations. If support materials
(e.g., conference brochures) are not deliverables, they should still be peer reviewed,
technically edited, etc. The seller project manager should give visibility to the preparation and
delivery of services. Example ways to achieve visibility are (1) seller monthly progress
reports, (2) letters informing the customer project manager that services were provided, (3)
e-mail messages, and (4) CCB minutes.

Figure 3-10 Services, like the products, are planned in accordance with the organizational
software systems development process.

9 When the customer writes the SOW, it is important for the customer to state how much of the product evolution should be customer-approved before
the seller proceeds from one evolution to the next. For example, if the final product is a requirements specification, does the customer approve a topic
outline before the seller proceeds to evolve an annotated outline? Customer approvals affect cost and schedule.

Successful Software Development, Second Edition

156

Regardless of whether products are produced or services are provided, as the project unfolds,
the customer and seller increase their understanding of what needs to be done in order to
accomplish the project's tasks. Typically, this increased understanding results in changes to
what was planned in theproject plan and what was agreed to in the negotiated agreement. To
accommodate these changes, the seller development team, in concert with the customer,
makes adjustments to the project management, development, and product assurance tasks.
Figure 3-11 illustrates this point.

Successful Software Development, Second Edition

157

Figure 3-11 The seller development team prescriptively applies the project's development
process to the negotiated agreement that embodies the seller's project plan. The results of this
prescriptive application are: (1) products (and associated services) and (2) project-level
development procedures that are consistent with the resource expenditures, completed works
schedules, and work accomplished.

The seller project manager prescriptively applies the project software systems development
process to the negotiated agreement. As a result, adjustments are made to task-level activities.
For example, toward the end of the Design Stage, the product assurance personnel compare
the design specification with the requirements specification to check for requirements

Successful Software Development, Second Edition

158

traceability. It is discovered that the design (1) contains three requirements that are not in the
requirements specification, and (2) does not address two requirements that are in the
requirements specification. On examination and discussion, the customer agrees with the
seller that the new requirements are needed things the customer wants, but the customer still
wants the seller to include the two "missing" requirements. In addition, the period of
performance cannot be extended, the project budget cannot be increased, and, of course, the
seller wants to keep the customer happy. (Set aside for the moment the issue of how three new
requirements found their way into the design.) Since the budget cannot be increased, the seller
project manager proposes that some of the deliverables be combined into a single document.
This potential solution keeps the schedule and budget intact but reduces the scope of the
planned documents. Assuming that the proposal is acceptable to the customer, the work to be
performed using the project development process is adjusted and the project proceeds. If the
proposal is not accepted, additional discussion is necessary. Regardless, the project
development process needs to be applied prescriptively to the negotiated agreement.

The seller project manager is also responsible for developing project-specific procedures or
stepby-step instructions for performing recurring task activities. For example, as part of the
organization's application development process environment (ADPE), there may exist a
configuration management (CM) guideline delineating suggestions for implementing CM on a
project. The seller project manager can use the guideline to help develop a project-specific
procedure for CM.

Seller Development Team: Establishes Project Files

The lead developer for each deliverable product is responsible for establishing the project
files. The minimum set of files required may or may not be specified in the negotiated
agreement. However, establishing the product's project file is one of the first steps for
ensuring that the product is properly formatted, coordinated, reviewed, and approved. To aid
the lead developer performing the steps to deliver a product to the customer, we suggest the
use of a product tracking form. Figure 3-12 presents an overview of a generic product
tracking form that is tied to our example organizational software systems development
process.

Successful Software Development, Second Edition

159

Figure 3-12 The lead developer of a product is responsible for establishing the necessary
project files and tracking the product through the development process. The tracking form, as
its name implies, is used, in part, to track a product as it progresses through the software
systems development process.

The form tracks the software product through the organizational process of peer reviews,
product assurance support, technical editing, project-level and organization-level management
review and approval, and customer receipt and acceptance. The lead developer is responsible
for (1) conducting or establishing peer reviews, (2) coordinating with product assurance
personnel, (3) coordinating with technical editor(s) when the product is a document, (4)
ensuring that the product is ready for management review and approval, and (5) tracking the
product throughout the software systems development process.

The form literally makes the process visible and, in effect, provides the lead developer with a
selfauditing technique to help ensure that the process is followed. Hopefully not, but if the
customer has a problem with a delivered product, the tracking form can help provide some
insight into what was done and what was not done.

The form is particularly useful to project and senior management. It provides management
with some insight into how and when the product was produced. For example, when the

Successful Software Development, Second Edition

160

product and the tracking form are presented to the program manager for review and approval,
the program manager knows who within the organization is involved with the development of
the product. For those products produced by newer members of the organization, the program
manager may decide to spend a little extra time to ensure that the product is ready for delivery
to the customer. In those cases where the product may need some additional attention before
delivery to the customer, the program manager may ask the project manager to improve the
product. Subsequently, if appropriate, the program manager may decide additional training or
mentoring is needed within the organization. Perhaps when the program manager is convinced
that project managers understand what to do, the final approval authority for certain products
may be delegated to the project managers.

Figure 3-13 shows an example tracking form linked to our example organizational software
systems development process. To help you use this form, we explain how the tracking form is
constructed. The form layout assumes an organization consisting of a collection of projects
headed by a program manager. The program manager is supported by project managers who
have front-line, day-to-day responsibility for the projects. The layout also assumes that the
organization includes (1) a Deliverable Support Center (DSC) that provides document
production support and a centralized product repository, (2) an independent product assurance
organization, and (3) a process engineering group (PEG) responsible for defining and
implementing a systems engineering environment (SEE).

Successful Software Development, Second Edition

161

Figure 3-13 Here is an example of a seller deliverable tracking form that can be used with our
organizational systems development process.

The example form consists of the following sections:

• Project File Establishment at Deliverable Support Center (DSC)
• Technical Review of Product

Successful Software Development, Second Edition

162

• Final Coordination with DSC
• Project File Management
• Comments/Issues
• Management Review and Approval
• Customer Receipt and Approval

The tracking form corresponds to a product working its way through our software systems
development process. As the tracking form indicates, establishing the project files is first, and
receiving the customer's approval is last. However, there is no one way through the process,
and therefore, there is no one way to use the tracking form. In addition, the way a product is
tracked is tied, in part, to the product type. In general, the tracking form is used in its entirety
to track a document. For example, if the document is a seller project plan, then the process
engineering group representative and business manager may be required to concur or
nonconcur before the plan is submitted to the program manager for approval. In general, the
tracking form is used in its entirety to track the evolution of a computer code or database
deliverable. However, certain signatures may not be required. For example, a technical editor
does not review computer code or a database. Regardless, it is the lead developer's
responsibility to work closely with other project and/or organization people to ensure that the
product goes through the software systems development process. We briefly describe next
each section of the form. This description also offers insight into what we mean by
prescriptive application of the software systems development process.

Project File Establishment at Deliverable Support Center (DSC) Section

The seller project manager decides who the lead developer is for each required product. The
lead developer obtains a tracking form from the DSC manager and establishes the required
project files. This form section provides, in part, the DSC with the necessary information for
coordinating activities with the lead developer as the product evolves. It is the lead
developer's responsibility to (1) indicate on the form who is going to do what, and in what
order, and (2) obtain the necessary signatures.

In general, a form action is completed when the indicated signatory signs the tracking form.
For those form actions requiring concurrence or nonconcurrence, the action is completed
when the indicated signatory checks the appropriate box and signs the form. We stress that
when someone nonconcurs, the lead developer should try to resolve any issue with the person.
If the situation cannot be worked out or if the lead developer is not available, the signatory is
required to detail the reasons for the nonconcurrence in the comments/issues section. The
tracking form is then forwarded to the next indicated person.

Technical Review of Product Section

The technical review of a product may proceed serially or in parallel, depending on the
particular situation. The peer reviewer signature indicates that one or more peer reviews were
conducted. The technical editor signature indicates that a document underwent technical
editing. The product assurance signature indicates that a document has been audited, or
computer code or a database has been tested according to the customer/seller agreed-upon set
of procedures. If the testing is not done, the lead developer indicates in the comment section
the reason for not testing and the corresponding risks. Project-level technical oversight is a
seller management prerogative.

Successful Software Development, Second Edition

163

Final Coordination with DSC Section

Before the product is submitted to seller management for review and approval, the DSC
manager and lead developer package the product in the form it is to be delivered to the
customer. This final coordination provides an opportunity to specify last-minute delivery
instructions.

Project File Management Section

The lead developer is responsible for indicating where the product can be located and
ensuring that the product is filed appropriately.

Comments/Issues Section

Anyone involved in the product evolution writes explanatory information in this section. For
example, the project manager may indicate to the delivery and distribution person that an
extra copy is needed. The program manager may indicate that additional information is
needed for a cover letter.

Management Review and Approval Section

This section implies a sequence. In general, the project manager reviews the product before
submitting it to the program manager. Once the product is approved for release to the
customer, the program manager gives the product to the delivery and distribution person. As
indicated previously, when the product is a seller project plan, the process engineering group
representative and the business manager review the product before submitting it to the
program manager.

Customer Receipt and Approval Section

In addition to the product, the lead developer also provides the program manager with a cover
letter, a customer receipt form, and a customer acceptance of deliverable form. The cover
letter informs the customer of the specific product being delivered and any special
circumstances surrounding the product's development. The customer receipt form is a self-
addressed, return receipt that informs the seller that the product is received by the customer.
Figure 3-14 provides an example receipt form.

Successful Software Development, Second Edition

164

Figure 3-14 Here is an example of a customer receipt of deliverable form that can be used with
our organizational software systems development process. The return address is on the
reverse side.

The customer receipt form is used to establish closure between the customer and seller
regarding product delivery. Such a form helps to reduce the likelihood of a product being
delivered to the wrong individual. When the product is delivered to the customer project
manager or designated representative, the customer signs the form. Upon receipt by the
Deliverable Support Center (DSC), the designated DSC representative updates the tracking
form in the central repository and informs the lead developer.

A customer acceptance of deliverable form is also delivered to the customer project manager.
Figure 3-15 is an example of such a form.

Successful Software Development, Second Edition

165

Figure 3-15 Here is an example of a customer acceptance of deliverable form that can be used
with our organizational software systems development process.

The customer acceptance of deliverable form is used to establish closure between the
customer and seller regarding the state of the delivered product. Such a form helps customer
feedback. When the product is delivered to the customer project manager (or designated
representative), the customer reviews the deliverable, decides the deliverable status, signs the
form, and returns it to the seller. In this example, the deliverable status can be (1) accepted as
written, (2) accepted with minor changes, or (3) requires changes to be negotiated. The time
period for customer review is detailed in the negotiated agreement. The negotiated agreement
also details what customer acceptance means. Regardless, on receipt by the DSC, the
designated DSC representative updates the tracking form in the central repository and informs
the lead developer. If the customer indicates that there are required changes, then the DSC
representative informs the lead developer, the seller project manager, and the seller program
manager. The seller management then decides how to respond to the "required changes." The
DSC representative then updates the tracking form in the central repository.

Successful Software Development, Second Edition

166

Figure 3-16 summarizes the seller DSC functions. The specific responsibilities vary with the
way an organization is set up. For example, if your organization has only one project, you
may decide that a DSC is really a project function. If on the other hand your organization has
multiple projects and they range from one-person projects to twenty-person projects, you may
decide that a DSC is a necessity. Furthermore, the one-person projects generally cannot afford
the cost of full-time personnel to provide technical editing, so the DSC could provide this
service. The larger projects may have their own technical editors, and in this case, these
project editors could follow the DSC guidelines for formatting documents.

Figure 3-16 This figure shows our example seller Deliverable Support Center functions.

Up to this point in our discussion of the seller development team generic activities, we have
covered (1) communicating with the customer project management and evolving software
products, and (2) establishing project files. We now are going to describe the generic activity
that deals with peer reviews.

Seller Development Team: Conducts Peer Reviews

The lead developer (or moderator) is responsible for ensuring that the evolving products are
peer reviewed. As shown in Figure 3-17, peer reviews provide the lead developer with
technical feedback that is used to refine the evolving product.

Successful Software Development, Second Edition

167

Figure 3-17 The peer review balances the product developer's approach with the insights of
other people having applicable and comparable experience.

Peer reviews help the lead developer repeat successful approaches used by colleagues and
avoid pitfalls. These insights serve to stabilize the developer's approach and help increase
confidence that the product does what it is suppose to do. Time and resources should be
planned for conducting peer reviews. There are many types of peer reviews. For this
organizational software systems development process, the lead developer conducts, as a
minimum, either one-on-one peer reviews or scheduled peer reviews.

One-on-one peer reviews seek to increase the confidence that a product is complete and
appropriate. A colleague who is familiar with the product or has similar experiences provides
the lead developer with experienced-based insights. The lead developer and a colleague get
together to discuss a portion of the product (e.g., a chapter of a document). As the lead
developer provides the colleague with product details, the colleague asks questions and
provides suggestions. Because of the limited scope of the review, one-on-one peer reviews do
not require large blocks of time and can occur on a frequent basis. The lead developer is
responsible for taking notes, following up on the reviewer suggestions, and keeping track of
how much time is spent on each product. Such time tracking can be used to improve future
planning estimates.

Scheduled peer reviews are larger in scope and usually only involve technical personnel.
Depending on the size of a project, scheduled peer reviews may require a moderator who is
responsible for scheduling, organizing, and conducting the review. We recommend that the
moderator be a project member. However, the moderator should not be the seller project
manager or lead developer, because they could intimidate other reviewers and suppress candid

Successful Software Development, Second Edition

168

remarks. Scheduled peer reviews should last from two to four hours and include three to six
reviewers. The principal goal of the review is to identify technical issues, not to develop
technical solutions. Checklists are useful tools to guide the review. The moderator can ask the
project developers to prepare checklists for the review. In addition to administrative duties
(e.g., reserving a meeting room, assigning the role of scribe to someone), the moderator is
also responsible for developing a summary of the review and distributing it within two days.
To improve future planning efforts, the lead developer should be responsible for keeping track
of how much time is spent on peer-reviewing each product.

Seller Development Team: Provides Independent Product Assurance

The product assurance manager is responsible for providing the required independent product
assurance support to the project. (Our organizational software systems development process
assumes the organization has a product assurance manager who is responsible for providing
product assurance support to all projects within the program.) The seller project manager is
responsible for coordinating with the product assurance manager for support for each
evolving product. Ensuring that the project has the appropriate amount of independent product
assurance support requires clear communication between (1) the product assurance manager
and the seller project manager, and (2) the product assurance personnel and the seller
development team developers.

"Independence" is a function of the following three dimensions:

• Organizational.

Organizational independence can vary from no independence (the product assurance
manager reports to the seller project manager) to total independence (the product
assurance manager reports to the highest levels of management within the
organization).

• Budgetary.

Budgetary independence can vary from no independence (the product assurance
budget is completely controlled by the seller project manager) to total independence
(the product assurance budget is completely controlled by the product assurance
manager).

• Product development.

Product development independence can vary from no independence (product
assurance personnel expend labor helping to build a product, such as writing a section
of a requirements specification) to total independence (product assurance personnel do
not expend labor helping to build a product). However, not helping to build a product
is not the same thing as not helping to shape a product. Product assurance canand
should have a significant impact on how a product eventually turns out.

What do we mean by independent product assurance? "Independent" product assurance can
vary greatly, and it should be accounted for during project planning. Figure 3-18 shows that
product assurance helps to reduce project schedule and budget risks by conducting reviews of
the evolving products.

Successful Software Development, Second Edition

169

Figure 3-18 Independent product assurance is a key element of successful software systems
development processes.

The assigned product assurance personnel provide the planned-for support for each evolving
product. Product assurance support consists of the integrated application of (1) quality
assurance (QA), (2) verification and validation (V&V), (3) test and evaluation (T&E), and (4)
configuration management (CM). The outputs of these activities are generally audited
material that contains the results of comparing "what is expected" to "what is observed." The
application of these product assurance activities helps to reduce risk, and provide an
additional assurance that the product does what it is supposed to do.

Seller Development Team: Performs Technical Editing

The technical editor is responsible for ensuring that a document lacks ambiguity, uses
language appropriate to the intended audience, is internally consistent, conforms to
organizational standards, and contains no grammatical or spelling errors. As shown in Figure
3-19, technical editors work hard to improve the presentation of the document without
materially changing the technical content. The technical editor also ensures that the document

Successful Software Development, Second Edition

170

as a whole hangs together by checking that (1) text and figures are coordinated, (2) the table
of contents matches document content, and (3) the index matches document content.
Technical editing should be accounted for during project planning.

Figure 3-19 Technical editing is an important, but often overlooked, activity in the software
systems development effort.

Seller Development Team: Performs Project-level Technical Oversight

Seller management is responsible for providing technical guidance to help ensure (1)
consistent use of engineering principles, (2) reuse of existing documents, computer code, or
databases, and (3) prescriptive application, at the project level, of management, development
and product assurance disciplines, techniques, and tools. Figure 3-20 depicts this technical
guidance.

Successful Software Development, Second Edition

171

Figure 3-20 Project-level technical oversight helps the seller development team avoid potential
problems by infusing the experience of others into the technical management of the project
(i.e., the "I've been there" factor).

Seller management, in effect, acts as a technical director by providing experience-based
guidance to the seller development team. For example, consider a situation in which the seller
development team is helping the customer migrate a legacy system to a new software
language, database management system, and platform. Although the development team
members have relevant experience they have never migrated a system as large or complicated.
To help the team members scale up their experience, the seller project manager requests the
seller program manager to review the current situation and provide a sanity check. The seller
program manager reviews the project and makes some suggestions to the seller project
manager and team members. In addition, the seller program manager seeks out a database
expert whose particular expertise is in large-scale data conversion efforts. This expert comes
on site for a few days to provide some guidance on how to recognize and avoid potential
performance problems. The end result is that evolving products are reviewed, and the
development team uses the corresponding feedback to stay on track.

Change Control Board (CCB)

The change control board (CCB) is a management support tool that provides a forum for
discussing management, development, and product assurance activities. Our concept of a
CCB extends far beyond the traditional configuration management (CM) control board
concept. Simply stated, no matter how well the customer writes the SOW, no matter how well
the seller writes a corresponding project plan, and no matter how well the customer and seller
negotiate the final agreement, once the project begins, things start to change. Furthermore,
changes persist throughout the project. Therefore, the CCB is a business forum where the

Successful Software Development, Second Edition

172

customer and seller can discuss how to deal with this unknown, but anticipated, change.
Figure 3-21 illustrates this concept.

Figure 3-21 The CCB is a key element of successful software systems development processes.

CCB meetings help to foster effective communication between the customer and seller by
acting as a catalyst to achieve closure between the parties regarding actions and decisions
pertaining to product development. Discussions take place, action items are assigned, and
decisions are recorded in CCB minutes. The CCB is a decision-making body where software
systems development is conducted in an accountable and auditable manner.

In general, CCB meeting output consists of technical guidance and evolving products. The
customer can provide technical guidance to the seller or vice versa. The seller provides the
customer with evolving products for interim or final customer review and approval.
Conversely, the customer provides the seller with a reviewed evolving product.

As shown in Figure 3-4, the overall result of the interaction between the customer/seller
development team is a deliverable that has been coordinated at the project level. The
deliverable product is now ready to be submitted to the seller senior management for review
and approval.

Successful Software Development, Second Edition

173

3.7 Seller Senior Management

Seller senior management is responsible for reviewing the deliverable at the organizational
level to confirm that there are no items to be resolved. If there are items to be resolved, seller
senior management (in our example, the program manager) gets together with the seller
development team, typically the seller project manager and the lead developer, to decide how
to resolve the items.

The program manager ensures that the deliverable conforms to the systems engineering
environment (SEE) policies, guidelines, procedures, and standards. We cannot stress enough
this management responsibility. Successful implementation of an organizational process
involves the participation, cooperation and support from everyone involved. However, senior
management must set the tone. If senior management is not supportive, the task of
implementing an organizational process is made more difficult. Typically, someone or some
part of an organization is assigned the responsibility for implementing an organizational
process. Assigning someone or an organizational element (e.g., seller process engineering
group) to be responsible is a good first step, but without the corresponding resources and
authority, the task takes longer and costs more. Figure 3-22 illustrates the seller senior
management responsibility.

Figure 3-22 Seller senior management ensures, in part, that the seller development teams
implement the organizational software systems development process.

When the deliverable is submitted to the program manager, it is packaged with its tracking
form, cover letter, customer receipt of deliverable form, and customer acceptance of
deliverable form. Remember, the tracking form consists of the following sections:

Successful Software Development, Second Edition

174

• Project File Establishment at Deliverable Support Center (DSC)
• Technical Review of Product
• Final Coordination with DSC
• Project File Management
• Comments/Issues
• Management Review and Approval
• Customer Receipt and Approval

The program manager checks the sections to see how the product was tracked. The program
manager reviews each of the tracking form sections (except the Customer Receipt and
Approval because it has not yet been filled in) to determine how the product made its way
through the development process. For example, if the product is a document, then the
technical editor signature should appear in the technical review section. If the product is a
document, computer code or a database, then the product assurance reviewer or manager
signature should appear in the technical review section. If the product is computer code and
there is no product assurance signature, the program manager checks the comments section to
see if there is a reason for no testing. If the product is a project plan, the program manager
checks, and double-checks, the cost estimate provided by the business manager. If the
deliverable is a product assurance plan, the program manager checks to make sure that the
product assurance manager and the seller project manager have technically reviewed and
agreed to the plan. Assuming that there are items to be resolved, then the program manager
gets together with the appropriate people to find out what the story is. Given that everything
gets worked out, the program manager approves the product for delivery, signs the cover
letter, and forwards the package to the person who is going to deliver the approved
deliverable to the customer.

On receipt of the seller's approved deliverable, the customer signs the customer receipt of
deliverable form and provides it to the seller. After the customer reviews the deliverable, the
customer fills out the customer acceptance of deliverable form and provides the deliverable
status to the seller.

3.8 Software Systems Development Process Summary

The organizational software systems development process defines the way an organization
develops software systems. Although there is no one way to develop software systems, the
following principles should be considered in any organizational process:

• Plan the work to be done before doing it.
• Obtain agreement on defined responsibilities.
• Establish and empower self-directed work teams.
• Establish checks and balances.
• Maintain continual customer and seller interaction.
• Monitor project progress.
• Mentor project managers, and train work teams.
• Provide interim review on project progress.
• Provide feedback on deliverables.
• Improve the software systems development process.

The organizational process should be applied prescriptively to each project because no two
projects are the same.

Successful Software Development, Second Edition

175

In this sense, the process provides a consistent approach to developing software systems and
allows the particular circumstances of a project to influence how the work is to be done. For
example, an organization's software systems development process may require that all
computer code be tested before it is delivered to the customer. However, one potential
customer is not willing to pay for such testing. In this case, the seller may decide not to take
on the work because the risk is too high and the company's reputation could be seriously
damaged if the project were to fail. On the other hand, the seller may be able to convince the
potential customer to relieve the seller of the consequences for software failure, and so the
seller decides to take on the work. Regardless of the particular situation, people's knowledge
and experience should be used to help determine how much of the process is to be applied.

Two major factors govern organizational process definition: (1) level of detail and (2)
organizational scope. Figure 3-23 shows a way to relate these two factors to one another.

Figure 3-23 This figure indicates that the level of detail and organizational scope are two major
considerations in definning a software systems development process in an application
development process environment (ADPE) element.

The level of detail defining an organization's software systems development process may span
a broad spectrum. In some organizations, it may make sense simply to define the major
activities that all projects must perform and then leave it up to each project to apply
prescriptively these activities. Here, apply prescriptively means "in a manner that makes sense
in terms of factors such as project budget, project schedule, and the threat to human life that

Successful Software Development, Second Edition

176

software failure may pose." In other organizations, the software projects may be so similar
that it makes sense to define a detailed step-by-step procedure because "one size fits all."

Figure 3-23 also indicates that the scope of a software systems development process may or
may not coincide with an organization within an enterprise. At one end of the spectrum, an
organization may be a single project, and at the other end, an organization may be an entire
enterprise. Therefore, an organizational process may be written for a single project, or for
multiple similar projects, multiple not necessarily similar projects, projects spanning more
than one enterprise, projects across entire enterprise, etc.

Considering these two dimensions helps to shape the organizational process. For example, the
final review and approval responsibility can be vastly different for a single project
organization versus an organization that cuts across enterprises and includes subcontractors
working with a prime contractor. In the latter case, the process may allow the subcontractors
to have certain limited responsibilities, but final release authority may be reserved for the
prime contractor.

For those organizations that develop software systems embedded in larger systems, the
software systems development process needs to plug into the systems development process.
At a minimum, the software process should hook periodically into the system process to
ensure that software product development is synchronized with the development of
interfacing system components. One visible and accountable way of plugging into the systems
development process is through CCB meetings involving the principals responsible for these
interfacing components. Figure 3-24 illustrates this point.

Successful Software Development, Second Edition

177

Figure 3-24 The software systems development process can plug into a systems development
process via change control board meetings.

In general, the software and systems processes should share common activities such as peer
reviews, independent product assurance, and technical editing. One activity the systems
process needs to account for that generally is not prominent in the software process is that of
subsystem integration. This activity is concerned with making sure that the individual
software process components fit and work together as prescribed in system-level
specifications. Sometimes these specifications may include interface requirements anddesign
specifications prescribing the what and how of the subsystem connections.

When defining the organizational software systems development process, you have to be
careful not to turn the process into a paper drill. The process cannot take on the air of
bureaucracy. If the staff members perceive that following the process covers them with
paperwork, they will seek ways to circumvent the process. If the percentage of people
circumventing the process is on the rise and/or is considerable (say, at least thirty percent),
then the process may indeed be bureaucratic and needs to be changed. Remember that cries of
bureaucracy are typical during the period immediately following process implementation and
for weeks or even months thereafter. Before responding too quickly to the cries, it is
important to let the process settle in. You need to track and respond to everyone's suggestions.
In general, the larger the organization, the longer the settling-in period. Remember, too, that
through prescriptive application of the process to individual projects, experienced staff will
generate paperwork in amounts appropriate to the schedule and budget constraints of their
projects. On the other hand, less experienced staff may either generate too little paperwork
(because they are less certain about what to do and may be forced to shortcut some activities)
or too much paperwork (because they are less certain about how much is enough). Mentoring

Successful Software Development, Second Edition

178

of these individuals can facilitate the generation of the appropriate amount of paperwork
across an organization.

To focus application development process environment (ADPE) developmentefforts, it is
helpful to begin by defining the organizational software systems development process and
capturing it in an ADPE element. This organizational element establishes the context for most
subsequent elements. As shown in Figure 3-25, the subsequent elements serve to address in
more detail one or more items called out in the ADPE organizational process element. For
example, the organizational process may include a CCB. The mechanics of this item can then
be addressed in an ADPE element on the CCB and/or on configuration management. The
organizational software systems development process acts as an integrating agent for the other
ADPE elements.

Successful Software Development, Second Edition

179

Figure 3-25 It is useful to define the organizational software systems development process
first.

You can use the annotated outline of an ADPE policy shown in Figure 3-26 as a starting point
for defining your organization's software systems development process.

Successful Software Development, Second Edition

180

Figure 3-26 An annotated outline for getting you started in defining a software systems
development process for your organization. This ADPE element outline can also be used to
define a process that you already (informally) have in place and that you want to improve.

The software systems development process policy may consist of the following sections:

• Purpose.

This section states the purpose of the policy. The purpose sets the context and
establishes the authority for the policy.

Successful Software Development, Second Edition

181

• Background.

This section provides an overview of your organization, business, customers, and
types of contractual vehicles (e.g., firm fixed price, time and material, cost plus fix
fee, letter contract) that you use to conduct business.

• Software Systems Development Process Overview.

This section describes your software systems development process. The key part of
this section is a diagram showing this process. This diagram should delineate your
organizational elements, as well as your customer's. Your process should contain a
planning element, a change control mechanism, and customer feedback. The process
provides guidance for evolving your entire ADPE in a self-consistent manner.

• Software Systems Development Elements and Their Interactions.

This section describes all the elements and the way that they interact with one another
during software systems development.

• Project Files.

This section describes the way your organization is to set up its files for tracking,
storing, and maintaining your deliverables. In addition to the issues listed in the figure,
you should keep this system simple.

• Appendices.

Appendices can contain examples of a tracking form, cover letter, customer receipt of
deliverable form, and customer acceptance of deliverable form.

We have completed our discussion of our organizational software systems development
process concept. The next chapter deals with the change control process and the change
control board (CCB). As you will discover, our concept of a CCB extends far beyond the
traditional configuration management (CM) control board.

Successful Software Development, Second Edition

182

Chapter 4. Change Control Process
He who rejects change is the architect of decay. The only human institution which rejects
change is the cemetery.

—Prime Minister Harold Wilson, speech to the Consultative Assembly of the Council of
Europe, Strasbourg, France, January 23, 1967. Text from The New York Times, January 24,
1967.

4.1 Introduction

Generally, the customer has some idea of what a software system is to do. However, the
customer usually does not know exactly what a software system is to do. Probably the most
fundamental aspect of software systems development is iteratively determining what the
customer wants and then developing products to satisfy these wants. In this chapter, we turn
our attention to describing controls that can be instituted on a software systems development
project to achieve convergence between what the customer thinks the software system is to do
and what the seller thinks the customer wants the software system to do—with the ultimate
result that the seller produces what the customer wants (and can use).

The change control board (CCB) can be used to institute controls for achieving convergence
between the customer and seller. This chapter details the CCB concept and provides you with
guidance for setting up a CCB for your software systems development process. We believe
that the CCB can effectively deal with customer (i.e, user/buyer) and seller communication
issues dealing with software systems development. However, this is not to say that the CCB is
the only effective mechanism for communicating with the customer.[1]

In this chapter, we show how the CCB can, and should, be used to address the
communications problems that plague any software systems development project. As the
comic strip in Figure 4-1 illustrates, communications misunderstandings plague everyday life.

Figure 4-1 It is easy to miscommunicate. (The Wizard of Id, May 16, 1994. Reproduced by
permission of Johnny Hart and Creators Syndicate, Inc.)

In his opening remark to the to-be-debugged prisoner, the prison doctor shown in the first
frame of the strip is undoubtedly unaware that he is miscommunicating his prescription to the
inmate. In fact, in the absence of the remaining frames, most readers of the first frame would
probably interpret the doctor's words as he had intended. Unfortunately, both the spoken and
the written word are frequently misinterpretedy.

1 As previously stated, our CCB concept extends far beyond the traditional configuration management (CM) control board concept. One aspect of
software product development change control is certainly CM, but as you read this chapter, we present our expanded concept of change control.

Successful Software Development, Second Edition

183

It should not be surprising, then, that particularly in the world of software systems
development, where the need for specificity is paramount, the consequences of
misinterpretation can cause discomfort—or worse. For example, consider the comic strip in
Figure 4-2. This comic strip models a typical interaction between a customer and a vendor of
off-the-shelf software. The first frame of the comic strip intimates that the customer (peasant)
seems to be sure of his requirements for a potion that the wizard is vending. This frame also
makes it evident that the wizard seems to understand what the peasant really wants.
Unfortunately, the third frame of the comic strip makes it evident that, at least from the
perspective of the peasant, a misunderstanding has arisen. It is important to note from the
frame that, from the perspective of the wizard, there is no misunderstanding.

Figure 4-2 Sometimes the customer believes that he effectively communicates his
requirements, and the developer believes he understands what the customer communicated.
Subsequent to developer implementation of the "requirements," the customer and developer
may have vastly different perspectives regarding requirements satisfaction. (The Wizard of Id,
October 11, 1984. Reprinted by permission of Johnny Hart and Creators Syndicate, Inc.)

In the real world of software systems development, the fact that the customer and seller can
have diametrically opposite views of the state of a product can have overwhelming
consequences. Consider, for example, the following statement from an actual software
specification documenty:

The exception information will be in the XYZ file, too.

Just as the wizard in Figure 4-2 interpreted the word "life" in the peasant's requirements
statement to mean "age," the programmer interpreted "too" in the above specification to mean,
"Another place the exception information appears is the XYZ file." Unfortunately, what the
customer really wanted this statement to mean was, "Another type of information that appears
in the XYZ file is the exception information." In fact, this information was not duplicated
elsewhere. So, just as the peasant's "age" requirement misinterpretation led to an irreversible
situation (assuming the wizard had no potion antidote), so the customer's "too" led to the loss
of valuable and unrecoverable information. The cost of the lost information was about half a
million dollars.[2]

Figure 4-3 generalizes the off-the-shelf software scenario in Figure 4-2 to the general case of
software systems development. The king in the comic strip in Figure 4-3 is the archetypical
software customer. The king has some idea of what he wants—but he does not know exactly.
Perhaps the most fundamental aspect of software systems development is iteratively
determining what the customer wants and then developing products to satisfy these wants.

2 This example is taken from D. C. Gause and G. M. Weinberg, Are Your Lights On? How to Figure Out What the Problem Really Is. (Boston: Little,
Brown, and Company, 1982), pp. 73–74.

Successful Software Development, Second Edition

184

Figure 4-3 A customer and a developer refine their understandings of what needs to be done to
build a software system satisfying customer requirements. This mutual refinement of
understanding continues throughout the development life cycle. The change control board
(CCB) provides the wizard and king with a business forum to achieve this mutual refinement.
The end result is successful software systems development. (The Wizard of Id, September 30,
1983. Reproduced by permission of Johnny Hart and Creators Syndicate, Inc.)

Many system development efforts (whether or not they involve software) embody attempts to
improve how things work without being precisely sure of what is wanted. This imprecision is
perhaps implicit in Figure 4-3 in the broad-scoped question the king puts to the wizard, "Can
you stop the rain?" Often, software systems development efforts begin with such customer
thoughts as the following:

• Wouldn't it be nice if I could do such and such?
• What I really need is a system that will do
• Today I do processes X, Y, Z . . . separately. It would be more efficient if I could

integrate X, Y, Z . . . into a single system.

From the software systems developer's perspective, development, once initiated (by such
customer thoughts as those just listed), may be pushed along by developer thoughts like the
following:

• I think the customer would be happier if I could make his system do such and such
instead of what it does now.

• Although the design I have developed meets customer needs, now I realize that there
are other designs that will meet these needs more efficiently.

• I now have a better understanding of what the customer wants, so I think that I will
implement his new capability as follows

The key point about these customer and developer thoughts and Figure 4-3 is related to time
and money. To help make successful software systems development happen, the fourth frame
in Figure 4-3 should really be merged with the first frame. Before a lot of time and money are
wasted in taking the next step in a software systems development effort (the second and third
frames in the figure encapsulate this presumably wasted time and money), the wizard needs
an answer to his question, "What is it you really want?"

As illustrated in Figure 4-3, both the wizard and the king mutually progress in their
understanding of what needs to be done as the project proceeds. Successful software systems
development thus requires a mechanism that allows the wizard and king to process the
changes that arise from this natural mutual refinement of understanding. That software
systems development mechanism is the change control board (i.e., CCB). The CCB's primary
purpose is to serve as a forum for managing these anticipated, but unknown, changes.

Successful Software Development, Second Edition

185

In this chapter, we describe a change control process critical to achieving convergence
between what the king thinks he wants and what the wizard thinks the king wants. The
ultimate result of the change control process, as embodied in the CCB, is that the wizard
produces what the king wants (and can use).

The plan for this chapter is the following:

• In Section 4.2—Change Control Process Key Ideas, we present the key ideas that
you can expect to extract from this chapter.

• In Section 4.3—Planned and Unplanned Change, we define the scope of the process
of change control. We begin by introducing a dictionary definition of the word
change. We use this definition to set the stage for our discussion of planned changes
and unplanned changes. The section asserts that achieving convergence between the
customer and seller is tantamount to saying the following:

A customer's wants migrate through a sequence of changes and ultimately
become a product embodying the wizard's (and hopefully the king's)
perception of these wants.

The section then asserts that, in terms of a project's life cycle, this migratory process can be
further described as a planned sequence of transitions from one life cycle stage to a
subsequent one overlaid by unplanned transitions within stages, or back to preceding stages or
forward to succeeding stages.

• In Section 4.4—The Processing of Changes, we define for the seller the change
control mechanics of the software systems development process. We step through the
processing of product and programmatic changes using the CCB.

• In Section 4.5—Examination of the Change Control Board, we focus on the
mechanics of the CCB itself. The preceding section focused on the role of the CCB in
the overall product and programmatic change control process. In this section, we focus
on who sits on the board, what decisions the board makes, and how the board operates.

• In Section 4.6—Paperwork Support of the Change Control Board, we discuss why
paperwork is necessary in the change control process. We also show how to develop
and use a set of change control forms. In addition, we provide a format for recording
CCB minutes.

• In Section 4.7—Change Control Process Summary, we summarize the key points
developed in the chapter. It includes an annotated outline of an ADPE guideline for
describing the workings of CCBs in the software systems development process. You
can use this outline as a starting point for defining how CCBs are to be incorporated
into your environment. This section also provides a transition to the next chapter.

4.2 Change Control Process Key Ideas

Figure 4-4 lists the key ideas that you can extract from this chapter. To introduce you to this
chapter, we briefly explain these key ideas. Their full intent will become more apparent as
you go through the chapter.

Successful Software Development, Second Edition

186

Figure 4-4 Here are key change control concepts explained in this chapter

1. Every software systems development project should be governed by a board that meets
periodically involving the buyer/user and seller.

Constitute this board with the disciplines of management, development, and product
assurance. Remember, on some projects—particularly small ones—the same
individual can represent more than one discipline. Give this board any name consistent
with your business culture. In this book, we label this board the "Change Control
Board (CCB)" because of its role in controlling the changes that inevitably arise on
any software systems development project. This chapter offers you guidance for
establishing CCBs in your organization.

2. If product assurance is not part of your culture, use the CCB mechanism to foster the
idea of the need for an independent agent providing alternative insight into project
progress to support more effective decision making.

Use a project outsider initially to serve in this product assurance role. We believe that
it is important to have an organization independent from the development organization
in helping management make intelligent, informed decisions regarding how a software
systems development project should proceed. This chapter shows you how, through
the CCB, an independent product assurance organization acts as a decision-making
catalyst.

Successful Software Development, Second Edition

187

3. If you are a seller, develop a software systems development process that involves the
buyer/user through a CCB-like mechanism.

If the buyer/user is reluctant to participate in a software systems development process,
use the approach "try it, you might like it." As a seller, your role is to elevate software
systems development to a businesslike proposition. The CCB establishes an
accountability mechanism for both the seller and the buyer/user that enables software
systems development to proceed in businesslike fashion. In addition, software systems
development is susceptible to tinkering on the part of both sellers and buyers/users.
This tinkering breeds a certain informality among the parties involved in software
systems development. This chapter offers you guidance for elevating software systems
development to a businesslike proposition to mitigate the risks that plague any
software project. Since it is easy to change software, the urge to change software
products can be almost overwhelming. In this chapter, we offer you suggestions for
controlling such urges.

4. If you are a buyer/user, mandate in your contract that the seller establish a CCB
mechanism, involving you, that governs the software systems development project.

Only a few things should be mandated on any software systems development effort—
the CCB is one of these. This chapter builds a case for why it is in the best interests of
a buyer/user to direct the seller to establish a CCB mechanism involving both parties.
We explain why a buyer/user (i.e., customer) cannot simply tell the seller what is
wanted and when it is wanted, and then walk away until the seller delivers the
developed software system to the buyer/user.

5. Establish the CCB rules of engagement at project outset through a CCB charter.

This chapter offers you guidance for constructing a CCB charter.

6. Record minutes of every CCB meeting.

At a minimum, these minutes should include (1) a summary of the issues discussed,
(2) the decisions made, (3) the action items assigned, (4) the responsible agent for
each action item, and (5) the date each assigned action is to be completed. The breadth
and depth of CCB minutes should be iteratively and mutually determined by the
involved parties. The basic guideline is "how much visibility do the involved parties
need to manage change without getting bogged down in bureaucracy?" Key to
elevating software systems development to a businesslike proposition is establishing
seller and user/buyer accountability. This chapter offers you guidance for addressing
this accountability issue through CCB minutes.

7. Some projects may be of sufficient complexity to require a hierarchy of CCBs to focus
project decision making.

Often, software to be developed is part of the development of other system
components. This chapter offers you guidance for constructing a CCB hierarchy to
target project complexity issues arising from this added complexity.

Successful Software Development, Second Edition

188

8. For projects of at least six months' duration, establish a CCB meeting frequency of no
less than monthly.

At the beginning, it is preferable to meet more frequently—even weekly. Within these
broad guidelines, allow meeting frequency to vary as project events dictate. For
projects shorter than six months, CCB meetings every two weeks is a good starting
frequency for governing the project. As the project unfolds, you can adjust this
frequency as project events dictate—but try to meet at least monthly. To maintain
effective process control, CCB meetings must take place throughout a project. This
chapter offers suggestions for regulating meeting frequency.

9. It is a good idea for buyers/users and sellers each to hold in-house CCB-like meetings
throughout a software systems development project for purposes of reaching
consensus before meeting with each other.

The purpose of these "in-house CCB meetings" is to allow for the expressing of
dissenting opinions while at the same time not compromising each party's business
interests during "joint (i.e., buyers/users and sellers) CCB meetings." This chapter
offers guidance for harmonizing in-house CCB meetings with joint CCB meetings.

10. The minutes of each CCB meeting should explicitly indicate that the involved parties
agreed to the content of the minutes.

It is a good idea to start each CCB meeting with a review of the minutes from the
preceding meeting to allow for correction to the minutes in the presence of the
involved parties. Software systems development success critically depends on all
parties agreeing to be accountable for their decisions.

11. Document in an ADPE element the CCB role in your environment.

This chapter gives you ideas for documenting the role of the CCB in the context of
your organization's software systems development process.

4.3 Planned and Unplanned Change

We set the context for our discussion of planned and unplanned change by turning to the
dictionary. We note that the word change can be used as a noun or a verb. The following are
dictionary definitions of these two uses of the word:[3]

change n: the act, process, or result of changing

change v: to make different in some particular; to make radically different

We borrow from both the noun and verb definitions for our concept of change. For us change
means "the result of making different in some particular."

We explain our change concept by applying these two dictionary definitions to software
systems development. For this purpose, we consider the following two examples:

3 Merriam-Webster's Collegiate Dictionary, Tenth Edition (Springfield, MA: Merriam-Webster, Inc., 2000).

Successful Software Development, Second Edition

189

1. Let us suppose that we have a design specification for a system that was produced
from a requirements specification for that system. Let us further suppose that (1) the
requirements specification specifies "what" the system is to do and (2) the design
specification specifies "how" to do the "what." We look on the design specification as
follows:

The result of making the requirements specification different in some
particular (i.e., specifying how to do the "what" described in the
requirements specification).

2. Let us suppose that we have some mass-produced computer code that was deployed to
customer sites for operational use. Let us further suppose that when users used this
code, it didn't do what it was supposed to do. That is, the code had "bugs"—in other
words, deviations from what the customer and seller had previously agreed that the
code was supposed to do. Finally, let us suppose that the bugs were fixed. That is, the
deployed code was revisited and the bugs were removed and a new release of the code
was produced. We look upon the revisited mass-produced computer code as follows:

The result of making the deployed code different in some particular
(i.e., the new release of the "fixed" code).

Now that we have discussed what we mean by change in the context of software systems
development, we discuss why change needs to be controlled. For this purpose we return to the
wizard and king.

Achieving convergence between the king and the wizard is tantamount to saying the
following:

A customer's wants migrate through a sequence of changes and ultimately
become a product embodying the wizard's (and hopefully the king's)
perception of these wants.

This migratory process can be further described as follows:

The migratory process is a planned sequence of transitions from a life cycle
stage to a subsequent stage overlaid by unplanned transitions within stages or
back to preceding stages or forward to succeeding stages.

We refer to a planned transition from one life cycle stage to a subsequent stage as
evolutionary change because such a change embodies the orderly (i.e., planned) growth of the
software from one level of detail to a greater level of detail. We refer to the overlay of
unplanned transitions within stages or back to preceding stages or forward to succeeding
stages as revolutionary changes because each such change embodies an unanticipated
alteration to the planned growth of the software. Figure 4-5 illustrates our concept of these
two categories of change.

Successful Software Development, Second Edition

190

Figure 4-5 Software systems development projects involve planned growth in greater levels of
detail, and unplanned transitions within a life cycle stage or between stages.

As shown in the upper half of Figure 4-5, planned change follows a direct path from one life
cycle stage to a review area to another life cycle stage. For example, the planned software
systems development activities transition from the (1) WHAT Development Stage to the (2)
Review Area to the (3) HOW Development Stage to the (4) Review Area to the (5) BUILD
Development Stage to the (6) Review Area to the (7) USE Development Stage to the (8)
Review Area.

In contrast, unplanned change follows an indirect path from one life cycle stage to a review
area back to a life cycle stage, to a life cycle stage, etc. As shown in the lower half of Figure
4-5, the software systems development activities transition from planned changes (i.e., (1) to
(2) to (3) to (4)) to unplanned changes as a result of review area activities that necessitate an
unplanned revisit to the (5) WHAT Development Stage. The development continues on a
planned path (i.e., (6) to (7) to (8) to (9) to (10)), and then as a result of review area activities,

Successful Software Development, Second Edition

191

it is necessary to revisit the (11) BUILD Development Stage. The development then continues
on a planned path (i.e., (12) to (13) to (14)). Regardless of the type of change, it is important
to recognize the change and respond to it appropriately.

Consider the following examples of planned (i.e., evolutionary) and unplanned (i.e.,
revolutionary) change. The context for these examples is a six-stage life cycle: (1)
requirements definition, (2) preliminary design, (3) detailed design, (4) coding, (5)
production/deployment, and (6) operational use. However, these examples are not limited to a
six-stage life cycle.

• Suppose that a preliminary design specification for a software system, derived from a
requirements specification for that system, listed the functions each of three software
subsystems is to perform. Suppose that a detailed design specification describes how
each of these functions is to be performed by computer code. This description of
"how" is just an embodiment of the orderly growth of the software system and is thus
an example of a planned change.

This example has two important points. First, the requirements specification did not
have to be updated as the design took shape; therefore, resources did not have to be
spent to update the requirements documentation. Second, since the design followed
from the requirements, the design embodied the developers' perception of what the
customer wanted.

• Suppose that during the development of the detailed design specification in the
preceding example it was discovered that a fourth subsystem (in addition to the three
subsystems identified in the preliminary design specification) was incorporated into
the detailed design because the developers thought this additional subsystem was
needed to satisfy the intent of the requirements specification.

Presumably this fourth subsystem was not noticed during the development of the
preliminary design specification because, for instance, the absence of design detail did
not make manifest this requirements satisfaction issue. The modification (i.e., change)
of the preliminary design specification to incorporate this fourth subsystem
(presumably after the detailed design specification is approved) is an alteration to the
orderly growth of the software that was not anticipated at the time the software was
evolving from the Requirements Definition Stage to the Preliminary Design Stage.
This modification is thus an unplanned change.

In contrast to the preceding example, the addition of the fourth subsystem resulted in
expending additional resources to update the preliminary design. Achieving
convergence between the customer and the seller resulted in a sequence of changes—
planned and unplanned. Generally, sellers do not reflect all changes (or maintenance
of software products) in their project plans or resource estimates. Also, note that it was
not necessary to update the requirements specification; had it been necessary, even
more resources would have been spent.

• Suppose that computer code was developed from the detailed design specification in
the preceding example, tested, and then deployed for operational use. Suppose further
that sometime subsequent to this deployment, a malfunction was discovered in the
computer code. This malfunction, which was not noticed during predeployment

Successful Software Development, Second Edition

192

testing, resulted from a misinterpretation of the detailed design specification.
Modification of the computer code to correct this malfunction is an alteration to the
orderly growth of the software that was not anticipated at the time the software was
evolving from the Coding and Production/Deployment Stages to the Operational Use
Stage. This correction is thus an unplanned change.

• Suppose that in the preceding example a review of the detailed design specification
was scheduled to determine the feasibility of refining some of the functions in one or
more of the software's subsystems (e.g., to make them operate more efficiently). As a
result of this feasibility study, suppose that the detailed design specification was
modified to incorporate these enhancements to the existing functions and that the
computer code was also modified to incorporate these enhancements. These
modifications to the detailed design specification and the computer code represent the
orderly growth of the (already operational) software system and are thus examples of
planned changes.

• Suppose that the feasibility study referred to in the preceding example, in addition to
specifying refinements to existing functions, revealed a logic flaw in the detailed
design that had heretofore gone undetected during operational use of the computer
code. As a result of this feasibility study, suppose that the detailed design specification
was modified to correct this logic flaw (as well as incorporating the enhancements to
the existing functions) and that the computer code was also modified to correct this
logic flaw. These modifications to the detailed design specification and computer code
to correct this latent logic flaw constitute alterations to the orderly growth of the
software that were not anticipated at the time the software was evolving from the
Detailed Design Stage to subsequent stages. These design and code modifications are
thus examples of unplanned changes.

• Suppose that, as a result of operational use of the computer code referred to in the
three preceding examples, a need arose to add new functions to one or more of the
existing subsystems. Suppose further that, as a result of this identified need, the
requirements specification was augmented to incorporate these new functions and the
preliminary design specification, detailed design specification, and computer code
were correspondingly modified to incorporate these new functions. These
modifications to these four software products represent the orderly growth of the
(already operational) software system and are thus examples of planned changes.
Alternatively, it could be argued that these modifications were not anticipated at the
time the software was evolving prior to first operational use and thus are examples of
unplanned changes. From this latter perspective, it thus follows that any new
capabilities added to an operational system are unplanned.

Hopefully, these simple examples provide you with some insight into the migratory process of
achieving convergence between the customer and seller. As the seller transitions from one life
cycle stage to another, there may be unplanned transitions within stages or back to preceding
stages or forward to succeeding stages. Software is malleable, and this intrinsic characteristic
contributes to the ease with which software development projects can get into trouble. In this
chapter we focus on techniques for establishing and maintaining control over this high
susceptibility to change, thereby reducing the likelihood of encountering trouble during the
life cycle. In describing these techniques, we frequently find it convenient to distinguish
between planned and unplanned changes.

The distinction between planned and unplanned change is sometimes blurred, as the last
example indicates. What difference does it make what kind of change it is? The prime reason

Successful Software Development, Second Edition

193

that this distinction is important is to assure that all changes are given the requisite visibility
and are handled in a unified way. Let us hasten to explain this somewhat paradoxical
statement. Many people in the software development world do not recognize that the planned
transitions of software from stage to stage are a form of change, i.e., that they are evolutionary
changes as defined here. Lacking this perception, these people exercise little or no control
over this evolving software. Consequently, instead of achieving convergence between the
customer and seller, the opposite frequently happens. To illustrate this point, consider the
following story based on the authors' actual experiences (names in this and other stories have
been changed).

Successful Software Development, Second Edition

194

Why Control Planned Change?—A Story
Tom Smith was the seller's project manager for the development of a large
management information system called ATLANTIS. He decreed that a succession of
baselines was to be established, one at the end of each life cycle stage to serve as a
point of departure for efforts in the next stage. However, Tom did not view this
succession of baselines as planned changes to be controlled. He wanted his software
engineers to be able to introduce different ideas easily "if they found a better way to
do things."

Tom's engineers thus did not regard the preceding baseline as a rigid specification,
and as a result the next baseline did not logically follow from its predecessor. There
were plenty of surprises for everyone who read the current baseline. The customer's
and seller's understanding of what the customer wanted were not converging.

In Tom's view, each baseline superseded its predecessor. His concept was
strengthened by his contractual list of deliverables—the contract called only for a
single delivery of each software product and did not suggest maintaining any
software product. It is important to note that "maintaining" means that if, for
example, when the design specification did not follow from the requirements
specification, the requirements should be updated, or the design should be brought in
line with the requirements. In addition, since the software engineers could introduce
different ideas without customer agreement, the system being built did not reflect
what the customer wanted, but rather what the engineers thought the customer might
want.

Tom's logic was that not having to maintain the baselines saved him time and money
and, from his viewpoint, increased the likelihood that his project would be
completed on schedule and within budget. Tom's product assurance organization
kept pointing out that he had no visibility into what was going to be in a baseline
until it was produced. It was also pointed out that by allowing the software engineers
to discard each baseline as its successor was produced, they had destroyed all
traceability in his project. He had effectively lost all control over his project. The
product assurance reports were an embarrassment to Tom, particularly when his
senior management began asking questions about the reports. So Tom took the
obvious step to solve what he perceived his problem to be—he disbanded his
product assurance organization!

By this time, however, the customer was observing the fledgling system undergoing
integration testing. The customer's observations told him that the project was going
to be late and over budget. System ATLANTIS did not come close to solving his
needs. Without hesitation, the customer terminated the contract to avoid further loss,
and System ATLANTIS was never heard of again.

The moral of the story is that all change—both planned and unplanned—must be controlled
(and maintained) in order to attain visibility and traceability in a project. We distinguish
between the two categories of change primarily to assure that planned change is not omitted
or overlooked.

Successful Software Development, Second Edition

195

A secondary reason for distinguishing between planned and unplanned changes is that they do
have some different attributes. One such attribute is direction. Planned change always moves
forward from baseline to a succeeding baseline, much the same way that human development
evolves. Unplanned changes, on the other hand, may cause transitions either within a stage,
back to a preceding stage, or forward to a succeeding one. Particularly important are the
revisits to baselines resulting from unplanned changes, with the result that all project
baselines are maintained, and visibility and traceability are retained.

Another attribute distinguishing these two types of change is that unplanned change
processing is often more tightly time-constrained than planned change processing. This time
constraint generally has an impact on some of the details of the change evaluation and
approval steps, as we explain in subsequent sections.

4.4 The Processing of Changes

In the preceding section, we divided software changes into planned change and unplanned
change. Regardless of the category, changes are inevitable on any software project having
more than one life cycle stage. As a project progresses through the life cycle, a baseline is
created at the end of each stage. Each baseline embodies what was done during a given stage.
This planned sequence of baselines represents the orderly growth of the software during the
project life cycle. By our definition, each of these "orderly" baselines is a planned change.

Unplanned changes are also inevitable on any software project of any complexity. These
changes arise from our fallibilities as human beings, from our general lack of complete
experience, and from our inability to communicate perfectly among ourselves. Because of
these limitations, it becomes necessary to make unplanned changes continually to correct
misperceptions or misunderstandings. From stage to stage, we gain more insight and
knowledge on a project and recognize the need to change the results of the current stage and
of other stages. The larger and more complex the project, the larger and more convoluted the
communications paths and the more likely the need for unplanned change.

Unplanned changes can also cause revisits to previous stages. These revisits precipitate
baseline updates. Note that the update of a revisited baseline is an unplanned change. As a
result of this change, baselines between the revisited baseline and the current baseline (i.e.,
intermediate baselines) must also be updated (as scheduled activities) to maintain visibility
and traceability. Thus, the intermediate baseline updates are planned changes, according to
our definition.

One final observation is in order before we present a short story about change on an actual
software project. Unplanned changes often precipitate planned changes. If the unplanned
changes are inevitable, then planned changes are also inevitable. It is important to
acknowledge this inevitability of change on a software project.

Our objective in establishing and maintaining control of changes is not to prevent change but
to control it. To understand why we adopt this objective, consider the following story.

Successful Software Development, Second Edition

196

The Inevitability of Change—A Story
As project manager on a new software development project, Mike Brown decided
that success to him meant delivery of all software products on time and within
budget. To this end he decreed that there would be absolutely no changes allowed on
his project. A succession of baselines was to be developed during the life cycle.
However, Mike did not consider these planned changes to be changes at all, but
rather the normal progress of software development. He informed all his software
engineers of his decision to prohibit change. He stated that each baseline would be a
one-time delivery only, that is, a baseline would not be updated after issuance. Thus,
not only did he save time and money by not processing changes, but also he
conserved resources through elimination of document maintenance.

As the project went on, the software engineers found this rigid policy unworkable.
During development and testing, the programmers discovered discrepancies in the
current or preceding baselines (e.g., incongruities between the design document and
the baselined requirements document). Several engineers had ideas for changes that
they believed would have a beneficial effect on the final product. Since no changes
were allowed on this project, the engineers had recourse to only two alternatives: (1)
they could ignore the desirable or needed changes, or (2) they could ignore the
strictures against making changes. Since the engineers were trying to solve the
problems, most of them chose to make the changes without informing their manager.
After all, they reasoned, it was easy to effect the changes in both documentation and
code, and unit testing should uncover any problems arising from making code
changes.

The project proceeded blissfully for a number of months. Mike was supremely
confident that he had discovered the road to project success. Then the ax fell—
integration of the code modules began. Unaccountably (to Mike at least), integration
testing yielded a seemingly unending stream of reports of problems with the
software code. At the same time, Mike's users, witnessing the integration tests,
complained that the system performed functions they had not asked for and that it
did not perform some functions they had requested. To his dismay, Mike watched
helplessly while his project passed its delivery date and budget ceiling, with no
certainty as to when a system satisfying his customers' needs could be obtained.

In this story, Mike Brown tried to prevent change. The result was disaster. As the software
engineers acquired experience on the project, they saw things not previously perceived or
recognized. These insights gave rise to the need for changes, which Mike had prohibited, with
disastrous results. Since change on a software project is inevitable, we believe it makes better
sense to acknowledge the existence of change and to attempt to control it.

Preventing all changes has the appeal of apparently not perturbing schedules and budgets, but
as this story illustrates, there are substantial risks with this approach. The need for extensions
of schedules and budgets is likely to become evident in the late stages of a project. Schedules
and budgets may also change as a result of controlled changes, but in a controlled and visible
manner.

Successful Software Development, Second Edition

197

To ensure that candidate software changes are processed in a visible and traceable manner, a
controlling mechanism is needed to channel these candidate changes to the appropriate project
participants. We call this controlling mechanism the change control board (CCB). In
Figure 4-6, we portray the CCB as a control tower that controls the movement of software (1)
from life cycle stage to life cycle stage for a six-stage life cycle (namely, Requirements
Definition, Preliminary Design, Detailed Design, Coding, Production/Deployment, and
Operational Use) and (2) in and out of the Review Area.

Figure 4-6 The change control board (CCB) is the forum for the control activity for the change
process conducted during the review of changes.

As we proceed through this example life cycle, the need arises to consider one or more
candidate changes to the software product under development or to previously developed
products. To address this need (which may occur at any point within a life cycle stage), we
symbolically show a line from a life cycle stage to the CCB tower in the Review Area (e.g.,
from (4) Coding Stage to (5) CCB tower). In the Review Area, we assess the candidate
changes, determine their impact on the software development effort, and make appropriate
decisions. These decisions include specifying the following:

• What to do with the candidate changes—e.g., implement them, reject them, or hold
them in abeyance.

Successful Software Development, Second Edition

198

• Which software products to modify—e.g., none, the one currently under development,
products developed in previously visited life cycle stages.

• What revisits, if any, to make to other life cycle stages.

Readers who have some background in configuration management will immediately
recognize the CCB as the control organization historically used by the CM process to control
modifications and enhancements to a system. On some projects, the CCB may also control
changes to the computer code. In our context, the CCB performs the broader function of
managing all change on a software project during all life cycle stages. This change
management function encompasses both planned and unplanned change, and software in both
textual (document) and coded forms.

Although Figure 4-6 shows a path from the outer loop into the Review Area near the end of
each stage, this diversion path may occur anywhere within a stage. For planned changes, the
diversion occurs whenever a software product is generated. If a product goes through several
drafts, there is a diversion path for each draft. The end of each stage does not occur until the
software product(s) comprising the baseline for that stage has (have) been approved.

For unplanned changes, the diversion path into the Review Area may connect to any point
within the stage. For example, a developer at any point during the Coding Stage may detect a
facet of the design omitted during the Detailed Design Stage. The designer submits a report of
this omission, and the review process is initiated. Or during the Preliminary Design Stage a
user may notice a requirement that has not surfaced before. The user immediately initiates the
review process by submitting a request for change. Consequently, there can be a multitude of
paths connecting any life cycle stage in Figure 4-6 to the Review Area.

The diversion down the path to the Review Area occurs whenever a change arises. That is,
every change—whether planned or unplanned, large or small, of major or minor impact—is
reviewed and evaluated by the change control process. The timing of the review and
evaluation is set by your organization. For high-risk projects, you may decide to hold a CCB
once a week. Regardless, the paths that a change takes during the change control process are
controlled by the CCB. In Figure 4-7, we have magnified the Review Area to show generically
how the change control process works in more detail, using the analogy of train tracks and
switches.

Successful Software Development, Second Edition

199

Figure 4-7 CCB control can be likened to the process of redirecting a train by switches.

The product that proceeds down the path into the Review Area may be an output of software
development being proposed as a new baseline, such as a design document or the code for a
software module, or it might be a change request (CR) or an incident report (IR) defining a
potential problem observed on the system. We refer to this product as a review initiator. If the
review initiator is a new or updated software part, then the initiator contains the proposed
change. A review initiator that is a CR or an IR usually does not specify a change, but rather
the need for a change.

The review initiator passes through one or more of the following change control process
actions: freezing, auditing, and analyzing. The results of the analysis include (1) revisiting the
audit action, (2) revisiting preceding life cycle stages, (3) proceeding to the next life cycle
stage, or (4) going to a specific life cycle stage. Each change control process action is
described below in the following paragraphs.

Successful Software Development, Second Edition

200

Change Control Process Action—Freezing the Review Initiator

The first action in the change control process shown in Figure 4-7 is to "freeze" the review
initiator. The purpose of freezing the review initiator is to establish the basis for the review
and control. Unless the software product initiating the change is frozen during the review,
approval or disapproval of the change becomes meaningless. To understand why change
becomes meaningless in the absence of freezing, consider the following story, which
illustrates the relationship between freezing and change definition.

In retail businesses, cash register operations are reviewed at the end of a shift or a
workday. This review is conducted to verify that the cashier keeps an accurate
accounting of transactions. Closeout of a cashier's drawer involves totaling the
cashier's sales and counting the cash in the drawer. These amounts are reconciled
against the preceding baseline for this audit, which is the amount of the money in the
drawer at the start of the shift. That is, the cashier's sales plus the amount of money
in the drawer at the start of the shift should equal the amount of money in the drawer
at closeout.

An important aspect of this closeout process is that the cashier must terminate all
cash register operations during the closeout. That is, the cashier must make no sales,
receive no payments, and make no change. Effectively, the contents of the cash
drawer and the sales for that cashier are frozen while the closeout (review) is
conducted.

Consider the implications of trying to close out a cashier's drawer at a busy fast-food
store while the cashier continues to make sales, receive payments, and make change.
The checker determines and records the total sales at the beginning of the closeout.
Of course, the cashier will add to these sales as the cash is being counted, but the
checker will not have a record of their amount. As the checker is counting the
amount of cash in the register, the cashier is adding to and subtracting from the
various denominations in the drawer, both counted and uncounted. Modifications to
the counted amounts are, of course, not recorded by the checker.

When the checker completes the cash count, the checker calculates the sum of the
cash amount at the beginning of the shift plus the total sales. The checker expects
this sum and the cash count to be equal for successful closeout, but the checker will
not find that to be true so long as the cashier continues to do business.
Redetermining the total sales or recounting the current cash will change the amounts
compared but will not change the end result—the inequality will persist as long as
the cashier continues to do business, i.e., as long as the checker does not freeze the
operation of the register and the contents of the cash drawer.

Imagine the frustration and futility of trying to close out under the circumstances cited in this
story. Any count of the cash in the drawer would be meaningless—it would not represent the
total cash in the drawer at any moment in time. Under these circumstances, conduct of a
closeout would be a waste of time.

Similarly, as indicated in Figure 4-7, a software product must first be "frozen" if its review is
to be meaningful. For example, the result of a review might be the establishment of the
software product initiating a review as a baseline. If the product has meanwhile been modified

Successful Software Development, Second Edition

201

substantially, then the baselined product does not represent the current product. And if the
CCB directs the originator to make certain specific modifications to the product, the
originator may be unable to respond fully and correctly if the product has already been
changed in the specified portions that were to be modified.

The choice of the concept of freezing is deliberate. The action here is not to cast a software
part in concrete, that is, to attempt to prevent forever any change to that software part. Rather,
our intent in freezing is to control change. When a change becomes necessary and is
approved, the software item can be thawed, changed, and then refrozen. In this manner, we
can accommodate change while still maintaining continuous visibility into the current state of
the software and traceability of the software from one change to subsequent ones.

A part of the freezing process is the identification function. Each software product and its
contents should be identified at the time of freezing the product. It is not significant which
organization (e.g., the development or the product assurance organization) performs this
identification. Since identification is largely a subjective exercise, one organization should
perform all identification throughout the life cycle. In this manner, consistency is achieved in
application of the identification standards prescribed for a project.

Identification entails attaching a label to the review initiator itself and to each part of the
review initiator. These labels provide visibility into the planned or unplanned change being
reviewed. Without these labels, people are reduced to referring to software as, for example,
"the second paragraph of the latest version of the preliminary design" or "that piece of code
that failed last Tuesday." Such references are often not specific enough to be useful in
communicating among project members. In fact, nonlabeled references could be extremely
misleading. Consider, for instance, the "latest" version of a preliminary design. Two people
attempting to discuss the second paragraph of their latest version of a preliminary design may
each be discussing a different entity. It is entirely possible that a person might not receive an
issue of a document. It is even more likely that a person receiving an unidentified document
would confuse it with other unidentified issues of the document. The person might, as a result,
ignore the new document (considering it to be the same as the old document) or subsequently
consult the old document because the person does not recognize that a newer edition exists.

Change Control Process Action—Auditing the Review Initiator

The second action in the change control process shown in Figure 4-7 is to audit the identified
review initiator. Because Chapter 5 discusses auditing in detail, we only touch upon the
subject here. Auditing entails comparing the review initiator with one or more other items.
These items could be a set of standards, a preceding baseline, a preceding draft of the
identified review initiator, or the software requirements specification. Those items used in the
comparison are a function of the nature of the review initiator, as we illustrate later in this
section. The objective of auditing is to make visible the discrepancies between the identified
review initiator and the items with which it is compared. These discrepancies are documented
in an audit report, which along with the identified review initiator itself is submitted to the
CCB for consideration.

Change Control Process Action—Analyzing the Review Initiator

We next consider the "control tower" in Figure 4-7 labeled "CCB." The CCB represents the
decision-making body that determines the disposition of each change. Its function is

Successful Software Development, Second Edition

202

analogous to the control tower in a railroad switching yard, determining the destination of the
rolling stock by using switches.

The first determination that the CCB makes is whether further analysis of the identified
review initiator is needed prior to CCB determination of its disposition. Generally, the CCB
would bypass this analysis only for small problems with evident solutions that can be quickly
implemented. For example, presented with a preliminary design specification and an audit
report listing discrepancies observed in the preliminary design specification, the CCB may
decide that the discrepancies in the audit report make the changes required obvious enough so
that no further analysis is needed. For example, a discrepancy might state that the preliminary
design is incomplete in that it has not addressed one of the functions in the requirements
specification. On the other hand, the CCB may consider that further analysis of a discrepancy
should be conducted to define sufficiently the change needed. For example, a section in the
detailed design is ambiguous or cannot be understood, or a discrepancy indicates that the
preliminary design specification and the requirements specification are inconsistent in that the
design is based on achieving a substantially faster response time than was required.

Figure 4-7 shows that the analyze function supports the CCB but is not part of the CCB
meeting. When the CCB decides that analysis of the identified review initiator is needed, it
effectively turns the switch in Figure 4-7 to route the identified review initiator to the
organization doing the analysis. Upon completion of the analysis, that organization generally
returns the identified review initiator and the results of its analysis to the CCB.

The nature of the analysis differs according to the type of change proposed and the directions
provided by the CCB. The analysis might consist of one of the following:

• A complete investigation into the impact of the change and the resources required to
implement it (e.g., for a change request).

• A formulation of the precise change to be made (e.g., for an incident report that clearly
requires a code change, or for a discrepancy in an audit report that points to
ambiguous text).

• A determination of the scope of the problem and the exact changes required to
implement a solution (e.g., for an incident report whose cause is not immediately
obvious, or whose solution may require changes in a number of different software
parts).

The CCB may, of course, direct that other analyses of a problem or a proposed change be
performed.

When the CCB directs that a proposed change be analyzed, the analysis is often conducted by
the seller's development organization, although on occasion other organizations may be
involved in the analysis. For example, the buyer's product assurance organization may analyze
a proposed change to a product assurance plan. When the analysis is completed, the results are
presented to the CCB for further consideration of the proposed change.

The identified review initiator, the audit report, and the analysis report are the technical inputs
to the CCB for determination of the disposition of the change. The analysis report formulates
the proposed change (if the change is not already indicated on the identified review initiator)
and assesses its impact.

Successful Software Development, Second Edition

203

For planned changes, the audit report records discrepancies between the proposed change (a
proposed new or updated baseline) and the requirements specification and between the
proposed change and the predecessor baseline. Other considerations affecting the CCB's
decisions may be political (e.g., assuagement of a user who may feel that he or she has been
ignored), schedule (e.g., the effect of making changes to the date that the system becomes
operational), or economic (e.g., the amount of money remaining to effect changes). Based on
these considerations, the CCB decides on a disposition of each change. This decision is
analogous to throwing a switch to determine the path in the software life cycle subsequently
taken. For example, if the CCB accepts a software product developed during a given life cycle
stage (a planned change) and establishes it as a baseline, the path chosen leads to the
beginning of the next life cycle stage. The CCB may decide that a software product requires
reworking before it is acceptable; in this case, the path selected returns to the current life cycle
stage.

When the CCB approves an unplanned change, revisits to one or more life cycle stages may
be necessary. For example, a change request may cause a return to the Requirements
Definition Stage to amend the requirements specification, with subsequent revisits to the other
stages in succession as the change is implemented in a sequence of planned changes. As
another example, approval of an incident report arising during acceptance testing may cause a
revisit to the Detailed Design Stage to modify the design, followed by coding of the change
and its testing. In some circumstances, the CCB may direct a revisit to a succeeding stage. For
example, an incident report written on an operational system may result in a revisit to the
Detailed Design Stage to correct the problem. While performing that correction, a coding
error is discovered, and the CCB, in approving its resulting code correction, may specify a
revisit to the Coding Stage.

The decisions that the CCB makes are documented in CCB meeting minutes. These minutes
allow management and project participants to see what is happening on a project, and make
software changes manifest and traceable from their origination to their archiving.

The alternative path in Figure 4-7 from the analysis process to the audit process (indicated by
white arrow heads) might be considered for use in some circumstances. For example, suppose
the audit of a draft preliminary design document reveals that a section of the design has been
stated ambiguously. The development organization rewrites the section and normally presents
its proposed resolution to the CCB. The CCB might approve the proposed resolution, and the
approved change would be made to the preliminary design document. But suppose the
revision to the section in the preliminary design document does not solve the problem (e.g.,
the section is still ambiguous) or introduces a new problem (e.g., the revised section is
inconsistent with a later chapter in the document). These defects in the revision may not be
evident to the CCB, particularly if the revision is substantial in scope or depth. If the CCB
baselines the document as revised, false starts may occur as the project proceeds from its
faulty baseline, thereby wasting considerable resources.

How does the CCB become aware of such defective revisions? Following the normal path
shown in Figure 4-7 (i.e., indicated by the black arrow heads), the CCB may not become
aware of these defects until the design document is next updated or until the software
produced in the next stage is audited. At this point, considerable time and money may have
been wasted. To avoid such waste, the alternate path shown with white arrow heads in Figure
4-7 could be used. In this case, the development organization, on completion of its analysis,
provides its proposed resolution directly to the audit organization. The auditors would reaudit

Successful Software Development, Second Edition

204

the revised section of the preliminary design document and send both the revised section and
the audit results to the CCB for its consideration. Any remaining ambiguities, inconsistencies,
or other discrepancies are made manifest to the CCB before it determines the disposition of
the proposed change. Through the use of the alternative path rather than the normal path,
discrepancies may surface earlier in the life cycle, thereby avoiding subsequent wastage. Of
course, conducting the reaudit will cost money and take time, but it potentially will save much
more money and time. Using the alternative path is a specific instance of the philosophy of
"pay now versus pay much more later."

Now that we have described the change control process shown generically in Figure 4-7, we
illustrate this process with the following three specific examples:

• Planned change.

Presentation of a draft detailed design specification at the end of the Detailed Design
Stage.

• Unplanned change.

Submission at any point in the life cycle of a proposed amendment to the
requirements.

• Unplanned change.

Submission by a user of an incident report while the system is in operational use.

Change Control Process Example of Planned Change—Change Control for a
Draft Detailed Design Specification

For this example, we assume that a project has been in the Detailed Design Stage of the life
cycle in Figure 4-6 and that the development organization has just produced a draft of the
detailed design specification. The draft detailed design specification has been diverted into the
Review Area. The processing of this planned change is shown in Figure 4-8.

Successful Software Development, Second Edition

205

Figure 4-8 Change control of a planned (i.e., evolutionary) change—submission of a draft
detailed design specification.

The draft detailed design specification is first frozen by placing a copy under the control of
the product assurance organization. In other words, from this point on, the draft detailed
design specification cannot be changed without CCB action. If the draft detailed design
specification exists on an electronic medium, copies of both the electronic medium form and
the hard-copy form are placed under control. At this time, the draft detailed design
specification is also identified by the product assurance organization if it was not identified by

Successful Software Development, Second Edition

206

the development organization. Identification entails labeling both the document itself and its
contents.

The draft detailed design specification is next presented to the auditors in the product
assurance organization,[4] who compare it with the following three documents:

• The CCB-approved requirements specification (on this project, this document has
been established as the Requirements Baseline).

• The approved preliminary design specification (on this project, this document is the
predecessor baseline to the draft detailed design specification).

• The standards established for this project.

As a result of this comparison process, the auditors produce an audit report describing their
findings in terms of the discrepancies observed in the course of the comparisons.

The draft detailed design specification and the audit report are presented to the CCB for its
consideration. Each discrepancy in the audit report is considered individually. The first
decision the CCB makes on a discrepancy is whether the discrepancy must be analyzed to
provide further information on which the CCB can base its decision. If analysis is necessary,
the discrepancy is sent to the organization designated by the CCB (typically the development
organization), which determines the cause of the discrepancy, assesses its impact on the
project, and proposes a resolution to the discrepancy (i.e., the precise change proposed). This
information is provided by the analyzing organization to the CCB.

The CCB considers the resolution recommended for each discrepancy and either approves the
resolution, rejects it, or returns it to the analyzing organization for further investigation.

When all the discrepancies have been considered and resolved, the CCB considers whether to
baseline the draft detailed design specification in light of the (1) audit report on it, (2) CCB's
own perusal of the document, and (3) approved resolutions to the audit report discrepancies.
The CCB makes one (or, in some circumstances that are subsequently discussed, more than
one) of the following decisions relative to the detailed design specification, resulting in an exit
from the review area to the life cycle stages as shown by the three-way switch in Figure 4-8
and as indicated with bold text in the following list:

• The CCB approves the draft detailed design specification and establishes it as the
Detailed Design Baseline. With this baseline established, the project can proceed to
the Coding Life Cycle Stage. It is not necessary for the audit report to show no
discrepancies for this decision to be made. The CCB may decide to establish the
Detailed Design Baseline with discrepancies still outstanding, if the discrepancies
were considered sufficiently small in number and impact.

Such outstanding discrepancies would subsequently be resolved by the CCB. These
resolutions might, among other things, require that changes be made to the Detailed
Design Baseline, i.e., that the baseline be updated. The review process for this
proposed update to the Detailed Design Baseline would be identical to that shown in

4 It is not mandatory that a separate product assurance organization conduct this audit. We advocate an independent product assurance organization
for performing this and other audits, but alternatives are possible. It is essential that the audits be conducted, regardless of what organization conducts
them. However, the organization conducting the audits should be objective and unbiased.

Successful Software Development, Second Edition

207

Figure 4-8, except that the detailed design baseline would be used for the audit instead
of the approved Preliminary Design Baseline.

• The CCB sends the draft detailed design specification back to the developers for
reworking, along with a list of discrepancies and their resolutions. In this case, the
CCB decision is to proceed to the Detailed Design Life Cycle Stage. The approved
resolutions are implemented, and the draft detailed design specification is updated.
When the draft detailed design specification has been updated in response to the
discrepancy list, the updated draft detailed design specification is again subjected to
the review illustrated in Figure 4-8.

• The CCB approves changes that require updates to preceding baselines. These
baselines might be, for example, the Requirements Baseline or the Preliminary Design
Baseline. The need for such changes might arise from discrepancies observed during
the audit. The proposed resolution of a discrepancy may reveal that the cause of the
discrepancy lies not in the draft detailed design specification but in one of the
preceding baselines. As a result of the CCB decision to change one or more of the
preceding baselines, the path is taken to the stage where each baseline to be updated
was originally developed (i.e., to Preceding Life Cycle Stages). (A result of this
revisit to a life cycle stage could be that it triggers more revisits. These subsequent
revisits might be forward in the life cycle, or backward, or might skip stages.) As each
baseline is updated, it is reviewed in the same fashion as shown in Figure 4-8. Note
that this CCB decision may be made in addition to one of the two decisions just given.

The preceding example is representative of the change control process as it applies to planned
changes. The names of your specific software products and life cycle stages may vary from
those in Figure 4-8, but the basic process remains the same.

A question that arises after consideration of the preceding example is "What does the
development organization do while this review process is in progress?" After all, the review
process must take some time for the conduct of an audit, for analysis of discrepancies, and for
the considerations of the CCB. Does the development organization simply mark time (at
considerable expense) during this review period? The answer to the question is that the
developers should not be idle during this review period following development of a draft
software product. There are usually a number of productive things they can do. If there are
incomplete portions of the draft software product currently under review, the developers can
finish those portions and have them ready for the next issue of the software product. They can
assist in the completion of other software products being developed in the current life cycle
stage. They can start their planning and preliminary work for the subsequent life cycle stage.
Through informal liaison and discussions with the auditors, the developers can find out about
discrepancies uncovered by the auditors in the software product under review, investigate
them, and be prepared with recommended resolutions when they are formally received. And
usually the developers are involved in the analysis of discrepancies and in the deliberations of
the CCB.

We now illustrate the Figure 4-7 change control process for two revolutionary changes—first
for a proposed amendment to requirements, and second for a user report of unexpected
behavior in an operational system.

Successful Software Development, Second Edition

208

Change Control Process Example of Unplanned Change—Change Control for a
Proposed Amendment to Requirements

An amendment to the requirements on a project can be originated at any time during the life
cycle. Whenever it is originated, the amendment is submitted for review as shown in Figure 4-
9. The proposed amendment to requirements is first frozen by the product assurance
organization. This action entails assigning an identification label and placing a copy of the
proposed amendment under control by putting it in a master file of proposed amendments to
requirements.

Figure 4-9 Change control of an unplanned (i.e., revolutionary) change—a proposed
amendment to requirements.

Successful Software Development, Second Edition

209

The auditors next compare the proposed amendment with the following items:

• The requirements specification (i.e., the Requirements Baseline), to determine whether
the amendment is truly a change to the requirements and to ascertain which of these
requirements the proposed amendment affects.

• Previously submitted amendments to requirements, to determine whether the proposed
amendment has previously been proposed (i.e., whether the proposed amendment
duplicates one previously considered or currently being processed).

The proposed amendment is then submitted to the CCB, whose first decision is to determine
whether the proposed amendment should be analyzed. In general, the proposed amendment is
assigned to an investigating organization (typically the development organization) for analysis
in a specified time frame. However, the CCB might bypass this step if it were not considered
necessary. For example, if the audit determines that a proposed amendment is a duplicate of
one previously considered by the CCB, there is no need to analyze the proposed amendment a
second time—the CCB has already made its decision relative to this proposed amendment. In
such a case, the CCB might proceed directly to reject the more recent submission of the
proposed amendment. This rejection is unrelated to the CCB decision on the first submission
of the proposed amendment and merely reflects that the CCB will not consider the later
submission.

If the CCB decides that the proposed amendment to requirements needs to be analyzed, the
investigating organization performs the analysis and prepares an impact assessment. This
impact assessment contains the following information:

• An assessment of the impact of the proposed change on the project software products,
i.e., what must be changed and how.

• An assessment of the impact of the proposed change on project resources such as time,
manpower, and costs.

• A delineation of the benefits and liabilities of possible alternatives to the proposed
change.

With the impact assessment in hand, the CCB determines the disposition of the proposed
amendment to requirements. As shown in Figure 4-9, the CCB throws the switch in one of the
two following directions:

• The CCB may approve the amendment to requirements. When this decision is made,
the path to the Requirements Definition Life Cycle Stage is taken. There the
developers implement the approved change to the requirements by updating the
Requirements Baseline. Note that all other established baselines will usually also have
to be updated to maintain congruence among the baselines.

• The CCB may reject the proposed amendment to requirements. In this case, the
originator of the proposed amendment is informed of the decision, the proposed
amendment is archived (for reference in case the same amendment is proposed again),
and the project continues the path to the Life Cycle Stage N (where stage N is
decided by the CCB).

Observe in the foregoing example that an amendment to requirements (an unplanned change),
when approved, gave rise to a set of updates to currently established baselines (planned

Successful Software Development, Second Edition

210

changes). Note also that the process shown in Figure 4-9 is independent of whatever life cycle
stage the project is in when the proposed amendment to requirements is originated.

Our second example on unplanned change deals with an incident report. We discuss an
incident report from a user of an operational system, describing an abnormal or unexpected
behavior of the system.

Change Control Process Example of Unplanned Change— Change Control for
an Incident Report

The change control process in this example is initiated by an incident report (IR) generated by
a user actually using the system during the Operational Use Stage. As in our preceding two
examples, the first step in the review process is to freeze the review initiator (i.e., the IR). The
product assurance organization assigns a label to the IR and places a copy of the IR under
control by putting it in a master file of incident reports.

The auditors conduct an audit at this point by checking the archive to see whether the incident
reported in the IR has previously been reported and/or resolved. If the IR is a duplicate of a
pending IR (one that has not yet been resolved), the CCB, at its first decision point, may
decide to reject the IR (the project team is currently trying to resolve the incident under
another IR), to dispense with further processing of the IR, and to return to the Operational Use
Stage. If the IR is not a duplicate or is a duplicate that was thought to be previously resolved
(it appears that the previous resolution did not resolve the incident), the CCB generally sends
the IR to an investigating organization (typically, the development organization) for analysis.

In this example, as shown in Figure 4-10, the analysis determined that a correction to the code
was necessary to resolve the incident. The development organization prepares a proposed
code change, but rather than sending it back to the CCB, it uses the alternative route
introduced in Figure 4-7 (indicated in Figure 4-10 with white arrow heads) by sending the
proposed code change to the system test team to be audited.

Successful Software Development, Second Edition

211

Figure 4-10 Change control of an unplanned (i.e., revolutionary) change—a user-submitted
incident report.

The test team, a group independent from the development organization (e.g., product
assurance organization), audits the proposed change by conducting system tests of the
provisionally changed software code. That is, the test team takes the changed software code,
integrates it with the existing code, and tests the resulting system in a live or nearly live
environment. The purpose of these tests is to ascertain whether the reported incident is
successfully resolved by the code change and whether any deterioration of other system
capabilities results from the change. The test team reports its findings to the CCB.

Successful Software Development, Second Edition

212

The CCB, using its switch capabilities, can direct the IR along the following three paths,
shown in Figure 4-10:

• If the test report indicates that the incident has not been satisfactorily resolved, the
CCB may direct that the investigating organization reanalyze the IR and prepare a
new proposed change.

• If the test report indicates that the proposed code change has satisfactorily resolved the
incident without harmful side effects (i.e., without introducing problems in other
system capabilities), the CCB may approve the proposed change and route it to the
Production/Deployment Life Cycle Stage for production and dissemination of the
modified software.

• The CCB may decide to reject the IR, in which case return is made to the
Operational Use Life Cycle Stage and the originator is informed of the action. Such
an action might be taken if the IR is a duplicate of a pending IR or if the IR does not
represent a problem with the software code (e.g., it may have resulted from an
operator error or from a user's misperception of the system's capabilities).

The foregoing example shows only one of several routes that an IR might take during the
change control process. For example, the resolution of the IR might be to modify one or more
baselines, to amend the software requirements, or to modify one of the other project products
(say, a user's manual). We have looked at the change control process in some detail. Our
discussion and illustrations show that the focal point of this processing is the change control
board. It is now time to explore the CCB in more depth—to ascertain what it is and how it
works.

As a final note for this section, we point out that the change control process discussed in this
section—with the CCB as the focus of all change processing—is not the only way to process
software changes. When you are implementing your change control process, you need to
assess the risk of not channelling all changes through a CCB-like mechanism.

4.5 Examination of the Change Control Board

In the preceding section, we showed that the change control board (CCB) was the central
element in the change control process. We introduced the CCB as a decision-making body
establishing baselines, approving discrepancy resolutions, directing revisits to life cycle
stages, and authorizing updates of baselines. In this section, we focus on this board and
discuss who sits on it, what decisions it makes, how it operates, what is contained in a CCB
charter, and how a CCB meeting is conducted. The purpose of this in-depth examination is to
bring to light the important considerations associated with planning for, establishing, and
sustaining this central element in the change control process.

CCB Composition—Who Sits on the CCB?

The following three software systems development disciplines that contribute to the
achievement of software product integrity should sit on the CCB:

• Management.

Including both senior and project management.

Successful Software Development, Second Edition

213

• Development.

Including analysis, design engineering, production (coding), unit and subsystem
testing, installation, documentation, and training.

• Product assurance.

Including quality assurance, verification and validation, test and evaluation, and
configuration management.

Because the synergistic efforts of these three disciplines are needed to achieve software
products with integrity and because the CCB is the forum that is central to the product
assurance function of change control, it seems only reasonable that the CCB should include
all three disciplines in its membership. The CCB should have representatives on it from
management, from the developers, and from the product assurance practitioners. However,
this does not mean that a CCB should be permanently staffed with a representative from each
subfunction just mentioned. For example, a CCB does not have to be permanently staffed
with a coding representative and a training representative, among others. Many CCB meetings
are not concerned with coding or training. The CCB should be permanently staffed with at
least one representative from management, from development, and from product assurance,
with additional representation provided according to the subject matter under consideration at
any particular meeting. Remember that the CCB is a forum for the exchange of information,
whose purpose is to make change control decisions. It is essential to this purpose to have
representation from and interaction among all concerned parties relative to whatever matter is
under consideration.

In this discussion of representation on the CCB, we have not said which archetypical project
participant (i.e., user, buyer, and seller) provides the representatives. After all, user, buyer,
and seller project participants may have its own project management, as well as its own
development and product assurance staffs. Which archetypical participant should provide
representatives to the CCB? We believe they all should. Ideally, the CCB should include
management, development, and product assurance representatives from the user, from the
buyer, and from the seller. It may not always be practical to have all these representatives (for
example, the user may be many thousands of miles away from the buyer and seller), but to the
extent possible the CCB should be established as an integrated one. What better forum exists
for interaction of the user, buyer, and seller in the control of change on a project? Such a CCB
greatly increases the visibility of the changes under consideration and of the viewpoints of all
project participants. The result should be better change control decisions.

Up to this point, we have discussed the CCB as if it were a single board managing all change.
In practice, many projects will have more than a single CCB to manage change within a
project. Several factors are involved in the decision regarding how many CCBs to establish on
a project, as discussed in the following paragraphs.

One of these factors is the individual and collective needs and concerns of the user, the buyer,
and the seller. Figure 4-11 shows the effect of this factor on the establishment of CCBs. The
figure shows how organizational units of the user, the buyer, and the seller, encompassing the
disciplines of management, development, and product assurance, can meet together to form an
integrated CCB. The shadings in the figure indicate various combinations of the user, buyer,
and seller joining in an integrated CCB:

Successful Software Development, Second Edition

214

Figure 4-11 CCBs provide forums for unites of each organization within the user/buyer/seller
triumvirate—or for pairs of these organizations, or for all three organizations—to interact
continually and effectively on a software development project for the purpose of managing
change.

• User/buyer CCB.

A user/buyer CCB might meet to consider baselining the requirements specification,
prior to its delivery to the seller for fulfillment.

• User/seller CCB.

A user/seller CCB might consider the resolution of incidents arising in operational
software, provided the incidents had no impact on cost and schedule. If such incidents
did impact cost and/or schedule, the buyer would be most interested in participating in
the discussion.

• Buyer/seller CCB.

A buyer/seller CCB might be convened, for example, to consider a draft detailed
design document, in which the user would have a minor interest.

Successful Software Development, Second Edition

215

• User/buyer/seller CCB.

We consider this CCB the preferred option.

:Some people may argue that creating a CCB consisting of buyer and seller personnel is
inherently unworkable. Project managers, either buyer or seller, would generally rather not
have unpleasant or unfavorable news (such as the need to make a large number of changes to
a software product that should be near the end of its development) divulged in a public forum.
It is human nature to put off public disclosure of an organization's problems in the expectation
that timely solutions to the problems can be developed within the organization. If such
solutions can be found, there is no need to make the problems public. On the other hand, if
such solutions are not forthcoming, the problems may have to be surfaced publicly at some
later date, when they generally would be more difficult and costly to solve. The CCB provides
a forum where such problems can be made visible and where the entire project team can focus
on their solution. The earlier in the life cycle that problems are introduced to the CCB, the
more likely it is that a software product with integrity can be achieved. The authors have seen
numerous cases in which joint buyer/seller CCBs have proven quite workable in resolving
problems.

In some circumstances, one of these organizations (i.e., user, buyer, or seller) may validly
wish to convene a CCB comprised only of members of its own organization. For example, the
seller may wish to hold a CCB meeting with only seller personnel present to consider the first
draft of a document that will eventually be baselined. This CCB would increase the likelihood
that the document had product integrity before it was presented to the buyer and user. When
this seller CCB is satisfied with the document, it would be presented to an integrated
buyer/seller CCB for consideration as a baseline.

CCB Hierarchies—How Many CCBs?

A second factor in determining the number and kind of CCBs to establish is the system
development issues that might be faced on a project. Figure 4-12 shows a hierarchy of system
development issues, along with a sample of each issue and a CCB that might be established to
handle the issue. The hierarchy shown is not unique; we use it here for expository purposes.
In the figure, the level of hierarchy is indicated by appropriate indentation. Within every
project, there are system issues and, in many projects, system external interface issues to be
addressed. Within the system, there are subsystem issues and inter-subsystem interface issues
to be considered (for systems having major, identifiable subsystems). Within each subsystem,
there are hardware, software, and internal (hardware/software) interface issues to be resolved.

Successful Software Development, Second Edition

216

Figure 4-12 A CCB hierarchy generally derives from the hierarchy of issues associated with
system development and their perceived significance.

Sample issues like those suggested in Figure 4-12 exist for almost every project, but all the
CCBs shown in the figure would not necessarily be established on every project. Which ones
should be established for a project vary from project to project. The key elements to consider
when deciding whether an issue is significant enough to merit creation of a separate CCB
include project size and complexity, and criticality and importance of the issue within a
project. Those issues for which CCBs are not established are subsumed by the next highest
issue in the hierarchy for which a CCB is established. For example, on a small project, only a
System CCB might be established. All the issues shown in Figure 4-12 would be considered
by this System CCB. Consider, on the other hand, a very large project where each subsystem
is an operational system in itself. In this case, the full spectrum of CCBs shown in Figure 4-12
might be constituted.

Because the focus of this book is on software, we have shaded the software issue in the
hierarchy and the Software CCB in Figure 4-12. Most software issues are handled at this
level. However, you should be aware that some software-related issues are handled at other
levels in the issue hierarchy. For instance, see the sample issue for subsystem in

Successful Software Development, Second Edition

217

Figure 4-12—the consideration of design specifications clearly has software-related aspects as
well as hardware-related aspects. On some projects, the software issue is refined into
subissues for which separate CCBs are established. The authors are familiar with a project, for
example, in which a Software Incident Report CCB and a Software Change Request CCB
were established.

A third factor to consider in planning for the establishment of CCBs is the level of expertise
needed for each CCB. Consider a CCB whose members are managers of the various
organizations represented at the CCB. Such a CCB would have difficulty making informed
decisions on issues involving the technical details of the project. The management-oriented
members of the CCB may not have the technical background to understand the problems or
resolutions presented to them. A similar difficulty arises if the CCB consists of engineers and
staff personnel and is faced with making decisions concerned with project policy. This latter
CCB probably would not have the expertise or the authority in policy concerns to make
proper decisions.

A solution to these difficulties is to staff the CCB with both managers and technical personnel
from the management, development, and product assurance disciplines. This solution carries
the disadvantage that, for some period of time, every member of the CCB would be
noncontributing. Each situation needs to be evaluated so that there is an effective use of
project personnel.

Another solution is to create several CCBs, each having a restricted area of decision making
and a membership with the appropriate level of expertise. One approach that we have seen
function successfully using such levels is to constitute a CCB composed of managers from the
management, development, and product assurance disciplines, and a CCB composed of
technical personnel from the three disciplines. The scope of the management-level CCB
extends to resource allocation, budgets, schedules, and policies; technical details are not
considered. On the other hand, the technical-level CCB concentrates on the detailed technical
aspects of the project. Matters arising at a CCB meeting that do not fall within the appropriate
level of expertise of that CCB are referred to the other CCB.

In planning for the CCBs to use on a project, at least three factors should be considered:

• Involvement of the user, buyer, and seller.
• System development issues to be handled.
• Levels of expertise required.

Applying these factors to their extreme could lead to the creation of a bewildering array of
CCBs, whose prime effort would probably be deciding what the area of responsibility for each
CCB should be! We certainly do not suggest going to an extreme. We are suggesting that
these three factors should be rationally considered in the context of each project when
planning the establishment of a hierarchy of CCBs.

A real-world example of the results of considering these CCB planning factors is shown in
Figure 4-13. This figure shows the hierarchy of CCBs and their relationship to the seller's
development and product assurance staffs on a large project. This project is a "system of
systems." Each subsystem is a large, independently operating system, interfacing with the
other subsystems via high-speed data links. The CCB hierarchy consists of a buyer/user

Successful Software Development, Second Edition

218

management-level system CCB and a buyer/seller technical-level software CCB for each
subsystem.

Figure 4-13 Sample (software) CCB hierarchy organized along management/technical and
user/buyer/seller lines illustrating how management and technical CCB guidance effects and
affects software change.

Note in Figure 4-13 that the relationship between the Software CCB for Subsystem Y and the
seller's development and product assurance staffs for Subsystem Y is one of technical
guidance and is not a line of authority. Note also that the domains of concern for the two
levels of CCB overlap—the management-level CCB addresses some technical issues, and the
technical-level CCB addresses some managerial issues.

But not every product assurance manager is faced with large-sized projects. You might well
ask for an example of a CCB hierarchy for a medium-sized or small-sized project. Figure 4-14
is a modified version of the CCB hierarchy for large-sized projects and represents a hierarchy
for medium/small-sized projects that the authors have planned and implemented.

Successful Software Development, Second Edition

219

Figure 4-14 Sample software CCB hierarchy for medium-sized or small-sized projects.

The CCB hierarchy for large-sized projects has been modified in the following ways:

• All subsystem CCBs have been removed, except for that for Subsystem Y.
• The retained Subsystem Y CCB has been labeled as the Software CCB (for the entire

system).
• The domains of concern of the two remaining CCBs have been redefined so that the

management-level CCB does not address any technical issues and the technical-level
CCB does not address any management issues.

However, do not be misled by these two examples. Many variations are possible and have
been implemented to satisfy particular project needs. Some variations may employ only a
single CCB; others may use numerous CCBs. The number of possible CCB hierarchies is
great, affording the opportunity to tailor a hierarchy that is suitable for each particular project.

Thus far in this section we have examined CCB composition and hierarchies of CCBs. We
now turn our attention to CCB operation. Here we consider the types of decisions a CCB
makes, the voting mechanism it uses to arrive at a decision, and the person who should chair
the CCB. (Although in the following discussion we refer to "the" CCB, we intend for the
discussion to apply to any appropriate CCB in a hierarchy.)

CCB Decisions—What Types of Decisions Are Made?

The CCB is a decision-making body. As the change control organization, its primary
functions are to establish baselines and to resolve discrepancies, change requests, and incident
reports that come before it. When considering a draft baseline, the CCB may elect either to (1)

Successful Software Development, Second Edition

220

accept the draft and establish a baseline, (2) establish a baseline subject to later resolution of
outstanding discrepancies, or (3) reject the draft baseline. Acceptance is not necessarily
predicated upon there being no outstanding discrepancies against the draft baseline. Although
such a goal is desirable, practical considerations often dictate that the CCB establish a
baseline and postpone resolution of any outstanding discrepancies to some later agreed-upon
date. Rejection of a draft baseline could be based on its noncongruence with its predecessor
baseline or its requirements, or on other discrepancies, such as its internal inconsistency or its
failure to satisfy specified standards. When the CCB rejects a draft baseline, it provides a list
of approved changes to the draft baseline. The development organization reworks the draft
baseline to incorporate the changes and submits the revised draft baseline to the CCB for
approval.

The CCB can make basically the same decisions relative to discrepancies, change requests,
and incident reports. As shown in Figure 4-15, these decisions are to (1) approve a change, (2)
make no change, and (3) revise the change approach. The individual nuances of these
decisions relative to discrepancies, change requests, and incident reports are discussed in the
following paragraphs. Note in Figure 4-15 that the decision process is initiated by submission
of a change control form.

Figure 4-15 The decisions that the CCB can make relative to a change control form.

Successful Software Development, Second Edition

221

Let us consider first the decisions that the CCB can make relative to the resolution of a
discrepancy uncovered by an audit. A discrepancy, quite simply, is "an incongruity (i.e., a
difference) observed as a result of comparing (i.e., an audit) a software product with the
ground truth." The CCB can approve the proposed resolution of the discrepancy to change the
draft baseline or another baseline. It can reject the proposed-resolution and order the
reanalysis of the discrepancy by the investigating organization. Finally, the CCB can close out
the discrepancy with no action being required. This latter decision could be based on several
circumstances. The discrepancy could be a duplicate of another discrepancy that had already
been resolved. The discrepancy could have resulted from a misunderstanding by the auditor.
For example, if the auditor is uncertain about a point, the auditor may write a discrepancy to
prompt the CCB to consider whether a problem indeed exists. If the CCB decides no problem
exists, the CCB closes out the discrepancy with no action being required.

Regarding a change request, the CCB can make one of three decisions: it can (1) accept it
(and have the change implemented), (2) reject it (in which case the originator is notified and
the change request is archived), or (3) require its reanalysis. The decision to accept the
proposed change may mean that the next life cycle stage is entered. Rejection of the proposed
change may result with continuation of the current life cycle stage, when the originator of the
change request is informed of the decision and project work continues. If the change request
must be reanalyzed, it is returned to the investigating organization. The investigators will
return the change request to the CCB after completing its reanalysis, and the CCB will again
consider it for approval.

Next we consider CCB decisions relative to incident reports. Observe how Figure 4-15
applies here. The CCB can decide to (1) approve a change that resolves the incident, (2) reject
an incident as requiring no action to be taken, or (3) require reanalysis of the incident by the
investigating organization. An approved change can take several forms. To correct the
problem that the incident reported, a change to the software code and/or to one or more of the
documents previously developed on the project can be required. These documents could be
either software documents or software-related documents (e.g., a user's manual). An approved
change could also require an enhancement to the software. Such a change would be made to
the Requirements Baseline.

For a variety of reasons, an incident report (IR) can be rejected with no requirement for any
action to be taken. A similar incident report may have been previously considered and
rejected or approved for a change that has not yet been implemented, or a similar IR may have
been previously submitted and be under consideration currently. The duplicate incident report
in these three instances would not be considered further; the originator of the incident report
would be notified of the CCB decision and the incident report archived. Another reason for
rejecting an IR with no action to be taken is that the incident report could be the result of
operator or user error. It could have resulted from a misunderstanding of the software
operation on the part of the user who originated it.

CCB Operations—How Does the CCB Decide What to Do Next?

Having discussed the decisions that the CCB may make, we now consider how the CCB
arrives at those decisions (i.e., CCB voting mechanisms). Such mechanisms include the
following:

Successful Software Development, Second Edition

222

• One-person one-vote
• One-organization one-vote
• Consensus vote
• Single-person vote

One choice for a CCB voting mechanism is to give each board member one vote and to
specify that the majority effects a decision (what constitutes a majority must be specified in
the directive establishing the CCB). To those of us raised in a democratic tradition, this voting
mechanism has obvious appeal: all views are considered equally, and everyone is a part of the
decision process (and therefore probably more interested in the proceedings). But watch out!
This form of voting mechanism could lead to stacking the vote by one organization. For
example, if the seller's entire development organization came to a CCB meeting, it might
outvote the rest of the membership and make all the decisions conform to its organization's
wishes. Another disadvantage of the one-person one-vote voting mechanism is that politics
could be introduced into the voting process. "If I vote to approve items A and B that you are
interested in getting approved, will you vote to approve items C and D that I am interested in
getting approved?" The result is CCB decisions based on vote trading and not on the technical
merits of each item considered.

A possible modification to the one-person one-vote voting mechanism would be to give a vote
to each organization represented on the CCB rather than to each individual. This method loses
some of its democratic appeal—indeed, it is a republican process. (Note that both
"democratic" and "republican" begin with a lower-case letter!) But it still keeps everyone
involved in the decision process. The possibility of politicking still exists in this method, but
the ability to stack the vote is prevented—the number of votes remains constant, regardless of
how many members of one organization attend a meeting.

Another voting mechanism to consider is to achieve a consensus among the board members
on each item under consideration. By consensus we mean "the informal agreement (no vote
counting) of most of those present at a meeting." This method permits the expression of all
viewpoints and retains the interest of all board members. It is more expeditious than voting by
individuals or organizations, and it tends to inhibit politicking. But what if the CCB cannot
achieve consensus? No decision can be made in such a case, unless a mechanism to break
deadlocks has been included in the CCB's charter. Such an escape mechanism might be to
give all the votes to a single person when it is necessary to break a deadlock.

Giving all the votes to a single person (say, for the moment, the chairperson of the CCB)
could be the voting mechanism used by a CCB under all circumstances. Such a method
certainly fosters decision-making, but it may quickly stifle the interest of the other board
representatives. If the chairperson never considers their views, listens to their comments, or
consults with them prior to making a decision, they will have little interest in the CCB
proceedings or even in attending the meetings. The chairperson must recognize his or her
potential for limiting participation and take positive measures to encourage input and
discussion from all CCB members. The chairperson needs the visibility that their input
provides if he or she is to make good change control decisions.

CCB Leadership—Who Should Be the CCB Chairperson?

We need to say a few words here about the chairperson of the CCB. The selection of this
person is especially important when he or she has all the votes. Under the other voting

Successful Software Development, Second Edition

223

mechanisms, the selection of the chairperson is less critical, the primary duties of the
chairperson in these cases being to keep the board on track with its agenda and to keep
discussion focused on the issues. So let us consider possible choices for CCB chairperson
when all the votes for the board are given to that person. To enlarge the scope of the selection,
let us further assume that the CCB is composed of buyer and seller representatives. Table 4-1
shows for several candidates some considerations pertinent to the selection of a CCB
chairperson.

You can observe from that table that there are advantages and disadvantages to selecting any
of the candidates listed there. On each project, you must weigh the considerations given in
this and the preceding paragraphs and in Table 4-1 in selecting a CCB chairperson and a CCB
voting mechanism for making decisions.

CCB Charter—What Is Contained in a CCB Charter?

A CCB charter spells out the specific scope of CCB activities. The following discussion
provides a recommended charter outline, suggested boilerplate wording for sections 1 and 3,
and guidance for other sections (enclosed within brackets). The CCB charter may contain the
following sections:

Table 4-1. Advantages and Disadvantages of Candidates for CCB Chairperson.
CCB Chairperson
Candidate Advantage(s) Disadvantage(s)

Seller's project
manager

• Responsible for project
development and maintenance

• Probably most technically
competent of managerial
personnel

• May not have the buyer's interests
at heart

Buyer's project
manager

• Bears the prime responsibility
to the user for product
integrity

• Puts up the money to fund the
project

• May not be technically competent
to render reasonable decisions
regarding software changes

Seller's product
assurance (PA)
representative

• Change control is one of PA
representative's prime
responsibilities

• May be biased toward seller's
interests at the expense of the buyer

• May be too technically oriented,
slighting management
considerations

Buyer's product
assurance (PA)
representative

• Change control is one of PA
representative's prime
responsibilities

• May not be sensitive to certain
project issues that may affect the
feasibility of implementing changes
approved

Seller's and buyer's
project managers,
serving jointly

• Buyer and seller equally
represented

• Buyer and seller bear the
prime responsibility for the
project within own
organizations

• Has potential for deadlock

Successful Software Development, Second Edition

224

• 1.0 CCB PURPOSE.

The purpose of the [Project Name] Change Control Board (CCB) is to ensure that
[Project Name] product changes and related programmatic changes (i.e., consideration
of proposed cost and schedule changes) are processed in a visible and traceable
manner. The CCB is the forum in which (1) [Project Name] project participants get
together to discuss what needs to be done, (2) responsible agents are assigned for
performing agreed-upon work, and (3) decisions and assigned actions are recorded.

• 2.0 CCB MEMBERSHIP.

[This section lists organizational titles of management, the product development
organization, and the product assurance organization who are to be regular attendees at
the CCB. All these organizations are required. If the CCB is to include third parties,
their organizational titles are listed. The minimum requirement for seller management
representation is the seller project leader, and for the customer, the customer project
leader. This section also contains a statement that other organizations may be invited
by the seller and/or customer project leaders on an as-needed basis. In addition, this
section indicates the organization responsible for documenting the meeting. As an
option, this section can indicate that the chairperson will designate someone from the
seller project team on a rotating basis to be responsible for documenting the meeting.]

• 3.0 CCB CHAIRPERSON.

The chairperson is [indicate one of the following: customer project manager, seller
project manager, or alternates; if there are to be joint chairpersons, indicate some
combination of these entities]. The chairperson will manage the meeting in such a
manner that input and discussion are encouraged from all attendees. Product and
programmatic decision authority rests with the chairperson and is made a matter of
record in the meeting documentation.

• 4.0 CCB ACTIVITIES.

[This section lists the activities that the CCB is to perform. This section also specifies
the CCB meeting frequency. The minimum requirement for this frequency is monthly.
The specification of CCB activities can be as detailed as management desires.
Examples of such activities are listed below. This list is intended to be a starting point
for defining CCB responsibilities. In general, a particular CCB will have some subset
of these responsibilities or adaptations of these responsibilities.

o Reviewing a schedule of software and data product deliverables to determine
whether these deliverables are being produced on time and within budget.

o Prioritizing efforts to be undertaken.
o Reviewing proposed changes to a requirements or design or database

specification, or some other product.
o Considering a customer or internal proposal to alter the work called out in a

project plan.
o Approving patch code (i.e., an emergency repair that permits continued use of

operational software capabilities until a permanent change can be
implemented).

Successful Software Development, Second Edition

225

o Logging incident reports (IRs) that product assurance has prepared describing
the difference between a product under review and related predecessor
products and/or standards governing the development of that product.

o Deciding on a labeling scheme (i.e., configuration identification) for products
(i.e., documentation, computer code, and databases [draft and final]).

o Reviewing a product (such as a design document) to determine whether
previously approved changes have been incorporated.

o Approving a product assurance plan.
o Reviewing a product assurance report that documents inconsistencies between

a product and a predecessor product (e.g., inconsistencies between a software
design specification and a software requirements specification).

o Reviewing the results of an acceptance test showing discrepancies between
output generated by the code and output specified in requirements and design
documentation from which the code was presumably developed.

o Approving a documentation standard that is to govern the format and content
of products to be produced on a project.

o Recording CCB minutes.
o Reviewing CCB minutes from the previous CCB meeting to confirm their

accuracy.
o Reviewing a dry run of a presentation of project status that is eventually to be

given to senior management.
o Reviewing, approving, and, if necessary, recording changes to the

documentation of the preceding CCB meeting.]
• 5.0 CCB MEETING DOCUMENTATION.

[This section specifies the information to be recorded at the CCB meeting. At a
minimum, the following information is required:

o Meeting date, time, and duration.
o List of attendees (first and last name of each) and their organizations.
o Discussion (documentation of this discussion can be as detailed as

management desires; at a minimum, it should provide the context for
associated decisions made and action items assigned during the meeting).

o Existing action items (i.e., open action items and ones closed during the
meeting being documented; each action item should be described in at least
one complete sentence).

o New action items (the guidance for existing action items applies here, too).
o Summary of action items (running list of all items to date showing the

responsible individual{s}, status, date assigned, date due).
o Decisions made.
o Time and place of next meeting.]

The types of change control forms that are to be used to define, track, and manage changes
should be indicated. It is helpful to include sample forms as attachments to the charter.

In addition to the minimum information required, other information bearing on discussions,
decisions, and action items can be attached to the meeting documentation. For example, such
information may include the following: screen designs, memorandum for the record, and e-
mail messages.

Successful Software Development, Second Edition

226

CCB Meeting Conduct—How Is a CCB Meeting Conducted?

The specific manner in which a CCB meeting is to be conducted depends on its purpose and
scope as defined in the CCB charter. However, there are several general considerations for
conducting a CCB meeting. These considerations are addressed in the following paragraphs.

Prior to a CCB meeting, the chairperson may choose to prepare an agenda. Once the CCB
becomes institutionalized on a project, this activity may be unnecessary. In particular, the
CCB minutes format, once it has stabilized, serves as a general agenda for a CCB meeting.
Experience shows that after two or three meetings, the participants generally agree upon a
minutes format that is satisfactory for supporting CCB operation.

The chairperson may choose to run the meeting or designate someone else to perform this
function. The meeting should begin with review of the minutes from the preceding meeting.
To expedite this review, the chairperson may choose to distribute copies of these minutes to
attendees prior to the meeting. Following the review, attendees should be given the
opportunity to offer changes to the minutes. If these changes are agreed to by others, they
should be made a matter of record in the minutes of the current meeting. The minutes of the
current meeting should then reflect that (1) the minutes of the preceding meeting were
approved with the changes cited or (2) in the case that no changes were made, the minutes
were approved as written.

Next, the actions cited in the minutes of the preceding meeting that were to be accomplished
by the current meeting should be individually addressed. Decisions reached regarding these
actions should be recorded. New actions resulting from these decisions should be recorded
and individuals responsible for these actions should be assigned, as well as dates when these
actions are to be completed. The discussion pertaining to CCB actions should be incorporated
into the minutes. The record of this discussion should be as detailed as mutually agreed to by
CCB participants or as directed by the CCB chairperson. New action items should be
recorded, and the information on outstanding action items resulting from CCB actions should
be updated.

Next, new business (e.g., new change proposals, and depending on the CCB scope,
programmatic changes such as revised product delivery dates, changes in CCB participants,
[proposed] changes in personnel assignments impacting product development) should be
addressed and made a matter of record. New action items resulting from this new business
discussion should be recorded.

If two different projects require coordination, the CCB meeting should also consider issues
requiring coordination of the activities of CCBs for each project. To coordinate the activities
of these two CCBs, it may be necessary to ensure that participants in one CCB attend the
other CCB at appropriate times. This coordination activity should be given visibility in the
CCB minutes through the assignment of action agents and corresponding due dates.
Alternatively, the next scheduled meeting of these two CCBs may be designated as a joint
CCB involving participants from both CCBs. The meeting should be closed by specifying the
time and place of the next CCB meeting. Copies of the CCB minutes should be distributed to
all CCB attendees and nonparticipants desiring visibility into the project (e.g., management).
It is also useful to send a copy to a centralized project file.

Successful Software Development, Second Edition

227

Regarding the amount of detail to include in CCB meeting minutes, the following
considerations apply:

• The basic purpose of the minutes is to provide the CCB decision makers the
information needed to make intelligent, informed decisions regarding how the
program should proceed. Since memories tend to fade over time, the amount of detail
needed depends, in part, on CCB meeting frequency—more frequent meetings
generally imply a need for less detail.

• The seller project manager, in concert with the customer project manager, may choose
to use CCBs as a forum for doing some product development (e.g., specify user-
friendly requirements in testable terms). In this case, the CCB minutes can contain
considerable detail. Such detail often expedites product completion, since these details
can be directly coordinated with the customer at the CCB. Then, this agreed-upon
material can be directly incorporated into the product to be delivered.

• For programs that are planned to span a year or more, the amount of detail included in
CCB minutes should be governed by the risks associated with personnel turnover.
More detailed minutes will facilitate transitions associated with seller project turnover
and will lessen the impact of technical staff turnover.

This discussion completes our examination of the CCB. We have now discussed the types of
changes on a project, the process of change control, and the organization at the focus of this
process. To complete our study of software change control, we need only discuss the
paperwork supporting the change control process. The next section addresses this topic.
Strictly speaking, paperwork support of the CCB is a bookkeeping function.

4.6 Paperwork Support of the Change Control Board

Paperwork! The very mention of the word probably makes you grimace. Yet the paperwork
support of the change control board (CCB) is essential if the change control process is to be
visible and traceable. Our definition of "paperwork" encompasses both hard copy and
electronic copy. Your organization will need to decide the appropriate mix of hard copy and
electronic copy to support your change control process.

In this section, we discuss why paperwork is necessary in change control and then show you
how to develop and use a set of change control forms and CCB minutes. We take this
approach (rather than presenting "the" forms or minutes that you must use) because you will
want to tailor your change control forms and minutes to your particular project and
environment. To this end, we first derive a typical set of forms needed to support the CCB.
We provide guidelines on forms design, and then lead you through the design of one of these
forms, the incident report. We show you examples of the other needed forms—software
change notice, change request, and an impact assessment. We present three general scenarios
covering all the situations that could precipitate a software change and illustrate the use of the
sample forms in these scenarios. We conclude the section with a discussion of CCB minutes
and how they can be used with or in lieu of change control forms.

CCB Paperwork—What Forms Are Needed?

Is paperwork really necessary to support the change control process? The authors have not
met anyone who would not agree that some paperwork is necessary to control change.
Paperwork appears to be widely viewed as a "necessary evil." Perhaps it would seem less evil

Successful Software Development, Second Edition

228

if one considered that the alternative (no paperwork) might well lead to statements by the
project participants such as the following:

• Exactly what change am I being asked to approve?
• I've got an angry user on the telephone. Does anyone remember what problem she

reported last month?
• No, I haven't made that change—I didn't know it had been approved.
• I'm ready to make the change now, but I forget the details of the elegant solution that

our recently departed guru recommended. Does anyone know how I can reach him?
• You were right—this problem is the same one we had last fall. I've found the report of

the old problem, but I can't find out how we solved it. I guess I'll have to solve it all
over again.

Statements like these indicate a lack of visibility and traceability in the change control
process. Forms make manifest the visibility and traceability that the CCB provides to the
change control process. The use of a form to record a problem, to recommend that a change
be made, or to indicate a CCB decision immediately captures that event and makes it
uniformly visible to all project participants. Instead of becoming the subject of guesswork, the
event is made concrete.

Capturing the event and using cross-references between forms provides traceability between
events connected with the change control process. Figure 4-16 illustrates the concept that
forms (in conjunction with the CCB) give visibility and traceability to the change control
process.

Successful Software Development, Second Edition

229

Figure 4-16 Forms, in conjunction with the CCB, give visibility and traceability to the change
control process.

In the figure, a change control Eventp (e.g., the occurrence of an incident at a user site) has
been recorded on FORM TYPE A. A subsequent Event q (e. g., the promulgation of a notice
announcing an approved change) causes form TYPE B to be generated. The act of recording
Eventsp and q has made the change control process more visible. Visibility between the
forms is symbolically shown in the figure by the arrow connecting forms TYPE A and
TYPE B.

In the figure, Event q is related to Event p. For example, Event p could be an incident, while
Event q could be the promulgation of the resolution to the incident. Traceability between
Events p and q is symbolically shown in the figure by the arrow connecting the two-way
reference between the forms. On the actual forms that we discuss later in this section,
traceability between these events is attained by a pointer to FORM TYPE B placed on
FORM TYPE A, and by a pointer to FORM TYPE A placed on FORM TYPE B.

Note that this figure does not imply that every project event is recorded on a form. Indeed, the
opposite is true—many events on a software project are not recorded on forms (e.g., a
meeting of a CCB).

The fundamental questions to ask yourself include the following:

• What forms are needed?
• How are change control visibility and traceability achieved?

Successful Software Development, Second Edition

230

• How should existing forms be used?
• How should unplanned and planned changes be processed?

To answer these fundamental questions, we suggest that you consider the following
categorization of changes that includes one more level of depth than unplanned and planned
change. This categorization we characterize by the following three questions:

• Unplanned Change.

Do we want something not already in the software or something that extends what is
already there? Briefly stated: Do we want something new or different?

Is something in the software at variance with the requirements specification? Briefly
stated: Is something wrong?

• Planned Change.

Should we establish this product as a new or updated baseline? Briefly stated: Should
we baseline this product?

We contend that this categorization includes all possible changes to the software in a system.

Next you need to choose a set of forms to support the change control process. We do not
recommend that you construct the change control process to match existing forms, but rather
the reverse. Table 4-2 lists the basic events in the change control process events (i.e.,
initiation, freezing, audit, analysis, decision, and implementation), and some information to be
recorded about each event. All these events shown in the table result in providing information
relative to a pending change. However, the information obtained from an audit is generally
recorded in an audit report (possibly a collection of other change control forms), and no
separate change control form is needed to support this event. The information gathered from
the change control process events listed in Table 4-2 is captured on change control forms.

Table 4-2. For each event in the change control process, information must be recorded to
provide visibility and traceability to the process.

Event Information to Be Recorded
Initiation Identification of the originator and of the environment, statement of the problem
Freezing Identification of the problem
Audit Discrepancies uncovered
Analysis Cause, impact, and recommended resolution
Decision CCB action
Implementation Statement of what is to be changed

You can derive a set of forms by allocating the basic change control process events to various
forms as you answer the following questions presented earlier:

• Do we want something new or different?
• Is something wrong?
• Should we baseline this product?

Successful Software Development, Second Edition

231

Note that each change control process event for a category must be recorded either (1) on one
of the forms you decide to use or (2) in some other established place, such as CCB minutes.
Table 4-3 shows a set of forms resulting from one of our allocations of the change control
process events.

Observe from the table that we chose not to record the implementation event on any form
used to answer the question, "Do we want something new or different?" This omission is
deliberate—when the CCB approves a change to add something new or different, the
implementation almost always initially involves the updating of the requirements
specification. The republication of the requirements specification is sufficient notice of the
implementation of the unplanned change.

Table 4-3. A Set of Forms to Support the Change Control Process.
Category Form Process Events Recorded

Do we want something new or
different?

• Change Request (CR)
• Impact Assessment (IA)

• Initiation, freezing, decision
• Analysis

Is something wrong?

• Incident Report (IR)
• Software Change Notice

(SCN)

• Initiation, freezing, analysis,
decision

• Implementation

Should we baseline this
product?

• No additional forms

You usually do not need a form to provide visibility and traceability to the process of
baselining a planned change. A form is not needed simply because the information that would
be recorded on such a form is recorded someplace else. The initiation event information is
found within the change itself, that is, within the proposed new or updated software baseline.
The identification of the change is generally added to the software baseline during the
freezing event. The results of the audit are recorded in an audit report. The analysis of the
audit findings is recorded and presented to the CCB in a report. The decision of the CCB is
recorded in the CCB minutes. Implementation of the change—when the change is approved—
is indicated on the change itself. Therefore, no additional forms are required to support
baseline change processing.

The names given to these change control forms vary widely in the industry. For example,
others may term what we call an incident report a software trouble report, a system problem
report, or a discrepancy report. The names given the forms are typically important to your
organization. We prefer, for example, the term "incident report" (IR) because of its less
pejorative connotations.

Similarly, the set of forms in Table 4-3 is not unique —that is, it is not the only set of forms
that could be specified to support the software change control process. For example, the U.S.
Department of Defense uses a form called an engineering change proposal (ECP) that is a
combination of our change request and impact assessment forms. You might want to
designate for each of your projects your own set of forms based on a different allocation of
process events to forms. The set that we propose is provided primarily for exemplification
purposes, although in our experience it has proven to be a workable and effective set.

Successful Software Development, Second Edition

232

CCB Paperwork—How Do You Design Change Control Process Forms?

We now describe how you can design your change control process forms. For this purpose,
we work through a sample problem of how to design the IR form. We then present you with
examples of the other forms in the set we specified in Table 4-3. You might want to design
your own forms for your particular project and its environment, or you might tailor the sample
forms that we provide to suit your project and environment.

In designing forms, keep in mind the following considerations. Most important is that the
various forms capture the data you need to record. Of almost as great importance is
consideration for the people who will be filling out the forms. Each form should be simple to
fill out. It should be easy to read and should clearly label each item as to what is wanted. The
form should indicate acceptable values if a range of values or a code is used. Make it easy for
the person filling out the form, and you will be rewarded with complete and correct data
entry. Make it difficult for the person filling out the form, and you will get inaccurate,
incomplete, and invalid data entered.

As shown in Table 4-4, generally, every change control form should contain information
about the following categories:

• Originator.

Includes information not only on the initiator of the form but also on each person who
fills out a part of the form in response to an event.

• Subject.

Concerned with identifying what the form is addressing, whether it is documentation
or software code. The subject is the same for all events recorded on a form. Therefore,
subject information need be placed on a form only once, regardless of how many
events are recorded on the form. Event description is recorded for every event covered
by a form.

• Event description.

List the specific data elements used to describe the event description. The elements
can vary widely, depending upon the event recorded and the desires of each project's
management.

• Approval.

May not be needed for all events and should be placed on the form only for events that
do require them, as specified in project policy directives.

If a form records data on more than one event, information in some categories must be
recorded for each event (e.g., the originator category or the event description category). The
specification of data elements and layout of a change control form depend upon the project
and the software environment in which the form will be used. To show you how Table 4-4
can be applied to the design of a form, we next develop (in a sample problem) the design of
an incident report.

Successful Software Development, Second Edition

233

Table 4-4. Generic Content of a Change Control Form.
Category Content

Originator
Information in this category must identify the person filling out the form and the person's
organization and telephone number, so that the person can answer questions relative to
the data the person enters. If the form records several events, each person filling out a
part of the form must be identified.

Subject
The subject of the form, be it document, computer code, or database, must be precisely
identified, including its environment, if appropriate, so that a reader can locate it or
reconstruct it, if necessary.

Event
description

This category contains the information that is to be recorded about each event. It might
describe a problem, the impact of an incident, the recommended resolution of an
incident, or the approved disposition of a proposed change.

Approval Some events may require the approval of one or more authorities before further action
can occur. For such events, the form must record these approvals.

Designing an Incident Report Form—A Sample Problem

Background and Problem

As part of the seller's product assurance planning group at the beginning of a medium-sized
project, [5] you have decided to implement a set of forms for supporting the change control
process. One of these forms is an incident report (IR). This form is to be used to record data
for the unplanned change control events of initiation, freezing, analysis, and decision when
something in the software is apparently wrong (see Table 4-3). When designing this IR form,
you should give at least one reason for each item included on the form.

Solution Approach

The IR form we are designing will record data for four change control process events (i.e.,
initiation, freezing, analysis, and decision). We first decide on each content element for each
event, using Table 4-4 as a guideline. For example, the initiation event includes the following
content elements: name, organization, and telephone number of the incident originator. Then
we lay out these content elements so that the format is understandable, easy to use, and well
organized. Figure 4-17 is the result of this form-design process.

5 By a medium-sized project, we mean a project having roughly ten to twenty persons working on it full-time.

Successful Software Development, Second Edition

234

Figure 4-17 Example of an incident report (IR) form and associated events that it documents.

We now explain in detail how we arrived at the figure.

• Initiation Event.

The name, organization, and telephone number of the incident originator are placed on
the IR form so that the originator may be contacted should questions arise.
Organization and full telephone number are important here, since the IR may be
originated by anyone in the user's, buyer's, or seller's organization.

Next, the IR form should record the subject of the incident, that is, the document or
computer code involved in the incident and its environment. This information allows a
reader of the IR to locate its subject or to reconstruct it, as may be necessary to
analyze or audit the IR. The form records the date and time of the incident for
traceability. The incident could result from a problem in the documentation or in the
executable code. For a document, the document name, label, page, and paragraph
number are required to locate the subject of the incident. For the executable code, we

Successful Software Development, Second Edition

235

want the release number and the version number to pinpoint which code is involved in
the incident. If the incident arose while executing a test procedure, the test procedure
label, test case number, and test step label must be provided.

The IR form must provide for a full description of the incident—this element states
what is perceived to be wrong. The originator should be able to indicate an urgency
desired for incident resolution (high, medium, or low) and, if desired, a suggested
resolution to assist and guide the incident analyst. For executable code incidents, the
IR form should indicate whether the incident could be duplicated during a run, after a
restart, or after a reload. In case the description of the incident or the suggested
resolution exceeds the size of the space allocated, a box should be provided to indicate
that initiation event data are continued on another page. A box should also be provided
to indicate the presence of attachments, such as listings or printouts. All this
information helps the analyst resolve the incident. No approvals are generally required
for this event. In some environments, project management might require approval of
an IR by the originator's supervisor, to prevent unnecessary or improper IRs from
being initiated.

• Freezing Event.

The only element on the IR form required to support this event is the IR control
number. This number is important in referencing the incident (visibility) and in
tracking the incident (traceability). It consists of the last two digits of the current year,
followed by a hyphen and a four-digit sequence number. This labeling assignment is
generally performed by a member of the product assurance organization, and it is not
necessary to record the identity of the person performing that task.

• Analysis Event.

Since the subject was identified in the initiation event section of the IR form, there is
no need to repeat it here. However, the IR form must indicate the name of the person
filling out the analysis-event section of the form, since the analyst is in general not the
same individual as the incident initiator. Because this project is medium-sized, we
assume that the number of seller project personnel is small enough that we can omit
the analyst's organization and merely include her or his telephone extension.

The analyst must indicate on the IR form the analysis of the incident cause and of the
incident's impact on the project, and a recommended resolution of the incident. This
resolution may recommend that a change be made or that no action be taken as a result
of the IR. If a change is recommended, the precise change recommended should be
included in the recommended resolution. Provision should be made for a continuation
sheet for the event description, if necessary. No approvals are generally required for
this event. In some environments, approval of the analyst's work by his or her
supervisor might be required.

• Decision Event.

In our approach to change control processing, the CCB is always responsible for this
event. Thus, no entry on the IR form is needed to indicate who fills out this section.
The subject can also be omitted from this section, since it already appears on the IR

Successful Software Development, Second Edition

236

form. The event description is the CCB decision. The allowable CCB decisions are the
following: change approved, no action required, or reinvestigate (with reinvestigation
due date stipulated). The signature of the CCB chairperson is needed on the IR form
for approval of the decision.

In addition to using data elements for the four events served by the IR form, we add for
traceability one data element—a possible cross-reference to an SCN—from the
implementation event. This information is generally recorded by a member of the product
assurance organization. No originator, subject, or approval data are recorded for this event,
because they are recorded on the SCN referenced.

Using the foregoing data elements and adding elements for the dates of change control events
for traceability purposes, we developed the IR form shown in Figure 4-17. The figure also
shows the change control events that the form documents. Since different people usually fill
out the elements for each event, the form has been organized and ruled into a separate part for
each event.

The sample problem shows how the generic content specified in Table 4-4 was applied as
appropriate to each of the events covered by the form. The form was also specifically tailored
to the project for which it was designed. This latter feature is very important. Organizations
usually redesign their change control forms from project to project, even when the project
team remains relatively the same. Generally, such changes are made because each project is
organized somewhat differently, or the software environment is changed, or the change
control process is modified. Such changes may necessitate changing the change control forms
too. That is why we do not give you the only forms that should be used, but instead give you
examples and guidelines on how to develop your own forms.

The sample problem developed a form for an incident report to record the change control
process events specified in Table 4-3 (i.e., initiation, freezing, analysis, and decision). The IR
form answered the question "Is something wrong?"

Examples of the remaining forms specified in Table 4-3 (i. e., software change notice, change
request, and impact assessment) are shown in Figures 4-18, 4-19, and 4-20, respectively.

Successful Software Development, Second Edition

237

Figure 4-18 Example of a software change notice (SCN) form.

Successful Software Development, Second Edition

238

Figure 4-19 Example of a change request (CR) form and associated events that it documents.

Successful Software Development, Second Edition

239

Figure 4-20 Example of an impact assessment (IA) form.

Change Control Form—Software Change Notice (SCN)

Figure 4-18 presents an example of a software change notice. This form records information
from the implementation event. When an IR requiring changes to document(s) and/or code is
approved by the CCB, the changes are made by preparing change pages for the document(s)
and by modifying a copy of the currently baselined source code. The change is then
accomplished by placing the change pages and modified source code under control,
accompanied by an SCN to notify all project participants that the changes have been made.

Successful Software Development, Second Edition

240

One SCN can serve as the implementation notice for multiple IRs. Notice that, per Table 4-4,
Figure 4-18 contains originator data, subject identification (IR reference), event description
(changes implemented), and approvals. Changes implemented can be continued on another
page.

We note that some organizations find it useful to attach to the SCN form the (1) actual
changed pages of the documents that have been changed and (2) changed program listings of
the code that has been changed. This is oneway to get approved software product updates
quickly to project participants.

Change Control Form—Change Request (CR)

Figure 4-19 is an example of a change request form. The CR records the initiation of a request
for a change, as well as the freezing and decision events. A CR is initiated whenever
something new or different is desired by any project participant. The CR describes the change
desired, the justification for making the change, and the impact on the use and operation of
the system of implementing the requested change.

Notice from Figure 4-19 that a CCB-approval decision could be adjudged as either within the
scope of existing contracts or out of scope of existing contracts (thus requiring modification
of those contracts). In addition to incorporating into the CR data elements for the initiation,
freezing, and decision events, we include for traceability a cross-reference to the impact
assessment form for this CR from the analysis event. The form is organized and ruled into
separate parts for each person filling out the form. Provision has been made to continue
initiation event data on a separate page.

Change Control Form—Impact Assessment (IA)

Figure 4-20 shows an example of an impact assessment form. This form records the results of
the analysis event of the unplanned change control process when something new or different
is desired. The IA is filled in as a result of a CR.

The event description on the IA form is composed of three parts:

• Technical analysis.

The approach to be used in designing the proposed change, the software
(documentation and code) affected by making the change, and the approach to be used
in testing the system after the code has been changed.

• Impact analysis.

Considerations of schedule, labor, and costs to implement the proposed change.

• Alternatives.

A brief discussion of alternatives to the proposed change, with benefits and liabilities
provided for each alternative.

Each part may be continued on another page.

Successful Software Development, Second Edition

241

Now that we have a sample set of forms, let's take a look at how they might be used in an
organization's change control process. In Figure 4-21, we present scenarios showing the use
of the change control process forms and the interaction of the forms with the CCB. Each of
these scenarios deals with one of the three following questions (recall Table 4-3) related to
unplanned and planned change:

Figure 4-21 Secnarios showing the use of the change control forms.

• Do we want something new or different?
• Is something wrong?
• Should we baseline this product?

To illustrate how an organization's change control process may work, we describe each of the
three scenarios. We also provide examples of filled-out change control forms in Figures 4-22,
Figure 4-23, Figure 4-24 through Figure 4-25.

Successful Software Development, Second Edition

242

Figure 4-22 Example of a completed change request (CR) form, showing the use of the form in
answering the question "Do we want something new or different?"

Successful Software Development, Second Edition

243

Figure 4-23 Example of a completed impact assessment (IA) form for the change request (CR)
98-0019.

Successful Software Development, Second Edition

244

Figure 4-24 Example of a completed incident report (IR) form, showing use of the form in
answering the question "Is something wrong?"

Successful Software Development, Second Edition

245

Figure 4-25 Example of a completed software change notice (SCN) for the incident report (IR)
99-0012.

Change Control Process Scenario One—Do We Want Something New or
Different?

The first scenario is initiated by a desire for something not already in the software or
something that extends what is already there. (This change control process is introduced in
Figure 4-9.) As illustrated in Figure 4-22, the originator, Tom Green, initiates this unplanned
change by describing the change as follows:

Provide the capability to add foods (and their associated data) to the database.
A capacity of up to 500 additional foods should be provided.

Tom fills out the rest of the upper part of the CR. This CR is presented to the CCB, which
assigns it to an analysis group. The product assurance organization fills out the middle part of
the CR for traceability by assigning the IA Control No. of 98-0012 on March 20, 1998.

Successful Software Development, Second Edition

246

As shown in Figure 4-23, the assigned analyst, Hugh Brown, documents the results of the
analysis in an IA, which is then submitted to the CCB. Hugh documents the technical and
impact analysis.

With the IA in hand, the CCB makes a decision on the disposition of the CR. As shown in
Figure 4-22, the results of this decision are added to the bottom part of the CR. Notice that the
CCB considers this change to be out of scope of the existing contract. The contract will thus
have to be changed prior to the actual implementation of the change. Since, in our example,
the CCB decision was to approve the proposed change, the planned change control process is
initiated (after the contract is modified) as the now-approved change is reflected in successive
baseline updates, starting with the system specification.

Change Control Process Scenario Two—Is Something Wrong?

The second scenario is initiated by the question of something being at variance with the
requirements specification. (This change control process is introduced in Figure 4-10.) As
illustrated in Figure 4-24, the originator, Jane Black, initiates this (potentially) unplanned
change by describing the incident as follows:

Whenever a quantity in grams is entered in MEAL PLANNER, all the output
numbers are outlandishly high. See attached listing for the results of entering
"steak, 225 grams."

Jane, who can be any project participant, fills out the rest of the upper part of the IR.

This scenario is initiated when any project participant fills out the upper part of an IR. The IR
is introduced to the CCB, which assigns it to an analysis organization. As shown in Figure 4-
24, the analyst, John Blue, fills out the middle portion of the IR with his analysis of the IR,
and returns it to the CCB. John documents the incident cause and impact, and recommended
resolution. When the CCB makes its decision, the decision portion of the IR is filled out. The
example change in this scenario was approved by the CCB. The developers prepare the
approved change, and when the change is ready for implementation, an SCN is issued. Figure
4-25 is an example of a filled-out SCN that might result from the IR shown in Figure 4-24.
With the change made, the original wrong has been righted in a visible, traceable, and hence
manageable manner.

There is a variation to this scenario that arises occasionally at certain user installations. A
number of such installations must operate around the clock. Many of these installations are
operated by the U.S. government, but increasingly more of them operate in the private sector
(for example, some mailorder systems and some point-of-sale systems). For these
installations, a failure in their computerbased systems can have serious consequences. When
something goes wrong with their software, these users have an emergency situation. Is the
change control process bypassed for such emergencies? Not at all. A procedure that is
responsive to the emergency situation and yet maintains control should be developed in the
product assurance plan for systems at such installations.

One procedure to handle such situations that we have observed in successful operation is as
follows: When a site liaison representative of the seller (responsible for continued system
maintenance) is notified by site personnel of an emergency situation, the representative
contacts the appropriate software analyst. The analyst evaluates the problem to ensure that

Successful Software Development, Second Edition

247

there is sufficient data to repair it, that the problem is not the result of improper system usage
by the operator, and that the problem is not a duplicate of an incident report. The analyst then
proceeds to resolve the problem by the most expedient means available. When the analyst has
a solution, the analyst contacts, by telephone, at least one member of the CCB (using
teleconferencing facilities, if possible) to obtain approval prior to disseminating the solution.

When approval is obtained, the analyst sends the necessary corrections to the site having the
problem. No attempt is made to obtain a solution that is elegant or efficient or that will last
beyond thetime required to develop a permanent correction. What is desired is a solution that
quickly returns the site to operational status and that prevents further system degradation.
When the solution has been sent to the site, the analyst fills out an IR on the incident and on
the next working day submits the IR (to obtain a permanent solution) and the temporary
solution (other sites may need the same temporary fix) to the CCB.

In this procedure, notice that the basic change control process is abbreviated but not omitted.
Even in these emergency circumstances, a CCB meeting ofsorts is convened. Visibility and
traceability are maintained under all circumstances.

Change Control Process Scenario Three—Should We Baseline This Product?

This scenario deals with planned change and is initiated by the question of establishing a
product as a new or updated baseline. (This change control process is shown in Figure 4-8.)
The change control process is initiated by presentation of the draft of a software product
proposed as a new or updated baseline. This product is audited, and an audit report is
provided to the CCB. The CCB assigns an analysis organization (usually the development
organization) to analyze the discrepancies contained in the audit report. The results of this
analysis are presented to the CCB in a report that provides a recommended resolution of each
discrepancy. The CCB makes a decision on how to resolve each discrepancy and then decides
whether to baseline the software product. Once the product is baselined, the project continues
along its life cycle.

This scenario has a variation that is used by some organizations (case 2 in Figure 4-21). In
this variation, when the CCB receives the audit report on a proposed new or updated baseline,
it does not have every discrepancy in the audit report analyzed and reported upon (with a
recommended resolution) in an analysis report. A certain number of discrepancies can be
easily and quickly resolved at the CCB meeting. For example, an inconsistency in the spelling
of the software system name or an ambiguous term that is readily clarified can be quickly
resolved. For such discrepancies, there is no need to spend additional resources to analyze the
problem and to document a recommended resolution—the CCB can make an immediate
decision on each.

In this variation, when the CCB receives the audit report, it considers each discrepancy in
turn. If a discrepancy can be readily resolved, the CCB makes an immediate decision on it. If
a discrepancy is not readily resolvable at the CCB meeting, the CCB directs that an IR be
created describing the discrepancy. This IR is processed just as any other IR is processed. As
shown in Figure 4-21, the IR is analyzed (typically, by the development organization) and
returned to the CCB with the results of the analysis indicated as IR (ANALYZED). If the
CCB approves a change as a result of this IR, an SCN is issued when the change is
implemented.

Successful Software Development, Second Edition

248

Another important facet of CCB operation is the production and maintenance of formal
minutes for every CCB meeting. Let us now describe and illustrate this important
bookkeeping task in detail.

CCB Minutes

The minutes of a CCB meeting are essential to provide an accurate, precise, and thus visible
account of the proceedings of the CCB, both for the CCB members and for other project
participants. The minutes provide a recorded view into what was said and decided at a CCB
meeting. The minutes record the status of software products and changes and each action
decided upon. For each action, responsibility is assigned and a schedule for its
accomplishment is established. The series of CCB meeting minutes forms a trace of the
functioning of the CCB over the project life cycle.

Have you ever left a meeting feeling that you understood what had been decided at the
meeting, only to discover in a later discussion with a colleague that the colleague's
understanding differed from yours? Have you ever known a meeting decision to be
overlooked and forgotten because it was not written down? If you are a senior manager, have
you ever wondered whether a project under your cognizance was progressing satisfactorily?
These situations can be corrected by publication of meeting minutes. To convince you further
of the benefit of publishing CCB meeting minutes, we provide you with the following story,
which is an adaptation from an actual project.

Lack of Visibility of Project Meetings—A Story
Paul Little, the seller's project manager on Project PQR, was familiar with CCBs but
did not believe in their value. He authorized the leader of his development group,
Peter Anderson, to make changes in computer code (deviating from the design
specifications) as Peter saw fit. Paul met frequently with the user/buyer; usually Paul
was the only person from the seller's company present. No record of any of the
meetings with the customer was ever made.

Near the beginning of Project PQR, a lengthy meeting between the user/buyer (i.e.,
customer) and seller was held (at the customer's request) to ensure that the
requirements for the project were clearly understood. The requirements review
meeting was attended by most of the seller's project staff and by a number of users.
During the meeting, a question was raised about the briefly stated requirement that
"all data entries shall be fully validated." A user stated that the Project PQR system
was to perform all the data entry validation checks performed by the existing system
(which Project PQR was replacing), plus several new and more complex data
validation checks that were urgently needed. Unfortunately, the current system was
not well documented, and no list of the current data validation checks existed. The
user agreed to "dig out" from current computer source code all the current data
validation checks and to inform the seller what these checks were. No minutes were
kept of this meeting on user needs.

A week later, the user orally presented to Peter (the seller's development group
leader) a number of data entry validation checks for the current system. Peter noted
these items but did not see fit to publish the list or to keep any written record of his

Successful Software Development, Second Edition

249

meeting with the user. He followed up the meeting by assigning data validation
checks to appropriate development group members. A month later, Peter suddenly
resigned from the company to accept an opportunity with another company.

Mary Rose, head of the seller's test team (who was not present at the requirements
review meeting), was unable to obtain a list of the data validation checks to be
performed by the Project PQR system. In frustration, she designed tests to ascertain
that the system performed data validation checks that seemed reasonable to her.
(Unfortunately, what her tests ascertained fell far short of the user's needs in this
area.)

On the day before the Project PQR system was to be demonstrated to the user prior
to delivery, Paul told his (new) development group leader, Sally Vines, that at his
meeting with the user that morning, the user said he was anxiously awaiting
demonstration the next day of one of the new, complex data validation checks (first
introduced at the requirements review meeting). Sally was surprised. She told Paul
that she had never heard of the requirement and certainly had not programmed it.
Paul was aghast. He told Sally that two months before, at one of his meetings with
the user, the user had asked whether that specific capability would be in the
delivered system. Paul had confidently told the user that the desired capability
would be in the first delivery of software code.

Frantically, Sally and her group set about to add the missing capability in the few
hours still left. Regrettably, they did not succeed in getting the new capability to
work properly at the next morning's demonstration. In fact, at the demonstration it
soon became evident that their frantic efforts had caused several other previously
checked-out data validation checks to work improperly. Concerned by the improper
performance of the system, the user requested additional demonstration of all the
data entry validation checks that he needed. This demonstration revealed that none
of the new capabilities had been coded and that a number of capabilities used by the
current system had been omitted. The user was greatly upset and refused to accept
the software. With much chagrin, the seller's project team went back to work and a
few months later delivered to the user a software system that the user found
acceptable. Paul, the project manager, had departed one month earlier to seek
employment elsewhere.

In our story, it turned out that no one remembered the data entry validation checks introduced
at the requirements review meeting. Everyone assumed that the list of validation checks the
user gave Peter contained all the checks that the user desired. Since the list of validation
checks that the user gave to Peter was never written down, but rather was passed along orally,
some checks got lost in the oral transfers. The abrupt departure of Peter caused loss of the
only information the seller had about data entry validation checks to be incorporated in the
new system. These problems could have been avoided if minutes of each meeting had been
recorded and published. The developers would have had visibility into what to develop. The
testers would have had visibility into what to test. The user would have had visibility into
what he would be receiving in his completed system. The departure of the development group
leader would not have had an impact on this visibility. The production of minutes here would
have saved considerable time and money for the project.

Successful Software Development, Second Edition

250

We now turn our attention to the mechanics of keeping track of what the CCB does. Let us
consider first who should record the minutes of a CCB meeting. Some people consider taking
minutes to be a purely clerical job and would use a person trained in secretarial skills (e.g.,
shorthand) for this task. Such a person would generally not be involved in the discussion
within the CCB and therefore could devote full attention to keeping the minutes. A CCB
secretary with shorthand skills could produce a verbatim transcript of a CCB meeting if
required. On the negative side, a person with secretarial skills generally is not technically
cognizant of the CCB discussion and therefore might not know when CCB decisions had been
reached.

Another possible CCB secretary would be a member of the development staff responsible for
implementing CCB-approved changes. Such a person would be most knowledgeable on the
software and possible changes to it, i.e., in understanding what the CCB discusses and
decides. However, that very understanding would probably involve the person in the subjects
under discussion and distract her or him from the secretarial duties. Further, the person's
organizational allegiance may bias her or his recording.

A member of the product assurance organization could serve as CCB secretary. This person
certainly would be technically cognizant of the CCB discussions and decisions. The PA
practitioner may well get involved in the CCB discussion, but such involvement is usually
focused on the CCB reaching a decision rather than on the decision itself. Since the product
assurance practitioner is not involved in implementing software changes, the practitioner is
likely to have a dispassionate viewpoint of the proceedings. This neutral viewpoint should be
reflected in the recording of the minutes.

What should be recorded in the CCB minutes? The most fundamental items to record are the
results of discussions of agenda items, action assignments, and decisions of the CCB. These
items could be quite wide-ranging (depending upon the CCB charter for a project). However,
the most important subjects relative to its change control responsibilities are software
products and software changes. The status of each item discussed and the action taken on each
must be recorded in the minutes. Other subjects that should be recorded include the results of
audits and of tests, the establishment of baselines, and the implementation of software
products and changes. At the end of the minutes, a summary of actions to be taken is
included, with responsibility for action and due date explicitly stated. A suggested format for
CCB minutes is presented in Figure 4-26.

Successful Software Development, Second Edition

251

Figure 4-26 Format for CCB minutes.

Rationale for including some of the items shown in Figure 4-26 follows:

• An identifier and date—

to give visibility to the minutes and to make them traceable.

Successful Software Development, Second Edition

252

• A list of attendees and their organizational affiliation—

to record who participated in the decision-making.

• A list of organizations not represented at the meeting—

to record whose viewpoints were not considered in the decision-making.

• The status of the minutes of the preceding meeting, including any necessary
corrections—

to assure that the trace of CCB minutes is correct and accurate.

• The time and place of the next meeting—

to give visibility to the schedule for the next meeting.

• A list of people receiving copies of the minutes—

to inform each recipient who else has received the information contained in the
minutes (and to expand project visibility outside the CCB meeting participants, if
desired).

Recording the status of the minutes of the preceding meeting is particularly important for
traceability purposes. The minutes should show that the preceding meeting minutes were
correct as recorded or that they needed specific corrections and were approved as corrected.

A copy of the minutes should be distributed to every person who attends the meeting. Copies
should also be sent to each member of the CCB who was not present at the meeting and to
appropriate senior managers. These minutes let them know exactly what happened at the
meeting. The presence of the names of senior managers in the distribution list of the minutes
contributes to making management visible to project participants.

Next, let us briefly consider the mechanics of a CCB meeting relative to the keeping of
minutes. The first item of business at every CCB meeting is to consider the minutes of the
preceding meeting. Any corrections desired are introduced, considered, and either approved
or disapproved. If there are no corrections, the minutes are approved without correction.
Otherwise, the minutes are approved as corrected.

As each item on the agenda is discussed and a decision is made, the CCB secretary records
that decision. When the secretary is not sure what decision has been reached by the CCB, the
secretary should stop the proceedings and ascertain precisely what was decided. At the end of
the CCB meeting, the secretary should summarize the decisions made by the CCB and the
actions to be taken.

To close out this section, we present and discuss minutes of four different types of CCBs. The
minutes follow the format shown in Figure 4-26. The four types of meetings are as follows:

• A software CCB considering a planned change (see Figure 4-27).

Successful Software Development, Second Edition

253

Figure 4-27 Minutes of a software CCB meeting considering a planned change.

Successful Software Development, Second Edition

254

• A software CCB considering unplanned changes (see Figure 4-28).

Figure 4-28 Minutes of a software CCB meeting considering unplanned changes.

Successful Software Development, Second Edition

255

• A test incident CCB considering the results of an acceptance test (see Figure 4-29).

Figure 4-29 Minutes of a Test Incident CCB meeting.

• A software turnover CCB considering the results of resolving TIRs[6] (see Figure 4-30).

6 A test incident report (TIR) is a special case of an incident report. TIRs can be generated by a test team when they execute a set of test procedures
constructed from a test plan and specification document (e.g., requirements and design specifications). The expected results specified in the test
documentation are compared with the observed results obtained from computer code execution. If the expected results do not match the observed
results, the tester generates a TIR detailing the differences.

Successful Software Development, Second Edition

256

Figure 4-30 Minutes of a Softward Turnover CCB meeting.

Note that these example CCB minutes have representatives from the user, the buyer, and the
seller. For clarity, instead of using fictitious organizations in these figures, we indicate each
person's organization by his/her affiliation (user, buyer, or seller) and group (management,
development, or product assurance). We also indicate in brackets information as to position
(e.g., manager, secretary, chairperson) for some of the CCB members in order to show how
these positions relate to the CCB. The bracketed information would not normally appear in
CCB minutes.

Successful Software Development, Second Edition

257

Figure 4-27 shows the minutes of a CCB considering a planned change, namely, CR 98-0019
to System MEAL PLANNER. This change request had previously been approved by the
CCB. Hugh Brown (from the development organization) presented an overview of a draft of
the revised version of the MEAL PLANNER Software Requirements Specification. Hugh was
followed by Stan Tanbrook (from the buyer's product assurance group) who presented an
audit report on the draft software product. The CCB considered all the findings in the audit
report. For eleven of these findings, the CCB felt no need for further analysis and approved
them for implementation. These findings resulted in changes to be made to the software
requirements specification. An incident report (IR 98-0097) was written to cover this set of
approved changes, in order to give them visibility and accountability (i.e., to enable them to
be tracked until implemented). The CCB decided that six of the audit report findings required
further analysis before the CCB made a decision. Incident reports were originated for each of
these findings. The CCB decided that no action was required on three of the audit report
findings. The auditor may have been unsure about whether discrepancies existed, and so gave
the issues visibility by reporting them as findings. The broad representation on the CCB, with
its range of viewpoints, was able to resolve these issues as not being discrepancies. One of the
buyers raised the issue of an apparent inconsistency, not previously observed, in change
request CR 98-0019. The CCB decided that a capability desired by the user was missing from
the software requirements specification and directed that it be added (identifying the change
as IR 98-0104 for visibility and traceability).

Figure 4-28 shows the minutes of a CCB considering an unplanned change. Notice that a
correction has been made to the minutes of the previous meeting (paragraph 3.1.1). Whether
corrected or not, minutes of the previous meeting should always be approved by the CCB.
Under paragraph 3.0, the CCB minutes document the (1) handling of an action item from a
previous meeting, (2) consideration of an emergency incident that occurred two days before,
and (3) processing of four incident reports. Notice that all these items resulted in the
generation of additional action items, which are summarized in paragraph 4.0. As shown in
paragraph 3.4, IR 99-0012 was approved, and a software change notice needs to be submitted.
An SCN would be prepared and submitted by one of the seller development staff. Note that
the approval should also be indicated on the actual IR. Observe in paragraph 2.1 that
representatives of two groups normally present at the CCB meeting did not attend this one. In
the distribution list at the end of the minutes, the names of the missing representatives are
included so that they can be apprised of the meeting results.

CCB meetings generally are not held solely to discuss one type of change. In general, a CCB
considers both planned and unplanned changes at the same meeting.

The minutes shown in Figures 4-29 and 4-30 relate to consecutive CCB meetings that might
occur during an acceptance testing cycle. The interaction of a Test Incident CCB and a
Software Turnover CCB provide visibility into the acceptance testing cycle used to determine
whether a software product is ready to be delivered to a customer.

Figure 4-29 shows that the 105 TIRs were written in the testing period prior to the Test
Incident CCB, and Figure 4-30 shows that the code was developed in response to 100 TIRs
prior to the Software Turnover CCB. A traceability thread can be seen linking the minutes in
Figure 4-29 (paragraph 3.4) and the minutes in Figure 4-30 (paragraph 3.4).

In all the minutes shown in Figure 4-27, Figure 4-28, Figure 4-29 through 4-30, note that
senior management of both the buyer and the seller is included in the distribution of the

Successful Software Development, Second Edition

258

minutes. From these minutes, senior management gains visibility into the progress of the
project. These sample minutes complete our discussion of theimportant bookkeeping task of
keeping and publishing CCB minutes.

This discussion completes our examination of the forms that support the change control
process. In this section, we have shown that paperwork is necessary to provide visibility and
traceability in the change control process. We discussed how you could develop the forms that
you might need on a project. We also provided a set of forms as examples and illustrated their
use. Finally, we provided a sample format for CCB minutes and several examples of how you
may decide to record CCB decisions and actions.

4.7 Change Control Process Summary

In this chapter, we focused on the mechanics of change control. After presenting the two
broad classes of change that are continually occurring on a software project (planned change
and unplanned change), we discussed in depth the process of change control, the organization
and procedures to accomplish it, and the paperwork to support it. We pointed out and
illustrated that the focal point of the change control process is the CCB. This most important
organization is the control activity for the entire change control process.

The role we defined for the CCB in this chapter is broader in scope—regarding planned
change control and unplanned document change control—than is generally granted to it by
others. Perhaps some readers would be more comfortable in referring to this group as a
committee—the title used is immaterial. What is important is that a group like the one we
have here called a CCB be established to control the change process in a disciplined, visible,
and traceable manner.

We have presented the CCB as a decision-making body controlling software changes. The
CCB must consider each planned or unplanned change. But how does the CCB know whether
to approve, disapprove, reanalyze, etc., each change? To formulate an answer to this question,
recall our discussion of the technical inputs to the CCB—the review initiator, the audit report,
and the analysis report.

As illustrated in Figure 4-31, you can use the following annotated outline of an ADPE CCB
guideline as a starting point for defining how CCBs may be incorporated into your software
systems development environment.

Successful Software Development, Second Edition

259

Figure 4-31 An annotated outline for getting you started in defining a CCB guideline.

The CCB guideline may consist of the following sections:

• Purpose.

This section states the purpose of the guideline. The purpose is to provide guidance for
establishing CCBs, defining the role of CCBs in project efforts, and conducting CCB
meetings. Specific purposes of the guideline may include:

Successful Software Development, Second Edition

260

o Your organization's CCB concept
o Definition of CCB participants
o Methods for documenting CCB meetings
o Guidance for developing a CCB charter
o Guidance for conducting CCB meetings

• Background.

This section provides an overview of the software systems development organization,
and the types of products and services the organization provides to its customers.

• Change Control Board Overview.

This section presents an overview of the CCB concept. This material contains some
tutorial information, and lessons learned by members of seller and customer staff.
Management, development, and product assurance disciplines are presented and
discussed in terms of the skills each discipline provides to a project. It is important to
present a definition of what type of meeting constitutes a CCB meeting. Remember,
not every project meeting with the customer needs to be a CCB. A project meeting
may be defined as a CCB meeting when some combination of the following items
affects project success: (1) decisions (affecting project deliverables, schedule, or
resources) are made, (2) action items are assigned, and/or (3) issues are discussed.
Representative project decisions, action items, and discussions may be presented. For
example,

o Decisions changing a deliverable due date, specifying deliverable format and
content, directing that no more product assurance testing is required.

o Actions items to prepare a document outline by a due date, to investigate the
impact on product delivery using relational database technology versus object-
oriented technology.

o Discussions regarding the ability to complete a task within the remaining
project resources, proposed changes to the project plan, test incident reports
generated during acceptance testing.

The section also details what organizational units are CCB participants. This
discussion defines what specific organizational elements make up the management,
development, and product assurance groups. For example,

. . .the product assurance group is assigned the responsibility for
providing management with insight into product status. The product
assurance group is an independent organization and provides the
following skills: (1) quality assurance, (2) verification and validation,
(3) acceptance test and evaluation, and (4) configuration management.
. . .

• CCB Implementation Considerations.

This section defines and walks through the process for establishing a CCB. CCB scope
of activities is discussed in terms of (1) programmatic issues, (2) product development
issues, (3) product change issues, and (4) product assurance issues. Examples of the

Successful Software Development, Second Edition

261

possible issues are presented. The ground rules for interaction between the seller and
customer are defined.

The section also defines the methods for documenting CCB meetings and internal
project meetings. A sample format for a CCB charter and a sample format for CCB
minutes are provided. How a CCB meeting is to be conducted is also detailed.

• Appendices.

Appendices are added as necessary. The appendices provide the place where you can
add additional detail without breaking up the text in the main body. For example, you
may want to have an appendix that contains an annotated CCB charter outline. In the
main body you can simply make your point about the charter and refer the reader to
the appendix for the details. Appendices can also contain change control processes,
such as the one we discussed in the chapter, and supporting change control forms.

We have completed our discussion of the change control process in this chapter. However, in
discussing the change control process, we made frequent reference to the audit function. The
allusions to auditing in the context of change control in this chapter should make you better
prepared to appreciate the importance of the audit function discussed in the next chapter.

Successful Software Development, Second Edition

262

Chapter 5. Product and Process Reviews
Asking a working writer what he thinks about critics is like asking a lamp-post what it feels
about dogs.

—Christopher Hampton (b. 1946), British playwright.

©by Christopher Hampton 1977.

5.1 Introduction

The captain who went down with the Titanic was informed—so history tells—that his ship
was in iceberg-infested waters. Although he (and his crew and passengers) may have indeed
felt that the Titanic was unsinkable, would he (and his crew and passengers) not have been
better off knowing where the icebergs were and how big they were, so that he had an option
of navigating around them?

We believe that each software systems development project should be approached with the
candid realization that each project is a voyage through iceberg-infested waters. No matter
how well customers and/or sellers believe they understand what is needed to be done, there
are unknown icebergs (e.g., unsatisfied requirements, schedule slippages, and cost overruns).
Customers and/or sellers need to be able to see such icebergs and steer clear of them to the
extent prudently possible.

This chapter focuses on how customers and/or sellers can gain visibility into project icebergs
associated with software systems development processes and the resultant products. As shown
in Figure 5-1, the purpose of product and process reviews is to give decision makers and other
software systems development project participants visibility into the project state of affairs.
These reviews serve to lessen guesswork on what to do next.

Successful Software Development, Second Edition

263

Figure 5-1 Reviews give visibility into processes and resultant software products. With this
visibility, management, development, and product assurance personnel can make intelligent,
informed decisions regarding what to do next on a software project.

Just as the captain of the Titanic and his crew needed iceberg detectors, the captain of the
software project ship and the captain's crew need product and process state detectors. Product
and process reviews serve to give decision makers and other project participants visibility into
the project state of affairs—so that they can better anticipate the project future. Moreover, this
visibility serves to reduce the likelihood of shocking surprises regarding product state.

This chapter presents techniques for detecting and steering clear of project icebergs. We label
these techniques "software product reviews" and "software systems development process
reviews."

At the most fundamental level, a review is "a comparison of an entity against a ground truth
pertaining to that entity." As a result of this comparison, discrepancies between the entity and
the ground truth may be uncovered. Figure 5-2 depicts this concept for products and
processes.

Successful Software Development, Second Edition

264

Figure 5-2 The heart of product and process reviews is ground truth.

Ground truth is an established benchmark against which, by comparison, change is detected.
If the ground truth is found to be faulty, it needs to be corrected and then reestablished as the
new ground truth. We use the following two classes of ground truth:

• Product ground truth includes standards, requirements, predecessor products,
design, the product itself, and some combination of products. For example, a software
detailed design specification can be compared against the following product ground
truth:

o A documentation standard that was used to develop the specification.
o A previously developed and approved requirements specification that was used

as the WHAT for the design.
o A previously developed and approved preliminary design specification that

specified at a top level how the WHAT in the requirements specification is to
be implemented.

o Itself

Regarding self-comparison, a product can be compared against itself for
inconsistencies, ambiguities, grammatical weaknesses, spelling errors, TBDs
(to be determined). Regarding comparison against standards, a product can be
compared against standards governing the product format and/or content (i.e., a
quality assurance comparison).

• Process ground truth includes, in this book, one or more application development
process environment (ADPE) elements. For example, a project's peer review process

Successful Software Development, Second Edition

265

can be compared against guidance provided in an ADPE Peer Review element. As
another example, a project's CCB operation can be compared against guidance offered
in an ADPE CCB element.

This chapter details reviews that are limited to the project level. It is at this level that visibility
into product and process state is of prime importance. However, many of the review concepts
that we address can also be applied at other organizational levels.

The plan for this chapter is the following:

• In Section 5.2—Product Reviews and Process Reviews Key Ideas, we present the
key ideas that you can expect to extract from this chapter.

• In Section 5.3—A Taxonomy of Product and Process Reviews, we present a set of
software product and project process review concepts organized by management,
development, and product assurance disciplines. We illustrate the review concepts
with examples drawn from the real world.

• In Section 5.4—Combining Reviews for Software Audits, we introduce software
product and software process audits. We present the software product audit concept
and then provide two audit examples using software documents. We also discuss how
audits are used in conjunction with the CCB. The first software document audit
example (i.e., Automatic Donut-Making System) stresses how requirements and
design documentation are used during a product audit. The second software document
audit example (i.e., System PREDICT) stresses how project documentation is used to
uncover discrepancies that represent potential icebergs.

We then examine two more software product audit examples. The first example (i.e.,
System SHAPES) illustrates how a requirements specification, a design specification,
a test plan, test procedures, and test incident reports (TIRs) are used to test a system.
The second example (i.e., System LOOKOUT) stresses the testability of requirements.

We then present the software process audit concept and set the stage for a more in-
depth examination of software systems development processes using measurement
techniques discussed in Chapter 6.

• In Section 5.5—Product and Process Reviews Summary, we summarize the key
points developed in the chapter. We include annotated outlines for (1) ADPE policy
for product assurance, (2) ADPE guideline for peer reviews, and (3) ADPE procedure
for acceptance testing. You can use these outlines as a starting point for developing
ADPE elements addres- sing product and process reviews that can be incorporated
into your environment.

5.2 Product and Process Reviews Key Ideas

Figure 5-3 lists the key ideas that you can expect to extract from this chapter. To introduce
you to this chapter, we briefly explain these key ideas. Their full intent will become apparent
as you go through this chapter.

Successful Software Development, Second Edition

266

Figure 5-3 Product and process reviews help the seller develop products that conform to the
customer's requirements. These key ideas are your guide to keeping your software systems
development process and resultant products on track.

1. To achieve visibility into product and project state, couple product and process
reviews to the CCB.

Without this visibility, the CCB decision-making function is compromised.

2. Visibility into product state is achieved through a broad spectrum of reviews ranging
from the nontechnical (e.g., editing) to the technical (e.g., peer reviews, product
assurance reviews) to the programmatic (e.g., periodic management reviews).

3. A standing CCB agenda item should be the reporting of product assurance reviews.

This item can range from a brief mention that a review took place to a consideration of
each incident report that product assurance generates.

4. Product reviews can be extremely labor intensive, especially the product assurance
testing activity.

The payoff for this labor expenditure is reduced risk of doing things over again. Our
project planning guidance is not to skimp on resources for product review. Cursory (or
rubber-stamp) product review is generally wasted effort.

5. Product assurance review results should be presented to the CCB in neutral terms to
avoid skewing the decision-making process.

Successful Software Development, Second Edition

267

Product assurance should make sure each incident report is reasonably self-contained
to facilitate decision making.

6. Submit document deliverables to an editor before delivery.

Misspellings and poor grammar can quickly deflate seller credibility in the eyes of the
customer, even if the work is sound technically. Moreover, some misspellings and
grammatical errors can undermine technical content.

7. Schedule project reviews with the management above the project level at a frequency
that is at least 25 percent of the project duration.

Project reviews help to ensure that senior management has visibility into a project.

8. Management should ensure that peer reviews are incorporated into the software
systems development process. In general, management should not participate in the
reviews.

Management should work with the technical staff to reach an agreement as to what
information resulting from peer reviews should bemade available to what level of
management. Peer reviews are primarily intended for candid technical interchange
among developers. This comment is not meant to imply that management can never
participate in a peer review. Each organization decides what is best for its particular
situation.

9. Seller management should establish policy regarding what review information is
appropriate for disclosure to the buyer/user at a CCB.

Balance must be achieved between maintaining customer confidence in seller candor
and customer use of review results to bash the seller.

10. At a minimum, document in an ADPE element the product assurance role in your
environment.

In this element, you may want to include some guidance regarding other reviews such
as peer reviews, editing, and management reviews. Alternatively, you may want to
address these reviews in separate ADPE elements.

5.3 A Taxonomy of Product and Process Reviews

The reviews described in this chapter are primarily associated with the seller development
team. As indicated by the areas highlighted in dark gray in Figure 5-4, product and process
reviews involve the seller project manager, the lead developer, the product assurance
manager, the technical editor, seller management, and the change control board (CCB).

Successful Software Development, Second Edition

268

Figure 5-4 This chapter's discussion focuses on key software product and software systems
development process reviews. The seller development team performs these reviews at the
project level.

Because many of the product and process reviews support CCB activity, the customer also is
involved in these review activities. Furthermore, because these reviews should be integrated
with any software systems development process, buyers/users reading this chapter may want
to incorporate these concepts into their requests for seller services.

There is no unique way to categorize product and process reviews. Figure 5-5 shows that we
choose to categorize the software product and project process reviews along the lines of the
three systems disciplines introduced in Chapter1—i.e., management, development, and
product assurance.

Successful Software Development, Second Edition

269

Figure 5-5 This chapter describes key management, development, and product assurance
reviews at the project level. The reviews fall into two major categories—product and process.

Our review taxonomy addresses the visibility issues associated with reducing software
systems development risk. Each of the reviews in our taxonomy provides insight into the state
of the software development project. This insight helps the customer and/or developer make
intelligent, informed decisions on what to do next.

The taxonomy shown in Figure 5-5 and the entries in the taxonomy are intended to be a
starting point for you to design your own review taxonomy and set of entries. For example,
the taxonomy shows peer reviews and technical edit as software product reviews performed
by developers; not shown are types of testing that developers perform. Developers working
alone often perform levels of testing below the system level, such as the testing of the logic
structure of a separately compilable piece of computer code. From the review perspective, we
consider such testing activity a "self review." That is, a review that involves only the party
who created the product under review. We do not show such "self reviews" in Figure 5-5. If,
on the other hand, a developer invites someone else such as another developer to witness and
subsequently comment on such testing, then that activity could be considered a peer review
(with overtones of both product and process review).

If the taxonomy shown in Figure 5-5 complements your organization, then you can list your
corresponding set of entries for the taxonomy. This set may (1) include some of the entries
shown, (2) delete some of the entries (e.g., you may not consider technical edit as a type of
review; rather it is simply part of your document production process), and/or (3) include new
entries (e.g., types of testing that developers perform, types of project tracking that developers
perform).

If the taxonomy shown in Figure 5-5 does not complement your organization, then you can
use the taxonomy to help you come up with ideas on how to construct a taxonomy that may
be more appropriate for your environment. For example, you may not have an integrated
product assurance organization that performs quality assurance, testing, and configuration
management. Instead, you may have a quality assurance organization, a testing organization,
and a configuration management organization. In this case, you may want to replace the

Successful Software Development, Second Edition

270

product assurance row in the taxonomy shown with three separate rows—one for quality
assurance, one for testing, and one for configuration management. Then, in the testing row,
for example, you might have in the Software Product column, the types of testing that your
testing organization performs. Your testing organization may be responsible for all testing, in
which case the developers might not perform any testing. Or, your testing organization might
perform tests that complement and supplement testing that the developers perform.

We assert throughout this book that there is no one way to do software systems development.
Whatever way you choose to define your review taxonomy and its entries, reviews should
provide visibility into what is going on with respect to the products being developed and the
processes used to develop these products.

As shown in Figure 5-6, software product reviews involve complementary management,
development, and product assurance viewpoints. For example, management may ask a
programmatic tracking question such as the following—"Is the product being developed on
time and within budget?" Developers may examine the technical details of a software product
at a peer review and provide suggestions to the lead product developer. Product assurance
reviewers may examine whether a software product conforms to established standards. Each
review serves different visibility needs.

Successful Software Development, Second Edition

271

Figure 5-6 Software product reviews address programmatic, technical, editorial, and
conformance questions.

Just as the different types of product reviews offer complementary views of a product, the
different types of process reviews offer complementary views of the project's software
systems development process. As suggested by the questions in Figure 5-7, these views serve
different visibility needs.

Successful Software Development, Second Edition

272

Figure 5-7 Project software systems development process reviews address programmatic,
technical, and conformance questions.

We present both the product and process reviews from management, development, and
product assurance viewpoints in the following sections.

Management Reviews

Management provides the following types of programmatic tracking and technical oversight
for a specific software product:

• A project manager tracks the cost and schedule of product development. This
programmatic tracking gives visibility to cost and schedule issues surrounding the
development of a product. A project manager asks questions such as the following: Is
product development falling behind? Have unplanned costs emerged that will impact
the budget for delivering the product on time?

• The project manager's management (or other senior management) periodically
provides technical oversight for a specific software product. Senior management

Successful Software Development, Second Edition

273

becomes involved with product development to mentor the project manager to
anticipate product development adversities (e.g., requirements creep induced by a
customer who has difficulty focusing on product specifics or misunderstandings by
seller developers of what the customer wants). The amount of technical oversight is a
management prerogative and is related to a product's complexity, size, and
importance. This oversight helps the project manager repeat previous successes. For
those cases in which the project has more than one layer of management, the project
manager provides technical oversight to task leaders (i.e., the next lower management
layer).

Management provides the following types of programmatic tracking and technical oversight
of the project's software systems development process:

• A project manager tracks project software systems development programmatically.
The programmatic tracking gives visibility to cost and schedule issues surrounding the
entire project (versus product-specific issues). A project manager asks questions such
as the following: Is the project falling behind? Am I consistently late with my
deliverables? Have unplanned costs emerged that will impact the budget for delivering
the project's remaining products on time?

• The project manager's management (or other senior management) periodically
provides technical oversight for a specific project. Management becomes involved
with a project to mentor the project manager to anticipate project software systems
development adversities (e.g., analysis paralysis induced by blind adherence to the
development process, or the lack of effective and timely communication between the
developers and the buyers/users). The amount of technical oversight is a management
prerogative and is related to a project's complexity, size, and importance. This
oversight helps the project manager repeat previous successes. For those cases in
which the project has more than one layer of management, the project manager
provides technical oversight to task leaders (i.e., the next lower management layer).

Examples of management product and process reviews are presented in the sections that
follow.

Product Programmatic Tracking

Figure 5-8 addresses the following type of product programmatic tracking question: Is the
product being developed on time and within budget? Two examples of programmatic tracking
discrepancies are shown. One discrepancy involves a schedule slippage because the lead
developer was called away from the office. Fortunately, in this example, the product's
delivery was not on the project's critical path, and the delivery could be slipped one week
without impacting the overall project. The second discrepancy involves a schedule
acceleration due to peer reviews and product assurance reviews of the design specification.

Successful Software Development, Second Edition

274

Figure 5-8 Product programmatic tracking helps provide insight into planned versus actual
schedule and resource product development issues.

Such discrepancies might be reported (or uncovered) during the comparison of a product
under development against the cost and schedule governing the development of that product.
The cost and schedule, which should be initially specified in the project plan, serve as
programmatic standards. This product programmatic check provides a means for determining
whether (1) the standards should be adjusted (i.e., whether the schedule should be changed or
the budget should be changed, or both) or (2) the product should be adjusted (i.e., whether the
product requirements should be augmented or cut back). When performed throughout a
project and when performed in conjunction with other reviews, these programmatic checks
help to achieve convergence between customer and seller expectations regarding the product.

Process Programmatic Tracking

Figure 5-9 addresses the following type of process programmatic tracking question: Is the
application of the project process consistent with project budget and schedule? The following
three examples of process programmatic tracking discrepancies are shown: (1) projected
budget overruns, (2) schedule change, and (3) reduction in scope. The timeline shown is for a
four-month segment of the project involving two products and one service; the timeline
indicates planned schedules. The discrepancy reports shown are assumed to be written
sometime during December 1999, before the completion of Product 5.

Successful Software Development, Second Edition

275

Figure 5-9 Product programmatic tracking helps provide insight into planned versus actual
schedule and resource issue involve with the overall project.

Such discrepancies might be reported (or uncovered) during the comparison of project in
progress against the cost and schedule governing that project. The cost and schedule, which
should be initially specified in the project plan, serve as programmatic standards. This process
programmatic check provides a means for determining whether (1) the standards should be
adjusted (i.e., whether the schedule should be changed or the budget should be changed, or
both) or (2) the project should be adjusted (i.e., whether the project scope should be
augmented or cut back). When performed throughout a project, these project-level
programmatic checks help to achieve convergence between customer and seller expectations
regarding the overall project.

Product Technical Oversight

Figure 5-10 addresses the following type of product technical oversight question: Have you
considered how you are going to address the following issues: (1) . . . , (2). . . , and (3) . . . ?
Two examples of product technical oversight are shown. Such remarks might be discussed
after the seller management has an opportunity to review the products, but before the products
are shown to the customer.

Successful Software Development, Second Edition

276

Figure 5-10 Here are some example remarks that a senior manager might pass along to a
project manager or to a project team member on the context or orientation of a software(-
related) product.

The management remarks are based primarily on personal or known experiences that have
been successful or unsuccessful. The example remarks concerning the data conversion
requirements document suggest that the team may understand the conversion process, as
evidenced by the reference to the figure showing the overall conversion process. However,
management is suggesting that the figure should be described in more detail so that the reader
(e.g., a customer) clearly understands what is going to happen. Such explanation may result in
the developer's discovering something that was overlooked or the customer's pointing out
something that was not previously discussed with the seller. In this example, one intent of the
product technical oversight is to remove any ambiguities in what is needed to be done before
the data are converted.

Regarding the second management comment on the overall conversion process in the data
conversion requirements document, the suggestion is made to explain a figure. The
developers may think that figures included in documents are self-evident. Here, management
is bringing to bear its experience in working with customers to ensure that a product clearly
communicates.

The seller management remarks concerning the draft project plan suggest that the planning
team may understand the technical side of the planning problem but does not fully appreciate
the resources required to produce the deliverables. The seller developers on the planning team
are engineers who think in terms of computer code. Sometimes they may read "Cadillac"

Successful Software Development, Second Edition

277

where the buyer/user intended "Chevrolet." Here, the seller management is suggesting that the
developers rethink their approach and see if they can balance the number of deliverables with
the planned resources.

Process Technical Oversight

Figure 5-11 addresses the following type of process technical oversight question: How are
you prescriptively applying the project process to the development of the product? One
example of process technical oversight is shown. In this example, the seller management
offers suggestions regarding the project's software development process.

Figure 5-11 Here are some example remarks that a senior manager might pass along to a
project manager or to a project team member regarding the project-level software systems
development process.

In the example the seller senior manager suggests that the development team keep track of
how long the peer reviews are taking. In the future, the development team can use this
historical information to help it better plan required resources. In addition, the seller senior
manager suggests that the CCB meetings be modified to track "new" requirements as they are
discovered. As indicated in the manager's remarks, the schedule cannot be slipped; therefore,
implementing new requirements may mean that additional resources are needed. However,
additional resources are not always the solution to implementing more requirements. Other
approaches include "phased implementation"—that is, putting some requirements in one
product and addressing the remainder in a follow-on product.

Successful Software Development, Second Edition

278

Development Reviews

Development product and process reviews include peer reviews and technical editing. Peer
reviews can range from "one-on-one" sessions between the lead developer and a peer (or a
couple of peers) to "formal scheduled" sessions during which materials are distributed to the
reviewers (e.g., three to six reviewers) in advance of the scheduled time. As discussed in the
following paragraphs, the reviews are technical in nature. Generally, management does not
directly participate but should be informed about the reviews.

Development conducts the following types of peer reviews of the evolving product and
technical edits of documents:

• Product peer reviews involve detailed technical interchange among developers to help
the lead developer better implement what the customer wants. For example, the peer
review can help the lead developer present material consistent with the product's
intended audience. If the audience consists of novices, then the material should
include explanations of fundamental or basic concepts. On the other hand, if the
audience consists of experts, the material does not have to devote so much attention to
the basics.

• Technical editing helps to ensure that the document content is communicated
unambiguously to the targeted audience and that the product conforms to accepted
documentation standards. Technical editing focuses on technical content presentation
to ensure that the product is cogent and unambiguous.

Development conducts the following type of peer reviews of the project's software systems
development process:

• Project process peer reviews involve detailed technical interchange among developers
to help the lead developer detail the steps necessary to develop a software product
within the context of the project's software systems development process. For
example, the peer review can help the lead developer decide on the appropriate mix of
process review activities (e.g., product peer reviews, technical edits, and/or product
assurance reviews) to apply to a software product.

Examples of development product and process reviews are presented in the following
paragraphs.

Product Peer Reviews

Figure 5-12 addresses the following type of product peer review statement:

Successful Software Development, Second Edition

279

Figure 5-12 Here are examples of product peer review comments for a software document,
software-related document, computer code, and data.

You need to consider how you are going to address the following product
development technical issues: (1) . . . , (2) . . . , and (3)

Example product peer review comments are shown for (1) a software document, (2) a
softwarerelated document, (3) computer code, and (4) data.

The lead developer gets together with one or more peers to discuss a product or some portion
of a product. As suggested in Figure 5-12, the peers ask questions and provide suggestions to
the lead developer. For example, the peers suggest that the response time requirement in the
requirements specification is not testable. The peers point out that the requirement does not
define a time interval over which response time is to be measured. Note that the issue of
testability is occurring during requirements specification. In this example, the seller
developers are trying to ensure closure with the customer on what the customer wants by
making sure each requirement is testable.

Successful Software Development, Second Edition

280

Process Peer Reviews

Figure 5-13 addresses the following type of process peer review question: What is the plan for
applying the project process to the development of the product? Three examples of process
peer review comments are shown: (1) requirements specification development, (2) computer
code development, and (3) database development.

Figure 5-13 Here are examples of process peer review comments for the development of a
requirements specification, computer code, and a database.

The lead developer gets together with one or more peers to discuss the software development
process or some portion of the process. As suggested in the figure, the peers ask questions and
provide suggestions to the lead developer. For example, the peers suggest that the lead
developer use information engineering techniques and tools to develop the database. Specific
recommendations are made regarding the process of detailing subject areas in terms of entity
types, their relationships, and then attributes. The seller developers are also trying to ensure
closure with the customer by suggesting the lead developer obtain customer acceptance of
what has been done and what needs to be done as the project proceeds through its life cycle.

Successful Software Development, Second Edition

281

Technical Editing of Software and Software-Related Documents

Figure 5-14 addresses the following type of technical edit statements: I have checked your
document for format, grammar, spelling, and cogency. I have indicated suggested changes to
address these matters. A number of technical edits are illustrated.

Figure 5-14 Here are examples of technical edits for two types of software(-related) documents.

A technical editor must be careful not to change the meaning of the author's words. However,
a technical editor should give visibility to uncertainties by raising questions. Note the last
technical edit at the bottom of the figure. There is a world of difference between "now" and
"not." Some technical edits can have earth-shaking consequences.

Successful Software Development, Second Edition

282

Figure 5-15 lists some technical editing tips. These tips derive from lessons learned editing
hundreds of documents.[1]

Figure 5-15 This figure presents a starting point for constructing a set of technical editing tips
for documents.

1 We thank Peter Keefe for allowing us to incorporate the material in Figure 5-15 in this book.

Successful Software Development, Second Edition

283

In some situations, time does not permit a thorough technical edit. It is therefore a good idea
to prioritize items such as those shown in the figure. What is critical to your organization
regarding documents should be at the top of the list. For example, if you have a customer who
has certain "trigger" words or phrases (e.g., "execute the tasks" should be replaced with
something like "perform the tasks") that the customer always reacts to in a negative way, you
may want to develop a checklist to be used when editing the customer's documents. Such a
checklist is particularly useful when you are rushing to get something to the customer.

Product Assurance Reviews

Product assurance product reviews include quality assurance (QA); verification and validation
(V&V); test and evaluation (T&E); and self-comparison. Product assurance for a product
supports timely management decision making by answering questions such as the following:

• Is the product under development conforming to the product standards? (i.e., product
quality assurance [QA] check)

• Does the product under development (1) logically follow from the predecessor product
and (2) conform to customer requirements? (i.e., verification and validation [V&V]
check)

• Is the software system code congruent with the requirements and design
specifications? (i.e., test and evaluation [T&E] check)

• Does the product have the following characteristics: (1) internally consistent, (2)
unambiguous, (3) free of grammatical weaknesses, (4) free ofspelling errors, and (5)
free of "to be determined" items? (i.e., self-comparison check)

Product assurance process reviews include QA at a product level (i.e., using one product to
check a project's software systems development process) and project level (i.e., using more
than one product to check a project's software systems development process). Product
assurance for a project's software systems development process supports timely management
decision making by answering questions for a specific product (i.e., product level) or a
collection of products (i.e., project level). Such questions include the following:

• Is the development of the product conforming to the project's software systems
development process? (i.e., process quality assurance [QA] check at the product level)

• Is the development of the project's products conforming to the project's software
systems development process? (i.e., process quality assurance [QA] check at the
project level)

Both product and process reviews often provide discrepancy reports that are given to project
decision makers, such as the project manager. To facilitate decision making and to avoid
biasing the decision process, the reports should provide context and use neutral language.
Sufficient detail should be provided to (1) clarify issues to be decided and (2) make it easy to
obtain additional information pertaining to these issues.

Examples of product assurance product and process reviews are presented in the following
sections.

Successful Software Development, Second Edition

284

Product Quality Assurance

When performing a software product quality assurance (QA) check, the software product is
compared with product standards (i.e., various ground truths) established for a project. The
software product is assessed as to its conformance with each standard in this set. This type of
QA comparison (audit) may result in considerable savings in resources due to a timely audit.
For example, assume that an apparent design error is uncovered prior to commencement of
coding. It is cheaper to fix the design, than to fix the computer code and the design.

Figure 5-16 presents two examples of product quality assurance (QA) discrepancy examples:
(1) design document and (2) requirements specification. The design document discrepancy is
reported in terms of a module missing an error exit. The requirements document discrepancy
is reported in terms of nonconformance with the documentation standard.

Figure 5-16 Here are examples of product quality assurance (QA) discrepancies that might be
uncovered during the comparison of a product under development against one or more
standards governing the development of that product.

Product Verification and Validation

When performing a product verification and validation (V&V) check, the software product is
compared against a ground truth composed of two items—the predecessor software product
and the requirements specification. The comparison of a software product with a predecessor
software product is labeled as verification, and the comparison of a software product with the
requirements specification is labeled as validation. A special case of this comparison process

Successful Software Development, Second Edition

285

exists when the predecessor product of a software product being audited is the requirements
specification. The requirements specification is the only item in the ground truth in this case,
and the comparison of the software product with the requirements specification is both a
verification and validation.

Figure 5-17 presents two verification and two validation (V &V) discrepancy examples. The
verification discrepancies show how a detailed design document does not logically follow
from the preliminary design document. For example, the detailed design document refers to
Subsystem S13, but the preliminary design specification makes no reference to Subsystem S13.
Somehow this subsystem made its way into the detailed design specification. This
discrepancy is an example of how a document does not logically follow from its predecessor
document. Furthermore, the validation discrepancies show how requirements and design
specifications can be inconsistent with one another.

Figure 5-17 Here are examples of product verification and validation (V&V) discrepancies that
might be uncovered during the comparison of a product under development against a
predecessor product and the requirements for that product.

Successful Software Development, Second Edition

286

For both verification and validation, the comparison determines whether the two products are
congruent. As we discuss in the next section, determining congruency is a two-step process.
The auditor first must find software parts in both products that match as to subject, and then
must determine whether those software parts match in content. For example, suppose an
auditor is comparing a preliminary design specification (PDS) with a requirements
specification (RS). Assume that the auditor finds a paragraph in the requirements specification
on the subject of drawing circles. The auditor searches the preliminary design specification
for material on that subject and finds an entire section devoted to drawing circles. Having
found a match in subject between the two products, the auditor next compares the paragraph
in the RS with the section in the PDS to see whether they have the same content. If the only
difference between these two software parts is the greater detail that is anticipated in the PDS,
the auditor has located a pair of congruent parts in the two products. That is, if a software part
or parts in one product matches in subject and content a software part or parts in the other
product, then the software parts are congruent. If a software part in one product does not
match in subject any software part in the other product, then an incongruity exists. An
incongruity also exists if a software part or parts in one product matches in subject a software
part or parts in the other product, but does not match in content. These and all other
incongruities are reported as discrepancies. Finding software parts that match in subject is
generally not a trivial task. Congruence between software products can be a one-to-one, a
many-toone, or a one-to-many relationship. Further, where incongruities exist, there may be
parts in one product that have no match in subject in the other product.

Product Test and Evaluation

Figure 5-18 presents three test and evaluation (T&E) discrepancy examples. The first example
presents a T&E discrepancy in which the expected results of the circle command did not
match the observed results. In fact, in this case, an ellipse was drawn instead of a circle. This
type of error may not be as easily discovered by examining the source code. However, when
the tester executes the test steps and tries to match the expected result with the observed
result, the discrepancy is easily discovered.

Successful Software Development, Second Edition

287

Figure 5-18 Here are examples of product test and evaluation (T&E) discrepancies that might
be uncovered during the testing of computer code.

The second product T&E discrepancy example deals with another discrepancy of expected
results versus observed results. In this case, an error message was expected, but instead, the
tester observed a bar graph. Again, this discrepancy is easily discovered by executing the test
procedures.

The third product T&E discrepancy deals with a user's manual discrepancy. The manual
describes the word processor's hyphenation capability. When the user actually used the
hyphenation capability, the word processor's functionality was different from what was
described in the manual. As shown in Figure 5-18, the word mission was broken in the wrong
place, and no hyphen was inserted.

Product Self-Comparison

Figure 5-19 presents six self-comparison examples that include the following discrepancy
types:

Successful Software Development, Second Edition

288

Figure 5-19 Here are examples of product self-comparison discrepancies that might be
uncovered during the comparison of a product under developmental against itself.

• Internal inconsistencies.

The top shaded box describes a discrepancy dealing with the number of terminals that
can be supported by the system. One paragraph states 50 terminals and another
paragraph suggests that up to 15 users can be supported at the same time.

Another consistency example is briefly described in the second shaded box. The
description points out the fact that the system name has several different spellings
within the same document. The discrepancy report points out that this inconsistency
needs to be resolved.

Successful Software Development, Second Edition

289

• Ambiguities.

The third shaded box deals with ambiguities associated with a requirements
specification. The phrase "system response time" is not defined in the document. The
definition can have a significant impact on the design of the system. Such a
discrepancy should be clarified.

Another example of an ambiguity is pointed out in the fourth shaded box. A particular
paragraph in a design specification is not understood. As stated in the discrepancy
report, this ambiguity should be resolved so that there is no misunderstanding of how
things are suppose to work.

• Completeness.

The fifth shaded box describes a discrepancy in a requirements specification dealing
with system capabilities that are to be automated. It appears that one section of the
requirements specification states that certain system capabilities are to be supported by
software. However, the specification is silent as to what software capabilities are to be
supported by hardware and communications equipment. This issue should be resolved
for completeness.

• Spelling errors.

Although the figure does not show a speling error,[2] such errors can substantially
reduce the credibility of a document.

• TBDs.

The bottom shaded box shows how To Be Determined (TBD) can be used to highlight
the fact that something needs to be resolved. By using a TBD, the item is not lost or
forgotten. However, like all discrepancies, TBDs need to be resolved as well.

To aid in product self-comparison activities, checklists can be developed to help the reviewer
catch different types of discrepancies. Again, for those customers who may have particular
hot buttons, the checklists can help to increase customer satisfaction.

Process Quality Assurance at Product Level

Figure 5-20 presents two process quality assurance (QA) discrepancies at a product level. The
first process QA discrepancy shows how a seller's software systems development process was
not followed for a product (i.e., a requirements specification) that was delivered to the
customer. The second example indicates that part of a software systems development process
was not followed but that another part of the process helped to identify potential problems.

2 We know that "speling" error should be "spelling" error.

Successful Software Development, Second Edition

290

Figure 5-20 Here are examples of process quality assurance (QA) discrepancies that might be
uncovered (or reported) during the comparison of a product under development (or that has
finished development) against the project-specific software systems development process.

A project-specific process is adapted from the organizational process, presumably during
project planning. The process QA check provides a means for determining whether the
standards should be adjusted (i.e., whether the process should be changed—either at the
project level or at the organizational level) or, if the product is still under development,
whether the product should be adjusted (e.g., through more peer reviews).

Successful Software Development, Second Edition

291

Figure 5-21 Here are examples of process quality assurance (QA) discrepancies that might be
uncovered (or reported) during the comparison of a project against the project-specific
software systems development process.

Process Quality Assurance at Project Level

Figure 5-21 presents two process quality assurance (QA) discrepancies at a project level. The
first process QA example deals with a review of a project's files that indicates that
deliverables are consistently delivered late. Several actions may result from this process QA
check across the project. First, the seller and customer did not come to closure on the
requirements. It is also apparent that the seller project staff may need training specific to the
types of products required. Finally, additional project planning training may be necessary.

The second process QA example deals with a project that is not holding recommended CCB
meetings with the customer, but the project's deliverables seem to be acceptable to the
customer. In this case, it may be that the organization's recommendation for a CCB monthly

Successful Software Development, Second Edition

292

meeting may need to be reconsidered. It may be that every other month is frequent enough for
CCB meetings. However, before changing the recommended CCB meeting frequency, the
process QA check should be performed for similar projects. Depending on the results, then
consideration should be given to see whether the recommended CCB meeting frequency
should be changed.

A project-specific process is adapted from the organizational process, presumably during
project planning. The process QA check at the project level (i.e., across the project's
deliverables versus just one product) provides a means for determining whether the standards
should be adjusted (i.e., whether the process should be changed—either at the project level or
at the organizational level) or confirming that the process is working (i.e., consistently
producing products with integrity). When performed across projects, these process QA checks
help to improve the organizational software systems development process and the resultant
products.

5.4 Combining Reviews for Software Audits

In Chapter 3, we discussed how reviews (i.e., peer reviews, technical editing, independent
product assurance, and management technical oversight) can be a part of an organization's
software systems development process. In this chapter, we have expanded upon the Chapter 3
reviews by presenting and discussing the following taxonomy of product and process reviews:

• Management Reviews
o Product Programmatic Tracking
o Process Programmatic Tracking
o Product Technical Oversight
o Process Technical Oversight

• Development Reviews
o Product Peer Reviews
o Process Peer Reviews
o Technical Editing of Software and Software-Related Documents

• Product Assurance Reviews
o Product Quality Assurance
o Product Verification and Validation
o Product Test and Evaluation
o Product Self-Comparison
o Process Quality Assurance at Product Level
o Process Quality Assurance at Project Level

As we have previously discussed, these product and process reviews can be performed
individually. Now we want to illustrate the value of combining these reviews. We refer to
these combined reviews as a "software audit." The following discussion makes it evident that
what we call a review is a form of what the dictionary calls an audit. One dictionary definition
of audit is the following:

audit n: an official examination of records or accounts to check their accuracy
[3]

3 The American Heritage Desk Dictionary (Boston, MA:Houghton Mifflin Company, 1981).

Successful Software Development, Second Edition

293

As with most concepts in this book, there is no one way for combining these reviews for
software audits.[4] We discuss one approach to provide you with a starting point for combining
these reviews in a way that makes sense for your organization. We have chosen to subdivide
software audits into the following two types:

• Software product audits.

During a software systems development project, the seller develops a product. The
seller compares the product against what the customer asked for. If the comparison
yields discrepancies, then the product (and/or what the customer asked for) is changed
until the discrepancies are resolved. Comparing software products against one another
to determine whether these products are being developed logically and are congruent
with what the customer asked for is what we term "software product audits."

As discussed in this section, software product audits consist of some combination of
the four software product reviews performed by product assurance—namely, Product
Quality Assurance, Product Verification and Validation, Product Test and Evaluation,
and Product SelfComparison. We discuss how software product audits are coupled to
the CCB.

• Software process audits.

The seller uses software systems development processes to develop the project's
required products. As the project unfolds, the seller can compare the project's software
systems development processes against organizational processes. Also, the seller can
compare project processes against what was said in the negotiated agreement with the
customer. These comparisons are what we term "software process audits."

As discussed in this section, software process audits consist of some combination of
the four process reviews performed by management, development, and product
assurance—namely, Process Programmatic Tracking, Process Technical Oversight,
Process Peer Review, and Process Quality Assurance. We discuss how software
process audits are coupled to the software development organization and the process
engineering group.

Before proceeding with our discussion of audits, we need to make one additional point. It is
not important what you call the various comparisons that you may incorporate into your way
of doing business. You may want to call your comparisons something besides reviews and/or
audits because your business culture uses these terms in a sense that differs from the way we
define them. You may want to distinguish between individual comparisons and combinations
of comparisons as we do in this chapter. The bottom line regarding reviews and audits is the
following:

Such comparisons should be performed to give visibility into what is going on
with respect to the products being developed and the processes used to develop
these products. Armed with this visibility, project participants can make
inteligent, informed decision regarding what to do next, thereby increasing the
likelihood of making successful software development happen.

4 The scope of an audit depends on many factors. Consequently, an audit could consist of a single product or process review.

Successful Software Development, Second Edition

294

Software Product Audits

Software product auditing begins whenever a draft software product, a software-related
product, a change request (CR), or an incident report (IR) is produced and frozen. The
auditing process ends with the delivery of an audit report to the CCB.

Figure 5-22 illustrates how software(-related) product audits for documents are coupled with
the CCB.[5] Note that this process is independent of any particular life cycle model. This draft
software document is presented to the product assurance organization[6] for comparison (i.e.,
audit) against the document's ground truth. The audit itself compares the draft software
product against the ground truth.

5 CRs and IRs follow the same software product auditing process. Refer to Chapter 4 for the detailed discussion of how CRs and IRs are couples to
the CCB.
6 The independent product assurance organization is our recommended choice for performing the comparison of the product against the ground truth.
If your organization does not have a independent product assurance organization, this comparison should be performed by an individual or
organization that did not construct the product.

Successful Software Development, Second Edition

295

Figure 5-22 This figure shows an overview of the auditing process for software and software-
related products.

The ground truth for a software document consists of an approved requirements specification,
an approved life cycle stage N-1 product (i.e., predecessor product), and product standards.
Notice that the ground truth can be used for quality assurance checking (i.e., software product
compared with product standards), and verification and validation checking (i.e., software
product compared against predecessor product and requirements). In addition, comparison of

Successful Software Development, Second Edition

296

a software document to itself is also routinely performed in a software product audit. You can
combine QA, V&V, and self-comparison techniques to conduct software product audits.

As a result of this comparison, discrepancies between the draft software product and the
ground truth may be uncovered. These discrepancies are documented in a software product
audit report, which is presented to the CCB for its disposition. Figure 5-23 delineates a
suggested format for a software product audit report.

The product audit report consists of the following sections: Introduction, References,
Procedure, Findings, Conclusions, and Recommendations. Notice in the audit report that the
auditor's objective findings (i.e., Section 4) are clearly separated from any of the auditor's
subjective opinions (i.e., Sections 5 and 6). Also observe that, in addition to discrepancies
uncovered by quality assurance, verification and validation, and self-comparison processes,
various discrepancies may be uncovered as a result of the development of a traceability
matrix.[7]

The first action that the CCB takes upon receipt of the audit report is to process the
discrepancies uncovered. Approaches in which the CCB can record and process the
discrepancies include the following:

• Assign the entire product audit report to the development organization for analysis; the
resulting analysis report provides recommended resolution for every discrepancy.

• Categorize discrepancies into those whose resolution is apparent and those whose
resolution is not apparent; process the former category immediately; create an IR for
every discrepancy in the latter category; process the IRs.[8] Selectively creating IRs
provides better visibility and traceability than processing the audit report without
creating IRs. However, there is a price to pay for this increased visibility and
traceability: increased resources are required to handle and process the IRs.

• Create an IR for every discrepancy in the product audit report; process the IRs. These
IRs are handled and processed just like those IRs created as a result of incidents
resulting from use of a deployed system. A product audit report is still prepared in this
method, but there is no need to report the discrepancies uncovered in the audit. Here,
the product audit report simply summarizes and categorizes the discrepancies as IRs.
Again, for the increased visibility and traceability afforded by this method, there is an
increased price to pay for handling and processing the IRs. Note that the processing of
every IR requires time and money, even if the discrepancy documented by the IR has
small impact and its resolution is immediately obvious.

7 A traceability matrix is a document that traces each software part in a requirements specification to its corresponding software part(s) in each
subsequent software product and to the test documentation whose execution validates the requirements embodied in the software part.
8 The change control process for incident reports (IRs) is discussed, in part, in Chapter 4 using Figure 4-10. The developers complete the analysis
portion of the IR, the CCB makes its decision, and if a change is approved, a software change notice (SCN) is used to promulgate the change.

Successful Software Development, Second Edition

297

Figure 5-23 Here is a suggested format for a software product audit report.

These three approaches are listed in ascending order of visibility, traceability, cost, and time.
If human life is at stake and/or large financial losses are a possibility, you may want to use
some form of the third approach where an IR is created for every discrepancy. At the
beginning of a project, the CCB should carefully weigh the benefits and liabilities of these
three approaches when establishing its mode of operation.

Once an approach is chosen, the discrepancies are analyzed and subsequently the analyzers
present to the CCB a recommended resolution for each discrepancy. With a recommended
resolution available from the analysis report, the CCB proceeds to make its decision on each

Successful Software Development, Second Edition

298

discrepancy in the product audit report. Such decisions are recorded in the minutes of the
CCB.

The CCB decides, as a result of the product audit report and analysis by the developers, either
that no changes are needed for the draft product or that the draft product does need changing.
If no changes are needed or only a few changes with relatively minor impact still remain
unresolved, the draft product for life cycle stage Nis approved and established as a baseline.[9]
If changes are needed, the modifications directed by the CCB are made in the current stage to
the draft product for life cycle stage N, or previous stages are revisited to change software
documents in the ground truth, namely, either the requirements specification or approved
products from previous stages. When changes are made to the draft product for stage N, the
draft product, when changed, will be reintroduced to the product auditing process. When a
revisit to a previous stage is directed, the approved product for that stage is updated and the
product auditing process for the revisited stage is initiated. Such revisits cost time and money,
but these revisits are what maintainability is all about. A draft product cycles through the
product audit and control process as many times as necessary until the CCB decides that no
changes to the draft product are needed or that the remaining unresolved discrepancies are
few enough and of minor impact. In either case, the product is baselined.

Software product auditing applies to all software products, whether the software is
documentation or computer code. However, there are differences in the details of the process,
depending upon whether the software is documentation or code. These differences are
addressed in the following examples. Before we present software product audit examples, we
discuss in more detail the nature of product discrepancies that might be discovered.

It must be noted that a product discrepancy does not necessarily represent something that is
wrong with a software product. A discrepancy, quite simply, is an incongruity[10] observed as a
result of comparing a software product with the ground truth. It is possible, of course, that a
discrepancy represents something that is wrong in the software product. But a discrepancy
could also represent something that is wrong with the ground truth. If the ground truth is
incorrect, it must be corrected and then be reestablished as the ground truth. Furthermore, a
discrepancy could result from a misunderstanding or an invalid assumption derived from the
ground truth. In this case, the ground truth should be clarified and the software product
modified to reflect the clarification of the ground truth. Finally, it is possible that a
discrepancy does not really represent an incongruity between a software product and the
ground truth. Upon analysis of the discrepancy, it is determined that there was a
misunderstanding of the ground truth and/or the software product. The discrepancy is not a
discrepancy, it is a mistake.

Consider the situation where an auditor is not sure whether an incongruity exists. If the
auditor does not report this possible incongruity and it does indeed exist, an incongruity
would not be made visible. Therefore, the auditor faced with this situation should report the
possible incongruity. Other project personnel in the CCB forum should be able to resolve
whether the discrepancy exists. If it does not exist, it is simply rejected by the CCB. This
approach of "when in doubt, report" is designed to prevent discrepancies from slipping

9 IRs may require minor or major changes to the draft product. The CCB may decide that the draft product does not need to be changed for the
moment. Regardless, the IRs and corresponding changes need to be tracked. Eventually, each IR needs to be resolved—e.g., the CCB decides to make
the change (because of an IR), the CCB decides to make the change in the future, or the CCB decides that the change will never be made.
10 An incongruity is an absence of congruence; that is, an incongruity is a part in a software product that cannot be associated with any part in another,
related software product or itself.

Successful Software Development, Second Edition

299

through the cracks. However, this approach should not be carried to extremes. The
introduction of an excessive number of frivolous discrepancies wastes time and money.

Managers particularly should be aware that every discrepancy does not necessarily represent
something wrong with the software product being audited. We have often seen busy managers
base their evaluation of a new software product purely upon the number of discrepancies
uncovered in a software product audit, as if every discrepancy represented an error in the new
product. The preceding paragraph shows how unfair such an evaluation may be—the
discrepancies might represent problems with the new product, problems with the ground truth,
or no problems at all. A manager can make a better evaluation if the manager bases it not on
the number of discrepancies in the audit report but on the decisions the CCB makes on the
discrepancies uncovered by the audit. Analysis of such decisions would reveal how many and
how substantial are the changes to be made to the software product and to the ground truth.
This information would provide a better evaluation of the new software product than would a
count of the discrepancies in the audit report. Discrepancies that result in no changes being
made to any product should not be considered in evaluating either the software product or the
ground truth.

A discrepancy should be reported in specific, objective, and neutral terms and should contain
the rationale for addressing the discrepancy. A discrepancy should be specific in designating
the software part(s)—in the software product being audited and/or in the ground truth—that
are incongruous and in stating what the incongruity is. The report of a discrepancy should
objectively state facts and should neither express opinions nor make assumptions. A
discrepancy report should be neutral in that it does not assert that either the software product
or ground truth is wrong, but only that they differ. A properly worded discrepancy would not
include statements such as these:

• "Section 1 of the document is poorly worded and is therefore difficult to understand."
• "The reliability requirement is nonsensical. Whoever wrote it obviously has no

understanding of how software operates."
• "Although the design meets all its requirements, the design of the database retrieval

capability, in my opinion, is too cumbersome to function in an optimum manner."

Software product auditing seeks to determine (1) whether each part in a software product has
an antecedent in a predecessor product, and, conversely, (2) whether each part in this
predecessor product has a subsequent part in the software product. Through this two-way
comparison, auditing establishes the extent to which the two products are congruent.[11]

There are several ways for an auditor to determine these antecedent/predecessor part matches.
One way is to search the entire predecessor product for each software part in the software
product to locate all subject matches. Since the predecessor product is searched from
beginning to end for each software part in the software product, this method is thorough
because this method finds all subject matches. However, this method can be extremely time-
consuming and expensive. This high resource expenditure generally makes searching the
entire predecessor product for each software product part not feasible for software products of
some size. A practical alternative part-matching method is shown in Figure 5-24.

11 This two-way comparison can also be applied when one or both of the products are software-related products (e.g., a requirements specification
[software product] and a user's manual [software-related product]).

Successful Software Development, Second Edition

300

Figure 5-24 Software product auditing establishes the extent to which the two products are
congruent.

In this alternative part-matching method, the following two comparisons are made:

• Antecedent comparison.

Each part in the software product is compared with the predecessor product to locate a
part that matches in subject. Notice that the search does not necessarily have to cover
the entire predecessor product for each software product part—the search continues
only until the first matching part is found. For example, in the upper panel of
Figure 5-24, part p is compared with the predecessor product until a subject match is
found. Then part q and part r are similarly matched. Notice that parts q and r both
match to the same part in the predecessor product. This relationship is a one-to-many
relationship in terms of the predecessor product (one) to the software product (parts q
and r).

Successful Software Development, Second Edition

301

• Subsequent comparison.

This comparison for finding subject matches is the converse of the antecedent
comparison. Each part in the predecessor product is compared with the software
product to locate a part that matches in subject. For example, in the lower panel of
Figure 5-24, part x is compared with the software product until a subject match is
found. Then part y is similarly matched. Notice in this case that parts x and y both
match to the same part in the software product. This relationship is a many-to-one
relationship in terms of the predecessor product (parts x and y) to the software product
(one).

This two-way comparison finds, in a nominal amount of time, all one-to-one, many-to-one,
and one-to-many relationships. Predecessor product disconnects (parts in the predecessor
product that have no subject matches in the software product) and software product
disconnects (parts in the software product that have no subject matches in the predecessor
product) are also identified. It is considerably less time-consuming than searching the entire
predecessor product for each software product part.

To clarify the foregoing concepts, consider the following examples. These examples describe
the audit of highly simplified software products. The overall purpose is to explain how
software product auditing, as we define it, is actually done. The software products used in the
examples are simplifications of real software products.

Software Document Audit Example—Automatic Doughnut-Making System

Assume that you have been designated to audit the software design specification for an
automated doughnut-making system (ADMS) that is under development. Figure 5-25 shows
the operational concept for the ADMS. Essentially, ADMS enables a person to make
doughnuts. The person is walked through the process by following a set of instructions that
are displayed on a monitor. Once the instructions are completed, ADMS combines and
processes the ingredients to produce the doughnuts that are requested. When completed,
ADMS is to consist of a set of hardware components that can be programmed via a set of
software instructions to (1) take as input baking ingredients, (2) combine and process these
ingredients, and (3) produce doughnuts of different shapes, sizes, and flavors as output.

Successful Software Development, Second Edition

302

Figure 5-25 This figure shows the operational concept for the Automated Doughnut-Making
System (ADMS).

A functional requirements specification for the software for this system has been produced
and baselined. A highly simplified version of this requirements specification is shown in
Figure 5-26.

Successful Software Development, Second Edition

303

Figure 5-26 Here is a simplified functional requirements specification for the Programmable
Subsystem of the Automated Doughnut-Making System. This specification is the ground truth
for the audit of the design specification for this system.

A draft of the software design specification has just been produced and is now ready for audit.
This software design specification is partially shown in Figure 5-27.

Successful Software Development, Second Edition

304

Figure 5-27 Here is a partial design specification for the Programmable Subsystem of the
Automated Doughnut-Making System.

Remember, a software product audit involves antecedent comparison (software product
compared against predecessor product) and subsequent comparison (predecessor product
compared against software product). In this simplified example, the requirements
specification represents the predecessor product, and the design specification represents the
software product to be audited. Therefore, for the purposes of this example design audit, the
antecedent comparison consists of comparing the design specification with the requirements
specification; and the subsequent comparison consists of comparing the requirements
specification with the design specification.

Successful Software Development, Second Edition

305

Now, on the basis of the requirements and design specifications provided, what discrepancies
might you observe as you audit the design specification?

First, you would determine the matches in subject between the requirements specification and
the design specification. Even though these specifications are simplified products, you can use
the two-way comparison method described earlier to locate subject matches. The antecedent
and subsequent comparisons yield results shown in Figure 5-28. This method locates all the
subject matches that exist in this case, as can be verified by a quick scan of the two
specifications (feasible only because the specifications are so simple). Notice the following
results:

Successful Software Development, Second Edition

306

Figure 5-28 This figure illustrates the results of doing a two-way comparison of the ADMS
requirements and design specifications. As shown, each comparison yields a disconnect (i.e.,
?????).

• Antecedent comparison.

In the design specification, the Cut function is found in 2.3.3 (i.e., this component will
cut out doughnuts), 2.3.3a.1 (i.e., this module cuts doughnuts with a hole in each one),
and 2.3.3a.2 (i.e., this module cuts doughnuts without holes).

In the requirements specification, the Cut function is found in 3.2.4 (i.e., Cut out the dough
for either regular [with hole] or filled doughnuts).

Successful Software Development, Second Edition

307

Therefore, this example antecedent comparison picks up the one-to-many relationship
connected with the Cut function—in other words, the one reference in the predecessor product
to the many references in the software product.

• Subsequent comparison.

In the requirements specification, the Add function is found in 3.2.1 (i.e., Add the
ingredients specified to the bowl), and the Mix function is found in 3.2.2 (i.e., Mix the
ingredients in the bowl at the speed and time specified).

In the design specification, the Add and Mix functions are found in 2.3.1 (i.e., this module
will alternately add specified ingredients to the mixing bowl and mix the contents of the bowl
for specified times).

Therefore, this subsequent comparison picks up the many-to-one relationship connected with
the Add and Mix requirements with the Mix design—in other words, the many references in
the predecessor product to the one reference in the software product.

Also notice that two disconnects are located. The antecedent comparison reveals that the
Glaze module in the design specification (i.e., 2.3.6) has no match in the requirements
specification. Evidently a developer (probably expressing his or her personal taste, no pun
intended) added a capability to the design to produce glazed doughnuts, a capability not
contained in the requirements. This disconnect would be reported as a discrepancy. The CCB
must decide whether this glaze capability is not desired and thus should be removed from the
design specification, or whether this capability, initially overlooked, is indeed desired, in
which case the requirements specification would be amended to incorporate this capability.

The other disconnect becomes evident with the subsequent comparison. The design
specification does not address the requirement to dust doughnuts (i.e., 3.2.7). This omission is
also a discrepancy to be reported to the CCB.

Your next step in the audit process is to determine whether the parts of the design
specification and the requirements specification that match in subject also match in content. In
this example, we provide little content in the specifications. However, in the content that is
provided, there is one incongruity. When requirements specification paragraph 3.2.2 for
mixing is compared with design specification paragraph 2.3.1a, you should observe that the
requirement that mixing be done at specified speeds is omitted from the design specification.
This omission would be reported as a discrepancy.

This example illustrates the mechanics of determining the congruence of two software
products using antecedent and subsequent comparisons. You should not be misled by the ease
with which our deliberately simple software products could be audited. In the real world,
auditing of voluminous specifications is a labor-intensive task. Although auditing can
consume considerable resources, it potentially saves even more resources through early
detection of problems. Auditing is another example of the concept of "pay now versus pay
much more later."

This task of assessing congruence between software products can be simplified by the
developer of the products. The developer might include in each software part of each product
the labels identifying the matching software parts in the predecessor product and in the

Successful Software Development, Second Edition

308

requirements specification. Alternatively, the developer might produce a traceability matrix,
linking software product part labels to part labels in the predecessor product and in the
requirements specification. For either comparison method, the auditor should verify the
accuracy and the completeness of the information provided.

Software Document Audit Example—System PREDICT

To close out this discussion of software document audits, we present an example that
illustrates the concepts of uncovering and reporting discrepancies. The example is cast in the
form of a product audit of a system preliminary design specification for a software system
called System PREDICT. This system is to predict the point differential of a football game
based on information pertaining to the two teams involved in a game. Instead of presenting
the entire audit report, only the findings of the audit have been included.

Figure 5-29 shows a one-page requirements specification for System PREDICT. Assume that
this specification constitutes the requirements baseline for this software development effort.
In addition to this requirements specification, there is a preliminary design specification for
System PREDICT. Figure 5-30 shows a draft of the preliminary design specification.

Successful Software Development, Second Edition

309

Figure 5-29 Here is a simplified functional requirements specification for System PREDICT.
This specification is the ground truth for the audit of the preliminary design specification for
this system.

Successful Software Development, Second Edition

310

Figure 5-30 Here is a draft of the preliminary design specification for System PREDICT.

Assume that you are an auditor whose task is to audit this preliminary design specification
draft against the System PREDICT Requirements Baseline shown in Figure 5-29. Also,
assume you are to submit your findings to a CCB whose function is to determine whether this
draft preliminary design specification should become the System PREDICT Preliminary
Design Baseline. In addition, assume that this baseline will be used to develop a detailed
design from which computer code will be developed. Finally, assume that an auditor should
ideally be a neutral, objective reporter of discrepancies, that the auditor should be as specific
as possible in reporting discrepancies, and that the auditor should offer rationale to justify
why each discrepancy should be addressed. With these assumptions and with the information
contained in Figures 5-29 and 5-30, what discrepancies between the documents shown in
these figures might you, as an auditor, report to the CCB?

Successful Software Development, Second Edition

311

Figure 5-31 contains findings of the software product audit. In the following discussion, we
comment on these findings to provide insight into (1) the way in which an audit might be
conducted and (2) the specifics of what an audit might uncover.

Figure 5-31 Findings of an audit of the System PREDICT Preliminary Design Specification
against the System PREDICT Requirements Specification.

Successful Software Development, Second Edition

312

In the auditor's finding 1, the auditor goes through each of the seven classes (i.e., a, b, c, d, e,
f, and g) of information listed in Figure 5-29 and comments on what has been done in
carrying them through to preliminary design. Here are explicit examples of how an auditor
addresses the question of whether a software product logically follows from a predecessor
product and whether asoftware product embodies what the customer asked for. In performing
these comparisons, we see how the auditor sheds light on the following discrepancies:

• Potential ambiguities in the requirements baseline.

For example, finding l.c points out that the requirements baseline is silent as to the
quantitative relationship between the point differential in previous games played by
the two teams and its contribution to the point differential of the game to be played.

• Potential omissions in the preliminary design specification.

For example, finding l.e points out that the preliminary design specification does not
appear to deal with the possibility that one or both teams may be playing under
weather conditions that one or both have not played under previously. In addition,
finding 1.f points out that the requirements baseline, and thus the preliminary design
specification, does not address the possibility that some games may be played at a
neutral location.

Much of what the auditor has to say in finding 1 exemplifies the classical argument "Where
do requirements end and where does design begin?" However, the auditor raises issues for the
CCB that it may not have considered when it approved the Requirements Baseline and that
the CCB may wish to address in the Requirements Baseline before design proceeds much
further (and requirements ambiguities become more difficult to resolve). Thus, the auditor
provides the vital function of raising the visibility of the software development process to a
level where apparently significant development issues can be dealt with at a time when their
resolution may cause little or no schedule or resource impact. This example illustrates the
"pay now versus pay much more later" message.

Now, let's look at the auditor's second finding. In finding 2, the auditor points out an apparent
disconnect between requirements and design (i.e., something called for in the Requirements
Baseline appears to have been omitted in the design). The auditor then points out that the
requirement omitted from the design may need to be reconsidered because it is unclear how
any design developed can be proven to satisfy the omitted requirement. To help the CCB deal
with this issue, the auditor offers some suggestions as to how the requirement may be stated in
terms that designers and coders can deal with. Again, it should be noted that in this finding the
auditor raises the visibility of the software development process to a level where the CCB can
deal with significant requirements issues long before they become deeply embedded in design
(and code).

Notice that the auditor's findings are expressed in objective terms, using noninflammatory
language. The findings are generally specific (in most cases supported by example) and
supported by rationale. The overall result is that the auditor has probably provided the CCB
with the information that it will need to make intelligent, informed decisions about what
should be done with draft XXX of the preliminary design specification and whether the
Requirements Baseline should be updated.

Successful Software Development, Second Edition

313

This example illustrates typical discrepancies uncovered during a software product audit and
how to report them. The product audit report makes explicit the assumptions used by the
software developers in creating a design, so that the CCB can confirm whether the
assumptions are valid.

Software Systems Acceptance Testing Audits

In the preceding section, we described the auditing process for software in the form of
documentation. We now turn to the complementary auditing process for software in its other
form—when the software is computer code. The generic model of the auditing process that
we have just described in Figure 5-22 still applies when computer code is being audited. In
this case involving computer code, a life cycle product (i.e., code) is compared with its ground
truth (i.e., design and requirements specifications). Discrepancies observed during the
comparison are reported to the CCB. However, the details of the computer code auditing
process are substantially different from the documentation auditing process.

We begin by looking at the preparations made prior to the conduct of the computer code audit.
This discussion is followed by an example that illustrates how to construct a test procedure.
We next look at the auditing process in detail and observe how the auditing (testing) cycle
causes software code to converge to a product with no or few discrepancies. This product then
can be delivered to the user.

When the life cycle software product to be audited is code, we term the process test and
evaluation (T&E). T&E is system level testing and is user oriented. T&E is an assessment of
whether software code is congruent with requirements and design specifications. But in T&E
we do not generally determine this congruency by comparing source code listings (a
document form of code) directly with the requirements and design specifications. Rather,
computer code is put in its executable form and, through execution in a live or nearly live
environment, is indirectly compared with the two specifications through use of test plans and
procedures. Figure 5-32 illustrates this T&E concept.

Successful Software Development, Second Edition

314

Figure 5-32 Figure 5-32 T&E assesses the extent to which computer code embodies the design
and requirements.

This figure shows the connectivity between the product development world and product
assurance world. Both worlds come together during acceptance testing. In the development
world, requirements and design specifications provide the basis for coding. They also provide
the basis for an acceptance test plan that, in turn, serves as the basis for test procedures.

Each test procedure specifies the results expected from performing specific operations on
computer code. When the specific operations are executed on code, the actual results observed
are recorded and compared with the expected results contained in the test procedures. Any
differences between the expected and observed results are reported as discrepancies. Thus, the
requirements and design specifications are the ground truth for this audit but are involved in
the audit comparison only indirectly (i.e., through the test plans and procedures).

We stated before that T&E was conducted in a live or nearly live environment. By live or
nearly live environment we mean "an environment that is identical to or closely approximates
the environment in which the user operates." The actual testing occurs before the software
system is delivered to the customer. This testing is referred to in the literature by several

Successful Software Development, Second Edition

315

names; we refer to it as acceptance testing, because it usually occurs just before the customer
accepts the system for operational use. The purpose of acceptance testing is to demonstrate
that operating computer code satisfies the user's needs. Since the user's needs include
operating the system in the user's own environment, we must conduct the acceptance tests in a
live or nearly live environment. Performing the tests in some other environment (e.g., the
development environment) would not demonstrate that the computer code satisfies the user's
needs.

T&E activity is not confined to the coding and subsequent stages of the life cycle. In fact,
T&E activity extends throughout the life cycle. T&E generally begins (1) right after the
requirements specification is baselined or (2) in parallel with requirements specification
development, with the initiation of efforts to develop a test plan. A test plan is concerned with
such items as test organizations, test schedules, test resources, test personnel and their
responsibilities, the approach to be used to test the system, and, most important for our current
consideration, a list of tests to be executed during acceptance testing. This list is derived from
the requirements, with one or more tests planned to be conducted to demonstrate the
satisfaction of each requirement.[12] Thus, the test plan links tests to specific requirements.
Figure 5-33 delineates an annotated outline for a test plan.

12 Note that a single test could be used to demonstrate the satisfaction of more than one requirement.

Successful Software Development, Second Edition

316

Figure 5-33 Here is a suggested format for a software test plan.

Successful Software Development, Second Edition

317

Subsequent to the baselining of the detailed design specification, each test listed in the test
plan is developed into a step-by-step test procedure that demonstrates satisfaction of the
requirements specified for the test in the test plan. The steps in the procedures are designed to
assess whether the requirement(s) to be demonstrated by the procedures have been satisfied
by computer code. Figure 5-34 shows an annotated test procedure format that builds in
traceability back to development documentation such as requirements and design
specifications, and test plans.

Successful Software Development, Second Edition

318

Figure 5-34 Here is a test procedure format that builds in traceability back to predecessor
product development documentation such as requirements and design specifications, and test
plans.

The OPERATOR ACTION and EXPECTED RESULTS columns are the most important test
procedure elements. The information in these columns links the acceptance testing process to
the development process.

Information on actions to be taken or commands to be used within a test step, as well as on
the results to be expected from those actions or commands, is obtained from the design

Successful Software Development, Second Edition

319

specification. The set of test procedures reflects both the requirements and the design of the
software system. Each test procedure should contain within it a pointer to the requirement(s)
that the procedure tests.

With this five-column format, there is traceability among the four documents concerned with
T&E: (1) requirements specifications, (2) design specifications, (3) test plan, and (4) test
procedures. The requirements and design specifications are the ground truth for the audit, and
the test plan and procedures are the specifications for the conduct of the acceptance tests.

The requirements specification establishes a list of functions that the software is to perform.
Software designers translate these requirements into a design specification that designates
subsystems and modules needed to satisfy the requirements. The requirements specification
and design specification are often traced to each other through use of a traceability matrix.
The test plan, as already described, lists the tests to be performed during T&E and links each
test to one or more requirements. This linkage is usually added to the traceability matrix, so
that there is traceability from the requirements through the specification documentation to the
tests that demonstrate that computer code satisfies the requirements. Finally, each test
procedure should contain pointers to the requirement(s) that the procedure tests and to the
portions of the detailed design that were used in the creation of the test procedures. This
traceability is important in determining that all requirements have been accounted for in the
test procedures, and, when differences are observed between the expected and actual results,
in determining which requirements are unsatisfied.

We recommend that the test procedures be written in the five-column format shown in Figure
5-34, which we have successfully used on a number of projects. The elements of the test
procedure format are as follows:

• Header.

This section of the test procedure provides identification of the test, states the
objective of the test, gives the long title of the test, and provides notes on how to
conduct the test, on the estimated duration of the test, on requirements tested, and on
test resources (e.g., test data) needed for the test. The information for the identification
of the test and the objective of the test comes from the test plan. This information
provides explicit traceability between the test procedure and the test plan.

• STEP.

This column provides a (usually sequential) identifying number for each step.

• OPERATOR ACTION.

This column specifies the precise action taken by the tester (e.g., entering a keyboard
command, pressing a function key, selecting a pull-down menu choice, turning a
computer on/off, plugging in a compact disk device) in executing a particular step.
The information in this column comes from the detailed design specification.
Typically, the information is described in computerese.

Successful Software Development, Second Edition

320

• PURPOSE.

This column explains why the tester took the action specified in column 2—that is,
what the tester expects to accomplish by the tester's actions. Typically, the information
is described in plain language used by the customer. The PURPOSE should also be
reviewed by the customer to help ensure that the seller is implementing what the
customer wants.

• EXPECTED RESULTS.

This column describes the response of the system to the action taken by the tester in
column 2. The information in this column comes from the requirements and the
detailed design specifications. When the test is performed, the information in this
column is compared with observed results as each test step is executed in order to
uncover any discrepancies.

• COMMENTS.

This column contains a variety of information that may be useful to the tester. Figure
5-34 provides a number of suggestions for information to put in this column.

Note particularly the linkages of the test procedure to the requirements specification and the
detailed design specification in the header (under Notes) and in the Comments column of
Figure 5-34.

Having introduced a test procedure format, we now illustrate in the following example how to
construct a test procedure using that format. Test procedures are a key element in performing
T&E. If a test procedure is not properly constructed, the test procedure may not achieve its
purpose of demonstrating that operational computer code satisfies some specified
requirement(s).[13]

Acceptance Test Procedure Example—System SHAPES

This section discusses preparations for an audit of a software product that is computer code.
This discussion presents an example that illustrates how to construct a five-column test
procedure that demonstrates the traceability among the (1) requirements specifications, (2)
design specifications, (3) test plan, and (4) test procedures. Remember, the requirements and
design specifications are the ground truth for the audit, and the test plan and procedures are
the specifications for the conduct of the acceptance tests.

Figure 5-35 shows a one-page extract from a requirements specification for a software system
called SHAPES. This system is to permit a user sitting at a computer terminal with a display
device to construct various geometric shapes. In the discussion that follows, we show how to
construct a test procedure to exercise the circle-drawing capability.

13 Note: This example contains some mathematics, in particular some elementary analytic geometry. It is not necessary to understand the mathematics
in the following example to understand the T&E issues dealt with. The mathematics has been included for completeness.

Successful Software Development, Second Edition

321

Figure 5-35 Here is a portion of the SHAPES requirements specification that is one input to
SHAPES test procedure construction.

The second document used to construct the five-column test procedure is a design
specification. Figure 5-36 shows a portion of the System SHAPES Design Specification.

Successful Software Development, Second Edition

322

Figure 5-36 Here is the circle-drawing portion of the design specification for System SHAPES.

Successful Software Development, Second Edition

323

This specification and the requirements specification are needed to describe (1) how the tester
is to interact with System SHAPES during the test and (2) what the tester expects to see as a
result of this interaction.

Assume that these two specifications constitute respectively the Requirements Baseline and
the Detailed Design Baseline for System SHAPES. Also assume that you are a tester whose
task is to perform acceptance testing on System SHAPES. Assume further that you have
already prepared a test plan for this purpose and that Figure 5-37 shows an extract from this
test plan that defines tests for exercising the SHAPES circle-drawing capability.

Figure 5-37 Here is an extract from a test plan for System SHAPES showing circle-drawing
tests based on the SHAPES design specification.

Successful Software Development, Second Edition

324

This extract shows the following two tests to be performed: (1) Test CD.1 (Command
CIRCLE Parameter Check) and (2) CD.2 (Command CIRCLE Error Diagnostic Check).
Using the fivecolumn format shown in Figure 5-34, how would you construct a test procedure
for Test CD.1 defined in Figure 5-37?

In constructing this test procedure, keep in mind that it is to be part of a test procedures
document and that the execution of these test procedures is to be used to test and retest the
SHAPES software code until the CCB decides that this code is ready for operational use.

Figure 5-38 shows the first three steps of a test procedure designed to implement Test CD.1 as
defined in the SHAPES Test Plan extract given in Figure 5-37.

Figure 5-38 Here is a portion of a System SHAPES test procedure derived from the System
SHAPES Test Plan extract (i.e., Test CD.1).

Successful Software Development, Second Edition

325

The layout is based on the five-column format previously introduced. Any format is okay as
long as it contains the information shown in the OPERATOR ACTION and EXPECTED
RESULTS columns. This information is the linkage between product development activity
and product assurance activity. The resultant tester comparison of the system response to the
OPERATOR ACTION with the EXPECTED RESULTS provides decision makers with the
means for determining whether the computer code and supporting databases are doing what
the customer wanted.

In the following discussion, we comment on Figure 5-38 to provide you with insight into the
specifics of how a test procedure is constructed from a test plan and from design and
requirements specifications.

At the top of the procedure in Figure 5-38, the overall objective of the test is stated. This
statement is essentially the same statement that appears in subsection 3.3.1 of the test plan
shown in Figure 5-37. Thus, this statement provides explicit traceability between the test
procedure and the test plan. It also provides quick insight into the intent of the test. This quick
insight is particularly helpful when a test consists of hundreds of individual steps. Under such
circumstances, it is difficult to perceive, by looking at such a long list of steps, what system
design aspects or requirements the procedure is trying to test. The statement of test objective
appearing at the top of the procedure helps alleviate this difficulty. In a test procedure
document consisting of hundreds or thousands of tests (not uncommon for systems of even
moderate complexity), the absence of an objective for each test can make the comprehension
of the set of test procedures impossible. Particularly in these circumstances, a statement of the
overall objective of each test is essential for proper interpretation and use of the document.

Below the statement of objective in the test procedure, the title of the test appears (i.e.,
Command CIRCLE Parameter Check in Figure 5-38). This title generally augments the test
identifier (i.e., Test CD.1 in Figure 5-38) shown to the left of the statement of objective. The
title provides insight into the nature of the test (which in this case is a check of the parameters
appearing in a user command). As such, the test title complements the statement of objective
appearing above it.

Below the test title are two notes that provide amplifying comments on the test as a whole.
Specifically, the notes in Figure 5-38 address the following points:

• The first note essentially defines the scope of the test (namely, that only proper
parameter values are to be input). This note also points to another test (using the test
identifier CD.2) which will deal with improper (i.e., out-of-range) parameter values.
The former type of test is often termed positive testing, while the latter type of test is
often termed negative testing.

• The second note suggests some excursions from the written procedures that should be
performed. The excursions are for the purpose of extending the breadth and depth of
the test. The development of written test procedures is generally an extremely labor-
intensive activity. Consequently, it is often simply not possible to write down all the
test steps needed to exercise comprehensively all or even most aspects of a
requirement (or a set of requirements) or a design (or sections of a design) that is the
object of a particular test. To strike some sort of compromise between this real-world
constraint stemming from limited resources and the need to perform thorough testing,
a test procedure write-up often includes suggestions (such as the one in the second
note) for performing test steps that are not explicitly shown in the write-up but that are

Successful Software Development, Second Edition

326

straightforward variations or extensions of test steps shown. In the context of the test
procedure depicted in Figure 5-38, an example of such variations might be the
following:

The purpose of the first test step shown in the figure is to draw a circle of radius 1.00
in the center of the display with a solid border. The purpose of the second step is to
draw another circle with a different radius also in the center of the display but with a
dashed-line border. The purpose of the third step is to draw another circle with a
radius that differs from the radii used in steps 1 and 2. Also, this third circle is to be
centered somewhere other than in the center of the display, and, in contrast to the first
two circles, it is to have a dotted-line border. It is thus clear from these steps that the
strategy of test CD.1 is exactly that prescribed in subsection 3.3.1 in the test plan
shown in Figure 5-37. Namely, the strategy is to use selected in-range values of
CIRCLE parameters to construct different circles. From the comments appearing in
the Comments column in Figure 5-38, it appears that this strategy is also followed in
steps 4 through 10 (which are not shown in the figure). Now, from subsection 2.2.2 of
the SHAPES Design Specification, it is evident that there are many more in-range
combinations of parameter values for the CIRCLE command than can be incorporated
into ten steps in the manner indicated in Figure 5-38. On the other hand, these
combinations are clearly variations of the steps shown. Thus, for example, one set of
such variations of step 1 might be the following:

CIRCLE(R,0.00,0.00), A

where R is allowed to vary from 0.50 to 10.00—the minimum and
maximum values respectively for this parameter (as indicated in the
design specification)—in increments of, say, 0.1. Such an excursion
from step 1 in the written procedure would represent a fairly thorough
testing of the capability to draw solid-line circles centered at the center
of the display whose radii completely cover the allowable range for this
parameter.

The information in each of the three test steps shown is based primarily on subsection 2.2.2 of
the design specification (as noted in the Comments column in Figure 5-38). For example, the
information in the OPERATOR ACTION column (i.e., what the tester has to input to elicit a
response from the code being tested) is a particular realization of the command format
specified in that subsection. Also, the information in the EXPECTED RESULTS column is
derived directly from the design specified in that subsection. This heavy reliance on design
documentation occurs frequently in test procedure development work. The primary reason is
that test procedures are generally written at the "button-pushing" level of detail and that such
detail is often not found until the Detailed Design Stage of the life cycle.

A comment is in order before we describe the COMMENTS column. What happens if the
information needed for the OPERATOR ACTION and EXPECTED RESULTS columns is
not present in the requirements specification and/or design specification? The people putting
the test procedures together (e.g., product assurance) will need to ask the developers questions
in order to obtain the needed information. This interaction is an example of product assurance
acting as a forcing function on the development process. By forcing, we mean "the tester
forces the developer to think through what the system is supposed to do." This forcing
function helps everyone to think through the implementation of the requirements and design.

Successful Software Development, Second Edition

327

Now, let us return our discussion to the COMMENTS column in Figure 5-38. In addition to
linking test steps back to the design specification, the COMMENTS column also links the
steps back to the requirements specification. Thus, through this linkage, it is possible after test
step execution to determine in specific terms the extent to which customer requirements (in
this case, the capability to draw circles on a display) are embodied in the computer code. This
information is precisely what a CCB needs to determine whether computer code needs to be
modified before it is delivered to the customer for operational use.

Regarding the information in the EXPECTED RESULTS column, note that this information
needs to be expressed in terms that permit a tester to observe the response of the system so
that the tester can effect a meaningful comparison between this information and the actual
system response. This comparison is the heart of the test execution activity, because from this
comparison come discrepancies. These discrepancies provide the basis for CCB action
regarding the release of the code for operational use.

The preceding discussion gives some idea how a test procedure can be constructed from a test
plan and specification documentation. From this discussion, you should now be able to
construct a test procedure for Test CD.2 defined in subsection 3.3.2 of the test plan shown in
Figure 5-37. [14]

Constructing a test procedure is not a mechanical exercise. There is a careful balance of many
factors that include the following: (1) number of steps to include, (2) time available to build
and then exercise the test procedures, (3) available resources, (4) criticality of the system
(e.g., Could system failure involve the loss of life?), (5) available documentation, and (6)
agreement between the seller and customer regarding what the system is supposed to do.
Figure 5-39 summarizes our discussion on a way to build acceptance test procedures.

14 Creating test procedures is not an academic exercise. In constructing a test procedure for CD.2, you will discover that the requirements
specification is silent on a key point that results in a design specification ambiguity.

Successful Software Development, Second Edition

328

Figure 5-39 To demonstrate formally that a software system to be delivered does what the
customer and seller agreed to, acceptance test procedures should be explicitly linked to the
system development activities that yielded products reflecting this agreement.

The figure shows the linkage among the requirements specification, design specification, and
test procedures. For example, the requirements specification can be used to fill in some of the
EXPECTED RESULTS column. Section 3.4 of the requirements specification states the
requirement that the system shall display happy and sad faces in response to facial feature
input. The design specification can be used to fill in some of the OPERATOR ACTION and
EXPECTED RESULTS columns. Section 7.2 of the design specification details the command
the operator uses to construct a happy face. It is important to note that the specifications do
not necessarily have to be bound documents. The specifications could be any correspondence
that a project deems official, such as CCB minutes or memoranda between the customer and
seller project managers. Regardless, the five-column acceptance testing format helps
explicitly to link software products and the customer/seller agreed-upon system capabilities.
The information in this figure is typically used to populate a traceability matrix.

The set of test documentation discussed—test plan and test procedures—is not the only set
possible. For example, the U.S. government often adds an intermediate document. This
document, the test specification, outlines each test procedure prior to formulation of the
procedure steps. Other variations of test documentation include the use of different names for
test entities (e.g., a test procedure may be known as a test case) or the use of a hierarchy of
tests (e.g., test groups/test procedures/test cases). None of these variations modifies the
primary concept we are discussing—that specific written test documentation derived from

Successful Software Development, Second Edition

329

appropriate sections of the requirements and design specifications must be developed prior to
the beginning of acceptance tests.

Now that we have looked at the preparation of the test plan and test procedures—activities
that must precede the actual audit of the code—we are in a position to discuss the auditing
process itself. This process, which we term "acceptance testing," is shown in Figure 5-40.

Figure 5-40 This figure presents an overview of the acceptance testing process.

The focal point of the acceptance testing process is acceptance test procedure execution. The
figure shows how test procedure execution couples (1) what the requirements and design
specifications say a software system is to do with (2) what the software system actually does.
When the tester executes a test step, the tester observes the system's response and compares
this response with what appears in the EXPECTED RESULTS column. If the results do not
match, the tester writes a TIR and then executes the next test step. If the results do match, the
tester executes the next test step. For example, the EXPECTED RESULTS column in the
figure shows a happy face. However, as shown in the figure, when the tester executes the test
step, the tester observes a scowling face on the computer screen. The tester compares the
EXPECTED RESULTS (happy face) with the observed results (scowling face). In this case,
since the results do not match, the tester writes a TIR and then executes the next test step.

The output of test procedure execution is thus a set of TIRs that documents discrepancies
between specified operation and observed operation. It is then up to customer and seller
management to decide how these discrepancies are to be resolved before the seller delivers
the system to the customer. The customer and seller management make this decision at a
CCB.

Successful Software Development, Second Edition

330

In the following paragraphs we examine the TIR form in detail. However, before turning our
attention to this form, we examine how to manage acceptance testing. For this purpose, we
take the view that acceptance testing is a cycle governed by two types of CCBs—Software
Turnover CCB and Test Incident CCB. As we proceed through the testing cycle, we will see
how these two CCBs help to provide visibility into the computer code at every step in the
testing cycle. This visibility is captured through (1) CCB minutes, (2) TIRs, (3) written test
procedures, and (4) documented baselines. With this visibility, we can trace the baseline
changes and test incident reports. Visibility and traceability are particularly important during
the acceptance testing cycle. Generally, the scheduled software code delivery date is rapidly
approaching. The software code is being changed frequently and rapidly. Without good
visibility and traceability, it is easy to lose control over the software. Test incidents may be
overlooked or go unreported; they may be misplaced and never addressed. TIR resolutions
requiring code corrections may be found, but the code may not be corrected. Corrected code
may never be retested, and harmful side effects from code changes or improper corrections
may never be uncovered. The set of code being tested may not converge to a set suitable for
delivery to the customer, but may actually diverge with an increasing number of test incidents
from testing cycle to testing cycle. Visibility and traceability are essential if the seller
development team is to achieve convergence with what the customer wants.

Figure 5-41 shows the acceptance testing cycle that we now walk through. Notice that the
focal points of the cycle are the Software Turnover CCB and the Test Incident CCB. As we
discuss, these CCBs are special cases of the CCB concept discussed in Chapter 4. These
CCBs are simply tailored to focus on the determination of whether a software system is ready
to be shipped to the customer.

Successful Software Development, Second Edition

331

Figure 5-41 The interaction of the Software Turnover CCB and the Test Incident CCB during the
acceptance testing cycle raises the software system's visibility and infuses it with traceability.
The cycle continues until the customer and seller mutually agree that the software system is
ready to be released (i.e., "accepted by the customer").

The starting point in our walkthrough of the acceptance testing cycle occurs when the seller
development team provides the software system to be tested and the supporting material to the
product assurance personnel at a Turnover CCB. Let us assume that the software system is a
new system, that is, one that has not yet had any acceptance testing. However, as we walk
through the acceptance testing cycle, we also discuss software systems that have had some
acceptance testing.

What exactly is turned over at the CCB? There are a wide variety of answers in response to
this question. This variety may be a reflection of the variety of organizations involved in
software development and the variety of change control procedures used by those

Successful Software Development, Second Edition

332

organizations. In the following list, we state the items that we believe should be turned over at
the Software Turnover CCB meeting:[15]

• Source code.

This product is created by the developers and is subsequently changed in the event that
the resolution of a TIR requiring a change to the code is approved by the CCB. The
computer source code must therefore be placed under configuration control at this
point. Other source code derivative products, such as a computer source code listing or
computer object code, can be generated from computer source code.

• Build instructions.

These instructions detail how to transform the source code modules into an entity that
constitutes the software system. These build instructions enable the system builder (in
the product assurance organization) to assemble the source code modules into a
system for testing.

• Known problems.

Problems associated with the turnover software become baseline discrepancies that are
documented as TIRs. Their submission to the CCB provides visibility as to the
software status and averts unnecessary testing.

• Unit and integration test results.

The development organization conducts unit and integration tests[16] and records the
results in test reports. These reports indicate how these tests were conducted and detail
the test outcomes—including problems encountered and whether these problems were
corrected. Such unit and integration test results increase the visibility of the state of the
software code.

• Calibration data.

These data consist of a set of input test data and a corresponding set of output results
data. For example, assume that the software computer code adds two numbers together
and produces a result. Input test data are the numbers 4 and 5. The corresponding
output results data would be the number 9. Before the testers begin their testing, they
want to make sure that they are going to test the software computer code that the
development organization provided to the testers at the Software Turnover CCB. The
testers use the build instructions to assemble the source code modules into a system
for testing. Once the system is built, the testers would use the calibration data (i.e.,
input test data [4,5] and output results data [9]) to exercise the built system. If the
testers input the numbers 4,5 and the system produced the result of 12, then the testers
would know that they do not have the system they think they have.

15 We believe that this turnover list is independent of project organization. Note that this discussion is also applicable to databases.
16 By unit testing, we mean "the exercising of a unit (a separately compilable sequence of code statements) to ascertain whether it meets design
specifications." By integration testing, we mean "the exercising of progressively larger collections of units to check out the integrated operation of
each collection of units. The final step in integration testing is the exercising, as a single entity, of all units in the system under development."

Successful Software Development, Second Edition

333

The testers know that some software part is missing (e.g., it may not have been turned over at
a Software Turnover CCB) or it has been changed or the build instructions may be incorrect.
Basically, something that worked before no longer works. Software could be missing parts or
could be changed and not be detected by this calibration test. The purpose of the calibration
data is to obtain a degree of comfort that the testers are reading from the same sheet of music
as the development organization—before the testers expend resources executing the test
procedures.

Calibration data are not used to test the software (the test procedures provide an independent
set of data for testing) but to calibrate the software system. It is important to calibrate the
system before you expend resources testing the wrong system.

• A list of code modules to be turned over for testing.

This list identifies the software parts delivered.

• (= 2nd time through: resolved test incident reports [TIRs] and unresolved TIRs).

Resolved and unresolved TIRs come into play during the second and subsequent times
through the testing cycle. Resolved TIRs become part of the software system that is
built by the product assurance personnel for acceptance testing. Unresolved TIRs that
are provided to the Software Turnover CCB may have to be resolved before testing
begins, may not be resolved until later, or may be converted to incident reports (IRs)
or change requests (CRs).

The minutes of the Software Turnover CCB meeting should specify what was turned over at
the meeting, list the known software problems,[17] establish priorities for testing the software,
and set a date when the testers will end their testing and submit any TIRs they generate to the
test incident CCB.

Following the Software Turnover CCB meeting, the software configuration management
personnel (of the product assurance organization) place the delivered source code modules
under control. This controlled set of code is given the name "Development Baseline" to
signify that this code is what the developers handed over for testing. Then, the product
assurance organization, using the build instructions provided at the turnover meeting, build an
executable software system that is given the name "Test Baseline." The product assurance
testers then first execute the built system using the calibration data to see whether they obtain
the same outputs included with the calibration data that they received at the turnover meeting.
If not, the modules in the Development Baseline need to be checked (presumably by the
developers) to see whether they were indeed the ones the developers used to generate the
output calibration data. If the product assurance testers are able to reproduce the output
calibration data, they use their previously written test procedures to exercise the Test Baseline
in a live or nearly live environment. As a result of this testing, they may generate new TIRs.

The product assurance personnel execute the test procedures, record the results, and then
submit the results at a Test Incident CCB. Before we describe the role of the Test Incident

17 As the seller development team members prepare the turnover material, they may find a problem with the software code. The developers can record
this newly discovered problem on a TIR and include it as part of the turnover material. TIRs are usually generated by the testers, but in this case the
developers generate the TIR.

Successful Software Development, Second Edition

334

CCB, we first discuss how TIRs are used during testing. An example TIR form is shown in
Figure 5-42.

Figure 5-42 Example of a test incident report (TIR) form and associated events that it
documents.

The TIR form shown is an example only, designed to match our other change control forms
that we have discussed. This TIR form is a simplification and amalgamation of the IR and
SCN forms already presented. We chose this design for this form because the test incident
report process is basically a simplified version of answering the question "Is something
wrong?"

Successful Software Development, Second Edition

335

When a tester executing the test procedures observes a discrepancy, the tester fills out the
initiation event portion of the TIR and gives it to the bookkeeper[18] in the product assurance
organization. The bookkeeper assigns a control number to the TIR in the freezing event
portion of the TIR and presents all accumulated TIRs to the Test Incident CCB. At that
meeting, the CCB might decide that no action is required on the TIR or might decide to
convert the TIR either to an IR or a CR. Conversion to an IR might occur if the CCB
establishes the Operational Baseline[19] at a subsequent CCB—any residual TIRs are converted
to IRs at that time. For any one of these three decisions, the CCB chairperson fills out the
decision event portion of the TIR. If the CCB decides to send the TIR to the developers for
resolution, no entry is made in the decision event portion of the TIR.

The developer assigned to process a TIR fills out the analysis event portion of the TIR. The
developer adds a recommended resolution to the TIR and a list of the software parts in the
Development Baseline that the developer has changed. At the subsequent Software Turnover
CCB, all the TIRs that were completed through the analysis event are reviewed. The CCB
might decide that no action is required on the TIR or that it should be converted to a CR. For
these decisions, the bottom portion of the TIR would be filled out by the CCB chairperson.
Otherwise, the Software Turnover CCB forwards the TIR to the testers for retest. A tester
retests the software system to determine whether the incident has been resolved. The tester
retests the system by reexecuting the test procedure indicated on the TIR and observing at the
TIR-specified test step whether the observed and expected results now agree. If no
discrepancy appears, the tester indicates in the retest event portion of the TIR that the incident
has been resolved. At the next Test Incident CCB, the chairperson indicates that the test
incident has been resolved in the decision event portion of the TIR, and the TIR is closed.
However, if the tester still finds a discrepancy as a result of retest, the tester indicates that fact
in the retest event portion of the TIR and initiates an amendment to the TIR (amendments are
labeled sequentially starting with the letter A). The amendment is written on another TIR
form and attached to the original TIR. The tester fills in the incident description item of the
TIR amendment according to the tester's observations during retest. The development analyst
fills in the analysis section of the TIR amendment, and the tester completes the retest event on
the amendment. The TIR can continue around the acceptance testing cycle a number of times,
with the TIR and its amendments providing visibility as to what occurred during each cycle
and traceability from event to event. The TIR is closed out eventually when the CCB
approves the resolution of the test incident, converts it to an IR or a CR, or requires no code or
document changes to be made.

To further explain the TIR form, assume that the TIR shown in Figure 5-43 was generated.
The context for this TIR is the previously discussed System SHAPES. Assume further that we
are using SHAPES to draw ellipses on a map of the earth's surface. The tester fills out the
initiation event portion of the form and submits it to the product assurance bookkeeper, who
assigns it the control number 99-1066.

18 The bookkeeping role can be performed in a variety of ways. For example, the bookkeeper can be the tester or a member of the configuration
management (CM) staff. When the testing activity involves a lot of testers, it may be preferable to have a member of the CM staff serve as the single
point of contact for collecting TIRs. This approach increases the likelihood that all TIRs will be properly accounted for.
19 We use the term "Operational Baseline" to signify that the tested code is now ready for operational use.

Successful Software Development, Second Edition

336

Figure 5-43 Example of a completed test incident report (TIR) showing an incident resolved by
changing code. The first retest of the code demonstrated that the recommended code changes
were correct.

TIR 99-1066 and all other TIRs written during this test period are submitted to the next
meeting of the Test Incident CCB. At this meeting, each TIR is discussed in turn; if the CCB

Successful Software Development, Second Edition

337

can resolve a TIR at the meeting, it does so and closes the TIR. For example, if the TIR is a
duplicate or if it results either from a misunderstanding by the tester or from an error in the
test procedures, the CCB usually decides to take no action on a TIR, and the TIR is closed. In
the case of an error in a test procedure, the testers correct the errant test procedure and rerun
the test. The CCB might also decide that a TIR represents a capability not currently contained
in the requirements specification. Such a TIR may be converted by the CCB to a change
request, i.e., the CCB will consider amending the requirements after an impact assessment has
been made. The TIR is closed, and the CR is processed. The CCB may also decide that it will
not change the requirements to respond to the TIR, in which case the TIR is closed and the
originator notified.

At this particular Test Incident CCB meeting, TIR 99-1066 is recognized as a problem and is
sent to the development organization for analysis. This analysis provides insight into the
question "Is something wrong?" The outcome of this analysis can be one of the following:

• Something is wrong with the software system. Something needs to be fixed, and the
developers believe that it can be fixed before the next Software Turnover CCB.

As the developers attempt to fix the software system, it becomes apparent that the
system cannot be fixed before the next Software Turnover CCB. In this case, the seller
development team explains at the next Turnover CCB that the effort required to fix the
system was considerably more than what was thought to be case at the previous Test
Incident CCB. At the Turnover CCB, the decision makers can make decisions that
include the following:

o The TIR needs to be resolved. In this particular case, the software system
needs to be fixed before the Operational Baseline is established. The
developers are directed to fix the system.

o The TIR is converted to an IR. In this particular case, the software system does
not need to be fixed before the Operational Baseline is established.

• Something is not wrong with the software system. In this case, the seller development
team determines that no products need to be fixed. This situation generally arises
when a TIR is misunderstood at the Test Incident CCB.

The minutes of this Test Incident CCB should include a list of all TIRs submitted, a list of
resolved and unresolved TIRs, the designation of any software capabilities that should be
given particular attention because of the number or impact of TIRs pertinent to those
capabilities, and the date of the next Software Turnover CCB meeting, at which the
development organization will turn the software back over to the product assurance
organization for further testing.

The development organization analyzes and attempts to resolve as many TIRs as possible in
the time period allotted. The analysis event portion of each TIR resolved is filled out at this
time. In the case of TIR 99-1066 two modules were adjudged to be faulty by the analyst (from
the development organization), ELIPCALC and ELIPDRAW. The developers obtain a copy
of each of these two modules from the software development library and correct them to
resolve the test incident.

At the subsequent Software Turnover CCB meeting, all resolved TIRs are presented to the
CCB. For TIRs requiring changes to code modules (such as TIR 99-1066), the corrected

Successful Software Development, Second Edition

338

source code modules (including ELIPCALC and ELIPDRAW) are also turned over to the
product assurance organization. In the process of resolving TIRs, the development
organization often uncovers additional discrepancies. It is important to note that such
discrepancies might include areas of uncertainty in the various specifications for the project.
These discrepancies are reported as TIRs and introduced at this Software Turnover CCB
meeting. The minutes of this CCB meeting should document all TIRs returned to the CCB
and their resolutions, all new TIRs introduced at the meeting, and the date when the Test
Incident CCB would be held.

After this meeting, the product assurance organization substitutes the corrected source code
modules in the Development Baseline. The software system (Test Baseline) is rebuilt to
include the corrected code modules. Then the testers exercise the Test Baseline again, using
their test procedures. During this testing period, particular attention is paid to the procedure
test steps where resolved TIRs were first observed. If a discrepancy still exists at a particular
test step, an amendment to the TIR is prepared and attached to the TIR. With regard to TIR
99-1066, the tester found no discrepancies at step 49 of procedure EL2, and so indicated that
the incident was resolved in the retest section of the TIR. At the next meeting of the Test
Incident CCB, the decision makers, noting that TIR 99-1066 had been resolved on retest,
marked the decision event section to indicate that the incident had been resolved and then
closed the TIR.

The Test Incident CCB also decides when the testing cycle terminates. Ideally, the cycle
terminates when no TIRs result from the execution of the test procedures and no residual
unresolved TIRs exist. However, we live in a far from ideal world and must have other
mechanisms to allow us to exit the testing cycle. Even if TIRs are outstanding at the end of a
cycle, the CCB may elect to terminate the cycle if the number of outstanding TIRs is
relatively few and the impact of the TIRs on system operation is relatively minor. Another
consideration is whether the software has tended toward stability in the last few cycles. If the
number of TIRs outstanding at the end of each cycle is steadily decreasing, the system
appears to be stable and is converging to the Operational Baseline. Other considerations
regarding when to terminate the testing cycle include the arrival of the required delivery date
of the system to the customer and the exhaustion of funds available to conduct testing. These
last two considerations often override any other considerations as to when to terminate the
testing cycle.

Regardless of the reason for terminating the acceptance testing cycle, all outstanding TIRs
should be converted to incident reports. These IRs are processed as discussed in Chapter 4. It
should be noted that when the testing cycle is terminated, the system often has outstanding
discrepancies. Although this situation is less than ideal, the way IRs are processed provides a
mechanism for resolving them in a visible, traceable manner. This processing increases the
likelihood that the delivered product is readily maintainable. These observations should
provide some peace of mind to the user receiving this software. At least the user knows what
problems the user might face and that someone is working on their solution.

Contrast the foregoing situation to a situation in which no testing cycle (with its audit and
control functions) is provided. On most projects, a testing period is planned between the
completion of coding/unit testing/integration testing and the date of delivery of the software
code to the customer. The delivery date is usually fixed; it is generally very difficult to change
a delivery date. On the other hand, the date of completion of coding/unit testing/integration
testing frequently tends to slip toward the delivery date. The net result of such slippage is a

Successful Software Development, Second Edition

339

reduction of the testing period. Usually there are no plans to pass through the testing period
more than once. The testing period is often viewed as a "kick-the-tires" final inspection just
before delivery, from which at most only a few discrepancies are expected. With this concept,
no recycling through a testing period is necessary. If there are only a few discrepancies in the
computer code, this approach works satisfactorily. But if there are any substantial number of
discrepancies, the testing period could become chaos without any systematic way (i.e.,
defined acceptance testing cycle) of executing the test procedures, recording the results,
filling out TIRs, and presenting the TIRs to a Test Incident CCB. The testing period could
become a time of frenzied activity—testing, correcting code in response to test incidents, and
retesting all going on in parallel in a period of time that usually has been abbreviated because
of slippage of the completion date of the computer code. Reports of test incidents could be
misplaced, corrected code could be overlooked, code changes could counteract other code
changes. When the delivery date arrives (and delivery will occur on the specified delivery
date), the state of the software is unknown. What discrepancies still exist? What discrepancies
have been overlooked? In the period of frenzied testing activity, there is no time to document
the changes made to the code or even to record which modules were changed. Under these
circumstances, maintenance of the software becomes very difficult.

In this section, we looked in detail at the auditing process as it applies to computer code. We
showed how this audit of code against requirements and design specifications is accomplished
by executing code operating in a live or nearly live environment using written test procedures,
the process we call T&E. We pointed out how product assurance gives visibility during the
acceptance testing cycle to the state of the Development and Operational Baselines through
CCB minutes, TIRs, and written test procedures, and how it provides traceability during the
transition from the Development Baseline to the Operational Baseline.

Requirements Testability Example—System LOOKOUT

From the seller's perspective, the bottom line of the software systems development process is
to demonstrate formally that what the customer asked for is indeed embodied in the computer
code and supporting databases to be delivered. In this book, we call this formal demonstration
"acceptance testing." A fundamental premise of acceptance testing is that the functional
capabilities that the customer wants (i.e., functional requirements) are testable. A "testable
requirement" is one that satisfies the following criteria:

• The requirement is sufficiently defined to permit writing test procedures that
demonstrate whether or not the capability or capabilities defined by the requirement
are embodied in the computer code and/or supporting databases.

• The test procedures are executable in a cost-effective manner.

Strictly speaking, a statement of functional capability that is not testable is not a requirement.
If the presence or absence of such capability cannot be formally demonstrated, then it lies in
an engineering netherworld. A key software systems development process challenge then is
determining requirements testability so that the process can be brought to a successful
conclusion.

Determining that a requirement is testable is, in general, a nontrivial endeavor. As we have
reiterated, both the seller and customer progress in their understanding of what needs to be
done as a project proceeds. This increased understanding often has a direct impact on
establishing requirements testability as we now explain.

Successful Software Development, Second Edition

340

Elaborating on the preceding testability criteria, we say that a software requirement is testable
if we can describe a cost-effective exercise of the requirement that can be performed on the
computer hosting the software code and databases to be tested. Presumably such an exercise
can then be broken down into a set of test steps that a tester can perform and a corresponding
set of expected results that a tester can compare with the observed operation of the software
code. As we have explained, the test procedure steps are accompanied by a set of expected
results. When the tester executes the test steps, the tester compares the result of software code
operation against these expected results. If the results of this code operation do not agree with
the expected results, the tester writes a test incident report to document this discrepancy. To
illustrate in specific terms what is involved with establishing requirements testability, we
examine a requirements specification. The purpose of this examination is to focus on what is
involved with conceptualizing such test exercises. Of course, strictly speaking, until such
exercises are converted to performable test steps, requirements testability has not been
formally demonstrated. Because test procedure development does not generally occur until
some time after requirements are presented (and documented), demonstrating requirements
testability is, in fact, an open issue until test procedures are written. Frequently, it is not until
test procedure writing begins that testability nuances surface—again, because of the increased
understanding of what needs to be done that naturally emerges when people are forced to
think through how to demonstrate capability.

To give you how-to-do-it insight into how to assess requirements testability from a
requirements specification (before test procedure writing), we look at a requirements
specification. This look will help you anticipate certain testability issues. However, keep in
mind the previously mentioned caveat—until test procedure writing begins, the contents of
the requirements specification may still need to be reworked to transform previously
considered testable statements into testable statements. It should be noted that the
requirements specification that we consider is adapted from an actual specification that
contained testability issues that were dormant for years until the project adopted a formal
approach to testing that included preparing written test procedures derived from requirements
(prior to adopting the formal testing approach, the project used a cursory, "kick-thetires"
approach).

Figure 5-44 shows a two-page document entitled "Subsystem Requirements Specification for
Earth Surface Areas." As section 1 of the document indicates, a computer subsystem is
supporting the operations of the meteorological satellite system LOOKOUT. Among other
things, LOOKOUT monitors weather activity over various parts of the earth. In support of
this monitoring, the computer subsystem includes the capability to allow its users to define
rectangles on the earth's surface (called "spherical rectangles") that serve as reference areas
for weather observations (e.g., to observe what percentage of the time the area is cloudless).

Successful Software Development, Second Edition

341

Figure 5-44 This requirements specification provides the backdrop for illustrating the concept
of requirements testability.

Successful Software Development, Second Edition

342

Section 3 of the requirements specification (page 2) defines six capabilities (paragraphs 3.a to
3.f) regarding the spherical rectangles (as Figure 2 in the requirements specification indicates,
these rectangles are three-dimensional, being defined on the earth's curved surface). We
analyze whether each of these capabilities is testable. If a capability is not testable, we
consider ways in which the capability should be formulated so that it can be tested.

We stress at the outset that the testability issues that we address are precisely the types of
issues that the organization responsible for acceptance testing (which we suggest should be an
independent product assurance organization) should address during software systems
development. We also stress that, just as requirements definition is an activity that continues
throughout a software project, so too is requirements testability assessment an activity that
continues throughout a software project.[20]

In the following discussion, we describe an exercise that might be performed and what a tester
might look for to determine whether computer code embodies each of the six section 3
requirements.

• For requirements a and e (see Figure 5-44), the tester could define a rectangle by
entering the latitude and longitude of its northeast and southwest vertices. The tester
could then observe on the display device the resultant figure to see whether its borders
lie along the latitudes and longitudes defined by the vertices (see Figure 1 in the
requirements specification). This observation can be quantified by using the following
capability cited in the second paragraph in section 2 of the specification:

The user is also provided a mouse that controls the position of the
cursor on the CRT device. The user can continuously display the
latitude and longitude of the cursor.

Thus, the tester can use the mouse to move along the rectangle's borders and observe
whether the north and south sides lie along lines of constant latitude and whether the
east and west sides lie along lines of constant longitude, where the latitudes and
longitudes are those specified in the input vertices.

The preceding discussion thus represents a test of the requirements a and e in that it describes
an exercise that a tester can perform to confirm that a rectangle can be constructed that lies
along lines of constant latitude and longitude as defined by the latitude and longitude of the
rectangle's northeast and southwest vertices. These two requirements are thus testable.

To illustrate further some potentially latent testability issues regarding requirements a and e,
we observe the following:

• The tester exploits the capability to display latitude and longitude values continuously
using a mouse. Now, unless the tester has a very firm hand, and depending on the
sensitivity of the mouse/readout mechanism, the readout of a scan along a rectangle
border may show small changes in values (e.g., running the mouse along the northern
border that is supposed to lie, say, at 30°N may show readings varying between 29

20 Some parts of the subsequent discussion require knowledge of spherical trigonometry to be completely understood. However, it is not necessary to
understand the mathematical details of this discussion completely to understand the testability issues addressed. The mathematics has been
incorporated into the discussion to illustrate in specific terms the types of mathematical issues that testers may face in the real world. The
mathematical issues discussed are derived from the authors' actual software project experience.

Successful Software Development, Second Edition

343

degrees and 59 minutes and 30 degrees and 1 minute). No accuracy requirements are
stipulated in the requirements specification. Thus, presumably such small variations
may have no significance in confirming border constancy. However, when a test
procedure is written along the lines just described to confirm the presence of the
capabilities in requirements a and e, an accuracy requirement may emerge when the
test procedure is reviewed by others.

• Had there been no latitude/longitude readout capability, and had there not been the
user option to display latitude and longitude lines on the map background as indicated
in paragraph 3 of section 2, then it may have been necessary for the tester to
instrument the code being tested so that it displays such a background or otherwise
indicates where the figure lies on the surface of the earth. The need to instrument code
itself creates a testability issue. When the code is instrumented, the issue arises that the
code being tested is not the code that is to be delivered to the customer, since the
instrumentation code will be removed from the system to be delivered. Thus, when
instrumenting code for testing purposes, it becomes necessary to demonstrate that this
code does not change the system operation. That in itself can become a significant
challenge. Often what is done for display-oriented systems such as LOOKOUT is to
rely on visual comparison of screen displays and/or printouts of these displays with
and without the instrumentation code to demonstrate that the presence of the
instrumentation code has no perceptible effect on the operation of the system. This
visual comparison can be facilitated by printing out transparencies of the screen
displays. The transparencies of a display with and without the instrumentation code
can then be overlaid on one another to demonstrate that all parts of the display not
including output from the instrumentation code coincide.

• An ancillary issue that often arises in testing systems involving map displays (and that
is implicit in testing LOOKOUT) is the following:

How do you know that the display of maps (e.g., the display of land
masses and associated latitudes and longitudes as shown in Figure 1 of
the LOOKOUT Subsystem Requirements Specification) is correct?

o This issue can be restated as follows:

What is the ground truth for the maps to be
displayed?

o One way to address this issue is to have the customer supply
paper maps explicitly showing the map projection(s) and the
map scale(s) that the customer wants displayed. Then, using this
map-projection and map-scale information, transparencies of
map displays at these projections and scales can be printed
andthen overlaid on the customer-supplied maps. If the printout
of land masses and associated latitude and longitude lines
coincide with the land masses and associated latitude and
longitude lines on the customer-supplied maps, then, by
definition, the display of maps is correct. Again, accuracy
considerations may come into play when determining how
closely the computer printouts have to match the customer-
supplied maps.

Successful Software Development, Second Edition

344

• For requirements b and c (see Figure 5-44, section 3), it is necessary to perform
mathematical computations in order to determine expected results. To do these
computations, it is necessary to know what model is being used for the shape of the
earth. This model is not indicated in the requirements specification. Requirements b
and c are therefore untestable.

To see the significance of the need to prescribe an earth model, assume that the
requirements specification indicates elsewhere that the earth is a sphere of radius R =
3440 nautical miles. With this assumption, it is then possible to write down the
distance and area formulas shown in Figure 5-45 that could be used to check
requirements b and c. Using these formulas to compute rectangle side lengths and
rectangle areas (in a manner like that shown at the bottom of Figure 5-45), the tester
could then define various rectangles by specifying their northeast and southwest
vertices such that (1) some of these rectangles have one or more sides that exceed 80
nautical miles, (2) some of these rectangles have no sides exceeding 80 nautical miles,
(3) some of these rectangles have an area exceeding 3600 square nautical miles, and
(4) some of these rectangles have an area less than 3600 square nautical miles. The
tester could thus enter these vertex pairs and then observe on the display device the
result of entering these pairs. In those cases where the vertex pairs yield rectangle side
lengths no greater than 80 nautical miles and an area no greater than 3600 square
nautical miles, the display would presumably show the rectangles corresponding to the
vertex pairs input; otherwise, as section 3 of the requirements specification indicates,
the display would presumably respond with some error diagnostic indicating the
offending length and/or area.

Successful Software Development, Second Edition

345

Figure 5-45 This figure shows how to convert positions on the earth's surface expressed as
latitude/longitude pairs to lengths and areas on that surface. The formulas shown are for a
spherical earth model.

To illustrate further other testability issues regarding requirements b and c, we observe
the following:

o If the earth is not assumed to be a sphere (but, say, an ellipsoid), the distance
and area formulas shown in Figure 5-45 may have to be modified or replaced
to account for deviation from sphericity. The extent to which modification or

Successful Software Development, Second Edition

346

replacement may be required depends, in general, on the accuracy required;
that is, for completeness the requirements specification should probably
indicate the accuracy required for distance and area computations.

o The requirements specification does not indicate that the LOOKOUT CRT is
to display the rectangle side length values and the area value. Strictly speaking,
then, the tester does not have to check for these values; the tester only has to
check whether a rectangle is or is not accepted by LOOKOUT. However,
consider what might happen as the tester begins writing test procedures to
check requirements b and c. The tester's need to compute these values may
plant the seed in the minds of the LOOKOUT software system developers and,
eventually, the customer that it may be desirable to augment these
requirements to include the display of rectangle side lengths and areas. If these
requirements were augmented in this way, the tester would then have to
compare the values the tester computes from formulas such as those shown in
Figure 5-45 with the values appearing on the LOOKOUT CRT.

o It should be pointed out that the mathematical detail shown in Figure 5-45
would not need to be included in the requirements specification. For testability
purposes, it would be sufficient for the requirements specification in Figure 5-
44 to indicate (1) whether the earth model to be used were spherical,
ellipsoidal, or something else and (2) where the particulars on the earth model
to be used could be found (e.g., a standard reference on earth parameters).
From this information, the tester (and the software system developers) could
find or otherwise derive the formulas or algorithms for computing spherical
rectangle side lengths and areas.

o If the requirements specification were silent on the earth model to be used but
the tester and the developers recognized that an earth model is needed to
proceed with development and test preparation, some interesting situations
could arise if the developers assumed one earth model and the tester assumed
another model. This situation actually arose in connection with the
requirements specification upon which the LOOKOUT specification is based.
The tester used a spherical earth model with a radius R = 3440 nautical miles
(a value often used to approximate a nonspherical earth; this value is
determined by making the volume of a sphere equal to the volume of an
ellipsoid that approximates the actual earth shape having a polar radius of 3432
nautical miles and an equatorial radius of 3444 nautical miles). The developers
used a spherical earth model with a radius R = 3437.74677 ... nautical miles (a
value that is used to define the nautical mile; this model is used to simplify
navigational calculations). Figure 5-46 shows a spherical rectangle one degree
on each side in the region of the equator. The figure also shows the
computation of the area of this rectangle for these values of the radius. As the
figure indicates, from the tester's perspective, the area of the rectangle in
question is too large to be accepted by the system (i.e., its area is a little more
than one square nautical mile larger than the maximum value stipulated in
requirement c). As the figure also indicates, from the developers' perspective
the rectangle is not too large, having an area slightly less than 3600 square
nautical miles. As it turned out, when thetester ran a test of requirement c, the
system accepted the rectangle. The tester thus wrote a TIR, because the tester
expected, on the basis of the calculation shown in Figure 5-46 for R = 3440
nautical miles, that this rectangle had an area larger than the requirement c
maximum. When this TIR was brought to the attention of the developers, the

Successful Software Development, Second Edition

347

developers took exception to it. It then came to light that (1) each side was
using different earth models and (2) the requirements specification was silent
on what earth model was to be used. More significantly, however, it also came
to light that underlying the rectangle parameters listed in the requirements
specification was the "requirement" to ensure that all rectangles one degree on
a side were to be accepted by the system. Because no formal testing had been
conducted for years, this implicit requirement and the earth model testability
issue had been dormant for years.

Figure 5-46 This figure shows calculations for two spherical earth models—one for a model
whose radius is 3440 nautical miles and one for a model whose radius is used to define the
nautical mile.

In summary regarding requirements b and c, in order to test these requirements, it is
necessary to know the model being used for the shape of the earth. The details of this
shape depend on the accuracy required for distance and area computations (e.g.,
required computational accuracies may be such that it is sufficient to assume that the
earth is a sphere, because changes to distance and areas that would result by assuming
a nonspherical earth would be smaller than the required accuracies of the values of
these quantities). Consequently, unless the requirements specification were augmented
to address earth-model (and computational accuracy) issues, requirements b and c
would have to be considered untestable.

Successful Software Development, Second Edition

348

• For requirement d ("all areas shall lie between 75° North and 75° South"), the tester
could extend the scope of the tests used to exercise requirements a and e by including
rectangles whose northern borders lie above 75° North latitude and other rectangles
whose southern borders lie below 75° South latitude. As section 3 of the requirements
specification indicates, vertex pairs defining such rectangles would presumably cause
the software to respond with some error diagnostic indicating the offending border(s).
However, there is a potential ambiguity in the statement of the requirement. The
potential ambiguity arises from the word "between." Sometimes this word is used in
the inclusive sense so that in the case of requirement d, the value "75" would be
included; sometimes this word is used in the exclusive sense so that in the case of
requirement d, the value "75" would be excluded. Unless this sense is understood, a
tester is unable to determine the expected result for a rectangle whose northern border
lies on 75°N or for a rectangle whose southern border lies on 75°S. Of course, this
potential ambiguity could be removed by rewording the statement of the requirement
in one of the two following ways:

All areas shall lie between 75° North and 75° South inclusive.

All areas shall lie between 75° North and 75° South exclusive.

Thus, with the one caveat regarding the interpretation of the word "between,"
requirement d can be considered testable.

• For requirement f, the tester could again extend the scope of the tests used to exercise
requirements a and e by entering up to 200 pairs of acceptable vertices (vertex pairs
that do not violate requirements b, c, and d). It should be noted that, for repeatability,
accomplishment of the testing of requirement f would probably benefit from
automated support. For example, it may be useful to store the (up to) 200 vertex pairs
on some mass storage device (say, a disk). Then, through a keyboard-entered
command, these pairs could be read into the system, each pair (quickly) generating a
figure on the display device and storing the figure on a mass storage device for
subsequent reproduction on a printer, so that the resultant hardcopy could be carefully
analyzed subsequent to test execution to explicitly check that (at least selected)
rectangles corresponding to the vertex pairs input were properly generated. Following
this exercise, the tester would attempt to create additional rectangles in excess of 200
by entering additional vertex pairs. As indicated on page 2 of the requirements
specification in Figure 5-44, when the number of rectangles stored on the mass storage
device exceeds 200, the system would presumably respond with some error diagnostic
indicating that the system limit of 200 stored rectangles has been exceeded. Thus, the
preceding discussion indicates that requirement f is testable. This discussion also
indicates that testing this requirement would probably be greatly facilitated by at least
automating the process of entering test data.

To illustrate further other testability issues regarding requirement f, we observe the following:

• It would perhaps have been preferable to reword requirement f along the following
lines:

The LOOKOUT database shall be capable of storing between 1 and
200 areas inclusive.

Successful Software Development, Second Edition

349

Wording such as the above more precisely reflects the operational need for the system.
With a statement such as the above, the tester can prepare, in the manner described
earlier, any number of areas between 1 and 200 inclusive to demonstrate that the
system is doing what the requirement stipulates it should do. With the wording as
given in Figure 5-45, the tester would simply prepare 200 areas and see if they could
be stored. But, perhaps through some glitch in the computer code logic, trying to store,
say, 167 areas might (erroneously) cause an error diagnostic to be issued. This
anomaly could potentially be overlooked. (It is also true that this anomaly would be
overlooked if the wording were as above and the tester chose not to test every number
of areas between 1 and 200, but rather chose a subset of these cases.) While it might
be argued that many would interpret the wording of requirement f as it appears in
Figure 5-45 along the lines given above, some (including the customer) might interpret
it some other way (e.g., "the LOOKOUT database shall be capable of storing at least
200 areas"). To avoid such potential misinterpretations, it is preferable to word
required capabilities in terms that can be translated into unambiguously defined
exercises of the capabilities. The following are additional examples of variations to the
wording of requirement f that present some testing (and, hence, testability) difficulties:

The LOOKOUT database shall be capable of storing a maximum of
200 areas.

The LOOKOUT database shall be capable of storing a minimum of 200
areas.

In the first example, what should happen if 201 areas are stored? Should the system
issue an error diagnostic? Should the tester prepare just two sets of input data—one
with exactly 200 areas and one with some number of areas greater than 200? Should
the tester, as we argued earlier, prepare additional sets of input data with the number
of areas varying between 1 and 200? If so, then isn't the tester acting as if the
requirement were, in fact, stated as we said earlier, namely,

The LOOKOUT database shall be capable of storing between 1 and
200 areas inclusive.

In the second example, should the tester simply prepare just one set of input data—
namely, 200 areas? Or does the tester have to prepare progressively larger numbers of
areas since the requirement is open-ended? Also, in an actual operational setup, how
does a database start out with 200 entries? Should an error diagnostic be issued if, at
any time, the contents of the database fall below 200 areas?

• When we introduced the definition of testability, we noted that the second criterion for
testability was the following:

The test procedures are executable in a cost-effective manner.

Sometimes this cost-effectiveness criterion places limitations on the testing approach.
In discussing the testability of requirement f, we hinted at a limitation when we
suggested that testing this requirement would probably be greatly facilitated by at least
automating the process of entering test data. Now, suppose that, instead of the number
200, requirement f contained a much larger number—say, 20,000 or 200,000. A

Successful Software Development, Second Edition

350

testing approach that may have been cost-effective for 200 areas may not be cost-
effective for 20,000 or 200,000 areas. It was intimated that manually entering vertex
pairs defining even 200 rectangles may be time-consuming—how much the more so
for 20,000 or 200,000 vertex pairs? Automated support may not be necessary for the
case of 200 because it may not take an inordinate time to prepare manually this many
data ("inordinate" is, of course, a relative term; what may be inordinate in one
environment may be acceptable in another); however, manually preparing one hundred
or one thousand times this many data may simply not be feasible, let alone cost-
effective. Thus, if 200 were replaced by a much larger number, the brute force testing
approach of manually generating and examining the 200 rectangles discussed earlier
would have to be replaced by some other approach if the requirement were to be
testable (e.g., statistical sampling where, for instance, the database were automatically
populated with 20,000 rectangles, and then, say, 100 of these rectangles were
randomly selected from the database to see whether they matched items that were in
the list of 20,000 generated).

Figure 5-47 summarizes our discussion regarding the testability of the six LOOKOUT
software requirements listed on page 2 of the requirements specification in Figure 5-44.
Figure 5-47 also gives a graphical depiction of each requirement. The boxes showing the two
untestable requirements (i.e., b and c) are shaded in dark grey; the box showing the
requirement that may or may not be testable (i.e., d) is shaded in light grey.

Successful Software Development, Second Edition

351

Figure 5-47 A summary of the testability of LOOKOUT software requirements.

We close this discussion of the important topic of requirements testability with the following
remarks reiterating and expanding upon key points from this discussion:

1. The bottom line of the software systems development process is to demonstrate
formally that what the customer asked for is indeed embodied in the computer code
and supporting databases to be delivered. We call this formal demonstration
"acceptance testing." Thus, requirements testability lies along the critical path towards
achieving successful software systems development.

2. We said that, for a requirement to be testable, it must satisfy the following two criteria:
o The requirement is sufficiently defined to permit writing test procedures that

demonstrate whether or not the capability or capabilities defined by the
requirement are embodied in the computer code and/or supporting databases.

Successful Software Development, Second Edition

352

o The test procedures are executable in a cost-effective manner.

As we explained, the first criterion contains a catch-22. Test procedures are generally
not written until design activity is under way. Until the "how" to do the "what" in the
requirements specification is defined in the design specification, the tester cannot, in
general, completely specify the expected results in test procedures. Thus, the
testability of a requirement may not be fully known until long after requirements
specifications have been baselined and rebaselined. However, as we illustrated in
connection with several of the LOOKOUT requirements, questions raised by testers as
early as the initial formulation of requirements serve to drive out testability issues.
Because the tester is in constant pursuit of being able to write down what is to happen
when the tester takes a certain action (i.e., what are the expected results of this action),
this pursuit acts as a forcing function on the development process to highlight things
the developers may not have considered as they mold design from requirements. Thus,
determining requirements testability is an activity that, in many cases, continues
through the acceptance testing process itself. For, even as test procedures are executed
and system behavior is observed, the participants in the testing process may see things
that they had not previously anticipated. Often, these new observations bring to the
fore testability nuances. We illustrated in our discussion of the LOOKOUT
requirements how some of these nuances can appear long before test procedure
execution (e.g., what does "between" mean?)—how much the more so during and after
test procedure execution?

3. Allied with the observations in item 2 is the issue of determining how much detail to
incorporate into the requirements specification and what properly belongs in the
design domain. This issue has no unique resolution. The simple response to this issue
is the following:

Include enough detail to respond to questions that are raised. If you do
not know the answers to some of the questions, include them as TBDs
("to-be determined") in the requirements specification or document
(e.g., in CCB minutes) that they are design issues.

For example, as Figure 5-47 reminds us, LOOKOUT requirements b and c are not
testable because no earth model is specified in the requirements specification. When
discussing these requirements, we pointed out that it would be sufficient to cite a
standard reference in which the earth model to be used was defined to make these
requirements testable. There would be nothing wrong in pulling some of the material
from that reference into the requirements specification—such as the earth model
parameters (e.g., earth radius) and the associated mathematical formulas for
calculating lengths and areas on the surface of that model. There would also be
nothing wrong in putting the mathematical formulas into a design specification since,
strictly speaking, these formulas specify the "how" of doing the "what" embodied in
requirements b and c. Regarding requirements a and e, there is an issue regarding side
lengths that we did not consider when we discussed the testability of these two
requirements. This issue has to do with the case LAT1 = LAT2 and/or LON1 = LON2.
The requirements specification is silent on these degenerate cases (i.e., when the
rectangle collapses to a line or a point). Of course, the LOOKOUT user probably has
no interest in these situations. But, in fact, these situations may arise in practice
because, for example, the user may have inadvertently made a data entry error by

Successful Software Development, Second Edition

353

setting the latitudes equal to one another and/or setting the longitudes equal to one
another. Strictly speaking, such considerations impact on the testability of
requirements a and e. These considerations fall into the domain of what is often
referred to as "negative testing"—that is, testing how the system responds when a
capability is misused. Often such considerations are put off until the design stage
when the issue of error diagnostics is addressed. It is preferable, however, to address
such issues earlier. In fact, as Figure 5-44 shows and as we mentioned, the
LOOKOUT requirements specification does address some of these system misuse
considerations.

Another requirements versus design specification testability issue regarding
requirement e is that of data entry order. The requirements specification does not
explicitly indicate whether the first vertex entered is the southwest corner or the
northeast corner. The labeling in Figure 5-45 could be construed to imply that the
southwest corner is to be entered first since it is called (LAT1, LON1); on the other
hand, the wording in paragraph 3.e mentions the northeast vertex first. It could be
argued that this information is a "how" and not a "what" so that it properly belongs in
a design specification. Wherever it belongs, the tester needs this information to specify
expected results—and to do negative testing (which, in this case, would be to enter the
vertices in reverse order).

4. The discussion of the testability of requirements b and c brings to light a challenge that
typically faces a tester. If a tester does not have specific expertise in an area to be
tested, it may be necessary for the tester to do some detailed analysis of the
implications of testing that area. Thus, in the case of requirements b and c, the tester, if
not conversant with computations on the surface of a sphere, would need to dust off
his or her mathematics books to locate formulas that would help him or her generate
expected results. In general, a good tester need not be an expert on the technical details
of what he or she is to test. The tester does, however, have to be able to invoke his or
her analytical skills to seek answers to questions raised by the capabilities he or she is
to test.

Complementing software product audits are software process audits, which are described in
the next section.

Software Process Audits

The purpose of a software process audit is threefold:

• To ascertain the extent to which an organization is doing what it signed up to do.
• To identify those process activities that may need to be improved.
• To provide the customer and seller visibility into the software development process.

As we have discussed, many times the software development processes may be in the heads
of a few ofthe organization's gurus. Although the gurus' processes may not be documented,
the processes areused. Many times the products produced by the undocumented processes are
well received by the customer. However, in this book, we have also discussed that one
measure of successful software systems development is the ability to produce good products
(i.e., products with integrity) with good processes (i.e., processes with integrity) consistently.

Successful Software Development, Second Edition

354

It is hard, and some would say impossible, to achieve such consistency over the long term
without documenting "the organization's way of doing business."

Additionally, we have discussed how successful software systems development is a delicate
balance among (1) enabling people to grow professionally, (2) documenting processes
embodying the experiences and knowledge of the people in the organization, (3) using know-
how to apply such processes appropriately to a set of circumstances, and (4) refining
processes based on the experience gained by applying the processes.

We take the approach that a systems engineering environment (SEE) houses, in part, the
processes embodying the experiences and knowledge of people in the organization. To refresh
your memory, the SEE consists of the following two complementary components:

• Application Development Process Environment (ADPE).

The set of those policies, guidelines, procedures, and standards defining the processes
for developing products (i.e., documents or computer code or databases). The ADPE is
a framework for bringing about consistent product development.

• Application Development Technology Environment (ADTE).

The technology as embodied in hardware and software development tools, and
associated procedures for their use, required to develop products.

Software process audits use ADPE elements as part of the ground truth. A software process
audit is the review of a process as it is being exercised, or after it has been exercised, to
determine whether it conforms to standards defining processes. In this book, the "standards"
are the ADPE elements defining an organization's way of doing the business of software
systems development and the negotiated agreement. Figure 5-48 illustrates an overview of
this audit process for a project's software systems development process.

Successful Software Development, Second Edition

355

Figure 5-48 This figure shows an overview of the auditing process for software systems
development processes.

Figure 5-48 shows the auditing process beginning at life cycle stage N (i.e., while the software
development process is being followed), but a process audit could take place after all or part
of the software development process has been exercised. An auditor conducts the process
audit by comparing the software systems development process against the ground truth.

Successful Software Development, Second Edition

356

Process audits can be conducted by seller management, the lead developer, an independent
product assurance organization, or some combination of these entities.[21]

In our discussion of software product audits, ground truth includes (1) the approved
requirements specification, (2) the approved life cycle stage N-1 product, and (3) standards
(recall Figure 5-22). As we discussed, the software product ground truth can be used in
product reviews and product audits. The same types of statements can be made with respect to
software process audits. However, ground truth for software process audits includes (1)
ADPE elements and (2) the negotiated agreement. As was the case with product reviews, you
can combine various process reviews when you perform process audits. For example, process
ground truth can be used for process comparison techniques that include process
programmatic tracking, process technical oversight, process peer reviews, and process quality
assurance at a product and project level. Combining these comparison techniques is an
example of combining process reviews for software process audits.

As a result of process audits, discrepancies between the project's software systems
development process and the ground truth may be uncovered. These discrepancies are
documented in a process audit report, which is presented to the seller's software organization
for its disposition. Depending upon the seller's organization, the audit report may be presented
to the program manager who oversees several projects. Alternatively, the audit report may be
presented to the head of the seller's software process engineering group. Certain audits may be
called for by the seller's project manager or the customer's project manager. Also, audits may
be conducted by an outside organization to determine whether your organization is
conforming to your business practices. A potential customer may require such an outside
audit before the customer decides to do business with the seller. Regardless, Figure 5-49
delineates a suggested format for a software process audit report.

21 Chapter 8 discusses how the seller deliverable tracking form introduced in Chapter 3 can be coupled to the measurement approach described in
Chapter 6 to gain insight into how a project is following the organization's software systems development process at the project level.

Successful Software Development, Second Edition

357

Figure 5-49 Here is a suggested format for a software process audit report.

The software process audit report is similar to the software product audit report. For example,
the auditor's objective findings (i.e., Section 4) are presented separate from any of the
auditor's subjective opinions (i.e., Sections 5 and 6). Also observe that, in addition to
discrepancies uncovered by checking the conformance to the ADPE elements, various
discrepancies may be described as a result of the prescriptive application[22] of the ADPE
elements to the project's software systems development processes. For example, an ADPE
element describing the organization's peer review process may recommend at least two peer
reviews for each product. When the auditor checks how the project is implementing this
guidance, the auditor observes that the project is conducting at least four reviews per product.
The project believes that the increased number of peer reviews helps to identify potential

22 Remember, in Chapter 1 and elsewhere, we described "prescriptive application" as the practical application of software systems engineering
principles. By practical, we mean "application of techniques consistent with available time and resources." We do not believe that software systems
development is a cookie-cutter exercise (i.e., reduced to a simple set of step-by-step instructions). Skills in applying management, development, and
product assurance techniques are key ingredients to achieving software systems development success.

Successful Software Development, Second Edition

358

problems early. In this case, a corresponding recommendation may be that the organization's
peer review guidance be changed to increase the number of peer reviews per product.

Other findings can be the result of the following comparisons:

• Qualitative comparison.

Qualitative process audits combine process programmatic tracking, process technical
oversight, process peer reviews, and process quality assurance at a product and project
levels. Qualitative process audits can use checklists to record that a given process
activity is or is not being performed.

• Quantitative comparison.

Quantitative process audits involve defining, collecting, using, and communicating
software systems development process measurement. Quantitative process audits can
use metrics to calculate the extent to which each process activity is being performed.[23]

As illustrated in Figure 5-50, both qualitative and quantitative comparisons use the ADPE as
the ground truth. Qualitative and quantitative process audit comparisons may be used to
determine whether an organization is following its business practices in developing its
products. In addition, process audits may be used to provide insight into which business
practices need to be added, removed, and/or improved.

23 Chapter 6 deals with quantitative techniques in detail.

Successful Software Development, Second Edition

359

Figure 5-50 Software process auditing establishes the extent to which project processes are
congruent with organizational processes documented in the ADPE.

To clarify the foregoing concepts, consider the following simple example. First, let's take a
quick look at a qualitative comparison involving an organization's software systems
development process. Assume the software systems development process to be audited is the
process that we discussed in Chapter 3. Recall that a form is used to track a software product
working its way through the software systems development process activities. An auditor can
use this form as a simple checklist to compare qualitatively the project's use of the
organizational software systems development process. The auditor checks a series of these
tracking forms and records the qualitative observations on the example summary form shown
in Figure 5-51.

Successful Software Development, Second Edition

360

Figure 5-51 Here is an example qualitative software process audit form that can be used with
our organizational software systems development process.

The auditor assigns a control number when the software organization (e.g., program manager,
head of seller's software process engineering group, seller project manager, customer project
manager) directs that an audit is to be conducted. The auditor fills in the auditor's name,
organization, project being audited, and the auditor's telephone number. Then, as the auditor
reviews each of the deliverable tracking forms, the auditor records the observations in the
appropriate column on the qualitative software process audit form, which becomes an
attachment to the process audit report.

For example, assume that the auditor checks ten tracking forms and observes that no peer
reviews have taken place. This observation would be noted in the software process audit, and
a possible recommendation may be to start conducting peer reviews. The auditor should also
check the negotiated agreement to see whether peer reviews were specifically excluded from
this project, and adjust from the observations as appropriate. Such situations might arise when

Successful Software Development, Second Edition

361

a customer requests a waiver from the seller's business practices. In this case, the seller should
inform the customer of the attendant risks associated with such a waiver.

To gain more insight regarding the extent to which each organizational process activity is
being performed by the project, a quantitative comparison is needed. Quantitative comparison
involves the use of metrics. The subject of metrics is presented in detail in Chapter 6. To
introduce the concept of quantitative comparison, we briefly present the following possible
quantitative outcomes:

• If the process audit shows that the process is being followed but that the resultant
products consistently lack integrity (e.g., are delivered late, do not do what they are
supposed to do), then the process should probably be altered.

• If the process audit shows that the process is not being followed but that the
organization is consistently producing products with integrity, then the practices that
are being used need to be folded into the organization's process.

• If the process audit shows that the process is not being followed and that the resultant
products consistently lack integrity, then steps should be taken to get the organization
to follow the process consistently.

• If the process audit shows that the process is being followed and that the resultant
products have integrity, then the organization has a "good" process that, at most, may
need fine-tuning.

The details of the quantitative process audits will become more apparent after you read
Chapter 6. For the time being, we will simply state that process measurement is a part of
continual software systems development process improvement. The software process audit
helps to identify needed process improvement areas.

Upon reviewing the software process audit report, the software organization processes the
discrepancies uncovered. Approaches that the software organization can use to process the
discrepancies include the following:

• Assign the entire process audit report to the process engineering group for analysis.
This approach will result in a report providing recommended resolutions for every
discrepancy.

• Categorize discrepancies into those whose resolution is apparent and those whose
resolution is not apparent. Apparent discrepancies are resolved immediately. The
remaining discrepancies are assigned to the process engineering group for analysis that
results in a report detailing recommended resolutions for every discrepancy.

• Treat each discrepancy as a suggestion for improving the organizational processes,
and process each suggestion in accordance with the organizational continuous
improvement process that is a part of the ADPE.

These three approaches provide the software organization with visibility into potential process
improvement areas. When the software organization decides on which approach or
combination of approaches to use, an improvement action plan is prepared by the appropriate
organizational entities. Either process change is needed or no process change is needed. If
changes are needed, the modifications are made in accordance with the organizational
continuous improvement process. Whether or not change is needed, getting the people in the
organization to follow the processes may also be needed.

Successful Software Development, Second Edition

362

5.5 Product and Process Reviews Summary

Product and process reviews help to uncover discrepancies in software products and software
systems development processes, respectively. Before the CCB can approve changes to attain
and maintain software products with integrity, the CCB must know the state of software
products as they evolve, as they are being built, and after they are delivered. Likewise, before
the software organization (e.g., program manager, head of seller's software process
engineering group, seller project manager, customer project manager) can approve changes to
attain and maintain software processes with integrity, the organization must first know
whether the processes are being used and to what extent the processes are being used. This
knowledge is acquired through product and process audits that uncover discrepancies.

To help you define (or refine) your organization's software engineering environment, we offer
annotated outlines for independent product assurance, peer reviews, and acceptance testing.
First, let us highlight product assurance. As illustrated in Figure 5-52, you can use the
following annotated outline of an ADPE policy as a starting point for defining your
organization's independent product assurance program. This outline consists of the following
sections:

Successful Software Development, Second Edition

363

Figure 5-52 An annotated outline for getting you started defining an independent product
assurance policy for your organization.

Successful Software Development, Second Edition

364

• Purpose.

This section states the purpose of the element. The purpose sets the context, defines
the product assurance (PA) processes (i.e., QA, V&V, T&E, and CM), and delineates
the implementation responsibilities for the policy. These responsibilities are key
because they are shared by the entire organization, not just some independent "quality"
organization that is not involved with the day-to-day development activities and
customer interactions. This element should stress that independent PA reduces risk; it
is not risk elimination.

• Background.

This section provides an overview of your organization, business, customers, and
types of contractual vehicles that you use to conduct business. Your organization's PA
concept can be presented, along with the types of products and processes that the PA
organization is to review.

• Policy and Implementation Guidance.

This section presents specific PA policy elements and guidance for carrying them out.
This section can include the following:

o PA organization
o PA processes
o PA and project planning
o Project PA plans
o PA resource management
o PA reporting
o PA membership in CCBs
o PA acceptance testing
o PA audits
o PA procedures
o Incident report resolution
o Applicability and authorized deviations

• Product Assurance Policy Implementation Responsibilities.

This section delineates the individual responsibilities within your organization for
implementing the PA policy elements. For example, the seller project manager's
responsibilities might include the following:

o Disseminate project product assurance policy to all project members within the
scope of the project manager's responsibility.

o Provide required direction and guidance to the seller development team to
support implementation of internal and external product assurance functions.

o Interact directly with designated product assurance personnel throughout the
development effort as defined by the project plan and ADPE policies,
guidelines, procedures, and standards.

Successful Software Development, Second Edition

365

• Appendices.

Appendices can contain examples of the various types of product and process reviews
that are part of your organization's software systems development process. More
detailed explanation can be provided for the product assurance processes and the way
that they influence your project planning process.

The second annotated outline deals with peer reviews and is shown in Figure 5-53. This
outline consists of the following sections:

Successful Software Development, Second Edition

366

Figure 5-53 An annotated outline for getting you started defining a guideline explaining how to
prepare for and conduct peer reviews as part of your organization's software systems
development process.

Successful Software Development, Second Edition

367

• Purpose.

This section states the purpose of the guideline. You can highlight your organization's
peer review approach that may include a delineation of implementation
responsibilities, possible checklists, and corresponding instructions. This element
should stress that peer reviews (1) provide a controlled mechanism for refining
products and processes, (2) provide technical feedback to the lead developer or
software organization, and (3) are not a measure of the lead developer's performance.

• Background.

This section provides an overview of your organization, business, customers, and
types of contractual vehicles that you use to conduct business. Your organization's
peer review concept can be presented and should include, as a minimum, informal and
formal (scheduled) reviews.

• Peer Review Guidance.

This section presents guidance for preparing for and conducting the organization's
peer reviews. Topics to be discussed include peer review roles, preparation guidance,
kinds of reviews, duration of the reviews, checklists, and forms.

• Appendices.

Appendices can contain examples of various types of sample review forms and
checklists. Example checklists include peer review readiness, requirements review,
and design review. Example forms include peer review invitation and peer review
comments.

The third annotated outline deals with acceptance testing and is shown in Figure 5-54. This
outline consists of the following sections:

Successful Software Development, Second Edition

368

Figure 5-54 An annotated outline for getting you started defining an acceptance testing cycle
procedure for your organization.

Successful Software Development, Second Edition

369

• Purpose.

This section states the purpose of the procedure. This element should stress that
acceptance testing formally demonstrates that customer and seller agreed-upon
capabilities are embodied in the to-be-delivered software code and supporting
databases.

• Background.

As with other ADPE elements, this section provides an overview of your organization,
business, customers, and types of contractual vehicles that you use to conduct
business. This section introduces your organization's acceptance testing concept and
the test documentation to be used.

• Acceptance Testing Steps and Associated Organizational Responsibilities.

This section presents specific elements of your acceptance testing steps and guidance
for performing the steps. The acceptance testing process, steps, and organizational
responsibilities should be presented.

• Test Procedure Formatting Instructions.

This section explains how to format test procedures. We recommend that your
organization adopt the five-column format that includes test step number, tester
actions, test step purpose, expected results, and comments.

• Test Incident Reporting (TIR) Instructions.

This section provides instructions for filling out a TIR.

• Appendices.

Appendices should be added as necessary. For instance, appendices can contain
examples of test procedures and test incident reports.

We have completed our discussion of software product reviews and software systems
development process reviews. The next chapter deals with measurement, and it details how
you can set up metrics for products and processes. The chapter provides you with guidance
for measuring the "goodness" of products and the "goodness" of the processes that produced
the products. The focus of the chapter is on how to use measurement to achieve consistent
product and process "goodness."

Successful Software Development, Second Edition

370

Chapter 6. Measurement
There is no such thing as absolute value in this world. You can only estimate what a thing is
worth to you.

—Charles Dudley Warner, "Sixteenth Week," My Summer in a Garden (1871).

6.1 Introduction

Measurement for measurement's sake is a waste of time and money. It is not unusual for
people to measure things simply because somebody—some edict, or some policy—stipulates
that things should be measured. Yes—measurement certainly has a role to play in making
software development successful. But, unless this role is thought through, measurement can
degenerate into a meaningless exercise, as the cartoons in Figure 6-1 suggest. The purpose of
this chapter is to help you set up a role for measurement that makes sense for your
environment.

Figure 6-1 Measurements need to be expressed in everyday terms that are familiar to the
organization; otherwise, they may be of little value.

In the world of measurement, the term meaningless has a number of nuances that we briefly
explore. Our purpose for this brief exploration is to arrive at what we believe is a fundamental
measurement principle. Let us consider the following:

• It is meaningless to try to measure lengths down to the nearest sixteenth of an inch
with a ruler that contains only quarter-inch marks. This nuance underlies the dialog in
the first cartoon in Figure 6-1. In this cartoon, the figures "53%" and "56%" are
essentially the same, lacking any other in-formation about the accuracy of the
statistical measurements referenced.

• It is meaningless to try to measure things in a vacuum. There are many ways to set
measurement context. In this book, we take the stance that measurements should be
taken for the purpose of answering specific questions. In the second cartoon in Figure
6-1, the intended audience of the measurement presentation may have a question that
he wants answered, but he is evidently hoping that the statistics he is seeing are not the
answer he may be looking for.

• It is meaningless to express measurements in language the intended audience cannot
understand. We use the term foreign language to express the idea that a means of
communicating is not part of someone's or some entity's vocabulary. It clearly makes

Successful Software Development, Second Edition

371

no sense for someone to listen to a presentation in, say, Spanish, if that person never
studied Spanish. Likewise, it makes no sense to communicate measurements in a
language that may be foreign to an intended audience. For example, if the intended
audience is conversant with the language of statistics, it is certainly appropriate to use
statistics to express measurements (with the caveat cited above). If, on the other hand,
statistics is a foreign language for the intended audience, using terms such as "mean,"
"mode," and "standard deviation" will be meaningless (unless, of course, the
presentation includes a tutorial on statistical concepts).

The preceding discussion leads us to the following fundamental measurement principle that
underlies much of the discussion in this chapter:

Measurements need to be expressed in everyday terms that are familiar to the
organization; otherwise, they may, at best, be of little value.

Thus, measurement, like many of the other techniques in this book, is an exercise in effective
communication.

We present measurement techniques that enable you to measure software products and
software systems development processes in everyday terms familiar—and therefore
meaningful—to your organization. We believe that understanding how to define, collect, use,
and communicate measurement is a significant contributor to successful software projects.
Furthermore, we believe that successful software systems development is a continual
improvement exercise. Measurement is a means for effecting this improvement.

Figure 6-2 shows our conceptual framework for measuring software products and the process
used to develop these products. We focus on two concepts—product integrity and process
integrity. Product integrity can be defined in terms of product attributes and attribute value
scales. For each product attribute, an attribute value scale is defined in everyday terms
familiar to your organization. Similarly, process integrity can be defined in terms of process
components, component activities, and activity value scales. The revolving arrows represent
the interaction between product and process measurements. Understanding such interactions
helps refine your measurement activities. As explained in this chapter, measuring product
integrity and process integrity enables you to measure the "goodness" of the products and the
"goodness" of the software systems development process used to develop the products.

Successful Software Development, Second Edition

372

Figure 6-2 This figure shows our conceptual framework for product and process measurement.
Product measurement involves identifying product attributes (ati) and corresponding value
scales of interest to the organization. Process measurement involves an additional layer of
decomposition. Processes are decomposed into components (xti) and component activities
(xtij). Value scales are defined for each activity in terms that are meaningful to the organization.

To implement the conceptual framework shown in Figure 6-2, we use a generalized
measurement technique that we developed called Object Measurement®. [1] This technique
can be used to quantify almost any object. In the most general case, we measure an object
through its characteristics. For products, we called these characteristics attributes; for
processes, we called these characteristics components and activities. Of course, there is
nothing magic about these labels; you can call the product and process entities that you want
to measure anything you want. We use these labels to illustrate product and process
measurement. The translation of these labels to your labels should be straightforward.[2]

Thus, as Figure 6-3 indicates, we describe how to make measurement of product "goodness"
and process "goodness" happen in your organization by using the general measurement
technique OM. Through worked-out examples, we describe how to apply the technique. More
important, these worked-out examples illustrate down to the "how-to-do-it" level one of the
fundamental points about measurement made at the outset of this chapter—that measurements
should be taken for the purpose of answering specific questions.

1 Object Measurement and OM® are registered trademarks owned by Scott E. Donaldson and Stanley G. Siegel.
2 We are deeply indebted to Dr. Stefan Shrier for his careful review of the mathematical issues underlying the OM technique. We particularly
appreciated Dr. Shrier's insights, which were often laced with his droll sense of humor.

Successful Software Development, Second Edition

373

Figure 6-3 In this chapter, we offer you guidance on how to measure product "goodness" and
process "goodness" using a general measurement technique caled Object Measurement. (The
Object Measurement logo shown in this figure is a registered trademark owned by Scott E.
Donaldson and Stanley G. Siegel.)

We wish to make an additional key point about the measurement approach in this chapter. We
show how OM makes it easy to integrate a measurement program with the organization's way
of doing software systems development business. That is, we offer you guidance on how to
blend measurement activity with the software systems development process framework that
we introduced in Chapter 3. An apt analogy here is that of the various gauges on an
automobile dashboard. These gauges help you determine such things as how far you have
gone and what may not be operating properly. So, too, do measurements that are integrated
with your business process help you determine such things as how far you have come in
improving your business way and what may need to be fixed.

In addition to using OM to quantify software product "goodness" and software process
"goodness," we have used this measurement technique to quantify abstract entities such as
strategic information management. In Appendix A, we indicate how OM can be used to
quantify strategic information management and why quantification of this object is of interest.

Even though OM can measure almost anything, we need to stress that the technique is not a
measurement "silver bullet." If you have a measurement program that is already helping you
effect continual process improvement, you may find that OM can complement your
measurement program and make it even more robust. If you are new to the software
measurement game, you may find that OM can help you overcome the blank-page syndrome
in firing up a measurement program that makes sense for your organization.

This chapter also includes a section on other process-related measurements in addition to
product and process integrity. The purpose of that section is to illustrate how more

Successful Software Development, Second Edition

374

conventional types of measurements can be used either in conjunction with measurements
obtained from applying OM or instead of measurements obtained from applying this
technique.

In the remainder of this section, we set context for the subject of software process and product
measurement. We first discuss whether software process improvement may even be
applicable to your organization. We then briefly review some measurement fundamentals.

The primary purpose of measurement is to bring about product and process improvement so
that the customer is satisfied with the seller's products. This purpose assumes that the product
and process are worth improving. When an organization seeks to achieve orders of magnitude
improvement, Business Process Reengineering (BPR)[3] technology is often considered.
Typically, a business seeks to restructure its processes when it is losing money, or worse,
threatened with going out of business.

As illustrated in Figure 6-4, in many businesses, the software systems development process is
part of a much larger business process. It is often not clear whether the overarching business
process may prevent meaningful software systems development process improvement. If such
is the case, then no amount of tinkering with the software systems development process will
be useful until the larger business process is first improved—or, in the extreme, reengineered.

3 For a detailed discussion of BPR, see M. Hammer and J. Champy, Reengineering the Corporation (New York: HarperBusiness, 1993).

Successful Software Development, Second Edition

375

Figure 6-4 Software systems development process improvement is tied to the state of your
overall business process.

The Catch-22, then, is the following:

How do you know whether the software systems development process needs to
be improved if you don't know whether the larger business process is the real
impediment to software systems development success in your business?

At the risk of oversimplification, this question translates into the following process
improvement/reengineering analogy:

A process that uses a hammer to drive screws cannot generally be improved by
redesigning the hammer; the process needs to be reengineered by replacing
the hammer with a screwdriver.

Certain techniques grounded in common sense should bring about software process
improvement. If it turns out that applying these techniques does not bring about improvement,
then the problems lie elsewhere in the business. In such instances, BPR may need to be
invoked in a context far larger than your software systems development process. Thus, if by
applying the techniques we present in this chapter you do not realize process improvement,
you may need to look upward within your business to get at the real source of the problem
standing in the way of successfully producing software systems. For example, your software
systems development process may indeed be completing the development of software systems

Successful Software Development, Second Edition

376

on time and within budget. However, these systems may not get into the hands of the
customers until much later because of convoluted business processes associated with miles of
paper pushing. Clearly, in such circumstances, no amount of tinkering with the software
systems development process is going to solve the overarching business process problem of
on-time delivery of the systems to the customers.

One additional observation is in order here regarding BPR versus software development
process improvement. Improvement begins with a definition of the software systems
development process. This definition provides the overall context for more detailed processes.
From the BPR perspective, if a business has no defined and documented software systems
development process, then the definition of such a process and its implementation constitute a
form of BPR. Putting the software systems development process in place is the first step in
bringing order to a presumably ad hoc or chaotic situation. Once some order has been
established, it then makes sense to begin thinking about improving what has been put in place.

This chapter deals with the concept of measurement as it applies to software products and the
process used to develop these products. Frequently, when the software engineering literature
addresses measurement, it uses the term "metric." IEEE Standard 610.12-1990 defines metric
as follows:

A quantitative measure of the degree to which a system, component, or process
possesses a given attribute.

In truth, the term "metric" is used in various ways. For example, Baumert and McWhinney, in
the Software Engineering Institute Technical Report CMU/SEI-92-TR-25, "Software
Measures and the Capability Maturity Model" (September 1992), offer the following
definitions for the related terms "measure," "measurement," and "metric" (p. B-2):

Measure n.—

A standard or unit of measurement; the extent, dimensions, capacity, etc. of anything,
especially as determined by a standard; an act or process of measuring; a result of
measurement. v. To ascertain the quantity, mass, extent, or degree of something in terms of a
standard unit or fixed amount, usually by means of an instrument or process; to compute the
size of something from dimensional measurements; to estimate the extent, strength, worth, or
character of something; to take measurements.

Measurement—

The act or process of measuring something. Also a result, such as a figure expressing the
extent or value that is obtained by measuring.

Metric—

In this document, metric is used as a synonym for measure.

To improve a software product or a process that produces the product, measurement is
needed. Figure 6-5 presents our concept of product and process metrics. As stated in the
figure caption, we use metric to mean "(1) a standard or unit of measurement, or formula used
to quantify something, and/or (2) the values that the standard or formula may assume." For

Successful Software Development, Second Edition

377

example, in the nonsoftware world, "foot" is a standard of measurement used to quantify the
length of something. The formula "area = length × width" is used to quantify the region that a
rectangle of a specified length and width occupies. The number calculated when an actual
length and width are substituted into the formula is also a metric.

Figure 6-5 The term "metric" is used in a variety of ways in the software engineering literature.
We use metric to mean "(1) a standard or unit of measurement, or formula used to quantify
something and/or (2) the values that the standard or formula may assume."

Also note that the value scales are generally different for product and process, but both scales
range from a minimum value to a maximum value. In this chapter, we look at the analogues to
length, width, and area for software development processes and resultant products. The
challenge is to establish units of measurements (or, equivalently, value scales) and a relatively
painless way to make measurements based on these value scales. In addition, your
measurements need to have benchmarks. As shown in Figure 6-6, everyday measurements,
such as a person's weight, the time to run a certain distance, and the number of calories a
person needs to consume daily, have meaning only when they can be related to certain
standards, or benchmarks, for those measurements.

Successful Software Development, Second Edition

378

Figure 6-6 To be meaningful, measurements must have benchmarks. Benchmarks need to be
established for softwarae products and software development process measurements, and the
relationship between the product and process measurements.

For example, running a mile in less than four minutes is considered to be "fast" even for the
most highly trained runners. The 4-minute-mile benchmark has been established through
many measurements made over many years during athletic events. This cumulative
measurement experience gives meaning to the number "4-minute-mile" for people who are
familiar with track and field events. Likewise, if process and product measurements are to be
meaningful, benchmarks need to be established. Here, meaningful measurements means "the
measurements can be used to determine whether and where the product or process needs to be
improved." For example, to determine that a project's development process is "good," it is
necessary to determine (1) whether "good" products are being produced and (2) whether the
project's process "conforms" to the organization's development process, as defined in the
organization's application development process environment (ADPE).

As we explain in this chapter, if a project is not conforming to the organization's process but
is producing "good" products, then the organization may need to (1) reconsider the
development process definition, (2) work with the project to conform to the defined,
organizational process so that consistent practices across projects can be achieved, or (3)

Successful Software Development, Second Edition

379

reconsider the organizational questions being answered by the metrics. Figure 6-7 illustrates
the point thatmeasurement is tied directly to questions that are important to the organization.

Figure 6-7 What to measure should derive from questions that are important to the
organization. Questions bring to the fore (1) quantities to be measured and (2) value scales
pertinent to these quantities. Measurements can be used to help improve software
development processes and the resultant products.

Customers want products that do what they are supposed to do. Customers also want to have
the products delivered on time and within budget. As shown in Figure 6-7, software systems
development measurement should address fundamental questions such as the following:

• Am I producing "good" products? The name of the game is to produce "good"
products that satisfy the customer. Whether or not you are in business to make a profit,
your customer needs to be satisfied with your products. The measurement challenge is
to determine what a "good" product means. Consequently, as shown in the upper panel
of the figure, the "goodness" values are established from the customer's viewpoint.

• Is my process consistently producing "good" products within budget? Whether or not
you are in business to make a profit, your process needs to consistently produce
"good" products. If you are in a profit-making situation, then your process should
enable you to make your profit. If you are not in a profit-making situation, then your
process should enable you to meet your budget. In either situation, the measurement
challenge is to determine what a "good" process means to your organization.
Consequently, as shown in the lower panel of the figure, the "goodness" values are
established from the seller's viewpoint.

In this context, software process improvement becomes an exercise in evaluating product
"goodness" and process "goodness." As Figure 6-7 illustrates, a product is "good" if it does

Successful Software Development, Second Edition

380

what it is supposed to do and is delivered on time and within budget—so that the customer is
satisfied. If the product is not "good," then the product, the process that produced the product,
or both need improvement. A process is "good" if it consistently yields good products such
that the seller can make a profit or stay within a budget. If the process is not "good," then the
process needs improvement. Measurement needs to (1) be expressed in everyday terms so that
the results make sense to the organization and (2) integrate seller and customer perspectives.

The plan for the rest of this chapter is the following:

• In Section 6.2—Measurement Key Ideas, we present the key ideas that you can
expect to extract from this chapter.

• In Section 6.3—Product Integrity, we show you how to quantify software product
attributes to help determine whether a customer is satisfied with seller results. Our
intent is to explain to you one approach for assessing customer satisfaction in terms of
an index that assigns a value to the integrity (i.e., completeness) of each product that
comes out of the software systems development process.

• In Section 6.4—Process Integrity, we show you how to measure the activities that
make up your software systems development process to determine the correlation
between these activities and producing products with integrity. This correlation
provides insight into the extent to which these activities are, or are not, contributing to
"good" products. Those activities not contributing are candidates for modification or
elimination. These modifications and/or eliminations define what "process
improvement" means. The discussion in this section is tied to the software systems
development process described in Chapter 3. The purpose of this tie is to show you in
specific terms how to measure the software development process in terms of its
process components and activities. However, the measurement approach is general
and can be applied to your development process.

• In Section 6.5—Capability Maturity Model for Software (CMM), we describe how
the product integrity and process integrity concepts can be applied to the Software
Engineering Institute's (SEI) widely known framework for improving software
development, the CMM for Software.

• In Section 6.6—Other Process-Related Measurements, we give you ideas for
defining process-related metrics, other than the product and process integrity indexes.
Our objective is not to be comprehensive, but rather to besuggestive of supplementary
ways that you can attack software measurement.

• In Section 6.7—Measurement Summary, we summarize the key points developed in
the chapter. We include an annotated outline of an ADPE guideline to help you define
an organizational approach for product and process measurement. As explained in the
chapter, our approach to measurement is general in that it is independent of
development technologies and tools.

In Appendix A, we indicate (1) how Object Measurement can be used to quantify strategic
information management and (2) why quantification of this object is of interest.

6.2 Measurement Key Ideas

Figure 6-8 lists the key ideas that you can expect to extract from this chapter. To introduce
you to this chapter, we briefly explain these key ideas. Their full intent will become apparent
as you go through this chapter.

Successful Software Development, Second Edition

381

Figure 6-8 Successful software systems development is a continual improvement exercise.
Measurement is a means for effecting this improvement. Here are key measurement concepts
that are explained in this chapter.

1. Measurements need to be expressed in everyday terms that are familiar to the
organization; otherwise, they may, at best, be of little use.

Simply stated, if the people doing the day-to-day software systems development work
do not understand the measurements, the collected measurement data may be
counterproductive to your improvement activities. This chapter offers you an approach
for defining meaningful measurements for your organization.

2. Keep the measurement process simple—otherwise, it will die quickly. Simple means
"easy-to-collect data and easy-to-interpret information resulting from these data."

Our experience shows that many good-intentioned process measurement programs do
not survive because (1) data collection is too onerous a task, and (2) the data collected
are difficult to relate to process improvement. This chapter offers suggestions for
blunting these classical causes of measurement program failure.

3. Establish benchmarks to give meaning to measurements. Without context, process
measurement is a waste of time.

This chapter offers you ideas for establishing a framework for interpreting the
measurements you make and collect. Many of us at one time or another have been
concerned about our weight. It is easy to measure our weight. However, the resultant
measurement is generally of little value if, for example, our objective is to gain or lose

Successful Software Development, Second Edition

382

weight. We need weight benchmarks to know whether we are underweight, okay, or
overweight. Similarly, we need process benchmarks that can tell whether the process
that we have measured is underweight, okay, or overweight with respect to, say, the
integrity of delivered products that the process yields. This chapter offers you ideas for
constructing such benchmarks.

4. Measure product integrity by (1) selecting product attributes to measure, (2) defining
value scales for each product attribute, (3) recording observed attribute values, and
(4) combining the recorded attribute values into a single number called a product
integrity index.

Many of our conventional measures, such as the "foot," have their origin in objects
that most people could recognize. A challenge in the software process measurement
game is to find analogues to such easily recognized units of measure. This chapter
offers you ideas for such analogues. This chapter also offers you ideas for converting
the multidimensional product integrity concept into a one-dimensional index. These
ideas will, at the same time, give you insight into how you can measure individual
product integrity attributes or combinations of these attributes—whatever attributes
you may choose to quantify product "goodness."

5. Measure process integrity by (1) selecting the software development process
components to measure, (2) selecting component activities to measure, (3) defining
value scales for each component activity, (4) recording observed activity values, and
(5) combining recorded activity values into a single number called a process integrity
index.

This chapter offers you ideas for converting the multidimensional process integrity
concept into a one-dimensional index, and ideas about how this index is related to the
product integrity index. We explain how process integrity is a generalization of the
product integrity concept.

6. Customer satisfaction is the ultimate measure of software systems development
process value. If the process fails to yield products satisfying the customer, the
process needs repair.

This chapter offers you ideas for measuring customer satisfaction and linking this
measure to process activities. Through this linkage, we offer you ideas for modifying
process activities to increase customer satisfaction.

7. Measure customer satisfaction by incorporating customer feedback on delivered
products into the process.

How can you get insight into what the customer thinks your software systems
development process is delivering? This chapter offers you ideas for integrating within
the process customer feedback on delivered products. We offer suggestions on how to
measure this feedback in terms that can be linked to process activities.

Successful Software Development, Second Edition

383

8. Measurements should be a part of the software systems development process.

Defining, collecting, using, and communicating measurement data should be
integrated into the development process and used, in part, to improve the
organization's products and processes. However, measurement for measurement's sake
is a waste of time and resources. This chapter presents ideas on how to establish
measurements that canbe integrated into your organization's software development
activities.

9. Document in an ADPE element the measurement process and the items to be
measured.

A measurement process is an organized way of effecting software systems
development process improvement. This chapter gives you ideas for documenting the
measurement process, thereby helping you organize your approach to software
systems development process improvement.

6.3 Product Integrity

Like other organizations, you want your organization to stay in business. It is axiomatic that
"staying in business" is strongly tied to customer satisfaction, which can be expressed in many
ways. The purpose of this section is to explain how the product integrity concept can be used
to quantify "customer satisfaction."

Our approach in this section is the following:

• We use an example set of attributes to define an example product integrity index.
• We use the example index to generate values for several different products to show

you how to do product "goodness" measurement using the index.
• We then give you a general formula for computing the index.
• The worked-out examples and the general formula enable you to apply

straightforwardly our product integrity measurement approach to your environment.

Figure 6-9 depicts the example set of attributes. We have chosen the five attributes shown
because they are often of interest to management and product developers. These attributes are
defined more specifically as follows:

Successful Software Development, Second Edition

384

Figure 6-9 Here is an example of a way to define product integrity in terms of attributes that are
often of interest to both management and product developers.

at1

Fulfills specified customer needs (i.e., does what it is supposed to do as recorded and
agreed to by the customer and the seller).

at2

Can be easily and completely traced through its life cycle (i.e., is "maintainable"—it
can be easily updated to (1) incorporate new things, (2) revise existing things, and (3)
get rid of things no longer deemed needed by the customer).

at3

Meets specified performance criteria (e.g., How many? How often? How long?; these
criteria are sometimes considered special cases of customer needs—the first product
integrity attribute).

Successful Software Development, Second Edition

385

at4

Meets cost expectations (i.e., costs what the customer and the seller agreed that it
should cost as expressed in a project plan or updates to the plan).

at5

Meets delivery expectations (i.e., is delivered in accordance with schedules agreed to
by the customer and the seller in a project plan or updates to the plan).

Product integrity is thus a multidimensional concept that associates attributes with a product.
To use product integrity to quantify customer satisfaction, we need a convenient way to
quantify something with multiple dimensions (here, something with five dimensions). The
discussion that follows offers an approach that can be used to quantify any multidimensional
entity. This discussion also makes it evident how any subset of the five product attributes we
discuss, or any set of attributes you want to use, can be used to measure customer satisfaction.
The following treatment thus provides a general approach to using product integrity as a basis
for measuring customer satisfaction. Through experimentation with this general approach,
you can define a preferred approach to apply in your environment.

The mathematical and scientific disciplines often handle multidimensional quantities with
entities known as "vectors." The scientific discipline of physics, for example, uses vectors to
describe many quantities (displacement, velocity, acceleration, force, momentum—to name a
few). To illustrate from this list, the change of position of a particle is called a "displacement."
When we go to work in the morning, we displace ourselves from our home to our place of
work. We can represent this displacement as an arrow on a map drawn from the place on the
map that is our home to a place on the map where our office is. This arrow represents the
(straight-line) distance from our home to our office and the direction of this distance with
respect to, say, some reference frame, such as that used to define the four compass points.
Figure 6-10 shows the concept of displacement in one, two, three, and n dimensions.

Successful Software Development, Second Edition

386

Figure 6-10 The idea for a product integrity index derives from the concept of the length of a
line in space. The figure shows how the length of a line can be portrayed in spaces of various
dimensions as the magnitude of a vector representing a displacement. The tail of the vector
represents the starting point, and the head of the vector represents the destination point. The
length of the vector represents the distance between the starting point and the destination
point. Similarly, the product integrity index is simply the length of a line in product attribute
space.

Figure 6-10 also shows how the length of the vector is calculated to determine the magnitude
of the displacement. For example, we represent displacements in three-dimensional space by
specifying a triple of numbers (x1, x2, x3), which defines the displacement of a point with
respect to three mutually perpendicular axes. These axes establish a scale of values in this
space.

We use this notion of displacement in space to derive the idea of a product integrity index.
The space of interest is product attribute space. That is, the axes in this space, which we also
refer to as product integrity space, are product attributes. Figure 6-11 illustrates a three-
dimensional product integrity space, where the attribute axes are the quantities at1, at4, and at5
defined earlier.

Successful Software Development, Second Edition

387

Figure 6-11 Product integrity is a multidimensional concept associating a number of attributes
with a product. A vector is one way simply to represent a multidimensional concept. The figure
shows a three-dimensional product attribute space made up of three members from the
example set of five attributes introduced earlier. A vector in this space is the product integrity
vector. Its length is what we will use to measure product "goodness." Our approach to
measuring product "goodness" is thus an exercise in measuring the length of the product
integrity vector.

By extension, then, if we want to quantify product integrity as it is defined by the example set
of five attributes introduced earlier, we can think of product integrity as an entity in five-
dimensional space. One axis in this space shows how much a product "fulfills customer
needs"; a second axis shows how the evolution of the product "can be easily and completely
traced through its life cycle"; and so forth for the other product integrity attributes
(unfortunately, since we live in a threedimensional world, we cannot draw the five-
dimensional extension to Figure 6-11).

To understand how we can use these vector-related ideas for quantifying the concept of
product integrity as a means for measuring customer satisfaction, consider the following five-
dimensional vector:

Successful Software Development, Second Edition

388

Equation 6.3-1

In Equation 6.3-1, PI is a vector in five-dimensional product integrity space whose
components, ati, are the example product integrity attributes defined earlier. The quantity N is
a normalization factor that establishes a "product goodness scale." As we subsequently
explain, we choose N so that the length of PI is restricted to the range from zero to one.

Now, to turn Equation 6.3-1 into a measurement tool, we consider the following questions:

• How can we convert a five-dimensional quantity into a single quantity to simplify
measurement interpretation?

• What scales do we establish for the attributes?
• What relative weights do we assign to the attributes?
• How can we assign a scale of values for the single quantity?

Clearly, there are many sensible ways to address these questions.

The first question deals with simplifying measurement. As Equation 6.3-1 indicates,
multidimensional expressions of product integrity are possible. However, for simplicity, we
have chosen to restrict ourselves to a one-dimensional quantity to express product integrity
quantitatively. Recalling Figure 6-11, that quantity is the length of the product integrity vector
PI (i.e., it is the five-dimensional extension to the three-dimensional case shown in the
figure).

As Figure 6-11 indicates, each product attribute dimension contributes to the "length" of the
vector PI. To convert the five-dimensional quantity in Equation 6.3-1 into a single quantity
(to represent "quality" or "completeness"), we calculate the "length" of the vector. We call the
length of PI the Product Integrity Index, or PIindex. As subsequently explained, this product
integrity vector length, PIindex, is simply the square root of the sum of the weighted (wi)
squares of the attributes ati divided by the normalization factor N.

The second question deals with attribute scales. Many people find it useful and convenient to
quantify things in terms of percentages. Thus, a convenient range for an attribute scale goes

Successful Software Development, Second Edition

389

from zero to one. Again, for simplicity, we take the approach of limiting the attribute scales to
the range zero to one.[4]

The third question deals with relative weights for product attributes. If we assign the same
scale to each attribute (namely, zero to one), we are weighting each attribute equally. For
simplicity, we will take this approach. However, you may wish to emphasize one attribute
more than the others. For example, if you wanted to give "meets delivery expectations"
double the importance of any of the other attributes, you could set its scale to run from zero to
two and set the scales of the other attributes to run from zero to one. Equivalently, you can
keep all the scales the same and give prominence to selected attributes through the use of
weighting factors (wi). We show you how to introduce such weighting factors.

The fourth question deals with establishing a value scale for the length of PI. We select a
scale for the magnitude of this vector by choosing a value for the normalization factor N.
Arguing as we did before, we simply select a scale that ranges from zero to one. For equally
weighted attributes, the value of N then becomes the square root of the sum of the squares of
the maximum values that the attributes ati can take on. For the case in which a product has
five attributes each with a maximum value of one, the value of N thus becomes the square
root of 5. We also show you how to compute N if the attributes are not equally weighted.

On the basis of the preceding discussion of one way to address the four questions previously
introduced, we can now define a product integrity index, PIindex, that ranges from zero to one
as follows:

Equation 6.3-2

where ati = product integrity attribute

n = number of product integrity attributes

wi = weighting factor for attribute ati

maximum [ati] = maximum value of ati.

Figure 6-12 presents three examples of how Equation 6.3-2 can be used. Example 1 represents
our software product that is characterized by five attributes. Example 2 represents the case in
which the attribute, at1—fulfilling customer requirements, is considered twice as important as

4 Note that we are mapping our attribute values to dimensionless scales. This mapping allows us to combine the attribute values into a single quantity.

Successful Software Development, Second Edition

390

the other attributes. Example 3 represents the case in which attributes at2 and at3 are
suppressed.

Figure 6-12 This figure illustrates three ways in which the general formula for the product
integrity index, PIindex, can be used.

The product integrity index, PIindex, is normalized to one (i.e., restricted to the range of zero
to one). If you want to remove this normalization, then remove the denominator.

To illustrate how Equation 6.3-2 works, we need to define value scales for each of our
example software product attributes ati. There is a multiplicity of ways such assignments can
be made. Figure 6-13 shows one way to set up value scales for these attributes.

Successful Software Development, Second Edition

391

Figure 6-13 This figure illustrates value scales for each of the five example product integrity
attributes (ati) discussed. You will want to set up attributes and value scales that make sense
for your organization.

This example is explained below, and it provides insight into ways that you can make such
assignments that are relevant to your organization.

• For at1 (fulfills specified customer needs), we set up a three-value scale based on an
acceptance of deliverable form[5] as follows:

o at1 = 1 if the customer returns the form indicating "accepted as delivered."
o at1 = 0.5 if the customer returns the form indicating "accepted with minor

changes."

5 We explained in Chapter 3 that, as part of our software systems development process, we use an acceptance of deliverable form to obtain, in part,
customer feedback. For this example, we have assigned discrete values for the three possible customer evaluations.

Successful Software Development, Second Edition

392

o at1 = 0 if the customer returns the form indicating "changes to be negotiated."

If we wanted to provide more insight into the percentage of requirements fulfilled, we
could count such requirements appearing in the product and compare them against
some ground truth showing what this number of requirements should be ("shalls" in
the language of requirements analysis). For example, suppose the product were a
requirements specification, and suppose CCB minutes indicated that 40 requirements
should be addressed in the document but only 30 actually appeared when the
document was delivered (as determined by the customer). Then, for this example, if
we chose to use this counting approach to assign a value to at1, that value would be
(30/40) = 0.75.

• For at2 (can be easily and completely traced through its life cycle), the situation can
become complicated. Depending on the product, traceability may involve more than
the product itself. For example, if the product is computer code, then traceability
involves the existence of predecessor products such as design and requirements
specifications. If the product is a requirements specification, then traceability typically
involves documents that a customer may supply, such as congressional legislation or
corporate policies. More generally, traceability involves such things as product
decisions recorded at CCB meetings, internal project meetings, and recorded seller and
customer management conversations and e-mail between these two parties. To keep
things simple, we set up a crude three-value scale based on the existence of records
showing how the product evolved, as follows:

o at2 = 0 if nothing other than a customer-prepared statement of work (SOW)
exists calling for the development of the product.

o at2 = 0.5 if written records exist for some part of the project's life cycle
showing how the product contents are what they are.

o at2 = 1 if detailed written records exist throughout the life of the project
showing how the product contents are what they are.

• For at3 (meets specified performance criteria), we simply set at3 = at1, since
performance criteria are often lumped with customer needs (if such is not the case in
your environment, then you can follow the suggestions previously offered for the
attribute at1). That is, we use the following scale:

o at3 = 1 if the customer returns the form indicating "accepted as delivered."
o at3 = 0.5 if the customer returns the form indicating "accepted with minor

changes."
o at3 = 0 if the customer returns the form indicating "changes to be negotiated."

• For at4 (meets cost expectations), we set up a three-value scale as follows:
o at4 = 1 if the product was delivered for less than the cost specified in the

project plan or as modified in CCB minutes.
o at4 = 0.9 if the product was delivered for the cost specified in the project plan

or as modified in CCB minutes.
o at4 = 0 if the product was delivered for more than the cost specified in the

project plan or as modified in CCB minutes.

Clearly, this scale places a slight premium on delivering for less than planned cost.
The scale also ranks a deliverable delivered for $1 more thanplanned cost the same as
a deliverable delivered for $3,000 more than planned cost. Again, in your
environment, you may not wish to place a premium on delivery below cost—but the

Successful Software Development, Second Edition

393

preceding example gives the idea for how you can establish such premiums (this
remark applies also to the attribute at5 [meets delivery expectations] in the following).

• For at5 (delivered on time), we set up a scale as follows:
o at5 = 1 if the product was delivered before the delivery date specified in the

project plan or before the delivery date as modified in CCB minutes.
o at5 = 0.9 if the product was delivered with no more than a 10 percent schedule

slippage. Here, "percent slippage" is calculated by taking the length of time
allocated in the project plan for preparing the product or as modified in CCB
minutes and dividing that time into the slippage time and multiplying by 100.
For example, if the product was scheduled to be delivered 10 weeks after
project start, but it was actually delivered 11 weeks after project start, then at5
= 0.9 because the slippage was (1/10) × 100 = 10 percent.

o at5 = (1 - X), where X is the fraction of schedule slippage as just calculated. For
example, if the product was scheduled to be delivered 10 weeks after project
start, but it was actually delivered 13 weeks after project start, then at5 = (1 -
[3/10]) = 0.7. For all schedule slippages greater than or equal to the original
length of time to produce the deliverable, at5 = 0 (for example, if a deliverable
was to be developed over a 10-week period, any delays greater than or equal to
10 weeks result in at5 = 0).

This scale places a slight premium on delivering early. Also, it favors on-time product
delivery while allowing for some planning leeway.

We now illustrate how to calculate PIindex in Equation 6.3-2 using the preceding scales for
the following example products: (1) a requirements specification, (2) a new release of a
legacy software system, (3) an updated user's manual, and (4) a new project plan.

Example 1—PIindex Calculation for a Requirements Specification

The product is a requirements specification. After delivery, the customer sent back the
acceptance of deliverable form showing "accepted with minor changes." Thus, at3 = at1 = 0.5.
The product was delivered on time so at5 = 0.9. The project plan called for 300 hours to be
expended on the task to produce the document, but only 275 hours were expended. Thus, at4
= 1. Written records consisting of CCB minutes showing decisions underlying the document's
content exist for some part of the project. Thus, at2 = 0.5. The product integrity index,
PIindex, for this requirements specification is therefore the following:

Figure 6-14 shows how this requirements specification example can be graphically presented.

Successful Software Development, Second Edition

394

Figure 6-14 This figure illustrates one way to display the results of quantifying the integrity of a
software product (e.g., a requirements specification). For the attribute values shown, PIindex =
0.72.

The top panel displays how PIindex is calculated given the recorded data, and summarizes the
product integrity attributes. The bottom panel provides additional detail into the attributes,
their scales, and the recorded data. The bottom panel displays the observed attribute values on
a Kiviat-like diagram. This diagram gives the next level of insight into the nature of the
product being measured. In particular, it shows the recorded value of each product integrity
attribute plotted on the scale for that attribute. [6]

6 It is important to note that, in general, when you are dealing with unequally weighted attributes (which is not the case with the example
shown in Figure 6-14), this situation can affect the way you display your measurements. When you have unequally weighted attributes
(i.e., all wi are not equal), there are several possible ways of using the Kiviat-like diagram to display what is going on. Some of these ways
are the following:

Successful Software Development, Second Edition

395

Example 2—PIindex Calculation for a New Release of a Legacy Software
System

The product is a new release of a legacy software system. After delivery (which was preceded
by acceptance testing), the customer sent back the acceptance of deliverable form showing
"accepted as delivered." Thus, at1 = at3 = 1. The product was supposed to be delivered 20
weeks after project start, but was delivered 5 weeks late so at5 = (1 - [5/20]) = 0.75. The
project plan called for 3000 hours to be expended on the task to produce the system upgrade,
but only 2900 hours were expended. Thus, at4 = 1. No requirements or design specifications
exist. However, each code module has a header containing key information about the
module's contents and a version number. In addition, written records consisting of CCB
minutes showing decisions underlying the code module changes exist throughout the
acceptance testing cycle. Thus, at2 = 0.5. The product integrity index, PIindex, for this new
release of the legacy system is therefore the following:

Example 3—PIindex Calculation for an Updated User's Manual

The product is an update to a user's manual for a new release of a software system that the
seller maintains. The customer was uncertain about many things that the manual should
contain and constantly wanted to change its contents (even up to the last minute). After
delivery, the customer sent back the acceptance of deliverable form showing "changes to be
negotiated." Thus, at3 = at1 = 0. Because of the customer uncertainty and the many changes to
the document, the manual, which was supposed to be delivered 10 weeks after project start,
was delivered 5 weeks late, so at5 = (1 - [5/10]) = 0.50. The project plan called for 300 hours
to be expended on the task to produce the user's manual, but, because of the numerous
changes and schedule slippages, 360 hours were expended. Thus, at4 = 0. Written records
consisting of CCB minutes showing the change track record of the document exist. These
records also indicate that the customer was alerted to potential schedule slippages and cost
overruns because of the document's unsteady state. Thus, at2 = 0.5. The product integrity
index, PIindex, for this user's manual update is therefore the following:

• You can plot unequally weighted observed values. In this case, the length of a value scale in your display ranges from the
weight (wi) times the minimum attribute value (minimum [ati]) to the weight (wi) times the maximum attribute value
(maximum [ati]). For example, suppose that attribute at1 in Figure 6-14 had twice the weight as any of the other attributes (i.e.,
w1 = 2 and all the other wi = 1). In this case, the length of the at1 value scale would run from a minimum value of zero (i.e.,
[w1] times [minimum {at1}] = 2 times 0) to a maximum value of two (i.e., [w1] times [maximum {at1}] = 2 times 1), while the
other attribute value scales would run from zero (i.e., [wi] times [minimum {ati}] = 1 times 0, for i = 2, 3, 4, 5) to one (i.e., [wi]
times [maximum {ati}] = 1 times 1, for i = 2, 3, 4, 5).

• You can plot equally weighted observed values. Each scale in this case would run from zero to one (including the scale for at1).
To show that at1 has twice the weight as any of the other attributes, you could annotate the Kiviat-like diagram with a
statement to this effect.

• You can plot unequally weighted and equally weighted observed values.

The bottom line here is to set up the display (Kiviat-like or otherwise) in a way that makes sense for your organization.

Successful Software Development, Second Edition

396

Example 4—PIindex Calculation for a New Project Plan

The product is a new project plan for the development of a software system. The process
engineering group, which is responsible for project planning, estimated that the plan, with one
revision, would cost $3000 and would take 20 working days to deliver to the customer. The
plan was actually delivered 24 working days after start, so that at5 = (1 - [4/20]) = 0.80. The
actual cost to produce the plan was $2700, so that at4 = 1. Besides the SOW, the customer
supplied needed reference material that was (1) referenced in the plan, (2) used to construct a
current system concept, (3) used to construct a system concept after plan accomplishment, and
(4) used to construct the technical approach. Thus, at2 = 1. The plan resulted in a contract,
which implies that the plan fully responded to the customer requirements stipulated in the
SOW. In addition, the contract implies customer acceptance of the project plan and is
therefore equivalent to the customer sending back the acceptance of deliverable form showing
"accepted as delivered." Thus, at3 = at1 = 1. The product integrity index, PIindex, for this
project plan is therefore the following:

Figure 6-15 summarizes the PIindex calculations for the preceding examples.

Successful Software Development, Second Edition

397

Figure 6-15 This figure illustrates PIindex for four software products. PIindex was calculated
after the customer received each product and returned the acceptance of deliverable form.

As we stated at the outset of this chapter, it is easy to measure our weight. However, the
resultant measurement is generally of little value if, for example, our objective is to gain or
lose weight. We need weight benchmarks to know whether we are underweight, okay, or
overweight. Similarly, we need benchmarks for PIindex. For example, we can use the product
integrity index to establish norms for "product quality" or "completeness." As you gain
experience with this index, you can establish goals for various types of products, projects, and
seller periods of performance. For example, you can establish goals such as the following:

• Each release of a legacy system for which little or no documentation exists shall have
a product integrity index not less than 0.75.

• Each deliverable for each project whose ultimate objective is to produce a new
software system shall have a product integrity index not less than 0.85.

The examples discussed deal with calculating PIindex after a product is delivered to the
customer. However, PIindex can also be used to quantify a product's integrity during its
development, as well as after its delivery. As shown in Figure 6-16, to apply PIindex during

Successful Software Development, Second Edition

398

product development, (1) think of the product development process as building a sequence of
interim products leading up to the delivered product (e.g., outline, annotated outline, rough
draft, etc.), and (2) measure the integrity of each of these interim products in a way similar to
the way that the integrity of the delivered product is measured.

Figure 6-16 The product integrity index, PIindex, can be used to quantify a product's integrity
during its development, as well as after its delivery to the customer.

Assessing the integrity of these interim products can help the project manager and the product
development staff appropriately focus efforts to increase the integrity of the to-be-delivered
product. The figure shows how each of the product integrity attributes can be interpreted for
interim products. These interpretations are based on the interpretations given to these
attributes for the to-be-delivered product. You can set up a similar correspondence for
whatever interpretations you choose to give to your product integrity attributes.

To aid in tracking the evolution of a product, it may be useful to plot the interim PIindexes.
Figure 6-17 illustrates this idea for a requirements specification. PIindex and each of the
product attributes (ati) are plotted. Such juxtaposed plots can help the project manager to

Successful Software Development, Second Edition

399

ensure that a product is evolving as planned. These plots can also give the customer
quantitative visibility into the evolution of the deliverable.

Figure 6-17 This figure illustrates how the product integrity index concept can be used to track
the integrity of a product as it evolves from the start of its development to the time it is
delivered to the customer.

As shown in the top panel of Figure 6-17, there are six reporting periods before the
requirements specification is scheduled for delivery to the customer. During the first reporting
period, the requirements specification PIindex was reported to be near 0.9. Looking down the
period-1 column, you can see the following:

at1

The specified customer's needs were met with an outline that was approved.

Successful Software Development, Second Edition

400

at2

Only the customer's SOW existed at the start of the project, which is what you would
expect.

at3

Performance criteria are set equal to customer's needs.

at4

Cost expectations were exceeded.

at5

Delivery expectations were met.

The project seems to be going well, so the project manager told the team to skip the next
reporting period and report progress in period 3. To the project manager's surprise, when
PIindex was reported in period 3, the value hadfallen to 0.5. Looking down the period-3
column, you can see the following:

at1

The specified customer's needs were not met with an annotated outline that was not
approved.

at2

The approved outline and CCB minutes existed, but other hallway and telephone
conversations with the customer were not reflected in the CCB minutes.

at3

Performance criteria are set equal to customer's needs.

Successful Software Development, Second Edition

401

at4

Cost expectations were exceeded.

at5

Delivery expectations were not met.

When PIindex dropped, it acted as an indicator that the project was not progressing as desired.
Upon inspecting the attribute values, the project manager was able to gain some insight into
the situation. The project manager then assembled the appropriate team members for a
meeting to discuss the particulars and make decisions about what to do next. The project
manager decided to have the team rework the annotated outline and discuss the results with
the customer. The interaction with the customer was to be documented so that "what" the
customer was saying would (1) not be forgotten and (2) could be incorporated into the outline.
The project manager also decided to bring in a more senior person who had specific
experience that could help the team work the annotated outline. Finally, the project manager,
in concert with the team, decided to submit the reworked outline ahead of schedule, so that if
there were any last minute issues, they could be addressed before formal delivery to the
customer. As can be seen in the period-4 results, the decisions made resulted in an increase in
PIindex. The story goes on, but the point is that the PIindex value, the attributes, the attribute
value scales, and the display of the collected information help to focus attention on those
areas of interest to the customer and the seller. Such focus helps to reduce project risk and
increase success.

Such juxtaposed plots can also help the project manager's bosses gain visibility into project
progress. Such insight is particularly useful when these bosses have responsibility for multiple
projects. By periodically reviewing such plots, managers (and others) help to drive out what
really matters to the customer and the organization. Once a project or organization settles on
what is important (as reflected in the value scales), then the product integrity index can help
the project or organization follow a structured approach to improving the products it develops.
We illustrate this fundamental idea as follows for an organization that consists of a number of
projects and which produces, say, tens of deliverables a month:

• By looking at monthly reports of interim or final PIindex values, the head of the
organization (the program manager) can quickly see which of the tens of deliverables
(1) to be shipped out or (2) shipped out may be falling short. Those deliverables with
values near 1 probably do not need the program manager's attention. By definition,
those deliverables embody what the organization thinks is important. It is only the
deliverables with values far away from 1 that need attention. However, how far is "far
away" will be determined by the organization as it becomes more comfortable
working with PIindex. For those deliverables needing attention, the program manager
can use Kiviat-like diagrams such as those shown in Figure 6-15 to see quickly why
those products fell short. Thus, using PIindex to track product development can help
management at all levels further pinpoint product shortfalls—before they become big
headaches.

Successful Software Development, Second Edition

402

• Over time, as the database of PIindex values grows, the program manager and others
in the organization can observe trends in the "goodness" of products being delivered.
Trend analysis can help pinpoint those areas where the organization can improve—and
by how much. This insight can be used to decide on corrective actions. For example, if
such trend analysis shows that most products with low PIindex values are that way
because they are delivered over budget, then the organization can take steps to
improve its resource-estimating procedure with some confidence that this corrective
action is the right thing to do. In addition, if the program manager finds that on-time
delivery is averaging less than 0.50, this statistic may be a signal that project planning
estimating techniques need improvement.

Regardless of which form of the PIindex formula you decide on for your organization,
compiling statistics based on PIindex can help you gain insight into areas for product
development process improvement.

We summarize our product measurement discussion in Figure 6-18, which lists five steps to
follow when setting up and collecting product metrics. Our recommendation is to start simple
and try a pilot measurement program.

Successful Software Development, Second Edition

403

Figure 6-18 This high-level procedure helps you through the product measurement steps
based on the concepts and examples introduced so far in this chapter.

After you have decided on what questions you want answered and what products you want to
measure, you need to decide on the granularity ofyourproduct measurements. We recommend
that you do not select too many product attributes at first. You do not want the measurement
program to take on a life of its own. You need to collect data and determine what attributes
are worth measuring. As the number of product attributes increases, each attribute's
contribution to the measurement is reduced accordingly, but you do not want too few, else
you may not gain significant insight into the answers to your questions. The key point here is
that the steps in Figure 6-18 provide (1) a structured way of quickly focusing in on product
weaknesses and (2) a structured way of taking corrective action to correct these weaknesses.

Successful Software Development, Second Edition

404

We want to make one final point in this section. How do you know when you have improved
the software systems development process? As shown in Figure 6-19, one way is to measure
the average value of the PIindex for products over a period of time.[7]

Figure 6-19 Plindex can be used indirectly to measure improvements in the organizational
software development process.

On the basis of the analysis of the PIindex attributes, you can make adjustments to your
software systems development process. Then, you can measure the average value of PIindex
for products developed using the changed process. If the average value has increased, then the
process has probably been improved. This approach is an indirect method of measuring

7 There are at least two different ways that this average might be computed. One way is to simply take the average of the values of PIindex for all the
products that you are including in a given period of time. A second method is to look at the average as the length of a vector whose components are
the average values of the corresponding attributes that went into computing PIindex for each of the products being included in the period of time. We
illustrate these two methods by considering a very simple example consisting of two products. We assume for simplicity that only two product
attributes are included in the definition of product "goodness." Also, to keep the computations simple, we will not normalize the index values to the
range zero to one. Let the values of the attributes for the first product be, respectively, 0.3 and 0.4. PIindex for this product would then be the square
root of 0.09 + 0.16, or 0.5. Let the values of the attributes for the second product be, respectively, 0.4 and 0.0 so that PIindex for this product would
be 0.4. Using the first way of computing averages, the average value of PIindex would be (0.5 + 0.4)/2 = 0.45. Using the second way of computing
averages, the average value of PIindex would be as follows:

Successful Software Development, Second Edition

405

process improvement. In the next section, we discuss how you can directly measure your
software systems development process for purposes of finding ways to improve it.

6.4 Process Integrity

The purpose of this section is to give you guidance for defining a set of process metrics that
can beused in conjunction with the product integrity index discussed in the preceding section.
Process integrity metrics can provide you with input for improving your software systems
development process.

As previously stated, one dictionary definition of process is the following:

A series of actions or operations leading to an end.

Chapter 3 described how to define our example software systems development process.
There, we showed you how to define the actions (activities) and their relationships whose
purpose is to produce software products (i.e., documents, computer software systems, and/or
databases). Here, we show you how to measure that software systems development process in
terms of its process components and component activities. Before we measure our example
process, we need to define process integrity.

Process integrity is defined as follows:

A process, when performed as part of software product development, has
integrity if the process components and associated component activities are
performed as part of product development in accordance with ADPE element
content.

As shown in Figure 6-20, by analogy to the product integrity index, PIindex, we define a
process integrity index, ProcIindex. The figure shows that process integrity is more
complicated than product integrity. Simply stated, PIindex is two layers deep, and ProcIindex
is three layers deep. At the first level, the process is decomposed into components. At the
second level, each process component is decomposed into activities. At the third level, value
scales are defined for each activity.

Successful Software Development, Second Edition

406

Figure 6-20 This figure presents the general formula for the process integrity index, ProcIindex,
that is normalized to one.

The form of the process integrity equations is similar to the form of the product integrity
equation (i.e., Equation 6.3-2). At the first level, the process component (xti) replaces the
product attribute (ati) in the numerator. "Maximum value of xti" replaces "maximum value of
ati" in the denominator. At the second level, the process component (xti) is analogously
defined in terms of process component activities (xtij).

To explain ProcIindex further, we discuss how to measure the software systems development
process described in Chapter 3. As shown in Figure 6-21, this process consists of the
following four process components (xti):

Successful Software Development, Second Edition

407

Figure 6-21 The software systems development process can be measured by assessing
specific process components. In this example, four process components are shown.

xt1

Seller Project Planning—The Seller Process Engineering Group is responsible for
planning the work to be accomplished based on a customer's statement of work
(SOW).

xt2

Seller Development Team—This team is responsible for accomplishing the work
specified in the project plan.

Successful Software Development, Second Edition

408

xt3

Customer/Seller Development Team—This team is responsible for coordinating
project activities with one another.

xt4

Seller Senior Management—This management level is responsible for reviewing and
approving project products for delivery to the customer.

There are seven process integrity measurement steps. To set the stage for explaining these
steps, Figure 6-22 depicts how we define ProcIindex for our example software systems
development process. Now we will walk you through the seven process integrity
measurement steps.

Figure 6-22 The left-hand side of this figure represents our process measurement framework
that is used to decompose a process into its components and activities. Activity value scales
are defined in terms meaningful to the organization. The right-hand side of this figure
represents how our example organizational software systems development process maps to
our framework.

Successful Software Development, Second Edition

409

Process Integrity Measurement Step 1

The first process measurement step is to decide on the questions we want and/or need to
address. Here, we are addressing the following question:

Is the organizational software systems development process producing "good"
products?

Process Integrity Measurement Step 2

The second process measurement step is to select the process components from the
organizational software systems development process that we want to measure. We have
selected the following four process components as previously described: (xt1) Seller Project
Planning, (xt2) Seller Development Team, (xt3) Customer/Seller Development Team, and (xt4)
Seller Senior Management. These four process components are the first layer of the process
metric calculation. Figure 6-23 illustrates how the process integrity index, ProcIindex, is
calculated by using these four process components.

Successful Software Development, Second Edition

410

Figure 6-23 This figure illustrates how the process integrity index, ProcIindex, is calculated by
using four process components—(xt1) Seller Project Planning (which includes risk
assessment), (xt2) Seller Development Team (which includes peer reviews), (xt3)
Customer/Seller Development Team (which includes CCB activity), and (xt4) Seller Senior
Management (which includes review and approval activities).

Process Integrity Measurement Step 3

Before we calculate each process component, we need to identify the process component
activities that we want to measure. Each process component (xti) needs to be defined in terms
of specific activities (xtij). For example, Seller Project Planning (xt1), is defined by its six
process activities:

xt11

Seller reviews SOW, communicates with customer, and assembles project planning
team.

xt12

Seller performs risk assessment.

Successful Software Development, Second Edition

411

xt13

Seller Project Planning Team develops task-derived resource estimates.

xt14

Seller Business Manager calculates task-derived dollar estimates.

xt15

Seller Business Manager calculates risk-derived dollar estimates.

xt16

Seller Management reconciles task-derived dollar estimates with risk-derived dollar
estimates.

These six activities represent the second layer of process metric calculation for a process
component. Figure 6-24 gives a complete list of process activities for each of the four process
components. Measuring activities can help to identify those activities that are, or are not,
contributing to customer satisfaction. Those activities that are not contributing directly to
customer satisfaction may be candidates for modification or elimination. We categorize such
modifications as process improvement activities.

Figure 6-24 Example activities for our organizational software systems development process.

Figure 6-25 illustrates how the process integrity index, ProcIindex, is further defined and
calculated by using the process activities for each of the four components. As shown in the
figure, Seller Project Planning and Seller Development Team each consists of six activities;
Customer/Seller Development Team and Seller Senior Management each consists of two
activities.

Successful Software Development, Second Edition

412

Figure 6-25 To compute ProcIindex, each process component is decomposed into specific
activities.

Process Integrity Measurement Step 4

Before measurement data can be collected, the third layer of the process metric calculation
needs to be performed. Specifically, the fourth process measurement step is to define an
activity value scale for each process activity. Figures 6-26, 6-27, and 6-28 present example
activity value scales for each of the component activities. The activity value scales are
expressed in everyday terms.

Successful Software Development, Second Edition

413

Figure 6-26 Example activity value scales for the Seller Project Planning component of the
organizational process.

Successful Software Development, Second Edition

414

Figure 6-27 Example activity value scales for the Seller Development Team component of our
organizational process.

Successful Software Development, Second Edition

415

Figure 6-28 Example activity value scales for the Customer/Seller Development Team and
Seller Senior Management components of our organizational process.

Some of the activity value scales shown have only two values, while others have three or four
values. The values on the scale help to influence the direction the organization wants to go.
For example, in Figure 6-26, activity (xt12)—Seller performs risk assessment—has two values
(i.e., 0.0 and 1.0). In this example, the organization (or perhaps the buyer) places importance
on risk assessments, and it is expected that this activity is to be done. If risk assessment does
not happen, a value of 0.0 is assigned. As will be shown, when this value is plotted on a
Kiviat-like diagram, it is readily apparent that this activity has not been done.

When defining value scales, it is necessary to understand what specific item(s) or action(s)
trigger the activity that is to be measured. Such items or actions are called measurement

Successful Software Development, Second Edition

416

triggers. For example, for "(xt12)—Seller performs risk assessment," value scales can be
defined as "Seller did not perform risk assessment on customer's SOW = 0.0," and "Seller
performed risk assessment on customer's SOW = 1.0." You can use measurement triggers to
help assign values to process activities.

Activity value scales may provide an opportunity to show more gradual improvement in
performing a specific activity. For example, in Figure 6-27, activity (xt23)—Seller Lead
Developer conducts peer reviews—has four values (i.e., 0.0, 0.25, 0.75, and 1.0). In this
example, the organization may have some projects that routinely use peer reviews, and they
have found them to be useful. Therefore, the organization wants to change its development
culture such that all projects have peer reviews. However, it is recognized that it may take
some time to get everyone up to speed on how to conduct and to document peer reviews. In
some instances, some developers may be reluctant to have their work reviewed, or some
customers may not want to pay for such reviews. Changing the culture may take time;
therefore, the scale can accommodate incremental improvements, rather than an all-or-nothing
approach.

Activity value scales can be established to measure customer, as well as seller, activities. For
example, in Figure 6-28, activity (xt31)—Customer Project Manager provides technical
guidance to Seller Project Manager—attempts to measure customer communication. In an
effort to be responsive to customer needs, potential confusion (with respect to what needs to
be done next, or what the "real" requirements are, etc.) can occur if clear communication
channels are not established. This value scale is set up to reward customer and seller
communication, but it emphasizes that the customer and seller management should be talking
with one another. The customer manager tells the seller manager what is needed, and the
seller manager supervises and directs the seller development team members. Another example
is activity (xt32)—Seller and Customer Project Managers hold project CCBs. This value scale
is set up to measure if agreed-upon communication channels and decision making are being
followed. The seller has established an ADPE element for making decisions at CCBs, and the
customer has agreed to this mechanism. This value scale is set up to reward holding project
CCBs in accordance with the ADPE guidance. If the customer and seller do hold CCBs in
accordance with the guidance but are not happy with how the CCBs are working, then the
ADPE guidance can be changed. There is no one way to hold the CCB. However, if the
customer and seller do not try to follow the guidance that is based on their experiences, then it
will be difficult, if not impossible, to effect consistent practices or improvement to the
practices.

Process Integrity Measurement Step 5

Figure 6-29 illustrates the four process components that we are interested in measuring, and
the sixteen corresponding component activities and scales. The fifth process measurement
step is to observe activity accomplishment and to choose a corresponding scale value
reflecting that accomplishment. For example, for "(xt12)—Seller performed risk assessment,"
we observe that the customer's SOW was assessed for risk according to our organization's risk
assessment procedure. Thus, the observed activity accomplishment is "Seller performed risk
assessment on customer's SOW," and consequently the corresponding scale value reflecting
that accomplishment is 1.0.

Successful Software Development, Second Edition

417

Figure 6-29 ProcIindex is defined and calculated in terms of process components, component
activities, and activity value scales.

Remember, the measurement trigger can be different for each activity. Thus, to measure an
entire process, a number of triggers are generally needed.

Process Integrity Measurement Step 6

The sixth process measurement step is to use the formulas given in this chapter to calculate
the process component value based on the activity values. For simplicity, we use the formulas
that yield values between zero and one. We also select weighting factors that reflect our
perception of the relative importance of our process component activities. For our example,
we set all weighting factors to one.

Electronic spreadsheets can be established to capture the measurement data, calculate the
metrics, and display the results. Figure 6-30 illustrates an example of what the results may
look like.

Successful Software Development, Second Edition

418

Figure 6-30 This figure illustrates one way to display the results of quantifying a software
development process. On the basis of the example measures, the process integrity index,
ProcIindex, equals 0.59.

Process Integrity Measurement Step 7

Once all the activity values have been assigned, the seventh process measurement step is to
combine the process component values into a process integrity index. In this example, the
results are input into the ProcIindex equation. As shown in the top panel of Figure 6-30,
ProcIindex is equal to 0.59. By examining the details in the lower panel of the figure and
referring to the corresponding value scales, the following observations are made:

Successful Software Development, Second Edition

419

• Seller Project Planning (xt1) = 0.85.

The seller reviewed the SOW, communicated with the customer to discuss any
questions, and assembled a project planning team. A risk assessment was performed,
and the planning team used its expert judgment to develop taskderived resource
estimates. The seller business management calculated the task-derived and risk-
derived dollar estimates so that the management team could compare the top-down
risk estimate with the bottom-up task estimate. The seller managers got together to
discuss the estimates, and they could not agree. The senior manager made a decision.

• Seller Development Team (xt2) = 0.5y6.

The cost and schedule were tracked on an ad hoc basis. The person who was assigned
the Lead Developer position established project files but did not do it according to the
schedule. The Lead Developer held peer reviews but they were not documented. The
independent product assurance support was tracked on a periodic basis. The project
documentation was only partially edited. Because of several concurrent projects, the
seller management did not mentor the seller project management.

• Customer/Seller Development Team (xt3) = 0.50.

The customer management communicated with the seller developers, and there was
some confusion regarding requirements. This confusion was fostered by the fact that
the CCBs that were held did not document decisions regarding the requirements.

• Seller Senior Management (xt4) = 0.35.

The seller management was overloaded with work and did not take the time to review
the work before approving it for delivery to the customer.

At this point, we need to decide on whether our question—Is the organizational software
systems development process producing "good" products?—has been answered. We suggest
meeting with the appropriate people to examine the observations and discuss how to address
the corresponding results. This measurement process helps to focus on what activities the
organization needs to address. We would also suggest looking at the corresponding product
integrity results.

We summarize our process measurement discussion in Figure 6-31, which lists seven steps to
follow when setting up and collecting process metrics. Our recommendation is to start simple
and try a pilot measurement program.

Successful Software Development, Second Edition

420

Figure 6-31 This high-level procedure helps you through the process measurement steps
based on the concepts and examples introduced in this chapter.

After you decide on what questions you want answered, the process components, and the
process component activities you want to measure, you need to decide on the granularity of
your process measurements. We recommend that you do not select too many process
component activities at first. You need to collect data and determine what activities are worth
measuring. If you have many activities, each activity's contribution to the measurement is
reduced accordingly (unless weighting factors are used). However, you do not want to
measure too few activities, else you may not be gaining insight into whether or not your
process is consistently producing products that satisfy your customer.

As a result of reviewing the preceding measurement observations, decision makers can focus
their attention (and potentially, resources) on those activities that may need improvement or
on questions that need to be answered. The decision might be to take more measurements and
review them carefully. Perhaps, the software development process needs to be more closely
followed; maybe the process needs to be changed, or maybe the management is
overcommitted. Regardless, these measurements are expressed in everyday terms to be used
consistently to achieve customer satisfaction in terms of value scales that make sense for your
organization.

Successful Software Development, Second Edition

421

6.5 Capability Maturity Model (CMM) for Software

The purpose of this section is to show how the process integrity concept and formulas
discussed in the preceding sections can be applied to a widely known framework for
improving software systems development—the Capability Maturity Model (CMM) for
Software developed by the Software Engineering Institute (SEI).[8] We assume that you are
familiar with the CMM, and you can skip this section without loss of continuity. However, to
set context and to link with the previous discussion of process measurement, we present a
brief summary of the model. A complete description of Version 1.1 of the model can be found
in the following publications (see the bibliography at the end of this book for a brief
description of each of these documents):

• Paulk, M. C., B. Curtis, M. B. Chrissis, and C. V. Weber, "Capability Maturity Model
for Software, Version 1.1," Software Engineering Institute and Carnegie Mellon
University Technical Report CMU/SEI-93-TR-24, February 1993.

• Paulk, M. C., C. V. Weber, S. M. Garcia, M. B. Chrissis, and M. Bush, "Key Practices
of the Capability Maturity Model, Version 1.1," Software Engineering Institute and
Carnegie Mellon University Technical Report CMU/SEI-93-TR-25, February 1993.

• Paulk, M. C., and others. The Capability Maturity Model: Guidelines for Improving
the Software Process. Reading, MA: Addison-Wesley Publishing Company, 1995.

The CMM for Software (hereafter referred to as the CMM) summary given in the following
paragraphs is adapted from the first two documents in the list.

The CMM is a five-level road map for improving the software process. The CMM is a guide
(not a cookbook) for evolving toward a culture of software engineering excellence. It is a
model for organizational improvement. The CMM provides a framework for improving
software engineering practice. The CMM provides guidelines for not only improving process
management but also for introducing technology into an organization. Furthermore, the CMM
is an underlying structure for consistent software process improvement efforts. An
organization can perform these exercises on itself to assess its capability to produce good
software products consistently. Customers can perform corollary evaluation exercises on
prospective software development vendors to help assess the risk of doing business with those
vendors. Figure 6-32 depicts the five maturity levels—(1) Initial, (2) Repeatable, (3) Defined,
(4) Managed, and (5) Optimizing.

8 See the bibliography for a brief description of the SEI mission.

Successful Software Development, Second Edition

422

Figure 6-32 The Software Engineering Institute's Capability Maturity Model for Software is a
five-level road map for improving an organization's software systems development process.
Each maturity level is a well-defined evolutionary plateau on the path toward becoming a
"mature" software organization.

As indicated in the figure, Level 1 organizations produce software by some amorphous
process that is only known to a few individuals or heros. During the course of the project, the
project leader ends up saying something like the following:

We only have a few weeks before delivery. Kiss your spouses, boy friends, girl
friends, dogs, cats, whatever, goodbye for the next three weeks. By the way,
that includes nights and weekends, as well. That's what it is going to take to get
it done.

With luck, the work somehow gets done. However, even in the best of circumstances, it is
difficult to account for everything that is needed for successful software development to take
place. Therefore, the SEI defines each maturity level as a layer in the foundation for
continuous process improvement. A maturity level is a well-defined evolutionary plateau[9] on
the path toward becoming a mature software organization. Associated with each maturity

9 We have shown the levels to be parallel because we believe that most organizations operate at multiple levels, at the same time. In contrast, the SEI
literature presents the levels in a staircase-like fashion to indicate that an organization needs to establish itself at one level before moving up to the
next level.

Successful Software Development, Second Edition

423

level (except Level 1) is a "software process capability" that describes the range of expected
results from following a process.

As indicated in Figure 6-32, the software process is essentially ad hoc and generally
undisciplined for a Level 1 organization. A Level 1 organization's process capability is
unpredictable because the software process is constantly changed as the work progresses.
Level 1 performance depends on the individual capabilities of the staff and managers and
varies with their innate skills, knowledge, and motivations. Level 2 organizations focus on
project management. The process capability of an organization has been elevated by
establishing a disciplined process under sound management control. In contrast to a Level 1
organization, at Level 2 a repeatable process exists for software projects. At Level 3, the focus
shifts to establishing organizationwide processes for management and engineering activities.
Level 3 processes evolve from the processes and success while achieving Level 2. At Level 2,
one or two projects may have repeatable processes, but at Level 3 all projects use the
processes. At Level 4, the measurements that have been put in place at Level 2 and Level 3
are used to understand and control software processes and products quantitatively. At Level 5,
continuous process improvement is enabled by quantitative process feedback and technology
insertion.

Each maturity level consists of "key process areas (KPAs)" that are defined by "key
practices."[10] Key process areas identify the issues that must be addressed to achieve a
maturity level. KPAs are a cluster of related activities that, when performed collectively,
achieve a set of goals considered important for enhancing process capability. KPAs are
defined to reside at a single maturity level.[11] For example, as shown in Figure 6-33, associated
with Level 2 are six KPAs—(1) Requirements Management, (2) Software Project Planning,
(3) Software Project Tracking and Oversight, (4) Software Subcontract Management, (5)
Software Quality Assurance, and (6) Software Configuration Management.

10 Regarding the use of the word "key" here and elsewhere in the model, the description of the CMM includes the following statements:

The adjective "key" implies that there are process areas (and processes) that are not key to achieving a maturity level. The CMM does not
describe all the process areas in detail that are involved with developing and maintaining software. Certain process areas have been
identified as key determiners of process capability; these are the ones described in the CMM.

Although other issues affect process performance, the key process areas were identified because of their effectiveness in improving an organization's
software process capability. They may be considered the requirements for achieving a maturity level.
11 This constraint may be removed in future versions of the model. The measurement approach subsequently discussed in this section is not tied to this
constraint.

Successful Software Development, Second Edition

424

Figure 6-33 Each maturity level consists of "key process areas (KPAs)." Each KPA is
characterized, in part, by "goals" and "key practices."

Associated with each of these six KPAs is a set of goals. For example, associated with the
Software Project Planning KPA are three goals, one of which is the following: "Software
estimates are documented for use in planning and tracking the software project." Goals are
associated with key practices which are the policies, procedures, and activities that contribute
most to the effective institutionalization and implementation of a goal (and therefore a KPA).
A key practice can be associated with more than one goal.

Key practices are grouped into five common features—(1) Commitment to Perform, (2)
Ability to Perform, (3) Activities Performed, (4) Measurement and Analysis, and (5)
Verifying Implementation. The key practices that make up the common features represent the
"what needs to be done" or, simply stated, the requirements. Although many practices
contribute to success in developing effective software, the key practices were identified
because of their effectiveness in improving an organization's capability in a particular key

Successful Software Development, Second Edition

425

process area. Implementation of the key practices is the "how" part of institutionalization of
KPAs.

With the preceding as background, we present the following simplified example of how
process integrity can be computed for each of the SEI maturity levels or KPAs. This example
is presented using the seven process measurement steps:

Process Measurement Step 1

Decide on what questions you want and/or need to address. Is my project performing
activities associated with the Level 2 KPAs?

Process Measurement Step 2

Select the process components from your software systems development process that you
want to measure. As shown in Figure 6-34, we select the Level 2 KPAs as the process
components to be measured.

Figure 6-34 A repeatable software process that has integrity is one that has the following six
process components shown above—(xt1), (xt1),(xt1), (xt1),(xt1), and (xt1)

Process Measurement Step 3

Identify the process component activities that you want to measure. For each Level 2 KPA,
we identify the Activities Performed common feature as the process component activities to
be measured. For simplicity of explanation, Figure 6-35 shows only the detail for the
Requirements Management KPA.[12] The process component activities to be measured for
Requirements Management correspond to the activities labeled RM.AC.1, RM.AC.2, and
RM.AC.3. Other process component activities would be measured for the remaining Level 2
KPAs.

12 In Figure 6-35, the term "allocated requirements" is used in the CMM to denote those system requirements that are set apart (i.e., allocated) for
implementation through software code.

Successful Software Development, Second Edition

426

Figure 6-35 The Requirements Management process component (i.e., key process area) can be
measured using the three activities labeled RM.AC.1, RM.AC.2, and RM.AC.3.

Process Measurement Step 4

For each identified activity, define a value scale in everyday terms that are familiar to the
organization. Figure 6-36 shows our activity value scale definitions for the Requirements
Management activities. The (xt11) activity value scale is continuous and is based on a
percentage of the requirements reviewed by the engineering group.[13] The (xt12) activity value
scale has threediscrete values designed to encourage review and incorporation of changes to
agreed-upon requirements before they are incorporated into the project. The (xt13) activity
value scale reflects either "yes" or "no." This activity value scale was designed to stress
whether or not the activity is being performed.

13 In the language of our book, "engineering group" is an organizational element encompassing development disciplines.

Successful Software Development, Second Edition

427

Figure 6-36 Example activity value scales for the three activities making up the Requirements
Management key process area.

Similarly, to compute integrity values for the other five KPAs, value scales for each of the
activities associated with each KPA would be defined. The resulting Level 2 process
"goodness" scale is shown in Figure 6-37.

Figure 6-37 The level2 process "goodness" scale ranges from a minimum value of 0.0 (i.e.,
activities not being performed in any KPA) to a maximum value of 1.0 (i.e., activities in each
KPA).

Successful Software Development, Second Edition

428

Process Measurement Step 5

For each identified activity, observe activity accomplishment and choose a corresponding
scale value reflecting that accomplishment. Observations are made, values are assigned, and
values are recorded using a software spreadsheet program.

Process Measurement Step 6

Using the formulas given in this chapter, calculate the process component value based on the
activity values. For simplicity, use the formulas that yield values between zero and one. Select
weighting factors to reflect your perception of the relative importance of your process
components.

As shown in Figure 6-38, the generalized process integrity index formula is used to establish
the formulas necessary to measure the activities associated with the Level 2 KPAs. As
indicated in the figure, the formulas are normalized so that the calculated values will fall
between zero and one, and the weighting factors are set equal to one.

Successful Software Development, Second Edition

429

Figure 6-38 The process integrity for CMM Level2 can be defined using the activities for each of
the six Key Process Areas. For example, there are three activities for Requirements
Management (i.e., xt1), fifteen activities for software Project Planning (i.e., xt2), ect.

Process Measurement Step 7

Using the formulas given in this chapter, combine the process component values into a
process integrity index value. For simplicity, use the formulas that yield values between zero
and one. Select weighting factors to reflect your perception of the relative importance to your
organization.

A formula for rolling the KPA integrity values up into a Level 2 integrity index is shown in
Figure 6-38. For the Requirements Management KPA (xt1), there are 3 activities; hence, the
square root of 3 in the denominator. For the Software Project Planning KPA (xt2), there are 15
activities; hence, the square root of 15 in the denominator for the formula. For the Software
Project Tracking and Oversight KPA (xt3), there are 13 activities; for the Software
Subcontract Management KPA (xt4), there are 13 activities; for the Software Quality

Successful Software Development, Second Edition

430

Assurance KPA (xt5), there are 8 activities; and for the Software Configuration Management
KPA (xt6), there are 10 activities. Thus, in terms of determining an organization's compliance
with Level 2 KPAs and underlying practices, the process integrity vector resides in a space of
62 dimensions (3 + 15 + 13 + 13 + 8 + 10). A similar approach can be used to compute
process integrity indices for the other CMM levels.

6.6 Other Process-Related Measurements

In addition to product integrity and process integrity measurements, it may be useful to
establish other process-related measurements tied to one or more components of the software
systems development process. Again, the question is, "What attributes of the software systems
development process are of interest to measure?" In part, the answer is tied to determining
which activities contribute to "staying in business," which is strongly tied to "customer
satisfaction.""Customer satisfaction" can be expressed in many ways. In this section, we show
you how to effect process improvement, using an approach other than product and process
integrity indexes. Our approach consists of the following two steps:

• The application of metrics to the software systems development process activities to
provide insight into the extent to which these activities are, or are not, contributing to
customer satisfaction (as expressed in terms of the five product integrity attributes[14]).

• Those activities that are not contributing to customer satisfaction will be modified (or
eliminated) until they do. These modifications are what "process improvement"
means.

We now explain how to apply these two steps to derive a set of process metrics. The context
for this discussion is our example organizational software systems development process. This
process is sufficiently general so that you will be able to adapt it to your own environment.

The discussion that follows assumes that the organizational process is used to govern a
number of projects unfolding, more or less, in parallel. We measure things on individual
projects and then average these things over one or more projects. From these averages, we
derive findings about the underlying software systems development process to effect its
improvement.

In order to perform actual measurements of software systems development processes, the
preceding considerations need to be tempered by practical considerations. Measurement
involves collecting data and putting the data into a meaningful form for process improvement
purposes. These tasks cannot be onerous because they will get in the way of software systems
development work—and measurement will not be performed. Thus, as we stressed in
preceding sections, the metrics must be simple to collect and analyze. The price for this
simplicity is that the metrics are limited regarding the insight they provide into process
workings. For the near term, your approach should be to collect some simple metrics to see if
they help highlight activities that should be changed to effect process improvement. Through
this experience, you canthen determine whether you need more sophisticated measurement
techniques.

14 Remember, in Section 6.3, we explained the concept of product integrity in terms of the following product attributes: (at1) fulfills customer needs,
(at2) can be easily and completely traced through its life cycle, (at3) meets specified performance criteria, (at4) meets cost expectations, and (at5) meets
delivery expectations.

Successful Software Development, Second Edition

431

The simplicity criterion just mentioned means in a metrics context that we simply count the
number of times specific software systems development activities are performed. To bring in
customer satisfaction, we use the receipt of deliverable and acceptance of deliverable forms.
The Acceptance of Deliverable form provides customer feedback regarding each product
delivered according to the following three degrees of "customer satisfaction" (in descending
order of this satisfaction):

• The product is accepted as delivered
• The product is accepted with minor changes needed
• The product requires changes to be negotiated.

Clearly, the data on the acceptance of deliverable form do not provide detailed insight into the
extent to which the product fulfills specified customer needs (i.e., product integrity attribute
at1) or meets specified performance criteria (i.e., product integrity attribute at3). In terms of
overall process improvement, these detailed considerations are not pertinent. For instance, our
example organizational software systems development process mandates that, before
computer code is delivered to the customer, it must be acceptance tested. This acceptance
testing activity does address the details of the product integrity attributes at1 and at3 for that
computer code product. In fact, if acceptance testing does demonstrate the presence of these
attributes, customer confirmation on the acceptance of deliverable form is a foregone
conclusion. The point is that (1) counting these forms, (2) putting these counts into the three
bins of degrees of customer satisfaction just listed, and then (3) relating these counts to the
number of times certain activities are carried out, does provide gross insight into the
effectiveness of these activities in the overall software systems development process.

To relate the preceding discussion to actual process measurement, we discuss some specific
process-related metrics. We begin with a general process- related metric and then illustrate it
with specific examples. This general metric and the associated examples are a starting point
for defining a set of process- related metrics to provide some insight into the state of your
software systems development process and to effect its improvement. We also consider other
metrics to illustrate additional process-related measurement ideas.

The general process-related metric is the following:

Equation 6.6-1

M1q is the average number of times it takes to perform activity q in the organizational
software systems development process in producing the ith deliverable before delivery. The
quantity NProcActivityqi is the number of times the qth process activity is performed on the ith
deliverable before delivery. The quantity #Del is the number of deliverables to include in the
average. This number may apply to a specific project or to a group of projects. For example,
#Del may be the number of deliverables produced on a project over a three-month period. As
another example, the quantity #Del may be the number of deliverables produced on all

Successful Software Development, Second Edition

432

projects under the supervision of a particular seller senior manager. Examples of the quantity
NProcActivityqi are the following:

• Number of CCB meetings where the ith deliverable was discussed
• Number of peer reviews to produce the ith deliverable
• Number of product assurance reviews to produce the ith deliverable
• Number of technical edits to produce the ith deliverable
• Number of management reviews of the ith deliverable

The metric M1q can indicate the following, depending on #Del included in the sum:

• The extent to which the qth organizational software systems development process
activity is being used to produce deliverables

• The average number of times activity q is required to get a deliverable to the customer
• The trend in the average number of times activity q is required to get a deliverable to

the customer (this trend would be measured by collecting and reporting the metric, for
example, every month for a given value of #Del)

To illustrate M1q, let NProcActivityqi = NPeeri, the number of peer reviews required to
produce the ith deliverable. Then, we define the metric MPeer related to the organizational
software systems development process peer review activity as follows:

Equation 6.6-2

This metric is the average number of peer reviews required to produce deliverables for
delivery. If, for example, the sum in Equation 6.6-2 is restricted to a single project, this metric
indicates the following:

• The extent to which the peer reviews are being used on the project
• The average number of peer reviews required to get a deliverable to the customer for

that project
• If this metric were collected and reported, say, monthly, the trend in the average

number of peer reviews required to get a deliverable to the customer for that project

If similar statistics were compiled for other projects, then we could determine for subsequent
project planning purposes how many peer reviews to include in the cost and schedule of
project plans. This information would serve to improve the project planning process called out
in your organizational software systems development process because it would help to refine
the costing and scheduling algorithms.

Successful Software Development, Second Edition

433

However, the metric in Equation 6.6-2 does not explicitly address product integrity attributes.
The following metric, which is an adaptation of Equation 6.6-2, illustrates how connection to
these attributes can be made:

Equation 6.6-3

This metric is the average number of peer reviews required to produce deliverables that are
accepted by the customer (i.e., the customer returns the acceptance of deliverable form
indicating "the product is accepted as delivered"); the quantity #DelAcc is the number of such
deliverables. If, for example, the sum in Equation 6.6-3 is restricted to a single project, this
metric indicates the following:

• The average number of peer reviews required to get a deliverable accepted by the
customer for that project

• If this metric were collected and reported, say, monthly, the trend in the average
number of peer reviews required to get a deliverable accepted by the customer for that
project

If similar statistics were compiled for other projects, then we could see whether there is a
correlation between the number of peer reviews and customer acceptance. Of course, other
organizational software systems development process activities influence customer
acceptance. It is thus admittedly an oversimplification to say that there is a single value for
this average that should be applied across all projects to enhance the likelihood of customer
acceptance of products. For example, certain projects might involve the development of
complex products that by their nature would require more peer reviews than less complex
products would.

But the preceding metric could provide some insight into the correlation between the peer
review activity and customer satisfaction as expressed on the acceptance of deliverable form,
as follows:

Suppose several projects have a track record of consistent product acceptance
by the customer. Suppose also that the value of MPeerACC obtained by
averaging over these projects is, say, 3.5 (i.e., three to four peer reviews are
used to produce deliverables on these projects). Furthermore, suppose that (1)
several other projects have a track record of consistent deliverables requiring
"changes to be negotiated" and (2) the value of MPeerACC averaged over
these projects is, say, 0.5 (i.e., one or no peer reviews are used to produce
deliverables on these projects). Then, other organizational software systems
development process activities being equal (admittedly, a big "if," but this "if"
could be examined by applying the instantiations of the metric M1q for these
activities), it could be surmised that there is some correlation between the peer
review activity and customer acceptance of products.

Successful Software Development, Second Edition

434

Of course, things generally turn out to be far more complicated than the simple situation just
illustrated. To get a sense of such complications, we modify the situation so that it reads as
follows:

Suppose several projects have a track record of consistent product acceptance
by the customer. Suppose also that the value of MPeerACC averaged over
these projects is, say, 3.5 (i.e., on average, three to four peer reviews are used
to produce deliverables on these projects). Furthermore, suppose that (1)
several other projects have a track record of consistent deliverables requiring
"changes to be negotiated" and (2) the value of MPeerAcc averaged over these
projects is, say, 4.5. Then, if other organizational software systems
development process activities were being applied consistently across both sets
of projects (which could be determined by applying the instantiations of the
metric M1qto these activities), the organizational software systems
development process peer review activity would need to be examined from
perspectives such as the following: (1) Are there fundamental differences
between the way peer reviews are being utilized on one set of projects versus
the other set (e.g., are the peer reviews on the project set with MPeerACC =
4.5 less formal with no written record of what was accomplished?)? (2) Are
the two sets of projects fundamentally different in terms of the nature of their
products so that it is not meaningful to say that, because it takes more peer
reviews on these projects, the peer review process is less effective? For (1), the
process improvement response might be to modify the way that set of projects
performs its peer reviews so that it mirrors the way the other set of projects
performs peer reviews. If this modification brings MPeerACC in line with the
value of this metric for the other set of projects, then the effectiveness of the
peer review activity would be demonstrated. For (2), the process improvement
response might be to modify the organizational software systems development
process to call out two approaches to peer reviews—one for projects that
mirror the one project set and the other that mirror the other project set. The
result of this organizational software systems development process
modification would be process improvement.

It should be noted that an assumption underlying this analysis is that if there is a correlation
between doing an activity N times and customer product acceptance, then doing the activity
much less than N or more than N is less desirable. This assumption helps simplify the
analysis. It is not possible to make general statements about the validity of this assumption.
You will need to see what makes sense for your organization. For example, you may need to
specify the number of times a given activity is to be performed. Then, you can observe the
effect on customer acceptance of products and make adjustments accordingly.

Metrics such as the one defined in Equation 6.6-3 can be extended to encompass more than
one organizational software systems development process activity. This approach may be
useful if it proves too difficult to correlate a specific activity with customer satisfaction. For
example, it may be more useful to lump peer reviews and independent product assurance
reviews into a single metric. This metric might provide insight into the correlation between
detailed technical product reviews (which these activities are intended to address) and
customer satisfaction. Extending the Equation 6.6-3 idea, such a metric might be the
following:

Successful Software Development, Second Edition

435

Equation 6.6-4

This metric is the average number of peer reviews and independent product assurance reviews
required to produce deliverables that are accepted by the customer (i.e., the customer returns
the acceptance of deliverable form indicating "the product is accepted as delivered"). As was
the case in Equation 6.6-3, NPeeri is the number of peer reviews required to produce the ith
deliverable accepted by the customer. Similarly, NPAi is the number of independent product
assurance reviews required to produce the ith deliverable accepted by the customer. If, for
example, the sum in Equation 6.6-4 is restricted to a single project, this metric indicates the
following:

• The average number of detailed product technical reviews (i.e., peer reviews and
independent product assurance reviews) required to get a deliverable accepted by the
customer for that project

• If this metric were collected and reported, say, monthly, the trend in the average
number of detailed product technical reviews required to get a deliverable accepted by
the customer for that project

If similar statistics were compiled for other projects, then we could see if there is a correlation
between the number of detailed product technical reviews and customer acceptance.

In addition to activity-specific metrics such as those just discussed, there are metrics that can
address product integrity attributes by simply counting the number of deliverables over a
specific period of time. For example, the following metric addresses the product integrity
attribute of "at5—meets delivery expectations":

Equation 6.6-5

This metric gives the percentage of deliverables delivered on time to the customer during a
specific period for certain projects, where "on time" is according to delivery dates specified in
project plans or CCB minutes. The quantity #Del is the number of deliverables delivered
during a specific period for specific projects. The quantity #DelOnTime is the number of these
deliverables delivered on time. For example, #Del may be the number of deliverables
delivered during a particular month for all projects active during that month. As another
example, #Del may be the number of deliverables on a specific project during the entire
period the project was active. The preceding metric provides insight into how well the
organization is meeting planned schedules. This insight, in turn, provides insight into the
effectiveness of the project planning activity in scheduling deliverables and the effectiveness

Successful Software Development, Second Edition

436

of the CCB activity in updating project plan schedules. Ideally, the organization should strive
to have %DelOnTime = 100 (all deliverables are delivered on time) for whatever #Del
encompasses. If %DelOnTime encompasses all projects and if the value of this metric is
significantly less than 100 (say, 50), then this statistic would be used to investigate whether
(1) certain organizational process activities should be accomplished in less time and/or (2) the
project planning activity needs to be revised to set more realistic schedules. This
investigation, in turn, may precipitate changes to the activities in question—the end result
being organization process improvement.

Regarding the project planning activity, this activity precedes actual organization product
development work. Yet, there are product integrity issues regarding this activity. Sometimes
the customer pays for the product resulting from this activity—namely, the project plan. If the
cost of this activity has been a major customer concern in the past, one metric that can
possibly help in this area is the following:

Equation 6.6-6

The metric AvPPlan$ is the average cost to produce a project plan resulting in a project.
PPlan$i is the cost to produce the ith project plan resulting in a project. #Projects is the
number of projects to include in the average. This average can be computed over any period.
Thus, for example, #Projects could be the number of projects in a six-month period. By
computing this average periodically (e.g., monthly), the trend in this average can be
determined (e.g., the average cost to produce a project plan has declined at a rate of 10
percent per month for the last six months). Also, the project plans to include in the sum can be
limited by defining #Projects appropriately. Thus, for example, the metric in Equation 6.6-6
can be used to compute the average cost to produce a project plan for a specific customer by
limiting #Projects and PPlan $i to customer "ABC Corporation" projects.This metric can also
be used to define the average cost of project plans for various categories of projects. For
example, by limiting #Projects and PPlan$i to "O&M" projects, we can compute the average
project planning cost for O&M work. The metric AvPPlan$ can also help set customer
expectations regarding the cost of the organization's project planning process.

Embedded in the last metric is the number of iterations required to produce a project plan
before it results in a project. The following metric can give visibility into these iterations and
thereby provide additional insight into how to control project planning cost (and thereby
increase the integrity of the project planning part of the organization's way of doing business):

Successful Software Development, Second Edition

437

Equation 6.6-7

The metric Av#PPlan? is the average number of drafts required to produce a project plan
resulting in a project. PPlan?i is the number of drafts required to produce the ith project plan
resulting in a project. #Projects is the number of projects to include in the average. This
average can be computed over any period. Thus, for example, #Projects could be the number
of projects in a six-month period. By computing this average periodically (e.g., monthly), the
trend in this average can be determined (e.g., the average number of drafts required to
produce a project plan has declined at a rate of 10 percent per month for the last six months).
Also, the project plans to include in the sum can be limited by defining #Projects
appropriately. Thus, for example, the metric in Equation 6.6-7 can be used to compute the
average number of drafts required to produce a project plan for a specific customer, by
limiting #Projects and PPlan?i to customer "ABC Corporation" projects. This latter statistic
could be used to determine whether there was a shortcoming in the project planning process
or a difficulty with a particular customer (or some combination of these two considerations).
The metric in Equation 6.6-7 can also be used to determine the number of drafts required to
produce project plans for various categories of projects. For example, by limiting #Projects
and PPlan?i to "O&M" projects, we can compute the average number of drafts required to
produce project plans for O&M work. This statistic, in turn, can help refine the project
planning activity through scheduling algorithms that depend on the type of work that the
organization is being requested to do. For example, if Av#PPlan? turns out to be 3.5 for O&M
work and 1.5 for the development of new software systems, and other factors being equal
(e.g., there are no customer dependencies), then we can inform customers that three to four
meetings between the customer and the organization will probably be required to finalize an
O&M project plan, while one to two meetings between the customer and the organization will
probably be required to finalize a new-systems-development project plan.

One organizational software systems development process activity often given special
attention is acceptance testing.[15] Unless specifically dictated by the customer, software
systems should not be delivered to the customer without acceptance testing. Furthermore,
customer involvement in the acceptance testing CCBs is an effective way of assuring that the
software system to be delivered does what it is supposed to do, that is, fulfills specified
customer needs and/or meets specified performance criteria. The following two metrics can be
used to assess respectively the extent to which (1) software systems are being acceptance
tested before delivery and (2) the customer participates in acceptance testing CCB activity:

15 As discussed in Chapter 5, acceptance testing is the system-level testing that the seller performs before delivering the system to the customer. We
recommend that the customer be involved in the acceptance testing process. In this way, what the customer receives at delivery is what the customer
expects.

Successful Software Development, Second Edition

438

Equation 6.6-8

Equation 6.6-9

In Equation 6.6-8, the metric %SystemsAccTested gives the percentage of software systems
accepted tested during a specific period for certain projects. The quantity #SystemsDel is the
number of software systems delivered during a specific period for specific projects. The
quantity #AccTestedSystemsDel is the number of these systems acceptance tested. For
example, #SystemsDel may be the number of software systems delivered during a particular
month for all projects active during that month. As another example, #SystemsDel may be the
number of systems delivered on a specific project during the entire period that the project was
active. Ideally, the organization should strive to have %SystemsAccTested = 100 (all software
systems are acceptance tested before delivery) for whatever #SystemsDel encompasses. If
%SystemsAccTested encompasses all projects and if the value of this metric is significantly
less than 100 (say, 50), then this statistic would be used to investigate why acceptance testing
is not being performed. The reasons uncovered may precipitate changes to one or more
organizational process activities. If, for example, a reason uncovered was that senior customer
management issued edicts—at the eleventh hour—that no acceptance testing be performed,
then it may be necessary to clarify the organizational software systems development process
to ensure seller senior management involvement with customer senior management prior to
planned acceptance testing. The end result of such changes to the activities in question is
organizational process improvement.

In Equation 6.6-9, the metric %SystemsAccTestedwithCustomer gives the percentage of the
acceptance testing activity conducted with customer participation in acceptance testing CCBs,
during a specific period for certain projects. The quantity #SystemsAccTestedwithCustomer is
the number of software systems delivered during a specific period for specific projects where
the customer participated in acceptance testing CCBs. The quantity #SystemsAccTested is the
number of systems acceptance tested during this period for the specific projects in question.
Ideally, the organization should strive to have %SystemsAccTestedwithCustomer = 100 (all
software systems are acceptance tested with customer involvement before delivery) for
whatever #SystemsAccTested encompasses. The presumption here is that, when test incident
report (TIR) resolution involves the customer, our first and third product integrity attributes
are satisfied by definition.

Another potentially useful approach to assessing process effectiveness at a gross level (i.e.,
independent of any particular organizational process activity) is to do simple counts on the
contents of the acceptance of deliverable form. The following metric illustrates this approach
for the case in which the contents of the form indicate "Accept as Delivered" (analogous
metrics can be defined for the cases "Accept with Minor Changes" and "Requires Changes to
be Negotiated"):

Successful Software Development, Second Edition

439

Equation 6.6-10

This metric offers a variety of interpretations depending on how the factors in the numerator
and denominator are used. The scope of the metric depends on the scope of the factors in the
denominator. The quantities in this equation are defined as follows:

• #FormAcc is the number of deliverables for which the organization has received an
acceptance of deliverable form indicating "Accept as Delivered."

• #Unknown is the number of deliverables for which the organization has not yet
received an acceptance of deliverable form and for which an assumed value will be
assigned.

• #DelKnown is the number of deliverables for which the organization has received an
acceptance of deliverable form.

• #DelUnknown is the number of deliverables for which the organization has not yet
received an acceptance of deliverable form.

• CustomerSatisfied is the percentage of deliverables for which the customer has
indicated "Accept as Delivered" and thus is a gross measure of positive customer
perception of the organization.

The following example illustrates how this metric can be used:

Suppose we are interested in customer perception of the organization for a
two-month period across all projects. Suppose further that during this period
the organization delivered 100 deliverables and received 50 acceptance of
deliverable forms, 25 of which indicated "Accept as Delivered." In this case,
#DelKnown = 50, #DelUnknown = 50, and #FormAcc = 25. Regarding the 50
deliverables for which the forms have not yet been received, suppose we
conjecture that none of them will come back with "Accept as Delivered" (a
highly undesirable case for these outstanding deliverables, the worst case
being that all the forms come back indicating "Changes to Be Negotiated").
With this conjecture, #Unknown = 0 and the value of CustomerSatisfied
becomes 25 percent. If, on the other hand, we conjecture that they all will
come back with "Accept as Delivered," #Unknown = 50, and the value of
CustomerSatisfied becomes 75 percent. These values then have the global
interpretation that, for the two-month period in question, the degree of
customer satisfaction with organization products across all projects is no
worse than 25 percent and no better than 75 percent. If, in fact, there is a good
likelihood that indeed most of the outstanding acceptance of deliverable forms
will come back with other than "Accept as Delivered" indicated (as can be
determined by querying the responsible project managers), then the 25 percent
figure would be more representative of the state of organization affairs
regarding customer perceptions. In this case, a detailed look at other metrics
would be called for to see why the approval rating is so low. Equation 6.6-10
can also be used to assess customer satisfaction solely on the basis of the
known status of the deliverables. For this assessment, the quantities
#UnKnown and #DelUnknown are both set to zero. Using the numbers just

Successful Software Development, Second Edition

440

given, the value of CustomerSatisfaction for the two-month period in question
would then become 50 percent. This value would have the following
interpretation: "For the two-month period in question, half the deliverables for
which the customer returned acceptance of deliverable forms were judged
acceptable as delivered."

The preceding discussion focused on metrics pertaining to organization process improvement
in a product integrity context. Other quantities, although not directly related to process
improvement, may offer insight into organization work profiles that could eventually be used
to effect process improvement. Regarding these profiles, questions such as the following
might be asked:

• What is the average size project?
• What is the average project cost?
• How is the work distributed across the customer's organization?

Regarding the first question, a metric such as the following, patterned after the metric in
Equation 6.6-6, might be helpful:

Equation 6.6-11

The metric AvProjectPersSize is the average number of organization employees working on
an organization project. ProjectPersSizei is the number of organization employees working on
the ith project. #Projects is the number of projects to include in the average. This average can
be computed over any period. Thus, for example, #Projects could be the maximum number of
projects active in a six-month period. By computing this average periodically (e.g., monthly),
the trend in this average can be determined (e.g., the average project size has declined at a rate
of two people per month for the last six months). Such trends, when coupled to trends derived
from other metrics such as CustomerSatisfied in Equation 6.6-10, may indicate general failure
(or success) of the organization process. For example, declining project size coupled with
increased customer satisfaction during the same period may indicate process success because
the organization is able to do good work with fewer people. On the other hand, declining
project size coupled with declining customer satisfaction for the same period may indicate
process failure because the customer's organization is taking its business elsewhere.

The project types to include in the Equation 6.6-11 sum can be limited by defining #Projects
appropriately. Thus, for example, Equation 6.6-11 can be used to compute the project size for
a specific customer by limiting #Projects and ProjectPersSizei to ABC Corporation projects.
This metric can also be used to define the average project size for various categories of
projects. For example, by limiting #Projects and ProjectPersSizei to "O&M" projects, we can
compute the average project size for O&M work. Again, coupling these metrics to other
metrics can provide insight into failure (or success) of the organization process in particular

Successful Software Development, Second Edition

441

spheres. For example, by limiting #Projects and ProjectPersSizei to "O&M" projects, and by
limiting the inputs to the CustomerSatisfied metric in Equation 6.6-10 to O&M deliverables,
we can gain insight into how well, or poorly, the process may be working for O&M work. For
instance, a trend in O&M project size showing a decline and a customer satisfaction trend for
these projects for the same period showing an increase may indicate process success for O&M
work. That is, these two trends may indicate that the organization is able to do good O&M
work with fewer people.

The following are some counting issues that need to be considered when using the metric in
Equation 6.6-11:

• Should product assurance personnel be included in ProjectPersSizei?
• Should support personnel (e.g., technical editors) be included in ProjectPersSizei?

A global response to these issues is that values quoted for the metric should indicate what
ProjectPersSizei includes.

The second question in the list—what is the average project cost?—can be addressed by a
metric analogous to the one given in Equation 6.6-11, namely

Equation 6.6-12

The metric AvProject$ is the average cost of an organization project. Projecti is the cost of the
ith project. #Projects is the number of projects to include in the average. This average can be
computed over any period. Thus, for example, #Projects could be the maximum number of
projects active in a six-month period. By computing this average periodically (e.g., monthly),
the trend in this average can be determined (e.g., the average project cost has declined at a
rate of $10,000 per month for the last six months). Such trends, when coupled to trends
derived from other metrics such as CustomerSatisfied in Equation 6.6-10, may indicate
general failure (or success) of the organization process. For example, declining project cost
coupled with increased customer satisfaction during the same period may indicate process
success because the organization is able to do good work at reduced cost.

The project types to include in the Equation 6.6-12 sum can be limited by defining #Projects
appropriately. Thus, for example, Equation 6.6-12 can be used to compute the project cost for
a specific customer by limiting #Projects and Project$i to ABC Corporation projects. This
metric can also be used to define the average project cost for various categories of projects.
For example, by limiting #Projects and Project$i to "O&M" projects, we can compute the
average project cost for O&M work. Again, coupling these metrics to other metrics can
provide insight into failure (or success) of the organization process in particular spheres. For
example, by limiting #Projects and Project$i to "O&M" projects and by limiting the inputs to
the CustomerSatisfied metric in Equation 6.6-10 to O&M deliverables, we can gain insight

Successful Software Development, Second Edition

442

into how well, or poorly, the process may be working for O&M work. For instance, a trend in
O&M project cost showing a decline and a customer satisfaction trend for these projects for
the same period showing an increase may indicate process success for O&M work. That is,
these two trends may indicate that the organization is able to do good O&M work at less cost.

The third question in the list—how is the work distributed across the customer's
organization?—can be addressed, for example, by using the metrics in Equations 6.6-11 and
6.6-12. As already discussed, these metrics can be used to compute the average size and cost
of projects for Office X. If we perform these computations across all customer offices that the
organization does business with, we generate a cost and manning profile of work across the
customer's organization. By observing trends in these profiles and by coupling these trends to
the corresponding trends in the CustomerSatisfied metric in Equation 6.6-10, we can gain
insight into how well (or poorly) the organization is serving different client communities. We
can use this insight to sharpen the organization's client focus and thereby increase its business
base. For example, if the trends in these metrics indicate that the organization is serving the
ABC Corporation poorly, the organization can give added attention to staffing its projects
with, for example, more experienced personnel than might otherwise be considered.

Table 6-1 summarizes this section by listing the metrics formulas and their definitions.

Table 6-1. Summary of Organization Process Improvement Metrics.
Metric Formula Definition

The average
number of times
it takes to
perform activity
q in the
organization
software
systems
development
process in
producing the ith
deliverable
before delivery

The average
number of peer
reviews required
to produce
deliverables for
delivery

Successful Software Development, Second Edition

443

The average
number of peer
reviews required
to produce
deliverables that
are accepted by
the customer
(i.e., the
customer returns
the acceptance
of deliverable
form indicating
"the product is
accepted as
delivered")

The average
number of peer
reviews and
independent
product
assurance
reviews required
to produce
deliverables that
are accepted by
the customer
(i.e., the
customer returns
the acceptance
of deliverable
form indicating
"the product is
accepted as
delivered")

The percentage
of deliverables
delivered on
time to the
customer during
a specific period
for certain
projects, where
"on time" is
according to
delivery dates
specified in
project plans or
CCB minutes

The average
cost to produce
a project plan
resulting in a
project

Successful Software Development, Second Edition

444

The average
number of drafts
required to
produce a
project plan
resulting in a
project

The percentage
of software
systems
accepted tested
during a specific
period for certain
projects

The percentage
of the
acceptance
testing activity
conducted with
customer
participation in
acceptance
testing CCBs,
during a specific
period for certain
projects

The customer
perception of the
seller
organization

The average
number of seller
organization
employees
working on a
customer's
project

The average
cost of a project

6.7 Measurement Summary

Software systems development processes produce software products, such as requirements
specifications and computer code. A product can be measured by assessing product attributes,

Successful Software Development, Second Edition

445

and a process can be measured by assessing its process components and corresponding
activities. As shown in Figure 6-39, product and process measurements can be used to help
improve software systems development. However, numbers can be used to prove almost
anything. As Mark Twain once said, "There are three kinds of lies: lies, damned lies, and
statistics."[16]

Figure 6-39 Measurements can be used to help improve software systems development
process and the result products.

When you set out to establish your product and process metrics program, it is important to
think through ahead of time what the measurements are going to be used for. With this
purpose in mind, a measurement program can be based on values that are significant to both
the seller and the customer.

A word of warning—be sensitive to the concern within your organization that people may
view product and process measurements as measuring them. Asking such questions such as,
"What is Sam's productivity? Is he turning out as many lines of code as Roger or Sally?" is
tricky business. In fact, we recommend that you avoid such direct questions. We suggest
questions that probe the product or process may be more acceptable. Questions such as, "Can
we consistently produce products that satisfy our customer? Do we have a development
process that produces products that satisfy our customer and make a profit?" may be of more
value. Measurements must answer questions that are important to the organization—
otherwise, they are not worth collecting. As Figure 6-40 illustrates, there are multiple
viewpoints when measuring products and process. These views apply to any organization that
consists of more than one software project. That is, the organization has a process that each
project adapts to its special needs to accomplish its tasks. The organization is aiming to

16 Mark Twain, on page 246 in his autobiography published in 1924, quotes this as a remark attributed to Benjamin Disraeli (1804–1881), a British
statesman. For background on this oft-used quote, see S. Platt, ed., Respectfully Quoted: A Dictionary of Quotations from the Library of Congress
(Washington, DC: Congressional Quarterly Inc., 1992), p. 333

Successful Software Development, Second Edition

446

improve its software systems development process and resultant products, while the project is
aiming to improve task-level performance and corresponding products. The project
measurements can be used as a feedback mechanism to improve the organizational process.
Figure 6-41 summarizes the possible relationship between the product integrity index,
PIindex, and the process integrity index, ProcIindex.

Figure 6-40 The product integrity index or process integrity index can be implemented for
organization and project perspectives.

Successful Software Development, Second Edition

447

Figure 6-41 What is the relationship between your product and process integrity indexes? This
figure suggests some possible interpretations.

Your actual results depend on your specific set of circumstances. You need to examine your
measurements to understand how the results may guide your product and process
improvement activities. It is recommended that the data be collected, reviewed, and discussed
on a routine schedule. Data collection is a part of everyday work. Figure 6-42 illustrates this
point.

Successful Software Development, Second Edition

448

Figure 6-42 Applying metrics to the software systems development process should be part of
the process itself.

An analog to integrated process measurement is the measurements that occur as an
automobile moves. Such integrated measurements include speed, available fuel, engine
temperature, and oil level. Among other things, these measurements indicate how well the
automobile is functioning. These measurements also indicate when the automobile's
performance may need to be improved. Example performance improvement measurements
include measuring the miles traveled between stops for gas to provide insight into fuel
economy which, in turn, offers insight into which parts of the automobile may need to be
serviced.

In Figure 6-43, we summarize the product and process measurement steps, and the possible
relationships between the measurements. This figure can be used as a guideline for setting up,
observing, collecting, and analyzing your measurements.

Successful Software Development, Second Edition

449

Figure 6-43 This high-level procedure is to help you through the product and process
measurement steps based on the concepts and examples introduced in this chapter.

You can use the annotated outline of an ADPE guideline in Figure 6-44 as a starting point for
defining your organization's measurement program. This outline consists of the following
sections:

Successful Software Development, Second Edition

450

Figure 6-44 An annotated aoutline for getting you started in defining a product and process
measurement approach for your organization. This ADPE element can also be used to refine a
measurement approach you already (informally) have in place.

• Purpose.

This section states the purpose of the guideline. The purpose sets the context and
establishes the authority for the guideline.

Successful Software Development, Second Edition

451

• Background and Measurement Issues.

This section provides an overview of your organization, business, customers, and
types of contract vehicles (e.g., fixed price, time, and materials) that you use to
conduct business. Measurement issues are identified and expressed in terms of specific
questions that the organization or project wants or needs to have addressed.

• Product and Process Improvement Approach.

This section defines how the product and process measurement steps introduced in this
chapter are to be used. The section defines, details, and walks through the
measurement steps. It is recommended that high-level figures be used to explain the
steps. Depending on the level of detail appropriate for your organization, appendices
can be used to explain the steps and responsibilities in more detail.

• Product and Process Measurements.

This section defines the specific formulas to be used to answer your specific set of
questions. Example calculations can be given to show how to use the equations.
Suggested reporting formats may also be included.

• Roles and Responsibilities.

This section presents the major organizational responsibilities for the measurement
program.

• Appendices.

Appendices are added as necessary. The main body of the guideline states the basics,
and the appendices can add additional detail that embodies lessons learned, or provide
tutorial information. As an organization matures in its engineering business processes,
we recommend that the lessons be captured and incorporated into your ADPE
elements. As people in your organization move on to other jobs, their knowledge can
be incorporated into your ADPE elements, which serve, in part, as a piece of your
organization's corporate memory.

In closing our discussion of the application of Object Measurement to product and process
"goodness," we want to offer some additional remarks concerning (1) alternatives to vector
length for representing and computing "goodness" indexes, (2) how our measurement concept
can be extended to arbitrary levels of detail, and (3) the static viewpoint of process
measurement.

Alternatives to Vector Length for Computing Indexes When we discussed measuring
product "goodness," we started by saying that product integrity is a multidimensional concept
that associates attributes with a product. In looking for a way to quantify this
multidimensional concept, we noted that mathematical and scientific disciplines often handle
multidimensional quantities with entities known as "vectors." This association then led us to
use the concept of "vector length" as the basis for folding the measurements of a product's
attributes into a single number that we called a product integrity index, or PIindex. We chose
PIindex as a way to measure product "goodness." In a similar fashion, we defined a process

Successful Software Development, Second Edition

452

integrity index, or ProcIindex. ProcIindex folded measurements of the extent to which
activities that make up a process are performed into a single number. We chose ProcIindex as
a way to measure process "goodness."

Throughout this book, we stress that there is no one "way" to develop software systems.
Similarly, there is no one way to measure, for example, product "goodness" or process
"goodness." Earlier in this chapter, we illustrated how to use OM as a way to measure product
"goodness" and process "goodness." To calculate values for a "goodness" index, we needed a
computational mechanism. We based our computational mechanism on a physical model of a
line in space. This approach affords us the opportunity to "visualize" what the product and
process integrity indexes mean. Namely, these indexes correspond respectively, roughly
speaking, to the length of a line in product attribute space and to a length of a line in process
activity space. Of course, we cannot really see such lines. The point is that, by abstracting
from the underlying mathematical model of a vector, we are afforded the opportunity to sense
what the indexes mean.

The preceding discussion leads to the following essential point regarding the OM approach:

The most important part of this approach is setting up the value scales. As we
discussed earlier in this chapter, measurement results must be meaningful to
the intended audience. To make meaningfulness happen within theOM
framework means that the customer and seller need to mutually agree on the
(1) number of tick marks to put on each scale, (2) words to be used for the
marks, and (2) numeric values to associate with these words.

How to combine the measurements into a single number is less important. But, again, the
customer and seller need to agree on the computational procedure to be used. And, of course,
the overriding issue regarding the computational procedure is that the procedure needs to
make sense to both the customer and the seller.

We now illustrate another example computational procedure for PIindex (this example can be
straightforwardly extended to the computation of ProcIindex). Again, as with the discussion
earlier in this chapter, this example computational procedure is offered as a starting point for
you to derive a computational procedure that you may feel more comfortable with than that
given earlier in the chapter. The example that we now offer is an adaptation of one suggested
to us by others during presentations of the material in this chapter.

Equation 6.3-2 gives the formula for computing PIindex from the measurements of product
attributes. As we stated earlier, because we based our computational mechanism on a physical
model of a line in space, the computational procedure involves squaring numbers and taking
square roots. Even though using such a computational procedure is not a burdensome task
because of the wide availability of computational tools such as spreadsheets, we now present
a computational procedure that does not involve squaring numbers and taking square roots.
This procedure has the advantage that, even for computations involving five to ten attributes,
PIindex can be quickly estimated in one's head. We call this computational procedure a linear
one because it does not involve powers of attribute measurements (and powers of weighting
factors). The following formula is a linear analog to Equation 6.3-2:

Successful Software Development, Second Edition

453

Equation 6.7-1

The quantities wi, ati, and maximum[ati] have the same definitions as those given for these
quantities in Equation 6.3-2. Earlier in this chapter, we applied Equation 6.3-2 (all weighting
factors set to one, all value scales running from zero to one, and the normalization factor
chosen to restrict PIindex to the range zero to one) to compute PIindex for several example
products. With these stipulations, we found, for instance, for a requirements specification, a
value for PIindex of 0.72. With these same stipulations, we find for this same requirements
specification, using Equation 6.7-1, the following result:

Thus, the value for PIindex obtained from Equation 6.7-1 is less than the value obtained from
Equation 6.3-2. This result is a general one; that is, Equation 6.3-2 yields results that are less
than the corresponding ones obtained from Equation 6.7-1 (they are equal for the cases
PIindex = 0 and PIindex = 1). The differences between the Equation 6.3-1 results and the
corresponding Equation 6.7-1 results first increase and then decrease in going from PIindex
values near zero to PIindex values near one. In the requirements specification example given
above, this difference is 0.04. For the updated user's manual example given earlier in this
chapter, Equation 6.3-2 gave 0.32 while Equation 6.7-1 gives the following result:

In this case, the difference is 0.12.

Regarding such differences, it is appropriate here to comment on the accuracy issue
associated with setting up value scales and calculating index values obtained from measuring
attributes. As we stated above, the construction of value scales involves getting the customer
and seller to mutually agree on the (1) number of tick marks to put on each scale, (2) words to
be used for the marks, and (3) numeric values to associate with these words. Clearly, this
procedure is not an exact science. The procedure essentially involves a subjective process.[17]

17 Speaking somewhat loosely, at least some branches of science strive for objectivity when it comes to measurement. For example, a research
technique often used to objectively evaluate the efficacy of a drug is the "double-blind procedure." In this procedure, neither the researchers nor the
subjects know who is receiving the drug and who is receiving a placebo. Independent third parties who know which subjects received which
substances can then evaluate the results. These evaluators will have some degree of confidence that the participants in the procedure did not influence
outcomes (i.e., introduce subjectivity) by the way they may have conducted themselves during the procedure. On the other hand, some scientific

Successful Software Development, Second Edition

454

For instance, in the product attribute "fulfills customer needs" that we considered earlier in
this chapter, we set up three tick marks—0.0, 0.5, and 1.0. The 0.0 value corresponded to
"changes to be negotiated." This association involved making the subjective value judgment
that the most undesirable situation that could arise after a product went through a product
development process was that the customer received a product that was at gross variance with
want he/she wanted. If the 0.0 value is to represent the most undesirable situation regarding
fulfilling customer needs, other descriptions for this 0.0 value are certainly possible. For
example, the customer might have stipulated that certain requirements were absolutely critical
and if any one of these requirements were not addressed in the delivered product, then that
product would be considered unacceptable. Similarly, the 0.5 value corresponded to "accepted
with minor changes." Issues associated with this assignment include the following:

• How is "minor" defined?
• How many minor changes must there be in a document until the number is so great

that the collection of minor changes requires "changes to be negotiated"?
• Why lump all collections of minor changes into a single value (0.5)?
• Why shouldn't a product that requires, say, five minor changes be rated higher than

one requiring, say, ten minor changes?

In dealing with these value assignment issues, we offer the following general guidance:

• At the outset of your measurement activity, you should view the index values as
indicators to spur closer looks at situations. If, for example, you have index values set
to the range zero to one, do not attach significance to differences of a few hundredths
or even a tenth or two. Look at index values of a stream of products and note the ones
that deviate by a few tenths from the others. For example, the user's manual
considered earlier in this chapter had an index value several tenths smaller than the
index values of the other three products considered—0.32 versus 0.72, 0.87, and 0.96.

• Over time, it may make sense to put more tick marks on your value scales as people in
your organization become acclimated to the measurement process. At that stage, it
may make sense to, for example, take the value scale for "fulfills customer needs" and
put intermediate tick marks such as 0.25 and 0.75 (in addition to 0.5). Adding such
tick marks means that now index value differences of, say, 0.1 have significance so
that indicator sensitivity associated with index values has increased. As we stated at
the outset of this chapter, it is meaningless to try to measure lengths down to the
nearest sixteenth of an inch with a ruler that contains only quarter-inch marks.

• The bottom line is to get acclimated to a set of value scales and determine how well
they are helping you answer the questions that you wanted to answer when you set up
the value scales in the first place. If these questions are still the ones you want
answered but the measurements are falling short in helping you answer them, then
refine the value scales or come up with new ones. If these questions have changed,
then decide on a new or modified set of attributes to measure and set up the scales
with a small set of tick marks. Then, again, over time, refine the value scales.

procedures may not be objective, either by design or by the nature of what is being studied. For example, wine-tasting procedures have at least some
degree of subjectivity. What constitutes "good-tasting wine" is, at the most fundamental level, determined by how a wine taster reacts to his/her taste-
bud sensations (and, perhaps, sense of smell). Some objectivity may be introduced into the procedure by having a number of wine tasters participate in
the procedure. The dependence of the wine-tasting results on an individual wine-taster's taste buds is thereby reduced by, say, averaging in some sense
the wine-tasting results on an individual wine-taster's reactions. So, for instance, if ten tasters participated in the evaluation, and nine of them sensed
that the wine was cloyingly sweet, the results might be reported as follows: In taste tests, 90% of the tasters reported that the wine was cloyingly
sweet. [Note: We are here using science in the broad sense of "methodological activity, discipline, or study." This definition of science is the third one
given in Webster's II New College Dictionary (Boston: Houghton Mifflin Company, 1995).]

Successful Software Development, Second Edition

455

In closing this discussion of alternatives to vector lengths for computing indexes, we note that
this discussion is just a glance at a multitude of considerations regarding how to apply OM to
measure multidimensional quantities. To illustrate this point, we list below some
considerations regarding value scale definition that we did not address. You may want to
experiment with some of these considerations (or come up with some others) in setting up a
measurement program for your organization.

• The use of negative numbers on value scales.
• The use of value scales where the minimum value is a desired result and the maximum

value is an undesired result.
• The use of value scales containing irrational numbers, such as pi, as well as rational

numbers. Included in this consideration is setting up value scales consisting at least in
part of continuous values. Such continuous values might, for example, be defined by a
function that is continuous over some interval pertinent to the measurement activity,
such as thecontinuous function y = x2.

One of our objectives in this chapter was to define and illustrate how to apply Object
Measurement to real-world measurement problems in the software systems development
domain. It was not our intent to give a comprehensive treatment of this measurement
technique.

Extending Measurement Formulas The formulas for the product and process integrity
indexes canbe extended, if desired, to arbitrary levels of detail. For example, regarding the
process integrity index, if it is desired to partition activities into subactivities, this extension
can be accomplished as follows:

Equation 6.7-2

where

Nij = number of subactivities making up activity xtij, the jth activity of process component xti

wijk = weighting factor for subactivity xtijk of activity xtij

maximum[xtijk] = maximum value of xtijk, for each k

i is the process component label

Successful Software Development, Second Edition

456

j is the component activity label

k is the subactivity label

The subactivities are measured directly by setting up value scales for each subactivity. Then,
the contribution of each process component xti to the process integrity index is computed from
the xtij using the formula previously given. And, finally, ProcIindex is computed from the xti
using the formula previously given.

Corresponding comments apply to the product integrity index. For example, each product
attribute can be partitioned into subattributes (atij). The subattributes are measured directly by
setting up value scales for each subattribute. Then, the contribution of each product attribute
ati to the product integrity index is computed from the atij using a formula like the one given
for computing xti from xtij. And, finally, PIindex is computed from the ati using the formula
previously given.

One final comment is in order regarding the process integrity index. We suggest, that until
you acquire experience using the formulas given down to the activity level, you restrict your
measurements to this level. Remember, for processes of even moderate complexity, the
number of activities will generally be ten or more (the process considered earlier had sixteen
activities). Thus, unless some activities are heavily weighted, no one activity will make a
dominant contribution to the index. Consequently, if you partition the activities into
subactivities, the contribution of any particular subactivity to ProcIindex will not be dominant
unless it is heavily weighted. Similar comments apply to the use of subattributes to determine
a product integrity index.

We say that a product has integrity if it manifests the attributes ati that we have chosen for it.
If we were not interested in quantifying these attributes, then we would say that a product
lacks integrity if one or more of the chosen attributes is missing. When we quantify these
attributes (as we have done in this chapter), the product integrity index that we calculate from
these quantified attributes is a way of saying how much integrity a product has. Thus, for
example, if we evaluate PIindex on a scale ranging from zero to one and if PIindex = 0.60,
then we say that the product is 60 percent along the way toward manifesting the attributes
chosen for it (or, equivalently, the product is lacking in integrity by 40 percent).

Regarding process integrity, we say that a process, when performed as part of software
product development, has integrity if the components and associated activities that make up
the process are performed as part of product development in accordance with ADPE element
content. By assigning value scales to the activities (and, thus, by implication, to the
components) and measuring the extent to which the ADPE element activities are performed as
part of product development, when we calculate ProcIindex we are making a statement about
the extent to which the ADPE element activities and components are performed as part of
product development. Thus, for example, if ProcIindex is set up to measure the project
planning process component consisting of, say, ten activities as specified in an ADPE
element, and if by measuring these activities while we are producing a project plan it turns out
that ProcIindex = 0.75 (on a scale ranging from zero to one), then we say that the ADPE
process used to produce the plan lacked integrity by 25 percent. By examining the associated
Kiviat diagram or the activity values themselves, we would obtain quantitative insight into the
extent to which each project planning activity was carried out.

Successful Software Development, Second Edition

457

As we discussed, there are various combinations of PIindex and ProcIindex that can arise in
practice. By analyzing these combinations, an organization can get insight into whether (1)
ADPE processes need to be changed because following the processes (i.e., the processes had
high integrity values) leads to products with low integrity values, or (2) the organization is
falling down in performing certain ADPE activities and the resultant products have low
integrity values, or (3) the ADPE processes are okay because they are being followed and
products with high values of integrity are being produced.

Static Viewpoint of Process Measurement Our previous discussion of process measurement
is in terms of process components, component activities, and activity value scales. We
stressed the importance of observing and recording the degree to which component activities
were performed. We showed you how to set up various types of value scales (e.g., binary,
discrete, continuous) and suggested how you might use the observed results to improve
software systems development processes. We chose to introduce our process measurement
concept from this dynamic or performance-based viewpoint. However, we did not want to
leave you with the impression that the performance-based viewpoint is the only way to
implement process measurement.

We believe that there is a static or nonperformance-based viewpoint that deserves your
consideration when setting up a process measurement program. Our car analogy in
Figure 6-42 introduced the idea that performance-based process measurements can indicate
when the automobile's performance may need to be improved.[18] However, there are times
when performance does not reflect the automobile's primary value. For instance, when the
automobile designer sits down to improve the existing car line or to create a new car line, the
value of the automobile can be expressed in static terms. Here, we might stress the importance
of observing and recording the degree to which the automobile and supporting infrastructure
exists. Is the design done? Is the design approved? Is the assembly line in place and ready to
manufacture the automobile? Has documentation been prepared for the automobile dealers
and their service departments? Once the automobiles are shipped to the dealerships, then the
performance-based viewpoint might be more appropriate. After the automobile is ready for
the junk yard, nonperformance-based measurements might be more useful than performance-
based measurements. At this point in the automobile's life, the value might be expressed in
terms of automobile components that are still of value. From the junk-yard owner's viewpoint
the automobile may have valuable parts that can be salvaged (e.g., the new set of tires you just
bought before the car died). From the automobile designer's viewpoint there may be valuable
lessons learned that can be incorporated into the next automobile design.

The point is that there is a temporal dimension that impacts the value of the automobile. As a
result, the automobile's value can be expressed in terms of performance, nonperformance, or
some combination.

Just as the automobile's value can be expressed in different terms, so can a process's value be
expressed in different terms. For example, as an organization is implementing an improved or
new process, the value of the process may be reflected by its design, approval, documentation,
and associated training. The design value scale values may be set up, for instance, as follows:

• 0.0 if the process design is not completed
• 0.5 if the process design is completed, but not approved

18 Remember, the moving automobile represents software development processes at work and the gauges represent measurement of that work.

Successful Software Development, Second Edition

458

• 1.0 if the process design is completed and approved

Such a nonperformance-based value scale reflects the process's early life. As the process is
implemented, then performance-based value scales, as we have previously presented, can be
constructed to reflect whether or not the process is being followed. And as the process
matures, its value scales can change yet again. Regardless of how you choose to set up your
measurement program, we suggest you start simple.

We have completed our discussion of product and process measurement. The next chapter is
concerned with the human issues dealing with an organization undergoing a cultural change.
The chapter presents cultural change issues from the following perspectives: (1) the
organization responsible for developing and promulgating process elements, (2) seller project
participants and project managers, (3) buyer/user project management, (4) buyer/user senior
management, and (5) seller senior management.

Successful Software Development, Second Edition

459

Chapter 7. Cultural Change
Culture itself is neither education nor law-making; it is an atmosphere and a heritage.

—H. L. Mencken, Minority Report, p. 360 (1956). Published by Alfred A. Knopf, a Division of
Random House, Inc.

7.1 Introduction

Recall the following definition of culture introduced in Chapter 1; this definition is drawn
from the field of psychology:

Culture is a pattern of basic assumptions invented, discovered, or developed by a given group
as it learns to cope with its problems of external adaptation and internal integration, that has
worked well enough to be considered valid and therefore is taught to new members as the
correct way to perceive, think, and feel in relation to those problems.[1]

For this chapter, it is not important to settle on a precise definition of culture. This definition
offers a sense of what the term may mean. With this admittedly squashy baseline established,
we have a point of departure for talking about how cultural change is a part of any attempt to
change the way an organization develops software systems. Cultural change takes time and
teamwork.

Redirecting the way that an organization develops software systems is part of a cultural
change process.[2] Getting software systems development processes on paper is a challenge.
Changing the way people approach the software development can prove to be even more
difficult. When starting the journey toward cultural change, it is important to anticipate
difficulties that may be encountered. Understanding the underlying dynamics goes a long way
toward easing the transition.

Change in the basic ways of perceiving, problem solving, and behavior requires adopting a
new frame of reference. New frameworks are frequently viewed with a cautious, hesitant, and
questioning attitude. This behavior is commonly labeled as resistance. At the risk of
oversimplification, this resistance operates on two levels—visible and invisible.[3]

At the visible level, people resist change; at the invisible level people resist loss. At the
visible level, other people can observe the resistance; at the invisible level, other people
cannot observe the losses, doubts, and fears (real or imagined) that reside in each individual
(and within the group). Furthermore, at times, the individual who is resisting may not
recognize the real source of his or her resistance. When this multilevel aspect of resistance is
not recognized, there is a tendency to project negative motives onto those who donot embrace
a new proposal. This misunderstanding can lead to a nonproductive cycle by all parties.

Pushing people to accept change does not work in the long term. Pulling people with a vision
of a better future works more effectively. To reach the stage where people are open to a new,

1 E. H. Schein, "Organizational Culture,"American Psychologist, vol. 45, no. 2 (February 1990), p. 111.
2 The discussion of the cultural change process in this chapter's Introduction section is adapted from a workshop entitled Managing Innovation,
Strategic Performance Solutions Corporation, Silver Spring, MD.Used by permission of Gary Donaldson, President.
3 Resistance operates at many levels. For the purposes of our discussion, we have simplified our treatment of resistance to two levels—visible and
invisible. This simplification is sufficient for the engineering issues addressed in this book.

Successful Software Development, Second Edition

460

shared vision requires working through the more basic emotional issues of fear, uncertainty,
and loss. This "working through" requires patience, support, and understanding, not blame.
Endorsing a proposal for change will not occur until there is a feeling by key stakeholders that
individual needs and concerns are understood and will be addressed. Figure 7-1 lists some
losses, doubts, or fears that people may struggle with when they are faced with change.

Figure 7-1 Losses, doubts, and fears contribute to a person's unwillingness to make a
transition (change) to a new way of doing things. Often people view transition as a painful
experience.

People commit to change for their own reasons, not for someone else's. No amount of rational
discussion builds commitment. Change is not embraced without the perception of personal
gain and the opportunity to participate in shaping the outcome. When establishing (or fine-
tuning) your organization's process for evolving your software systems development
environment, it is important to allow individuals from all levels of the organization to have a
say in the development practices.

People may view the change (transition) as a losing proposition. By focusing on a win-win
situation you can go a long way toward easing the transition to a new way of doing business.
To design a win-win strategy requires both understanding and addressing the underlying

Successful Software Development, Second Edition

461

concerns most people have regarding any new proposal. The underlying concerns range from
trying to understand why the change is necessary through questions related to gains and losses
that will be experienced. It is human nature to anticipate the worst before giving credence to
the new.

The losses (real or imagined) listed in Figure 7-1 can be found at all levels of an organization.
As implied in the figure, the organization may want to cultivate its ill-defined development
practices into well-defined development practices, but people want to understand how their
making this change (transition) affects them. People basically want to know the answers to the
following questions:

• What will change, remain the same, or be deleted?
• How pervasive and irreversible will the change be?
• What will be the personal impact?
• What will be lost?
• What will be gained?
• How fast will it happen?
• What control, support, and guarantees will everyone be given?

Honest answers to these questions will promote trust. False or misleading information used to
coat over unpleasant feelings will sabotage commitment. Everyone's main concern is that
individual circumstances and needs will be fairly addressed, even if it means hearing difficult
news and not getting what one wants.

As a change agent you might ask, How can a perceived loss be reframed as a net gain? To
achieve this objective partially, a change agent needs to listen actively to what people say,
explicitly and implicitly. For example, a person may be arguing a technical point about a
software system design issue, yet may really be concerned about the impact of the proposed
changes on that person's skill set. A change agent draws out the underlying concern, restates
the concern as a question that needs to be addressed, and facilitates an understanding of how
the issue will be addressed to the benefit of the person. It is important to accomplish this
redirection without doing all the work for the person (i.e., the person needs to contribute to the
discussion). Change agents often try to convince someone that the proposed change is the
right thing to do—trying to convince someone can be a frustrating experience. A more
effective and powerful approach is for the change agent to help the other person develop
ownership of the situation. Facilitating ownership is accomplished, in part, by helping the
other people to discover their own truths.

Consider the following brief story about a manager's resistance (visible and invisible) to
adopting a new way of doing business and a suggested way to create a win-win situation:

Successful Software Development, Second Edition

462

A manager, who is a valuable contributor to the organization's success, is asked to
help implement a change in the way software systems are being developed. The
change is not a radical departure from the existing practice, but the change is not the
manager's idea. The manager believes that adopting the new business practices will
result in a loss of power or control (in addition to other losses, doubts, and fears
listed in Figure 7-1).

As a result of these beliefs (real or imagined), the manager resists adopting the new
business practices. The manager communicates this resistance, directly and
indirectly, to the manager's staff. The end result is that the manager's part of the
organization only partially implements the change (i.e., the new business practices).
People view the manager's actions as "resistance to the change" when, in fact, the
manager is "resisting the loss of power or control." That is, the manager's invisible
resistance to loss translates into a visible resistance to new business practices. The
visible resistance is what people see (no pun intended).

Consequently, some people implement the change, and some do not. This manager's
visible resistance is a subtle and frequently unconscious form of side-stepping
change. This resistance undercuts the organization's goal to implement a change that
is intended to improve the way the organization does business.

When a change agent asks the manager why there is so much resistance, the
manager avoids the question and responds by proudly talking about the success the
manager has achieved by applying cutting-edge technologies. The manager makes
several references to the successful contributions of the next lower layer of technical
management, all of whom are 15 to 20 years younger than the manager. The change
agent actively listens to the manager and concludes that the manager has lots of
pride and has a self-image as a high-tech leader.

A potential way to overcome some of the manager's resistance is to sit down and
talk to the manager about how the manager views the change. It is important to get
the manager to talk about the change and how the manager perceives that the change
will affect day-to-day activities. The discussion should include details involving the
manager's role as a result of the change. The change agent should ask the manager
for suggestions on how to implement the new development process. One area that
can be explored is whether the manager would be willing to mentor the
organization's younger staff on the new practices. The change agent can ask the
manager for support to implement the changes. Such an interaction may be
perceived as a win-win for the manager and the change agent.

Of course, the entire story is more complicated, but the point is that change is
emotional. People do not always directly communicate what is on their minds, nor
are they self aware of their own motivations. These facts need to be dealt with as
part of the cultural change journey.

People are more likely to contribute when they feel that they have a hand in creating the new
order. Most people want to contribute to the well-being of the organization. Sometimes they
need a helping hand to see how their contributions will make a difference. Pride of authorship
drives motivation and reduces anxiety as the pieces of the puzzle come together. Feeling a
loss of control over one's destiny is crippling. Taking time to have the staff contribute to the

Successful Software Development, Second Edition

463

design and implementation of new initiatives serves as a powerful mechanism to overcome
resistance.

Stakeholders are more at ease in accepting new ways of working when there is (1) an
understanding regarding the purpose of the change, (2) a picture of the alternative way of
operating, (3) a work plan to reach the goal, and (4) a designated part each person can play in
both the change process and the new way of operating. Stakeholders need a clear picture and
shared vision of how the future ways of operating work together. A vision pulls a stakeholder
forward. Painting a shared vision reduces anxiety, fear, and resistance when facilitating
change.

Stakeholders are more likely to support major change when they have a clear sense of why the
change is being proposed. They need to understand the driving forces and purpose. There
needs to be a connection between the new way of doing business and a compelling argument
for the need for change. Most people are not in touch with the urgency to change unless a
crisis situation exists. Proactive change is typically more difficult to sell because many
stakeholders live in the present and may not see any immediate need. An effective strategy is
to involve as many key people in gathering and analyzing data that suggest change is
required. Sharing findings with peers enhances the probability of success more than having
management dictate actions.

It is important to recognize that not all change is the same. There are two basic levels of
change: continuous and discontinuous. Continuous change represents a fine-tuning and/or
augmentation of existing traditions (e.g., introduction of peer reviews into an existing
software systems development process). Discontinuous change requires a break from past
traditions (e.g., introduction of a software systems development process where no such
process existed before). Moving from a continuous state to a discontinuous state requires a
repositioning of thinking regarding values, assumptions, and behaviors. Many people confuse
continuous change with discontinuous change. To achieve cultural transformation requires a
full commitment to discontinuous change. The level of change that is going to take place
affects the strategies for implementing the change.

Continuous change gives power and dominance to operational management strategies, where
the focus is on "here and now" practical, production needs. Discontinuous change places more
emphasis on strategic leadership and transitional management. The focus is on the future.
More emphasis is placed on these two opposing perspectives. "Here and now" has a way of
commanding attention because it is in the moment, it is concrete and tangible, whereas a
vision of the future state is less well defined.

If there is not unequivocal commitment and support from top management, the "here and
now" forces will win, and the best that can be achieved is modification to existing beliefs
without fundamental change. Balancing the demands of these competing forces is the role of
leadership and management. Successful initiatives will fail if the frontline supervisors are not
in line with senior management. It is all too common that change initiatives become frozen
between the upper and middle echelons of the organization.

The Software Engineering Institute (SEI) and other organizations committed to fostering
software process improvement recognize that the capability to engineer software systems
successfully involves much more than talented people and good technology. An important
ingredient is a willingness of the people to change the way that they do things for the greater

Successful Software Development, Second Edition

464

good of the organization. One way to effect this change is through what the SEI refers to as
mastering team-based practices.[4] If people are to build software systems by applying their
engineering skills in a team environment, they must also know how to get along with one
another. Establishing this interpersonal harmony is a key ingredient to leveraging the
application of engineering skills. The individual who focuses on self and one's own needs,
giving little attention to the needs of others on the project team, can more than cancel out the
value of the application of that person's engineering skills. We believe this statement to be
true—even if that person has proven unparalleled skills in one or more engineering areas such
as analysis, design, coding, product assurance, and training. We illustrate this key point with
the brief story that follows.

Jan Talent was an experienced, bright, and talented technical manager who
understood the value of disciplined software systems development. But Jan had
difficulty putting group needs above her own. More specifically, Jan balked at
accepting alternative engineering ways that she had not adopted herself.

Jan managed a number of software project managers, and she reported to a program
manager who managed several managers like Jan. The program manager headed an
organization that consisted of these first- and second-line managers, a product
assurance organization, and a process engineering group (PEG) responsible for
developing ADPE elements[5] in concert with other managers. The PEG was headed
by a manager who reported to the program manager. When the PEG promulgated
ADPE elements, Jan chose to ignore those processes in the elements that did not
conform to her way of doing things. She specifically directed her project managers
to do things her way. For example, if the PEG, in concert with input from other
members of the organization, established as policy that product assurance was to be
a standing member of a project's CCB, Jan chose to direct her managers to bar
product assurance from participating in CCB meetings. The end result of Jan's
recalcitrance was that it contributed to the fracture of the overall organization.

When the other managers at Jan's level saw what Jan was doing, some of them also
chose to put group needs on the back burner and ignored to varying degrees the way
of doing business as defined in the ADPE elements. They chose this course of
action, in part, because their customers were used to doing business in a less
structured way than that defined in the ADPE elements. These managers, along with
Jan, would use this argument with the program manager to gain relief from doing
business the ADPE way. This end-run approach naturally created tensions among
the PEG manager and Jan and some of the other managers at Jan's level. These
tensions bred mutual disrespect among these managers. Furthermore, this disrespect
reached all the way down to the working-level troops. Rather than sign up to the
ADPE way of doing business, these troops adopted the self-preservation approach
and signed up to the business way promulgated to them by Jan and their project
managers. The end result of this state of affairs was that instituting the ADPE
culture was severely hampered. More significantly from a business standpoint, this
situation did not go unnoticed by the customer.

4 B. Curtis, W. Hefley, and S. Miller, "People Capability Maturity ModelSM," Software Engineering Institute and Carnegie Mellon University
Technical Report CMU/SEI-95-MM-02 (September 1995), p. L4–31.
5 Remember, the SEE consists of two complementary components—an application development process environment (ADPE) and an application
development technology environment (ADTE).

Successful Software Development, Second Edition

465

As illustrated by the preceding two short stories, the people part of cultural change is
important. The processes that people use to develop software systems are also important. The
level of change being implemented is important. Figure 7-2 illustrates these points by
depicting a cultural evolution process that accounts for people, processes, and the level of
change being implemented.

Figure 7-2 Changing a software systems development environment starts with establishing an
understanding of the organization's overall existing culture.

There is no one way to evolve an organization's software systems development culture, but
we believe that you can use the depicted process to analyze, evolve, implement, and refine
(i.e., continuous change) or transform (i.e., discontinuous change) your organization's
software development culture. This ongoing process enables an organization to implement
either continuous and discontinuous change or some combination.

Figure 7-2 has four rectangles that represent the following four responsible agents and their
associated process phases:

• Seller Program Manager.

Analyzes Existing Culture

• Seller Management.

Evolves a Vision of the Culture

Successful Software Development, Second Edition

466

• Seller Process Engineering Group (PEG) Manager.

Plans, Evolves, and Improves System Engineering Environment (SEE)

• Seller Management and Staff.

Evolve Toward Vision of the Culture

These four phases are linked together by the major communication paths and associated
information. As shown in Figure 7-2, along each communication path information is
transferred from one process phase to another. The information transferred consists of the
following items:

• Requirements for the Software Systems Development Culture
• Vision of the Culture
• Approved SEE Elements
• Suggested ADPE Improvements

As with most processes, feedback is present. We represent feedback with the set of
continuous arrows in the center of the figure. Each of the four phases is discussed in the
following paragraphs.

Seller Program Manager—Analyzes Existing Culture

Ideally, the cultural evolution process in Figure 7-2 starts when the Seller Program Manager
decides it is time for the software organization to analyze the existing software systems
development culture. Part of this self-examination involves establishing how the software
systems development culture fits into its higher-level organizational culture. There are many
ways to describe the different types of higher-level organizational cultures. We have chosen
to summarize culture types in terms of the following eleven characteristics: time frame, focus,
planning, change mode, management, structure, perspective, motivation, development,
communication, and leadership.[6] Figure 7-3 lists the following four higher-level organization
cultures in terms of these eleven characteristics:

6 L. Nelson, and F. Burns, "High performance programming: A framework for transforming organizations," Transforming Work (Alexandria, VA:
Miles River Press, 1984).

Successful Software Development, Second Edition

467

Figure 7-3 This figure summarizes four types of organizational cultures. It is important for you
to understand what your culture is and what you want your culture to be before you begin
planning a transformation.

• Reactive Culture.

A culture in which people worry about themselves and justify their existence. The
organization is fragmented, diffused, and bureaucratic. Management is constantly
trying to fix blame for why something did not work out right. Management spends a
lot of time defending the status quo.

• Responsive Culture.

A culture in which people build teams. The organization solves problems and sets
goals. Management and people pay attention to trends in the industry and try to adjust
organizational activities accordingly. Management helps to coordinate activities and
resources.

• Proactive Culture.

A culture in which people develop the organization. The organization plans for the
long term and is results-oriented. Management helps to align the organization's
resources with its mission and objectives.

• High Performance Culture.

A culture in which people and performance outcomes are in rhythm with the
organization's mission. The organization runs smoothly. The organization constantly
strives to achieve excellence. Management and people try to anticipate what industry
trends will be. Management navigates the organization through its evolution.

To exemplify the four culture types in Figure 7-3, we offer the following four organizational
behaviors associated with the "Change Mode" characteristic:

Successful Software Development, Second Edition

468

• Reactive Culture—Punitive Behavior.

Change is punished, both on the individual and on the project levels.

• Responsive Culture—Adaptive Behavior.

The organization is constantly trying to keep up-to-date in its business practices.
People are trained in the classroom and at seminars. The organization funds internal
support groups that discuss ways to improve business practices.

• Proactive Culture—Planned Behavior.

The organization plans for the future and tries not to react to the present. The proactive
culture takes the responsive culture another step up the maturity ladder and tries to
anticipate what the future may hold and then devises appropriate strategies.

• High Performance Culture—Programmed Behavior.

The organization is constantly learning from what it is doing and feeding this
knowledge back into what it does so that it can do better.

Now, consider the following four organizational behaviors associated with the "Leadership"
characteristic:

• Reactive Culture—Enforcing Behavior.

The individual will perform the business practices the organization's way—the
company's way or the highway.

• Responsive Culture—Coaching Behavior.

Management coaches/mentors individuals or teams. Coaches/mentors help to guide
development of skills and improvement in performance.

• Proactive Culture—Purposing Behavior.

The organization defines its purpose for existing and the value-added
services/products it provides to its customer community.

• High Performance Culture—Empowering Behavior.

The organization has a self-directed workforce whose members are coowners in the
organization's mission.

With an understanding of the organization's overall culture, the software organization can
better develop a statement of the requirements for the software systems development culture.
If the reality is that the organization's overall culture is predominantly reactive, then it may be
unrealistic for the software organization to specify culture requirements that reflect the
characteristics of a high performance culture to be implemented in a year's time frame.

Successful Software Development, Second Edition

469

Seller Management—Evolves a Vision of the Culture

Given that a set of requirements for the software systems development culture is established
and approved by the Seller Program Manager, then the Seller Management, in concert with
key stakeholders, evolves a vision of the culture. This vision is expressed in terms of
engineering process features that include the following: planning, risk assessment, risk
reduction, documentation, accountability, customer/seller interaction, and business method.
For example, as shown in Figure 7-4, the vision can be expressed by the organization's
existing engineering process features and the organization's envisioned process features.

Figure 7-4 The vision of the software systems development culture helps to set the
organization's strategic focus for process improvement.

To change existing engineering process features, the organization needs to (1) articulate what
features are important to the organization, (2) acknowledge the current status of the features,
(3) define what the future status of the features should be, and (4) make a commitment to
change the engineering process features. Commitment to change is critical for successful
implementation of the vision of the culture. Without organizational commitment—top to
bottom, bottom to top, or some combination— it is difficult, if not impossible, to implement
the vision. In general, the less the commitment, the longer the time frame for implementing
the vision.

As shown in Figure 7-4, the SEE is where the organization's business methods are housed.
The organization's vision of its software development environment can be represented by the
SEE. The SEE is an environment where coordinated and consistent development of software
systems can be accomplished. The Seller PEG Manager is the person who is responsible for
the evolution of the SEE.

Seller Process Engineering Group (PEG) Manager—Plans, Evolves, and
Improves Systems Engineering Environment (SEE)

Given that an organization commits to implementing a vision of its engineering culture, then
the Seller PEG Manager sets out to plan, evolve, and improve the SEE. This phase will be
discussed in detail, but for now, it is important to understand that people at all levels in the

Successful Software Development, Second Edition

470

organization need to participate in evolving the SEE. With this multilevel participation,
approved ADPE elements (i.e., policies, guidelines, procedures, and standards) can be
promulgated for use. In some situations it is also desirable to have the customer participate in
evolving the ADPE elements.

Seller Management and Staff—Evolve Toward Vision of the Culture

During the fourth cultural evolution process phase, the seller management and staff use the
approved ADPE elements, evolve toward the vision of the culture, and provide suggested
ADPE improvements to the Seller Program Manager. Feedback to the top of the organization
from the bottom and middle of the organization helps to demonstrate clearly to senior
management that people in the organization are committed to evolving the culture.

We want to make one last point before we present our plan for the rest of this chapter. Basic
strategies for change include the following:

• Provide information and education.

This strategy enables you to let the people know how change is going to affect them.
People need to learn the skills and acquire the knowledge necessary to perform their
roles and responsibilities in the new culture.

• Exercise power.

This strategy is both positive and negative. Positive control includes the use of
resources to implement change. For example, senior management can commit money
for training. Negative control, however, pushes people and demands that people
behave in a certain manner. Although negative control gets people's attention for the
short term, it can lead to resistance and lack of commitment over time.

• Effect organizational norms and values.

This strategy is aimed at impacting what people believe is the way to do everyday
business. For example, an organization's normative behavior might be reflected by
people putting forth minimum effort to get a job done. As a result, the organization
may decide to change this normative behavior. The organization wants everyone to go
the extra mile to get the job done. Organizational norms and values are what holds an
organization together. Effecting change in norms and values provides a lasting
change—a new way of doing business that is accepted as the way to do things.

These three strategies for change can be used like spices—individually, or be blended
together. We offer the following short examples:

• Education can reduce anxiety about a person's role in the new way of business. "The
PEG has established a training program that includes workshops and seminars to learn
the new ways of doing business. In addition, support groups have been established to
provide everyone with a forum for discussing lessons learned while implementing the
new ways of doing business."

Successful Software Development, Second Edition

471

• A positive use of power by a manager can affect a person's schedule. "There will be a
meeting tomorrow to discuss our new organizational software systems development
process."

• Power blended with information and education can help to ease a person's fear about
change. "Sally will present a one-hour briefing to explain your role in our new
process."

• A lasting organizational change is achieved, in part, through shared ownership of the
new ways of doing business. "With the use of input from the staff, the new
organizational software systems development process empowers the development
teams to apply prescriptively the development process to their particular projects."

People want to understand the purpose of the cultural change (Why?), the overall picture
(What is the future going to look like?), the plan to effect the change (How are we going to
get there?), and the part each person is to play in the change (What is my role?). When
explaining the cultural change, you need to account for different personalities. You have to
adapt your discussions appropriately and blend your strategies carefully.

With respect to the rest of the chapter, our approach is to examine cultural change issues
associated with ADPE implementation from a number of organizational perspectives
(including those of people like Jan Talent). The plan for this chapter is the following:

• In Section 7.2—Cultural Change Key Ideas, we present the key ideas that you can
expect to extract from this chapter.

• In Section 7.3—Process Engineering Group (PEG), we address ADPE
implementation from the perspective of the organization responsible for writing the
ADPE elements and seeing to it that they are implemented and continually improved.
Because of the PEG's central role in effecting cultural change within both the seller
and the customer organizations, this section is the most extensive in this chapter.

• In Section 7.4—Seller Project Participants and Project Managers, we address the
challenges to ADPE implementation from the perspective of the seller project-level
individuals who will have to adapt to the policies, guidelines, procedures, and
standards that will govern their work.

• In Section 7.5—Buyer/User Project Management, we discuss the challenges to
ADPE implementation from the perspective of those individuals who give technical
direction to seller project managers for accomplishing project work.

• In Section 7.6—Buyer/User Senior Management, we address the impact on
buyer/user senior management that ADPE implementation brings about. Here,
buyer/user senior management encompasses (1) the customer management that is
paying the seller to set up an ADPE, (2) the customer management that is providing
technical direction to the PEG manager, and (3) levels of customer management that
sit over (1) and (2).

• In Section 7.7—Seller Senior Management, we discuss the key role that seller senior
management plays in effecting software systems development cultural change through
ADPE implementation.

• In Section 7.8—Cultural Change Summary, we summarize the key points
developed in the chapter. We include a table of implementation guidance associated
with each of the perspectives considered.

Successful Software Development, Second Edition

472

7.2 Cultural Change Key Ideas

Figure 7-5 lists the key ideas that you can expect to extract from this chapter. We briefly
explain these key ideas. Their full intent will become apparent as you go through this chapter.

Figure 7-5 ADPE implementation strikes at the core of organizational and personal practice.
Altering these practices is thus tantamount to effecting cultural change at the organizational
and personal level. Here are key cultural change concepts explained in this chapter. These key
ideas are your guide to bringing about cultural change within your organization through ADPE
implementation.

1. ADPE implementation is cultural change

To view implementation otherwise is a recipe for failure. Sellers must take steps to
ensure that seller management and staff are on board with the ADPE way of doing
business. Senior seller management must recognize that adopting ADPE practices
involves growing pains. Similarly, buyer/user senior management must recognize that
changing the way its organization does business with a seller is not going to happen
overnight—and cultural change can be painful.

2. ADPE implementation requires management buy-in at all levels in an organization

In particular, managers of the Jan Talents of the world need to impress upon them that
ADPE implementation is a requirement—not an option.

3. If you are a seller, seriously consider putting into each manager's salary review the
extent to which the manager has bought into ADPE implementation

At review time, each manager should be prepared to present to his or her boss
objective evidence of ADPE compliance (e.g., a folder of CCB minutes). It takes more
than asserting that the customer says everything is fine.

Successful Software Development, Second Edition

473

4. If you are a buyer/user, you should support training of your managers in the "new"
way of business that ADPE implementation defines.

At a minimum, this training should consist of attendance at seller briefings of ADPE
element content. Buyer/user managers should attend such briefings.

5. ADPE practices must be sufficiently specific so that they convey something that
actually can be applied to develop software products, but they cannot be so specific
that they tie the hands of various people within an organization and actually impede
product development

ADPE elements should not be written in a cookie-cutter manner.

6. To overcome resistance, build upon those in the organization who embrace
implementing new ways of doing business.

Have these people pilot proposed ideas for ADPE elements. Nothing succeeds like
success. Trial-use ideas that gain the acceptance of working-level troops will gravitate
quickly throughout an organization, thus hastening cultural change. For example, if
some in your organization have experience with CCBs, invite others in your
organization to attend their CCB meetings to experience firsthand how the CCB works
in the real world.

7. Resistance to cultural change operates on multiple levels, two of which are visible
and invisible

At the visible level, people resist change; at the invisible level, people resist loss. At
the visible level, other people can observe the resistance; at the invisible level, other
people cannot observe the losses, doubts, and fears (real or imagined) that reside in
each individual.

8. Change agents need to listen actively to what people say

A change agent can become frustrated when trying to convince someone that the "new
way" of doing things is the "right" thing to do.

7.3 Process Engineering Group (PEG)

This section addresses cultural change in terms of ADPE implementation from the PEG
perspective. The PEG is responsible for establishing, maintaining, and updating the SEE. In
this chapter, we focus on the PEG's responsibilities in the process domain—i.e., its ADPE
responsibilities. We note that in the software industry, a typical label given to the organization
responsible for software process matters is the "software engineering process group (SEPG)."
In this section, we address a series of questions that include the following:

• What are some qualifications for people who work in the PEG?
• How do you establish PEG credibility?
• What type of comments and feedback on specific ADPE elements should the PEG

expect?
• How should the PEG be incorporated into an organization?

Successful Software Development, Second Edition

474

• What are some of the impediments to successful ADPE implementation?
• What can you do to set up a flexible ADPE?
• How do you fund a PEG?
• What can be done to get the customer to support the seller's ADPE?
• How can the PEG address seller and customer cultural-change challenges?
• What are some of the individual responsibilities for implementing an ADPE?
• What is "prescriptive application," and how does it factor into ADPE elements?
• How does the size of an organization affect ADPE implementation?
• How long should the PEG wait before updating an ADPE element?
• How specific should ADPE elements be—general guidance or step-by-step

procedures?

Each of these questions and others are discussed in the following paragraphs. Some of these
questions are discussed in more detail in Chapter 8. It is important to note that there is no right
set of answers. Our intention is to sensitize you to potential challenges for your consideration
as you take your cultural change journey.

ADPE development and implementation are greatly facilitated if there is a fulltime PEG.
Even then, as we subsequently discuss, making an ADPE happen poses a stiff challenge. But,
if you choose to buy into the concepts heretofore examined, we strongly recommend that you
establish a PEG as a standing organizational element. Sellers should encourage buyers to pay
for such an organization. Otherwise, sellers should bite the bullet and fund such an
organization.

Staffing a PEG can be a challenge. In any organization, good people are at a premium—and
your PEG must be staffed with good people. The following are some general qualifications
for good PEG people:

• Fifteen or more years of experience in the software industry, with some personal
experience in each of the disciplines of management, development, and product
assurance. Particularly important is experience working with customers to help define
software requirements.

• Experience defining software systems development processes.
• Experience as a software systems development customer. This experience can include

interfacing with vendors of off-the shelf software products trying to work out
problems with the products.

• Software engineering teaching experience (including publication of papers and books),
preferably at professional conferences as opposed to the classroom.

Regarding the teaching experience, it is interesting to note that the "credentials" of
publications can work against a PEG member if not handled carefully. A PEG staffed with
full-time people can be perceived as an ivory tower organization that has no sense of what it
takes to get the job done. If PEG members have written textbooks, they run the risk of having
their ADPE work being labeled "academic," with little or no connection to the real world of
doing software systems development. Once this label is affixed, the people working on
projects tend to ignore the ADPE work turned out by such individuals. One way to avoid this
scenario is for PEG staff to work closely with project teams to show them—on the job—how
the guidance in ADPE elements can play itself out in the real world—to the benefit of all
involved. For example, we believe that a key element of the software systems development
process is independent product assurance review. A PEG staff member should review a

Successful Software Development, Second Edition

475

document to show others the way that it is done, and the value it adds to project work.
Nothing can raise the credibility of the PEG staff in the eyes of others more than
demonstrating the process on real work.

Another comment is in order regarding the software engineering teaching experience. People,
particularly project managers, who do not want to participate in the ADPE way may use the
PEG textbook and publication credential for disinformation purposes. That is, such managers
will convey to their staffs that the ADPE way is academic because it comes from a textbook.
They will then assert that the ADPE way has little or no applicability to their work. If senior
management directs subordinate management and staff to follow the ADPE way, this
disinformation attack can be contained if not thwarted. This senior management direction can
take many forms. For example, a senior manager can simply deny a subordinate manager's
requests for going around the ADPE way. Or, a senior manager can tie a subordinate
manager's salary review to ADPE compliance. Of course, if a senior manager gets inundated
with requests for relief from the ADPE way from a majority of subordinate managers, then it
might be that the ADPE is out of sync with business reality. However, sometimes there is a
fine line between organizational insurrection and simple resistance to cultural change. As we
discuss in a subsequent section, it is part of the job of seller senior management to sort out
where the organization is on this resistance spectrum.

One way to establish PEG credibility in the eyes of others that we have found practical is to
have at least one PEG member also concurrently serve as a technical manager. Such an
individual can serve, say, half time on the PEG staff and half time as a front-line technical
manager responsible for one or more software systems development projects. This
arrangement provides a "down-in-the-trenches" feedback mechanism that can give the PEG
good insight into what makes sense to institute and what will not work. Furthermore, this
arrangement can help deflect criticism that the PEG resides in an ivory tower and has no
firsthand feel for what is involved with getting the job done. This arrangement can be
particularly effective if the technical manager supervises project managers. In this
circumstance, the technical manager can get good insight into which ADPE practices make
sense to standardize by observing actual results on multiple projects. This circumstance also
offers the PEG the opportunity to enrich ADPE element content by offering examples of
different ways that certain principles laid out in ADPE elements can be implemented. For
instance, regarding an ADPE element defining CCB practices, a technical manager of project
managers has an opportunity to see different ways in which CCB meeting information
requirements are satisfied in meeting minutes. One project may choose to record verbatim
CCB discussions and associated decisions, while another project may simply choose to
condense such information into a sentence or two per discussion/decision. This spectrum of
practice will help the PEG refine the guidance in a CCB ADPE element regarding what makes
sense to record at a CCB meeting.

PEG credibility is absolutely essential if that organization is to be successful in fulfilling its
primary mission—transitioning the software systems development process from ill-defined to
well-defined development practices via ADPE implementation. Why? Boiled down to its
essence, the ADPE is a prescription for acceptable engineering social behavior. As Figure 7-6
implies, the practices set forth in the ADPE define the "right engineering thing to do." These
practices establish norms of software systems development behavior throughout an
organization that help the system developer and the customer interact harmoniously. Over
time, these norms become institutionalized, thereby precipitating software systems
development cultural change within both the seller and the customer organizations. In the

Successful Software Development, Second Edition

476

absence of such norms, software systems development within an organization will invariably
degenerate into process anarchy—with little likelihood of consistent, successful process
repeatability.

Figure 7-6 Making successful software systems development happen involves cultural change
that, in part, is tied to ADPE implementation. The ADPE can be viewed as a code of software
systems development practices defining the "right engineering thing to do."

However, it is basic human nature that people resist doing things in other people's ways. One
reason for this resistance is that breaking habits (good, bad, or otherwise) is generally painful.
A corollary to this fact of life is that resistance tends to magnify the more experienced the
individual is. Thus, for example, as shown in Figure 7-7, people such as Sam, Pam, and Ham
within a seller organization may have become accustomed to doing things their own way.
Their experience has taught them what is needed to get the job done. They are naturally
reluctant to cast aside what has worked for them in favor of some other process simply
because it is for the greater organizational good. Thus, a critical element of PEG practice is to
ensure that project staff is given an opportunity at least to comment on proposed ADPE
elements as they are being developed.

Successful Software Development, Second Edition

477

Figure 7-7 Individuals within the seller organization (e. g., Sam, Pam, and Ham) should be given
an opportunity to contribute to the practices defined in the ADPE.

Furthermore, the PEG must make it evident to project staff that all comments are indeed
considered during element development or updating. The PEG must also make it evident that
not everybody's comments can be incorporated. The larger the organization, the more diverse
the background of its members. This diversity will, in general, give rise to a diverse set of
comments and attitudes that the PEG will have to struggle to accommodate.[7]

To provide insight into the challenge facing the PEG regarding its response to comments on
ADPE elements, it is useful to illustrate the types of diversity that can arise from the

7 To offer you ideas for managing this struggle, we present a figure later in this chapter showing the process for ADPE element development (i.e.,
Figure 7-10). We also provide an annotated outline for an ADPE element (i.e., Figure 7-12) whose purpose is to detail the process of creating,
coordinating, promulgating, and updating ADPE elements.

Successful Software Development, Second Edition

478

community that a PEG serves. The following examples relate to the ADPE elements
discussed in previous chapters:

• Regarding an ADPE element governing project planning (Chapter 2), we suggested
that the element should use risk assessment as the basis for planning allocation of
resources to the management, development, and product assurance disciplines. With
respect to resource allocation strategies, comments can range from "show me where in
the industry it has been established that 20 percent of project resources should be
allocated to product assurance for a high-risk project" to "your product assurance
resource percentages are too conservative for all risk categories."

• Regarding an ADPE element governing the software system development process
(Chapter 3), we suggested that the process should identify the key activities involved
with developing and delivering a product to the customer (e.g., peer review, technical
editing, product assurance review). With respect to these key activities, comments can
range from "tell me the order that I have to follow in performing these activities" to
"give me the freedom to pick which of these activities I need to apply to each of my
products."

• Regarding an ADPE element governing CCB practice (Chapter 4), we suggested that
the element should offer guidance regarding CCB minutes. With respect to this
practice area, comments can range from "just tell me that I need to take minutes" to
"give me a detailed CCB minutes outline."

• Regarding an ADPE element governing independent product assurance (Chapter 5),
we suggested that the element should offer guidance regarding product assurance
participation in CCB meetings. With respect to this practice, comments can range
from "it is a waste of time for product assurance to participate in CCB meetings" to "I
want product assurance to take the minutes at every CCB meeting."

The following two final comments are in order regarding the ADPE implementation
suggested in Figure 7-7:

• "Organizational Software Systems Development Process" could apply to any level
within an enterprise. In general, an enterprise consists of an organizational hierarchy.
At each level in the hierarchy, there may be certain policies, directives, and other
enterprise legislative publications that define acceptable enterprise practice. For
example, an enterprise devoted to software systems development may have an
enterprisewide set of practices, and all subordinate units have to tailor the
enterprisewide practices to their specific projects. However, there may be instances in
which a customer does not want the enterprisewide practices implemented for their
particular project(s). In this case, the seller may have to create and implement another
set of practices. As can be seen, one PEG challenge is to achieve a proper balance
between (1) what may already exist that is applicable to the PEG's home organization
and (2) what may need to be newly developed (and that may need to depart from what
already exists).

• "Sam's or Pam's or Ham's Process" could apply to the entire software systems
development process (as described in Chapter 3) or to any element of that process
(e.g., CCB operation as described in Chapter 4). The point here is that process anarchy
can manifest itself across a broad range. A constant PEG challenge is to strike a
balance between (1) giving Sam/Pam/Ham leeway in doing their jobs and (2) setting
up an organizationwide consistent way of doing business. That is, the "organization's
process" should provide a "consistent" approach that allows "diverse" implementations

Successful Software Development, Second Edition

479

based on specific project characteristics. However, the process should prescribe a
"minimum" set of required activities.

How should the PEG be incorporated into an organization?[8] It is not possible here to go into
all the permutations for plugging a PEG into an organization. Figure 7-8 shows some of these
permutations or alternative organizational arrangements. Using Figure 7-8, we offer the
following general seller organizational considerations:

Figure 7-8 This figure presents several different organizational arrangements involving the
process engineering group (PEG). Your organization may fit into one of these arrangements or
some combination of them. Some ADPE cultural change issues are independent of the
organizational arrangement—and some are not.

8 This issue is discussed in more detail in Chapter 8 from the perspective of who should develop the ADPE.

Successful Software Development, Second Edition

480

• If your enterprise has a major program that will run for at least several years, you may
wish to establish a PEG within the program organization. The first permutation in the
figure illustrates this organizational setup. The setup shown is for a program headed
by a program manager, with several project group managers (two are shown), who are
responsible for managing two or more project managers. Each project manager is
responsible for managing one or more software systems development projects within
the program. A large project may have a project manager dedicated full time; several
small projects may be managed by a single project manager. The PEG is positioned at
the same level within the organization as the project group managers and a product
assurance manager, who provides independent product assurance support to each
project. If ADPE implementation is to take hold, the PEG should have the same
organizational clout as the project group managers and the product assurance manager.
As we previously emphasized, the PEG, through the ADPE, establishes the ground
rules by which the managers and staff of the program are to operate. If it is
organizationally subordinate to some of these managers, then PEG products (such as
ADPE elements) will simply be ignored when managers higher in the organization
feel more comfortable with their former way of doing business—particularly if their
customers are pressuring them to revert to a former way of doing business.

We stress that, even if the PEG stands at the same level in the organization as other
managers who report directly to the program manager, successful ADPE
implementation is far from a foregone conclusion. If the program manager does not
fully support the ADPE implementation role of the PEG, the first organizational setup
shown in the figure can produce divisive infighting between the project group
managers and the PEG. For example, if project group managers perceive that they can
simply go around processes detailed in ADPE elements by going to the program
manager to ask for relief, organizational practice will degenerate into disparate
software development processes—namely, a melange of Sam's, Pam's, and Ham's
processes.

One way to avoid such an impediment to successful ADPE implementation is to put
into each manager's salary review the extent to which that manager has bought into
ADPE implementation.[9] This approach is itself not without peril, however, for reasons
such as the following:

o The program manager has to set the example by fully supporting ADPE
implementation. Simply stated, the program manager must "walk the talk." If
ADPE element X says that the program manager is responsible for A, B, C,
etc., then the program manager should manifestly carry out those
responsibilities. Sometimes, dogmatic adherence to business rules can work
against an organization. A program manager sometimes can get caught
between a rock and a hard place in trying to set the example for subordinates
(particularly if his or her salary reviews depend on ADPE adherence). The
program manager must keep the customer happy because that is how the
program manager is often evaluated by superiors ("customer happiness" here
means "continued business with the customer"). Sometimes, the program
manager may have to sacrifice short-term customer happiness to achieve
longer-term gains with the customer, particularly in those instances in which

9 This issue is discussed in more detail in Chapter 8.

Successful Software Development, Second Edition

481

ADPE implementation involves significant departure from the way that
customer did business with sellers in the past. On the other hand, sometimes
the program manager may have to deviate from ADPE-stipulated practice
because to do otherwise would irreparably damage relations with the customer.

o Establishing a reward system based, in part, on ADPE compliance can
becounterproductive. If project group managers and project managers do not
really buy into the ADPE culture, they will seek ways to circumvent the
culture while giving the appearance of buying in. When this situation develops,
ADPE implementation becomes a sham, workers in the trenches become
disillusioned, and the PEG becomes a waste of program resources. The impact
on the overall program is that the program organization degenerates into
individual competing fiefdoms. Such organizational factiousness does not go
unnoticed by the customer—and can lead to loss of follow-on business.

The PEG must be particularly sensitive to setting up an ADPE that allows for some
management flexibility to do the following:

1. Accommodate dilemmas such as those just posed (not only at the program manager
level, but also at the project group manager level and the project manager level).—

The challenge to the PEG is allowing sufficient flexibility in ADPE ground rules while
still prescribing a way of doing business that is not one step away from anarchy. One
useful way to deal with this issue is to establish the following principle regarding
application of ADPE business rules:

The processes in ADPE element X are to be applied prescriptively—
that is, they are to be applied in a manner that is consistent with
project resources and schedule.

It should be noted that a corollary of this principle is that processes defined in ADPE
elements should rarely be "by the numbers." That is, ADPE elements should rarely
include procedures that prescribe a single order for accomplishing process activities.
There is generally no one way to lay out the individual steps making up a process.

2. Avoid the emergence of project group manager countercultures as just described.—

The challenge to the PEG is to afford managers at all levels the opportunity to
comment on ADPE elements.

One additional observation is in order regarding the first PEG organizational permutation
shown in Figure 7-8. You may wish to go this organizational route even if your enterprise
already has an enterprisewide process improvement program. Even if your enterprise has
established enterprisewide processes, the customer for your major program may have special
ADPE requirements that make adaptation of the enterprisewide processes awkward or
infeasible. In particular, if the customer is paying for a PEG and if that customer is relatively
new to disciplined software systems development, trying to impose a highly disciplined
enterprise software systems development culture on such a customer is not likely to succeed.
Under such circumstances, it is preferable to develop an ADPE specific to the customer needs
and to borrow small pieces from the enterprise culture that would appear to be sellable to the
customer. For example, an enterprise culture may have its own software systems development

Successful Software Development, Second Edition

482

terminology that is foreign to or, worse, anathema to a customer. For example, we have found
that a culture with a strong Department of Defense (DoD) flavor simply does not sit well with
some non-DoD organizations. While it may be true that cultural differences may be more tied
to words rather than concepts (e.g., one culture's "Critical Design Review" is another culture's
"Detailed Design Review"), still terminology is part and parcel of a culture and is generally
difficult to change without major disruption. It is better to use terminology that a customer is
comfortable with. When you are trying to sell a key process concept such as independent
product assurance, it is better to iterate with a customer on product assurance terminology
than to try blindly to impose terminology from an enterprise culture that may turn off a
customer.

• If your enterprise consists of several different business areas, not all of which deal
with software, then you may wish to set up a PEG within each business area that deals
with software. The second permutation in Figure 7-8 illustrates this organizational
setup for an enterprise consisting of three business areas, two of which deal with
software. The issues and approaches for their resolutions discussed previously for the
first permutation apply to each PEG within this second permutation.

It is difficult to establish general principles regarding the value of trying to establish
the same ADPE practices within each business area. On the surface, it would appear
that, if two software business areas are part of the same enterprise, then the ADPE
practices in one business area should at least considerably overlap those in the other
business area. However, as we saw in discussing permutation 1, a lot of factors can
influence successful ADPE implementation—within the same organization. It should
not be surprising that when there are two (or more) organizations (even onesthat are
part of the same enterprise culture), trying successfully to institute a common ADPE
culture across these organizations may prove insurmountable. For example, one
business area may have a clientele who demands disciplined software systems
development, while a second business area may have a clientele who has little
appreciation of even the rudiments of disciplined software systems development. In
such a circumstance, it would generally be counterproductive to try to institute the
same ADPE implementation approach in both business areas. In particular, for the
clientele for which disciplined software systems development is not an issue,
independent product assurance would presumably not be an issue. Thus, ADPE
element content in this environment would not have to dwell on engineering rationale
for product assurance and the value its application adds to projects. On the other hand,
for clientele having little appreciation for even the rudiments of disciplined software
systems development, ADPE element content would have to focus considerable
attention on fundamentals such as risk reduction through product assurance and other
checking and balancing mechanisms. Even then, as we discussed in connection with
permutation 1, it is not evident that such clientele could be persuaded to buy into such
concepts.

Another potential impediment to establishing a common ADPE approach across
business areas is the differences in management styles between the business areas. In
discussing permutation 1, we stressed the key role that the program manager plays in
bringing about successful ADPE implementation. In permutation 2, there is, in effect,
a "program manager" for each business area. Given the potential impediments to
successful ADPE implementation emanating from the program manager we cited in
discussing permutation 1, it should not be surprising that successful ADPE

Successful Software Development, Second Edition

483

implementation is strongly tied to the management style of each business area
manager in permutation 2. Trying to align these management styles may not be in the
best interests of each business unit—and thus not in the best interests of the enterprise.
However, as each business unit establishes and refines its ADPE practices, it may, in
fact, be possible to discern which of these practices can be elevated to cross-business-
area practices. In this way, separate ADPE cultures can be melded over time. It may
ultimately be possible to consolidate the individual business area PEGs into a single
PEG having a mandate for establishing and maintaining ADPE practices across
business areas.

• If your enterprise is in the software systems development business (or primarily so)
and if your business consists of a multitude of projects and programs of various sizes
involving different customers, then you may wish to establish an enterprise-level PEG.
This organization would be responsible for establishing ADPE elements for
enterprisewide use. It may be necessary to assign some members of this organization
to one or more programs or projects (here, we are using the term "program" as we did
in permutation 1—namely, to denote a collection of projects) so that they can either
develop program/project-specific ADPE elements or tailor the enterprise-level ADPE
elements to the program/projects. Alternatively, it may be desirable to assign some
members full time to, say, a major program to act as a PEG for that program. The third
permutation in Figure 7-8 illustrates this organizational setup for a software division
(i.e., primarily devoted to software) consisting of a major program and two business
areas. The division has a PEG, and the major program has a PEG. Depending on
factors such as those discussed in connection with permutation 1 (e.g., a customer
unschooled in the rudiments of disciplined software systems development), it may be
necessary for this program-level PEG to develop an ADPE specific to the program,
borrowing wherever feasible from the division-level ADPE elements.

• An important variation on the permutation 3 organizational setup is when the major
program involves subcontractors. In this case, it is essential to establish a PEG within
the program organization. Simply farming out representatives from the enterprise PEG
to implant the enterprise ADPE culture on the program will generally not work
because the subcontractor cultures have to be integrated with the culture of the prime
contractor. In the real world, the way this "integration" happens is that the
subcontractor cultures are subordinated to the prime contractor's culture. This
subordination is far from straightforward. On the one hand, the prime contractor is
responsible for satisfying the customer; the customer does not, in general, see
subcontractors—to the customer, there is just a seller. So, the prime contractor and
subcontractors have to appear to the customer as a single culture. On the other hand,
some of the subcontractors may be the prime contractor's competitors on other jobs.
Thus, the prime contractor needs to consider carefully how to train subcontractors in
the ways of the prime contractor's culture. Regarding PEG staffing, one way to handle
this situation is to staff it entirely with people from the prime contractor's company
only—so that the ADPE concepts are clearly the prime contractor's. Alternatively, the
prime contractor can staff the PEG with subcontractors as well as prime contractor
people. This approach offers the opportunity to take the best from all the corporate
cultures; it also facilitates subcontractor buy-in.

• Sometimes, your company may be a subcontractor. If the project or program you are
working on has its own PEG, you may wish to try to become part of this organization
for reasons already alluded to. If the project or program you are working on is to
follow an ADPE that is part of the prime contractor's enterprise culture, then you

Successful Software Development, Second Edition

484

should strive to get trained in the ways of your prime. You may even wish, if it does
not compromise your competitive edge, to offer some of your company's best
practices for consideration for incorporation into the prime's ADPE.

Allied to organizational considerations are PEG funding considerations. There are three
straightforward funding arrangements—(1) seller organization, (2) buyer/user organization,
and (3) some combination of (1) and (2). These funding arrangements depend in some
instances on organizational arrangements. We will not discuss the myriad of combinations.
Instead, we offer you the following suggestions to help you decide what type of funding
arrangement makes sense for your environment:

• Ideally, PEG funding should come from the buyer/user. This arrangement establishes
firm customer commitment to software process improvement and the attendant
cultural change.

• A buyer/user may want to hire only a seller with an ADPE already developed. To
ensure that the seller molds this ADPE to the customer's needs or existing
environment, the buyer/user may wish to call for this molding in an RFP seeking
prospective sellers. Furthermore, the buyer/user may wish to stipulate that ADPE
maintenance will be on the seller's nickel after contract award. With an arrangement of
this type, the buyer/user should be willing to allow the seller a larger fee than would
be the case where the buyer/user pays for ADPE maintenance. The rationale for this
business arrangement is that the seller is paying for business practices designed to "do
things right the first time." Thus, the buyer/user should expect to reward the seller for
consistently giving the buyer/user working products on time and within budget.

• In some types of contracts, particularly when the buyer/user is a government
organization, it may not be possible for PEG funding to be provided by both the
buyer/user and the seller. For example, for completion type contracts tendered by the
U.S. federal government, the government purchases products and management from
the seller. Included in "management" is the "PEG and its products—such as ADPE
elements." In this case, the seller is barred by law from contributing to ADPE element
development. However, the seller may be able to contribute to ADPE implementation
support activities such as seller staff training in engineering principles underlying
ADPE elements.

• In some circumstances, it may be desirable for the buyer/user and seller jointly to fund
the PEG—even to the extent of jointly staffing the organization. This partnership
arrangement may be particularly appropriate where both the buyer/user and seller have
roughly equal experience in software systems development process improvement. In
those cases in which both the buyer/user and seller are process improvement
neophytes, it may be desirable to bring in an outside expert to act as a catalyst to direct
the efforts of both sides. We stress that the partnership arrangement is perhaps the one
most likely to bring about cultural change—because both sides have literally bought
into process improvement.

Another key consideration to achieving buyer/user buy-in to seller PEG activity is illustrated
in Figure 7-9. In this figure, we show a cover page for an arbitrary ADPE element (such as a
CCB guideline as discussed in Chapter 4 or a software systems development process policy as
discussed in Chapter 3).

Successful Software Development, Second Edition

485

Figure 7-9 Although ADPE elements define seller software systems development business
practices, buyer/user buy-in is recommended for successful ADPE implementation. Part of this
buy-in should include ADPE element sign-off by a buyer/user representative who is the
organizational counterpart to the seller manager who has ADPE element sign-off authority.
This bipartisan sign-off formalizes the commitment of both parties to conform to the culture
embodied in the element.

This cover page indicates that the ADPE element is part of an SEE that is governing a
collection of software systems development projects (represented by the balloons) being
managed under the umbrella of an effort called Program Z. The seller who prepared the
element is the ABC Company. The signature of the seller program manager, Big Kahuna,
appears on the cover together with the signature of the buyer/user program manager, Big
Kahuna's Counterpart. These signatures are not just a formality to give an official look to a
document. The seller program manager's signature testifies to the fact that the ABC Company
is committed on Program Z to the business practices set forth in the ADPE element. The

Successful Software Development, Second Edition

486

buyer/user program manager's signature testifies to the fact that the customer concurs with
these business practices and is committed to supporting them.

What does "the customer is committed to supporting these business practices" mean? We
have stressed in preceding chapters that the business of software systems development
involves continual interaction between the buyer/user and the seller. This continual interaction
means that the buyer/user's behavior is an integral part of the seller's business practices. Thus,
for example, we stressed in Chapter 5 that the CCB role in the acceptance testing process is
critical for ensuring that the computer code to be delivered contains the capabilities that the
customer asked for. We stressed that the customer must participate in the acceptance testing
CCBs if the customer is to reduce misunderstandings regarding the capabilities to be included
in the delivered computer code. Thus, when the buyer/user program manager signs the cover
of an ADPE element governing the acceptance testing process, that manager is committing
the buyer/user organization to buyer/user test CCB participation as set forth in the element.

We explained earlier in this chapter that institutionalizing the business practices in ADPE
elements within the seller organization is a major PEG challenge. But, as the preceding
discussion suggests, that challenge is only half the battle. If the buyer/user does not commit to
these business practices too, then ADPE implementation will come up short. Having the
buyer/user program manager sign off ADPE elements in a manner like that shown in Figure
7-9 is a start. This sign-off gives the buyer/user a club of sorts to effect cultural change within
the buyer/user organization. However, the PEG has to work the problem from within the
seller organization, too. Here, we mean that the PEG has to work with seller management and
staff to convince them that ADPE business practices are really in the best interests of the
customer. Too often, frontline seller managers are caught between a rock and a hard place
when it comes to convincing their customers that ADPE practices are to be preferred to the
"old way of doing business." On the one hand, these managers, particularly more experienced
ones, may not be totally convinced that the ADPE way is the better way (as opposed to what
they may have been accustomed to doing in the past). On the other hand, even if they believe
in the ADPE way, the customer may not feel comfortable with the ADPE way and prefer "the
customer's old way." Since frontline managers rightfully feel that they must keep their
customers happy, these managers often revert to the customer's old way.

How can the PEG address these cultural change challenges within both the seller organization
and the buyer/user organization? The answer to this question is not simple. The following
guidance helps you deal with this question:

• The PEG must involve seller management and staff in ADPE element development.
This involvement helps achieve management and staff buy-in to the practices that the
PEG is responsible for setting up. We subsequently define a top-level process for
bringing about this involvement. This process also offers some insight into what is
involved with constructing ADPE elements that will in fact establish the seller
software systems development culture.

• The PEG should submit draft ADPE elements for buyer/user review and comment.
This step is mandatory if the ADPE buyer/user concurrence shown in Figure 7-9 is to
happen.

• Special considerations govern ADPE content when the seller organization consists of a
broad band of experience (i.e., from staff right out of school to grizzled veterans of
software wars) and/or a mixture of software systems development cultures (as would
be the case if the seller organization is made up of a prime contractor and a number of

Successful Software Development, Second Edition

487

subcontractors). In these situations, it is imperative to include some tutorial material in
ADPE elements. The purpose of this tutorial material is to (1) define engineering
terms in the vernacular so that people can communicate unambiguously with one
another and (2) provide engineering rationale for the practices set forth in the ADPE
elements. Thus, for example, an ADPE element on the CCB should offer rationale for
why the CCB should be constituted with representatives from the management,
development, and product assurance disciplines (the discussion in Chapters 1 and 2 on
the CCB can be a useful starting point for this rationale). To ensure that such tutorial
material does not "get in the way" of the business practices that should be the focus of
ADPE elements, we suggest putting it in appendices. Even veterans of software wars
can benefit from such tutorial material (even if they won't admit it). Often, such
veterans have learned their trade through trial and error without understanding the
engineering principles that underlie their successful experiences. This tutorial material
also helps seller management and staff field challenging questions from questioning
customers regarding the value of doing things the ADPE way. For example, customers
often question the value that product assurance adds to a software systems
development effort. To help seller management and staff respond to such customer
concerns, the PEG should include in ADPE elements dealing with product assurance
ideas such as the following:

Through the application of the four processes of QA, V&V, T&E, and
CM, product assurance raises the visibility of the software systems
development process. This visibility provides both the customer and
seller insight into the state of software products so that management
can intelligently decide what to do next regarding these products. In
this manner, the likelihood of product rework is reduced thereby
increasing the likelihood that products will be delivered on time and
within budget.

• Regarding the use of tutorial material in ADPE elements, one additional comment is in
order. The PEG should take pains to know its audience. Nothing will turn off this
audience more than ADPE elements that come across as preachy and condescending.
ADPE elements cannot simply say do this or do that (even though some software
veterans would argue that they would prefer such an approach). We have argued that
ADPE elements should be set up so that they can be prescriptively applied. The PEG
should use tutorial material to bring to the fore engineering principles to guide
management and staff in performing this prescriptive application. For example,
Chapter 4 explains that the CCB concept in its most effective form extends far beyond
the traditional CM role assigned to this body. One extension to this traditional role that
we have stressed is that this body can be used to do product development. To drive
home this point in an ADPE element on the CCB, an appendix in this element should
give an example of how the CCB can be used in this role.

• A key component of the ADPE element development process should be PEG briefings
to management and staff on ADPE element content. Such briefings should occur while
the elements are under development and after the elements are promulgated for use.
The purpose of the briefings during development is to obtain early feedback from the
seller organization on ADPE element content. This feedback also contributes to seller
management and staff buy-in. The purpose of the briefings after the elements are
promulgated, where the audience should be both the seller and the buyer/user, is to
ensure that the practices set forth in the element are understood. In situations where

Successful Software Development, Second Edition

488

there is a large seller organization (i.e., hundreds or more people) and there is a large
buyer/user community, briefings should be given periodically to ensure that all
involved parties are reached. Such briefings are best given to small numbers of people
(tens of people at most) to allow for interchange between the attendees and the
presenters. The PEG should use the briefings to convey to attendees the experiences of
others within the buyer/user and seller organizations using the ADPE element being
briefed. Such comments serve to enhance the credibility of the element. It also sends a
message to attendees who attend later presentations that the practices in the element
are, in fact, being institutionalized so that it is in the attendees' best interests to get on
board with everybody else.

• In conjunction with briefings and less formal interactions between the PEG and
seller/customer staff, a technique that we found useful for planting cultural change
seeds is what we call "foam-board displays." These are displays of key extracts from
ADPE elements or related briefing material created by mounting these extracts or
material on large pieces of foam board, poster board, wood, and so forth. Here, "large"
means tens of inches by tens of inches (e.g., 30? × 40?). For example, to highlight the
features of the project planning risk assessment activity, it may be helpful to mount on
a foam board the risk assessment criteria and the associated resource allocation
percentages (e.g., in the form of pie charts as discussed in Chapter 2). Such a foam-
board display can be used during a briefing on the project plan development process
and/or in a one-on-one discussion of risk assessment between a PEG member and a
seller or customer staff member. Its size also makes it ideal for wall mounting in
prominent places. This approach to transmitting ADPE concepts brings in subliminal
forces to help bring about cultural change. If you pass by a pie chart of resource
allocation percentages every day in and out of your office, that pie, over time, simply
becomes inseparable from other things you associate with your work environment—
even if you disagree with the percentages in the chart!

We now present and walk through in detail a top-level process that a PEG can use to construct
and improve upon ADPE elements. This process, shown in Figure 7-10, factors in the ideas
just addressed in the bulleted items. It is based on the organizational setup discussed in
connection with Figure 7-8 (permutation 1)— namely, a program, managed by a program
manager, consisting of a number software systems development projects, where the seller
program manager interfaces with a buyer/user program manager. As we walk you through the
figure, we point out variations to the process in the figure that derive from different
organizational setups.

Successful Software Development, Second Edition

489

Figure 7-10 The development and improvement of ADPE elements involves customer
personnel, seller management, and seller staff. The figure depicts a top-level ADPE element
development and improvement process involving these participants.

Please note that Figure 7-10 offers you a starting point for laying out a more detailed process
that reflects your particular work environment and customer/seller contractual relationship.
We suggest that one element of your ADPE should be an element that defines what your
ADPE element types are (recall that in this book our ADPE element types are policy,
guideline, procedure, and standard). This element should also define the process for
developing and improving ADPE elements. You may wish to incorporate a figure like Figure
7-10 in such an ADPE element, together with a more detailed figure that lays out the
individual steps for ADPE development and improvement. Figure 7-10 has the following
eight rectangles that represent the responsible seller agents and associated process activities:

Successful Software Development, Second Edition

490

• Seller Program Manager.

Reviews and Approves SEE Implementation Plan and Provides Candidate ADPE
Improvements

• Seller Process Engineering Group (PEG) Manager.

Plans, Evolves, and Improves System Engineering Environment (SEE)

• Seller Process Engineering Group Staff.

Analyzes Systems Engineering Processes

• Seller Process Engineering Group Staff.

Evolves ADPE Elements and Integrates ADPE Improvements

• Seller Management.

Reviews and Comments on Evolving ADPE Elements

• Seller Staff.

Reviews and Comments on Evolving ADPE Elements

• Seller Program Manager.

Reviews and Approves ADPE Elements for Use

• Seller Management and Staff.

Use Approved ADPE Elements and Provide Suggested ADPE Improvements

Figure 7-10 also has the following shaded rounded-edge rectangles that represent the
customer's responsibilities and associated process activities:[10]

• Customer.

Provides Technical Guidance

• Customer.

Reviews and Comments on Evolving ADPE Elements

• Customer.

Concurs with Seller Program Manager

10 The customer responsibilities and associated process activities are shaded to denote that many times the customer is not involved with a seller's
ADPE development process.We recommend that the customer participate, but we recognize that customer participation may not happen or even be
practical.

Successful Software Development, Second Edition

491

• Customer.

Provides Suggested ADPE Improvements

These process activities are linked together by the major communication paths and associated
information. As shown in Figure 7-10, along each communication path information is
transferred from one process activity to another. The information transferred consists of the
following items:

• SEE Implementation Plan
• Approved SEE Implementation Plan
• Candidate ADPE Improvements
• Technical Guidance (lighter print type indicates that customer may not participate in

seller ADPE development process)
• Improvement Areas
• Selected Processes and Candidate ADPE Improvements
• Evolving ADPE Elements
• Approved ADPE Elements
• Suggested ADPE Improvements

These seller/customer activities and communication paths are described (primarily from the
PEG's perspective) as follows:

• The PEG manager is responsible for planning, evolving, and improving a SEE. The
PEG defines the ground rules for SEE implementation in an SEE implementation
plan[11] that is provided to the seller program manager for review and approval. If the
customer is paying for SEE development, someone within the customer organization
with the organizational stature of the seller program manager should also review and
approve the implementation plan and provide technical guidance to the seller PEG
manager. The PEG manager is responsible for identifying improvement areas for
investigation by PEG staff.

• The PEG staff is responsible for investigating and evaluating systems engineering
processes, improvement areas, and candidate ADPE improvements. To ensure
customer and seller management/staff buy-in, these investigations and evaluations
should be done in concert with customer personnel, seller management (from the
program manager downward, including the product assurance manager), and seller
staff. For example, the PEG staff may investigate and evaluate a new way for
distributing CCB minutes using a groupware software product. As part of the
evaluation process, the PEG may ask one of the projects to test out the new concept.
The project's input helps to achieve management/staff buy-in because the concept has
been road tested by frontline project staff. The PEG investigations and evaluations,
with some help from others, result in the identification of selected processes or
candidate ADPE improvements for incorporation into ADPE policies, guidelines,
procedures, and standards.

• The PEG staff is responsible for evolving ADPE elements and integrating ADPE
improvements. Of all the activities shown in Figure 7-10, this activity is the most
time-consuming. It consists of putting words and graphics on paper to create draft

11 Chapter 8 addresses in detail the SEE implementation planning activity.

Successful Software Development, Second Edition

492

elements and briefing seller and customer staff along the way to ensure that ADPE
content is addressing seller/customer needs.

Putting words and graphics on paper to create the contents of an ADPE element is
perhaps the most difficult part of the process shown in Figure 7-10. Ironically, even
with expert writers, it is difficult to get something down on paper that the seller and
customer communities can relate to. Following are some suggestions for PEG staff to
consider when taking on the task of writing ADPE elements.

o Gauge your audience carefully so that you can determine how much tutorial
material to include. Put the principles and elements essentials up front.
Relegate tutorial and amplifying material to appendices.

o Use figures to document processes and clarify principles. Use tables to bring to
the fore ADPE element essentials. For example, when writing an element for
the CCB, consider putting in a figure such as the triangle diagram that we have
used throughout this book to clarify thecommunications principles underlying
the CCB concept. As another example, when writing an ADPE policy element,
consider putting into a table the essential points of the policy. Such a table
provides a handy reference for the reader to grasp quickly the policy essence.
Remember, depending on the amount of tutorial material you deem is
necessary to include, even ADPE policy elements can consist of tens of pages.

o No matter how sophisticated your audience engineeringwise, define terms.
Despite valiant efforts by many professional organizations such as IEEE, no
standard set of software engineering terminology exists. For example, what
some engineers call "quality assurance" others call "product assurance." Part of
establishing an engineering culture consists of establishing a common
language. The more dialects there are, the greater is the likelihood of
miscommunication.

o Ideally, each ADPE element should be put together by two people with
complementary outlooks on what the ADPE is supposed to be. One of the
ADPE authors should be a conceptual thinker who has the big picture of how
all the elements are to fit together. The other ADPE author should be a detail
person who can turn concepts into organizationally specific statements. As we
stated earlier, it is good to have an ADPE author who spends part time as a
senior manager responsible for seeing to it that ADPE practices are
implemented by subordinate managers and staff. Another advantage to having
a two-person team write an ADPE element is that such an arrangement serves
to avoid idea burnout. Through the constant interaction between the two
writers, ideas are constantly coming to the fore (and one idea generally spawns
others), examined to see how they hold up under scrutiny, and refined to the
mutual satisfaction of the two writers. Furthermore, since two writers
necessarily have different experiences, the constant interaction between the
two serves to enrich the material that each would turn out if they worked in
isolation from one another.

o Above all, be receptive to comments and criticisms—and practice what your
elements preach. Nothing undermines PEG credibility more than the
appearance that community comments are not being addressed and that the
PEG is above following the ADPE practices.

Successful Software Development, Second Edition

493

We cannot stress enough the importance of soliciting seller/customer feedback
through briefings while ADPE element drafts are being written. Even if the PEG staff
members who are writing an element are expert in the subject matter, not even experts
can anticipate the myriad of issues and concerns that seller management/staff and the
customer may have. Nothing can give the impression of a PEG imprisoned in an ivory
tower more than a PEG that works in isolation from the community it is to serve.

If your environment consists of a seller organization made up of a prime contractor
and several subcontractors and/or a customer made up of a number of organizations
that have worked with different contractors in the past, briefings on evolving ADPE
content are mandatory. This situation is the most challenging for the PEG because
different seller cultures and different customer cultures have to be blended into a
single way of doing business. Such cultural blending can take a long time. For
example, if the seller and customer organizations are each of the order of hundreds of
people, this cultural blending can take years. The PEG should keep this cultural
change time scale in mind when planning ADPE implementation. We do not know the
specifics of how this time scale changes with the size of the seller organization and the
size of the customer organization. We can say that, when the customer organization is
culturally inhomogeneous and the seller organization is a confederation of
subcontractors, the time scale for homogenizing the various cultural differences will
be protracted—and will become increasingly protracted the larger the seller
organization is and/or the larger the customer organization. Conversely, the more
culturally homogeneous the seller organization is and/or the more culturally
homogeneous the customer organization is, the time scale for effecting cultural change
will be correspondingly shorter. Regarding these time scales, the PEG should also
keep in mind the following overriding consideration:

The time scale for effecting cultural change can be dramatically
reduced when the involved communities are more pliable. On the other
hand, if seller senior managers are set in their ways and/or customers
insist on doing business the "old way," effecting cultural change can
take a long time (i.e., months to years)—even if the communities
involved are of the order of tens of people. The PEG must therefore
constantly keep in mind the fact of software systems development life
that ADPE implementation is first and foremost an exercise in selling
(1) seller management on the connectivity between ADPE business
practices and what practices have worked in the past, and (2)
customers on the connectivity between ADPE business practices and
increased likelihood that the seller will deliver products with integrity.

• Figure 7-10 indicates that, linked to the PEG staff responsibility of evolving ADPE
elements, are the customer responsibility and seller management and staff
responsibilities of reviewing and commenting on evolving ADPE elements. This
linkage is critical to effecting cultural change through ADPE implementation. Through
this linkage, the customer and the seller organization are afforded the opportunity to
contribute and buy into the ADPE business practices. These parties must take the time
to go over this material and clarify issues for the PEG. They should be specific. For
example, it is not constructive for a seller manager to offer a comment on an
independent product assurance ADPE element that says in essence "I cannot live with
this element because the customer thinks that product assurance is a waste of money."

Successful Software Development, Second Edition

494

On the other hand, it is constructive for a seller manager in the context of this example
to offer a comment such as "I think I can sell my customer on product assurance if the
element addresses how product assurance adds value to product development." When
commenting on ADPE elements, the reviewers need to keep the following points in
mind:

o The PEG staff is responsible for coordinating and integrating comments. There
will generally be a broad spectrum of comments that the PEG receives. Some
of these comments will be contradictory. For example, one comment on an
ADPE element having to do with the CCB secretary might be "the project
manager should take meeting minutes," while a comment from someone else
might be "someone from the product assurance organization should take
meeting minutes." Thus, it is generally not possible to integrate all comments
into a given element. The PEG must be proactive in ensuring that the
commenting communities are informed that each comment received is
reviewed—even though it may not be incorporated. If the PEG is not proactive
in this regard, (1) the commenting communities will soon stop commenting,
(2) resistance to adopting the ADPE practices will increase, (3) turmoil
between the PEG and other organizational elements will intensify, and (4)
cultural change will be retarded.

o If the customer and seller management and staff abdicate their ADPE review
responsibilities, they cannot subsequently say that they were unaware of the
ADPE practices and did not follow them for that reason. For the process in
Figure 7-10 to work, all parties involved need to approach it with the attitude
that successful software systems development is a business and thus must be
conducted in a businesslike manner. To treat software systems development
otherwise is inviting engineering anarchy and project upheaval.

o The PEG's perspective is organizationwide. A given manager's perspective and
those of staff members are generally more truncated. What may make sense in
a given manager's domain simply may not make sense throughout the entire
organization. Often misunderstood is the notion that "consistent business
practice" is not equivalent to "one size fits all." This notion is a prime source of
contention between the PEG and the rest of the seller organization when it
comes to evolving ADPE elements. More specifically, this source of
contention can be stated as follows:

In constructing ADPE elements, the PEG must define a set of
practices that can be applied uniformly across an organization.
On the one hand, the practices must be sufficiently specific so
that they convey something that actually can be applied to
develop software products (i.e., the practices offer a way of
doing things). For example, as we discussed in Chapter 4, an
ADPE element on the CCB should specify (1) that meetings
should be documented in minutes and (2) what the information
requirements are for these minutes. On the other hand, the
ADPE practices cannot be so specific that they tie the hands of
various elements within an organization and actually impede
product development (i.e., one size does not fit all). For
example, as we discussed in Chapter 4, an ADPE element on
the CCB should not dictate the amount of detail to include in
the CCB minutes; rather, the element should offer guidance that

Successful Software Development, Second Edition

495

ties meeting minutes detail to customer and seller management
project visibility needs.

We need to make an additional point about ADPE element
specificity that we elaborate on in Chapter 8. In general, the
more detailed an element, the more often it may have to be
changed because of the dynamics of the seller and/or customer
environment. For example, in Chapter 3 we indicated that, in
general, an ADPE element describing a seller's software
systems development process should provide guidance on a
cover letter that the project or program manager is to use in
releasing a product to the customer. At one extreme, this ADPE
element can be a fill-in-the-blanks template where the only
thing to be filled in is the product name and the date on the
letter. Such an approach certainly facilitates product release,
particularly in an environment where tens or hundreds of
products may be released in a month. However, if the addressee
on the letter (e.g., a government contracting officer or a vice
president of a business enterprise) changes, then that part of the
ADPE element containing the addressee's name needs to be
updated to reflect this change. At the other extreme, the
software systems development process ADPE element can
simply say that any product the seller releases to the customer
needs to be accompanied by a cover letter that the project
manager prepares according to a format acceptable to the
customer. In this case, the ADPE element does not need to be
changed when the product addressees change. In Chapter 8 we
discuss how to achieve a balance between ADPE element
update frequency and business practice institutionalization. The
key issue here is effecting business process improvement
without disrupting cultural change.

This PEG challenge is the primary reason that we have stressed
throughout this book the notion of "prescriptive application"
when it comes to setting up ADPE elements. We have
emphasized that management and staff should be empowered to
figure out the extent to which business practices in the ADPE
elements makes sense to apply on their particular projects
(again, because "one size does not fit all"). This PEG challenge
is also the primary reason that we have stressed throughout this
book that, with the possible exception of homogeneous
organizations where projects do not span a broad spectrum,
specifying the order in which steps in an ADPE procedure are
to be accomplished is generally not a practical idea. Rather, we
have emphasized that management and staff should be
empowered to figure out which order makes sense on their
particular projects (again, because "one size does not fit all").

• As Figure 7-10 shows, once the seller PEG evolves ADPE elements and integrates any
ADPE improvements into the elements, the seller program manager is responsible for

Successful Software Development, Second Edition

496

the review and approval of the evolving ADPE elements. Linked to this responsibility
is the responsibility of the customer (i.e., buyer/user) program manager for concurring
with the business practices set forth in the ADPE elements. Customer concurrence and
seller program manager approval can be made a matter of record by having these
managers sign and date the ADPE element cover sheet.

How does this management commitment manifest itself in an organizational setup that
differs from the one in which the seller program manager approves and the customer
concurs (see Figure 7-9)? The following are some organizational variations (tied in
part back to Figure 7-8) and some associated suggestions for registering this
management commitment:

o The third organizational arrangement in Figure 7-8 shows, among other things,
a PEG responsible for setting up an ADPE throughout an entire software
division consisting of a number of business areas (two are shown) and a
number of major programs (one is shown). The PEG may publish a
divisionwide set of ADPE elements. To show commitment to these ADPE
practices, each business area manager can sign the elements or the cover page
of the entire document. Similarly, each major program manager may do
likewise, unless, as shown in the figure, the major program has its own PEG
responsible for setting up an ADPE for that program. This case reduces to the
Figure 7-9 case with the possible additional proviso that this program-specific
ADPE will use, where feasible, elements of the divisionwide ADPE. This
proviso can be made explicit by referencing the divisionwide ADPE in the
program-specific ADPE (if the customer served by the program manager does
not object). Alternatively, the program manager can sign the divisionwide
ADPE document with the understanding that the program's ADPE overrides
the divisionwide ADPE in cases of conflict. To avoid bureaucracy, the
divisionwide ADPE should contain a caveat to this effect. Again, the reason
why many parts of a divisionwide ADPE may not be applicable to a major
program is because "one size does not fit all." Implicit in the third
organizational arrangement in Figure 7-8 is that the divisionwide ADPE
embodies, by definition, the software systems development culture of the seller
division. If the customer of the major program shown in Figure 7-8 is not
another part of the seller's enterprise (i.e., the customer is another enterprise
with its own separate culture), then it is unlikely that this customer will readily
buy into the division's software systems development culture—unless, of
course, the customer contracted with the seller for those business practices to
be applied to the customer's program.

o What makes sense to do for small projects (i.e., where the number of seller
participants may be, say, five or less, including the project manager and
product assurance)? Because a small project can be implanted ina wide variety
of organizational environments, there is a spectrum of responses to this
question. The following is a sampling from this spectrum:
� The project may be one of several in a small software company that is

running several projects of similar size. In this case, the entire company
can be viewed like a major program shown in either the first or third
organizational arrangement in Figure 7-8. The PEG may be a one-
person organization, and may be staffed only part time. The president
of the company or a senior executive may be the PEG. Here, the

Successful Software Development, Second Edition

497

president of the company can sign the cover sheet of each ADPE
element to demonstrate to the customer the company's commitment to
the customer. If the project is pivotal to the company, the president can
also urge the customer to sign on the cover sheet so that both parties
formalize their commitments to following the ADPE business practices.
This arrangement is particularly desirable if the customer wants the
seller to tailor the company's existing ADPE elements to the specific
needs of the project. Furthermore, if the customer is willing to pay for
this tailoring, then the customer's signature should be mandatory.

� The project may be part of a company whose main line of business is
not software but that does have a software organization. In the extreme,
such an organization may not even have a PEG and may be relying on
externally produced software practice documents such as IEEE
standards, the SEI Capability Maturity Model for Software, ISO 9000
practices, textbooks, or some combination of these entities. In this case,
the head of the software organization can direct the project manager to
commit to using the externally produced "ADPE elements" in the
project plan. If the software organization does have a PEG, then,
following the logic in the preceding small-company case, the head of
the software organization can sign the ADPE element cover sheets. If
the elements are being produced specifically for the project (as may be
the case if the first part of the project is to set up an ADPE before
actual product development is to begin), the head of the software
organization can direct the project manager to sign each ADPE element
cover sheet. In addition, to solidify customer commitment to the ADPE
business practices, the project manager may wish to have the customer
sign each ADPE element cover sheet.

� The project may be part of a systems development effort in which the
project is to develop software to drive one or more system components.
Such "embedded software" as it is typically referred to can be critical to
the overall operation of the system. It is not unusual for the
development of such embedded software to be hidden from the view of
managers responsible for the development of other system
components—particularly if the system under development contains a
myriad of subsystems (e.g., an automobile or an airplane). Often, the
development of embedded software is subject to the strictures of the
system-level analogues to ADPE elements. Even under such
circumstances, it is important for the managers responsible for the
embedded software to give visibility to their business practices and
give visibility to their commitment to follow these practices. The
customer in these instances is typically another engineering
organization. To ensure that the software business practices meld with
these other engineering practices, the head of the software organization
(which, in the simplest of situations may be the software project
manager) should sign each ADPE element cover sheet. So, too, should
the engineering managers who are the customers for these software
products sign these cover sheets. We stress that all these suggestions
regarding embedded software developed on small software projects as
we have here defined "small" apply to embedded software in general.
In fact, the larger the size of the project responsible for producing

Successful Software Development, Second Edition

498

embedded software, the more important it is to apply the suggestions
discussed here. We close this discussion of embedded software and the
needfor formal management commitment to ADPE practices, with the
following observation borne out by much software industry experience:

If all this signature business sounds like a lot of
bureaucracy, keep in mind that faulty embedded
software can make its presence painfully obvious when
an automobile stops running, an airplane stops flying,
or a medical device kills or injures a patient.

o Next in the process in Figure 7-10 is the "rubber-meets-the-road step." Here,
seller management and staff perform assigned work on seller projects using the
approved ADPE elements. As discussed in preceding chapters, this work is
performed through interaction with the customer. Both the customer and the
seller get a firsthand feel for those ADPE business practices that make sense—
and those that seem to stand in the way of getting work done. Because these
practices represent in varying degrees a different way of doing business for the
parties involved, determining what makes sense and what seems to be standing
in the way of getting work done is far from straightforward.

As with anything new, there is a settling-in period. The PEG must be prepared
during this period to hear a lot of complaining. In the extreme, this
complaining can border on rebellion. Strong senior management support is
necessary to help weather the initial storm of protest due to the transition.
Gaining this support in itself may be a challenge because some of the
complaining may come from some senior managers.

It is important for senior management to stay the course during the period
immediately following ADPE element promulgation. Depending on seller
organization size, the settling-in period can span weeks to months—in general,
the larger the organization, the longer the period. After the settling-in period,
real issues and difficulties with the ADPE elements will begin to surface. To
lessen turmoil during the settling-in period, we suggest that ADPE elements
that are formally promulgated be derived from the most successful practices
that may already have been in place prior to formal ADPE element
promulgation. In this way, the practices appearing in the elements are simply a
codified version of many of the things that people have already been doing. In
many ways, the approved ADPE elements embody many lessons learned while
developing software systems. One way that we have found useful for laying
the groundwork for practices that will eventually be folded into ADPE
elements is to incorporate some trial-balloon ADPE elements into the SEE
implementation plan, trythem for a while, and then start the process of
evolving the trial elements.

We also need to emphasize that incorporating existing practices into ADPE
elements can be a two-edged sword. On the one hand, it can lessen the turmoil
during the settling-in period as we have noted. On the other hand, it can leave
the impression with seller management and staff that they do not have to read
the elements—because they already know what the elements contain. People

Successful Software Development, Second Edition

499

will not read them—even those within the seller organization who fully
support the ADPE practices. One way for the PEG to address this problem is to
stress during ADPE element briefings (both prepromulgation and
postpromulgation) that the elements need to be read from cover to cover—even
though the elements contain some "old" or "familiar" material.

The fact that people may be reluctant to read the ADPE elements poses another
challenge for the PEG. Seller management and staff are focused on getting the
work done for their customers. In many organizations, there is not a lot of
slack time (if there is, both seller and customer senior management may start
asking questions like "What the hell are people doing with their time?"). So,
reading ADPE elements is usually not high on people's list of priorities. On the
one hand, if an element is too long, people will balk at even picking it up. On
the other hand, if the element is so short that it does not help people do their
jobs, it will not be worth reading. Chapter 8 addresses the issues associated
with the number and size of ADPE elements needed to establish an ADPE.

o The "final" step in the Figure 7-10 process consists of the customer and seller
management and staff providing feedback to the seller program manager
regarding suggested ADPE improvements. With the feedback coming from the
middle and bottom of the organization to the top of the organization, support
for the engineering norms gets blended into the ADPE elements.
Complementing this "bottom-up" feedback is "top-down" support from the
seller program manager. The seller program manager can make a strong
statement of support for changing the culture by participating in the change.
This combination of feedback and support helps to implement the ADPE
elements.

Once the program manager reviews the feedback, candidate ADPE
improvements are passed on to the PEG manager. The program manager may
pass the suggested ADPE improvements straight to the PEG manager for
review and comment. This "bottom-up" feedback precipitates revisits to one
more preceding steps in the process. As seller management and staff perform
work for the customer by presumably following the ADPE practices,
improvements to these practices will generally become apparent. With the
caveats noted earlier about the settling-in period, the PEG needs to review
these suggestions and/or candidate ADPE improvements (depending on how
the program manager wants to set up the review cycle).

We suggest that the PEG get out into the workplace and experience firsthand
what is working and what is not. For example, the PEG can coordinate with a
project manager to attend a project CCB meeting to see how practices set forth
in a CCB ADPE element are playing out on a real project. The ADPE element
that contains your version of Figure 7-10 should spell out a mechanism for
receiving comments on ADPE elements from the customer and from the seller
management and staff. One way that we have found useful is to indicate that
"suggestions should be in a memorandum and can be submitted to the program
manager or PEG manager at any time."

Successful Software Development, Second Edition

500

Chapter 8 discusses ADPE element update frequency. For the present, we note
that there are times when it may become necessary to distribute an interim
update to an element. By interim, we mean a "change to a relatively small
portion of an element because something is proving to be unworkable or some
conditions have changed since the element was promulgated that invalidate
something stated in the element." For example, suppose an ADPE element on
the CCB is promulgated after the promulgation of an ADPE element on the
product development process. Suppose further that this latter element included
the CCB as part of the process and called it "configuration control board."
Finally, suppose that while the CCB ADPE element was being developed that
it was decided by the customer and/or seller management that "change control
board" more accurately reflected the concept called out in the product
development process ADPE element and being elaborated on in the CCB
ADPE element. In this example, then, it would be necessary to issue an interim
update to the product development process ADPE element to reflect this
terminology change. A simple way to handle this interim update would be to
make it a part of a memorandum that might be used to promulgate the CCB
ADPE element.

We have completed our walkthrough of Figure 7-10. To conclude this section, we return to
the following key points regarding the construction and application of ADPE elements cited
during this walkthrough:

• One size does not fit all.

In constructing ADPE elements, the PEG must define a set of practices that can be
applied uniformly across an organization. On the one hand, the practices must be
sufficiently specific so that they convey something that can actually be applied to
develop software products (i.e., the practices offer a way of doing things). On the other
hand, the ADPE practices cannot be so specific that they tie the hands of various
components within an organization and actually impede product development.

• Prescriptively apply ADPE elements.

The one-size-does-not-fit-all challenge is the primary reason that we stress throughout
this book the notion of "prescriptive application" when it comes to setting up ADPE
elements. We emphasize that management and staff should be empowered to figure
out the extent to which business practices in the ADPE elements makes sense to apply
on their particular projects. Specifying the order in which steps in an ADPE procedure
are to be accomplished is generally not a practical idea. Rather, management and staff
should be empowered to figure out which order makes sense on their particular
projects. A possible exception to this empowerment principle is a homogeneous
organization where projects do not span a broad spectrum. In this circumstance, it may
make good business sense to specify an order for the steps specified in an ADPE
element—or, at least specify a preferred order.

To appreciate fully the implications of these statements, it is worthwhile to probe what
"prescriptive" fundamentally means. Since we have repeatedly stated that the ADPE is a
framework within which consistent software systems development can be successfully carried
out, it is also worthwhile to consider what "framework" fundamentally means. We turn to the

Successful Software Development, Second Edition

501

dictionary. It turns out that "prescriptive" and "framework" each has a broad range of
definitions, depending on which dictionary is consulted. We have taken definitions from the
2000-page The Random House Dictionary of the English Language (the unabridged 1967
edition) because they reflect the spirit of what we are trying to convey in engineering terms.

• Prescriptive—giving directions
• Framework—a skeletal structure designed to support or enclose something

To understand the way that we are using the term "prescriptive application" of an ADPE
element, we first need to explain how the qualifier "prescriptive" applies to ADPE element
content. ADPE elements are the most useful and require infrequent change when they "give
directions." By giving directions we mean "giving guidance—not detailed, step-by-step
instructions." We recognize that some people use the phrase "giving directions" to mean
"giving precise instructions." Others use this phrase to mean something in between our use
and this preciseinstruction use.

Thus, ADPE content should give directions to the extent that they provide management and
staff the starting point for tailoring to the specific needs of their project work. In earlier
chapters, we describe this tailoring by saying that "management and staff apply the ADPE
practices consistent with the schedule and resource constraints of their projects." People,
particularly those with experience, have to be given leeway to apply their experience. This
leeway we have expressed as "prescriptive application of the ADPE practices." And it is this
leeway that opens the door for people to adapt to the ADPE culture.

We are thus using the phrase "prescriptive application" in the same sense that "prescriptive" is
used to qualify the word "grammar." The same dictionary defines prescriptive grammar as
"grammar that is considered in terms of what is correct, and therefore good usage." Similarly,
prescriptive application of ADPE practices means "application that is good usage of available
time and resources."

To understand the way that we are using the term "framework" as it applies to the ADPE, we
combine the notions of "leeway" and "prescriptive application." When an ADPE is a
framework in the sense of "a skeletal structure designed to support a way of doing things by
bordering it with acceptable practices" (borrowing from the dictionary definition), it cultivates
cultural change. Skeletal here means what we just said above, that is,

ADPE practices must be sufficiently specific so that they convey something that
actually can be applied to develop software products, but they cannot be so
specific that they tie the hands of various elements within an organization and
actually impede product development (i.e., one size does not fit all). That is, an
ADPE that fosters cultural change is one that (1) is prescriptive in content and
(2) can be prescriptively applied.

These words are the bottom line regarding the PEG's approach to bringing about ADPE-based
cultural change. The principal corollary to this bottom line then is that the PEG should stay
away from producing ADPE elements that are recipelike practices. We believe that software
systems development cannot be reduced to a recipe of single instructions. People and their
ability to apply themselves cognitively to software systems development are the most
important ingredients (no pun intended) for achieving software systems development success.

Successful Software Development, Second Edition

502

Figure 7-11 depicts this bottom line and its relationship to the notions of the "ADPE as a
business practice framework" and "prescriptive application of these practices."

Figure 7-11 An ADPE that cultivates cultural change is one that establishes a business practice
framework. The framework should stay away from recipelike practices and allow for
prescriptive application.

Successful Software Development, Second Edition

503

In cultivating cultural change, the PEG must keep in mind the underlying currents of people's
own experiences. Remember, Sam, Pam, and Ham—like most people in the software
industry—are naturally going to resist doing things the organization's way if they do not have
room to maneuver. Sometimes, maneuvering can degenerate into subterfuge. The PEG must
recognize that, within any organization, interpretations of what "playing by the ADPE rules"
means will generally span a broad spectrum. Some people will try to carry things out
meticulously according to what is written (e.g., if a CCB is to meet at least monthly, they will
tend to meet more frequently; if a suggested format for CCB minutes is included in an
element, they will pattern their minutes after that format and then some). Others will follow
the spirit of the ADPE rules but will be somewhat less fastidious in their application (e.g., if
an ADPE element calls for product assurance participation in CCB meetings, they may have
product assurance attend some meetings, but always copy them on CCB minutes). And still
others will draw a line in the sand and say that they will simply not follow some ADPE
practices (e.g., if an ADPE element calls for customer participation in the acceptance testing
process to decide TIR resolutions, they will adopt the attitude that they know what the
customer wants so that the customer does not need to be involved in the acceptance testing
process).

To aid in ADPE implementation, we suggest that the PEG should focus its attention on the
people in the middle of the spectrum. Once these individuals become more like the people
who follow the ADPE rules meticulously, the resistors will face increasing pressure to get on
board. The PEG must also recognize that some people are never going to change—and that it
is simply not costeffective to keep beating on those people to change. Remember, the captain
who went down with the Titanic was informed—so history tells—that his ship was in iceberg-
infested waters. Like this captain, there are some in the software industry who simply believe
that software disaster cannot happen to them—because their way of doing things is tried and
true. If the PEG has done a good job in following a process of getting organizational inputs to
mold an organizational practice framework in the manner suggested in Figure 7-11, then such
outliers will selfdestruct, eventually come on board, or leave.

The PEG must carefully listen to its constituency. If outliers constitute a large minority or a
majority, then something is breaking down. The PEG must be prepared to work with the
organization to get a better handle on what is working and change what is not. One word of
caution is in order regarding responding to cries for change. The PEG must be prepared to
ride out this storm. The PEG needs to distinguish between the turmoil resulting from (1) the
organization's adapting to a new way of doing things and (2) awkward or unworkable
business practices. It is undesirable, at least in organizations consisting of a hundred or more
people, to change an ADPE element more frequently than twelve to eighteen months. The
guidance here is that the PEG should plan for ADPE element change by allowing for a
settling-in period and then responding to organizational outcries for change.

One final comment is in order regarding Figure 7-11 and achieving cultural change through
ADPE implementation. Software industry experience shows that an effective way to induce
cultural change is to set up an organization with a specific process improvement goal. In this
circumstance, everybody who comes into the organization is committed to this goal. By
definition, then, everybody is on board. It typically takes several years to elevate the process
maturity of an organization one SEI level.[12]

12 In the early 1990s, Motorola set up an organization in India in this manner.This organization elevated its software process to a very mature level
(some reports indicated that the organization achieved SEI Level 5, the most mature level in the SEI scheme) in the space of several years.

Successful Software Development, Second Edition

504

Figure 7-12 contains an annotated outline for helping you get started in building an ADPE
element around a process like that shown in Figure 7-10—that is, an element that details the
process of creating, coordinating, promulgating, and updating ADPE elements.

Figure 7-12 An annotated outline for getting you started defining a process to govern ADPE
element development and improvement.

Our discussion of the PEG's perspective in bringing about cultural change through ADPE
implementation has touched on the perspectives of others within the seller and buyer/user
organization. We now turn to these other perspectives to highlight the other forces that play a
key role in shaping ADPE element content. Our discussion of these other perspectives must

Successful Software Development, Second Edition

505

be more general than the discussion of the PEG perspective in this section. It is simply not
feasible to consider in detail the myriad of organizational variations that exist in the software
industry. Furthermore, because we discussed at length the PEG perspective and because the
PEG should be the focus of organizational process definition and improvement activity, many
of the details of the other perspectives have their roots in the PEG perspective already
considered. For example, we discussed in connection with Figure 7-10 the roles that seller
senior management and buyer/user senior management play in the ADPE element
promulgation process. In particular, we explained the significance of having a senior seller
manager such as a program manager and this manager's buyer/user counterpart each sign the
cover sheet of an ADPE element. We pointed out that these signatures are not just a formality
to give an official look to a document. The seller program manager's signature testifies to the
fact that the seller's company is committed to the business practices set forth in the ADPE
element. The buyer/user program manager's signature testifies to the fact that the customer
concurs with these business practices and is committed to supporting them.

We begin with the seller project-level perspective, namely, that of the project participants and
the project manager.

7.4 Seller Project Participants and Project Managers

This section addresses ADPE implementation from the perspective of the seller project-level
individuals—i.e., members of the product development organization, the managers who direct
their efforts, and members of the product assurance organization—who will have to adapt to
the policies, guidelines, procedures, and standards that will govern their work.

We address a series of questions that include the following:

• What do seller project participants and project managers feel when faced with trying
to conform to ADPE business practices?

• How do some seller project participants and project managers show their resistance to
or acceptance of the ADPE business practices?

• How can the PEG try to reduce resistance or increase acceptance?
• What are the special issues that arise when the seller organization is made up of

several different corporations, each with different software systems development
cultures?

Each of these questions and others are discussed below. As stated before, there is no right set
of answers. We offer the following discussion as food for thought about cultural change.

ADPE development and implementation depends, in part, on such factors as the age of the
organization, organizational work experiences, how long the employees have been with the
organization, employee work experiences, and management commitment. Regardless of these
factors or other factors, when a person is faced with change, there are questions that surface.
For example, a project participant who is going to attend a briefing about a new
organizational product development process may ask questions or raise concerns that include
the following:

What is this process improvement stuff about? I've been doing fine without it.
Now I have to go to a briefing on some organizational product development
process. What does this process mean to me? What is my role? Hey, maybe

Successful Software Development, Second Edition

506

this new process will let me make a contribution. After all, I do a pretty good
job.

There will be a full spectrum of reactions, and adapting to the ADPE way of doing things
generally means that people will have to modify their engineering behavior to some degree.
This behavior modification generally causes pain because people may perceive they are
giving up something. In fact, they may be giving something up, but at the same time, they
may be gaining something. For ADPE implementation to take hold, each individual must
believe that the net gain in individual and organizational effectiveness more than compensates
for the loss associated with modifying personal behavior. As shown in Figure 7-13, if the
organization's process is based on prescriptive application of the ADPE way, the perceived
individual loss of "freedom to adapt" is countered by the freedom to adapt to the
organization's process. Also, if the individual has a say in framing the organization's process,
the individual's perceptions of loss of familiarity with doing things and the ability to innovate
are countered by incorporating into the organization's process, where feasible, the individual's
suggestions.

Figure 7-13 Individuals must perceive individual and/or organizational gains for ADPE
implementation to take hold.

Successful Software Development, Second Edition

507

In mature organizations, the individual replaces personal loss with personal gain and
organizational gain. For example, if a project participant has been working on essentially the
same aging software system or systems for a number of years, (e.g., three to seven years), the
participant feels comfortable with the day-to-day tasks. Life is fairly routine. However, one
day the customer decides to replace the aging system and articulates something like the
following:

I want to replace our old system. I want to migrate from our current database
technology to an object-oriented database. The new software language will be
C++. I want to use a combination of CASE technology and ... I need the system
yesterday... and I want the system to be independent of specific individuals.... I
don't want to be held hostage ... people are getting too expensive....

This story all sounds familiar. Maybe the technologies have changed, but technologies always
change. It is the last part of the customer's comments that are relatively new— "...
independent of specific individuals ... I don't want to be held hostage." Of course the
customer's words could be different, but the point is that project participants need to stay
current and mobile. A person who can work on several different types of projects has more
flexibility and stability than someone who has too narrow a set of capabilities. We are
suggesting that, for the long haul, it is important, if not necessary, for an individual to adapt,
to some extent, to the organization's way of doing business. This adaptation helps the
individual maintain professional mobility.

What does this cultural change via an ADPE mean for the project manager? First, the project
manager will probably have some of the same reactions as the project participants. After all,
project managers are humans too! Second, project managers typically take on an additional
leadership role. Not only do they need to understand (to some degree) the technology that
they are implementing, but also they need to understand how to complement project
participants' skill sets with each other and to match participants with specific technical tasks
that need to be performed. Project management is tricky business, and the project manager's
skills cannot be reduced to cookie-cutter steps. We suggest that project managers carefully
examine ADPE engineering processes and determine how, in specific terms, the processes
will impact what they do on a day-to-day basis. Consider the simple story that follows.

Successful Software Development, Second Edition

508

A project manager has a good relationship with the customer. The customer has
been used to calling up the manager or project participants and specifying system
requirements over the phone. Sometimes the customer talks about such requirements
in face-to-face conversations. However, rarely do these requirements make their way
into a requirements specification document that is approved by the customer. After
all, Bob and Sally have been working on the project for years, and they know what
the customer wants. A new ADPE element is introduced into the organization, and
the new product development process states that "all customer requirements should
be (1) put in writing, (2) reviewed for testability, and (3) approved, in writing, by the
customer." The project manager's reaction might be something like "my customer is
not going to be happy about this ... this process is going to slow down development
activities." On the other hand, the project manager's reaction might be "good ... this
is really going to help us to think through the job better ... it will take some
convincing, but I'll be able to better manage the customer's expectations of what
needs to bedone, what resources are really required...." In this case, it may be that
the project manager increases the control of the project, increases personal
productivity, increases the chance for potential growth, etc. However, the project
manager, the participants, and the organization need to recognize that the desired
changes regarding customer requirements take time. Time is one reason why it is
important for all organizational levels, and if possible, the customer, to be involved
with the cultural change journey.

The program manager, PEG manager, and others should also be working to effect the
changes. In particular, what can the PEG do to support effecting the change? As discussed
earlier (see Figure 7-10), the PEG can set up an ADPE development process that involves
seller management, seller staff, and if possible, customer personnel. The PEG should schedule
a series of briefings to explain ADPE elements. These briefings should answer the following
basic questions:

• What is the purpose of the ADPE element?
• What does the ADPE element look like?
• How is the ADPE element to be implemented?
• Who is responsible for what?
• How soon does this ADPE element take effect?
• What support can be expected from the management, the PEG, and the customer?

The PEG should be careful not to overwhelm people with the briefing. The briefing should
address these questions and paint a picture that the audience can relate to. If audience
members are overwhelmed with information and a confusing picture, they will become
intimidated by the ADPE element rather than excited about it.

If the organization can afford it or the customer is willing to pay for it, the briefings should be
scheduled during the regular working day, and the people's time should be paid for by the
organization. However, because of increased competition, decreased resources, etc., it is often
necessary to hold such briefings during lunch hour or after the normal business day.
Attendance under such circumstances should not go unnoticed by management. People who
are willing to help implement and evolve the culture should not go unrewarded. Each
organization has its own way of showing its appreciation. Some organizations give more
formal training, tuition reimbursement, and allowances for seminars for those who go the
extra mile.

Successful Software Development, Second Edition

509

Another ADPE training approach is to set up annual refresher training on all the ADPE
elements. In such a setting, a series of briefings, examples, and short training exercises are
presented over a two- or three-day period. At the end of the training, the program manager
presents certificates of accomplishment. Again, the training should not be overwhelming, but
at the same time, the training cannot be a waste of everyone's time. People at all levels in the
organization should participate in setting up the curriculum. The training should be viewed as
valuable. If it is possible, the customer should participate. Joint customer/seller training is an
effective ingredient for implementing cultural change.

We also suggest that the briefings can be given by people who are not members of the PEG.
The briefers need to be respected in the organization. Ideally, the briefers have participated in
the ADPE element development process. Many times, the first set of briefers are the
organization's early adapters who embrace new ideas and technology.

Are there special issues when the seller organization is made up of several corporations? In
general, the prime contractor should treat the subcontractor personnel as if they are employees
of the prime. If the subcontractors are part of an integrated team, then they should be afforded
the same training as the prime. Nondisclosure agreements can be signed to protect prime
contractor proprietary information.

Who pays for the subcontractor personnel's training time? The answer to this question
depends, in part, on what time of the day the training takes place. If the training occurs during
"off hours," then the prime contractor could provide the training materials (in addition to
providing the instructor) as a way of recognizing the subcontractor's going the extra mile. Of
course, costs can be shared. The point is that the contractor team needs to come together with
a mutually agreeable solution so that there is a consistent engineering approach across
company lines.

Another subcontractor issue that needs to be addressed is the level of authority that
subcontractor personnel can assume. Generally, the prime contractor is held responsible for
all contracted technical work. Often the prime's personnel hold the management positions one
layer below the program manager, the PEG manager position, and the independent product
assurance manager position. Most other positions are open to the subcontractors. If the
organization is deep enough, management positions can be open to the subcontractors. If the
subcontractors can offer only project participants, their people have limited growth
opportunities. The prime wants the subcontractor's best personnel. However, by limiting the
subcontractor's participation, the prime could actually foster personnel turnover.

How are subcontractor personnel selected for open positions? This issue, along with the
others just discussed, is part of the larger issue of what the image (and hopefully reality) the
contractor team presents to the customer. The answer depends, in part, on the way in which
the seller development organization wants to present itself to the customer. We are not going
to discuss all the possible situations. However, if it is possible, an integrated team approach
can be effective. In this case, the prime selects personnel who are the most capable to do the
work, regardless of company affiliation. This is a win-win situation for the customer, prime,
and subcontractor.

Up to this point in the book, we have primarily presented ADPE implementation from the
seller's viewpoint. However, it is important to recognize that the customer community may
have its own ADPE implementation program. Customer organizations, like seller

Successful Software Development, Second Edition

510

organizations, can have a broad spectrum of success implementing an ADPE. This spectrum
can be defined by the following three categories:

• No ADPE Program.

In this category, the organization does not have any documented practices in place.
Many times, such organizations are successful through the individual heroics of Sam,
Pam, and Ham. We are not saying that such organizations produce "poor" quality
products. However, we are saying that, in such organizations, consistent software
systems development success may be chancy.

• Immature ADPE Program.

In this category, the organization has some documented practices in place and some of
the people use them. Such an organization has a PEG in place, as well as an ADPE
implementation plan. Success in such organizations is due to a combination of
following their documented practices and from the individual heroics of Sam, Pam,
and Ham. An ADPE training program is usually in place to help with the ADPE
implementation.

• Mature ADPE Program.

In this category, the organization has documented practices in place, and most people
use them. Such an organization has a PEG in place, an ADPE implementation plan, an
ADPE training program, as well as mentoring and/or coaching programs in which
people consistently help one another. In such organizations, the watchword is
"teamwork." People think in terms of organizational success, as well as personal
success. People actively contribute to the refinement and implementation of ADPE
practices. The well-honed ADPE helps to stabilize the organization by providing
consistent and well-understood practices for successful software systems development.
At the same time, people increase their professional mobility because they are not
captive to a narrow range of job options.

At one end of the spectrum, customers with no ADPE programs may want to hire seller
organizations that also have no ADPE programs. However, such customers may also be
willing to do business with seller organizations with immature or mature ADPE programs.
Customers may be looking for help in implementing their programs, and so they may contract
only with sellers who have experience dealing with cultural change issues while
implementing a mature ADPE culture. At the other end of the spectrum, customers with
mature ADPE programs may refuse to do business with seller organizations with no ADPE
programs.

There are a number of customer/seller ADPE combinations. In the following two sections, we
consider some of these combinations. In particular, the following two sections highlight some
of the ADPE implementation issues from the viewpoints of the buyer/user project
management (Section 7.5) and buyer/user senior management (Section 7.6).

Successful Software Development, Second Edition

511

7.5 Buyer/User Project Management

This section discusses ADPE implementation from the perspective of the buyer/user project
management. Here, "buyer/user project management" is used to label those individuals on the
customer side who give technical direction to seller project managers for accomplishing
project work.

Figure 7-14 shows a customer organization's ADPE implementation status versus a seller
organization's ADPE implementation status. Implementation status values are "No ADPE,"
"Immature ADPE," and "Mature ADPE." As shown in the figure, at some of the intersections
of a seller organization ADPE implementation status and a customer status, we have entered a
possible customer reaction to the seller's status. For example, for the case in which the seller
organization implementation status is "No ADPE" and the customer's status is "No ADPE,"
the customer reaction may be as follows: "Customer project management supervises seller's
staff." This value may indicate that the customer perceives the seller's staff (i.e., seller project
participants) as an extension of the customer's staff. The customer provides day-to-day
supervision of and direction to the seller's staff. From the customer's point of view, this
arrangement may be seen as an effective way to develop software. In fact, this arrangement
may be the case. Potential issues to consider are the following:

Figure 7-14 ADPE implementation issues depend, in part, on how far along the customer and
seller organizations are in their respective ADPE implementations. This figure indicates a few
potential customer project manager reactions to seller ADPE implementation.

• Who is in charge? Seller management or customer management?
• Who is responsible if a software product does not work? To whom do the seller staff

report?
• Are such staff augmentation contracts legal? If not, why not? What is allowable?
• What restrictions do government employees have concerning the supervision of

private contractors?
• What is the customer's organizational policy concerning the supervision of private

contractors?

Successful Software Development, Second Edition

512

For the case in which the seller organization implementation status is "No ADPE" and the
customer's status is "Mature ADPE," the customer's reaction may be as follows: "Customer
project management will not work with the seller." In this case, the customer may not want to
spend time working with a seller organization that does not have in place a documented way
of doing business. The customer recognizes that seller personnel come and go. The customer
may not want to get into a situation where the project is tied to one or more key seller
individuals. Of course, people are key. However, if the seller has some documented processes
in place, the customer management may view the potential down time due to seller personnel
turnover as reduced.

For the case in which the seller organization implementation status is "Mature ADPE" and the
customer's status is "No ADPE," the customer reaction may be as follows: "Customer project
management is unhappy with seller's ADPE processes." In this case, the customer project
management may view the seller's ADPE processes as a burden. If the customer project
management is used to supervising the seller's staff, the customer management may
experience some of the real and perceived losses that people experience during a transition to
a new or different way of doing things. This situation may be a frustrating experience for both
the seller and the customer.

For the case in which the seller organization implementation status is "Mature ADPE" and the
customer's status is "Mature ADPE," the customer reaction may be as follows: "Customer
project management wants to participate in evolving seller's ADPE." In this case, the
customer project management may view the seller's ADPE processes as a major plus. Given
that both organizations have their own ADPE implementation programs, the customer project
management may want to share lessons learned with the seller and get involved with fine-
tuning seller (and maybe customer) processes. Collaboration may be a good idea, but
remember to keep the customer/seller interaction on a businesslike basis.

What can happen when the seller organization implementation status is "Immature ADPE" or
the customer's status is "Immature ADPE"? Things may get a little more complicated. In this
case, some of the seller and customer staff are on board with the program, and some are not.
This situation can cause lots of confusion and can contribute to inconsistent software systems
development efforts. For example, suppose Sally on the seller's side is on board, and so is her
customer counterpart. Suppose further that over time, Sally moves on to another project where
the customer is not on board. Now Sally is faced with the situation in which the customer
project management is going to be unhappy with Sally's use of the seller's ADPE processes.
Both Sally and the customer may be unhappy. This case could be a lose-lose situation.
Conversely, consider what may happen if Sally is not on board and moves to a project where
the customer is on board. This case may result with Sally's getting on board or the customer's
asking Sally to be removed from the project.

Now let's take a look at the same types of situations at the next higher levels in the seller and
customer organizations.

7.6 Buyer/User Senior Management

This section addresses ADPE implementation from the perspective of the buyer/user senior
management. Here, "buyer/user senior management" is used to label those individuals on the
customer side who (1) manage the buyer/user project management, (2) are paying the seller to
set up an ADPE, and (3) manage the managers in (1) and (2).

Successful Software Development, Second Edition

513

In general, these customer senior managers, coming as they do from different parts of an
organization, have different agendas. This situation is particularly so if the customer is a large
government organization or a large corporation. Consequently, aspects of ADPE
implementation that may please one of these senior management organizations may
antagonize another. For example, one customer senior manager may be pleased with the
visibility that manager may have into the seller's way of doing business brought about by
ADPE implementation. On the other hand, another customer manager may be against
anything the seller does simply because that manager was forced to take the business to that
seller because of a more senior customer manager or because of contractual agreements.

Figure 7-15 shows a customer organization's ADPE implementation status versus a seller
organization's ADPE implementation status. We use the same layout for Figure 7-15 as we
used in Figure 7-14. Implementation status values are "No ADPE," "Immature ADPE," and
"Mature ADPE." As shown in the figure, at some of the intersections of a seller organization
ADPE implementation status and a customer status we have entered a possible customer
reaction to the seller's status.

Figure 7-15 This figure indicates a few potential customer senior management reactions to
seller ADPE implementation.

For example, for the case in which the seller organization implementation status is "No
ADPE" and the customer's status is "No ADPE," the customer reaction may be as follows:
"Customer senior management just wants the products." In this case, the customer senior
management just wants the seller to deliver the products. The customer may not be really
interested in how the seller develops products. The customer just wants the products.

For the case in which the seller organization implementation status is "No ADPE" and the
customer's status is "Mature ADPE," the customer's reaction may be as follows: "Customer
senior management will not contract with seller." In this case, the customer senior
management may not want to spend any resources with a seller organization that is perceived
as not having a mature ADPE implementation program in place. Perhaps the seller
organization is perceived as not keeping pace with evolving software development practices.

Successful Software Development, Second Edition

514

With competition as tough as it is, many customer organizations use such criteria as "No
ADPE" to filter out seller organizations. Again, the issue is not that key individuals do not do
a great job and produce a great product. Many times key individuals do make the difference
between a failure and a success. However, customer organizations may want sellers to
embody those "key individuals'" contributions in processes so that successes can be
consistently repeated, even if key individuals leave the seller organization.

For the case in which the seller organization implementation status is "Mature ADPE" and the
customer's status is "No ADPE," the customer reaction may be as follows: "Customer senior
management will not pay for some of the eller's ADPE processes." In this case, the stakes
may go up. Customer senior management may be accustomed to more successes than failures,
and that's one of the reasons the manager has risen in the ranks. However, one visible failure
may end a career. If this situation is the case, then things can get stressful in a hurry if
schedules start to slip. Schedule slippage may be due to the seller's inability to come to
closure with the customer on requirements. For example, the seller follows a product
development process that requires the customer to sign off on requirements. If the customer is
used to dealing with "No ADPE" sellers, then enough time may not have been planned for
coming to closure. The customer may not have planned for such time in the past and may not
haveknown to adjust his or her thinking. The seller was chosen because of a reputation for
excellent work, but the customer did not fully understand how things were going to work.
Perhaps, in haste to get the work, the seller did not fully communicate how business was to be
conducted. On the other hand, maybe the seller did communicate what was required, but the
customer did not fully appreciate the seller's proposed schedule. In the past, the customer said
do it, and somehow it got done. Regardless, the project falls unacceptably behind schedule,
and the customer senior management pays the price. The seller may also pay the price, but
either way, it looks like another possible lose-lose situation.

For the case in which the seller organization implementation status is "Mature ADPE" and the
customer's status is "Mature ADPE," the customer reaction may be as follows: "Customer
senior management contracts only with seller." In this case, the customer senior management
may have put in place ADPE-like processes. The customer expects that the seller has similar
processes. In this case, the customer expects the seller to speak the same kind of ADPE
language. Without such ADPE processes, the seller need not apply. There are sellers who
have or who are putting in place the requisite qualifications. Seller organizations are aware
that more and more customer organizations are getting educated about ADPE-like practices.
A final thought—once a seller organization has the status of "Mature ADPE," the seller must
maintain and continue to improve on the processes to keep pace with (or take the lead from)
the competition.

What can happen when the seller organization implementation status is "Immature ADPE" or
the customer's status is "Immature ADPE"? This case is similar to the corresponding case
considered in Figure 7-14 where the customer project management was in the same situation.
Since some of the seller and customer staff are on board with the program and some are not,
things may get a little more complicated. Confusion and inconsistency can become
organizational watchwords. This situation can benefit from education and information about
ADPE implementation. The more that is communicated, the more that there is a possibility for
understanding and improvement. One of the most effective tools any organization has is
communication.

Successful Software Development, Second Edition

515

Now let's take a look at the same types of situations at an equivalent level in seller
organizations.

7.7 Seller Senior Management

This section addresses ADPE implementation from the perspective of the seller senior
management. Here, "seller senior management" is used to label those individuals on the seller
side who supervise seller project managers or managers of seller project managers.

Figure 7-16 shows a customer organization's ADPE implementation status versus a seller
organization's ADPE implementation status. This figure is laid out the same as Figures 7-14
and Figure 7-15. The major difference is that Figure 7-16 is from the seller's point of view
about the customer's ADPE status. Implementation status values are the same as before.
However, at some of the intersections of a seller organization ADPE implementation status
and a customer status we have entered a possible seller reaction to the customer's status.

Figure 7-16 This figure indicates a few potential seller senior management reactions to
customer ADPE status.

For example, for the case in which the seller organization implementation status is "No
ADPE" and the customer's status is "No ADPE," the seller reaction may be as follows: "Seller
senior management decides to pursue No-ADPE-like work." This value may indicate that
seller senior management has decided that there is a certain class of contract work (i.e.,
ADPE-like work) that they are not going to pursue, at least in the near term. The seller senior
management may recognize the cost of "retooling" its processes and "training" its people. The
business decision may be to pursue only those organizations that have "No ADPE"-like
environments.

For the case in which the seller organization implementation status is "No ADPE" and the
customer's status is "Mature ADPE," the seller's reaction may be as follows: "Seller senior
management recognizes the need for change." This customer/seller combination can arise
when the seller decides to expand the organization's horizons. In this case, the seller may want

Successful Software Development, Second Edition

516

to spend the necessary resources to open up the marketplace and work for a customer
organization that expects a consistent way or ADPE-like way of doing business. The seller
recognizes the fact that seller personnel come and go. Seller senior management recognizes
this fact and decides to commit resources to transition the organization. Seller senior
management recognizes that people are key. However, the seller also realizes that in order for
the organization to survive in the long haul, change must take place. Plans are made to get
some documented processes in place.

For the case in which the seller organization implementation status is "Mature ADPE" and the
customer's status is "No ADPE," the seller reaction may be as follows: "Seller senior
management recognizes the challenge." In this case, the seller recognizes that it will take time
to help the customer transition to ADPE-like processes. If the customer wants to transition to
a mature ADPE program, the seller's job is made easier. Seller senior management
commitment is critical. Without customer willingness and seller commitment, this case may
be a frustrating experience for everyone.

For the case in which the seller organization implementation status is "Mature ADPE" and the
customer's status is "Mature ADPE," the seller senior management reaction may be as
follows: "Seller senior management positions organization for all opportunities." In this case,
the seller senior management may view the customer's ADPE processes as a major plus.
Given that both organizations have their own programs, the seller senior management may
want to share lessons learned with the customer and get involved with fine-tuning customer
(and maybe seller) processes. Collaboration may be a good idea, but remember to keep the
seller/customer interaction on a businesslike basis.

What can happen when the seller organization implementation status is "Immature ADPE" or
the customer's status is "Immature ADPE"? As we have just discussed, things may get more
complicated. Confusion can abound. This situation is where the seller senior management can
demonstrate its commitment to help the seller's personnel and the customer to effect a cultural
change. This case then becomes a win-win situation for both the seller and the customer.

We want to make one last point before we move on to the summary section. Simply stated,
implementing change for the sake of change is not useful. Changing the way an organization
does business is complicated and complex. People are critical to an organization's success, as
are effective and useful processes. People who have been successful have valuable lessons
learned that should be carefully examined and considered for incorporation into an
organizational process. At the same time, while lessons learned are valuable, so are small
changes and innovations to existing processes. Small changes to proven processes and
innovative approaches help to stretch the organization beyond its current capabilities and help
it to grow. Each adaptation and innovation must be carefully weighed. Therefore, it is
important that all levels in the organization participate in the cultural change journey and that
they carefully select a path that makes sense for the people and the organization.

7.8 Cultural Change Summary

Table 7-1 summarizes the key points developed in the chapter. It offers cultural change
guidance associated with each of the perspectives considered in the preceding sections.

We have completed our discussion of bringing about cultural change through SEE
implementation. The next chapter, Chapter 8, which concludes the book, talks about SEE

Successful Software Development, Second Edition

517

implementation planning. We provide guidance on how to write an SEE implementation plan
to establish the framework for doing the things discussed in the preceding chapters. We have
chosen to end the book by discussing what should normally be done first in bringing about
software process improvement through an SEE—namely, planning. It is simply easier to
discuss the planning process once you understand the key factors bearing upon SEE
implementation. The final chapter leads you through a series of issues that helps you pull
together the concepts from the preceding chapters to help you construct an SEE
implementation plan for your organization.

Table 7-1. Perspectives and Cultural Change Guidance.
Perspective Guidance
Process
Engineering
Group

Involve project-level staff in ADPE development by soliciting their inputs during and
subsequent to ADPE element development. This approach helps to achieve buy-in
from the individuals who must live with ADPE elements. The result is unforced
cultural change. Avoid producing recipelike ADPE elements.

Seller Project
Participants

Recognize that the PEG's job is to help you and those to whom you report to do your
job and their jobs better. The more experienced you are, the more inclined you may
be to resist ADPE practices that may differ from your way of doing things.
Remember that the organization is the ADPE focus. The ADPE establishes the
organization's business practices—and thus its culture. Work with the PEG to refine
these practices. Remember, while everybody should be heard, it is simply not
possible to establish practices that let everybody do his or her own thing—that is
anarchy. Do not take personally the nonincorporation of your suggestions into ADPE
elements. A true measure of experience (and professional maturity) is willingness to
adapt personal practices to organizational practices.

Seller Project
Manager

Set the example for your staff by promoting buy-in to the organizational practices set
forth in the ADPE. Why make your already harried job more tumultuous by resisting
ADPE implementation? When the PEG sends out ADPE elements for review and
comment, exploit the opportunity to make your needs known. But remember, the
ADPE is put there to define consistent business practices for the organization—not
to accommodate your personal preferences.

Buyer/User
Project
Management

You are paying the seller to give you what you asked for. Recognize that both you
and the seller will mutually progress in understanding what needs to be done. A
competent seller sets up an ADPE to facilitate this mutual progression of
understanding. It is simply counterproductive to resist getting acclimated to ADPE
business practices. Remember, you have the opportunity when hiring the seller to
make your business practice requirements known. Remember, too, that you have
hired the seller because you were looking for someone to develop software systems
for you. While the "old way of doing business" may be all right in certain
circumstances, work with the seller to see what makes sense to do now.

Buyer/User
Senior
Management

When you hire a seller, offer incentives for setting up an ADPE. Two notable ways to
provide these incentives are (1) pay for the PEG (and adequately staff it) and (2) tie
the seller's fee to performance. Take care to get a balanced view of how well the
ADPE is working by querying seller management as well as your own project
managers. Do not undermine fee determination by attributing your project managers'
shortcomings to the seller's project managers. Remember, your project managers
will tend to resist the seller's ADPE practices because they will naturally be more
comfortable with the old way of doing business. Actively promote the new way by,
for example, encouraging your project managers to participate in seller-led training
activities aimed at explaining the new way and its benefits. Remember that when the
buyer/user and seller enter into a contract to do business the ADPE way, then both
parties should be accountable for the way they conduct the business of software
systems development. Insist that your project managers support the CCB process to
bring about buyer/user and seller accountability.

Successful Software Development, Second Edition

518

Seller Senior
Management

Walk the talk. Set the example for your project managers and staff by showing that
you are committed to doing business the ADPE way. Among other things, this
commitment means working with the customer to obtain his or her buy-in to the
ADPE way. Without senior seller management commitment to the ADPE way, the
organization will fracture into competing subcultures. This dissention will not be lost
on the customer, who may question the seller's commitment to the buyer/user—with
a loss of (follow-on) business.

Successful Software Development, Second Edition

519

Chapter 8. Process Improvement Planning
Make no little plans; they have no magic to stir men's blood and probably themselves will not
be realized. Make big plans; aim high in hope and work, remembering that a noble, logical
diagram once recorded will never die, but long after we are gone will be a living thing,
asserting itself with ever-growing insistency. Remember that our sons and grandsons are
going to do things that would stagger us. Let your watchword be order and your beacon
beauty.

—Attributed to Daniel H. Burnham [(1846–1912), American architect and city planner.]
While Burnham expressed these thoughts in a paper he read before the Town Planning
Conference, London, 1910, the exact words were reconstructed by Willis Polk, Burnham's
San Francisco partner. Polk used the paragraph on Christmas cards in 1912 after Burnham's
death in June of that year. —Henry H. Saylor, "Make No Little Plans," Journal of the
American Institute of Architects, March 1957, pp. 95–99.[1]

8.1 Introduction

The purpose of this chapter is to give you guidance for writing an SEE implementation plan.
Armed with this guidance, you can establish the framework for applying to your organization
the things discussed in the preceding chapters. Our approach is to present and discuss key
SEE implementation issues. The aim of this discussion is to provide you with insight into how
to lay out an SEE implementation approach that makes sense for your organization. For
example, we discuss the rate at which ADPE elements should be developed and implemented.
We describe some of the key factors bearing upon this rate (e.g., the software and system
engineering experience level of your organization's management and staff). These factors
should help you plan an ADPE development and implementation rate appropriate for your
organization.

Before we address process improvement planning issues, we set context. Figure 8-1 reminds
us that, as we repeatedly stressed in the preceding chapters, consistent successful software
systems development requires sustained effective communication between the software seller
and the software customer. Reduced to the simplest terms, the concepts and principles
examined in these chapters have their roots in this premise. We now recall some of these
concepts and principles through an overview of the preceding chapters. To aid you in this
recall, Figure 8-2 highlights the theme of each of these chapters.

1 Suzy Platt, ed. Respectfully Quoted: A Dictionary of Quotations from the Library of Congress (Washington, DC: Congressional Quarterly Inc.,
1992), p. 256.

Successful Software Development, Second Edition

520

Figure 8-1 At the most fundamental level, the avenue to consistent successful software
systems development is sustained effective communication between the wizard (i.e., software
seller) and the king (i.e., software customer). (The Wizard of Id, September 30, 1983. Reprinted
by permission of Johnny Hart and Creators Syndicate, Inc.)

Figure 8-2 The preceding chapters capture the essence of things that you need to consider in
planning for implementing a systems engineering environment (SEE) in your organization. SEE
implementation is a structured way of institutionalizing consistent successful software
systems development. This chapter integrates the ideas from the preceding chapters to guide
your SEE implementation planning activity.

Successful Software Development, Second Edition

521

• Chapter 1 (Business Case) explored why it makes good business sense for an
organization to take the time to alter its way of doing software development to achieve
consistency. This chapter also introduced key concepts to establish a working
vocabulary for the rest of the book (e.g., software, software process, product and
process "goodness," culture). We emphasized that customer/seller faulty
communication underlies a majority of software systems development problems. We
stressed that software process improvement is first and foremost a cultural change
exercise. We introduced the requisite software systems development disciplines—
management, development, and product assurance. We introduced the change control
board (CCB) as a mechanism for sustaining effective communication among these
disciplines throughout a software systems development project. We introduced the
notion of "prescriptive application" of an organization's documented software systems
development process. We explained why prescriptive application is one of the keys to
institutionalizing the process. We introduced the concept of "systems engineering
environment." We explained that this book's approach to cultivating consistent
successful software systems development has its roots in the SEE concept. The SEE
also provides the means for effecting improvement to the software development
process. Consistent successful software systems development and software process
improvement are thus intertwined in the SEE concept.

• Chapter 2 (Project Planning Process) provided you with guidance for effectively
planning software systems development work. We referred to the document containing
planning information as the "project plan." We indicated that the project plan is a
gauge used, in part, to think through what needs to be done, to estimate how much the
effort may cost, and to determine whether software systems development work is
unfolding as it was envisioned. We stressed that project planning is an ongoing
negotiation between the customer (king) and the seller (wizard). We showed you how
to plug the CCB apparatus into your project plan so that the wizard and king could
effectively interact throughout the project. We showed you how the life cycle concept
can be used to drive out specific tasks to be performed. We illustrated this
fundamental point with three example life cycles—(1) six-stage classical
development, (2) prototype development, and (3) (data-centered) information
engineering. We showed you how to design a simple risk assessment approach for
allocating resources to the three sets of requisite software systems development
disciplines—management, development, and product assurance—thereby showing
how you can explicitly incorporate risk reduction into your project budget. Most
importantly, we showed you how to plan for change. We organized this project
planning guidance into an easy-to-use package by showing you how to develop an
ADPE element defining your organization's project planning process.

• Chapter 3 (Software Systems Development Process) established the focus for the
remainder of the book. We defined principles for defining a software systems
development process. We explained that a process constructed by applying these
principles is likely to yield consistently "good" products—i.e., products that your
customer wants and that are delivered on time and within budget. To help you apply
these principles, we illustrated them by defining a top-level process that you can use as
a starting point to formulate a process for your own organization. We again stressed
the critical importance of maintaining the wizard and king dialogue by making the
CCB a key element of the top-level process. We emphasized that, in general, the
process cannot be reduced to a rigidly defined procedure with a definite order to the
steps to be followed. Rather, we stressed that prescriptive application of the process
was key to achieving consistent software systems development. That is, the process

Successful Software Development, Second Edition

522

should specify what is to be done; individuals should be empowered to figure out how
to do the what. We showed you how to plug a specific life cycle into the top-level
process to explain how a project unfolds during process application. We showed you
how to design a form to help you track a product as it wends its way through your
software systems development process. We explained that the process does not stop
once the product goes out the seller's door. Rather, we discussed the customer and
seller responsibilities after the seller has delivered the product to the customer. We
folded the chapter's process definition ideas into an easy-to-use package—namely, an
annotated outline for an ADPE element defining your organization's software systems
development process. We explained why this element is a good place to begin setting
up your ADPE.

• Chapter 4 (Change Control Process) focused on the change control board (CCB) as a
forum for sustaining effective communication between the wizard and king as well as
among the wizard's staff. We provided you with guidance for setting up CCBs for
your software systems development process. We also provided guidance for managing
unplanned, as well as planned, change. We thereby closed the loop introduced in
Chapter 2 where we emphasized that you need to account for the unknown in your
project plan as well as accounting for the known. Chapter 4 also closed the loop
introduced in Chapter 3, which stressed that, by integrating the customer/seller CCB
into your software systems development process, you make product acceptance by the
customer almost a foregone conclusion. We showed you how to do this integration by
stepping through change control mechanics for both planned and unplanned changes.
We explained the CCB role in traversing a project life cycle. We introduced the
following three scenarios, each regulated by a CCB, that we asserted govern all of
change control:

o Do we want something new or different?
o Is something wrong?
o Should we baseline the product?

We showed you what to record at CCB meetings and gave examples of CBB minutes.
We offered you guidance for choosing a CCB chairperson and a CCB voting
mechanism. We offered you guidance for determining when CCB hierarchies are
appropriate and how to set them up. We gave you detailed guidance for constructing
change control forms to support the preceding change control scenarios. We also gave
example forms to help you get started in applying this guidance. We organized the
CCB concepts and guidance into an easy-to-use package by showing you how to
develop an ADPE element defining your organization's change control boards.

• Chapter 5 (Product and Process Reviews) focused on the product and process reviews
needed to give visibility into what is happening on a software project. To establish
context for the chapter, we asserted the following:

o Each software project should be approached with the candid realization that it
is a voyage through iceberg-infested waters (or worse!).

o If this attitude is adopted, then common sense and the natural instinct for self-
preservation can lead to only one conclusion—that some way must be found to
steer clear of the icebergs to the extent prudently possible.

o Product and process reviews are techniques for steering clear of the icebergs.

We defined a two-dimensional review taxonomy that consists of the following product
and process reviews:

Successful Software Development, Second Edition

523

o Management Reviews
� Product and Process Programmatic Tracking
� Product and Process Technical Oversight

o Development Reviews
� Product and Process Peer Reviews
� Technical Editing of Software and Software-Related Documents

o Product Assurance Reviews
� Product Quality Asurance, Verification and Validation, Test and

Evaluation, and Self-Comparison
� Process Quality Assurance at the Product Level and at the Project Level

The product reviews identified were, for the most part, those called out in Chapter 3
when we defined a top-level software systems development process. The process
reviews identified were extensions to the product reviews. For example, for
management, we called out two types of reviews—programmatic tracking and
technical oversight—for both a specific product and the software systems
development process.

We organized the chapter along the lines of the systems disciplines. Because we
believe that application of the product assurance disciplines offers the greatest
potential for reducing risk on a software project, the chapter devoted considerable
attention to the product assurance product reviews. In particular, the chapter stepped
through the mechanics of product assurance document reviews and acceptance testing.
In this book, acceptance testing constitutes that activity in the software systems
development process where the wizard formally demonstrates to the king that the
software system and supporting databases do what they are supposed to do.
Acceptance testing is therefore the bottom line of the software systems development
process. For this reason, the chapter includes a detailed discussion of requirements
testability with a worked out example.

For reviews not addressed (e.g., unit and integration testing), the chapter offered
suggestions for extending the taxonomy to include such reviews. To help you apply
the review guidance presented in the chapter, we showed you how to develop an
ADPE element for product assurance reviews. We showed you how to integrate other
product and process reviews into this element. Because peer reviews are generally
recognized as adding significant value to the software systems development process,
we showed you how to develop a peer review ADPE element.

• Chapter 6 (Measurement) provided you with guidance for measuring product and
process "goodness." Borrowing from the mathematical discipline of vector analysis,
we quantified "goodness" as the length of a vector in a space that we labelled
"integrity." The dimensions in this space are the product or process attributes that we
are interested in measuring. For example, for a product we might want to measure the
extent to which customer requirements are satisfied and/or whether delivery was on
time and/or delivery was within budget. For a process, we might want to measure, for
example, whether peer reviews were conducted and/or whether product assurance
reviews were performed and/or whether risk assessment was performed during project
planning. We illustrated how to set up value scales for the attributes and gave you
guidance for establishing value scales that make sense for your organization. We
illustrated how to measure the integrity of a requirements specification, a user's

Successful Software Development, Second Edition

524

manual, computer code, and a project plan. We illustrated how to measure the
integrity of the process introduced in Chapter 3. To help you apply the chapter's
integrity measurement approach, we reduce it to a small number of easy-to-follow
steps. These steps also show you how to relate process integrity and product integrity
measurements to one another to help you focus your process improvement efforts.

The product/process integrity measurement approach presented is actually a very
general approach to quantifying almost any object. We thus call this approach "object
measurement," or OM®. To hint at its general applicability, we applied OM to the
Software Engineering Institute's Capability Maturity Model for Software (CMM® for
Software) to show how the model's key process areas (KPAs) could be quantified. We
also showed how OM can be used to quantify abstract entities such as strategic
information management.

In addition to product integrity and process integrity measurements, we showed how
to establish other process-related measurements tied to one or more components of the
software systems development process. The approach was based on taking simple
averages involving the number of times a particular activity or set of activities was
performed on various projects within an organization. For example, we defined the
following measurements that might be useful for an organization to collect for the
purpose of assessing process effectiveness:

o Average number of peer reviews required to produce deliverables that are
accepted by the customer (i.e., the customer returns the Acceptance of
Deliverable form indicating "the product is accepted as delivered").

o Percentage of deliverables delivered on time to the customer during a specific
period for certain projects, where "on time" is according to delivery dates
specified in project plans or CCB minutes.

o Average number of drafts required to produce a project plan resulting in a
project.

o Customer perception of the seller organization.

We organized the chapter's measurement guidance into an easy-to-use package by
showing you how to develop an ADPE element defining your organization's product
and process metrics and your organization's approach to applying them to improve
your software(-related) products and software development process.

• Chapter 7 (Cultural Change) focused on the human, as opposed to engineering, issues
bearing on successful software systems development. The chapter proceeds from the
following premise, which is grounded in experience:

Getting a process on paper is a challenge, but getting the people in the
organization to commit to the change is the challenge. People commit
to change for their own reasons, not for someone else's reasons.
Therefore, when people are asked to commit to change, their first
concern may be their perceived losses.

We stressed that SEE implementation is first and foremost a cultural change
exercise—an exercise in behavior modification. As we explain in the current chapter,
this consideration bears heavily on developing a realistic SEE implementation plan.

Successful Software Development, Second Edition

525

Successful software implementation is predominantly a people management exercise
and not an engineering management exercise. Most of us do what we do (whether it is
developing software systems or brushing our teeth) because we feel most comfortable
doing things our way. It should therefore not be a surprise that persuading people in
the software systems development world to do things someone else's way (i.e., the
organization's way) can be a daunting challenge—fraught with surprises.

We examined the role in bringing about cultural change of the organization
responsible for writing the ADPE elements (i.e., the process engineering group [PEG])
and seeing to it that they are implemented and continually improved. We alerted you
to considerations bearing upon PEG member qualifications (e.g., hands-on experience
developing software systems).

We discussed how to deal with ADPE implementation challenges arising from the
wizard's project-level individuals who will have to adapt to practices set forth in the
ADPE elements that govern their work. On the customer side, we discussed how to
deal with ADPE implementation challenges arising from those kings who give
technical direction to wizard project managers. In this vein, we discussed how to get
the customer to be part of ADPE implementation. We also discussed the pros and cons
of getting the customer to be accountable for ADPE implementation, as well as the
seller.

We examined the key role that seller senior management plays in effecting software
systems development cultural change through ADPE implementation. On the other
side, we examined the impact on customer senior management that ADPE
implementation brings about.

We provided you with guidance for extracting key ideas from ADPE
elements and packaging them for distribution to your organization as a
means for effecting cultural change (e.g., the use of prominently
displayed foam boards showing key process concepts such as
requirements based acceptance testing).

We discussed the role of training in effecting cultural change. In
particular, we stressed the key role that ADPE element briefings to
wizard and king staff plays in getting the organization to assimilate
desired engineering behavior. Allied with the role of training in
bringing about cultural change, we examined the role of mentoring and
coaching. We discussed how to sell ADPE implementation as a career
growth opportunity.

We looked at organizational factors bearing upon how long it takes to
bring about cultural change.

We examined why an ADPE element defining the ADPE element
development and improvement process is intimately tied to
organizational cultural change.

We concluded the chapter by giving you an annotated outline for an
ADPE element defining the ADPE element development and

Successful Software Development, Second Edition

526

improvement process. This element provides the framework for
evolving the ADPE in a self-consistent manner.

Where do you go from here? How do you put together the concepts and guidance from
the preceding chapters to lay out an approach for consistent successful software
systems development or to improve what you already have? As Figure 8-3 indicates,
this chapter is aimed at helping you plan an SEE implementation approach.

Figure 8-3 This chapter offers planning guidance to wizards and kings for setting up a software
process improvement approach via SEE implementation. The chapter helps you select
concepts from the preceding chapters to construct this approach. The concept of
implementation plan as used in this chapter means "anything from notes scratched on the
back of an envelope to a multivolume formal and highly detailed document—whatever makes
sense for your organization." Reduced to simplest terms, plan in this chapter means "think and
coordinate before doing."

We stress at the outset that this chapter is intended for both wizards and kings. If you
are a wizard, this chapter will help you respond to a king's request for a wizard whose
skill lies not in hand-waving but lies in setting up and following processes that
consistently yield products with integrity (ideally, you should not have to wait for a

Successful Software Development, Second Edition

527

king to ask you for a repeatable way of doing business). If you are a king, this chapter
will help you (1) construct an SEE implementation approach to include in a request for
proposal (RFP) that you want a wizard that you intend to hire to follow or (2) give
guidance in an RFP to a wizard that you want to hire to construct an SEE
implementation approach to include in the wizard's proposal or (3) give guidance to a
wizard that you have already hired to construct an SEE implementation approach.

As Figure 8-3 indicates, "implementation plan" as used in this chapter spans a broad
spectrum. It could be something as informal as notes scribbled on the back of an
envelope highlighting the handful of things that need to be accomplished to set up and
operate within an SEE. At the other end of the documentation spectrum,
"implementation plan" could be a multivolume tome (for, say, a large systems
development effort with major software content, or for a large organization handling
fifty to several hundred or more concurrent software systems development efforts). Or
"implementation plan" could be something in between these two documentation
extremes. No matter where in the spectrum it lies, the purpose of the plan is to bring
involved parties within an organization into the same frame of reference for setting up
a consistent way of doing software systems development business.

This chapter serves as a guide to help you work your way back into previously
introduced ideas to integrate them into an SEE implementation approach that makes
sense for your organization. Since we do not know the details of your organization,
this chapter bounds your thinking by giving you factors to consider when laying out an
implementation approach. For example, we give you things to consider bearing upon
how frequently ADPE elements should be updated so that you can include in your
implementation plan an element update schedule.

The plan for the remainder of this chapter is the following:

o In Section 8.2—SEE Implementation Planning Key Ideas—we present the
key ideas that you can expect to extract from this chapter.

o In Section 8.3—Key SEE Implementation Planning Issues—we present and
discuss nineteen issues that you can draw upon to decide what may be
important for your organization regarding SEE implementation.

o In Section 8.4—Making Successful Software Development Happen—we
offer some closing remarks about the book.

8.2 SEE Implementation Planning Key Ideas

Figure 8-4 lists the key ideas that you can expect to extract from this chapter. To introduce
you to this chapter, we briefly explain these key ideas. Their full intent will become apparent
as you go through the chapter.

Successful Software Development, Second Edition

528

Figure 8-4 Here are some key process improvement planning concepts explained in this
chapter. These key ideas are your guide to plan SEE implementation realistically. A realistic
SEE implementation plan helps to focus your efforts toward consistent successful software
systems development. To plan realistically in this chapter means "laying out an approach that
motivates people to (1) overcome their resistance to change and (2) implement SEE business
practices."

1. Plan your process improvement with business practices defined in ADPE elements.
Your SEE implementation plan should propose an element phase-in strategy, with
your first element defining your software systems development process.

As we showed in Chapter 3, this element establishes the context for most or all other
ADPE elements. The software systems development process element is itself thus a
plan for subsequent ADPE development. Any SEE should include at least this element.

2. The primary objective of SEE implementation is to establish organizationwide
business practices that do not depend on particular individuals for their successful
accomplishment.

This objective should not be misunderstood. Removing dependence on particular
individuals for successful software systems development does not mean that SEE
implementation is designed to put people out of work. Good people are certainly
needed to achieve successful software systems development. The intent of establishing
organization-wide business practices is to plug all these people into a consistent way
of doing things, so that on any given day good work will be done no matter who is
doing the work. These business practices leverage the goodness of people across the
organization and help provide them with professional mobility. For example,
Chapter 4 showed how to set up an ADPE element governing an organization's CCB
meetings. Specifically, we explained how this element can be used to specify
organizationwide practices for setting up, conducting, and documenting CCB
meetings. These practices allow CCB meetings to be conducted and documented on
any given day in the same way that they are conducted and documented on any other
day—no matter who is conducting and documenting them. Good people are, of course,

Successful Software Development, Second Edition

529

needed to make these meetings worthwhile—that is, to help carry through on software
project work.

3. Package your engineering environment in a binder containing your ADPE elements
and material pertinent to your technology environment. Give a binder copy to each
member of your organization.

SEE implementation cannot begin to happen unless the SEE gets into the hands of
your organization's people. One standard way to promulgate ADPE elements and the
associated technology environment is to place this material in a binder (hard copy or
electronic) and give each member of your organization a copy when that person joins
your organization. The binder should also contain an explanation of the SEE concept
and the relationship of this concept to your organization's business objectives. It
should also contain instructions for adapting its contents to the specific project work to
be accomplished by the binder recipient. For example, each binder should have space
for project-specific material such as a copy of the customer's statement of work
(SOW) and the project plan governing that recipient's work. Your organization should
set up a process for sending SEE updates to binder recipients.

Of course, packaging the SEE in a binder and giving binder copies to each member of
your organization does not make the business practices in the binder happen. Among
other things, your organization should establish a policy delineating that each
individual is responsible for (1) reading its contents, (2) following the practices
documented therein, and (3) promoting these practices with your organization's
customers. To make this policy happen, you will need to offer training and incentives.
The training should be aimed at explaining such things as the engineering principles
underlying ADPE elements and the value added of following the practices; the
training should also stress that following the practices offers the individual career
growth opportunities because the individual is not a captive of a particular project
function (e.g., with a documented configuration management process, individuals
currently handling configuration management functions can move on to other things
because these documented functions can be performed by other individuals). But
documenting your business practices (through ADPE elements or by other means)
itself will generally not make SEE implementation happen. People will need to be
offered incentives to adapt themselves to these business practices (e.g., salary raises
tied to the degree to which an individual can demonstrate that he or she has followed
the SEE way on project work).

4. Make the CCB your process focal point for customer/seller interaction.

At the outset of this chapter, we reiterated that the avenue to consistent successful
software systems development is the sustained effective communication between the
wizard (i.e., software seller) and the king (i.e., software customer). Chapter 4 detailed
how the CCB is a mechanism for sustaining this communication. Chapter 3 explained
how the CCB serves to focus project activity. A CCB mechanism should be put in
place even before you document your organization's software systems development
process. Customer/seller interaction should be formalized (via a CCB mechanism) at
project outset—even without a CCB ADPE element. CCB rules can be stipulated in
the project plan. Lessons learned from iterating on such rules during the early stages of

Successful Software Development, Second Edition

530

setting up an SEE can be folded into such an element (to be promulgated after a
software systems development process ADPE element has been promulgated).

5. In a small organization (say, up to ten people), plan for packaging the ADPE into a
single element, with each section addressing what in a larger organization would be a
separate element.

A consistent way of doing software systems development business is independent of
organization size. Thus, documented business practices have a place in small as well
as in large organizations. Because the number of communications paths among
individuals is much less in small organizations than it is in large organizations, the
amount of documentation needed to specify these practices is generally much less in
small organizations than it is in large organizations. This principle should be applied
when planning SEE implementation for a small organization. However, as with most
software engineering principles, this principle is not inviolate. In some cases, it may
be necessary to have voluminous ADPE elements even in a small organization. Such
would be the case if, for example, a small organization were responsible for
developing software systems whose failure might result in people getting killed,
suffering injury, or sustaining large financial loss. Such would also be the case if a
small organization were developing software systems under a fixed-price contractual
vehicle. In this case, the seller might sustain large financial loss if the way of doing
business were not clearly spelled out (particularly if the seller becomes involved in
litigation). A small organization might also need voluminous ADPE elements if it
were responsible for developing warranted software systems (for example, the seller
would be responsible for repairing or replacing computer code, databases, and/or
documentation for, say, up to one year after purchase—at no cost to the buyer).

6. Include in your plan a strategy for winning people over to the ADPE way (e.g.,
mentoring, bonuses).

We detailed in Chapter 7 how ADPE implementation is a cultural change exercise. A
realistic SEE implementation plan needs to include a strategy for winning people over
to the ADPE way by (1) accounting for people's natural resistance to change, (2)
building upon business practices that may already exist, and (3) encouraging people to
contribute to the development of new business practices.

7. Make requirements management a training priority.

This key idea is a corollary to the message in the wizard-and-king comic strip.
Requirements management is the number one challenge industrywide to successful
software systems development. If it does nothing else, your requirements management
training should provide guidance on how to institute effective oral and written
communication between the wizard and king.

8.3 Key SEE Implementation Planning Issues

This section discusses the planning issues listed in Figure 8-5. This section is intended to help
you overcome the blank-page syndrome as you approach the SEE implementation planning
task. You should first read through the issues. Then, cull out from this reading those issues
that you think are important for your organization. The discussion of these issues included in

Successful Software Development, Second Edition

531

this section should help you put together your SEE implementation approach. We give you an
annotated outline for an SEE implementation plan to help you organize this material. Also,
you should add to the issues addressed in this section any other issues that may come to mind
as you go through the issues included in this section.

Figure 8-5 Here are the key SEE implementation planning issues addressed in this chapter.
These issues are things that you should consider when planning an SEE implementation
approach for your organization.

Each issue listed is discussed separately. The purpose of this discussion is to give you insight
into factors bearing on the issue. With this insight, you can determine (1) whether the issue is
pertinent to your organization and, if so, (2) how to address the issue in your implementation
plan. Even if your implementation plan is only laid out on the back of an envelope, you will
need to deal with some of these issues. The issues shown may also stimulate you to formulate
other issues that are important for your organization.

The focus in this chapter is on the ADPE side of the SEE. However, we do provide you some
top-level guidance regarding the ADTE. Because this book focuses on process, we do not
give technology-specific guidance.

To help you see the factors bearing on the issue, we include at least one figure for each issue
addressed. You may want to adapt one or more of these figures to your environment and
include them in your SEE implementation plan and/or your ADPE elements.

Successful Software Development, Second Edition

532

We now begin the discussion of each of the nineteen issues listed in Figure 8-5.

1. What are timeline considerations for SEE implementation tasks and their phasing?

A key element of any planning activity is scheduling. To help you plan SEE implementation,
we show in Figure 8-6 a representative timeline of tasks and their phasing. For completeness,
we also include in the timeline the task for writing the SEE implementation plan itself. Before
examining this figure in detail, we note that buyers may want to use this timeline as a starting
point for specifying an SEE implementation approach to include in an RFP. The buyer may
want candidate sellers to specify in their proposals how they would pursue such an approach.

Figure 8-6 To help you plan SEE implementation, here is a representative timeline of tasks and
their phasing. For completeness, we show the task for writing the SEE implementation plan
itself. Time for training people on the ADPE is not shown. This training activity should be
coupled to the preparation and promulgation of individual ADPE elements.

We now consider some of the key planning factors associated with the Figure 8-6 timeline.
The task durations shown in Figure 8-6 will generally vary across a broad range. They depend
on factors such as the following:

• Size of your organization
• Number of organizational elements that you want to involve in the review of ADPE

elements
• Funding cycles for your work
• Software engineering savvy of the people in your organization

In general, the larger your organization, the more varied may be the backgrounds of the
people. Assessing the audience for the ADPE elements may be more challenging, and hence

Successful Software Development, Second Edition

533

more protracted, in larger organizations. More iterations of drafts of a given element may be
required before the element can be promulgated.

Another factor bearing on task duration is the number of organizational elements that you
want to involve in the review of ADPE elements. In large organizations, particularly those
with many layers, sending ADPE drafts up and down the chain of command can take a lot of
time. It is generally a good idea to let everyone in your organization have a crack at reviewing
an ADPE element draft at least once. This approach fosters buy-in to the ADPE way—but can
add considerable time to the ADPE element development cycle. In addition, as we discussed
in preceding chapters, we recommend that the customer be made part of the ADPE review
process, an action which tends to draw out the ADPE element development cycle even more.

One way to accommodate lengthy review cycles and still move ahead with getting some
business practices in place is, as Figure 8-6 indicates, to prepare and use trial ADPE elements.
Some of these trial elements may be included in the SEE implementation plan. The idea is to
get something in place, as rough as it may be. Experience gained from using these trial
elements can be fed into the development into more polished ADPE elements.

Funding cycles for your organization can play an important role in the pace of SEE
implementation. If, for example, your organization is funded on a yearly basis and funding for
the next year is contingent upon doing good work in the current year, you may need to have
several clearly defined milestones every twelve months to make manifest SEE
implementation progress to increase the likelihood of funding for the next year. You may
therefore have to turn out a number of ADPE elements in a relatively short period of time.
This constraint has to be traded off with the factor just discussed regarding the number of
organizational elements that you want to involve in the review of ADPE elements. Of course,
if you have only one year (or less) to set up and follow ADPE practices, then the duration of
the tasks shown in Figure 8-6 will be weeks or even days. The point is, no matter what your
funding cycles may be, it is feasible (and we hope you now believe it is desirable) to set up a
consistent way of doing software systems development via an SEE.

Another key factor bearing on the rate of ADPE element development and implementation is
the software engineering savvy of the people in your organization. By software engineering
savvy we mean "understanding that it is indeed preferable to apply engineering discipline to
software systems development rather than approach it as a stream-of-consciousness exercise
in artistic expression." In general, the less experienced your people are in this regard, the more
time will be required to develop ADPE elements and get them to catch on. With a less
experienced organization, it will generally be necessary to include more tutorial information
in ADPE elements. This task is not easy. The tutorial material will need to be located where it
does not obfuscate the description of the business practices the organization is to follow. One
way to perform this separation is to place tutorial material in appendices. Regarding the pace
of ADPE implementation, it is more difficult to generalize as to whether more experienced
organizations will adopt the ADPE way more rapidly than will less experienced organizations.
Sometimes, more experienced people are so set in their ways that they are highly resistant to
changing their way of doing things. On the other hand, less experienced people may resist
carrying out the ADPE way because they are unsure of why it may be more beneficial to
follow than their former way of doing things. For example, the concept of independent
product assurance can take a lot of getting used to by people whose prior experience with
checking work was limited to their own checking (this attitude may be present in both

Successful Software Development, Second Edition

534

software veterans and software novices). One final comment regarding "software engineering
savvy" is in order:

There may not be a direct correlation between the number of years a person
has worked in the software industry and the amount of software engineering
savvy that person has. It is not uncommon to see people with ten or more years
of experience in the software industry who hold the belief that you should
"code first and ask questions later."

Figure 8-6 does suggest an order for the first couple of ADPE elements that should be
promulgated—(1) Software Systems Development Process, (2) CCB, and (3) ADPE Element
Development Process. In preceding chapters, we explored at length the rationale for this
order. By way of a reminder, the Software Systems Development Process ADPE element sets
the context for most other elements; the CCB ADPE element serves to standardize and give
visibility to decision making, particularly with respect to customer/seller interaction; the
ADPE Element Development Process element is to the ADPE what the Software Systems
Development Process element is to software (-related) products. This third element thus
defines a consistent way that the ADPE is developed (and improved). The experience gained
developing the first two elements can be fed into the development of this third element to
provide insight for streamlining the ADPE element development process.

Another consideration heavily influencing the timeline in Figure 8-6 is that, once
promulgated, an ADPE element should be given time to take hold before making any
substantial changes to it. If, for example, your organization is involved in a multiyear process
improvement program, then we suggest that no element should be changed less than twelve to
eighteen months after it has been promulgated. If your program is of shorter duration, then
your cycle times for promulgating and revising elements should be in terms of weeks.

Another factor bearing on the timeline in Figure 8-6 is the rate at which organizational
cultural change can be expected to take place. As we stressed in Chapter 7, SEE
implementation is essentially a cultural change program. Thus, SEE implementation planning
must account for the resistance inherent in any cultural change activity. Later in this section
we address specific issues that provide insight into how to encourage cultural change. For
now, we offer the following factors that you should consider when timelining your SEE
implementation approach:

• People need to see the net benefit of, in the case of SEE implementation, following the
ADPE way. Your SEE implementation plan should therefore point out some of these
benefits. Example benefits include the following:

o A defined way of doing things helps people understand what is expected of
them.

o Individuals can receive rewards for contributing to and following the ADPE
way.

o Individuals are not restricted by inflexible organizational practices. The ADPE
way should not be inflexible. We repeatedly stressed the need for setting up an
ADPE based on prescriptive application of its practices. Prescriptive
application is itself an incentive, since it demands of the individual to think
about what makes sense in a particular situation regarding ADPE application.

• A necessary (but not sufficient) condition for encouraging cultural change is getting
senior management buy-in to the ADPE way. This buy-in can be enormously difficult

Successful Software Development, Second Edition

535

to achieve. Since, by definition, senior management is "in charge" at various levels
within the organization, getting this buy-in is tantamount to asking them to give up
some of their sovereignty. Using the argument "it is the right thing to do" will
probably not work. What generally works is appealing to the argument of competition.
If your competitors are adopting or already have successfully adopted a consistent way
of building good software systems, senior management will probably be more inclined
toward supporting the ADPE way—particularly if you explain how the ADPE way
can reduce software systems development risk (as, indeed, we argue throughout the
preceding chapters). We stress that, if senior management does not buy into the ADPE
way, the SEE implementation approach you propose is doomed to failure. Your
organization will likely fractionate into competing fiefdoms—and the ADPE way will
be the subject of implicit, if not explicit, derision.

• If senior management buy-in is not an issue, to accelerate cultural change you may
want to consider making employee commitment to the ADPE way a condition of
employment. That is, you may want to include in an employee's hiring agreement the
stipulation that the employee agrees to follow the ADPE way as a condition of
employment. To put some teeth into this approach, you may want to include in the
agreement that the person will undergo a trial period of, say, ninety days during which
time the person must complete mutually agreed-upon tasks demonstrating that he or
she understands and practices the ADPE way. If the person falls short in this regard,
then the person is not hired. To work, this approach must be supported by a ADPE
training program.

The preceding discussion suggests an order for the first couple of ADPE elements that should
be promulgated. We now expand upon this discussion and look at the issue of ADPE element
phasing.

2. How should ADPE elements be phased in?

Let us now consider in more detail ADPE element linkages. This look may help you gain
more insight into the factors governing ADPE element phasing. Figure 8-7 shows the
following sequence of ADPE elements that might be one way to start your ADPE (we indicate
in parentheses where you can find an annotated outline for the element):

Successful Software Development, Second Edition

536

Figure 8-7 A key element of SEE implementation planning is ADPE element phasing. To get you
started addressing this planning issue for your organization, the figure shows some elements,
their relationships, and an order for their development. Your SEE implementation plan should
propose a strategy for ADPE element development. It is desirable to start with an element that
defines your overall software systems development process. This element provides the
context for most subsequent elements. In particular, it shows how they are to plug into one
another.

1. Software Systems Development Process Policy (Chapter 3)
2. Change Control Board Guideline (Chapter 4)
3. Independent Product Assurance Policy (Chapter 5)
4. Configuration Management Guideline (Figure 8-8)

Successful Software Development, Second Edition

537

Figure 8-8 An annotated outline for getting you started defining a (software) configuration
management guideline for your organization.

Successful Software Development, Second Edition

538

5. Acceptance Testing Cycle Procedure (Chapter 5)

Before examining Figures 8-7 and 8-8, we explain why the ADPE element governing the
development of ADPE elements, which appears in Figure 8-6, does not appear in the
preceding list. This element sits above all other ADPE elements and can be developed and
promulgated at any time convenient for your organization. In discussing Figure 8-6, we
indicated why it may be a good idea to promulgate it after the first two items listed in Figure
8-6 are put in place. However, if, for example, your organization can afford to keep doing
business in its old way while it is setting up an ADPE, then it may make sense to put in place
the process for developing ADPE elements before any other elements are developed. Such an
approach may work if your organization is not anticipating a major shift in the type of
software systems development work that it will do during, say, the next six to twelve months.
Under such circumstances, the heroics of individual staff members may still get your work
done on time and within budget (provided you do not experience major staff turnover).

Figure 8-7 shows how each element in the sequence plugs into its predecessor. In general, a
set of ADPE elements will plug into each other in more than pairwise fashion. Figure 8-7
highlights the pairwise relationships tied to the implementation chronology to suggest why the
sequence shown makes sense. Of course, for your organization, other sequences (with
possibly other elements) may make better sense, depending on which element features may be
of importance to your organization. For example, if configuration management is a priority
for your organization, it may make sense to promulgate the CM element before the CCB
element. The CM element would, of course, address CCB issues in anticipation of a CCB
element. Alternatively, the CCB and CM elements could be merged into a single element—
depending on the prominence that you want to give to the CCB in your overall software
systems development process.

We explain in the following list how the sequence in Figure 8-7 is constructed. Using similar
arguments, you can construct an element sequence that makes sense for your organization.
You can use this sequence to construct a timeline like the one shown in Figure 8-6 to include
in your SEE implementation plan.

1. The Software Systems Development Process Policy is constructed first because it
provides the context for most subsequent elements. It defines the organization's way of
building software(-related) products. It includes the CCB as one key element of the
process. It also includes the product assurance activity which, in turn, includes
configuration management.

2. The Change Control Board Guideline is constructed next. It elaborates on the CCB
role in project management set forth in the Software Systems Development Process
Policy. The guideline also specifies top-level CCB mechanics such as how to run a
CCB meeting, who should take minutes, and who should be the chairperson. The
guideline also specifies information requirements for CCB minutes and a template for
packaging these information requirements.

3. The Independent Product Assurance Policy is constructed next. It stipulates that
configuration management is one of the product assurance processes. It gives an
organizational definition of configuration management. That is, it specifies whether
the product assurance organization is to perform configuration management or to
monitor those who do. The policy may also stipulate the CCB role in the product
assurance T&E process.

Successful Software Development, Second Edition

539

4. The Configuration Management Guideline is constructed next. As indicated in Figure
8-8, the guideline specifies configuration management requirements for software
projects (e.g., parts labeling, change control forms, change confirmation). It specifies
configuration management mechanics, such as the generic change control steps
(including the role of the CCB). It specifies information requirements for change
control forms and, possibly, example forms. As indicated in Figure 8-8, appendices in
the guideline can contain details for implementing the requirements set forth in the
body of the guideline. For example, an appendix may contain detailed guidance for
preparing a project-specific configuration management plan. Another appendix may
contain instructions for filling out change control forms given either in the body of the
guideline or in the appendix.

5. The Acceptance Test Cycle Procedure specifies the management of the acceptance
testing cycle, including the roles of the Turnover CCB and Test Incident CCB as
discussed in Chapter 5. The procedure explains how the change control Test Incident
Report (TIR) form called out in the Configuration Management Guideline is integrated
into the acceptance testing cycle. The procedure also explains how TIRs may
precipitate other change control forms such as Incident Reports (IRs) or Change
Requests (CR) called out in the configuration management guideline.

We note that, for small organizations, the five elements shown in Figure 8-7 may be collapsed
into a single element. In this consolidated element, each chapter may address what in Figure
8-7 is a separate element. This approach might also be used in an organization where SEE
implementation needs to take place over a relatively short time frame.

Other alternatives to the sequence in Figure 8-7 include the following:

• The Acceptance Testing Cycle Procedure is incorporated into the Independent Product
Assurance Policy as an appendix.

• The CCB Guideline is incorporated into the Configuration Management Guideline as
an appendix, with this latter guideline being produced after the Software Systems
Development Process Policy.

• The Configuration Management Guideline and the Acceptance Testing Cycle
Procedure are incorporated into the Independent Product Assurance Policy as
appendices.

Now that we have looked at SEE timeline and ADPE element phase-in factors, we look at
factors bearing on the overall make-up of the ADPE.

3. What ADPE elements should be included in your SEE?

When planning an engineering environment to define your software systems development
business practices, the specific elements to include in the ADPE is a key consideration. It is
difficult to provide guidance regarding the specific elements to include for reasons such as the
following:

• The enterprise in which your organization is embedded may already have certain
policies and directives that govern all work and/or software-specific work. In such
cases, it would generally be counterproductive to create elements that duplicate
existing business practices. For example, your enterprise may be a software business
that has a set of life cycles that govern the different types of work that it does (e.g., a

Successful Software Development, Second Edition

540

prototype development life cycle, an information engineering life cycle, a
"maintenance" life cycle). These life cycles may be set forth in a document or
documents that define the specific activities to be followed in developing software(-
related) products. In this case, it would probably be redundant to develop an ADPE
element that corresponds to the Software Systems Development Process Policy that
we discussed in Chapter 3. ADPE elements may still need to be developed because
enterprise policies and directives are silent with respect to needed practices. To
provide connectivity with existing policies and directives, needed ADPE elements
would reference these enterprise publications and/or incorporate pertinent material
from them. For example, an enterprise directive or policy may call for configuration
management to be instituted on all software systems development projects and may
further stipulate that the projects are responsible for setting up configuration
management practices. In this case, an ADPE element addressing the "how-to-do-it"
of configuration management would be useful to develop. To provide context, the
element would cite the enterprise configuration management directive or policy.

• A government enterprise may have hired your organization to develop software
systems according to practices set forth in government standards (this situation is
common on military programs). In such cases, these standards would constitute at
least part of your ADPE. ADPE elements may still have to be developed to address
practices only alluded to in the government-provided standards. For example, one
standard may be the analog to the Software Systems Development Process Policy
discussed in Chapter 3. This standard may call for peer reviews but may give no
additional guidance on how peer reviews are to be conducted. In this case, it would
probably be helpful to develop an ADPE element to address peer review procedures to
augment the government-provided standards.

• Your organization may have been hired to do software systems development work
over a relatively short period of time (say a year or less). Furthermore, the buyer who
hired you expects you to have defined software business practices. In anticipation of
such work, you may want to have a small number of ADPE element templates that can
be (quickly) adapted to your client's specific needs—either during the first couple of
weeks of the work or during your response to the client's RFP. The ADPE make-up in
such circumstances will generally be much different from what it would be for
circumstances in which a client has hired you for several years, and the first year, say,
is to be used in part to plan and begin developing an SEE.

• Your organization may be caught up in a rapidly expanding business base. For
example, because of a ballooning customer base, your organization may have to
develop information management systems that must (1) operate within tightly
constrained cycles (because of, for instance, customer billing cycles) and (2) be
modified rapidly in response to rapidly changing requirements (for instance, to service
more customers in a shorter amount of time because of competitive pressures). Such
circumstances are not uncommon in the commercial business world and present
special challenges regarding software systems development. On the one hand, the
organization cannot stop developing its software systems to put in place or upgrade its
engineering environment. On the other hand, the organization must take action to
discipline its software systems development practices to head off software failures and
facilitate system upgrades and replacements—otherwise, the bottom line is impacted,
and the business will be crushed by its own success. The rapid pace of business
growth may thus limit the ADPE elements to a small number that address only the
most essential practices—leaving the remaining practices to the know-how of the
individuals. For example, in the extreme, it may be feasible only to put in place an

Successful Software Development, Second Edition

541

element like the Software Systems Development Process Policy discussed in Chapter
3—and nothing else. Such an element would capture in the large all the things that
need to be done—the details (e.g., how to conduct peer reviews or perform
independent product assurance) would be left to the know-how of the individuals to
put in place on individual projects.

Given the preceding caveats, we now offer suggestions for planning what to include in your
ADPE. Of course, as we stress throughout this book, plans will change. So, you should keep
in mind that the following discussion is to help you overcome the blank-page syndrome when
it comes to planning your ADPE makeup. You will find that as you put ADPE elements in
place, your specific ADPE needs will undoubtedly evolve. In fact, as we discuss later, one of
the elements to include in your ADPE is one describing the process for developing and
evolving the other ADPE elements.

Figure 8-9 shows twelve candidate ADPE elements. Eight of these are addressed in previous
chapters, where, among other things, we provide an annotated outline for each. An annotated
outline for another element was presented earlier in this chapter (Figure 8-8). Annotated
outlines for the remaining three are provided in figures after Figure 8-9. For ease of reference,
we list here the twelve elements and the chapter or figure where you can find an annotated
outline for each. Figure 8-9 does not imply an implementation order.

Successful Software Development, Second Edition

542

Figure 8-9 It is difficult to provide guidance regarding the specific ADPE elements to include in
an SEE. The figure shows a set of elements to start your thinking for addressing your global
SEE needs. We label the specific elements using the designation "policy,"
"guideline,""procedure," or "standard." As we discussed in preceding chapters, you may want
to etablish a different taxonomy for your elements. Even if you use our taxonomy, what we
show as, for example, a "procedure" you may want to cast as a "guideline."

1. Software Systems Development Process Policy (Chapter 3)
2. Change Control Board Guideline (Chapter 4)
3. ADPE Elements Standard (Chapter 7)
4. Independent Product Assurance Policy (Chapter 5)
5. Document Templates Standard (Figure 8-10)

Successful Software Development, Second Edition

543

Figure 8-10 An annotated outline for getting you started defining a standard for software and
software-related documents. The key point to keep in mind is that this ADPE element is not just
a collection of document templates—rather, it defines a process for deciding what documents
to use when, and provides document review guidance. Thus, you should keep in mind that, to
give this element substantive value for your organization, you should ensure that it plugs into
the rest of your ADPE particularly your software systems development process. The outline
shows you a way to bring about this plug-in for your software systems development process
ADPE element.

6. Project Plan Development Process Procedure (Chapter 2)
7. Measurement Guideline (Chapter 6)
8. Acceptance Testing Cycle Procedure (Chapter 5)
9. Project Tracking Guideline (Figure 8-11)

Successful Software Development, Second Edition

544

Figure 8-11 An annotated outline for getting you started defining a project tracking guideline
for your organization. This element should be coordinated with the Change Control Board
Guideline discussed in Chapter 4, particularly with respect to the use of CCB minutes for
project tracking purposes. This element should also be coordinated with the Software Systems
Development Process Policy discussed in Chapter 3 with respect to the seller deliverable
tracking form.

10. Configuration Management Guideline (Figure 8-8)
11. Peer Reviews Guideline (Chapter 5)

Successful Software Development, Second Edition

545

12. Software Development Life Cycle Definition Guideline (Figure 8-12)

Figure 8-12 An annotated outline fo getting you started preparing a life cycle guideline for your
organization. This element should be coordinated with the Project Plan Development Process
Procedure discussed in Chapter 2. This element should also be coordinated with the Software
Systems Development Process Policy discussed in Chapter 3, particularly with respect to
offering guidance on plugging a life cycle into the development process.

Successful Software Development, Second Edition

546

To help you decide the breadth and depth of an ADPE for your organization, Table 8-1
summarizes the purpose and features of the twelve elements shown in Figure 8-9. This table
can help you organize your ADPE planning approach. The column labelled "Purpose"
reminds you of this book's approach to defining the focus of the ADPE elements included in
the table. For your organization, you may want a different focus for a given element, or you
may want to consolidate the focus with one or more other elements. In this case, simply
redefine the purpose (and possibly rename the element). For example, the table indicates that
the Project Plan Development Process element focuses on the organization's project planning
process and the steps involved with producing a project plan. You may want to expand the
scope of this element to encompass all forms of planning involved with software systems
development. In this case, the element might be retitled, for instance, "Planning Process."
This retitled element would define the various processes involved with producing different
types of software-related plans (e.g., product assurance plans, test plans, configuration
management plans, reliability and maintainability plans).

Table 8-1. Purpose and Features of Candidate ADPE Elements for Your ADPE.
Element Title Purpose Comments
Software
Systems
Development
Process

• Identify the generic activities performed
by your organizational elements
elements in developing a software
product (i.e., documentation, computer
code, database) for delivery to your
customer

• Describe the roles of customer
organizational elements and your
organizational elements in performing
these generic activities

• Delineate implementation
responsibilities

• Mandatory element
• Establishes the context for other

elements for other elements
• Each project adapts the generic

activities to the character of the
work to be performed (e.g., all
projects perform peer reviews;
difference projects may conduct
peer reviews differently)

Independent
Product
Assurance

• Define your organization's statement of
principles governing independent
product assurance activities

• Define product assurance processes and
explain how they reduce software
systems development risks

• Delineate the implementation
responsibilities of organizational
elements and/or individuals and, if
desired, your customer(s)

• Independent product assurance as
we define it is not the only way to
set up a checking and balancing
mechanism on a software project

• One alternative way is to have a
so-called "Quality Assurance
Organization" check the activities
of all parties involved in a project
(including the activities of the
party that we call the "product
assurance organization")

• Decide on your checking and
balancing approach and develop
an ADPE element to define the
activities associated with this
approach

Successful Software Development, Second Edition

547

Configuration
Management

• Define your organization's method for
tracking, controlling, and accounting
for changes to (software) product parts
and changes to (software) part
relationships

• Set forth generic configuration
management (CM) practices and
guidance for implementing these
practices on each project within your
organization [if your organization has
only similar projects, then the practices
can be defined in specific, "how-to-do-
it" terms and be made applicable to all
your projects]

• Delineate the implementation
responsibilities of organizational
elements and/or individuals and, if
desired, your customer(s)

• If CM is an aspect of your
organization's product assurance
activity, then this element should
explicitly link to your
organization's product assurance
ADPE element

• Alternatively, the information of
this CM element could be
incorporated into the product
assurance ADPE element (e.g., as
an appendix)

• Another alternative is to replace
this element with one or more
books or other CM publications—
possibility with some instructions
for adapting material to your
organization's way of doing
business

• CM scope should extend to all
development products called out
in the Software Systems
Development Process element

Measurement • Identify the measurements to be
performed to (1) quantify where your
organization is productwise and
processwise, (2) quantify differences
from this baseline assessment, (3)
establish quantitative process and
product goals, and (4) quantify progress
toward achieving these goals

• Define the approach for incorporating
process and product improvements
based on the measurement activity

• Delineate implementation
responsibilities

• Element should be put in place
generally only after other elements
have been in place for some time

• Avoid measurement for
measurement's sake—use
measurement to answer questions
your organization needs answered
quantitatively

Project Tracking • Define your organization's method for
tracking an reviewing software systems
development project accomplishments
and results against documented
estimates, commitments, and plans.

• Define your organization's method for
adjusting planned project activities
based on actual accomplishments and
results

• Delineate the implementation
responsibilities or organizational and/or
individuals and, if desired, your
customer(s)

• Element may be unnecessary if
your organization has standard
project tracking practices

• CCB minutes and deliverable
tracking form described in
Chapter 3 should be exploited for
tracking purposes

Successful Software Development, Second Edition

548

Peer Reviews • Define your organization's approach
[and, possibly, procedures] for
preparing and conducting product
reviews primarily involving product
developer and product assurance peers

• Delineate responsibilities for preparing
for and conducting peer reviews

• Provide checklists and forms to
facilitate and standardize peer review
preparation and accomplishment

• Provide instructions for completing
checklists and forms provided

• Delineate implementation
responsibilities

• This element should stress that
peer reviews (1) provide a
controlled mechanism for refining
products, (2) provide technical
feedback to the lead developer,
and (3) are not a measure of the
lead developer's performance

• This review balances the product
developer's approach with the
insights of other having applicable
and comparable experience

• Information in this element could
be incorporated into the Software
Systems Development element

Change Control
Board

• Provide guidance for establishing CCBs
• Define the role of CCBs in project

efforts
• Provide guidance for conducting CCB

meetings
• Delineate implementation

responsibilities

• Mandatory element
• Have trial-use element ready to

use as soon as possible
• CCB shoud be the primary vehicle

for holding management
accountable for the decisions

Software
Development
Life Cycle
Definition

• Establish guidance for defining a life
cycle or life cycles for a software
systems development effort within your
organization

• Provide guidance for using life cycle
stages for project planning and project
accomplishment purposes

• Delineate implementation
responsibilities

• This element should stress that the
life cycle concept is a useful way
of breaking a software systems
development effort into smaller,
more manageable pieces

• The element should stress that
rarely does a project proceed
sequentially from one life cycle
stage to the next. Rather, one or
more stages are generally revisited
one or more times

• The element should stress that the
life cycle stages are a way of (1)
organizing work to be performed
on a project and (2) identifying
products to be developed

Project Plan
Development
Process

• Delineate your organization's project
planning

• Delineate implementation
responsibilities

• Have trial-use element early in
your SEE development program

• Refine trial-use element by
exploiting lessons learned from
actual project planning activities

• Key project planning
organizational issue: Who should
develop project plans—(1) one
organization, or (2) each project,
or (3) some combination of (1)
and (2)?

Successful Software Development, Second Edition

549

Acceptance
Testing Cycle

• Define the process for determining
when a software system and supporting
databases are ready for customer
delivery

• Delineate implementation
responsibilities

• Scope may be expanded to
encompass other forms of testing
(e.g., unit and integration)

• As an option, element material
may be folded into Independent
Product Assurance element or
Configuration Management
element as appendix

ADPE Elements • Define ADPE element taxonomy (e.g.,
policy, guideline, procedure, and
standard)

• Define the process for developing and
improving ADPE elements

• Delineate implementation
responsibilities

• Can be developed after the
Software Systems Development
Process element and the CCB
element or at any other time

• Try to involve most of the
organization in reviews of ADPE
element drafts

• It is generally desirable to have
the customer participate in the
review process and to concour
formally with the element content

Document
Templates

• Present a list of candidate document
types for consideration when planning
or replanning a software systems
development project

• Provide templates for these document
types to serve as a starting point for
constructing each document

• Provide guidance for identifying
document sets appropriate to projects or
different classes within your
organization

• Allow the seller and customer to define
expectations about a document

• Element is more than just
document templates

• In support of project planning,
defines process for deciding what
documents to use when

• Provides document review
guidance

• If your organization uses
separately published
documentation standards, then this
element can simply reference
these standards

The column labelled "Comments" offers additional insight into the role and orientation of the
elements listed. Among other things, this column offers suggestions for consolidating two or
more elements (e.g., folding the Acceptance Testing Cycle element material into an appendix
in the Independent Product Assurance element or the Configuration Management element).

We remind you that the elements listed in Table 8-1 are those discussed in preceding chapters
or introduced and discussed in this chapter. With the possible exception of the "Software
Systems Development Process" and "Change Control Board" elements, no element listed is
mandatory. The number and type of elements that you choose to construct for your ADPE
will probably be quite different from those listed in the table. The table is intended to start
your thinking for planning your global ADPE needs.

We also remind you that the ADPE taxonomy we use in this book (i.e., "policy,""guideline,"
"procedure," and "standard") is just one way to categorize ADPE elements (for this reason, we
have omitted these labels from the first column in Table 8-1). Furthermore, within this
taxonomy, these labels may sometimes be used interchangeably for various reasons. For
example, as indicated in Figure 8-9, the Software Systems Development Process element is
labelled "Policy." From its statement of purpose and the definition of ADPE element

Successful Software Development, Second Edition

550

"procedure" given earlier in this book, it might have made more sense to label this element
"Procedure." However, because in some organizations the label "policy" carries more of an
authoritative ring than does "procedure," this label may be more appropriate.

Before closing the discussion of the issue "What ADPE elements should be included in your
SEE," we return briefly to Figures 8-10, 8-11, and 8-12.

Figure 8-10 (Document Templates Standard) stresses that the real value of including
documentation standards in your ADPE extends beyond the document outlines. The
Document Templates element should plug into the rest of the ADPE by addressing such key
considerations as (1) a process for deciding what documents to use on which types of projects
and (2) document review guidance (e.g., important things to look for in a document of a given
type—for instance, does a software test plan contain a discussion of the system to be tested?).

Regarding Figure 8-11 (Project Tracking Guideline), project tracking techniques addressed
should also incorporate items included in other ADPE elements. For example, as discussed in
Chapter 4, CCB minutes should include, among other things, an action item list with due
dates. These lists provide a project tracking technique that should be explicitly called out in
the Project Tracking element. Also, as described in Chapter 3, the seller deliverable tracking
form is used to track a product as it wends its way through the organization's software systems
development process. For this reason, this form should be addressed in the Project Tracking
element as a project tracking aid.

Figure 8-12 (Software Development Life Cycle Definition Guideline) provides guidance for
constructing a life cycle or life cycles pertinent to a given software project. As such, this
guideline is a project planning aid. For this reason, some organizations may find it helpful to
fold the material in this guideline into a appendix to the Project Plan Development Process
element discussed in Chapter 2, rather than placing the material in a stand-alone element. The
heart of the material is the guiding principles, examples of which are shown under Section 3
in Figure 8-12. These principles are tied to the generic four-stage life cycle (i.e., WHAT,
HOW, BUILD, and USE) introduced in Chapter 1, which is shown in the figure. They explain
how to unfold the generic stages into stages that account for project particulars (e.g., schedule
constraints, technology considerations, requirements uncertainty). Section 4 of the guideline
indicates that example life cycle models should be included to illustrate the application of the
guiding principles. Figure 8-12 also suggests that appendices can be used to illustrate how the
life cycle constructed can be used to drive out management, development, and product
assurance tasks. This process is explained and illustrated in Chapter 2.

We now discuss an SEE implementation issue pertaining to ADPE element structure. To this
point, we have implicitly assumed that ADPE elements are generally documents of more than
a couple of pages. Also, as suggested in Figure 8-9, we have implicitly assumed that an ADPE
should be constituted with ten or so elements. The issue that we now consider examines these
assumptions.

4. How should the ADPE be constituted—(1) from a small number of elements (i.e.,
approximately ten), each consisting of tens of pages or more, or (2) from a large
number of elements (i.e., tens or more), each consisting of a couple of pages, or (3)
some combination of (1) and (2)?

Successful Software Development, Second Edition

551

An important SEE implementation planning issue is how to structure the ADPE. Figure 8-13
highlights key factors bearing upon this issue. One alternative is to produce ten or so
elements, with each element consisting of tens of pages or more. A second alternative is to
produce tens or more elements, with each consisting of a couple of pages. A third alternative
is some combination of the first and second. In the following sections we discuss SEE
planning considerations regarding each alternative.

Figure 8-13 An important SEE implementation planning issue is the following: How should the
ADPE be constituted—(1) from a small number of elements (i.e., approximately ten), each
consisting of tens of pages or more, or (2) from a large number of elements (i.e., tens or more),
each consisting of a couple of pages, or (3) some combination of (1) and (2)? Here are some
considerations to help you address this issue in your SEE implementation plan.

Successful Software Development, Second Edition

552

ADPE Constitution Alternative (1)—Tenor So Elements, Each Consisting of
Tens of Pages or More

• Element development time may take months or longer. One reason for this protracted
development time is deciding how much tutorial information to include, how much
guidance and "how-to-do-it" to include, and how to organize these two classes of
material. For example, in the CCB guideline, things such as the following may be
useful to include in an element consisting of tens of pages:

o It may be useful to incorporate tutorial information explaining, for example, a
key engineering principle that management, development, and product
assurance disciplines are needed to maintain effective communication between
the wizard and king—and why. Through such explanatory material, people
will have a better understanding of how to set up and run CCB meetings on
their particular projects. Absent such information, people may struggle with,
for example, getting closure at CCB meetings on things that need to be done to
move a project ahead. Tutorial material is particularly important in an
organization predominated by inexperienced staff (i.e., a staff with only several
years' software industry experience on average).

o It may be useful to incorporate guidance on CCB minutes. Here, there is a
broad spectrum of possibilities. Some experienced members of your
organization may say that all they need in the way of guidance in this regard is
a simple statement such as, "Take minutes at each CCB meeting." Other
members may say that they want what to record in minutes (i.e., CCB minutes
information requirements). Still other members may say they want a specific
format for CCB minutes. Because of such a broad spectrum of possibilities, it
may take considerable time to strike some sort of happy medium in the CCB
element regarding CCB minutes guidance detail.

o It may be useful to incorporate examples illustrating the range of activities that
can be folded into CCB operation. For instance, it may be useful to show how
the CCB can be used to do software systems development. As a specific
illustration, the CCB element may explain how to use one or more CCB
meetings between the seller and customer to thrash out what "user friendly"
may mean in terms of specific functions that can be tested.

• Elements consisting of tens of pages or more allow for integrating and detailing of a
number of concepts. For example, in Chapter 2, we discussed how risk assessment
should be a key part of the project planning process. We explained how to integrate
risk assessment with other parts of project planning, such as using a life cycle to drive
out specific project tasks to be accomplished. As another example, earlier in the
current chapter we explained how to integrate within a Document Templates element
the concepts of (1) document sets appropriate for different types of projects within an
organization and (2) document review guidance.

• As mentioned earlier, elements consisting of tens of pages or more have room for both
instructional (i.e., tutorial) material as well as business practices. Integrating these two
types of material generally permits the material to be more easily assimilated
(particularly if examples are included). In addition, by including explanations of
underlying engineering principles, elements can generally be more easily adapted to
different situations. For example, a principle underlying the CM function of "control"
is to give visibility to candidate and approved changes. Generally, this visibility is
achieved through "paperwork" (here, "paperwork" also includes electronic as well as
hard copy). That is, some paperwork is needed on each project to follow product

Successful Software Development, Second Edition

553

evolution—but how much? We assert that the minimum paperwork requirement is
CCB minutes capturing decisions made regarding product evolution. If it is anticipated
that many changes may be made to products, then more extensive paperwork will be
needed. This more extensive paperwork includes change control forms (such as those
discussed in Chapter 4). Carrying this paperwork example a little further, it may be
useful to include in your organization's CM element a rule of thumb for gauging when
a project needs to augment paperwork support for change control beyond CCB
minutes to include forms. The following is an example of such a rule of thumb:

If it is anticipated that throughout the current fiscal year of the project
at least one deliverable may require consideration of at least ten
changes, then change control forms should be used to track product
changes.

• Elements consisting of tens of pages or more may require weeks or longer to update.
The update time may be particularly protracted if the element contains complex flow
diagrams and extensive supporting text. Update time also depends on the process you
set up for constructing, reviewing and revising ADPE elements, as discussed in
Chapter 7. The greater the number of reviewers, the more protracted will be the update
time.

• An ADPE consisting of a relatively small number of elements facilitates the task of
keeping the elements mutually consistent. Mutual consistency is particularly important
regarding definitions of terms (e.g., two different definitions of "high-risk project")
and different words to refer to the same concept (e.g., "change control board" and
"configuration control board").

• A process engineering group (PEG) may generally need to be dedicated to developing
and maintaining a set of ten or so elements, each consisting of tens of pages or more.
A group of dedicated staff facilitates the task of weaving a consistent approach into
the ADPE. For example, it can take considerable time to hammer out the
organizational software systems development process element. As we pointed out in
Chapter 3, the heart of this element is the organizational process flow diagram.
Generally, just a couple of dedicated people should try to get the flow down on
paper—and then solicit feedback from the rest of the organization. It is generally
easier for a small group of dedicated staff to establish a consistent approach to
documenting ADPE elements. It is generally helpful for an ADPE to present a
consistent face to the rest of the organization. Furthermore, a dedicated group is more
likely to take ownership of its ADPE products—and be more forceful in campaigning
for their adoption.

ADPE Constitution Alternative (2)—Tens of Elements, Each Consisting of a
Couple of Pages

• For elements of this type, the development time will be days or, at the outside, weeks
(depending, again, on the process you set up for constructing, reviewing, and revising
ADPE elements). Such relatively rapid development time can allow for more
experimentation with element orientations to accommodate perceived organization
process needs. Of course, as we discuss in a subsequent issue, no matter what size the
element, time is still needed for people to get acclimated before the element is
changed. However, with smaller elements, the impact of element changes on staff
should be easier to perceive and to adjust to.

Successful Software Development, Second Edition

554

• Because the element consists of only a couple of pages, it cannot be encyclopedic. Its
focus must therefore be narrow—and, thus, generally easier to assimilate than a larger
and more comprehensive element. Also, staff are more likely to read through an
element with a couple of pages than one consisting of ten times that number of pages.
Although reading elements does not guarantee ADPE implementation success, not
reading them will almost certainly undermine successful implementation.

• Again, because of its small size, the element must get right to the business practice
points. This characteristic is particularly beneficial when staff needs to locate quickly
a key business process point.

• For elements each consisting of a couple of pages, the update time should generally be
days. This characteristic can be particularly beneficial to relieve organizational
tensions arising from existing practices that many may feel need to be changed.

• A large number of elements makes the task of keeping them mutually consistent
generally more difficult than keeping a smaller set consistent. Sometimes this factor
may work at cross-purposes with the preceding factor. Although, as we just argued, a
couple-page element may be updatable within days, changes thus introduced may
cause unanticipated inconsistencies in a number of other elements. Part of the update
time for a given element must thus include the analysis of impacts on a potentially
large number of other elements.

• To produce a large number of small elements may only require a PEG consisting of a
small number of dedicated staff for element integration, training, and maintenance.
This dedicated staff would be augmented by a number of part-timers to write
individual elements. Presumably, these part-timers would be subject-matter experts
who could cogently and compactly produce the element text.

Before proceeding to ADPE Constitution Alternative (3), we illustrate some of the preceding
Alternative (2) factors. For this purpose, we provide the sample two-page ADPE element
shown in Figure 8-14. The figure shows a CM Guideline derived from the CM Guideline
outline given in Figure 8-8.

Successful Software Development, Second Edition

555

Figure 8-14 Here is an example of a two-page CM ADPE element adapted from the Figure 8-8
annotated CM ADPE element outline. The slant of this element is to empower members in the
organization to develop their CM approaches from the element either via a CM plan or for, say,
small projects, via CM procedures. Page 2 of the element contains a CM plan outline.

Successful Software Development, Second Edition

556

The thrust of the element is to give the essential requirements for setting up CM on a project.
The element empowers the project to implement the requirements in a way that makes sense
for the project. This empowerment approach should be particularly effective in an
organization with solid software engineering experience (which should not be confused with
"software experience," which may be markedly different from the former). Among other
things, such an organization, with its know-how, should be able to apply this software
engineering experience to the CM Guideline requirements to produce a CM plan and
procedures consistent with project needs. If an organization is short on such know-how, the
Figure 8-14 guideline can still benefit the organization if it is supplied with some references
that can offer this know-how. Such references would include CM textbooks (with material
such as that found in our Chapter 4), government and/or industry standards (e.g., U.S.
Department of Defense, Institute for Electrical and Electronics Engineers, Electronic
Industries Association, International Organization for Standards, and enterprisewide CM
publications. References on automated CM tool support can also help fill a know-how gap.
However, a word of caution is in order regarding CM tools in particular and automated tools
in general. Tools should be viewed as just that—namely, aids for accomplishing business
practices more efficiently, generally through automation. By understanding engineering
principles underlying ADPE elements, it is then generally easier to decide which parts, if any,
of business practices that it makes sense to accomplish with tools. The notion that it is
adequate to define a business practice simply in terms of some tool is generally short-sighted,
if not a recipe for trouble. For example, using a tape-recorder to capture what goes on at a
CCB meeting is helpful only when it is understood (1) what are the meeting events that
should be captured, (2) whether a hard copy of some of this recording should be prepared, and
(3) what part of this recording should be committed to hard copy.

It is important to stress that using a two-page ADPE element such as that shown in
Figure 8-14 and that may be short on "how-to" is not an oxymoron for establishing consistent
business practices. That different projects using the same guideline as that shown in
Figure 8-14 may set up vastly different CM implementations, does not stand in opposition to
the element's purpose of establishing an organizationwide consistent CM business practice.
The view adopted here is that all such projects are implementing the same set of CM
requirements in different ways—and, therefore, are practicing CM in a consistent way. For
example, one project may use forms to track changes, while another project may simply use
CCB minutes for this tracking purpose. However, both are tracking changes in a visible,
traceable way. This argument is not meant to imply that an organization cannot set up a
detailed (many-paged) CM guideline that prescribes that all projects within the organization
implement CM in the same, almost carbon-copy way (e.g., same change control forms, same
CCB-minutes format, same parts identification scheme). In some organizations, this approach
may be the commonsense thing to do. The key point here is that "consistent business
practice" can span a broad range of interpretation—and the interpretation appropriate
to your organization should be clearly articulated in your ADPE elements.

ADPE Constitution Alternative (3)—Combination of Some Elements, Each
Consisting of a Couple of Pages with Some Elements Each Consisting of Tens
of Pages or More

This alternative aims at taking the best of the preceding two alternatives. One approach here is
to make the Software Systems Development Process element tens of pages or more, with a
sufficiently detailed process diagram containing all the components that should be elaborated
on in other elements (e.g., project planning, peer reviews, product assurance, CCB). With the

Successful Software Development, Second Edition

557

possible exception of the CCB element, these other elements can be more along the lines of
the couple-of-page variety, as in Figure 8-14. So, for example, several different couple-of-
page elements each on a peer review procedure for a different type of peer review (e.g.,
document section peer review, code walkthrough). Such elements would fill in the details of
the peer review component called out in the Software Systems Development Process element.

To conclude our discussion of this issue of ADPE constitution, we offer the following
approach for planning a set of ADPE elements:

1. Step through the preceding discussion of the first two alternatives and attempt to
decide whether the advantages in a given alternative far outweigh the disadvantages.

2. If they do, select that alternative.
3. If not, select Alternative (3). For this alternative, develop a strategy for deciding which

elements should be of the Alternative (1) flavor and which should be of the
Alternative (2) flavor. In your plan, remember to allow for crossovers—that is,
elements that may start out from one alternative and evolve to the other. Also, allow
for the number and type of elements you will need to change (for this purpose, you
may need to publish an SEE plan update).

We now turn our attention to the following SEE planning issue, which we have already
touched on:

5. How frequently should an ADPE element be updated?

Figure 8-15 shows one key factor governing this issue— organization size. Organizational
process improvement means, among other things, changing ADPE business practices. The
trick is to figure out when a change is truly needed versus changing practices as a knee-jerk
reaction to complaints from the ranks. Initial reactions to change brought about by
implementation of an ADPE element may be resistance, plaintive cries for returning to the old
way, and/or outright rebellion. Thus, some settling-in time is needed to observe whether the
resistance, cries, and rebellion dissipate as people get acclimated to the new way of doing
business. After this settling-in period, it is then helpful to examine what is not working in the
"new" way and should be changed.

Successful Software Development, Second Edition

558

Figure 8-15 A key SEE implementation planning issue is the following: How frequently should
an ADPE element be updated? The tradeoff here is getting people acclimated to a set of
practices versus acclimating the practices to the people so that the practices (and thus the
people) are useful. One factor governing ADPE element update frequency is the size of an
organization. In general, the larger an organization, the longer the interval between element
updates. The primary reason for this relationship is that the larger the organization, the longer
it takes for a way of doing business to settle in—because it generally takes longer for a larger
body of people to get in step than it does for a smaller body.

The question then is, how long should the settling-in period be? As Figure 8-15 indicates, the
period should be months for small projects/organizations (say, tens of people or less) and a
year or longer for large projects/organizations (say, hundreds of people or more). The
rationale underlying this rule of thumb is simply that it generally takes longer for a larger
body of people to get in step than it does for a smaller body. For anyone with marching-band
or chorus-line dancing experience, this observation should be self-evident.[2]

A corollary to the preceding comments is that as an element stabilizes, the intervals between
updates can generally be shorter because, presumably, the changes during each subsequent
update should be more localized. As a result, the time needed for the organization to get
acclimated to the changes should be correspondingly reduced.

What should be done for large organizations whose project work extends only for a year or
so? Should elements be updated more frequently than a year, or should the organization just
try to use the practices as they are because the work that they will be applied to is going to
disappear soon anyway? One way to handle this situation is to try to limit the scope of the
changes so that the changes are easy to identify and relatively easy to get acclimated to. If a
major overhaul of an element or elements is needed, then intensive training should be
provided to staff in anticipation of the revised elements. This training should particularly
stress the changes made to the "old" way.

2 Of course, outright errors need to be corrected immediately—for example, spelling errors on a deliverable tracking form. If the organization is slow
to correct errors, people may think that the organization is not serious about the element.

Successful Software Development, Second Edition

559

In issue 4, we addressed factors bearing upon ADPE constitution. We now take a look at
factors bearing on a related issue—namely, ADPE element constitution.

The issue is the following:

6. What amount of detail should be included in individual ADPE elements?

Constructing ADPE elements is generally an arduous task. Getting a feel for this "amount-of-
detail" issue will help you plan ADPE element development pace.

Figure 8-16 depicts five "graphs" intended to show semiquantitative relationships among
several variables bearing on ADPE element constitution. We explain each of these "graphs" in
the paragraphs that follow. Each "graph" contains two "points" represented by ADPE element
icons of two different thicknesses. Document thickness is intended to symbolize "amount of
detail included in the ADPE element." This symbol should not be taken too literally. For
example, by reducing the scope of a document, it is certainly possible to include a lot of detail
in a small number of pages (as an extreme specific instance, you might have a single ADPE
element that lists the specific steps for filling out a single change control form; such an
element may consist of only a page or two). The point here is that the two document icons
shown in each "graph" are intended to suggest the range of ADPE element size. In one
organization, a five-page ADPE element on any topic may be a tome because, for example,
everybody in the organization has so much software systems development experience that
only the barest list of guidance statements is all that is needed to achieve consistent practice
within the organization. In another organization, by contrast, five-page ADPE elements may
raise more questions than they answer because, for example, the organization is new and has
been put together with people from different environments who have achieved successful
software systems development consistency in radically different ways.

Successful Software Development, Second Edition

560

Figure 8-16 A key SEE implementation planning issue is the amount of detail to include in
individual ADPE elements. Variables to be considered include the following: (1) number of
elements, (2) frequency of element updating, (3) need for supplementary material, and (4) work
spectrum. In addition, the variables generally depend upon other variables. For example, as
shown in graph 5, the frequency of element updating depends upon the time to institutionalize
the business practices contained in the element. For your organization, there may be other
variables that you may need to consider regarding ADPE element detail.

With these above caveats, the five "graphs" shown in Figure 8-16 are intended to help you (1)
visualize the tradeoffs among the variables and (2) identify other variables and associated
tradeoffs that may be important for your organization. This visualization is, in turn, intended
to help you figure out what may make sense for your organization regarding the amount of
detail to include in your ADPE elements. We stress that the relationships depicted in the
"graphs" are generalizations. For this reason, we put the word graph in quotes so that the
relationships shown are not interpreted as rigorous mathematical dependencies. As with most

Successful Software Development, Second Edition

561

generalizations, there are exceptions. The objective here is to help you with SEE
implementation planning factors.

• "Graph" 1 (Element Detail Versus Number of Elements).

The fewer the number of elements, the more detail an individual element needs. We
discussed this relationship before when we addressed the issue of ADPE constitution.
Here our perspective is that of the individual element. A real-world consideration
regarding document thickness is that people are more likely to read a document
consisting of just a few pages than one that has many more. This almost self-evident
consideration should not be overlooked. A necessary (but not sufficient) condition for
ADPE implementation is that the ADPE elements must be read—and, of course,
understood. On the other hand, if an ADPE element consists of only a few pages but
raises more questions than it answers, then subsequently produced few-page elements
are likely to go unread. The name of the game here is to create elements that people
will want to read because (1) the reading task is not onerous and (2) the elements will
help them do their jobs.

• "Graph" 2 (Element Detail Versus Frequency of Element Updating).

The more detail in an element, the more frequently it will have to be updated. In our
discussion of issue 5, we addressed element update frequency from the point of view
of organization size. Here, our focus is on element content. The dependency between
element detail and element update frequency is a particular challenge when
constructing ADPE elements that are procedures. Procedures are intended to provide
specific instructions for accomplishing something. However, there reaches a point
where the more specificity that is included, the shorter is the lifetime of the specific
information included. For example, a procedure may contain a template for a cover
letter to accompany a deliverable. If the template contained the specific name of the
addressee and/or the name of the person signing the letter, then whenever the
addressee and/or the person signing the letter changes, the element would need to be
changed.

• "Graph" 3 (Element Detail Versus Need for Supplementary Material).

The more detail in an element, the less need for supplementary material. The overall
consideration here is how self-contained the ADPE should be. On the one hand, it is
desirable to include in ADPE elements what the organization needs to achieve
consistent software systems development success without burdening it with seeking
out additional information. On the other hand, it is not practical to reproduce in the
ADPE elements encyclopedic software engineering material. Balance is needed. One
way to fill in details without expanding ADPE elements is to give short presentations
on each ADPE element (say, one hour to a couple of hours for each element). These
presentations will allow staff to relate the ADPE material to their own frame of
reference, and clear up questions they may have about the material. Through such
interaction, they may, for instance, annotate their ADPE elements, thereby tailoring
them to their perspectives. For example, suppose your organization has an element
that offers guidance on CCBs, and suppose that the element offers broad guidance on
what should be documented at CCB meetings. In particular, suppose that the element
contains the following CCB meeting documentation guidance:

Successful Software Development, Second Edition

562

This documentation provides a visible trace of project activities that
serves the threefold purpose of allowing (1) management intelligently
to proceed with project accomplishment, (2) external auditors to verify
the extent to which work was accomplished in accordance with
contractual commitments, and (3) the organization to exploit lessons
learned from work that has been accomplished to better perform work
to be accomplished. This threefold purpose thus has a tactical
component specific to project accomplishment, an after-the-fact
component, and a strategic component aimed at improving overall
organization operation.

Documenting these meetings is simply good business practice.
Experience overwhelmingly shows that memory is an unreliable source
for deciding what to do next on a project and for deciding what may be
applicable to another or a new project. It is particularly important to
keep in mind the above stated threefold purpose of this documentation
when deciding what makes sense to document. For the sake of
expediency, it is often convenient to focus on the tactical component at
the expense of the other two components. On the other hand, it is
counterproductive to generate prodigious amounts of documentation to
satisfy in particular the strategic component. It is thus necessary to
strike a balance between these two extremes when deciding what to
make a matter of record.

When the preceding guidance is briefed, attendees may have specific questions
regarding what makes sense to document on their particular projects. For example, a
particular project may involve the development of a software system whose failure
may cause people to get injured or suffer large financial loss. When these project
characteristics are brought up during the CCB element briefing, this guidance may be
translated into the following requirement for that project (and for projects where the
stakes are similar):

The CCB minutes shall be a transcript of the entire meeting, with all
conversation being made a matter of record.

Similarly, more extensive training, such as multiple-day seminars, can be used to
supplement ADPE element content. For example, your organization may have an
ADPE element on acceptance testing. To provide additional insight into acceptance
testing mechanics and management (say, along the lines described in Chapter 5), your
organization may want to offer a multiple-day seminar on these topics to ensure that
the business practices in the testing element are consistently implemented. Other
examples of supplementary source material include software engineering textbooks
(e.g., on configuration management, peer reviews, project tracking) and industry
standards (e.g., IEEE standard on software requirements specification). There are no
hard-and-fast rules for deciding what to include in ADPE elements and what to point
the reader to for additional insight. However, there is one overriding consideration—if
an element appears too bulky and/or the information included is not easy to
assimilate, the element will likely be ignored.

Successful Software Development, Second Edition

563

• "Graph" 4 (Element Detail Versus Work Spectrum).

There is an inverse correlation between the scope of an organization's work spectrum
and the amount of detail incorporated into (some) ADPE elements. By "work
spectrum scope" we mean the range of software systems development work that an
organization performs. Examples of narrow-work-spectrum scope are the following:

o Projects use information engineering (IE) in conjunction with a specific CASE
tool. In this situation, ADPE elements can be IE specific and specific to the
CASE tool used. For example, some CCB meetings may be labeled Joint
Requirements Planning (JRP) sessions, and minutes-taking may be aided by
the CASE tool. If it is desired to make the ADPE elements reasonably self-
contained, then the elements can go into considerable detail regarding how IE
is to be practiced within the organization. For example, a CCB element can
include detailed procedures for conducting JRP sessions.

o Projects use the same life cycle, and all products developed use the same suite
of standards. In this situation, ADPE elements can be tied specifically to the
life cycle and standards used, providing detailed guidance regarding product
accomplishment during each life cycle stage. For example, suppose the life
cycle contains a stage called "Requirements Definition" wherein a
requirements specification is developed according to the organization's
requirements specification standard. Then an ADPE element addressing
software systems development practices can lay out steps for developing the
requirements specification according to the standard—possibly going so far as
to include (1) a complete requirements specification and (2) an explanation of
how it is constructed.

o Projects develop all products according to the object-oriented paradigm. In this
situation, ADPE elements can use object-oriented terminology (e.g., object,
class, subclass, superclass, descendant, message, attribute, abstract data type,
inheritance) and object-oriented product examples (e.g., object-oriented
requirements and design specifications, where requirements and design are
expressed in terms of real-world objects). Again, if it is desired to make the
ADPE elements reasonably self-contained, then the elements can go into
considerable detail regarding how object-oriented techniques are to be
practiced within the organization (e.g., C++ coding standards).

By contrast, an example of broad-work-spectrum scope is the following:

o Projects that (1) do not necessarily include software systems development
(e.g., a project that analyzes different ways to frame an information security
policy), (2) use different life cycles, and (3) use different development
approaches. In this situation, ADPE elements cannot detail specific life cycles.
In Chapter 3, we described how to define a software systems development
process into which can be plugged different life cycles. There we also
described how the process could accommodate different development
approaches (such as traditional software systems development and information
engineering). We indicated that the process should contain activities such as
peer reviews, independent product assurance, and technical editing. However,
in an organization with a broad-work-spectrum scope, it may be
counterproductive to, say, detail a specific procedure for conducting peer

Successful Software Development, Second Edition

564

reviews. Rather, it may be necessary to include in an ADPE element several
alternative peer review approaches along with some guidelines for selecting an
approach to be applied to a project with certain characteristics. For example,
the element might indicate that for projects with no more than, say, five
people, undocumented peer reviews may be sufficient; on the other hand, the
element might indicate that for projects involving the development of
software-driven medical devices, all peer reviews must be documented in
detail. It should be noted here that although the peer review element may not
be detailed in terms of specifying the individual steps in conducting a peer
review (because too many variations are possible as a result of the
organization's broad work spectrum), the number of pages in the element may
still be more than a few because the element has to address a number of
different peer review approaches to accommodate different project needs. That
is, because of the organization's broad-work-spectrum scope, ADPE elements
have to replace "how-to-do-it" detail with a more broadly worded discussion of
alternative applicable practices.

• "Graph" 5 (Frequency of Element Updating Versus Time to Institutionalize).

This "graph" illustrates how the variables in the other "graphs" may themselves
depend on other variables bearing on SEE implementation. "Graph" 5 has the
interpretation that the lower the update frequency of an ADPE element, the shorter the
time needed to institutionalize its practices. Conversely, the higher the update
frequency of an ADPE element, the longer the time needed to institutionalize its
practices. "Graph" 5 is intended to suggest how this correlation comes about—namely,
as explained earlier, the less detailed an element, the less frequently it needs to be
updated, and the shorter the time needed to institutionalize it (and conversely).

In concluding the discussion of this issue, we stress that the variables shown in Figure 8-16
may not be the only ones that you may need to consider regarding ADPE element detail. The
preceding discussion is intended to illustrate in some detail (no pun intended) how to bring
such variables into your SEE implementation planning picture.

We stated at the outset of this chapter that its focus is on the ADPE side of SEE
implementation planning. We now briefly turn our attention to the ADTE. Again, as with all
the issues discussed in this chapter, our purpose is to get you started planning your SEE.

7. How can you define a plan for an application development technology
environment (ADTE) for your organization?

Figure 8-17 contains an annotated outline for defining a plan for establishing and evolving an
ADTE. This plan could be made a part of the SEE implementation plan (e.g., as volume II,
where volume I would address the ADPE).

Successful Software Development, Second Edition

565

Figure 8-17 An annotated outline for getting you started defining a plan for an application
development technology environment (ADTE) for your organization.

The outline contains examples of entries that should appear in each of the five sections
shown. The first three sections (Introduction, Objectives, Scope) are straightforward and are
not discussed further. Regarding the next two sections (Policy, ADTE Components), the
following comments are in order:

Successful Software Development, Second Edition

566

• The section on ADTE policy provides the plan's teeth. It establishes who within your
organization and outsiders who support your organization are bound by the technology
included in this plan. The policy is established to leverage employee skills within and
across projects—and prevent dependency on gurus who may be part of a small
community familiar with a particular technology. For example, if your organization's
primary business is to develop management information systems for large
corporations, the ADTE may limit the technology suite (i.e., hardware and software)
to a set number of CASE tools running on a specified set of hardware platforms. As a
result, your organization would have a large number of people who are trained on
these tools and platforms, thereby avoiding dependence on a small community of
"experts."

• The section on ADTE policy also delineates technology ground rules for the
organization's customers. Technology ground rules need to be negotiated between the
seller and customer. By defining such things as standard computer
hardware/communications development suites, the plan limits the technology that a
customer may want to bring to bear on work to be accomplished. To provide
flexibility in this regard, your organization may want to include in this section a
procedure for obtaining a waiver or deviation from the policy. In general, such waivers
or deviations may require additional costs to be levied on the work to be performed—
even if the customer provides the "nonstandard" technology. One source for these
additional costs even under these circumstances is the need to train staff in the
technology or to hire (higher-priced) consultants skilled in the technology.

• If there are no plan appendices, the section on ADTE components should contain
itemized lists of hardware and software components (including acceptable version
numbers). It should also show diagrams depicting standard hardware/communications
configurations (including such things as memory sizes, mass storage capacities, and
communications line transmission rates). If your organization intends to keep pace
with upgrades to the technology components that make up your ADTE, you may want
to relegate the technology component details to appendices (as indicated in Figure 8-
17), particularly if these upgrades occur frequently. Then, when you are ready to
upgrade your technology components, you may need only to update the appendices in
the plan at regular intervals—for example, yearly for multiyear contracts or programs,
and quarterly or semiannually for shorter arrangements.

Having discussed SEE implementation planning issues pertaining to SEE structure and
substructure, we consider the following related issue before proceeding to other classes of
issues:

8. How do you package ADPE elements and related items?

Many of us keep notebooks that contain information that we frequently need to access, such
as phone numbers, addresses, and appointment dates and times. If the ADPE is to be similarly
accessible, it should be packaged to facilitate access and use. We stress that, although good
ADPE packaging will not guarantee ADPE element use, lack of good packaging will almost
surely guarantee ADPE element nonuse.

Figure 8-18 illustrates one way to package ADPE elements and related items. It shows the
contents of a three-ring binder,[3] a copy of which should be distributed to each member of

3 Our use of the term "three-ring binder" in the subsequent discussion extends to electronic versions.

Successful Software Development, Second Edition

567

your organization, with the following tabs to help organize the binder contents and facilitate
information retrieval:

Figure 8-18 A good way to package your engineering environment is a binder containing your
ADPE elements and material pertinent to your technology environment.

• Introduction.

Behind this tab goes material that explains such things as your organization's mission
and work spectrum, the purpose of the SEE, and the organization of the binder
contents.

• ADPE.

This tab begins the ADPE portion of the binder. The ADPE portion of the binder is
organized according to the ADPE element taxonomy that you establish for your
organization. In this book, we use the four-component taxonomy of "policy,"
"guideline," "procedure," and "standard." The ADPE tabs in Figure 8-18 reflect this
taxonomy. If your organization chooses to establish a different ADPE taxonomy, then
the number and names of ADPE tabs would correspondingly change.

Successful Software Development, Second Edition

568

• Policies.

Behind this tab go your organization's ADPE policies. Other material pertaining to
these policies can also be placed here, such as hard copy of briefings on ADPE
policies.

• Guidelines.

Behind this tab go your organization's ADPE guidelines. Other material pertaining to
these guidelines can also be placed here, such as hard copy of briefings on ADPE
guidelines.

• Procedures.

Behind this tab go your organization's ADPE procedures. Other material pertaining to
these procedures can also be placed here, such as hard copy of briefings on ADPE
procedures.

• Standards.

Behind this tab go your organization's ADPE standards. Other material pertaining to
these standards can also be placed here, such as hard copy of briefings on ADPE
standards.

• ADTE.

This tab begins the ADTE portion of the binder. It can contain such things as your
organization's ADTE plan, ADTE procedures that explain how to use various ADTE
components such as workstations and CASE tools, and briefings on ADTE
components.

• Related Material.

This tab begins the portion of the binder that contains material that the binder recipient
feels is pertinent to that person's work. Examples of such material are the SOWs and
corresponding project plans that the person is working on. Other examples include
articles from professional journals addressing topics bearing on the person's work (for
instance, an article explaining how acceptance testing procedures can be constructed
from requirements and design specifications developed using an object-oriented
paradigm).

Your process engineering group (PEG) should provide every member of your organization
with a copy of the binder. The PEG should be responsible for distributing updates to the
binder contents. If you are a seller, you may want to provide binders to your customer.

One advantage of packaging ADPE elements and material pertinent to your technology
environment in a three-ring binder is that it facilitates keeping this material current. For
organizations of even modest size, where at least tens of copies of the binder need to be
distributed and kept current, your SEE implementation plan should include a mechanism for
distributing the binders and keeping its contents current. The plan should also include a task

Successful Software Development, Second Edition

569

to cover binder preparation and the associated labor and material costs. In addition, the plan
should address whether your organization wants to include your customers on the binder
distribution and training list. Providing customers with the binders helps to achieve customer
SEE buy-in (but does not guarantee it). In some cases, the customer may want to fund the
binders. In these cases, the customer may want to place the customer organization's logo on
the binder in addition to or instead of the seller organization's logo.

There are, of course, other ways to package the ADPE and related material. The packaging
does not have to be hard copy. If, for example, your organization has personal computers that
are networked, it may be desirable to place the material on the network for electronic access
(and subsequent printing, if desired). In addition to, or instead of, providing copies of the
material to each individual in your organization, you could mount the material on large poster
boards or similar presentation devices and display them prominently in your organization's
facilities. Whatever your packaging approach, your SEE implementation plan should address
it and provide resources to make it happen.

In previous chapters, we did not say much about SEE implementation and organization size,
preferring to address things that would be beneficial for organizations of any size to consider.
We now turn our attention to the following SEE implementation planning issue regarding the
ADPE and organization size:

9. How should ADPE implementation be handled if your organization is small?
(Here, small organization means "an organization having only a few projects, each
involving only a small number of people [say, ten at most] so that all involved
parties frequently come into contract with one another.")

Figure 8-19 shows one compact way to address this issue. The ADPE is packaged into a
single element. The figure gives an idea of how the element might be structured and what it
might address. It thus gives specific suggestions for planning an SEE implementation
approach built on a single ADPE element. The figure also offers a starting point for
constructing such an element. The element begins with a section that states the purpose of the
element and gives background on the organization's business. Each subsequent section
addresses a topic that in larger organizations would be folded into a single element. The figure
shows four such sections respectively addressing the following topics:

Successful Software Development, Second Edition

570

Figure 8-19 In a small organization, it may not be necessary (or practical) to detail the software
systems development process via a set of ADPE elements. Under such circumstances, it may
be preferable to package the ADPE into a single element. The figure offers a starting point for
this approach.

• Section 2—Project Planning
• Section 3—Software Systems Development Process
• Section 4—Change Control Board (CCB)
• Section 5—Product Development Process Measurement

These topics were selected on the basis of some of the considerations examined in previously
discussed issues. For your organization, the list may need to be augmented, reduced, or
otherwise modified. The figure also suggests that an appendix to the element can be used to
define an approach to updating the document for purposes of improving the organization's
business practices.

Successful Software Development, Second Edition

571

Figure 8-19 shows the element cast as a policy. This approach would be appropriate for a
small organization whose members have strong software engineering backgrounds. In this
situation, high-level statements regarding the organization's way of doing business may be
sufficient. These statements would provide the basis for consistency; the staff experience
would carry these statements through to the "how-to-do-it." For example, Section 4 (CCB)
might simply state the following regarding the policy for CCB minutes:

At a minimum, the following information shall be recorded:

1. Decisions (affecting project deliverables, schedule, or resources) made
2. Action items assigned
3. Issues discussed

The CCB minutes format is left to the discretion of each project.

On the other hand, in a less experienced organization, it may be appropriate to cast the
element as a guideline. The guideline would contain more specifics than policy-level
statements such as the example given for CCB minutes. For example, in a guideline, the
policy statement regarding CCB minutes might be replaced by guidance such as the
following:

All CCB meetings will be documented. Figure 2 shows the information to be
recorded and the format for recording this information.

In this example, Figure 2 would be a template for CCB minutes (structured, for instance,
along the lines of the CCB minutes examples given in Chapter 4).

Earlier we discussed ADPE element phasing. This notion can also be applied to the single-
element ADPE. In this case, one section would be written and promulgated, with the other
sections being shown as TBD (to be determined). For example, for the structure shown in
Figure 8-19, Section 3 (Software Systems Development Process), might be promulgated first
(along with Section 1 [Purpose and Background]). After a settling-in period, Section 2
(Project Planning) or Section 4 (CCB) might be promulgated next. With this promulgation
order, Section 3 would have top-level information regarding the entire process (including
project planning and the CCB). Project planning and CCB experience gained from the
promulgated Section 3 would then be fed into the subsequently developed Section 2 (Project
Planning) and Section 4 (CCB)—along with possible updates to Section 3.

The approach shown in Figure 8-19 also allows for the ADPE to grow straightforwardly as
the organization grows. The single-element ADPE shown in the figure is rooted in the
assumption that, in small organizations, all the organization's individuals frequently come in
contact with one another. Consequently, there is less need to detail business practices in
writing. These details (e.g., lessons learned) can be communicated orally through the frequent
contact of the organization's individuals. As the organization grows, it will be more difficult
for everybody to maintain frequent contact with one another. It will then become necessary to
commit more and more of the lessons learned to writing to keep everybody in the loop. It may
then become necessary to break the individual sections in Figure 8-19 into separate elements
as the size of each section grows to incorporate these lessons learned. Thus, the single-
element ADPE can be viewed as establishing the structure for a multiple-element ADPE.

Successful Software Development, Second Edition

572

By slightly modifying the preceding argument, a case can be made for using a single-element
ADPE as a starting point for an ADPE in organizations of any size. Giving the organization a
version of the "entire" ADPE early, may facilitate process institutionalization. The single-
element ADPE will generally lack considerable detail when it is first promulgated. In large
organizations, this lack of detail may at first lead to divergent practices. However, exposing
the organization to the "entire" ADPE early may expedite getting a better fix on which lessons
learned to incorporate either across the board or in separate sections. To illustrate this point,
consider the following example:

Suppose Section 3 in Figure 8-19 mandates peer reviews as part of the
software systems development process, but offers no guidance on how peer
reviews are to be conducted. Suppose further that the element in Figure 8-19
had a section called Peer Reviews that was marked as TBD when the element
was first promulgated. Then, the organization would understand (or could be
told in writing) that, initially, projects were free to conduct peer reviews
however they saw fit. Then, after six months, for instance, the lessons learned
from the various ways peer reviews were conducted could then be consolidated
and folded into the section on peer reviews. Eventually, as lessons learned are
accumulated across all the sections in the element, it may become desirable to
break the sections into separate elements.

To summarize the preceding discussion, Figure 8-19 shows a way to plan for developing an
ADPE for a small organization. The figure can also be viewed as phase 1 of a multiphased
plan for evolving an ADPE towards separate elements for organizations of any size.

We now turn our attention to an issue arising when an organization's resources are stretched
to their limits. Specifically, what can be done when an organization (1) desires to move
toward greater software systems development consistency but (2) has extremely limited
resources to set up standard business practices through an SEE? To address this question, we
consider the following issue:

10. What is an austere SEE implementation approach?

Figure 8-20 shows a combination of six candidate ADPE elements and practices for such an
approach. The six items are arranged in the order that we suggest they be implemented. We
stress that this order is worthwhile considering for any SEE implementation approach. In
addition, we remark that the order shown offers a strategy for deciding what to do if you
cannot implement even these six items. The strategy is to remove the higher numbered items
first. That is, if your constraints are such that you cannot do all six, then do not do item
number 6 (i.e., the project planning ADPE element); if your constraints are such that you
cannot do the remaining five, then do not do item number 5 (i.e., the Independent Product
Assurance ADPE element); and so forth.

Successful Software Development, Second Edition

573

Figure 8-20 What is an austere SEE implementation approach? The figure shows a combination
of ADPE elements and practices to consider for such an approach.

1. Project Planning Practice.

Project planning should be the first practice instituted—even before an ADPE element
for this activity is formally developed. The project plan and a process for developing
the plan are needed so that project members will have a documented, risk-reduced
approach for starting project work. You can institute a project planning practice by
using the ideas in Chapter 2. In particular, you can use the project plan outline given
there as a starting point for writing project plans. You can perform risk analysis based
on the ideas in that chapter to allocate resources to the management, development, and
product assurance disciplines. You can plug a CCB into the project plan to focus
project activity. You can transmit project planning and CCB practices to project staff
via a briefing put together from ideas introduced in Chapter 2 and Chapter 4.

2. CCB Practice.

This practice goes hand-in-hand with the first practice. The project plan can be used to
define how the project CCB is to be conducted and what should be captured in CCB

Successful Software Development, Second Edition

574

minutes. Figure 8-20 symbolizes these CCB practices by showing the CCB triangle
icon embedded in the project plan section called "Project CCB." Experience gained
from these project CCBs can be folded into the subsequently developed CCB ADPE
element (shown as item 4 in Figure 8-20).

3. Software Systems Development Process ADPE Element.

This element should be the first element developed. In Figure 8-20, the element is
labelled "procedure"; in Chapter 3, we labelled the element "policy." As with other
elements, the label used can have political and content overtones. "Policy" in some
organizations may carry a more authoritative ring than "procedure" (or "guideline" or
"standard"). In an austere SEE implementation approach, it may be desirable to label
the element "procedure" and include details for each process component. By
definition, an austere SEE implementation approach has only a small number of
ADPE elements. It may therefore be necessary to make the few elements included
more detailed than would be the case in an SEE with more elements. The earlier
discussion of the issue on element detail should be revisited to help you determine
how much detail to plan to include.

4. Change Control Board (CCB) ADPE Element.

This element should be the second one developed. At a minimum, this element should
spell out (1) who should attend CCB meetings, (2) what should be recorded at CCB
meetings, (3) who should chair CCB meetings, and (4) what should be the CCB voting
mechanism.

5. Independent Product Assurance ADPE Element.

Throughout this book, we have explained the risk-reduction purpose and role of the
independent product assurance disciplines. However, in an austere SEE
implementation approach, independent product assurance may have to be limited to
the role of process quality assurance (in which case, the element should be retitled to
reflect this scope). In this capacity, independent product assurance would check that
products are being developed in accordance with the organization's process as
documented in the element shown as item 3 in Figure 8-20. Other activities that we
have associated with an independent product assurance organization (i.e., product
quality assurance, verification & validation, acceptance testing, and configuration
management) would need to be performed by the product developers. If resources
permit, it would be desirable to address in the ADPE element all product assurance
activities—not just the ones performed by a group independent from the product
developers. Chapter 5 provides a starting point for determining the scope of the
element.

6. Project Plan Development Process ADPE Element.

This element would commit to writing the lessons learned from carrying out the
practice shown as item 1 in Figure 8-20. We recommend, as a minimum, that a project
plan template be constructed to provide specific planning guidance.

Successful Software Development, Second Edition

575

To this point, we considered SEE implementation planning issues primarily bearing upon
ADPE format and content. We now turn our attention to SEE implementation planning issues
bearing upon applying the ADPE element business practices. The first such issue we consider
deals with leveraging staff experience to bring about ADPE element institutionalization. The
issue is the following:

11. How can mentoring and coaching be leveraged to facilitate implementation of
ADPE practices?

Figure 8-21 states the purpose of "mentoring" and "coaching." These purpose statements are
taken from the Software Engineering Institute's People Capability Maturity Model® (P-
CMM®). The following discussion of this issue is adapted in part from this reference (the
figure gives the complete reference—the following paragaphs give the page citations to this
reference).

Figure 8-21 SEE implementation planning needs to account for mentoring and coaching.
Through mentoring and coaching, how to implement ADPE practices can be transmitted from
more experienced staff to less experience staff. The key point here is that, to leverage their
organizational impact, this mentoring and coaching should be planned. Source: Definitions of
mentoring and coaching in above figure are from B. Curtis, W. E. Hefley, and S. Miller, "People
Capability Maturity ModelSM," Software Engineering Institute and Carnegie Mellon University
Technical Report CMU/SEI-95-MM-02 (September 1995).

Successful Software Development, Second Edition

576

Before examining this issue, it is helpful to set context by stating the strategic objectives of
the P-CMM, which are the following (p. xx):

• Improve the capability of software organizations by increasing the capability of their
workforce.

• Ensure that software development capability is an attribute of the organization rather
than of a few individuals.

• Align the motivation of individuals with that of the organization.
• Retain human assets (i.e., people with critical knowledge and skills) within the

organization.

Earlier we stated that reading ADPE elements is a necessary but not sufficient condition for
institutionalizing ADPE practices. How, in fact, do these practices catch on and become
ingrained in the organization's way of doing business? The answers to this question are
complex. However, one thing is clear from everyday experience. People mature by learning
from the experience of others (sometimes negatively and sometimes positively). Mentoring
and coaching are two primary means by which people learn from the experience of others. We
now examine the purpose statements in Figure 8-21 to gain insight into how mentoring and
coaching can be leveraged to facilitate implementation of ADPE practices. This insight is
intended to help you incorporate a mentoring and coaching program into your SEE
implementation plan. Since the aim here is to leverage mentoring and coaching, these
activities should be planned—as opposed to being conducted primarily in ad hoc fashion.

One dictionary definition of mentor is "a trusted counselor or guide."[4] The underlying notion
here is that of a personal relationship between the more experienced individual and the less
experienced individual. The P-CMM extends this notion of personal relationship to groups—
that is, the experienced individual can establish a personal relationship with a group.
Following the words of Figure 8-21, possible outcomes of this personal relationship are skill
and knowledge development, improved performance, and ability to handle difficult situations.
Throughout this book, we talked about "prescriptive application" of ADPE practices—that is,
applying these practices in a manner that makes sense within the context of a given project.
Mentoring is a key way of passing know-how down the organizational chain to make
prescriptive application happen. For example, a new project manager tasked with
implementing a project plan can greatly benefit from mentoring by the manager's supervisor.
The supervisor can work with the project manager to help the manager anticipate such things
as schedule conflicts and resource shortfalls. For instance, the supervisor can advise the
project manager to get early visibility into document development by calling first for an
outline, then an annotated outline, and then a draft of the document.

How do you incorporate a mentoring program into your SEE implementation plan? Here are
some ideas taken from the P-CMM to get your thinking started in this area (p. L4-1):

Mentoring involves setting objectives for a mentoring program, designing
mentoring activities to achieve these objectives, selecting and training
appropriate mentors, assigning mentors to individuals or groups, establishing
mentoring relationships, and evaluating the effectiveness of the program.

4 Merriam-Webster's Collegiate Dictionary, Tenth Edition (Springfield, MA: Merriam-Webster, Inc., 2000).

Successful Software Development, Second Edition

577

The organization develops one or more sets of objectives for the mentoring
program. Appropriate types of mentoring relationships are designed for
differing mentoring objectives within the program. Criteria are developed for
selecting mentors and those chosen are trained for their assignments.
Individuals or groups being mentored are provided orientation on how they
can best take advantage of a mentoring relationship. Criteria are developed
for assigning mentors to individuals or groups. The mentor and the individual
or group being mentored establish agreements on how their relationship will
be conducted. Mentors meet periodically and occasionally evaluate whether
they are achieving their objectives. Advice is available to improve the
effectiveness of the mentoring relationship. The mentoring program is
evaluated against its objectives to identify needed improvements.

In terms of ADPE implementation and institutionalization, these ideas translate into pairing
experienced individuals with other individuals and groups organizationwide to propagate the
skills for carrying through on ADPE practices.

Regarding coaching, the P-CMM views it as a more focused and quantitative form of
counseling than mentoring.[5] As Figure 8-21 indicates, the purpose of coaching is to provide
expert assistance to enhance the performance of individuals or teams. We italicized "expert"
and "teams" to stress this difference between mentoring and coaching in the P-CMM. The
mentor is characterized as merely being "experienced"; the coach, on the other hand, is
termed an "expert." The mentor works with individuals or groups; the coach works with
individuals or teams. Here, the notion of "team," as distinct from "group," suggests that the
coach is applying expertise to make the talent of the team greater than the sum of the talents
of the individuals on the team. Coaches work with teams to improve their team-based
competencies and performance. This synergy is achieved through the use of quantitative data.
Just as a baseball batting coach analyzes quantitative data on pitchers who play for opposing
teams to prepare the hitters to hit better against the competition, so too does the software
coach analyze quantitative data on team performance to analyze skills to help the team set
measurable goals for improving these skills.[6] In the P-CMM, mentoring can be thought of as
a less refined form of coaching because the use of quantitative data is not mandated.

How do you incorporate a coaching program into your SEE implementation plan? Just as we
did previously for mentoring, we appeal to the P-CMM for the following ideas to get your
thinking started in this area (p. L5-13):

Coaching involves selecting appropriate coaches, analyzing data on personal
or team performance, providing guidance on methods for improving
performance, and evaluating progress towards goals for improving
performance.

Coaching opportunities are pursued where coaching can provide a justifiable
improvement to individual or team performance. Criteria are developed for
selecting coaches. Coaches are trained in coaching skills and are assigned to
an individual or team according to their expertise. Individuals or teams are
provided orientation on how to best use a coach to improve performance.

5 Some dictionaries, such as the one previously cited, list "coach" as a synonym for "mentor."
6 Example quantitative measures are delineated in Chapter 6 in Table 6-1. For example, to improve a team's peer review skills, the coach might look at
the average number of peer reviews needed by a team to produce deliverables that are accepted by the customer.

Successful Software Development, Second Edition

578

Coaches use data on individual or team performance to analyze skills, and
they help individuals or teams set measurable goals for improving skills and
performance. Coaches also track performance continuously and provide
specific guidance on improving skills and performance. Individuals or teams
practice the skills they are working on with the coach. Coaches provide or
make inputs to appropriate rewards for improvement. Coaching activities are
evaluated and improvements are made.

In terms of ADPE implementation and institutionalization, these ideas translate into pairing
experts with individuals and teams organizationwide to propagate and leverage the skills for
carrying though on ADPE practices. For example, a coach can work with project peer review
teams to cut down on the average length of time to conduct a peer review. A coach can help
realize this team performance improvement by analyzing statistics compiled on how long it
takes to get through various parts of a peer review. It may turn out, for instance, that the coach
uncovers through this analysis that peer review teams are spending time on trying to find
solutions to discrepancies uncovered. The coach can then offer guidance to peer review teams
on how to stay out of the problem-solving mode and how to stick to the classical peer review
objective of giving visibility to discrepancies.

In Chapter 7, we addressed human issues bearing on bringing about organizational cultural
change through SEE implementation. For purposes of planning strategies for bringing about
this cultural change, we can think of SEE implementation to be like the challenges facing a
mountain climber planning a way to the mountaintop. If the mountain is new to the climber,
the way up will be uncertain. This uncertainty translates into potential obstacles to reaching
the top. A good plan, however, can help reduce this uncertainty, thereby increasing the
likelihood of reaching the top.

Figure 8-22 elaborates on this mountain-climbing analogy. The SEE implementation planning
issue here is the following:

Successful Software Development, Second Edition

579

Figure 8-22 We can think of SEE implementation to be like the challenges facing a mountain
climber planning a way to the mountaintop. The figure lists some of these challenges and
suggests a strategy or strategies to meet each challenge.

12. What strategies can be adopted to meet the cultural change challenges posed by
SEE implementation?

The figure shows four such challenges and one or more strategies for meeting each challenge.
The strategies shown are intended to help you build a framework for carrying through on SEE
implementation. Preceding chapters offer you "how-to-do-it" guidance for constructing these
strategies. The list of challenges and strategies in Figure 8-22 is not comprehensive—but
these items should be considered as part of any list that you construct. To give you ideas for
constructing such a list, we discuss in detail the challenges and strategies shown in the figure.

Successful Software Development, Second Edition

580

Some of these challenges may not apply to your organization, and your organization may
have challenges not listed. The key point here is that your implementation plan should include
such challenges and propose strategies for meeting the challenges. The perspective shown is
the seller's. However, a customer organization should be prepared to support the seller in
meeting these challenges so that SEE implementation becomes a win-win situation for both
the seller and the customer.

Challenge:

The customer does not want independent product assurance—how can this attitude be
turned around?

In environments where the notion of independent product assurance is new, the customer may
view this activity as an unnecessary added cost to doing business. Even in environments
where the notion is not new, the customer may be reluctant because of prior negative
experience (e.g., receiving a system that had been tested—at considerable cost—but that did
not work in accordance with expectations).

Strategy 1 to Meet Challenge:

Show how each of the product assurance functions (QA, V&V, T&E, CM, and/or
however you choose to define product assurance functions) reduces project risk, thereby
adding value to the customer's product and to the product development process.

It is really not possible to prove the efficacy of product assurance. To do so would require
doing the same software systems development project twice—once with and once without
product assurance—in such a way that the only difference between the two projects is the
application of product assurance. However, one way to argue is to show the value added of
applying product assurance to products.

How do you show value added? One way is to measure cost savings by estimating the cost of
not doing rework of a product after it is delivered. This estimate can be based on estimating
the cost of doing postdelivery rework of a product as defined by discrepancies that product
assurance discovers prior to delivery. It is generally acknowledged that it is less costly to fix
discrepancies while a product is under development than it is after delivery. An applicable
analogy here is that it is easier, and thus less costly, to fix problems in a house while it is
under construction than after it has been built. Admittedly, it may take longer to finish the
house under such circumstances. However, the inconvenience to the homeowner and the
added cost of fixing the problems after the homeowner has moved in are generally worthwhile
avoiding.

A powerful argument that can be constructed to show the value added of product assurance is
to compile statistics on the percentage of products that are accepted as delivered (i.e., that do
not require rework). If most delivered products fall into this category and if product assurance
is part of your product development process, then product assurance must add value (as well
as the other activities in the process).

Of all the product assurance functions discussed in this book, acceptance testing is perhaps the
easiest to show value added. As we explained in previous chapters, the value added of
applying this function begins long before the acceptance test procedures themselves are

Successful Software Development, Second Edition

581

executed. Value is added beginning with requirements analysis as part of requirements
specification development. During this analysis activity, product assurance adds value by
raising questions regarding the testability of requirements. If a requirement is not testable,
then it is not a requirement because its presence or absence in the system being developed
cannot be demonstrated.

Considerable value can be added during design specification development. During this
development activity, it is desirable for product assurance to be developing test procedures.
As we explained in Chapter 5, the heart of test procedure development is the nailing down of
expected results—that is, being able to specify in a test procedure what a tester should see as a
result of performing a specific action. This information should come from design and
requirements specifications. If, while constructing test procedures, product assurance is
unable to find such information, by raising questions regarding this information while the
design specifications are under development, product assurance adds value. The value added,
as we just argued, is that it is easier, and thus less costly, to incorporate such missing
information into the design specification while it is under development than it would be after
the specification is delivered. Furthermore, uncovering such information during design
specification development, rather than after coding begins, can add considerable value by
heading off costly recoding activity.

The interaction between the product development organization and the product assurance
organization during requirements and design specification development just described is often
not visible to software customers. We characterize this interaction (as well as the analogous
interactions during coding and during other product development activities) by saying that
product assurance acts as a forcing function on the software systems development process.
This synergism, when applied consistently, can be of inestimable value.

Regarding this synergism, we need to stress another point. The product assurance
organization cannot be constituted as an afterthought. It must be staffed with good people
(that is, people well versed in the art of questioning and adept at applying this art with a
benevolent attitude). Otherwise, the product assurance activity will not add value—and, in
fact, may be counterproductive.

To summarize the preceding arguments, we stress that the application of product assurance
does indeed cost time and money. First, it takes product assurance time to review a product,
and it costs money for product assurance to perform this review. Second, addressing
discrepancies that product assurance uncovers during product development adds time to the
product development cycle, and it adds cost—namely, the labor to fix the discrepancies. And,
indeed, addressing these discrepancies is product rework. However—and this "however" lies
at the heart of the challenge under discussion—the time and money spent doing this rework
while the product is under development is generally less than the time and money that would
have to be spent at some later point in the project. And that differential is the value added.

Challenge:

The seller staff and/or the customer do/does not want to follow the ADPE business
way—how can this attitude be turned around?

Adopting the ADPE business practices compels almost everybody in the organization to
change the way they do their jobs. Many people naturally resist change. It is therefore almost

Successful Software Development, Second Edition

582

a certainty that you will encounter some resistance when you move ahead with SEE
implementation. Your SEE implementation plan must include strategies for softening this
resistance and creating win-win situations. We will discuss five strategies for softening
resistance and creating win-win situations. These strategies are intended to spark your
thinking for devising strategies appropriate to your organization. However, we do stipulate
that one strategy is mandatory. There is no significance to the order of the strategies.

Strategy 1 to Meet Challenge:

Show how documented business practices that are followed remove dependence on the
individual, thereby (1) reducing schedule risk and (2) affording the individual
opportunity to grow within the organization. [Soft Sell]

Let us first consider how documented business practices that are followed remove dependence
on the individual, thereby reducing schedule risk. If indeed documented business practices
remove dependence on the individual, then if an individual does not happen to be in the office
for one or more days (for whatever reasons), others in the organization can generally pick up
the slack. The net result is that the schedule should not be impacted. Of course, we are not
arguing here that the individual who is out is not needed. Clearly, that individual cannot be
out indefinitely because it is unreasonable to expect that other individuals can continue to do
their jobs as well as somebody else's job.

What we are saying is that tasks do not need to be put on hold—thereby possibly impacting
other tasks—because a particular individual is not in the office. In fact, if it is not feasible to
have multiple coverage for highly specialized activities, truly robust business practices will
have workarounds or alternative paths so that delays in highly specialized activities
occasioned by the temporary absence of one or more individuals do not impact
accomplishment of other activities. For example, if a code walk-through has to be put on hold
for a day or two because the coder is not in and if the code needs to be integrated with other
code modules that are already completed, it may be possible still to integrate the incomplete
code module with the other modules.

Suppose the organizational software systems development process calls for unit development
folders, with each folder containing information on the development status of a particular
module. This information may make it possible for others in the organization to proceed with
integration testing because they would have insight into how the incomplete module might
behave when integrated with the other modules. In the extreme, this information could be
used to replace the incomplete module with a stub that simply acts as a pass-through for
testing purposes. The key point here is that the organizational process affords others in the
organization visibility into the missing individual's work, so that project work can proceed to
some extent.

We now examine item (2) in the strategy statement—i.e., "documented business practices that
are followed remove dependence on the individual, thereby affording the individual
opportunity to grow within the organization." This strategy involves some subtle arguments
that we now explore. For this purpose, we consider Figure 8-23.

Successful Software Development, Second Edition

583

Figure 8-23 A key objective of SEE implementation is to establish organizationwide business
practices that do not strongly depend on particular individuals for their successful
accomplishment. Good people are certainly needed to achieve successful software systems
development. Initially, people may have concerns and apprehensions about implementing
refined or new business practices. Part of SEE implementation involves evolving an
individual's perception of what this implementation means. The figure shows how an
individual's perception may evolve as an organization matures.

The figure stresses that SEE implementation seeks to establish organizationwide documented
business practices that, when followed, do not hold individuals captive to particular positions.
Successful software systems development requires good people—but without documented
business practices that are followed, successful software systems development becomes
problematic, even with good people. That is, consistent success is uncertain even with good
people. Furthermore, these documented business practices provide an environment that
encourages career growth.

We now step through the three parts of Figure 8-23 to see how career growth is a natural
outcome of these documented business practices. Each part represents how an individual
perceives an organization's impact upon his or her job. Remember, perception and reality may
be two totally different things. For example, an individual may perceive that the
organization's way of doing business reduces his or her flexibility of performing day-to-day
activities. The reality may be that the organization's way of doing business fosters flexibility
by empowering the individual to apply prescriptively the organization's business practices.

Successful Software Development, Second Edition

584

The following discussion is also intended to bring to the fore some of the concerns and
apprehensions that people may have when faced with SEE implementation—so that you can
plan to diminish these concerns and apprehensions.

1. Perception: A cowboy organization (i.e., where everybody does his or her own thing)
provides me job security.

People follow some (generally undocumented) process that they and their associates
have become accustomed to as they work together. Sam, Pam, and Ham each has his
or her own way of doing things. Amalgamated processes emerge as these and other
individuals become acclimated to one another. That is, Sam and Ham develop a way
of working together, Sam and Pam develop a way of working together (which, for the
same type of work, may differ from the way Sam and Ham work together), etc. The
processes emerge as a result of many factors including the following:

o The prior experience of the individuals working in that corporate environment
or in some other corporate environment (e.g., people who come from a
corporate environment where engineering discipline was not even an
afterthought will interact differently from people who come from a corporate
environment where testing that used documented test procedures was
necessary before a system could be released to a customer).

o The personalities of the individuals (e.g., competitive individuals will interact
differently from passive individuals).

o The reward system (e.g., a corporate environment that rewards on-time product
delivery over everything else will generally give rise to a process different
from one that is used in a corporate environment that rewards error-free
computer code over everything else).

Factors such as these may foster an individual's perception that he or she has job
security because he or she is the only one who knows how to perform certain tasks.
This perception generally gives rise to resistance to implementing another way of
doing business—such as the ADPE business way.

2. Perception: A restrictive organization (i.e., where the organization tells me how to do
my job) manipulates me.

Resistance to the ADPE business way arises for another reason. Some people view an
organization's attempt to establish a documented process that all must conform to as a
means to (1) manipulate them and (2) make them less valuable to the organization.
This view apparently has its roots in the perception that if the organization specifies
how individuals are to do their jobs, then the individual is easily replaced. It is natural
for people to want to distinguish themselves from others. What is often misunderstood
is that being a distinguishable member of an organization is not incompatible with
following the organization's business way. The compatibility arises from the fact that
each individual is responsible for applying the business way in a manner that makes
sense for the situation at hand. In previous chapters, we labeled this mode of
application as "prescriptive application." Applying the ADPE way is not a rote
exercise of moving down a list of steps to be performed.

Successful Software Development, Second Edition

585

3. Perception: A stable organization (i.e., where the organization does not hold me
captive to my job) provides me professional mobility.

The bottom line of the preceding arguments is that, unless an organization has well-
understood anddocumented practices and uses them, the way that the organization
does business will depend on the specific know-how of individuals. As we intimated,
when those individuals are not in the office, doing business becomes an improvisation
exercise. Furthermore, when those individuals permanently leave the organization, the
replacement individuals will generally have difficulty getting acclimated to the
idiosyncracies of their coworkers (i.e., Sam's, Pam's, and Ham's way). The name of the
game, then, is to have Sam, Pam, Ham, and others contribute to and adapt to the
ADPE practices. That is, they help to create and plug themselves into the
organization's way of doing business. If this is done with an open mind, people will
find that they will have a better understanding of what to expect from one another.
These clarified expectations lead to the perception that people want to work together,
thereby synergizing the efforts of individuals. Over time, people shed "me-first"
attitudes and replace them with teamwork attitudes. The net result is that individuals
become empowered to do more (because a common purpose dominates teamwork
thinking), thereby escaping the threat of being held captive to a particular position.
Consequently, people increase their professional mobility, while contributing to the
long-term stability of the organization.

We now consider the second strategy listed in Figure 8-22 for meeting the second challenge
listed in that figure.

Strategy 2 to Meet Challenge:

Make ADPE compliance part of each employee's performance review and reward
compliance.[Hard Sell]

In many enterprises, an employee's performance is assessed periodically (e.g., quarterly,
semiannually, yearly) for purposes such as setting goals, adjusting salary, and assessing
promotion opportunities. Figure 8-24 shows a partial outline of a form that might be used as
part of an employee's performance review. Included on the form is a section (labeled "N.0")
containing questions and information requests aimed at assessing the employee's ADPE
compliance. Such questions and information requests can be used to motivate people to
acclimate to the ADPE way, particularly if they are rewarded for doing so. It should be noted
that one question (i.e., How have you improved the way the organization develops products
using the ADPE way?) invites suggestions for improving the ADPE way. This type of
question is a concrete way of offering each employee the opportunity to participate in
molding the organization's business practices. In fact, manifestly incorporating such
suggestions into the ADPE way greatly increases the likelihood of employee buy-in to the
ADPE way.

Successful Software Development, Second Edition

586

Figure 8-24 An aggressive strategy for pursuing SEE implementation is to make ADPE
compliance part of each employee's performance review. In more mature organizations, this
approach should be acceptable to most employees since, by definition, disciplined engineering
practices are part of the culture. The figure offers performance review ideas for addressing
ADPE compliance.

In more mature organizations, this strategy should be acceptable to most employees, since, by
definition, disciplined engineering practices are part of the culture. However, using this
strategy is not without risk. For example, employees not rewarded for what they feel is a
demonstrated track record of ADPE compliance may become highly resistant to the ADPE
business practices—and encourage others to do the same. The lesson here is that a modicum
of consistency is needed in rewarding ADPE compliance. The questions and information
requests in Figure 8-24 are aimed at pulling out evidence of ADPE compliance so that this
modicum of consistency can be realized. For instance, one request is for at least five artifacts

Successful Software Development, Second Edition

587

demonstrating how the employee has supported the ADPE. Example artifacts might be the
following:

• One or more sets of CCB minutes signed by the customer
• A memorandum documenting a peer review
• Test incident reports (TIRs) written during an acceptance testing activity[7]

Of course, some criteria may need to be established regarding such things as (1) "do all
artifacts count equally?" and (2) what counts as the minimum set of responses to the questions
and the information requests before the employee is entitled to an ADPE-compliance bonus.

The strategy can be reinforced by incorporating ADPE compliance into the ADPE elements
themselves as part of each employee's responsibilities. Figure 8-25 shows one way to embed
employee responsibility for ADPE compliance into an ADPE element. The figure shows a
section of an element—labelled "N.0," with subsections (two are shown, "N.2" and "N.4")—
dealing with ADPE element implementation responsibilities. Part of these responsibilities
includes words on ADPE compliance similar to those shown in Figure 8-24.

7 TIRs might be appropriate for a member of a product assurance organization or for a project manager. In the case of the project manager, the TIRs
can be particularly convincing evidence if they bear the project manager's signature, showing explicitly the project manager's involvement in the
acceptance testing process.

Successful Software Development, Second Edition

588

Figure 8-25 Here is a way to reinforce the strategy of making ADPE compliance part of each
employee's performance review. The figure illustrates how to address ADPE compliance in the
responsibilities section of an ADPE element.

An alternative to the reinforcing approach shown in Figure 8-25 is to remove the words
appearing in Section N and instead place something like them in a memorandum that
promulgates the ADPE element. This approach gives greater visibility to the responsibility for
ADPE compliance. Figure 8-26 provides you with a starting point for a memorandum
promulgating an ADPE element. The memorandum includes (in bold) the following ADPE-
compliance words:

Successful Software Development, Second Edition

589

Figure 8-26 Here is a starting point for a memorandum promulgating an ADPE element to your
organization. This example memorandum is designed explicitly to encourage ADPE
compliance. The bolded paragraph illustrates how to stipulate this encouragement.

You are expected to implement the practices set forth in this element. Your
performance review will be based in part on your demonstrated application of
these practices in your project work.

It should be noted that the wording in the memorandum in Figure 8-26 regarding the ADPE is
based on the four-component ADPE taxonomy used in this book—namely, policy, guideline,
procedure, and standard. If your organization uses some other taxonomy, the wording in your
adaptation of the Figure 8-26 memorandum should reflect this taxonomy.

We now turn our attention to a third strategy, which may be linked to the preceding two
strategies, for overcoming opposition to the ADPE way.

Successful Software Development, Second Edition

590

Strategy 3 to Meet Challenge:

Get all managers on board with the ADPE way by some combination of the preceding
two strategies or by some other means, such as corporate directives and/or hiring
policies. [This strategy is mandatory.]

There are few instances in this book in which we say that something must be done. Invoking
this strategy is one of those instances. If managers are not on board with the ADPE way, the
people who work for them will not be on board.

Earlier we examined how mentoring and coaching can facilitate implementation of ADPE
practices. Within most organizations, a prime source for this mentoring and coaching is
management. Thus, if management is not on board with the ADPE way, not only will
implementation of ADPE practices be blunted or curtailed, but also countercultures will
emerge in the organization. Individual managers will set up their own fiefdoms with a set of
practices peculiar to the fiefdom. That is, the Sam/Pam/Ham scenario discussed previously
will be replicated at various levels within the organization. In the extreme, the organization
can be torn apart as the fiefdoms increasingly work at cross-purposes. Furthermore, the
organization will present a bewildering picture to its client community. Products developed
will take on the character of the producing fiefdom. For example, one client may receive a
user's manual with a delivered system, while another client may not. If customers
communicate with one another, such inconsistency can drive customers away from the
organization.

There are a number of ways to get managers on board with the ADPE way, including some
combination of the following strategies:

• The process engineering group (PEG) should work with managers to provide them
with suggestions for coaching/mentoring subordinates on how documented business
practices that are followed afford individuals the opportunity to grow within the
organization. For example, the PEG can help managers formulate employee career
growth programs by showing how documented business practices offer employees a
starting point for learning new things. The PEG should also work with managers to
show how documented business practices that are followed can reduce schedule risk.

• Making ADPE compliance part of each manager's performance review is, as discussed
earlier, an aggressive way to get managers (and the rest of the organization) on board
with the ADPE way. This strategy has a natural leveraging effect on the organization.
For managers to be rewarded for ADPE compliance, they must get subordinates to
comply with ADPE business practices.

• A strategy even more aggressive than the preceding one is to require ADPE
compliance as a condition for employment. That is, ADPE compliance is made part of
the manager's employment contract. An example of an ADPE-compliance contractual
stipulation might be the following:

If the manager is unable to demonstrate that those working for the
manager are complying with ADPE business practices, the manager is
subject to termination.

Another approach to this strategy is to require the prospective manager to go through
an ADPE training program and a trial period prior to being hired. During this trial

Successful Software Development, Second Edition

591

period (of, say, several months), the prospective manager would be expected to
motivate subordinates to assimilate and carry through ADPE practices. Hiring of the
prospective manager would be contingent upon demonstrating the ability to provide
such motivation and demonstrate other management qualities that the organization
deems important. Of course, once hired, the manager would be expected to continue
promoting the ADPE way (e.g., by presenting ADPE briefings).

The preceding strategies are some key ways that management buy-in to the ADPE way can be
achieved. They have also been presented to start your thinking for developing strategies that
might be particularly suited to your organization.

The bottom line of the preceding discussion is the following:

Management buy-in to the ADPE way must be achieved, or SEE
implementation will fail. Your SEE implementation plan must therefore
explicitly address how this buy-in is to be achieved.

Strategy 4 to Meet Challenge:

Give periodic briefings to the seller staff on ADPE element content before and after
promulgation. After promulgation, try to make customer attendance a requirement.

Earlier we stressed that promulgated ADPE elements should be required reading. However,
reading alone will not result in ADPE implementation. The plain fact is that, particularly in an
organization where people may be on the verge of being overwhelmed with work, reading
ADPE elements will not be near the top of each staff member's list of things to do—even if
the employee is interested in following the ADPE practices. To encourage reading of the
ADPE elements and eventual adoption of ADPE practices, periodic briefings to the seller staff
on ADPE content should be given—before and after ADPE element promulgation.
Attendance at these briefings should be made mandatory—particularly in organizations where
management buy-in to the ADPE may be uncertain.

Giving such briefings before element promulgation encourages buy-in to the ADPE way.
Such briefings should encourage suggestions from the staff. If these suggestions are folded
into the element, staff will be more inclined toward adopting the practices. Of course, it will
generally not be possible to incorporate all suggestions. Some will conflict with one another,
particularly in the area regarding the amount of detail to include.

After ADPE element promulgation, it is strongly suggested that customer attendance at such
briefings be made a requirement—at least for the element that lays out the organization's way
of doing business (i.e., the element constructed from the principles presented in Chapter 3).
Since, as we discussed in Chapter 3, the customer should be made part of the organization's
software systems development process, the customer needs to be made aware of what this
process is if the process is to work. These briefings are part of the same thinking that
encourages the customer and seller to sign each ADPE element. The briefings and signatures
are important steps toward achieving ADPE buy-in. The briefings also allow the customer to
raise questions specific to that customer's work with the seller to clarify how the ADPE
practices apply to that work. Such questions can also help the seller improve ADPE element
content. For example, during a briefing of the seller's CCB element, the customer may
question why product assurance may need to attend CCB meetings. If the element simply

Successful Software Development, Second Edition

592

asserts that product assurance is required to attend, the customer's question on this issue may
lead to an update to the CCB element that explains the value added of product assurance
attendance at CCB meetings. For instance, product assurance can raise questions about the
testability of requirements being discussed at a CCB meeting; if such questions are raised
before design and/or coding activities are underway, considerable time and money can be
saved by heading off costly redesign and/or recoding activities. As a specific example,
suppose a response time "requirement" is articulated as follows:

The system response time to a user query shall be three seconds.

Regarding this statement, product assurance can raise testability-related questions such as the
following:

• How is the interval defining system response time to be measured? That is, what is the
starting point for the interval, and what is the ending point?

• What types of queries are included? All, including such things as end-to-end database
searches? Or, are only certain types of queries included because other queries would
take much longer for the system to respond? For these other queries, what value is to
be assigned to the response time interval?

Strategy 5 to Meet Challenge:

Establish a training program that offers the staff the opportunity to learn or augment
their understanding of the engineering principles underlying the ADPE.

Earlier we discussed in connection with Figure 8-16 tradeoffs associated with how much
detail to include in ADPE elements. We indicated that it is neither practical nor useful to turn
the set of ADPE elements into a software engineering treatise. It is often a challenge to get
people to read ADPE elements, even if they consist of only a few pages. Yet, it is generally
necessary to convey engineering principles to the staff if the ADPE business practices are to
be applied prescriptively. More to the point of the discussion of this strategy, an often
unspoken source of resistance to ADPE practices is the unwillingness of staff to make known
that they may not be well versed in engineering principles. It is human nature for people not
to be forthcoming regarding things they may not know.

Engineering principles provide the context for the business practice guidance, policy, and/or
"how-to-do-it" that should be the heart of each ADPE element. In fact, the general structure of
most of the chapters in this book is first to introduce engineering principles and then to
illustrate the application of these principles to develop practical guidance for setting up
practices whose application aim at consistently producing good software systems. For
example, Chapter 2 of this book introduces engineering principles such as the following:

• It is necessary to plan for as yet unknown change.
• Independent product assurance serves to reduce project risk. Consequently, the

amount of independent product assurance to be applied to a project should be
correlated with the assessed risk of the project.

We applied the first principle listed to make the CCB the centerpiece of project change
control. In Chapter 4, we detailed how to bring about this change control.

Successful Software Development, Second Edition

593

Regarding the preceding independent product assurance principle, many would argue that
independent product assurance as we espouse it in this book can be replaced by putting the
testing function under the development organization and having an independent quality
assurance (QA) organization check that all parts of the process are being accomplished
(including testing). Such a QA organization may also perform document reviews, or these
document reviews may be performed by members of the development staff who did not
develop the document in question—so that an independent product assurance organization
that performs such reviews is not needed. Furthermore, configuration management, which we
place under independent product assurance, others place under the development organization.
The point here is that such redistribution of functions that we put under the product assurance
umbrella represents an alternative way to reduce project risk by applying the following more
general engineering principle:

To reduce software systems development project risk, it is necessary to set up
checks and balances during the product development cycle. The heart of these
checks and balances is to schedule and perform product reviews, using people
who were not involved with the development of the product undergoing review.

As we have stated many times throughout this book, there is no one way to achieve consistent
successful software systems development. We just presented arguments that attack some of
the basic premises of our book to illustrate this point. Of course, we did not go through these
arguments to send you the message that you wasted your time getting this far in the book.
Rather, we want to drive home the point that an organization should incorporate into its
ADPE implementation approach the commitment to convey to staff the engineering principles
underlying ADPE elements.

So how can such principles be conveyed—given that adding to the bulk of ADPE elements by
including material on engineering principles may further turn off staff to reading the
elements? One approach is to establish a training program that offers staff the opportunity to
learn or augment their understanding of the engineering principles underlying the ADPE. The
discussion of Strategy 4 (periodic briefings on ADPE element content) offers one aspect of
such a training program. These briefings could expand upon any material on engineering
principles that may appear in the element. Another aspect of such a training program could be
multiple-day seminars on certain topics pertaining to the ADPE—for example, requirements
management, peer reviews, and acceptance testing. Such seminars could be built from widely
accepted texts on the topics, and such texts could be included as part of seminar handouts.
You could also construct seminars from the principles and examples set forth in this book,
particularly in those areas where the book goes into considerable detail. For example,
Chapter 5 sets forth engineering principles regarding various types of product and process
reviews. The chapter goes into considerable detail regarding some of these reviews—in
particular, product assurance document reviews and acceptance testing. We do not, however,
go into the same level of detail regarding peer reviews because of the plethora of literature on
this subject.

If your training budget is tightly constrained so that you can only offer staff a very limited
number of classes, there is one engineering area that we would put at the top of any training
list—requirements management. At the beginning of this chapter, we replayed in Figure 8-1
the wizard-and-king comic strip that we introduced in Chapter 4. The Figure 8-1 caption reads
as follows:

Successful Software Development, Second Edition

594

At the most fundamental level, the avenue to consistent successful software
systems development is sustained effective communication between the wizard
(i.e., software seller) and the king (i.e., software customer).

For years, we have run a three-day seminar on requirements management based on the
wizard-and-king comic strip. The seminar attendees have consistently told us that this seminar
is particularly effective when the attendees include both software sellers and software
customers. Throughout the seminar, there is considerable interaction between the sellers and
customers, primarily through exercises that the attendees work in class and then subsequently
discuss. What typically emerges from these discussions is that sellers and customers each
have their own way of communicating things. Thus, to achieve sustained effective
communication between sellers and customers, principles of effective communication must be
presented and illustrated. Probably the most important principle examined in the seminar is
that of requirements testability. In fact, the section on testability appearing in Chapter 5 is
used in the seminar. The capstone of the seminar is when all attendees are called upon to write
test procedures from requirements and design specifications introduced in the seminar. In fact,
the material used in Chapter 5 to illustrate how to write test procedures is the material used in
the seminar. This classroom exercise drives home to all attendees the role of requirements in
providing the basis for the seller to demonstrate formally to the customer that what the
customer asked for is indeed being delivered in the software system. Sellers become
sensitized to customer concerns (such as having a system that produces error diagnostics in
plain English), and customers become sensitized to (1) how labor-intensive test procedure
development can be and (2) how important it is to express requirements in terms that both the
customer and seller understand.

We have found that this requirements management seminar effectively addresses a number of
concepts examined in this book, including the following: (1) CCB, (2) acceptance testing, and
(3) requirements testability. In addition, the seminar explores at length requirements topics
not addressed in this book, including the following: (1) requirements "goodness," (2)
requirements modeling (where different modeling techniques are introduced, such as decision
tables and state transition diagrams), and (3) requirements psychology (where such issues as
how the differing perspectives of management, development, and product assurance serve to
individually and collectively shape requirements).

We have also found that the requirements management seminar has a good carry-over effect
into the work environment. After attending the seminar, sellers pay more attention to
requirements testability issues and take greater pains to develop tests based on requirements;
customers pay more attention to how they express their requirements and become more
tolerant of the labor needed to develop acceptance test procedures.

Part of your SEE implementation plan should include a section on training as a means for
encouraging seller staff and the customer to implement the ADPE way. The starting point for
this section can be the discussion in the preceding paragraphs of this fifth strategy.

Your organization will undoubtedly have its own set of training priorities. Your SEE
implementation plan should address these priorities. For example, software industry
experience shows that peer reviews offer a significant return on the investment in such
reviews (e.g., fewer requirements discrepancies in delivered computer code). Your SEE
implementation plan training section may therefore want to stress training in the mechanics of
peer reviews. To build your case for emphasizing peer review training, you may want to cite

Successful Software Development, Second Edition

595

industry publications touting the value added of peer reviews to the software systems
development process.

We have concluded our discussion of the second SEE implementation challenge listed in
Figure 8-22. This discussion focused on strategies to head off outright resistance to the ADPE
way. However, outright resistance is only one form of resistance that must be dealt with if
SEE implementation is to be successful. Subtler forms of resistance can present themselves.
These subtler forms are the focus of the third SEE implementation challenge listed in Figure
8-22. This challenge is the following:

Challenge:

The seller staff will find ways to work around the ADPE way—how can this attitude be
turned around or, where appropriate, be used to incorporate improvements into the
ADPE way?

We repeatedly stress that SEE implementation is a cultural change exercise. People naturally
resist the loss associated with change or the transition associated with change. One form of
resistance is to find ways to work around the ADPE way. This form of resistance, in part, can
arise for one of the following reasons:

• The ADPE way is awkward or just does not make good business sense
• People have not bought into the ADPE way even though it makes good business sense

The first reason can be the source of ADPE improvements, and your SEE implementation
plan should address this potential process improvement source. For example, an ADPE
element may specify that only the most senior manager in the organization can sign out
deliverables. If the volume of deliverables is such that this senior manager proves to be a
bottleneck that causes deliverables to be late, subordinate managers may choose to sign out
deliverables and be prepared to defend their position to the senior manager should the senior
manager call them on the matter. Ultimately, it may be decided to revise the ADPE element
that specifies the deliverable sign-out procedure. The revision may be the inclusion in each
project plan a table that indicates, for each deliverable, the manager who has sign-out
authority. Approval by the senior manager of the project plan containing such a table is
tantamount to delegating deliverable release authority to subordinate managers.

The second reason just cited—people have not bought into the ADPE way even though it
makes good business sense—is another matter and is the focus of the next strategy.

Strategy to Meet Challenge:

Show how documented business practices that are followed remove dependence on the
individual, thereby affording the individual opportunity to grow within the
organization. Reward staff who follow the ADPE way and suggest improvements to it.
Make the rewards part of a ceremony attended by the entire organization.

The first part of this strategy we examined when we discussed the preceding challenge. The
arguments presented in conjunction with Figure 8-23 apply to the challenge currently under
discussion. The bottom line of those arguments was the following:

Successful Software Development, Second Edition

596

Unless an organization has well-understood and documented practices and
uses them, the way that the organization does business will depend on the
specific know-how of individuals. As we stated, when those individuals are not
in the office, doing business becomes an improvisation exercise. Furthermore,
when those individuals permanently leave the organization, the replacement
individuals will generally have difficulty getting acclimated to the
idiosyncracies of their coworkers (i.e., Sam's, Pam's, and Ham's way). The
name of the game, then, is to have Sam, Pam, Ham, and others blend their
ways with the ADPE practices. That is, they contribute and plug themselves
into the organization's way of doing business. If this is done with an open
mind, people will find that they will have a better understanding of what to
expect from one another. These clarified expectations lead to the perception
that people want to work together, thereby synergizing the efforts of
individuals. Over time, people shed "me-first" attitudes and replace them with
teamwork attitudes. The net result is that individuals become empowered to do
more (because a common purpose dominates teamwork thinking), thereby
escaping the threat of being held captive to a particular position.

These arguments appeal to reason. Sometimes, however, such appeals fall on deaf ears. Some
creative people, in particular, consider any set of practices a challenge to their inventive
nature. This challenge manifests itself as ways to game the system of practices, sometimes at
the expense of compromising the organization's good name. For example, people who do not
believe in the value that independent product assurance can add to a product may choose to
release a software system to a customer without first conducting acceptance testing. As we
have previously discussed, without such testing, the risk of software failure increases.

It is therefore generally a good idea to augment appeals to reason with something more
tangible. Figure 8-27 shows a number of inducements that can be offered to complement
appeals to reason. These inducements include such things as the following:

Successful Software Development, Second Edition

597

Figure 8-27 An ongoing SEE implementation challenge is to head off the tendency for the seller
staff to find ways to work around the ADPE way. One strategy for meeting this challenge is the
offering of inducements such as those shown—cash bonuses, coffee mugs, food, and articles
of clothing (hats, T-shirts). Senior management and/or the organization's PEG can help achieve
employee buy-in and build esprit de corps through such inducements. Inducements help
reduce organizational resistance to the cultural change that SEE implementation brings. In the
extreme, this resistance can manifest itself in battle cries proclaiming outright opposition such
as, "I'm not going to do it!" or, "I'm going to do what I have to do [to get a product out the
door]!"

Successful Software Development, Second Edition

598

• Cash bonuses.

Monetary rewards, particularly if they are presented at a ceremony attended by the
organization, serve to take some of the pain out of the changes that people are asked to
make in acclimating themselves to the ADPE way.

• Articles of clothing such as hats and T-shirts.

These items can be tagged with identifiers and/or slogans that promote the idea of SEE
buy-in (e.g., "I'm plugged into the SEE").

• Food-related articles such as coffee mugs and lunch.

Food-related articles can be tagged with identifiers such as "SEE" that serve as
reminders of the business cultural shift associated with SEE implementation. Food can
be provided at lunch-time briefings on ADPE elements.

One word of caution is in order regarding using inducements to bring about ADPE buy-in.
The inducements must be offered consistently—particularly cash bonuses. It is therefore a
good idea to establish criteria that clarify what an individual or group needs to do regarding
ADPE implementation to be rewarded. The inducement strategy can be undermined if staff
perceives inequities in the way people are rewarded. For example, it can be counterproductive
to give one staff member a $500 bonus solely for making sure that project CCB minutes are
signed by the customer while giving another staff member a $50 bonus for building a
traceability matrix showing the explicit linkages between requirements and design
specifications and test procedures.

We now turn our attention to the final SEE implementation challenge shown in Figure 8-22,
which is the following:

Challenge:

The customer will try to circumvent the seller management chain to "expedite" the
incorporation of product changes—how can this attitude be turned around?

SEE implementation can be a cultural change for customers as well as sellers. This situation
will generally exist even in those instances in which a customer asks the seller (e.g., via an
RFP) to set up an SEE. It should therefore come as no surprise that, in general, a customer,
like the seller staff, may resist adopting the ADPE way—and continue interacting with the
seller via the pre-ADPE way. One particular manifestation of the pre-ADPE way occurs when
the customer goes around the seller management chain to interact directly with product
developers to "expedite" the incorporation of product changes. For example, the customer
may pick up the phone and call a computer programmer (whose name for the purposes of this
discussion is Guru) on the seller product development staff and make a request such as the
following:

"Say, Guru, when you get the time in the next day or so, please produce a new
report that takes all the population data in the database and arranges the data
by age and distance from Topeka, Kansas. Display the arrangement as a series
of bar graphs, where a given bar graph shows the number of people within an

Successful Software Development, Second Edition

599

age range of ten years, starting with 0 and ending with 100, living within a
distance range of 50 miles from Topeka, starting with 0 and ending with 500.
Thus, for example, one bar graph will show the number of people in the age
range 0–10 years, 11–20 years, . . ., 91–100 years living between 51 miles and
100 miles from the courthouse building on Main Street in Topeka. Please
generate a sample bar graph for me by the end of the week. Thank you for your
support!"

From the customer's perspective, such interaction cuts through an organization's
bureaucracy—and, on the surface, appears to be an expeditious way to transact business.
From the seller project manager's perspective, however, such interaction undermines, for
instance, the manager's ability to manage the project's cost and schedule. In this case, Guru
should take the customer request to his supervisor so that the supervisor can decide what
needs to be done.

The following strategy is one way to turn this customer attitude away from such practices and
toward the ADPE way:

Strategy to Meet Challenge:

Make the CCB the focal point for customer/seller interaction. Train seller staff in the
need to document interactions with the customer bearing on project work and to inform
seller management of such interactions.

We stress throughout this book that the ADPE practices are a way to elevate software systems
development to a businesslike proposition. Through the CCB, seller and customer decisions
are made a matter of record. In this way, the seller and customer become accountable for their
actions.

It is simply good business to run software systems development like a business, with written
records and products developed in accordance with a mutually agreed-to plan. Relying solely
on the spoken word is a recipe for trouble. In particular, seller staff who take verbal direction
from a customer put a project at risk. Seller staff therefore need to be trained to document
interactions with the customer bearing on project work and to inform seller management of
such interactions.

We want to emphasize that we are not advocating reducing software systems development to
a coldly formal, paper-pushing bureaucracy. Certainly, the customer can interact with seller
staff, but the customer needs to keep in mind that the customer has hired the seller to (1) build
software(-related) products and (2) manage the development of these products. The
customer's primary role is to give direction to seller management so that this management can
appropriately focus the efforts of the seller staff.

Your SEE implementation plan should therefore stress that the ADPE will be set up such that
the CCB is the focal point for customer/seller interaction. Each project plan should reflect this
notion by including a statement such as the following:

Project decision making will be accomplished and documented at the CCB
throughout the project. Decisions made outside of the CCB will be documented
and appended to the minutes of the next-occurring CCB meeting.

Successful Software Development, Second Edition

600

We also want to stress that our preceding remarks about how customer/seller relationships
may eventually sour are not intended to imply that both the customer and seller should enter
into a contract mistrusting each other. Rather these remarks are intended to remind both
parties that they should be accountable for their decisions—from the beginning of a project
until its conclusion.

We have finished our examination of the four SEE implementation challenges and associated
strategies for meeting the challenges shown in Figure 8-22. We have stressed in this
examination that, because SEE implementation is a cultural change exercise, it will generally
be met with resistance. The strategies discussed proceed from the proposition that if the
ADPE way can be shown to be a win-win situation for both the individual and the
organization, resistance to the ADPE way will subside.

We recommend that your SEE implementation plan address the challenges to SEE
implementation facing your organization. The preceding extensive discussion of the
challenges and the strategies for meeting the challenges shown in Figure 8-22 offers you a
starting point for defining the challenges facing your organization and laying out strategies for
meeting the challenges.

In the business world, the profit motive is a factor that cannot be ignored in setting up an SEE.
Even not-for-profit organizations have budgets limiting what they can do. In the discussion
that follows, we use the label "almighty dollar" to capture the ideas of the profit motive and
budget limitations. The following SEE implementation planning issue that we now consider
focuses on the business reality of the almighty dollar setting organizational priorities:

13. How do you deal with the business reality of the almighty dollar in bringing
about ADPE implementation?

Figure 8-28 indicates some of the key factors bearing on this issue. To help you fold these
factors into your SEE implementation planning approach, we elaborate on this figure. The
almighty dollar generally creates the following two pushes within a seller organization:

Successful Software Development, Second Edition

601

Figure 8-28 Business reality (the almighty dollar) often compels senior managers to walk a
tightrope. They are constantly trying to balance keeping customers happy while making a
profit and making sure sound engineering practices are in place and followed. In some cases,
making a profit forces engineering shortcuts.

• Setting organizational priorities.

As shown in the figure, the top two organizational priorities are generally (1) make a
profit and (2) get and keep good people. A vicious cycle is set up whereby meeting the
near-term objective of constantly getting working products out the door (to maintain
the organization's profitability) locks the organization into never having time to put in
place a software systems development process that does not depend on particular
individuals. This cycle is difficult to break because personnel turnover forces the
organization into a catch-up mode as the new personnel attempt to figure out how they
fit into the way the veterans do their jobs. In short, the constant drive to maintain an
organization's profitability makes the SEE implementation exercise a tough job. Even
if the organization is firmly committed to putting in place documented business
practices, and even if the client community it serves is pressing for such business
practices (which sometimes is not the case), the day-to-day pressure of "getting the job
done" often forces such commitments to be put on hold. The organization thus

Successful Software Development, Second Edition

602

mortgages its future because people generally want to move on and do not want to be
held captive to an organization.

• Establishing organizational business practices.

The absence of documented business practices forces people to do whatever it takes to
get a product out the door. We would not argue that, even with well-understood and
documented business practices, there are times when individuals within the
organization must perform heroically. Things like power outages, floods, sickness, and
mail that gets lost will happen and force people to take shortcuts.

When heroic action becomes the normal mode of operation for an organization, that
organization will generally decline over the long haul. Figure 8-28 sheds light as to why this
decline must ultimately happen. As the figure shows, one of the top organizational priorities is
"get and keep good and smart people." But good and smart people soon tire of being asked to
work another weekend or through another night. Furthermore, good people soon recognize
that their heroics force them into highly specialized roles, thus limiting career growth. Often,
they will look elsewhere for a job.

So, how can an organization avoid the road to decline just described? The strategies shown in
Figure 8-22 and discussed at length in the preceding pages offer some specific ideas for
avoiding such decline. If you are a new organization, you have the opportunity to get off on
the right foot by incorporating such strategies into an SEE implementation plan and making a
serious attempt at implementing the plan.

But what if your organization is already caught in the downward spiral just described? Can
you put well-understood and documented business prac-tices in place to stop the downward
spiral? Or what if your organization is making tons of money and expanding rapidly—and
beginning to burn out its people? Can you put such business practices in place in such a
dynamic environment? In both cases, we believe you can put such business practices in place.
The following are some ideas to get you started (they are listed chronologically):

1. Get senior management to support SEE implementation efforts. Such support includes
(1) getting the senior management to allocate resources to a group (or individual) to
start an SEE implementation effort and (2) encouraging the group (or individual) to
solicit participation from others in the organization.

2. Have senior management inform the organization about the efforts, either via
memorandum or a presentation.

3. You must still develop some kind of SEE implementation plan—at least along the
lines of the back-of-the-envelope or spiral notebook variety shown at the top of Figure
8-5. Without some kind of plan, your efforts to bring some order to your organization
will be hard to focus.

4. We suggest that you start with the austere SEE implementation approach discussed
earlier in connection with Figure 8-20. That approach laid out priorities for setting up
an SEE. You can decide how far down the list of priorities cited there make sense for
your organization. You may even want to reorder the priorities in that list. The items
listed next assume the priorities cited in Figure 8-20. If you decide to reorder these
priorities, you should modify the items listed below to match your reordering.

Successful Software Development, Second Edition

603

5. While you are developing your SEE implementation plan, start doing project planning
by creating some kind of template (you can use the ideas in Chapter 2 as a starting
point to create the template).

6. While you are developing your SEE implementation plan, start using CCBs. Use the
ideas in Chapters 2, 3, and 4 to establish roles for your CCBs.

7. While you are developing your SEE implementation plan, start developing a process
diagram for your organization using the ideas in Chapter 3. Do this development by
soliciting ideas from the organization's management and staff.

8. While the foregoing activity is going on, your organization should be briefed as to
what is going on in the SEE arena.

9. Publish your SEE implementation plan and brief the organization on its contents.
10. Start putting the process in your process diagram in place. Eventually, publish an

ADPE element containing the process diagram.
11. Continue with the priorities shown in Figure 8-20 and/or apply other ideas given in

this book.

As a final comment on this SEE implementation planning issue, we offer the following:

If your organization is caught in the downward spiral of losing people through
unrelenting demands for heroics or if your organization is drowning in its
success, consider the alternative of not doing something like all or part of the
eleven steps listed above.

People within an organization are not monolithic in terms of wanting to change the way that
they do things. We now turn our attention to the following SEE implementation planning
issue that addresses this fact of organizational life:

14. How do you account for the reality that people within an organization span a
broad spectrum of willingness to adapt to the engineering environment?

One way to look at this issue is to think of a person's willingness to adapt to the ADPE way in
terms of a personality spectrum in an organization. Figure 8-29 shows five typical points on
such a personality spectrum. This spectrum is a continuum so that, in general, a particular
individual may fall somewhere between the points indicated.

Successful Software Development, Second Edition

604

Figure 8-29 SEE implementation planning needs to account for the reality that people within an
organization span a broad spectrum of willingness to adapt to the engineering environment.
The orientation of ADPE elements should address the middle of the spectrum. All people
should be given the opportunity to contribute to ADPE development.

To clarify the SEE implementation planning issue associated with this spectrum, we discuss
each of the five spectrum points shown in Figure 8-29.

1. What's a process?

People at this end of the spectrum are in over their heads when it comes to
understanding business processes. They may have some combination of the following
backgrounds:

a. An individual may have had no prior experience working on projects with
more than several people so that the Sam/Pam/Ham process approach may
have been that individual's sole exposure to an organizational way of doing
things.

b. An individual may be a recent college graduate with little or no experience
working on a software project with a prescribed way of doing things.

c. An individual may have had little or no exposure to engineering principles and
concepts and their relationships (such as "life cycle," "acceptance testing,"

Successful Software Development, Second Edition

605

"requirements testability," "visibility,""traceability"). As a result, the
individual has trouble assimilating ADPE concepts and applying them to
project work. Moreover, such individuals, fearing embarrassment, may be
reluctant to ask questions about these concepts and how they relate to the
organization's project work.

Training programs are generally needed to bring individuals at this end of the
spectrum into the middle of the spectrum. This training should focus on (1)
engineering principles, (2) their relationships (e.g., explanation of how test procedures
give visibility to the task of demonstrating to the customer that the computer code to
be delivered indeed has the functionality the customer asked for), and (3) worked out
examples (e.g., of test procedures derived from requirements and design
specifications).

2. Tell me the steps to follow.

People in this region of the spectrum prefer detailed procedures, worked out examples,
forms to fill out, and checklists to complete. They may have some combination of the
following attitudes:

a. An individual may have had some experience working on projects with
documented processes but may be weak in understanding underlying
engineering principles. Thus, the greater is the specificity of the ADPE way,
the smaller is the need to try to figure out which engineering principles may
need to be brought to bear to accomplish a project task. For example, an
individual responsible for writing a requirements specification who is unsure
of what a testable requirement is, would generally like to have detailed
examples of testable requirements.

b. An individual may be a steady performer who likes to put in a "good" eight
hours and then go home to other activities.

c. An individual may view time on the job as something to get over with.
Consequently, such an individual may prefer to glide through the day without
doing too much creative thinking.

Like the individuals at the left-hand part of the spectrum, individuals in this part of the
spectrum need training programs. This training should focus on (1) explaining how, in
general, there are many ways to accomplish software engineering tasks and (2)
highlighting considerations that should be brought to bear to determine preferred ways
to perform these tasks. Such training can give the individuals in this region of the
spectrum the insight they need to apply prescriptively the ADPE way. For example, by
explaining the purpose and value added of different types of process checks and
balances, such individuals can determine which types of deliverables may require
technical editing (e.g., a requirements specification) and which may not (e.g., a trip
report that will not be distributed to anyone but the customer).

3. This guidance makes my job easier.

People in this region of the spectrum are synchronized with the ADPE way. For them,
the ADPE elements contain just the right amount of detail. They have sufficient
understanding of the engineering principles underlying the ADPE so that they are able

Successful Software Development, Second Edition

606

to apply prescriptively its practices. Lessons learned from applying the ADPE
practices are used to apply them more effectively on subsequent work. For example,
they may learn that peer review sessions should not extend beyond ninety minutes.
Beyond that time, people tend to lose focus so that there is little value added.

4. Just give me the "what" and I'll come up with the "how."

People in this region of spectrum tend to want few details. For example, they prefer to
be told simply that they have to record minutes at CCB minutes. They do not want
guidance on what to record or how much detail to include. They may have some
combination of the following backgrounds:

a. An individual may have a strong background in engineering principles and
thus knows how to apply prescriptively the top-level guidance included in the
ADPE elements.

b. An individual may have a strong background in engineering principles and no
desire to follow the ADPE way. By insisting that the ADPE be limited to
broadly worded guidance, the individual can give the appearance of buying
into the ADPE way while, in fact, pursuing the Sam/Pam/Ham process
approach.

5. I'm not going to do it!

People at the end of the spectrum tend to be in outright rebellion against the ADPE
way. They may have some combination of the following attitudes:

a. An individual who has been in the software industry for a long time (twenty
years or more) may feel that he or she has seen it all. This attitude drives the
individual to the conclusion that his or her way makes more sense than the
ADPE way. That is, to an individual at this end of the spectrum, the experience
folded into the ADPE way simply competes with that person's vast experience.

b. An individual may want to be in charge of the organization or in charge of the
organizational element responsible for developing the ADPE.

As we discussed earlier, by making SEE buy-in a prerequisite to joining an
organization, resistance to the ADPE can be sharply curtailed. In any event, an SEE
implementation plan should account for the possibility of political power plays. One
way to keep rebellious attitudes in check is to get SEE buy-in from the individual who
heads the organization. Without this buy-in, the organization will almost assuredly
fractionate into Sam, Pam, and Ham fiefdoms.

Figure 8-29 also offers planning guidance regarding the intended audience for ADPE
elements—namely, the middle of the spectrum, which is enclosed in a rectangle in the figure.
In general, the elements should not try to address the vast educational needs of the people at
the far left end of the spectrum, who are in over their heads processwise. Nor, in general,
should the elements try to address comments submitted by people at the far right end of the
spectrum. Such comments must at least be viewed with skepticism.[8] For example, if such
individuals propose that the process be amended to expedite product delivery by doing away

8 As stated earlier, all people in the spectrum should be allowed to contribute comments for evolving the ADPE. Even people at the far right of the
spectrum (i.e., "I'm not going to do it!") should be allowed to contribute, but with one caveat—they need to use and implement ADPE elements once
the organization has decided to promulgate the elements.

Successful Software Development, Second Edition

607

with a cover letter, this proposal must generally be viewed as a way to circumvent process
checks and balances. If there is no cover letter, organizational visibility into when the product
was delivered will be diminished—and eventually other shortcuts will generally creep in.

To this point, we have examined at length a number of SEE implementation planning issues
having to do with (1) the form and content of the ADPE and (2) ADPE institutionalization.
We now shift our focus and consider the following key SEE implementation planning issue
having to do with SEE development:

15. Who should develop the SEE in your organization?

Figure 8-30 shows four alternatives and associated advantages and disadvantages. Throughout
this book we use the label "process engineering group (PEG)" for the organizational entity
that develops and maintains the SEE. This label can be applied to any one of the alternatives
shown in Figure 8-30.

Figure 8-30 Who should develop the SEE in your organization? Here are some alternatives to
consider when doing SEE implementation planning. We list some associated advantages and
disadvantages for each alternative.

Successful Software Development, Second Edition

608

It should also be noted that, by combining two or more of the alternatives shown in Figure 8-
30, additional alternatives can be constructed. Combinations can be used to exploit the
advantages of the individual alternatives and soften their disadvantages. Consider, for
example, the following two combinations:

1. Alternative 1 (Full-time staff) and Alternative 2 (Part-timers).

Here the idea is to have a small core of full-time staff and additional part-timers. This
combination exploits the advantages of each alternative and softens their
disadvantages as follows:

o The cost of this combination would generally be less than the cost of
Alternative 1 because the number of full-time staff would be less than the
number of full-time staff in Alternative 1. Presumably, the labor of the part-
timers in the combination would be less than the labor of the additional full-
timers in Alternative 1. The part-timers would be called in by the full-timers
when needed—for example, to develop a specialized ADPE element or a
specialized part of an ADPE element, such as a section in a peer review
guideline on object-oriented peer review checklists.

o The first disadvantage of Alternative 2 (SEE implementation may be
subordinated to other priorities) is softened by the small core of full-time PEG
staff whose responsibility is SEE implementation. Similar arguments apply to
the second and third disadvantages listed for Alternative 2—again, because the
PEG also includes full-time staff.

2. Alternative 2 (Part-timers) and Alternative 4 (Part of each manager's job).

Here the idea is to constitute a PEG with people who have responsibilities in addition
to SEE implementation. By including management in the part-timers, some of the
disadvantages associated with each alternative are softened. For example, the first
disadvantage of Alternative 2 (SEE implementation may be subordinated to other
priorities) can be softened because management is in a position to set priorities and to
work with other managers to keep SEE implementation high on the list of
organizational priorities. As another example, the fourth disadvantage of Alternative 4
(difficult for customer and outsiders to understand organization's business practices)
can be softened by having some part-timers who are not managers. Managers have a
tendency to focus on cost and schedule considerations; business practices that give the
customer and outsiders insight into the way the seller does business may be viewed by
some managers as a threat to the seller's competitive advantage. PEG part-timers who
are not managers but who are process experts may be able to soften some of these
management views by showing how giving customers visibility into the seller's
business practices serves to build trust, thereby increasing the likelihood of follow-on
business. For example, having the customer participate in Test Incident CCB meetings
as described in Chapter 5 and letting the customer see all TIRs generated, serves to
convey to the customer that the seller has nothing to hide (of course, it also runs the
risk of conveying to the customer that, if a lot of TIRs are generated, the seller's
process is suspect).

The alternatives shown in Figure 8-30 are not a comprehensive list. Together with the
preceding discussion of combination alternatives, Figure 8-30 is intended to get your thinking
started on how to constitute a PEG for your organization. Your SEE implementation plan

Successful Software Development, Second Edition

609

needs to describe your organization's approach to constituting a PEG and the rationale for the
approach.

Earlier in connection with Figure 8-26 we discussed how to promulgate an ADPE element to
your organization. The approach was to use a memorandum that summarized the element
content and explicitly encouraged ADPE compliance. We now address the corresponding
issue at the level of the SEE, namely the following:

16. How do you frame an SEE implementation policy?

Figure 8-31 shows one approach for addressing this issue. This approach is the SEE-level
analogue to the ADPE-element-level approach shown in Figure 8-26.

Figure 8-31 Here is a starting point for framing an SEE implementation policy. The figure shows
how to tie the policy to your SEE implementation plan. The policy helps to encourage ADPE
compliance, particularly in organizations where engineering discipline has been in short
supply.

Successful Software Development, Second Edition

610

Earlier we addressed the issue of how to package ADPE elements and related items. In Figure
8-18, we showed a tabbed three-ring binder to illustrate a way to perform this packaging. We
indicated that a copy of this three-ring binder should be given to each member of the
organization. The simplest way to accomplish this binder distribution is to hand a copy to
each member of the organization on the day the member joins the organization. A more
forceful way to handle this distribution is via a memorandum such as the one shown in Figure
8-31. The following discussion highlights key points in this memorandum:

1. In the figure, the memorandum is signed by the program manager (i.e., the manager of
a number of projects or a large systems development effort). More generally, the
memorandum should be signed by a senior manager who has the organizational stature
to make decisions for the organization.

2. The memorandum explicitly references the organization's SEE implementation plan.
To make more explicit the role that this plan has in establishing an approach to
organizational consistency on software projects, the memorandum can include some
remarks regarding this point (e.g., "reference [a] sets forth the organization's approach
for establishing an engineering environment for achieving software systems
development consistency").

3. The figure indicates that it may be appropriate to list other references in the
memorandum bearing upon the policy, such as corporate directives. Such directives
may address such enterprisewide policies (not necessarily having to do with software)
as customer satisfaction, good products at competitive costs, and on-time delivery of
products and services.

4. The memorandum defines the SEE concept (second paragraph). This information is
particularly helpful for people just joining the organization. The information
compactly introduces the binder recipient to its contents.

5. The third paragraph informs the recipient that each ADPE element is signed by both
the program manager and the customer. The ADPE business practices are thus a joint
seller/customer commitment that both parties will conduct software systems
development the ADPE way.

6. The heart of the policy is the list of elements appearing at the end of the memorandum.
This list should include the things that your organization considers important
regarding engineering behavior. For example, the first policy element in Figure 8-31
stipulates that the ADPE way is to govern engineering behavior; the fifth policy
element stipulates that "correct engineering behavior" includes promoting the ADPE
way with customers. The sixth policy element picks up on an issue discussed earlier—
namely, coupling each employee's performance appraisal to the employee's
demonstrated compliance with the ADPE way. Your organization may want to stress
items such as these to a greater or lesser degree, or stress other items all together. For
instance, your organization may want to take a softer line regarding performance
appraisals and ADPE compliance by rewarding compliance but not penalizing
noncompliance.

7. The memorandum closes by indicating the SEE scope with respect to the
organization's work and employees. The wording in Figure 8-31 indicates that the SEE
business practices apply to all of the organization's work and all of the organization's
employees. In some organizations, such as those whose work is not restricted to
software systems development, the SEE scope may be limited to the software systems
development work.

Successful Software Development, Second Edition

611

8. The memorandum indicates that the customer receives a copy. Copying the customer
is particularly important if one of your policy elements includes something like the
fifth one in Figure 8-31—namely, promoting the ADPE way with your customers.

The bottom line of the preceding discussion of Figure 8-31 is that simply handing each
employee an SEE binder and expecting that its contents will be institutionalized may be
overly optimistic for all but the most mature organizations. In general, it may be necessary to
give SEE implementation organizational prominence through a policy along the lines of
Figure 8-31. Of course, as we discussed earlier in connection with Figure 8-22, unless senior
management actively supports such a policy, SEE implementation will not happen. In
particular, even if the most senior manager in the organization signs such a policy, that
manager (and all other managers in the organization) must still promote the ADPE way.
Therefore, your SEE implementation plan, if it is to have a chance at succeeding, must
address the issue of an SEE implementation policy (and management support for the policy).

So far we talked about process improvement primarily at the organizational level.
Furthermore, Chapter 7 presented an ADPE element that addressed the process of developing
and improving ADPE elements. What can be said about process improvement at the project
level? To offer some insight into this key question, we now consider the following issue:

17. How do you plan ADPE implementation improvement at the project level?

Figure 8-32 illustrates one way to address this issue. The figure shows an annotated outline
for a project (Project X) software process improvement plan.

Successful Software Development, Second Edition

612

Figure 8-32 Here is an annotated outline for getting you started defining a plan for improving
ADPE implementation on a particular project. It is a good idea to include in the SEE
implementation plan the idea that each project in the organization should lay out its approach
for process improvement within the organization's ADPE context.

The purpose of the software process improvement plan is to lay out the approach that Project
X intends to follow to elevate its process maturity. The context for this approach is the ADPE.
That is, the plan is to specify how the project intends to take the policies, guidelines,
procedures, and standards set forth in the ADPE and adapt them to the Project X work. For
example, suppose the organization in which Project X operates has an ADPE guideline for
project CCBs. Suppose further that the guideline gives general guidance for CCB minutes—
namely that minutes are to be taken by someone, and the minutes must, at a minimum, record
decisions made, actions assigned, and a summary of what was discussed. With this broad

Successful Software Development, Second Edition

613

guidance, Project X may specify as part of its process improvement plan the following
activities:

• Minutes will be published within three days of the meeting and sent to attendees to
review while events are still fresh in their minds

• A record will be kept as to how often this stipulation was not met and why—a
measure of process improvement in this area will be a decrease in the entries in this
record as the project proceeds (for example, if the CCB meets every two weeks, if the
project lasts a year, and if the measurement period is monthly, then if the first six
measurements are 2, 2, 1, 2, 1, 0, this sequence would be considered process
improvement because the trend for the last three months shows convergence toward
getting the minutes to reviewers within three days of each meeting).

Section 2 of the process improvement plan stipulates process improvement goals. These goals
can be expressed in a number of ways—some of which are illustrated in Figure 8-32. For
example, if the organization's software systems development process stipulates that peer
reviews are to be conducted on each product, a process improvement goal may be the
following:

Ninety percent of all peer reviews are to be documented, where "documented"
means that the following information was recorded:

• Attendees
• Product name and lead developer
• Summary of what was discussed
• Decisions made
• Actions assigned (including someone being responsible for reporting at the next

project CCB that the peer review was held)
• Due dates for assigned actions
• Whether a follow-up peer review is needed—if so, whether it was scheduled as part of

the current peer review

Section 2 also addresses process improvement status as determined from project evaluations
conducted by agents either external or internal to the organization. These evaluations serve to
baseline where the project stands process maturitywise. In particular, such evaluations serve
to identify areas needing process improvement attention. Of course, this part of Section 2
would be applicable only for ongoing projects—that is, projects that (1) have been under way
for some time (say, at least a year) and have undergone some kind of assessment (including
self-assessment) and (2) are planned to continue for some time into the future.

Section 3 addresses the approach for accomplishing the goals specified in Section 2. A key
element of any such approach should be staff and management training. This training should
be coupled to organizational training requirements—for example, attendance at ADPE
element briefings. It should also include lectures/courses/seminars on software engineering
principles and their application (e.g., how to write "good" requirements specifications), as
well as courses/seminars on technologies that are to be applied on the project (e.g., how to use
a particular CASE tool to be used to develop one or more products on the project).

Several comments regarding training are in order. Training often presents some Catch-22
situations—from both the seller's perspective and the customer's perspective. We first

Successful Software Development, Second Edition

614

consider the seller's perspective. On the one hand, it may be acknowledged by both project
management and staff that training is needed in certain areas critical to the project; on the
other hand, management and staff may balk at taking time away from project work to attend
training sessions (because, for example, project schedules are tight). This argument is
typically broached for training sessions that span several days. In these circumstances,
management may turn to the training organization and pose a question such as the following:

Can't the three-day requirements seminar be condensed to one day?

Sometimes it may be possible to respond affirmatively to such a question. In such cases,
training can be worked into a project with a tight schedule. In other cases, it simply may not
be possible to squeeze a longer training activity down to a shorter one because in so doing its
trainingvalue has been emasculated and the activity is reduced to little more than an
information briefing whose retention half-life is less than one day after the "training" session.

So how can this seller Catch-22 training conundrum be avoided? One way is to consider
training as project work and include it as a stand-alone task in the project plan. In this way,
the tight-schedule issue that is typically raised regarding training is avoided because the
training is factored into the project schedule.

This latter suggestion of factoring training into the project plan provides a segue to the
customer Catch-22 regarding seller training. By definition, a customer hires a seller because
the seller presumably is skilled in software systems development activities and supporting
technologies. If so, many customers argue, "Why should I have to pay for seller training?" To
a point, this argument has validity. However, when it comes to process improvement in
particular, it is a rare seller organization (and customer organization) that cannot benefit from
training aimed at process improvement. And coupled with this training is the expense
associated with evaluations aimed at assessing the seller's process maturity so that areas
needing improvement can be identified. To try to avoid this situation, some customers include
such evaluations in the process that customers use to select sellers. But even in these
situations, the argument just presented still applies—namely, it is a rare seller organization
that cannot benefit from training aimed at process improvement. Also, customers should
recognize that such training, even if it is on their nickel, can return dividends many times the
cost of the training. These dividends particularly manifest themselves as reduced rework—
that is, increased likelihood of developing products right the first time.

There is another consideration that customers should factor into their perspective of paying
for seller process improvement training. It is often difficult for sellers to find (and keep)
people well schooled in engineering principles and required technologies. Thus, training in
these areas is needed to bring existing staff and new-hires up to speed. Furthermore, as we
stress throughout this book, there is no one way to define ADPE elements. Thus, even people
who may have good familiarity with engineering principles will still need to be trained in the
way these principles are applied in the ADPE elements defining the organization's business
way. Otherwise, this business way will wind up on the shelf of good intentions and be
replaced by the Sam/Pam/Ham business way(s).

Returning to Figure 8-32, Section 4 in the project process improvement plan addresses the
specific activities that the project intends to follow in implementing the approach set forth in
Section 3. It should contain a milestone chart or timeline, and supporting narrative indicating

Successful Software Development, Second Edition

615

the timing of actions leading to the accomplishment of the goals stipulated in Section 2.
Examples of such actions are the following:

• Conduct configuration management training.
• Measure process and product integrity for each project deliverable, and measure

trends.
• Have process maturity assessment conducted by external agent to determine process

improvement.

Section 5 lays out the cost for accomplishing the process improvement stipulated in the
preceding sections. Cost is often an issue for management and can particularly be an issue if a
customer is being asked to foot at least part of the process improvement bill—for the reasons
just presented. The bottom line (no pun intended) here is that money spent on process
improvement can return dividends many times the money that was spent. The dividend, as
stated earlier, is the rework that is not done.

A final comment is in order regarding the cost associated with process improvement
activities. Sometimes the dividends that accrue from process improvement activities cannot
and should not be measured in terms of the cost of not doing rework. In fact, there are times
when process improvement activities can be very expensive—and maintaining a certain level
of process maturity can also be expensive. But if the software processes that are the focus of
these activities produce software systems whose failure would kill or injure people (e.g.,
medical support systems), then the measures used to determine the return on investment in
process improvement cannot, we contend, be expressed simply as monetary dividends.

This final comment on measurement provides a segue to the next SEE implementation
planning issue that we consider, which is the following:

18. How can process and product measurement be integrated with your
organizational process?

Figure 8-33 shows an approach for addressing this issue by coupling the seller deliverable
tracking form introduced in Chapter 3 to the measurement techniques described in Chapter 6.
The figure shows the deliverable tracking form augmented by placing product and process
measurements on the back of the form.

Successful Software Development, Second Edition

616

Figure 8-33 Here is an example of how to augment the seller deliverable tracking form
introduced in Chapter 3 to include organizational product and process measurements. The
measurement information is placed on the back of the form. The process measurements focus
on the process activities called out on the front of the form. The product measurements are
tied to the product integrity attributes that your organization considers important. Two product
integrity attributes are called out in the figure—on-time delivery and customer acceptance.

Successful Software Development, Second Edition

617

In Chapter 3, we suggested that the seller deliverable tracking form be used to track each
deliverable as it progresses through the organization's software systems development process.
Therefore, by tying process measurements to the activities called out on the tracking form, a
set of organizationwide measurements is obtained. These process integrity measurements,
coupled with the product integrity measurements, can then be used to determine whether there
is a correlation between the integrity of the products being produced and the integrity of the
process used to develop these products. With this insight, the organization can identify
potential areas needing attention.

The following points should be noted regarding the measurement approach in Figure 8-33:

• It is a way of doing measurement in near-real-time in the sense that the back of the
form can be filled out as the product goes through the various process wickets
identified on the front side of the form. Measurement simply involves having the
individual who is indicated on the form circle the appropriate value. For example, for
process activity xt25 "performs technical editing," if the seller technical editor followed
the organizational editing standards but did not edit the entire deliverable, the
technical editor would circle the value 0.5. This near-real-time measurement approach
of course has some obvious drawbacks—the most glaring one being that people who
perform an activity are generally not objective in assessing the extent to which that
activity may have been accomplished. An alternative to this self-evaluation approach
is to have individuals not involved with the activity subsequently assess the activity.
This evaluation can be accomplished through some combination of an audit of the
project files and interviews with the people who performed the activities. If the files
do not contain the information (e.g., for the technical editing activity, the files did not
contain the draft of the deliverable showing the technical editor's markups), then the
people who performed the activities would be interviewed. Of course, people's
memories fade over time, and people also tend to report their work in the most
optimistic light. Interviews thus contain the same element of bias as that found in the
self-evaluation approach. Whatever approach you decide to use, you should clearly
indicate in any measurements that you publish or otherwise present the potential
sources of bias. Such caveats will allow the recipients of the measurement results to
interpret them appropriately.

• After a value has been circled on each of the eight scales, the product and process
integrity indexes can be calculated, and Kiviat diagrams can be generated. These
calculation and graphing activities can be performed, for example, by somebody in the
Deliverable Support Center. Spreadsheets with graphing capabilities can be used to
facilitate accomplishment of these activities. The calculations can also be rolled up in
various ways to get a sense of where the organization is headed. For example, the
average product integrity index can be computed on, say, a monthly basis to see
whether the integrity of products delivered is increasing, decreasing, staying the same,
or random.

• The approach shown in Figure 8-33 does not address all the process activities called
out in Chapter 3. For example, it does not address the CCB component of the process,
but there is no reason why it could not. As your organization matures over time, there
may be different parts of your organizational software systems development process
that you may want to measure. The approach shown here is general and allows you to
adjust your organizational-level measurement activity for this purpose. Similar
comments apply to the product integrity attributes shown on the form.

Successful Software Development, Second Edition

618

• We stress that the approach shown is for organizational-level measurements because it
is tied to an organizational-level tracking form. That is, the product and process
attributes measured are the same for products streaming through the organizational
process. By using this common set of attributes, quantitative insight into the
organization's process can be gained—because we are comparing apples with apples
across the organization. We noted in Chapter 6 that measurements at the project level
will often involve different attributes. For example, a particular project may be using a
certain technology (e.g., information engineering) and may want to measure, for
instance, how many JAD (joint application design) sessions are needed to get closure
on the customer's enterprisewide requirements. In this case, the project may want to
set up a project-level tracking form to collect a common set of measurements.
Remember—measurement for measurement's sake is a waste of time and money. As
we have stressed, first decide on the questions you want answered with your
measurements and then structure your measurements to get answers to these questions.

These considerations need to be factored into your SEE implementation plan if you want to
include a product and process measurement program in your SEE implementation approach.
However, unless your organization has some experience working with documented processes,
it is not generally a good idea to embark upon a measurement program on day one. It is
preferable first to fully understand and document your organization's business practices—at
least at the level discussed in Chapter 3—and get your people acclimated to following the
practices. Then, with this process foundation in place, you can introduce a measurement
program. Our observation is that people unaccustomed to working in an environment with
some documented practices tend to measure things for the sake of measurement. They have
trouble sorting out how to use the measurements for improving the way that they accomplish
software systems development.

We now consider two questions related to the measurement issue just discussed. In addition to
presenting measurement approaches tied to process and product integrity, Chapter 6 discussed
other types of process-related organizational-level measurements that may be useful to collect
(e.g., the average number of drafts required to produce a project plan resulting in a project).
We return to this topic to address the following two measurement questions:

• How can you make product and process measurements easy to interpret?
• How do you sell product and process measurement as a useful activity?

Regarding the first question, it takes time for people to feel comfortable with quantifying
products and processes. For example, our approach to these measurement challenges relies on
the concepts of vector and vector length. These concepts are not in people's everyday
vocabulary. Kiviat diagrams also take some getting used to. So, when getting started on a
measurement program, you may want to try something more conventional. We illustrate this
idea by using some measurement data adapted from some of our experience. This illustration
will also address the second question. We show how measuring a particular process before,
during, and subsequent to the documentation of the process can dramatically show the
improvement of that process. This illustration should give you ideas for writing into your SEE
implementation plan your approach for addressing these two measurement-related questions.

There is a tendency when compiling measurement data to perform various kinds of statistical
analyses. A potential problem with such analyses is that many decision makers, in particular,
have difficulty interpreting what the analysis results mean. While it is true that for statisticians

Successful Software Development, Second Edition

619

and others familiar with mathematics, concepts such as "mean," "standard deviation," and
"median" may be meaningful, for the general population these concepts may cause eyes to
glaze over. Thus, it is important, particularly when starting a measurement program, to
present results in a manner that does not assume that the intended audience speaks
mathematics fluently. We now consider an example based on actual data to illustrates these
points.

Figure 8-34 shows a plot of data intended to answer the following measurement question:

Figure 8-34 The figure shows a simple, yet insightful, way to show the effectiveness of an
organization's process—in this case, project planning. The plot, adapted from actual data,
shows whether or not project plans were delivered late, on time, or early over a period of
several years. Each point is a project plan (x-axis) and its delivery date in days relative to its
planned delivery date (y-axis). If the y-value is positive, the plan was delivered late; if this value
is zero, the plan was delivered on time; if this value is negative, the plan was delivered early.

How effective is the organization's project planning process?

The measurement used to assess this effectiveness is whether or not the project plan was
delivered on time. Each point on the plot represents a project plan (x-axis) and its actual
delivery date in days relative to its planned delivery date (y-axis). More specifically, the chart
shows the difference in (work) days between the actual delivery date and the planned delivery
date of a series of project plans produced in an organization over a period of almost four
years. If this difference is zero, the plan was delivered on time; if this difference was positive,
the plan was delivered late; if this difference was negative, the plan was delivered early. The
data are arranged by year. Within a year, the order of the points has no significance. That is,
data point 3 in planning year 1 does not necessarily mean that the plan associated with that
point was produced/delivered before the plan associated with data point 4. However, all plans
in year N were delivered before all plans in year N + 1.

The plot is annotated to show the following significant events that took place regarding the
organization:

• Initially (i.e., during year 1), the organization was of relatively small size (less than
fifty people) with just a handful of projects. Project plans were written against an
evolving template. There was no documented project planning process. Project plans
were generally delivered late.

Successful Software Development, Second Edition

620

• During the organization's second year, the organization experienced explosive growth
with the number of projects increasing tenfold. The variations in the plan delivery
times resulted from the learning curve associated with new people coming on board
and getting acclimated to the way that the organization did project planning through
the project plan template. Most project plans were delivered late—varying from five to
fifteen days for most plans, with two delivered almost a month late. A few plans were
delivered early. The frenzy of planning activity consumed the organization for a
number of months.

• During the organization's third year, a draft project planning process was briefed to the
seller and customer organizations. This draft process was based on lessons learned
during the previous year's frenzied planning cycle. As the plot shows, the process
briefed served to stabilize things. With one exception, almost all plans were delivered
within a few days of planned dates or were delivered early. The one exception was a
plan that was delivered three weeks late. The reason for the delay was a combination
of customer uncertainty on what needed to be done and seller misunderstanding of
what needed to be done.

• During the organization's fourth year, an ADPE procedure documenting the
organization's project planning process was put in place. The ADPE procedure folded
in many of the lessons learned from the preceding years. As Figure 8-34 shows,
putting this documented process in place during that year prior to the beginning of the
brunt of the project planning activity served to converge the project plan delivery dates
to the desired goal of "consistently on time." This convergence to consistent on-time
delivery was particularly noteworthy because, at the start of that year, the time to
produce a project plan was cut from approximately eighteen days to twelve days (for
reasons that are not important for this discussion except to note that such things
happen in the real world).

We summarize what the plot in Figure 8-34 has to say about making measurement easy to
interpret and useful. In so doing, we come back to the notion of product integrity. The plot in
Figure 8-34 offers the following:

• It is easy to interpret. The distribution of points and the balloons containing
amplifying information tell a good process improvement story compactly.

• It shows the power of simple measurements displayed so that the numbers almost
speak for themselves. The convergence to zero of the data points dramatically shows
that putting a documented process in place embodying lessons learned can lead to
consistency—at least for the integrity attribute of on-time delivery. Plots for other
integrity attributes such as cost of producing a plan and customer satisfaction would
give further insight into project planning process integrity. For example, suppose that
customer satisfaction was measured in terms of what the customer indicated on the
Acceptance of Deliverable form introduced in Chapter 3. Suppose further that the
three choices on this form were assigned the following values:

o Accepted as Delivered = 2.
o Accept with Minor Changes = 1.
o Changes to Be Negotiated = 0.

Finally, suppose that a plot of these values for all the plans given in Figure 8-34 shows in year
4, with just a couple of exceptions, a straight line that intersects the y-axis at y = 2 (i.e.,
Accepted as Delivered). Then, together with the plot in Figure 8-34, the organization could
conclude the following:

Successful Software Development, Second Edition

621

The organization's project planning process consistently produces project
plans that are on time and are accepted as delivered. In other words, the
organization consistently produced project plans with integrity.

We now conclude this section on the key SEE implementation planning issues listed in Figure
8-5 by considering the final issue listed there. This issue concerns the packaging of the SEE
implementation plan and is the following:

19. How should you structure an SEE implementation plan?

Figure 8-35 is an annotated outline for helping you prepare a plan for implementing an SEE
for your organization. The outline contains five sections and calls out appendices for optional
material. The following comments on these sections and the appendices are from the seller's
perspective, since, in general, the seller will be responsible for setting up an SEE. However, a
buyer/user organization can also use the outline to specify for a seller how the buyer/user
wants the seller to plan SEE implementation.

Successful Software Development, Second Edition

622

Figure 8-35 Here is an annotated outline for getting you started defining a plan for
implementing a systems engineering environment (SEE) for your organization. Because our
book focuses on process, the outline assumes that the plan focuses on the ADPE component
of the SEE.

The following discussion walks through the annotated outline in Figure 8-35:

• Section 1 ("Background and Systems Development Mission") sets the stage for the
SEE implementation approach set forth in Section 2. In Section 1, the seller describes
the software systems development challenge facing the customer. For example, the
customer may need to upgrade and integrate a number of existing systems (e.g., some

Successful Software Development, Second Edition

623

systems may have no documentation, other systems may have outdated
documentation, and still other systems may have outmoded hardware that needs to be
replaced). To meet this challenge, the customer wants to establish a software systems
development process that will guide the upgrading and integration of these systems,
including bringing documentation up-to-date. The customer wants to abandon the old
way of upgrading these systems because personnel turnover within the organization
makes it increasingly difficult to use these systems and change them to meet evolving
needs. This section should define key terms (e.g., SEE, ADPE, ADTE, independent
product assurance). This section should explain that the ADPE practices serve to
establish norms of software systems development behavior that help the seller and
customer interact harmoniously. The section should also explain that SEE
implementation is a cultural change exercise—for both the customer and the seller.

• Section 2 ("Implementation Approach") lays out the approach for establishing and
maintaining an ADPE within the seller's organization. This section is the heart of the
plan and can be oriented in a number of different ways, depending on where an
organization is with respect to setting up a documented engineering environment. For
an organization starting out in this arena, this section should be oriented along the
lines of a strategy with associated milestones—as opposed to a detailed
implementation plan with specific deliverables and a corresponding week-by-week or
month-by-month schedule. An example milestone might be the following:

For an ADPE taxonomy consisting of policies, guidelines, procedures,
and standards, develop and implement one element of each type within
one year of the publication of this plan. One of these elements is to
define the organization's software systems development process.

In subsequent years, the plan can be updated to incorporate lessons learned and to call
out specific ADPE elements that are to be developed or updated and to delineate a
corresponding schedule.

We note that, as with most planning documents, an SEE implementation plan can be
viewed as a living document to be updated periodically. Frequent updates to a plan
may, in fact, be necessary if it contains a lot of detail and if the actual implementation
takes a different course. However, if process definition resources are tight or if your
organization tends to downplay planning and favor just getting on with SEE
implementation, then it may be preferable to write Section 2 at the strategy level with
little planning detail. Orienting the section along these broad lines makes it
unnecessary to update the plan. That is, the plan can be read by new employees and
still reflect the general direction of the organization's evolving ADPE.

This section should describe, at least in general terms, how ADPE implementation will
elevate the process maturity of the organization. For example, your organization may
want to plug into certain widely recognized approaches to elevating process
maturity—such as the SEI Capability Maturity Model for Software or ISO 9000.
These approaches can provide guidance for identifying the kinds of ADPE elements to
develop. As discussed in Chapter 6, the SEI approach is built upon things called key
process areas (KPAs). KPAs are major building blocks in establishing an
organization's process capability. One KPA is Project Planning. Thus, for an
organization that wants to tie its ADPE implementation approach to the SEI's
approach to elevating process maturity, this particular KPA suggests that the

Successful Software Development, Second Edition

624

organization's ADPE should contain an element that addresses project planning, or
have an element that contains a part that addresses project planning.

This section should describe how the ADPE is to be constituted. The discussion earlier
in this chapter of Figure 8-16 regarding the amount of detail to include in an ADPE
element addresses aspects of ADPE constitution. More generally, Section 2 should
contain an ADPE architecture to describe ADPE constitution. The architecture sets
forth the ADPE element taxonomy (e.g., in this book, the taxonomy is "policy,"
"guideline," "procedure," and "standard"). It should indicate a structure for the
elements. For example, at the topmost level, this structure may consist of the
following two categories of elements:

o Elements specific to the organization (e.g., an element defining the
organization's overall process)

o Elements available from existing sources (e.g., IEEE standards, ISO 9000
standards, process-oriented textbooks such as this book)

At the second level, elements may be further categorized. For example, it may be
desirable to include in the architecture the following three categories for the ADPE
elements specific to the organization. These categories highlight three major aspects of
any engineering endeavor—namely, (1) thinking before doing, (2) doing, and (3)
getting organized to perform the thinking and doing. Example titles of candidate
ADPE elements for each of these categories are shown to give you additional insight
into our concept of ADPE architecture.

o Planning
� Project Planning Procedure
� Configuration Management Planning Guideline
� Test Planning Guideline
� Data Integration Planning Guideline

o Process
� Software Systems Development Process Policy
� Change Control Board Guideline
� Document Templates Standard
� Peer Review Procedure

o Organization
� Project Manager Responsibilities Guideline
� Process Engineering Group Policy
� Data Administrator Guideline.

Annotated outlines for some of these items are given in this book (e.g., project
planning procedure). Regarding the Organization category, we note that the approach
in this book is to fold organizational considerations into ADPE elements that fall into
the other two categories. That is, this book does not give examples of ADPE elements
that are limited to organizational considerations. We show this structure to give you a
starting point for handling such considerations via stand-alone elements. You could,
for example, take all the sections dealing with responsibilities in the elements that we
discuss in this book, remove them from these elements, and place them in stand-alone
responsibilities elements. For example, you could create an element that specifies
project manager responsibilities for (1) project planning, (2) managing product

Successful Software Development, Second Edition

625

development within the context of the organization's software systems development
process, (3) participating in CCBs, (4) giving visibility to peer reviews, etc.

Section 2 can also describe in greater detail one or more ADPE elements to give
additional insight into the ADPE implementation approach. If it is desired to illustrate
fully the ADPE element concept, Section 2 (or appendices) could contain sample
ADPE elements. If an organization is actually doing software systems development
while the SEE implementation plan is being developed, such elements may, in fact, be
based on lessons learned from this development activity or draft elements prepared to
support this development activity.

If SEE implementation has not been stipulated by the customer as part of a
procurement package, Section 2 should address the cost of the approach. It may be
necessary to present and to cost alternative approaches (e.g., low-cost approach,
preferred approach, expensive approach). The benefits of each alternative should also
be described. The pacing items for SEE implementation cost include the following:

o PEG staff.

The number of people needed to staff the PEG is a func-tion of what the PEG
is to do. If the PEG is to write the SEE implementation plan, develop and
maintain SEE elements, and prepare and give briefings on ADPE elements,
then a full-time staff of three to five people can support an organization of
several hundred. If PEG responsibilities extend to labor-intensive endeavors
such as (1) preparing and presenting multiday seminars and (2) investi-gating
and testing new technologies, then staffing needs can increase by a multiple of
what is needed to prepare, update, and brief ADPE elements.

o ADTE staff.

Although we have not examined ADTE issues (except for writing an ADTE
plan), staffing needs can be considerable depending on the organization's needs
for maintaining such technology items as networks, programming language
tools, CASE tools, and database management tools. In some organizations, this
staff can be incorporated into a facilities management staff. In this case, ADTE
staffing needs to become part of a budget not linked to the SEE. If such is not
the case, then for an organization of several hundred people, ADTE staff can
be several percent of the organization's total.

o Staff training time.

For an organization of several hundred people, this cost can quickly mount to
hundreds of thousands of dollars or more per year. For example, if the
organization's average loaded labor cost is $50/hour, the labor cost to train just
thirty people for three days is 24 × 30 × $50 = $36,000. This cost does not
include instructor time and the labor required to prepare a three-day course.
The labor required to prepare and test a several-day course can itself amount to
hundreds of thousands of dollars.

Successful Software Development, Second Edition

626

• Section 3 ("Implementation Issues") discusses major issues bearing on the
implementation approach set forth in Section 2. The current section in this chapter is
intended to help you write this section. Your starting point is Figure 8-5. From the
issues listed there and the supporting discussion you can (1) determine which issues
are pertinent to your organization and/or (2) uncover other issues pertinent to your
organization.

• Section 4 ("ADPE Implementation Management and Staffing") delineates the
responsibilities for managing the ADPE implementation approach set forth in Section
2. These responsibilities should not be limited to the seller organization. The customer
also has responsibilities in this arena. Throughout this book, we stressed that each
ADPE element should be signed by a responsible customer agent as well as a
responsible seller agent. This sign-off should not be just a ceremonial act. It should
signify customer commitment to abiding by the ADPE practices in dealing with the
seller.

This book uses the label "process engineering group (PEG)" for the organization
responsible for developing and implementing the SEE. Earlier in this section, we
discussed various ways the PEG could be constituted. That discussion can be used as a
starting point for addressing how ADPE implementation is to be managed and staffed.

• Section 5 ("References") should list all references cited in the plan. Particularly
helpful are customer policies, directives, and plans that serve as the "biblical" basis for
tasking a seller to develop and implement an SEE. For example, a customer may have
a strategic plan that calls for getting more bang from the bucks invested information
management systems and supporting databases. The strategic plan may further
stipulate that such cost savings are to be realized through documented software
systems development practices aimed at reducing rework and duplication. Such
stipulations provide a natural segue for introducing the SEE concept as a consistent
way to engineer software systems that do what they are supposed to do and are
delivered on time and within budget.

For completeness, it may be useful to include a brief description of each reference
cited in this section. Such descriptions can give the seller early insight into the
customer's commitment to following documented software systems development
practices, as well as having the seller do the same.

• Appendices can be used to provide amplifying insight into the SEE implementation
approach set forth in the body of the plan. This amplifying insight can be provided
through such items as (1) the complete text of sample or trial ADPE elements and (2)
explanation and illustration of software engineering and other engineering principles
and concepts. Examples of such principles and concepts are life cycle models, checks
and balances, process maturity, and requirements testability.

In closing this discussion of the annotated outline in Figure 8-35, we note that it may be
useful to include an executive summary at the front of the SEE implementation plan. An
executive summary is particularly helpful if (1) the plan is lengthy (say one hundred pages or
more) and (2) senior management support is needed to make the plan happen. The executive
summary should capture the plan's salient points.

Successful Software Development, Second Edition

627

We have now completed our detailed treatment of the nineteen key SEE implementation
planning issues listed in Figure 8-5. This treatment has been aimed at pulling together the
ideas, concepts, and principles from the preceding seven chapters to help you organize an
SEE implementation approach for your organization. By integrating the thoughts from the
preceding chapters, we are helping you revisit the preceding chapters in a structured manner.

The next section offers some closing remarks about the book.

8.4 Making Successful Software Development Happen

Figure 8-36 (an adaptation of Figure 1-1) captures this book's approach and bottom line. In
one sentence, this book does the following:

Figure 8-36 Reduced to simplest terms, this book offers "how-to-do-it" guidance for making
successful software development happen through institutionalization of a systems engineering
environment (SEE). The SEE helps an organization transition from an ill-defined business way
to a well-defined business way. By ill-defined business way we mean "a business way
governed by a set of well-understood organizationwide practices, documented in an SEE or by
some other means, that individuals within the organization prescriptively apply to the situation
at hand." To facilitate the book's use, each chapter contains a list of the key ideas elaborated
on in that chapter.

It offers "how-to-do-it" guidance for making successful software development
happen through institutionalization of a systems engineering environment
(SEE).

As we have explained and illustrated, the SEE helps an organization transition from an ill-
defined business way to a well-defined business way. We explained how helping Sam, Pam,
and Ham transform their individual outlook on how software systems development should be
done into an organizational outlook benefits them, the organization, and the customer. The

Successful Software Development, Second Edition

628

SEE sets down organizationwide guidance for conducting business that Sam, Pam, Ham, and
others in the organization can prescriptively apply to the situation at hand.

This book stresses that software systems development is first and foremost a communications
exercise between the customer and the seller. To be successful, the customer and seller must
communicate effectively. Because what the seller ultimately produces (i.e., software code) is
hard to see, precise communication is particularly important.

This book describes an approach for raising the visibility of the software systems
development process and resultant products as a means for aiding precise communication
between the customer and seller. The approach is to establish a systems engineering
environment (SEE) wherein what the customer and seller are to do is laid down (i.e.,
documented) and agreed to by both parties. This environment consists of two complementary
components—an application development process environment (ADPE) and an application
development technology environment (ADTE). The ADPE is the set of business practices that
the wizard and king commit to following. The ADTE is the set of technologies that the seller
uses to develop software systems for the customer. This book focused on the ADPE because,
without good understanding of software systems development processes, technology has little
value.

This book stresses that both the customer and the seller progress in their understanding of
what needs to be done as a software project proceeds. This progression in understanding
translates into changes to what needs to be done. This book spends a lot of time discussing the
specifics of managing this change. Because, as we said earlier, the seller's handiwork is hard
to see, managing this change is particularly challenging. We therefore explore at length
processes and techniques for raising the visibility of this handiwork and the processes used to
perform this handiwork.

Overlaid on this complication (i.e., product change), there is another type of change going on:
business process change. Business process change has to do with the way the seller does what
the customer wants the seller to do and the way that the customer interacts with the seller.
This book offers suggestions for (1) overcoming resistance associated with this business
process change, and (2) institutionalizing the changed processes via the ADPE.
Institutionalization means "the customer and seller settle into the ADPE way of doing things,
and thereby, hopefully, the seller is able to produce consistently "good" products for the
customer." We say "hopefully" because, as the book points out, getting the ADPE practices
"right" the first time is easier said than done. Thus, this book shows how to (1) influence the
customer's and seller's mind-changing, and (2) ease the customer and seller into a consistent
way of doing business with each other.

Aimed at practitioners, this book facilitates information retrieval by distilling the essence of
each chapter into a set of key ideas, as suggested in Figure 8-36 by the key inside the box
containing the chapter names. These key ideas offer a convenient starting point for working
your way into the chapters of interest to you, to draw out the details that you want to apply to
your organization. For example, one Chapter 2 key idea is the following:

Planning needs to assess risk to determine the appropriate mix of
management, development, and product assurance resources.

Successful Software Development, Second Edition

629

This key idea is intended to prompt you to go into the chapter and draw out the details
presented there for doing risk assessment in support of project planning.

We have tried to provide you with some thoughts on how to make successful software
development happen. We hope that this book has sparked some ideas on how you might
improve the way you conduct software systems development business.

If this book at least caused you to think about doing software systems development in a more
disciplined way than in the past, then we communicated our message. If, in addition, this book
persuaded you to try some of its ideas, then we achieved our goals—(1) helping the customer
consistently receive "good" software products, and (2) helping the seller consistently produce
"good" software products.

Successful Software Development, Second Edition

630

Appendix A. How to Measure Strategic Information
Management (SIM)
At the outset of Chapter 6, we indicated that Object Measurement® (or OM®) could be
used to quantify almost any object. We also mentioned that we would indicate how OM can
be used to quantify strategic information management and why quantification of this object is
of interest. The purpose of this appendix is to address these two points.

An ancillary purpose of this appendix is to give you a starting point for using OM for other
measurement activities that may be of interest to you. The example that we present is
sufficiently rich so that, together with the discussion of OM given earlier in Chapter 6, you
should be able to see how to set up value scales for such activities and then perform your
desired measurements. Whatever you choose to measure, we stress once again that the starting
point for any measurement activity should be the following:

Decide on the questions that you want and/or need to address and then use
these questions to focus your measurement activity.

A.1 Strategic Information Management

To set context for our measurement discussion, we begin by asking, "What is strategic
information management (SIM)?" In May 1994, the Government Accounting Office (GAO),
[1] issued a report (GAO/AIMD-94-115) titled, Executive Guide: Improving Mission
Performance Through Strategic Information Management and Technology. Page 9 of this
report gives the following definition for strategic information management:

Managing information and information technology to maximize improvements
in mission performance.

To better appreciate what this concept means, we provide some historical context that
explains why SIM is of interest to the U.S. government. As a segue to that discussion, we
make the following—admittedly simplified—comments regarding the notion of information
management:

• Paul Strassmann, information technology guru since the 1950s, makes the following
comment in a book that he wrote that appeared in 1999 and that we cited in Chapter 1:
[2]

The U.S. has achieved its current economic pre-eminence by leading in
the transformation from the reliance on the productivity of land, labor
and capital to an economy based on information as its most important
resource. The U.S. workplace now finds 55% of employees devoted to

1 The General Accounting Office is the investigative arm of the U.S. Congress. GAO's mission is to help the Congress oversee federal programs and
operations to assure accountability to the American people. GAO's evaluators, auditors, lawyers, economists, public policy analysts, information
technology specialists, and other multidisciplinary professionals seek to enhance the economy, efficiency, effectiveness, and credibility of the federal
government both in fact and in the eyes of the American people. GAO accomplishes its mission through a variety of activities including financial
audits, program reviews, investigations, legal support, and policy/program analyses. [These words are adapted from the GAO's Web site,
http://www.gao.gov/.]
2 P. A. Strassmann, Information Productivity: Assessing the Information Management Costs of US Industrial Corporations (New Canaan, CT:
The Information Economics Press, 1999), p. ix.

Successful Software Development, Second Edition

631

information creation, information distribution and information
consumption.

• Loosely speaking, what Strassmann refers to as "information creation, information
distribution and information consumption" are activities associated with information
management. For example, when we create information, we need to worry about how
we can store it for subsequent retrieval and use. Managing this storage is an aspect of
information management.

• When we build computer systems to issue reports (e.g., a report showing the status of
a software project over the past month), managing the information that goes into that
report and its subsequent printing are examples of tactical information management.
That is, we are sorting through information and packaging it to meet near-term needs
within an organization.

• When we examine how a company, a government agency, or some other
organizational entity having aspirations of existing for the long haul (i.e., years or
more) manages information, we are talking about strategic information management.
That is, we are looking at what needs to be done to the way such an entity manages
information to sustain and improve its overall operation.

With the preceding comments as background regarding the notion of strategic information
management, we now provide historical context for why SIM is of interest to the U.S.
government. For this purpose, we return to the May 1994 GAO report cited earlier. This
report opens by defining the federal information management problem as follows:

Within the past decade [1985–1994], the public has grown accustomed to the
benefits of using information technology to improve the cost, quality, and
timeliness of product and service delivery. Americans now expect to solve a
problem with one telephone call, obtain customer service 24 hours a day,
withdraw cash from automated teller machines around the country, and get
products delivered almost anywhere overnight. Consequently, at a time when
almost anyone can get eyeglasses in almost an hour, veterans cannot fathom
why they must wait 6 weeks to obtain them. Similarly, the general public
cannot understand why it takes weeks, instead of days, to process an income
tax refund or months to determine eligibility for social security disability
benefits.

Federal agencies spent at least $25 billion on information systems[3] in 1993,
and more than $200 billion over the last 12 years. Despite this huge
expenditure, it is unclear what the public has received for its money. At the
same time, critical information assets are frequently inaccurate, inaccessible,
or nonexistent. Efforts across the government to improve mission performance
and reduce costs are still often limited by the lack of information or the poor
use of information technology.

. . . few federal agencies have learned how to manage information and
information technology to achieve consistent results. Our transition reports in
1988 and 1992 underscored how agencies lack critical information needed to

3 Information systems are a discrete set of information resources and processes, automated or manual, organized for the collection, processing,
maintenance, use, sharing, or dissemination of information.

Successful Software Development, Second Edition

632

analyze programmatic issues, control costs, and measure results.[4] In our
reports to Congress in the last 10 years, we have documented numerous
examples of federal systems failures such as

• the outlay of millions of dollars of unauthorized student loans because
of poor information tracking,

• over $1 billion of mistaken Medicare payments,
• the release of highly sensitive computer data on informants for federal

law enforcement agencies through mismanagement of security, and
• inadequate financial data on agencies' basic operations that makes

responsible financial management and auditing using accepted
accounting standards extremely difficult.[5]

The report then goes on to discuss why business as usual is not enough for the U.S.
government to succeed. In making the case for this assertion, the report cites the following
two items that had appeared the year before that reflected the push to reform the way the
government needed to do business:

1. "Report of the National Performance Review," Office of the Vice President,
Washington, D.C., September 1993. This report indicated that the federal government
was in dire need of reengineering. It concluded that investments in information
technology will make it possible to reduce waste, increase efficiency (i.e., give the
taxpayer more bang for his/her tax buck), improve customer (i.e., public) satisfaction,
and lower costs.

2. Government Performance and Results Act (GPRA) of 1993. This legislation requires
strategic planning and performance measurement in the executive branches of the
government. [6] The purposes of GPRA are to improve federal management,
congressional decision-making, service delivery, program effectiveness, public
accountability, and public confidence in government.

The following excerpt from page 9 of the May 1994 GAO report links these two items to
strategic information management and the need to reform the way the U.S. government does
business:

Given both the risks of the status quo and the potential for improvement,
business as usual is simply no longer a tenable option for federal executives.
The administration's dramatic goals, ranging from setting customer service
standards for all federal agencies to making targeted improvements in major
areas, cannot be achieved without successful information management. For
example, improvements from reengineering with the aid of information
technology account for over 40 percent of the estimated savings projected by
the National Performance Review over the next 5 years.

Strategic information management (i.e., managing information and
information technology to maximize improvements to mission performance)

4 Information Management and technology Issues (GAO/OCG-93—STR, December 1992), Information Technology Issues (GAO/OCG-89-6TR,
November 1988).
5 Executive Guide: Improving Mission Performance Through Strategic Information Management and Technology (GAO/AIMD-94-115, May 1994),
pp. 8–9.
6 The requirement for "performance measurement" should be particularly noted here. This requirement proved to be troublesome for federal agencies
and, in part, motivated us to demonstrate to GAO one way to measure strategic information management.

Successful Software Development, Second Edition

633

will also be a crucial initiative for all federal agencies as they move to
implement the Government Performance and Results Act, which is focused on
results-oriented management. With it, improved management information and
restructured work processes can gradually reduce costs and increase service
levels. Without it, many agencies will find their efforts to move to results-
oriented management hindered by their inability to develop vital data and
useful information systems that support performance measurement and
substantive mission improvements.

Without action by federal executives, the gap between public expectations and
agency performance will continue to expand. Program risks will continue and
unique opportunities for improvement will remain unexploited. Many low-
value, high-risk information systems projects will continue to be developed and
undermanaged as leaders blindly respond to crises by purchasing more
technology. Most federal managers will continue to operate without the
financial and management information they need to truly improve mission
performance. Moreover, many federal employees will struggle unsuccessfully,
under increasing workloads, to do their jobs better as they are hampered with
information systems that simply add on another automated layer of
bureaucracy. Given these risks, sustained Congressional attention is vital to
reinforce the link between accountability for returns on information-related
investments and the satisfaction of real public needs.

Recalling our discussion from Chapter 1, we see that the GAO is making the business case for
why the U.S. government needs to strategically manage information through a results-oriented
management approach. Government agencies are addressing such questions as the following:

• To what extent is information management important to the agency mission?
• To what extent has the agency integrated planning, budgeting, and evaluation?
• To what extent does the agency measure key mission delivery processes?
• To what extent is the agency focusing on process improvement in the context of an

information technology (IT) architecture?
• To what extent is the agency managing IT projects as investments?
• To what extent is the agency building organizationwide information resources

management (IRM) capabilities to address mission needs?

GPRA mandates that, among other things, information systems and technology, in general,
must only be acquired after an agency can demonstrate to Congress that the systems and
technology support the agency mission. The government has decided that the above questions,
among others, need to be addressed. One key to making this demonstration is quantifying
strategic information management.

Before proceeding to the details of showing how Object Measurement can be used to
quantify strategic information management, we need to briefly discuss another piece of
government legislation—the Clinger-Cohen Act of 1996. [7]

7 The subsequent discussion of the Clinger-Cohen Act (which is also known by the shorter name "Cohen Act") is based, in part, on the article by S. T.
Johnson, "The Cohen Act of 1996: The Promise and the Challenge,"CrossTalk, The Journal of Defense Software, vol. 10, no. 9 (September 1997), pp.
3–9. This article provides some additional historical insight into the origins of this legislation. It also touches on how the implementation of the
Clinger-Cohen Act may help Congress and federal agencies quantify the return on information technology investments. How to determine ROI as it
pertains to IT-related investments is far from being a settled issue. It is beyond the scope of our discussion of the SIM measurement to analyze

Successful Software Development, Second Edition

634

The Clinger-Cohen Act specifies how the U.S. government is to plan, manage, and acquire
information technology. This legislation focuses on carrying through the information
technology aspects of GPRA. In particular, a major provision of the Clinger-Cohen Act
mandates that U.S. government agencies are to establish strategic performance goals for any
information technology [8] that supports the agency. Agencies are to quantitatively assess
performance improvement progress against comparable private or public sector best practice
benchmarks. These assessments are to include cost, schedule, productivity, and quality of
results. Organizations must analyze their progress toward meeting strategic goals, and must
adjust mission-related processes as appropriate before making significant IT investments to
support these processes. The Clinger-Cohen Act further mandates that each year, agencies are
to achieve at least a five percent decrease in the costs incurred to operate and maintain IT
systems, and a five percent increase in agency operational efficiency as a result of IT
investments.

The Clinger-Cohen Act also mandates that each federal agency is to have a chief information
officer (CIO). The CIO is to help foster better technology investment, accountability, and
decision making within the agency. The CIO is to implement capital planning and investment
controls for IT acquisition and management, where performance outcomes are measured,
analyzed, and reported (per GPRA).

A.2 Quantifying Strategic Information Management

Now that we have explained why quantification of strategic information management is of
interest to the U.S. government (and probably to U.S. taxpayers too), we now describe how
Object Measurement can be used to quantify SIM. Our approach starts from the GAO
document Strategic Information Management (SIM) Self-Assessment Toolkit issued October
28, 1994. This document is an exposure draft. GAO distributed this document to government
agencies for use and comment. The document indicated that GAO intended to revise the
document based on the results of GAO use as well as ideas from other government agencies
for improvement. To our knowledge, the draft has not yet been revised (the Y2K problem put
a lot of things on the back burner within the U.S. government). This document stops short of
defining a method for actually measuring strategic information management within an
organization. The approach that we describe below provides such a method. Before we
proceed with this discussion, we need to make the following two points:

• Just as we have repeatedly stated that there is no one "way" to develop software
systems, so, too, there is no one way to measure strategic information management.
The discussion below illustrates one such way.

• The approach presented illustrates a key measurement idea that we stressed in
Chapter 6. That idea is the following:

whether or not GPRA and the Clinger-Cohen Act have helped the federal government better manage its IT investments, thereby giving the taxpayer
more bang for its tax buck.

8 The Clinger-Cohen Act defines information technology as follows:

[A]ny equipment, or interconnected system or subsystem of equipment, that is used in the automatic acquisition, storage, manipulation, management,
movement, control, display, switching, interchange, transmission, or reception of data or information by the executive agency. [It] includes
computers, ancillary equipment, software, firmware and similar procedures, services (including support services) and related resources. (It does not
include any equipment that is acquired by a Federal contractor incidental to a Federal contract.)

Clinger-Cohen Act, PL (104–106), Div. E, Sec. 5002(3) (A), (B), and (C).

Successful Software Development, Second Edition

635

Measurement needs to be expressed in everyday terms that are familiar
to the organization; otherwise, they may, at best, be of little value.

The language that we use in setting up the value scales is taken directly from the GAO
document. Thus, the value scales are expressed in terms that at least are familiar to the
GAO—and presumably to the document's intended audience, namely, federal agencies.

The following extract from the preface to the GAO exposure draft sets the context for
understanding the approach for measuring strategic information management shown in
Figure A-1:

In May 1994, GAO issued a study of how leading private and public sector
organizations were improving their mission performance through strategic
information management and technology.[9] GAO found that senior managers
in these organizations used a consistent set of practices that helped them to
achieve successful performance outcomes. These practices worked because,
over time, they institutionalized better ways of doing business that are
necessary to capture the value of information and information technology.
They require no new laws to implement them, since they are consistent with
current federal regulations. The practices are supported by the Senate
Committee on Governmental Affairs and the heads of over 20 federal agencies.
OMB [Office of Management and Budget] has incorporated them in its
revision of A-130 "Management of Federal Information Resources"],[10] and
GSA [General Services Administration] has included them in their draft IRM
[information resources management] guide.

Figure A-1 Our approach measures strategic information management using the
language of GAO reports that stipulate requirements for performance measurement in
response to GPRA.

This Strategic Information Management (SIM) Self-Assessment Toolkit is
designed to help agencies put these practices to work for themselves. The
practices address enterprise-wide information management issues and do not
prescribe how to design, build, test, and acquire information systems. Rather,

9 GAO Report GAO/AIMD-94-115, Executive Guide: Improving Mission Performance Through Strategic Information Management and Technology,
May 1994.
10 This OMB publication establishes policy for the management of information resources within the U.S. federal government. OMB assists the
President of the United States in the development and execution of the President's policies and programs. OMB has a hand in the development and
resolution of all budget, policy, legislative, regulatory, procurement, and management issues on behalf of the President. [These words are adapted
from OMB's web site, http://www.whitehouse.gov/OMB.]

Successful Software Development, Second Edition

636

the focus of a SIM self-assessment is on achieving measurable improvements
in outcome-oriented performance that matters to the public, rather than just on
complying with rules and regulations. Agency assessment teams can use this
guide to benchmark the agency's current strategic information management
practices against a defined set of practices used by leading private and public
sector organizations. Based on these results, senior agency management can
develop and recommend specific actions to pursue in order to improve the
implementation of these practices over time and achieve measurable
improvements.

We now return to the six questions bearing on the strategic management of information within
the U.S. government that we listed in Section A.1. Given these questions, the next step in the
OM methodology is to select the object(s) to be measured to help answer these questions. For
this purpose, we choose to calculate an overall Strategic Information Management Index
(SIMIndex) (i.e., the overall measurement object) of a hypothetical government agency. As
explained below, this index is defined in terms of GAO diagnostic areas, GAO diagnostic
criteria, and GAO interim milestones. We first explain the concept of diagnostic areas and the
related concept of diagnostic criteria; in the subsequent discussion of the application of OM
methodology to SIM measurement, we illustrate the concept of interim milestones. We note
here the key point that there is one diagnostic area for each of the six questions cited in
Section A.1.

A.3 Diagnostic Areas and Diagnostic Criteria

We return to the first paragraph cited above from the preface in the GAO exposure draft
Strategic Information Management (SIM) Self-Assessment Toolkit. This paragraph includes
the following statements:

GAO found that senior managers in these [leading private and public sector]
organizations used a consistent set of practices that helped them to achieve
successful performance outcomes. These practices worked because, over time,
they institutionalized better ways of doing business that are necessary to
capture the value of information and information technology.

The practices referred to in the above citation, eleven in all, are the following:

1. Recognize and communicate the urgency to change information management
practices.

2. Get line management involved and create ownership.
3. Take action and maintain momentum.
4. Anchor strategic planning in customer needs and mission goals.
5. Measure the performance of key mission delivery processes.
6. Focus on process improvement in the context of an architecture.
7. Manage information systems projects as investments.
8. Integrate the planning, budgeting, and evaluation processes.
9. Establish customer/supplier relationships between line and information management

professionals.
10. Position a Chief Information Officer as a senior management partner.
11. Upgrade skills and knowledge of line and information management professionals.

Successful Software Development, Second Edition

637

One element of the toolkit is identifying the practices critical to the agency's success that
seem to be most at risk. This identification is referred to as "diagnosis." To facilitate this
diagnosis, the toolkit combines the above eleven practices into the following six higher-level
groupings called "diagnostic areas":

• Diagnostic Area 1 (da1)—The importance of information management to the agency
mission.

• Diagnostic Area 2 (da2)—Strategic planning, budget, and evaluation integration.
• Diagnostic Area 3 (da3)—Measure the performance of key mission delivery processes.
• Diagnostic Area 4 (da4)—Focus on process improvement in the context of an

architecture.
• Diagnostic Area 5 (da5)—Manage IT projects as investments.
• Diagnostic Area 6 (da6)—Build organizationwide IRM capabilities to address mission

needs.

In preparation for applying the OM methodology, we have assigned a variable name to each
diagnostic area (namely, dai, i = 1,2,3,4,5,6).

Associated with each of the above diagnostic areas are two or more diagnostic criteria that
embody what leading organizations do in the diagnostic area. It is these criteria that we use as
the basis for measuring strategic information management. Figure A-2 lists these criteria. As
the figure shows, we label each diagnostic criterion with a variable name based on the
variable names that we assigned above to the diagnostic areas. The generic variable name is
daij, where the subscript i refers to the diagnostic area and the subscript j refers to a diagnostic
criterion. For example, as shown in Figure A-2, Diagnostic Area 4 (i.e., i = 4) has three
diagnostic criteria (so j runs from 1 to 3 for i = 4), and these three criteria are labeled
respectively da41, da42, and da43. We note that this fourth diagnostic area is highlighted in
Figure A-2 because we are going to illustrate in detail how to apply the OM methodology to
this diagnostic area.

Successful Software Development, Second Edition

638

Figure A-2 This figure lists the GAO diagnostic criteria associated with the six GAO diagnostic
areas.

Now that we have (1) explained the concepts of "diagnostic areas" and "diagnostic criteria"
and (2) labeled these quantities, we are ready to continue our explanation of how the OM
methodology can be used to measure SIM.

As we stated earlier, the object that we want to measure is SIM. The characteristics of this
object that we want to measure are the diagnostic areas. Since each diagnostic area is
subdivided into two or more diagnostic criteria (i.e., each characteristic is subdivided into two
or more subcharacteristics), we choose to stop our object decomposition at this level and
directly measure the diagnostic criteria. Thus, we are going to measure diagnostic criteria,
fold these measurements into a subindex that measures a diagnostic area, and fold these
subindexes into an index that measures the SIM object.

The next step in the OM methodology is to define a value scale for each GAO diagnostic
criterion (i.e., subcharacteristic) in terms of a set of numbers (i.e., a minimum value, a
maximum value, and, possibly, an intermediate value[s]). We will do this assignment
explicitly for the three diagnostic criteria for Diagnostic Area 4 (da4)— Focus on process
improvement in the context of an architecture.

As shown in Figure A-2, the fourth diagnostic area is defined by the following three GAO
diagnostic criteria:

• Diagnostic Criterion 1 (da41)— Engage in process improvement efforts to create
order-of-magnitude improvements.

• Diagnostic Criterion 2 (da42)— Focus on core business processes with improvement
projects that are customer-oriented.

Successful Software Development, Second Edition

639

• Diagnostic Criterion 3 (da43)—Use information and IT architectures to support the
agency's process improvement.

Figure A-3 shows the three value scales that we have set up for the above three diagnostic
criteria. Each value scale has a set of numbers. Furthermore, observable events (i.e.,
measurement triggers) are associated with each number. The measurement triggers use
language adapted from the GAO benchmark scales associated with each diagnostic area.
These benchmark scales represent levels of maturity in applying information management
practices. The measurement triggers also indicate interim milestones for achieving the
objective of each diagnostic criterion (the objective to be achieved is the top of the value
scale). For example, the value scale for Diagnostic Criterion 1—Engage in process
improvement efforts to create order-of-magnitude improvements—has the following GAO
interim milestones: [11]

Figure A-3 This figure shows example value scales for the three diagnostic criteria associated
with Diagnostic Area 4 (da4)—Focus on process improvement in the context of an architecture.

• da41 = 0.00—No agencywide process improvement program
• da41 = 0.25—Agencywide improvement program being established
• da41 = 0.75—Established process improvement program is in place
• da41 = 1.00—Agency engages in BPR or other process improvement efforts.

The maximum value (i.e., da41 = 1.00) expresses the situation that an agency is engaging in
process improvement. If the agency is not engaged in process improvement activities or is not
planning to engage in such activities, then the likelihood of achieving process improvements
of any magnitude is, at best, uncertain. We also need to keep in mind that the measurements
that we are talking about here are aimed at helping senior-level decision makers determine the

11 The authors assigned the number values for each measurement trigger. In practice, such numbers might be derived in a number of different ways.
If, for example, GAO were interested in setting up value scales that could be applied governmentwide (and thus provide GAO and others such as the
U.S. Congress a means for comparing SIM index values across agencies), GAO might submit a questionnaire to these agencies asking for their
recommended values. From these inputs, GAO could then develop "consensus values" to set up the scales. It is outside the scope of the current
discussion to explore the political issues associated with such a value-scale-construction approach (or any other construction approach).

Successful Software Development, Second Edition

640

extent to which an organization is moving in a desired direction. In the context of Diagnostic
Area 4, desired direction means that, among other things, "the agency is planning for and
implementing information management systems within the context of an architecture in a way
that these systems will help the agency dramatically improve the way it accomplishes its
mission." The architecture sets the context for what systems are needed where; the process
improvement effort provides the focus for deciding which of the multitude of system options
and system combinations offer the most bang (i.e., process improvement) for the investment
buck.

The next step in the OM methodology is to measure the diagnostic criterion by recording the
observed measurement trigger. As indicated in Figure A-4, the values corresponding to the
observed measurement triggers are circled. [12] For this example, the following values are
recorded:

• da41 = 0.75—Established process improvement program is in place
• da42 = 0.25—Core business processes have been defined
• da43 = 0.20—Process improvement projects are not always strongly linked to customer

needs

The next step in our measurement methodology is to substitute the observed measurement
trigger values into a form of the OM equation to calculate a subindex representing the
measured value for Diagnostic Area 4. As shown in Figure A-5, the resulting measurement
indicates that the agency is about half way (0.47) towards where it wants to be in focusing its
process improvement activities in the context of an architecture. One possible interpretation of
this measurement result is that the agency is engaged in some process improvement activities
that are not directed toward more effective use of information and/or information technology.

A.4 OM Measurement Map and Measurement Trends

We have shown how to calculate the performance measurement index for one of the six GAO
diagnostic areas. Using the same approach, we would then calculate the corresponding
indexes for the other GAO diagnostic areas. Figure A-6 shows an OM Measurement Map
detailing all of the observed measurements. This map consists of a Kiviat-like diagram for
each of the diagnostic areas based on hypothetical measurements of the diagnostic criteria in
each area. Note that there are sixteen diagnostic criteria in all so that sixteen measurements go
into the determination of the agency's strategic information management index. In the center
of the collection of these Kiviat-like diagrams, Figure A-6 shows a Kiviat-like diagram
portraying the contribution of each diagnostic area to the agency's SIMIndex.

For this example, the SIMIndex value of 0.48 can be explained in terms of the following GAO
diagnostic areas measurement observations and resulting calculations:

12 The three underlined words on the da43 value scale are our adaptations of the GAO language.

Successful Software Development, Second Edition

641

Figure A-4 The figure illustrates the three value scales and recorded measurement triggers for
Diagnostic Area 4.

Successful Software Development, Second Edition

642

Figure A-5 The figure illustrates the performance measurement index for Diagnostic Area 4.

• Diagnostic Area 1 (da1)—The information management practices are starting to
change or da1 = 0.48.

• Diagnostic Area 2 (da2)—The integration of planning, budgeting, and evaluating is
underway or da2 = 0.25.

• Diagnostic Area 3 (da3)—The measurement processes are being defined or da3 = 0.25.
• Diagnostic Area 4 (da4)—The process improvement program is in place, core business

processes are defined, but projects are not linked to the customer or da4 = 0.47.
• Diagnostic Area 5 (da5)—The investment review board (IRB) established a process

for selecting and reviewing projects or da5 = 0.68.
• Diagnostic Area 6 (da6)—Training is needed for line management or da6 = 0.60.

Successful Software Development, Second Edition

643

Figure A-6 This figure shows an OM Measurement Map of the SIMIndex (Strategic Information
Management Index) for a hypothetical agency.

These observations and calculations are then used to help guide subsequent strategic
information management activities. For example, Figure A-7 shows the evolution of the
SIMIndex over seven reporting periods.

As shown in Figure A-7, the SIMIndex score for reporting period 1 reflects the discussion
above. For this particular agency, it did not have the budget to address improvement in all six
diagnostic areas for the next reporting period. However, it did focus its attention in one
particular area, and it anticipated a modest, but steady improvement in its SIMIndex score.
Given the agency's second period improvement, senior agency management decided to
allocate more resources for the third and fourth reporting periods. As indicated by the
SIMIndex scores for those periods, there was significant progress. The story continues, but the
point is that (1) management attention can be focused on those areas designated as needing
attention and (2) expectations can be managed with respect to progress, given budgetary
constraints.

Successful Software Development, Second Edition

644

Figure A-7 This figure shows the trend of SIMIndex over time.

A.5 Summary

As shown in Figure A-8, for this Object Measurement example, the strategic information
management index is defined in the following terms:

• GAO diagnostic areas
• GAO diagnostic criteria for each diagnostic area
• Value scales with GAO interim milestones for each diagnostic criterion.

At the outset of Chapter 6, we indicated that Object Measurement could be used to quantify
almost any object. In this appendix, we have illustrated how to apply this measurement
methodology to quantify the object "strategic information management," or SIM. As defined
by the U.S. government, SIM is "managing information and information technology to
maximize improvements in mission performance." We explained that the U.S. government is
interested in quantifying SIM. In particular, the U.S. Congress is interested in determining the
extent to which government agency investments in information management are helping the
agency accomplish its mission. In more prosaic terms, Congress wants to know the extent to
which the U.S. government is wisely spending U.S. citizens' tax dollars on information
technology.

Successful Software Development, Second Edition

645

Figure A-8 Under the umbrella of the Government Performance and Results Act (GPRA), the
example SIMIndex is defined in terms of GAO diagnostic areas, diagnostic criteria, and value
scales.

Successful Software Development, Second Edition

646

Appendix B. List of Figures
Preface

Figure P-1

This eight-chapter book, organized as shown, gives you practical and proven
guidance for answering the question, "How can you make successful software
systems development happen?"

Chapter 1—Business Case

Figure 1-1

This book offers ideas on how to transition to well-defined software systems
development practices to make successful software development happen.

Figure 1-2

Here are key ideas explained in this chapter. These ideas set the context for
many of the concepts addressed in the succeeding chapters.

Figure 1-3

Our concept of software consists of three characteristics that distinguish
software from other types of information.

Figure 1-4

Our definition of software encompasses both specification documentation and
computer code. Computer languages and database languages are merging.
Consequently, our notion of computer code includes these blended languages.

Figure 1-5

Software-related products augment and complement our definition of software.

Figure 1-6

A definition of "culture."

Figure 1-7

The requisite software systems development disciplines for attaining and
maintaining software product integrity are development, product assurance,
and management.

Successful Software Development, Second Edition

647

Figure 1-8

Product assurance is the integrated application of the three comparison
processes of QA, V &V, T&E, and the CM process that formally controls
changes.

Figure 1-9

Our four-stage generic life cycle blends the requisite software systems
development disciplines of development, product assurance, and management.

Figure 1-10

The three archetypical organizations that interact on most software projects
may or may not have the requisite software systems development disciplines
for attaining and maintaining software product integrity.

Figure 1-11

Cultivating successful software systems development extends far beyond (1)
management edicts, (2) assembling a team of experienced and good people,
and (3) a five-minute conversation with a customer and a three-week coding
frenzy.

Figure 1-12

Customer/developer misunderstandings arising during software systems
development—such as the meaning of "user-friendly system"—can adversely
affect customer expectations.

Figure 1-13

"My schedule simply doesn't permit me or my coworkers to document before
we code. Anyway, the documentation is too difficult to keep up to date because
the code keeps changing."

Figure 1-14

An impediment to software process improvement—the Not-Invented-Here
(NIH) syndrome.

Figure 1-15

Alternative approaches to software process improvement—(1) management
edict, (2) organizational policy, and (3) systems engineering environment
(SEE). This book focuses on the SEE approach.

Successful Software Development, Second Edition

648

Figure 1-16

A systems engineering environment (SEE) provides a means for effecting
consistent software systems development—whether systems are developed
sequentially or in parallel. For parallel systems development, the SEE also
provides a means for coordinating these development activities, thereby
potentially leveraging resources and adding value to individual projects.

Figure 1-17

This figure provides an overview of this book.

Chapter 2—Project Planning Process

Figure 2-1

Successful software systems development requires good planning. Here are
key project planning concepts explained in this chapter. These key ideas are
your guide to planning for software systems development success.

Figure 2-2

Software systems development projects transition manual or automated legacy
systems to new/improved systems. A development life cycle brings to the fore
the disciplines and tasks needed to (1) effect a successful transition and (2)
respond to postdeployment needs.

Figure 2-3

The generic software systems development life cycle provides a starting point
for identifying management, development, and product assurance tasks to be
accomplished on your project.

Figure 2-4

Consistent project planning records management, development, and product
assurance responses to what needs to be done. These responses are tasks that
the different disciplines are to accomplish. These tasks make up the heart of
the project plan. In addition, no matter how well planning is done, unknown,
but expected, changes will arise. The change control board (CCB) is a forum
for systematically accounting for such changes. The project plan needs to
incorporate CCB activities to account for responding to these deviations.

Figure 2-5

Using your experience to tailor the generic life cycle, you define the specific
management, development, and product assurance tasks to be accomplished,
and associated estimated resources, milestones, and schedule.

Successful Software Development, Second Edition

649

Figure 2-6

This six-stage life cycle gives added visibility to the design activity by dividing
the HOW into two separate stages—PRELIMINARY DESIGN and
DETAILED DESIGN. Such added visibility is desirable when the HOW is
assessed to be particularly risky. The example activities shown above need to
be addressed in the project plan for each life cycle stage. The plan should
account for multiple iterations of the activities shown in correspondence with
the risk assessed for these activities.

Figure 2-7

This prototyping life cycle gives added visibility to the (1) evolving customer
requirements, (2) most difficult requirements to be implemented, and (3)
transition from the development environment to the operational environment.

Figure 2-8

This information engineering life cycle gives added visibility to enterprisewide
(1) information needed to support development of business systems, (2) data,
(3) activities needed to process the data, and (4) activity/data interaction.

Figure 2-9

Although the shortest distance between two points is a straight line, project
planning needs to account for the hazards that typically arise in the real world
of software systems development. Successful software systems development
involves planning for the hazards and establishing a means—the CCB—for
managing the hazards that can jeopardize project completion.

Figure 2-10

Project planning involves assessing the risk of accomplishing the customer's
statement of work. Product assurance serves to mitigate the project risk and
should therefore be commensurate with the assessed risk.

Figure 2-11

Assessing project risk during project planning is key to allocating dollar
resources for risk-reduced project plan accomplishment. The risk criteria
shown are examples illustrating the approach. They are a starting point for
constructing your own criteria tailored to the needs of your environment.

Figure 2-12

This logic illustrates how risk criteria can be applied to determine whether a
project is high, medium, or low risk. This logic offers you insight into
developing your own risk assessment approach on the basis of your own risk
criteria. The assessed project risk is used to allocate resources among the

Successful Software Development, Second Edition

650

management, product assurance, and development disciplines. The dollars
allocated to product assurance serve to reduce project risk.

Figure 2-13

The software project planning process is risk-based and development driven.
The planning process involves (1) assessing risks associated with meeting
customer requirements, (2) defining resource percentages for development,
product assurance, and management based on this assessment, (3)developing
corresponding approaches and task-derived resource estimates, (4) reconciling
task-derived and risk-derived resource estimates, and (5) integrating the
approaches. The end result is a risk-reduced project plan with increased
likelihood for successful accomplishment.

Figure 2-14

The project plan is a living contract between the CUSTOMER and SELLER
that sets forth the work that the seller's management, development, and product
assurance disciplines accomplish and the customer management approves. This
figure shows suggested project plan topics and a suggested order for these
topics.

Figure 2-15

The project plan defines the seller's development, management, and product
assurance tasks that respond to a customer's statement of work (SOW). These
tasks emerge by considering the intersection of each life cycle stage with each
system discipline.

Figure 2-16

This illustration shows an annotated outline for getting you started defining an
ADPE procedure for your project planning procedure.

Chapter 3—Software Systems Development Process

Figure 3-1

People use a software process to develop and maintain software and associated
products.

Figure 3-2

This figure shows five example software organizations based on software
project groupings.

Figure 3-3

Successful software systems development is repeatable if an organization has a
well-understood and documented product development process that it follows.

Successful Software Development, Second Edition

651

Without such a process, the organization must rely on the heroics of
individuals. Here are key process concepts explained in this chapter.

Figure 3-4

Our example organizational software systems development process is a closed-
looped process that starts and ends with the customer.

Figure 3-5

The software systems development process is independent of product
development life cycle and specific product development technologies. The
figure shows where you would introduce your life cycle(s) to adapt the process
to your organization.

Figure 3-6

The SOW (Statement of Work) is the customer's statement of what the
customer wants the seller to do. The figure gives tips to help buyers/users write
an SOW.

Figure 3-7

The customer's SOW, the organizational software systems development
process, and the life cycle set the context for planning the project-specific
work.

Figure 3-8

The customer project manager and the seller project manager constantly
communicate with each other. Such communication includes technical
guidance, day-to-day coordination on project activities, items for the record,
and issues for customer concurrence. This type of manager-to-manager
communication helps to increase the likelihood that the evolving products will
embody what the customer wants.

Figure 3-9

Evolves software product(s) means "applying the process activities that take a
product from a vaguely defined concept to a completely filled-in product that
embodies customer's requirements."

Figure 3-10

Services, like the products, are planned in accordance with the organizational
software systems development process.

Successful Software Development, Second Edition

652

Figure 3-11

The seller development team prescriptively applies the project's development
process to the negotiated agreement that embodies the seller's project plan. The
results of this prescriptive application are the following: (1) products (and
associated services) and (2) project-level development procedures that are
consistent with the resource expenditures, completed work schedules, and
work accomplished.

Figure 3-12

The lead developer of a product is responsible for establishing the necessary
project files and tracking the product through the development process. The
tracking form, as its name implies, is used, in part, to track a product as it
progresses through the software systems development process.

Figure 3-13

Here is an example of a seller deliverable tracking form that can be used with
our organizational software systems development process.

Figure 3-14

Here is an example of a customer receipt of deliverable form that can be used
with our organizational software systems development process. The return
address is on the reverse side.

Figure 3-15

Here is an example of a customer acceptance of deliverable form that can be
used with our organizational software systems development process.

Figure 3-16

This figure shows our example seller Deliverable Support Center functions.

Figure 3-17

The peer review balances the product developer's approach with the insights of
other people having applicable and comparable experience.

Figure 3-18

Independent product assurance is a key element of successful software systems
development processes.

Figure 3-19

Technical editing is an important, but often overlooked, activity in the software
systems development effort.

Successful Software Development, Second Edition

653

Figure 3-20

Project-level technical oversight helps the seller development team avoid
potential problems by infusing the experience of others into the technical
management of the project (i.e., the "I've been there" factor).

Figure 3-21

The CCB is a key element of successful software systems development
processes.

Figure 3-22

Seller senior management ensures, in part, that the seller development teams
implement the organizational software systems development process.

Figure 3-23

This figure indicates that the level of detail and organizational scope are two
major considerations in defining a software systems development process in an
application development process environment (ADPE) element.

Figure 3-24

The software systems development process can plug into a systems
development process via change control board meetings.

Figure 3-25

It is useful to define the organizational software systems development process
first.

Figure 3-26

An annotated outline for getting you started in defining a software systems
development process for your organization. This ADPE element outline can
also be used to define a process that you already (informally) have in place and
that you want to improve.

Chapter 4—Change Control Process

Figure 4-1

It is easy to miscommunicate. (The Wizard of Id, May 16, 1994. Reproduced
by permission of Johnny Hart and Creators Syndicate, Inc.)

Figure 4-2

Sometimes the customer believes that he effectively communicates his
requirements, and the developer believes he understands what the customer

Successful Software Development, Second Edition

654

communicated. Subsequent to developer implementation of the
"requirements," the customer and developer may have vastly different
perspectives regarding requirements satisfaction. (The Wizard of Id, October
11, 1984. Reprinted by permission of Johnny Hart and Creators Syndicate,
Inc.)

Figure 4-3

A customer and a developer refine their understandings of what needs to be
done to build a software system satisfying customer requirements. This mutual
refinement of understanding continues throughout the development life cycle.
The change control board (CCB) provides the wizard and king with a business
forum to achieve this mutual refinement. The end result is successful software
systems development. (The Wizard of Id, September 30, 1983. Reproduced by
permission of Johnny Hart and Creators Syndicate, Inc.)

Figure 4-4

Here are key change control concepts explained in this chapter.

Figure 4-5

Software systems development projects involve planned growth in greater
levels of detail, and unplanned transitions within a life cycle stage or between
stages.

Figure 4-6

The change control board (CCB) is the forum for the control activity for the
change process conducted during the review of changes.

Figure 4-7

CCB control can be likened to the process of redirecting a train by switches.

Figure 4-8

Change control of a planned (i.e., evolutionary) change—submission of a draft
detailed design specification.

Figure 4-9

Change control of an unplanned (i.e., revolutionary) change—a proposed
amendment to requirements.

Figure 4-10

Change control of an unplanned (i.e., revolutionary) change—a user-submitted
incident report.

Successful Software Development, Second Edition

655

Figure 4-11

CCBs provide forums for units of each organization within the
user/buyer/seller triumvirate—or for pairs of these organizations, or for all
three organizations—to interact continually and effectively on a software
development project for the purpose of managing change.

Figure 4-12

A CCB hierarchy generally derives from the hierarchy of issues associated
with system development and their perceived significance.

Figure 4-13

Sample (software) CCB hierarchy organized along management/technical and
user/buyer/seller lines illustrating how management and technical CCB
guidance effects and affects software change.

Figure 4-14

Sample (software) CCB hierarchy for medium-sized or small-sized projects.

Figure 4-15

The decisions that the CCB can make relative to a change control form.

Figure 4-16

Forms, in conjunction with the CCB, give visibility and traceability to the
change control process.

Figure 4-17

Example of an incident report (IR) form and associated events that it
documents.

Figure 4-18

Example of a software change notice (SCN) form.

Figure 4-19

Example of a change request (CR) form and associated events that it
documents.

Figure 4-20

Example of an impact assessment (IA) form.

Successful Software Development, Second Edition

656

Figure 4-21

Scenarios showing the use of the change control forms.

Figure 4-22

Example of a completed change request (CR) form, showing the use of the
form in answering the question "Do we want something new or different?"

Figure 4-23

Example of a completed impact assessment (IA) form for the change request
(CR) 98-0019.

Figure 4-24

Example of a completed incident report (IR) form, showing use of the form in
answering the question "Is something wrong?"

Figure 4-25

Example of a competed software change notice (SCN) for the incident report
(IR) 99-0012.

Figure 4-26

Format for CCB minutes.

Figure 4-27

Minutes of a software CCB meeting considering a planned change.

Figure 4-28

Minutes of a software CCB meeting considering unplanned changes.

Figure 4-29

Minutes of a Test Incident CCB meeting.

Figure 4-30

Minutes of a Software Turnover CCB meeting.

Figure 4-31

An annotated outline for getting you started in defining a CCB guideline.

Successful Software Development, Second Edition

657

Chapter 5—Product and Process Reviews

Figure 5-1

Reviews give visibility into processes and resultant software products. With
this visibility, management, development, and product assurance personnel can
make intelligent, informed decisions regarding what to do next on a software
project.

Figure 5-2

The heart of product and process reviews is ground truth.

Figure 5-3

Product and process reviews help the seller develop products that conform to
the customer's requirements. These key ideas are your guide to keeping your
software systems development process and resultant products on track.

Figure 5-4

This chapter's discussion focuses on key software product and software
systems development process reviews. The seller development team performs
these reviews at the project level.

Figure 5-5

This chapter describes key management, development, and product assurance
reviews at the project level. The reviews fall into two major categories—
product and process.

Figure 5-6

Software product reviews address programmatic, technical, editorial, and
conformance questions.

Figure 5-7

Project software systems development process reviews address programmatic,
technical, and conformance questions.

Figure 5-8

Product programmatic tracking helps provide insight into planned versus actual
schedule and resource product development issues.

Figure 5-9

Process programmatic tracking helps to provide insight into planned versus
actual schedule and resource issues involved with the overall project.

Successful Software Development, Second Edition

658

Figure 5-10

Here are some example remarks that a senior manager might pass along to a
project manager or to a project team member on the context or orientation of a
software(-related) product.

Figure 5-11

Here are some example remarks that a senior manager might pass along to a
project manager or to a project team member regarding the project-level
software systems development process.

Figure 5-12

Here are examples of product peer review comments for a software document,
software-related document, computer code, and data.

Figure 5-13

Here are examples of process peer review comments for the development of a
requirements specification, computer code, and a database.

Figure 5-14

Here are examples of technical edits for two types of software(-related)
documents.

Figure 5-15

This figure presents a starting point for constructing a set of technical editing
tips for documents.

Figure 5-16

Here are examples of product quality assurance (QA) discrepancies that might
be uncovered during the comparison of a product under development against
one or more standards governing the development of that product.

Figure 5-17

Here are examples of product verification and validation (V&V) discrepancies
that might be uncovered during thecomparison of a product under development
against a predecessor product and the requirements for that product.

Figure 5-18

Here are examples of product test and evaluation (T&E) discrepancies that
might be uncovered during the testing of computer code.

Successful Software Development, Second Edition

659

Figure 5-19

Here are examples of product self-comparison discrepancies that might be
uncovered during the comparison of a product under development against
itself.

Figure 5-20

Here are examples of process quality assurance (QA) discrepancies that might
be uncovered (or reported) during the comparison of a product under
development (or that has finished development) against the project-specific
software systems development process.

Figure 5-21

Here are examples of process quality assurance (QA) discrepancies that might
be uncovered (or reported) during the comparison of a project against the
project-specific software systems development process.

Figure 5-22

This figure shows an overview of the auditing process for software and
software-related products.

Figure 5-23

Here is a suggested format for a software product audit report.

Figure 5-24

Software product auditing establishes the extent to which the two products are
congruent.

Figure 5-25

This figure shows the operational concept for the Automated Doughnut-
Making System (ADMS).

Figure 5-26

Here is a simplified functional requirements specification for the
Programmable Subsystem of the Automated Doughnut-Making System. This
specification is the ground truth for the audit of the design specification for this
system.

Figure 5-27

Here is a partial design specification for the Programmable Subsystem of the
Automated Doughnut-Making System.

Successful Software Development, Second Edition

660

Figure 5-28

This figure illustrates the results of doing a two-way comparison of the ADMS
requirements and design specifications. As shown, each comparison yields a
disconnect (i.e., ?????).

Figure 5-29

Here is a simplified functional requirements specification for System
PREDICT. This specification is the ground truth for the audit of the
preliminary design specification for this system.

Figure 5-30

Here is a draft of the preliminary design specification for System PREDICT.

Figure 5-31

Findings of an audit of the System PREDICT Preliminary Design Specification
against the System PREDICT Requirements Specification.

Figure 5-32

T&E assesses the extent to which computer code embodies the design and
requirements.

Figure 5-33

Here is a suggested format for a software test plan.

Figure 5-34

Here is a test procedure format that builds in traceability back to predecessor
product development documentation such as requirements and design
specifications, and test plans.

Figure 5-35

Here is a portion of the SHAPES requirements specification that is one input to
SHAPES test procedure construction.

Figure 5-36

Here is the circle-drawing portion of the design specification for System
SHAPES.

Figure 5-37

Here is an extract from a test plan for System SHAPES showing circle-
drawing tests based on the SHAPES design specification.

Successful Software Development, Second Edition

661

Figure 5-38

Here is a portion of a System SHAPES test procedure derived from the System
SHAPES Test Plan extract (i.e., Test CD.1).

Figure 5-39

To demonstrate formally that a software system to be delivered does what the
customer and seller agreed to, acceptance test procedures should be explicitly
linked to the system development activities that yielded products reflecting this
agreement.

Figure 5-40

This figure presents an overview of the acceptance testing process.

Figure 5-41

The interaction of the Software Turnover CCB and the Test Incident CCB
during the acceptance testing cycle raises the software system's visibility and
infuses it with traceability. The cycle continues until the customer and seller
mutually agree that the software system is ready to be released (i.e., "accepted
by the customer").

Figure 5-42

Example of a test incident report (TIR) form and associated events that it
documents.

Figure 5-43

Example of a completed test incident report (TIR) showing an incident
resolved by changing code. The first retest of the code demonstrated that the
recommended code changes were correct.

Figure 5-44

This requirements specification provides the backdrop for illustrating the
concept of requirements testability.

Figure 5-45

This figure shows how to convert positions on the earth's surface expressed as
latitude/longitude pairs to lengths and areas on that surface. The formulas
shown are for a spherical earth model.

Successful Software Development, Second Edition

662

Figure 5-46

This figure shows calculations for two spherical earth models—one for a
model whose radius is 3440 nautical miles and one for a model whose radius is
used to define the nautical mile.

Figure 5-47

A summary of the testability of LOOKOUT software requirements.

Figure 5-48

This figure shows an overview of the auditing process for software systems
development processes.

Figure 5-49

Here is a suggested format for a software process audit report.

Figure 5-50

Software process auditing establishes the extent to which project processes are
congruent with organizational processes documented in the ADPE.

Figure 5-51

Here is an example qualitative software process audit form that can be used
with our organizational software systems development process.

Figure 5-52

An annotated outline for getting you started defining an independent product
assurance policy for your organization.

Figure 5-53

An annotated outline for getting you started defining a guideline explaining
how to prepare for and conduct peer reviews as part of your organization's
software systems development process.

Figure 5-54

An annotated outline for getting you started defining an acceptance testing
cycle procedure for your organization.

Successful Software Development, Second Edition

663

Chapter 6—Measurement

Figure 6-1

Measurements need to be expressed in everyday terms that are familiar to the
organization; otherwise, they may be of little value.

Figure 6-2

This figure shows our conceptual framework for product and process
measurement. Product measurement involves identifying product attributes
(ati) and corresponding value scales of interest to the organization. Process
measurement involves an additional layer of decomposition. Processes are
decomposed into components (xti) and component activities (xtij). Value scales
are defined for each activity in terms that are meaningful to the organization.

Figure 6-3

In this chapter, we offer you guidance on how to measure product "goodness"
and process "goodness" using a general measurement technique called Object
Measurement. (The Object Measurement logo shown in this figure is a
registered trademark owned by Scott E. Donaldson and Stanley G. Siegel.)

Figure 6-4

Software systems development process improvement is tied to the state of your
overall business process.

Figure 6-5

The term "metric" is used in a variety of ways in the software engineering
literature. We use metric to mean "(1) a standard or unit of measurement, or
formula used to quantify something and/or (2) the values that the standard or
formula may assume."

Figure 6-6

To be meaningful, measurements must have benchmarks. Benchmarks need to
be established for software products and software development process
measurements, and the relationship between the product and process
measurements.

Figure 6-7

What to measure should derive from questions that are important to the
organization. Questions bring to the fore (1) quantities to be measured and (2)
value scales pertinent to these quantities. Measurements can be used to help
improve software development processes and the resultant products.

Successful Software Development, Second Edition

664

Figure 6-8

Successful software systems development is a continual improvement exercise.
Measurement is a means for effecting this improvement. Here are key
measurement concepts that are explained in this chapter.

Figure 6-9

Here is an example of a way to define product integrity in terms of attributes
that are often of interest to both management and product developers.

Figure 6-10

The idea for a product integrity index derives from the concept of the length of
a line in space. The figure shows how the length of a line can be portrayed in
spaces of various dimensions as the magnitude of a vector representing a
displacement. The tail of the vector represents the starting point, and the head
of the vector represents the destination point. The length of the vector
represents the distance between the starting point and the destination point.
Similarly, the product integrity index is simply the length of a line in product
attribute space.

Figure 6-11

Product integrity is a multidimensional concept associating a number of
attributes with a product. Avector is one way simply to represent a
multidimensional concept. The figure shows a three-dimensional product
attribute space made up of three members from the example set of five
attributes introduced earlier. A vector in this space is the product integrity
vector. Its length is what we will use to measure product "goodness." Our
approach to measuring product "goodness" is thus an exercise in measuring the
length of the product integrity vector.

Figure 6-12

This figure illustrates three ways in which the general formula for the product
integrity index, PIindex, can be used.

Figure 6-13

This figure illustrates value scales for each of the five example product
integrity attributes (ati) discussed. You will want to set up attributes and value
scales that make sense for your organization.

Figure 6-14

This figure illustrates one way to display the results of quantifying the integrity
of a software product (e.g., a requirements specification). For the attribute
values shown, PIindex = 0.72.

Successful Software Development, Second Edition

665

Figure 6-15

This figure illustrates PIindex for four software products. PIindex was
calculated after the customer received each product and returned the
acceptance of deliverable form.

Figure 6-16

The product integrity index, PIindex, can be used to quantify a product's
integrity during its development, as well as after its delivery to the customer.

Figure 6-17

This figure illustrates how the product integrity index concept can be used to
track the integrity of a product as it evolves from the start of its development to
the time it is delivered to the customer.

Figure 6-18

This high-level procedure helps you through the product measurement steps
based on the concepts and examples introduced so far in this chapter.

Figure 6-19

PIindex can be used indirectly to measure improvements in the organizational
software development process.

Figure 6-20

This figure presents the general formula for the process integrity index,
ProcIindex, that is normalized to one.

Figure 6-21

The software systems development process can be measured by assessing
specific process components. In this example, four process components are
shown.

Figure 6-22

The left-hand side of this figure represents our process measurement
framework that is used to decompose a process into its components and
activities. Activity value scales are defined in terms meaningful to the
organization. The right-hand side of this figure represents how our example
organizational software systems development process maps to our framework.

Figure 6-23

This figure illustrates how the process integrity index, ProcIindex, is calculated
by using four process components—(xt1) Seller Project Planning (which

Successful Software Development, Second Edition

666

includes risk assessment), (xt2) Seller Development Team (which includes peer
reviews), (xt3) Customer/Seller Development Team (which includes CCB
activity), and (xt4) Seller Senior Management (which includes review and
approval activities).

Figure 6-24

Example activities for our organizational software systems development
process.

Figure 6-25

To compute ProcIindex, each process component is decomposed into specific
activities.

Figure 6-26

Example activity value scales for the Seller Project Planning component of the
organizational process.

Figure 6-27

Example activity value scales for the Seller Development Team component of
our organizational process.

Figure 6-28

Example activity value scales for the Customer/Seller Development Team and
Seller Senior Management components of our organizational process.

Figure 6-29

ProcIindex is defined and calculated in terms of process components,
component activities, and activity value scales.

Figure 6-30

This figure illustrates one way to display the results of quantifying a software
development process. On the basis of the example measures, the process
integrity index, ProcIindex, equals 0.59.

Figure 6-31

This high-level procedure helps you through the process measurement steps
based on the concepts and examples introduced in this chapter.

Figure 6-32

The Software Engineering Institute's Capability Maturity Model for Software
is a five-level road map for improving an organization's software systems

Successful Software Development, Second Edition

667

development process. Each maturity level is a well-defined evolutionary
plateau on the path toward becoming a "mature" software organization.

Figure 6-33

Each maturity level consists of "key process areas (KPAs)." Each KPA is
characterized, in part, by "goals" and "key practices."

Figure 6-34

A repeatable software process that has integrity is one that has the following
six process components shown above—(xt1), (xt2), (xt3), (xt4), (xt5), and (xt6).

Figure 6-35

The Requirements Management process component (i.e., key process area) can
be measured using the three activities labeled RM.AC.1, RM.AC.2, and
RM.AC.3.

Figure 6-36

Example activity value scales for the three activities making up the
Requirements Management key process area.

Figure 6-37

The Level 2 process "goodness" scale ranges from a minimum value of 0.0
(i.e., activities not being performed in any KPA) to a maximum value of 1.0
(i.e., all activities being performed in each KPA).

Figure 6-38

The process integrity index for CMM Level 2 can be defined using the
activities for each of the six Key Process Areas. For example, there are three
activities for Requirements Management (i.e., xt1), fifteen activities for
Software Project Planning (i.e., xt2), etc.

Figure 6-39

Measurements can be used to help improve software systems development
processes and the resultant products.

Figure 6-40

The product integrity index or process integrity index can be implemented for
organization and project perspectives.

Successful Software Development, Second Edition

668

Figure 6-41

What is the relationship between your product and process integrity indexes?
This figure suggests some possible interpretations.

Figure 6-42

Applying metrics to the software systems development process should be part
of the process itself.

Figure 6-43

This high-level procedure is to help you through the product and process
measurement steps based on the concepts and examples introduced in this
chapter.

Figure 6-44

An annotated outline for getting you started in defining a product and process
measurement approach for your organization. This ADPE element can also be
used to refine a measurement approach you already (informally) have in place.

Chapter 7—Cultural Change

Figure 7-1

Losses, doubts, and fears contribute to a person's unwillingness to make a
transition (change) to a new way of doing things. Often people view transition
as a painful experience.

Figure 7-2

Changing a software systems development environment starts with
establishing an understanding of the organization's overall existing culture.

Figure 7-3

This figure summarizes four types of organizational cultures. It is important for
you to understand what your culture is and what you want your culture to be
before you begin planning a transformation.

Figure 7-4

The vision of the software systems development culture helps to set the
organization's strategic focus for process improvement.

Figure 7-5

ADPE implementation strikes at the core of organizational and personal
practice. Altering these practices is thus tantamount to effecting cultural

Successful Software Development, Second Edition

669

change at the organizational and personal level. Here are key cultural change
concepts explained in this chapter. These key ideas are your guide to bringing
about cultural change within your organization through ADPE implementation.

Figure 7-6

Cultivating software systems development success involves cultural change
that, in part, is tied to ADPE implementation. The ADPE can be viewed as a
code of software systems development practices defining the "right
engineering thing to do."

Figure 7-7

Individuals within the seller organization (e.g., Sam, Pam, and Ham) should be
given an opportunity to contribute to the practices defined in the ADPE.

Figure 7-8

This figure presents several different organizational arrangements involving
the process engineering group (PEG). Your organization may fit into one of
these arrangements or some combination of them. Some ADPE cultural change
issues are independent of the organizational arrangement—and some are not.

Figure 7-9

Although ADPE elements define seller software systems development business
practices, buyer/user buy-in is recommended for successful ADPE
implementation. Part of this buy-in should include ADPE element sign-off by a
buyer/user representative who is the organizational counterpart to the seller
manager who has ADPE element sign-off authority. This bipartisan sign-off
formalizes the commitment of both parties to conform to the culture embodied
in the element.

Figure 7-10

The development and improvement of ADPE elements involves customer
personnel, seller management, and seller staff. The figure depicts a top-level
ADPE element development and improvement process involving these
participants.

Figure 7-11

An ADPE that cultivates cultural change is one that establishes a business
practice framework. The framework should stay away from recipelike
practices and allow for prescriptive application.

Figure 7-12

An annotated outline for getting you started defining a process to govern
ADPE element development and improvement.

Successful Software Development, Second Edition

670

Figure 7-13

Individuals must perceive individual and/or organizational gains for ADPE
implementation to take hold.

Figure 7-14

ADPE implementation issues depend, in part, on how far along the customer
and seller organizations are in their respective ADPE implementations. This
figure indicates a few potential customer project manager reactions to seller
ADPE implementation.

Figure 7-15

This figure indicates a few potential customer senior management reactions to
seller ADPE implementation.

Figure 7-16

This figure indicates a few potential seller senior management reactions to
customer ADPE status.

Chapter 8—Process Improvement Planning

Figure 8-1

At the most fundamental level, the avenue to consistent successful software
systems development is sustained effective communication between the wizard
(i.e., software seller) and the king (i.e., software customer). (The Wizard of Id,
September 30, 1983. Reprinted by permission of Johnny Hart and Creators
Syndicate, Inc.)

Figure 8-2

The preceding chapters capture the essence of things that you need to consider
in planning for implementing a systems engineering environment (SEE) in
your organization. SEE implementation is a structured way of institutionalizing
consistent successful software systems development. This chapter integrates
the ideas from the preceding chapters to guide your SEE implementation
planning activity.

Figure 8-3

This chapter offers planning guidance to wizards and kings for setting up a
software process improvement approach via SEE implementation. The chapter
helps you select concepts from the preceding chapters to construct this
approach. The concept of implementation plan as used in this chapter means
"anything from notes scratched on the back of an envelope to a multivolume
formal and highly detailed document—whatever makes sense for your

Successful Software Development, Second Edition

671

organization." Reduced to simplest terms, plan in this chapter means "think
and coordinate before doing."

Figure 8-4

Here are some key process improvement planning concepts explained in this
chapter. These key ideas are your guide to plan SEE implementation
realistically. A realistic SEE implementation plan helps to focus your efforts
toward consistent successful software systems development. To plan
realistically in this chapter means "laying out an approach that motivates
people to (1) overcome their resistance to change and (2) implement SEE
business practices."

Figure 8-5

Here are the key SEE implementation planning issues addressed in this
chapter. These issues are things that you should consider when planning an
SEE implementation approach for your organization.

Figure 8-6

To help you plan SEE implementation, here is a representative timeline of
tasks and their phasing. For completeness, we show the task for writing the
SEE implementation plan itself. Time for training people on the ADPE is not
shown. This training activity should be coupled to the preparation and
promulgation of individual ADPE elements.

Figure 8-7

A key element of SEE implementation planning is ADPE element phasing. To
get you started addressing this planning issue for your organization, the figure
shows some elements, their relationships, and an order for their development.
Your SEE implementation plan should propose a strategy for ADPE element
development. It is desirable to start with an element that defines your overall
software systems development process. This element provides the context for
most subsequent elements. In particular, it shows how they are to plug into one
another.

Figure 8-8

An annotated outline for getting you started defining a (software) configuration
management guideline for your organization.

Figure 8-9

It is difficult to provide guidance regarding the specific ADPE elements to
include in an SEE. The figure shows a set of elements to start your thinking for
addressing your global SEE needs. We label the specific elements using the
designation "policy,""guideline," "procedure," or "standard." As we discussed
in preceding chapters, you may want to establish a different taxonomy for your

Successful Software Development, Second Edition

672

elements. Even if you use our taxonomy, what we show as, e.g., a "procedure"
you may want to cast as a "guideline."

Figure 8-10

An annotated outline for getting you started defining a standard for software
and software-related documents. The key point to keep in mind is that this
ADPE element is not just a collection of document templates—rather, it
defines a process for deciding what documents to use when and provides
document review guidance. Thus, you should keep in mind that, to give this
element substantive value for your organization, you should ensure that it
plugs into the rest of your ADPE, particularly your software systems
development process. The outline shows you a way to bring about this plug-in
for your software systems development process ADPE element.

Figure 8-11

An annotated outline for getting you started defining a project tracking
guideline for your organization. This element should be coordinated with the
Change Control Board Guideline discussed in Chapter 4, particularly with
respect to the use of CCB minutes for project tracking purposes. This element
should also be coordinated with the Software Systems Development Process
Policy discussed in Chapter 3 with respect to the seller deliverable tracking
form.

Figure 8-12

An annotated outline for getting you started preparing a life cycle guideline for
your organization. This element should be coordinated with the Project Plan
Development Process Procedure discussed in Chapter 2. This element should
also be coordinated with the Software Systems Development Process Policy
discussed in Chapter 3, particularly with respect to offering guidance on
plugging a life cycle into the development process.

Figure 8-13

An important SEE implementation planning issue is the following: How
should the ADPE be constituted—(1) from a small number of elements (i.e.,
approximately ten), each consisting of tens of pages or more, or (2) from a
large number of elements (i.e., tens or more), each consisting of a couple of
pages, or (3) some combination of (1) and (2)? Here are some considerations to
help you address this issue in your SEE implementation plan.

Figure 8-14

Here is an example of a two-page CM ADPE element adapted from the Figure
8-8 annotated CM ADPE element outline. The slant of this element is to
empower members in the organization to develop their CM approaches from
the element either via a CM plan or for, say, small projects, via CM
procedures. Page 2 of the element contains a CM plan outline.

Successful Software Development, Second Edition

673

Figure 8-15

A key SEE implementation planning issue is the following: How frequently
should an ADPE element be updated? The tradeoff here is getting people
acclimated to a set of practices versus acclimating the practices to the people
so that the practices (and thus the people) are useful. One factor governing
ADPE element update frequency is the size of an organization. In general, the
larger an organization, the longer the interval between element updates. The
primary reason for this relationship is that the larger the organization, the
longer it takes for a way of doing business to settle in—because it generally
takes longer for a larger body of people to get in step than it does for a smaller
body.

Figure 8-16

A key SEE implementation planning issue is the amount of detail to include in
individual ADPE elements. Variables to be considered include the following:
(1) number of elements, (2) frequency of element updating, (3) need for
supplementary material, and (4) work spectrum. In addition, the variables
generally depend upon other variables. For example, as shown in graph 5, the
frequency of element updating depends upon the time to institutionalize the
business practices contained in the element. For your organization, there may
be other variables that you may need to consider regarding ADPE element
detail.

Figure 8-17

An annotated outline for getting you started defining a plan for an application
development technology environment (ADTE) for your organization.

Figure 8-18

A good way to package your engineering environment is a binder containing
your ADPE elements and material pertinent to your technology environment.

Figure 8-19

In a small organization, it may not be necessary (or practical) to detail the
software systems development process via a set of ADPE elements. Under
such circumstances, it may be preferable to package the ADPE into a single
element. The figure offers a starting point for this approach.

Figure 8-20

What is an austere SEE implementation approach? The figure shows a
combination of ADPE elements and practices to consider for such an approach.

Successful Software Development, Second Edition

674

Figure 8-21

SEE implementation planning needs to account for mentoring and coaching.
Through mentoring and coaching, how to implement ADPE practices can be
transmitted from more experienced staff to less experienced staff. The key
point here is that, to leverage their organizational impact, this mentoring and
coaching should be planned. Source: Definitions of mentoring and coaching in
above figure are from B. Curtis, W. E. Hefley, and S. Miller, "People
Capability Maturity ModelSM," Software Engineering Institute and Carnegie
Mellon University Technical Report CMU/SEI-95-MM-02 (September 1995).

Figure 8-22

We can think of SEE implementation to be like the challenges facing a
mountain climber planning a way to the mountaintop. The figure lists some of
these challenges and suggests a strategy or strategies to meet each challenge.

Figure 8-23

A key objective of SEE implementation is to establish organizationwide
business practices that do not strongly depend on particular individuals for
their successful accomplishment. Good people are certainly needed to achieve
successful software systems development. Initially, people may have concerns
and apprehensions about implementing refined or new business practices. Part
of SEE implementation involves evolving an individual's perception of what
this implementation means. The figure shows how an individual's perception
may evolve as an organization matures.

Figure 8-24

An aggressive strategy for pursuing SEE implementation is to make ADPE
compliance part of each employee's performance review. In more mature
organizations, this approach should be acceptable to most employees since, by
definition, disciplined engineering practices are part of the culture. The figure
offers performance review ideas for addressing ADPE compliance.

Figure 8-25

Here is a way to reinforce the strategy of making ADPE compliance part of
each employee's performance review. The figure illustrates how to address
ADPE compliance in the responsibilities section of an ADPE element.

Figure 8-26

Here is a starting point for a memorandum promulgating an ADPE element to
your organization. This example memorandum is designed explicitly to
encourage ADPE compliance. The bolded paragraph illustrates how to
stipulate this encouragement.

Successful Software Development, Second Edition

675

Figure 8-27

An ongoing SEE implementation challenge is to head off the tendency for the
seller staff to find ways to work around the ADPE way. One strategy for
meeting this challenge is the offering of inducements such as those shown—
cash bonuses, coffee mugs, food, and articles of clothing (hats, T-shirts).
Senior management and/or the organization's PEG can help achieve employee
buy-in and build esprit de corps through such inducements. Inducements help
reduce organizational resistance to the cultural change that SEE
implementation brings. In theextreme, this resistance can manifest itself in
battle cries proclaiming outright opposition such as, "I'm not going to do it!"
or, "I'm going to do what I have to do [to get a product out the door]!"

Figure 8-28

Business reality (the almighty dollar) often compels senior managers to walk a
tightrope. They are constantly trying to balance keeping customers happy
while making a profit and making sure sound engineering practices are in place
and followed. In some cases, making a profit forces engineering shortcuts.

Figure 8-29

SEE implementation planning needs to account for the reality that people
within an organization span a broad spectrum of willingness to adapt to the
engineering environment. The orientation of ADPE elements should address
the middle of the spectrum. All people should be given the opportunity to
contribute to ADPE development.

Figure 8-30

Who should develop the SEE in your organization? Here are some alternatives
to consider when doing SEE implementation planning. We list some associated
advantages and disadvantages for each alternative.

Figure 8-31

Here is a starting point for framing an SEE implementation policy. The figure
shows how to tie the policy to your SEE implementation plan. The policy helps
to encourage ADPE compliance, particularly in organizations where
engineering discipline has been in short supply.

Figure 8-32

Here is an annotated outline for getting you started defining a plan for
improving ADPE implementation on a particular project. It is a good idea to
include in the SEE implementation plan the idea that each project in the
organization should lay out its approach for process improvement within the
organization's ADPE context.

Successful Software Development, Second Edition

676

Figure 8-33

Here is an example of how to augment the seller deliverable tracking form
introduced in Chapter 3 to include organizational product and process
measurements. The measurement information is placed on the back of the
form. The process measurements focus on the process activities called out on
the front of the form. The product measurements are tied to the product
integrity attributes that your organization considers important. Two product
integrity attributes are called out in the figure—on-time delivery and customer
acceptance.

Figure 8-34

The figure shows a simple, yet insightful, way to show the effectiveness of part
of an organization's process—in this case, project planning. The plot, adapted
from actual data, shows whether or not project plans were delivered late, on
time, or early over a period of several years. Each point is a project plan (x-
axis) and its delivery date in days relative to its planned delivery date (y-axis).
If the y-value is positive, the plan was delivered late; if this value is zero, the
plan was delivered on time; if this value is negative, the plan was delivered
early.

Figure 8-35

Here is an annotated outline for getting you started defining a plan for
implementing a systems engineering environment (SEE) for your organization.
Because our book focuses on process, the outline assumes that the plan focuses
on the ADPE component of the SEE.

Figure 8-36

Reduced to simplest terms, this book offers "how-to-do-it" guidance for
making successful software development happen through institutionalization of
a systems engineering environment (SEE). The SEE helps an organization
transition from an ill-defined business way to a well-defined business way. By
ill-defined business way we mean "a business way governed by the heroics of
individuals who have their own way of getting the job done." By well-defined
business way we mean "a business way governed by a set of well-understood
organizationwide practices, documented in an SEE or by some other means,
that individuals within the organization prescriptively apply to the situation at
hand." To facilitate the book's use, each chapter contains a list of the key ideas
elaborated on in that chapter.

Successful Software Development, Second Edition

677

Appendix A—How to Measure Strategic Information Management
(SIM)

Figure A-1

Our approach measures strategic information management using the language
of GAO reports that stipulate requirements for performance measurement in
response to GPRA.

Figure A-2

This figure lists the GAO diagnostic criteria associated with the six GAO
diagnostic areas.

Figure A-3

This figure shows example value scales for the three diagnostic criteria
associated with Diagnostic Area 4 (da4)—Focus on process improvement in
the context of an architecture.

Figure A-4

The figure illustrates the three value scales and recorded measurement triggers
for Diagnostic Area 4.

Figure A-5

The figure illustrates the performance measurement index for Diagnostic Area
4.

Figure A-6

This figure shows an OM Measurement Map of the SIMIndex (Strategic
Information Management Index) for a hypothetical agency.

Figure A-7

This figure shows the trend of SIMIndex over time.

Figure A-8

Under the umbrella of the Government Performance and Results Act (GPRA),
the example SIMIndex is defined in terms of GAO diagnostic areas, diagnostic
criteria, and value scales.

Successful Software Development, Second Edition

678

Appendix C. List of Tables
Table P-1

Chapter Highlights.

Table 4-1

Advantages and Disadvantages of Candidates for CCB Chairperson.

Table 4-2

For each event in the change control process, information must be recorded to
provide visibility and traceability to the process.

Table 4-3

A Set of Forms to Support the Change Control Process.

Table 4-4

Generic Content of a Change Control Form.

Table 6-1

Summary of Organization Process Improvement Metrics.

Table 7-1

Perspectives and Cultural Change Guidance.

Table 8-1

Purpose and Features of Candidate ADPE Elements for Your ADPE.

Successful Software Development, Second Edition

679

Bibliography
The documents listed in this bibliography are a selected compilation of software engineering
references. We also include some references from other disciplines, such as management
science and organizational change engineering. The documents listed present supporting or
contrasting views presented in this book. In some cases, they present a detailed discussion of
topics not treated in depth, or only touched on in this book (e.g., peer reviews).

Many of the documents listed contain additional references pertaining to software engineering
in general and software process improvement in particular. This bibliography is thus intended
to help you network your way through extant software engineering literature, with an
emphasis on software process improvement.

This bibliography is not exhaustive. Most of the entries are references that the authors at least
looked at during preparation of this book.

For convenience, the bibliographical entries are partitioned into the following sections:

1. Government Publications

The entries in this section are three Software Engineering Institute publications on the
Capability Maturity Model® for Software (CMM®) and the People Capability
Maturity Model®.

2. Magazine/Journal Articles

The entries in this section are articles that appeared primarily in magazines or journals
that deal in whole or part with software. For the most part, we selected articles
published since 1990.

3. Books

This section contains a list of books, most of which were published since 1990, on
aspects of software engineering and other disciplines such as management science
bearing on topics addressed in our book.

Software engineering literature is growing at a rapid rate. It is not feasible to keep on top of
the subset of software engineering publications that focuses on process improvement. Before
we provide you with specific references, and to help you in finding things that may be of
interest to you in this area, we offer you some general information. This general information
is divided into the following two categories:

• Journals that often contain one or more articles bearing on software process
improvement.

• Organizations you can contact that will either help you get started in this area or help
you expand your search on a process improvement topic of interest to you.

Successful Software Development, Second Edition

680

Journals Containing Articles Bearing on Software Process
Improvement

The IEEE Computer Society publishes two journals—IEEE Software and Computer—that
contain articles that typically appeal to a broad audience, ranging from software novices to
experts. For the novice, these journals can help ease you into the world of software
technology. For the expert, these journals can help update your expertise and point you to
additional readings to enrich that expertise.

The following annually published item is a good source of software engineering material:

COMPSAC XX Proceedings

Each fall since 1977, the IEEE Computer Society has held a Computer
Software & Applications Conference (COMPSAC). The purpose of these
conferences is to bring together software practitioners and theoreticians to
exchange the latest ideas, practices, and breakthroughs in an area of software
engineering covered by no other international conference—namely,
applications. The papers presented at these conferences are published in the
proceedings for that year. Thus, for example, the papers presented at the 1988
conference were published in the COMPSAC 88 Proceedings. The COMPSAC
XX Proceedings are a good source for maintaining awareness of advances in
software engineering. An interesting exercise is to note how papers in this area
have evolved since 1977. These papers are also a good source of additional
(and, for the most part, current) references in this area.

The IEEE also publishes software engineering standards. The IEEE Software Engineering
Standards Collection is perhaps the most convenient to use. This collection is published
annually.

IEEE standards are developed through the Technical Committees of the IEEE Societies and
the Standards Coordinating Committees of the IEEE Standards Board. Members of the
committees serve voluntarily and without compensation (and they may not even be IEEE
members). The collection contains a couple of dozen items, with new ones added each year as
well as updates to existing standards. This publication provides a useful starting point for
creating an ADPE element for document templates.

Organizations That Can Help You in the Software Process
Improvement Area

The Internet facilitates the task of keeping abreast of what is going on in the software
engineering domain (as well as in other domains). Professional societies (with interests in the
software engineering domain or in other domains) usually publish periodicals and other
literature. These societies typically offer to their members online access to these publications.
When joining a society or renewing membership, the member can order various publications
in paper form, electronic form, or some combination of the two. A society typically sets up a
digital library that contains its publications going back a number of years. If a member
includes in his/her dues payment for access to this library, the member is able to do such
things as (1) view an article on his/her computer terminal, (2) print the article, or (3) do
keyword searches across various parts of this library.

Successful Software Development, Second Edition

681

For purposes of pursuing topics that we address in our book, or for looking at alternative
viewpoints on ideas addressed in our book, the digital libraries offered by the IEEE
Computer Society and the Association for Computing Machinery (ACM) are good resources.
For example, much has been written in the software engineering literature about
measurement. By doing a search on keywords such as "measurement" and "software
measurement" in either or both of these digital libraries, you will be able to (1) gain additional
insight into the measurement issues that we address in Chapter 6, (2) examine alternative
viewpoints regarding these issues, and (3) read about measurement issues that we do not
address (e.g., software defect measurement).

The Web site addresses for the IEEE Computer Society and ACM are respectively
http://www.computer.org/ and http://www.acm.org/.

The Software Engineering Institute, based at Carnegie Mellon University in Pittsburgh, is a
focal point within the United States for software process improvement technology. Founded
in 1984, it is managed and partly funded by the United States government. Its mission is to
provide leadership in advancing the state of the practice of software engineering to improve
the quality of systems that depend on software. The Institute's strategy for accomplishing this
mission is:

• Improve the state of the practice of software engineering.
• Mature the profession by maturing the skills of practitioners, managers, and educators

using the following approach:
o Maturing the organizational and managerial processes through which software

is acquired, developed, and maintained.
o Maturing the technology used to develop and maintain software.

The Software Engineering Institute publishes a plethora of documents aimed at helping others
mature their processes and technology bearing on their software work. Each year it conducts a
symposium that affords the international software community the opportunity to keep abreast
of the Institute's activities and to interact with one another to share software process
improvement experiences.

The Software Engineering Institute also has an extensive digital library. Access to this library
is free, because the SEI is funded in part by tax dollars. The SEI Web site address is
http://www.sei.cmu.edu/.

In 1987, the U.S. Air Force selected Ogden Air Logistics Center (OO-ALC), Hill Air Force
Base, Utah, to establish and operate its Software Technology Support Center (STSC). The
STSC was chartered to be the command focus for proactive application of software
technology in weapon, command and control, intelligence and mission-critical systems. The
mission of the STSC is to provide hands-on assistance in adopting effective technologies for
software-intensive systems. The STSC helps organizations identify, evaluate, and adopt
technologies that, among other things, can help improve software product quality. The STSC
uses the term technology in its broadest sense to include processes, methods, techniques, and
tools that enhance human capability. The STSC focuses on field-proven technologies that will
benefit the U.S. Department of Defense mission. Among other things, the STSC publishes a
journal called CrossTalk that deals with software engineering topics. Copies of CrossTalk
articles can be accessed at no charge from the Web site
http://www.stsc.hill.af.mil/crosstalk/crostalk.asp.

Successful Software Development, Second Edition

682

1. Government Publications

Curtis, B., W. E. Hefley, and S. Miller. "People Capability Maturity ModelSM," Software
Engineering Institute and Carnegie Mellon University Technical Report CMU/SEI-95-MM-
02, September 1995.

In Chapter 1, we discussed how, during the 1990s, the SEI played a major part in introducing
benchmarks into the software community for assessing the capability of an organization to
produce "good" software systems consistently. These benchmarks took the form of a
collection of models, each given the primary designator of Capability Maturity Model®, or
CMM® for short.[1] The most prominent among these models is the CMM for Software, which
is cited elsewhere in this bibliography and is discussed in Chapter 6. Another member of this
model collection is the People Capability Maturity Model (P-CMM). This model grew out of
a recognition by the SEI and others that there was more to improving software systems
development than processes and technology. In fact, the executive overview of the P-CMM
begins as follows (pp. xix–xx):

In order to improve their performance, organizations must focus on three
interrelated components—people, process, and technology. . . . With the help
of the Capability Maturity ModelSM for Software (CMMSM) [Paulk95], many
software organizations have made cost-effective, lasting improvements in their
software processes and practices. . . . Yet many of these organizations have
discovered that their continued improvement requires significant changes in
the way that they manage, develop, and use their people for developing and
maintaining software information systems—changes that are not fully
accounted for in the CMM [for Software]. To date, improvement programs for
software organizations have often emphasized process or technology, not
people.

To provide guidance to organizations that want to improve the way they
address these people-related issues, the SEI has developed the People
Capability Maturity ModelSM (P-CMMSM). The P-CMM is a maturity
framework, patterned after the structure of the CMM [for Software], that
focuses on continuously improving the management and development of the
human assets of a software or information systems organization. The P-CMM
provides guidance on how to continuously improve the ability of software
organizations to attract, develop, motivate, organize, and retain the talent
needed to steadily improve their software development capability. The
strategic objectives of the P-CMM are to

• improve the capability of software organizations by increasing the
capability of their workforce

• ensure that software development capability is an attribute of the
organization rather than of a few individuals

• align the motivation of individuals with that of the organization

1 CMM, Capability Maturity Model, and Capability Maturity Modeling are registered in the U.S. Patent and Trademark Office. The superscript "SM"
that appears in the title of the "People Capability Maturity ModelSM" report cited here denotes "service mark." Subsequent to the publication of this
report the service mark was changed to a registered trademark. The interested reader conducting research on the evolution of the capability maturity
models needs to understand that as the models evolved so too did their registration status with the Patent and Trademark office.

Successful Software Development, Second Edition

683

• retain human assets (i.e., people with critical knowledge and skills)
within the organization

The discussion of mentoring and coaching in Chapter 8 is based on some ideas in the PCMM.

Paulk, M. C., B. Curtis, M. B. Chrissis, and C. V. Weber. "Capability Maturity Model for
Software, Version 1.1," Software Engineering Institute and Carnegie Mellon University
Technical Report CMU/SEI-93-TR-24, February 1993.

The development of what has become known as the Capability Maturity Model for Software
began in 1986. The Software Engineering Institute, with assistance from the Mitre
Corporation, set about developing a software process maturity framework for the purpose of
helping organizations improve their software process. The motivation for this activity
stemmed from the federal government, which wanted a method for assessing the maturity of
the capability of its software contractors (hence, the label "capability maturity"). In short, the
federal government was looking for a way to reduce the likelihood of software disasters that
had become the trademark of the industry up to that time. Version 1.0 of the CMM was
released in 1991. Version 1.1 was released in early 1993. Version 2.0 was to be released later
in the 1990s. However, as we indicated in Chapter 1, in the beginning of the 21st century, the
SEI built on its CMM efforts by integrating the various CMMs to achieve consistency across
the several models. The project, known as CMM IntegrationSM (CMMISM), is a collaborative
effort with government and industry.[2]

The purpose of CMU/SEI-93-TR-24 is stated on page viii of the document as follows:

This paper provides a technical overview of the Capability Maturity Model for
Software and reflects Version 1.1. Specifically, this paper describes the process
maturity framework of five maturity levels, the structural components that
comprise the CMM, how the CMM is used in practice, and future directions of
the CMM. This paper serves as one of the best sources for understanding the
CMM, and it should clear up some of the misconceptions associated with
software process maturity as advocated by the SEI.

Paulk, M. C., C. V. Weber, S. M. Garcia, M. B. Chrissis, and M. Bush. "Key Practices of the
Capability Maturity Model, Version 1.1," Software Engineering Institute and Carnegie
Mellon University Technical Report CMU/SEI-93-TR-25, February 1993.

This document is a companion to CMU/SEI-93-TR-24 and describes the key practices for
each level of the CMM. These key practices are an elaboration of what is meant by maturity
at each level of the CMM. They are expressed in terms of what is expected to be the normal
practices of organizations that work on large, government contracts. As the document points
out on page O–3, "the CMM must be appropriately interpreted when the business
environment of the organization differs significantly from that of a large contracting
organization." The approach in our book is cast in a similar vein. We present software
processes and offer you guidance as to how you can adapt the processes to your environment.
One principle that we stress throughout our book is that of "prescriptive application of the
process"—that is, application consistent with the available time and money under which a
software systems development effort must operate. An echo of this idea appears on page O–3

2 CMM Integration and CMMI are service marks of Carnegie Mellon University.

Successful Software Development, Second Edition

684

of CMU/SEI-93-TR-25 when the document states, "the role of professional judgement in
making informed use of the CMM must be recognized."

2. Magazine/Journal Articles

Boehm, Barry. "The Art of Expectations Management," Computer, vol. 33, no. 1 (January
2000),pp. 122–124.

An underlying message throughout our book is the importance of managing expectations—
from both the customer and seller perspectives. Through mechanisms such as the CCB we
have explained how the customer and the seller converge in their understanding of what needs
to be done on a software systems development project. Among other things, this convergence
is tantamount to both parties settling on mutual expectations of what needs to be done.

Boehm's short article echoes some of the ideas in our book regarding the relationship between
expectation management and techniques such as effective communication and project
planning. For example, on page 122, Boehm asserts: "Clear communication, careful
estimation, and precise planning can help you shape and meet realistic expectations." Again,
echoing some of our ideas about software systems development being an ongoing exercise in
customer/seller negotiation (through mechanisms such as the CCB), Boehm states the
following on page 124: "Express your needs as negotiable "win conditions" rather than
nonnegotiable "requirements.""

It should be noted that the article's author is an internationally recognized software
engineering expert.

Brodman, J., and D. Johnson. "Return on Investment (ROI) from Software Process
Improvement as Measured by US Industry," Software Process—Improvement and Practice,
Pilot Issue (August 1995), pp. 35–47.

Section 1.3 in Chapter 1 discussed whether investing in software process improvement makes
good business sense. This article, cited in Section 1.3, reports on research that investigated
published ROI claims for software process improvement programs based on the CMM for
Software. The article also sought evidence of previously unpublished ROI data in
organizations that had been pursuing software process improvement over several years
preceding the article's publication. The United States Air Force sponsored the research. A key
finding of the research was that new ROI data were found—but typically not in the classical
form of the dollar amount returned for the dollar amount invested. Rather, ROI data were
expressed in terms of benefits such as increased productivity, reduced schedule time, and
improved quality. The article seeks to define what ROI means to government and industry. At
the time of its publication, the article noted that only two Department of Defense contractors
and one government organization had publicly released data documenting ROI for software
process improvement. The article notes that one of the contractors had "reported as high as a
7.7 savings in program dollars for each dollar invested in process improvement" (p. 36). In the
public domain, the research used two methods to gather data from industry—the questionnaire
and the interview. Thirty-three companies were surveyed—some with one of the two methods
and some with both. The interviews were used to define ROI and to identify the ROI data that
could be collected from industry. The questionnaires were used, among other things, to
identify metrics used to collect ROI data. Because ROI data per se were not abundant, the
research also conducted a literature search to ferret out information on metrics collection,

Successful Software Development, Second Edition

685

costing software projects, and conducting inspections. This information could be used to
derive ROI conclusions. The research found that there was a lack of consensus on ROI
definition since, for example, "return" was defined differently in different organizations as
was "investment." The research also found that the government and industry each defined and
perceived ROI differently. For example, for the government, process improvement is viewed
as a cost saving. "The dollars saved through reduced schedule time, higher quality, and
increased productivity among its [the government's] contracting software organizations are
dollars that are returned to the government, not the contractor" (p. 46). By contrast, from the
contractor's perspective, ROI from process improvement in, say, increased productivity, "can
mean a more competitive edge in bidding for scarce government contracts and can increase
the company's capacity to do work and thus perform more work within a given period of time
for greater profits" (p. 46).

Hantos, P., and M. Gisbert. "Identifying Software Productivity Improvement Approaches and
Risks: Construction Industry Case Study," IEEE Software, vol. 17, no. 1 (January/February
2000), pp. 48–56.

This article "identifies ways to overcome cultural, institutional, and implementation barriers
to software process improvement" (p. 48). As such, it complements some of the discussion in
Chapter 7. Of particular note about this article is that one of the authors is a project manager
in the construction industry. The basis for the ideas in thearticle is a training video from the
construction industy called The 4 Hours House. The construction industry uses this video "as
a staff development and process improvement tool" (p. 50). The Building Industry
Association of San Diego, California, designed the video "as a training and motivational tool
for teamwork and an inspiration to work "smarter"" (p. 50).

The article explains how construction industry experiences provide some useful insights into
how to increase software productivity. The authors label their approach cross pollination,
which the article defines as "learning from practitioners of other disciplines" (p. 48) and
which the authors acknowledge is not a new idea. The following paragraph from the article
explains the orientation of the article and how the authors' cross-pollination approach is based
upon the video:

In The 4 Hour House, a construction team competition is staged; the goal is to
build a house from foundation to completion in less than four hours. The
houses had nine rooms, including three bedrooms and two baths in 1,500
square feet, and were fully landscaped. This type of home normally takes at
least 90 days to complete. In fact, the winning team completed the project in
two hours and 45 minutes. We can infer that this case study includes processes
that deviate from the construction industry's usual business practices.
Therefore, some of the construction domain expert's observations reflect the
contrast between everyday reality and the video. Nevertheless, the extreme
steps we took to challenge assumptions about "what does it really have to take
to build a house" provides software professionals with an opportunity to reflect
on another discipline's productivity constraints and the limits and possibilities
of new paradigms (p. 50).

The construction domain expert referred to in the above paragraph is a licensed architect and
building site manager. The expert's role is to provide "the voice of experience, including

Successful Software Development, Second Edition

686

cautions about the methods the video's competitors used to build the houses" (p. 51). The
article also explains a software domain expert's observations of the video.

Mohamed, F. E., W. Tsai, and M. L. Fulghum. "Transition to Object-Oriented Software
Development." Communications of the ACM, vol. 39, no. 2 (February 1996), pp. 108–121.

Object-oriented technology models software development based upon the way humans think.
Ironically, traditional software development follows a model based upon the way that
computers think. Thus, to wean people away from the traditional way toward the object-
oriented way requires people to change their way of thinking. The authors stress that this
weaning process is a cultural change of demanding proportions. On page 110, they assert that
"it would be easier to convince people that the world is flat than to convince them to use
OOSE [object-oriented software engineering]."

This article offers guidance to software development managers on how to transition to object-
oriented software engineering. As such, this article provides a stepping-off point for those
interested in tailoring the techniques described in our book to projects using object-oriented
technology. For example, the article discusses the factors that should be considered in
selecting an object-oriented technique (e.g., CASE tool support, target computer language).

Shaw, M. "Prospects for an Engineering Discipline of Software," IEEE Software, vol. 7, no. 6
(November 1990), pp. 15–24.

Our book is about disciplining software systems development. This article is a 1990 look at
the "discipline" of software engineering. The first page of the article is emblazoned with the
following sidebar that offers insight into the article's orientation:

Software engineering is not yet a true engineering discipline, but it has the
potential to become one. Older engineering fields suggest the character
software engineering might have (p. 15).

The article provides grassroots insight into the concept of engineering. Our book proceeds
from the assumption that people participating in software systems development (buyers/users
as well as sellers) need to define—in the spirit of "good engineering practice"—processes to
achieve consistency in what they do. Shaw's article starts farther up the concept chain and
examines notions that must be brought to bear to be able to define, among other things,
workable processes (e.g., "understand the nature of proficiency," that is, what members of the
development disciplines need to know to have proficiency; "encourage routine practice," that
is, what are the factors bearing on, for example, routine design practice [the answer given, in
part, is the engineer's command of factual knowledge and design skills, quality of available
reference materials, and incentives and values associated with innovation]). This article makes
useful reading for those of you interested in gaining an understanding of the fundamental
"whys" underlying many of the concepts in our book. In particular, if you are a buyer/user,
this article can help you determine what to look for in a seller. The article's author, a professor
of computer science at Carnegie Mellon University, was chief scientist at the Software
Engineering Institute during its first three years (1984–1987).

Zawrotny, S. "Demystifying the Black Art of Project Estimating," Application Development
Trends, vol. 2, no. 7 (July 1995), pp. 36–44.

Successful Software Development, Second Edition

687

As the title intimates, this article offers practical tips for estimating the effort, duration,
schedule, and costs of doing software development of information systems. As such, it is a
useful supplement to the project planning concepts presented in Chapter 2. Although the
article uses data and statistics tied to information systems development, many of the ideas
presented can be applied to any software systems development effort. The author
distinguishes between such critical estimating factors as "effort" (namely, the number of
resource hours or days needed to accomplish an activity or task) and "duration" (namely, the
allocation of effort across business or work days based on the rate at which effort hours will
be expended). The author discusses how to account for things such as meetings, gossip, coffee
breaks, and administrative tasks. The author has spent approximately thirty years in the
information systems industry working for such companies as General Electric Information
Services and Coca-Cola Enterprises, among others.

3. Books

Adams, S. The Dilbert™ Principle: A cubicle's-Eye View of Bosses, Meetings, Management
Fads & Other Workplace Afflictions. New York: HarperBusiness, a Division of
HarperCollins Publishers, 1996.

Scott Adams produces the widely circulated comic strip Dilbert™. This book is a collection
of these comic strips with elaborating text to drive home points. Dilbert pokes fun at the
workplace, sometimes bitingly so. Many of the comic strips lampoon the software industry.
The author worked for Pacific Bell for nine years where he evidently acquired the experience
underlying his comic strips. The book offers some good complementary insights into much of
what we say in our book regarding the disciplines of management (in particular),
development, and product assurance. Some of his humor also touches on cultural change
issues. For example, Chapter 24 ("Team-Building Exercises") begins with the following
statement:

If the employees in your company are a bunch of independent, antisocial
psychopaths, you might need some team-building exercises (p. 280).

Through such extreme and humorous statements, Adams provokes the reader to think through
organizational issues (in this case, team building), thereby coming to a better understanding of
how organizations really work.

Berger, L. A., and M. J. Sikora with D. R. Berger, eds. The Change Management Handbook:
A Road Map to Corporate Transformation. Burr Ridge, IL: Irwin Professional Publishing,
1994.

This 489-page book is a compendium of articles written by over thirty change management
experts on how to manage organizational change. Intended as a desktop resource, the book is
designed to help managers anticipate and respond to change—both unexpected and
foreseeable. The authors are executives, professors, and consultants. The book says almost
nothing about the software industry (some companies in the software industry are mentioned,
such as IBM and Microsoft). However, the book offers insight into corporate change
management critical factors that help to fill in things that we only touch upon in Chapter 7 and
elsewhere when we address cultural change. One section of the book (over 100 pages) is
devoted to cultural change issues (e.g., critical elements of organizational culture change,
cultural change and corporate strategy, and making culture change happen).

Successful Software Development, Second Edition

688

Bridges, W. Managing Transitions: Making the Most of Change. Reading, MA: Addison-
Wesley Publishing Company, 1991 (6th printing, 1993).

We stress throughout our book the notion that software process improvement is a cultural
change exercise. The Bridges book is designed to help an organization understand change
better and thereby develop improved change strategies. This book has nothing to do with
software engineering but has everything to do with helping an organization bring about
improved engineering practice. The book can help you better understand the ideas put forth in
our Chapter 7.

Brooks, F. P., Jr. The Mythical Man-Month: Essays on Software Engineering. 20th
Anniversary ed. Reading, MA: Addison-Wesley Publishing Company, 1995.

This book first appeared in 1975. The author was the project manager for the development of
IBM's Operating System/360 project from 1964 to 1965. The book is a highly readable and
often amusing case study of this project and includes related stories drawn from other
projects. As the author indicates in the preface to the first edition, it was written to answer
"Tom Watson's [IBM president] probing questions as to why programming is hard to manage"
(p. viii). In the preface to the 1995 edition, the author explains the rationale for the edition as
follows:

To my surprise and delight, The Mythical Man-Month continues to be popular
after 20 years. Over 250,000 copies are in print. People often ask which of the
opinions and recommendations set forth in 1975 I still hold, and which have
changed, and how. Whereas I have from time to time addressed the question in
lectures, I have long wanted to essay it in writing (p. vii).

Accordingly, the 1995 edition contains four new chapters (16–19). The remainder of the book
is a reprint of the first edition. In the September 1995 issue of IEEE Software, the author
elaborates on why he put out a twentieth anniversary edition (pp. 57–60).

The book is filled with stories that highlight the idiosyncracies of software development and
maintenance (as distinct from development and maintenance of nonsoftware entities). For
example, in discussing software maintenance, the author describes how a software defect will
often manifest itself as a local failure, when in fact it is indicative of a far more global ill. This
nonlocality characteristic of many software bugs, the author points out, presents a significant
maintenance challenge. Any purported fix to such a bug must be tested not only "in the
vicinity" of the code change precipitated by the bug fix, but ideally far away from this change
to the outer reaches of the rest of the code. This need for global testing is one of the reasons
that our book stresses the need for independent product assurance. Unlike the code developers
who are generally too close to the code perhaps to sense some of these nonlocality issues,
"outsiders" may be better able to give visibility to what otherwise might be hidden problems
because their thinking may not be truncated.

Bryan, W., and S. Siegel. Software Product Assurance: Techniques for Reducing Software
Risk. Englewood Cliffs, NJ: Prentice Hall PTR, 1988.

This book provides the basis for some of the items included in our book. In particular, our
Chapter 4 is an update to the Bryan and Siegel Chapter 4; our Chapter 5 extends the ideas in
the Bryan and Siegel Chapter 5. The seed for the product integrity index comes from Exercise

Successful Software Development, Second Edition

689

2.6 on p. 89 of this book. As noted therein, the exercise is an adaptation from an unpublished
partial manuscript by E. H. Bersoff, V. D. Henderson, and S. G. Siegel.

Cortada, J. W. Best Practices in Information Technology: How Corporations Get the Most
Value from Exploiting Their Digital Investments. Upper Saddle River, NJ: Prentice Hall PTR,
1998.

The following paragraph from the preface of this 250-page book summarizes its purpose and
thrust:

This book is about best practices in I/T [information technology]. It will not
give you the answer, but I will show you how to arrive at it because the answer
will keep changing and I would to have you not lose sleep at night because of
that fact. Constantly applying best practices makes it possible for you to
discover and then achieve the ways to get the most value out of your
investment in computing. That is the long and short of why I wrote this book
(p. xvii).

On page 2, the author defines best practices as "processes which are recognized as being best
by function or within an industry." He then illustrates this definition by asserting that the best
billing system in the world is that belonging to American Express. He justifies this assertion
by listing a number of things about the billing system that people generally recognize as good
things for billing systems to do. Two of these things are the following:

• American Express rarely bills you inaccurately.
• The billing system gives you more information than probably any other firm on what

you charged on your card.

So impressed with the billing system is the author that he states the following:

If I wanted to set up a credit card business or improve my billing process to
customers, my first phone call would be to American Express. I would want to
know how they bill, what it costs, how they manage the process, what they do
with the data, and what are the economic benefits of the enormous investment
they have made in the process (p. 2).

Our book is about practices that we consider to be "good" because their application serves to
reduce customer/seller miscommunication and risk. Since we cannot claim that these
practices, to use Cortada's words, "are generally recognized as being best by function or [best]
within [the software] industry," we cannot claim that they are "best practices." However, we
do believe that Cortada's book can give you additional insight into why we have selected
certain practices as being key to successful software development (e.g., the CCB as being the
hub of the change control process).

To motivate his ideas, Cortada gives five examples of "bad practices" on pages 4 –6. One of
these bad practices is what he labels "copy "as is."" This practice is reproducing within your
organization how somebody else does a process. We have argued in our book that there is no
one "way" to develop software systems. Our book shows you how to take certain principles
and a process framework and use them to construct a "way" of doing business that makes
sense for your environment. We thus show you how to avoid the cited Cortada "bad practice."

Successful Software Development, Second Edition

690

Davis, A. M. Software Requirements: Objects, Functions, and States. Englewood Cliffs, NJ:
Prentice Hall PTR, 1993.

We stress the importance of requirements engineering in software process improvement. This
500-page book is good for both beginners and experts wanting to know the ins and outs of
how to do requirements engineering. In additon, the book contains an exhaustive annotated
bibliography (more than 100 pages). It is an update to the author's book that appeared in 1990.
The update was motivated by advances in requirements engineering technology, particularly
in the object-oriented arena.

Davis, S., and C. Meyer. Blur: The Speed of Change in the Connected Economy. New York:
Warner Books, Inc., 1999.

This 265-page soft-cover book discusses how technology thrusts such as the Internet have
altered the rules regarding how things are done—particularly in the business world. The
following excerpt from pages 6 and 7 explains the book's thesis and its title:

Almost instantaneous communication and computation . . . are shrinking time
and focusing us on Speed. Connectivity is putting everybody and everything
online in one way or another and has lead to . . . a shrinking of space.
Intangible value of all kinds, like service and information, is growing
explosively, reducing the importance of tangible mass.

Connectivity, Speed, and Intangibles . . . are blurring the rules and redefining
our businesses and our lives. They are destroying solutions, such as mass
production, segmented pricing, and standardized jobs, that worked for the
relatively slow, unconnected industrial world. The fact is, something enormous
is happening all around you, enough to make you feel as if you're losing your
balance and seeing double. So relax. You are experiencing things as they really
are, a BLUR. Ignore these forces and BLUR will make you miserable and your
business hopeless. Harness and leverage them, and you can enter the world of
BLUR, move to its cadence and once again see the world clearly (pp. 6–7).

Among other things, the book stresses that the line between customers and sellers has been
blurred. The book's third chapter—titled "The Exchange" and subtitled "Every Buyer a Seller,
Every Seller a Buyer"—explores this notion using some striking examples from the business
world (e.g., Harley-Davidson, Citibank, and Amazon.com). The chapter proceeds from the
hypothesis that "The difference between buyers and sellers blurs to the point where both are
in a web of economic, information, and emotional exchange" (p. 51).

Throughout our book, we have stressed that successful software systems development rests on
a partnership between the customer and the seller. We have repeatedly emphasized that the
customer and seller mutually progress in their understanding of what needs to be done to
produce a software system that, among other things, does what it is supposed to do, is
delivered on time, and is delivered within budget. In the language of BLUR, this mutual
progression of understanding is nothing more than an ongoing exchange between these two
parties throughout a software systems development project.

DeMarco, T., and T. Lister. Peopleware: Productive Projects and Teams. New York: Dorset
House Publishing Co., Inc., 1987.

Successful Software Development, Second Edition

691

This 188-page book is an easy-to-read but content-rich collection of short essays, "each one
about a particular garden path that managers are led down" (p. ix). The book is not specific to
software, although many of its stories have to do with software projects. The book's focus is
on the people element in the [software] project game. As such, it probes in more detail some
of the people issues (i.e., cultural change) that we touch upon in Chapter 1, elaborate on in
Chapter 7, and briefly address in other chapters. The 26 essays that make up the book are
divided into the following five parts:

Part I: Managing the Human Resource

Part II: The Office Environment

Part III: The Right People

Part IV: Growing Productive Teams

Part V: It's Supposed to Be Fun to Work Here

Many of the essays have catchy titles and are indicative of the book's tone. The following are
some examples:

Somewhere Today, a Project Is Failing

Make a Cheeseburger, Sell a Cheeseburger

Quality—If Time Permits

Brain Time Versus Body Time

Teamicide

Open Kimono

Chaos and Order

Regarding the second essay in the list ("Make a Cheeseburger, Sell a Cheeseburger"), the
authors provide some interesting food for thought (no pun intended) regarding why [software]
systems development is inherently different from [software] production—so that managing
[software] development like [software] production is not a good idea. One efficient
production measure that the authors cite is the following (p. 7):

Standardize procedure. Do everything by the book.

This measure does not, in fact, fly in the face of the emphasis on process in our book.
However, it is the reason that we spend a lot of time emphasizing the need for what we call
"prescriptive application" of whatever processes are defined for a software systems
development organization to follow. DeMarco and Lister essentially argue that you cannot
expect to turn people in a development environment into automatons if you want them to do
what they are supposed to do. In the language of our book, you need to provide the people
with a way of doing business and then empower them to apply this business way in a manner

Successful Software Development, Second Edition

692

that makes sense on their particular project (i.e., consistent with available time and money and
the specifics of the job to be accomplished).

Down, A., M. Coleman, and P. Absolon. Risk Management for Software Projects. London:
McGrawHill Book Company Europe, 1994.

The preface states this book's purpose as follows: "The book focuses on the reasons for poor
risk management within software development and covers a number of practical methods for
resolving the problems encountered" (p. xiii). The authors' approach centers around a concept
they call "optimum risk environment (ORE)." The ORE is one in which the parties involved
in software systems development feel most comfortable with the perceived risks and rewards.
The book explains how to (1) create the ORE, (2) manage the ORE, and (3) learn from the
ORE. They call these three items the key elements in the optimum risk management process
and give them respectively the names CORE, MORE, and LORE. Our Chapter 2 discusses
ways to factor risk assessment into the project planning process and suggests ways for
applying this assessment throughout a software project as a way of managing risk. The
Down/Coleman/Absolon book examines a number of risk management issues that we only
touch upon. For example, Chapter 4 ("Anticipating Risk") is a 17-page treatment of the topics
of (1) identifying risks and (2) assessing risks; Chapter 5 ("Planning How to Manage the
Risks"), is a 12-page treatment of the topics of (1) risk planning principles and (2) the risk
management plan.

El Emam, K., and N. H. Madhavji, eds. Elements of Software Process Assessment and
Improvement. Los Alamitos, CA: IEEE Computer Society Press, 1999.

This 384-page book is a collection of seventeen articles (each article is a chapter) on the
current (as of the mid-1990s) state of practice and experience in software process assessment
and software process improvement. The articles offer complementary and contrasting
viewpoints to many of the topics that we address in our book. The editors state in their two-
page preface that these articles "are intended to serve the needs of individuals actively
involved in improving the software processes of their organizations, or actively involved in
basic and applied research in the software process field" (p. xi). The preface also summarizes
the book's organization and indicates that the book is divided into the following four parts:

• Part 1, which consists of seven chapters, contains descriptions of contemporary (i.e.,
late 1980s through mid-1990s) models used to evaluate and improve an organization's
processes and capabilities.

• Part 2, which consists of three chapters, deals with the business case for assessment
and improvement. As such, these chapters offer complementary insight into our
Chapter 1 discussion of the business case for software process improvement.

• Part 3, which consists of five chapters, offers some "how-to-do-it" guidance pertaining
to software process assessment and software process improvement.

• Part 4, which consists of two chapters, covers what the editors call "important and
exciting developments in the software process field that have the potential to enhance
our tools for process improvement, and also our understanding of organizational
processes in practice" (p. xii).

Glass, R. L., Software Runaways: Lessons Learned from Massive Software Project Failures.
Upper Saddle River, NJ: Prentice Hall PTR, 1998.

Successful Software Development, Second Edition

693

The purpose of this 259-page book is to present lessons learned from massive soft-ware
failures (the book describes sixteen such failures). So that the intent of his book will not be
misunderstood, Glass states on page 6 that "I do not believe in the existence of a software
crisis." The essence of his book is that software disasters do occur—and we can, and should,
learn from them. But Glass's position is that such disasters should not be viewed as typical of
the software industry. Glass defines a software runaway as "a project that goes out of control
primarily because of the difficulty of building the software needed by the system" (p. 3). He
explains that out of control means that "the project became unmanageable" (p. 3). Echoing
one of our book's messages that effective communication is key to bringing the customer and
seller together on what needs to be done, Glass states on page 21 of his book that "there is
little doubt that project requirements are the single biggest cause of trouble on the software
project front." One of the most common sources of requirements problems is the following:

They are ambiguous. It is not possible to determine what the requirements
really mean (p. 21).

It should be noted that Glass started in the software industry in the 1950s. His many
publications in software engineering and related fields date back to the 1970s.

Grady, G. B. Practical Software Metrics for Project Management and Process Improvement.
Englewood Cliffs, NJ: Prentice Hall PTR, 1992.

This 260-page book is an extension to the 1987 book by Grady and Caswell entitled Software
Metrics: Establishing a Company-Wide Program, which described Hewlett-Packard's
approach to software systems development process metrics. The book is intended for project
managers. Its purpose is stated on page 1 as follows:

This book is about practical applications of software metrics. This means that
the emphasis is on proven practices and results.

The opening words of the book define the author's concept of software metrics as follows:

Software metrics are used to measure specific attributes of a software product
or software development process.

Appendix C gives a summary of definitions of most of the metrics addressed in the book
(examples include "defect," "design weight," "Flesch-Kincaid readability," "hot status," "LOC
[lines of code]," "patch," "stability," and "strength"). Appendix D includes a list of 396
software metrics references. Our Chapter 6 complements some of the ideas in the Grady book.

Jacobs, R. W. Real Time Strategic Change: How to Involve an Entire Organization in Fast
and Far-Reaching Change. San Francisco, CA: Berrett-Koehler Publishers, 1994.

This 335-page book addresses the quick way to bring about organizational change. The book's
thesis is that the successful organizations of the future will be those that will be able to effect
fundamental, lasting, and systemwide changes—quickly. The author is a partner in a
consulting firm with extensive experience working with organizations around the world to do
what the book talks about. The book does not talk about the software industry. However, it
addresses topics at length that we only touch upon in Chapters 7 and 8 in our discussions of
ADPE implementation and organizational change. The book uses "strategic change" in the

Successful Software Development, Second Edition

694

sense of uncovering new ways of doing business that push an organization forward to success
now and in the future. "Real time" is used in the sense of simultaneously planning and
implementing individual, group, and organizationwide changes.

Jenner, M. G. Software Quality Management and ISO 9001: How to Make Them Work for
You. New York: John Wiley & Sons, Inc., 1995.

As the author states in his first chapter, "this book addresses the issues of managing a modern
organization within the framework of the ISO 9001 requirements" (p. 3). To motivate the
reader, and to inject pizzazz into a subject that, on the surface, may be hard to get excited
about, the author asserts the following:

Quality is a state of mind and can be delivered better by people who are having
fun than by people who live dull, regulated lives surrounded by slogans and
exhortations (p. 3).

ISO 9000 is the name that describes the International Organization for Standards' (ISO) 9000
series of management system standards. The centerpiece of the series is ISO 9001. It is titled
"Quality Systems—Model for Quality Assurance in Design/Development, Production,
Installation, and Servicing." Auditors outside an organization use this standard as a basis for
certifying that an organization can design, develop, produce, etc. products and services (such
as software) with quality. Quality in the context of this standard means "the totality of features
and characteristics of a product or service that bear on its ability to satisfy stated or implied
[customer] needs" (p. 220). The book, which is a step-by-step walkthrough (for the
practitioner) of ISO 9001, deals with quality issues in a much broader context than our book
in that Jenner's work is not restricted to software products. The book reinforces many of the
ideas that we address, such as the critical importance of project planning (see, e.g., p. 37) and
customer satisfaction (see, e.g., p. 39). Software is specifically addressed in several different
places (see the book's index).

Jones, C. Applied Software Measurement: Assuring Productivity and Quality. New York:
McGrawHill, Inc., 1991.

The thesis of this 493-page book is that software can be accurately measured and that the
resultant measurements have practical value. The preface includes an interesting thumbnail
sketch of the history of the software industry and provides insight into how software
measurement got started and evolved. Included in this sketch is how the popular software
metric of "lines of code" came into being. The intent of the book is to explain how to start a
full corporate software measurement program encompassing productivity, quality, and human
factors. The book consists of five chapters and four appendices. Chapter 2, consisting of
approximately 80 pages, gives the history and evolution of functional metrics (e.g., lines of
code, function points, feature points). Chapter 3 addresses the subject of United States
averages for software productivity and quality. The purpose of this chapter is to set context
for the mechanics of measurement dealt with in Chapter 4. Chapter 5 addresses the subject of
measuring software quality and user satisfaction. This chapter offers a multiplicity of
alternatives to our quantitative treatment in Chapter 6 of software quality and customer
satisfaction in terms of the product integrity concept.

Kan, S. H. Metrics and Models in Software Quality Engineering. Reading, MA: Addison-
Wesley Publishing Company, 1995.

Successful Software Development, Second Edition

695

The thesis of this book is that measurement plays a critical role in successful software systems
development. To set context, the first chapter deals with the issue of what is software quality.
The author argues that quality is best defined as "conformance to customer requirements" (p.
10). The discussion of process and product quality in this chapter offers some alternative
thinking to that which we present in Chapter 6. For example, generalizing the notion of
customer satisfaction to internal customers (e.g., life cycle stages), Kan suggests that process
quality can be thought of in the following terms:

If each stage of the development process meets the requirements of its
intermediate user (the next stage), the end product thus developed and
produced will meet the specified requirements (p. 7).

Note how this point of view is also another way of looking at the relationship between
product and process quality. Chapter 2, like our Chapter 3, talks about software systems
development process models. Chapter 3 provides measurement theory fundamentals,
including a discussion of reliability, validity, and measurement errors. Chapter 4 is devoted to
software quality metrics (e.g., function points, customer satisfaction metrics), Chapter 8 deals
with the exponential distribution and reliability growth models (surprisingly without a lot of
mathematics), and Chapter 11 is devoted to measuring and analyzing customer satisfaction.
Section 11.4 is perhaps the most intriguing part of this latter chapter in that it addresses the
issue of how much customer satisfaction is good enough.

LaMarsh, J. Changing the Way We Change: Gaining Control of Major Operational Change.
Reading, MA: Addison-Wesley Publishing Company, 1995.

This book is one in a series aimed at engineering practitioners called the Engineering Process
Improvement Series. The objective of the series is to provide the reader practical information
for improving processes and products. The book's scope deals with engineering in general;
that is, it is not limited to software engineering. The book is about how to manage change and
is organized as follows (p. xiii):

• The process of change
• The people in the process
• The systems that support change
• The planning to make change happen

Our book stresses that software systems development process improvement is a cultural
change exercise. Our Chapter 7 probes how to bring about that cultural change. The LaMarsh
book provides additional insight into this issue from a perspective broader than software
engineering. Its ideas complement and reinforce some of the notions addressed in the Bridges
book cited elsewhere in this bibliography.

Messnarz, R., and C. Tully, eds. Better Software Practice for Business Benefit: Principles and
Experience. Los Alamitos, CA: IEEE Computer Society Press, 1999.

This 393-page book is a collection of eighteen articles (each article is a chapter) on software
process improvement from a European perspective. The opening paragraph of the book's
preface summarizes the book's scope and reads as follows:

Successful Software Development, Second Edition

696

Better Software Practice for Business Benefit: Principles and Experience was
written by 30 authors from 11 different European Union (EU) countries with
contributions from leading European companies. This book combines theory
with industrial experience and provides a comprehensive overview of different
improvement methodologies. The experience part of the book was written by
authors from both large and small companies (p. iii).

The book's closing chapter ("Summary and Outlook") offers some interesting contrasts
between the European community and the United States. The chapter begins with a several-
paragraph discussion of what makes Europe different from the United States. The first part of
the opening paragraph of this discussion reads as follows and indicates how the multi-cultured
European environment poses some special challenges that reach down into the software
process improvement domain:

What makes Europe distinctive from the United States is that Europe is still
divided into many different nationalities and borders with many cultures and
different approaches to work and life. Even if the European Union (EU)
establishes a joint currency and common policy on the market it is to be
expected that all different nationalities will preserve their cultural differences
as much as they can. This has a direct influence on work politics, social rights,
and how software process improvement and market competition are
approached (p. 389).

Chapter 7 of our book did not explore cultural change from a multinational perspective. Thus,
we did not examine special challenges posed by a company with offices in multiple countries.
We also did not explore in Chapter 7 how regional differences within the United States (or in
other countries) may impact process improvement activities in a company with countrywide
offices. The collection of articles cited here offers some insights into how to account for
multinational differences (and, by extension, to multiregional differences) in software process
improvement activities.

Müller, K. H., and D. J. Paulish. Software Metrics: A Practitioner's Guide to Improved
Product Development. London: Chapman & Hall, 1993. (Also published by IEEE Press, USA
and Canada only.)

The book's purpose and orientation are stated as follows: "This book aims to document some
of the best practices of software metrics that are currently used in industry" (p. 11). Müller
and Paulish define the term metrics to mean "quantitative methods" (p. 4). The book's
approach to metrics complements our discussion in Chapter 6. Measurements that we fold
into our product and process integrity indices Müller and Paulish treat as separate entities.
Chapter 7 focuses on example metrics that the authors say may be useful for establishing a
metrics program. Some of the metrics defined anddiscussed there are the following:

• Lines of Code
• Customer Change Requests
• Schedule (difference between planned versus actual)
• Requirements Specification Change Requests
• Design Faults
• Customer Complaint Rate ("number of customer identified faults per time period from

the time of first field use of the product through its lifetime") (p. 81)

Successful Software Development, Second Edition

697

Chapter 2 provides historical perspective by summarizing the origins of software metrics
(software measurement started in the 1970s).

Oliver, R. W. The Shape of Things to Come: Seven Imperatives for Winning in the New
World of Business. New York: McGraw-Hill (BusinessWeek Books), 1999.

This book is, in a sense, a companion to the BLUR book cited earlier. The book's purpose is
stated in the excerpt below from page 1. This excerpt suggests the relationship between the
two books.

Rapid globalization and technological change have affected the lives of every
person involved in business for at least the last half of this century. Very
simply, this book is about the aftermath, the chaos, left in the wake of the
enormous confluence of globalization and technology, particularly information
technology. Neither force alone, globalization nor technology, could have
created this new world of business, but together they have revolutionized the
environment for every individual, business, and organization around the world.
I refer to this new world of business as a "global village." In addition to
portraying the chaos inherent in the global village, I'll describe means by
which individuals can survive and succeed (p. 1).

One of Oliver's seven imperatives for winning in the new world of business is REPLACE
RULES WITH ROLES. The short form of what this imperative means is given on page 149
of Oliver's book as follows:

In such a chaotic and complex environment, where changes and crises occur so
rapidly, how can any organization hope to create a specific set of rules
governing employee behavior? Most everyone agrees that flexibility is the key
to successful modern organizations and that those companies which maintain
the old structures, rigid rules, and inflexible internal processes are doomed to
failure [emphasis added]. Thus, most innovative organizations are rapidly
replacing rules with roles, creating a strong sense of purpose and clear
understanding of goals and mission and leaving employees to their own
devices, absent rigidity (p. 149).

What Oliver labels as "flexibility" and "leaving employees to their own devices" we label
"prescriptive application." Although Oliver is talking about business in general (i.e., not just
the business of software systems development), the way we have chosen to describe this
business would appear to be consistent with the Oliver imperative of REPLACE RULES
WITH ROLES. The discussion in Chapter 3 lays out an organizational software systems
development framework and identifies specific roles for performing software systems
development consistently across the organization. The chapter illustrates how, within this
framework, software project participants are empowered to carry out their assigned roles in a
manner that makes sense for a particular project (i.e., they are empowered to prescriptively
apply the organizational process framework to their project by accounting for such factors as
budget and schedule constraints).

Oliver is a professor at the Owen Graduate School of Management at Vanderbilt University.
Prior to his academic career, he was a Vice President of Marketing at Nortel and a marketing
executive at DuPont. He consults to organizations around the world.

Successful Software Development, Second Edition

698

Paulk, M. C., and others. The Capability Maturity Model: Guidelines for Improving the
Software Process. Reading, MA: Addison-Wesley Publishing Company, 1995.

This 400-page book pulls together various concepts pertaining to the Capability Maturity
Model (CMM) for software appearing in earlier SEI publications such as the one by Paulk and
others cited elsewhere in this bibliography. It is a guide to applying the CMM for software for
purposes of improving an organization's software systems development process. Ideas in this
book complement many of the ideas in our book. Perhaps the biggest difference between the
CMM approach and our approach to process improvement is our stress on the CCB as the
heart of any successful software systems development process. The SEI appears to treat the
role of the CCB in its classical configuration management sense. Chapter 1 gives an
informative historical overview of how the CMM for software came to be. Chapter 6
describes the Space Shuttle Onboard Software project at IBM-Houston to illustrate what a
mature organization does in producing software products with integrity. This chapter also
explains how IBM-Houston evolved into a mature software systems development
organization.

Pressman, R. S. Software Engineering: A Practitioner's Approach. 3rd ed. New York:
McGrawHill, 1992.

The organization of this 793page book is intended for both students and practitioners. As its
title suggests, the book contains "how-to-do-it" software engineering techniques. The book is
divided into five parts—(1) Software—The Process and Management, (2) System and
Software Requirements Analysis, (3) The Design and Implementation of Software, (4)
Ensuring, Verifying, and Maintaining Software Integrity, and (5) The Role of Automation.

Radice, R. A. ISO 9001: Interpreted for Software Organizations. Andover, MA: Paradoxicon
Publishing, 1995.

This book is intended for the practitioner wanting to understand ISO 9001 ("Quality
Systems—Model for Quality Assurance in Design, Development, Production, Installation,
and Servicing") and/or who may be involved with implementing an ISO 9001 compliant
program in a software organization. ISO stands for the International Organization for
Standardization. The ISO mission is to provide international standardization to facilitate
worldwide commerce (i.e., exchange of goods and services). ISO 9000 is a series of generic
standards (thus they are open to broad interpretation) "for building, operating, and
documenting a quality system" (p. 16). The series, originally published in 1987, consists of
five major parts, one of which is ISO 9001. "ISO 9001 is a standard and model for quality
assurance in design/development, production, installation, and servicing" (p. 17). In the words
of the standard, a quality system is "the organizational structure, responsibilities, procedures,
processes and resources for implementing quality management necessary to achieve the
quality objectives stated in the quality policy." Another major ISO 9000 part is ISO 9000-3,
which is a guideline for applying ISO 9001 to software.

The author analyzes each of the twenty ISO 9001 Section 4 clauses that constitute the heart of
the standard (examples of the clause headings are "management responsibility," "document
control,""process control," "inspection and testing," "training," and "statistical techniques").
This analysis includes the relationship of the clause to ISO 9000-3, including where 9000-3
adds interpretation beyond what is stated or implied in 9001. The analysis also includes a

Successful Software Development, Second Edition

699

statement about the risks of not meeting the requirements embodied in the clause. If the risk
materializes, then the risk becomes a problem.

The analysis of the twenty clauses spans pages 65 to 307 in Radice's 352-page book. Given
that the standard itself is only five pages and that ISO 9000-3 is only eleven pages, the book
bears testimony to the fact that 9001 is not self-evident to apply.

Using the concepts in our book, you can construct a set of ADPE elements compliant with the
twenty ISO 9001 Section 4 clauses. For example, clause 13 is entitled "Review and
Disposition of Nonconforming Product." This clause reads in part as follows:

The responsibility for review and authority for the disposition of
nonconforming product shall be defined.

Nonconforming product shall be reviewed in accordance with documented
procedures. It may be

i. reworked to meet the specified requirements,
ii. accepted with or without repair by concession,

iii. regraded for alternative applications, or
iv. rejected or scrapped.

As we discussed in Chapters 2, 3, and 5, software product review responsibilities and
disposition authority are addressed in ADPE elements for project planning, the software
systems development process, and independent product assurance.

The ISO 9000 series is intended for almost any manufacturing domain (e.g., banks, legal
firms, health service providers, and educational institutions).

Schulmeyer, G. G., and J. I. McManus, eds. Handbook of Software Quality Assurance. 3rd
ed. Upper Saddle River, NJ: Prentice Hall PTR, 1999.

This 712-page book is a collection of articles by various authors on topics that in our book we
put under the umbrella of product assurance. Its content is practitioner oriented. As the editors
state in the book's preface, "this handbook brings to the reader . . . a collection of experiences
and expectations of some of the most notable experts in the field of software quality
assurance" (p. xix). The first edition appeared in 1987. The third edition contains updates to
the second edition, which appeared in 1992. These updates reflect, among other things, (1)
advances in software quality assurance techniques and (2) how organizations such as the
Software Engineering Institute have reshaped thinking regarding the importance of software
quality assurance.

Senge, P. The Fifth Discipline: The Art and Practice of the Learning Organization. New York:
Doubleday, 1990.

A learning organization is one that enables individuals to work in teams. These teams learn
and develop innovative ways of doing business. In this book, Senge introduces a widely
accepted framework for defining and achieving a learning organization through the practice of
five disciplines—personal mastery, challenging mental models, shared vision, team learning,
and systems thinking. This book, which has nothing to do with software, offers some

Successful Software Development, Second Edition

700

worthwhile insights into how to make organizations work more effectively. It is particularly
useful for understanding some of the mechanisms underlying our discussion of cultural
change in Chapter 7 and associated issues in Chapter 8. For example, Chapter 7 describes how
SEE implementation is a cultural change exercise. If this exercise is viewed as evolving an
organization towards a learning organization, then SEE implementation can be tied to the five
learning organization disciplines. The learning organization has a strong sense of shared
vision that focuses action. It enables employees to develop a high level of proficiency in their
field so that they become like master craftspeople in other disciplines. It links people through
teams that can work synergistically to achieve tasks that individuals cannot. The organization
encourages people to question its assumptions. Such questioning can be made part of the
process of developing and maintaining ADPE elements that is discussed in Chapter 7.

Sommerville, I. Software Engineering. 4th ed. New York: AddisonWesley Publishing
Company, 1992.

This 650page book, first published in 1982, "is aimed at students in undergraduate and
graduate courses and at software engineers in commerce and industry" (p. vii). The author is a
Professor of Software Engineering at the University of Lancaster in the United Kingdom. The
following extract from the book's preface perhaps explains why the book has enjoyed
longstanding popularity:

This book is an introduction to software engineering which takes a broad view
of the subject. As in previous editions, my intention is to introduce the reader
to a spectrum of stateoftheart software engineering techniques which can be
applied in practical software projects. The book has a pragmatic bias but
introduces theory when it is appropriate to do so.

Whitten, N. Managing Software Development Projects: Formula for Success. 2nd ed. New
York: John Wiley & Sons, Inc., 1995.

The following statement from this book's preface succinctly states its thrust:

This book is a how-to, real-world, no-nonsense, practical guide to identifying
and resolving the most common, major problems in software projects (p. v).

The book's intended audience is project managers, project leaders, and project members. The
book consists of fourteen chapters whose titles are listed following this paragraph. As
explained in the book's opening chapter, each chapter is laid out the same way—a problem
encountered in software development (e.g., lack of discipline), war stories illustrating how the
problem can appear within a project, and steps to follow to recognize and to avoid or recover
from the problem.

Chapter 1 Defining a Software Development Process

Chapter 2 Discipline: The Glue That Holds It All Together

Chapter 3 Communicating in Harmony

Chapter 4 Project Schedule Planning: Getting in Control

Successful Software Development, Second Edition

701

Chapter 5 Project Tracking: Staying in Control

Chapter 6 Planning for Quality

Chapter 7 Managing Priorities Effectively

Chapter 8 Product Requirements: Understanding the Customer's Problem to
Solve

Chapter 9 Product Objectives: Providing Direction for the Solution

Chapter 10 Product Specifications: Defining the Final Product

Chapter 11 Product Ease of Use

Chapter 12 Development Testing: Strengthening the Weak Link

Chapter 13 Vendor Relationships

Chapter 14 Postproject Review: Understanding the Past to Improve the Future

The book complements many of the ideas appearing in our book. For example, Whitten's first
chapter addresses life cycle and software development process concepts, which we address in
Chapters 2 and 3. He offers an eight-step approach for defining a software development
process. The life cycle models he considers are the following:

Code-and-fix ["code first and ask questions later"]

Waterfall

Incremental

Iterative

He chooses these models because, as he asserts, "most models are derived, at least in part,
from one or more of these basic models" (p. 19).

The book is easy to read and convenient to use.

	Cover
	Table of Contents
	Preface
	Successful Software Development means "the ability to produce "good" software systems "consistently""
	Making It Happen means "implementing a "way" of successful software development"
	Who Should Read This Book?
	How Is This Software Development Book Different from Other Such Books?
	How Is the Book Organized?
	What Are the Book's Main Features?
	How Does an Organization Institutionalize Its Engineering and Process Principles?
How Does an Organization Institutionalize Its Engineering and Process Principles?

	Authors' Biographies
	Scott E. Donaldson Corporate Vice President Science Applications International Corporation (SAIC)
	Stanley G. Siegel Vice President Science Applications International Corporation (SAIC)

	Science Applications International Corporation
	Acknowledgments
	1. Business Case
	1.1 Introduction
	1.2 Business Case Key Ideas
	1.3 What Makes Good Business Sense?
	1.4 Software Systems Development Concepts
	1.5 Product "Goodness" and Process "Goodness"
	1.6 Requisite Software Systems Development Disciplines
	1.7 Generic Four-Stage Software Systems Development Life Cycle
	1.8 User, Buyer, and Seller Organizations Involved in Software Systems Development
	1.9 Obstacles to Improving Software Systems Development Cultures
	1.10 Alternative Approaches to Software Process Improvement
	1.11 Preview of the Rest of Book

	2. Project Planning Process
	2.1 Introduction
	2.2 Project Planning Key Ideas
	2.3 Life Cycle Role in Project Planning
	2.4 Ideal, Real, and Realistic Project Planning
	2.5 Risk Assessment and Project Planning
	2.6 Project Planning Process
	2.7 Project Plan Contents
	2.8 Project Planning Summary

	3. Software Systems Development Process
	3.1 Introduction
	3.2 Software Systems Development Process Key Ideas
	3.3 Software Systems Development Process Overview
	3.4 Customer
	3.5 Seller Process Engineering Group
	3.6 Customer/Seller Development Team and Change Control Board (CCB)
	3.7 Seller Senior Management
	3.8 Software Systems Development Process Summary

	4. Change Control Process
	4.1 Introduction
	4.2 Change Control Process Key Ideas
	4.3 Planned and Unplanned Change
	4.4 The Processing of Changes
	4.5 Examination of the Change Control Board
	4.6 Paperwork Support of the Change Control Board
	4.7 Change Control Process Summary

	5. Product and Process Reviews
	5.1 Introduction
	5.2 Product and Process Reviews Key Ideas
	5.3 A Taxonomy of Product and Process Reviews
	5.4 Combining Reviews for Software Audits
	5.5 Product and Process Reviews Summary

	6. Measurement
	6.1 Introduction
	6.2 Measurement Key Ideas
	6.3 Product Integrity
	6.4 Process Integrity
	6.5 Capability Maturity Model (CMM) for Software
	6.6 Other Process-Related Measurements
	6.7 Measurement Summary

	7. Cultural Change
	7.1 Introduction
	7.2 Cultural Change Key Ideas
	7.3 Process Engineering Group (PEG)
	7.4 Seller Project Participants and Project Managers
	7.5 Buyer/User Project Management
	7.6 Buyer/User Senior Management
	7.7 Seller Senior Management
	7.8 Cultural Change Summary

	8. Process Improvement Planning
	8.1 Introduction
	8.2 SEE Implementation Planning Key Ideas
	8.3 Key SEE Implementation Planning Issues
	8.4 Making Successful Software Development Happen

	A. How to Measure Strategic Information Management (SIM)
	A.1 Strategic Information Management
	A.2 Quantifying Strategic Information Management
	A.3 Diagnostic Areas and Diagnostic Criteria
	A.4 OM Measurement Map and Measurement Trends
	A.5 Summary

	B. List of Figures
	Preface
	Chapter 1-Business Case
	Chapter 2-Project Planning Process
	Chapter 3-Software Systems Development Process
	Chapter 4-Change Control Process
	Chapter 5-Product and Process Reviews
	Chapter 6-Measurement
	Chapter 7-Cultural Change
	Chapter 8-Process Improvement Planning
	Appendix A-How to Measure Strategic Information Management (SIM)

	C. List of Tables
	Bibliography
	Journals Containing Articles Bearing on Software Process Improvement
	Organizations That Can Help You in the Software Process Improvement Area
	1. Government Publications
	2. Magazine/Journal Articles
	3. Books

