


A First Course
in Stochastic Models

Henk C. Tijms
Vrije Universiteit, Amsterdam, The Netherlands





A First Course
in Stochastic Models





A First Course
in Stochastic Models

Henk C. Tijms
Vrije Universiteit, Amsterdam, The Netherlands



Copyright c© 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the
terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London
W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should
be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44)
1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Tijms, H. C.
A first course in stochastic models / Henk C. Tijms.

p. cm.
Includes bibliographical references and index.
ISBN 0-471-49880-7 (acid-free paper)—ISBN 0-471-49881-5 (pbk. : acid-free paper)
1. Stochastic processes. I. Title.

QA274.T46 2003
519.2′3—dc21

2002193371

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-471-49880-7 (Cloth)
ISBN 0-471-49881-5 (Paper)

Typeset in 10/12pt Times from LATEX files supplied by the author, by Laserwords Private Limited,
Chennai, India
Printed and bound in Great Britain by T J International Ltd, Padstow, Cornwall
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.



Contents

Preface ix

1 The Poisson Process and Related Processes 1

1.0 Introduction 1
1.1 The Poisson Process 1

1.1.1 The Memoryless Property 2
1.1.2 Merging and Splitting of Poisson Processes 6
1.1.3 The M/G/∞ Queue 9
1.1.4 The Poisson Process and the Uniform Distribution 15

1.2 Compound Poisson Processes 18
1.3 Non-Stationary Poisson Processes 22
1.4 Markov Modulated Batch Poisson Processes 24

Exercises 28
Bibliographic Notes 32
References 32

2 Renewal-Reward Processes 33

2.0 Introduction 33
2.1 Renewal Theory 34

2.1.1 The Renewal Function 35
2.1.2 The Excess Variable 37

2.2 Renewal-Reward Processes 39
2.3 The Formula of Little 50
2.4 Poisson Arrivals See Time Averages 53
2.5 The Pollaczek–Khintchine Formula 58
2.6 A Controlled Queue with Removable Server 66
2.7 An Up- And Downcrossing Technique 69

Exercises 71
Bibliographic Notes 78
References 78

3 Discrete-Time Markov Chains 81

3.0 Introduction 81
3.1 The Model 82



vi CONTENTS

3.2 Transient Analysis 87
3.2.1 Absorbing States 89
3.2.2 Mean First-Passage Times 92
3.2.3 Transient and Recurrent States 93

3.3 The Equilibrium Probabilities 96
3.3.1 Preliminaries 96
3.3.2 The Equilibrium Equations 98
3.3.3 The Long-run Average Reward per Time Unit 103

3.4 Computation of the Equilibrium Probabilities 106
3.4.1 Methods for a Finite-State Markov Chain 107
3.4.2 Geometric Tail Approach for an Infinite State Space 111
3.4.3 Metropolis—Hastings Algorithm 116

3.5 Theoretical Considerations 119
3.5.1 State Classification 119
3.5.2 Ergodic Theorems 126
Exercises 134
Bibliographic Notes 139
References 139

4 Continuous-Time Markov Chains 141
4.0 Introduction 141
4.1 The Model 142
4.2 The Flow Rate Equation Method 147
4.3 Ergodic Theorems 154
4.4 Markov Processes on a Semi-Infinite Strip 157
4.5 Transient State Probabilities 162

4.5.1 The Method of Linear Differential Equations 163
4.5.2 The Uniformization Method 166
4.5.3 First Passage Time Probabilities 170

4.6 Transient Distribution of Cumulative Rewards 172
4.6.1 Transient Distribution of Cumulative Sojourn Times 173
4.6.2 Transient Reward Distribution for the General Case 176
Exercises 179
Bibliographic Notes 185
References 185

5 Markov Chains and Queues 187

5.0 Introduction 187
5.1 The Erlang Delay Model 187

5.1.1 TheM/M/1 Queue 188
5.1.2 TheM/M/c Queue 190
5.1.3 The Output Process and Time Reversibility 192

5.2 Loss Models 194
5.2.1 The Erlang Loss Model 194
5.2.2 The Engset Model 196

5.3 Service-System Design 198
5.4 Insensitivity 202

5.4.1 A Closed Two-node Network with Blocking 203
5.4.2 TheM/G/1 Queue with Processor Sharing 208

5.5 A Phase Method 209



CONTENTS vii

5.6 Queueing Networks 214
5.6.1 Open Network Model 215
5.6.2 Closed Network Model 219
Exercises 224
Bibliographic Notes 230
References 231

6 Discrete-Time Markov Decision Processes 233

6.0 Introduction 233
6.1 The Model 234
6.2 The Policy-Improvement Idea 237
6.3 The Relative Value Function 243
6.4 Policy-Iteration Algorithm 247
6.5 Linear Programming Approach 252
6.6 Value-Iteration Algorithm 259
6.7 Convergence Proofs 267

Exercises 272
Bibliographic Notes 275
References 276

7 Semi-Markov Decision Processes 279

7.0 Introduction 279
7.1 The Semi-Markov Decision Model 280
7.2 Algorithms for an Optimal Policy 284
7.3 Value Iteration and Fictitious Decisions 287
7.4 Optimization of Queues 290
7.5 One-Step Policy Improvement 295

Exercises 300
Bibliographic Notes 304
References 305

8 Advanced Renewal Theory 307

8.0 Introduction 307
8.1 The Renewal Function 307

8.1.1 The Renewal Equation 308
8.1.2 Computation of the Renewal Function 310

8.2 Asymptotic Expansions 313
8.3 Alternating Renewal Processes 321
8.4 Ruin Probabilities 326

Exercises 334
Bibliographic Notes 337
References 338

9 Algorithmic Analysis of Queueing Models 339

9.0 Introduction 339
9.1 Basic Concepts 341



viii CONTENTS

9.2 TheM/G/1 Queue 345
9.2.1 The State Probabilities 346
9.2.2 The Waiting-Time Probabilities 349
9.2.3 Busy Period Analysis 353
9.2.4 Work in System 358

9.3 TheMX/G/1 Queue 360
9.3.1 The State Probabilities 361
9.3.2 The Waiting-Time Probabilities 363

9.4 M/G/1 Queues with Bounded Waiting Times 366
9.4.1 The Finite-BufferM/G/1 Queue 366
9.4.2 AnM/G/1 Queue with Impatient Customers 369

9.5 TheGI /G/1 Queue 371
9.5.1 Generalized Erlangian Services 371
9.5.2 Coxian-2 Services 372
9.5.3 TheGI /Ph/1 Queue 373
9.5.4 ThePh/G/1 Queue 374
9.5.5 Two-moment Approximations 375

9.6 Multi-Server Queues with Poisson Input 377
9.6.1 TheM/D/c Queue 378
9.6.2 TheM/G/c Queue 384
9.6.3 TheMX/G/c Queue 392

9.7 TheGI /G/c Queue 398
9.7.1 TheGI /M/c Queue 400
9.7.2 TheGI /D/c Queue 406

9.8 Finite-Capacity Queues 408
9.8.1 TheM/G/c/c + N Queue 408
9.8.2 A Basic Relation for the Rejection Probability 410
9.8.3 TheMX/G/c/c + N Queue with Batch Arrivals 413
9.8.4 Discrete-Time Queueing Systems 417
Exercises 420
Bibliographic Notes 428
References 428

Appendices 431

Appendix A. Useful Tools in Applied Probability 431

Appendix B. Useful Probability Distributions 440

Appendix C. Generating Functions 449

Appendix D. The Discrete Fast Fourier Transform 455

Appendix E. Laplace Transform Theory 458

Appendix F. Numerical Laplace Inversion 462

Appendix G. The Root-Finding Problem 470

References 474

Index 475



Preface

The teaching of applied probability needs a fresh approach. The field of applied
probability has changed profoundly in the past twenty years and yet the textbooks
in use today do not fully reflect the changes. The development of computational
methods has greatly contributed to a better understanding of the theory. It is my
conviction that theory is better understood when the algorithms that solve the
problems the theory addresses are presented at the same time. This textbook tries
to recognize what the computer can do without letting the theory be dominated
by the computational tools. In some ways, the book is a successor of my earlier
bookStochastic Modeling and Analysis. However, the set-up of the present text is
completely different. The theory has a more central place and provides a framework
in which the applications fit. Without a solid basis in theory, no applications can be
solved. The book is intended as a first introduction to stochastic models for senior
undergraduate students in computer science, engineering, statistics and operations
research, among others. Readers of this book are assumed to be familiar with the
elementary theory of probability.
I am grateful to my academic colleagues Richard Boucherie, Avi Mandelbaum,

Rein Nobel and Rien van Veldhuizen for their helpful comments, and to my stu-
dents Gaya Branderhorst, Ton Dieker, Borus Jungbacker and Sanne Zwart for their
detailed checking of substantial sections of the manuscript. Julian Rampelmann
and Gloria Wirz-Wagenaar were helpful in transcribing my handwritten notes into
a nice Latex manuscript.
Finally, users of the book can find supporting educational software for Markov

chains and queues on my website http://staff.feweb.vu.nl/tijms.





CHAPTER 1

The Poisson Process and
Related Processes

1.0 INTRODUCTION

The Poisson process is a counting process that counts the number of occurrences
of some specific event through time. Examples include the arrivals of customers
at a counter, the occurrences of earthquakes in a certain region, the occurrences
of breakdowns in an electricity generator, etc. The Poisson process is a natural
modelling tool in numerous applied probability problems. It not only models many
real-world phenomena, but the process allows for tractable mathematical analysis
as well.

The Poisson process is discussed in detail in Section 1.1. Basic properties are
derived including the characteristic memoryless property. Illustrative examples are
given to show the usefulness of the model. The compound Poisson process is
dealt with in Section 1.2. In a Poisson arrival process customers arrive singly,
while in a compound Poisson arrival process customers arrive in batches. Another
generalization of the Poisson process is the non-stationary Poisson process that is
discussed in Section 1.3. The Poisson process assumes that the intensity at which
events occur is time-independent. This assumption is dropped in the non-stationary
Poisson process. The final Section 1.4 discusses the Markov modulated arrival
process in which the intensity at which Poisson arrivals occur is subject to a
random environment.

1.1 THE POISSON PROCESS

There are several equivalent definitions of the Poisson process. Our starting point is
a sequence X1, X2, . . . of positive, independent random variables with a common
probability distribution. Think of Xn as the time elapsed between the (n−1)th and
nth occurrence of some specific event in a probabilistic situation. Let

S0 = 0 and Sn =
n∑

k=1

Xk, n = 1, 2, . . . .

A First Course in Stochastic Models H.C. Tijms
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2 THE POISSON PROCESS AND RELATED PROCESSES

Then Sn is the epoch at which the nth event occurs. For each t ≥ 0, define the
random variable N(t) by

N(t) = the largest integer n ≥ 0 for which Sn ≤ t.

The random variable N(t) represents the number of events up to time t .

Definition 1.1.1 The counting process {N(t), t ≥ 0} is called a Poisson process
with rate λ if the interoccurrence times X1, X2, . . . have a common exponential
distribution function

P {Xn ≤ x} = 1 − e−λx, x ≥ 0.

The assumption of exponentially distributed interoccurrence times seems to be
restrictive, but it appears that the Poisson process is an excellent model for many
real-world phenomena. The explanation lies in the following deep result that is
only roughly stated; see Khintchine (1969) for the precise rationale for the Poisson
assumption in a variety of circumstances (the Palm–Khintchine theorem). Suppose
that at microlevel there are a very large number of independent stochastic pro-
cesses, where each separate microprocess generates only rarely an event. Then
at macrolevel the superposition of all these microprocesses behaves approximately
as a Poisson process. This insightful result is analogous to the well-known result
that the number of successes in a very large number of independent Bernoulli
trials with a very small success probability is approximately Poisson distributed.
The superposition result provides an explanation of the occurrence of Poisson
processes in a wide variety of circumstances. For example, the number of calls
received at a large telephone exchange is the superposition of the individual calls
of many subscribers each calling infrequently. Thus the process describing the over-
all number of calls can be expected to be close to a Poisson process. Similarly, a
Poisson demand process for a given product can be expected if the demands are
the superposition of the individual requests of many customers each asking infre-
quently for that product. Below it will be seen that the reason of the mathematical
tractability of the Poisson process is its memoryless property. Information about
the time elapsed since the last event is not relevant in predicting the time until the
next event.

1.1.1 The Memoryless Property

In the remainder of this section we use for the Poisson process the terminology of
‘arrivals’ instead of ‘events’. We first characterize the distribution of the counting
variable N(t). To do so, we use the well-known fact that the sum of k inde-
pendent random variables with a common exponential distribution has an Erlang
distribution. That is,
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P {Sk ≤ t} = 1 −
k−1∑
j=0

e−λt (λt)j

j !
, t ≥ 0. (1.1.1)

The Erlang (k, λ) distribution has the probability density λktk−1e−λt /(k − 1)!.

Theorem 1.1.1 For any t > 0,

P {N(t) = k} = e−λt (λt)k

k!
, k = 0, 1, . . . . (1.1.2)

That is, N(t) is Poisson distributed with mean λt .

Proof The proof is based on the simple but useful observation that the number
of arrivals up to time t is k or more if and only if the kth arrival occurs before or
at time t . Hence

P {N(t) ≥ k} = P {Sk ≤ t}

= 1 −
k−1∑
j=0

e−λt (λt)j

j !
.

The result next follows from P {N(t) = k} = P {N(t) ≥ k} − P {N(t) ≥ k + 1}.

The following remark is made. To memorize the expression (1.1.1) for the dis-
tribution function of the Erlang (k, λ) distribution it is easiest to reason in reverse
order: since the number of arrivals in (0, t) is Poisson distributed with mean λt

and the kth arrival time Sk is at or before t only if k or more arrivals occur in
(0, t), it follows that P {Sk ≤ t} = ∑∞

j=k e−λt (λt)j /j !.

The memoryless property of the Poisson process

Next we discuss the memoryless property that is characteristic for the Poisson
process. For any t ≥ 0, define the random variable γt as

γt = the waiting time from epoch t until the next arrival.

The following theorem is of utmost importance.

Theorem 1.1.2 For any t ≥ 0, the random variable γt has the same exponential
distribution with mean 1/λ. That is,

P {γt ≤ x} = 1 − e−λx, x ≥ 0, (1.1.3)

independently of t .
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Proof Fix t ≥ 0. The event {γt > x} occurs only if one of the mutually exclusive
events {X1 > t + x}, {X1 ≤ t , X1 + X2 > t + x}, {X1 + X2 ≤ t , X1 + X2 + X3 >

t + x}, . . . occurs. This gives

P {γt > x} = P {X1 > t + x} +
∞∑

n=1

P {Sn ≤ t, Sn+1 > t + x}.

By conditioning on Sn, we find

P {Sn ≤ t, Sn+1 > t + x} =
∫ t

0
P {Sn+1 > t + x | Sn = y}λn yn−1

(n − 1)!
e−λy dy

=
∫ t

0
P {Xn+1 > t + x − y}λn yn−1

(n − 1)!
e−λy dy.

This gives

P {γt > x} = e−λ(t+x) +
∞∑

n=1

∫ t

0
e−λ(t+x−y)λn yn−1

(n − 1)!
e−λy dy

= e−λ(t+x) +
∫ t

0
e−λ(t+x−y)λ dy

= e−λ(t+x) + e−λ(t+x)(eλt − 1) = e−λx,

proving the desired result. The interchange of the sum and the integral in the second
equality is justified by the non-negativity of the terms involved.

The theorem states that at each point in time the waiting time until the next arrival
has the same exponential distribution as the original interarrival time, regardless
of how long ago the last arrival occurred. The Poisson process is the only renewal
process having this memoryless property. How much time is elapsed since the last
arrival gives no information about how long to wait until the next arrival. This
remarkable property does not hold for general arrival processes (e.g. consider the
case of constant interarrival times). The lack of memory of the Poisson process
explains the mathematical tractability of the process. In specific applications the
analysis does not require a state variable keeping track of the time elapsed since the
last arrival. The memoryless property of the Poisson process is of course closely
related to the lack of memory of the exponential distribution.

Theorem 1.1.1 states that the number of arrivals in the time interval (0, s) is
Poisson distributed with mean λs. More generally, the number of arrivals in any
time interval of length s has a Poisson distribution with mean λs. That is,

P {N(u + s) − N(u) = k} = e−λs (λs)k

k!
, k = 0, 1, . . . , (1.1.4)

independently of u. To prove this result, note that by Theorem 1.1.2 the time
elapsed between a given epoch u and the epoch of the first arrival after u has the
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same exponential distribution as the time elapsed between epoch 0 and the epoch
of the first arrival after epoch 0. Next mimic the proof of Theorem 1.1.1.

To illustrate the foregoing, we give the following example.

Example 1.1.1 A taxi problem

Group taxis are waiting for passengers at the central railway station. Passengers for
those taxis arrive according to a Poisson process with an average of 20 passengers
per hour. A taxi departs as soon as four passengers have been collected or ten
minutes have expired since the first passenger got in the taxi.

(a) Suppose you get in the taxi as first passenger. What is the probability that you
have to wait ten minutes until the departure of the taxi?

(b) Suppose you got in the taxi as first passenger and you have already been waiting
for five minutes. In the meantime two other passengers got in the taxi. What
is the probability that you will have to wait another five minutes until the taxi
departs?

To answer these questions, we take the minute as time unit so that the arrival
rate λ = 1/3. By Theorem 1.1.1 the answer to question (a) is given by

P {less than 3 passengers arrive in (0, 10)}

=
2∑

k=0

e−10/3 (10/3)k

k!
= 0.3528.

The answer to question (b) follows from the memoryless property stated in Theo-
rem 1.1.2 and is given by

P {γ5 > 5} = e−5/3 = 0.1889.

In view of the lack of memory of the Poisson process, it will be intuitively clear
that the Poisson process has the following properties:

(A) Independent increments: the numbers of arrivals occurring in disjoint intervals
of time are independent.

(B) Stationary increments: the number of arrivals occurring in a given time interval
depends only on the length of the interval.

A formal proof of these properties will not be given here; see Exercise 1.8. To
give the infinitesimal-transition rate representation of the Poisson process, we use

1 − e−h = h − h2

2!
+ h3

3!
− · · · = h + o(h) as h → 0.
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The mathematical symbol o(h) is the generic notation for any function f (h) with
the property that limh→0 f (h)/h = 0, that is, o(h) is some unspecified term that
is negligibly small compared to h itself as h → 0. For example, f (h) = h2 is an
o(h)-function. Using the expansion of e−h, it readily follows from (1.1.4) that

(C) The probability of one arrival occurring in a time interval of length �t is
λ�t + o(�t) for �t → 0.

(D) The probability of two or more arrivals occurring in a time interval of length
�t is o(�t) for �t → 0.

The property (D) states that the probability of two or more arrivals in a very small
time interval of length �t is negligibly small compared to �t itself as �t → 0.

The Poisson process could alternatively be defined by taking (A), (B), (C) and
(D) as postulates. This alternative definition proves to be useful in the analysis of
continuous-time Markov chains in Chapter 4. Also, the alternative definition of the
Poisson process has the advantage that it can be generalized to an arrival process
with time-dependent arrival rate.

1.1.2 Merging and Splitting of Poisson Processes

Many applications involve the merging of independent Poisson processes or the
splitting of events of a Poisson process in different categories. The next theorem
shows that these situations again lead to Poisson processes.

Theorem 1.1.3 (a) Suppose that {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are indepen-
dent Poisson processes with respective rates λ1 and λ2, where the process {Ni(t)}
corresponds to type i arrivals. Let N(t) = N1(t) + N2(t), t ≥ 0. Then the merged
process {N(t), t ≥ 0} is a Poisson process with rate λ = λ1 + λ2. Denoting by Zk

the interarrival time between the (k − 1)th and kth arrival in the merged process
and letting Ik = i if the kth arrival in the merged process is a type i arrival, then
for any k = 1, 2, . . . ,

P {Ik = i | Zk = t} = λi

λ1 + λ2
, i = 1, 2, (1.1.5)

independently of t .
(b) Let {N(t), t ≥ 0} be a Poisson process with rate λ. Suppose that each arrival

of the process is classified as being a type 1 arrival or type 2 arrival with respective
probabilities p1 and p2, independently of all other arrivals. Let Ni(t) be the number
of type i arrivals up to time t . Then {N1(t)} and {N2(t)} are two independent Poisson
processes having respective rates λp1 and λp2.

Proof We give only a sketch of the proof using the properties (A), (B), (C)
and (D).
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(a) It will be obvious that the process {N(t)} satisfies the properties (A) and (B).
To verify property (C) note that

P {one arrival in (t, t + �t]}

=
2∑

i=1

P

{
one arrival of type i and no arrival

of the other type in (t, t + �t]

}

= [λ1�t + o(�t)][1 − λ2�t + o(�t)]

+ [λ2�t + o(�t)][1 − λ1�t + o(�t)]

= (λ1 + λ2)�t + o(�t) as �t → 0.

Property (D) follows by noting that

P {no arrival in (t, t + �t]} = [1 − λ1�t + o(�t)][1 − λ2�t + o(�t)]

= 1 − (λ1 + λ2)�t + o(�t) as �t → 0.

This completes the proof that {N(t)} is a Poisson process with rate λ1 + λ2.
To prove the other assertion in part (a), denote by the random variable Yi the
interarrival time in the process {Ni(t)}. Then

P {Zk > t, Ik = 1} = P {Y2 > Y1 > t}

=
∫ ∞

t

P {Y2 > Y1 > t | Y1 = x}λ1e
−λ1x dx

=
∫ ∞

t

e−λ2xλ1e
−λ1x dx = λ1

λ1 + λ2
e−(λ1+λ2)t .

By taking t = 0, we find P {Ik = 1} = λ1/(λ1 +λ2). Since {N(t)} is a Poisson
process with rate λ1 + λ2, we have P {Zk > t} = exp [−(λ1 + λ2)t]. Hence

P {Ik = 1, Zk > t} = P {Ik = 1}P {Zk > t},

showing that P {Ik = 1 | Zk = t} = λ1/(λ1 + λ2) independently of t .

(b) Obviously, the process {Ni(t)} satisfies the properties (A), (B) and (D). To
verify property (C), note that

P {one arrival of type i in (t, t + �t]} = (λ�t)pi + o(�t)

= (λpi)�t + o(�t).

It remains to prove that the processes {N1(t)} and {N2(t)} are independent. Fix
t > 0. Then, by conditioning,
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P {N1(t) = k, N2(t) = m}

=
∞∑

n=0

P {N1(t) = k, N2(t) = m | N(t) = n}P {N(t) = n}

= P {N1(t) = k, N2(t) = m | N(t) = k + m}P {N(t) = k + m}

=
(

k + m

k

)
pk

1p
m
2 e−λt (λt)k+m

(k + m)!

= e−λp1t
(λp1t)

k

k!
e−λp2t

(λp2t)
m

m!
,

showing that P {N1(t) = k, N2(t) = m} = P {N1(t) = k}P {N2(t) = m}.

The remarkable result (1.1.5) states that the next arrival is of type i with proba-
bility λi/(λ1 +λ2) regardless of how long it takes until the next arrival. This result
is characteristic for competing Poisson processes which are independent of each
other. As an illustration, suppose that long-term parkers and short-term parkers
arrive at a parking lot according to independent Poisson processes with respective
rates λ1 and λ2. Then the merged arrival process of parkers is a Poisson process
with rate λ1 + λ2 and the probability that a newly arriving parker is a long-term
parker equals λ1/(λ1 + λ2).

Example 1.1.2 A stock problem with substitutable products

A store has a leftover stock of Q1 units of product 1 and Q2 units of product 2.
Both products are taken out of production. Customers asking for product 1 arrive
according to a Poisson process with rate λ1. Independently of this process, cus-
tomers asking for product 2 arrive according to a Poisson process with rate λ2.
Each customer asks for one unit of the concerning product. The two products serve
as substitute for each other, that is, a customer asking for a product that is sold
out is satisfied with the other product when still in stock. What is the probability
distribution of the time until both products are sold out? What is the probability
that product 1 is sold out before product 2?

To answer the first question, observe that both products are sold out as soon as
Q1 + Q2 demands have occurred. The aggregated demand process is a Poisson
process with rate λ1 + λ2. Hence the time until both products are sold out has an
Erlang (Q1 + Q2, λ1 + λ2) distribution. To answer the second question, observe
that product 1 is sold out before product 2 only if the first Q1 +Q2 −1 aggregated
demands have no more than Q2 − 1 demands for product 2. Hence, by (1.1.5), the
desired probability is given by

Q2−1∑
k=0

(
Q1 + Q2 − 1

k

)(
λ2

λ1 + λ2

)k (
λ1

λ1 + λ2

)Q1+Q2−1−k

.
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1.1.3 The M/G/∞ Queue∗

Suppose that customers arrive at a service facility according to a Poisson process
with rate λ. The service facility has an ample number of servers. In other words,
it is assumed that each customer gets immediately assigned a new server upon
arrival. The service times of the customers are independent random variables hav-
ing a common probability distribution with finite mean µ. The service times are
independent of the arrival process. This versatile model is very useful in applica-
tions. An interesting question is: what is the limiting distribution of the number of
busy servers? The surprisingly simple answer to this question is that the limiting
distribution is a Poisson distribution with mean λµ:

lim
t→∞ P (k servers are busy at time t) = e−λµ (λµ)k

k!
(1.1.6)

for k = 0, 1, . . . . This limiting distribution does not require the shape of the
service-time distribution, but uses the service-time distribution only through its
mean µ. This famous insensitivity result is extremely useful for applications.
The M/G/∞ model has applications in various fields. A nice application is the
(S − 1, S) inventory system with back ordering. In this model customers asking
for a certain product arrive according to a Poisson process with rate λ. Each cus-
tomer asks for one unit of the product. The initial on-hand inventory is S. Each
time a customer demand occurs, a replenishment order is placed for exactly one
unit of the product. A customer demand that occurs when the on-hand inventory
is zero also triggers a replenishment order and the demand is back ordered until
a unit becomes available to satisfy the demand. The lead times of the replenish-
ment orders are independent random variables each having the same probability
distribution with mean τ . Some reflections show that this (S − 1, S) inventory sys-
tem can be translated into the M/G/∞ queueing model: identify the outstanding
replenishment orders with customers in service and identify the lead times of the
replenishment orders with the service times. Thus the limiting distribution of the
number of outstanding replenishment orders is a Poisson distribution with mean
λτ . In particular,

the long-run average on-hand inventory =
S∑

k=0

(S − k) e−λτ (λτ)k

k!
.

Returning to the M/G/∞ model, we first give a heuristic argument for (1.1.6)
and next a rigorous proof.

Heuristic derivation

Suppose first that the service times are deterministic and are equal to the constant
D = µ. Fix t with t > D. If each service time is precisely equal to the constant

∗This section can be skipped at first reading.
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D, then the only customers present at time t are those customers who have arrived
in (t − D, t]. Hence the number of customers present at time t is Poisson dis-
tributed with mean λD proving (1.1.6) for the special case of deterministic service
times. Next consider the case that the service time takes on finitely many values
D1, . . . , Ds with respective probabilities p1, . . . , ps . Mark the customers with the
same fixed service time Dk as type k customers. Then, by Theorem 1.1.3, type k

customers arrive according to a Poisson process with rate λpk . Moreover the var-
ious Poisson arrival processes of the marked customers are independent of each
other. Fix now t with t > maxk Dk. By the above argument, the number of type k

customers present at time t is Poisson distributed with mean (λpk)Dk . Thus, by the
independence property of the split Poisson process, the total number of customers
present at time t has a Poisson distribution with mean

s∑
k=1

λpkDk = λµ.

This proves (1.1.6) for the case that the service time has a discrete distribution
with finite support. Any service-time distribution can be arbitrarily closely approx-
imated by a discrete distribution with finite support. This makes plausible that the
insensitivity result (1.1.6) holds for any service-time distribution.

Rigorous derivation

The differential equation approach can be used to give a rigorous proof of (1.1.6).
Assuming that there are no customers present at epoch 0, define for any t > 0

pj (t) = P {there are j busy servers at time t}, j = 0, 1, . . . .

Consider now pj (t + �t) for �t small. The event that there are j servers busy at
time t + �t can occur in the following mutually exclusive ways:

(a) no arrival occurs in (0,�t) and there are j busy servers at time t + �t due to
arrivals in (�t, t + �t),

(b) one arrival occurs in (0, �t), the service of the first arrival is completed before
time t + �t and there are j busy servers at time t + �t due to arrivals in
(�t, t + �t),

(c) one arrival occurs in (0, �t), the service of the first arrival is not completed
before time t + �t and there are j − 1 other busy servers at time t + �t due
to arrivals in (�t, t + �t),

(d) two or more arrivals occur in (0, �t) and j servers are busy at time t + �t .

Let B(t) denote the probability distribution of the service time of a customer.
Then, since a probability distribution function has at most a countable number of
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discontinuity points, we find for almost all t > 0 that

pj (t + �t) = (1 − λ�t)pj (t) + λ�tB(t + �t)pj (t)

+ λ�t{1 − B(t + �t)}pj−1(t) + o(�t).

Subtracting pj (t) from pj (t + �t), dividing by �t and letting �t → 0, we find

p′
0(t) = −λ(1 − B(t))p0(t)

p′
j (t) = −λ(1 − B(t))pj (t) + λ(1 − B(t))pj−1(t), j = 1, 2, . . . .

Next, by induction on j , it is readily verified that

pj (t) = e−λ
∫ t

0 (1−B(x)) dx

[
λ

∫ t

0 (1 − B(x)) dx
]j

j !
, j = 0, 1, . . . .

By a continuity argument this relation holds for all t ≥ 0. Since
∫ ∞

0 [1−
B(x)] dx = µ, the result (1.1.6) follows. Another proof of (1.1.6) is indicated
in Exercise 1.14.

Example 1.1.3 A stochastic allocation problem

A nationwide courier service has purchased a large number of transport vehicles
for a new service the company is providing. The management has to allocate these
vehicles to a number of regional centres. In total C vehicles have been purchased
and these vehicles must be allocated to F regional centres. The regional centres
operate independently of each other and each regional centre services its own group
of customers. In region i customer orders arrive at the base station according to
a Poisson process with rate λi for i = 1, . . . , F . Each customer order requires
a separate transport vehicle. A customer order that finds all vehicles occupied
upon arrival is delayed until a vehicle becomes available. The processing time of
a customer order in region i has a lognormal distribution with mean E(Si) and
standard deviation σ(Si). The processing time includes the time the vehicle needs
to return to its base station. The management of the company wishes to allocate
the vehicles to the regions in such a way that all regions provide, as nearly as
possible, a uniform level of service to the customers. The service level in a region
is measured as the long-run fraction of time that all vehicles are occupied (it will
be seen in Section 2.4 that the long-run fraction of delayed customer orders is also
given by this service measure).

Let us assume that the parameters are such that each region gets a large number
of vehicles and most of the time is able to directly provide a vehicle for an arriving
customer order. Then the M/G/∞ model can be used as an approximate model
to obtain a satisfactory solution. Let the dimensionless quantity Ri denote

Ri = λiE(Si), i = 1, . . . , F,
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that is, Ri is the average amount of work that is offered per time unit in region i.
Denoting by ci the number of vehicles to be assigned to region i, we take ci of
the form

ci ≈ Ri + k
√

Ri, i = 1, . . . , F,

for an appropriate constant k. By using this square-root rule, each region will
provide nearly the same service level to its customers. To explain this, we use for
each region the M/G/∞ model to approximate the probability that all vehicles in
the region are occupied at an arbitrary point of time. It follows from (1.1.6) that
for region i this probability is approximated by

∞∑
k=ci

e−Ri
Rk

i

k!

when ci vehicles are assigned to region i. The Poisson distribution with mean R

can be approximated by a normal distribution with mean R and standard deviation√
R when R is large enough. Thus we use the approximation

∞∑
k=ci

e−Ri
Rk

i

k!
≈ 1 − �

(
ci − Ri√

Ri

)
, i = 1, . . . , F,

where �(x) is the standard normal distribution function. By requiring that

�

(
c1 − R1√

R1

)
≈ · · · ≈ �

(
cF − RF√

RF

)
,

we find the square-root formula for ci . The constant k in this formula must be
chosen such that

F∑
i=1

ci = C.

Together this requirement and the square-root formula give

k ≈
C −

F∑
i=1

Ri

F∑
i=1

√
Ri

.

This value of k is the guideline for determining the allocation (c1, . . . , cF ) so that
each region, as nearly as possible, provides a uniform service level. To illustrate
this, consider the numerical data:

c = 250, F = 5, λ1 = 5, λ2 = 10, λ3 = 10, λ4 = 50, λ5 = 37.5,

E(S1) = 2, E(S2) = 2.5, E(S3) = 3.5, E(S4) = 1, E(S5) = 2,

σ (S1) = 1.5, σ (S2) = 2, σ (S3) = 3, σ (S4) = 1, σ (S5) = 2.7.
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Then the estimate for k is 1.8450. Substituting this value into the square-root
formula for ci , we find c1 ≈ 15.83, c2 ≈ 34.23, c3 ≈ 45.92, c4 ≈ 63.05 and
c5 ≈ 90.98. This suggests the allocation

(c∗
1, c∗

2, c∗
3, c∗

4, c∗
5) = (16, 34, 46, 63, 91).

Note that in determining this allocation we have used the distributions of the
processing times only through their first moments. The actual value of the long-run
fraction of time during which all vehicles are occupied in region i depends (to
a slight degree) on the probability distribution of the processing time Si . Using
simulation, we find the values 0.056, 0.058, 0.050, 0.051 and 0.050 for the service
level in the respective regions 1, 2, 3, 4 and 5.

The M/G/∞ queue also has applications in the analysis of inventory systems.

Example 1.1.4 A two-echelon inventory system with repairable items

Consider a two-echelon inventory system consisting of a central depot and a num-
ber N of regional bases that operate independently of each other. Failed items
arrive at the base level and are either repaired at the base or at the central depot,
depending on the complexity of the repair. More specifically, failed items arrive
at the bases 1, . . . , N according to independent Poisson processes with respective
rates λ1, . . . , λN . A failed item at base j can be repaired at the base with probabil-
ity rj ; otherwise the item must be repaired at the depot. The average repair time of
an item is µj at base j and µ0 at the depot. It takes an average time of τj to ship
an item from base j to the depot and back. The base immediately replaces a failed
item from base stock if available; otherwise the replacement of the failed item is
back ordered until an item becomes available at the base. If a failed item from base
j arrives at the depot for repair, the depot immediately sends a replacement item to
the base j from depot stock if available; otherwise the replacement is back ordered
until a repaired item becomes available at the depot. In the two-echelon system
a total of J spare parts are available. The goal is to spread these parts over the
bases and the depot in order to minimize the total average number of back orders
outstanding at the bases. This repairable-item inventory model has applications in
the military, among others.

An approximate analysis of this inventory system can be given by using the
M/G/∞ queueing model. Let (S0, S1, . . . , SN) be a given design for which S0
spare parts have been assigned to the depot and Sj spare parts to base j for
j = 1, . . . , N such that S0 + S1 + · · · + SN = J . At the depot, failed items arrive
according to a Poisson process with rate

λ0 =
N∑

j=1

λj (1 − rj ).

Each failed item arriving at the depot immediately goes to repair. The failed items
arriving at the depot can be thought of as customers arriving at a queueing system
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with infinitely many servers. Hence the limiting distribution of the number of items
in repair at the depot at an arbitrary point of time is a Poisson distribution with
mean λ0µ0. The available stock at the depot is positive only if less than S0 items
are in repair at the depot. Why? Hence a delay occurs for the replacement of a
failed item arriving at the depot only if S0 or more items are in repair upon arrival
of the item. Define now

W0 = the long-run average amount of time a failed item at the depot

waits before a replacement is shipped,

L0 = the long-run average number of failed items at the depot

waiting for the shipment of a replacement.

A simple relation exists between L0 and W0. On average λ0 failed items arrive at
the depot per time unit and on average a failed item at the depot waits W0 time
units before a replacement is shipped. Thus the average number of failed items at
the depot waiting for the shipment of a replacement equals λ0W0. This heuristic
argument shows that

L0 = λ0W0.

This relation is a special case of Little’s formula to be discussed in Section 2.3.
The relation W0 = L0/λ0 leads to an explicit formula for W0, since L0 is given by

L0 =
∞∑

k=S0

(k − S0)e
−λ0µ0

(λ0µ0)
k

k!
.

Armed with an explicit expression for W0, we are able to give a formula for the
long-run average number of back orders outstanding at the bases. For each base j

the failed items arriving at base j can be thought of as customers entering service
in a queueing system with infinitely many servers. Here the service time should be
defined as the repair time in case of repair at the base and otherwise as the time
until receipt of a replacement from the depot. Thus the average service time of a
customer at base j is given by

βj = rjµj + (1 − rj )(τj + W0), j = 1, . . . , N.

The situation at base j can only be modelled approximately as an M/G/∞ queue.
The reason is that the arrival process of failed items interferes with the replacement
times at the depot so that there is some dependency between the service times at
base j . Assuming that this dependency is not substantial, we nevertheless use the
M/G/∞ queue as an approximating model and approximate the limiting distri-
bution of the number of items in service at base j by a Poisson distribution with
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mean λjβj for j = 1, . . . , N . In particular,

the long-run average number of back orders outstanding at base j

≈
∞∑

k=Sj

(k − Sj )e
−λj βj

(λjβj )
k

k!
, j = 1, . . . , N.

This expression and the expression for W0 enables us to calculate the total average
number of outstanding back orders at the bases for a given assignment (S0, S1, . . . ,

SN). Next, by some search procedure, the optimal values of S0, S1, . . . , SN can be
calculated.

1.1.4 The Poisson Process and the Uniform Distribution

In any small time interval of the same length the occurrence of a Poisson arrival is
equally likely. In other words, Poisson arrivals occur completely randomly in time.
To make this statement more precise, we relate the Poisson process to the uniform
distribution.

Lemma 1.1.4 For any t > 0 and n = 1, 2, . . . ,

P {Sk ≤ x | N(t) = n} =
n∑

j=k

(
n

j

) (x

t

)j (
1 − x

t

)n−j

(1.1.7)

for 0 ≤ x ≤ t and 1 ≤ k ≤ n. In particular, for any 1 ≤ k ≤ n,

E(Sk | N(t) = n) = kt

n + 1
and E(Sk − Sk−1 | N(t) = n) = t

n + 1
. (1.1.8)

Proof Since the Poisson process has independent and stationary increments,

P {Sk ≤ x | N(t) = n} = P {Sk ≤ x, N(t) = n}
P {N(t) = n}

= P {N(x) ≥ k, N(t) = n}
P {N(t) = n}

= 1

P {N(t) = n}
n∑

j=k

P {N(x) = j, N(t) − N(x) = n − j}

= 1

e−λt (λt)n/n!

n∑
j=k

e−λx (λx)j

j !
e−λ(t−x) [λ(t − x)]n−j

(n − j)!

=
n∑

j=k

(
n

j

) (x

t

)j (
1 − x

t

)n−j

,
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proving the first assertion. Since E(U) = ∫ ∞
0 P {U > u} du for any non-negative

random variable U , the second assertion follows from (1.1.7) and the identity

(p + q + 1)!

p!q!

∫ 1

0
yp(1 − y)q dy = 1, p, q = 0, 1, . . . .

The right-hand side of (1.1.7) can be given the following interpretation. Let
U1, . . . , Un be n independent random variables that are uniformly distributed on
the interval (0, t). Then the right-hand side of (1.1.7) also represents the probability
that the smallest kth among U1, . . . , Un is less than or equal to x. This is expressed
more generally in Theorem 1.1.5.

Theorem 1.1.5 For any t > 0 and n = 1, 2, . . . ,

P {S1 ≤ x1, . . . , Sn ≤ xn | N(t) = n} = P {U(1) ≤ x1, . . . , U(n) ≤ xn},

where U(k) denotes the smallest kth among n independent random variables
U1, . . . , Un that are uniformly distributed over the interval (0, t).

The proof of this theorem proceeds along the same lines as that of Lemma 1.1.4.
In other words, given the occurrence of n arrivals in (0, t), the n arrival epochs
are statistically indistinguishable from n independent observations taken from the
uniform distribution on (0, t). Thus Poisson arrivals occur completely randomly
in time.

Example 1.1.5 A waiting-time problem

In the harbour of Amsterdam a ferry leaves every T minutes to cross the North
Sea canal, where T is fixed. Passengers arrive according to a Poisson process with
rate λ. The ferry has ample capacity. What is the expected total waiting time of all
passengers joining a given crossing? The answer is

E(total waiting time) = 1

2
λT 2. (1.1.9)

To prove this, consider the first crossing of the ferry. The random variable N(T )

denotes the number of passengers joining this crossing and the random variable Sk

represents the arrival epoch of the kth passenger. By conditioning, we find

E(total waiting time)

=
∞∑

n=0

E(total waiting time | N(T ) = n)P {N(T ) = n}
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=
∞∑

n=1

E(T − S1 + T − S2 + · · · + T − Sn | N(T ) = n)e−λT (λT )n

n!

=
∞∑

n=1

E(T − U(1) + T − U(2) + · · · + T − U(n))e
−λT (λT )n

n!
.

This gives

E(total waiting time up to time T ) =
∞∑

n=1

E(nT − (U1 + · · · + Un))e
−λT (λT )n

n!

=
∞∑

n=1

(
nT − n

T

2

)
e−λT (λT )n

n!
= T

2
λT ,

which proves the desired result.
The result (1.1.9) is simple but very useful. It is sometimes used in a somewhat

different form that can be described as follows. Messages arrive at a communication
channel according to a Poisson process with rate λ. The messages are stored in
a buffer with ample capacity. A holding cost at rate h > 0 per unit of time is
incurred for each message in the buffer. Then, by (1.1.9),

E(holding costs incurred up to time T ) = h

2
λT 2. (1.1.10)

Clustering of Poisson arrival epochs

Theorem 1.1.5 expresses that Poisson arrival epochs occur completely randomly
in time. This is in agreement with the lack of memory of the exponential density
λe−λx of the interarrival times. This density is largest at x = 0 and decreases as x

increases. Thus short interarrival times are relatively frequent. This suggests that
the Poisson arrival epochs show a tendency to cluster. Indeed this is confirmed by
simulation experiments. Clustering of points in Poisson processes is of interest in
many applications, including risk analysis and telecommunication. It is therefore
important to have a formula for the probability that a given time interval of length
T contains some time window of length w in which n or more Poisson events
occur. An exact expression for this probability is difficult to give, but a simple and
excellent approximation is provided by

1 − P (n − 1, λw) exp [−
(

1 − λw

n

)
λ(T − w)p(n − 1, λw)],

where p(k, λw) = e−λw(λw)k/k! and P (n, λw) = ∑n
k=0 p(k, λw). The approxi-

mation is called Alm’s approximation; see Glaz and Balakrishnan (1999). To illus-
trate the clustering phenomenon, consider the following example. In the first five
months of the year 2000, trams hit and killed seven people in Amsterdam, each
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case caused by the pedestrian’s carelessness. In the preceding years such accidents
occurred on average 3.7 times per year. Is the clustering of accidents in the year
2000 exceptional? It is exceptional if seven or more fatal accidents occur during
the coming five months, but it is not exceptional when over a period of ten years
(say) seven or more accidents happen in some time window having a length of
five months. The above approximation gives the value 0.104 for the probability
that over a period of ten years there is some time window having a length of
five months in which seven or more fatal accidents occur. The exact value of the
probability is 0.106.

1.2 COMPOUND POISSON PROCESSES

A compound Poisson process generalizes the Poisson process by allowing jumps
that are not necessarily of unit magnitude.

Definition 1.2.1 A stochastic process {X(t), t ≥ 0} is said to be a compound
Poisson process if it can be represented by

X(t) =
N(t)∑
i=1

Di, t ≥ 0,

where {N(t), t ≥ 0} is a Poisson process with rate λ, and D1, D2, . . . are inde-
pendent and identically distributed non-negative random variables that are also
independent of the process {N(t)}.

Compound Poisson processes arise in a variety of contexts. As an example,
consider an insurance company at which claims arrive according to a Poisson
process and the claim sizes are independent and identically distributed random
variables, which are also independent of the arrival process. Then the cumulative
amount claimed up to time t is a compound Poisson variable. Also, the compound
Poisson process has applications in inventory theory. Suppose customers asking
for a given product arrive according to a Poisson process. The demands of the
customers are independent and identically distributed random variables, which are
also independent of the arrival process. Then the cumulative demand up to time t

is a compound Poisson variable.
The mean and variance of the compound Poisson variable X(t) are given by

E[X(t)] = λtE(D1) and σ 2[X(t)] = λtE(D2
1), t ≥ 0. (1.2.1)

This result follows from (A.9) and (A.10) in Appendix A and the fact that both
the mean and variance of the Poisson variable N(t) are equal to λt .
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Discrete compound Poisson distribution

Consider first the case of discrete random variables D1, D2, . . . :

aj = P {D1 = j}, j = 0, 1, . . . .

Then a simple algorithm can be given to compute the probability distribution of
the compound Poisson variable X(t). For any t ≥ 0, let

rj (t) = P {X(t) = j}, j = 0, 1, . . . .

Define the generating function A(z) by

A(z) =
∞∑

j=0

aj z
j , |z| ≤ 1.

Also, for any fixed t > 0, define the generating function R(z, t) as

R(z, t) =
∞∑

j=0

rj (t)z
j , |z| ≤ 1.

Theorem 1.2.1 For any fixed t > 0 it holds that:

(a) the generating function R(z, t) is given by

R(z, t) = e−λt{1−A(z)}, |z| ≤ 1 (1.2.2)

(b) the probabilities {rj (t), j = 0, 1, . . . } satisfy the recursion

rj (t) = λt

j

j−1∑
k=0

(j − k)aj−krk(t), j = 1, 2, . . . , (1.2.3)

starting with r0(t) = e−λt (1−a0).

Proof Fix t ≥ 0. By conditioning on the number of arrivals up to time t ,

rj (t) =
∞∑

n=0

P {X(t) = j | N(t) = n}P {N(t) = n}

=
∞∑

n=0

P {D0 + · · · + Dn = j}e−λt (λt)n

n!
, j = 0, 1, . . .

with D0 = 0. This gives, after an interchange of the order of summation,

∞∑
j=0

rj (t)z
j =

∞∑
n=0

e−λt (λt)n

n!

∞∑
j=0

P {D0 + · · · + Dn = j}zj .
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Since the Di are independent of each other, it follows that

∞∑
j=0

P {D0 + · · · + Dn = j}zj = E(zD0+···+Dn)

= E(zD0) · · ·E(zDn) = [A(z)]n.

Thus

R(z, t) =
∞∑

n=0

e−λt (λt)n

n!
[A(z)]n = e−λt[1−A(z)]

which proves (1.2.2). To prove part (b) for fixed t , we write R(z) = R(z, t) for ease
of notation. It follows immediately from the definition of the generating function
that the probability rj (t) is given by

rj (t) = 1

j !

djR(z)

dzj

∣∣∣∣
z=0

.

It is not possible to obtain (1.2.3) directly from this relation and (1.2.2). The
following intermediate step is needed. By differentiation of (1.2.2), we find

R′(z) = λtA′(z)R(z), |z| ≤ 1.

This gives

∞∑
j=1

jrj (t)z
j−1 = λt

[ ∞∑
k=1

kakz
k−1

] [ ∞∑
�=0

r�(t)z
�

]

=
∞∑

k=1

∞∑
�=0

λtkakr�(t)z
k+�−1.

Replacing k + l by j and interchanging the order of summation yields

∞∑
j=1

jrj (t)z
j−1 =

∞∑
k=1

∞∑
j=k

λtkakrj−k(t)z
j−1

=
∞∑

j=1


 j∑

k=1

λtkakrj−k(t)


 zj−1.

Next equating coefficients gives the recurrence relation (1.2.3).

The recursion scheme for the rj (t) is easy to program and is numerically stable.
It is often called Adelson’s recursion scheme after Adelson (1966). In the insurance
literature the recursive scheme is known as Panjer’s algorithm. Note that for the
special case of a1 = 1 the recursion (1.2.3) reduces to the familiar recursion
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scheme for computing Poisson probabilities. An alternative method to compute the
compound Poisson probabilities rj (t), j = 0, 1, . . . is to apply the discrete FFT
method to the explicit expression (1.2.2) for the generating function of the rj (t);
see Appendix D.

Continuous compound Poisson distribution

Suppose now that the non-negative random variables Di are continuously dis-
tributed with probability distribution function A(x) = P {D1 ≤ x} having the prob-
ability density a(x). Then the compound Poisson variable X(t) has the positive
mass e−λt at point zero and a density on the positive real line. Let

a∗(s) =
∫ ∞

0
e−sxa(x) dx

be the Laplace transform of a(x). In the same way that (1.2.2) was derived,

E[e−sX(t)] = e−λt{1−a∗(s)}.

Fix t > 0. How do we compute P {X(t) > x} as function of x? Several compu-
tational methods can be used. The probability distribution function P {X(t) > x}
for x ≥ 0 can be computed by using a numerical method for Laplace inver-
sion; see Appendix F. By relation (E.7) in Appendix E, the Laplace transform of
P {X(t) > x} is given by∫ ∞

0
e−sxP {X(t) > x} dx = 1 − e−λt{1−a∗(s)}

s
.

If no explicit expression is available for a∗(s) (as is the case when the Di are
lognormally distributed), an alternative is to use the integral equation

P {X(t) > x} =
∫ t

0

[
1 − A(x) +

∫ x

0
P {X(t − u) > x − y}a(y) dy

]
λe−λu du.

This integral equation is easily obtained by conditioning on the epoch of the first
Poisson event and by conditioning on D1. The corresponding integral equation
for the density of X(t) can be numerically solved by applying the discretization
algorithm given in Den Iseger et al. (1997). This discretization method uses spline
functions and is very useful when one is content with an approximation error of
about 10−8. Finally, for the special case of the Di having a gamma distribution,
the probability P {X(t) > x} can simply be computed from

P {X(t) > x} =
∞∑

n=1

e−λt (λt)n

n!
{1 − Bn∗(x)}, x > 0,

where the n-fold convolution function Bn∗ (x) is the probability distribution func-
tion of D1 + · · · + Dn. If the Di have a gamma distribution with shape parameter
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α and scale parameter β, the sum D1 + · · · + Dn has a gamma distribution with
shape parameter nα and scale parameter β. The computation of the gamma distribu-
tion offers no numerical difficulties; see Appendix B. The assumption of a gamma
distribution is appropriate in many inventory applications with X(t) representing
the cumulative demand up to time t .

1.3 NON-STATIONARY POISSON PROCESSES

The non-stationary Poisson process is another useful stochastic process for counting
events that occur over time. It generalizes the Poisson process by allowing for an
arrival rate that need not be constant in time. Non-stationary Poisson processes
are used to model arrival processes where the arrival rate fluctuates significantly
over time. In the discussion below, the arrival rate function λ(t) is assumed to be
piecewise continuous.

Definition 1.3.1 A counting process {N(t), t ≥ 0} is said to be a non-stationary
Poisson process with intensity function λ(t), t ≥ 0, if it satisfies the following
properties:

(a) N(0) = 0

(b) the process {N(t)} has independent increments

(c) P {N(t + �t) − N(t) = 1} = λ(t)�t + o(�t) as �t → 0

(d) P {N(t + �t) − N(t) ≥ 2} = o(�t) as �t → 0.

The next theorem proves that the total number of arrivals in a given time interval
is Poisson distributed.

Theorem 1.3.1 For any t, s ≥ 0,

P {N(t + s) − N(t) = k} = e−[M(t+s)−M(t)] [M(t + s) − M(t)]k

k!
, (1.3.1)

for k = 0, 1, . . . , where M(x) = ∫ x

0 λ(y) dy, x ≥ 0.

Proof The proof is instructive. Fix t ≥ 0. Put for abbreviation

pk(s) = P {N(t + s) − N(t) = k}, k = 0, 1, . . . .

Consider now pk(s + �s) for �s small. Since the probability of two or more
arrivals in a small time interval of length �s is negligibly small compared with
�s as �s → 0, it follows that the only possibility for the process to be in state k

at time t + s + �s is that the process is either in state k − 1 or in state k at time
t + s. Hence, by conditioning on the state of the process at time t + s and given
that the process has independent increments,

pk(s + �s) = pk−1(s)[λ(t + s)�s + o(�s)] + pk(s)[1 − λ(t + s)�s + o(�s)]
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as �s → 0. Subtracting pk(s) from both sides of this equation and dividing by
�s, we obtain

p′
k(s) = −λ(t + s)[pk(s) − pk−1(s)], k = 1, 2, . . . .

For k = 0, we have p′
0(s) = −λ(t + s)p0(s). The boundary conditions p0(0) = 1

and pk(0) = 0 for k ≥ 1 apply. It is well known from the theory of differential
equations that the solution of the first-order differential equation

y′(s) + a(s)y(s) = b(s), s ≥ 0

is given by

y(s) = e−A(s)

∫ s

0
b(x)eA(x) dx + ce−A(s)

for some constant c, where A(s) = ∫ s

0 a(x) dx. The constant c is determined by a
boundary condition on y(0). This gives after some algebra

p0(s) = e−[M(s+t)−M(t)], s ≥ 0.

By induction the expression for pk(s) next follows from p′
k(s) + λ(t + s)pk(s) =

λ(t + s)pk−1(s). We omit the details.

Note that M(t) represents the expected number of arrivals up to time t .

Example 1.3.1 A canal touring problem

A canal touring boat departs for a tour through the canals of Amsterdam every T

minutes with T fixed. Potential customers pass the point of departure according to
a Poisson process with rate λ. A potential customer who sees that the boat leaves
t minutes from now joins the boat with probability e−µt for 0 ≤ t ≤ T . Which
stochastic process describes the arrival of customers who actually join the boat
(assume that the boat has ample capacity)? The answer is that this process is a
non-stationary Poisson process with arrival rate function λ(t), where

λ(t) = λe−µ(T −t) for 0 ≤ t < T and λ(t) = λ(t − T ) for t ≥ T .

This follows directly from the observation that for �t small

P {a customer joins the boat in (t, t + �t)}
= (λ�t) × e−µ(T −t) + o(�t), 0 ≤ t < T .

Thus, by Theorem 1.3.1, the number of passengers joining a given tour is Poisson
distributed with mean

∫ T

0 λ(t) dt = (λ/µ)(1 − e−µT ).
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Another illustration of the usefulness of the non-stationary Poisson process is
provided by the following example.

Example 1.3.2 Replacement with minimal repair

A machine has a stochastic lifetime with a continuous distribution. The machine is
replaced by a new one at fixed times T , 2T , . . . , whereas a minimal repair is done at
each failure occurring between two planned replacements. A minimal repair returns
the machine into the condition it was in just before the failure. It is assumed that
each minimal repair takes a negligible time. What is the probability distribution of
the total number of minimal repairs between two planned replacements?

Let F(x) and f (x) denote the probability distribution function and the probability
density of the lifetime of the machine. Also, let r(t) = f (t)/[1 − F(t)] denote the
failure rate function of the machine. It is assumed that f (x) is continuous. Then
the answer to the above question is

P {there are k minimal repairs between two planned replacements}

= e−M(T ) [M(T )]k

k!
, k = 0, 1, . . . ,

where M(T ) = ∫ T

0 r(t) dt . This result follows directly from Theorem 1.3.1 by not-
ing that the process counting the number of minimal repairs between two planned
replacements satisfies the properties (a), (b), (c) and (d) of Definition 1.3.1. Use
the fact that the probability of a failure of the machine in a small time interval
(t, t + �t] is equal to r(t)�t + o(�t), as shown in Appendix B.

1.4 MARKOV MODULATED BATCH
POISSON PROCESSES∗

The Markov modulated batch Poisson process generalizes the compound Pois-
son process by allowing for correlated interarrival times. This process is used
extensively in the analysis of teletraffic models (a special case is the compos-
ite model of independent on-off sources multiplexed together). A so-called phase
process underlies the arrival process, where the evolution of the phase process
occurs isolated from the arrivals. The phase process can only assume a finite
number of states i = 1, . . . , m. The sojourn time of the phase process in state
i is exponentially distributed with mean 1/ωi . If the phase process leaves state
i, it goes to state j with probability pij, independently of the duration of the
stay in state i. It is assumed that pii = 0 for all i. The arrival process of cus-
tomers is a compound Poisson process whose parameters depend on the state of
the phase process. If the phase process is in state i, then batches of customers
arrive according to a Poisson process with rate λi where the batch size has the

∗This section contains specialized material that is not used in the sequel.
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discrete probability distribution {a(i)
k , k = 1, 2, . . . }. It is no restriction to assume

that a
(i)
0 = 0; otherwise replace λi by λi(1 − a

(i)
0 ) and a

(i)
k by a

(i)
k /(1 − a

(i)
0 )

for k ≥ 1.
For any t ≥ 0 and i, j = 1, . . . , m, define

Pij(k, t) = P {the total number of customers arriving in (0, t) equals k and

the phase process is in state j at time t | the phase process is in

state i at the present time 0}, k = 0, 1, . . . .

Also, for any t > 0 and i, j = 1, . . . , m, let us define the generating function P ∗
ij

(z, t) by

P ∗
ij (z, t) =

∞∑
k=0

Pij(k, t)zk, |z| ≤ 1.

To derive an expression for P ∗
ij (z, t), it is convenient to use matrix notation. Let

Q = (qij) be the m × m matrix whose (i, j )th element is given by

qii = −ωi and qij = ωipij for j 
= i.

Define the m × m diagonal matrices � and Ak by

� = diag(λ1, . . . , λm) and Ak = diag(a
(1)
k , . . . , a

(m)
k ), k = 1, 2, . . . .

(1.4.1)
Let the m × m matrix Dk for k = 0, 1, . . . be defined by

D0 = Q − � and Dk = Ak�, k = 1, 2, . . . . (1.4.2)

Using (Dk)ij to denote the (i, j)th element of the matrix Dk , define the generating
function Dij(z) by

Dij(z) =
∞∑

k=0

(Dk)ijz
k, |z| ≤ 1.

Theorem 1.4.1 Let P ∗(z, t) and D(z) denote the m × m matrices whose (i, j)th
elements are given by the generating functions P ∗

ij (z, t) and Dij(z). Then, for any
t > 0,

P ∗(z, t) = eD(z)t , |z| ≤ 1, (1.4.3)

where eAt is defined by eAt = �∞
n=0A

ntn/n!.

Proof The proof is based on deriving a system of differential equations for the
Pij(k, t). Fix i, j , k and t . Consider Pij(k, t + �t) for �t small. By conditioning
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on what may happen in (t, t + �t), it follows that

Pij(k, t + �t) = Pij(k, t)(1 − λj�t)(1 − ωj�t) +
∑
s 
=j

Pis(k, t)[(ωs�t) × psj ]

+
k−1∑
�=0

Pij(�, t)
[
(λj�t) × a

(j)
k−�

]
+ o(�t).

Using the definition of the qij, we rewrite this relation as

Pij(k, t + �t) = Pij(k, t)(1 − λj�t) +
m∑

s=1

Pis(k, t)qsj�t

+
k−1∑
�=0

Pij(�, t)λja
(j)

k−��t + o(�t),

which implies that

d

dt
Pij(k, t) = −λjPij(k, t) +

m∑
s=1

Pis(k, t)qsj + λj

k−1∑
�=0

Pij(�, t)a
(j)

k−�.

Letting P (k, t) be the m × m matrix whose (i, j)th element is Pij(k, t), we have
in matrix notation that

d

dt
P (k, t) = P (k, t)(Q − �) +

k−1∑
�=0

P (�, t)Ak−��.

Using the definition of the matrices Dk , we find next that

d

dt
P (k, t) = P (k, t)D0 +

k−1∑
�=0

P (�, t)Dk−�

=
k∑

�=0

P (�, t)Dk−�.

Multiply componentwise both sides of this matrix equation by zk and sum over k.
Since the generating function of the convolution of two sequences is the product
of the generating functions of the two sequences, it follows that

d

dt
P ∗(z, t) = P ∗(z, t)D(z).

For each fixed i this equation gives a system of linear differential equations in
P ∗

ij (z, t) for j = 1, . . . , m. Thus, by a standard result from the theory of linear
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differential equations, we obtain

P ∗
i (z, t) = eD(z)tP ∗

i (z, 0) (1.4.4)

where P ∗
i (z, t) is the ith row of the matrix P ∗(z, t). Since P ∗

i (z, 0) equals the ith
unit vector ei = (0, . . . , 1, . . . , 0), it next follows that P ∗(z, t) = eD(z)t , as was
to be proved.

In general it is a formidable task to obtain the numerical values of the prob-
abilities Pij(k, t) from the expression (1.4.4), particularly when m is large.∗ The
numerical approach of the discrete FFT method is only practically feasible when
the computation of the matrix eD(z)t is not too burdensome. Numerous algorithms
for the computation of the matrix exponential eAt have been proposed, but they do
not always provide high accuracy. The computational work is simplified when the
m×m matrix A has m different eigenvalues µ1, . . . , µm (say), as is often the case
in applications. It is well known from linear algebra that the matrix A can then be
diagonalized as

A = SχS−1,

where the diagonal matrix χ is given by χ = diag(µ1, . . . , µm) and the column
vectors of the matrix S are the linearly independent eigenvectors associated with
the eigenvalues µ1, . . . , µm. Moreover, by An = SχnS−1, it holds that

eAt = S diag(eµ1t , . . . , eµmt )S−1.

Fast codes for the computation of eigenvalues and eigenvectors of a (complex)
matrix are widely available.

To conclude this section, it is remarked that the matrix D(z) in the matrix expo-
nential eD(z)t has a very simple form for the important case of single arrivals (i.e.
a

(1)
i = 1 for i = 1, . . . , m). It then follows from (1.4.1) and (1.4.2) that

D(z) = Q − � + �z, |z| ≤ 1.

The arrival process with single arrivals is called the Markov modulated Poisson
process. A special case of this process is the switched Poisson process which has
only two arrival rates (m = 2). This model is frequently used in applications. In
the special case of the switched Poisson process, the following explicit expressions
can be given for the generating functions P ∗

ij (z, t) :

P ∗
ii (z, t) = 1

r2(z) − r1(z)

[
{r2(z) − (λi(1 − z) + ωi)}e−r1(z)t

− {r1(z) − (λi(1 − z) + ωi)}e−r2(z)t
]
, i = 1, 2,

∗It is also possible to formulate a direct probabilistic algorithm for the computation of the probabilities
Pij(k, t). This algorithm is based on the uniformization method for continuous-time Markov chains; see
Section 4.5.
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P ∗
12(z, t) = ω1

e−r1(z)t − e−r2(z)t

r2(z) − r1(z)
and P ∗

21(z, t) = ω2
e−r1(z)t − e−r2(z)t

r2(z) − r1(z)
,

where

r1,2(z) = 1

2
(λ1(1 − z) + ω1 + λ2(1 − z) + ω2)

± 1

2

[
{λ1(1 − z) + ω1 + λ2(1 − z) + ω2}2

− 4{(λ1(1 − z) + ω1)(λ2(1 − z) + ω2) − ω1ω2}
]1/2

.

It is a matter of straightforward but tedious algebra to derive these expressions. The
probabilities Pij(k, t) can be readily computed from these expressions by applying
the discrete FFT method.

EXERCISES

1.1 A businessman parks his car illegally in the streets of Amsterdam twice a day for a
period of exactly one hour. Parking surveillances occur according to a Poisson process with
an average of λ passes per hour. What is the probability of the businessman getting a fine
on a given day?

1.2 At a shuttle station, passengers arrive according to a Poisson process with rate λ. A
shuttle departs as soon as seven passengers have arrived. There is an ample number of
shuttles at the station.

(a) What is the conditional distribution of the time a customer has to wait until departure
when upon arrival the customer finds j other customers waiting for j = 0, 1, . . . , 6?

(b) What is the probability that the nth customer will not have to wait? (Hint : distinguish
between the case that n is a multiple of 7 and the case that n is not a multiple of 7.)

(c) What is the long-run fraction of customers who, upon arrival, find j other customers
waiting for j = 0, 1, . . . 6?

(d) What is the long-run fraction of customers who wait more than x time units until
departure?

1.3 Answer (a), (b) and (c) in Exercise 1.2 assuming that the interarrival times of the
customers have an Erlang (2, λ) distribution.

1.4 You leave work at random times between 5 pm and 6 pm to take the bus home. Bus
numbers 1 and 3 bring you home. You take the first bus that arrives. Bus number 1 arrives
exactly every 10 minutes, whereas bus number 3 arrives according to a Poisson process
with the same average frequency as bus number 1. What is the probability that you take bus
number 1 home on a given day? Can you explain why this probability is larger than 1/2?

1.5 You wish to cross a one-way traffic road on which cars drive at a constant speed and
pass according to a Poisson process with rate λ. You can only cross the road when no car
has come round the corner for c time units. What is the probability of the number of passing
cars before you can cross the road when you arrive at a random moment? What property of
the Poisson process do you use?

1.6 Consider a Poisson arrival process with rate λ. For each fixed t > 0, define the random
variable δt as the time elapsed since the last arrival before or at time t (assume that an
arrival occurs at epoch 0).

(a) Show that the random variable δt has a truncated exponential distribution: P {δt =
t} = e−λt and P {δt > x} = e−λx for 0 ≤ x < t .
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(b) Prove that the random variables γt (= waiting time from time t until the next arrival)
and δt are independent of each other by verifying P {γt > u, δt > v} = P {γt > u}P {δt > v}
for all u ≥ 0 and 0 ≤ v < t .

1.7 Suppose that fast and slow cars enter a one-way highway according to independent
Poisson processes with respective rates λ1 and λ2. The length of the highway is L. A
fast car travels at a constant speed of s1 and a slow car at a constant speed of s2 with
s2 < s1. When a fast car encounters a slower one, it cannot pass it and the car has to
reduce its speed to s2. Show that the long-run average travel time per fast car equals
L/s2 − (1/λ2)[1 − exp (−λ2(L/s2 − L/s1))]. (Hint : tag a fast car and express its travel
time in terms of the time elapsed since the last slow car entered the highway.)

1.8 Let {N(t)} be a Poisson process with interarrival times X1, X2, . . . . Prove for any
t, s > 0 that for all n, k = 0, 1, . . .

P {N(t + s) − N(t) ≤ k, N(t) = n} = P {N(s) ≤ k}P {N(t) = n}.
In other words, the process has stationary and independent increments. (Hint: evaluate the
probability P {X1 + · · · + Xn ≤ t < X1 + · · · + Xn+1, X1 + · · · + Xn+k+1 > t + s}.)
1.9 An information centre provides services in a bilingual environment. Requests for service
arrive by telephone. Major language service requests and minor language service requests
arrive according to independent Poisson processes with respective rates of λ1 and λ2 requests
per hour. The service time of each request is exponentially distributed with a mean of 1/µ1
minutes for a major language request and a mean of 1/µ2 minutes for a minor language
request.

(a) What is the probability that in the next hour a total of n service requests will arrive?
(b) What is the probability density of the service time of an arbitrarily chosen service

request?

1.10 Short-term parkers and long-term parkers arrive at a parking lot according to indepen-
dent Poisson processes with respective rates λ1 and λ2. The parking times of the customers
are independent of each other. The parking time of a short-term parker has a uniform dis-
tribution on [a1, b1] and that of a long-term parker has a uniform distribution on [a2, b2].
The parking lot has ample capacity.

(a) What is the mean parking time of an arriving car?
(b) What is the probability distribution of the number of occupied parking spots at any

time t > b2?

1.11 Oil tankers with world’s largest harbour Rotterdam as destination leave from harbours
in the Middle East according to a Poisson process with an average of two tankers per day.
The sailing time to Rotterdam has a gamma distribution with an expected value of 10 days
and a standard deviation of 4 days. What is the probability distribution of the number of oil
tankers that are under way from the Middle East to Rotterdam at an arbitrary point in time?

1.12 Customers with items to repair arrive at a repair facility according to a Poisson process
with rate λ. The repair time of an item has a uniform distribution on [a, b]. There are ample
repair facilities so that each defective item immediately enters repair. The exact repair time
can be determined upon arrival of the item. If the repair time of an item takes longer than
τ time units with τ a given number between a and b, then the customer gets a loaner for
the defective item until the item returns from repair. A sufficiently large supply of loaners
is available. What is the average number of loaners which are out?

1.13 On a summer day, buses with tourists arrive in the picturesque village of Edam accord-
ing to a Poisson process with an average of five buses per hour. The village of Edam is
world famous for its cheese. Each bus stays either one hour or two hours in Edam with
equal probabilities.

(a) What is the probability distribution of the number of tourist buses in Edam at 4 o’clock
in the afternoon?
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(b) Each bus brings 50, 75 or 100 tourists with respective probabilities 1
4 , 1

2 and 1
4 .

Calculate a normal approximation to the probability that more than 1000 bus tourists are in
Edam at 4 o’clock in the afternoon. (Hint: the number of bus tourists is distributed as the
convolution of two compound Poisson distributions.)

1.14 Batches of containers arrive at a stockyard according to a Poisson process with rate
λ. The batch sizes are independent random variables having a common discrete probability
distribution {βj , j = 1, 2, . . . } with finite second moment. The stockyard has ample space to
store any number of containers. The containers are temporarily stored at the stockyard. The
holding times of the containers at the stockyard are independent random variables having a
general probability distribution function B(x) with finite mean µ. Also, the holding times
of containers from the same batch are independent of each other. This model is called
the batch-arrival MX/G/∞ queue with individual service. Let β (z) = ∑∞

j=1 βj zj be the
generating function of the batch size and let {pj } denote the limiting distribution of the
number of the containers present at the stockyard.

(a) Use Theorem 1.1.5 to prove that P (z) = ∑∞
j=0 pj zj is given by

P (z) = exp

(
−λ

∫ ∞

0
[1 − β ((1 − z)B(x) + z)] dx

)
.

(b) Verify that the mean m and the variance ν of the limiting distribution of the number
of containers at the stockyard are given by

m = λE(X)µ and ν = λE(X)µ + λE [X(X − 1)]
∫ ∞

0
{1 − B (x)}2 dx,

where the random variable X has the batch-size distribution {βj }.
(c) Investigate how good the approximation to {pj } performs when a negative binomial

distribution is fitted to the mean m and the variance ν. Verify that this approximation is
exact when the service times are exponentially distributed and the batch size is geometrically
distributed with mean β > 1.

1.15 Consider Exercise 1.14 assuming this time that containers from the same batch are
kept at the stockyard over the same holding time and are thus simultaneously removed. The
holding times for the various batches have a general distribution function B (x). This model
is called the batch-arrival MX/G/∞ queue with group service.

(a) Argue that the limiting distribution {pj } of the number of containers present at the
stockyard is insensitive to the form of the holding-time distribution and requires only its
mean µ.

(b) Argue that the limiting distribution {pj } is a compound Poisson distribution with
generating function exp (−λD{1 − β(z)}) with D = µ.

1.16 In a certain region, traffic accidents occur according to a Poisson process. Calculate
the probability that exactly one accident has occurred on each day of some week when it is
given that seven accidents have occurred in that week. Can you explain why this probability
is so small?
1.17 Suppose calls arrive at a computer-controlled exchange according to a Poisson process
at a rate of 25 calls per second. Compute an approximate value for the probability that
during the busy hour there is some period of 3 seconds in which 125 or more calls arrive.

1.18 In any given year claims arrive at an insurance company according to a Poisson process
with an unknown parameter λ, where λ is the outcome of a gamma distribution with shape
parameter α and scale parameter β. Prove that the total number of claims during a given
year has a negative binomial distribution with parameters α and β/(β + 1).

1.19 Claims arrive at an insurance company according to a Poisson process with rate λ. The
claim sizes are independent random variables and have the common discrete distribution
ak = −αk[k ln(1 − α)]−1 for k = 1, 2, . . . , where α is a constant between 0 and 1. Verify
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that the total amount claimed during a given year has a negative binomial distribution with
parameters −λ/ ln(1 − α) and 1 − α.

1.20 An insurance company has two policies with fixed remittances. Claims from the policies
1 and 2 arrive according to independent Poisson processes with respective rates λ1 and λ2.
Each claim from policy i is for a fixed amount of ci , where c1 and c2 are positive integers.
Explain how to compute the probability distribution of the total amount claimed during a
given time period.

1.21 It is only possible to place orders for a certain product during a random time T which
has an exponential distribution with mean 1/µ. Customers who wish to place an order
for the product arrive according to a Poisson process with rate λ. The amounts ordered
by the customers are independent random variables D1, D2, . . . having a common discrete
distribution {aj , j = 1, 2, . . . }.

(a) Verify that the mean m and the variance σ 2 of the total amount ordered during the
random time T are given by

m = λ

µ
E(D1) and σ 2 = λ

µ
E(D2

1) + λ2

µ2
E2(D1).

(b) Let {pk} be the probability distribution of the total amount ordered during the random
time T . Argue that the pk can be recursively computed from

pk = λ

λ + µ

k∑
j=1

pk−j aj , k = 1, 2, . . . ,

starting with p0 = µ/(λ + µ).

1.22 Consider a non-stationary Poisson arrival process with arrival rate function λ(t). It is
assumed that λ(t) is continuous and bounded in t . Let λ > 0 be any upper bound on the
function λ(t). Prove that the arrival epochs of the non-stationary Poisson arrival process can
be generated by the following procedure:

(a) Generate arrival epochs of a Poisson process with rate λ.
(b) Thin out the arrival epochs by accepting an arrival occurring at epoch s with probability

λ(s)/λ and rejecting it otherwise.

1.23 Customers arrive at an automatic teller machine in accordance with a non-stationary
Poisson process. From 8 am until 10 am customers arrive at a rate of 5 an hour. Between
10 am and 2 pm the arrival rate steadily increases from 5 per hour at 10 am to 25 per hour
at 2 pm. From 2 pm to 8 pm the arrival rate steadily decreases from 25 per hour at 2 pm
to 4 per hour at 8 pm. Between 8 pm and midnight the arrival rate is 3 an hour and from
midnight to 8 am the arrival rate is 1 per hour. The amounts of money withdrawn by the
customers are independent and identically distributed random variables with a mean of $100
and a standard deviation of $125.

(a) What is the probability distribution of the number of customers withdrawing money
during a 24-hour period?

(b) Calculate an approximation to the probability that the total withdrawal during 24 hours
is more than $25 000.
1.24 Parking-fee dodgers enter the parking lot of the University of Amsterdam according to
a Poisson process with rate λ. The parking lot has ample capacity. Each fee dodger parks
his/her car during an Erlang (2, µ) distributed time. It is university policy to inspect the
parking lot every T time units, with T fixed. Each newly arrived fee dodger is fined. What
is the probability distribution of the number of fee dodgers who are fined at an inspection?

1.25 Suppose customers arrive according to a non-stationary Poisson process with arrival rate
function λ(t). Any newly arriving customer is marked as a type k customer with probability
pk for k = 1, . . . , L, independently of the other customers. Prove that the customers of
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the types 1, . . . , L arrive according to independent non-stationary Poisson processes with
respective arrival rate functions p1λ(t), . . . , pLλ(t).

1.26 Consider the infinite-server queueing model from Section 1.1.3, but assume now that
customers arrive according to a non-stationary Poisson process with arrival rate function
λ(t). Let B(x) be the probability distribution function of the service time of a customer.
Assuming that the system is empty at epoch 0, prove that the number of busy servers at
time t has a Poisson distribution with mean

∫ t
0 λ(x){1 − B(t − x)}dx.

1.27 Consider the M/G/∞ queue from Section 1.1.3 again. Let the random variable L be
the length of a busy period. A busy period begins when an arrival finds the system empty
and finishes when there are no longer any customers in the system. Argue that P {L > t}
can be obtained from the integral equation

P {L > t} = 1 − B(t) +
∫ t

0
{B(t) − B(x)}P {L > t − x}λe−λxdx, t ≥ 0,

where B(t) is the probability distribution function of the service time of a customer. Remark:
it was shown in Shanbhag (1966) that the Laplace transform of P {L > t} is given by

1

s

(
1 − λ + s

λ
+ 1

λ

{∫ ∞

0
exp

(
−sx − λ

∫ x

0
(1 − B(y))dy

)
dx

}−1
)

.

BIBLIOGRAPHIC NOTES

A treatment of the Poisson process can be found in numerous texts. A good treat-
ment is given in the books of Ross (1996) and Wolff (1989). The Poisson process
is fundamental to all areas of applied probability. The infinite-server queue with
Poisson input has many applications. The applications in Examples 1.1.3 and 1.1.4
are taken from papers of Parikh (1977) and Sherbrooke (1968).
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CHAPTER 2

Renewal-Reward Processes

2.0 INTRODUCTION

The renewal-reward model is an extremely useful tool in the analysis of applied
probability models for inventory, queueing and reliability applications, among oth-
ers. Many stochastic processes are regenerative; that is, they regenerate themselves
from time to time so that the behaviour of the process after the regeneration epoch
is a probabilistic replica of the behaviour of the process starting at time zero. The
time interval between two regeneration epochs is called a cycle. The sequence of
regeneration cycles constitutes a so-called renewal process. The long-run behaviour
of a regenerative stochastic process on which a reward structure is imposed can
be studied in terms of the behaviour of the process during a single regeneration
cycle. The simple and intuitively appealing renewal-reward model has numerous
applications.

In Section 2.1 we first discuss some elementary results from renewal theory. A
more detailed treatment of renewal theory will be given in Chapter 8. Section 2.2
deals with the renewal-reward model. It shows how to calculate long-run aver-
ages such as the long-run average reward per time unit and the long-run fraction
of time the system spends in a given set of states. Illustrative examples will be
given. Section 2.3 discusses the formula of Little. This formula is a kind of law
of nature and relates among others the average queue size to the average wait-
ing time in queueing systems. Another fundamental result that is frequently used
in queueing and inventory applications is the property that Poisson arrivals see
time averages (PASTA). This result is discussed in some detail in Section 2.4. The
PASTA property is used in Section 2.5 to obtain the famous Pollaczek–Khintchine
formula from queueing theory. The renewal-reward model is used in Section 2.6 to
obtain a generalization of the Pollaczek–Khintchine formula in the framework of
a controlled queue. Section 2.7 shows how renewal theory and an up- and down-
crossing argument can be combined to derive a relation between time-average and
customer-average probabilities in queues.

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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2.1 RENEWAL THEORY

As a generalization of the Poisson process, renewal theory concerns the study of
stochastic processes counting the number of events that take place as a function
of time. Here the interoccurrence times between successive events are indepen-
dent and identically distributed random variables. For instance, the events could
be the arrival of customers to a waiting line or the successive replacements of
light bulbs. Although renewal theory originated from the analysis of replacement
problems for components such as light bulbs, the theory has many applications to
quite a wide range of practical probability problems. In inventory, queueing and
reliability problems, the analysis is often based on an appropriate identification of
embedded renewal processes for the specific problem considered. For example, in
a queueing process the embedded events could be the arrival of customers who
find the system empty, or in an inventory process the embedded events could be
the replenishment of stock when the inventory position drops to the reorder point
or below it.

Formally, let X1, X2, . . . be a sequence of non-negative, independent random
variables having a common probability distribution function

F(x) = P {Xk ≤ x}, x ≥ 0

for k = 1, 2, . . . . Letting µ1 = E(Xk), it is assumed that

0 < µ1 < ∞.

The random variable Xn denotes the interoccurrence time between the (n − 1)th
and nth event in some specific probability problem. Define

S0 = 0 and Sn =
n∑

i=1

Xi, n = 1, 2, . . . .

Then Sn is the epoch at which the nth event occurs. For each t ≥ 0, let

N(t) = the largest integer n ≥ 0 for which Sn ≤ t.

Then the random variable N(t) represents the number of events up to time t .

Definition 2.1.1 The counting process {N(t), t ≥ 0} is called the renewal process
generated by the interoccurrence times X1, X2, . . . .

It is said that a renewal occurs at time t if Sn = t for some n. For each t ≥ 0, the
number of renewals up to time t is finite with probability 1. This is an immediate
consequence of the strong law of large numbers stating that Sn/n → E(X1) with
probability 1 as n → ∞ and thus Sn ≤ t only for finitely many n. The Poisson
process is a special case of a renewal process. Here we give some other examples
of a renewal process.
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Example 2.1.1 A replacement problem

Suppose we have an infinite supply of electric bulbs, where the burning times of
the bulbs are independent and identically distributed random variables. If the bulb
in use fails, it is immediately replaced by a new bulb. Let Xi be the burning time of
the ith bulb, i = 1, 2, . . . . Then N(t) is the total number of bulbs to be replaced
up to time t .

Example 2.1.2 An inventory problem

Consider a periodic-review inventory system for which the demands for a single
product in the successive weeks t = 1, 2, . . . are independent random variables
having a common continuous distribution. Let Xi be the demand in the ith week,
i = 1, 2, . . . . Then 1+N(u) is the number of weeks until depletion of the current
stock u.

2.1.1 The Renewal Function

An important role in renewal theory is played by the renewal function M(t) which
is defined by

M(t) = E[N(t)], t ≥ 0. (2.1.1)

For n = 1, 2, . . . , define the probability distribution function

Fn(t) = P {Sn ≤ t}, t ≥ 0.

Note that F1(t) = F(t). A basic relation is

N(t) ≥ n if and only if Sn ≤ t. (2.1.2)

This relation implies that

P {N(t) ≥ n} = Fn(t), n = 1, 2, . . . . (2.1.3)

Lemma 2.1.1 For any t ≥ 0,

M(t) =
∞∑

n=1

Fn(t). (2.1.4)

Proof Since for any non-negative integer-valued random variable N ,

E(N) =
∞∑

k=0

P {N > k} =
∞∑

n=1

P {N ≥ n},

the relation (2.1.4) is an immediate consequence of (2.1.3).
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In Exercise 2.4 the reader is asked to prove that M(t) < ∞ for all t ≥ 0. In
Chapter 8 we will discuss how to compute the renewal function M(t) in general.
The infinite series (2.1.4) is in general not useful for computational purposes. An
exception is the case in which the interoccurrence times X1, X2, . . . have a gamma
distribution with shape parameter α > 0 and scale parameter λ > 0. Then the sum
X1+· · ·+Xn has a gamma distribution with shape parameter nα and scale parameter
λ. In this case Fn(t) is the so-called incomplete gamma integral for which efficient
numerical procedures are available; see Appendix B. Let us explain this in more
detail for the case that α is a positive integer r so that the interoccurrence times
X1, X2, . . . have an Erlang (r, λ) distribution with scale parameter λ. Then Fn(t)

becomes the Erlang (nr, λ) distribution function

Fn(t) = 1 −
nr−1∑
k=0

e−λt (λt)k

k!
, t ≥ 0

and thus

M(t) =
∞∑

n=1

[
1 −

nr−1∑
k=0

e−λt (λt)k

k!

]
, t ≥ 0. (2.1.5)

In this particular case M(t) can be efficiently computed from a rapidly converg-
ing series. For the special case that the interoccurrence times are exponentially
distributed (r = 1), the expression (2.1.5) reduces to the explicit formula

M(t) = λt, t ≥ 0.

This finding is in agreement with earlier results for the Poisson process.

Remark 2.1.1 The phase method
A very useful interpretation of the renewal process {N(t)} can be given when the
interoccurrence times X1, X2, . . . have an Erlang distribution. Imagine that tokens
arrive according to a Poisson process with rate λ and that the arrival of each rth
token triggers the occurrence of an event. Then the events occur according to a
renewal process in which the interoccurrence times have an Erlang (r, λ) distri-
bution with scale parameter λ. The explanation is that the sum of r independent,
exponentially distributed random variables with the same scale parameter λ has an
Erlang (r, λ) distribution. The phase method enables us to give a tractable expres-
sion of the probability distribution of N(t) when the interoccurrence times have an
Erlang (r, λ) distribution. In this case P {N(t) ≥ n} is equal to the probability that
nr or more arrivals occur in a Poisson arrival process with rate λ. You are asked
to work out the equivalence in Exercise 2.5.

Asymptotic expansion

A very useful asymptotic expansion for the renewal function M(t) can be given
under a weak regularity condition on the interoccurrence times. This condition
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will be formulated in Section 8.2. For the moment it is sufficient to assume that
the interoccurrence times have a positive density on some interval. Further it is
assumed that µ2 = E(X2

1) is finite. Then it will be shown in Theorem 8.2.3 that

lim
t→∞

[
M(t) − t

µ1

]
= µ2

2µ2
1

− 1. (2.1.6)

The approximation

M(t) ≈ t

µ1
+ µ2

2µ2
1

− 1 for t large

is practically useful for already moderate values of t provided that the squared
coefficient of variation of the interoccurrence times is not too large and not too
close to zero.

2.1.2 The Excess Variable

In many practical probability problems an important quantity is the random variable
γt defined as the time elapsed from epoch t until the next renewal after epoch t .
More precisely, γt is defined as

γt = SN(t)+1 − t ;

see also Figure 2.1.1 in which a renewal epoch is denoted by ×. Note that SN(t)+1
is the epoch of the first renewal that occurs after time t . The random variable
γt is called the excess or residual life at time t . For the replacement problem of
Example 2.1.1 the random variable γt denotes the residual lifetime of the light bulb
in use at time t .

Lemma 2.1.2 For any t ≥ 0,

E(γt ) = µ1[1 + M(t)] − t. (2.1.7)

Proof Fix t ≥ 0. To prove (2.1.7), we apply Wald’s equation from Appendix A.
To do so, note that N(t) ≤ n − 1 if and only if X1 + · · · + Xn > t . Hence the
event {N(t) + 1 = n} depends only on X1, . . . , Xn and is thus independent of
Xn+1, Xn+2, . . . . Hence

E


N(t)+1∑

k=1

Xk


 = E(X1)E[N(t) + 1],

which gives (2.1.7).

0 S1 S2 tSN(t) SN(t) + 1 Time

gt

Figure 2.1.1 The excess life



38 RENEWAL-REWARD PROCESSES

In Corollary 8.2.4 it will be shown that

lim
t→∞ E(γt ) = µ2

2µ1
and lim

t→∞ E(γ 2
t ) = µ3

3µ1
(2.1.8)

with µk = E(Xk
1) for k = 1, 2, 3, provided that the interoccurrence times have a

positive density on some interval. An illustration of the usefulness of the concept
of excess variable is provided by the next example.

Example 2.1.3 The average order size in an (s, S) inventory system

Suppose a periodic-review inventory system for which the demands X1, X2, . . .

for a single product in the successive weeks 1, 2, . . . are independent random
variables having a common probability density f (x) with finite mean α and finite
standard deviation σ . Any demand exceeding the current inventory is backlogged
until inventory becomes available by the arrival of a replenishment order. The
inventory position is reviewed at the beginning of each week and is controlled by
an (s, S) rule with 0 ≤ s < S. Under this control rule, a replenishment order of
size S −x is placed when the review reveals that the inventory level x is below the
reorder point s; otherwise, no ordering is done. We assume instantaneous delivery
of every replenishment order.

We are interested in the average order size. Since the inventory process starts
from scratch each time the inventory position is ordered up to level S, the operating
characteristics can be calculated by using a renewal model in which the weekly
demand sizes X1, X2, . . . represent the interoccurrence times of renewals. The
number of weeks between two consecutive orderings equals the number of weeks
needed for a cumulative demand larger than S − s. The order size is the sum of
S − s and the undershoot of the reorder point s at the epoch of ordering (see
Figure 2.1.2 in which a renewal occurrence is denoted by an ×). Denote by {N(t)}
the renewal process associated with the weekly demands X1, X2, . . . . Then the
number of weeks needed for a cumulative demand exceeding S − s is given by
1 + N(S − s). The undershoot of the reorder point s is just the excess life γS−s of
the renewal process. Hence

E[order size] = S − s + E(γS−s).

From (2.1.8) it follows that the average order size can be approximated by

E[order size] ≈ S − s + σ 2 + α2

2α

0 S − s Cumulative demand

gS − sX1 X2

Figure 2.1.2 The inventory process modelled as a renewal process
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provided that S − s is sufficiently large compared with E(weekly demand). In
practice this is a useful approximation for S−s > α when the weekly demand is not
highly variable and has a squared coefficient of variation between 0.2 and 1 (say).

Another illustration of the importance of the excess variable is given by the
famous waiting-time paradox.

Example 2.1.4 The waiting-time paradox

We have all experienced long waits at a bus stop when buses depart irregularly and
we arrive at the bus stop at random. A theoretical explanation of this phenomenon is
provided by the expression for limt→∞ E(γt ). Therefore it is convenient to rewrite
(2.1.8) as

lim
t→∞ E(γt ) = 1

2
(1 + c2

X)µ1, (2.1.9)

where

c2
X = σ 2(X1)

E2(X1)

is the squared coefficient of variation of the interdeparture times X1, X2, . . . . The
equivalent expression (2.1.9) follows from (2.1.8) by noting that

1 + c2
X = 1 + µ2 − µ2

1

µ2
1

= µ2

µ2
1

. (2.1.10)

The representation (2.1.9) makes clear that

lim
t→∞ E(γt ) =

{
< µ1 if c2

X < 1,

> µ1 if c2
X > 1.

Thus the mean waiting time for the next bus depends on the regularity of the bus
service and increases with the coefficient of variation of the interdeparture times. If
we arrive at the bus stop at random, then for highly irregular service (c2

X > 1) the
mean waiting time for the next bus is even larger than the mean interdeparture time.
This surprising result is sometimes called the waiting-time paradox. A heuristic
explanation is that it is more likely to hit a long interdeparture time than a short
one when arriving at the bus stop at random. To illustrate this, consider the extreme
situation in which the interdeparture time is 0 minutes with probability 9/10 and is
10 minutes with probability 1/10. Then the mean interdeparture time is 1 minute,
but your mean waiting time for the next bus is 5 minutes when you arrive at the
bus stop at random.

2.2 RENEWAL-REWARD PROCESSES

A powerful tool in the analysis of numerous applied probability models is the
renewal-reward model. This model is also very useful for theoretical purposes. In
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Chapters 3 and 4, ergodic theorems for Markov chains will be proved by using
the renewal-reward theorem. The renewal-reward model is a simple and intuitively
appealing model that deals with a so-called regenerative process on which a cost
or reward structure is imposed. Many stochastic processes have the property of
regenerating themselves at certain points in time so that the behaviour of the process
after the regeneration epoch is a probabilistic replica of the behaviour starting at
time zero and is independent of the behaviour before the regeneration epoch.

A formal definition of a regenerative process is as follows.

Definition 2.2.1 A stochastic process {X(t), t ∈ T } with time-index set T is said
to be regenerative if there exists a (random) epoch S1 such that:

(a) {X(t + S1), t ∈ T } is independent of {X(t), 0 ≤ t < S1},
(b) {X(t + S1), t ∈ T } has the same distribution as {X(t), t ∈ T }.

It is assumed that the index set T is either the interval T = [0, ∞) or the count-
able set T = {0, 1, . . . }. In the former case we have a continuous-time regenerative
process and in the other case a discrete-time regenerative process. The state space
of the process {X(t)} is assumed to be a subset of some Euclidean space.

The existence of the regeneration epoch S1 implies the existence of further
regeneration epochs S2, S3, . . . having the same property as S1. Intuitively speak-
ing, a regenerative process can be split into independent and identically distributed
renewal cycles. A cycle is defined as the time interval between two consecutive
regeneration epochs. Examples of regenerative processes are:

(i) The continuous-time process {X(t), t ≥ 0} with X(t) denoting the number of
customers present at time t in a single-server queue in which the customers
arrive according to a renewal process and the service times are independent
and identically distributed random variables. It is assumed that at epoch 0 a
customer arrives at an empty system. The regeneration epochs S1, S2, . . . are
the epochs at which an arriving customer finds the system empty.

(ii) The discrete-time process {In, n = 0, 1, . . . } with In denoting the inventory
level at the beginning of the nth week in the (s, S) inventory model dealt with
in Example 2.1.3. Assume that the inventory level equals S at epoch 0. The
regeneration epochs are the beginnings of the weeks in which the inventory
level is ordered up to the level S.

Let us define the random variables Cn = Sn −Sn−1, n = 1, 2, . . . , where S0 = 0
by convention. The random variables C1, C2, . . . are independent and identically
distributed. In fact the sequence {C1, C2, . . . } underlies a renewal process in which
the events are the occurrences of the regeneration epochs. Hence we can interpret
Cn as

Cn = the length of the nth renewal cycle, n = 1, 2, . . . .
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Note that the cycle length Cn assumes values from the index set T . In the following
it is assumed that

0 < E(C1) < ∞.

In many practical situations a reward structure is imposed on the regenerative
process {X(t), t ∈ T }. The reward structure usually consists of reward rates that
are earned continuously over time and lump rewards that are only earned at certain
state transitions. Let

Rn = the total reward earned in the nth renewal cycle, n = 1, 2, . . . .

It is assumed that R1, R2, . . . are independent and identically distributed random
variables. In applications Rn typically depends on Cn. In case Rn can take on both
positive and negative values, it is assumed that E(|R1|) < ∞. Let

R(t) = the cumulative reward earned up to time t.

The process {R(t), t ≥ 0} is called a renewal-reward process. We are now ready
to prove a theorem of utmost importance.

Theorem 2.2.1 (renewal-reward theorem)

lim
t→∞

R(t)

t
= E(R1)

E(C1)
with probability 1.

In other words, for almost any realization of the process, the long-run average
reward per time unit is equal to the expected reward earned during one cycle divided
by the expected length of one cycle.

To prove this theorem we first establish the following lemma.

Lemma 2.2.2 For any t ≥ 0, let N(t) be the number of cycles completed up to
time t . Then

lim
t→∞

N(t)

t
= 1

E(C1)
with probability 1.

Proof By the definition of N(t), we have

C1 + · · · + CN(t) ≤ t < C1 + · · · + CN(t)+1.

Since P {C1 + · · · + Cn < ∞} = 1 for all n ≥ 1, it is not difficult to verify that

lim
t→∞ N(t) = ∞ with probability 1.

The above inequality gives

C1 + · · · + CN(t)

N(t)
≤ t

N(t)
<

C1 + · · · + CN(t)+1

N(t) + 1

N(t) + 1

N(t)
.
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By the strong law of large numbers for a sequence of independent and identically
distributed random variables, we have

lim
n→∞

C1 + · · · + Cn

n
= E(C1) with probability 1.

Hence, by letting t → ∞ in the above inequality, the desired result follows.

Lemma 2.2.2 is also valid when E(C1) = ∞ provided that P {C1 < ∞} = 1. The
reason is that the strong law of large numbers for a sequence {Cn} of non-negative
random variables does not require that E(C1) < ∞. Next we prove Theorem 2.2.1.

Proof of Theorem 2.2.1 For ease, let us first assume that the rewards are non-
negative. Then, for any t > 0,

N(t)∑
i=1

Ri ≤ R(t) ≤
N(t)+1∑

i=1

Ri.

This gives

N(t)∑
i=1

Ri

N(t)
× N(t)

t
≤ R(t)

t
≤

N(t)+1∑
i=1

Ri

N(t) + 1
× N(t) + 1

t
.

By the strong law of large numbers for the sequence {Rn}, we have

lim
n→∞

1

n

n∑
i=1

Ri = E(R1) with probability 1.

As pointed out in the proof of Lemma 2.2.2, N(t) → ∞ with probability 1 as
t → ∞. Letting t → ∞ in the above inequality and using Lemma 2.2.2, the desired
result next follows for the case that the rewards are non-negative. If the rewards can
assume both positive and negative values, then the theorem is proved by treating
the positive and negative parts of the rewards separately. We omit the details.

In a natural way Theorem 2.2.1 relates the behaviour of the renewal-reward
process over time to the behaviour of the process over a single renewal cycle. It is
noteworthy that the outcome of the long-run average actual reward per time unit
can be predicted with probability 1. If we are going to run the process over an
infinitely long period of time, then we can say beforehand that in the long run the
average actual reward per time unit will be equal to the constant E(R1)/E(C1) with
probability 1. This is a much stronger and more useful statement than the statement
that the long-run expected average reward per time unit equals E(R1)/E(C1) (it
indeed holds that limt→∞ E[R(t)]/t = E(R1)/E(C1); this expected-value version
of the renewal-reward theorem is a direct consequence of Theorem 2.2.1 when
R(t)/t is bounded in t but otherwise requires a hard proof). Also it is noted that for
the case of non-negative rewards Rn the renewal-reward theorem is also valid when
E(R1) = ∞ (the assumption E(C1) < ∞ cannot be dropped for Theorem 2.2.1).
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Example 2.2.1 Alternating up- and downtimes

Suppose a machine is alternately up and down. Denote by U1, U2, . . . the lengths
of the successive up-periods and by D1, D2, . . . the lengths of the successive
down-periods. It is assumed that both {Un} and {Dn} are sequences of independent
and identically distributed random variables with finite positive expectations. The
sequences {Un} and {Dn} are not required to be independent of each other. Assume
that an up-period starts at epoch 0. What is the long-run fraction of time the machine
is down? The answer is

the long-run fraction of time the machine is down

= E(D1)

E(U1) + E(D1)
with probability 1. (2.2.1)

To verify this, define the continuous-time stochastic process {X(t), t ≥ 0} by

X(t) =
{

1 if the machine is up at time t,

0 otherwise.

The process {X(t)} is a regenerative process. The epochs at which an up-period
starts can be taken as regeneration epochs. The long-run fraction of time the
machine is down can be interpreted as a long-run average cost per time unit
by assuming that a cost at rate 1 is incurred while the machine is down and
a cost at rate 0 otherwise. A regeneration cycle consists of an up-period and a
down-period. Hence

E(length of one cycle) = E(U1 + D1)

and

E(cost incurred during one cycle) = E(D1).

By applying the renewal-reward theorem, it follows that the long-run average cost
per time unit equals E(D1)/[E(U1) + E(D1)], proving the result (2.2.1).

The intermediate step of interpreting the long-run fraction of time that the process
is in a certain state as a long-run average cost (reward) per time unit is very helpful
in many situations.

Limit theorems for regenerative processes

An important application of the renewal-reward theorem is the characterization
of the long-run fraction of time a regenerative process {X(t), t ∈ T } spends in
some given set B of states. For the set B of states, define for any t ∈ T the
indicator variable

IB(t) =
{

1 if X(t) ∈ B,

0 if X(t) /∈ B.
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Also, define the random variable

TB = the amount of time the process spends in the set B of states during
one cycle.

Note that TB = ∫ S1
0 IB(u) du for a continuous-time process {X(t)}; otherwise, TB

equals the number of indices 0 ≤ k < S1 with X(k) ∈ B. The following theorem
is an immediate consequence of the renewal-reward theorem.

Theorem 2.2.3 For the regenerative process {X(t)} it holds that the long-run
fraction of time the process spends in the set B of states is E(TB)/E(C1) with
probability 1.

That is,

lim
t→∞

1

t

∫ t

0
IB(u) du = E(TB)

E(C1)
with probability 1

for a continuous-time process {X(t)} and

lim
n→∞

1

n

n∑
k=0

IB(k) = E(TB)

E(C1)
with probability 1

for a discrete-time process {X(n)}.
Proof The long-run fraction of time the process {X(t)} spends in the set B of
states can be interpreted as a long-run average reward per time unit by assuming
that a reward at rate 1 is earned while the process is in the set B and a reward at
rate 0 is earned otherwise. Then

E(reward earned during one cycle) = E(TB).

The desired result next follows by applying the renewal-reward theorem.

Since E(IB(t)) = P {X(t) ∈ B}, we have as consequence of Theorem 2.2.3 and
the bounded convergence theorem that, for a continuous-time process,

lim
t→∞

1

t

∫ t

0
P {X(u) ∈ B} du = E(TB)

E(C1)
.

Note that (1/t)
∫ t

0 P {X(u) ∈ B} du can be interpreted as the probability that an
outside observer arriving at a randomly chosen point in (0, t) finds the process in
the set B.

In many situations the ratio E(TB)/E(C1) could be interpreted both as the long-
run fraction of time the process {X(t)} spends in the set B of states and as the
probability of finding the process in the set B when the process has reached sta-
tistical equilibrium. This raises the question whether limt→∞ P {X(t) ∈ B} always
exists. This ordinary limit need not always exist. A counterexample is provided by
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periodic discrete-time Markov chains; see Chapter 3. For completeness we state
the following theorem.

Theorem 2.2.4 For the regenerative process {X(t), t ∈ T },

lim
t→∞ P {X(t) ∈ B} = E(TB)

E(C1)

provided that the probability distribution of the cycle length has a continuous part
in the continuous-time case and is aperiodic in the discrete-time case.

A distribution function is said to have a continuous part if it has a positive
density on some interval. A discrete distribution {aj , j = 0, 1, . . . } is said to
be aperiodic if the greatest common divisor of the indices j ≥ 1 for which
aj > 0 is equal to 1. The proof of Theorem 2.2.4 requires deep mathematics
and is beyond the scope of this book. The interested reader is referred to Miller
(1972). It is remarkable that the proof of Theorem 2.2.3 for the time-average limit
limt→∞ (1/t)

∫ t

0 IB(u) du is much simpler than the proof of Theorem 2.2.4 for
the ordinary limit limt→∞ P {X(t) ∈ B}. This is all the more striking when we
take into account that the time-average limit is in general much more useful
for practical purposes than the ordinary limit. Another advantage of the time-
average limit is that it is easier to understand than the ordinary limit. In interpret-
ing the ordinary limit one should be quite careful. The ordinary limit represents
the probability that an outside person will find the process in some state of the
set B when inspecting the process at an arbitrary point in time after the process
has been in operation for a very long time. It is essential for this interpretation
that the outside person has no information about the past of the process when
inspecting the process. How much more concrete is the interpretation of the time-
average limit as the long-run fraction of time the process will spend in the set B

of states!
To illustrate Theorem 2.2.4, consider again Example 2.2.1. In this example we

analysed the long-run average behaviour of the regenerative process {X(t)}, where
X(t) = 1 if the machine is up at time t and X(t) = 0 otherwise. It was shown that
the long-run fraction of time the machine is down equals E(D)/[E(U) + E(D)],
where the random variables U and D denote the lengths of an up-period and a
down-period. This result does not require any assumption about the shapes of the
probability distributions of U and D. However, some assumption is needed in order
to conclude that

lim
t→∞ P {the system is down at time t} = E(D)

E(U) + E(D)
. (2.2.2)

It is sufficient to assume that the distribution function of the length of an up-period
has a positive density on some interval.

We state without proof a central limit theorem for the renewal-reward process.
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Theorem 2.2.5 Assume that R(t) ≥ 0 with E(C2
1) < ∞ and E(R2

1) < ∞. Then

lim
t→∞ P

{
R(t) − gt

ν
√

t/µ1
≤ x

}
= 1√

2π

∫ x

−∞
e− 1

2 y2
dy, x ≥ 0,

where µ1 = E(C1), µ2 = E(C2
1), g = E(R1)/E(C1) and ν2 = E(R1 − gC1)

2.

A proof of this theorem can be found in Wolff (1989). In applying this theo-
rem, the difficulty is usually to find the constant ν. In specific applications one
might use simulation to find ν. As a special case, Theorem 2.2.5 includes a central
limit theorem for the renewal process {N(t)} studied in Section 2.1. Taking the
rewards Rn equal to 1 it follows that the renewal process {N(t)} is asymptotically
N(t/µ1, σ 2t/µ3

1) distributed with σ 2 = µ2 − µ2
1.

Next we give two illustrative examples of the renewal-reward model.

Example 2.2.2 A stochastic clearing system

In a communication system messages requiring transmission arrive according to
a Poisson process with rate λ. The messages are temporarily stored in a buffer
having ample capacity. Every T time units, the buffer is cleared from all messages
present. The buffer is empty at time t = 0. A fixed cost of K > 0 is incurred for
each clearing of the buffer. Also, for each message there is a holding cost of h > 0
for each time unit the message has to wait in the buffer. What is the value of T

for which the long-run average cost per time unit is minimal?
We first derive an expression for the average cost per time unit for a given

value of the control parameter T . To do so, observe that the stochastic process
describing the number of messages in the system regenerates itself each time the
buffer is cleared from all messages present. This fact uses the lack of memory of
the Poisson arrival process so that at any clearing epoch it is not relevant how
long ago the last message arrived. Taking a cycle as the time interval between two
successive clearings of the buffer, we have

the expected length of one cycle = T .

To specify the expected cost incurred during one cycle, we need an expression for
the total waiting time of all messages arriving during one cycle. It was shown in
Example 1.1.4 that

E[total waiting time in (0, T )] = 1

2
λT 2.

This gives

E[cost incurred during one cycle] = K + 1

2
hλT 2.
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Hence, by the renewal-reward theorem,

the long-run average cost per time unit = 1

T

(
K + 1

2
hλT 2

)

with probability 1. When K = 0 and h = 1, the system incurs a cost at rate j

whenever there are j messages in the buffer, in which case the average cost per
time unit gives the average number of messages in the buffer. Hence

the long-run average number of messages in the buffer = 1

2
λT .

Putting the derivative of the cost function equal to 0, it follows that the long-run
average cost is minimal for

T ∗ =
√

2K

hλ
.

Example 2.2.3 A reliability system with redundancies

An electronic system consists of a number of independent and identical compo-
nents hooked up in parallel. The lifetime of each component has an exponential
distribution with mean 1/µ. The system is operative only if m or more components
are operating. The non-failed units remain in operation when the system as a whole
is in a non-operative state. The system availability is increased by periodic main-
tenance and by putting r redundant components into operation in addition to the
minimum number m of components required. Under the periodic maintenance the
system is inspected every T time units, where at inspection the failed components
are repaired. The repair time is negligible and each repaired component is again
as good as new. The periodic inspections provide the only repair opportunities.
The following costs are involved. For each component there is a depreciation cost
of I > 0 per time unit. A fixed cost of K > 0 is made for each inspection and
there is a repair cost of R > 0 for each failed component. How can we choose
the number r of redundant components and the time T between two consecutive
inspections such that the long-run average cost per time unit is minimal subject to
the requirement that the probability of system failure between two inspections is
no more than a prespecified value α?

We first derive the performance measures for given values of the parameters r

and T . The stochastic process describing the number of operating components is
regenerative. Using the lack of memory of the exponential lifetimes of the compo-
nents, it follows that the process regenerates itself after each inspection. Taking a
cycle as the time interval between two inspections, we have

E(length of one cycle) = T .
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Further, using the fact that a given component fails within a time T with probability
1 − e−µT , it follows that

P {the system as a whole fails between two inspections}

=
m+r∑

k=r+1

(
m + r

k

)
(1 − e−µT )ke−µT (m+r−k)

and
E(number of components that fail between two inspections)

= (m + r)(1 − e−µT ).

Hence

E(total costs in one cycle) = (m + r)I × T + K + (m + r)(1 − e−µT )R.

This gives
the long-run average cost per time unit

= 1

T
[(m + r)I × T + K + (m + r)(1 − e−µT )R]

with probability 1. The optimal values of the parameters r and T are found from
the following minimization problem:

Minimize
1

T
[(m + r)I × T + K + (m + r)(1 − e−µT )R]

subject to
m+r∑

k=r+1

(
m + r

k

)
(1 − e−µT )ke−µT (m+r−k) ≤ α.

Using the Lagrange method this problem can be numerically solved.

Rare events∗

In many applied probability problems one has to study rare events. For example,
a rare event could be a system failure in reliability applications or buffer overflow
in finite-buffer telecommunication problems. Under general conditions it holds that
the time until the first occurrence of a rare event is approximately exponentially
distributed. Loosely formulated, the following result holds. Let {X(t)} be a regen-
erative process having a set B of (bad) states such that the probability q that
the process visits the set B during a given cycle is very small. Denote by the
random variable U the time until the process visits the set B for the first time.
Assuming that the cycle length has a finite and positive mean E(T ), it holds that
P {U > t} ≈ e−tq/E(T ) for t ≥ 0; see Keilson (1979) or Solovyez (1971) for

∗This section may be skipped at first reading.
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a proof. The result that the time until the first occurrence of a rare event in a
regenerative process is approximately exponentially distributed is very useful. It
gives not only quantitative insight, but it also implies that the computation of the
mean of the first-passage time suffices to get the whole distribution.

In the next example we obtain the above result by elementary arguments.

Example 2.2.4 A reliability problem with periodic inspections

High reliability of an electronic system is often achieved by employing redundant
components and having periodic inspections. Let us consider a reliability system
with two identical units, where one unit is in full operation and the other unit is in
warm standby. The operating unit has a constant failure rate of λ0 and the unit in
standby has a constant failure rate of λ1, where 0 ≤ λ1 < λ0. Upon failure of the
operating unit, the standby unit is put into full operation provided the standby is not
in the failure state. Failed units are replaced only at the scheduled times T , 2T , . . .

when the system is inspected. The time to replace any failed unit is negligible.
A system failure occurs if both units are down. It is assumed that (λ0 + λ1)T is
sufficiently small so that a system failure is a rare event. In designing highly reliable
systems a key measure of system performance is the probability distribution of the
time until the first system failure.

To find the distribution of the time until the first system failure, we first compute
the probability q defined by

q = P {system failure occurs between two inspections}.

To do so, observe that a constant failure rate λ for the lifetime of a unit implies that
the lifetime has an exponential distribution with mean 1/λ. Using the fact that the
minimum of two independent exponentials with respective means 1/λ0 and 1/λ1
is exponentially distributed with mean 1/(λ0 +λ1), we find by conditioning on the
epoch of the first failure of a unit that

q =
∫ T

0

{
1 − e−λ0(T −x)

}
(λ0 + λ1) e−(λ0+λ1)x dx

= 1 − (λ0 + λ1)

λ1
e−λ0T + λ0

λ1
e−(λ0+λ1)T .

Assuming that both units are in good condition at epoch 0, let

U = the time until the first system failure.

Since the process describing the state of the two units regenerates itself at each
inspection, it follows that

P {U > nT } = (1 − q)n, n = 0, 1, . . . .
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Assuming that the failure probability q is close to 0, the approximations (1−q)n ≈
1 − nq and e−nq ≈ 1 − nq apply. Thus we find that

P {U > t} ≈ e−tq/T , t ≥ 0.

In other words, the time until the first system failure is approximately exponentially
distributed.

2.3 THE FORMULA OF LITTLE

To introduce the formula of Little, we consider first two illustrative examples. In
the first example a hospital admits on average 25 new patients per day. A patient
stays on average 3 days in the hospital. What is the average number of occupied
beds? Let λ = 25 denote the average number of new patients who are admitted
per day, W = 3 the average number of days a patient stays in the hospital and L

the average number of occupied beds. Then L = λW = 25 × 3 = 75 beds. In the
second example a specialist shop sells on average 100 bottles of a famous Mexican
premium beer per week. The shop has on average 250 bottles in inventory. What is
the average number of weeks that a bottle is kept in inventory? Let λ = 100 denote
the average demand per week, L = 250 the average number of bottles kept in stock
and W the average number of weeks that a bottle is kept in stock. Then the answer
is W = L/λ = 250/100 = 2.5 weeks. These examples illustrate Little’s formula
L = λW . The formula of Little is a ‘law of nature’ that applies to almost any
type of queueing system. It relates long-run averages such as the long-run average
number of customers in a queue (system) and the long-run average amount of time
spent per customer in the queue (system). A queueing system is described by the
arrival process of customers, the service facility and the service discipline, to name
the most important elements. In formulating the law of Little, there is no need to
specify those basic elements. For didactical reasons, however, it is convenient to
distinguish between queueing systems with infinite queue capacity and queueing
systems with finite queue capacity.

Infinite-capacity queues

Consider a queueing system with infinite queue capacity, that is, every arriving
customer is allowed to wait until service can be provided. Define the following
random variables:

Lq(t) = the number of customers in the queue at time t

(excluding those in service),

L(t) = the number of customers in the system at time t

(including those in service),
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Dn = the amount of time spent by the nth customer in the queue
(excluding service time),

Un = the amount of time spent by the nth customer in the system
(including service time).

Let us assume that each of the stochastic processes {Lq(t)}, {L(t)}, {Dn} and {Un}
is regenerative and has a cycle length with a finite expectation. Then there are
constants Lq , L, Wq and W such that the following limits exist and are equal to
the respective constants with probability 1:

lim
t→∞

1

t

∫ t

0
Lq(u) du = Lq (the long-run average number in queue),

lim
t→∞

1

t

∫ t

0
L(u) du = L (the long-run average number in system),

lim
n→∞

1

n

n∑
k=1

Dk = Wq (the long-run average delay in queue per customer),

lim
n→∞

1

n

n∑
k=1

Uk = W (the long-run average sojourn time per customer).

Now define the random variable

A(t) = the number of customers arrived by time t,

It is also assumed that, for some constant λ,

lim
t→∞

A(t)

t
= λ with probability 1.

The constant λ gives the long-run average arrival rate of customers. The limit
λ exists when customers arrive according to a renewal process (or batches of
customers arrive according to a renewal process with independent and identically
distributed batch sizes).

The existence of the above limits is sufficient to prove the basic relations

Lq = λWq (2.3.1)

and
L = λW (2.3.2)

These basic relations are the most familiar form of the formula of Little. The reader
is referred to Stidham (1974) and Wolff (1989) for a rigorous proof of the formula
of Little. Here we will be content to demonstrate the plausibility of this result. The
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formula of Little is easiest understood (and reconstructed) when imagining that each
customer pays money to the system manager according to some non-discrimination
rule. Then it is intuitively obvious that

the long-run average reward per time unit earned by the system

= (the long-run average arrival rate of paying customers) (2.3.3)

× (the long-run average amount received per paying customer).

In regenerative queueing processes this relation can often be directly proved by
using the renewal-reward theorem; see Exercise 2.26. Taking the ‘money principle’
(2.3.3) as starting point, it is easy to reproduce various representations of Little’s
law. To obtain (2.3.1), imagine that each customer pays $1 per time unit while
waiting in queue. Then the long-run average amount received per customer equals
the long-run average time in queue per customer (= Wq ). On the other hand, the
system manager receives $j for each time unit that there are j customers waiting
in queue. Hence the long-run average reward earned per time unit by the system
manager equals the long-run average number of customers waiting in queue (= Lq).
The average arrival rate of paying customers is obviously given by λ. Applying the
relation (2.3.3) gives next the formula (2.3.1). The formula (2.3.2) can be seen by
a very similar reasoning: imagine that each customer pays $1 per time unit while
in the system. Another interesting relation arises by imagining that each customer
pays $1 per time unit while in service. Denoting by E(S) the long-run average
service time per customer, it follows that

the long-run average number of customers in service = λE(S). (2.3.4)

If each customer requires only one server and each server can handle only one
customer at a time, this relation leads to

the long-run average number of busy servers = λE(S). (2.3.5)

Finite-capacity queues

Assume now there is a maximum on the number of customers allowed in the
system. In other words, there are only a finite number of waiting places and each
arriving customer finding all waiting places occupied is turned away. It is assumed
that a rejected customer has no further influence on the system. Let the rejection
probability Prej be defined by

Prej = the long-run fraction of customers who are turned away,

assuming that this long-run fraction is well defined. The random variables L(t),
Lq(t), Dn and Un are defined as before, except that Dn and Un now refer to the
queueing time and sojourn time of the nth accepted customer. The constants Wq

and W now represent the long-run average queueing time per accepted customer
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and the long-run average sojourn time per accepted customer. The formulas (2.3.1),
(2.3.2) and (2.3.4) need only slight modification:

Lq = λ(1 − Prej )Wq and L = λ(1 − Prej )W, (2.3.6)

the long-run average number of customers in service

= λ(1 − Prej )E(S). (2.3.7)

Heuristically, these formulas follow by applying the money principle (2.3.3) and
taking only the accepted customers as paying customers.

2.4 POISSON ARRIVALS SEE TIME AVERAGES

In the analysis of queueing (and other) problems, one sometimes needs the long-
run fraction of time the system is in a given state and sometimes needs the long-
run fraction of arrivals who find the system in a given state. These averages can
often be related to each other, but in general they are not equal to each other. To
illustrate that the two averages are in general not equal to each other, suppose that
customers arrive at a service facility according to a deterministic process in which
the interarrival times are 1 minute. If the service of each customer is uniformly
distributed between 1

4 minute and 3
4 minute, then the long-run fraction of time the

system is empty equals 1
2 , whereas the long-run fraction of arrivals finding the

system empty equals 1. However the two averages would have been the same if
the arrival process of customers had been a Poisson process. As a prelude to the
generally valid property that Poisson arrivals see time averages, we first analyse
two specific problems by the renewal-reward theorem.

Example 2.4.1 A manufacturing problem

Suppose that jobs arrive at a workstation according to a Poisson process with rate
λ. The workstation has no buffer to store temporarily arriving jobs. An arriving job
is accepted only when the workstation is idle, and is lost otherwise. The processing
times of the jobs are independent random variables having a common probability
distribution with finite mean β. What is the long-run fraction of time the workstation
is busy and what is the long-run fraction of jobs that are lost?

These two questions are easily answered by using the renewal-reward theorem.
Let us define the following random variables. For any t ≥ 0, let

I (t) =
{

1 if the workstation is busy at time t,

0 otherwise.

Also, for any n = 1, 2, . . . , let

In =
{

1 if the workstation is busy just prior to the nth arrival,

0 otherwise.
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The continuous-time process {I (t)} and the discrete-time process {In} are both
regenerative. The arrival epochs occurring when the workstation is idle are regen-
eration epochs for the two processes. Why? Let us say that a cycle starts each
time an arriving job finds the workstation idle. The long-run fraction of time the
workstation is busy is equal to the expected amount of time the workstation is
busy during one cycle divided by the expected length of one cycle. The expected
length of the busy period in one cycle equals β. Since the Poisson arrival process
is memoryless, the expected length of the idle period during one cycle equals the
mean interarrival time 1/λ. Hence, with probability 1,

the long-run fraction of time the workstation is busy

= β

β + 1/λ
. (2.4.1)

The long-run fraction of jobs that are lost equals the expected number of jobs lost
during one cycle divided by the expected number of jobs arriving during one cycle.
Since the arrival process is a Poisson process, the expected number of (lost) arrivals
during the busy period in one cycle equals λ × E(processing time of a job) = λβ.
Hence, with probability 1,

the long-run fraction of jobs that are lost

= λβ

1 + λβ
. (2.4.2)

Thus, we obtain from (2.4.1) and (2.4.2) the remarkable result

the long-run fraction of arrivals finding the workstation busy

= the long-run fraction of time the workstation is busy. (2.4.3)

Incidentally, it is interesting to note that in this loss system the long-run fraction
of lost jobs is insensitive to the form of the distribution function of the processing
time but needs only the first moment of this distribution. This simple loss system
is a special case of Erlang’s loss model to be discussed in Chapter 5.

Example 2.4.2 An inventory model

Consider a single-product inventory system in which customers asking for the
product arrive according to a Poisson process with rate λ. Each customer asks
for one unit of the product. Each demand which cannot be satisfied directly from
stock on hand is lost. Opportunities to replenish the inventory occur according to
a Poisson process with rate µ. This process is assumed to be independent of the
demand process. For technical reasons a replenishment can only be made when
the inventory is zero. The inventory on hand is raised to the level Q each time a
replenishment is done. What is the long-run fraction of time the system is out of
stock? What is the long-run fraction of demand that is lost?
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In the same way as in Example 2.4.1, we define the random variables

I (t) =
{

1 if the system is out of stock at time t,

0 otherwise.

and

In =
{

1 if the system is out of stock when the nth demand occurs,

0 otherwise.

The continuous-time process {I (t)} and the discrete-time process {In} are both
regenerative. The regeneration epochs are the demand epochs at which the stock
on hand drops to zero. Why? Let us say that a cycle starts each time the stock on
hand drops to zero. The system is out of stock during the time elapsed from the
beginning of a cycle until the next inventory replenishment. This amount of time
is exponentially distributed with mean 1/µ. The expected amount of time it takes
to go from stock level Q to 0 equals Q/λ. Hence, with probability 1,

the long-run fraction of time the system is out of stock

= 1/µ

1/µ + Q/λ
. (2.4.4)

To find the fraction of demand that is lost, note that the expected amount of demand
lost in one cycle equals λ × E(amount of time the system is out of stock during
one cycle) = λ/µ. Hence, with probability 1,

the long-run fraction of demand that is lost

= λ/µ

λ/µ + Q
. (2.4.5)

Together (2.4.4) and (2.4.5) lead to this remarkable result:

the long-run fraction of customers finding the system out of stock

= the long-run fraction of time the system is out of stock. (2.4.6)

The relations (2.4.3) and (2.4.6) are particular instances of the property ‘Poisson
arrivals see time averages’. Roughly stated, this property expresses that in statistical
equilibrium the distribution of the state of the system just prior to an arrival epoch
is the same as the distribution of the state of the system at an arbitrary epoch
when arrivals occur according to a Poisson process. An intuitive explanation of
the property ‘Poisson arrivals see time averages’ is that Poisson arrivals occur
completely randomly in time; cf. Theorem 1.1.5.

Next we discuss the property of ‘Poisson arrivals see time averages’ in a broader
context. For ease of presentation we use the terminology of Poisson arrivals. How-
ever, the results below also apply to Poisson processes in other contexts. For some
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specific problem let the continuous-time stochastic process {X(t), t ≥ 0} describe
the evolution of the state of a system and let {N(t), t ≥ 0} be a renewal process
describing arrivals to that system. As examples:

(a) X(t) is the number of customers present at time t in a queueing system.

(b) X(t) describes jointly the inventory level and the prevailing production rate at
time t in a production/inventory problem with a variable production rate.

It is assumed that the arrival process {N(t), t ≥ 0} can be seen as an exogenous
factor to the system and is not affected by the system itself. More precisely, the
following assumption is made.

Lack of anticipation assumption For each u ≥ 0 the future arrivals occurring
after time u are independent of the history of the process {X(t)} up to time u.

It is not necessary to specify how the arrival process {N(t)} precisely interacts
with the state process {X(t)}. Denoting by τn the nth arrival epoch, let the random
variable Xn be defined by X(τ−

n ). In other words,

Xn = the state of the system just prior to the nth arrival epoch.

Let B be any set of states for the {X(t)} process. For each t ≥ 0, define the
indicator variable

IB(t) =
{

1 if X(t) ∈ B,

0 otherwise.

Also, for each n = 1, 2, . . . , define the indicator variable In(B) by

In(B) =
{

1 if Xn ∈ B,

0 otherwise.

The technical assumption is made that the sample paths of the continuous-time
process {IB(t), t ≥ 0} are right-continuous and have left-hand limits. In practical
situations this assumption is always satisfied.

Theorem 2.4.1 (Poisson arrivals see time averages) Suppose that the arrival
process {N(t)} is a Poisson process with rate λ. Then:

(a) For any t > 0,

E[number of arrivals in (0, t) finding the system in the set B]

= λE

[∫ t

0
IB(u) du

]
.
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(b) With probability 1, the long-run fraction of arrivals who find the system in the
set B of states equals the long-run fraction of time the system is in the set B of
states. That is, with probability 1,

lim
n→∞

1

n

n∑
k=1

Ik(B) = lim
t→∞

1

t

∫ t

0
IB(u) du.

Proof See Wolff (1982).
It is remarkable in Theorem 2.4.1 that E[number of arrivals in (0, t) finding the

system in the set B] is equal to λ × E[amount of time in (0, t) that the system is
in the set B], although there is dependency between the arrivals in (0, t) and the
evolution of the state of the system during (0, t). This result is characteristic for
the Poisson process.

The property ‘Poisson arrivals see time averages’ is usually abbreviated as
PASTA. Theorem 2.4.1 has a useful corollary when it is assumed that the continu-
ous-time process {X(t)} is a regenerative process whose cycle length has a finite
positive mean. Define the random variables TB and NB by

TB = amount of time the process {X(t)} is in the set B of states
during one cycle,

NB = number of arrivals during one cycle who find the process {X(t)}
in the set of B states.

The following corollary will be very useful in the algorithmic analysis of queueing
systems in Chapter 9.

Corollary 2.4.2 If the arrival process {N(t)} is a Poisson process with rate λ, then

E(NB) = λE(TB).

Proof Denote by the random variables T and N the length of one cycle and the
number of arrivals during one cycle. Then, by Theorem 2.2.3,

lim
t→∞

1

t

∫ t

0
IB(u) du = E(TB)

E(T )
with probability 1

and

lim
n→∞

1

n

n∑
k=1

Ik(B) = E(NB)

E(N)
with probability 1.

It now follows from part (b) of Theorem 2.4.1 that E(NB)/E(N) = E(TB)/E(T ).
Thus the corollary follows if we can verify that E(N)/E(T ) = λ. To do so, note
that the regeneration epochs for the process {X(t)} are also regeneration epochs
for the Poisson arrival process. Thus, by the renewal-reward theorem, the long-
run average number of arrivals per time unit equals E(N)/E(T ), showing that
E(N)/E(T ) = λ.
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To conclude this section, we use the PASTA property to derive in a heuristic
way one of the most famous formulas from queueing theory.

2.5 THE POLLACZEK–KHINTCHINE FORMULA

Suppose customers arrive at a service facility according to a Poisson process with
rate λ. The service times of the customers are independent random variables having
a common probability distribution with finite first two moments E(S) and E(S2).
There is a single server and ample waiting room for arriving customers finding the
server busy. Each customer waits until service is provided. The server can handle
only one customer at a time. This particular queueing model is abbreviated as the
M/G/1 queue; see Kendall’s notation in Section 9.1. The offered load ρ is defined
by

ρ = λE(S)

and it is assumed that ρ < 1. By Little’s formula (2.3.5) the load factor ρ can be
interpreted as the long-run fraction of time the server is busy. Important perfor-
mance measures are

Lq = the long-run average number of customers waiting in queue,

Wq = the long-run average time spent per customer in queue.

The Pollaczek–Khintchine formula states that

Wq = λE(S2)

2(1 − ρ)
. (2.5.1)

This formula also implies an explicit expression for Lq by Little’s formula

Lq = λWq ; (2.5.2)

see Section 2.3. The Pollaczek–Khintchine formula gives not only an explicit
expression for Wq , but more importantly it gives useful qualitative insights as
well. It shows that the average delay per customer in the M/G/1 queue uses
the service-time distribution only through its first two moments. Denoting by
c2
S = σ 2(S)/E2(S) the squared coefficient of variation of the service time and

using the relation (2.1.10), we can write the Pollaczek–Khintchine formula in the
more insightful form

Wq = 1

2
(1 + c2

S)
ρE(S)

1 − ρ
. (2.5.3)

Hence the Pollaczek–Khintchine formula shows that the average delay per cus-
tomer decreases according to the factor 1

2 (1 + c2
S) when the variability in the

service is reduced while the average arrival rate and the mean service time are kept
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fixed. Noting that c2
S = 1 for exponentially distributed service times, the expression

(2.5.3) can also be written as

Wq = 1

2
(1 + c2

S)Wq(exp), (2.5.4)

where Wq(exp) = ρE(S)/(1 − ρ) denotes the average delay per customer for the
case of exponential services. In particular, writing Wq = Wq(det) for deterministic
services (c2

S = 0), we have

Wq(det) = 1

2
Wq(exp). (2.5.5)

It will be seen in Chapter 9 that the structural form (2.5.4) is very useful to design
approximations in more complex queueing models.

Another important feature shown by the Pollaczek–Khintchine formula is that
the average delay and average queue size increase in a non-linear way when the
offered load ρ increases. A twice as large value for the offered load does not imply
a twice as large value for the average delay! On the contrary, the average delay
and the average queue size explode when the average arrival rate becomes very
close to the average service rate. Differentiation of Wq as a function of ρ shows
that the slope of increase of Wq as a function of ρ is proportional to (1 − ρ)−2.
As an illustration a small increase in the average arrival rate when the load ρ =
0.9 causes an increase in the average delay 25 times greater than it would cause
when the load ρ = 0.5. This non-intuitive finding demonstrates the danger of
designing a stochastic system with too high a utilization level, since then a small
increase in the offered load will in general cause a dramatic degradation in system
performance.

We have not yet proved the Pollaczek–Khintchine formula. First we give a
heuristic derivation and next we give a rigorous proof.

Heuristic derivation

Tag a customer who arrives when the system has reached statistical equilibrium.
Denote its waiting time in queue by the random variable Dtag . Heuristically,
E(Dtag ) = Wq . By the PASTA property, the expected number of customers in
queue seen upon arrival by the tagged customer equals Lq . Noting that ρ is the
long-run fraction of time the server is busy, it also follows that the tagged customer
finds the server busy upon arrival with probability ρ. Using the result (2.1.8) for
the excess variable, it is plausible that the expected remaining service time of the
customer seen in service by a Poisson arrival equals 1

2E(S2)/E(S). Putting the
pieces together, we find the relation

E(Dtag ) = LqE(S) + ρ
E(S2)

2E(S)
.



60 RENEWAL-REWARD PROCESSES

Substituting E(Dtag ) = Wq and Lq = λWq , the relation becomes

Wq = λE(S)Wq + ρE(S2)

2E(S)

yielding the Pollaczek–Khintchine formula for Wq .

Rigorous derivation

A rigorous derivation of the Pollaczek–Khintchine formula can be given by using
the powerful generating-function approach. Define first the random variables

L(t) = the number of customers present at time t,

Qn = the number of customers present just after the nth service
completion epoch,

Ln = the number of customers present just before the nth arrival epoch.

The processes {L(t)}, {Qn} and {Ln} are regenerative stochastic processes with
finite expected cycle lengths. Denote the corresponding limiting distributions by

pj = lim
t→∞ P {L(t) = j}, qj = lim

n→∞ P {Qn = j} and πj = lim
n→∞ P {Ln = j}

for j = 0, 1, . . . . The existence of the limiting distributions can be deduced from
Theorem 2.2.4 (the amount of time elapsed between two arrivals that find the sys-
tem empty has a probability density and the number of customers served during
this time has an aperiodic distribution). We omit the details. The limiting probabil-
ities can also be interpreted as long-run averages. For example, qj is the long-run
fraction of customers leaving j other customers behind upon service completion
and πj is the long-run fraction of customers finding j other customers present upon
arrival. The following important identity holds:

πj = pj = qj, j = 0, 1, . . . . (2.5.6)

Since the arrival process is a Poisson process, the equality πj = pj is readily veri-
fied from Theorem 2.4.1. To verify the equality πj = qj , define the random variable

L
(j)
n as the number of customers over the first n arrivals who see j other customers

present upon arrival and define the random variable Q
(j)
n as the number of service

completion epochs over the first n service completions at which j customers are
left behind. Customers arrive singly and are served singly. Thus between any two
arrivals that find j other customers present there must be a service completion
at which j customers are left behind and, conversely, between any two service
completions at which j customers are left behind there must be an arrival that sees
j other customers present. By this up- and downcrossing argument, we have for
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each j that ∣∣∣L(j)
n − Q

(j)
n

∣∣∣ ≤ 1, n = 1, 2, . . . .

Consequently, πj = limn→∞ L
(j)
n /n = limn→∞ Q

(j)
n /n = qj for all j . We are now

ready to prove that

lim
n→∞ E(zQn) = (1 − z)q0A(z)

A(z) − z
, (2.5.7)

where

A(z) =
∫ ∞

0
e−λt (1−z)b(t) dt

with b(t) denoting the probability density of the service time of a customer. Before
proving this result, we note that the unknown q0 is determined by the fact that
the left-hand side of (2.5.7) equals 1 for z = 1. By applying L’Hospital’s rule, we
find q0 = 1 − ρ, in agreement with Little’s formula 1 − p0 = ρ. By the bounded
convergence theorem in Appendix A,

lim
n→∞ E(zQn) = lim

n→∞

∞∑
j=0

P {Qn = j}zj =
∞∑

j=0

qj z
j , |z| ≤ 1.

Hence, by (2.5.6) and (2.5.7),

∞∑
j=0

pjz
j = (1 − ρ)(1 − z)A(z)

A(z) − z
. (2.5.8)

Since the long-run average queue size Lq is given by

Lq =
∞∑

j=1

(j − 1)pj =
∞∑

j=0

jpj − (1 − p0)

(see Exercise 2.28), the Pollaczek–Khintchine formula for Lq follows by differen-
tiating the right-hand side of (2.5.8) and taking z = 1 in the derivative. It remains
to prove (2.5.7). To do so, note that

Qn = Qn−1 − δ(Qn−1) + An, n = 1, 2, . . . ,

where δ(x) = 1 for x > 0, δ(x) = 0 for x = 0 and An is the number of customers
arriving during the nth service time. By the law of total probability,

P {An = k} =
∫ ∞

0
e−λt (λt)k

k!
b(t) dt, k = 0, 1, . . .
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and so ∞∑
k=0

P {An = k}zk =
∫ ∞

0
e−λt (1−z)b(t) dt.

Since the random variables Qn−1 −δ(Qn−1) and An are independent of each other,

E(zQn) = E(zQn−1−δ(Qn−1))E(zAn). (2.5.9)

We have

E(zQn−1−δ(Qn−1)) = P {Qn−1 = 0} +
∞∑

j=1

zj−1P {Qn−1 = j}

= P {Qn−1 = 0} + 1

z
[E(zQn−1) − P {Qn−1 = 0}].

Substituting this in (2.5.9), we find

zE(zQn) =
[
E(zQn−1) − (1 − z)P {Qn−1 = 0}

]
A(z).

Letting n → ∞, we next obtain the desired result (2.5.7). This completes the proof.
Before concluding this section, we give an amusing application of the Pol-

laczek–Khintchine formula.

Example 2.5.1 Ladies in waiting∗

Everybody knows women spend on average more time in the loo than men. As
worldwide studies show, women typically take 89 seconds to use the loo—about
twice as long as the 39 seconds required by the average man. However, this does
not mean that the queue for the women’s loo is twice as long as the queue for
the men’s. The sequence for the women’s loo is usually far longer. To explain
this using the Pollaczek–Khintchine formula, let us make the following reasonable
assumptions:

1. Men and women arrive at the loo according to independent Poisson processes
with the same rates.

2. The expected amount of time people spend in the loo is twice as large for
women as for men.

3. The coefficient of variation of the time people spend in the loo is larger for
women than for men.

4. There is one loo for women only and one loo for men only.

∗This application is based on the article ‘Ladies Waiting’ by Robert Matthews in New Scientist, Vol. 167,
Issue 2249, 29 July 2000.
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Let λw and λm denote the average arrival rates of women and men. Let µw and
cw denote the mean and the coefficient of variation of the amount of time a woman
spends in the loo. Similarly, µm and cm are defined for men. It is assumed that
λwµw < 1. Using the assumptions λw = λm, µw = 2µm and cw ≥ cm, it follows
from (2.5.2) and the Pollaczek–Khintchine formula (2.5.3) that

the average queue size for the women’s loo

= 1

2
(1 + c2

w)
(λwµw)2

1 − λwµw

≥ 1

2
(1 + c2

m)
(2λmµm)2

1 − 2λmµm

≥ 4 × 1

2
(1 + c2

m)
(λmµm)2

1 − λmµm

.

Hence
the average queue size for the women’s loo

≥ 4 × (the average queue size for the men’s loo).

The above derivation uses the estimate 1 − 2λmµm ≤ 1 −λmµm and thus shows
that the relative difference actually increases much faster than a factor 4 when the
utilization factor λwµw becomes closer to 1.

Laplace transform of the waiting-time probabilities∗

The generating-function method enabled us to prove the Pollaczek–Khintchine
formula for the average queue size. Using Little’s formula we next found the
Pollaczek–Khintchine formula for the average delay in queue of a customer. The
latter formula can also be directly obtained from the Laplace transform of the
waiting-time distribution. This Laplace transform is also of great importance in
itself. The waiting-time probabilities can be calculated by numerical inversion of
the Laplace transform; see Appendix F. A simple derivation can be given for the
Laplace transform of the waiting-time distribution in the M/G/1 queue when
service is in order of arrival. The derivation parallels the derivation of the generating
function of the number of customers in the system.

Denote by Dn the delay in queue of the nth arriving customer and let the random
variables Sn and τn denote the service time of the nth customer and the time elapsed
between the arrivals of the nth customer and the (n+1)th customer. Since Dn+1 = 0
if Dn + Sn < τn and Dn+1 = Dn + Sn − τn otherwise, we have

Dn+1 = (Dn + Sn − τn)
+, n = 1, 2, . . . , (2.5.10)

where x+ is the usual notation for x = max(x, 0). From the recurrence formula
(2.5.10), we can derive that for all s with Re(s) ≥ 0 and n = 1, 2, . . .

(λ − s)E
(
e−sDn+1

)
= λE

(
e−sDn

)
b∗(s) − sP {Dn+1 = 0}, (2.5.11)

∗This section can be skipped at first reading.
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where b∗(s) = ∫∞
0 e−sxb(x) dx denotes the Laplace transform of the probabil-

ity density b(x) of the service time. To prove this, note that Dn, Sn and τn are
independent of each other. This implies that, for any x > 0,

E
[
e−s(Dn+Sn−τn)+ | Dn + Sn = x

]

=
∫ x

0
e−s(x−y)λe−λy dy +

∫ ∞

x

e−s×0λe−λy dy

= λ

λ − s
(e−sx − e−λx) + e−λx = 1

λ − s
(λe−sx − se−λx)

for s 
= λ (using L’Hospital’s rule it can be seen that this relation also holds for
s = λ). Hence, using (2.5.10),

(λ − s)E
(
e−sDn+1

)
= λE

[
e−s(Dn+Sn)

]
− sE

[
e−λ(Dn+Sn)

]
.

Since P {(Dn + Sn − τn)
+ = 0 | Dn + Sn = x} = e−λx , we also have

P {Dn+1 = 0} = E
[
e−λ(Dn+Sn)

]
.

The latter two relations and E
[
e−s(Dn+Sn)

] = E
(
e−sDn

)
E
(
e−sSn

)
lead to (2.5.11).

The steady-state waiting-time distribution function Wq(x) is defined by

Wq(x) = lim
n→∞ P {Dn ≤ x}, x ≥ 0.

The existence of this limit can be proved from Theorem 2.2.4. Let the random vari-
able D∞ have Wq(x) as probability distribution function. Then, by the bounded con-
vergence theorem in Appendix A, E(e−sD∞) = limn→∞E(e−sDn). Using (2.5.6), it
follows from limn→∞P {Dn+1 = 0} = π0 and q0 = 1 − ρ that limn→∞P {Dn+1 =
0} = 1 − ρ. Letting n → ∞ in (2.5.11), we find that

E
(
e−sD∞

)
= (1 − ρ)s

s − λ + λb∗(s)
. (2.5.12)

Noting that P {D∞ ≤ x} = Wq(x) and using relation (E.7) in Appendix E, we get
from (2.5.12) the desired result:∫ ∞

0
e−sx

{
1 − Wq(x)

}
dx = ρs − λ + λb∗(s)

s(s − λ + λb∗(s))
. (2.5.13)

Taking the derivative of the right-hand side of (2.5.13) and putting s = 0, we obtain∫ ∞

0

{
1 − Wq(x)

}
dx = λE(S2)

2(1 − ρ)
,

in agreement with the Pollaczek–Khintchine formula (2.5.1).
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Remark 2.5.1 Relation between queue size and waiting time

Let the random variable L
(∞)
q be distributed according to the limiting distribution of

the number of customers in queue at an arbitrary point in time. That is, P {L(∞)
q =

j} = pj+1 for j ≥ 1 and P {L(∞)
q = 0} = p0 + p1. Then the generating function

of L
(∞)
q and the Laplace transform of the delay distribution are related to each

other by

E(zL
(∞)
q ) = E[e−λ(1−z)D∞ ], |z| ≤ 1. (2.5.14)

A direct probabilistic proof of this important relation can be given. Denote by
Ln the number of customers left behind in queue when the nth customer enters
service. Since service is in order of arrival, Ln is given by the number of customers
arriving during the delay Dn of the nth customer. Since the generating function of
a Poisson distributed variable with mean δ is exp (−δ (1 − z)), it follows that for
any x ≥ 0 and n ≥ 1,

E(zLn |Dn = x) = e−λx(1−z).

Hence
E(zLn) = E[e−λ(1−z)Dn ], n ≥ 1. (2.5.15)

The limiting distribution of Ln as n → ∞ is the same as the probability distribu-
tion of L

(∞)
q . This follows from an up- and downcrossing argument: the long-run

fraction of customers leaving j other customers behind in queue when entering ser-
vice equals the long-run fraction of customers finding j other customers in queue
upon arrival. Noting that there is a single server and using the PASTA property, it
follows that the latter fraction equals pj+1 for j ≥ 1 and p0 + p1 for j = 0. This
proves that the limiting distribution of Ln equals the distribution of L

(∞)
q . Note

that, by Theorem 2.2.4, Ln has a limiting distribution as n → ∞. Letting n → ∞
in (2.5.15), the result (2.5.14) follows.

Letting wq (x) denote the derivative of the waiting-time distribution function
Wq (x) for x > 0, note that for the M/G/1 queue the relation (2.5.14) can be
restated as

pj+1 =
∫ ∞

0
e−λx (λx)j

j !
wq (x) dx, j = 1, 2, . . . .

The relation (2.5.14) applies to many other queueing systems with Poisson arrivals.
The importance of (2.5.14) is that this relation enables us to directly obtain the
Laplace transform of the waiting-time distribution function from the generating

function of the queue size. To illustrate this, note that E(zL
(∞)
q ) = p0+ 1

z
[P (z)−p0]

for the M/G/1 queue, where P (z) = ∑∞
j=0 pjz

j is given by (2.5.8). Using this
relation together with (2.5.8) and noting that A (z) = b∗ (λ (1 − z)), it follows from
the basic relation (2.5.14) that E(e−sD∞) is indeed given by (2.5.12).
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2.6 A CONTROLLED QUEUE WITH REMOVABLE SERVER∗

Consider a production facility at which production orders arrive according to a
Poisson process with rate λ. The production times τ1, τ2, . . . of the orders are
independent random variables having a common probability distribution function
F with finite first two moments. Also, the production process is independent of the
arrival process. The facility can only work on one order at a time. It is assumed
that E(τ1) < 1/λ; that is, the average production time per order is less than
the mean interarrival time between two consecutive orders. The facility operates
only intermittently and is shut down when no orders are present any more. A
fixed set-up cost of K > 0 is incurred each time the facility is reopened. Also a
holding cost h > 0 per time unit is incurred for each order waiting in queue. The
facility is only turned on when enough orders have accumulated. The so-called
N -policy reactivates the facility as soon as N orders are present. For ease we
assume that it takes a zero set-up time to restart production. How do we choose
the value of the control parameter N such that the long-run average cost per time
unit is minimal?

To analyse this problem, we first observe that for a given N -policy the stochastic
process describing jointly the number of orders present and the status of the facility
(on or off) regenerates itself each time the facility is turned on. Define a cycle as
the time elapsed between two consecutive reactivations of the facility. Clearly,
each cycle consists of a busy period B with production and an idle period I with
no production. We deal separately with the idle and the busy periods. Using the
memoryless property of the Poisson process, the length of the idle period is the
sum of N exponential random variables each having mean 1/λ. Hence

E(length of the idle period I ) = N

λ
.

Similarly,

E(holding cost incurred during I ) = h

(
N − 1

λ
+ · · · + 1

λ

)
.

To deal with the busy period, we define for n = 1, 2, . . . the quantities

tn = the expected time until the facility becomes empty given that
at epoch 0 a production starts with n orders present,

and

hn = the expected holding costs incurred until the facility becomes empty
given that at epoch 0 a production starts with n orders present.

These quantities are independent of the control rule considered. In particular, the
expected length of a busy period equals tN and the expected holding costs incurred

∗This section contains specialized material and can be skipped at first reading.
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during a busy period equals hN . By the renewal-reward theorem,

the long-run average cost per time unit = (h/2λ)N(N − 1) + K + hN

N/λ + tN

with probability 1. To find the functions tn and hn, we need

aj = the probability that j orders arrive during the production time of
a single order.

Assume for ease that the production time has a probability density f (x). By con-
ditioning on the production time and noting that the number of orders arriving in
a fixed time y is Poisson distributed with mean λy, it follows that

aj =
∫ ∞

0
e−λy (λy)j

j !
f (y) dy, j = 0, 1, . . . .

It is readily verified that

∞∑
j=1

jaj = λE(τ1) and
∞∑

j=1

j2aj = λ2E(τ 2
1 ) + λE(τ1). (2.6.1)

We now derive recursion relations for the quantities tn and hn. Suppose that at
epoch 0 a production starts with n orders present. If the number of new orders
arriving during the production time of the first order is j , then the time to empty
the system equals the first production time plus the time to empty the system
starting with n − 1 + j orders present. Thus

tn = E(τ1) +
∞∑

j=0

tn−1+j aj , n = 1, 2, . . . ,

where t0 = 0. Similarly, we derive a recursion relation for the hn. To do so, note
that relation (1.1.10) implies that the expected holding cost for new orders arriving
during the first production time τ1 equals 1

2hλE(τ 2
1 ). Hence

hn = (n − 1)hE(τ1) + 1

2
hλE(τ 2

1 ) +
∞∑

j=0

hn−1+j aj , n = 1, 2, . . . ,

where h0 = 0. In a moment it will be shown that tn is linear in n and hn is
quadratic in n. Substituting these functional forms in the above recursion relations
and using (2.6.1), we find after some algebra that for n = 1, 2, . . . ,

tn = nE(τ1)

1 − λE(τ1)
, (2.6.2)
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hn = h

1 − λE(τ1)

[
1

2
n(n − 1)E(τ1) + λnE(τ 2

1 )

2{1 − λE(τ1)}

]
. (2.6.3)

To verify that tn is linear in n and hn is quadratic in n, a brilliant idea due to
Takács (1962) is used. First observe that tn and hn do not depend on the specific
order in which the production orders are coped with during the production process.
Imagine now the following production discipline. The n initial orders O1, . . . , On

are separated. Order O1 is produced first, after which all orders (if any) are produced
that have arrived during the production time of O1, and this way of production is
continued until the facility is free of all orders but O2, . . . , On. Next this procedure
is repeated with order O2, etc. Thus we find that tn = nt1, proving that tn is linear
in n. The memoryless property of the Poisson process is crucial in this argument.
Why? The same separation argument is used to prove that hn is quadratic in n.
Since h1 + (n − k) × ht1 gives the expected holding cost incurred during the time
to free the system of order Ok and its direct descendants until only the orders
Ok+1, . . . , On are left, it follows that

hn =
n∑

k=1

{h1 + (n − k)ht1} = nh1 + 1

2
hn(n − 1)t1.

Combining the above results we find for the N -policy that

the long-run average cost per time unit (2.6.4)

= λ(1 − ρ)K

N
+ h

{
λ2E(τ 2

1 )

2(1 − ρ)
+ N − 1

2

}
,

where ρ = λE(τ1). It is worth noting here that this expression needs only the first
two moments from the production time. Also note that, by putting K = 0 and
h = 1 in (2.6.4),

the long-run average number of orders waiting in queue

= λ2E(τ 2
1 )

2(1 − ρ)
+ N − 1

2
.

For the special case of N = 1 this formula reduces to the famous Pol-
laczek–Khintchine formula for the average queue length in the standard M/G/1
queue; see Section 2.5.

The optimal value of N can be obtained by differentiating the right-hand side
of (2.6.4), in which we take N as a continuous variable. Since the average cost is
convex in N , it follows that the average cost is minimal for one of the two integers
nearest to

N∗ =
√

2λ(1 − ρ)K

h
.
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2.7 AN UP- AND DOWNCROSSING TECHNIQUE

In this section we discuss a generally applicable up- and downcrossing technique
that, in conjunction with the PASTA property, can be used to establish relations
between customer-average and time-average probabilities in queueing systems. To
illustrate this, we consider the so-called GI/M/1 queue. In this single-server sys-
tem, customers arrive according to a renewal process and the service times of the
customers have a common exponential distribution. The single server can handle
only one customer at a time and there is ample waiting room for customers who
find the server busy upon arrival. The service times of the customers are indepen-
dent of each other and are also independent of the arrival process. Denoting by λ

the average arrival rate (1/λ = the mean interarrival time) and by β the service
rate (1/β = the mean service time), it is assumed that λ < β.

The continuous-time stochastic process {X(t), t ≥ 0} and the discrete-time
stochastic process {Xn, n = 1, 2, . . . } are defined by

X(t) = the number of customers present at time t,

and

Xn = the number of customers present just prior to the nth arrival epoch.

The stochastic processes {X(t)} and {Xn} are both regenerative. The regeneration
epochs are the epochs at which an arriving customer finds the system empty. It
is stated without proof that the assumption of λ/β < 1 implies that the processes
have a finite mean cycle length. Thus we can define the time-average and the
customer-average probabilities pj and πj by

pj = the long-run fraction of time that j customers are present

and
πj = the long-run fraction of customers who find j other customers

present upon arrival

for j = 0, 1, . . . . Time averages are averages over time, and customer averages
are averages over customers. To be precise, pj = limt→∞(1/t)

∫ t

0 Ij (u) du and
πj = limn→∞(1/n)

∑n
k=1 Ik(j), where Ij (t) = 1 if j customers are present at

time t and Ij (t) = 0 otherwise, and In(j) = 1 if j other customers are present just
before the nth arrival epoch and In(j) = 0 otherwise. The probabilities pj and πj

are related to each other by

λπj−1 = βpj , j = 1, 2, . . . . (2.7.1)

The proof of this result is instructive and is based on three observations. Before
giving the three steps, let us say that the continuous-time process {X(t)} makes
an upcrossing from state j − 1 to state j if a customer arrives and finds j − 1
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other customers present. The process {X(t)} makes a downcrossing from state j

to state j − 1 if the service of a customer is completed and j − 1 other customers
are left behind.
Observation 1 Since customers arrive singly and are served singly, the long-run
average number of upcrossings from j − 1 to j per time unit equals the long-run
average number of downcrossings from j to j − 1 per time unit. This follows by
noting that in any finite time interval the number of upcrossings from j − 1 to j

and the number of downcrossings from j to j − 1 can differ at most by 1.

Observation 2 The long-run fraction of customers seeing j − 1 other customers
upon arrival is equal to

the long-run average number of upcrossings from j − 1 to j per time unit

the long-run average number of arrivals per time unit

for j = 1, 2, . . . . In other words, the long-run average number of upcrossings
from j − 1 to j per time unit equals λπj−1.

The latter relation for fixed j is in fact a special case of the Little relation (2.4.1)
by assuming that each customer finding j − 1 other customers present upon arrival
pays $1 (using this reward structure observation 2 can also be obtained directly
from the renewal-reward theorem). Observations 1 and 2 do not use the assumption
of exponential services and apply in fact to any regenerative queueing process in
which customers arrive singly and are served singly.

Observation 3 For exponential services, the long-run average number of down-
crossings from j to j−1 per time unit equals βpj with probability 1 for each j ≥ 1.

The proof of this result relies heavily on the PASTA property. To make this
clear, fix j and note that service completions occur according to a Poisson process
with rate β as long as the server is busy. Equivalently, we can assume that an
exogenous Poisson process generates events at a rate of β, where a Poisson event
results in a service completion only when there are j customers present. Thus, by
part (a) of Theorem 2.4.1,

βE[Ij (t)] = E[Dj(t)] for t > 0 (2.7.2)

for any j ≥ 1, where Ij (t) is defined as the amount of time that j customers are
present during (0, t] and Dj(t) is defined as the number of downcrossings from
j to j − 1 in (0, t]. Letting the constant dj denote the long-run average number
of downcrossings from j to j − 1 per time unit, we have by the renewal-reward
theorem that limt→∞ Dj(t)/t = dj with probability 1. Similarly, limt→∞Ij (t)/t =
pj with probability 1. The renewal-reward theorem also holds in the expected-value
version. Thus, for any j ≥ 1,

lim
t→∞

E[Dj(t)]

t
= dj and lim

t→∞
E[Ij (t)]

t
= pj .

Hence relation (2.7.2) gives that dj = βpj for all j ≥ 1. By observations 1 and 2
we have dj = λπj−1. This gives λπj−1 = βpj for all j ≥ 1, as was to be proved.
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In Chapter 3 the method of embedded Markov chains will be used to derive an
explicit expression for the customer-average probabilities πj .

EXERCISES

2.1 A street lamp is replaced by a new one upon failure and upon scheduled times T , 2T , . . . .
There is always a replacement at the scheduled times regardless of the age of the street
lamp in use. The lifetimes of the street lamps are independent random variables and have a
common Erlang (2, µ) distribution. What is the expected number of street lamps used in a
scheduling interval?

2.2 The municipality of Gotham City has opened a depot for temporarily storing chemical
waste. The amount of waste brought in each week has a gamma distribution with given
shape parameter α and scale parameter λ. The amounts brought in during the successive
weeks are independent of each other.

(a) What is the expected number of weeks until the total amount of waste in the depot
exceeds the critical level L?

(b) Give an asymptotic estimate for the expected value from question (a).

2.3 Limousines depart from the railway station to the airport from the early morning till
late at night. The limousines leave from the railway station with independent interdeparture
times that are uniformly distributed between 10 and 20 minutes. Suppose you plan to arrive
at the railway station at 3 o’clock in the afternoon. What are the estimates for the mean and
the standard deviation of your waiting time at the railway station until a limousine leaves
for the airport?

2.4 Consider the expression (2.1.4) for the renewal function M(t).
(a) Prove that for any k = 0, 1, . . .

∞∑
n=k+1

Fn(t) ≤ Fk(t)F (t)

1 − F(t)

for any t with F(t) < 1. (Hint : use P {X1+· · ·+Xn ≤ t} ≤ P {X1+· · ·+Xk ≤ t}P {Xk+1 ≤
t} · · · P {Xn ≤ t}.)

(b) Conclude that M(t) < ∞ for all t ≥ 0.

2.5 Consider a renewal process with Erlang (r, λ) distributed interoccurrence times. Use the
phase method to prove:

(a) For any t > 0,

P {N(t) > k} =
∞∑

j=(k+1)r

e−λt (λt)j

j !
, k = 0, 1, . . . .

(b) The excess variable γt is Erlang (j, λ) distributed with probability

pj (t) =
∞∑

k=1

e−λt (λt)kr−j

(kr − j)!
, j = 1, . . . , r.

2.6 Consider a continuous-time stochastic process {X(t), t ≥ 0} that can assume only the
two states 1 and 2. If the process is currently in state i, it moves to the next state after an
exponentially distributed time with mean 1/λi for i = 1, 2. The next state is state 1 with
probability p1 and state 2 with probability p2 = 1−p1 irrespective of the past of the process.
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(a) Use the renewal-reward model to find the long-run fraction of time the process {X(t)}
is in state i for i = 1, 2. Does limt→∞P {X(t) = i} exist for i = 1, 2? If so, what is
the limit?

(b) Consider a renewal process in which the interoccurrence times have an H2 distribution
with density p1λ1e−λ1t + p2λ2e−λ2t . Argue that

lim
t→∞ P {γt > x} = p1λ2

p1λ2 + p2λ1
e−λ1x + p2λ1

p1λ2 + p2λ1
e−λ2x, x ≥ 0.

2.7 Consider a renewal process with Erlang (r, λ) distributed interoccurrence times. Let the
probability pj (t) be defined as in part (b) of Exercise 2.5. Use the renewal-reward model
to argue that limt→∞ pj (t) = 1/r for j = 1, . . . , r and conclude that

lim
t→∞ P {γt > x} = 1

r

r∑
j=1

j−1∑
k=0

e−λx (λx)k

k!
, x ≥ 0.

Generalize these results when the interoccurrence time is distributed as an Erlang (j, λ)
random variable with probability βj for j = 1, . . . , r .

2.8 Consider the Er/D/∞ queueing system with infinitely many servers. Customers arrive
according to a renewal process in which the interoccurence times have an Erlang (r ,λ)
distribution and the service time of each customer is a constant D. Each newly arriving
customer gets immediately assigned a free server. Let pn(t) denote the probability that n
servers will be busy at time t . Use an appropriate conditioning argument to verify that

lim
t→∞ p0(t) = 1

r

r∑
j=1

j−1∑
k=0

e−µD (µD)k

k!

lim
t→∞ pn(t) = 1

r

r∑
j=1

r−1∑
k=0

e−µD (µD)r−j+1+(n−1)r+k

(r − j + 1 + (n − 1)r + k)!
, n ≥ 1.

(Hint : the only customers present at time t are those customers who have arrived in
(t − D, t].)

2.9 The lifetime of a street lamp has a given probability distribution function F(x) with
probability density f (x). The street lamp is replaced by a new one upon failure or upon
reaching the critical age T , whichever occurs first. A cost of cf > 0 is incurred for each
failure replacement and a cost of cp > 0 for each preventive replacement, where cp < cf .
The lifetimes of the street lamps are independent of each other.

(a) Define a regenerative process and specify its regeneration epochs.
(b) Show that the long-run average cost per time unit under the age-replacement rule

equals g(T ) = [cp + (cf − cp)F (T )]/
∫ T

0 {1 − F(x)} dx.
(c) Verify that the optimal value of T satisfies g(T ) = (cf − cp)r(T ), where r(x) is the

failure rate function of the lifetime.
2.10 Consider the M/G/∞ queue from Section 1.1.3 again. Let the random variable L be
the length of a busy period. A busy period begins when an arrival finds the system empty
and ends when there are no longer any customers in the system. Use the result (2.2.1) to
argue that E(L) = (eλµ − 1)/λ.

2.11 Consider an electronic system having n identical components that operate independently
of each other. If a component breaks down, it goes immediately into repair. There are ample
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repair facilities. Both the running times and the repair times are sequences of independent
and identically distributed random variables. It is also assumed that these two sequences are
independent of each other. The running time has a positive density on some interval. Denote
by α the mean running time and by β the mean repair time.

(a) Prove that

lim
t→∞ P {k components are in repair at time t} =

(
n
k

)
pk(1 − p)n−k

for k = 0, 1, . . . , n, where p = β/(α + β).
(b) Argue that the limiting distribution in (a) becomes a Poisson distribution with mean

λβ when n → ∞ and 1/α → 0 such that n/α remains equal to the constant λ. Can you
explain the similarity of this result with the insensitivity result (1.1.6) for the M/G/∞
queue in Section 1.1.3?

2.12 A production process in a factory yields waste that is temporarily stored on the factory
site. The amounts of waste that are produced in the successive weeks are independent and
identically distributed random variables with finite first two moments µ1 and µ2. Opportuni-
ties to remove the waste from the factory site occur at the end of each week. The following
control rule is used. If at the end of a week the total amount of waste present is larger than
D, then all the waste present is removed; otherwise, nothing is removed. There is a fixed
cost of K > 0 for removing the waste and a variable cost of v > 0 for each unit of waste
in excess of the amount D.

(a) Define a regenerative process and identify its regeneration epochs.
(b) Determine the long-run average cost per time unit.
(c) Assuming that D is sufficiently large compared to µ1, give an approximate expression

for the average cost.

2.13 At a production facility orders arrive according to a renewal process with a mean
interarrival time 1/λ. A production is started only when N orders have accumulated. The
production time is negligible. A fixed cost of K > 0 is incurred for each production set-up
and holding costs are incurred at the rate of hj when j orders are waiting to be processed.

(a) Define a regenerative stochastic process and identify its regeneration epochs.
(b) Determine the long-run average cost per time unit.
(c) What value of N minimizes the long-run average cost per time unit?

2.14 Consider again Exercise 2.13. Assume now that it takes a fixed set-up time T to start a
production. Any new order that arrives during the set-up time is included in the production
run. Answer parts (a) and (b) from Exercise 2.13 for the particular case that the orders arrive
according to a Poisson process with rate λ.

2.15 How do you modify the expression for the long-run average cost per time unit in
Exercise 2.14 when it is assumed that the set-up time is a random variable with finite first
two moments?

2.16 Consider Example 1.3.1 again. Assume that a fixed cost of K > 0 is incurred for each
round trip and that a fixed amount R > 0 is earned for each passenger.

(a) Define a regenerative stochastic process and identify its regeneration epochs.
(b) Determine the long-run average net reward per time unit.
(c) Verify that the average reward is maximal for the unique value of T satisfying the

equation e−µT (RλT + Rλ/µ) = Rλ/µ − K when Rλ/µ > K .

2.17 Passengers arrive at a bus stop according to a Poisson process with rate λ. Buses
depart from the stop according to a renewal process with interdeparture time A. Using
renewal-reward processes, prove that the long-run average waiting time per passenger equals
E(A2)/2E(A). Specify the regenerative process you need to prove this result. Can you give
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a heuristic explanation of why the answer for the average waiting time is the same as the
average residual life in a renewal process?

2.18 Consider a renewal process in which the interoccurrence times have a positive density
on some interval. For any time t let the age variable δt denote the time elapsed since the
last occurrence of an event. Use the renewal-reward model to prove that limt→∞ E(δt ) =
µ2/2µ1, where µk is the kth moment of the interoccurrence times. (Hint : assume a cost at
rate x when a time x has elapsed since the last occurrence of an event.)

2.19 A common car service between cities in Israel is a sheroot. A sheroot is a seven-seat cab
that leaves from its stand as soon as it has collected seven passengers. Suppose that potential
passengers arrive at the stand according to a Poisson process with rate λ. An arriving person
who sees no cab at the stand goes elsewhere and is lost for the particular car service. Empty
cabs pass the stand according to a Poisson process with rate µ. An empty cab stops only at
the stand when there is no other cab.

(a) Define a regenerative process and identify its regeneration epochs.
(b) Determine the long-run fraction of time there is no cab at the stand and determine

the long-run fraction of customers who are lost. Explain why these two fractions are equal
to each other.

2.20 Big Jim, a man of few words, runs a one-man business. This business is called upon by
loan sharks to collect overdue loans. Big Jim takes his profession seriously and accepts only
one assignment at a time. The assignments are classified by Jim into n different categories
j = 1, . . . , n. An assignment of type j takes him a random number of τj days and gives
a random profit of ξj dollars for j = 1, . . . , n. Assignments of the types 1, . . . , n arrive
according to independent Poisson processes with respective rates λ1, . . . , λn. Big Jim, once
studying at a prestigious business school, is a muscleman with brains. He has decided to
accept those type j assignments for which E(ξj )/E(τj ) is at least g∗ dollars per day for a
carefully chosen value of g∗ (in Exercise 7.4 you are asked to use Markov decision theory
to determine g∗). Suppose that Big Jim only accepts type j assignments for j = 1, . . . , n0.
An assignment can only be accepted when Big Jim is not at work on another assignment.
Assignments that are refused are handled by a colleague of Big Jim.

(a) Define a regenerative process and identify its regeneration epochs.
(b) Determine the long-run average pay-off per time unit for Big Jim.
(c) Determine the long-run fraction of time Big Jim is at work and the long-run fraction

of the assignments of the types 1, . . . , n0 that are not accepted. Explain why these two
fractions are equal to each other.

2.21 Consider the (S − 1, S) inventory model with back ordering from Section 1.1.3. What
is the long-run fraction of customer demand that is back ordered? What is the long-run
average amount of time a unit is kept in stock?

2.22 Consider a machine whose state deteriorates through time. The state of the machine is
inspected at fixed times t = 0, 1, . . . . In each period between two successive inspections
the machine incurs a random amount of damage. The amounts of damage accumulate. The
amounts of damage incurred in the successive periods are independent random variables
having a common exponential distribution with mean 1/α. A compulsory repair of the
machine is required when an inspection reveals a cumulative amount of damage larger than
a critical level L. A compulsory repair involves a fixed cost of Rc > 0. A preventive repair
at a lower cost of Rp > 0 is possible when an inspection reveals a cumulative amount of
damage below or at the level L. The following control limit rule is used. A repair is done
at each inspection that reveals a cumulative amount of damage larger than some repair limit
z with 0 ≤ z < L. It is assumed that each repair takes a negligible time and that after each
repair the machine is as good as new.

(a) Define a regenerative process and identify its regeneration epochs.
(b) What is the expected number of periods between two successive repairs? What is the
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probability that a repair involves the high repair cost Rc? Give the long-run average cost
per time unit.

(c) Verify that the average cost is minimal for the unique solution z to the equation
αz exp[−α(L − z)] = Rp/(Rc − Rp) when αL > Rp/(Rc − Rp).

2.23 A group of N identical machines is maintained by a single repairman. The machines
operate independently of each other and each machine has a constant failure rate µ. Repair
is done only if the number of failed machines has reached a given critical level R with
1 ≤ R ≤ N . Then all failed machines are repaired simultaneously. Any repair takes a
negligible time and a repaired machine is again as good as new. The cost of the simultaneous
repair of R machines is K + cR, where K, c > 0. Also there is an idle-time cost of α > 0
per time unit for each failed machine.

(a) Define a regenerative process and identify its regeneration epochs.
(b) Determine the long-run average cost per time unit.

2.24 The following control rule is used for a slow-moving expensive product. No more than
one unit of the product is kept in stock. Each time the stock drops to zero a replenishment
order for one unit is placed. The replenishment lead time is a positive constant L. Customers
asking for the product arrive according to a renewal process in which the interarrival times
are Erlang (r, λ) distributed. Each customer asks for one unit of the product. Each demand
occurring while the system is out of stock is lost.

(a) Define a regenerative process and identify its regeneration epochs.
(b) Determine the long-run fraction of demand that is lost.
(c) Determine the long-run fraction of time the system is out of stock. (Hint: use part (b)

of Exercise 2.5.)

2.25 Jobs arrive at a station according to a renewal process. The station can handle only one
job at a time, but has no buffer to store other jobs. An arriving job that finds the station busy
is lost. The handling time of a job has a given probability density h(x). Use renewal-reward
theory to verify for this loss system that the long-run fraction of jobs that are rejected is
given by

∫∞
0 M(x)h(x) dx divided by 1 + ∫∞

0 M(x)h(x) dx, where M(x) is the renewal
function in the renewal process describing the arrival of jobs. What is the long-run fraction
of time that the station is busy? Simplify the formulas for the cases of deterministic and
Poisson arrivals.
2.26 Use the renewal-reward theorem to prove relation (2.3.3) when customers arrive accord-
ing to a renewal process and the stochastic processes {L(t)} and {Un} regenerate themselves
each time an arriving customer finds the system empty, where the cycle lengths have finite
expectations. For ease assume the case of an infinite-capacity queue. Use the following
relations:

(i) the long-run average reward earned per time unit = (the expected reward earned in
one cycle)/(expected length of one cycle),

(ii) the long-run average amount paid per customer = (the expected amount earned in
one cycle)/(expected number of arrivals in one cycle),

(iii) the long-run average arrival rate = (expected number of arrivals in one cycle)/(expec-
ted length of one cycle).

2.27 Let {X(t), t ≥ 0} be a continuous-time regenerative stochastic process whose state
space is a subset of the non-negative reals. The cycle length is assumed to have a finite
expectation. Denote by P(y) the long-run fraction of time that the process {X(t)} takes on
a value larger than y. Use the renewal-reward theorem to prove that

lim
t→∞

1

t

∫ t

0
X(u) du =

∫ ∞

0
P (y) dy with probability 1.

2.28 Consider a queueing system in which the continuous-time process {L(t)} describing
the number of customers in the system is regenerative, where the cycle length has a finite
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expectation. Let pj denote the long-run fraction of time that j customers are in the system
and let L denote the long-run average number of customers in the system. Apply the result
of Exercise 2.27 to conclude that L = ∑∞

j=1 jpj .

2.29 Verify that the Pollaczek–Khintchine formula for the average waiting time in the
M/G/1 queue can also be written as

Wq = (1 − c2
S)Wq(det) + c2

SWq(exp).

This interpolation formula is very useful and goes back to Cox (1955).

2.30 A professional cleaner in the harbour of Rotterdam is faced with the decision to acquire
a new clean installation for oil tankers. Oil tankers requiring a clean arrive according to a
Poisson process with rate λ. The amount of time needed to clean a tanker has a given
probability distribution with mean α and standard deviation β when the standard Fadar
installation is used. Cleaning costs at a rate of c > 0 are incurred for each time unit this
installation is in use. However, it is also possible to buy another installation. An installation
that works z times as fast as the standard Fadar installation involves cleaning costs at a rate
of cz2 per time unit. In addition to the cleaning costs, a holding cost at rate of h > 0 is
incurred for each tanker in the harbour. What is the long-run average cost per time unit as
function of z? Assume that the cleaning installation can handle only one tanker at a time
and assume that the cleaner has ample berths for tankers.

2.31 Liquid is put into an infinite-capacity buffer at epochs generated by a Poisson process
with rate λ. The successive amounts of liquid that are put in the buffer are independent and
identically distributed random variables with finite first two moments µ1 and µ2. The buffer
is emptied at a constant rate of σ > 0 whenever it is not empty. Use the PASTA property
to give an expression for the long-run average buffer content.

2.32 Consider the M/G/1 queue with two types of customers. Customers of the types 1 and
2 arrive according to independent Poisson processes with respective rates λ1 and λ2. The
service times of the customers are independent of each other, where the service times of
type i customers are distributed as the random variable Si having finite first two moments.
Customers of type 1 have priority over customers of type 2 when the server is ready to
start a new service. It is not allowed to interrupt the service of a type 2 customer when a
higher-priority customer arrives. This queueing model is called the non-pre-emptive priority
M/G/1 queue. Letting ρi = λiE(Si), it is assumed that ρ1 + ρ2 < 1.

(a) Use Little’s formula to argue that the long-run fraction of time the server is servicing
type i customers equals ρi for i = 1, 2. What is the long-run fraction of customers finding
the server servicing a type i customer upon arrival?

(b) Extend the heuristic derivation of the Pollaczek–Khintchine formula to show

Wq1 = λ1E(S2
1 ) + λ2E(S2

2 )

2(1 − ρ1)
and Wq2 = λ1E(S2

1 ) + λ2E(S2
2 )

2(1 − ρ1)(1 − ρ1 − ρ2)
,

where Wqi is defined as the long-run average waiting time in queue per type i customer for
i = 1, 2.

(c) Use Little’s formula to give a direct argument for the result that the overall average
waiting time Wq1λ1/(λ1 +λ2)+Wq2λ2/(λ1 +λ2) per customer is the same as the average
waiting time per customer in the M/G/1 queue in which customers are served in order of
arrival (view the non-pre-emptive priority rule as a rule that merely changes the order in
which the customers are served).

2.33 Customers arrive at a single-server station according to a Poisson process with rate
λ. A customer finding the server idle upon arrival gets served immediately, otherwise the
customer enters a so-called orbit. A customer in orbit tries whether the server is idle after an
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exponentially distributed time with mean 1/ν. If the server is idle, the customer gets served,
otherwise the customer returns to orbit and tries again after an exponentially distributed time
until the server is found free. The customers in orbit act independently of each other. The
service times of the customers are independent random variables having the same general
probability distribution. Letting the random variable S denote the service time of a customer,
it is assumed that ρ = λE(S) is less than 1. For this model, known as the M/G/1 queue
with retrials, define L(t) as the number of customers in the system (service station plus
orbit) at time t and define Qn as the number of customers in orbit just after the nth service
completion. Let pj = limt→∞ P {L(t) = j} and qj = limn→∞ P {Qn = j} for j ≥ 0.

(a) Use an up- and downcrossing argument to argue that pj = qj for all j ≥ 0.
(b) Letting Q(z) = ∑∞

j=0 qj zj , prove that

Q(z) = A(z){λR(z) + νR′(z)},

where A(z) is the generating function of the number of new customers arriving during
the service time S and R(z) is defined by R(z) = ∑∞

j=0 zj qj /(λ + jν). (Hint : under the
condition that Qn−1 = i it holds that Qn = Qn−1 + Cn with probability λ/(λ + iν) and
Qn = Qn−1 − 1 + Cn with probability iν/(λ + iν), where Cn denotes the number of new
customers arriving at the nth service time.)

(c) Prove that

Q(z) = (1 − ρ)(1 − z)A(z)

A(z) − z
exp

[
λ

ν

∫ z

1

1 − A(u)

A(u) − u
du

]
.

(Hint : use that Q(z) = λR(z)+νzR′(z), which follows directly from the definition of R(z).)
(d) Show that the long-run average number of customers in the system is given by

L = ρ + λ2E(S2)

2(1 − ρ)
+ λ2E(S)

ν(1 − ρ)
.

Retrial queues are in general much more difficult to analyse than queues without retrials.
The Laplace transform for the waiting-time distribution in the M/G/1 queue with retrials
is very complex; see also Artalejo et al. (2002).

2.34 Consider again the production system from Section 2.6 except that the system is now
controlled in a different way when it becomes idle. Each time the production facility becomes
empty of orders, the facility is used during a period of fixed length T for some other work
in order to utilize the idle time. After this vacation period the facility is reactivated for
servicing the orders only when at least one order is present; otherwise the facility is used
again for some other work during a vacation period of length T . This utilization of idle
time is continued until at least one order is present after the end of a vacation period. This
control policy is called the T -policy. The cost structure is the same as in Section 2.6. Use
renewal-reward theory to show that K(1−λµ1)(1−e−λT )/T + 1

2hλT + 1
2hλ2µ2/(1−λµ1)

gives the long-run average cost per time unit under a T -policy.

2.35 Suppose that, at a communication channel, messages of types 1 and 2 arrive according
to independent Poisson processes with respective rates λ1 and λ2. Messages of type 1 finding
the channel occupied upon arrival are lost, whereas messages of type 2 are temporarily stored
in a buffer and wait until the channel becomes available. The channel can transmit only one
message at a time. The transmission time of a message of type i has a general probability
distribution with mean µi and the transmission times are independent of each other. It is
assumed that λ2µ2 < 1. Use the renewal-reward theorem to prove that the long-run fraction
of time the channel is busy equals (ρ1 + ρ2)/(1 + ρ1), where ρi = λiµi for i = 1, 2.
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(Hint : use results from Section 2.6 to obtain the expected amount of time elapsed between
two arrivals finding the channel free.)

BIBLIOGRAPHIC NOTES

The very readable monograph of Cox (1962) contributed much to the populariza-
tion of renewal theory. A good account of renewal theory can also be found in the
texts Ross (1996) and Wolff (1989). A basic paper on renewal theory and regen-
erative processes is that of Smith (1958), a paper which recognized the usefulness
of renewal-reward processes in the analysis of applied probability problems. The
book of Ross (1970) was influential in promoting the application of renewal-reward
processes. The renewal-reward model has many applications in inventory, queue-
ing and reliability. The illustrative queueing example from Section 2.6 is taken
from the paper of Yadin and Naor (1963), which initiated the study of control
rules for queueing systems. Example 2.2.3 is adapted from the paper of Vered and
Yechiali (1979).

The first rigorous proof of L = λW was given by Little (1961) under rather
strong conditions; see also Jewell (1967). Under very weak conditions a sample-
path proof of L = λW was given by Stidham (1974). The important result that
Poisson arrivals see time averages was taken for granted by earlier practitioners.
A rigorous proof was given in the paper of Wolff (1982). The derivation of the
Laplace transform of the waiting-time distribution in the M/G/1 queue is adapted
from Cohen (1982) and the relation between this transform and the generating
function of the queue size comes from Haji and Newell (1971).
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CHAPTER 3

Discrete-Time Markov
Chains

3.0 INTRODUCTION

The notion of what is nowadays called a Markov chain was devised by the Russian
mathematician A.A. Markov when, at the beginning of the twentieth century, he
investigated the alternation of vowels and consonants in Pushkin’s poem Onegin.
He developed a probability model in which the outcomes of successive trials are
allowed to be dependent on each other such that each trial depends only on its
immediate predecessor. This model, being the simplest generalization of the prob-
ability model of independent trials, appeared to give an excellent description of
the alternation of vowels and consonants and enabled Markov to calculate a very
accurate estimate of the frequency at which consonants occur in Pushkin’s poem.

The Markov model is no exception to the rule that simple models are often
the most useful models for analysing practical problems. The theory of Markov
processes has applications to a wide variety of fields, including biology, computer
science, engineering and operations research. A Markov process allows us to model
the uncertainty in many real-world systems that evolve dynamically in time. The
basic concepts of a Markov process are those of a state and of a state transition.
In specific applications the modelling ‘art’ is to find an adequate state descrip-
tion such that the associated stochastic process indeed has the Markovian property
that the knowledge of the present state is sufficient to predict the future stochastic
behaviour of the process. In this chapter we consider discrete-time Markov pro-
cesses in which state transitions only occur at fixed times. Continuous-time Markov
processes in which the state can change at any time are the subject of Chapter 4.
The discrete-time Markov chain model is introduced in Section 3.1. In this section
considerable attention is paid to the modelling aspects. Most students find the
modelling more difficult than the mathematics. Section 3.2 deals with the n-step
transition probabilities and absorption probabilities. The main interest, however, is
in the long-run behaviour of the Markov chain. In Section 3.3 we discuss both the
existence of an equilibrium distribution and the computation of this distribution.

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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Several applications will be discussed as well. For didactical reasons not all of
the results that are stated in Section 3.3 are proved in this section. Some of the
proofs are deferred to a later section. In Section 3.4 we discuss computational
methods for solving the equilibrium equations of the Markov chain. In particular,
we give a simple but powerful method for computing the equilibrium distribution
of an infinite-state Markov chain whose state probabilities exhibit a geometric tail
behaviour. Section 3.5 deals with theoretical issues such as the state classification
for Markov chains and proofs of the ergodic theorems used in earlier sections.

3.1 THE MODEL

A discrete-time Markov chain is a stochastic process which is the simplest gen-
eralization of a sequence of independent random variables. A Markov chain is a
random sequence in which the dependency of the successive events goes back only
one unit in time. In other words, the future probabilistic behaviour of the process
depends only on the present state of the process and is not influenced by its past
history. This is called the Markovian property. Despite its very simple structure the
Markov chain model is extremely useful in a wide variety of practical probability
problems. Let us first give an illustrative example.

Example 3.1.1 The drunkard’s random walk

A drunkard starts a random walk in the middle of a square; see Figure 3.1.1. He
performs a sequence of independent unit steps. Each step has equal probability 1

4
of going north, south, east or west as long as the drunkard has not reached the edge
of the square. The drunkard never leaves the square. Should he reach the boundary
of the square, his next step is equally likely to be in one of the three remaining
directions if he is not at a corner point, and is equally likely to be in two remaining
directions otherwise. What stochastic process describes the drunkard’s walk? What
is the expected number of steps he needs to return to his starting point?

For n = 0, 1, . . . , we define the random variable

Xn = the position of the drunkard just after the nth step

with the convention X0 = (0, 0). Let us say that the process {Xn} is in state
(x, y) when the current position of the drunkard is described by point (x, y). Then
{Xn, n = 0, 1, . . . } is a discrete-time stochastic process with state space

I = {(x, y) | x, y integer, − N ≤ x, y ≤ N}.

The successive states of the drunkard’s process are not independent of each other,
but are dependent. However, the dependence goes only one step back. The next
position of the drunkard depends only on the current position and is not influenced
by the earlier positions in the path of the drunkard. In other words, the drunkard’s



THE MODEL 83

(−N, N )

(−N, −N )

(N, N )

(N, −N )

(0, 0)

Figure 3.1.1 The drunkard’s random walk

process {Xn} has the Markovian property. We are now ready to give the general
definition of a Markov chain.

Let {Xn, n = 0, 1, . . . } be a sequence of random variables with state space I . We
interpret the random variable Xn as the state of some dynamic system at time n.
The set of possible values of the process is denoted by I and is assumed to be
finite or countably infinite.

Definition 3.1.1 The stochastic process {Xn, n = 0, 1, . . . } with state space I is
called a discrete-time Markov chain if, for each n = 0, 1, . . . ,

P {Xn+1 = in+1 | X0 = i0, . . . , Xn = in} = P {Xn+1 = in+1 | Xn = in} (3.1.1)

for all possible values of i0, . . . , in+1 ∈ I .

In the following, we consider only Markov chains with time-homogeneous tran-
sition probabilities; that is, we assume that

P {Xn+1 = j | Xn = i} = pij , i, j ∈ I,

independently of the time parameter n. The probabilities pij are called the one-step
transition probabilities and satisfy

pij ≥ 0, i, j ∈ I, and
∑
j∈I

pij = 1, i ∈ I.
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The Markov chain {Xn, n = 0, 1, . . . } is completely determined by the probability
distribution of the initial state X0 and the one-step transition probabilities pij . In
applications of Markov chains the art is:

(a) to choose the state variable(s) such that the Markovian property (3.1.1) holds,

(b) to determine the one-step transition probabilities pij .

Once this (difficult) modelling step is done, the rest is simply a matter of applying
the theory that will be developed in the next sections. The student cannot be urged
strongly enough to try the problems at the end of this chapter to acquire skills to
model new situations. Let us return to the drunkard’s walk.

Example 3.1.1 (continued) The drunkard’s random walk

In this example we have already defined the state variable as the position of the
drunkard. The process {Xn} with Xn denoting the state just after the nth step of the
drunkard is indeed a discrete-time Markov chain. The one-step transition probabil-
ities are as follows. For any interior state (x, y) with −N < x, y < N , we have

p(x,y)(v,w) =
{

1
4 for (v, w) = (x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1),

0 otherwise.

For any boundary state (x, N) with −N < x < N , we have

p(x,y)(v,w) =
{

1
3 for (v, w) = (x + 1, N), (x − 1, N), (x, N − 1),

0 otherwise.

For the boundary state (x, −N) with −N < x < N , (N, y) and (N, −y) with
−N < y < N , the one-step transition probabilities follow similarly. For the corner
point (x, y) = (N, N), we have

p(x,y)(v,w) =
{

1
2 for (v, w) = (N − 1, N), (N, N − 1),

0 otherwise.

Similarly, for the corner points (x, y) = (−N, N), (−N, −N) and (N, −N).
A variant of the drunkard’s random walk problem is the problem in which the

drunkard never chooses the same direction as was chosen in the previous step.
Then we have to augment the state with an extra state variable in order to satisfy
the Markovian property. The state of the drunkard after each step is now defined as
(x, y, z), where (x, y) denotes the position of the drunkard and z ∈ {N, S, W, L}
denotes the direction of the last step. Letting Xn be the state of the drunkard’s
process just after the nth step (with the convention X0 = (0, 0)), the stochastic
process {Xn} is a discrete-time Markov chain. It is left to the reader to write down
the one-step transition probabilities of this process.
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Example 3.1.2 A stock-control problem

The Johnson hardware shop carries adjustable-joint pliers as a regular stock item.
The demand for this tool is stable over time. The total demand during a week
has a Poisson distribution with mean λ. The demands in the successive weeks are
independent of each other. Each demand that occurs when the shop is out of stock
is lost. The owner of the shop uses a so-called periodic review (s, S) control rule
for stock replenishment of the item. The inventory position is only reviewed at
the beginning of each week. If the stock on hand is less than the reorder point s,
the inventory is replenished to the order-up point S; otherwise, no ordering is
done. Here s and S are given integers with 0 ≤ s ≤ S. The replenishment time is
negligible. What is the average ordering frequency and what is the average amount
of demand that is lost per week?

These questions can be answered by the theory of Markov chains. In this example
we take as state variable the stock on hand just prior to review. Let

Xn = the stock on hand at the beginning of the nth week just prior to review,

then the stochastic process {Xn} is a discrete-time Markov chain with the finite
state space I = {0, 1, . . . , S}. It will be immediately clear that the Markovian
property (3.1.1) is satisfied: the stock on hand at the beginning of the current week
and the demand in the coming week determine the stock on hand at the beginning
of the next week. It is not relevant how the stock level fluctuated in the past. To
find the one-step transition probabilities pij = P {Xn+1 = j | Xn = i} we have
to distinguish the cases i ≥ s and i < s. In the first case the stock on hand just
after review equals i, while in the second case the stock on hand just after review
equals S. For state i ≥ s, we have

pij = P {the demand in the coming week is i − j}

= e−λ λi−j

(i − j)!
, j = 1, . . . , i.

Note that this formula does not hold for j = 0. Then we have for i ≥ s,

pi0 = P {the demand in the coming week is i or more}

=
∞∑
k=i

e−λ λk

k!
= 1 −

i−1∑
k=0

e−λ λk

k!
.

The other pij are zero for i ≥ s. Similarly, we find for i < s

pij = P {the demand in the coming week is S − j}

= e−λ λS−j

(S − j)!
, j = 1, . . . , S,
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pi0 = P {the demand in the coming week is S or more}

=
∞∑

k=S

e−λ λk

k!
= 1 −

S−1∑
k=0

e−λ λk

k!
.

The following example illustrates the powerful technique of embedded Markov
chains. Many stochastic processes can be analysed by using properly chosen embed-
ded stochastic processes that are discrete-time Markov chains. A classic example
is the single-server M/G/1 queue with Poisson arrivals and general service times.
The embedded process describing the number of customers left behind at the ser-
vice completion epochs is a discrete-time Markov chain; see also Section 2.5.
Another example is provided by the ‘dual’ queue with general interarrival times
and exponential service times.

Example 3.1.3 The GI /M/1 queue

Customers arrive at a single-server station according to a renewal process, that is,
the interarrival times of the customers are independent and identically distributed
random variables. It is assumed that the interarrival time has a probability den-
sity a(t). A customer who finds upon arrival that the server is idle enters service
immediately; otherwise the customer waits in line. The service times of the suc-
cessive customers are independent random variables having a common exponential
distribution with mean 1/µ. The service times are also independent of the arrival
process. A customer leaves the system upon service completion. This queueing
system is usually abbreviated as the GI/M/1 queue. For any t ≥ 0, define the
random variable X(t) by

X(t) = the number of customers present at time t.

The continuous-time stochastic process {X(t), t ≥ 0} does not possess the Marko-
vian property that the future behaviour of the process depends only on its present
state. Clearly, to predict the future behaviour of the process, the knowledge of the
number of customers present does not suffice in general but the knowledge of the
time elapsed since the last arrival is required too. Note that, by the memoryless
property of the exponential distribution, the elapsed service time of the service
in progress (if any) is not relevant. However, we can find an embedded Markov
chain for the continuous-time process {X(t)}. Consider the process embedded at
the epochs when customers arrive. At these epochs the time elapsed since the last
arrival is known and equals zero. Define for n = 0, 1, . . . ,

Xn = the number of customers present just prior to the nth arrival epoch

with X0 = 0 by convention. The embedded stochastic process {Xn, n = 0, 1, . . . }
is a discrete-time Markov chain, since the exponential services are memoryless.
This Markov chain has the countably infinite state space I = {0, 1, . . . }. To find
the one-step transition probabilities pij of the Markov chain, denote by An the
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time between the arrival epochs of the nth and (n + 1)th customer and let Cn

denote the number of customers served during the interarrival time An. Note that
Xn+1 = Xn + 1 − Cn. The probability distribution of Cn obviously depends on
Xn (= the number of customers seen by the nth arrival). The easiest way to find
the probability distribution of Cn is to use the observation that service completions
occur according to a Poisson process with rate µ as long as the server is busy.
This observation is a consequence of the assumption of exponentially distributed
service times and the relation between the Poisson process and the exponential
distribution. By conditioning on the interarrival time An and using the law of total
probability, we find for each state i that

pij = P {Xn+1 = j | Xn = i}

=
∫ ∞

0
P {i + 1 − j service completions during An | An = t}a(t) dt

=
∫ ∞

0
e−µt (µt)i+1−j

(i + 1 − j)!
a(t) dt, 1 ≤ j ≤ i + 1. (3.1.2)

This formula does not hold for j = 0. Why not? The probability pi0 is easiest to
compute from

pi0 = 1 −
i+1∑
j=1

pij , i = 0, 1, . . . .

Obviously, pij = 0 for j > i + 1 for each state i.

3.2 TRANSIENT ANALYSIS

This section deals with the transient analysis of the Markov chain {Xn, n =
0, 1, . . . } with state space I and one-step transition probabilities pij for i, j ∈ I .
We first show how the one-step transition probabilities determine the probability of
going from state i to state j in the next n steps. The n-step transition probabilities
are defined by

p
(n)
ij = P {Xn = j | X0 = i}, i, j ∈ I

for any n = 1, 2, . . . Note that p
(1)
ij = pij . It is convenient to define

p
(0)
ij =

{
1 if j = i,

0 if j �= i.

Theorem 3.2.1 (Chapman–Kolmogoroff equations) For all n, m = 0, 1, . . . ,

p
(n+m)
ij =

∑
k∈I

p
(n)
ik p

(m)
kj , i, j ∈ I. (3.2.1)
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Proof A formal proof is as follows. By conditioning on the state of the Markov
chain at time t = n, we find

P {Xn+m = j | X0 = i} =
∑
k∈I

P {Xn+m = j | X0 = i, Xn = k}P {Xn = k | X0 = i}

=
∑
k∈I

P {Xn+m = j | Xn = k}P {Xn = k | X0 = i}

=
∑
k∈I

P {Xm = j | X0 = k}P {Xn = k | X0 = i},

which verifies (3.2.1). Note that the second equality uses the Markovian property
and the last equality uses the assumption of time homogeneity.

The theorem states that the probability of going from i to j in n + m steps is
obtained by summing the probabilities of the mutually exclusive events of going
first from state i to some state k in n steps and then going from state k to state j in
m steps. This explanation is helpful to memorize the equation (3.2.1). In particular,
we have for any n = 1, 2, . . . ,

p
(n+1)
ij =

∑
k∈I

p
(n)
ik pkj , i, j ∈ I. (3.2.2)

Hence the n-step transition probabilities p
(n)
ij can be recursively computed from

the one-step transition probabilities pij . In fact the p
(n)
ij are the elements of the

n-fold matrix product Pn, where P denotes the matrix whose (i, j)th element is
the one-step transition probability pij . If the state space I is finite, the probabilities
p

(n)
ij can also be found by computing the eigenvalues and the eigenvectors of the

matrix P.

Example 3.2.1 The weather as Markov chain

On the Island of Hope the weather each day is classified as sunny, cloudy or rainy.
The next day’s weather depends only on the weather of the present day and not
on the weather of the previous days. If the present day is sunny, the next day will
be sunny, cloudy or rainy with respective probabilities 0.70, 0.10 and 0.20. The
transition probabilities are 0.50, 0.25 and 0.25 when the present day is cloudy and
they are 0.40, 0.30 and 0.30 when the present day is rainy. An interesting question
is how often the weather is sunny, cloudy and rainy over a long period of time.

Let us first answer a simpler question, namely what the probability is of sunny
weather three days later when the present day is rainy. To answer this question, we
define a Markov chain {Xn} with three states 1, 2 and 3. The process is in state 1
when the weather is sunny, in state 2 when the weather is cloudy and in state 3
when the weather is rainy. The matrix P of one-step transition probabilities pij is
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given by

P =

0.70 0.10 0.20

0.50 0.25 0.25
0.40 0.30 0.30


 .

To obtain the probability of having sunny weather three days from now, we need
the matrix product P3:

P3 =

0.6015000 0.1682500 0.2302500

0.5912500 0.1756250 0.2331250
0.5855000 0.1797500 0.2347500


 .

This matrix shows that it will be sunny three days from now with probability 0.5855
when the present day is rainy. You could also ask: what is the probability distri-
bution of the weather after many days? Intuitively you expect that this probability
distribution does not depend on the present weather. This is indeed confirmed by
the calculations:

P5 =

0.5963113 0.1719806 0.2317081

0.5957781 0.1723641 0.2318578
0.5954788 0.1725794 0.2319418




P12 =

0.5960265 0.1721854 0.2317881

0.5960265 0.1721854 0.2317881
0.5960265 0.1721854 0.2317881


 = P13 = P14 = . . . .

In this example the n-step transition probability p
(n)
ij converges for n → ∞ to a

limit which is independent of the initial state i. You see that the weather after many
days will be sunny, cloudy or rainy with respective probabilities 0.5960, 0.1722 and
0.2318. Intuitively it will be clear that these probabilities also give the proportions
of time the weather is sunny, cloudy and rainy over a long period. The limiting
behaviour of the n-step transition probabilities is the subject of Section 3.3.

3.2.1 Absorbing States

A useful Markov chain model is the model with one or more absorbing states. A
state is absorbing if the process cannot leave this state once it entered this state.

Definition 3.2.1 A state i is said to be an absorbing state if pii = 1.

The next example shows the usefulness of the Markov model with absorbing states.

Example 3.2.2 Success runs in roulette

A memorable event occurred in the casino of Monte Carlo on the evening of 18
August 1913. The roulette ball hit a red number 26 times in a row. In European
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roulette the wheel has 37 compartments numbered 0, 1, . . . , 36, where the odd
numbers are black and the even numbers except for the zero are red. An interesting
question that naturally arises is: what is the probability that during the next m spins
of the wheel there will be some sequence of r consecutive spins that all result either
in r black numbers or in r red numbers for a given value of r?

This question can be answered by Markov chain theory. The idea is to define a
Markov chain with r + 1 states including an absorbing state. The process is said to
be in state 0 when the last spin of the wheel resulted in a zero, while the process is
said to be in state i with 1 ≤ i < r when the same colour (red or black) appeared
in the last i spins but this colour did not appear in the spin preceding the last i

spins. The process is said to be in state r when the last r spins of the wheel have
resulted in the same colour. The state r is taken as an absorbing state; imagine that
the wheel sticks to the colour of the success run once a success run of length r

has occurred. A success run of length r is said to occur when state r is reached.
Denote by Xn the state of the process after the nth spin of the wheel, with X0 = 0
by convention. The stochastic process {Xn} is a discrete-time Markov chain. Its
one-step transition probabilities are given by

p00 = 1

37
, p01 = 36

37
,

pi,i+1 = pi1 = 18

37
, pi0 = 1

37
for i = 1, . . . , r − 1

prr = 1.

The other pij are zero. Since state r is absorbing, it is not possible that the process
has visited state r before time t when the process is in some state i �= r at time t .
Hence

P {more than m spins are needed to get a success run of length r}
= P {Xk �= r for k = 1, . . . , m | X0 = 0}
= P {Xm �= r | X0 = 0} = 1 − P {Xm = r | X0 = 0}
= 1 − p

(m)
0r .

The desired probability that a success run of length r will occur during the first m

spins of the wheel is thus p
(m)
0r . How can we calculate this probability for r = 26

when N is of order 8 million (a rough estimate for the number of spins of the
roulette wheel in Monte Carlo between the date of the founding of the casino and
the date of 18 August 1913)? It is not advised to multiply the 27 × 27 matrix
P = (pij ) 8 million times by itself. A more clever computation is based on

P2 = P × P, P4 = P2 × P2, P8 = P4 × P4, etc.

Taking k = 23, we have 2k is about 8 million. Hence it suffices to do 23 matrix
multiplications to get p

(m)
0,26 for m = 223. This gives the probability 0.061. Another
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approach to analysing success runs is given in Appendix C and uses generating
functions.

Example 3.2.3 A coin-tossing surprise

A fair coin is repeatedly flipped until the last three tosses either show the combi-
nation TTH or the combination THH. Here H means that the outcome of a toss
is a head and T that it is a tail. What is the probability that the combination TTH
occurs before the combination THH ?

To answer this question, we define a Markov chain with eight states, including
two absorbing states. Let state 0 mean the beginning of a game, state 1 = the first
toss is H , state 2 = the first toss is T , state 3 = the last two tosses show HH,
state 4 = the last two tosses show HT, state 5 = the last two tosses show TT, state
6 = the last two tosses show TH, state 7 = the last three tosses show TTH and
state 8 = the last three tosses show THH. The states 7 and 8 are taken absorbing.
It is implicit in the definition of the states 3, 4, 5, 6 that the combinations TTH
and THH have not appeared before. The Markov chain that describes the evolution
of the state of the system has the one-step transition probabilities

p01 = p02 = 1
2 , p13 = p14 = 1

2 , p25 = p26 = 1
2 ,

p33 = p34 = 1
2 , p45 = p46 = 1

2 , p55 = p57 = 1
2 ,

p63 = p68 = 1
2 , p77 = 1, p88 = 1, the other pij = 0.

The Markov chain will ultimately be absorbed in one of the states 7 and 8 (this
fact can formally be proved by proceeding as in the proof of Theorem 3.2.2 below
and replacing the states 7 and 8 by a single absorbing state). Denote by fi the
probability that the Markov chain is ultimately absorbed in state 7 starting from
state i. The probability f0 gives the desired probability that the combination TTH
occurs before the combination THH. The probabilities f0, . . . , f6 satisfy a system
of linear equations. The equation for fi follows by conditioning on the next state
after the current state i. This gives

f0 = 1
2f1 + 1

2f2, f1 = 1
2f3 + 1

2f4, f2 = 1
2f5 + 1

2f6,

f3 = 1
2f3 + 1

2f4, f4 = 1
2f5 + 1

2f6,

f5 = 1
2f5 + 1

2 × 1, f6 = 1
2f3 + 1

2 × 0.

The solution of these equations is (f0, . . . , f6) = ( 2
3 , 2

3 , 2
3 , 2

3 , 2
3 , 1, 1

3 ). The desired
probability is thus 2

3 . A surprising result for many people. Can you give a simple
explanation why the sought probability is not equal to 1

2 ?
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3.2.2 Mean First-Passage Times

Example 3.1.1 asked how to find the expected number of steps the drunkard needs
to return to his starting point. More generally, consider a Markov chain {Xn} for
which

(a) the state space I is finite,

(b) there is some state r such that for each state i ∈ I there is an integer n(= ni)

such that p
(n)
ir > 0.

What is the mean return time from state r to itself? Let

τ = min{n ≥ 1 | Xn = r},
To calculate µrr = E(τ |X0 = r), we need the mean visit times

µir = E(τ | X0 = i)

for each state i �= r . By conditioning on the next state after state r ,

µrr = 1 +
∑

j∈I,j �=r

prj µjr . (3.2.3)

The µir with i �= r are found by solving a system of linear equations. For notational
convenience, number the states as 1, . . . , N and let state r be numbered as N .

Theorem 3.2.2 The mean visit times µiN for i �= N are the unique solution to the
linear equations

µiN = 1 +
N−1∑
j=1

pij µjN , i = 1, . . . , N − 1. (3.2.4)

Proof The equation for µiN follows by conditioning on the next state visited after
state i. To prove that the linear equations have a unique solution we use the trick
of making state N absorbing for a modified Markov chain. Let P̂ = (p̂ij ), i, j ∈ I

be the Markov matrix obtained by replacing the N th row in the matrix P = (pij ),
i, j ∈ I by (0, 0, . . . , 1). The mean first passage times µjN for j = 1, . . . , N−1 are
not changed by making state N absorbing. Denote by Q = (qij ) the (N−1)×(N−1)

submatrix that results by omitting the N th row and the N th column in the matrix
P. Let the vectors µ = (µ1N, . . . , µN−1,N ) and e = (1, . . . , 1). Then we can write
(3.2.4) in matrix notation as

µ = e + Qµ. (3.2.5)

Since state N is absorbing for the Markov matrix P̂, we have for each n ≥ 1 that

q
(n)
ij = p̂

(n)
ij , i, j = 1, . . . , N − 1, (3.2.6)
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where the q
(n)
ij and the p̂

(n)
ij are the elements of the n-fold matrix products Qn

and P̂n. State N can be reached from each starting state i �= N under the Markov
matrix P̂, since by assumption (b) p̂

(n)
iN ≥ p

(n)
iN > 0 for some n ≥ 1. Further, state

N is absorbing under P̂. This implies that

lim
n→∞ p̂

(n)
ij = 0 for all i, j = 1, . . . , N − 1,

as a special case of Lemma 3.2.3 below. Hence, by (3.2.6), limn→∞ Qn = 0. By
a standard result from linear algebra, it now follows that (3.2.5) has the unique
solution

µ = (I − Q)−1e. (3.2.7)

This completes the proof that the linear equations (3.2.4) have a unique solution.

Example 3.1.1 (continued) The drunkard’s random walk

The drunkard moves over a square with the corner points (N, N), (−N, N),
(−N, −N) and (−N, N). It is interesting to see how the mean return time to
the starting point depends on N . Let µ00(N) denote the expected number of steps
the drunkard needs to return to the starting point (0, 0). For fixed N the mean
return time µ00(N) can be computed by solving a system of linear equations of
the form (3.2.4) and next using (3.2.3). Table 3.2.1 gives the values of µ00(N) for
several values of N . The computations indicate that µ00(N) → ∞ as N → ∞.
This result is indeed true and can be theoretically proved by the theory of Markov
chains; see for example Feller (1950).

3.2.3 Transient and Recurrent States

Many applications of Markov chains involve chains in which some of the states
are absorbing and the other states are transient. An absorbing state is a special
case of a recurrent state. To define the concepts of transient states and recurrent
states, we need first to introduce the first-passage time probabilities. Let {Xn} be
a discrete-time Markov chain with state space I (finite or countably infinite) and
one-step transition probabilities pij , i, j ∈ I . For any n = 1, 2, . . . , let the first-

passage time probability f
(n)
ij be defined by

f
(n)
ij = P {Xn = j, Xk �= j for 1 ≤ k ≤ n − 1 | X0 = i}, i, j ∈ I. (3.2.8)

Table 3.2.1 The mean return time to the origin

N 1 2 5 10 25 50

µ00(N) 6 20 110 420 2550 10 100
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In other words, f
(n)
ij is the probability that the first transition of the process into

state j is at time t = n when the process starts in state i. Next define the proba-
bilities fij by

fij =
∞∑

n=1

f
(n)
ij . (3.2.9)

Then fij = P {Xn = j for some n ≥ 1 | X0 = i} denotes the probability that the
process ever makes a transition into state j when the process starts in state i.

Definition 3.2.2 A state i is said to be transient if fii < 1 and is said to be
recurrent if fii = 1.

Denoting for each state i ∈ I the probability Qii by

Qii = P {Xn = i for infinitely many values of n | X0 = i},

it is not difficult to verify that Qii = 0 if i is transient and Qii = 1 if i is recurrent.
A useful characterization of a transient state is given by the result that a state i is
transient if and only if

∞∑
n=1

p
(n)
ii < ∞. (3.2.10)

To see this, fix i ∈ I and define the indicator variable In as In = 1 if Xn = i and
In = 0 otherwise. Then

∑∞
n=1 In represents the number of visits of the Markov

chain to state i over the epochs t = 1, 2, . . . . Since E(In | X0 = i) = P {Xn =
i | X0 = i} = p

(n)
ii , it follows that

E

( ∞∑
n=1

In | X0 = i

)
=

∞∑
n=1

E(In | X0 = i) =
∞∑

n=1

p
(n)
ii , (3.2.11)

where the interchange of expectation and summation is justified by the non-
negativity of the In. On the other hand, letting N = ∑∞

n=1 In, the distribution
of the number of visits to state i satisfies P {N ≥ k | X0 = i} = (fii )

k for k ≥ 0
and so, by the well-known relation E(N) = ∑∞

j=0 P {N > j}, we find

E

( ∞∑
n=1

In | X0 = i

)
=

∞∑
k=1

(fii )
k.

Hence E
(∑∞

n=1 In | X0 = i
) = ∞ when fii = 1 and equals fii /(1−fii ) < ∞ oth-

erwise. This result and (3.2.11) prove that state i is transient only if (3.2.10) holds.
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Lemma 3.2.3 Suppose that state j is transient. Then, for any state i ∈ I ,

lim
n→∞ p

(n)
ij = 0.

Proof By (3.2.10),
∑∞

n=1 p
(n)
jj < ∞ and thus limn→∞ p

(n)
jj = 0. Take now a

starting state i with i �= j . By conditioning on the first epoch at which the process
makes a transition into state j , we obtain the useful relation

p
(n)
ij =

n∑
k=1

p
(n−k)
jj f

(k)
ij , n = 1, 2, . . . . (3.2.12)

Since limn→∞ p
(n)
jj exists and

∑∞
k=1 f

(k)
ij = fij < ∞, it follows from the bounded

convergence theorem in Appendix A that

lim
n→∞ p

(n)
ij = fij lim

n→∞ p
(n)
jj . (3.2.13)

Since limn→∞ p
(n)
jj = 0, the lemma now follows.

The limiting behaviour of p
(n)
ij as n → ∞ for a recurrent state j will be dis-

cussed in Section 3.3. It will be seen that this limit does not always exist. For a
recurrent state j an important concept is the mean recurrence time µjj which is
defined by

µjj =
∞∑

n=1

nf
(n)
jj . (3.2.14)

In other words, µjj is the expected number of transitions needed to return from
state j to itself. A recurrent state j is said to be positive recurrent if µjj < ∞
and is said to be null-recurrent if µjj = ∞. In Section 3.5 it will be seen that
null-recurrency can only occur in Markov chains with an infinite state space. To
illustrate this, consider the Markov chain {Xn} describing the drunkard’s walk on
an infinite square in Example 3.1.1 (N = ∞). It can be shown for this infinite-
state random walk that each state (x, y) is recurrent, but the mean recurrence time
of each state is ∞ so that all states are null-recurrent. The same holds for the
infinite-state Markov chain describing the symmetric random walk on the integers
(pi,i+1 = pi,i−1 = 1

2 for any integer i). However, for the symmetric random
walk on an infinite lattice in three or more dimensions, the corresponding Markov
chain has the property that all states are transient (in three dimensions, the prob-
ability of ever returning to the origin when starting there equals 0.3405). These
remarkable results will not be proved here, but are mentioned to show that Markov
chains with an infinite state space are intrinsically more complex than finite-state
Markov chains.
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3.3 THE EQUILIBRIUM PROBABILITIES

This section deals with the long-run behaviour of the Markov chain {Xn}. In partic-
ular, we discuss the characterization of the equilibrium distribution of the process
and a formula for the long-run average cost per time unit when a cost structure is
imposed on the Markov chain. In this section the emphasis is on giving insights
into the long-run behaviour of the Markov chain. Most of the proofs are deferred
to Section 3.5.

3.3.1 Preliminaries

A natural question for a Markov chain {Xn} is whether the n-step probabilities
p

(n)
ij always have a limit as n → ∞. The answer to this question is negative

as shown by the following counterexample. Consider a Markov chain with state
space I = {1, 2} and one-step transition probabilities pij with p12 = p21 = 1 and
p11 = p22 = 0. In this example the n-step transition probabilities p

(n)
ij alternate

between 0 and 1 for n = 1, 2, . . . and hence have no limit as n → ∞. The reason
is the periodicity in this Markov chain example. In our treatment of Markov chains
we will not give a detailed discussion on the relation between the limiting behaviour
of the p

(n)
ij and the issue of periodicity. The reason is that our treatment of Markov

chains emphasizes the study of long-run averages. As explained in Section 2.2,
the long-run average behaviour of a stochastic process is in general much easier to
handle than its limiting behaviour. More importantly, long-run averages are usually
required in the analysis of practical applications. In the next theorem we prove that
for each Markov chain {Xn} the Cesaro limit of the n-step transition probabilities
always exists.

Theorem 3.3.1 For all i, j ∈ I , limn→∞(1/n)
∑n

k=1 p
(k)
ij always exists. For any

j ∈ I ,

lim
n→∞

1

n

n∑
k=1

p
(k)
jj =

{
1

µjj
if state j is recurrent,

0 if state j is transient,
(3.3.1)

where µjj denotes the mean recurrence time from state j to itself. Also,

lim
n→∞

1

n

n∑
k=1

p
(k)
ij = fij lim

n→∞
1

n

n∑
k=1

p
(k)
jj (3.3.2)

for any i, j ∈ I , where fij is the probability that the process ever makes a transition
into state j when the process starts in state i.

Proof For a transient state j we have by Lemma 3.2.3 that limn→∞ p
(n)
ij = 0

for all i ∈ I . Using the well-known result that the Cesaro limit is equal to the
ordinary limit whenever the latter limit exists, the results (3.3.1) and (3.3.2) follow



THE EQUILIBRIUM PROBABILITIES 97

for transient states j . Fix now a recurrent state j . By the definition of recurrence,
we have fjj = 1. The times between successive visits to state j are independent
and identically distributed random variables with mean µjj . In other words, visits
of the Markov chain to state j can be seen as renewals. Denote by N(t) the number
of visits of the Markov chain to state j during the first t transition epochs. Then,
by Lemma 2.2.2,

lim
t→∞

N(t)

t
= 1

µjj
with probability 1. (3.3.3)

This limiting result holds for both µjj < ∞ and µjj = ∞. In other words, the
long-run average number of transitions to state j per time unit equals 1/µjj with
probability 1 when the process starts in state j . Define the indicator variable

Ik =
{

1 if the process visits state j at time k,
0 otherwise.

Since N(n) = I1 + · · · + In, we can rewrite (3.3.3) as

lim
n→∞

1

n

n∑
k=1

Ik = 1

µjj
with probability 1. (3.3.4)

Obviously,

E(Ik | X0 = j) = P {Xk = j | X0 = j} = p
(k)
jj .

Noting that (1/n)
∑n

k=1 Ik is bounded by 1 and using the bounded convergence
theorem from Appendix A, it follows from (3.3.4) that

1

µjj
= E

(
lim

n→∞
1

n

n∑
k=1

Ik | X0 = j

)
= lim

n→∞ E

(
1

n

n∑
k=1

Ik | X0 = j

)

= lim
n→∞

1

n

n∑
k=1

E (Ik | X0 = j) = lim
n→∞

1

n

n∑
k=1

p
(k)
jj .

It remains to prove that (3.3.2) holds for any state i �= j . To do so, we use the
relation (3.2.12) which was derived in the proof of Lemma 3.2.3. Averaging this
relation over n = 1, . . . , m, interchanging the order of summation and letting
m → ∞, the relation (3.3.2) follows in the same way as (3.2.13).

Another natural question is under which condition the effect of the initial state
of the process fades away as time increases so that limn→∞(1/n)

∑n
k=1 p

(k)
ij does

not depend on the initial state X0 = i for each j ∈ I . We need some condition as
the following example shows. Take a Markov chain with state space I = {1, 2} and
the one-step transition probabilities pij with p11 = p22 = 1 and p12 = p21 = 0. In
this example p

(n)
11 = 1 and p

(n)
21 = 0 for all n ≥ 1 so that limn→∞(1/n)

∑n
k=1 p

(k)
i1
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depends on the initial state i. The reason is that in this Markov chain example there
are two disjoint closed sets of states.

Definition 3.3.1 A non-empty set C of states is said to be closed if

pij = 0 for i ∈ C and j /∈ C,

that is, the process cannot leave the set C once the process is in the set C.

For a finite-state Markov chain having no two disjoint closed sets it is proved
in Theorem 3.5.7 that fij = 1 for all i ∈ I when j is a recurrent state. For such
a Markov chain it then follows from (3.3.2) that limn→∞(1/n)

∑n
k=1 p

(k)
ij does

not depend on the initial state i when j is recurrent. This statement is also true
for a transient state j , since then the limit is always equal to 0 for all i ∈ I by
Lemma 3.2.3. For the case of an infinite-state Markov chain, however, the situation
is more complex. That is why we make the following assumption.

Assumption 3.3.1 The Markov chain {Xn} has some state r such that fir = 1 for
all i ∈ I and µrr < ∞.

In other words, the Markov chain has a regeneration state r that is ultimately
reached from each initial state with probability 1 and the number of steps needed to
return from state r to itself has a finite expectation. The assumption is satisfied in
most practical applications. For a finite-state Markov chain the Assumption 3.3.1
is automatically satisfied when the Markov chain has no two disjoint closed sets;
see Theorem 3.5.7. The state r from Assumption 3.3.1 is a positive recurrent state.
Assumption 3.3.1 implies that the set of recurrent states is not empty and that there
is a single closed set of recurrent states. Moreover, by Lemma 3.5.8 we have for
any recurrent state j that fij = 1 for all i ∈ I and µjj < ∞. Summarizing, under
Assumption 3.3.1 we have both for a finite-state and an infinite-state Markov chain
that limn→∞(1/n)

∑n
k=1 p

(k)
ij does not depend on the initial state i for all j ∈ I .

In the next subsection it will be seen that the Cesaro limits give the equilibrium
distribution of the Markov chain.

3.3.2 The Equilibrium Equations

We first give an important definition for a Markov chain {Xn} with state space I

and one-step transition probabilities pij , i, j ∈ I .

Definition 3.3.2 A probability distribution {πj , j ∈ I } is said to be an equilibrium
distribution for the Markov chain {Xn} if

πj =
∑
k∈I

πkpkj , j ∈ I. (3.3.5)
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An explanation of the term equilibrium distribution is as follows. Suppose that the
initial state of the process {Xn} is chosen according to

P {X0 = j} = πj , j ∈ I.

Then, for each n = 1, 2, . . . ,

P {Xn = j} = πj , j ∈ I.

In other words, starting the process according to the equilibrium distribution leads
to a process that operates in an equilibrium mode. The proof is simple and is based
on induction. Suppose that P {Xm = j} = πj , j ∈ I for some m ≥ 0. Then

P {Xm+1 = j} =
∑
k∈I

P {Xm+1 = j | Xm = k}P {Xm = k}

=
∑
k∈I

pkj πk = πj , j ∈ I.

An important question is: does the Markov chain have an equilibrium distribution,
and if it has, is this equilibrium distribution unique? The answer to this question
is positive when Assumption 3.3.1 is satisfied.

Theorem 3.3.2 Suppose that the Markov chain {Xn} satisfies Assumption 3.3.1.
Then the Markov chain {Xn} has a unique equilibrium distribution {πj , j ∈ I }. For
each state j ,

lim
n→∞

1

n

n∑
k=1

p
(k)
ij = πj (3.3.6)

independently of the initial state i. Moreover, let {xj , j ∈ I } with
∑

j∈I

∣∣xj

∣∣ < ∞
be any solution to the equilibrium equations

xj =
∑
k∈I

xkpkj , j ∈ I. (3.3.7)

Then, for some constant c, xj = cπj for all j ∈ I .

The proof of this important ergodic theorem is given in Section 3.5. It follows
from Theorem 3.3.2 that the equilibrium probabilities πj are the unique solution
to the equilibrium equations (3.3.5) in conjunction with the normalizing equation

∑
j∈I

πj = 1. (3.3.8)
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Interpretation of the πj

Using elementary results from renewal theory, we have already seen from the proof
of Theorem 3.3.1 that for any state j ,

the long-run average number of visits to state j

per time unit = πj with probability 1 (3.3.9)

when the process starts in state j . Under Assumption 3.3.1, the interpretation (3.3.9)
can easily be shown to hold for each starting state i ∈ I (this is obvious for a
transient state j and, by Lemma 3.5.8, a recurrent state j will be reached from
each initial state X0 = i after finitely many transitions with probability 1). The
proof of Theorem 3.3.1 also showed that

πj = 1

µjj
for each recurrent state j, (3.3.10)

where µjj is the mean recurrence time from state j to itself. The interpretation
(3.3.9) is most useful for our purposes. Using this interpretation, we can also
give a physical interpretation of the equilibrium equation (3.3.5). Each visit to
state j means a transition to state j (including self-transitions) and subsequently a
transition from state j . Thus

the long-run average number of transitions from state j

per time unit = πj

and

the long-run average number of transitions from state k to state j

per time unit = πkpkj .

This latter relation gives

the long-run average number of transitions to state j

per time unit =
∑
k∈I

πkpkj .

By physical considerations, the long-run average number of transitions to state j

per time unit must be equal to the long-run average number of transitions from
state j per time unit. Why? Hence the equilibrium equations express that the
long-run average number of transitions from state j per time unit equals the long-
run average number of transitions to state j per time unit for all j ∈ I . The
simplest way to memorize the equilibrium equations is provided by the following
heuristic. Suppose that limn→∞ p

(n)
ij exists so that πj = limn→∞ p

(n)
ij . Next apply
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the heuristic reasoning

πj = P {X∞ = j} =
∑
k∈I

P {X∞ = j | X∞−1 = k}P {X∞−1 = k}

=
∑
k∈I

pkj πk, j ∈ I. (3.3.11)

Example 3.2.1 (continued) The weather as Markov chain

In this example the three-state Markov chain {Xn} has no two disjoint closed sets
and thus has a unique equilibrium distribution. The equilibrium probabilities π1,
π2 and π3 can be interpreted as the fractions of time the weather is sunny, cloudy
or rainy over a very long period of time. The probabilities π1, π2 and π3 are the
unique solution to the equilibrium equations

π1 = 0.70π1 + 0.50π2 + 0.40π3

π2 = 0.10π1 + 0.25π2 + 0.30π3

π3 = 0.20π1 + 0.25π3 + 0.30π3

together with the normalizing equation π1 + π2 + π3 = 1. To get a square system
of linear equations, it is permitted to delete one of the equilibrium equations. The
solution is

π1 = 0.5960, π2 = 0.1722, π3 = 0.2318

in accordance with earlier calculations in Section 3.2.

Example 3.1.2 (continued) A stock-control problem

In this example the Markov chain {Xn} describing the stock on hand just prior to
review has a finite state space and has no two disjoint closed sets (e.g. state 0 can be
reached from each other state). Hence the Markov chain has a unique equilibrium
distribution. The equilibrium probability πj denotes the long-run fraction of weeks
for which the stock on hand at the end of the week equals j for j = 0, 1, . . . , S.
Thus

the long-run average frequency of ordering =
s−1∑
j=0

πj

the long-run average stock on hand at the end of the week =
S∑

j=0

jπj
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with probability 1. Using the expressions for the pij given in Section 3.1, we obtain
for the πj the equilibrium equations

π0 =
(

1 −
S−1∑
�=0

e−λ λ�

�!

)
(π0 + · · · + πs−1) +

S∑
k=s

(
1 −

k−1∑
�=0

e−λ λ�

�!

)
πk,

πj =
s−1∑
k=0

e−λ λS−j

(S − j)!
πk +

S∑
k=s

e−λ λk−j

(k − j)!
πk, 1 ≤ j ≤ s − 1,

πj =
s−1∑
k=0

e−λ λS−j

(S − j)!
πk +

S∑
k=j

e−λ λk−j

(k − j)!
πk, s ≤ j ≤ S.

These equations together with the normalizing equation
∑S

k=0 πk = 1 determine
uniquely the equilibrium probabilities πj , j = 0, 1, . . . , S. If one of the equilibrium
equations is omitted to obtain a square system of linear equations, the solution of
the resulting system is still uniquely determined.

Example 3.1.3 (continued) The GI/M/1 queue

In this example the Markov chain {Xn} describing the number of customers present
just prior to arrival epochs has the infinite state space I = {0, 1, . . . }. In order to
ensure that Assumption 3.3.1 is satisfied, we have to assume that the arrival rate
of customers is less than the service rate. Thus, denoting by λ the reciprocal of the
mean interarrival time, it is assumed that

λ < µ. (3.3.12)

We omit the proof that under this condition Assumption 3.3.1 is satisfied (with
state 0 as regeneration state r). In the GI/M/1 queueing example the equilibrium
probability πj can be interpreted as the long-run fraction of customers who see j

other customers present upon arrival for j = 0, 1, . . . . In particular, 1 − π0 is the
long-run fraction of customers who have to wait in queue. Using the specification
of the pij given in Section 3.1, we obtain the equilibrium equations

πj =
∞∑

k=j−1

πk

∫ ∞

0
e−µt (µt)k+1−j

(k + 1 − j)!
a(t) dt, j ≥ 1. (3.3.13)

The equilibrium equation for π0 is omitted since it is not needed. An explicit
solution for the πj can be given. This solution is

πj = (1 − η)ηj , j = 0, 1, . . . (3.3.14)

where η is the unique solution of the equation

η −
∫ ∞

0
e−µ(1−η)t a(t) dt = 0 (3.3.15)
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on the interval (0, 1). Using the condition (3.3.12), it is readily verified that the
equation (3.3.15) has a unique solution on (0, 1). The result (3.3.14) can be proved
in several ways. A direct way is to try a solution of the form πj = γ ηj , j ≥ 0
for constants γ > 0 and 0 < η < 1 and substituting this form into (3.3.13).
By doing so, one then finds that η satisfies the equation (3.3.15). The constant γ

follows from
∑∞

j=0 πj = 1. More sophisticated proofs of result (3.3.14) are given
in Sections 3.4.2 and 3.5.2.

3.3.3 The Long-run Average Reward per Time Unit

A very useful applied probability model is the Markov chain model on which a
reward or cost structure is imposed. Suppose that a reward f (j) is earned each
time the Markov chain visits state j for j ∈ I . The ergodic theorem shows how
to compute the long-run average reward per time unit in terms of the equilibrium
probabilities πj . In addition to Assumption 3.3.1 involving the regeneration state
r , we need the following assumption.

Assumption 3.3.2 (a) The total reward earned between two visits of the Markov
chain to state r has a finite expectation and

∑
j∈I |f (j)| πj < ∞.

(b) For each initial state X0 = i with i �= r , the total reward earned until the
first visit of the Markov chain to state r is finite with probability 1.

This assumption is automatically satisfied when the Markov chain has a finite
state space and satisfies Assumption 3.3.1.

Theorem 3.3.3 Suppose the Markov chain {Xn} satisfies Assumptions 3.3.1 and
3.3.2. Then the long-run average reward per time unit is

lim
n→∞

1

n

n∑
k=1

f (Xk) =
∑
j∈I

f (j)πj with probability 1

for each initial state X0 = i.

Intuitively this theorem is obvious by noting that the long-run average number
of visits to state j per time unit equals πj with probability 1 for each state j ∈ I .
A formal proof of Theorem 3.3.3 is given in Section 3.5.2.

Remark 3.3.1 A useful modification of Theorem 3.3.3
In Theorem 3.3.3 the renewal function refers to an immediate reward f (j) that is
earned each time the Markov chain visits state j . However, in practical applications
it happens often that rewards are gradually earned during the time between the state
transitions of the Markov chain. Define for those situations the reward function
f (j) by

f (j) = the expected reward earned until the next state transition
when a state transition has just occurred to state j .
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Then it remains true that the long-run average reward per time unit is
∑

j∈I f (j)πj

with probability 1. This can be directly seen from the proof of Theorem 3.3.3 that
is given in Section 3.5.2. This proof uses the idea that the long-run average reward
per time unit equals

E(reward earned in one cycle)

E(length of one cycle)

with probability 1, where a cycle is defined as the time elapsed between two
successive visits to a given recurrent state. The expression for E(reward earned
during one cycle) is not affected whether f (j) represents an immediate reward or
an expected reward.

Example 3.2.1 (continued) A stock-control problem

Suppose that the following costs are made in the stock-control problem. A fixed
ordering cost of K > 0 is incurred each time the stock is ordered up to level S. In
each week a holding cost of h > 0 is charged against each unit that is still in stock
at the end of the week. A penalty cost of b > 0 is incurred for each demand that
is lost. Denoting by c(j) the expected costs incurred in the coming week when the
current stock on hand is j just prior to review, it follows that

c(j) = K + h

S−1∑
k=0

(S − k) e−λ λk

k!
+ b

∞∑
k=S+1

(k − S) e−λ λk

k!
, 0 ≤ j < s,

c(j) = h

j−1∑
k=0

(j − k) e−λ λk

k!
+ b

∞∑
k=j+1

(k − j) e−λ λk

k!
, s ≤ j ≤ S.

The long-run average cost per week equals
∑S

j=0 c(j)πj with probability 1. In
evaluating this expression, it is convenient to replace

∑∞
k=j+1(j − k) e−λλk/k! by

j − λ − ∑j

k=0(j − k) e−λλk/k! in the expression for c(j). Note that by taking
b = 1 and K = h = 0, the long-run average cost per week reduces to the long-
run average demand lost per week. Dividing this average by the average weekly
demand λ we get the long-run fraction of demand that is lost.

Example 3.3.1 An insurance problem

A transport firm has effected an insurance contract for a fleet of vehicles. The
premium payment is due at the beginning of each year. There are four possible
premium classes with a premium payment of Pi in class i, where Pi+1 < Pi for
i = 1, 2, 3. The size of the premium depends on the previous premium and the
claim history during the past year. If no damage is claimed in the past year and
the previous premium is Pi , the next premium payment is Pi+1 (with P5 = P4,
by convention), otherwise the highest premium P1 is due. Since the insurance
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contract is for a whole fleet of vehicles, the transport firm has obtained the option
to decide only at the end of the year whether the accumulated damage during
that year should be claimed or not. If a claim is made, the insurance company
compensates the accumulated damage minus an own risk which amounts to ri
for premium class i. The total damages in the successive years are independent
random variables having a common probability distribution function G(s) with
density g(s). What is a reasonable claim strategy and what is the long-run average
cost per year?

An obvious claim strategy is the rule characterized by four parameters α1, . . . , α4.
If the current premium class is class i, then the transport firm claims at the end of the
year only damages larger than αi , otherwise nothing is claimed. Consider now a given
claim rule (α1, . . . , α4) with αi > ri for i = 1, . . . , 4. For this rule the average
cost per year can be obtained by considering the stochastic process which describes
the evolution of the premium class for the transport firm. Let

Xn = the premium class for the firm at the beginning of the nth year.

Then the stochastic process {Xn} is a Markov chain with four possible states
i = 1, . . . , 4. The one-step transition probabilities pij are easily found. A one-
step transition from state i to state 1 occurs only if at the end of the present year
a damage is claimed, otherwise a transition from state i to state i + 1 occurs (with
state 5 ≡ state 4). Since for premium class i only cumulative damages larger than
αi are claimed, it follows that

pi1 = 1 − G(αi), i = 1, . . . , 4,

pi,i+1 = G(αi), i = 1, 2, 3 and p44 = G(α4).

The other one-step transition probabilities pij are equal to zero. The Markov chain
has no two disjoint closed sets. Hence the equilibrium probabilities πj , 1 ≤ j ≤ 4,
are the unique solution to the equilibrium equations

π4 = G(α3)π3 + G(α4)π4,

π3 = G(α2)π2,

π2 = G(α1)π1,

π1 = {1 − G(a1)}π1 + {1 − G(α2)}π2 + {1 − G(α3)}π3 + {1 − G(α4)}π4

together with the normalizing equation π1+π2+π3+π4 = 1. These linear equations
can be solved recursively. Starting with π4 := 1, we recursively compute π3, π2
and π1 from the first three equations. Next we obtain the true values of the πj

from πj := πj/
∑4

k=1 πk . Denote by c(j) the expected costs incurred during a year
in which premium Pj is paid. Then by Theorem 3.3.3 we have that the long-run
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Table 3.3.1 The optimal claim limits and the minimal costs

Gamma Lognormal

c2
D

= 1 c2
D

= 4 c2
D

= 25 c2
D

= 1 c2
D

= 4 c2
D

= 25

α∗
1 5908 6008 6280 6015 6065 6174

α∗
2 7800 7908 8236 7931 7983 8112

α∗
3 8595 8702 9007 8717 8769 8890

α∗
4 8345 8452 8757 8467 8519 8640

g∗ 9058 7698 6030 9174 8318 7357

average cost per year is

g(α1, . . . , α4) =
4∑

j=1

c(j)πj

with probability 1. The one-year cost c(j) consists of the premium Pj and any
damages not compensated that year by the insurance company. By conditioning on
the cumulative damage in the coming year, it follows that

c(j) = Pj +
∫ αj

0
sg(s) ds + rj [1 − G(αj )].

The optimal claim limits follow by minimizing the function g(α1, . . . , α4) with
respect to the parameters α1, . . . , α4. Efficient numerical procedures are widely
available to minimize a function of several variables. Table 3.3.1 gives for a number
of examples the optimal claim limits α∗

1 , . . . , α∗
4 together with the minimal average

cost g∗. In all examples we take

P1 = 10 000, P2 = 7500, P3 = 6000, P4 = 5000,
r1 = 1500, r2 = 1000, r3 = 750, r4 = 500.

The average damage size is 5000 in each example; the squared coefficient of
variation of the damage size D takes three values: c2

D = 1, 4 and 25. To see the
effect of the shape of the probability density of the damage size on the claim limits,
we take the gamma distribution and the lognormal distribution both having the same
first two moments. In particular, the minimal average cost becomes increasingly
sensitive to the distributional form of the damage size D when c2

D gets larger. Can
you explain why the minimal average cost per year decreases when the variability
of the claims increases?

3.4 COMPUTATION OF THE EQUILIBRIUM PROBABILITIES

In this section it is assumed that the Markov chain {Xn} satisfies Assumption 3.3.1.
The Markov chain then has a unique equilibrium distribution {πj , j ∈ I }. The πj
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are determined up to a multiplicative constant by the equilibrium equations

πj =
∑
k∈I

πkpkj , j ∈ I. (3.4.1)

The multiplicative constant is determined by the normalizing equation∑
j∈I

πj = 1. (3.4.2)

In Section 3.4.1 we consider the case of a finite space I and discuss several methods
to compute the equilibrium probabilities πj . The infinite-state model is dealt with
in Section 3.4.2. It is shown that brute-force truncation is not necessary to get a
finite system of linear equations when the state space I = {0, 1, . . . } and the state
probabilities πj exhibit a geometric tail behaviour as j → ∞. For this situation,
which naturally arises in many applications, an elegant computational method for
the state probabilities can be given. Markov chains with a multidimensional state
space are prevalent in stochastic networks and in such applications it often happens
that the equilibrium probabilities are known up to a multiplicative constant. If
the number of states is too large for a direct computation of the multiplicative
constant, the Metropolis–Hastings algorithm and the Gibbs sampler may be used
to obtain the equilibrium probabilities. These powerful methods are discussed in
Section 3.4.3.

3.4.1 Methods for a Finite-State Markov Chain

In general there are two methods to solve the Markov chain equations:

(a) direct methods,

(b) iterative methods.

To discuss these methods, let us assume that the states of the Markov chain are
numbered or renumbered as 1, . . . , N .

Direct methods

A convenient direct method is a Gaussian elimination method such as the
Gauss–Jordan method. This reliable method is recommended as long as the dimen-
sion N of the system of linear equations does not exceed the order of thousands.
The computational effort of Gaussian elimination is proportional to N3. Reliable
and ready-to-use codes for Gaussian elimination methods are widely available. A
Gaussian elimination method requires that the whole coefficient matrix is stored,
since this matrix must be updated at each step of the algorithm. This explains why
a Gaussian elimination method suffers from computer memory problems when N
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gets large. In some applications the transition probabilities pij have the property
that for each state i the probability pij = 0 for j ≤ i −2 (or pij = 0 for j ≥ i +2).
Then the linear equations are of the Hessenberg type. Linear equations of the
Hessenberg type can be efficiently solved by a special code using the very stable
QR method. In solving the Markov chain equations (3.4.1) and (3.4.2) by a direct
method, one of the equilibrium equations is omitted to obtain a square system of
linear equations.

Iterative method of successive overrelaxation

Iterative methods have to be used when the size of the system of linear equations
gets large. In specific applications an iterative method can usually avoid computer
memory problems by exploiting the (sparse) structure of the application. An iter-
ative method does not update the matrix of coefficients each time. In applications
these coefficients are usually composed from a few constants. Then only these
constants have to be stored in memory when using an iterative method. In addition
to the advantage that the coefficient matrix need not be stored, an iterative method
is easy to program for specific applications.

The iterative method of successive overrelaxation is a suitable method for solving
the linear equations of large Markov chains. The well-known Gauss–Seidel method
is a special case of the method of successive overrelaxation. The iterative methods
generate a sequence of vectors x(0) → x(1) → x(2) → . . . converging towards
a solution of the equilibrium equations (3.4.1). The normalization is done at the
end of the calculations. To apply successive overrelaxation, we first rewrite the
equilibrium equations (3.4.1) in the form

xi =
N∑

j=1
j �=i

aij xj , i = 1, . . . , N,

where

aij = pji

1 − pii
, i, j = 1, . . . , N, j �= i.

The standard successive overrelaxation method uses a fixed relaxation factor ω

for speeding up the convergence. The method starts with an initial approximation
vector x(0) �= 0. In the kth iteration of the algorithm an approximation vector x(k) is
found by a recursive computation of the components x

(k)
i such that the calculation

of the new estimate x
(k)
i uses both the new estimates x

(k)
j for j < i and the old

estimates x
(k−1)
j for j > i. The steps of the algorithm are as follows:

Step 0. Choose a non-zero vector x(0). Let k := 1.

Step 1. Calculate successively for i = 1, . . . , N the component x
(k)
i from
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x
(k)
i = (1 − ω)x

(k−1)
i + ω


 i−1∑

j=1

aij x
(k)
j +

N∑
j=i+1

aij x
(k−1)
j


 .

Step 2. If the stopping criterion

N∑
i=1

∣∣∣x(k)
i − x

(k−1)
i

∣∣∣ ≤ ε

N∑
i=1

∣∣∣x(k)
i

∣∣∣
is satisfied with ε > 0, a prespecified accuracy number, then go to step 3. Otherwise
k := k + 1 and go to step 1.
Step 3. Calculate the solution to (3.4.1) and (3.4.2) from

x∗
i = x

(k)
i

N∑
j=1

x
(k)
j

, 1 ≤ i ≤ N.

The specification of the tolerance number ε typically depends on the particular
problem considered and the accuracy required in the final answers. In addition to
the stopping criterion, it may be helpful to use an extra accuracy check for the
equilibrium probabilities of the underlying Markov chain. An extra accuracy check
may prevent a decision upon a premature termination of the algorithm when the
tolerance number ε is not chosen sufficiently small. Notice that the normalizing
equation (3.4.2) is used only at the very end of the algorithm. In applying succes-
sive overrelaxation it is highly recommended that all of the equilibrium equations
(3.4.1) are used rather than omitting one redundant equation and substituting the
normalizing equation (3.4.2) for it.

The convergence speed of the successive overrelaxation method may dramati-
cally depend on the choice of the relaxation factor ω, and even worse the method
may diverge for some choices of ω. A suitable value of ω has to be determined
experimentally. Usually 1 ≤ ω ≤ 2. The choice ω = 1.2 is often recommended.
The optimal value of the relaxation factor ω depends on the structure of the partic-
ular problem considered. It is pointed out that the iteration method with ω = 1 is
the well-known Gauss–Seidel method. This method is convergent in all practical
cases. The ordering of the states may also have a considerable effect on the con-
vergence speed of the successive overrelaxation algorithm. In general one should
order the states such that the upper diagonal part of the matrix of coefficients is as
sparse as possible. In specific applications the transition structure of the Markov
chain often suggests an appropriate ordering of the states.

Krylov iteration method

The Gauss–Seidel iteration method can further be refined to obtain orthogonal basis
vectors for a so-called Krylov space. The construction of an appropriate Krylov
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basis is strongly dependent of the structure of the system of linear equations to
be solved and is typically a matter of experimentation. However, it is worthwhile
to try such an experimentation when an extremely large but structured system of
linear equations has to be solved many times. Enormous reductions in computing
times can be achieved by Krylov iteration methods; see Stewart (1994).

Recursive method

The linear equations (3.4.1) and (3.4.2) become a Hessenberg system when the pij

have the property that for each state i = 1, . . . , N ,

pij = 0 for all j ≤ i − 2. (3.4.3)

In this special case the equilibrium probabilities πj can also be computed by a
simple recursion scheme. To obtain this recursion scheme, we extend the ‘rate
out = rate in’ principle discussed in Section 3.3. For each set A of states with
A �= I , we have that the long-run average number of transitions per time unit
from a state inside A to a state outside A equals the long-run average number of
transitions per time unit from a state outside A to a state inside A.

Under the property (3.4.3) the set A = {i, i + 1, . . . , N} with i �= 1 can be
left only through state i. Applying the ‘rate out = rate in’ principle to this set A,
we find

pi,i−1πi =
i−1∑
k=1

πk


 N∑

j=i

pkj


 , i = 2, . . . , N. (3.4.4)

This recursion starts with the value of π1. Since the equilibrium equations determine
the probabilities πj up to a multiplicative constant, it is no problem that the value
of π1 is not known beforehand. We initialize the recursion with an arbitrary non-
zero value for π1 and normalize at the end of the recursion. In applying (3.4.4) it
is no restriction to assume that pi,i−1 > 0 for all i ≥ 2.

Algorithm

Step 0. Initialize π1 := 1.
Step 1. Compute successively π2, . . . , πN from (3.4.4).
Step 2. Normalize the πi according to

πi = πi/

N∑
k=1

πk, i = 1, 2, . . . , N.

The recursion scheme (3.4.4) involves no subtractions and is thus numerically
stable. However, very large numbers πi may build up when N is large. In those
situations it is recommended to do a renormalization at intermediate steps of the
recursion. The recursion method can also be used for a Markov chain with an
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infinite state space I = {1, 2, . . . } and one-step transition probabilities pij satisfying
(3.4.3). Then a truncation integer N must be used.

3.4.2 Geometric Tail Approach for an Infinite State Space

Many applications of Markov chains involve an infinite state space. What one
usually does to solve numerically the infinite set of equilibrium equations is to
approximate the infinite-state Markov model by a truncated model with finitely
many states so that the probability mass of the deleted states is very small. Indeed,
for a finite-state truncation with a sufficiently large number of states, the differ-
ence between the two models will be negligible from a computational point of
view. However, such a truncation often leads to a finite but very large system of
linear equations whose numerical solution will be quite time-consuming, although
an arsenal of good methods is available to solve the equilibrium equations of
a finite Markov chain. Moreover, it is somewhat disconcerting that we need a
brute-force approximation to solve the infinite-state model numerically. Usually
we introduce infinite-state models to obtain mathematical simplification, and now
in its numerical analysis using a brute-force truncation we are proceeding in the
reverse direction. Fortunately, many applications allow for a much simpler and
more satisfactory approach to solving the infinite set of state equations. Under
rather general conditions the state probabilities exhibit a geometric tail behaviour
that can be exploited to reduce the infinite system of state equations to a finite set
of linear equations. The geometric tail approach results in a finite system of linear
equations whose size is usually much smaller than the size of the finite system
obtained from a brute-force truncation. It is a robust approach that is easy to use
by practitioners.

Consider a discrete-time Markov chain whose state space is one-dimensional and
is given by

I = {0, 1, . . . }.
Let us assume that the equilibrium probabilities πj , j ∈ I , exhibit the geometric
tail behaviour

πj ∼ γ ηj as j → ∞ (3.4.5)

for some constants γ > 0 and 0 < η < 1. Here f (x) ∼ g(x) as x → ∞ means
that limx→∞ f (x)/g(x) = 1. Below we will discuss conditions under which (3.4.5)
holds. First we demonstrate how the geometric tail behaviour can be exploited to
reduce the infinite system of state equations to a finite system of linear equations.
It will be seen below that the decay factor η in (3.4.5) can usually be computed
beforehand by solving a non-linear equation in a single variable. Solving a non-
linear equation in a single variable is standard fare in numerical analysis. In most
applications it is not possible to compute the constant γ beforehand. Fortunately,
we do not need the constant γ in our approach. The asymptotic expansion is only
used by
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lim
j→∞

πj

πj−1
= η.

In other words, for a sufficiently large integer M ,

πj ≈ πMηj−M, j ≥ M.

Replacing πj by πMηj−M for j ≥ M in equations (3.4.1) and (3.4.2) leads to the
following finite set of linear equations:

πj =
M∑

k=0

ajk πk, j = 0, 1, . . . , M − 1,

M−1∑
j=0

πj + πM

1 − η
= 1,

where for any j = 0, 1, . . . , M − 1 the coefficients ajk are given by

ajk =
{

pkj , k = 0, 1, . . . , M − 1,∑∞
i=M ηi−Mpij , k = M .

How large an M should be chosen has to be determined experimentally and
depends, of course, on the required accuracy in the calculated values of the equilib-
rium probabilities. However, empirical investigations show that in specific appli-
cations remarkably small values of M are already good enough for practical pur-
poses. We found in all practical examples that the system of linear equations is
non-singular, irrespective of the value chosen for M . An appropriate value of M is
often in the range 1–200 when a reasonable accuracy (perhaps seven-digit accu-
racy) is required for the equilibrium probabilities. A Gaussian elimination method
is a convenient method for solving linear equations of this size. Fast and reliable
codes for Gaussian elimination are widely available. The geometric tail approach
combines effectivity with simplicity.

Conditions for the geometric tail behaviour

A useful but technical condition for (3.4.5) to hold can be given in terms of
the generating function

∑∞
j=0 πjz

j of the equilibrium probabilities πj . In many
applications the following condition is satisfied.

Condition A (a) The generating function
∑∞

j=0 πjz
j for |z| ≤ 1 has the form

∞∑
j=0

πjz
j = N(z)

D(z)
, (3.4.6)
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where N(z) and D(z) are functions that have no common zeros. The functions N(z)

and D(z) are analytic functions that can be analytically continued outside the unit
circle |z| ≤ 1.

(b) Letting R > 1 be the largest number such that both functions N(z) and D(z)

are analytic in the region |z| < R in the complex plane, the equation

D(x) = 0 (3.4.7)

has a smallest root x0 on the interval (1, R).

In specific applications the denominator D(z) in (3.4.6) is usually a nice function
that is explicitly given (this is usually not true for the numerator N(z)). It is only
the denominator D(z) that is needed for our purposes. Theorem C.1 in Appendix C
shows that under Condition A plus some secondary technical conditions the state
probabilities πj allow for the asymptotic expansion (3.4.5) with

η = 1

x0
. (3.4.8)

Condition A is a condition that seems not to have a probabilistic interpretation.
Next we give a probabilistic condition for (3.4.5) to hold. This condition is in
terms of the one-step transition probabilities pij of the Markov chain.

Condition B (a) There is an integer r ≥ 0 such that pij depends on i and j only
through j − i when i ≥ r and j ≥ 1.

(b) There is an integer s ≥ 1 such that

pij = 0 for j > i + s and i ≥ 0.

(c) Letting αj−i denote pij for i ≥ r and 1 ≤ j ≤ i + s, the constants αk satisfy

αs > 0 and
s∑

k=−∞
kαk < 0.

Under Condition B the equilibrium equation for πj has the form

πj =
∞∑

k=j−s

αj−kπk for j ≥ r + s.

This is a homogeneous linear difference equation with constant coefficients. A stan-
dard method to solve such a linear difference equation is the method of particular
solutions. Substituting a solution of the form πj = wj in the equilibrium equations
for the πj with j ≥ r + s, we find the so-called characteristic equation

ws −
∞∑

�=0

αs−�w
� = 0. (3.4.9)
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This equation can be shown to have s roots in the interior of the unit circle |w| ≤
1. Assume now that the roots w1, . . . , ws are distinct (as is typically the case
in applications). Then, by a standard result from the theory of linear difference
equations, there are constants c1, . . . , cs such that

πj =
s∑

k=1

ckw
j

k j ≥ r. (3.4.10)

The root wk having the largest modulus must be real and positive. Why? Denoting
this root by η, the asymptotic expansion (3.4.5) then follows.

Example 3.1.3 (continued) The GI /M/1 queue

The Markov chain {Xn} describing the number of customers present just prior to
arrival epochs satisfies Condition B with

r = 0 and s = 1,

as directly follows from the one-step transition probabilities pij given in (3.1.2).
The constants αk are given by

αk =
∫ ∞

0
e−µt (µt)1−k

(1 − k)!
a(t) dt, k ≤ 1.

It is directly verified that α1 > 0 and
∑1

k=−∞ kαk = 1 − µ/λ < 0. Thus we can
directly conclude from (3.4.10) that the equilibrium probabilities πj are of the form
γ ηj for all j ≥ 0 for constants γ > 0 and 0 < η < 1. The characteristic equation
(3.4.9) coincides with the equation (3.3.15).

Next we give an application in which Condition A is used to establish the
asymptotic expansion (3.4.5).

Example 3.4.1 A discrete-time queueing model

Messages arrive at a communication system according to a Poisson process with
rate λ. The messages are temporarily stored in a buffer which is assumed to have
infinite capacity. There are c transmission channels. At fixed clock times t =
0, 1, . . . messages are taken out of the buffer and are synchronously transmitted.
Each channel can only transmit one message at a time. The transmission time of
a message is one time slot. Transmission of messages can only start at the clock
times t = 0, 1, . . . . It is assumed that

λ < c,

that is, the arrival rate of messages is less than the transmission capacity.



COMPUTATION OF THE EQUILIBRIUM PROBABILITIES 115

To analyse this queueing model, define the random variable Xn by

Xn = the number of messages in the buffer (excluding any message

in transmission) just prior to clock time t = n.

Then {Xn, n = 0, 1, . . . } is a discrete-time Markov chain with the infinite state
space I = {0, 1, . . . }. The one-step transition probabilities are given by

pij = e−λ λj

j !
, 0 ≤ i < c and j = 0, 1, . . .

pij = e−λ λj−i+c

(j − i + c)!
, i ≥ c and j = i − c, i − c + 1, . . . .

By the assumption λ < c the Markov chain can be shown to satisfy Assump-
tion 3.3.1. Hence the equilibrium probabilities πj , j = 0, 1, . . . exist and are the
unique solution to the equilibrium equations

πj = e−λ λj

j !

c−1∑
k=0

πk +
c+j∑
k=c

e−λ λj−k+c

(j − k + c)!
πk, j = 0, 1, . . .

in conjunction with the normalizing equation
∑∞

j=0 πj = 1. Multiplying both sides
of the equilibrium equation for πj by zj and summing over j , we find

∞∑
j=0

πjz
j =

∞∑
j=0

e−λ λj

j !
zj

c−1∑
k=0

πk +
∞∑

j=0

zj

c+j∑
k=c

e−λ λj−k+c

(j − k + c)!
πk

= e−λ(1−z)
c−1∑
k=0

πk +
∞∑

k=c

πkz
k−c

∞∑
j=k−c

e−λ λj−k+c

(j − k + c)!
zj−k+c

= e−λ(1−z)

[
c−1∑
k=0

πk + z−c

( ∞∑
k=0

πkz
k −

c−1∑
k=0

πkz
k

)]
.

This gives

∞∑
j=0

πjz
j =

e−λ(1−z)
[∑c−1

k=0

(
zc − zk

)
πk

]
zc − e−λ(1−z)

, |z| ≤ 1.

The generating function
∑∞

j=0 πjz
j is the ratio of two functions N(z) and D(z).

Both functions can be analytically continued to the whole complex plane. The
denominator D(z) is indeed a nice function in an explicit form (the function N(z)

involves the unknowns π0, . . . , πc−1). Denote by x0 the unique solution of the
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equation

xc − e−λ(1−x) = 0

on the interval (1, ∞) and let η = 1/x0. Then it can be verified from Theorem C.1
in Appendix C that

πj ∼ γ ηj as j → ∞
for some constant γ > 0. Thus the geometric approach enables us to compute the
πj by solving a finite and relatively small system of linear equations.

3.4.3 Metropolis—Hastings Algorithm

In the context of stochastic networks, we will encounter in Chapter 5 Markov
chains with a multidimensional state space and having the feature that the equilib-
rium probabilities are known up to a multiplicative constant. However, the number
of possible states is enormous so that a direct calculation of the normalization con-
stant is not practically feasible. This raises the following question. Suppose that
π1, . . . , πN are given positive numbers with a finite sum S = ∑N

i=1 πi . How do
we construct a Markov chain whose equilibrium probabilities are given by πj/S

for j = 1, . . . , N? For ease of presentation, we restrict ourselves to N < ∞. To
answer the question, we need the concept of a reversible Markov chain. Let {Xn}
be a Markov chain with a finite state space I and one-step transition probabilities
pij . It is assumed that {Xn} has no two disjoint closed sets. Then the Markov chain
has a unique equilibrium distribution {πj }. Assume now that a non-null vector (gj ),
j ∈ I exists such that

gjpjk = gkpkj , j, k ∈ I. (3.4.11)

Then, for some constant c �= 0,

gj = cπj . (3.4.12)

The proof is simple. Fix j ∈ I and sum both sides of (3.4.11) over k. This gives

gj =
∑
k∈I

gkpkj , j ∈ I.

These equations are exactly the equilibrium equations of the Markov chain {Xn}.
Hence, by Theorem 3.3.2, we have that (3.4.12) holds. By (3.4.11) and (3.4.12),

πjpjk = πkpkj , j, k ∈ I. (3.4.13)

A Markov chain {Xn} having this property is called a reversible Markov chain. The
property (3.4.13) states that the long-run average number of transitions from state
j to state k per time unit is equal to the long-run average number of transitions
from state k to state j per time unit for all j, k ∈ I .
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Let us return to the problem of constructing a Markov chain with equilibrium
probabilities {πj = πj/S, j = 1, . . . , N} when π1, . . . , πN are given positive
numbers with a finite sum S. To do so, choose any Markov matrix M = (

mij
)
,

i, j = 1, . . . , N with positive elements mij . Next construct a Markov chain {Xn}
with state space I = {1, . . . , N} and one-step transition probabilities

pij =



mij αij , j �= i,

mii αii +
N∑

k=1
mik (1 − αik ), j = i,

where the αij are appropriately chosen numbers between 0 and 1 with αii = 1 for
i = 1, . . . , N . The state transitions of the Markov chain {Xn} are governed by the
following rule: if the current state of the Markov chain {Xn} is i, then a candidate
state k is generated according to the probability distribution {mij , j = 1, . . . , N}.
The next state of the Markov chain {Xn} is chosen equal to the candidate state
k with probability αik and is chosen equal to the current state i with probability
1 − αik . By an appropriate choice of the αij , we have

πjpjk = πkpkj , j, k = 1, . . . , N, (3.4.14)

implying that the Markov chain {Xn} has the equilibrium distribution

πj = πj/

N∑
k=1

πk, j = 1, . . . , N. (3.4.15)

It is left to the reader to verify that (3.4.14) holds for the choice

αij = min

(
πjmji

πimij
, 1

)
, i, j = 1, . . . , N (3.4.16)

(use that αji = 1 if αij = πjmji /πimij ). Note that the sum S = ∑N
k=1 πk is not

needed to define the Markov chain {Xn}.
Summarizing, the following algorithm generates a sequence of successive states

of a Markov chain {Xn} whose equilibrium distribution is given by (3.4.15).

Metropolis—Hastings algorithm

Step 0. Choose a Markov matrix M = (mij ), i, j = 1, . . . , N with positive ele-
ments. Let X0 := i for some 1 ≤ i ≤ N and let n := 0.
Step 1. Generate a candidate state Y from the probability distribution P {Y = j} =
mXn,j for j = 1, . . . , N . If Y = k, then set Xn+1 equal to k with probability αXn,k

and equal to Xn with probability 1 − αXn,k, where the αij are given by (3.4.16).
Step 2. n := n + 1 and repeat step 1.



118 DISCRETE-TIME MARKOV CHAINS

For the generated sequence of successive states X0, X1, . . . , it holds that

lim
n→∞

1

n

n∑
k=0

f (Xk) =
N∑

j=1

f (j)πj with probability 1

for any given function f . Thus the Metropolis—Hastings algorithm can be used to
find performance measures of the Markov chain {Xn} such as the long-run average
cost per time unit when a cost structure is imposed on the Markov chain.

The most widely used version of the Metropolis—Hastings algorithm is the
Gibbs sampler. Suppose that (N1, . . . , Nd) is a d-dimensional stochastic vector
whose probability distribution

p(x1, . . . , xd) = P {N1 = x1, . . . , Nd = xd}
is known up to a multiplicative constant. This situation will be encountered in
Section 5.6 in the context of a closed queueing network. In this particular applica-
tion the univariate conditional distribution

P {Nk = xk|Nj = xj for j = 1, . . . , d with j �= k} (3.4.17)

is explicitly known for each k = 1, . . . , d. In order to apply the Gibbs sampler,
it is required that the univariate conditional distributions in (3.4.17) are known.
The Gibbs sampler generates a sequence of successive states (x1, . . . , xd) from a
Markov chain whose equilibrium distribution is given by p(x1, . . . , xd).

Gibbs sampler

Step 0. Choose an initial state x = (x1, . . . , xd).
Step 1. For the current state x choose a coordinate which is equally likely to be
any of the coordinates 1, . . . , d. If coordinate k is chosen, then generate a random
variable Y whose probability distribution is given by

P {Y = y} = P {Xk = y|Xj = xj for j = 1, . . . , d with j �= k}.
If Y = y, let the candidate state y = (x1, . . . , xk−1, y, xk+1, . . . , xd).
Step 2. The next state x = (x1, . . . , xd) is set equal to y. Repeat step 1 with this
new state x.

The Gibbs sampler uses the Metropolis—Hastings algorithm with the choice

mx,y = 1

d
P {Xk = y|Xj = xj for j = 1, . . . , d with j �= k}

for the Markov matrix M . It is not difficult to verify that for this choice the
acceptance probability αx,y is given by

αx,y = min

(
p(y)p(x)

p(x)p(y)
, 1

)
= 1.

Hence the candidate state is always accepted as the next state of the Markov chain.
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3.5 THEORETICAL CONSIDERATIONS

In this section we give some background material. First the state classification of
Markov chains is discussed. Next we prove the results that were used earlier in the
analysis of the long-run behaviour of Markov chains.

3.5.1 State Classification

The concepts of a transient state and a recurrent state were introduced in Section 3.2
and the following lemma was proved for the Markov chain {Xn}.

Lemma 3.5.1 A state i is transient only if
∑∞

n=1 p
(n)
ii < ∞ and a state i is recur-

rent only if
∑∞

n=1 p
(n)
ii = ∞.

To analyse the transient states and recurrent states in more detail, we need the
concept of accessibility.

Definition 3.5.1 State j is said to be accessible from state i if p
(n)
ij > 0 for some

n ≥ 0. Two states i and j are said to communicate if j is accessible from i and i is
accessible from j .

Since p
(0)
ii = 1 by definition, we always have that any state i is accessible

from itself. It is convenient to write i → j if state j is accessible from state i.
The concept of communication enables us to split up the state space in a natural
way into disjoint closed sets of recurrent states and a set of transient states (for
the finite-state Markov chain an algorithm is given at the end of this subsection).
Recall that a non-empty set C of states is called a closed set if pij = 0 for i ∈ C

and j /∈ C. That is, the Markov chain cannot leave the set C once it is in the set
C. By definition the state space I is always a closed set. A closed set C is called
irreducible when the set C contains no smaller closed set.

Lemma 3.5.2 Let C be a closed set of states. The set C is irreducible if and only
if all states in C communicate with each other.

Proof For each i ∈ C, define the set S(i) by

S(i) = {j | i → j}.
The set S(i) is not empty since i → i. Since the set C is closed, we have S(i) ⊆ C.
First suppose that C is irreducible. The ‘only if’ part of the lemma then follows by
showing that S(i) = C for all i. To do so, it suffices to show that S(i) is closed.
Assume now to the contrary that S(i) is not closed. Then there is a state r ∈ S(i)

and a state s /∈ S(i) with prs > 0. Since r ∈ S(i) we have p
(n)
ir > 0 for some

n ≥ 0 and so p
(n+1)
is ≥ p

(n)
ir prs > 0; use relation (3.2.2). The inequality p

(n+1)
is > 0

contradicts the fact that s /∈ S(i). This completes the proof of the ‘only if’ part of
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the lemma. To prove the other part, assume to the contrary that C is not irreducible.
Then there is a closed set S ⊆ C with S �= C. Choose i ∈ S and let the set S(i) be
as above. Since S is closed, we have S(i) ⊆ S. Hence S(i) �= C, which contradicts
the assumption that all states in C communicate.

We are now able to prove the following interesting theorem.

Theorem 3.5.3 (a) Let C be an irreducible set of states. Then either all states in
C are recurrent or all states in C are transient.

(b) Let C be an irreducible set consisting of recurrent states. Then fij = 1 for all
i, j ∈ C. Moreover, either µjj < ∞ for all j ∈ C or µjj = ∞ for all j ∈ C.

Proof (a) By Lemma 3.5.1, state i is transient if and only if
∑∞

n=1 p
(n)
ii < ∞.

Choose now i, j ∈ C with j �= i. By Lemma 3.5.2 we have that the states i and j

communicate. Hence there are integers v ≥ 1 and w ≥ 1 such that p
(v)
ij > 0 and

p
(w)
ji > 0. Next observe that for any n ≥ 0,

p
(n+v+w)
ii ≥ p

(v)
ij p

(n)
jj p

(w)
ji and p

(n+v+w)
jj ≥ p

(w)
ji p

(n)
ii p

(v)
ij . (3.5.1)

These inequalities imply that
∑∞

n=1 p
(n)
jj < ∞ if and only if

∑∞
n=1 p

(n)
ii < ∞. This

proves part (a). In fact the proof shows that i → j and j → i implies that both
states i and j are recurrent or that both states i and j are transient.

(b) Since the states of C are recurrent, we have by definition that fii = 1 for all
i ∈ C. Choose now i, j ∈ C with j �= i. By Lemma 3.5.2 j → i. Hence there is
an integer m ≥ 1 with p

(m)
ji > 0. Let r be the smallest integer m ≥ 1 for which

p
(m)
ji > 0. Then

1 − fjj = P {Xn �= j for all n ≥ 1 | X0 = j} ≥ p
(r)
ji (1 − fij ).

Since fjj = 1, we get from this inequality that fij = 1. The inequalities in (3.5.1)
imply that the sequence {p(k)

ii , k ≥ 1} has a positive Cesaro limit if and only if the

sequence {p(k)
jj , k ≥ 1} has a positive Cesaro limit. It now follows from (3.3.1) in

Theorem 3.3.1 that µjj < ∞ if and only if µii < ∞.

Theorem 3.5.4 Let R be the set of recurrent states of the Markov chain. Suppose
that the set R is not empty. Then

(a) the set R is a closed set,

(b) the set R can be uniquely split into disjoint irreducible subsets R1, R2, . . .

(called recurrent subclasses).

Proof (a) Choose any state r ∈ R. Let s be any state such that prs > 0. The set
R is closed if we can show that s ∈ R. Since state r is recurrent and state s is
accessible from state r , state r must also be accessible from state s. If not, there
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would be a positive probability of never returning to state r , contradicting the fact
that state r is recurrent. Hence there is a positive integer v such that p

(v)
sr > 0. For

any integer k,

p(v+k+1)
ss ≥ p(v)

sr p(k)
rr prs ,

implying that
∑∞

n=1 p
(n)
ss ≥ p

(v)
sr prs

∑∞
k=1 p

(k)
rr . Since state r is recurrent, it now

follows from Lemma 3.5.1 that state s is recurrent. Hence s ∈ R.
(b) We first observe that the following two properties hold:
(P1) If state i communicates with state j and state i communicates with state k,

then the states j and k communicate.
(P2) If state j is recurrent and state k is accessible from state j , then state j is

accessible from state k.
The first property is obvious. The second property was in fact proved in part (a).

Define now for each i ∈ R the set C(i) as the set of all states j that communicate
with state i. The set C(i) is not empty since i communicates with itself by definition.
Further, by part (a), C(i) ⊆ R. To prove that the set C(i) is closed, let j ∈ C(i)

and let k be any state with pjk > 0. Then we must verify that i → k and k → i.
From i → j and j → k it follows that i → k. Since j → i, the relation k → i

follows when we can verify that k → j . The relation k → j follows directly
from property P2, since j is recurrent by the proof of part (a) of Theorem 3.5.3.
Moreover, the foregoing arguments show that any two states in C(i) communicate.
It now follows from Lemma 3.5.2 that C(i) is an irreducible set. Also, using the
properties P1 and P2, it is readily verified that C(i) = C(j) if i and j communicate
and that C(i) ∩ C(j) is empty otherwise. This completes the proof of part (b).

Definition 3.5.2 Let i be a recurrent state. The period of state i is said to be d if
d is the greatest common divisor of the indices n ≥ 1 for which p

(n)
ii > 0. A state i

with period d = 1 is said to be aperiodic.

Lemma 3.5.5 (a) Let C be an irreducible set consisting of recurrent states. Then
all states in C have the same period.

(b) If state i is aperiodic, then there is an integer n0 such that p
(n)
ii > 0 for all

n ≥ n0.

Proof (a) Denote by d(k) the period of state k ∈ C. Choose i, j ∈ C with j �= i.
By Lemma 3.5.2 we have i → j and j → i. Hence there are integers v, w ≥ 1
such that p

(v)
ij > 0 and p

(w)
ji > 0. Let n be any positive integer with p

(n)
jj > 0. Then

the first inequality in (3.5.1) implies that p
(n+v+w)
ii > 0 and so n+v+w is divisible

by d(i). Thus we find that n is divisible by d(i) whenever p
(n)
jj > 0. This implies

that d(i) ≤ d(j). For reasons of symmetry, d(j) ≤ d(i). Hence d(i) = d(j) which
verifies part (a).

(b) Let A = {n ≥ 1 | p
(n)
ii > 0}. The index set A is closed in the sense that

n + m ∈ A when n ∈ A and m ∈ A. This follows from p
(n+m)
ii ≥ p

(n)
ii p

(m)
ii . Since
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state i is aperiodic, there are integers a ∈ A and b ∈ A whose greatest common
divisor is equal to 1. An elementary result in number theory states that there exist
integers r and s such that gcd (a, b) = ar + bs. The integers r and s are not
necessarily non-negative. Let p and q be any positive integers such that both p and
q are larger than a×max(|r|, |s|). Take m = pa+qb. Since m+a = (p+1)a+qb,
part (b) of the lemma follows by proving that m + k ∈ A for k = 0, . . . , a − 1.
We then have p

(n)
ii > 0 for all n ≥ m. Noting that ar + bs = 1, it follows that

m + k = pa + qb + k(ar + bs) = (p + kr)a + (q + ks)b. The integers p + kr

and q + ks are positive. Hence, by the closedness of A, the integers (p + kr)a and
(q + ks)b belong to A and so the integer m + k ∈ A for any k = 0, . . . , a − 1.

Finite state space

There are a number of basic results that hold for finite-state Markov chains but not
for Markov chains with infinitely many states. In an infinite-state Markov chain
it may happen that there is no recurrent state, as is demonstrated by the Markov
chain example with state space I = {1, 2, . . . } and one-step transition probabilities
with pi,i+1 = 1 for all i ≥ 1. In this example all states are transient. The next
lemma shows that a finite-state Markov chain always has recurrent states.

Lemma 3.5.6 Each finite closed set of states has at least one recurrent state.

Proof Let C be a closed set of states. Then, for any i ∈ C,∑
j∈C

p
(n)
ij = 1, n = 1, 2, . . . . (3.5.2)

Assume now that all states j ∈ C are transient. In Lemma 3.2.3 it was shown that
limn→∞ p

(n)
ij = 0 for all i ∈ I if state j is transient. Let n → ∞ in (3.5.2). By the

finiteness of C, it is permissible to interchange the order of limit and summation.
Hence we obtain the contradiction 0 = 1 when all states in C are transient. This
ends the proof.

In most applications the Markov chain has no two disjoint closed sets (usually
there is a state that is accessible from any other state). The next theorem summarizes
a number of useful results for finite-state Markov chains having no two disjoint
closed sets.

Theorem 3.5.7 Let {Xn} be a finite-state Markov chain. Suppose that the Markov
chain has no two disjoint closed sets. Denote by R the set of recurrent states. Then

(a) fij = 1 for all i ∈ I and j ∈ R.

(b) µij < ∞ for all i ∈ I and j ∈ R, where the mean first-passage times µij are

defined by µij = ∑∞
n=1 nf

(n)
ij .
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(c) If the recurrent states are aperiodic, then there is an integer ν ≥ 1 such that
p

(ν)
ij > 0 for all i ∈ I and j ∈ R.

Proof Since the Markov chain has no two disjoint closed sets, the closed set R of
recurrent states is irreducible by Theorem 3.5.4. Hence, by Lemma 3.5.2, any two
states in R communicate with each other. This implies that for any i, j ∈ R there
is an integer n ≥ 1 such that p

(n)
ij > 0. Next we prove that for any i ∈ I and j ∈ R

there is an integer n ≥ 1 such that p
(n)
ij > 0. To verify this, assume to the contrary

that there is a transient state i ∈ I such that no state j ∈ R is accessible from i.
Then there is a closed set that contains i and is disjoint from R. This contradicts
the assumption that the Markov chain has no two disjoint closed sets. Hence for
any transient state i ∈ R there is a state j ∈ R that is accessible from i. Thus any
state j ∈ R is accessible from any i ∈ I , since any two states in R communicate
with each other.

To verify parts (b) and (c), define under the condition X0 = i the random variable
Nij by

Nij = min{n ≥ 1 | Xn = j}.
Fix now j ∈ R. For each i ∈ I , let ri be the smallest positive integer n for which
p

(n)
ij > 0. Define

r = max
i∈I

ri and ρ = min
i∈I

p
(ri )
ij .

Since I is finite, we have r < ∞ and ρ > 0. Next observe that

P {Nij > r} ≤ P {Nij > ri} = 1 − p
(ri )
ij ≤ 1 − ρ, i ∈ I.

Thus, for any i ∈ I ,

P {Nij > kr} ≤ (1 − ρ)k, k = 0, 1, . . . .

Since the probability P {Nij > n} is decreasing in n and converges to 0 as n → ∞,
it follows from 1 − fij = limn→∞ P {Nij > n} that fij = 1. Since P {Nij > n} is
decreasing in n, we also obtain

µij =
∞∑

n=0

P {Nij > n} = 1 +
∞∑

k=1

rk∑
�=r(k−1)+1

P {Nij > �}

≤ 1 +
∞∑

k=1

r(1 − ρ)k,

showing that µij < ∞. This completes the proof of part (b).
It remains to prove (c). Fix i ∈ I and j ∈ R. As shown above, there is an integer

v ≥ 1 such that p
(v)
ij > 0. By part (b) of Lemma 3.5.5 there is an integer n0 ≥ 1

such that p
(n)
jj > 0 for all n ≥ n0. Hence, by p

(v+n)
ij ≥ p

(v)
ij p

(n)
jj , it follows that
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p
(n)
ij > 0 for all n ≥ v + n0. Using the finiteness of I , part (c) of the theorem now

follows.

Appendix: The Fox—Landi algorithm for state classification

In a finite-state Markov chain the state space can be uniquely split up into a finite
number of disjoint recurrent subclasses and a (possibly empty) set of transient
states. A recurrent subclass is a closed set in which all states communicate. To
illustrate this, consider a Markov chain with five states and the following matrix
P = (pij ) of one-step transition probabilities:

P =




0.2 0.8 0 0 0
0.7 0.3 0 0 0
0.1 0 0.2 0.3 0.4
0 0.4 0.3 0 0.3
0 0 0 0 1


 .

For such small examples, a state diagram is useful for doing the state classification.
The state diagram uses a Boolean representation of the pij . An arrow is drawn from
state i to state j only if pij > 0. The state diagram is given in Figure 3.5.1. By
inspection it is seen that the set of transient states is T = {3, 4} and the set of
recurrent states is R = {1, 2, 5}. The set R of recurrent states can be split into two
disjoint recurrent subclasses R1 = {1, 2} and R2 = {5}. State 5 is absorbing.

This example was analysed by visual inspection. In general it is possible to give a
systematic procedure for identifying the transient states and the recurrent subclasses
in a finite-state Markov chain. The Fox—Landi algorithm (Fox and Landi 1968)
first transforms the one-step transition matrix P = (pij ) into a Boolean matrix
B = (bij ) by

bij =
{

1 if pij > 0,

0 otherwise.

1 3

4

5

2

Figure 3.5.1 The state diagram for a Markov chain
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The states are numbered or renumbered as i = 1, . . . , N . The algorithm uses the
following four rules:

(a) State i is absorbing if and only if bii = 1 and bij = 0 for j �= i.

(b) If state j is absorbing and bij = 1, then state i is transient.

(c) If state j is transient and bij = 1, then state i is transient.

(d) If state i communicates with state j and state j communicates with state k,
then state i communicates with state k.

The goal of the algorithm is to find all recurrent subclasses and the set of transient
states. The algorithm rules (a), (b), (c) and (d). In particular, make repeated use of
rule (d) is used to reduce the size of the Boolean matrix B whenever possible. The
algorithm works using the following steps:

Step 1. Initialize the set T (i) := {i} for any state i. Find all absorbing states by
using rule (a) and classify T (i) = {i} as a recurrent subclass for each absorbing
state i. Classify any state i such that bij = 1 for some absorbing state j as a
transient state.
Step 2. If all states are classified, then stop; otherwise, go to step 3.
Step 3. Take an unclassified state i0. Since state i0 is not absorbing, there is another
state i1 (say) that can be reached from state i0 in one step (i.e. bi0i1 = 1). Continuing
in this way, construct a chain of states i0, i1, . . . until one of the following two
exclusive possibilities occurs:

• A transient state is is found. Then all states in T (i0) ∪ T (i1) ∪ . . . ∪ T (is−1) are
classified as transient according to rule (c).

• A state is is found that was already encountered during the development of the
chain, i.e. is = ir for some r < s. Go to step 4.

Step 4. The circuit of communicating states ir , . . . , is is replaced by a single aggre-
gated state ir and the Boolean matrix B is adjusted accordingly. This is done as
follows:

• Replace column ir by the union of the columns ir , . . . , is−1 and replace row ir
by the union of the rows ir , . . . , is−1 (the union of two Boolean vectors x and y

to a Boolean vector z is defined by zi = 0 if xi = yi = 0 and zi = 1 otherwise).

• Delete the row ik and the column ik for k = r + 1, . . . , s − 1.

• Let T (ir ) := T (ir ) ∪ T (ir+1) ∪ . . . ∪ T (is−1).

Having done this, there are two possibilities:

• State ir is absorbing for the new Boolean matrix B. Then T (ir ) is classified as
a recurrent subclass of states. Classify any state that can reach the set T (ir ) in
one step as a transient state (rule (b)). Go to step 2.
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• State ir is not absorbing. Then there exists a state j with bir j = 1. Go to step 3
and continue the chain i0, . . . , ir for the new Boolean matrix.

3.5.2 Ergodic Theorems

The theoretical analysis of Markov chains is much more subtle for the case of
infinitely many states than for the case of finitely many states. A finite-state Markov
chain is always a regenerative process with a finite mean cycle length. This is not
true for infinite-state Markov chains. Recall the example with I = {1, 2, . . . }
and pi,i+1 = 1 for all i ∈ I and recall the example of the symmetric random
walk with I = {0, ±1, ±2, . . . } and pi,i+1 = pi,i−1 = 1

2 for all i. In the first
example the Markov chain is not regenerative, while in the other example the
Markov chain is regenerative but has an infinite mean cycle length. In practical
applications these pathological situations occur very rarely. Typically there is a
positive recurrent state that will ultimately be reached from any other state with
probability one. We therefore restrict our theoretical analysis to Markov chains
which satisfy Assumption 3.3.1. Let R denote the set of recurrent states of the
Markov chain {Xn}. We first prove the following lemma.

Lemma 3.5.8 Suppose that the Markov chain {Xn} satisfies Assumption 3.3.1.
Then the set R is not empty and is an irreducible set consisting of positive recurrent
states. For any j ∈ R, it holds that fij = 1 for all i ∈ I and µjj < ∞.

Proof The regeneration state r from Assumption 3.3.1 is recurrent and so R is
not empty. Since fir = 1 for all i ∈ I , the Markov chain {Xn} has no two disjoint
closed sets. Hence, by Theorem 3.5.4, the set R is an irreducible set of recurrent
states. Since µrr < ∞, it follows from part (b) of Theorem 3.5.3 that µjj < ∞ for
all j ∈ R. In other words, each state j ∈ R is positive recurrent. Also, by part (b)
of Theorem 3.5.3, frj = 1 for all j ∈ R. Together with the assumption fir = 1 for
all i this implies fij = 1 for all i when j ∈ R. This ends the proof.

Define now the probabilities πj by

πj = lim
n→∞

1

n

n∑
k=1

p
(k)
jj , j ∈ I . (3.5.3)

In Theorem 3.3.1 it was shown that these limits exist. Under Assumption 3.3.1,
we have

lim
n→∞

1

n

n∑
k=1

p
(k)
ij = πj , i, j ∈ I (3.5.4)

and

πj = 1

µjj
> 0, j ∈ R (3.5.5)



THEORETICAL CONSIDERATIONS 127

(all states in R are positive recurrent). These results follow directly from Theo-
rem 3.3.1 by noting that πj = 0 when j is transient and fij = 1 for all i ∈ I when
j is recurrent. We are now able to prove a main result.

Theorem 3.5.9 Suppose that the Markov chain {Xn} satisfies Assumption 3.3.1.
Then the probabilities πj , j ∈ I defined by (3.5.3) constitute the unique equilibrium
distribution of the Markov chain. Moreover, letting {xj , j ∈ I } with

∑
j |xj | < ∞

be any solution to the equilibrium equations

xj =
∑
k∈I

xkpkj , j ∈ I, (3.5.6)

it holds that, for some constant c, xj = cπj for all j ∈ I .

Proof We first show that the πj satisfy (3.5.6) and

∑
j∈I

πj = 1. (3.5.7)

To do so, we use the relation (3.2.1) for the n-step transition probabilities. Averaging
this relation over n, we obtain for any m ≥ 1

1

m

m∑
n=1

p
(n+1)
ij = 1

m

m∑
n=1

∑
k∈I

p
(n)
ik pkj

=
∑
k∈I

(
1

m

m∑
n=1

p
(n)
ik

)
pkj , j ∈ I, (3.5.8)

where the interchange of the order of summation is justified by the non-negativity
of the terms. Next let m → ∞ in (3.5.8). On the right-hand side of (3.5.8) it is not
allowed to interchange limit and summation (except when I is finite). However,
we can apply Fatou’s lemma from Appendix A. Using (3.5.4), we find

πj ≥
∑
k∈I

πkpkj , j ∈ I.

Next we conclude that the equality sign must hold in this relation for each j ∈ I ,
otherwise we would obtain the contradiction

∑
j∈I

πj >
∑
j∈I

(∑
k∈I

πkpkj

)
=

∑
k∈I

πk

∑
j∈I

pkj =
∑
k∈I

πk.

We have now verified that the πj satisfy the equilibrium equations (3.5.6). The
equation (3.5.7) cannot be directly concluded from

∑
j∈I p

(n)
ij = 1 for all n ≥ 1.
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However, by letting m → ∞ in

1 = 1

m

m∑
n=1


∑

j∈I

p
(n)
ij


 =

∑
j∈I

(
1

m

m∑
n=1

p
(n)
ij

)

and using Fatou’s lemma from Appendix A, we can conclude that∑
j∈I

πj ≤ 1. (3.5.9)

Since the set R of recurrent states is not empty, we have by (3.5.5) that∑
j∈I

πj > 0. (3.5.10)

Next we prove that the solution to the equilibrium equations (3.5.6) is uniquely
determined up to a multiplicative constant. As a by-product of this proof we will
find that

∑
j∈I πj must be equal to 1. Let {xj } with

∑ |xj | < ∞ be any solution
to the equation (3.5.6). Substituting this equation into itself, we find

xj =
∑
k∈I

(∑
�∈I

x�p�k

)
pkj =

∑
�∈I

x�

∑
k∈I

p�kpkj

=
∑
�∈I

x�p
(2)
�j , j ∈ I,

where the interchange of the order of summation in the second equality is jus-
tified by Theorem A.1 in Appendix A. By repeated substitution we find xj =∑

�∈I x�p
(n)
�j , j ∈ I for all n ≥ 1. Averaging this equation over n, we find

after an interchange of the order of summation (again justified by Theorem A.1 in
Appendix A) that

xj =
∑
�∈I

x�

(
1

m

m∑
n=1

p
(n)
�j

)
, j ∈ I and m ≥ 1.

Letting m → ∞ and using (3.5.4) together with the bounded convergence theorem
from Appendix A, it follows that

xj = πj

∑
�∈I

x�, j ∈ I.

This proves that any solution to (3.5.6) is uniquely determined up to a multiplicative
constant. Summing both sides of the latter equation over j , we find

∑
j∈I

xj =

∑

j∈I

πj


(∑

�∈I

x�

)
.
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Taking xj = πj for all j and using (3.5.10), it follows that
∑

j∈I πj = 1. This ends
the proof.

Though we are mainly concerned with the Cesaro limit of the n-step transition
probabilities, we also state a result about the ordinary limit. If the regeneration
state r from Assumption 3.3.1 is aperiodic, then by Theorem 2.2.4, limn→∞ p

(n)
rj

exists for all j . From this result it is not difficult to obtain that

lim
n→∞ p

(n)
ij = πj , i, j ∈ I (3.5.11)

when the positive recurrent state r from Assumption 3.3.1 is aperiodic.
Before giving the remaining proof of Theorem 3.3.2, we give an interesting

interpretation of the ratio πi/πj for two recurrent states i and j .

Lemma 3.5.10 Suppose that the Markov chain {Xn} satisfies Assumption 3.3.1.
Then for any two recurrent states s and �

E(number of visits to state � between two successive visits to state s) = π�

πs

.

Proof Fix states �, s ∈ R. The Markov chain can be considered as a regenerative
process with the epochs at which the process visits state s as regeneration epochs.
Defining a cycle as the time elapsed between two successive visits to state s, it
follows from the definition of the mean recurrence time µss that

E(length of one cycle) = µss .

By Lemma 3.5.8 the mean cycle length µss is finite. Imagine that the Markov chain
earns a reward of 1 each time the process visits state �. Assuming that the process
starts in state s, we have by the renewal-reward theorem from Chapter 2 that

the long-run average reward per time unit

= E(reward earned during one cycle)

E(length of one cycle)

= 1

µss
E(number of visits to state � in one cycle) (3.5.12)

with probability 1. On the other hand,

the long-run average reward per time unit

= the long-run average number of visits to state � per time unit.

In the proof of Theorem 3.3.1 we have seen that

the long-run average number of visits to state � per time unit

= π� with probability 1 (3.5.13)
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when X0 = �. However, this result also holds when the Markov chain starts in state
s. To see this, define the indicator variable Ik equal to 1 if Xk = � and Ik equal to
0 otherwise. Let ω = (s, i1, i2, . . . ) be any realization of the Markov chain with
ik denoting the realized state at the kth state transition. Since fs� = 1, we have
for almost all ω that there is a finite integer t = t (ω) such that it = �. Hence, for
n > t(ω),

1

n

n∑
k=1

Ik(ω) = 1

n

t(ω)∑
k=1

Ik(ω) + 1

n

n∑
k=t (ω)+1

Ik(ω).

Letting n → ∞, the first term on the right-hand side of this equation converges
to zero and the second term converges to π�. This proves that (3.5.13) also holds
when X0 = s. Together (3.5.12), (3.5.13) and the relation 1/µss = πs yield

π� = πsE(number of visits to state � in one cycle),

which proves the desired result.

In Example 3.1.3, dealing with the GI/M/1 queue, we tried a solution of the
form πj = γ τ j , j ≥ 0 for the equilibrium distribution of the Markov chain
{Xn} describing the number of customers present just prior to the arrival epochs.
This geometric form can be proved by using Lemma 3.5.10. Since the arrival rate
is less than the service rate, Assumption 3.3.1 is satisfied with the regeneration
state 0. Since any two states of the Markov chain {Xn} communicate, it follows
from Lemma 3.5.2 and Theorem 3.5.3 that the state space I is an irreducible set
consisting of (positive) recurrent states. Hence, by Lemma 3.5.10, we have for the
GI/M/1 queue that

E(number of visits to state j + 1 between two successive returns to state j)

= πj+1

πj

for j = 0, 1, . . . . (3.5.14)

Some reflections show that the left-hand side of this equation is independent of j

by the memoryless property of the exponential distribution for the service times.
Hence, for some constant η, πj+1/πj = η for all j ≥ 0 showing that πj = π0η

j

for j ≥ 0.
Next we prove Theorem 3.3.3. The proof is very similar to that of Lemma 3.5.10.

Assume that the Markov chain earns a reward f (j) each time it visits state j .

Theorem 3.5.11 Suppose that the Markov chain {Xn} satisfies the Assumptions
3.3.1 and 3.3.2. Then

lim
n→∞

1

n

n∑
k=1

f (Xk) =
∑
j∈I

f (j)πj with probability 1

for each initial state X0 = i.
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Proof Assume first that the initial state of the process is the regeneration state r

from Assumptions 3.3.1 and 3.3.2. The Markov chain can be seen as a regenerative
process with the epochs at which the process visits state r as regeneration epochs.
Define a cycle as the time elapsed between two successive visits to state r . The
expected cycle length equals the mean recurrence time µrr and is finite. By the
renewal-reward theorem from Chapter 2,

lim
n→∞

1

n

n∑
k=1

f (Xk) = E(reward earned during one cycle)

E(length of one cycle)

with probability 1. Lemma 3.5.10 states that E (number of visits to state j in one
cycle) = πj/πr for any recurrent state j . This relation is also valid for a transient
state j , since a transient state is not accessible from a recurrent state and πj = 0
for j transient. Hence

E(reward earned during one cycle) =
∑
j∈I

f (j)
πj

πr

.

Since E(length of one cycle) = µrr = 1/πr by (3.5.5), the assertion of the theorem
is now proved when X0 = r . Take next any initial state X0 = i. As in the proof
of Lemma 3.5.10, let ω = (i0, i1, i2, . . . ) be any realization of the Markov chain
with i0 = i and let ik denote the realized state at the kth state transition. Since
fir = 1, we have for almost all ω that there is a finite integer t = t (ω) such that
it = r . Hence

1

n

n∑
k=1

f (Xk(ω)) = 1

n

t(ω)∑
k=1

f (Xk(ω)) + 1

n

n∑
k=t (ω)+1

f (Xk(ω)).

Letting n → ∞, it follows from part (b) of Assumption 3.3.2 that the first term
on the right-hand side of the equation tends to zero, while by the above proof the
second term converges to

∑
j∈I f (j)πj . This completes the proof.

Markov’s proof and exponential convergence

It is interesting to examine the original proof of Markov (1906) for the existence
of a limiting distribution in a finite-state Markov chain. The proof is not just of
historical interest and the ideas it uses are still very much alive. The proof also
establishes the rate of convergence to the limiting distribution. An aperiodic finite-
state Markov chain with no two disjoint closed sets is assumed. The Markov chain
is said to be aperiodic when the period of the recurrent states is equal to 1; see
Lemma 3.5.5.

Theorem 3.5.12 Let {Xn} be a finite-state Markov chain with no two disjoint
closed sets. Suppose that the Markov chain is aperiodic. Then there exists a proba-
bility distribution {πj , j ∈ I } and numbers α > 0 and 0 < β < 1 such that for all



132 DISCRETE-TIME MARKOV CHAINS

i, j ∈ I ,

|p(n)
ij − πj | ≤ αβn, n = 1, 2, . . . .

In particular,

lim
n→∞ p

(n)
ij = πj , i, j ∈ I.

Proof Let s be any recurrent state of the Markov chain. Since the Markov chain
is aperiodic, we have by part (c) of Theorem 3.5.7 that there exists an integer
ν ≥ 1 and a number ρ > 0 such that

p
(ν)
is ≥ ρ i ∈ I.

For any j ∈ I , define the sequences {M(n)
j , n ≥ 0} and {m(n)

j , n ≥ 0} by

M
(n)
j = max

i∈I
p

(n)
ij and m

(n)
j = min

i∈I
p

(n)
ij .

Note that M
(0)
j = 1 and m

(0)
j = 0. Applying relation (3.2.2), we find

M
(n+1)
j = max

i∈I

∑
k∈I

pik p
(n)

kj ≤ max
i∈I

∑
k∈I

pik M
(n)
j = M

(n)
j max

i∈I

∑
k∈I

pik ,

and so, for any j ∈ I ,

M
(n+1)
j ≤ M

(n)
j , n = 0, 1, . . . .

Similarly, we find for any j ∈ I that

m
(n+1)
j ≥ m

(n)
j , n = 0, 1, . . . .

Since the sequences {M(n)
j } and {m(n)

j } are bounded and monotone, they have finite
limits. Next we establish the inequality

0 ≤ M
(n)
j − m

(n)
j ≤ (1 − ρ)[M(n−ν)

j − m
(n−ν)
j ], n ≥ ν (3.5.15)

for any j ∈ I . Suppose for the moment that we have proved this inequality. A
repeated application of the inequality shows that

0 ≤ M
(n)
j − m

(n)
j ≤ (1 − ρ)[n/ν](M

(0)
j − m

(0)
j ), n = 0, 1, . . . , (3.5.16)

where [x] denotes the largest integer contained in x. Here we used the fact that
M

(n)
j −m

(n)
j is decreasing in n. By (3.5.16), we have that the limits of the monotone

sequences {M(n)
j } and {m(n)

j } coincide. Denote the common limit by πj . Hence

lim
n→∞ M

(n)
j = lim

n→∞ m
(n)
j = πj .
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Using the inequalities m
(n)
j ≤ p

(n)
ij ≤ M

(n)
j and m

(n)
j ≤ πj ≤ M

(n)
j , we find

|p(n)
ij − πj | ≤ M

(n)
j − m

(n)
j , n = 0, 1, . . . (3.5.17)

for any i, j ∈ I . Together the inequalities (3.5.16) and (3.5.17) yield the assertion
of the theorem except that we have still to verify that {πj } represents a probability
distribution. Obviously, the πj are non-negative. Since

∑
j∈I p

(n)
ij = 1 for all n and

p
(n)
ij → πj as n → ∞, we obtain from the finiteness of I that the πj sum to 1.
It remains to verify (3.5.15). To do so, fix j ∈ I and n ≥ ν. Let x and y be the

states for which M
(n)
j = p

(n)
xj and m

(n)
j = p

(n)
yj . Then

0 ≤ M
(n)
j − m

(n)
j = p

(n)
xj − p

(n)
yj =

∑
k∈I

p
(ν)
xk p

(n−ν)
kj −

∑
k∈I

p
(ν)
yk p

(n−ν)
kj

=
∑
k∈I

{p(ν)
xk − p

(ν)
yk }p(n−ν)

kj

=
∑
k∈I

{p(ν)
xk − p

(ν)
yk }+ p

(n−ν)

kj −
∑
k∈I

{p(ν)

xk − p
(ν)

yk }− p
(n−ν)

kj ,

where a+ = max(a, 0) and a− = − min(a, 0). Hence, by a+, a− ≥ 0,

0 ≤ M
(n)
j − m

(n)
j ≤

∑
k∈I

{p(ν)
xk − p

(ν)
yk }+M

(n−ν)
j −

∑
k∈I

{p(ν)
xk − p

(ν)
yk }−m

(n−ν)
j

=
∑
k∈I

{p(ν)
xk − p

(ν)
yk }+[M(n−ν)

j − m
(n−ν)
j ],

where the last equality uses the fact that
∑

k a+
k = ∑

k a−
k if

∑
k ak = 0. Using

the relation (a − b)+ = a − min(a, b), we next find

0 ≤ M
(n)
j − m

(n)
j ≤

[
1 −

∑
k∈I

min(p
(ν)
xk , p

(ν)
yk )

] [
M

(n−ν)
j − m

(n−ν)
j

]
.

Since p
(ν)
is ≥ ρ for all i, we find

1 −
∑
k∈I

min(p
(ν)
xk , p

(ν)
yk ) ≤ 1 − min(p(ν)

xs , p(ν)
ys ) ≤ 1 − ρ,

which implies the inequality (3.5.15). This completes the proof.

Exponential convergence of the n-step transition probabilities does not hold in
general for an infinite-state Markov chain. Strong recurrence conditions should be
imposed to establish exponential convergence in infinite-state Markov chains.
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EXERCISES

3.1 A production machine has two crucial parts which are subject to failures. The two parts
are identical. The machine works as long as one of the two parts is functioning. A repair is
done when both parts have failed. A repair takes one day and after each repair the system is
as good as new. An inspection at the beginning of each day reveals the exact condition of
each part. If at the beginning of a day both parts are in good condition, then at the end of the
day both parts are still in good condition with probability 0.50, one of them is broken down
with probability 0.25 and both are broken down with probability 0.25. If at the beginning
of the day only one part is in good condition, this part is still in good condition at the end
of the day with probability 0.50. Define a Markov chain to describe the functioning of the
machine and specify the one-step transition probabilities.

3.2 To improve the reliability of a production system, two identical production machines are
connected in parallel. For the production process only one of the machines is used; the other
machine is standby. At the end of the day the used machine is inspected. Regardless how
long the machine has already been in uninterrupted use, the probability that an inspection
reveals the necessity for revision is 1

10 . A revision takes exactly two days. During the revision
the other machine takes over the production if that machine is available. The production
process must be stopped when both machines are in revision. Assuming that there are two
repairmen, define an appropriate Markov chain to describe the functioning of the production
system and specify the one-step transition probabilities of the Markov chain.

3.3 Containers are temporarily stored at a stockyard with ample capacity. At the beginning
of each day precisely one container arrives at the stockyard. Each container stays a certain
amount of time at the stockyard before it is removed. The residency times of the contain-
ers are independent of each other. Specify for each of the following two cases the state
variable(s) and the one-step transition probabilities of a Markov chain that can be used to
analyse the number of containers present at the stockyard at the end of each day.

(a) The residency time of a container is exponentially distributed with a mean of 1/µ
days.

(b) The residency time of a container has an exponential distribution whose mean is 1/µ1
days with probability p and is 1/µ2 days with probability 1 − p.

3.4 Two teams, A and B, meet each other in a series of games until either of the teams has
won three games in a row. Each game results in a win for either of the teams (no draw is
possible). The outcomes of the games are independent of each other. Define an appropriate
Markov chain to determine the probability distribution of the length of the match when the
two teams are equally strong.

3.5 Consider Exercise 3.4 again, but assume now that team A wins a given game with a
probability larger than 1

2 .
(a) Use Markov chain analysis to determine the probability distribution of the length of

the match. Explain how to calculate the probability that team A wins the match.
(b) Explain how to modify the Markov chain analysis when a draw between the teams is

possible with positive probability?

3.6 You play the following game. A fair coin is flipped until heads appears three times in a
row. You get $12 each time this happens, but you have to pay $1 for each flip of the coin.
Use Markov chain analysis to find out whether this game is fair.

3.7 Consider the following variant of the coupon-collecting problem. A fair die is thrown
until each of the six possible outcomes 1, 2, . . . , 6 has appeared. Use a Markov chain with
seven states to calculate the probability distribution of the number of throws needed.

3.8 The gambler Joe Dalton has $100 and his goal is to double this amount. Therefore he
plays a gambling game in which he loses his stake with probability 0.60, but wins two or
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three times his stake with respective probabilities 0.25 and 0.15. His strategy is to bet $5 each
time his payroll is more than $50 dollars and $10 otherwise. Define an appropriate Markov
chain to compute the probability that Joe reaches his goal. Also calculate the expected
number of bets placed by Joe until he has gone broke or reached his goal.

3.9 A training program consists of three parts, each having a length of one month. Fifty
percent of the starting students immediately pass the first part after one month, 30% drop
out before the end of the first month and 20% take the first part again. Seventy percent
of the last group pass the first part after a second trial and the other 30% still drop out.
Eighty percent of the students taking the second part pass this second part after the first
trial, 10% drop out after the first trial and the other 10% move on after a second trial of the
first part. Any student streaming into the third part of the training program will complete it
successfully. Calculate the probability that a starting student will be successful.

3.10 Consider a finite-state Markov chain {Xn} with no two disjoint closed sets. The matrix
of one-step transition probabilities is called doubly stochastic when for each column the sum
of the column elements equals 1. Verify that the equilibrium distribution of such a Markov
chain is a uniform distribution.
3.11 A gambling device is tuned such that a player who wins (loses) on a given play will
win on the next play with probability 0.25 (0.50). The player pays $1 for each play and
receives $2.50 for each play that is won. Use Markov chain analysis to find out whether the
game is fair or not.

3.12 A factory has a storage tank with a capacity of 4 m3 for temporarily storing waste
produced by the factory. Each week the factory produces 0, 1, 2 or 3 m3 waste with
respective probabilities p0 = 1

8 , p1 = 1
2 , p2 = 1

4 , and p3 = 1
8 . If the amount of waste

produced in one week exceeds the remaining capacity of the tank, the excess is specially
removed at a cost of $30 per cubic metre. At the end of each week there is a regular
opportunity to remove waste from the storage tank at a fixed cost of $25 and a variable cost
of $5 per cubic metre. The following policy is used. If at the end of the week the storage
tank contains more than 2 m3 of waste, the tank is emptied; otherwise no waste is removed.
Use Markov chain analysis to find the long-run average cost per week.

3.13 In a series of repeated plays, you can choose each time between games A and B.
During each play you win $1 or you lose $1. You are also allowed to play when your
capital is not positive (a negative capital corresponds to a debt). In game A there is a single
coin. This coin lands heads with probability 1

2 − ε (ε = 0.005) and tails with probability
1
2 + ε. In game B there are two coins. One coin lands heads with probability 1

10 − ε and

the other coin lands heads with probability 3
4 − ε. If you play game B, then you must take

the first coin when your current capital is a multiple of 3 and you must take the other coin
otherwise. In each play of either game you win $1 if the coin lands heads and you lose $1
otherwise.

(a) Use Markov chain analysis to verify that the long-run fraction of plays you win is
0.4957 when you always play game B (Hint : a three-state Markov chain suffices.)

(b) Suppose you alternately play the games A, A,B,B,A, A,B,B, . . . . Use an appro-
priate Markov chain to verify that the long-run fraction of plays you win is 0.5064.

This problem shows that in special cases with dependencies, a combination of two
unfavourable games may result in a favourable game. This paradox is called Parrondo’s
paradox after the Spanish physicist Juan Parrondo.

3.14 At the beginning of each day, a crucial piece of electronic equipment is inspected and
then classified as being in one of the working conditions i = 1, . . . , N . Here the working
condition i is better than the working condition i + 1. If the working condition is i = N
the piece must be replaced by a new one and such an enforced replacement takes two days.
If the working condition is i with i < N there is a choice between preventively replacing
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the piece by a new one and letting the piece operate for the present day. A preventive
replacement takes one day. A new piece has working condition i = 1. A piece whose
present working condition is i has the next day working condition j with known probability
qij where qij = 0 for j < i. The following replacement rule is used. The current piece is
only replaced by a new one when its working condition is greater than the critical value m,
where m is a given integer with 1 ≤ m < N .

(a) Define an appropriate Markov chain and specify its one-step transition probabilities.
(b) Explain how to calculate the long-run fraction of days the equipment is inoperative

and the fraction of replacements occurring in the failure state N .

3.15 Consider a stochastically failing piece of equipment with two identical components
that operate independently of each other. The lifetime in days of each component has a
discrete probability distribution {pj , j = 1, . . . ,M}. A component in the failure state at the
beginning of a day is replaced instantaneously. It may be economical to preventively replace
the other working component at the same time the failed component has to be replaced. The
cost of replacing only one component is K1, while the cost of replacing simultaneously
both components equals K2 with 0 < K2 < 2K1. The control rule is as follows. Replace
a component upon failure or upon reaching the age of R days, whichever occurs first. If
a component is replaced and the other component is still working, the other component is
preventively replaced when it has been in use for r or more days. The parameters r and R
are given integers with 1 ≤ r < R.

(a) Define an appropriate Markov chain and specify its one-step transition probabilities.
(b) How can you calculate the long-run average cost per day?

3.16 A transmission channel transmits messages one at a time, and transmission of a message
can only start at the beginning of a time slot. The time slots have unit length and the
transmission time of a message is one time slot. However, each transmission can fail with
some probability f . A failed transmission is tried again at the beginning of the next time
slot. The numbers of new messages arriving during the time slots are independent random
variables with a common discrete distribution {ak , k = 0, 1, . . . }. Newly arriving messages
are temporarily stored in a buffer of ample capacity. It is assumed that the average arrival
rate of new messages is smaller than the average number of attempts needed to transmit
a message successfully, that is,

∑
k kak < 1/f . The goal is to find the long-run average

throughput per time unit.
(a) Define an appropriate Markov chain with a one-dimensional state space and specify

its one-step transition probabilities.
(b) Can you give a recursive algorithm for the computation of the state probabilities?

Express the average throughput in terms of the state probabilities.

3.17 Messages arrive at a transmission channel according to a Poisson process with rate λ.
The channel can transmit only one message at a time and a new transmission can only start
at the beginnings of the time slots t = 1, 2, . . . . The transmission time of a message is one
time slot. The following access-control rule is used. The gate is closed for newly arriving
messages when the number of messages awaiting transmission has reached the level R and
is opened again when the number of messages awaiting transmission has dropped to the
level r , where the parameters r and R are given integers with 0 ≤ r < R. The goal is to
study the long-run fraction of lost messages as function of r and R.

(a) Define an appropriate Markov chain and specify its one-step transition probabilities.
(b) Show how to calculate the long-run fraction of lost messages.

3.18 In Example 3.5.1 we have determined for the GI/M/1 queue the customer-average
probability πj denoting the long-run fraction of customers who find j other customers
present upon arrival. Denote by the time-average probability pj the long-run fraction of
time that j customers are present for j = 0, 1, . . . . Use Theorem 3.3.3 and Lemma 1.1.4
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to verify that

pj =
∞∑

k=j−1

πk

∫ ∞

0


 ∞∑

�=k+1−j

t

� + 1
e−µt (µt)�

�!


 a(t) dt, j ≥ 1.

(Hint : fix j and assume that the process incurs a cost at rate 1 whenever j customers are
present and a cost at rate 0 otherwise. Imagine that the server continues servicing fictitious
customers when the system is empty so that actual or fictitious service completions occur
according to a Poisson process with rate µ.)

3.19 In each time unit a job arrives at a conveyor with a single workstation. The workstation
can process only one job at a time and has a buffer with ample capacity to store the arriving
jobs that find the workstation busy. The processing times of the jobs are independent random
variables having a common Erlang (r, µ) distribution. It is assumed that r/µ < 1.

(a) Define an appropriate Markov chain to analyse the number of jobs in the buffer just
prior to the arrival epochs of new jobs and specify the one-step transition probabilities.

(b) Explain how to calculate the long-run average delay in the buffer per job.
(c) Prove that the equilibrium distribution of this Markov chain has a geometric tail.

3.20 Consider Exercise 3.19 again but now assume that the buffer has finite capacity. Any
arriving job that finds the buffer full is lost. Show how to calculate the long-run fraction
of lost jobs and the long-run fraction of time the workstation is busy (Hint : use Little’s
formula for the latter performance measure).

3.21 At the telephone exchange, calls arrive according to a Poisson process with rate λ.
The calls are first put in an infinite-capacity buffer before they can be processed further.
The buffer is periodically scanned every T time units, and only at those scanning epochs
are calls in the buffer allocated to free transmission lines. There are c transmission lines
and each transmission line can handle only one call at a time. The transmission times of
the calls are independent random variables having a common exponential distribution with
mean 1/µ.

(a) Use Markov chain analysis to find the equilibrium distribution {πj } of the number of
calls in the buffer just prior to the scanning epochs.

(b) Argue that the long-run average number of calls in the buffer is given by

Lq =
∞∑

j=c+1

(j − c)πj + 1

2
λT .

(Hint : imagine that each call is marked upon arrival and is unmarked at the next scanning
epoch. Argue that the average number of marked calls in the buffer is 1

2λT .)
(c) What is the long-run average delay in the buffer per call?

3.22 Consider Example 3.4.1 with Poisson arrivals of messages.
(a) Prove the validity of the relation λ = ∑c−1

j=1 jπj + c
∑∞

j=c πj and note that this
relation can be used as an accuracy check on the calculated values of the state probabilities
πj , j = 0, 1, . . . .

(b) Use the hint in Exercise 3.21 to prove that the long-run average number of messages
in the buffer equals

∑∞
j=c+1(j − c)πj + 1

2λT .
(c) What is the long-run average delay in the buffer per message?

3.23 Consider Example 3.4.1 again but assume now that the buffer for temporarily storing
arriving messages has a finite capacity K . Each arriving message that finds the buffer full
is lost.
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(a) Modify the one-step transition probabilities of the Markov chain {Xn} describing the
number of messages in the buffer at the end of the time slots.

(b) Denoting by {π(K)
j

, j = 0, 1, . . . , K} the equilibrium distribution of the Markov
chain, argue that the long-run fraction of messages lost is

πloss (K) = 1

λ


λ −

c−1∑
j=1

jπ
(K)
j

− c

K∑
j=c

π
(K)
j


 .

(Hint : the sum of the average number of messages lost per time unit and the average number
of messages transmitted per time unit equals λ.)

(c) Let K(α) be the smallest value of K for which πloss (K) ≤ α for a given value of α.
Letting ρ = λ/c, compute for ρ = 0.90, 0.95 and c = 1, 5, 10 the values of K(α) as given
in the table below. Note that K(α) increases logarithmically in α as α increases. What does
this mean for the asymptotic behaviour of πloss (K) as K gets large?

ρ = 0.80 ρ = 0.95

α c = 1 c = 5 c = 10 c = 1 c = 5 c = 10

10−6 29 32 36 107 110 114
10−8 40 42 46 152 155 159
10−10 50 53 57 197 200 204

3.24 Suppose that a conveyer belt is running at a uniform speed and transporting items on
individual carriers equally spaced along the conveyer. There are two workstations i = 1, 2
placed in order along the conveyer, where station 1 is the first one. In each time unit
an item for processing arrives and is handled by the first workstation that is idle. Any
station can process only one item at a time and has no storage capacity. An item that finds
both workstations busy is lost. The processing time of an item at station i has an Erlang-ri
distribution with mean mi , i = 1, 2. Give a Markov chain analysis aimed at the computation
of the loss probability. Solve these two cases:

(a) The processing times at the stations 1 and 2 are exponentially distributed with respec-
tive means m1 = 0.75 and m2 = 1.25 (answer 0.0467).

(b) The processing times at the stations 1 and 2 are Erlang-3 distributed with respective
means m1 = 0.75 and m2 = 1.25 (answer 0.0133).

3.25 Leaky bucket control is a control procedure used in telecommunication networks. It
controls the average packet input into the network and the maximum number of packets
transmitted in succession. To achieve this, a token buffer is used. An arriving packet is
admitted to the network only if the token buffer is not empty, otherwise the packet is
rejected. If the token buffer is not empty when a packet arrives, the packet immediately
removes one token from the token buffer and enters the network. The token buffer is of
size M . Tokens are generated periodically every D time units and are stored in the token
buffer. Tokens generated when the token buffer is full are lost. Packets arrive at the network
according to a Poisson process with rate λ.

(a) Analyse the embedded Markov chain describing the number of tokens in the pool just
before a token is generated.

(b) What is the average number of packets admitted in one token generation interval? For
several values of M investigate how the average input curve behaves as a function of λD.
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BIBLIOGRAPHIC NOTES

Many good textbooks on stochastic processes are available and most of them treat
the topic of Markov chains. My favourite books include Cox and Miller (1965),
Karlin and Taylor (1975) and Ross (1996), each offering an excellent introduction
to Markov chain theory. A very fundamental treatment of denumerable Markov
chains can be found in the book of Chung (1967). An excellent book on Markov
chains with a general state space is Meyn and Tweedie (1993). The concept of the
embedded Markov chain and its application in Example 3.1.3 are due to Kendall
(1953). The idea of using the geometric tail behaviour of state probabilities goes
back to Feller (1950) and was successfully used in the papers of Everett (1954)
and Takahashi and Takami (1976).
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CHAPTER 4

Continuous-Time Markov
Chains

4.0 INTRODUCTION

In the continuous-time analogue of discrete-time Markov chains the times between
successive state transitions are not deterministic, but exponentially distributed.
However, the state transitions themselves are again governed by a (discrete-time)
Markov chain. Equivalently, a continuous-time Markov chain can be represented
by so-called infinitesimal transition rates. This is in analogy with the ‘�t-represen-
tation’ of the Poisson process. The representation by infinitesimal transition rates
leads naturally to the flow rate equation approach. This approach is easy to visualize
and is widely used in practice. The continuous-time Markov chain model is intro-
duced in Section 4.1. In Section 4.2 we discuss the flow rate equation approach.
The discussion in Section 4.2 concentrates on giving insights into this powerful
approach but no proofs are given. The proofs are given in Section 4.3. Results for
discrete-time Markov chains are the basis for the proofs of the ergodic theorems
for continuous-time Markov chains.

In Section 4.4 we discuss specialized methods to solve the equilibrium equations
for continuous-time Markov chains on a semi-infinite strip in two-dimensional
space. Many applications of continuous-time Markov chains have this structure.
Section 4.5 deals with transient analysis for continuous-time Markov chains. The
basic tools for the computation of the transient state probabilities and first pas-
sage time probabilities are Kolmogoroff’s method of linear differential equations
and the probabilistic method of uniformization. Both methods will be discussed.
In Section 4.6 we give algorithms for the computation of the transient proba-
bility distribution of the cumulative reward in a continuous-time Markov chain
model with a reward structure. A special case of this model is the computation
of the transient distribution of the sojourn time of the process in a given set
of states.

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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4.1 THE MODEL

In Chapter 3 we considered Markov processes in which the changes of the state only
occurred at fixed times t = 0, 1, . . . . However, in numerous practical situations,
changes of state may occur at each point of time. One of the most appropriate
models for analysing such situations is the continuous-time Markov chain model.
In this model the times between successive transitions are exponentially distributed,
while the succession of states is described by a discrete-time Markov chain. A
wide variety of applied probability problems can be modelled as a continuous-time
Markov chain by an appropriate state description.

In analogy with the definition of a discrete-time Markov chain, a continuous-time
Markov chain is defined as follows.

Definition 4.1.1 A continuous-time stochastic process {X(t), t ≥ 0} with discrete
state space I is said to be a continuous-time Markov chain if

P {X(tn) = in | X(t0) = i0, . . . , X(tn−1) = in−1}
= P {X(tn) = in | X(tn−1) = in−1}

for all 0 ≤ t0 < · · · < tn−1 < tn and i0, . . . , in−1, in ∈ I .

Just as in the discrete-time case, the Markov property expresses that the condi-
tional distribution of a future state given the present state and past states depends
only on the present state and is independent of the past. In the following we
consider time-homogeneous Markov chains for which the transition probability
P {X(t + u) = j | X(u) = i} is independent of u. We write

pij (t) = P {X(t + u) = j | X(u) = i}.
The theory of continuous-time Markov chains is much more intricate than the the-
ory of discrete-time Markov chains. There are very difficult technical problems
and some of them are not even solved at present time. Fortunately, the stagger-
ing technical problems do not occur in practical applications. In our treatment of
continuous-time Markov chains we proceed pragmatically. We impose a regular-
ity condition that is not too strong from a practical point of view but avoids all
technical problems.

As an introduction to the modelling by a continuous-time Markov chain, let us
construct the following Markov jump process. A stochastic system with a discrete
state space I jumps from state to state according to the following rules:

Rule (a) If the system jumps to state i, it then stays in state i for an exponentially
distributed time with mean 1/νi independently of how the system reached state i

and how long it took to get there.

Rule (b) If the system leaves state i, it jumps to state j (j �= i) with probability
pij independently of the duration of the stay in state i, where

∑
j �=i pij = 1 for all

i ∈ I .
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The convention pii = 0 for all states i is convenient and natural. This conven-
tion ensures that the sojourn time in a state is unambiguously defined. If there
are no absorbing states, it is no restriction to make this convention (the sum of a
geometrically distributed number of independent lifetimes with a common expo-
nential distribution is again exponentially distributed). Throughout this chapter the
following assumption is made.

Assumption 4.1.1 In any finite time interval the number of jumps is finite with
probability 1.

Define now the continuous-time stochastic process {X(t), t ≥ 0} by

X(t) = the state of the system at time t.

The process is taken to be right-continuous; that is, at the transition epochs the
state of the system is taken as the state just after the transition. The process {X(t)}
can be shown to be a continuous-time Markov chain. It will be intuitively clear
that the process has the Markov property by the assumption of exponentially dis-
tributed sojourn times in the states. Assumption 4.1.1 is needed to exclude patho-
logical cases. For example, suppose the unbounded state space I = {1, 2, . . . }, take
pi,i+1 = 1 and νi = i2 for all i. Then transitions occur faster and faster so that the
process will ultimately face an explosion of jumps. With a finite state space the
Assumption 4.1.1 is always satisfied.

Example 4.1.1 Inventory control for an inflammable product

An inflammable product is stored in a special tank at a filling station. Customers
asking for the product arrive according to a Poisson process with rate λ. Each
customer asks for one unit of the product. Any demand that occurs when the tank is
out of stock is lost. Opportunities to replenish the stock in the tank occur according
to a Poisson process with rate µ. The two Poisson processes are assumed to be
independent of each other. For reasons of security it is only allowed to replenish the
stock when the tank is out of stock. At those opportunities the stock is replenished
with Q units for a given value of Q.

To work out the long-run average stock in the tank and the long-run fraction of
demand that is lost, we need to study the inventory process. For any t ≥ 0, define

X(t) = the amount of stock in the tank at time t.

The stochastic process {X(t), t ≥ 0} is a continuous-time Markov chain with
state space I = {0, 1, . . . , Q}. The sojourn time in each state is exponentially
distributed, since both the times between the demand epochs and the times between
the replenishment opportunities are exponentially distributed. Thus the sojourn time
in state i has an exponential distribution with parameter

νi =
{

λ, i = 1, . . . , Q,

µ, i = 0.
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The state transitions are governed by a discrete-time Markov chain whose one-step
transition probabilities have the simple form

pi,i−1 = 1 for i = 1, . . . , Q,

p0Q = 1 and the other pij = 0.

Infinitesimal transition rates

Consider the general Markov jump process {X(t)} that was constructed above. The
sojourn time in any state i has an exponential distribution with mean 1/νi and
the state transitions are governed by a Markov chain having one-step transition
probabilities pij for i, j ∈ I with pii = 0 for all i. The Markov process allows for
an equivalent representation involving the so-called infinitesimal transition rates.
To introduce these rates, let us analyse the behaviour of the process in a very small
time interval of length �t . Recall that the exponential (sojourn-time) distribution
has a constant failure rate; see Appendix B. Suppose that the Markov process
{X(t)} is in state i at the current time t . The probability that the process will leave
state i in the next �t time units with �t very small equals νi�t + o(�t) by the
constant failure rate representation of the exponential distribution. If the process
leaves state i, it jumps to state j (�= i) with probability pij . Hence, for any t > 0,

P {X(t + �t) = j | X(t) = i} =
[

νi�t × pij + o(�t), j �= i,

1 − νi�t + o(�t), j = i,

as �t → 0. One might argue that in the next �t time units state j could be reached
from state i by first jumping from state i to some state k and next jumping in the
same time interval from state k to state j . However, the probability of two or more
state transitions in a very small time interval of length �t is of the order (�t)2

and is thus o(�t); that is, this probability is negligibly small compared with �t as
�t → 0. Define now

qij = νipij , i, j ∈ I with j �= i.

The non-negative numbers qij are called the infinitesimal transition rates of the
continuous-time Markov chain {X(t)}. Note that the qij uniquely determine the
sojourn-time rates νi and the one-step transition probabilities pij by νi = ∑

j �=i qij

and pij = qij /νi . The qij themselves are not probabilities but transition rates.
However, for �t very small, qij �t can be interpreted as the probability of moving
from state i to state j within the next �t time units when the current state is state i.

In applications one usually proceeds in the reverse direction. The infinitesimal
transition rates qij are determined in a direct way. They are typically the result
of the interaction of two or more elementary processes of the Poisson type. Con-
trary to the discrete-time case in which the one-step transition probabilities deter-
mine unambiguously a discrete-time Markov chain, it is not generally true that the
infinitesimal transition rates determine a unique continuous-time Markov chain.
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Here we run into subtleties that are well beyond the scope of this book.∗ Note
that fundamental difficulties may arise when the state space is infinite, but these
difficulties are absent in almost all practical applications. To avoid the technical
problems, we make the following assumption for the given data qij .

Assumption 4.1.2 The rates νi = ∑
j �=i qij are positive and bounded in i ∈ I .

The boundedness assumption is trivially satisfied when I is finite and holds in
most applications with an infinite state space. Using very deep mathematics it can
be shown that under Assumption 4.1.2 the infinitesimal transition rates determine a
unique continuous-time Markov chain {X(t)}. This continuous-time Markov chain
is precisely the Markov jump process constructed according to the above rules (a)
and (b), where the leaving rates are given by νi = ∑

j �=i qij and the pij by pij =
qij /νi . The continuous-time Markov chain {X(t)} does indeed have the property

P {X(t + �t) = j | X(t) = i} =
[

qij �t + o(�t), j �= i,

1 − νi�t + o(�t), j = i.
(4.1.1)

It is noted that Assumption 4.1.2 implies that the constructed continuous-time
Markov chain {X(t)} automatically satisfies Assumption 4.1.1.

In solving specific problems it suffices to specify the infinitesimal transition rates
qij . We now give two examples. In these examples the qij are determined as the
result of the interaction of several elementary processes of the Poisson type. The
qij are found by using the interpretation that qij �t represents the probability of
making a transition to state j in the next �t time units when the current state is i

and �t is very small.

Example 4.1.1 (continued) Inventory control for an inflammable product

The stochastic process {X(t), t ≥ 0} with X(t) denoting the stock on hand at
time t is a continuous-time Markov chain with state space I = {0, 1, . . . , Q}. Its
infinitesimal transition rates qij are the result of the interaction of the two indepen-
dent Poisson processes for the demands and the replenishment opportunities. The
qij are given by

qi,i−1 = λ for i = 1, . . . , Q,

q0Q = µ and the other qij = 0.

To see this, note that for any state i with i ≥ 1,

P {X(t + �t) = i − 1 | X(t) = i}
= P {a demand occurs in (t, t + �t]} + o(�t)

= λ�t + o(�t)

∗Conditions under which the infinitesimal parameters determine a unique continuous-time Markov chain
are discussed in depth in Chung (1967).
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Figure 4.1.1 The transition rate diagram for the inventory process

and

P {X(t + �t) = Q | X(t) = 0}
= P {a replenishment opportunity occurs in (t, t + �t]} + o(�t)

= µ�t + o(�t)

for �t → 0. In the analysis of continuous-time Markov chains, it is very helpful
to use a transition rate diagram. The nodes of the diagram represent the states and
the arrows in the diagram give the possible state transitions. An arrow from node
i to node j is only drawn when the transition rate qij is positive, in which case the
arrow is labelled with the value qij . The transition rate diagram not only visualizes
the process, but is particularly useful when writing down its equilibrium equations.
Figure 4.1.1 shows the transition rate diagram for the inventory process.

Example 4.1.2 Unloading ships with an unreliable unloader

Ships arrive at a container terminal according to a Poisson process with rate λ. The
ships bring loads of containers. There is a single unloader for unloading the ships.
The unloader can handle only one ship at a time. The ships are unloaded in order
of arrival. It is assumed that the dock has ample capacity for waiting ships. The
unloading time of each ship has an exponential distribution with mean 1/µ. The
unloader, however, is subject to breakdowns. A breakdown can only occur when
the unloader is operating. The length of any operating period of the unloader has
an exponential distribution with mean 1/δ. The time to repair a broken unloader
is exponentially distributed with mean 1/β. Any interrupted unloading of a ship
is resumed at the point it was interrupted. It is assumed that the unloading times,
operating times and repair times are independent of each other and are independent
of the arrival process of the ships.

The average number of waiting ships, the fraction of time the unloader is down,
and the average waiting time per ship, these and other quantities can be found by
using the continuous-time Markov chain model. For any t ≥ 0, define the random
variables

X1(t) = the number of ships present at time t
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and

X2(t) =
{

1 if the unloader is available at time t,

0 if the unloader is in repair at time t.

Since the underlying distributions are exponential, the process {(X1(t), X2(t))} is
a continuous-time Markov chain. This process has the state space

I = {(i, 0) | i = 1, 2, . . . } ∪ {(i, 1) | i = 0, 1, . . . }.
The next step is to determine the infinitesimal transition rates of the process. Putting
for abbreviation X(t) = (X1(t), X2(t)), we have

P {X(t + �t) = (i, 1) | X(t) = (i, 0)}
= P {the running repair is finished in (t, t + �t) and

no arrival occurs in (t, t + �t)}
= β�t (1 − λ�t) + o (�t) = β�t + o(�t)

for �t → 0. This gives

q(i,0)(i,1) = β for i = 1, 2, . . . .

Alternatively, q(i,0)(i,1) could have been obtained by noting that the sojourn time in
state (i, 0) is exponentially distributed with parameter β + λ and noting that with
probability β/(β + λ) the running repair time is finished before an arrival occurs.
Also,

P {X(t + �t) = (i + 1, 0)|X(t) = (i, 0)}
= P {an arrival occurs in (t, t + �t) and the running repair time

is not finished in (t, t + �t)}
= λ�t(1 − β�t) + o(�t) = λ�t + o(�t)

for �t → 0. This gives

q(i,0)(i+1,0) = λ for i ≥ 1.

Similarly, we find

q(i,1)(i,0) = δ, q(i,1)(i+1,1) = λ and q(i,1)(i−1,1) = µ for i ≥ 1.

The state transitions and transition rates are summarized in Figure 4.1.2.

4.2 THE FLOW RATE EQUATION METHOD

This section discusses the flow rate equation method for obtaining the equilibrium
distribution of a continuous-time Markov chain. The emphasis is to give insight
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Figure 4.1.2 The transition rate diagram for the unloader

into this powerful method, which is widely used by practitioners. The proofs of
the results below are deferred to Section 4.3.

The starting point is a continuous-time Markov chain {X(t)} with state space I

and infinitesimal transition rates qij for i, j ∈ I with j �= i. As before, let

νi =
∑
j �=i

qij , i ∈ I.

The quantity νi is the parameter of the exponentially distributed sojourn time in
state i. It is assumed that the νi satisfy Assumption 4.1.2. For any t ≥ 0, define
the probability pij (t) by

pij (t) = P {X(t) = j | X(0) = i}, i, j ∈ I.

The computation of the transient probabilities pij (t) will be discussed in Section
4.5. A deep result from continuous-time Markov chain theory is that limt→∞ pij (t)

always exists for all i, j ∈ I . The issue of possible periodicity in the state transitions
is not relevant for continuous-time Markov chains, since the times between state
transitions have a continuous distribution. To ensure that the limits of the pij (t)

are independent of the initial state i and constitute a probability distribution, we
need the following assumption.

Assumption 4.2.1 The process {X(t), t ≥ 0} has a regeneration state r such that

P {τr < ∞ | X(0) = i} = 1 f or all i ∈ I and E(τr | X(0) = r) < ∞,

where τr is the first epoch beyond epoch 0 at which the process {X(t)} makes a
transition into state r .

In other words, state r will ultimately be reached with probability 1 from any
other state and the mean recurrence time from state r to itself is finite. Under this
assumption it can be proved that there is a probability distribution {pj , j ∈ I }
such that

lim
t→∞ pij (t) = pj , j ∈ I,
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independently of the initial state i. The interested reader is referred to Chung
(1967) for a proof. The limiting probability pj can be interpreted as the probability
that an outside observer finds the system in state j when the process has reached
statistical equilibrium and the observer has no knowledge about the past evolution
of the process. The notion of statistical equilibrium relates not only to the length
of time the process has been in operation but also to our knowledge of the past
evolution of the system. But a more concrete interpretation which better serves our
purposes is that

the long-run fraction of time the process will be in state j (4.2.1)

= pj with probability 1,

independently of the initial state X(0) = i. More precisely, denoting for fixed j

the indicator variable Ij (t) by

Ij (t) =
{

1 if X(t) = j,

0 otherwise,

it holds for any j ∈ I that

lim
t→∞

1

t

∫ t

0
Ij (u) du = pj with probability 1,

independently of the initial state X(0) = i. A proof of this result will be given in
Section 4.3 using the theory of renewal-reward processes. In Section 4.3 we also
prove the following important theorem.

Theorem 4.2.1 Suppose the continuous-time Markov chain {X(t)} satisfies
Assumptions 4.1.2 and 4.2.1. Then the probabilities pj , j ∈ I are the unique solution
to the linear equations

νj xj =
∑
k �=j

qkj xk, j ∈ I (4.2.2)

∑
j∈I

xj = 1 (4.2.3)

in the unknowns xj , j ∈ I . Moreover, let {xj , j ∈ I } be any solution to (4.2.2) with∑
j

∣∣xj

∣∣ < ∞. Then, for some constant c, xj = cpj for all j ∈ I .

The linear equations (4.2.2) are called the equilibrium equations or balance
equations of the Markov process. The equation (4.2.3) is a normalizing equation.
The probabilities pj are called the equilibrium probabilities of the continuous-time
Markov chain. They can be computed by solving a system of linear equations.
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Interpretation of the equilibrium equations

A physical explanation of the equilibrium equations can be given by using the
obvious principle that over the long run

the average number of transitions out of state j per time unit

= the average number of transitions into state j per time unit. (4.2.4)

Since pj is the long-run fraction of time the process is in state j and the leaving
rate out of state j is νj , it is intuitively obvious that

the long-run average number of transitions out of state j

per time unit = νjpj . (4.2.5)

Also, the following result will be intuitively obvious:

the long-run average number of transitions from state k to state j

per time unit = qkj pk. (4.2.6)

For a better understanding of (4.2.6), it is helpful to point out that qkj can be
interpreted as the long-run average number of transitions per time unit to state j

when averaging over the time the process is in state k. A rigorous proof of the
result (4.2.6) is given in Section 4.3. By (4.2.6),

the long-run average number of transitions into state j

per time unit =
∑
k �=j

qkj pk. (4.2.7)

Together (4.2.4), (4.2.5) and (4.2.7) give the equilibrium equations (4.2.2). These
equations may be abbreviated as

rate out of state j = rate into state j. (4.2.8)

This principle is the flow rate equation method. To formulate the equilibrium
equations in specific applications, it is convenient to use the transition rate diagram
that was introduced in the previous section. Putting the transition rate diagram in a
physical context, one might think that particles with a total mass of 1 are distributed
over the nodes according to the equilibrium distribution {pj }. Particles move from
one node to another node according to the transition rates qij . In the equilibrium
situation the rate at which particles leave any node must be equal to the rate at
which particles enter that node. The ‘rate in = rate out’ principle (4.2.8) allows for
a very useful generalization. More generally, for any set A of states with A �= I ,

rate out of the set A = rate into the set A. (4.2.9)
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In mathematical terms, ∑
j∈A

pj

∑
k /∈A

qjk =
∑
k /∈A

pk

∑
j∈A

qkj .

The balance principle (4.2.9) enables us to write down a recursive equation for the
pj when

I = {0, 1, . . . , N} and qij = 0 for i ≥ 1 and j ≤ i − 2,

where N ≤ ∞. Then, by taking A = {i, . . . , N} with i �= 0 and applying the
balance principle (4.2.9), we get

qi,i−1pi =
i−1∑
k=0

pk

N∑
j=i

qkj , i = 1, . . . , N. (4.2.10)

This recursive relation is used quite often in queueing applications; see Chapter 5.
In queueing applications it is often the case that direct transitions from any state i

are either to higher states or to the state i − 1 directly below state i. A recursive
computation of the state probabilities is usually much faster than a computation by
any other method. Also the recursion scheme (4.2.10) is numerically stable since
it involves no subtractions.

Next we apply the flow rate equation method to the two examples discussed in
the previous section.

Example 4.1.1 (continued) Inventory control for an inflammable product

In this example the equilibrium probability pj represents the long-run fraction of
time that the stock in the tank equals j units. Assumptions 4.1.2 and 4.2.1 are
trivially satisfied (e.g. take state Q as regeneration state r). Using the transition
rate diagram in Figure 4.1.1 and equating the rate at which the process leaves state
i to the rate at which the process enters state i, it follows that

µp0 = λp1,

λpj = λpj+1, j = 1, 2, . . . , Q − 1,

λpQ = µp0.

These equilibrium equations together with the equation p0 + p1 + · · · + pQ = 1
have a unique solution (in this special case an explicit solution can be given:
p0 = (1 + Qµ/λ)−1 and p1 = · · · = pQ = (µ/λ)p0). Next we can answer the
questions posed earlier:

the long-run average stock on hand =
Q∑

j=0

jpj (4.2.11)

the long-run fraction of demand that is lost = p0. (4.2.12)
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A few words of explanation are in order. Intuitively, (4.2.11) may be obvious by
noting that pj gives the long-run fraction of time the stock on hand is j . The long-
run average stock on hand is defined as limt→∞(1/t)

∫ t

0 X(u) du. This long-run
average can be seen as a long-run average cost per time unit by imagining that a
cost at rate j is incurred when the stock on hand is j . Using this interpretation,
the result (4.2.11) can be seen as a consequence of Theorem 4.2.2, which will be
discussed below. The result (4.2.12) uses the PASTA property: in the long run the
fraction of customers who find the system out of stock upon arrival equals the
fraction of time the system is out of stock. Further, we have

the long-run average number of stock replenishments per time unit = µp0.

This result follows from (4.2.6) by noting that the average replenishment frequency
equals the average number of transitions from state 0 to state Q per time unit.

Example 4.1.2 (continued) Unloading ships with an unreliable unloader

In this example we need a regularity condition to ensure that Assumption 4.2.1 is
satisfied (Assumption 4.1.2 trivially holds). Let γ denote the expected amount of
time needed to complete the unloading of a ship. It is not difficult to verify that
γ = µ−1(1 + δ/β); see (A.5) in Appendix A. In order to satisfy Assumption 4.2.1
it should be required that the arrival rate of ships is less than the reciprocal of the
expected completion time γ . That is, the assumption

λ <
βµ

β + δ

should be made. The proof is omitted that under this condition the expected cycle
length in Assumption 4.2.1 is finite (take state (0, 1) for the regeneration state
r). Denote the equilibrium probabilities by p(j, 0) and p(j, 1). The probability
p(j, 1) gives the long-run fraction of time that j ships are present and the unloader
is available and the probability p(j, 0) gives the long-run fraction of time that j

ships are present and the unloader is in repair. Using the transition rate diagram
in Figure 4.1.2 and applying the ‘rate in = rate out’ principle, we obtain the
equilibrium equations:

λp(0, 1) = µp(1, 1),

(λ + µ + δ)p(i, 1) = λp(i − 1, 1) + µp(i + 1, 1) + βp(i, 0), i = 1, 2, . . . ,

(λ + β)p(1, 0) = δp(1, 1),

(λ + β)p(i, 0) = λp(i − 1, 0) + δp(i, 1), i = 2, 3, . . . .

This infinite system of linear equations together with the normalizing equation
∞∑
i=0

p(i, 0) +
∞∑
i=1

p(i, 1) = 1
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has a unique solution. A brute-force method for solving the equilibrium equations
is to truncate this infinite system through a sufficiently large integer N (to be found
by trial and error) such that

∑∞
i=N+1[p(i, 0) + p(i, 1)] ≤ ε for some prespecified

accuracy number ε. In Section 4.4 we discuss a more sophisticated method to
solve the infinite system of linear equations. Once the state probabilities have been
computed, we find

the long-run average number of ships in the harbour =
∞∑
i=1

i[p(i, 0) + p(i, 1)],

the fraction of time the unloader is in repair =
∞∑
i=1

p(i, 0),

the long-run average amount of time spent in the harbour per ship

= 1

λ

∞∑
i=1

i[p(i, 0) + p(i, 1)].

The latter result uses Little’s formula L = λW .

Continuous-time Markov chains with rewards

In many applications a reward structure is imposed on the continuous-time Markov
chain model. Let us assume the following reward structure. A reward at a rate of
r(j) per time unit is earned whenever the process is in state j , while a lump
reward of Fjk is earned each time the process jumps from state j to state k (�= j ).
In addition to Assumption 4.2.1 involving the regeneration state r , we make the
following assumption.

Assumption 4.2.2 (a) The total reward earned between two visits of the process
{X(t)} to state r has a finite expectation and∑

j∈I

|r(j)|pj +
∑
j∈I

pj

∑
k �=j

qjk |Fjk | < ∞.

(b) For each initial state X(0) = i with i �= r , the total reward earned until the
first visit of the process {X(t)} to state r is finite with probability 1.

This assumption is automatically satisfied when the state space I is finite and
Assumption 4.2.1 holds. For each t > 0, define the random variable R(t) by

R(t) = the total reward earned up to time t.

The following very useful result holds for the long-run average reward.
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Theorem 4.2.2 Suppose the continuous-time Markov chain {X(t)} satisfies
Assumptions 4.1.2, 4.2.1 and 4.2.2. Then, for each initial state X(0) = i,

lim
t→∞

R(t)

t
=

∑
j∈I

r(j)pj +
∑
j∈I

pj

∑
k �=j

qjk Fjk with probability 1.

A proof of this ergodic theorem will be given in Section 4.3. Intuitively the
theorem can be seen by noting that pj gives the long-run fraction of time the
process is in state j and pjqjk gives the long-run average number of transitions
from state j to state k per time unit.

Example 4.1.1 (continued) Inventory control for an inflammable product

Suppose that the following costs are made in the inventory model. For each unit
kept in stock, a holding cost h > 0 is incurred for each unit of time the unit is
kept in stock. Penalty costs R > 0 are incurred for each demand that is lost and
fixed costs K > 0 are made for each inventory replenishment. Then the long-run
average cost per time unit equals

h

Q∑
j=0

jpj + Rλp0 + Kµp0.

Strictly speaking, the cost term Rλp0 is not covered by Theorem 4.2.2. Alterna-
tively, by using part (a) of Theorem 2.4.1 it can be shown that the long-run average
amount of demand that is lost per time unit equals λp0.

4.3 ERGODIC THEOREMS

In this section we prove Theorems 4.2.1 and 4.2.2. The proofs rely heavily on
earlier results for the discrete-time Markov chain model. In our analysis we need
the embedded Markov chain {Xn, n = 0, 1, . . . }, where Xn is defined by

Xn = the state of the continuous-time Markov chain just
after the nth state transition

with the convention that X0 = X(0). The one-step transition probabilities of the
discrete-time Markov chain {Xn} are given by

pij =
{

qij /νi , j �= i,

0, j = i;
(4.3.1)

see Section 4.1. It is readily verified that Assumption 4.2.1 implies that the embed-
ded Markov chain {Xn} satisfies the corresponding Assumption 3.3.1 and thus state
r is a positive recurrent state for the Markov chain {Xn}.
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Definition 4.3.1 A probability distribution {pj , j ∈ I } is said to be an equilibrium
distribution for the continuous-time Markov chain {X(t)} if

νjpj =
∑
k �=j

pkqkj , j ∈ I.

Just as in the discrete-time case, the explanation of the term ‘equilibrium dis-
tribution’ is as follows. If P {X(0) = j} = pj for all j ∈ I , then for any t > 0,
P {X(t) = j} = pj for all j ∈ I . The proof is non-trivial and will not be given.
Next we prove Theorem 4.2.1 in a somewhat more general setting.

Theorem 4.3.1 Suppose that the continuous-time Markov chain {X(t)} satisfies
Assumptions 4.1.2 and 4.2.1. Then:

(a) The continuous-time Markov chain {X(t)} has a unique equilibrium distribution
{pj , j ∈ I }. Moreover

pj = πj/νj∑
k∈I

πk/νk

, j ∈ I, (4.3.2)

where {πj } is the equilibrium distribution of the embedded Markov chain {Xn}.
(b) Let {xj } be any solution to νj xj = ∑

k �=j xkqkj , j ∈ I , with
∑

j |xj | < ∞. Then,
for some constant c, xj = cpj for all j ∈ I .

Proof We first verify that there is a one-to-one correspondence between the solu-
tions of the two systems of linear equations

νj xj =
∑
k �=j

xkqkj , j ∈ I

and
uj =

∑
k∈I

ukpkj , j ∈ I.

If {uj } is a solution to the second system with
∑ |uj | < ∞, then {xj = uj /νj } is a

solution to the first system with
∑ |xj | < ∞, and conversely. This is an immediate

consequence of the definition (4.3.1) of the pij . The one-to-one correspondence
and Theorem 3.5.9 imply the results of Theorem 4.3.1 provided we verify

∑
j∈I

πj

νj
< ∞. (4.3.3)

The proof that this condition holds is as follows. By Assumption 4.2.1, the process
{X(t)} regenerates itself each time the process makes a transition into state r . Let a
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cycle be defined as the time elapsed between two consecutive visits of the process
to state r . Using Wald’s equation, it is readily seen that

E(length of one cycle) =
∑
j∈I

E(number of visits to state j in one cycle) × 1

νj
.

Thus, by Lemma 3.5.10,

E(length of one cycle) = 1

πr

∑
j∈I

πj

νj
.

Since E(length of one cycle) is finite by Assumption 4.2.1, the result now follows.
This completes the proof.

Next it is not difficult to prove Theorem 4.2.2

Proof of Theorem 4.2.2 We first prove the result for initial state X(0) = r , where
r is the regeneration state from Assumptions 4.2.1 and 4.2.2. The process {X(t)}
regenerates itself each time the process makes a transition into state r . Let a cycle
be defined as the time elapsed between two consecutive visits of the process to
state r . In the proof of the above theorem we have already shown

E(length of one cycle) = 1

πr

∑
k∈I

πk

νk

.

The expected length of a cycle is finite. Next apply the renewal-reward theorem
from Chapter 2. This gives

lim
t→∞

R(t)

t
= E(reward earned during one cycle)

E(length of one cycle)
(4.3.4)

with probability 1. Using Wald’s equation, E(reward earned during one cycle) is

∑
j∈I

E(number of visits to state j during one cycle) ×

r(j)

νj
+

∑
k �=j

pjk Fjk


 .

Hence, by Lemma 3.5.10 and relation (4.3.1),

E(reward earned during one cycle) =
∑
j∈I

πj

πr


 r(j)

νj
+

∑
k �=j

pjk Fjk




= 1

πr

∑
j∈I

πj

νj


r(j) +

∑
k �=j

qjk Fjk


 .

Taking the ratio of the expressions for the expected reward earned during one cycle
and the expected length of one cycle and using relation (4.3.2), we get the result



MARKOV PROCESSES ON A SEMI-INFINITE STRIP 157

of Theorem 4.2.2 for initial state r . It remains to verify that the result also holds
for any initial state X(0) = i with i �= r . This verification proceeds along the same
lines as the proof of the corresponding result in Theorem 3.5.11.

By choosing an appropriate reward structure, Theorem 4.2.2 provides a rigorous
proof of earlier interpretations we gave to the quantities pj and qjk pj .

Corollary 4.3.2 Suppose that the continuous-time Markov chain {X(t)} satisfies
Assumptions 4.1.2 and 4.2.1. Then

(a) For each state k ∈ I , the long-run fraction of time the process is in state k

equals pk with probability 1, independently of the initial state X(0) = i.
(b) For all j, k ∈ I with j �= k, the long-run average number of transitions from

state k to state j per unit time equals pkqkj with probability 1, independently of the
initial state X(0) = i.

4.4 MARKOV PROCESSES ON A SEMI-INFINITE STRIP∗

Many practical (queueing) problems can be modelled as a continuous-time Markov
chain {X(t)} on a semi-infinite strip in the plane. That is, the Markov process has
the two-dimensional state space

I = {(i, s) | i = 0, 1, . . . ; s = 0, 1, . . . , m} (4.4.1)

for some finite positive integer m. Assuming that the continuous-time Markov chain
{X(t)} satisfies Assumption 4.2.1, denote its equilibrium probabilities by p(i, s) for
i = 0, 1, . . . and s = 0, 1, . . . , m. These probabilities are determined by an infinite
system of linear equations. In many cases, however, this infinite system can be
reduced to a finite system of linear equations of moderate size. This can be done
by using the geometric tail approach, discussed for discrete-time Markov chains in
Section 3.4.2. Under rather general conditions the equilibrium probabilities p(i, s)

exhibit a geometric tail behaviour as i → ∞, where the decay factor does not
depend on s. That is, for constants γs > 0 and a constant η with 0 < η < 1,

p(i, s) ∼ γsη
i as i → ∞, (4.4.2)

where the constant η does not depend on s. Then, for a sufficiently large choice of
integer M , we have for each s that

p(i + 1, s)

p(i, s)
≈ η, i ≥ M,

or equivalently

p(i, s) ≈ ηi−Mp(M, s), i > M.

∗This section is more specialized and can be omitted at first reading.
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Usually the constant η can be computed beforehand by solving a non-linear equation
in a single variable. Once η is known, the infinite system of equilibrium equations
is reduced to a finite system of linear equations by replacing any p(i, s) with i > M

by ηi−Mp(M, s). It turns out that in practical applications a relatively small value
of M usually suffices. As will be seen below, the asymptotic expansion (4.4.2) is
valid in the unloader problem of Example 4.1.2.

Markov processes with quasi-birth-death rates

Suppose that the Markov process {X(t)} satisfies the following assumption.

Assumption 4.4.1 In state (i, s) the only possible transitions are:

• from state (i, s) to state (i + 1, s) with rate λs (i = 0, 1, . . . ; s = 0, 1, . . . , m),

• from state (i, s) to state (i − 1, s) with rate µs (i = 1, 2, . . . ; s = 0, 1, . . . , m),

• from state (i, s) to state (i, s + 1) with rate βs (i = 0, 1, . . . ; s = 0, 1, . . . ,
m − 1),

• from state (i, s) to state (i, s − 1) with rate δs (i = 0, 1, . . . ; s = 1, 2, . . . , m).

It is assumed that the transition rates λs , µs , βs and δs are such that the
Markov chain {X(t)} satisfies Assumption 4.2.1 and thus has a unique equilib-
rium distribution {p(i, s)}. Under Assumption 4.4.1 the equilibrium equations for
the continuous-time Markov chain {X(t)} are as follows. Then for i = 1, 2, . . .

and with 0 ≤ s ≤ m,

(λs + µs + βs + δs)p(i, s) = λsp(i − 1, s) + µsp(i + 1, s)

+ βs−1p(i, s − 1) + δs+1p(i, s + 1) (4.4.3)

provided we put β−1 = βm = δ0 = δm+1 = 0 and define p(i, −1) = p(i, m+1) =
0. For i = 0 and 0 ≤ s ≤ m,

(λs + βs + δs)p(0, s) = µsp(1, s) + βs−1p(0, s − 1) + δs+1p(0, s + 1). (4.4.4)

Next we use the powerful tool of generating functions. Define for 0 ≤ s ≤ m the
generating function Gs(z) by

Gs(z) =
∞∑
i=0

p(i, s)zi, |z| ≤ 1.

For notational convenience, define G−1(z) = Gm+1(z) = 0. Multiplying both sides
of (4.4.3) and (4.4.4) by zi and summing over i, we find for each s that
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(λs + µs + βs + δs)

∞∑
i=0

p(i, s)zi − µsp(0, s)

= λs

∞∑
i=1

p(i − 1, s)zi + µs

∞∑
i=0

p(i + 1, s)zi + βs−1

∞∑
i=0

p(i, s − 1)zi

+ δs+1

∞∑
i=0

p(i, s + 1)zi .

This gives for s = 0, 1, . . . , m,

(λs + µs + βs + δs)Gs(z) − µsp(0, s) = λszGs(z) + µs

z
[Gs(z) − p(0, s)]

+ βs−1Gs−1(z) + δs+1Gs+1(z).

We rewrite this as

[λsz
2 + µs − (λs + µs + βs + δs)z]Gs(z) + βs−1zGs−1(z) + δs+1zGs+1(z)

= µs(1 − z)p(0, s), s = 0, 1, . . . , m. (4.4.5)

This is a system of linear equations in the unknowns G0(z), . . . , Gm(z). To see
what the solution looks like, it is convenient to write (4.4.5) in matrix notation. To
do so, define the diagonal matrices � and M by

� = diag(λ0, λ1, . . . , λm) and M = diag(µ0, µ1, . . . , µm).

Define the transition rate matrix T = (tab) with a, b = 0, 1, . . . , m by

ts,s−1 = βs−1, ts,s+1 = δs+1, tss = −(βs + δs) and tab = 0 otherwise.

Finally, define the matrix A(z) by

A(z) = �z2 − (� − T + M)z + M

and the column vectors p0 and g(z) by

p0 = (p(0, 0), . . . , p(0, m)) and g(z) = (G0(z), . . . , Gm(z)).

Then the linear equations (4.4.5) in matrix notation are

A(z)g(z) = (1 − z)Mp0 (4.4.6)

By Cramer’s rule for linear equations, the solution of (4.4.6) is given by

Gs(z) = det As(z)

det A(z)
, s = 0, 1, . . . , m, (4.4.7)
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where As(z) is the matrix that results from replacing the (s + 1)th column vec-
tor of A(z) by the vector (1 − z)Mp0. The functions det As(z) and det A(z) are
polynomials in z and are thus defined on the whole complex plane. Assuming that
the function N(z) = det A(z) satisfies the conditions stated in Theorem C.1 in
Appendix C, the representation (4.4.7) implies the following result.

Theorem 4.4.1 For each s = 0, 1, . . . , m, there is a constant γs such that

p(i, s) ∼ γsη
i as i → ∞, (4.4.8)

where η is the reciprocal of the smallest root of the equation

det A(x) = 0 (4.4.9)

on the interval (1, ∞).

How do we solve (4.4.9) in general? A possible way is to use a basic result
from linear algebra stating that det A(x) equals the product of the eigenvalues of
the matrix A(x). It is a routine matter to determine the eigenvalues of a matrix by
using standard software. A search procedure such as bisection can next be used to
find the root of (4.4.9). Another approach to compute the roots of det A(z) = 0
was proposed in Chapter 3 of Daigle (1991). The zeros of det A(z) are equivalent
to the inverses of the eigenvalues of the 2(m + 1)-dimensional square matrix

AE =
[

M−1(� − T + M) −M−1�

I O

]
,

where O is the matrix with all entries equal to zero. Note that M−1 exists. To see
this, let σ be any zero of det A(z) and let xσ be any non-trivial column vector
such that A(σ )xσ = 0. Let yσ = σxσ . Then, by the definition of A(z), we have
σ 2�xσ −σ(� − T + M)xσ +Mxσ = 0. By definition, yσ −σxσ = 0. Combining
these two systems gives[(

M O
O I

)
− σ

(
� − T + M −�

I O

)][
xσ

yσ

]
= 0.

This system is equivalent to[(
M−1(� − T + M) −M−1�

I O

)
− 1

σ

(
I O
O I

)][
xσ

yσ

]
= 0.

This proves that the zeros of det A(z) are equivalent to the inverses of the eigenval-
ues of the expanded matrix AE . The largest of the eigenvalues in (0, 1) gives the
decay factor η of the geometric tail of the equilibrium probabilities p(i, s). Daigle
(1991) gives a more sophisticated algorithm for the computation of the p(i, s).
Using the eigenvalues and the eigenvectors of the matrix AE , this algorithm com-
putes for each s the probabilities p(i, s) for i ≥ 1 as a linear combination of a
finite number of geometric terms. The interested reader is referred to Daigle’s book
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for details. The algorithm in Chapter 3 of Daigle (1991) is in fact a special case
of the spectral expansion method discussed in full generality in Mitrani and Mitra
(1992). This is a general method for computing the equilibrium probabilities of a
Markov process whose state space is a semi-infinite strip in the two-dimensional
plane and whose equilibrium equations can be represented by a vector difference
equation with constant coefficients. The solution of that equation is expressed in
terms of the eigenvalues and eigenvectors of its characteristic polynomial. Another
generally applicable method to compute the equilibrium probabilities for the two-
dimensional Markov process with quasi-birth-death rates is the matrix-geometric
method of Neuts (1981). This method requires solving a matrix quadratic equation.
This can be done by a probabilistic and numerically stable algorithm discussed
in Latouche and Ramaswami (1993). The computational effort of this algorithm
increases logarithmically when the server utilization gets larger. The computational
burden of the spectral method, however, is relatively insensitive to the server uti-
lization of the analysed system. Unlike the Latouche–Ramaswami algorithm, the
spectral method often becomes numerically unreliable when the server utilization
gets very close to 1. For the practitioner, the geometric tail approach is much eas-
ier to apply than the other two methods. This approach combines simplicity with
effectiveness. The two steps of the geometric tail algorithm are:

(a) Compute the zero of a non-linear equation in a single variable.

(b) Solve a finite system of linear equations.

These steps are simple, and standard software can be used to perform them. The
finite system of linear equations is usually relatively small for practical examples.
In general it is not possible to use the above computational methods on two-
dimensional continuous-time Markov chain problems in which both state variables
are unbounded. An example of such a problem is the shortest-queue problem in
which arriving customers are assigned to the shortest one of two separate queues
each having their own server. Special methods for this type of problem are the
so-called compensation method and the power-series algorithm discussed in Adan
et al. (1993), Blanc (1992) and Hooghiemstra et al. (1988).

Example 4.1.2 (continued) Unloading ships with an unreliable unloader

The continuous-time Markov chain in the unloader problem satisfies Assump-
tion 4.4.1 except that the Markov chain cannot take on state (0, 0). The unloader
can only break down when it is in operation. However, the assumption made in the
foregoing analysis can be released somewhat. Assume that for some integer N ≥ 1
the state space I = I1 ∪ I2, where I1 = {(i, s) | i = N, N + 1, . . . ; s = 0, . . . , m}
and I2 is a non-empty subset of {(i, s) | i = 0, . . . , N − 1; s = 0, . . . , m}. The
conditions in Assumption 4.4.1 are only assumed for the states (i, s) with i ≥ N .
Further it must be assumed that the only way to enter the set I1 from the set I2 is
through the states (N, s). Then a minor modification of the above analysis shows
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that Theorem 4.4.1 remains valid with the same matrix A(z). For the particular case
of the unloader problem, we find that (4.4.9) reduces to the polynomial equation

(λ + β − λz) (λz2 + µ − (λ + µ + δ)z) + δβz = 0.

Special case of linear birth-death rates

Suppose that the transition rates λs , µs , βs and δs have the special form

λs = b1 × (m − s) + c1s, µs = b−1 × (m − s) + c−1s

βs = a0 × (m − s) and δs = d0s (4.4.10)

for constants a0, b1, b−1, c1, c−1 and d0. Then the numerical problem of computing
the roots of det A(z) = 0 can be circumvented. The decay factor η in (4.4.2) is
then the unique solution of the equation

B(x) + C(x) − x[A(1) + B(1) + C(1) + D(1)] +
√

F(x)2 + 4A(x)D(x) = 0

on the interval (0,1), where

A(x) = a0x, B(x) = b1 + b−1x
2, C(x) = c1 + c−1x

2, D(x) = d0x,

F (x) = [A(1) + B(1) − C(1) − D(1)]x + C(x) − B(x).

In a more general context this result has been proved in Adan and Resing (1999). It
also follows from this reference that Assumption 4.2.1 holds when d0(b−1 − b1)+
a0(c−1−c1) > 0. The condition (4.4.10) is satisfied for several interesting queueing
models. For example, take a queueing model with m traffic sources which act inde-
pendently of each other. Each traffic source is alternately on and off, where the on-
times and off-times have exponential distributions with respective means 1/δ and
1/β. The successive on- and off-times are assumed to be independent of each other.
During on-periods a source generates service requests according to a Poisson pro-
cess with rate λ. There is a single server to handle the service requests and the server
can handle only one request at a time. The service times of the requests are inde-
pendent random variables that have a common exponential distribution with mean
1/µ. This queueing problem can be modelled as a continuous-time Markov chain
whose state space is given by (4.4.1) with i denoting the number of service requests
in the system and s denoting the number of sources that are on. This Markov chain
has the property (4.4.10) with λs = λs, µs = µ, βs = β × (m − s) and δs = δs.

4.5 TRANSIENT STATE PROBABILITIES

In many practical situations one is not interested in the long-run behaviour of a
stochastic system but in its transient behaviour. A typical example concerns airport
runway operations. The demand profile for runway operations shows considerable
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variation over time with peaks at certain hours of the day. Equilibrium models
are of no use in this kind of situation. The computation of transient solutions for
Markov systems is a very important issue that arises in numerous problems in
queueing, inventory and reliability. In this section we discuss two basic methods
for the computation of the transient state probabilities of a continuous-time Markov
chain. The next section deals with the computation of the transient distribution of
the cumulative reward in a continuous-time Markov chain with a reward structure.

The transient probabilities of a continuous-time Markov chain {X(t), t ≥ 0} are
defined by

pij (t) = P {X(t) = j | X(0) = i}, i, j ∈ I and t > 0.

In Section 4.5.1 we discuss the method of linear differential equations. The proba-
bilistic method of uniformization will be discussed in Section 4.5.2. In Section 4.5.3
we show that the computation of first passage time probabilities can be reduced to
the computation of transient state probabilities by introducing an absorbing state.

4.5.1 The Method of Linear Differential Equations

This basic approach has a solid backing by tools from numerical analysis. We first
prove the following theorem.

Theorem 4.5.1 (Kolmogoroff’s forward differential equations) Suppose that
the continuous-time Markov chain {X(t), t ≥ 0} satisfies Assumption 4.1.2. Then
for any i ∈ I ,

p′
ij (t) =

∑
k �=j

qkj pik (t) − νjpij (t), j ∈ I and t > 0. (4.5.1)

Proof We sketch the proof only for the case of a finite state space I . The proof
of the validity of the forward equations for the case of an infinite state space is
very intricate. Fix i ∈ I and t > 0. Let us consider what may happen in (t, t +�t]
with �t very small. The number of transitions in any finite time interval is finite
with probability 1, so we can condition on the state that will occur at time t :

pij (t + �t) = P {X(t + �t) = j | X(0) = i}
=

∑
k∈I

P {X(t + �t) = j | X(0) = i, X(t) = k}

× P {X(t) = k | X(0) = i}
=

∑
k∈I

P {X(t + �t) = j | X(t) = k}pik (t)

=
∑
k �=j

qkj �tpik (t) + (1 − νj�t)pij (t) + o(�t),
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since a finite sum of o(�t) terms is again o(�t). Hence

pij (t + �t) − pij (t)

�t
=

∑
k �=j

qkj pik (t) − νjpij (t) + o(�t)

�t
.

Letting �t → 0 yields the desired result.

The linear differential equations (4.5.1) can be explicitly solved only in very
special cases.

Example 4.5.1 An on-off source

A source submitting messages is alternately on and off. The on-times are indepen-
dent random variables having a common exponential distribution with mean 1/α

and the off-times are independent random variables having a common exponential
distribution with mean 1/β. Also the on-times and the off-times are independent
of each other. The source is on at time 0. What is the probability that the source
will be off at time t?

This system can be modelled as a continuous-time Markov chain with two states.
Let the random variable X(t) be equal to 0 when the source is off at time t and
equal to 1 otherwise. Then {X(t)} is a continuous-time Markov chain with state
space I = {0, 1}. The transient probabilities p10(t) and p11(t) satisfy

p′
10(t) = −βp10(t) + αp11(t), t ≥ 0,

p′
11(t) = βp10(t) − αp11(t), t ≥ 0.

A standard result from the theory of linear differential equations states that the
general solution of this system is given by

(p10(t), p11(t)) = c1e
λ1tx1 + c2e

λ2tx2, t ≥ 0

provided that the coefficient matrix

A =
(−β α

β −α

)

has distinct eigenvalues λ1 and λ2. The vectors x1 and x2 are the corresponding
eigenvectors. The constants c1 and c2 are determined by the boundary conditions
p10(0) = 0 and p11(0) = 1. The eigenvalues of the matrix A are λ1 = 0 and
λ2 = −(α+β) with corresponding eigenvectors x1 = (β−1, α−1) and x2 = (1, −1).
Next it follows from c1/β + c2 = 0 and c1/α − c2 = 1 that c1 = αβ/(α + β) and
c2 = −α/(α + β). This yields

p10(t) = α

α + β
− α

α + β
e−(α+β)t , t ≥ 0.
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Example 4.5.2 Transient analysis for the M/M/1 queue

In the M/M/1 queue customers arrive according to a Poisson process with rate
λ and the service times of the customers have an exponential distribution with
mean 1/µ. Letting X(t) denote the number of customers present at time t , the pro-
cess {X(t)} is a continuous-time Markov chain. Kolmogoroff’s forward differential
equations are as follows for the M/M/1 queue:

p′
ij (t) = µpi,j+1(t) + λpi,j−1(t) − (λ + µ)pij (t), i, j = 0, 1, . . . and t > 0

with pi,−1(t) = 0. An explicit solution of these equations is given by

pij (t) = 2

π
ρ(j−i)/2

∫ π

0

e−µtγ (y)

γ (y)
ai(y)aj (y) dy +

{
(1 − ρ)ρj , ρ < 1,

0, ρ ≥ 1,

for i, j = 0, 1, . . . , where ρ = λ/µ and the functions γ (y) and ak(y) are
defined by

γ (y) = 1 + ρ − 2
√

ρ cos(y) and ak(y) = sin(ky) − √
ρ sin[(k + 1)y].

A proof of this explicit solution is not given here; see Morse (1955) and Takács
(1962). The trigonometric integral representation for pij (t) is very convenient for
numerical computations. A recommended numerical integration method is Gauss–
Legendre integration. Integral representations can also be given for the first two
moments of the number of customers in the system. The formulas will only be
given for the case of ρ < 1. Denoting by L(i, t) the number of customers in the
system at time t when initially there are i customers present, we have

E[L(i, t)] = 2

π
ρ(1−i)/2

∫ π

0

e−µtγ (y)

γ 2(y)
ai(y) sin(y) dy + ρ

1 − ρ

and

E[L2(i, t)] = 4(1 − ρ)

π
ρ(1−i)/2

∫ π

0

e−µtγ (y)

γ 3(y)
ai(y) sin(y) dy

+ 2ρ(1 − ρ)−2 − E[L(i, t)],

assuming that ρ < 1. If ρ < 1, the transient probabilities pij (t) converge to the
equilibrium probabilities pj = (1 − ρ)ρj as t → ∞ and, similarly, E[L(i, t)]
converges to ρ/(1 − ρ) as t → ∞. A natural question is how fast the convergence
occurs. A heuristic answer to this question has been given by Odoni and Roth (1983)
in the context of the M/G/1 queue. Letting c2

S denote the squared coefficient of
variation of the service time, the M/G/1 queue will ‘forget’ its initial state after a
time comparable to

trelax = (1 + c2
S)E(S)

2.8(1 − √
ρ)2

provided that the system is empty at epoch 0.
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In general the linear differential equations (4.5.1) have to be solved numerically.
Let us assume in the remainder of this section that the state space I of the Markov
chain is finite. There are several possibilities to numerically solve the homoge-
neous system (4.5.1) of linear differential equations with constant coefficients. In
most applications the matrix of coefficients has distinct eigenvalues and is thus
diagonalizable. In those situations one might compute the eigenvalues λ1, . . . , λn

of the matrix and the corresponding eigenvectors. The transient probabilities pij (t)

are then a linear combination of pure exponential functions eλ1t , . . . , eλnt (zero is
always among the eigenvalues and the corresponding eigenvector gives the equilib-
rium distribution of the Markov process up to a multiplicative constant). In general,
however, one uses a so-called Runge–Kutta method to solve the linear differen-
tial equations numerically. Standard codes for this method are widely available.
From a numerical point of view, the Runge–Kutta method is in general superior
to the eigenvalue approach. The Runge–Kutta method has the additional advan-
tage that it can also be applied to continuous-time Markov processes with time-
dependent transition rates. Another possible way to compute the pij (t) is to use
the discrete FFT method when an explicit expression for the generating function
P (t, z) = ∑

j∈I pij (t)z
j , |z| ≤ 1 is available.

4.5.2 The Uniformization Method

This method falls back on an earlier construction of a continuous-time Markov
chain in Section 4.1. In this construction the process leaves state i after an expo-
nentially distributed time with mean 1/νi and then jumps to another state j (j �= i)

with probability pij . Letting Xn denote the state of the process just after the nth
state transition, the discrete-time stochastic process {Xn} is an embedded Markov
chain with one-step transition probabilities pij . The jump probabilities pij and the
infinitesimal transition rates qij are related to each other by

qij = νipij , i, j ∈ I with j �= i. (4.5.2)

To introduce the uniformization method, consider first the special case in which
the leaving rates νi of the states are identical, say νi = ν for all i. Then the
transition epochs are generated by a Poisson process with rate ν. In this situation an
expression for pij (t) is directly obtained by conditioning on the number of Poisson
events up to time t and using the n-step transition probabilities of the embedded
Markov chain {Xn}. However, the leaving rates νi are in general not identical.
Fortunately, there is a simple trick for reducing the case of non-identical leaving
rates to the case of identical leaving rates. The uniformization method transforms
the original continuous-time Markov chain with non-identical leaving rates into
an equivalent stochastic process in which the transition epochs are generated by
a Poisson process at a uniform rate. However, to achieve this, the discrete-time
Markov chain describing the state transitions in the transformed process has to
allow for self-transitions leaving the state of the process unchanged.
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To formulate the uniformization method, choose a finite number ν with

ν ≥ νi, i ∈ I.

Define now {Xn} as the discrete-time Markov chain whose one-step transition
probabilities pij are given by

pij =
{

(νi/ν)pij , j �= i,

1 − νi/ν, j = i,

for any i ∈ I . Let {N(t), t ≥ 0} be a Poisson process with rate ν such that the
process is independent of the discrete-time Markov chain {Xn}. Define now the
continuous-time stochastic process {X(t), t ≥ 0} by

X(t) = XN(t), t ≥ 0. (4.5.3)

In other words, the process {X(t)} makes state transitions at epochs generated by a
Poisson process with rate ν and the state transitions are governed by the discrete-
time Markov chain {Xn} with one-step transition probabilities pij . Each time the
Markov chain {Xn} is in state i, the next transition is the same as in the Markov
chain {Xn} with probability νi/ν and is a self-transition with probability 1 − νi/ν.
The transitions out of state i are in fact delayed by a time factor of ν/νi , while the
time itself until a state transition from state i is condensed by a factor of νi/ν. This
heuristically explains why the continuous-time process {X(t)} is probabilistically
identical to the original continuous-time Markov chain {X(t)}. Another heuristic
way to see that the two processes are identical is as follows. For any i, j ∈ I with
j �= i

P {X(t + �t) = j | X(t) = i} = ν�t × pij + o(�t)

= νi�t × pij + o(�t) = qij �t + o(�t)

= P {X(t + �t) = j | X(t) = i} for �t → 0.

In the next theorem we give a formal proof that the two processes {X(t)} and
{X(t)} are probabilistically equivalent.

Theorem 4.5.2 Suppose that the continuous-time Markov chain {X(t)} satisfies
Assumption 4.1.2. Then

pij (t) = P {X(t) = j | X(0) = i}, i, j ∈ I and t > 0.

Proof For any t > 0, define the matrix P(t) by P(t) = (pij (t)), i, j ∈ I . Denote
by Q the matrix Q = (qij ), i, j ∈ I , where the diagonal elements qii are defined by

qii = −νi .
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Then Kolmogoroff’s forward differential equations can be written as P′(t) = P(t)Q
for any t > 0. It is left to the reader to verify that the solution of this system of
differential equations is given by

P(t) = etQ =
∞∑

n=0

tn

n!
Qn, t ≥ 0. (4.5.4)

The matrix P = (pij ), i, j ∈ I , can be written as P = Q/ν + I, where I is the
identity matrix. Thus

P(t) = etQ = eνt (P−I) = eνtPe−νtI = e−νt eνtP =
∞∑

n=0

e−νt (νt)n

n!
P

n
.

On the other hand, by conditioning on the number of Poisson events up to time t

in the {X(t)} process, we have

P {X(t) = j | X(0) = i} =
∞∑

n=0

e−νt (νt)n

n!
p

(n)
ij ,

where p
(n)
ij is the n-step transition probability of the discrete-time Markov chain

{Xn}. Together the latter two equations yield the desired result.

Corollary 4.5.3 The probabilities pij (t) are given by

pij (t) =
∞∑

n=0

e−νt (νt)n

n!
p

(n)
ij , i, j ∈ I and t > 0, (4.5.5)

where the probabilities p
(n)
ij can be recursively computed from

p
(n)
ij =

∑
k∈I

p
(n−1)
ik pkj , n = 1, 2, . . . (4.5.6)

starting with p
(0)
ii = 1 and p

(0)
ij = 0 for j �= i.

This probabilistic result is extremely useful for computational purposes. The
series in (4.5.5) converges much faster than the series expansion (4.5.4). The com-
putations required by (4.5.5) are simple and transparent. For fixed t > 0 the infinite
series can be truncated beforehand, since

∞∑
n=M

e−νt (νt)n

n!
p

(n)
ij ≤

∞∑
n=M

e−νt (νt)n

n!
.

For a prespecified accuracy number ε > 0, we choose M such that the right-hand
side of this inequality is smaller than ε. By the normal approximation to the Poisson
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distribution, the truncation integer M can be chosen as

M = νt + c
√

νt

for some constant c with 0 < c ≤ c0(ε), where c0(ε) depends only on the tolerance
number ε. As a consequence the computational complexity of the uniformization
method is O(νtN2) where N is the number of states of the Markov chain. Hence
the uniformization method should be applied with the choice

ν = max
i∈I

νi .

The number νt is a crucial factor for the computational complexity of the uni-
formization method, as it is for the Runge–Kutta method, and is called the index
of stiffness. Also, the following remark may be helpful. For fixed initial state i,

the recursion scheme (4.5.6) boils down to the multiplication of a vector with the
matrix P. In many applications the matrix P is sparse. Then the computational effort
can be considerably reduced by using a data structure for sparse matrix multiplica-
tions. The uniformization results (4.5.5) and (4.5.6) need only a minor modification
when the initial state X(0) has a given probability distribution {π0(i), i ∈ I }. The
probability p

(n)
ij should then be replaced by p

(n)
j = ∑

i∈I π0(i)p
(n)
ij and this prob-

ability can recursively be computed from p
(n)
j = ∑

k∈I p
(n−1)
k pkj starting with

p
(0)
j = π0(j) for j ∈ I . For example, this modification may be used to compute

the transient state probabilities in finite-capacity queueing systems with a non-
stationary Poisson arrival process and exponential services, where the arrival rate
function λ(t) is (approximately) a piecewise-constant function. One then computes
the transient state probabilities for each interval separately on which λ(t) is constant
and uses the probability distribution of the state at the beginning of the interval as
the distribution of the initial state.

Expected transient rewards

Assume that a reward at rate r(j) is earned whenever the continuous-time Markov
chain {X(t)} is in state j , while a lump reward of Fjk is earned each time the
process makes a transition from state j to state k ( �= j). Let

R(t) = the total reward earned up to time t, t ≥ 0.

The following lemma shows that it is a simple matter to compute the expected
value of the reward variable R(t). The computation of the probability distribution
of R(t) is much more complex and will be addressed in Section 4.6.

Lemma 4.5.4 Suppose that the continuous-time Markov chain {X(t)} satisfies
Assumption 4.1.2. Then

E[R(t) | X(0) = i] =
∑
j∈I

r(j)Eij (t) +
∑
j∈I

Eij (t)
∑
k �=j

qjk Fjk , t > 0, (4.5.7)
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where Eij (t) is the expected amount of time that the process {X(t)} is in state j up
to time t when the process starts in state i. For any i, j ∈ I ,

Eij (t) = 1

ν

∞∑
k=1

e−νt (νt)k

k!

k−1∑
n=0

p
(n)
ij , t > 0. (4.5.8)

Proof The first term on the right-hand side of the relation for the expected reward
is obvious. To explain the second term, we use the PASTA property. Fix j, k ∈ I

with k �= j . Observe that the transitions out of state j occur according to a Poisson
process with rate νj whenever the process {X(t)} is in state j . Hence, using part (b)
of Theorem 1.1.3, transitions from state j to state k( �= j) occur according to a
Poisson process with rate qjk (= pjk νj ) whenever the process {X(t)} is in state j .
Next, by applying part (a) of Theorem 2.4.1, it is readily seen that the expected
number of transitions from state j to state k up to time t equals qjk times the
expected amount of time the process {X(t)} is in state j up to time t . This proves
(4.5.7). To prove (4.5.8), note that the representation (4.5.5) implies

Eij (t) =
∫ t

0
pij (u) du =

∫ t

0

[ ∞∑
n=0

e−νu (νu)n

n!
p

(n)
ij

]
du

=
∞∑

n=0

p
(n)
ij

∫ t

0
e−νu (νu)n

n!
du.

Except for a factor ν we have an integral over an Erlang (n + 1, ν) density. Thus

Eij (t) = 1

ν

∞∑
n=0

p
(n)
ij

∞∑
k=n+1

e−νt (νt)k

k!
.

By interchanging the order of summation, we next get the desired result.

4.5.3 First Passage Time Probabilities

In this section it is assumed that the state space I of the continuous-time Markov
chain {X(t)} is finite. For a given set C of states with C �= I , define

τC = the first epoch at which the continuous-time Markov chain {X(t)}
makes a transition into a state of the set C.

Also, define the first passage time probability QiC (t) by

QiC (t) = P {τC > t | X(0) = i}, i /∈ C and t > 0.

The computation of the first passage time probabilities QiC (t) can be reduced to
the computation of the transient state probabilities in a modified continuous-time
Markov chain with an absorbing state. The most convenient way to model an
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absorbing state is to take its leaving rate equal to zero. In the modified continuous-
time Markov chain the set C is replaced by a single absorbing state to be denoted
by a. The state space I ∗ and the leaving rates ν∗

i in the modified continuous-time
Markov chain are taken as

I ∗ = (I\C) ∪ {a} and ν∗
i =

{
νi, i ∈ I\C,

0, i = a.

The infinitesimal transition rates q∗
ij are taken as

q∗
ij =




qij , i, j ∈ I\C with j �= i,∑
k∈C qik , i ∈ I\C, j = a,

0, i = a, j ∈ I\C.

Denoting by p∗
ij (t) the transient state probabilities in the modified continuous-time

Markov chain, it is readily seen that

QiC (t) = 1 − p∗
ia (t), i /∈ C and t ≥ 0.

The p∗
ij (t) can be computed by using the uniformization algorithm in the previous

subsection (note that p∗
aa = 1 in the uniformization algorithm).

Example 4.5.3 The Hubble space telescope

The Hubble space telescope is an astronomical observatory in space. It carries a
variety of instruments, including six gyroscopes to ensure stability of the telescope.
The six gyroscopes are arranged in such a way that any three gyroscopes can keep
the telescope operating with full accuracy. The operating times of the gyroscopes
are independent of each other and have an exponential distribution with failure
rate λ. Upon a fourth gyroscope failure, the telescope goes into sleep mode. In
sleep mode, further observations by the telescope are suspended. It requires an
exponential time with mean 1/µ to put the telescope into sleep mode. Once the
telescope is in sleep mode, the base station on earth receives a sleep signal. A shuttle
mission to the telescope is next prepared. It takes an exponential time with mean
1/η before the repair crew arrives at the telescope and has repaired the stabilizing
unit with the gyroscopes. In the meantime the other two gyroscopes may fail. If
the last gyroscope fails, a crash destroying the telescope will be inevitable. What
is the probability that the telescope will crash in the next T years?

This problem can be analysed by a continuous-time Markov chain with an
absorbing state. The transition diagram is given in Figure 4.5.1. The state labelled
as the crash state is the absorbing state. As explained above, this convention enables
us to apply the uniformization method for the state probabilities to compute the
first passage time probability

Q(T ) = P {no crash will occur in the next T years
when currently all six gyroscopes are working}.
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Figure 4.5.1 The transition rate diagram for the telescope

Taking one year as time unit, consider the numerical example with the data

λ = 0.1, µ = 100 and η = 5.

The uniformization method is applied with the choice ν = 100 for the uniformized
leaving rate ν (the value 0 is taken for the leaving rate from the state crash). The
calculations yield the value 0.000504 for the probability 1−Q(T ) that a crash will
occur in the next T = 10 years. Similarly, one can calculate that with probability
0.3901 the sleep mode will not be reached in the next 10 years. In other words,
the probability of no shuttle mission in the next 10 years equals 0.3901. However,
if one wishes to calculate the probability distribution of the number of required
shuttle missions in the next 10 years, one must use the Markov reward model with
lump rewards (assume a lump reward of 1 each time the process jumps from either
state 2 or state 1 to the sleep mode). This Markov reward model is much more
difficult to solve and will be discussed in the next section.

4.6 TRANSIENT DISTRIBUTION OF CUMULATIVE REWARDS

A basic and practically important problem is the calculation of the transient prob-
ability distribution of the cumulative reward in a continuous-time Markov chain.
For example, a practical application is an oil-production platform which has to
meet a contractually agreed production level over a specified time period. The pro-
duction rate is not constant but depends on the stochastically varying state of the
platform. In this example a continuous-time Markov chain with reward rates may
be appropriate, where the reward rate r(j) represents the production rate in state j .

In Section 4.6.1 we first consider the special case of a Markov reward model
with reward rates that are either 0 or 1. The cumulative reward in this model
corresponds to the cumulative sojourn time of the process in a certain set of (good)
states. A nice and simple extension of the uniformization method can be given to
compute the transient distribution of the cumulative sojourn time in some given
set of states. The general Markov reward model with both reward rates and lump
rewards is dealt with in Section 4.6.2. A discretization algorithm will be discussed
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for this model. Throughout this section it is assumed that the continuous-time
Markov chain {X(t)} has a finite state space I .

4.6.1 Transient Distribution of Cumulative Sojourn Times

Consider a continuous-time Markov chain {X(t)} whose finite state space I is
divided into two disjoint subsets I0 and If with

I0 = the set of operational states and If = the set of failed states.

Define for any t > 0 the indicator random variable I (t) by

I (t) =
{

1 if X(t) ∈ I0,

0 otherwise.

Then the random variable

O(t) =
∫ t

0
I (u) du

represents the cumulative operational time of the system during (0, t). The transient
probability distribution of O(t) can be calculated by a nice probabilistic algorithm
that is based on the uniformization method.

To find P {O(t) ≤ x}, we first uniformize the continuous-time Markov chain
{X(t)} according to (4.5.3). Denoting by O(t) the cumulative operational time in
the uniformized process {X(t)}, we have

P {O(t) ≤ x} = P {O(t) ≤ x},

since the uniformized process is probabilistically equivalent with the original pro-
cess. By conditioning on the number of state transitions of the uniformized process
during (0, t), we have

P {O(t) ≤ x} =
∞∑

n=0

P {O(t) ≤ x | the uniformized process makes n state

transitions in (0, t)} e−νt (νt)n

n!
.

The next key step in the analysis is the relation between the Poisson process
and the uniform distribution. In the uniformized process the epochs of the state
transitions are determined by a Poisson process that is independent of the discrete-
time Markov chain governing the state transitions. Under the condition that the
uniformized process has made n state transitions during (0, t), the joint distribution
of the epochs of these state transitions is the same as the joint distribution of the
order statistics U(1), . . . , U(n) of n independent random variables U1, . . . , Un that
are uniformly distributed on (0, t); see Theorem 1.1.5. Note that U(k) is the smallest
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kth of the Ui . The n state transitions in the interval (0, t) divide this interval into
n + 1 intervals whose lengths are given by

Y1 = U(1), Y2 = U(2) − U(1), . . . , Yn = U(n) − U(n−1) and Yn+1 = t − U(n).

The random variables Y1, . . . , Yn+1 are obviously dependent variables, but they
are exchangeable. That is, for any permutation i1, . . . , in+1 of 1, . . . , n + 1,

P {Yi1 ≤x1, Yi2 ≤x2, . . ., Yin+1 ≤ xn+1} = P {Y1 ≤ x1, Y2 ≤ x2, . . ., Yn+1 ≤ xn+1}.

As a consequence

P {Yi1 + · · · + Yik ≤ x} = P {Y1 + · · · + Yk ≤ x}

for any sequence (Yi1 , . . . , Yik ) of k interval lengths. The probability distribution
of Y1 + · · · + Yk is easily given. Let k ≤ n. Then Y1 + · · · + Yk = U(k) and so

P {Y1 + · · · + Yk ≤ x} = P {U(k) ≤ x} = P {at least k of the Ui are ≤ x}

=
n∑

j=k

(
n

j

) (x

t

)j (
1 − x

t

)n−j

.

The next step of the analysis is to condition on the number of times the uniformized
process visits operational states during (0, t) given that the process makes n state
transitions in (0, t). If this number of visits equals k (k ≤ n+1), then the cumulative
operational time during (0, t) is distributed as Y1 + · · · + Yk . For any given n ≥ 0,
define

α(n, k) = P {the uniformized process visits k times an operational
state in (0, t) | the uniformized process makes n

state transitions in (0, t)}

for k = 0, 1, . . . , n + 1. Before showing how to calculate the α(n, k), we give the
final expression for P {O(t) ≤ x}. Note that O(t) has a positive mass at x = t .
Choose x < t . Using the definition of α(n, k) and noting that O(t) ≤ x only if the
uniformized process visits at least one non-operational state in (0, t), it follows that

P {O(t) ≤ x | the uniformized processes makes n state transitions in (0, t)}

=
n∑

k=0

P {O(t) ≤ x | the uniformized process makes n state transitions

in (0, t) and visits k times an operational state in (0, t)} α(n, k)
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=
n∑

k=0

P {Y1 + · · · + Yk ≤ x} α(n, k)

=
n∑

k=0

α(n, k)

n∑
j=k

(
n

j

) (x

t

)j (
1 − x

t

)n−j

, 0 ≤ x < t.

This gives the desired expression

P {O(t) ≤ x} =
∞∑

n=0

e−νt (νt)n

n!

n∑
k=0

α(n, k)

n∑
j=k

(
n

j

) (x

t

)j (
1 − x

t

)n−j

(4.6.1)

for 0 ≤ x < t . The random variable O(t) assumes the value t if the uniformized
process visits only operational states in (0, t). Thus

P {O(t) = t} =
∞∑

n=0

α(n, n + 1)e−νt (νt)n

n!
.

The above expression for P {O(t) ≤ x} is well suited for numerical computations,
since the summations involve only positive terms. As before, the infinite sum can
be truncated to M terms, where the error associated with the truncation is bounded
by

∑∞
n=M e−νt (νt)n/n! so that M can be determined beforehand for a given error

tolerance.

Computation of the α(n, k)

The probabilities α(n, k) are determined by the discrete-time Markov chain {Xn}
that governs the state transitions in the uniformized process. The one-step transition
probabilities of this discrete-time Markov chain are given by pij = (νi/ν)pij for
j �= i and pii = 1−νi/ν, where pij = qij /νi . To calculate the α(n, k), let α(n, k, j)

be the joint probability that the discrete-time Markov chain {Xt } visits k times an
operational state over the first n state transitions and is in state j after the nth
transition. Then

α(n, k) =
∑
j∈I

α(n, k, j), k = 0, 1, . . . , n + 1 and n = 0, 1, . . . .

The probabilities α(n, k, j) can be recursively computed. In the recursion we have
to distinguish between states j ∈ I0 and states j ∈ If . Obviously,

α(n, k, j) =
∑
i∈I

α(n − 1, k − 1, i)pij , j ∈ I0

and

α(n, k, j) =
∑
i∈I

α(n − 1, k, i)pij , j ∈ If .
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Denoting by {αi} the probability distribution of the initial state of the original
process {X(t)}, we have the boundary conditions

α(0, 1, j) = αj , α(0, 0, j) = 0, j ∈ I0

and

α(0, 0, j) = αj , α(0, 1, j) = 0, j ∈ If .

Example 4.5.3 (continued) The Hubble telescope problem

Assume that the telescope is needed to make observations of important astronomical
events during a period of half a year two years from now. What is the probability
that during this period of half a year the telescope will be available for at least
95% of the time when currently all six gyroscopes are in perfect condition? The
telescope is only working properly when three or more gyroscopes are working.
In states 1 and 2 the telescope produces blurred observations and in states sleep 2,
sleep 1 and crash the telescope produces no observations at all. Let us number the
states sleep 2, sleep 1 and crash as the states 7, 8 and 9. To answer the question
posed, we split the state space I = {1, 2, . . . , 9} into the set I0 of operational states
and the set If of failed states with

I0 = {6, 5, 4, 3} and If = {2, 1, 7, 8, 9}.

Before applying the algorithm (4.6.1) with t = 1
2 and x = 0.95t , we first use

the standard uniformization method from Section 4.5 to compute the probability
distribution of the state of the telescope two years from now. Writing αi = p6i (2),
we obtain the values

α1 = 3.83 × 10−7, α2 = 0.0001938, α3 = 0.0654032, α4 = 0.2216998,

α5 = 0.4016008, α6 = 0.3079701, α7 = 0.0030271, α8 = 0.0000998,

α9 = 0.0000050

for the data λ = 0.1, µ = 100 and η = 5. Next the algorithm (4.6.1) leads to the
value 0.9065 for the probability that the telescope will be properly working for at
least 95% of the time in the half-year that comes two years from now.

4.6.2 Transient Reward Distribution for the General Case

In the general case the continuous-time Markov chain {X(t)} earns a reward at rate
r(j) for each unit of time the process is in state j and earns a lump reward of Fjk
each time the process makes a state transition from state j to another state k. It
is assumed that the r(j)and the Fjk are both non-negative. It is possible to extend
the algorithm from Section 4.6.1 to the general case. However, the generalized
algorithm is very complicated and, worse, it is not numerically stable. For this
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reason we prefer to present a simple-minded discretization approach for the general
reward case. For fixed t > 0, let

R(t) = the cumulative reward earned up to time t.

Assume that for each state j ∈ I the joint probability distribution function P {R(t) ≤
x, X(t) = j} has a density with respect to the reward variable x (a sufficient
condition is that r(j) > 0 for all j ∈ I ). Then we can represent P {R(t) ≤ x} as

P {R(t) ≤ x} =
∑
j∈I

∫ x

0
fj (t, y) dy, x ≥ 0,

where fj (t, x) is the joint probability density of the cumulative reward up to time
t and the state of the process at time t . The idea is to discretize the reward variable
x and the time variable t in multiples of �, where � > 0 is chosen sufficiently
small (the probability of more than one state transition in a time period of length
� should be negligibly small). The discretized reward variable x can be restricted
to multiples of � when the following assumptions are made:

(a) the reward rates r(j) are non-negative integers,

(b) the non-negative lump rates Fjk are multiples of �.

For practical applications it is no restriction to make these assumptions. How do
we compute P {R(t) ≤ x} for fixed t and x? It is convenient to assume a probability
distribution

αi = P {X(0) = i}, i ∈ I

for the initial state of the process. In view of the probabilistic interpretation

fj (t, x)�x ≈ P {x ≤ R(t) < x + �x, X(t) = j} for �x small,

we approximate for fixed � > 0 the density fj (u, y) by a discretized function
f �
j (τ, r). The discretized variables τ and r run through multiples of �. For fixed

� > 0 the discretized functions f �
j (τ, r) are defined by the recursion scheme

f �
j (τ, r) = f �

j (τ − �, r − r(j)�)(1 − νj�)

+
∑
k �=j

f �
k (τ − �, r − r(k)� − Fkj )qkj �

for τ = 0, �, . . . , (t/�) � and r = 0, �, . . . , (x/�) � (for ease assume that x

and t are multiples of �). For any j ∈ I , the boundary conditions are

f �
j (0, r) =

{
αj/�, r = 0,

0, otherwise,
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and

f �
j (τ, r) = 0 for any τ ≥ 0 when r < 0.

Using the simple-minded approximation

∫ x

0
fj (t, y) dy ≈

x/�−1∑
�=0

f �
j (t, ��)�,

the desired probability P {R(t) ≤ x} is approximated by

P {R(t) ≤ x} ≈
∑
j∈I

x/�−1∑
�=0

f �
j (t, ��)�. (4.6.2)

For fixed x and t , the computational effort of the algorithm is proportional to
1/�2 and so it quadruples when � is halved. Hence the computation time of the
algorithm will become very large when the probability P {R(t) ≤ x} is desired at
high accuracy and there are many states. Another drawback of the discretization
algorithm is that no estimate is available for the discretization error. Fortunately,
both difficulties can be partially overcome. Let

P (�) =
∑
j∈I

x/�−1∑
�=0

f �
j (t, ��)�

be the first-order estimate for P {R(t) ≤ x} and let the error term

e(�) = P (�) − P {R(t) ≤ x}.
The following remarkable result was empirically found:

e(�) ≈ P (2�) − P (�)

when � is not too large. Thus the first-order approximation P (�) to P {R(t) ≤ x}
is much improved when it is replaced by

P̃ (�) = P (�) − [P (2�) − P (�)] . (4.6.3)

Example 4.5.3 (continued) The Hubble telescope problem

What is the probability distribution of the number of repair missions that will
be prepared in the next 10 years when currently all six gyroscopes are in perfect
condition? To consider this question we impose the following reward structure on
the continuous-time Markov chain that is described in Figure 4.5.1 (with the states
sleep 2 and sleep 1 numbered as the states 7 and 8). The reward rates r(j) and the
lump rewards Fjk are taken as

r(j) = 0 for all j, F27 = F18 = 1 and the other Fjk = 0.
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Then the cumulative reward variable R(t) represents the number of repair missions
that will be prepared up to time t . Note that in this particular case the stochas-
tic variable R(t) has a discrete distribution rather than a continuous distribution.
However, the discretization algorithm also applies to the case of a reward variable
R(t) with a non-continuous distribution. For the numerical example with λ = 0.1,
µ = 100 and η = 5 we found that P {R(t) > k} has the respective values 0.6099,
0.0636 and 0.0012 for k = 0, 1 and 2 (accurate to four decimal places with
� = 1/256).

EXERCISES

4.1 A familiar sight in Middle East street scenes are the so-called sheroots. A sheroot is a
seven-seat cab that drives from a fixed stand in a town to another town. A sheroot leaves
as soon as all seven seats are occupied by passengers. Consider a sheroot stand which has
room for only one sheroot. Potential passengers arrive at the stand according to a Poisson
process at rate λ. If upon arrival a potential customer finds no sheroot present and seven
other customers already waiting, the customer goes elsewhere for transport; otherwise, the
customer waits until a sheroot departs. After a sheroot leaves the stand, it takes an exponential
time with mean 1/µ until a new sheroot becomes available.

Formulate a continuous-time Markov chain model for the situation at the sheroot stand.
Specify the state variable(s) and the transition rate diagram.

4.2 In a certain city there are two emergency units, 1 and 2, that cooperate in responding
to accident alarms. The alarms come into a central dispatcher who sends one emergency
unit to each alarm. The city is divided in two districts, 1 and 2. The emergency unit i
is the first-due unit for response area i for i = 1, 2. An alarm coming in when only
one of the emergency units is available is handled by the idle unit. If both units are not
available, the alarm is settled by some unit from outside the city. Alarms from the districts
1 and 2 arrive at the central dispatcher according to independent Poisson processes with
respective rates λ1 and λ2. The amount of time needed to serve an alarm from district
j by unit i has an exponential distribution with mean 1/µij . The service times include
travel times.

Formulate a continuous-time Markov chain model to analyse the availability of the emer-
gency units. Specify the state variable(s) and the transition rate diagram.

4.3 An assembly line for a certain product has two stations in series. Each station has only
room for a single unit of the product. If the assembly of a unit is completed at station 1, it
is forwarded immediately to station 2 provided station 2 is idle; otherwise the unit remains
in station 1 until station 2 becomes free. Units for assembly arrive at station 1 according to
a Poisson process with rate λ, but a newly arriving unit is only accepted by station 1 when
no other unit is present in station 1. Each unit rejected is handled elsewhere. The assembly
times at stations 1 and 2 are exponentially distributed with respective means 1/µ1 and 1/µ2.

Formulate a continuous-time Markov chain to analyse the situation at both stations. Spec-
ify the state variable(s) and the transition rate diagram.

4.4 Cars arrive at a gasoline station according to a Poisson process with an average of
10 customers per hour. A car enters the station only if less than four other cars are present.
The gasoline station has only one pump. The amount of time required to serve a car has an
exponential distribution with a mean of four minutes.

(a) Formulate a continuous-time Markov chain to analyse the situation of the gasoline
station. Specify the state diagram.

(b) Solve the equilibrium equations.
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(c) What is the long-run average number of cars in the station?
(d) What is the long-run fraction of potential customers that are lost?

4.5 A production hall contains a fast machine and a slow machine to process incoming
orders. Orders arrive according to a Poisson process with rate λ. An arriving order that finds
both machines occupied is rejected. Unless both machines are occupied, an arriving order
is assigned to the fast machine if available; otherwise, the order is assigned to the slow
machine. The processing time of an order is exponentially distributed with mean 1/µ1 at
the fast machine and mean 1/µ2 at the slow machine. It is not possible to transfer an order
from the slow machine to the fast machine.

(a) Formulate a continuous-time Markov chain to analyse the situation in the production
hall. Specify the state variable(s) and the transition rate diagram

(b) Specify the equilibrium equations for the state probabilities. What is the long-run
fraction of time that the fast (slow) machine is used? What is the long-run fraction of
incoming orders that are lost?

4.6 In Gotham City there is a one-man taxi company. The taxi company has a stand at the
railway station. Potential customers arrive according to a Poisson process with an average
of four customers per hour. The taxi leaves the station immediately a customer arrives. A
potential customer finding no taxi present waits until the taxi arrives only if there are less
than three other customers waiting; otherwise, the customer goes elsewhere for alternative
transport. If the taxi returns to the stand and finds waiting customers, it picks up all waiting
customers and leaves. The amount of time needed to return to the stand has an exponential
distribution with mean 1/µi when the taxi leaves the stand with i customers, i = 1, 2, 3.

(a) Formulate a continuous-time Markov chain to analyse the situation at the taxi stand.
Specify the state variable(s) and the transition rate diagram.

(b) What is the long-run fraction of time the taxi waits idle at the taxi stand? What is the
long-run fraction of potential customers who go elsewhere for transport?

4.7 A container terminal has a single unloader to unload trailers which bring loads of
containers. The unloader can serve only one trailer at a time and the unloading time has
an exponential distribution with mean 1/µ1. After a trailer has been unloaded, the trailer
leaves but the unloader needs an extra finishing time for the unloaded containers before
the unloader is available to unload another trailer. The finishing time has an exponential
distribution with mean 1/µ2. A leaving trailer returns with the next load of containers after
an exponentially distributed time with mean 1/λ. There are a finite number of N unloaders
active at the terminal.

(a) Formulate a continuous-time Markov chain to analyse the situation at the container
terminal. Specify the state variable(s) and the transition rate diagram.

(b) What is the long-run fraction of time the unloader is idle? What is the long-run
average number of trailers unloaded per time unit?

(c) What is the long-run average number of trailers waiting to be unloaded? What is the
long-run average waiting time per trailer?

(d) Write a computer program to compute the performance measures in (b) and (c) for
the numerical data N = 10, µ1 = 1/3, µ2 = 2 and λ = 1/50.

4.8 Messages for transmission arrive at a communication channel according to a Poisson
process with rate λ. The channel can transmit only one message at a time. The transmission
time is exponentially distributed with mean 1/µ. The following access control rule is used.
A newly arriving message is accepted as long as less than R other messages are present at
the communication channel (including any message in transmission). As soon as the number
of messages in the system has dropped to r , newly arriving messages are again admitted to
the transmission channel. The control parameters r and R are given integers with 0 ≤ r < R.

(a) Formulate a continuous-time Markov chain to analyse the situation at the communi-
cation channel. Specify the state variable(s) and the transition rate diagram.
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(b) What is the long-run fraction of time the channel is idle? What is the long-run fraction
of messages that are rejected?

(c) What is the long-run average number of messages waiting to be transmitted? What is
the long-run average delay in queue per accepted message?

4.9 An information centre has one attendant; people with questions arrive according to a
Poisson process with rate λ. A person who finds n other customers present upon arrival
joins the queue with probability 1/(n + 1) for n = 0, 1, . . . and goes elsewhere otherwise.
The service times of the persons are independent random variables having an exponential
distribution with mean 1/µ.

(a) Verify that the equilibrium distribution of the number of persons present has a Poisson
distribution with mean λ/µ.

(b) What is the long-run fraction of persons with requests who actually join the queue?
What is the long-run average number of persons served per time unit?

4.10 (a) Consider Exercise 4.1 again. Specify the equilibrium equations for the state prob-
abilities. What is the long-run average waiting time of a carried passenger? What is the
long-run fraction of potential customers who are lost?

(b) Answer the questions in (a) again for the modified situation in which a potential
customer only waits when, upon his arrival, a sheroot is present.

4.11 Consider Exercise 4.2 again and denote by Sij the time needed to serve an alarm for
district j by unit i. Assume that Sij has a Coxian-2 distribution for all i, j . Show how to
calculate the following performance measures: πL = the fraction of alarms that is lost and
Pi = the fraction of time that unit i is busy for i = 1, 2. Letting mij and c2

ij denote the
mean and the squared coefficient of variation of Sij , assume the numerical data λ1 = 0.25,
λ2 = 0.25, m11 = 0.75, m12 = 1.25, m21 = 1.25 and m22 = 1. Write a computer program
to verify the following numerical results:

(i) πL = 0.0704, P1 = 0.2006, P2 = 0.2326 when c2
ij = 1

2 for all i, j ;

(ii) πL = 0.0708, P1 = 0.2004, P2 = 0.2324 when c2
ij = 1 for all i, j ;

(iii) πL = 0.0718, P1 = 0.2001, P2 = 0.2321 when c2
ij = 4 for all i, j .

Here the values c2
ij = 1

2 , 1 and 4 correspond to the E2 distribution, the exponential distri-
bution and the H2 distribution with balanced means.

4.12 In an inventory system for a single product the depletion of stock is due to demand
and deterioration. The demand process for the product is a Poisson process with rate λ. The
lifetime of each unit product is exponentially distributed with mean 1/µ. The stock control
is exercised as follows. Each time the stock drops to zero an order for Q units is placed. The
lead time of each order is negligible. Determine the average stock and the average number
of orders placed per time unit.

4.13 Messages arrive at a communication channel according to a Poisson process with rate
λ. The message length is exponentially distributed with mean 1/µ. An arriving message
finding the line idle is provided with service immediately; otherwise the message waits until
access to the line can be given. The communication line is only able to submit one message
at a time, but has available two possible transmission rates σ1 and σ2 with 0 < σ1 < σ2.
Thus the transmission time of a message is exponentially distributed with mean 1/(σiµ)
when the transmission rate σi is used. It is assumed that λ/(σ2µ) < 1. At any time the
transmission line may switch from one rate to the other. The transmission rate is controlled
by a rule that uses a single critical number. The transmission rate σ1 is used whenever less
than R messages are present, otherwise the faster transmission rate σ2 is used. The following
costs are involved. There is a holding cost at rate hj whenever there are j messages in the
system. An operating cost at rate ri > 0 is incurred when the line is transmitting a message
using rate σi , while an operating cost at rate r0 ≥ 0 is incurred when the line is idle.
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(a) Derive a recursion scheme for computing the limiting distribution of the number of
messages present and give an expression for the long-run average cost per time unit.

(b) Write a computer program for calculating the value of R which minimizes the average
cost and solve for the numerical data λ = 0.8, µ = 1, σ1 = 1, σ2 = 1.5, h = 1, r0 = 0,
r1 = 5 and r2 = 25.

4.14 Customers asking for a certain product arrive according to a Poisson process with
rate λ. The demand sizes of the customers are independent random variables and have a
common discrete probability distribution {pk, k = 1, 2, . . . }. Any demand that cannot be
directly satisfied from stock on hand is back ordered. The control rule is based on the
inventory position, which is defined as the stock on hand minus the amount back ordered
plus the amount on order. Each time the inventory position reaches the reorder level s or
drops below it, the smallest multiple of the basic quantity Q is ordered to bring the inventory
position level above s. The lead time of any replenishment order is a fixed constant L >
0.

(a) Prove that the limiting distribution of the inventory position is a discrete uniform
distribution. (Hint : use relation (4.3.2) and verify that the one-step transition matrix of the
embedded Markov chain is doubly stochastic.)

(b) Derive the limiting distribution of the stock on hand.
(c) What is the average replenishment frequency and what is the average stock on hand?
(d) What is the fraction of customers whose demands are (partially) back ordered? What

is the fraction of demand that is not satisfied directly from stock on hand?

4.15 Consider the transient probabilities pij (t) in a continuous-time Markov chain with finite
space I = {1, . . . , n}. Let the n × n matrix Q be defined as in the proof of Theorem 4.5.2.
Assume that the matrix Q has n different eigenvalues λ1, . . . , λn. Let ak be an eigenvector
corresponding to the eigenvalue λk for k = 1, . . . , n and let S be the n×n matrix whose kth
column vector is ak . For each initial state i, denote by pi (t) the vector whose j th element
equals pij (t). Use results from Section 1.4 to verify the representation

pi (t) =
n∑

k=1

cik eλkt ak, t ≥ 0,

for constants ci1, . . . , cin , where the vector ci = (ci1, . . . , cin ) is given by ci = S−1ei
with ei denoting the ith unit vector (0, . . . , 1, . . . , 0).

4.16 An operating system has r + s identical units where r units must be operating and s
units are in preoperation (warm standby). A unit in operation has a constant failure rate of
λ, while a unit in preoperation has a constant failure rate of β with β < λ. Failed units enter
a repair facility that is able to repair at most c units simultaneously. The repair of a failed
unit has an exponential distribution with mean 1/µ. An operating unit that fails is replaced
immediately by a unit from the warm standby if one is available. The operating system
goes down when less than r units are in operation. Show how to calculate the probability
distribution function of the time until the system goes down for the first time when all of
the r + s units are in good condition at time 0.

4.17 An electronic system uses one operating unit but has built-in redundancy in the form
of R standby units. The standby units are not switched on (cold standby). The operating
unit has an exponentially distributed lifetime with mean 1/λ. If the operating unit fails,
it is immediately replaced by a standby unit if available. Each failed unit enters repair
immediately and is again available after an exponentially distributed repair time with mean
1/µ. It is assumed that the mean repair time is much smaller than the mean lifetime. There
are ample repair facilities. The system is down when all R +1 units are in repair. Assuming
that all R + 1 units are in perfect condition at time 0, let the random variable τ be the time
until the first system failure.
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(a) Use the uniformization method to compute E(τ), σ(τ) and P {τ > t} for t = 2, 5 and
10 when λ = 1, µ = 10 and the number of standby units is varied as R = 1, 2 and 3.

(b) Extend the analysis in (a) for the case that the repair time has a Coxian-2 distribution
and investigate how sensitive the results in (a) are to the second moment of the repair-time
distribution.

4.18 Messages arrive at a node in a communication network according to a Poisson process
with rate λ. Each arriving message is temporarily stored in an infinite-capacity buffer until
it can be transmitted. The messages have to be routed over one of two communication lines
each with a different transmission time. The transmission time over the communication
line is i exponentially distributed with mean 1/µi(i = 1, 2), where 1/µ1 < 1/µ2 and
µ1 + µ2 > λ. The faster communication line is always available for service, but the slower
line will be used only when the number of messages in the buffer exceeds some critical
level. Each line is only able to handle one message at a time and provides non-pre-emptive
service. With the goal of minimizing the average sojourn time (including transmission time)
of a message in the system, the following control rule with switching level L is used. The
slower line is turned on for transmitting a message when the number of messages in the
system exceeds the level L and is turned off again when it completes a transmission and
the number of messages left behind is at or below L. Show how to calculate the average
sojourn time of a message in the system. This problem is taken from Lin and Kumar (1984).

4.19 Two communication lines in a packet switching network share a finite storage space
for incoming messages. Messages of the types 1 and 2 arrive at the storage area according
to two independent Poisson processes with respective rates λ1 and λ2. A message of type j
is destined for communication line j and its transmission time is exponentially distributed
with mean 1/µj , j = 1, 2. A communication line is only able to transmit one message at
a time. The storage space consists of M buffer places. Each message requires exactly one
buffer place and occupies the buffer place until its transmission time has been completed.
A number Nj of buffer places are reserved for messages of type j and a number N0 of
buffer places are to be used by messages of both types, where N0 + N1 + N2 = M . That
is, an arriving message of type j is accepted only when the buffer is not full and less than
N0 + N1 other messages of the same type j are present; otherwise, the message is rejected.
Discuss how to calculate the optimal values of N0, N1 and N2 when the goal is to minimize
the total rejection rate of both types of message. Write a computer program and solve for
the numerical data M = 15, λ1 = λ2 = 1 and µ1 = µ2 = 1. This problem is based on
Kamoun and Kleinrock (1980).

4.20 A traffic source is alternately on and off, where the on- and off-times are exponentially
distributed with respective means 1/δ and 1/β. During on-periods the traffic source gener-
ates messages for a transmission channel according to a Poisson process with rate λ. The
transmission channel can handle only one message at a time and the transmission time of a
message has an exponential distribution with mean 1/µ. The on-times, off-times and trans-
mission times are independent of each other. Further, it is assumed that λβ/[µ(δ +β)] < 1.
Let the states (i, 0) and (i, 1) correspond to the situation that there are i messages at the
transmission channel and the traffic source is off or on respectively.

(a) Verify for the numerical values λ = 1, µ = 1, β = 2, δ = 0.5 that the system of
linear equations (4.4.6) is given by

(
1 − 3z 0.5z

2z z2 − 2.5z + 1

) (
G0(z)
G1(z)

)
=

(
(1 − z)p00
(1 − z)p01

)
.

Verify the roots of det A(z) = 0 are z0 = 1, z1 = 0.2712865 and z2 = 1.2287136.
(b) Use the roots z0 and z1 and the fact that Gi(z) is analytic for |z| ≤ 1 to find p00 and

p01.
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(c) Use partial-fraction expansion to show that p(i, s) = γs (z2)−i for i = 1, 2, . . . and
s = 0, 1. Specify the values of γ0 and γ1.

4.21 Consider a multi-server queueing system with c unreliable servers. Jobs arrive according
to a Poisson process with rate λ. The required service times of the jobs are independent
random variables having a common exponential distribution with mean 1/µ. The service of
a job may be interrupted by a server breakdown. The server operates uninterruptedly during
an exponentially distributed time with mean 1/δ. It takes an exponentially distributed time
with mean 1/β to bring a broken-down server to the operative state. Any interrupted service
is resumed at the point it was interrupted. It is assumed that an interrupted service is taken
over by the first available server.

Denote by p(i, s) the limiting probability of having i jobs present and s operative servers
for i ≥ 0 and 0 ≤ s ≤ c. Prove that the probabilities p(i, s) can be computed by using the
geometric tail approach. In particular, verify that

p(i, s) ∼ γsη
i as i → ∞

for a constant γs , where η is the reciprocal of the smallest root of det [M(z)] = 0 on the
interval (1,∞). Here M(z) = (mst (z)), s, t = 0, 1, . . . , c is a tridiagonal (c + 1) × (c + 1)
matrix with mss (z) = λz − [λ + s(µ + δ) + (c − s)β] + sµ/z, ms,s−1(z) = (c − s + 1)β
and ms,s+1(z) = (s + 1)δ. This problem is based on Mitrani and Avi-Itzhak (1968).

4.22 Consider the unloader problem from Example 4.1.2 again. Assume now that the unload-
ing time of a ship has an Erlang (L,µ) distribution and the repair time of the unloader has
an Erlang (R, β) distribution. Letting ρ = (λL/µ)(1 + δR/β), it is assumed that the server
utilization ρ is less than 1. Interpret the unloading time of a ship as a sequence of L inde-
pendent unloading phases each having an exponential distribution with mean 1/µ. Also,
interpret the repair time of the unloader as a sequence of R independent repair phases each
having an exponential distribution with mean 1/β. Let state (i, 0) correspond to the situ-
ation the unloader is available and i uncompleted unloading phases are present (i ≥ 0).
Let state (i, r) correspond to the situation that there are i uncompleted unloading phases
(i ≥ 1) and the unloader is in repair with r remaining repair phases (1 ≤ r ≤ R). Denote by
p(i, s) the equilibrium probability of state (i, s) and define the generating functions Gs(z)

by G0(z) = ∑∞
i=0 p(i, 0)zi and Gr(z) = ∑∞

i=1 p(i, r)zi for |z| ≤ 1.
(a) Verify that

Gs(z) = det As (z)

det A(z)
, s = 0, 1, . . . , R.

Here A(z) is the (R + 1) × (R + 1) matrix A(z) = (1 − z)M − λz(1 − zL)I + zQT , where
M = diag(µ, 0, . . . , 0) and QT is the transpose of the transition matrix Q = (qij ) with
q0R = −q00 = δ, qi,i−1 = −qii = β for 1 ≤ i ≤ R and the other qij = 0. The matrix
As (z) results from replacing the (s + 1)th column vector of A(z) by the vector b(z) with
bT (z) = ((µ(1 − z) − δz)p(0, 0), 0, . . . , 0).

(b) Conclude that for any s = 0, 1, . . . , R,

p(i, s) ∼ γsη
i as i → ∞

for a constant γs , where η is the reciprocal of the smallest root of det A(x) = 0 on the
interval (1,∞). Note that for Erlangian service the polynomial equation

det A(z) = (−1)R+1[{λz(1 − zL) − µ(1 − z) + δz}{λz(1 − zL) + βz}R

− δz(βz)R] = 0

is obtained by expanding det A(z) in the cofactors of its first row.
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4.23 Repeat the analysis in Exercise 4.22 when the repair time is H2 distributed with param-
eters (p1, ν1, p2, ν2) rather than Erlang (R, λ) distributed. Verify that the results remain the
same when we take R = 2 and replace the matrix Q by

Q =

−δ δp1 δp2

ν1 −ν1 0
ν2 0 −ν2




4.24 At a facility for train maintenance, work is done on a number of separate parallel tracks.
On each of these tracks there is room for two trains on a front part and a back part. Trains
can leave the tracks only on the same side they enter the tracks. That is, upon completion of
its maintenance a train may be locked in by another train that arrived later on the same track
but has not yet completed its maintenance. For each of the tracks there are two maintenance
crews, one for the train at the front part of the track and one for the train at the back. Trains
requesting maintenance arrive at the maintenance facility according to a Poisson process
with rate λ. A train immediately receives maintenance when it finds a free place at one of
the tracks upon arrival; otherwise, the train waits until a maintenance place becomes free.
A newly arriving train is directed to a front part if both a front part and a back part are free.
The amount of time needed to serve a train has an exponential distribution with mean 1/µ.
It is assumed that λ < 3

2cµ.
(a) Formulate a continuous-time Markov time chain for the performance evaluation of

the maintenance track.
(b) Argue that the geometric tail approach can be used to reduce the infinite system of

equilibrium equations to a finite system of linear equations. This problem is based on Adan
et al. (1999).

BIBLIOGRAPHIC NOTES

The theory of continuous-time Markov chains is more delicate than the theory
of discrete-time Markov chains. Basic references are Anderson (1991) and Chung
(1967). The continuous-time Markov chain model is the most versatile model in
applied probability. The powerful technique of equating the flow out of a state
to the flow into that state has a long history and goes back to the pioneering
work of Erlang on stochastic processes in the early 1900s; see also Kosten (1973).
The uniformization technique for the transient analysis of continuous-time Markov
chains goes back to Jensen (1953) and is quite useful for both analytical and
computational purposes. The extension of the uniformization method to compute the
transient probability distribution of the sojourn time in a given set of states is due to
De Soua e Silva and Gail (1986). The material in Section 4.6.2 for the computation
of the transient reward distribution is based on Goyal and Tantawi (1988) and Tijms
and Veldman (2000); see also Sericola (2000) for an alternative method. The Hubble
telescope problem from Example 4.5.3 is taken from Hermanns (2001).
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CHAPTER 5

Markov Chains and Queues

5.0 INTRODUCTION

Markov chain theory has numerous applications to queueing systems. This chapter
gives a first introduction to the analysis of queues and stochastic networks. In
Section 5.1 we consider the Erlang delay model with Poisson arrivals and expo-
nential services. We first analyse the single-server M/M/1 queue and next the
multi-server M/M/c queue. Section 5.2 deals with both the Erlang loss model with
Poisson input and the Engset loss model with finite-source input. The Erlang delay
model and Erlang’s loss formula will be used in Section 5.3 to obtain a square-root
staffing rule for the design of stochastic service systems. The Erlang loss model
and the Engset loss model have the so-called insensitivity property stating that the
equilibrium distribution of the number of customers present is insensitive to the
form of the service-time distribution and requires only the mean service time. This
insensitivity property, being of utmost importance in practice, will be discussed in a
more general framework in Section 5.4. The so-called phase method is the subject
of Section 5.5. This powerful method uses the idea that any probability distribution
function of a non-negative random variable can be arbitrarily closely approximated
by a mixture of Erlangian distributions with the same scale parameters. This fun-
damental result greatly enhances the applicability of the continuous-time Markov
chain model. In Section 5.6 the theory of continuous-time Markov chains will be
used to analyse open and closed queueing networks. In particular, a product-form
formula will be established for the joint distribution of the number of customers
present at the various nodes of the network.

5.1 THE ERLANG DELAY MODEL

Consider a multi-server station at which customers arrive according to a Poisson
process with rate λ. There are c servers with a shared infinite-capacity waiting line.
If an arriving customer finds a free server, the customer immediately enters service;
otherwise, the customer joins the queue. The service times of the customers are

A First Course in Stochastic Models H.C. Tijms
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independent random variables having a common exponential distribution with mean
1/µ. The service times and the arrival process are independent of each other. Let

ρ = λ

cµ
. (5.1.1)

It is assumed that ρ < 1. Rewriting this condition as λ/µ < c, the condition states
that the average amount of work offered to the servers per time unit is less than
the total service capacity. The factor ρ is called the server utilization. This model
is a basic model in queueing theory and is often called the Erlang delay model. It
is usually abbreviated as the M/M/c queue. Using continuous-time Markov chain
theory we will derive the distributions of the queue size and the delay in queue of
a customer. Let

X(t) = the number of customers present at time t

(including any customer in service). Then the stochastic process {X(t)} is a continu-
ous-time Markov chain with infinite state space I = {0, 1, . . . }. The assumption
ρ < 1 implies that the Markov chain satisfies Assumption 4.2.1 with regeneration
state 0 and thus has a unique equilibrium distribution {pj } (a formal proof is
omitted). The probability pj gives the long-run fraction of time that j customers
are present.

5.1.1 The M/M/1 Queue

For ease of presentation, we first analyse the single-server case with c = 1. The
transition rate diagram of the process {X(t)} is given in Figure 5.1.1

Note that for each state i the transition rate qij = 0 for j ≤ i−2. This implies that
the equilibrium probabilities pj can be recursively computed; see formula (4.2.10).
By equating the rate at which the process leaves the set {i, i + 1, . . . } to the rate
at which the process enters this set, it follows that

µpi = λpi−1, i = 1, 2, . . . .

The recurrence equation allows for an explicit solution. Iterating the equation yields
pi = (λ/µ)ip0 for all i ≥ 1. Noting that this relation also holds for i = 0 and
substituting it into the normalizing equation

∑∞
i=0 pi = 1, we find p0(1−λ/µ)−1 =

0 1 i − 1 i + 1i•  •  • •  •  •

l

m

l

m

l

m

Figure 5.1.1 The transition rate diagram for the M/M/1 queue
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1 and so p0 = 1 − λ/µ. Hence we find the explicit solution

pi = (1 − ρ)ρi, i = 0, 1, . . . (5.1.2)

with ρ = λ/µ. In particular, 1 − p0 = ρ and so ρ can be interpreted as the long-
run fraction of time the server is busy. This explains why ρ is called the server
utilization. Let

Lq = the long-run average number of customers in queue

(excluding any customer in service). The constant Lq is given by

Lq =
∞∑

j=1

(j − 1)pj ,

as can be rigorously proved by assuming a cost at rate k whenever k customers are
waiting in queue and applying Theorem 4.2.2. Substituting (5.1.2) into the formula
for Lq , we obtain

Lq = ρ2

1 − ρ
,

in agreement with the Pollaczek–Khintchine formula for the general M/G/1 queue.
To determine the waiting-time probabilities we need the so-called customer-

average probabilities

πj = the long-run fraction of customers who find j other
customers present upon arrival, j = 0, 1, . . . .

In the M/M/1 case the customer-average probabilities πj are identical to the
time-average probabilities pj , that is,

πj = pj, j = 0, 1, . . . . (5.1.3)

This identity can be seen from the PASTA property. Alternatively, the identity can
be proved by noting that in a continuous-time Markov chain, pjqjk represents the
long-run average number of transitions from state j to state k (�= j ) per time unit.
Thus in the M/M/1 case the long-run average number of transitions from state
j to state j + 1 per time unit equals λpj . In other words, the long-run average
number of arrivals per time unit finding j other customers present equals λpj .
Dividing λpj by the average arrival rate λ yields the customer-average probability
πj . The probability distribution {πj } is the equilibrium distribution of the embedded
Markov chain describing the number of customers present just before the arrival
epochs of customers. This probability distribution enables us to find the steady-state
waiting-time probabilities under the assumption of service in order of arrival. Let

Wq(x) = lim
n→∞ P {Dn ≤ x}, x ≥ 0, (5.1.4)
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with Dn denoting the delay in queue of the nth customer. The existence of the
limit will be shown below. It holds that

Wq(x) = 1 − ρe−µ(1−ρ)x, x ≥ 0. (5.1.5)

A key step in the proof is the observation that the conditional delay in queue of
a customer finding j other customers present upon arrival has an Erlang (j, µ)

distribution for j ≥ 1. This follows by noting that the delay in queue of this
customer is the sum of j independent exponential random variables with the same
mean 1/µ (the remaining service time of the customer found in service also has
an exponential distribution with mean 1/µ). The probability distribution function
of the Erlang (j, µ) distribution is given by 1−∑j−1

k=0 e−µx(µx)k/k!. Denoting by

π
(n)
j the probability that the nth arriving customer finds j other customers present

upon arrival, it follows that

P {Dn > x} =
∞∑

j=1

π
(n)
j

j−1∑
k=0

e−µx (µx)k

k!
, x ≥ 0. (5.1.6)

The embedded Markov chain describing the number of customers present just
before the arrival epoch is irreducible and has the property that all states are ape-
riodic and positive recurrent. Thus limn→∞π

(n)
j exists and equals πj for all j ; see

also relation (3.5.11). Using the bounded convergence theorem from Appendix A,
it now follows that limn→∞ P {Dn > x} exists and is given by

lim
n→∞ P {Dn > x} =

∞∑
j=1

πj

j−1∑
k=0

e−µx (µx)k

k!
, x ≥ 0. (5.1.7)

To obtain (5.1.5) from (5.1.7), we use (5.1.2) and (5.1.3). This gives

1 − Wq(x) =
∞∑

j=1

πj

j−1∑
k=0

e−µx (µx)k

k!
=

∞∑
k=0

e−µx (µx)k

k!

∞∑
j=k+1

πj

=
∞∑

k=0

e−µx (µx)k

k!
ρk+1 = ρe−µx

∞∑
k=0

(µρx)k

k!
= ρe−µxeµρx,

which verifies (5.1.5). It is noted that the probability Wq(x) can also be interpreted
as the long-run fraction of customers whose delay in queue is no more than x.

5.1.2 The M/M/c Queue

The analysis of the multi-server M/M/c queue is a rather straightforward extension
of the analysis of the M/M/1 queue. The transition rate diagram for the {X(t)}
process is given in Figure 5.1.2.
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Figure 5.1.2 The transition rate diagram for the M/M/c queue

Using the technique of equating the rate at which the process leaves the set of
states {j, j + 1, . . . } to the rate at which the process enters this set, we obtain

min(j, c)µpj = λpj−1, j = 1, 2, . . . . (5.1.8)

An explicit solution for the pj is easily given, but this explicit solution is of little
use for computational purposes. A simple computational scheme can be based on
the recursion relation (5.1.8). To do so, note that pj = ρpj−1 for j ≥ c. This
implies pj = ρj−c+1pc−1 for j ≥ c and so

∞∑
j=c

pj = ρpc−1

1 − ρ
. (5.1.9)

A simple algorithm now follows.

Algorithm

Step 0. Initialize p0 := 1.
Step 1. For j = 1, . . . , c − 1, let pj := λpj−1/(jµ).
Step 2. Calculate the normalizing constant γ from

γ =

c−1∑

j=0

pj + ρpc−1

1 − ρ




−1

.

Normalize the pj according to pj := γpj for j = 0, 1, . . . , c − 1.
Step 3. For any j ≥ c, pj := ρj−c+1pc−1.

As before, define the customer-average probability πj as the long-run fraction of
customers who see j other customers present upon arrival. By the same arguments
as used for the M/M/1 queue, we have πj = pj for j = 0, 1, . . . . Denote by
Pdelay = ∑∞

j=c πj the long-run fraction of customers who are delayed. By πj = pj



192 MARKOV CHAINS AND QUEUES

for all j and (5.1.9),
Pdelay = ρ

1 − ρ
pc−1. (5.1.10)

It is also possible to give an explicit expression for the delay probability:

Pdelay = (cρ)c/c!

[(cρ)c/c! + (1 − ρ)
∑c−1

k=0(cρ)k/k!]
. (5.1.11)

The delay probability for the M/M/c queue is often called Erlang’s delay prob-
ability. Given the representation Lq = ∑∞

j=c(j − c)pj for the long-run average
queue size, it follows from pj = ρj−c+1pc−1 for j ≥ c that

Lq = ρ2

(1 − ρ)2
pc−1. (5.1.12)

Under the assumption that customers are served in order of arrival, define the
steady-state waiting-time probability Wq(x) in the same way as for the M/M/1
queue. The formula (5.1.5) generalizes to

Wq(x) = 1 − ρ

1 − ρ
pc−1e

−cµ(1−ρ)x, x ≥ 0. (5.1.13)

This result is obtained by a slight modification of the derivation of (5.1.5). Since
the service times are exponentially distributed and the minimum of c (remaining)
service times has an exponential distribution with mean 1/(cµ), service completions
occur according to a Poisson process with rate cµ as long as c or more customers
are present. Thus the conditional delay in queue of a customer finding j ≥ c other
customers present upon arrival has an Erlang (j −c+1, cµ) distribution. This gives

1 − Wq(x) =
∞∑

j=c

πj

j−c∑
k=0

e−cµx (cµx)k

k!
, x ≥ 0,

which leads to (5.1.13) after some algebra. In particular, the average delay in queue
of a customer equals

Wq = ρ

cµ(1 − ρ)2
pc−1 (5.1.14)

in agreement with (5.1.12) and Little’s formula Lq = λWq . Also, by Little’s
formula, the long-run average number of busy servers equals cρ; see Section 2.3
Thus the long-run fraction of time that a given server is busy equals ρ.

5.1.3 The Output Process and Time Reversibility

Define for the M/M/c queue

Tn = the epoch at which the nth service completion occurs.

Then the following important result holds for the output process.
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Burke’s output theorem For any k ≥ 1,

lim
n→∞ P {Tn+1 − Tn ≤ x1, . . . , Tn+k − Tn+k−1 ≤ xk}

= (1 − e−λx1) · · · (1 − e−λxk ) for all x1, . . . , xk ≥ 0.

In other words, in statistical equilibrium the process describing the departures of
served customers is a Poisson process with rate λ.

We first give a heuristic argument for this result. If at a given time t there are
i customers present, then the probability that in (t, t + �t) a service is completed
equals min(i, c)µ�t + o(�t) for �t → 0. The equilibrium probability of being in
state i at an arbitrary point in time is given by pi . Assuming that the process is
in statistical equilibrium, it follows that the probability of a customer leaving in
(t, t + �t) is given by

c−1∑
i=0

iµ�tpi +
∞∑
i=c

cµ�tpi + o(�t) =
[

c−1∑
i=0

ipi + c

∞∑
i=c

pi

]
µ�t + o(�t)

as �t → 0. The expression between brackets gives the long-run average number
of busy servers and is thus equal to cρ by Little’s formula. Since ρ = λ/(cµ) it
follows that the probability of a customer leaving in (t, t + �t) equals

cρµ�t + o(�t) = λ�t + o(�t)

as �t → 0. This indicates that the departure process of customers is indeed a
Poisson process with rate λ when the M/M/c system has reached statistical equi-
librium. This result is of utmost importance for tandem queues when the first station
in the tandem queue is described by an M/M/c system.

Time reversibility

The practically useful result that the output process of an M/M/c queue is a Pois-
son process can be given a firm basis by the important concept of time reversibility.
Consider a continuous-time Markov chain {X(t)} that satisfies Assumption 4.2.1
and has the property that all states communicate with each other. The continuous-
time Markov chain {X(t)} is said to satisfy detailed balance if its unique equilib-
rium distribution {pj } has the property that

pkqkj = pjqjk for all j, k ∈ I with j �= k. (5.1.15)

In other words, the long-run average number of transitions from state k to state j

per time unit is equal to the long-run average number of transitions from state j

to state k per time unit for all j �= k. Detailed balance is intimately related to time
reversibility. A convenient way to characterize time reversibility is to consider the
stationary version of the Markov chain {X(t)}. In the stationary version the initial
state at time t = 0 is chosen according to the equilibrium distribution {pj }. For the
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stationary process {X(t)} it holds that P {X(t) = j} = pj , j ∈ I , for all t ≥ 0. It can
be shown that the condition (5.1.15) is satisfied if and only if the stationary version
of the Markov process {X(t)} has the property that for all n ≥ 1 and all u > 0,

(X(u1), . . . , X(un)) is distributed as (X(u − u1), . . . , X(u − un)) (5.1.16)

for all 0 ≤ u1 < · · · < un ≤ u. A Markov process with this property is said to be
time reversible. In other words, the process reversed in time has the same prob-
abilistic structure as the original process when the process has reached statistical
equilibrium. It is as if you would see the same film shown in reverse. Let us return
to the M/M/c system. In the M/M/c system the rate at which the process goes
directly from state i to state i+1 is then equal to the rate at which the process goes
directly from state i+1 to state i; see relation (5.1.8). Hence the M/M/c system has
the property (5.1.16). Going forward in time, the time points at which the number
in the system increases by 1 are exactly the arrival epochs of customers and thus
constitute a Poisson process. Going backwards in time, the time points at which the
number in the system increases by 1 are exactly the time points at which customers
depart. Hence, by time reversibility, the departure process of customers must be a
Poisson process when the M/M/c system has reached statistical equilibrium.

5.2 LOSS MODELS

In a delay system each customer finding no free server upon arrival waits until
a server becomes available. Opposite to delay systems are loss systems in which
customers finding no free server upon arrival are lost and have no further influence
on the system. In this section we consider two basic loss models. The famous
Erlang loss model with Poisson input is dealt with in Section 5.2.1. Section 5.2.2
considers the Engset loss model with finite-source input.

5.2.1 The Erlang Loss Model

Consider a communication system with c transmission channels at which messages
are offered according to a Poisson process with rate λ. The system has no buffer to
temporarily store messages that arrive when all channels are occupied. An arriving
message that finds all c channels busy is lost and has no further influence on the
system; otherwise, the message is assigned to a free channel and its transmission
immediately starts. The transmission times of the messages are independent and
identically distributed random variables. Also, the arrival process and the trans-
mission times are independent of each other. The goal is to find an expression for
the long-run fraction of messages that are lost. This model is called Erlang’s loss
model after the Danish telephone engineer A.K. Erlang. It is often abbreviated as
the M/G/c/c queue. In the early 1900s Erlang studied this model in the frame-
work of a telephone switch which can handle only c calls. Though the theory of
stochastic processes was not yet developed in Erlang’s time, Erlang (1917) was able
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to find a formula for the fraction of calls that are lost. He established this formula
first for the particular case of exponentially distributed holding times. Also, Erlang
conjectured that the formula for the loss probability remains valid for generally
distributed holding times. His conjecture was that the loss probability is insensitive
to the form of the holding time distribution but depends only on the first moment of
the holding time. A proof of this insensitivity result was only given many years after
Erlang made his conjecture; see for example Cohen (1976) and Takács (1969). The
proof of Takács (1969) is rather technical and involves Kolmogoroff’s forward
equations for Markov processes with a general state space. The more insightful
proof in Cohen (1976) is based on the concept of reversible Markov processes.

In Section 5.4 we will discuss the issue of insensitivity for loss systems in a
more general context. It is the insensitivity property that makes the Erlang loss
model such a useful model. Still nowadays the model is often used in the analysis
of telecommunication systems. The Erlang loss model also has applications in a
variety of other fields, including inventory and reliability; see Exercises 5.9 to 5.14.
A nice application is the (S − 1, S) inventory system in which the demand process
is a Poisson process and demands occurring when the system is out of stock are
lost (the back ordering case was analysed in Section 1.1.3 through the M/G/∞
queueing model).

In view of the above discussion, we now assume that the transmission times
have an exponential distribution with mean 1/µ. For any t ≥ 0, let

X(t) = the number of busy channels at time t.

The stochastic process {X(t), t ≥ 0} is a continuous-time Markov chain with state
space I = {0, 1, . . . , c}. Its transition rate diagram is given in Figure 5.2.1. The
time-average probability pi gives the long-run fraction of time that i channels are
occupied. Since for each state i the transition rate qij = 0 for j ≤ i − 2, the
equilibrium probabilities pi can be recursively computed. Equating the rate out of
the set of states {i, i + 1, . . . , c} to the rate into this set, we obtain

iµpi = λpi−1, i = 1, . . . , c.

This equation can be solved explicitly. Iterating the equation gives pi = (λ/µ)ip0/i!
for i = 1, . . . , c. Using the normalizing equation

∑c
i=0 pi = 1, we obtain

pi = (λ/µ)i/i!∑c
k=0(λ/µ)k/k!

, i = 0, 1, . . . , c. (5.2.1)

0 1 •  •  •
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Figure 5.2.1 The transition rate diagram for the Erlang loss model
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Note that the distribution in (5.2.1) is a truncated Poisson distribution (multiply
both the numerator and the denominator by e−λ/µ). Denote by the customer-average
probability πi the long-run fraction of messages that find i other messages present
upon arrival. Then, by the PASTA property,

πi = pi, i = 0, 1, . . . , c.

In particular, denoting by Ploss the long-run fraction of messages that are lost,

Ploss = (λ/µ)c/c!∑c
k=0(λ/µ)k/k!

. (5.2.2)

This formula is called the Erlang loss formula. As said before, the formula (5.2.1)
for the time-average probabilities pj and the formula (5.2.2) for the loss probability
remain valid when the transmission time has a general distribution with mean 1/µ.
The state probabilities pj are insensitive to the form of the probability distribution
of the transmission time and require only the mean transmission time. Letting c →
∞ in (5.2.1), we get the Poisson distribution with mean λ/µ in accordance with
earlier results for the M/G/∞ queue. The insensitivity property of this infinite-
server queue was proved in Section 1.1.3.

5.2.2 The Engset Model

The Erlang loss model assumes Poisson arrivals and thus has an infinite source of
potential customers. The Engset model differs from the Erlang loss model only by
assuming a finite source of customers. There are M sources which generate service
requests for c service channels. It is assumed that M > c. A service request that is
generated when all c channels are occupied is lost. Each source is alternately on and
off. A source is off when it has a service request being served, otherwise the source
is on. A source in the on-state generates a new service request after an exponentially
distributed time (the think time) with mean 1/α. The sources act independently of
each other. The service time of a service request has an exponential distribution
with mean 1/µ and is independent of the think time. This model is called the
Engset model after Engset (1918).

We now let

X(t) = the number of occupied channels at time t.

The process {X(t), t ≥ 0} is a continuous-time Markov chain with state space
I = {0, 1, . . . , c}. Its transition rate diagram is given in Figure 5.2.2. By equating
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Figure 5.2.2 The transition rate diagram for the Engset loss model
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the rate at which the process leaves the set of states {i, i + 1, . . . , c} to the rate at
which the process enters this set, we obtain the recursive equation

iµpi = (M − i + 1)αpi−1, i = 1, . . . , c.

This recursive equation allows for the explicit solution (verify):

pi =

(
M

i

)
pi(1 − p)M−i

c∑
k=0

(
M

k

)
pk(1 − p)M−k

, i = 0, 1, . . . , c, (5.2.3)

where p is given by

p = 1/µ

1/µ + 1/α
.

The distribution (5.2.3) is a truncated binomial distribution. To compute the fraction
of service requests that are lost, we need the customer-average probabilities

πi = the long-run fraction of service requests that
find i busy channels upon arrival, i = 0, 1, . . . , c.

The πi are found by noting that

πi = (the long-run average number of service requests that are
generated per time unit and find i busy channels upon
arrival)

/
(the long-run average number of service requests

that are generated per time unit).

In state i, service requests are generated at a rate (M − i)α. Thus the arrival rate
of service requests that see i busy channels equals (M − i)αpi . Hence

πi = (M − i)αpi∑c
k=0(M − k)αpk

, i = 0, 1, . . . , c.

It next follows from (5.2.3) that

πi =

(
M − 1

i

)
pi(1 − p)M−1−i

c∑
k=0

(
M − 1

k

)
pk(1 − p)M−1−k

, i = 0, 1, . . . , c. (5.2.4)

It is a remarkable finding that the distribution {πi} is the same as the distribution
{pi} except that M is replaced by M−1. In other words, the equilibrium distribution
of the state just prior to the arrival epochs of new service requests is the same as
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the equilibrium distribution of the state at an arbitrary epoch in the system with
one source less. In particular, we find

the long-run fraction of lost service requests =

(
M − 1

c

)
pc(1 − p)M−1−c

c∑
k=0

(
M − 1

k

)
pk(1 − p)M−1−k

.

(5.2.5)
The formulas (5.2.3) to (5.2.5) have been derived under the assumption of expo-
nentially distributed think times and exponentially distributed service times. This
assumption is not needed. The Engset model has the insensitivity property that the
formulas (5.2.3) to (5.2.5) remain valid when the think time has a general prob-
ability distribution with mean 1/α and the service time has a general distribution
with mean 1/µ. This insensitivity result requires the technical condition that either
of these two distributions has a positive density on some interval. We come back
to this insensitivity result in the next section. By letting M → ∞ and α → 0 such
that Mα remains equal to the constant λ, it follows from the Poisson approximation
to the binomial probability that the right-hand side of (5.2.3) converges to

e−λ/µ(λ/µ)i/i!
c∑

k=0

e−λ/µ(λ/µ)k/k!

, i = 0, 1, . . . , c

in agreement with (5.2.1). In other words, the Erlang loss model is a limiting case
of the Engset model. This is not surprising, since the arrival process of service
requests becomes a Poisson process with rate λ when we let M → ∞ and α → 0
such that Mα = λ.

5.3 SERVICE-SYSTEM DESIGN

The Erlang delay model has many practical applications. In particular, it can be
used to analyse capacity and staffing problems such as those arising in the area of
telemarketing and call centre design and in the area of healthcare facilities planning.
In this section it will be shown that a normal approximation to Erlang’s delay
formula is very helpful in analysing such problems. The normal approximation
enables us to derive an insightful square-root staffing rule.

The mathematical analysis of the M/M/c queue was given in Section 5.1.2. In
the M/M/c queue customers arrive according to a Poisson process with rate λ,
the service times of the customers are exponentially distributed with mean 1/µ

and there are c identical servers. It is convenient to denote the offered load to the
system by

R = λ

µ
.
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Note that R is a dimensionless quantity that gives the average amount of work
offered per time unit to the c servers. The offered load R is often expressed as R

erlangs of work. In order to ensure the existence of a steady-state regime for the
queue, it should be assumed that the service capacity c is larger than the offered
load R. Hence the assumption is made that the server utilization

ρ = R

c

is less than 1. Note that ρ represents the long-run fraction of time a given server is
busy. In the single-server case the server utilization ρ should not be too close to 1
in order to avoid excessive waiting of the customers. A rule of thumb for practical
applications of the M/M/1 model is that the server utilization should not be much
above 0.8. A natural question is how this rule of thumb should be adjusted for the
multi-server case. It is instructive to have a look at Table 5.3.1. This table gives for
several values of c and R the delay probability PW , the average waiting TW over
the delayed customers and the 95% percentile η0.95 of the steady-state waiting-time
distribution of the delayed customers. In Table 5.3.1 we have normalized the mean
service time 1/µ as 1. The delay probability PW(= Pdelay ) is given by formula
(5.1.11). Since TW = Wq/PW , it follows from (5.1.10) and (5.1.14) that

TW = 1

cµ(1 − ρ)
.

By (5.1.10) and (5.1.13), the steady-state probability that a delayed customer has
to wait longer than x time units is given by e−cµ(1−ρ)x for x ≥ 0. Thus the pth
percentile ηp of the steady-state waiting-time distribution of the delayed customers
is found from e−cµ(1−ρ)x = 1 − p. This gives

ηp = −1

cµ(1 − ρ)
ln(1 − p), 0 < p < 1.

The following conclusion can be drawn from Table 5.3.1: high values of the
server utilization ρ do not conflict with acceptable service to the customers when

Table 5.3.1 Service measures as function of c and R

ρ = R/c = 0.8 ρ = R/c = 0.95 ρ = R/c = 0.99

PW TW η0.95 PW TW η0.95 PW TW η0.95

c = 1 0.8 5 14.98 0.95 20 59.91 0.99 100 299.6
c = 2 0.711 2.5 7.49 0.926 10 29.96 0.985 50 149.8
c = 5 0.554 1 3.0 0.878 4 11.98 0.975 20 59.91
c = 10 0.409 0.5 1.5 0.826 2 5.99 0.964 10 29.96
c = 25 0.209 0.2 0.6 0.728 0.8 2.40 0.942 4 11.98
c = 50 0.087 0.1 0.3 0.629 0.4 1.20 0.917 2 5.99
c = 100 0.020 0.05 0.15 0.506 0.2 0.60 0.883 1 3.0
c = 250 3.9E-4 0.02 0.06 0.318 0.08 0.24 0.818 0.4 1.2
c = 500 8.4E-7 0.01 0.03 0.177 0.04 0.12 0.749 0.2 0.6
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there are sufficiently many servers. The larger the number of servers, the higher the
server utilization before the service to the customers seriously degrades. A relatively
large value of PW does not necessarily imply bad service to the customers. For
example, take c = 100 and ρ = 0.95. Then on average 50.6% of the customers must
wait, but the average wait of a delayed customer is only 1

5 of its mean service time.
Moreover, on average, only 5% of the delayed customers have to wait more than 3

5
of the mean service time. The situation of many servers is encountered particularly
in the telephone call centre industry. Service level is a key performance metric
of a call centre. In practice it is often defined as ‘80% of the calls answered in
20 seconds’.

Square-root staffing rule

In the remainder of this section we take the delay probability as service mea-
sure. What is the least number c∗ of servers such that the delay probability PW is
below a prespecified level α, e.g. α = 0.20? From a numerical point of view
it is of course no problem at all to find the exact value of c∗ by searching
over c in formula (5.1.11) for a given value of R (= cρ). However, for prac-
titioners it is helpful to have an insightful approximation formula. Such a for-
mula can be given by using the normal distribution. The formula is called the
square-root staffing rule. This simple rule of thumb for staffing large call cen-
tres provides very useful information to the management. In its simplest form
the square-root formula is obtained by approximating the M/M/c queue with
many servers by the M/M/∞ queue. This approach was used in Example 1.1.3.
However, this first-order approximation can considerably be improved by using
a relation between Erlang’s delay probability in the M/M/c delay system and
Erlang’s loss probability in the M/M/c/c loss system. The improved approx-
imation to the least number c∗ of servers such that PW ≤ α is given by the
square-root formula

c∗ ≈ R + kα

√
R, (5.3.1)

where the safety factor kα is the solution of the equation

k�(k)

ϕ(k)
= 1 − α

α
(5.3.2)

with �(x) denoting the standard normal probability distribution function and ϕ(x)

= (1/
√

2π)e− 1
2 x2

denoting its density. It is important to note that the safety fac-
tor kα does not depend on R. Also, it is interesting to point out the similarity
of the square-root staffing rule with the famous rule for the reorder point s in
the (s, Q)-inventory model with a service-level constraint. The factor kα can be
found by solving (5.3.2) by bisection. For example, for α = 0.8, 0.5, 0.2 and 0.1
the safety factor kα has the respective values 0.1728, 0.5061, 1.062 and 1.420.
The approximation (5.3.1) clarifies the interplay of the process parameters and
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Table 5.3.2 The exact and approximate values of c∗

α = 0.5 α = 0.2 α = 0.1

exa app exa app exa app

R = 1 2 2 3 3 3 3
R = 5 7 7 8 8 9 9
R = 10 12 12 14 14 16 15
R = 50 54 54 58 58 61 61
R = 100 106 106 111 111 115 115
R = 250 259 259 268 267 274 273
R = 500 512 512 525 524 533 532
R = 1000 1017 1017 1034 1034 1046 1045

increases the manager’s intuitive understanding of the system. In particular, the
square-root staffing rule quantifies the economies of scale in staffing levels that
can be achieved by combining several call centres into a single call centre. To
illustrate this, consider two identical call centres each having an offered load
of R erlangs of work and each having the same service requirement PW ≤ α.
For two separate call centres a total of 2(R + kα

√
R) agents is needed, whereas

for one combined call centre 2R + kα

√
2R agents are needed. A reduction of

(2 − √
2)kα

√
R agents.

The quality of the approximation (5.3.1) is excellent. Rounding up the approx-
imation for c∗ to the nearest integer, numerical investigations indicate that the
approximate value is equal to the exact value in most cases and is never off by
more than 1. Table 5.3.2 gives the exact and approximate values of c∗ for several
values of R and α.

Derivation of the square-root formula

The following relation holds between the delay probability Pdelay in the M/M/c

delay system and the loss probability Ploss in the M/M/c/c loss system:

Ploss = (1 − ρ)Pdelay

1 − ρPdelay
. (5.3.3)

This relation can be directly verified from the explicit formulas (5.1.11) and (5.2.2)
for Pdelay and Ploss . In Section 9.8 we establish the relation (5.3.3) in a more general
framework by showing that the state probabilities in a finite-capacity queue with
Poisson arrivals are often proportional to the state probabilities in the corresponding
infinite-capacity model. By formula (5.2.2),

Ploss = e−RRc/c!
c∑

k=0

e−RRk/k!

.
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For fixed R, let the random variable XR be Poisson distributed with mean R. Then
the above formula for Ploss can be written as

Ploss = P {XR = c}
P {XR ≤ c} .

A Poisson distribution with mean R can be approximated by the normal distribution
with mean R and standard deviation R when R is large. Now take

c = R + k
√

R

for some constant k. Then P {XR ≤ c} = P {(XR − R)/
√

R ≤ k} and so, by the
normal approximation to the Poisson distribution,

P {XR ≤ c} ≈ �(k).

Writing P {XR = c} = P {c − 1 < XR ≤ c}, we also have that

P {XR =c}=P

{
k − 1√

R
<

XR − R√
R

≤ k

}
≈ �(k) − �

(
k − 1√

R

)
≈ 1√

R
ϕ(k).

This gives

Ploss ≈ 1√
R

ϕ(k)

�(k)
. (5.3.4)

By (5.3.3) and ρ = R/c, we have Pdelay = cPloss/(c − R + RPloss ). Substituting
c = R + k

√
R in this formula, noting that k

√
R << R for R large and using

(5.3.4), we find with the abbreviation z = ϕ(k)/�(k) that

Pdelay ≈ (R + k
√

R)z

kR + Rz
≈ Rz

kR + Rz
=

(
1 + k

z

)−1

=
[

1 + k�(k)

ϕ(k)

]−1

. (5.3.5)

Equating the last term to α gives the relation (5.3.2). This completes the derivation
of the square-root formula (5.3.1).

5.4 INSENSITIVITY

In many stochastic service systems in which arriving customers never queue, it turns
out that the performance measures are insensitive to the form of the service-time
distribution and require only the mean of the service time. The most noteworthy
examples of such service systems are infinite-server systems and loss systems.
In the M/G/∞ queue with Poisson arrivals and infinitely many servers, rather
simple arguments enable us to prove that the limiting distribution of the num-
ber of busy servers is insensitive to the form of the service-time distribution; see
Section 1.1.3. The Erlang loss model with Poisson input and the Engset model with
finite-source input provide other examples of stochastic service systems possessing
the insensitivity property. Other examples of stochastic service systems having the
insensitivity property will be given in this section and in the exercises. Nowadays
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a well-developed theory for insensitivity is available; see Schassberger (1986) and
Whittle (1985). This theory will not be discussed here. In this section the insensitiv-
ity property for the Erlang loss model and the Engset loss model is made plausible
through a closed two-node network model. This model is also used to argue insen-
sitivity in a controlled loss model with several customer classes. Also, the M/G/1
queue with the processor-sharing discipline is discussed as an example of a stochas-
tic service system with no queueing and possessing the insensitivity property.

5.4.1 A Closed Two-node Network with Blocking

Consider a closed network model with two nodes in cyclic order. A fixed number
of M jobs move around in the network. If a job has completed service at one of the
nodes, it places a request for service at the other node. Node 1 is an infinite-server
node, that is, there is an ample number of servers at node 1. Node 2 is the only
node at which blocking can occur. A job that is accepted at node 2 is immediately
provided with a free server. Further, it is assumed that there are r different job
types h = 1, . . . , r with Mh jobs of type h, where M1 + · · · + Mr = M . The
blocking protocol is as follows: if a job of type h arrives at node 2 when n2 jobs
are already present at node 2, including n

(h)
2 jobs of type h, then the arriving job

of type h is accepted at node 2 with probability

A(n2)Ah(n
(h)
2 ), h = 1, . . . , r (5.4.1)

for given functions A(.), A1(.), . . . , Ar(.). An accepted job is immediately pro-
vided a free server and receives uninterrupted service at a constant rate. If a job
is rejected at node 2, it returns to node 1 and undergoes a complete new service
at node 1. The service time of a job of type h at node i has a general probability
distribution function with mean 1/µih for i = 1, 2 and h = 1, . . . , r . For each type
of job it is assumed that the service-time distribution for at least one of the nodes
has a positive density on some interval. The service requirements at the nodes are
assumed to be independent of each other.

The system is said to be in state n = (n
(h)
i ) when there are n

(h)
i jobs present at

node i for i = 1, 2 and h = 1, . . . , r with n
(h)
1 + n

(h)
2 = Mh for h = 1, . . . , r . Let

p(n) denote the limiting probability that the process is in state n at an arbitrary
point in time. Also, for fixed job type 
, let π

(
)
i (̃n) denote the limiting proba-

bility that a job of type 
 arriving at node i finds the other jobs in state ñ with
ñ

(
)
1 + ñ

(
)
2 = M
 − 1 and ñ

(h)
1 + ñ

(h)
2 = Mh for h �= 
. Assuming that each of the

service-time distributions is a mixture of Erlangian distributions with the same scale
parameters, Van Dijk and Tijms (1986) used rather elementary arguments to prove
that the probabilities p(n) and π

(h)
i (̃n) depend on the service-time distributions

only through their means and are thus insensitive to the form of the service-time
distributions.∗ Next, by deep mathematics, the insensitivity property for general

∗Also the so-called product-form solution applies to these probabilities. The product-form solution will
be discussed in detail in Section 5.6.
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service-time distributions can be concluded by a continuity argument. This argu-
ment is based on the fact that the class of mixtures of Erlangian distributions with
the same scale parameters is dense in the class of all probability distributions on
the non-negative axis; see Hordijk and Schassberger (1982) and Whitt (1980). In
Section 5.5 we give an elementary proof that any service-time distribution can
be arbitrarily closely approximated by a mixture of Erlangian distributions with
the same scale parameters. Taking for granted the insensitivity property of the
closed two-node network model, we give two applications of loss systems with the
insensitivity property.

Example 5.4.1 Insensitivity for a finite-source model with grading

Let us consider a finite-source model with grading. Such a model is an extension
of the Engset model discussed in Section 5.2.2. In the Engset model a newly
generated message is only blocked when all c servers are occupied. In the grading
model a newly generated message hunts for a free server among K servers that are
randomly chosen from the c servers, with K fixed. The message is blocked when
no free server is found among the K chosen servers. The closed two-node model
with a single job type applies (r = 1). The blocking protocol indeed allows for the
representation (5.4.1). This follows by taking

A(n2) = 1 −
(

n2

K

)/(
c

K

)
and Ah(n

(h)
2 ) = 1, h = 1, . . . , r

with the convention (nm) = 0 for n < m. Thus we can conclude that the time-
average and customer-average probabilities in the grading model are insensitive
to both the form of the think-time distribution and the form of the service-time
distribution. The Engset model is a special case of the grading model with K = c.
Thus we also have insensitivity for the Engset model. By letting the number of
sources tend to infinity and the thinking rate to zero, the input process becomes
a Poisson process. It will now intuitively be clear that the Erlang loss model has
the insensitivity property. However, a rigorous proof of this fact requires deep
mathematics.

Example 5.4.2 A loss model with competing customers

Messages of types 1 and 2 arrive at a communication system according to two
independent Poisson processes with the respective rates λ1 and λ2. The communi-
cation system has c identical service channels for handling the messages but there
is no buffer to temporarily store messages which find all channels occupied. Each
channel can handle only one message at a time. The transmission times of the mes-
sages are independent of each other and the transmission times of messages of the
same type j have a general probability distribution with mean 1/µj for j = 1, 2.
The following admission rule for arriving messages is used. Messages of type 1
are always accepted whenever a free service channel is available. However, for a
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given control parameter L, messages of type 2 are only accepted when less than
L messages of type 2 are present and not all of the channels are occupied. Such a
control rule is used to increase the throughput of accepted messages. What is the
optimal value of L?

To compute the average throughput for a given L-policy, it is no restriction to
assume exponentially distributed transmission times. The reason is that the long-run
average throughput is insensitive to the form of the transmission time distributions.
The average throughput is the difference between the average arrival rate λ1 +
λ2 and the average number of messages lost per time unit. To argue that the
loss probabilities for both types of messages are insensitive to the form of the
transmission-time distribution, consider the finite-source variant of the model with
Poisson input. Messages of type j are generated by Mj identical sources for j =
1, 2, where the think time of the sources has a probability density. A source can
only start a think time when it has no message in transmission at the communication
system. The sources act independently of each other. This finite-source model can
be seen as a cyclic closed two-node network model, where a fixed number of type 1
jobs, M1, and a fixed number of type 2 jobs, M2, move around in the network.
Node 1 is an infinite-server node, while node 2 is a blocking node with c servers.
In the two-node closed network, take the blocking protocol (5.4.1) with

A(n2) =
{

1, n2 < c,

0, n2 = c,

and

A1(n
(1)
2 ) = 1, A2(n

(2)
2 ) =

{
1 for n

(2)
2 < L,

0 otherwise.

The closed two-node network with this blocking protocol behaves identically to
the finite-source model. Thus the finite-source model has the insensitivity property.
This result provides a simple but heuristic argument that the controlled loss model
with Poisson input also has the insensitivity property. In general, insensitivity holds
for a wide class of loss networks; see Kelly (1991) and Ross (1995).

Let us now assume exponentially distributed transmission times for the loss
model controlled by an L-policy. Define

Xj(t) = the number of channels occupied by type j messages at time t

for j = 1, 2. The stochastic process {(X1(t), X2(t))} is a continuous-time Markov
chain with state space

I = {(i1, i2) | 0 ≤ i1 + i2 ≤ c, i1 ≥ 0, 0 ≤ i2 ≤ L}.

Its transition rate diagram is given in Figure 5.4.1. By equating the rate out of state
(i1, i2) to the rate into state (i1, i2), we obtain the equilibrium equations for the
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Figure 5.4.1 The transition rate diagram for the L-rule

state probabilities p(i1, i2). For the states (i1, i2) with i1 + i2 < c and i2 < L,

(i1µ1 + i2µ2 + λ1 + λ2)p(i1, i2) = λ1p(i1 − 1, i2) + λ2p(i1, i2 − 1)

+ (i1 + 1)µ1p(i1 + 1, i2)

+ (i2 + 1)µ2p(i1, i2 + 1).

For the states (i1, i2) with i1 + i2 < c and i2 = L,

(i1µ1 + i2µ2 + λ1)p(i1, i2) = λ1p(i1 − 1, i2) + λ2p(i1, i2 − 1)

+ (i1 + 1) µ1p(i1 + 1, i2).

For the states (i1, i2) with i1 + i2 = c and i2 ≤ L,

(i1µ1 + i2µ2)p(i1, i2) = λ1p(i1 − 1, i2) + λ2p(i1, i2 − 1).

The state probabilities p(i1, i2) exhibit the so-called product form

p(i1, i2) = C
(λ1/µ1)

i1

i1!

(λ2/µ2)
i2

i2!
, i1, i2 ∈ I

for some constant C > 0. The reader may verify this result by direct substitution
into the equilibrium equations. Since service completions occur in state (i1, i2) at
a rate of i1µ1 + i2µ2, the average throughput is given by

T (L) =
∑

(i1,i2)

(i1µ1 + i2µ2)p(i1, i2).
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Denote by �j(L) the long-run fraction of type j messages that are lost. Using the
PASTA property, it follows that

�1(L) =
∑

(i1,i2):
i1+i2=c

p(i1, i2) and �2(L) =
c−L−1∑
i1=0

p(i1, L) +
∑

(i1,i2):
i1+i2=c

p(i1, i2)

Since the sum of the average number of messages lost per time unit and the average
number of messages transmitted per time unit equals the arrival rate λ1 + λ2, we
have the identity λ1�1(L) + λ2�2(L) + T (L) = λ1 + λ2. This relation is useful
as an accuracy check for the calculated values of the p(i1, i2). As an illustration,
we consider the following numerical data:

c = 10, λ1 = 10, λ2 = 7, µ1 = 10, µ2 = 1.

Table 5.4.1 gives the values of T (L), �1(L) and �2(L) for L = 7, 8 and 9.
The L-policy with L = 8 maximizes the long-run average throughput among the

class of L-policies. The above analysis restricted itself to the easily implementable
L-policies, but other control rules are conceivable. The question of how to compute
the overall optimal control rule among the class of all conceivable control rules will
be addressed in the Chapters 6 and 7, which deal with Markov decision processes.
The best L-policy is in general not optimal among the class of all possible control
rules. However, numerical investigations indicate that using the best L-policy rather
than the overall optimal policy often leads to only a small deviation from the
theoretically maximal average throughput. For example, for the above numerical
data the average throughput of 15.209 for the best L-policy is only 0.16% below
the theoretically optimal value of 15.233. This optimal value is achieved by the
following control rule. Each arriving message of type 1 is accepted as long as
not all channels are occupied. A message of type 2 finding i messages of type
1 present upon arrival is accepted only when less than Li other messages of the
same type 2 are present and not all of the channels are occupied. The optimal
values of the Li are L0 = L1 = 8, L2 = L3 = 7, L4 = 6, L5 = 5, L6 = 4,
L7 = 3, L8 = 2 and L9 = 1. The insensitivity property is no longer exactly true
for the Li-policy, but numerical investigations indicate that the dependency on the
distributional form of the transmission times is quite weak. The above Li-policy
was simulated for lognormally distributed transmission times. Denoting by c2

i the
squared coefficient of variation of the transmission time for type i messages, we
varied (c2

1, c2
2) as (1, 1), (2, 0.5) and (0.5, 2). For these three examples the average

Table 5.4.1 Numerical values

L T (L) �1(L) �2(L)

7 15.050 0.0199 0.2501
8 15.209 0.0501 0.1843
9 15.095 0.0926 0.1399
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throughputs of the given Li-policy have the respective values 15.236 (±0.004),
15.244 (±0.004) and 15.231 (±0.005), where the numbers in parentheses indicate
the 95% confidence intervals.

5.4.2 The M/G/1 Queue with Processor Sharing

Another queueing system in which the limiting distribution of the number of cus-
tomers in the system is insensitive to the service-time distribution is the M/G/1
queue with the processor-sharing service discipline. Under this service discipline a
customer never has to wait in queue and the processing rate of the server is equally
divided among all customers present. The M/G/1 processor-sharing system can be
used to approximate time-shared computer systems among others. To formulate the
model, assume that customers arrive according to a Poisson process with rate λ and
that the service requirements of the customers are independent random variables
which are distributed according to the random variable S. It is assumed that S has
a general probability distribution. A generalized processor-sharing rule is used: if
i customers are present, each of the i customers is provided with service at a rate
of f (i) per time unit. That is, the attained service time of each of the i customers
grows by an amount f (i)�x in a time �x with �x small. Here f (i) is a given
positive function. Let ρ = λE(S) denote the offered load and let

φ(j) =



j∏
k=1

f (k)




−1

, j = 0, 1, . . .

with φ(0) = 1 by convention. Assuming that
∑∞

k=0 ρkφ(k)/k! is finite, it holds
that the limiting distribution {pj , j = 0, 1, . . . } of the number of customers present
is insensitive to the form of the service-requirement distribution and is given by

pj = (ρj /j !)φ(j)∑∞
k=0(ρ

k/k!)φ(k)
, j = 0, 1, . . . .

A proof of this result can be found in Cohen (1979). Denoting by E(W | s) the
expected amount of time spent in the system by a customer who arrives when the
system has reached statistical equilibrium and whose required service time is s, it
was also shown in Cohen (1979) that

E(W | s) =
s

∞∑
k=0

(ρk/k!)φ(k + 1)

∞∑
k=0

(ρk/k!)φ(k)

, s > 0,

This remarkable result shows that the processor-sharing rule discriminates between
customers in a fair way. A customer requiring a service time twice as long as some
other will spend on average twice as long in the system. The standard M/G/1
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processor-sharing queue corresponds to the case of

f (i) = 1

i
, i = 1, 2, . . . .

In this case φ(i) = i! for i = 0, 1, . . . and the above formulas reduce to

pj = (1 − ρ)ρj , j = 0, 1, . . . and E(W | s) = s

1 − ρ
, s > 0.

In other words, in the standard M/G/1 processor-sharing queue with general ser-
vice times, the equilibrium distribution of the number of customers present is the
same as in the M/M/1 queue with the first-come first-served discipline. This find-
ing also applies to the M/G/1 queue with the pre-emptive resume, last-in first-out
discipline. Under this service discipline each customer begins service upon arrival,
pre-empting anyone in service, and at each time, the most recently arrived customer
receives service.

5.5 A PHASE METHOD

The phase method makes it possible to use the continuous-time Markov chain
approach for a wide variety of practical probability problems in which the under-
lying probability distributions are not necessarily exponential. The method essen-
tially goes back to A.K. Erlang, who did pioneering work on stochastic pro-
cesses at the beginning of the twentieth century. In his analysis of telephone
problems, Erlang devised the trick of considering the duration of a call as the
sum of a number of sequential phases whose lengths are exponentially distributed.
There are several versions of the phase method (or method of stages). A very
useful version is the one that approximates a positive random variable by a ran-
dom sum of exponentials with the same means. In other words, the probabil-
ity distribution of the positive random variable is approximated by a mixture of
Erlangian distributions with the same scale parameters. The theoretical basis for
the use of such mixtures of Erlangian distributions is provided by the follow-
ing theorem.

Theorem 5.5.1 Let F(t) be the probability distribution function of a positive ran-
dom variable. For fixed � > 0 define the probability distribution function F�(x) by

F�(x) =
∞∑

j=1

pj (�)


1 −

j−1∑
k=0

e−x/� (x/�)k

k!


 , x ≥ 0, (5.5.1)

where pj (�) = F(j�) − F((j − 1)�), j = 1, 2, . . . . Then

lim
�→0

F�(x) = F(x)

for each continuity point x of F(t).
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Proof For fixed �, x > 0, let U�,x be a Poisson distributed random variable with

P {U�,x = k�} = e−x/� (x/�)k

k!
, k = 0, 1, . . . .

It is immediately verified that E(U�,x) = x and σ 2(U�,x) = x�. Let g(t) be any
bounded function. We now prove that

lim
�→0

E[g(U�,x)] = g(x) (5.5.2)

for each continuity point x of g(t). To see this, fix ε > 0 and a continuity point x

of g(t). Then there exists a number δ > 0 such that |g(t) − g(x)| ≤ ε/2 for all t

with |t − x| ≤ δ. Also, let M > 0 be such that |g(t)| ≤ M/2 for all t . Then

|E[g(U�,x)] − g(x)| ≤
∞∑

k=0

|g(k�) − g(x)|P {U�,x = k�}

≤ ε

2
+ M

∑
k:|k�−x|>δ

P {U�,x = k�}

= ε

2
+ MP {|U�,x − E(U�,x)| > δ}.

By Chebyshev’s inequality, P {|U�,x − E(U�,x)| > δ} ≤ x�/δ2. For � small
enough, we have Mx�/δ2 ≤ 1

2ε. This proves the relation (5.5.2). Next, we apply
(5.5.2) with g(t) = F(t). Hence, for any continuity point x of F(t),

F(x) = lim
�→0

E[F(U�,x)] = lim
�→0

∞∑
k=0

F(k�)e−x/� (x/�)k

k!

= lim
�→0

∞∑
k=0

e−x/� (x/�)k

k!

k∑
j=1

pj (�),

where the latter equality uses that F(0) = 0. Interchanging the order of summation,
we next obtain

F(x) = lim
�→0

∞∑
j=1

pj (�)

∞∑
k=j

e−x/� (x/�)k

k!
,

yielding the desired result.

The proof of Theorem 5.5.1 shows that the result also holds when F(t) has a
positive mass at t = 0. We should then add the term F(0) to the right-hand side
of (5.5.1). Roughly stated, Theorem 5.5.1 tells us that the probability distribution
of any positive random variable can be arbitrarily closely approximated by a mix-
ture of Erlangian distributions with the same scale parameters. The fact that the
Erlangian distributions have identical scale parameters simplifies the construction



A PHASE METHOD 211

of an appropriate continuous-time Markov chain in specific applications. In practice
it is not always obvious how to choose a mixture that is sufficiently close to the
distribution considered. One often confines oneself to a mixture of two Erlangian
distributions by matching only the first two moments of the distribution considered;
see Appendix B.

The phase method is very useful both for theoretical purposes and practical
purposes. We give two examples to illustrate its power.

Example 5.5.1 The M/G/1 queue and the phase method

Customers arrive at a single-server station according to a Poisson process with rate
λ. The service times of the customers are independent and identically distributed
random variables and are also independent of the arrival process. The single server
can handle only one customer at a time and customers are served in order of arrival.
The phase method will be applied to obtain a computationally useful representation
of the waiting-time distribution of a customer when the probability distribution of
the service time of a customer is given by

P {S ≤ x} =
∞∑

j=1

βj


1 −

j−1∑
k=0

e−µx (µx)k

k!


 , x ≥ 0, (5.5.3)

where βj ≥ 0 and
∑∞

j=1 βj = 1. The random variable S denotes the service time. It
is assumed that λE(S) < 1. In view of (5.5.3) we can think of the service time of a
customer as follows. With probability βj the customer has to go through j sequen-
tial service phases before its service is completed. The phases are processed one
at a time and their durations are independent and exponentially distributed random
variables with mean 1/µ. This interpretation enables us to define a continuous-time
Markov chain. For any t ≥ 0, let

X(t) = the number of uncompleted service phases present at time t.

The process {X(t)} is a continuous-time Markov chain with infinite state space
I = {0, 1, . . . }. Its transition rate diagram is displayed in Figure 5.5.1.

Denote the equilibrium distribution of the process {X(t)} by {fj , j = 0, 1, . . . }.
The time-average probability fj denotes the long-run fraction of time there are j

0 k i − 1 i1 •  •  • •  •  ••  •  •

lbk lbi − k

lb1 lb1

m m

Figure 5.5.1 The transition diagram of the phase process
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uncompleted service phases present. To find the waiting-time distribution, we need
the customer-average probabilities

πj = the long-run fraction of customers who find j uncompleted
service phases present upon arrival, j = 0, 1, . . . .

Under the assumption of service in order of arrival, let

Wq(x) = lim
n→∞ P {Dn ≤ x}, x ≥ 0

with Dn denoting the delay in queue of the nth arriving customer. In the same way
as (5.1.7) was derived in Section 5.1, it can be shown that this limit exists and is
given by

Wq(x) = 1 −
∞∑

j=1

πj

j−1∑
k=0

e−µx (µx)k

k!
, x ≥ 0. (5.5.4)

By the PASTA property, we have

πj = fj , j = 1, 2, . . . .

The probabilities fj allow for a recursive computation, since the transition rates
of the continuous-time Markov chain {X(t)} have the property that qij = 0 for
j ≤ i − 2. By equating the rate at which the process leaves the set of states
{i, i + 1, . . . } to the rate at which the process enters this set, we obtain

µfi =
i−1∑
k=0

fk


1 −

i−k−1∑
j=0

βj


 , i = 1, 2, . . . . (5.5.5)

This recursion provides an effective method for computing the fj . Note that the
recursion can be initialized with f0 = 1 − λE(S), since by Little’s formula the
long-run fraction of time the server is busy equals λE(S). Note that E(S) =
(1/µ)

∑∞
j=1 jβj . Once the probabilities πj (=fj ) have been computed by applying

(5.5.5), the waiting-time probability Wq(x) can be calculated from (5.5.4).
The expression (5.5.4) for Wq(x) is very useful for computational purposes. For

numerical calculations it is recommended to rewrite (5.5.4) as

Wq(x) = 1 −
∞∑

k=0

e−µx (µx)k

k!

∞∑
j=k+1

fj , x ≥ 0, (5.5.6)

by interchanging the order of summation. The series representation (5.5.6) con-
verges faster than the series (5.5.4). Of course

∑∞
j=k+1 fj should be replaced by

1−∑k
j=0 fj in (5.5.6). The computational work in (5.5.5) and (5.5.6) can be reduced
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by using asymptotic expansions for fj as j → ∞ and 1 − Wq(x) as x → ∞; see
Exercise 5.26.

Example 5.5.2 A finite-buffer storage problem

Data messages arrive at a transmission channel according to a Poisson process
with rate λ. The transmission channel has a buffer to store arriving messages. The
buffer has a finite capacity K > 0. An arriving message is only stored in the buffer
when its length does not exceed the unoccupied buffer capacity, otherwise the
whole message is rejected. Data are transmitted from the buffer at a constant rate
of σ > 0. The message lengths are independent of each other and are assumed to
have a continuous probability distribution function F(x). An important performance
measure is the long-run fraction of messages that are rejected. This model, which
is known as the M/G/1 queue with bounded sojourn time, is very useful. It also
applies to a finite-capacity production/inventory system in which production occurs
at a constant rate as long as the inventory is below its maximum level and the
demand process is a compound Poisson process, where demands occurring when
the system is out of stock are completely lost.

A possible approach to solving the model is to discretize the model; see
Exercise 9.9 for another approach. In the discretized model a message is repre-
sented by a batch consisting of a discrete number of data units. The probability of
a batch of size k is given by

bk(�) = F(k�) − F((k − 1)�), k = 1, 2, . . .

with F(−�) = 0. The buffer only has room for K(�) data units, where

K(�) = K

�
.

It is assumed that the number � is chosen such that K(�) is an integer. An
arriving message is only stored in the buffer when its batch size does not exceed
the number of unoccupied buffer places, otherwise the whole message is rejected.
The data units are transmitted one at a time at a constant rate of σ > 0. The key
step is now to take an exponential distribution with mean 1/µ(�) = �/σ for the
transmission time of a data unit. This approach is motivated by Theorem 5.5.1.
A data unit leaves the buffer as soon as its transmission is completed. For the
discretized model, let

π�(K) = the long-run fraction of messages that are rejected.

In view of Theorem 5.5.1 one might expect that π�(K) is an excellent approxima-
tion to the rejection probability in the original model when � is chosen sufficiently
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small. The discretized rejection probability π�(K) is routinely found by using the
continuous-time Markov chain approach. In the discretized model, let the random
variable

X(t) = the number of data units in the buffer at time t.

The process {X(t)} is a continuous-time Markov chain with the finite state space
I = {0, 1 . . . , K(�)}. Denote the equilibrium distribution of the discretized process
by {pj (�)}. The process has the property that for each state i the transition rate
qij = 0 for j ≤ i − 2. Hence pj (�) can recursively be computed. By equating the
rate out of the set {i, . . . , K(�)} to the rate into this set,

µ(�)pi(�) =
i−1∑
j=0

pj (�)


λ

K(�)−j∑
k=i−j

bk(�)


 , i = 1, 2, . . . , K(�).

Using the PASTA property, we next obtain π�(K) from

π�(K) =
K(�)∑
i=0

pi(�)
∑

k>K(�)−i

bk(�).

The computational work is considerably reduced by noting that

∞∑
k=


bk(�) = 1 −

−1∑
k=0

bk(�) = 1 − F((
 − 1)�), 
 = 1, 2, . . . .

The accuracy of the discretization is improved by slightly modifying the definition
of the batch-size probabilities bk(�). It is recommended to take

bk(�) = 1

2
[F(k�) − F((k − 1)�)] + 1

2
[F((k + 1)�) − F(k�)]

for k = 1, 2, . . . , in which case
∑

k≥
 bk(�) = 1 − 1
2F((
 − 1)�) − 1

2F(
�). It
remains to decide how small to choose � in order to obtain a sufficiently close
approximation to the rejection probability in the original model. In general one
should search for a value of � such that the answers for the values � and �/2
are sufficiently close to each other.

5.6 QUEUEING NETWORKS

Queueing network models are a useful analysis tool in a wide variety of areas such
as computer performance evaluation, communication network design and produc-
tion planning in flexible manufacturing. Generally speaking, a network of queues
is a collection of service nodes with customers (jobs) moving between the nodes
and making random requests for service at the nodes. Under appropriate condi-
tions these networks can be modelled and analysed by means of continuous-time
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Markov chains. The prominent result of the analysis is the product-form solution
for the joint distribution of the numbers of customers present at the various nodes.
Networks that can be described by a continuous-time Markov chain and have the
product-form solution are often called Jackson networks after J.R. Jackson (1957,
1963), who discovered the product-form solution. In Section 5.6.1 we consider
the open network model. A network is called open if external arrivals occur at
one or more nodes and departures from the system occur at one or more nodes.
A network is called closed when a fixed number of customers move around in
the network. The closed network will be analysed in Section 5.6.2. For clarity
of presentation the analysis is restricted to a single class of customers. In appli-
cations, however, one often encounters networks of queues with several customer
classes. The results presented in this section can be extended to the case of multiple
customer classes.

5.6.1 Open Network Model

As a prelude to the open queueing network model, consider the following medi-
cal application involving the analysis of emergency facilities. Patients arrive at an
emergency room for late-night operations. Incoming patients are initially screened
to determine their level of severity. On average, 10% of incoming patients require
hospital admission. Twenty percent of incoming patients are sent to the ambulatory
unit, 30% to the X-ray unit and 40% to the laboratory unit. Patients sent to the
ambulatory unit are released after having received ambulatory care. Of those going
to the X-ray unit, 25% require admission to the hospital, 20% are sent to the labo-
ratory unit for additional testing, and 55% have no need of additional care and are
thus released. Of patients entering the laboratory unit, 15% require hospitalization
and 85% are released. This emergency system provides an example of a network
of queues.

Consider now the following model for an open network of queues (open Jackson
network ):

• The network consists of K service stations numbered as j = 1, . . . , K .

• External arrivals of new customers occur at stations 1, . . . , K according to inde-
pendent Poisson processes with respective rates r1, . . . , rK .

• Each station is a single-server station with ample waiting room and at each
station service is in order of arrival.

• The service times of the customers at the different visits to the stations are
independent of each other, and the service time of a customer at each visit to
station j has an exponential distribution with mean 1/µj for j = 1, . . . , K .

• Upon service completion at station i, the served customer moves with probability
pij to station j for j = 1, . . . , K or leaves the system with probability pi0 =
1 − ∑K

j=1 pij .
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The routing matrix P = (pij ), i, j = 1, . . . , K , is assumed to be an irreducible
substochastic matrix with the property that Pn → 0 as n → ∞. Thus each newly
arriving customer ultimately leaves the system with probability 1. To ensure that the
process describing the numbers of customers present at the various stations has an
equilibrium distribution, we need an assumption involving the composite (external
and internal) arrival rates at the stations. Define the composite rates λ1, . . . , λK as
the unique solution to the linear equations

λj = rj +
K∑

i=1

λipij , j = 1, . . . , K. (5.6.1)

This system of linear equations has a unique solution since the matrix P is transient
and so (I − P)−1 exists. The assumption is made that

λj

µj

< 1, j = 1, . . . , K. (5.6.2)

The quantity λj can be interpreted as the total arrival rate at station j . In the long
run we have for each station i that the average number of arrivals per time unit
at station i must be equal to the average number of service completions per time
unit at station i. In particular, λipij is the arrival rate of customers to station j of
those coming from station i. Hence the total arrival rate at station j must satisfy
(5.6.1). The equations (5.6.1) are called the traffic equations.

For j = 1, . . . , K , define the random variable

Xj(t) = the number of customers present at station j at time t.

The multidimensional process X(t) = {(X1(t), . . . , XK(t))} is a continuous-time
Markov chain with state space I = {(n1, . . . , nK) | n1 > 0, . . . , nK > 0}. Since
the routing probability pii is allowed to be positive, self-transitions can occur in
the process {X(t)}. Under assumption (5.6.2) the process {X(t)} has a unique
equilibrium distribution to be denoted by p(n1, . . . , nK). We now state Theo-
rem 5.6.1.

Theorem 5.6.1 The equilibrium probabilities p(n1, . . . , nK) have the product-
form property

p(n1, . . . , nK) =
K∏

k=1

(
1 − λk

µk

)(
λk

µk

)nk

. (5.6.3)

Proof Let us use the shorthand notation n =(n1, . . . , nK). Let ei denote the ith
unit vector, that is, the ith component of ei is 1 and the other components are zero.
By equating the rate out of state n to the rate into state n (including self-transitions),



QUEUEING NETWORKS 217

we get for the process {X(t)} the equilibrium equations

p(n)

k∑
j=1

rj + p(n)
∑

j :nj >0

µj =
∑

j :nj >0

[
K∑

i=1

p(n + ei − ej )µipij + p(n − ej )rj

]

+
K∑

j=1

p(n + ej )µjpj0.

These equations are certainly satisfied by

p(n) =
K∏

k=1

(
1 − λk

µk

)(
λk

µk

)nk

(5.6.4)

when this product-form solution satisfies the partial balance equations

p(n)

K∑
j=1

rj =
K∑

j=1

p(n + ej )µjpj0, (5.6.5)

p(n)µj =
K∑

i=1

p(n + ei − ej )µipij + p(n − ej )rj , 1 ≤ j ≤ K. (5.6.6)

For the product-form solution (5.6.4) we have

p(n + ei − ej ) =
(

λi

µi

)(
λj

µj

)−1

p(n) and p(n − ej ) =
(

λj

µj

)−1

p(n).

(5.6.7)

After substitution of (5.6.7) in (5.6.6), it remains to verify whether the relation

µj =
K∑

i=1

(
λi

µi

)(
λj

µj

)−1

µipij +
(

λj

µj

)−1

rj (5.6.8)

holds for each j = 1, . . . , K . This is indeed true since the relation (5.6.8) coincides
with the traffic equation (5.6.1) after cancelling out common terms (verify). In a
similar way we can verify that (5.6.5) holds. Substituting p(n+ej ) = (λj /µj )p(n)

into (5.6.5), we get
K∑

j=1

rj =
K∑

j=1

λjpj0.

This relation is indeed true since it states that the rate of new customers enter-
ing the system equals the rate of customers leaving the system. This completes
the proof.
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The partial balance equations (5.6.5) and (5.6.6) are characteristic for the product-
form solution. These equations express that

the rate out of a state due to a change at node j

= the rate into that state due to a change at node j (5.6.9)

for each j = 0, 1, . . . , K , where node 0 corresponds to the outside world. This
property of node local balance is in general not satisfied in a stochastic network, but
can indeed be verified for the Jackson network model. The product-form solution
(5.6.3) can be expressed as

p(n) = p1(n1) · · ·pK(nK), (5.6.10)

where for any k the probability distribution {pk(n), n = 0, 1, . . . } of the number
of customers present at station k is the same as the equilibrium distribution of
the number of customers present in an M/M/1 queue with arrival rate λk and
service rate µk. In other words, in steady state the number of customers at the
different service stations are independent of each other and the number at station
k behaves as if station k is an M/M/1 queue with arrival rate λk and service
rate µk . The result (5.6.10) is remarkable in the sense that in the network model
the composite arrival process at station k is in general not a Poisson process. An
easy counterexample is provided by a single-station network with feedback ; that
is, a customer served at the station goes immediately back to the station with a
positive probability. Suppose that in this network the arrival rate from outside is
very small and the service rate is very large. Then, if the feedback probability is
close to 1, two consecutive arrivals at the station are highly correlated and so the
arrival process is not Poisson.

The Jackson network model can be generalized to allow each service station to
have multiple servers with exponential service times. If station j has cj servers,
the ergodicity condition (5.6.2) is replaced by λj/(cjµj ) < 1. Then the node
local balance equation (5.6.9) can again be verified and the equilibrium distribu-
tion {p(n)} of the numbers of customers present at the different stations has the
product form (5.6.10), where the probability distribution {pk(n)} of the number of
customers present at station k is the same as the equilibrium distribution of the
number of customers present in an M/M/c queue with arrival rate λk , service
rate µk and c = ck servers. Note that the multi-server M/M/c queue with service
rate µ can be regarded as a single-server queue with state-dependent service rate
µ(n) =min(n, c)µ when n customers are present. Indeed it can be shown that
the product-form solution also applies to the Jackson network model with state-
dependent service rates provided that the service rate at each station depends only
on the number of customers present at that station. More about the product-form
solution and its ramifications can be found in the books of Boucherie (1992) and
Van Dijk (1993). In these references the product-form solution is also linked to
the concept of insensitivity. Insensitivity of the stochastic network holds when the
condition of node local balance is sharpened to job local balance, requiring that
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the rate out of a state due to a particular job is equal to the rate into that state due
to that same job.

BCMP extension for the product-form solution

The product form has been established under the assumption that each service sta-
tion has the first-come first-served discipline and that the service times are expo-
nentially distributed. In an important paper of Baskett et al. (1975) it has been
shown that the product-form solution (5.6.10) also holds when each service station
uses one of the following four service disciplines, or BCMP disciplines :

1. The service discipline is first-come-first-served and the service times of the
customers are exponentially distributed (multiple servers or state-dependent ser-
vice is allowed).

2. The service discipline is processor-sharing; that is, if n customers are present at
the station, each customer is served and receives service at a rate of 1/n. The
service time of a customer is allowed to have a general probability distribution.

3. The service discipline is determined by an infinite number of servers; that is,
each arriving customer gets immediately assigned a free server. The service time
of a customer is allowed to have a general probability distribution.

4. The service discipline is pre-emptive resume, last-in first-out; that is, customers
are served one at a time in reverse order of arrival and a newly arriving customer
gets immediate service, pre-empting anyone in service. The service time of a
customer is allowed to have a general probability distribution.

The product-form solution (5.6.10) remains valid but the marginal probability
distribution {pk(n), n = 0, 1, . . . } of the number of customers present at station
k depends on the service discipline at station k. Under service discipline 1 with
ck identical servers, the marginal distribution {pk(n)} is given by the equilibrium
distribution of the number of customers present in the M/M/c queue with arrival
rate λ = λk, service rate µ = µk and c = ck servers. Under service discipline 3
at station k the marginal distribution {pk(n)} is given by the Poisson distribution
with mean λkE(Sk), where the random variable Sk denotes the service time of
a customer at each visit to station k. Under both service discipline 2 and service
discipline 4, at station k the marginal distribution {pk(n)} is given by the geometric
distribution {(1 − ρk)ρ

n
k , n = 0, 1, . . . } with ρk = λkE(Sk), where Sk denotes the

service time of a customer at each visit to station k.

5.6.2 Closed Network Model

In the performance evaluation of computer systems and flexible manufacturing sys-
tems it is often more convenient to consider a closed network with a fixed number
of customers (jobs). A job may leave the system but is then immediately replaced
by a new one. The basic closed Jackson network is as follows:

• The network consists of K service stations numbered as j = 1, . . . , K .
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• A fixed number of M identical customers move around in the network.

• Each station is a single-server station with ample waiting room and at each
station service is in order of arrival.

• The service times of the customers at the different visits to the stations are
independent of each other, and the service time of a customer at station j has
an exponential distribution with mean 1/µj for j = 1, . . . , K .

• Upon service completion at station i, the served customer moves with probability
pij to station j for j = 1, . . . , K , where

∑K
j=1 pij = 1 for all i = 1, . . . , K .

The routing matrix P = (pij ), i, j = 1, . . . , K is assumed to be an irreducible
Markov matrix. Since the Markov matrix P is irreducible, its equilibrium distribu-
tion {πj } is the unique positive solution to the equilibrium equations

πj =
K∑

i=1

πipij , j = 1, . . . , K (5.6.11)

in conjunction with the normalizing equation
∑K

j=1 πj = 1. The relative visit
frequencies to the stations are proportional to these equilibrium probabilities. To
see this, let

λj = the long-run average arrival rate of customers at station j .

Since λi is also the rate at which customers depart from station i, we have that
λipij is the rate at which customers arrive at station j from station i. This gives
the traffic equations

λj =
K∑

i=1

λipij , j = 1, . . . , K. (5.6.12)

The solution of the equilibrium equations (5.6.11) of the Markov matrix P is unique
up to a multiplicative constant. Hence, for some constant γ > 0,

λj = γπj , j = 1, . . . , K. (5.6.13)

Denote by Xj(t) the number of customers present at station j at time t . The process
{(X1(t), . . . , XK(t))} is a continuous-time Markov chain with the finite state space
I = {(n1, . . . , nK) | ni ≥ 0,

∑K
i=1 ni = M}.

Theorem 5.6.2 The equilibrium distribution of the continuous-time Markov chain
{X(t) = (X1(t), . . . , XK(t))} is given by

p(n1, . . . , nK) = C

K∏
k=1

(
πk

µk

)nk

(5.6.14)

for some constant C > 0.
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Proof The proof is along the same lines as that of Theorem 5.6.1. The equilibrium
equations of the Markov process {X(t)} are given by

p(n)
∑

j :nj >0

µj =
∑

j :nj >0

[
K∑

i=1

p(n + ei − ej )µipij

]
.

It suffices to verify that (5.6.14) satisfies the node local balance equations

p(n)µj =
K∑

i=1

p(n + ei − ej )µipij (5.6.15)

for each j . To do so, note that the solution (5.6.14) has the property

p(n + ei − ej ) =
(

πi

µi

)(
πj

µj

)−1

p(n). (5.6.16)

Hence, after substitution of (5.6.16) in (5.6.15), it suffices to verify that

µj =
K∑

i=1

(
πi

µi

)(
πj

µj

)−1

µipij , j = 1, . . . , K.

This relation is indeed true since it coincides with the equilibrium equation (5.6.11).
This completes the proof.

A computational difficulty in applying the product-form solution (5.6.14) is the
determination of the normalization constant C. Theoretically this constant can be
found by summing p(n1, . . . , nK) over all possible states (n1, . . . , nK). How-
ever, the number of possible states (n1, . . . , nK) such that

∑K
i=1 ni = M equals(

M+K−1
M

)
. This is an enormous number even for modest values of K and M . Hence

a direct summation to compute the constant C is only feasible for relatively small
values of K and M . There are several approaches to handle the dimensionality
problem, including the Gibbs sampler from Section 3.4.3. We discuss here only
the mean-value algorithm.

Mean-value analysis

The mean-value algorithm is a numerically stable method for the calculation of
the average number of customers at station j , the average amount of time a
customer spends at station j on each visit and the average throughput at station
j . The so-called arrival theorem underlies the mean-value algorithm. To formu-
late this theorem, it is convenient to express explicitly the dependency of the state
probability p(n1, . . . , nK) on the number of customers in the network. We write
p(n1, . . . , nK) = pm(n1, . . . , nK) for the network with a fixed number of m

customers. For any state (n1, . . . , nK) with n1 + · · · + nK = M the equilibrium
probability pM(n1, . . . , nK) can be interpreted as the long-run fraction of time
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that simultaneously n1 customers are present at station 1, n2 customers at station
2, . . . , nK customers at station K . Define the customer-average probability

πj (n1, . . . , nK) = the long-run fraction of arrivals at station j that see
n
 other customers present at station 
 for 
 = 1, . . . , K .

Note that in this definition n1 + · · · + nK = M − 1.

Theorem 5.6.3 (arrival theorem) For any (n1, . . . , nK) with
∑K


=1 n
 = M −1,

πj (n1, . . . , nK) = pM−1(n1, . . . , nK).

Proof By part (b) of Corollary 4.3.2,

the long-run average number of arrivals per time unit at station j that find
n
 other customers present at station 
 for 
 = 1, . . . , K

=
K∑

i=1

µipij pM(n1, . . . , ni + 1, . . . , nK)

for any (n1, . . . , nK) with
∑K


=1 n
 = M − 1. In particular,

the long-run average number of arrivals per time unit at station j

=
∑

m∈IM−1

K∑
i=1

µipij pM(m1, . . . , mi + 1, . . . , mK)

where m = (m1, . . . , mK) and IM−1 = {m | m ≥ 0 and m1 + . . .+mK = M −1}.
Thus

πj (n1, . . . , nK) =

K∑
i=1

µipij pM(n1, . . . , ni + 1, . . . , nK)

∑
m∈IM−1

K∑
i=1

µipij pM(m1, . . . , mi + 1, . . . , mK)

.

By Theorem 5.6.2,

pM(m1, . . . , mi + 1, . . . , mK) = πi

µi

C

K∏
k=1

(
πk

µk

)mk

.

Substituting this in the numerator and the denominator of the expression for
πj (n1, . . . , nK) and cancelling out the common term

∑K
i=1 πipij , we find

πj (n1, . . . , nK) = CM−1

K∏
k=1

(
πk

µk

)nk

.

for some constant CM−1. The desired result now follows from Theorem 5.6.2.
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In other words, the arrival theorem states that in steady state the customer-average
probability distribution of the state seen by an arriving customer (not counting this
customer) is the same as the time-average probability distribution of the state in the
closed network with one customer less. A special case of the arrival theorem was
encountered in the Engset model; see relation (5.2.4). The product-form solution
is crucial for the arrival theorem. It is noted that the arrival theorem remains valid
for the closed network with a BCMP service discipline at each station. Then the
product-form solution

p(n1, . . . , nK) = Cp1(n1) · · ·pK(nK)

holds for appropriate probability distributions {p1(n1)}, . . . , {pK(nK)}.
To calculate the average number of customers and the average sojourn times at

the different stations, we take the fixed number of customers moving around in the
network as parameter. For the closed network with a fixed number of m customers,
define the following long-run averages:

Lm(j) = the average number of customers present at station j ,

Wm(j) = the average sojourn time of a customer at station j on
each visit,

λm(j) = the average number of arrivals per time unit at station j .

Note that λm(j) also gives the average throughput at station j . Also, by Little’s
formula, λm(j)/µj gives the long-run fraction of time the server at station j is
busy. For a constant γm > 0, we have by (5.6.13) that

λm(j) = γmπj , j = 1, . . . , K, (5.6.17)

where the πj are the equilibrium probabilities associated with the Markov matrix
P =(pij ). By Little’s formula,

Lm(j) = λm(j)Wm(j), j = 1, . . . , K. (5.6.18)

Obviously, we have
K∑

j=1

Lm(j) = m. (5.6.19)

The arrival theorem implies the key relation

Wm(j) = 1

µj

[
1 + Lm−1(j)

]
, j = 1, . . . , K. (5.6.20)

To see this, note that an arriving customer at node j sees on average∑
(n1,... ,nK):

n1+···+nK=m−1

njπj (n1, . . . , nK) =
∑

(n1,... ,nK):
n1+···+nK=m−1

njpm−1(n1, . . . , nK) = Lm−1(j)
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other customers at node j . By the memoryless property of the exponential dis-
tribution and the assumption of service in order of arrival, the relation (5.6.20)
now follows. This relation enables us to calculate Lm(j), Wm(j) and λm(j) in a
recursive manner. A direct consequence of (5.6.17) to (5.6.19) is the relation

γm = m

K∑
j=1

πjWm(j)

. (5.6.21)

Mean-value algorithm

Step 0. Calculate first the equilibrium probabilities πj associated with the Markov
matrix P =(pij ). Calculate W1(j) = 1/µj for j = 1, . . . , K . Let m := 1.
Step 1. Calculate the constant γm from (5.6.21). Next calculate λm(j) and Lm(j)

for j = 1, . . . , K from (5.6.17) and (5.6.18). If m < M , then go to step 2.
Step 2. m := m+1. Calculate Wm(j) for j = 1, . . .K from (5.6.20). Repeat step 1.

EXERCISES

5.1 Consider the M/M/c/c + N queueing model with finite waiting room. This model is
the same as the M/M/c model except that there are only N waiting places for customers to
await service. An arriving customer who finds all c servers busy and all N waiting places
occupied is rejected. Denote by {pj , 0 ≤ j ≤ N + c} the equilibrium distribution of the
number of customers present.

(a) Give a recursion scheme for the computation of the pj .
(b) Verify that the limiting distribution of the delay in queue of an accepted customer is

given by

Wq(x) = 1 − 1

pN+c

N+c−1∑
j=c

pj

j−c∑
k=0

e−cµx (cµx)k

k!
, x ≥ 0.

5.2 In the machine-repair queueing model there are N identical machines which are attended
by c repairmen, where N > c. The running time of a machine is exponentially distributed
with mean 1/ν. The running times of the machines are independent of each other. A stopped
machine is attended as soon as possible by a free repairman. Each repairman can handle
only one machine at a time. The service time of a machine is exponentially distributed with
mean 1/µ.

(a) Let pj = limt→∞ P {j service requests are present at time t} for 0 ≤ j ≤ N . Give a
recursion scheme to compute the pj .

(b) Let πj denote the long-run fraction of service requests finding j other requests present

upon occurrence. Argue that πj = (N − j)pj /
∑N

k=0(N − k)pk for 0 ≤ j ≤ N − 1.
(c) What is the limiting distribution of the delay in queue of a service request when

service is in order of arrival? What is the long-run average number of busy repairmen?

5.3 Consider the following modification of the call-centre problem dealt with in Section 5.3.
If the service of a customer has not yet started, the customer becomes impatient after an
exponentially distributed time with mean 1/θ and then leaves the system. It is assumed
that the impatience time of the customer does not depend on their position in the queue
(call-centre customers cannot see each other).
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(a) Give a recursive relation for the computation of the equilibrium distribution {pj } of
the number of customers present.

(b) What is the long-run fraction of customers who are delayed? Can you explain why
θ
∑∞

j=c(j − c)pj /λ gives the long-run fraction of customers who prematurely leave the
system?

5.4 An information centre provides service in a bilingual environment. Requests for ser-
vice arrive by telephone. Service requests of major-language customers and minor-language
customers arrive according to independent Poisson processes with respective rates λ1 and
λ2. There are c bilingual agents to handle the service requests. Each service request find-
ing all c agents occupied upon arrival waits in queue until a free agent becomes available.
The service time of a major-language request is exponentially distributed with mean 1/µ1
and that of a minor-language request has an exponential distribution with mean 1/µ2. Let
p(i, i1, i2) denote the joint equilibrium probability that simultaneously i1 agents are ser-
vicing major-language customers, i2 agents are servicing minor-language customers and i
service requests are waiting in queue. Use the equilibrium equations of an appropriately
chosen continuous-time Markov chain and use generating functions to prove that for any
i1 = 0, 1, . . . , c there is a constant γ (i1) such that

p(i, i1, c − i1) ∼ γ (i1)τ−i as i → ∞,

with τ = 1 + δ/λ, where λ = λ1 + λ2 and δ is the unique solution of

δ2 − (cµ1 + cµ2 − λ)δ + c2µ1µ2 − cλ1µ2 − cλ2µ1 = 0

on the interval (0, c min(µ1, µ2)).

5.5 Consider the following modification of Example 2.5.1. Overflow is allowed from one
loo to another when there is a queue at one of the loos and there is nobody at the other loo.
It is assumed that the occupation times at the loos are exponentially distributed. Formulate
a continuous-time Markov chain to analyse the new situation. Assume the numerical data
λw = λm = 0.6, µw = 1.5 and µm = 0.75. Solve the equilibrium equations and compare
the average queue sizes for the women’s loo and the men’s loo with the average queue sizes
in the situation of strictly separated loos.

5.6 Jobs of types 1 and 2 arrive according to independent Poisson processes with respective
rates λ1 and λ2. Each job type has its own queue. Both queues are simultaneously served,
where service is only provided to the job at the head of the queue. If both queues are not
empty, service is provided at unity rate at each queue. A non-empty queue for type i jobs
receives service at a rate of ri ≥ 1 when the other queue is empty (i = 1, 2). The service
requirement of a type i job has an exponential distribution with mean 1/µi . The service
requirements of the jobs are independent of each other. It is assumed that ρi = λi/µi is
less than 1 for i = 1, 2. Let p(i1, i2) be the joint equilibrium probability of having i1 jobs
at queue 1 and i2 jobs at queue 2. Set up the equilibrium equations for the probabilities
p(i1, i2). Do numerical investigations to find out whether or not p(i1, i2) ∼ γρ

i1
1 ρ

i2
2 as

i1 → ∞ and i2 → ∞ for some constant γ .

5.7 Consider a production hall with two machines. Jobs arrive according to a Poisson process
with rate λ. Upon arrival a job has to be assigned to one of the two machines. Each machine
has ample waiting space for jobs that have to wait. Each machine can handle only one job
at a time. If a job is assigned to machine i, its processing time is exponentially distributed
with mean 1/µi for i = 1, 2. The control rule is to assign an arriving job to the machine
with the shortest queue (if both queues are equal, machine group 1 is chosen). Jockeying of
the jobs is not possible. Use Markov-chain analysis to find the equilibrium probability that
the delay of a job in queue is longer than a given time t0.
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5.8 Consider an irreducible continuous-time Markov chain with state space I and infinitesi-
mal transition rates qij . Let {pj , j ∈ I } be the equilibrium distribution of the Markov chain.
Assume that the Markov chain is time reversible and thus has the detailed balance property
(5.1.15). Suppose that the Markov chain is truncated to the subset A ⊂ I . That is, qij is
changed to 0 for all i ∈ A and j /∈ A. Prove that the equilibrium distribution of the truncated
Markov chain is given by

pA
i = pi∑

k∈A pk
, i ∈ A.

This important result is due to Kelly (1979).

5.9 Suppose we wish to determine the capacity of a stockyard at which containers arrive
according to a Poisson process with a rate of λ = 1 per hour. A container finding a full
yard upon arrival is brought elsewhere. The time that a container is stored in the yard is
exponentially distributed with mean 1/µ = 10 hours. Determine the required capacity of
the yard so that no more than 1% of the arriving containers find the yard full. How does the
answer change when the time that a container is stored in the yard is uniformly distributed
between 5 and 15 hours?
5.10 Long-term parkers and short-term parkers arrive at a parking place for cars according
to independent Poisson processes with respective rates λ1 = 4 and λ2 = 6 per hour. The
parking place has room for N = 10 cars. Each arriving car which finds all places occupied
goes elsewhere. The parking time of long-term parkers is uniformly distributed between 1
and 2 hours, while the parking time of short-term parkers has a uniform distribution between
20 and 60 minutes. Calculate the probability that a car finds all parking places occupied upon
arrival.
5.11 Consider the loss version of the delay model from Exercise 5.4. In the loss model each
service request finding all c agents occupied upon arrival is lost and has no further influence
on the system. Let p(i1, i2) denote the long-run fraction of time that simultaneously i1
major-language customers are in service and i2 minor-language customers are in service.
Verify from the equilibrium equations for the state probabilities p(i1, i2) that, for some
constant C > 0,

p(i1, i2) = C
(λ1/µ1)i1

i1!

(λ2/µ2)i2

i2!

for all i1, i2 with 0 ≤ i1 + i2 ≤ c. Next conclude that the equilibrium distribution of the
number of occupied agents is given by formula (5.2.1) with λ = λ1 + λ2 and 1/µ =
(λ1/λ) × (1/µ1) + (λ2/λ) × (1/µ2).

5.12 Units offered for repair arrive at a repair facility according to a Poisson process with
rate λ. There are c repairmen. Each repairman can handle only one unit at a time. An offered
unit finding all repairmen busy is rejected and handled elsewhere. The repair time of a unit
consists of two phases. The first phase is exponentially distributed with mean 1/µ1 and the
second one is exponentially distributed with mean 1/µ2.

(a) Let p (i1, i2) be the equilibrium probability of having i1 units in repair phase 1 and
i2 units in repair phase 2. Verify that, for some constant C, the probability p (i1, i2) =
C(λ/µ1)i1(λ/µ2)i2/(i1!i2!) for all i1, i2.

(b) What is the equilibrium distribution of the number of busy repairmen?
(c) What is the long-run fraction of offered units that are rejected? Does this loss prob-

ability increase when the two repair phases are more variable than the exponential phases
but have the same means as the exponential phases?

5.13 Consider a continuous-review inventory system in which customers asking for a certain
item arrive according to a Poisson process with rate λ. Each customer asks for one unit of the
item. Customer demands occurring when the system is out of stock are lost. The (S − 1, S)
control rule is used. Under this control rule the base stock is S and a replenishment for
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exactly one unit is placed each time the on-hand inventory decreases by one unit. The lead
times of the replenishments are independent and identically distributed random variables
with mean τ . Establish an equivalence with the Erlang loss model and give expressions for
the long-run average on-hand inventory and the long-run fraction of demand that is lost.

5.14 In an electronic system there are c elements of a crucial component connected in
parallel to increase the reliability of the system. Each component is switched on and the
lifetimes of the components have an exponential distribution with mean 1/α. The lifetimes
of the components are independent of each other. The electronic system is working as long
as at least one of the components is functioning, otherwise the system is down. A component
that fails is replaced by a new one. It takes an exponentially distributed time with mean 1/β

to replace a failed component. Only one failed component can be replaced at a time.
(a) Use a continuous-time Markov chain to calculate the long-run fraction of time the

system is down. Specify the transition rate diagram first.
(b) Does the answer in (a) change when the replacement time of a failed component has a

general probability distribution with mean 1/α? (Hint : compare the transition rate diagram
with the transition rate diagram in the Erlang loss model.)

5.15 Reconsider Exercise 5.14 but this time assume there are ample repairmen to replace
failed components.

(a) Use a continuous-time Markov chain to calculate the long-run fraction of time the
system is down. Specify the transition rate diagram first.

(b) What happens to the answer in (a) when the replacement time is fixed rather than
exponentially distributed? (Hint : compare the transition rate diagram with the transition rate
diagram in the Engset loss model.)

5.16 Suppose you have two groups of servers each without waiting room. The first group
consists of c1 identical servers each having an exponential service rate µ1 and the second
group consists of c2 identical servers each having an exponential service rate µ2. Customers
for group i arrive according to a Poisson process with rate λi (i = 1, 2). A customer who
finds all servers in his group busy upon arrival is served by a server in the other group,
provided one is free, otherwise the customer is lost. Show how to calculate the long-run
fraction of customers lost.

5.17 Consider a conveyor system at which items for processing arrive according to a Poisson
process with rate λ. The service requirements of the items are independent random variables
having a common exponential distribution with mean 1/µ. The conveyor system has two
work stations 1 and 2 that are placed according to this order along the conveyor. Workstation
i consists of si identical service channels, each having a constant processing rate of σi
(i = 1, 2); that is, an item processed at workstation i has an average processing time of
1/(σiµ). Both workstations have no storage capacity and each service channel can handle
only one item at a time. An arriving item is processed by the first workstation in which a
service channel is free and is lost when no service channel is available at either of the stations.
Show how to calculate the fraction of items lost and solve for the numerical data λ = 10,
µ = 1, σ1 = 2, σ2 = 1.5, s1 = 5 and s2 = 5 (Answer : 0.0306). Verify experimentally that
the loss probability is nearly insensitive to the distributional form of the service requirement
(e.g. compute the loss probability 0.0316 for the data when the service requirement has an
H2 distribution with balanced means and a squared coefficient of variation of 4).

5.18 Consider a stochastic service system with Poisson arrivals at rate λ and two different
groups of servers, where each arriving customer simultaneously requires a server from both
groups. An arrival not finding that both groups have a free server is lost and has no further
influence on the system. The ith group consists of si identical servers (i = 1, 2) and each
server can handle only one customer at a time. An entering customer occupies the two
assigned servers from the groups 1 and 2 during independently exponentially distributed
times with respective means 1/µ1 and 1/µ2. Show how to calculate the loss probability
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and solve for the numerical data λ = 1, 1/µ1 = 2, 1/µ2 = 5, s1 = 5 and s2 = 10. (Answer :
0.0464.) Verify experimentally that the loss probability is nearly insensitive to the distribu-
tional form of the service times (e.g. compute the loss probability 0.0470 for the above data
when the service time in group 1 has an E2 distribution and the service time in group 2 has
an H2 distribution with balanced means and a squared coefficient of variation of 4).

5.19 Customers of the types 1, . . . , m arrive at a service centre according to indepen-
dent Poisson processes with respective rates λ1, . . . , λm. The service centre has c identical
servers. An arriving customer of type j requires bj servers and is lost when there are no bj
servers available. A customer of type j has an exponentially distributed service time with
mean 1/µj for j = 1, . . . , m. The customer keeps all of the assigned bj servers busy during
his service time and upon completion of the service time the bj servers are simultaneously
released. Let p(n1, . . . , nm) be the long-run fraction of time that nj groups of bj servers
are handling type j customers for j = 1, . . . , m.

(a) Verify from the equilibrium equations for the probabilities p(n1, . . . , nm) that, for
some constant C > 0,

p(n1, . . . , nm) = C

m∏
j=1

(λj /µj )nj

nj !

for all (n1, . . . , nm) with n1b1 + · · · + nmbm ≤ c.
(b) What is the long-run fraction of type j customers who are lost?
The above product-form solution can also be proved by considering the process

{(X1(t), . . . , Xm(t))} in the infinite-server model (c = ∞) with Xj (t) denoting the number
of type j customers present at time t . The processes {X1(t)}, . . . , {Xm(t)} are indepen-
dent of each other and each separate process {Xj (t)} constitutes an M/M/∞ queueing
process having a Poisson distribution with mean λj /µj as equilibrium distribution. Noting
that the process {(X1(t), . . . , Xm(t))} is time reversible, it can be concluded from the result
in Exercise 5.8 that the above product-form solution holds. The normalization constant C
can be computed as follows. Let {pj , 0 ≤ j ≤ c} denote the equilibrium distribution of

the numbers of busy servers in the loss model with c servers and let {p(∞)
j

} denote the
equilibrium distribution of the number of busy servers in the infinite-server model. Then

pj =
p

(∞)
j∑c

k=0 p
(∞)
k

, j = 0, 1, . . . , c.

The normalization constant C is given by p0. It is left to the reader to verify that {p(∞)
j

} can
be computed as the convolution of m compound Poisson distributions. The j th compound
Poisson distribution represents the limiting distribution of the numbers of busy servers in a
batch arrival MX/G/∞ queue with group service, where the arrival rate of batches is λj ,
each batch consists of bj customers and the mean service time of the customers from the
same batch is 1/µj ; see part (b) of Exercise 1.15. Finally, it is noted that the loss model
has the insensitivity property.

5.20 Batches of containers arrive at a stockyard according to a Poisson process with a rate
of λ = 15 batches per day. Each batch consists of two or three containers with respective
probabilities of 2

3 and 1
3 . The stockyard has space for only 50 containers. An arriving batch

finding not enough space is lost and is brought elsewhere. Containers from the same batch
are removed simultaneously after a random time. The holding times of the batches are
independent random variables and have a lognormal distribution with a mean of 1 day and
a standard deviation of 2 days for batches of size 3 and a mean of 1 day and a standard
deviation of 1

2 day for batches of size 3. Calculate the long-run fraction of batches of size
2 that are lost and the long-run fraction of batches of size 3 that are lost.
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5.21 Consider the following modification of Example 5.4.2. Instead of infinite-source input,
there is finite-source input for each of the two message types. The source of messages of type
j has Mj users, where each user generates a new message after an exponentially distributed
think time with mean 1/λj provided the user has no message in service at the communication
system. Assume the numerical data c = 10, M1 = M2 = 10, λ1 = 3, λ2 = 1, µ1 = 4,
µ2 = 1. Use continuous-time Markov chain analysis to compute the L-policy for which
the average throughput is maximal. Does the result change when the transmission times are
constant rather than exponentially distributed?

5.22 Suppose a production facility has M operating machines and a buffer of B standby
machines. Machines in operation are subject to breakdowns. The running times of the oper-
ating machines are independent of each other and have a common exponential distribution
with mean 1/λ. An operating machine that breaks down is replaced by a standby machine if
one is available. A failed machine immediately enters repair. There are ample repair facil-
ities so that any number of machines can be repaired simultaneously. The repair time of a
failed machine is assumed to have an exponential distribution with mean 1/µ. For given
values of µ, λ and M , demonstrate how to calculate the minimum buffer size B in order
to achieve that the long-run fraction of time that less than M machines are operating is no
more than a specific value β. Do you expect the answer to depend on the specific form of
the repair-time distribution?

5.23 Suppose a communication system has c transmission channels at which messages arrive
according to a Poisson process with rate λ. Each message that finds all of the c channels busy
is lost upon arrival, otherwise the message is randomly assigned to one of the free channels.
The transmission length of an accepted message has an exponential distribution with mean
1/µ. However, each separate channel is subject to a randomly changing environment that
influences the transmission rate of the channel. Independently of each other, the channels
alternate between periods of good condition and periods of bad condition. These alternating
periods are independent of each other and have exponential distributions with means 1/γg

and 1/γb. The transmission rate of a channel being in good (bad) condition is σg (σb). Set
up the balance equations for calculating the fraction of messages that are lost. Noting that
σ = (σbγg + σgγb)/(γg + γb) is the average transmission rate used by a channel, make
some numerical comparisons with the case of a fixed transmission rate σ .

5.24 Jobs have to undergo tooling at two stations, 1 and 2, which are linked in series. New
jobs arrive at station 1 according to a Poisson process with rate λ. At station 1 they undergo
their first tooling. Upon completion of the tooling at station 2, there is a given probability
p that both toolings have to be done anew. In this case the job rejoins the queue at station
1, otherwise the job leaves the system. The handling times of a job at stations 1 and 2 are
independent random variables having exponential distributions with respective means 1/µ1
and 1/µ2. Each station can handle only one job at a time. What is the long-run average
amount of time spent in the system by a newly arriving job?

5.25 Consider a closed queueing network as in Section 5.6.2. Assume now that the service
rate at station i is a function µi(ni) of the number (ni) of customers present at station i.
Verify that the product-form solution is given by

p(n1, . . . nK) = C

K∏
i=1


λ

ni

i
/

ni∏
l=1

µi(l)


 .

5.26 Consider the M/G/1 queue with Erlangian services from Example 5.5.1. Define the
generating functions β(z) = ∑∞

j=1 βj zj and F(z) = ∑∞
j=0 fj zj . Let R be the convergence

radius of the series
∑∞

j=1 βj zj . It is assumed that R > 1.
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(a) Verify that

F(z) = µf0(1 − z)

µ(1 − z) − λz(1 − β(z))
.

(b) Use Theorem C.1 in Appendix C to prove that fj ∼ γ ηj as j → ∞ for some constant
γ , where η is the reciprocal of the smallest root of µ(1 − x) − λx(1 − β(x)) = 0 on (1, R).

(c) Verify that 1 − Wq(x) ∼ γ1e−µ(1−η)x as x → ∞ for some constant γ1 > 0.

5.27 Consider the so-called MAP/G/1 queue with a Markov modulated Poisson arrival
process (an important application of this model in teletraffic analysis is the buffering of
independent on-off sources at a statistical multiplexer). The arrival rate of customers is
governed by an exogenous phase process. The phase process is a continuous-time Markov
chain with finitely many states s = 0, 1, . . . , m and infinitesimal transition rates αst . It is
assumed that the phase process is irreducible and thus has a unique equilibrium distribution
which is denoted by {es }. If the phase process is in state s, customers arrive according to
a Poisson process with rate λs . The service times of the customers are independent random
variables which are also independent of the arrival process. Customers are served in order of
arrival. It is assumed that the service time of a customer has the same probability distribution

function (5.5.3) as in Example 5.5.1. Letting ρ = (∑m
s=0 λses

) ×
(
µ−1 ∑∞

j=1 jβj

)
, it is

assumed that the server utilization ρ is less than 1. Also it is assumed that the convergence
radius R of the power series β(z) = ∑∞

j=1 βj zj is larger than 1.
(a) Let p(i, s) denote the joint equilibrium probability that i customers are present and

the arrival process is in phase s. Verify that for any s there is a constant γs such that

p(i, s) ∼ γsη
i as i → ∞,

where η is the reciprocal of the smallest root τ of det A(x) = 0 on (1, R). Here the
(m + 1) × (m + 1) matrix A(z) is given by

A(z) = µ(1 − z)I − z(1 − β(z))� + zQT ,

where � is the diagonal matrix � =diag(λ0, λ1, . . . , λm) and QT is the transpose of the
transition matrix Q = (qst ), s, t = 0, 1, . . . , m with qst = αst for t �= s and qss =
−∑

t �=s αst . For the special case of m = 1 with α01 = ω1 and α10 = ω2 (switched Poisson
process), verify that the determination of τ reduces to finding the smallest root of

[(λ1 + µ + ω1)z − λ1zβ(z) − µ][(λ2 + µ + ω2)z − λ2zβ(z) − µ] − ω1ω2z2 = 0

on the interval (1, R). Conclude that the geometric tail approach can be applied to calculate
the state probabilities p(i, s).

(b) Let πj denote the long-run fraction of customers who find j other customers present
upon arrival. Argue that πj = ∑m

s=0 λsp (j, s) /
∑m

s=0 λses .
(c) Let Wq(x) denote the limiting probability distribution function of the delay in queue

of a customer. Verify that 1 − Wq(x) ∼ γ e−µ(1−η)x as x → ∞ for some constant γ .

BIBLIOGRAPHIC NOTES

Queueing problems have laid the foundation for the continuous-time Markov chain
model. The Erlang delay model and the Erlang loss model stem from teletraffic
analysis. The square-root rule is discussed in many papers and was obtained by
A.K. Erlang in an unpublished paper in 1924. Recommended references are Borst
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et al. (2003), Halfin and Whitt (1981), Jennings et al. (1996) and Whitt (1992).
Influential papers showing Poisson departures for the M/M/c queue are Burke
(1956) and Reich (1957). Insensitivity is a fundamental concept in stochastic ser-
vice systems with no queueing. The illustrative problem from Example 5.4.2 is
adapted from Foschini et al. (1981). A general discussion of the insensitivity phe-
nomenon in stochastic networks can be found in Kelly (1979, 1991) and Van
Dijk (1993). The book of Kelly (1979) makes extensive use of the concept of
time-reversible Markov chains. The method of phases using fictitious stages with
exponentially distributed lifetimes has its origin in the pioneering work of Erlang
on stochastic processes in the early 1900s. The scope of this method was consider-
ably enlarged by Schassberger (1973), who showed that the probability distribution
of any non-negative random variable can be represented as the limit of a sequence
of mixtures of Erlangian distributions with the same scale parameters. This result is
very useful for both analytical and computational purposes. The product-form solu-
tion was first obtained in the paper of R.R.P. Jackson (1954) for a tandem queue
consisting of two single-server stations. This work was considerably extended by
J.R. Jackson (1957, 1963) to produce what have come to be known as Jackson
networks. More material on queueing networks and their applications in computer
and communication networks can be found in the books of Hayes (1984) and
Kleinrock (1976).
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CHAPTER 6

Discrete-Time Markov
Decision Processes

6.0 INTRODUCTION

In the previous chapters we saw that in the analysis of many operational systems
the concepts of a state of a system and a state transition are of basic impor-
tance. For dynamic systems with a given probabilistic law of motion, the simple
Markov model is often appropriate. However, in many situations with uncertainty
and dynamism, the state transitions can be controlled by taking a sequence of
actions. The Markov decision model is a versatile and powerful tool for analysing
probabilistic sequential decision processes with an infinite planning horizon. This
model is an outgrowth of the Markov model and dynamic programming. The lat-
ter concept, being developed by Bellman in the early 1950s, is a computational
approach for analysing sequential decision processes with a finite planning horizon.
The basic ideas of dynamic programming are states, the principle of optimality and
functional equations.

In fact dynamic programming is a recursion procedure for calculating optimal
value functions from a functional equation. This functional equation reflects the
principle of optimality, stating that an optimal policy has the property that what-
ever the initial state and the initial decision, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first transition. This
principle is always valid when the number of states and the number of actions
are finite. At much the same time as Bellman (1957) popularized dynamic pro-
gramming, Howard (1960) used basic principles from Markov chain theory and
dynamic programming to develop a policy-iteration algorithm for solving proba-
bilistic sequential decision processes with an infinite planning horizon. In the two
decades following the pioneering work of Bellman and Howard, the theory of
Markov decision processes has expanded at a fast rate and a powerful technology
has developed. However, in that period relatively little effort was put into applying
the quite useful Markov decision model to practical problems.

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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The Markov decision model has many potential applications in inventory control,
maintenance, manufacturing and telecommunication among others. Perhaps this
versatile model will see many more significant applications when it becomes more
familiar to engineers, operations research analysts, computer science people and
others. To that end, Chapters 6 and 7 focus on the algorithmic aspects of Markov
decision theory and illustrate the wide applicability of the Markov decision model
to a variety of realistic problems. The presentation is confined to the optimality
criterion of the long-run average cost (reward) per time unit. For many applications
of Markov decision theory this criterion is the most appropriate optimality criterion.
The average cost criterion is particularly appropriate when many state transitions
occur in a relatively short time, as is typically the case for stochastic control
problems in computer systems and telecommunication networks. Other criteria are
the expected total cost and the expected total discounted cost. These criteria are
discussed in length in Puterman (1994) and will not be addressed in this book.

This chapter deals with the discrete-time Markov decision model in which deci-
sions can be made only at fixed equidistant points in time. The semi-Markov
decision model in which the times between the decision epochs are random will
be the subject of the next chapter. In Section 6.1 we present the basic elements
of the discrete-time Markov decision model. A policy-improvement procedure is
discussed in Section 6.2. This procedure is the key to various algorithms for com-
puting an average cost optimal polity. The so-called relative values of a given
policy play an important role in the improvement procedure. The relative values
and their interpretation are the subject of Section 6.3. In Section 6.4 we present
the policy-iteration algorithm which generates a sequence of improved policies.
Section 6.5 discusses the linear programming formulation for the Markov decision
model, including a formulation to handle probabilistic constraints on the state-action
frequencies. The policy-iteration algorithm and the linear programming formulation
both require the solving of a system of linear equations in each iteration step. In
Section 6.6 we discuss the alternative method of value iteration which avoids the
computationally burdensome solving of systems of linear equations but involves
only recursive computations. The value-iteration algorithm endowed with quickly
converging lower and upper bounds on the minimal average cost is usually the
most effective method for solving Markov decision problems with a large number
of states. Section 6.7 gives convergence proofs for the policy-iteration algorithm
and the value-iteration algorithm.

6.1 THE MODEL

In Chapter 3 we have considered a dynamic system that evolves over time accord-
ing to a fixed probabilistic law of motion satisfying the Markovian assumption.
This assumption states that the next state to be visited depends only on the present
state of the system. In this chapter we deal with a dynamic system evolving over
time where the probabilistic law of motion can be controlled by taking decisions.
Also, costs are incurred (or rewards are earned) as a consequence of the decisions
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that are sequentially made when the system evolves over time. An infinite plan-
ning horizon is assumed and the goal is to find a control rule which minimizes the
long-run average cost per time unit.

A typical example of a controlled dynamic system is an inventory system with
stochastic demands where the inventory position is periodically reviewed. The deci-
sions taken at the review times consist of ordering a certain amount of the product
depending on the inventory position. The economic consequences of the decisions
are reflected in ordering, inventory and shortage costs.

We now introduce the Markov decision model. Consider a dynamic system which
is reviewed at equidistant points of time t = 0, 1, . . . . At each review the system
is classified into one of a possible number of states and subsequently a decision
has to be made. The set of possible states is denoted by I . For each state i ∈ I ,
a set A(i) of decisions or actions is given. The state space I and the action sets
A(i) are assumed to be finite. The economic consequences of the decisions taken at
the review times (decision epochs) are reflected in costs. This controlled dynamic
system is called a discrete-time Markov model when the following Markovian
property is satisfied. If at a decision epoch the action a is chosen in state i, then
regardless of the past history of the system, the following happens:

(a) an immediate cost ci(a) is incurred,

(b) at the next decision epoch the system will be in state j with probability pij (a),
where ∑

j∈I

pij (a) = 1, i ∈ I.

Note that the one-step costs ci(a) and the one-step transition probabilities pij (a)

are assumed to be time homogeneous. In specific problems the ‘immediate’ costs
ci(a) will often represent the expected cost incurred until the next decision epoch
when action a is chosen in state i. Also, it should be emphasized that the choice
of the state space and of the action sets often depends on the cost structure of
the specific problem considered. For example, in a production/inventory problem
involving a fixed set-up cost for restarting production after an idle period, the
state description should include a state variable indicating whether the production
facility is on or off. Many practical control problems can be modelled as a Markov
decision process by an appropriate choice of the state space and action sets. Before
we develop the required theory for the average cost criterion, we give a typical
example of a Markov decision problem.

Example 6.1.1 A maintenance problem

At the beginning of each day a piece of equipment is inspected to reveal its actual
working condition. The equipment will be found in one of the working conditions
i = 1, . . . , N , where the working condition i is better than the working condition
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i + 1. The equipment deteriorates in time. If the present working condition is i

and no repair is done, then at the beginning of the next day the equipment has
working condition j with probability qij . It is assumed that qij = 0 for j < i and∑

j≥i qij = 1. The working condition i = N represents a malfunction that requires
an enforced repair taking two days. For the intermediate states i with 1 < i < N

there is a choice between preventively repairing the equipment and letting the
equipment operate for the present day. A preventive repair takes only one day. A
repaired system has the working condition i = 1. The cost of an enforced repair
upon failure is Cf and the cost of a pre-emptive repair in working condition i

is Cpi . We wish to determine a maintenance rule which minimizes the long-run
average repair cost per day.

This problem can be put in the framework of a discrete-time Markov decision
model. Also, since an enforced repair takes two days and the state of the system
has to be defined at the beginning of each day, we need an auxiliary state for the
situation in which an enforced repair is in progress already for one day. Thus the
set of possible states of the system is chosen as

I = {1, 2, . . . , N, N + 1}.
State i with 1 ≤ i ≤ N corresponds to the situation in which an inspection reveals
working condition i, while state N + 1 corresponds to the situation in which an
enforced repair is in progress already for one day. Define the actions

a =



0 if no repair is done,
1 if a preventive repair is done,
2 if an enforced repair is done.

The set of possible actions in state i is chosen as

A(1) = {0}, A(i) = {0, 1} for 1 < i < N, A(N) = A(N + 1) = {2}.
The one-step transition probabilities pij (a) are given by

pij (0) = qij for 1 ≤ i < N,

pi1 (1) = 1 for 1 < i < N,

pN,N+1(2) = pN+1,1(2) = 1,

and the other pij (a) = 0. The one-step costs ci(a) are given by

ci(0) = 0, ci(1) = Cpi , cN(2) = Cf and cN+1(2) = 0.

Stationary policies

We now introduce some concepts that will be needed in the algorithms to be
described in the next sections. A rule or policy for controlling the system is a
prescription for taking actions at each decision epoch. In principle a control rule
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may be quite complicated in the sense that the prescribed actions may depend on
the whole history of the system. An important class of policies is the subclass of
stationary policies. A stationary policy R is a policy that assigns to each state i a
fixed action a = Ri and always uses this action whenever the system is in state i.
For example, in the maintenance problem with N = 5, the policy R prescribing
a preventive repair only in the states 3 and 4 is given by R1 = 0, R2 = 0,
R3 = R4 = 1 and R5 = R6 = 2.

For n = 0, 1, . . . , define

Xn = the state of the system at the nth decision epoch.

Under a given stationary policy R, we have

P {Xn+1 = j | Xn = i} = pij (Ri),

regardless of the past history of the system up to time n. Hence under a given
stationary policy R the stochastic process {Xn} is a discrete-time Markov chain with
one-step transition probabilities pij (Ri). This Markov chain incurs a cost ci(Ri)

each time the system visits state i. Thus we can invoke results from Markov chain
theory to specify the long-run average cost per time unit under a given stationary
policy.

In view of the Markov assumption made and the fact that the planning horizon
is infinitely long, it will be intuitively clear that it is sufficient to consider only the
class of stationary policies. However, other policies are conceivable: policies whose
actions depend on the past states or policies whose actions are determined by a
random mechanism. This issue raises a fundamental question in Markov decision
theory: does there exist an optimal policy among the class of all conceivable policies
and, if an optimal policy exists, is such a policy a stationary policy? The answer
to these questions is yes for the average-cost Markov decision model with a finite
state space and finite action sets. However, a mathematical proof requires rather
deep arguments. The interested reader is referred to Derman (1970) and Puterman
(1994) for a proof. From these books the reader will learn that the issue of the
existence of an optimal (stationary) policy is a very subtle one. Especially for the
average cost criterion, the optimality questions become very complicated when
the state space is not finite but countably infinite. Even in simple countable-state
models, average cost optimal policies need not exist and, when they do, they need
not be stationary; see Puterman (1994). In the average-cost Markov decision model
with a finite state space and finite action sets these difficulties do not arise and the
analysis can be restricted to the class of stationary policies.

6.2 THE POLICY-IMPROVEMENT IDEA

In this section we will establish a key result that underlies the various algorithms
for the computation of an average cost optimal policy. Before doing this, we discuss
the long-run average cost per time unit for a stationary policy.
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Average cost for a given stationary policy

Fix a stationary policy R. Under policy R each time the action a = Ri is taken
whenever the system is in state i at a decision epoch. The process {Xn} describing
the state of the system at the decision epochs is a Markov chain with one-step
transition probabilities pij (Ri), i, j ∈ I when policy R is used. Denote the n-step
transition probabilities of this Markov chain by

p
(n)
ij (R) = P {Xn = j | X0 = i}, i, j ∈ I and n = 1, 2, . . . .

Note that p
(1)
ij (R) = pij (Ri). By the equations (3.2.1),

p
(n)
ij (R) =

∑
k∈I

p
(n−1)
ik (R)pkj (Rk), n = 1, 2, . . . , (6.2.1)

where p
(0)
ij (R) = 1 for j = i and p

(0)
ij (R) = 0 for j �= i. Also, define the expected

cost function Vn(i, R) by

Vn(i, R) = the total expected costs over the first n decision epochs
when the initial state is i and policy R is used.

Obviously, we have

Vn(i, R) =
n−1∑
t=0

∑
j∈I

p
(t)
ij (R)cj (Rj ), (6.2.2)

Next we define the average cost function gi(R) by

gi(R) = lim
n→∞

1

n
Vn(i, R), i ∈ I. (6.2.3)

This limit exists by Theorem 3.3.1 and represents the long-run average expected
cost per time unit when the system is controlled by policy R and the initial
state is i. A state i is said to be recurrent under policy R if the system ulti-
mately returns to state i with probability 1 when the system starts in state i

and policy R is used; see Section 3.2.3. Otherwise, state i is said to be tran-
sient under policy R. If state i is recurrent under policy R, then gi(R) allows for
the stronger interpretation

the long-run actual average cost per time unit = gi(R) (6.2.4)

with probability 1 when the initial state is i and policy R is used. This is a
direct consequence of the theory for finite-state Markov chains. For the Markov
chain {Xn} corresponding to policy R, the state space can be uniquely split up
into a finite number of disjoint irreducible sets of recurrent states and a (possibly
empty) set of transient states; see Section 3.5.1. Denote the recurrent subclasses by
I1(R), . . . , If (R) and the set of transient states by T (R). Since the system cannot
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leave a closed set, the process {Xn} restricted to any recurrent subclass I�(R) is
a Markov chain itself with its own equilibrium distribution. Since the restricted
Markov chain on I�(R) is irreducible, it follows from Theorem 3.3.3 that (6.2.4)
holds for i ∈ I�(R), � = 1, . . . , f . Moreover,

gi(R) = gj (R), i, j ∈ I�(R).

Let g(�)(R) denote the common value of gi(R) for i ∈ I�(R). For a transient initial
state i, the long-run average cost per time unit is a random variable. This ran-
dom variable assumes the value g(�)(R) with probability f

(�)
i (R), where f

(�)
i (R)

is the probability that the system is ultimately absorbed in the recurrent sub-
class I�(R) when the initial state is i and policy R is used. Obviously, gi(R) =∑f

�=1 g(�)(R)f
(�)
i (R) for i ∈ T (R).

The above technical discussion involves rather heavy notation and might be
intimidating for some readers. This discussion greatly simplifies when the Markov
chain {Xn} corresponding to policy R is unichain as is mostly the case in practi-
cal situations. The Markov chain is said to be unichain if it has no two disjoint
closed sets. In the unichain case the Markov chain {Xn} has a unique equilibrium
distribution {πj (R), j ∈ I }. For any j ∈ I ,

lim
m→∞

1

m

m∑
n=1

p
(n)
ij (R) = πj (R), (6.2.5)

independently of the initial state i. The πj (R) are the unique solution to the system
of equilibrium equations

πj (R) =
∑
i∈I

pij (Ri)πi(R), j ∈ I, (6.2.6)

in conjunction with
∑

j∈I πj (R) = 1. By (6.2.2), (6.2.3) and (6.2.5),

gi(R) = g(R) for all i ∈ I

with

g(R) =
∑
j∈I

cj (Rj )πj (R). (6.2.7)

We defined gi(R) as an average expected cost. For the unichain case, it follows
from renewal-reward theory that the long-run average actual cost per time unit
equals g(R) with probability 1 when policy R is used, independently of the initial
state.

In practical applications the Markov chain {Xn} associated with an optimal sta-
tionary policy will typically be unichain. The reader might wonder why we are
still paying attention to the multichain case. The reason is that in some applications
non-optimal policies may have multiple recurrent subclasses and those policies may
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show up in intermediate steps of the algorithms for computing an optimal policy.
However, in most practical applications the Markov chain {Xn} is unichain for
each stationary policy.

Policy-improvement idea

A stationary policy R∗ is said to be average cost optimal if

gi(R
∗) ≤ gi(R)

for each stationary policy R, uniformly in the initial state i. It is stated without
proof that an average cost optimal stationary policy R∗ always exists. Moreover,
policy R∗ is not only optimal among the class of stationary policies but it is also
optimal among the class of all conceivable policies.

In most applications it is computationally not feasible to find an average cost
optimal policy by computing the average cost for each stationary policy separately.
For example, if the number of states is N and there are two actions in each
state, then the number of possible stationary policies is 2N and this number grows
quickly beyond any practical bound. However, several algorithms can be given
that lead in an effective way to an average cost optimal policy. Policy iteration
and value iteration are the most widely used algorithms to compute an average
cost optimal policy. The first method works on the policy space and generates
a sequence of improved policies, whereas the second method approximates the
minimal average cost through a sequence of value functions. In both methods a
key role is played by the so-called relative values. The relative values are the basis
for a powerful improvement step. The improvement step is motivated through a
heuristic discussion of the relative values of a given policy R. In the next section
a rigorous treatment will be presented for the relative values.

Let us fix any stationary policy R. It is assumed that the Markov chain {Xn}
associated with policy R has no two disjoint closed sets. Then the average cost
gi(R) = g(R), independently of the initial state i ∈ I. The starting point is the
obvious relation limn→∞ Vn(i, R)/n = g(R) for all i, where Vn(i, R) denotes the
total expected costs over the first n decision epochs when the initial state is i and
policy R is used. This relation motivates the heuristic assumption that bias values
vi(R), i ∈ I , exist such that, for each i ∈ I ,

Vn(i, R) ≈ ng(R) + υi(R) for n large. (6.2.8)

Note that υi(R) − υj (R) ≈ Vn(i, R) − Vn(j, R) for n large. Thus υi(R) − υj (R)

measures the difference in total expected costs when starting in state i rather than
in state j , given that policy R is followed. This explains the name of relative values
for the υi(R). We have the recursion equation

Vn(i, R) = ci(Ri) +
∑
j∈I

pij (Ri)Vn−1(j, R), n ≥ 1 and i ∈ I
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with V0(i, R) = 0. This equation follows by conditioning on the next state that
occurs when action a = Ri is made in state i when n decision epochs are to go. A
cost ci(Ri) is incurred at the first decision epoch and the total expected cost over
the remaining n − 1 decision epochs is Vn−1(j, R) when the next state is j . By
substituting the asymptotic expansion (6.2.8) in the recursion equation, we find,
after cancelling out common terms,

g(R) + υi(R) ≈ ci(Ri) +
∑
j∈I

pij (Ri)υj (R), i ∈ I. (6.2.9)

The intuitive idea behind the procedure for improving the given policy R is to
consider the following difference in costs:

�(i, a, R) = the difference in total expected costs over an infinitely long period
of time by taking first action a and next using policy R rather
than using policy R from scratch when the initial state is i.

This difference is equal to zero when action a = Ri is chosen. We wish to make
the difference �(i, a, R) as negative as possible. This difference is given by

�(i, a, R) = lim
n→∞


ci(a) +

∑
j∈I

pij (a)Vn−1(j, R)

−{ci(Ri) +
∑
j∈I

pij (Ri)Vn−1(j, R)}

 .

Substituting (6.2.8) into the expression between brackets, we find that for large n

this expression is approximately equal to

ci(a) +
∑
j∈I

pij (a)vj (R) − (n − 1)g(R)

−

ci(Ri) +

∑
j∈I

pij (Ri)vj (R) − (n − 1)g(R)


 .

This gives

�(i, a, R) ≈ ci(a) +
∑
j∈I

pij (a)vj (R) − ci(Ri) −
∑
j∈I

pij (Ri)vj (R).

Thus, by using (6.2.9),

�(i, a, R) ≈ ci(a) +
∑
j∈I

pij (a)vj (R) − g(R) − vi(R).
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This relation and the definition of �(i, a, R) suggest we should look for an action
a in state i so that the quantity

ci(a) − g(R) +
∑
j∈I

pij (a)vj (R) (6.2.10)

is as small as possible. The quantity in (6.2.10) is called the policy-improvement
quantity. The above heuristic discussion suggests a main theorem that will be the
basis for the algorithms to be discussed later. A direct proof of this theorem can
be given without using any of the heuristic assumptions made above.

Theorem 6.2.1 (improvement theorem) Let g and vi , i ∈ I , be given numbers.
Suppose that the stationary policy R has the property

ci(Ri) − g +
∑
j∈I

pij (Ri)υj ≤ υi f or each i ∈ I. (6.2.11)

Then the long-run average cost of policy R satisfies

gi(R) ≤ g, i ∈ I, (6.2.12)

where the strict inequality sign holds in (6.2.12) for i = r when state r is recurrent
under policy R and the strict inequality sign holds in (6.2.11) for i = r . The result
is also true when the inequality signs in (6.2.11) and (6.2.12) are reversed.

Proof We first give an intuitive explanation of the theorem and next we give a
formal proof. Suppose that a control cost of ci(a) − g is incurred each time the
action a is chosen in state i, while a terminal cost of υj is incurred when the
control of the system is stopped and the system is left behind in state j . Then
(6.2.11) states that controlling the system for one step according to rule R and
stopping next is preferable to stopping directly when the initial state is i. Since this
property is true for each initial state, a repeated application of this property yields
that controlling the system for m steps according to rule R and stopping after that
is preferable to stopping directly. Thus, for each initial state i ∈ I ,

Vm(i, R) − mg +
∑
j∈I

p
(m)
ij (R)υj ≤ υi, m = 1, 2, . . . .

Dividing both sides of this inequality by m and letting m → ∞, we get (6.2.12).
Next we give a formal proof that yields the result with the strict inequality sign
as well. The proof is first given under the assumption that the Markov chain {Xn}
associated with policy R is unichain. Then this Markov chain has a unique equi-
librium distribution {πj (R), j ∈ I }, where πj (R) > 0 only if state j is recurrent
under policy R. Multiply both sides of (6.2.11) by πi(R) and sum over i. This
gives ∑

i∈I

πi(R)ci(Ri) − g +
∑
i∈I

πi(R)
∑
j∈I

pij (Ri)υj ≤
∑
i∈I

πi(R)υi,
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where the strict inequality sign holds when the strict inequality sign holds in (6.2.11)
for some i with πi(R) > 0. Interchanging the order of summation in the above
inequality and using (6.2.6) and (6.2.7) with R replaced by R, we find

g(R) − g +
∑
j∈I

πj (R)υj ≤
∑
i∈I

πi(R)υi,

where the strict inequality sign holds when the strict inequality sign holds in (6.2.11)
for some i with πi(R) > 0. This verifies the theorem for the case of a unichain
policy R. Next it is easy to establish the theorem for the case of a multichain
policy R. Letting I1(R), . . . , If (R) denote the recurrent subclasses of the Markov
chain associated with policy R, the above proof shows that for any � = 1, . . . , f

the inequality (6.2.12) holds for all i ∈ I�(R). The proof of the theorem is next
completed by noting that for each transient state i the average expected cost gi(R)

is a linear combination of the average costs on the recurrent subclasses.

6.3 THE RELATIVE VALUE FUNCTION

In Section 6.2 we introduced in a heuristic way the relative values for a given
stationary policy R. In this section we give a rigorous treatment. This will be done
for the case of a unichain policy R. Let r be any recurrent state of policy R. In
view of the unichain assumption, the Markov chain {Xn} associated with policy R

will visit state r after finitely many transitions, regardless of the initial state. Thus
we can define, for each state i ∈ I ,

Ti(R) = the expected time until the first return to state r when
starting in state i and using policy R.

In particular, letting a cycle be the time elapsed between two consecutive visits to
the regeneration state r under policy R, we have that Tr(R) is the expected length
of a cycle. Also define, for each i ∈ I ,

Ki(R) = the expected costs incurred until the first return to state r

when starting in state i and using policy R.

We use the convention that Ki(R) includes the cost incurred when starting in state
i but excludes the cost incurred when returning to state r . By the theory of renewal-
reward processes, the average cost per time unit equals the expected costs incurred
in one cycle divided by the expected length of one cycle and so

g(R) = Kr(R)

Tr(R)
.

Next we define the particular relative value function

wi(R) = Ki(R) − g(R)Ti(R), i ∈ I. (6.3.1)
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Note, as a consequence of (6.3.1), the normalization

wr(R) = 0.

In accordance with the heuristic result (6.2.9), the next theorem shows that the
average cost g = g(R) and the relative values υi = wi(R), i ∈ I satisfy a system
of linear equations.

Theorem 6.3.1 Let R be a given stationary policy such that the associated Markov
chain {Xn} has no two disjoint closed sets. Then

(a) The average cost g(R) and the relative values wi(R), i ∈ I , satisfy the following
system of linear equations in the unknowns g and υi , i ∈ I :

υi = ci(Ri) − g +
∑
j∈I

pij (Ri)υj , i ∈ I. (6.3.2)

(b) Let the numbers g and υi , i ∈ I , be any solution to (6.3.2). Then

g = g(R)

and, for some constant c,

υi = wi(R) + c, i ∈ I.

(c) Let s be an arbitrarily chosen state. Then the linear equations (6.3.2) together
with the normalization equation υs = 0 have a unique solution.

Proof (a) By conditioning on the next state following the initial state i, it can be
seen that

Ti(R) = 1 +
∑
j �=r

pij (Ri)Tj (R), i ∈ I,

Ki(R) = ci(Ri) +
∑
j �=r

pij (Ri)Kj (R), i ∈ I.

This implies that

Ki(R) − g(R)Ti(R) = ci(Ri) − g(R) +
∑
j �=r

pij (Ri){Kj(R) − g(R)Tj (R)}.

Hence, by wr(R) = 0, we find

wi(R) = ci(Ri) − g(R) +
∑
j∈I

pij (Ri)wj (R), i ∈ I.
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(b) Let {g, υi} be any solution to (6.3.2). We first verify by induction that the
following identity holds for each m = 1, 2, . . . .

υi =
m−1∑
t=0

∑
j∈I

p
(t)
ij (R)cj (Rj ) − mg +

∑
j∈I

p
(m)
ij (R)υj , i ∈ I. (6.3.3)

Clearly, (6.3.3) is true for m = 1. Suppose that (6.3.3) is true for m = n. Substitut-
ing equations (6.3.2) into the right-hand side of (6.3.3) with m = n, it follows that

υi =
n−1∑
t=0

∑
j∈I

p
(t)
ij (R)cj (Rj )−ng +

∑
j∈I

p
(n)
ij (R)

{
cj (Rj ) − g +

∑
k∈I

pjk (Rj )υk

}

=
n∑

t=0

∑
j∈I

p
(t)
ij (R)cj (Rj ) − (n + 1)g+

∑
k∈I




∑
j∈I

p
(n)
ij (R)pjk (Rj )


υk, i ∈ I.

where the latter equality involves an interchange of the order of summation. Next,
using (6.2.1), we get (6.3.3) for m = n + 1, which completes the induction step.

Using the relation (6.2.2) for the total expected costs over the first m decision
epochs, we can rewrite (6.3.3) in the more convenient form

υi = Vm(i, R) − mg +
∑
j∈I

p
(m)
ij (R)υj , i ∈ I. (6.3.4)

Since Vm(i, R)/m → g(R) as m → ∞ for each i, the result g = g(R) follows
by dividing both sides of (6.3.4) by m and letting m → ∞. To prove the second
part of assertion (b), let {g, υi} and {g′, υ ′

i} be any two solutions to (6.3.1). Since
g = g′ = g(R), it follows from the representation (6.3.4) that

υi − υ ′
i =

∑
j∈I

p
(m)
ij (R){υj − υ ′

j }, i ∈ I and m ≥ 1.

By summing both sides of this equation over m = 1, . . . , n and then dividing by
n, it follows after an interchange of the order of summation that

υi − υ ′
i =

∑
j∈I

{
1

n

n∑
m=1

p
(m)
ij (R)

}
(υj − υ ′

j ), i ∈ I and n ≥ 1.

Next, by letting n → ∞ and using (6.2.5), we obtain

υi − υ ′
i =

∑
j∈I

πj (R)(υj − υ ′
j ), i ∈ I.

The right-hand side of this equation does not depend on i. This proves part (b).
(c) Since

∑
j pij (Ri) = 1 for each i ∈ I , it follows that for any constant c the

numbers g and υi = wi(R) + c, i ∈ I , satisfy (6.3.2). Hence the equations (6.3.2)
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together with υs = 0 for some s must have a solution. In view of assertion (b),
this solution is unique. This completes the proof of the theorem.

Interpretation of the relative values

The equations (6.3.2) are referred to as the value-determination equations. The
relative value function vi , i ∈ I is unique up to an additive constant. The particular
solution (6.3.1) can be interpreted as the total expected costs incurred until the
first return to state r when policy R is used and the one-step costs are given by
c′
i (a) = ci(a)−g with g = g(R). If the Markov chain {Xn} associated with policy

R is aperiodic, two other interpretations can be given to the relative value function.
The first interpretation is that, for any two states i, j ∈ I ,

vi − vj = the difference in total expected costs over an infinitely
long period of time by starting in state i rather than in
state j when using policy R.

In other words, vi − vj is the maximum amount that a rational person is willing
to pay to start the system in state j rather than in state i when the system is
controlled by rule R. This interpretation is an easy consequence of (6.3.3). Using the
assumption that the Markov chain {Xn} is aperiodic, we have that limm→∞ p

(m)
ij (R)

exists. Moreover this limit is independent of the initial state i, since R is unichain.
Thus, by (6.3.3),

vi = lim
m→∞{Vm(i, R) − mg} +

∑
j∈I

πj (R)vj . (6.3.5)

This implies that vi − vj = limm→∞{Vm(i, R) − Vm(j, R)}, yielding the above
interpretation. A special interpretation applies to the relative value function vi ,
i ∈ I with the property

∑
j∈I πj (R)vj = 0. Since the relative value function is

unique up to an additive constant, there is a unique relative value function with
this property. Denote this relative value function by hi , i ∈ I . Then, by (6.3.5),

hi = lim
m→∞{Vm(i, R) − mg}. (6.3.6)

The bias hi can also be interpreted as the difference in total expected costs between
the system whose initial state is i and the system whose initial state is distributed
according to the equilibrium distribution {πj (R), j ∈ I } when both systems are
controlled by policy R. The latter system is called the stationary system. This
system has the property that at any decision epoch the state is distributed as {πj (R)};
see Section 3.3.2. Thus, for the stationary system, the expected cost incurred at any
decision epoch equals

∑
j∈I cj (Rj )πj (R) being the average cost g = g(R) of policy

R. Consequently, in the stationary system the total expected costs over the first m

decision epochs equals mg. This gives the above interpretation of the bias hi .
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6.4 POLICY-ITERATION ALGORITHM

For ease of presentation we will discuss the policy-iteration algorithm under a
unichain assumption that is satisfied in most applications.

Unichain assumption For each stationary policy the associated Markov chain
{Xn} has no two disjoint closed sets.

The relative values associated with a given policy R provide a tool for construct-
ing a new policy R whose average cost is no more than that of the current policy
R. In order to improve a given policy R whose average cost g(R) and relative
values υi(R), i ∈ I , have been computed, we apply Theorem 6.2.1 with g = g(R)

and υi = υi(R), i ∈ I . By constructing a new policy R such that, for each state
i ∈ I ,

ci(Ri) − g(R) +
∑
j∈I

pij (Ri)υj ≤ υi, (6.4.1)

we obtain an improved rule R according to g(R) ≤ g(R). In constructing such
an improved policy R it is important to realize that for each state i separately
an action Ri satisfying (6.4.1) can be determined. As a side remark, we point
out that this flexibility of the policy-improvement procedure may be exploited in
specific applications to generate a sequence of improved policies within a subclass
of policies having a simple structure. A particular way to find for state i ∈ I an
action Ri satisfying (6.4.1) is to minimize

ci(a) − g(R) +
∑
j∈I

pij (a)υj (R) (6.4.2)

with respect to a ∈ A(i). Noting that the expression in (6.4.2) equals υi(R) for
a = Ri , it follows that (6.4.1) is satisfied for the action Ri which minimizes (6.4.2)
with respect to a ∈ A(i). We are now in a position to formulate the following
algorithm.

Policy-iteration algorithm

Step 0 (initialization). Choose a stationary policy R.
Step 1 (value-determination step). For the current rule R, compute the unique
solution {g(R), υi(R)} to the following system of linear equations:

υi = ci(Ri) − g +
∑
j∈I

pij (Ri)υj , i ∈ I,

υs = 0,

where s is an arbitrarily chosen state.
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Step 2 (policy-improvement step). For each state i ∈ I , determine an action ai

yielding the minimum in

min
a∈A(i)


ci(a) − g(R) +

∑
j∈I

pij (a)υj (R)


 .

The new stationary policy R is obtained by choosing Ri = ai for all i ∈ I with the
convention that Ri is chosen equal to the old action Ri when this action minimizes
the policy-improvement quantity.
Step 3 (convergence test). If the new policy R = R, then the algorithm is stopped
with policy R. Otherwise, go to step 1 with R replaced by R.

The policy-iteration algorithm converges after a finite number of iterations to an
average cost optimal policy. We defer the proof to Section 6.7. The policy-iteration
algorithm is empirically found to be a remarkably robust algorithm that converges
very fast in specific problems. The number of iterations is practically independent
of the number of states and varies typically between 3 and 15, say. Also, it can be
roughly stated that the average costs of the policies generated by policy iteration
converge at least exponentially fast to the minimum average cost, with the greatest
improvements in the first few iterations.

Remark 6.4.1 The average cost optimality equation

Since the policy-iteration algorithm converges after finitely many iterations, there
exist numbers g∗ and υ∗

i , i ∈ I , such that

υ∗
i = min

a∈A(i)


ci(a) − g∗ +

∑
j∈I

pij (a)υ∗
j


 , i ∈ I. (6.4.3)

This functional equation is called the average cost optimality equation. Using Theo-
rem 6.2.1, we can directly verify that any stationary policy R∗ for which the action
R∗

i minimizes the right-hand side of (6.4.3) for all i ∈ I is average cost optimal.
To see this, note that

υ∗
i = ci(R

∗
i ) − g∗ +

∑
j∈I

pij (R
∗
i )υ∗

j , i ∈ I (6.4.4)

and

υ∗
i ≤ ci(a) − g∗ +

∑
j∈I

pij (a)υ∗
j , a ∈ A(i) and i ∈ I. (6.4.5)

The equality (6.4.4) and Theorem 6.2.1 imply that g(R∗) = g∗. Let R be any sta-
tionary policy. Taking a = Ri in (6.4.5) for all i ∈ I and applying Theorem 6.2.1,
we find g(R) ≥ g∗. In other words, g(R∗) ≤ g(R) for any stationary policy R.
This shows not only that policy R∗ is average cost optimal but also shows that the
constant g∗ in (6.4.3) is uniquely determined as the minimal average cost per time
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unit. It is stated without proof that the function υ∗
i , i ∈ I , in (6.4.3) is uniquely

determined up to an additive constant.
Next the policy-iteration algorithm is applied to compute an average cost optimal

policy for the control problem in Example 6.1.1.

Example 6.1.1 (continued) A maintenance problem

It is assumed that the number of possible working conditions equals N = 5. The
repair costs are given by Cf = 10, Cp2 = 7, Cp3 = 7 and Cp4 = 5. The deteri-
oration probabilities qij are given in Table 6.4.1. The policy-iteration algorithm is
initialized with the policy R(1) = (0, 0, 0, 0, 2, 2), which prescribes repair only in
the states 5 and 6. In the calculations below, the policy-improvement quantity is
abbreviated as

Ti(a, R) = ci(a) − g(R) +
∑
j∈I

pij (a)vj (R)

when the current policy is R. Note that always Ti(a, R) = vi(R) for a = Ri .
Iteration 1
Step 1 (value determination). The average cost and the relative values of policy
R(1) = (0, 0, 0, 0, 2, 2) are computed by solving the linear equations

v1 = 0 − g + 0.9v1 + 0.1v2

v2 = 0 − g + 0.8v2 + 0.1v3 + 0.05v4 + 0.05v5

v3 = 0 − g + 0.7v3 + 0.1v4 + 0.2v5

v4 = 0 − 9 + 0.5v4 + 0.5v5

v5 = 10 − g + v6

v6 = 0 − g + v1

v6 = 0,

where state s = 6 is chosen for the normalizing equation vs = 0. The solution of
these linear equations is given by

g(R(1)) = 0.5128, v1(R
(1)) = 0.5128, v2(R

(1)) = 5.6410, v3(R
(1)) = 7.4359,

v4(R
(1)) = 8.4615, v5(R

(1)) = 9.4872, v6(R
(1)) = 0.

Table 6.4.1 The deteriorating probabilities qij

i\j 1 2 3 4 5

1 0.90 0.10 0 0 0
2 0 0.80 0.10 0.05 0.05
3 0 0 0.70 0.10 0.20
4 0 0 0 0.50 0.50
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Step 2 (policy improvement). The test quantity Ti(a, R) has the values

T2(0, R(1)) = 5.6410, T2(1, R(1)) = 7.0000, T3(0, R(1)) = 7.4359,

T3(1, R(1)) = 7.0000, T4(0, R(1)) = 9.4872, T4(1, R(1)) = 5.0000.

This yields the new policy R(2) = (0, 0, 1, 1, 2, 2) by choosing for each state i the
action a that minimizes Ti(a, R(1)).
Step 3 (convergence test). The new policy R(2) is different from the previous policy
R(1) and hence another iteration is performed.

Iteration 2
Step 1 (value determination). The average cost and the relative values of policy
R(2) = (0, 0, 1, 1, 2, 2) are computed by solving the linear equations

v1 = 0 − g + 0.9v1 + 0.1v2

v2 = 0 − g + 0.8v2 + 0.1v3 + 0.05v4 + 0.05v5

v3 = 7 − g + v1

v4 = 5 − g + v1

v5 = 10 − g + v6

v6 = 0 − g + v1

v6 = 0.

The solution of these linear equations is given by

g(R(2)) = 0.4462, v1(R
(2)) = 0.4462, v2(R

(2)) = 4.9077, v3(R
(2)) = 7.000,

v4(R
(2)) = 5.0000, v5(R

(2)) = 9.5538, v6(R
(2)) = 0.

Step 2 (policy improvement). The test quantity Ti(a, R(2)) has the values

T2(0, R(2)) = 4.9077, T2(1, R(2)) = 7.0000, T3(0, R(2)) = 6.8646,

T3(1, R(2)) = 7.0000, T4(0, R(2)) = 6.8307, T4(1, R(2)) = 5.0000.

This yields the new policy R(3) = (0, 0, 0, 1, 2, 2).
Step 3 (convergence test). The new policy R(3) is different from the previous policy
R(2) and hence another iteration is performed.

Iteration 3
Step 1 (value determination). The average cost and the relative values of policy
R(3) = (0, 0, 0, 1, 2, 2) are computed by solving the linear equations
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v1 = 0 − g + 0.9v1 + 0.1v2

v2 = 0 − g + 0.8v2 + 0.1v3 + 0.05v4 + 0.05v5

v3 = 0 − g + 0.7v3 + 0.1v4 + 0.2v5

v4 = 5 − g + v1

v5 = 10 − g + v6

v6 = 0 − g + v1

v6 = 0.

The solution of these linear equations is given by

g(R(3)) = 0.4338, v1(R
(3)) = 0.4338, v2(R

(3)) = 4.7717, v3(R
(3)) = 6.5982,

v4(R
(3)) = 5.0000, v5(R

(3)) = 9.5662, v6(R
(3)) = 0.

Step 2 (policy improvement). The test quantity Ti(a, R(3)) has the values

T2(0, R(3)) = 4.7717, T2(1, R(3)) = 7, T3(0, R(3)) = 6.5987,

T3(1, R(3)) = 7.0000, T4(0, R(3)) = 6.8493, T
(1)

4 (1, R(3)) = 5.0000.

This yields the new policy R(4) = (0, 0, 0, 1, 2, 2).
Step 3 (convergence test). The new policy R(4) is identical to the previous policy
R(3) and is thus average cost optimal. The minimal average cost is 0.4338 per day.

Remark 6.4.2 Deterministic state transitions
For the case of deterministic state transitions the computational burden of pol-
icy iteration can be reduced considerably. Instead of solving a system of linear
equations at each step, the average cost and relative values can be obtained from
recursive calculations. The reason for this is that under each stationary policy the
process moves cyclically among the recurrent states. The simplified policy-iteration
calculations for deterministic state transitions are as follows:

(a) Determine for the current policy R the cycle of recurrent states among which
the process cyclically moves.

(b) The cost rate g(R) equals the sum of one-step costs in the cycle divided by
the number of states in the cycle.

(c) The relative values for the recurrent states are calculated recursively, in reverse
direction to the natural flow around the cycle, after assigning a value 0 to one
recurrent state.
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(d) The relative values for transient states are computed first for states which reach
the cycle in one step, then for states which reach the cycle in two steps, and
so forth.

It is worthwhile pointing out that the simplified policy-iteration algorithm may be
an efficient technique to compute a minimum cost-to-time circuit in a deterministic
network.

6.5 LINEAR PROGRAMMING APPROACH∗

The policy-iteration algorithm solves the average cost optimality equation (6.4.3)
in a finite number of steps by generating a sequence of improved policies. Another
way of solving the optimality equation is the use of a linear program for the
average cost case. The linear programming formulation to be given below allows
the unichain assumption in Section 6.4 to be weakened as follows.

Weak unichain assumption For each average cost optimal stationary policy the
associated Markov chain {Xn} has no two disjoint closed sets.

This assumption allows non-optimal policies to have multiple disjoint closed
sets. The unichain assumption in Section 6.4 may be too strong for some applica-
tions; for example, in inventory problems with strictly bounded demands it may
be possible to construct stationary policies with disjoint ordering regions such that
the levels between which the stock fluctuates remain dependent on the initial level.
However, the weak unichain assumption will practically always be satisfied in real-
world applications. For the weak unichain case, the minimal average cost per time
unit is independent of the initial state and, moreover, the average cost optimality
equation (6.4.3) applies and uniquely determines g∗ as the minimal average cost
per time unit; see Denardo and Fox (1968) for a proof. This reference also gives
the following linear programming algorithm for the computation of an average cost
optimal policy.

Linear programming algorithm

Step 1. Apply the simplex method to compute an optimal basic solution (x∗
ia) to

the following linear program:

Minimize
∑
i∈I

∑
a∈A(i)

ci(a)xia (6.5.1)

subject to ∑
a∈A(j)

xja −
∑
i∈I

∑
a∈A(i)

pij (a)xia = 0, j ∈ I,

∑
i∈I

∑
a∈A(i)

xia = 1,

xia ≥ 0, a ∈ A(i) and i ∈ I.

∗This section may be skipped at first reading.
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Step 2. Start with the non-empty set I0 := {i | ∑
a∈A(i) x∗

ia > 0}. For any state
i ∈ I0, set the decision

R∗
i := a for some a such that x∗

ia > 0.

Step 3. If I0 = I , then the algorithm is stopped with policy R∗. Otherwise, deter-
mine some state i /∈ I0 and action a ∈ A(i) such that pij (a) > 0 for some j ∈ I0.
Next set R∗

i := a and I0 := I0 ∪ {i} and repeat step 3.

The linear program (6.5.1) can heuristically be explained by interpreting the
variables xia as

xia = the long-run fraction of decision epochs at which
the system is in state i and action a is made.

The objective of the linear program is the minimization of the long-run average
cost per time unit, while the first set of constraints represent the balance equations
requiring that for any state j ∈ I the long-run average number of transitions from
state j per time unit must be equal to the long-run average number of transitions
into state j per time unit. The last constraint obviously requires that the sum of
the fractions xia must be equal to 1.

Next we sketch a proof that the linear programming algorithm leads to an average
cost optimal policy R∗ when the weak unichain assumption is satisfied. Our starting
point is the average cost optimality equation (6.4.3). Since this equation is solvable,
the linear inequalities

g + vi −
∑
j∈I

pij (a)vj ≤ ci(a), a ∈ A(i) and i ∈ I (6.5.2)

must have a solution. It follows from Theorem 6.2.1 that any solution {g, vi} to
these inequalities satisfies g ≤ gi(R) for any i ∈ I and any policy R. Hence we
can conclude that for any solution {g, vi} to the linear inequalities (6.5.2) holds
that g ≤ g∗ with g∗ being the minimal average cost per time unit. Hence, using
the fact that relative values v∗

i , i ∈ I , exist such that {g∗, v∗
i } constitutes a solution

to (6.5.2), the linear program

Maximize g (6.5.3)

subject to

g + vi −
∑
j∈I

pij (a)vj ≤ ci(a), a ∈ A(i) and i ∈ I,

g, vi unrestricted,

has the minimal average cost g∗ as the optimal objective-function value. Next
observe that the linear program (6.5.1) is the dual of the primal linear program
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(6.5.3). By the dual theorem of linear programming, the primal and dual lin-
ear programs have the same optimal objective-function value. Hence the minimal
objective-function value of the linear program (6.5.1) equals the minimal average
cost g∗. Next we show that an optimal basic solution (x∗

ia) to the linear program
(6.5.1) induces an average cost optimal policy. To do so, define the set

S0 =

i

∣∣∣ ∑
a∈A(i)

x∗
ia > 0


 .

Then the set S0 is closed under any policy R having the property that action
a = Ri satisfies x∗

ia > 0 for all i ∈ S0. To see this, suppose that pij (Ri) > 0 for
some i ∈ S0 and j /∈ S0. Then the first set of constraints of the linear program
(6.5.1) implies that

∑
a x∗

ja > 0, contradicting j /∈ S0. Next consider the set I0 as
constructed in the linear programming algorithm. Let R∗ be a policy such that the
actions R∗

i for i ∈ I0 are chosen according to the algorithm. It remains to verify
that I0 = I and that policy R∗ is average cost optimal. To do so, let {g∗, v∗

i } be
the particular optimal basic solution to the primal linear program (6.5.3) such that
this basic solution is complementary to the optimal basic solution (x∗

ia) of the dual
linear program (6.5.1). Then, by the complementary slackness property of linear
programming,

g∗ + v∗
i −

∑
j∈I

pij (R
∗
i )v∗

j = ci(R
∗
i ), i ∈ S0.

The term
∑

j∈I pij (R
∗
i )v∗

j can be replaced by
∑

j∈S0
pij (R

∗
i )v∗

j for i ∈ S0, since
the set S0 is closed under policy R∗. Thus, by Theorem 6.2.1, we can conclude
that gi(R

∗) = g∗ for all i ∈ S0. The states in I0\S0 are transient under policy R∗
and are ultimately leading to a state in S0. Hence gi(R

∗) = g∗ for all i ∈ I0. To
prove that I0 = I , assume to the contrary that I0 �= I . By the construction of I0,
the set I\I0 is closed under any policy. Let R0 be any average cost optimal policy.
Define the policy R1 by

R1(i) =
{
R∗(i), i ∈ I0,

R0(i), i ∈ I\I0.

Since I\I0 and I0 are both closed sets under policy R1, we have constructed an
average cost optimal policy with two disjoint closed sets. This contradicts the weak
unichain assumption. Hence I0 = I . This completes the proof.

We illustrate the linear programming formulation of the Markov decision problem
from Example 6.1.1. The specification of the basic elements of the Markov decision
model for this problem is given in Section 6.1.
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Example 6.1.1 (continued) A maintenance problem

The linear programming formulation for this problem is to minimize

N−1∑
i=2

Cpi xi1 + Cf xN2

subject to

x10 −
(

q11x10 +
N−1∑
i=2

xi1 + xN+1,2

)
= 0,

xj0 + xj1 −
j∑

i=1

qij xi0 = 0, 2 ≤ j ≤ N − 1,

xN2 −
N−1∑
i=1

qiN xi0 = 0,

xN+1,2 − xN2 = 0,

x10 +
N−1∑
i=2

(xi0 + xi1) + xN2 + xN+1,2 = 1,

x10, xi0, xi1, xN2, xN+1,2 ≥ 0.

For the numerical data given in Table 6.4.1, this linear program has the minimal
objective value 0.4338 and the optimal basic solution

x∗
10 = 0.5479, x∗

20 = 0.2740, x∗
30 = 0.0913, x∗

41 = 0.0228,

x∗
52 = 0.0320, x∗

62 = 0.0320 and the other x∗
ia = 0.

This yields the average cost optimal policy R∗ = (0, 0, 0, 1, 2, 2) with an average
cost of 0.4338, in agreement with the results obtained by policy iteration.

Linear programming and probabilistic constraints

The linear programming formulation may often be a convenient way to handle
Markovian decision problems with probabilistic constraints. In many practical
applications, constraints are imposed on certain state frequencies. For example,
in inventory problems for which shortage costs are difficult to estimate, probabilis-
tic constraints may be placed on the probability of shortage or on the fraction of
demand that cannot be met directly from stock on hand. Similarly, in a maintenance
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problem involving a randomly changing state, a constraint may be placed on the
frequency at which a certain inoperative state occurs.

The following illustrative example taken from Wagner (1975) shows that for
control problems with probabilistic constraints it may be optimal to choose the
decisions in a random way rather than in a deterministic way. Suppose the daily
demand D for some product is described by the probability distribution

P {D = 0} = P {D = 1} = 1
6 , P {D = 2} = 2

3 .

The demands on the successive days are independent of each other. At the beginning
of each day it has to be decided how much to order of the product. The delivery
of any order is instantaneous. The variable ordering cost of each unit is c > 0.
Any unit that is not sold at the end of the day becomes obsolete and must be
discarded. The decision problem is to minimize the average ordering cost per day,
subject to the constraint that the fraction of the demand to be met is at least 1

3 . This
probabilistic constraint is satisfied when using the policy of ordering one unit every
day, a policy which has an average cost of c per day. However, this deterministic
control rule is not optimal, as can be seen by considering the randomized control
rule under which at any given day no unit is ordered with probability 4

5 and two
units are ordered with probability 1

5 . Under this randomized rule the probability
that the daily demand is met equals ( 4

5 )( 1
6 ) + ( 1

5 )(1) = 1
3 and the average ordering

cost per day equals ( 4
5 )(0) + ( 1

5 )(2c) = 2
5c. It is readily seen that the randomized

rule is optimal.
So far we have considered only stationary policies under which the actions

are chosen deterministically. A policy π is called a stationary randomized policy
when it is described by a probability distribution {πa(i), a ∈ A(i)} for each state
i ∈ I . Under policy π action a ∈ A(i) is chosen with probability πa(i) whenever
the process is in state i. If πa(i) is 0 or 1 for every i and a, the stationary
randomized policy π reduces to the familiar stationary policy choosing the actions
in a deterministic way. For any policy π , let the state-action frequencies fi,a(π)

be defined by

fia(π) = the long-run fraction of decision epochs at which the process
is in state i and action a is chosen when policy π is used.

Consider now a Markovian decision problem in which the goal is to minimize the
long-run average cost per time unit subject to the following linear constraints on
the state-action frequencies:∑

i∈I

∑
a∈A(i)

α
(s)
ia fia (π) ≤ β(s), s = 1, . . . , L,

where α
(s)
ia and β(s) are given constants. It is assumed that the constraints allow

for a feasible solution. If the unichain assumption from Section 6.4 holds, it can
be shown that an optimal policy may be obtained by solving the following linear
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program; see Derman (1970) and Hordijk and Kallenberg (1984):

Minimize
∑
i∈I

∑
a∈A(i)

ci(a)xia

subject to ∑
a∈A(j)

xja −
∑
i∈I

∑
a∈A(i)

pij (a)xia = 0, j ∈ I,

∑
i∈I

∑
a∈A(i)

xia = 1,

∑
i∈I

∑
a∈A(i)

α
(s)
ia xia ≤ β(s), s = 1, . . . , L,

xia ≥ 0, a ∈ A(i) and i ∈ I .

Denoting by {x∗
ia } an optimal basic solution to this linear program and letting the

set S0 = {i | ∑
a x∗

ia > 0}, an optimal stationary randomized policy π∗ is given by

π∗
a (i) =

{
x∗

ia/
∑

d x∗
id , a ∈ A(i) and i ∈ S0,

arbitrary, otherwise.

Here the unichain assumption is essential for guaranteeing the existence of an
optimal stationary randomized policy.

Example 6.1.1 (continued) A maintenance problem

Suppose that in the maintenance problem a probabilistic constraint is imposed on
the fraction of time the system is in repair. It is required that this fraction is no
more than 0.08. To handle this constraint, we add to the previous linear program
for the maintenance problem the constraint

N−1∑
i=2

xi1 + xN2 + xN+1,2 ≤ 0.08.

The new linear program has the optimal solution

x∗
10 = 0.5943, x∗

20 = 0.2971, x∗
30 = 0.0286, x∗

31 = 0.0211,

x∗
41 = 0.0177, x∗

52 = x∗
62 = 0.0206 and the other x∗

ia = 0.

The minimal cost is 0.4423 and the fraction of time the system is in repair is exactly
0.08. The LP solution corresponds to a randomized policy. The actions 0, 0, 1, 2
and 2 are prescribed in the states 1, 2, 4, 5 and 6. In state 3 a biased coin is tossed.
The coin shows up heads with probability 0.0286/(0.0286 + 0.0211) = 0.575. No
preventive repair is done if heads comes up, otherwise a preventive repair is done.
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A Lagrange-multiplier approach for probabilistic constraints

A heuristic approach for handling probabilistic constraints is the Lagrange-multi-
plier method. This method produces only stationary non-randomized policies. To
describe the method, assume a single probabilistic constraint∑

i∈I

∑
a∈A(i)

αiafia(π) ≤ β

on the state-action frequencies. In the Lagrange-multiplier method, the constraint
is eliminated by putting it into the criterion function by means of a Lagrange
multiplier λ ≥ 0. That is, the goal function is changed from

∑
i,a ci(a)xia to∑

i,a ci(a)xia +λ(
∑

i,a αiaxia −β). The Lagrange multiplier may be interpreted as
the cost to each unit that is used from some resource. The original Markov decision
problem without probabilistic constraint is obtained by taking λ = 0. It is assumed
that the probabilistic constraint is not satisfied for the optimal stationary policy in
the unconstrained problem; otherwise, this policy is optimal for the constrained
problem as well. Thus, for a given value of the Lagrange multiplier λ > 0, we
consider the unconstrained Markov decision problem with one-step costs

cλ
i (a) = ci(a) + λαia

and one-step transition probabilities pij (a) as before. Solving this unconstrained
Markov decision problem yields an optimal deterministic policy R(λ) that pre-
scribes always a fixed action Ri(λ) whenever the system is in state i. Let β(λ) be
the constraint level associated with policy R(λ), that is,

β(λ) =
∑
i∈I

αi,Ri(λ)fi,Ri(λ)(R(λ)).

If β(λ) > β one should increase λ, otherwise one should decrease λ. Why? The
Lagrange multiplier λ should be adjusted until the smallest value of λ is found
for which β(λ) ≤ β. Bisection is a convenient method to adjust λ. How do we
calculate β(λ) for a given value of λ? To do so, observe that β(λ) can be interpreted
as the average cost in a single Markov chain with an appropriate cost structure.
Consider the Markov chain describing the state of the system under policy R(λ).
In this Markov process, the long-run average cost per time unit equals β(λ) when
it is assumed that a direct cost of αi,Ri(λ) is incurred each time the process visits
state i. An effective method to compute the average cost β(λ) is to apply value
iteration to a single Markov chain; see Example 6.6.1 in the next section.

The average cost of the stationary policy obtained by the Lagrangian approach
will in general be larger than the average cost of the stationary randomized policy
resulting from the linear programming formulation. Also, it should be pointed out
that there is no guarantee that the policy obtained by the Lagrangian approach is
the best policy among all stationary policies satisfying the probabilistic constraint,
although in most practical situations this may be expected to be the case. In spite
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of the possible pitfalls of the Lagrangian approach, this approach may be quite
useful in practical applications having a specific structure.

6.6 VALUE-ITERATION ALGORITHM

The policy-iteration algorithm and the linear programming formulation both require
that in each iteration a system of linear equations of the same size as the state
space is solved. In general, this will be computationally burdensome for a large
state space and makes these algorithms computationally unattractive for large-scale
Markov decision problems. In this section we discuss an alternative algorithm
which avoids solving systems of linear equations but uses instead the recursive
solution approach from dynamic programming. This method is the value-iteration
algorithm which computes recursively a sequence of value functions approximating
the minimal average cost per time unit. The value functions provide lower and upper
bounds on the minimal average cost and under a certain aperiodicity condition
these bounds converge to the minimal average cost. The aperiodicity condition is
not restrictive, since it can be forced to hold by a simple data transformation. The
value-iteration algorithm endowed with these lower and upper bounds is in general
the best computational method for solving large-scale Markov decision problems.
This is even true in spite of the fact that the value-iteration algorithm does not
have the robustness of the policy-iteration algorithm: the number of iterations is
problem dependent and typically increases in the number of states of the problem
under consideration. Another important advantage of value iteration is that it is
usually easy to write a code for specific applications. By exploiting the structure of
the particular application one usually avoids computer memory problems that may
be encountered when using policy iteration. Value iteration is not only a powerful
method for controlled Markov chains, but it is also a useful tool to compute bounds
on performance measures in a single Markov chain; see Example 6.6.1.

In this section the value-iteration algorithm will be analysed under the weak
unichain assumption from Section 6.5. Under this assumption the minimal average
cost per time unit is independent of the initial state. Let

g∗ = the minimal long-run average cost per time unit.

The value-iteration algorithm computes recursively for n = 1, 2, . . . the value
function Vn(i) from

Vn(i) = min
a∈A(i)


ci(a) +

∑
j∈I

pij (a)Vn−1(j)


 , i ∈ I, (6.6.1)

starting with an arbitrarily chosen function V0(i), i ∈ I . The quantity Vn(i) can
be interpreted as the minimal total expected costs with n periods left to the time
horizon when the current state is i and a terminal cost of V0(j) is incurred when
the system ends up at state j ; see Denardo (1982) and Derman (1970) for a proof.
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Intuitively, one might expect that the one-step difference Vn(i)−Vn−1(i) will come
very close to the minimal average cost per time unit and that the stationary policy
whose actions minimize the right-hand side of (6.6.1) for all i will be very close
in cost to the minimal average cost. However, these matters appear to be rather
subtle for the average cost criterion due to the effect of possible periodicities in the
underlying decision processes. Before explaining this in more detail, we investigate
an operator which is induced by the recursion equation (6.6.1). The operator T

adds to each function v = (vi , i ∈ I ) a function T v whose ith component (T v)i
is defined by

(T v)i = min
a∈A(i)


ci(a) +

∑
j∈I

pij (a)vj


 , i ∈ I. (6.6.2)

Note that (T v)i = Vn(i) if vi = Vn−1(i), i ∈ I . The following theorem plays a
key role in the value-iteration algorithm.

Theorem 6.6.1 Suppose that the weak unichain assumption is satisfied. Let v =
(vi) be given. Define the stationary policy R(v) as a policy which adds to each state
i ∈ I an action a = Ri(v) that minimizes the right-hand side of (6.6.2). Then

min
i∈I

{(T v)i − vi} ≤ g∗ ≤ gs(R(v)) ≤ max
i∈I

{(T v)i − vi} (6.6.3)

for any s ∈ I , where g∗ is the minimal long-run average cost per time unit and
gs(R(v)) denotes the long-run average cost per time unit under policy R(v) when
the initial state is s.

Proof To prove the first inequality, choose any stationary policy R. By the defi-
nition of (T v)i , we have for any state i ∈ I that

(T v)i ≤ ci(a) +
∑
j∈I

pij (a)vj , a ∈ A(i), (6.6.4)

where the equality sign holds for a = Ri(v). Choosing a = Ri in (6.6.4) gives

(T v)i ≤ ci(Ri) +
∑
i∈I

pij (Ri)vj , i ∈ I. (6.6.5)

Define the lower bound

m = min
i∈I

{(T v)i − vi}.

Since m ≤ (T v)i − vi for all i, it follows from (6.6.5) that m + vi ≤ ci(Ri) +∑
j∈I pij (Ri)vj for all i ∈ I , and so

ci(Ri) − m +
∑
j∈I

pij (Ri)vj ≥ vi, i ∈ I.
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An application of Theorem 6.2.1 now gives that

gi(R) ≥ m, i ∈ I.

This inequality holds for each policy R and so g∗ = minR gi(R) ≥ m proving the
first inequality in (6.6.3). The proof of the last inequality in (6.6.3) is very similar.
By the definition of policy R(v),

(T v)i = ci(Ri(v)) +
∑
j∈I

pij (Ri(v))vj , i ∈ I. (6.6.6)

Define the upper bound

M = max
i∈I

{(T v)i − vi} .

Since M ≥ (T v)i − vi for all i ∈ I , we obtain from (6.6.6) that

ci(Ri(v)) − M +
∑
j∈I

pij (Ri(v))vj ≤ vi, i ∈ I.

Hence, by Theorem 6.2.1, gi(R(v)) ≤ M for all i ∈ I , proving the last inequality
in (6.6.3). This completes the proof.

We now formulate the value-iteration algorithm. In the formulation it is no
restriction to assume that

ci(a) > 0 for all i ∈ I and a ∈ A(i).

Otherwise, add a sufficiently large positive constant to each ci(a). This affects the
average cost of each policy by the same constant.

Value-iteration algorithm

Step 0 (initialization). Choose V0(i), i ∈ I with 0 ≤ V0(i) ≤ mina ci(a). Let
n := 1.
Step 1 (value-iteration step). For each state i ∈ I , compute

Vn(i) = min
a∈A(i)


ci(a) +

∑
j∈I

pij (a)Vn−1(j)


 .

Let R(n) be any stationary policy such that the action a = Ri(n) minimizes the
right-hand side of the equation for Vn(i) for each state i.
Step 2 (bounds on the minimal costs). Compute the bounds

mn = min
i∈I

{Vn(i) − Vn−1(i)} , Mn = max
i∈I

{Vn(i) − Vn−1(i)} .
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Step 3 (stopping test). If

0 ≤ Mn − mn ≤ εmn

with ε > 0 a prespecified accuracy number (e.g. ε = 10−3), stop with policy R(n).
Step 4 (continuation). n := n + 1 and repeat step 1.

By Theorem 6.6.1, we have

0 ≤ gi(R(n)) − g∗

g∗ ≤ Mn − mn

mn

≤ ε, i ∈ I (6.6.7)

when the algorithm is stopped after the nth iteration with policy R(n). In other
words, the average cost of policy R(n) cannot deviate more than 100ε% from
the theoretically minimal average cost when the bounds mn and Mn satisfy 0 ≤
Mn − mn ≤ εmn. In practical applications one is usually satisfied with a policy
whose average cost is sufficiently close to the theoretically minimal average cost.

Convergence of the bounds

The remaining question is whether the lower and upper bounds mn and Mn converge
to the same limit so that the algorithm will be stopped after finitely many iterations.
The answer is yes only if a certain aperiodicity condition is satisfied. In general
mn and Mn need not have the same limit, as the following example demonstrates.
Consider the trivial Markov decision problem with two states 1 and 2 and a single
action a0 in each state. The one-step costs and the one-step transition probabilities
are given by c1(a0) = 1, c2(a0) = 0, p12(a0) = p21(a0) = 1 and p11(a0) =
p22(a0) = 0. Then the system cycles between the states 1 and 2. It is easily
verified that V2k(1) = V2k(2) = k, V2k−1(1) = k and V2k−1(2) = k − 1 for
all k ≥ 1. Hence mn = 0 and Mn = 1 for all n, implying that the sequences
{mn} and {Mn} have different limits. The reason for the oscillating behaviour of
Vn(i) − Vn−1(i) is the periodicity of the Markov chain describing the state of the
system. The next theorem gives sufficient conditions for the convergence of the
value-iteration algorithm.

Theorem 6.6.2 Suppose that the weak unichain assumption holds and that for
each average cost optimal stationary policy the associated Markov chain {Xn} is
aperiodic. Then there are finite constants α > 0 and 0 < β < 1 such that

|Mn − mn| ≤ αβn, n ≥ 1.

In particular, limn→∞ Mn = limn→∞ mn = g∗.

A proof of this deep theorem will not be given. A special case of the theorem
will be proved in Section 6.7. This special case is related to the data transformation
by which the periodicity issue can be circumvented. Before discussing this data
transformation, we prove the interesting result that the sequences {mn} and {Mn}
are always monotone irrespective of the chain structure of the Markov chains.
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Theorem 6.6.3 In the standard value-iteration algorithm the lower and upper
bounds satisfy

mk+1 ≥ mk and Mk+1 ≤ Mk for all k ≥ 1.

Proof By the definition of policy R(n),

Vn(i) = ci(Ri(n)) +
∑
j∈I

pij (Ri(n))Vn−1(j), i ∈ I. (6.6.8)

In the same way as (6.6.5) was obtained, we find for any policy R that

ci(Ri) +
∑
j∈I

pij (Ri)Vn−1(j) ≥ Vn(i), i ∈ I. (6.6.9)

Taking n = k in (6.6.8) and taking n = k + 1 and R = R(k) in (6.6.9) gives

Vk+1(i) − Vk(i) ≤
∑
j∈I

pij (Ri(k)){Vk(j) − Vk−1(j)}, i ∈ I. (6.6.10)

Similarly, by taking n = k + 1 in (6.6.8) and taking n = k and R = R(k + 1) in
(6.6.9), we find

Vk+1(i) − Vk(i) ≥
∑
j∈I

pij (Ri(k + 1)) {Vk(j) − Vk−1(j)} , i ∈ I. (6.6.11)

Since Vk(j) − Vk−1(j) ≤ Mk for all j ∈ I and
∑

j∈I pij (Ri(k)) = 1, it follows
from (6.6.10) that Vk+1(i) − Vk(i) ≤ Mk for all i ∈ I . This gives Mk+1 ≤ Mk .
Similarly, we obtain from (6.6.11) that mk+1 ≥ mk.

Data transformation

The periodicity issue can be circumvented by a perturbation of the one-step transi-
tion probabilities. The perturbation technique is based on the following two obser-
vations. First, a recurrent state allowing for a direct transition to itself must be
aperiodic. Second, the relative frequencies at which the states of a Markov chain
are visited do not change when the state changes are delayed with a constant factor
and the probability of a self-transition is accordingly enlarged. In other words, if
the one-step transition probabilities pij of a Markov chain {Xn} are perturbed as
pij = τpij for j �= i and pii = τpii + 1 − τ for some constant τ with 0 < τ < 1,
the perturbed Markov chain {Xn} with one-step transition probabilities pij is aperi-
odic and has the same equilibrium probabilities as the original Markov chain {Xn}
(verify). Thus a Markov decision model involving periodicities may be perturbed
as follows. Choosing some constant τ with 0 < τ < 1, the state space, the action
sets, the one-step costs and the one-step transition probabilities of the perturbed
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Markov decision model are defined by

I = I,

A(i) = A(i), i ∈ I ,

ci(a) = ci(a), a ∈ A(i) and i ∈ I ,

pij (a) =
{

τpij (a), j �= i, a ∈ A(i) and i ∈ I ,

τpij (a) + 1 − τ, j = i, a ∈ A(i) and i ∈ I .

For each stationary policy, the associated Markov chain {Xn} in the perturbed model
is aperiodic. It is not difficult to verify that for each stationary policy the average
cost per time unit in the perturbed model is the same as that in the original model.
For the unichain case this is an immediate consequence of the representation (6.2.7)
for the average cost and the fact that for each stationary policy the Markov chain
{Xn} has the same equilibrium probabilities as the Markov chain {Xn} in the origi-
nal model. For the multichain case, a similar argument can be used to show that the
two models are in fact equivalent. Thus the value-iteration algorithm can be applied
to the perturbed model in order to solve the original model. In specific problems
involving periodicities, the ‘optimal’ value of τ is usually not clear beforehand;
empirical investigations indicate that τ = 1

2 is usually a satisfactory choice.

Modified value iteration with a dynamic relaxation factor

Value iteration does not have the fast convergence of policy iteration. The number
of iterations required by the value-iteration algorithm is problem dependent and
increases when the number of problem states gets larger. Also, the tolerance number
ε in the stopping criterion affects the number of iterations required. The stopping
criterion should be based on the lower and upper bounds mn and Mn but not on
any repetitive behaviour of the generated policies R(n).

The convergence rate of value iteration can often be accelerated by using a
relaxation factor, such as in successive overrelaxation for solving a single system
of linear equations. Then at the nth iteration a new approximation to the value
function Vn(i) is obtained by using both the previous values Vn−1(i) and the
residuals Vn(i)−Vn−1(i). It is possible to select dynamically a relaxation factor and
thus avoid the experimental determination of the best value of a fixed relaxation
factor. The following modification of the standard value-iteration algorithm can
be formulated. Steps 0, 1, 2 and 3 are as before, while step 4 of the standard
value-iteration algorithm is modified as follows.
Step 4(a). Determine the states u and v such that

Vn(u) − Vn−1(u) = mn and Vn(v) − Vn−1(v) = Mn

and compute the relaxation factor

ω = Mn − mn

Mn − mn + ∑
j∈I {puj (Ru) − pvj (Rv)}{Vn(j) − Vn−1(j)} ,
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where Ru and Rv are the actions which are prescribed by policy R(n) in the states
u and v.

Step 4(b). For each i ∈ I , change Vn(i) according to

Vn(i) := Vn−1(i) + ω{Vn(i) − Vn−1(i)}.
Step 4(c). n := n + 1 and go to step 1.

In the case of a tie when selecting in step 4(a) the state u for which the minimum
in mn is obtained, it is conventional to choose the minimizing state of the previous
iteration when that state is one of the candidates to choose; otherwise, choose the
first state achieving the minimum in mn. The same convention is used for the
maximizing action v in Mn.

The choice of the dynamic relaxation factor ω is motivated as follows. We change
the estimate Vn(i) as V n(i) = Vn−1(i) + ω{Vn(i) − Vn−1(i)} for all i in order to
accomplish at the (n + 1)th iteration that

cu(Ru) +
∑
j∈I

puj (Ru)V n(j) − V n(u) = cv(Rv) +
∑
j∈I

pvj (Rv)V n(j) − V n(v),

in the implicit hope that the difference between the new upper and lower bounds
Mn+1 and mn+1 will decrease more quickly. Using the relation mn = Vn(u) −
Vn−1(u) = cu(Ru)+

∑
j puj (Ru)Vn−1(j)−Vn−1(u) and the similar relation for Mn,

it is a matter of simple algebra to verify from the above condition the expression
for ω. We omit the easy proof that ω > 0. Numerical experiments indicate that
using a dynamic relaxation factor in value iteration often greatly enhances the
speed of convergence of the algorithm. The modified value-iteration algorithm is
theoretically not guaranteed to converge, but in practice the algorithm will usually
work very well. It is important to note that the relaxation factor ω is kept outside
the recursion equation in step 1 so that the bounds mn and Mn in step 2 are not
destroyed. Although the bounds apply, it is no longer true that the sequences {mn}
and {Mn} are monotonic.

To conclude this section, we apply value iteration to two examples. The first
example concerns the maintenance problem from Example 6.1.1 and the second
example illustrates the usefulness of value iteration for the computation of perfor-
mance measures for a single Markov chain.

Example 6.1.1 (continued) A maintenance problem

For the maintenance problem the recursion equation (6.6.1) becomes

Vn(1) = 0 +
N∑

j=1

q1jVn−1(j),

Vn(i) = min


0 +

N∑
j=i

qij Vn−1(j), Cpi + Vn−1(1)


 , 1 < i < N,
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Vn(N) = Cf + Vn−1(N + 1),

Vn(N + 1) = 0 + Vn−1(1).

We have applied the standard value-iteration algorithm to the numerical data
from Table 6.4.1. For each stationary policy the associated Markov chain {Xn} is
aperiodic. Taking V0(i) = 0 for all i and the accuracy number ε = 10−3, the
algorithm is stopped after n = 28 iterations with the stationary policy R(n) =
(0, 0, 0, 1, 2, 2) together with the lower and upper lower bounds mn = 0.4336 and
Mn = 0.4340. The average cost of policy R(n) is estimated by 1

2 (mn + Mn) =
0.4338 and this cost cannot deviate more than 0.1% from the theoretically minimal
average cost. In fact policy R(n) is optimal as we know from previous results
obtained by policy iteration. To get a feeling of how strongly the required number
of iterations depends on ε, we applied standard value-iteration for ε = 10−2 and
ε = 10−4 as well. For these choices of the accuracy number ε, standard value-
iteration required 21 and 35 iterations respectively.

Example 6.6.1 A finite-capacity queue with deterministic arrivals

Consider a single-server queueing system having a finite waiting room for K cus-
tomers (including any customer in service). The arrival process of customers is
deterministic. Every D time units a customer arrives. A customer finding a full
waiting room upon arrival is lost. The service times of the customers are indepen-
dent random variables having an Erlang (r, µ) distribution. What is the long-run
fraction of customers who are lost?

Taking the constant interarrival time as time unit, the fraction of lost customers
can be seen as an average cost per time unit when a cost of 1 is incurred each time
an arriving customer finds the waiting room full. The queueing process embedded at
the arrival epochs can be described by a Markov process by noting that the Erlang
(r, µ) distributed service time can be seen as the sum of r independent phases
each having an exponential distribution with mean 1/µ. A customer is served by
serving its phases one at a time. The queueing problem can now be converted into
a Markov decision model with a single action in each state. The state of the system
is observed at the arrival epochs and the set of possible states of the system is
given by

I = {0, 1, . . . , Kr}.

State i corresponds to the situation that i uncompleted service phases are present
just prior to the arrival of a new customer. In each state i there is a single action
to be denoted by a = 0. The action a = 0 in state i corresponds to the acceptance
of the newly arriving customer when i ≤ Kr − r and corresponds to the rejection
of the customer otherwise. The one-step costs ci(a) are given by

ci(a) =
{

0 if i ≤ Kr − r,

1 if i > Kr − r.
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Denote by a� = e−µD(µD)�/�! the probability of the completion of � service
phases during an interarrival time D when the server is continuously busy. Then
the recursive value-iteration equation (6.6.1) becomes

Vn(i) =
i+r−1∑
�=0

a�Vn−1(i + r − �) +
(

1 −
i+r−1∑
�=0

a�

)
Vn−1(0), 0 ≤ i ≤ Kr − r

Vn(i) = 1 +
i−1∑
�=0

a�Vn−1(i − �) +
(

1 −
i−1∑
�=0

a�

)
Vn−1(0), Kr − r < i ≤ Kr.

The discrete-time Markov chain describing the number of service phases present at
the arrival epochs is aperiodic. Hence the lower and upper bounds mn and Mn from
the value-iteration algorithm both converge to the long-run fraction of customers
who are lost.

6.7 CONVERGENCE PROOFS

In this section we give convergence proofs for the policy-iteration algorithm and
the value-iteration algorithm. The finite convergence of the policy-iteration algo-
rithm is proved for the unichain case. For the standard value-iteration algorithm
the convergence of the bounds mn and Mn to the same limit is proved under the
unichain assumption together with the assumption that the one-step transition prob-
ability pii (a) > 0 for all i ∈ I and a ∈ A(i). The latter aperiodicity assumption
is automatically satisfied when the data transformation discussed in Section 6.6 is
applied.

Convergence proof for policy iteration

We first establish a lexicographical ordering for the average cost and the relative
values associated with the policies that are generated by the algorithm. For that
purpose we need to standardize the relative value functions since a relative value
function is not uniquely determined. Let us number or renumber the possible states
as i = 1, . . . , N . In view of the fact that the relative values of a given policy
are unique up to an additive constant, the sequence of policies generated by the
algorithm does not depend on the particular choice of the relative value function
for a given policy. For each stationary policy Q, we now consider the particular
relative value function wi(Q) defined by (6.3.1), where the regeneration state r is
chosen as the largest state in I (Q). The set I (Q) is defined by

I (Q) = the set of states that are recurrent under policy Q.

Let R and R be immediate successors in the sequence of policies generated by the
algorithm. Suppose that R �= R. We assert that either
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(a) g(R) < g(R), or

(b) g(R) = g(R) and wi(R) ≤ wi(R) for all i ∈ I with strict inequality for at
least one state i.

That is, each iteration either reduces the cost rate or else reduces the relative value
of a (transient) state. Since the number of possible stationary policies is finite, this
assertion implies that the algorithm converges after finitely many iterations. To
prove the assertion, the starting point is the relation

ci(Ri) − g(R) +
∑
j∈I

pij (Ri)wj (R) ≤ wi(R), i ∈ I, (6.7.1)

with strict inequality only for those states i with Ri �= Ri . This relation is an
immediate consequence of the construction of policy R. By Theorem 6.2.1 and
(6.7.1), we have g(R) ≤ g(R). The strict inequality g(R) < g(R) holds only if the
strict inequality holds in (6.7.1) for some state i that is recurrent under the new
policy R.

Consider now the case of g(R) = g(R). Then it is true that the equality sign holds
in (6.7.1) for all i ∈ I (R). Thus, by the convention made in the policy-improvement
step,

Ri = Ri, i ∈ I (R). (6.7.2)

This implies that

I (R) = I (R), (6.7.3)

since the set I (R) is closed under policy R and any two states in I (R) communicate
under policy R. In its turn (6.7.3) implies that

wj(R) = wj(R), j ∈ I (R). (6.7.4)

This can be seen as follows. From the definition (6.3.1) of the relative values and
the fact that the set of recurrent states is a closed set, it follows that for any policy
Q the relative values for the recurrent states i ∈ I (Q) do not depend on the actions
in the transient states i /∈ I (Q). In view of the convention to take the largest state in
I (Q) as the reference state for the definition of the relative value function wi(Q),
it follows from (6.7.2) and (6.7.3) that (6.7.4) holds. The remainder of the proof is
now easy. Proceeding in the same way as in the derivation of (6.3.3), we find by
iterating the inequality (6.7.1) that

wi(R) ≥ ci(Ri) − g(R) +
∑
j∈I

pij (Ri)wj (R) (6.7.5)

≥ Vm(i, R) − mg(R) +
∑
j∈I

p
(m)
ij (R)wj (R), i ∈ I and m ≥ 1,
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where the strict inequality sign holds in the first inequality for each i with Ri �= Ri .
By (6.3.5) with R replaced by R and the fact that g(R) = g(R), we have for any
m ≥ 1 that

wi(R) = Vm(i, R) − mg(R) +
∑
j∈I

p
(m)
ij (R)wj (R), i ∈ I.

Replacing wj(R) by wj(R) − {wj(R) − wj(R)}, we next find that

Vm(i, R) − mg(R) +
∑
j∈I

p
(m)
ij (R)wj (R)

= wi(R) +
∑
j∈I

p
(m)
ij (R){wj (R) − wj (R)}, i ∈ I and m ≥ 1.

Hence (6.7.5) can be rewritten as

wi(R) ≥ ci(Ri) − g(R) +
∑
j∈I

pij (Ri)wj (R)

≥ wi(R) +
∑
j∈I

p
(m)
ij (R){wj (R) − wj (R)}, i ∈ I and m ≥ 1,

where the strict inequality sign holds in the first inequality for each i with Ri �= Ri .
Using (6.7.4) and noting that p

(m)
ij (R) → 0 as m → ∞ for j transient under R,

it follows that wi(R) ≥ wi(R) for all i ∈ I with strict inequality for each i with
Ri �= Ri . This completes the proof.

Convergence proof for value iteration

The proof of Theorem 6.6.2 is only given for the special case that the following
assumption is satisfied.

Strong aperiodicity assumption (i) for each stationary policy R the associated
Markov chain {Xn} has no two disjoint closed sets;

(ii) pii (a) > 0 for all i ∈ I and a ∈ A(i).

Note that assumption (ii) automatically holds when the data transformation from
Section 6.6 is applied to the original model.

We first establish an important lemma about the chain structure of the product of
Markov matrices associated with the stationary policies. In this lemma the notation
P (f ) is used for the stochastic matrix (pij (f (i))), i, j ∈ I associated with the
stationary policy f . The (i, j)th element of the matrix product PQ is denoted by
(PQ)ij .

Lemma 6.7.1 Suppose that the strong aperiodicity assumption holds. Let N be
the number of states of the Markov decision model. Then, for any two N -tuples
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(fN , . . . , f1) and (gN , . . . , g1) of stationary policies and for any two states r and
s, there is some state j such that

[P (fN) · · ·P (f1)]rj > 0 and [P (gN) · · ·P (g1)]sj > 0. (6.7.6)

Proof Define for k = 1, . . . , N the sets S(k) and T (k) by

S(k) = {j ∈ I | [P (fk) · · ·P (f1)]rj > 0},
T (k) = {j ∈ I | [P (gk) · · ·P (g1)]sj > 0}.

Since pii (a) > 0 for all j ∈ I and a ∈ A(i), we have

S(k + 1) ⊇ S(k) and T (k + 1) ⊇ T (k), k = 1, . . . , N − 1.

Assume now to the contrary that (6.7.6) does not hold. Then S(N)∩T (N) is empty.
In other words, S(N) and T (N) are disjoint sets with S(N) �= I and T (N) �= I .
Thus, since the sets S(k) and T (k) are non-decreasing, there are integers v and
w with 1 ≤ v, w < N such that S(v) = S(v + 1) and T (w) = T (w + 1). This
implies that the set S(v) of states is closed under policy fv+1 and the set T (w)

of states is closed under policy gw+1. Since the sets S(N) and T (N) are disjoint
and S(N) ⊇ S(v) and T (N) ⊇ T (w), we have that the sets S(v) and T (w) are
disjoint. Construct now a stationary policy R with Ri = fv+1(i) for i ∈ S(v) and
Ri = gw+1(i) for i ∈ T (w). Then policy R has the two disjoint closed sets S(v)

and T (w). This contradicts the first part of the strong aperiodicity assumption.
Hence the result (6.7.6) must hold.

Proof of Theorem 6.6.2 (under the strong aperiodicity assumption) We first intro-
duce some notation. Let R(n) be any stationary policy for which the action Ri(n)

minimizes the right-hand side of the value-iteration equation (6.6.1) for all i ∈ I .
Denote by Pn the stochastic matrix whose (i, j)th element equals pij (Ri(n)) and
define the vector Vn by Vn = (Vn(i), i ∈ I ). By the proof of Theorem 6.6.3,

Vn − Vn−1 ≤ Pn−1(Vn−1 − Vn−2) and Vn − Vn−1 ≥ Pn(Vn−1 − Vn−2).

(6.6.7)

Fix n ≥ 2. Since Mn = Vn(i1) − Vn−1(i1) and mn = Vn(i2) − Vn−1(i2) for some
states i1 and i2, we find

Mn − mn ≤ [Pn−1(Vn−1 − Vn−2)](i1) − [Pn(Vn−1 − Vn−2)](i2).

Applying repeatedly the inequalities (6.6.7), we find for any 1 ≤ k < n

Mn − mn ≤ [Pn−1Pn−2 · · · Pn−k(Vn−k − Vn−k−1)](i1)

−[PnPn−1 · · · Pn−k+1(Vn−k − Vn−k−1)](i2). (6.6.8)
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The remainder of the proof uses the same ideas as in the proof of Theorem 3.5.12.
Fix n > N and choose k = N in (6.6.8), where N is the number of states. This
yields

Mn − mn ≤
∑
j∈I

dj {Vn−N(j) − Vn−N−1(j)},

where dj is a shorthand notation for

dj = [Pn−1 · · ·Pn−N ]i1j − [Pn · · ·Pn−N+1]i2j .

Write d+ = max(d, 0) and d− = − min(d, 0). Then d = d+ −d− and d+, d− ≥ 0.
Thus

Mn − mn ≤
∑
j∈I

d+
j {Vn−N(j) − Vn−N−1(j)} −

∑
j∈I

d−
j {Vn−N(j) − Vn−N−1(j)}

≤ Mn−N

∑
j∈I

d+
j − mn−N

∑
j∈I

d−
j = (Mn−N − mn−N)

∑
j∈I

d+
j ,

by
∑

j d+
j = ∑

j d−
j . This identity is a consequence of

∑
j dj = 0. Next use the

relation (p − q)+ = p − min(p, q) to conclude that

Mn − mn ≤ (Mn−N − mn−N)

×

1 −

∑
j∈I

min([Pn−1 · · · Pn−N ]i1j , [Pn · · ·Pn−N+1]i2j


 .

Now we invoke Lemma 6.7.1. Since the number of states and the number of sta-
tionary policies are both finite, there is a positive number ρ such that∑

j∈I

min{[P (fN) · · ·P (f1)]rj , [P (gN) · · ·P (g1)]sj } ≥ ρ

for any two N -tuples (fN, . . . , f1) and (gN , . . . , g1) of stationary policies and for
any two states r and s. Thus

Mn − mn ≤ (1 − ρ)(Mn−N − mn−N).

In Theorem 6.6.3 it was shown that {Mn − mn, n ≥ 1} is non-increasing. Thus we
find that

Mn − mn ≤ (1 − ρ)[n/N ](M0 − m0), n ≥ 1,

implying the desired result.
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EXERCISES

6.1 Consider a periodic review production/inventory problem where the demands for a
single product in the successive weeks are independent random variables with a common
discrete probability distribution {φ(j), j = 0, . . . , r}. Any demand in excess of on-hand
inventory is lost. At the beginning of each week it has to be decided whether or not to start
a production run. The lot size of each production run consists of a fixed number of Q units.
The production lead time is one week so that a batch delivery of the entire lot occurs at
the beginning of the next week. Due to capacity restrictions on the inventory, a production
run is never started when the on-hand inventory is greater than M . The following costs are
involved. A fixed set-up cost of K > 0 is incurred for a new production run started after
the production facility has been idle for some time. The holding costs incurred during a
week are proportional to the on-hand inventory at the end of that week, where h > 0 is
the proportionality constant. A fixed lost-sales cost of p > 0 is incurred for each unit of
excess demand. Formulate the problem of finding an average cost optimal production rule
as a Markov decision problem.

6.2 A piece of electronic equipment having two identical devices is inspected at the beginning
of each day. Redundancy has been built into the system so that the system is still operating
if only one device works. The system goes down when both devices are no longer working.
The failure rate of a device depends both on its age and on the condition of the other device.
A device in use for m days will fail on the next day with probability r1(m) when the other
device is currently being overhauled and with probability r2(m) otherwise. It is assumed
that both r1(m) and r2(m) are equal to 1 when m is sufficiently large. A device that is found
in the failure state upon inspection has to be overhauled. An overhaul of a failed device
takes T0 days. Also a preventive overhaul of a working device is possible. Such an overhaul
takes T1 days. It is assumed that 1 ≤ T1 < T0. At each inspection it has to be decided to
overhaul one or both of the devices, or let them continue working through the next day.
The goal is to minimize the long-run fraction of time the system is down. Formulate this
problem as a Markov decision problem. (Hint: define the states (i, j), (i,−k) and (−h−k).
The first state means that both devices are working for i and j days respectively, the second
state means that one device is working for i days and the other is being overhauled with
a remaining overhaul time of k days, and the third state means that both devices are being
overhauled with remaining overhaul times of h and k days.)

6.3 Two furnaces in a steelworks are used to produce pig iron for working up elsewhere
in the factory. Each furnace needs overhauling from time to time because of failure during
operation or to prevent such a failure. Assuming an appropriately chosen time unit, an
overhaul of a furnace always takes a fixed number of L periods. The overhaul facility is
capable of overhauling both furnaces simultaneously. A furnace just overhauled will operate
successfully during i periods with probability qi , 1 ≤ i ≤ M . If a furnace has failed, it must
be overhauled; otherwise, there is an option of either a preventive overhaul or letting the
furnace operate for the next period. Since other parts of the steelworks are affected when not
all furnaces are in action, a loss of revenue of c(j) is incurred for each period during which
j furnaces are out of action, j = 1, 2. No cost is incurred if both furnaces are working.
Formulate the problem of finding an average cost optimal overhauling policy as a Markov
decision problem. This problem is based on Stengos and Thomas (1980).

6.4 A factory has a tank for temporarily storing chemical waste. The tank has a capacity
of 4 m3. Each week the factory produces k m3 of chemical waste with probability pk for
k = 0, . . . , 3 with p0 = 1/8, p1 = 1/2, p2 = 1/4 and p3 = 1/8. If the amount of waste
produced exceeds the remaining capacity of the tank, the excess is specially handled at a
cost of $30 per cubic metre. At the end of the week a decision has to be made as to whether
or not to empty the tank. There is a fixed cost of $25 to empty the tank and a variable cost
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of $5 for each cubic metre of chemical waste that is removed. Compute an average cost
optimal policy by policy iteration or linear programming.

6.5 A stamping machine produces six-cornered plates of the illustrated form.
a

a
c

c

b

b

The machine has three pairs of adjustable knives. In the diagram these pairs are denoted by
a, b and c. Each pair of knives can fall from the correct position during the stamping of a
plate. The following five situations can occur: (1) all three pairs have the correct position,
(2) only pairs b and c have the correct position, (3) only pair b has the correct position, (4)
only pair c has the correct position and (5) no pair has the correct position. The probabilities
qij that during a stamping a change from situation i to situation j occurs are given by

(qij ) =




3
4

1
4 0 0 0

0 1
2

1
4

1
4 0

0 0 3
4 0 1

4

0 0 0 1
2

1
2

0 0 0 0 1




.

After each stamping it is possible to adjust the machine such that all pairs of knives have
the correct position again. The following costs are involved. The cost of bringing all pairs
of knives into the correct position is 10. Each plate produced when j pairs of knives have
the wrong position involves an adjustment cost of 4j . Compute a maintenance rule that
minimizes the average cost per stamping by policy iteration or linear programming.

6.6 An electricity plant has two generators j = 1 and 2 for generating electricity. The
required amount of electricity fluctuates during the day. The 24 hours in a day are divided
into six consecutive periods of 4 hours each. The amount of electricity required in period
k is dk kWh for k = 1, . . . , 6. Also the generator j has a capacity of generating cj kWh
of electricity per period of 4 hours for j = 1, 2. An excess of electricity produced during
one period cannot be used for the next period. At the beginning of each period k it has to
be decided which generators to use for that period. The following costs are involved. An
operating cost of rj is incurred for each period in which generator j is used. Also, a set-up
cost of Sj is incurred each time generator j is turned on after having been idle for some
time. Develop a policy-iteration algorithm that exploits the fact that the state transitions are
deterministic. Solve for the numerical data d1 = 20, d2 = 40, d3 = 60, d4 = 90, d5 = 70,
d6 = 30, c1 = 40, c2 = 60, r1 = 1000, r2 = 1100, S1 = 500 and S2 = 300.

6.7 Every week a repairman travels to customers in five towns on the successive working
days of the week. The repairman visits Amsterdam (town 1) on Monday, Rotterdam (town
2) on Tuesday, Brussels (town 3) on Wednesday, Aachen (town 4) on Thursday and Arnhem
(town 5) on Friday. In the various towns it may be necessary to replace a certain crucial
element in a piece of electronic equipment rented by customers. The probability distribution
of the number of replacements required at a visit to town j is given by {pj (k), k ≥ 0} for
j = 1, . . . , 5. The numbers of required replacements on the successive days are independent
of each other. The repairman is able to carry M spare parts. If the number of spare parts
the repairman carries is not enough to satisfy the demand in a town, another repairman has
to be sent the next day to that town to complete the remaining replacements. The cost of
such a special mission to town j is Kj . At the end of each day the repairman may decide to
send for a replenishment of the spare parts to the town where the repairman is. The cost of
sending such a replenishment to town j is aj . Develop a value-iteration algorithm for the
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computation of an average cost optimal policy and indicate how to formulate converging
lower and upper bounds on the minimal costs. Solve for the numerical data M = 5, Kj = 200
for all j , a1 = 60, a2 = 30, a3 = 50, a4 = 25, a5 = 100, where the probabilities pj (k) are
given in the following table.

k\j 1 2 3 4 5

0 0.5 0.25 0.375 0.3 0.5
1 0.3 0.5 0.375 0.5 0.25
2 0.2 0.25 0.25 0.2 0.25

6.8 The slotted ALOHA system is a much used random access protocol in packet commu-
nication systems where the time is slotted in intervals of fixed lengths and a transmission of
a packet can only be started at the beginning of a time slot. There are N terminals. At the
beginning of each time slot, each terminal emits a packet with a certain probability. The ter-
minals act independently of each other in trying to use the transmission channel for sending
a packet. If more than one terminal sends a packet in the same time slot, a collision occurs
and all transmissions attempted in that time slot are unsuccessful. A successful transmission
returns the terminal to its originating mode, whereas an unsuccessful attempt puts it tem-
porarily in retransmission mode. There is a given probability p that a terminal in originating
mode attempts to transmit a packet at the beginning of a time slot. This probability is beyond
control. However, the probability at which a terminal in retransmission mode is allowed to
retransmit its packet at the beginning of a time slot can be controlled. The control rule gives
each terminal in retransmission mode permission to retransmit with the same probability. In
other words, a control rule is specified by probabilities {r1, . . . , rN }, where rn is the per-
mission probability when n terminals are in retransmission mode. Develop a policy-iteration
algorithm to compute an optimal control rule when the criterion is to maximize the average
throughput per time slot. Also compare the maximal average throughput with the average
throughput of the so-called TSO policy, where rn is chosen as [1− (N −n+1)p]/(n−Np)
when 0 < Np < 1 and rn is chosen as 1/n otherwise. Solve for the numerical data (N = 15,
p = 0.05) and (N = 25, p = 0.05). (Hint : the choice of one-step costs ci(a) simplifies
by noting that maximizing the average throughput is equivalent to minimizing the average
number of terminals in retransmission mode at the beginning of a time slot.)

6.9 A motorist has a vehicle insurance which charges reduced premiums when no claims
are made over one or more years. When an accident occurs the motorist has the option of
either making a claim and thereby perhaps losing a reduction in premium, or paying the
costs associated with the accident himself. The premium payment is due at the beginning
of each year and the payment depends only on the previous payment and the number of
claims made in the past year. There are five possible premiums π(1) = 500, π(2) = 375,
π(3) = 300, π(4) = 250, π(5) = 200. The premium structure is as shown in the table
below. In any given month the motorist will have an accident with a probability of λ = 1

24
and no accident with a probability of 1 − λ. The costs associated with any accident have a
lognormal distribution with mean 500 and a squared coefficient of variation of 4.

Subsequent premium

Current premium No claim One claim Two or more claims

π(1) π(2) π(1) π(1)
π(2) π(3) π(1) π(1)
π(3) π(4) π(1) π(1)
π(4) π(5) π(2) π(1)
π(5) π(5) π(3) π(1)
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Develop a value-iteration algorithm to compute an average cost optimal claim rule. (Hint :
take the beginning of each month as the decision epochs and let the action a = d mean
that damage in the coming month will be claimed only if this damage exceeds the level d .
Define the state of the system as (t, i) with t = 0, . . . , 12 and i = 1, . . . , 6, where t denotes
the number of months until the next premium payment and the indicator variable i refers
to the status of the next premium payment. Explain why you need no data transformation
to handle periodicities but you can use the bounds mn = mini{V12n(0, i) − V12(n−1)(0, i)}
and Mn = maxi{V12n(0, i) − V12(n−1)(0, i)}, where V12n+t (t, i) is defined as the minimal
total expected cost if the motorist still has an insurance contract for t + 12n months and the
present state is (t, i).)

6.10 The stock level of a given product is reviewed at the beginning of each week. Upon
review a decision has to be made whether or not to replenish the stock level. The stock can
be replenished up to level M , the maximum amount that can be held in stock. The lead time
of a replenishment order is negligible. The demands for the product in the successive weeks
are independent random variables having a Poisson distribution with a given mean µ. Any
demand occurring when the system is out of stock is lost. The following costs are involved.
For each replenishment order there is a fixed set-up cost of K > 0 and a variable ordering
cost of c ≥ 0 for each unit ordered. In each week a holding cost of h > 0 is charged against
each unit in stock at the end of the week. A penalty cost of p > 0 is incurred for each unit
of demand that is lost. The problem is to find a stock control rule minimizing the long-run
average cost per week.

(a) Use value iteration to solve for the numerical data M = 100, µ = 25, K = 64,
c = 0, h = 1 and p = 5. Also try other numerical examples and verify experimentally that
the optimal control rule is always of the (s, S) type when the maximum stock level M is
sufficiently large. Under an (s, S) policy with s ≤ S the inventory position is ordered up to
the level S when at a review the inventory position is below the reorder point s; otherwise, no
ordering is done. Using the flexibility in the policy-improvement procedure, Federgruen and
Zipkin (1984) developed a tailor-made policy-iteration algorithm that generates a sequence
of improved policies within the class of (s, S) policies.

(b) Suppose the probabilistic constraint is imposed that the long-run fraction of demand
lost should not exceed 1 − β for a prespecified service level β (note that this fraction
equals the average demand lost per week divided by µ). Use linear programming to find an
optimal control minimizing the long-run average cost per week subject to this service level
constraint. Solve for the numerical data β = 0.99, M = 100, µ = 25, K = 64, c = 0, h = 1
and p = 0. Also compare the average cost and the service level of the optimal randomized
policy with the average cost and the service level of the best stationary policy obtained by
the Lagrange-multiplier approach.

BIBLIOGRAPHIC NOTES

The policy-iteration method for the discrete-time Markov decision model was
developed in Howard (1960). A theoretical foundation to Howard’s policy-iteration
method was given in Blackwell (1962); see also Denardo and Fox (1968) and
Veinott (1966). Linear programming formulations for the Markov decision model
were first given by De Ghellinck (1960) and Manne (1960) and streamlined later
by Denardo and Fox (1968), Derman (1970) and Hordijk and Kallenberg (1979,
1984). The computational usefulness of the value-iteration algorithm was greatly
enlarged by Odoni (1969) and Hastings (1971), who introduced lower and upper
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bounds on the minimal average cost and on the average cost of the policies gener-
ated by the algorithm. These authors extended the original value-iteration bounds
of MacQueen (1966) for the discounted cost case to the average cost case. The
modified value-iteration algorithm with a dynamic relaxation factor comes from
Popyack et al. (1979). The first proof of the geometric convergence of the undis-
counted value-iteration algorithm was given by White (1963) under a very strong
recurrence condition. The proof in Section 6.7 is along the same lines as the proof
given in Van der Wal (1980). General proofs for the geometric convergence of
value-iteration can be found in the papers of Bather (1973) and Schweitzer and
Federgruen (1979). These papers demonstrate the deepness and the beauty of the
mathematics underlying the average cost criterion. In general there is a rich math-
ematical theory behind the Markov decision model. A good account of this theory
can be found in the books of Hernandez-Lerma and Lasserre (1996), Puterman
(1994) and Sennott (1999). A recommended reference for constrained Markov
decision processes is the book of Altman (1999).

The Markov decision model finds applications in a wide variety of fields. Golabi
et al. (1982), Kawai (1983), Stengos and Thomas (1980) and Tijms and Van der
Duyn Schouten (1985) give applications to replacement and maintenance problems.
Norman and Shearn (1980) and Kolderman and Volgenant (1985) discuss appli-
cations to insurance and Su and Deininger (1972) give an application to water-
resource control. Applications to control problems in telecommunication are men-
tioned in the next chapter. A survey of real applications of Markov decision models
can be found in White (1985).

REFERENCES

Altman, E. (1999) Constrained Markov Decision Processes . Chapman and Hall, London.
Bather, J. (1973) Optimal decision procedures for finite Markov chains. Adv. Appl. Prob.,

5, 521–540.
Bellman, R. (1957) Dynamic Programming . Princeton University Press, Princeton NJ.
Blackwell, D. (1962) Discrete dynamic programming. Ann. Math. Statist., 33, 719–726.
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CHAPTER 7

Semi-Markov Decision
Processes

7.0 INTRODUCTION

The previous chapter dealt with the discrete-time Markov decision model. In this
model, decisions can be made only at fixed epochs t = 0, 1, . . . . However, in
many stochastic control problems the times between the decision epochs are not
constant but random. A possible tool for analysing such problems is the semi-
Markov decision model. In Section 7.1 we discuss the basic elements of this model.
Also, for the optimality criterion of the long-run average cost per time unit, we
give a data-transformation method by which the semi-Markov decision model can
be converted into an equivalent discrete-time Markov decision model. The data-
transformation method enables us to apply the recursive method of value-iteration
to the semi-Markov decision model. Section 7.2 summarizes various algorithms for
the computation of an average cost optimal policy.

In Section 7.3 we discuss the value-iteration algorithm for a semi-Markov deci-
sion model in which the times between the decision epochs are exponentially
distributed. For this particular case the computational effort of the value-iteration
algorithm can considerably be reduced by introducing fictitious decision epochs.
This simple trick creates sparse transition matrices leading to a much more effec-
tive value-iteration algorithm. Section 7.4 illustrates how value iteration in com-
bination with an embedding idea can be used in the optimization of queues. The
semi-Markov decision model is a very useful tool for optimal control in queueing
systems. In Section 7.5 we will exploit a remarkable feature of the policy-iteration
algorithm, namely that the algorithm typically achieves its largest improvements in
costs in the first few iterations. This finding is sometimes useful to attack the curse
of dimensionality in applications with a multidimensional state space. The idea is
to determine first the relative values for a reasonable starting policy and to apply
next a single policy-improvement step. This heuristic approach will be illustrated
to a dynamic routing problem.

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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7.1 THE SEMI-MARKOV DECISION MODEL

Consider a dynamic system whose state is reviewed at random epochs. At those
epochs a decision has to be made and costs are incurred as a consequence of the
decision made. The set of possible states is denoted by I . For each state i ∈ I , a
set A(i) of possible actions is available. It is assumed that the state space I and the
action sets A(i), i ∈ I are finite. This controlled dynamic system is called a semi-
Markov decision process when the following Markovian properties are satisfied: if
at a decision epoch the action a is chosen in state i, then the time until the next
decision epoch and the state at that epoch depend only on the present state i and
the subsequently chosen action a and are thus independent of the past history of the
system. Also, the costs incurred until the next decision epoch depend only on the
present state and the action chosen in that state. We note that in specific problems
the state occurring at the next transition will often depend on the time until that
transition. Also, the costs usually consist of lump costs incurred at the decision
epochs and rate costs incurred continuously in time. As an example, consider a
single-product inventory system in which the demand process is described by a
Poisson process and the inventory position can be replenished at any time. In this
example the decision epochs are the demand epochs and they occur randomly in
time. The decision is whether or not to raise the inventory position after a demand
has occurred. The costs typically consist of fixed replenishment costs and holding
costs that are incurred continuously in time.

The long-run average cost per time unit

The long-run average cost per time unit is taken as the optimality criterion. For this
criterion the semi-Markov decision model is in fact determined by the following
characteristics:

pij (a) = the probability that at the next decision epoch the system will be in
state j if action a is chosen in the present state i,

τi(a) = the expected time until the next decision epoch if action a is chosen
in the present state i,

ci(a) = the expected costs incurred until the next decision epoch if action a

is chosen in the present state i.

It is assumed that τi(a) > 0 for all i ∈ I and a ∈ A(i). As before, a stationary
policy R is a rule which adds to each state i a single action Ri ∈ A(i) and
always prescribes to take this action whenever the system is observed in state i at
a decision epoch. Since the state space is finite, it can be shown that under each
stationary policy the number of decisions made in any finite time interval is finite
with probability 1. We omit the proof of this result. Let

Xn = the state of the system at the nth decision epoch.

Then it follows that under a stationary policy R the embedded stochastic process
{Xn} is a discrete-time Markov chain with one-step transition probabilities pij (Ri).
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Define the random variable Z (t) by

Z(t) = the total costs incurred up to time t, t ≥ 0.

Fix now a stationary policy R. Denote by Ei,R the expectation operator when the
initial state X0 = i and policy R is used. Then the limit

gi(R) = lim
t→∞

1

t
Ei,R[Z(t)]

exists for all i ∈ I . This result can be proved by using the renewal-reward theorem
in Section 2.2. The details are omitted. Just as in the discrete-time model, we
can give a stronger interpretation to the average cost gi(R). If the initial state i

is recurrent under policy R, then the long-run actual average cost per time unit
equals gi(R) with probability 1. If the Markov chain {Xn} associated with policy
R has no two disjoint closed sets, the average cost gi(R) does not depend on the
initial state X0 = i.

Theorem 7.1.1 Suppose that the embedded Markov chain {Xn} associated with
policy R has no two disjoint closed sets. Then

lim
t→∞

Z(t)

t
= g(R) with probability 1 (7.1.1)

for each initial state X0 = i, where the constant g(R) is given by

g(R) =
∑
j∈I

cj (Rj )πj (R)/
∑
j∈I

τj (Rj )πj (R)

with {πj (R)} denoting the equilibrium distribution of the Markov chain {Xn}.
Proof We give only a sketch of the proof of (7.1.1). The key to the proof of
(7.1.1) is that

lim
t→∞

Z(t)

t
= lim

m→∞
E(costs over the first m decision epochs)

E(time over the first m decision epochs)
(7.1.2)

with probability 1. To verify this relation, fix a recurrent state r and suppose that
X0 = r . Let a cycle be defined as the time elapsed between two consecutive
transitions into state r . By the renewal-reward theorem in Section 2.2,

lim
t→∞

Z(t)

t
= E(costs induring one cycle)

E(length of one cycle)

with probability 1. By the expected-value version of the renewal-reward theorem,

lim
m→∞

1

m
E(costs over the first m decision epochs)

= E(costs incurred during one cycle)

E(number of transitions in one cycle)
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and

lim
m→∞

1

m
E(time over the first m decision epochs)

= E(length of one cycle)

E(number of transitions in one cycle)
.

Together the above three relations yield (7.1.2). The remainder of the proof is
simple. Obviously, we have

E(costs over the first m decision epochs) =
m−1∑
t=0

∑
j∈I

cj (Rj )p
(t)
rj (R)

and

E(time over the first m decision epochs) =
m−1∑
t=0

∑
j∈I

τj (Rj )p
(t)
rj (R).

Dividing the numerator and the denominator of the right-hand side of (7.1.2) by
m, letting m → ∞ and using limm→∞(1/m)

∑m−1
t=0 p

(t)
rj (R) = πj (R), the result

(7.1.1) follows when the initial state X0 = r . For initial state X0 = i the result next
follows by mimicking the proof of Theorem 3.5.11 and noting that state r will be
reached from state i with probability 1 after finitely many transitions.

A stationary policy R∗ is said to be average cost optimal if gi(R
∗) ≤ gi(R) for

all i ∈ I and all stationary policies R. The algorithms for computing an average
cost optimal policy in the discrete-time Markov decision model can be extended to
the semi-Markov decision model. This will be done in the next section. However,
before doing this, we discuss a data-transformation method that converts the semi-
Markov decision model into a discrete-time Markov decision model such that for
each stationary policy the average cost per time unit in the discrete-time Markov
model is the same as in the semi-Markov model. This is a very useful result. The
data-transformation method is an extension of the uniformization technique for
continuous-time Markov chains discussed in Section 4.5.

The data-transformation method

First choose a number τ with

0 < τ ≤ min
i,a

τi(a).

Consider now the discrete-time Markov decision model whose basic elements are
given by

I = I, A(i) = A(i), i ∈ I ,

ci(a) = ci(a)/τi(a), a ∈ A(i) and i ∈ I ,
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pij (a) =
{

(τ/τi(a))pij (a), j �= i, a ∈ A(i) and i ∈ I ,

(τ/τi(a))pij (a) + [1 − (τ/τi(a))], j = i, a ∈ A(i) and i ∈ I .

This discrete-time Markov decision model has the same class of stationary policies
as the original semi-Markov decision model. For each stationary policy R, let
gi(R) denote the long-run average cost per time unit in the discrete-time model
when policy R is used and the initial state is i. Then it holds for each stationary
policy R that

gi(R) = gi(R), i ∈ I. (7.1.3)

This result does not require any assumption about the chain structure of the Markov
chains associated with the stationary policies. However, we prove the result (7.1.3)
only for the unichain case. Fix a stationary policy R and assume that the embedded
Markov chain {Xn} in the semi-Markov model has no two disjoint closed sets.
Denote by Xn the state at the nth decision epoch in the transformed discrete-
time model. It is directly seen that the Markov chain {Xn} is also unichain under
policy R. The equilibrium probabilities πj (R) of the Markov chain {Xn} satisfy
the equilibrium equations

πj (R) =
∑
i∈I

π i(R)pij (Ri)

=
∑
i∈I

π i(R)
τ

τi(Ri)
pij (Ri) +

[
1 − τ

τj (Rj )

]
πj (R), j ∈ I.

Hence, letting uj = πj (R)/τj (Rj ) and dividing by τ , we find that

uj =
∑
i∈I

uipij (Ri), j ∈ I.

These equations are precisely the equilibrium equations for the equilibrium prob-
abilities πj (R) of the embedded Markov chain {Xn} in the semi-Markov model.
The equations determine the πj (R) uniquely up to a multiplicative constant. Thus,
for some constant γ > 0,

πj (R) = γ
πj (R)

τj (Rj )
, j ∈ I.

Since
∑

j∈I πj (R) = 1, it follows that γ = ∑
j∈I τj (Rj )πj (R). The desired result

(7.1.3) now follows easily. We have

g(R) =
∑
j∈I

cj (Rj )πj (R) = 1

γ

∑
j∈I

cj (Rj )

τj (Rj )
πj (R)τj (Rj )

=
∑
j∈I

cj (Rj )πj (R)/
∑
j∈I

τj (Rj )πj (R)
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and so, by Theorem 7.1.1, g(R) = g(R). Thus we can conclude that an average
cost optimal policy in the semi-Markov model can be obtained by solving an
appropriate discrete-time Markov decision model. This conclusion is particularly
useful with respect to the value-iteration algorithm. In applying value iteration to
the transformed model, it is no restriction to assume that for each stationary policy
the associated Markov chain {Xn} is aperiodic. By choosing the constant τ strictly
less than mini,a τi(a), we always have pii (a) > 0 for all i, a and thus the required
aperiodicity.

7.2 ALGORITHMS FOR AN OPTIMAL POLICY

In this section we outline how the algorithms for the discrete-time Markov decision
model can be extended to the semi-Markov decision model.

Policy-iteration algorithm

The policy-iteration algorithm will be described under the unichain assumption.
This assumption requires that for each stationary policy the embedded Markov
chain {Xn} has no two disjoint closed sets. By data transformation, it is directly ver-
ified that the value-determination equations (6.3.2) for a given stationary policy R

remain valid provided that we replace g by gτi(Ri). The policy-improvement pro-
cedure from Theorem 6.2.1 also remains valid when we replace g by gτi(Ri).
Suppose that g(R) and υi(R), i ∈ I , are the average cost and the relative values
of a stationary policy R. If a stationary policy R is constructed such that, for each
state i ∈ I ,

ci(Ri) − g(R)τi(Ri) +
∑
j∈I

pij (Ri)υj (R) ≤ υi(R), (7.2.1)

then g(R) ≤ g(R). Moreover, g(R) < g(R) if the strict inequality sign holds in
(7.2.1) for some state i which is recurrent under R. These statements can be verified
by the same arguments as used in the second part of the proof of Theorem 6.2.1.

Under the unichain assumption, we can now formulate the following policy-
iteration algorithm:

Step 0 (initialization). Choose a stationary policy R.
Step 1 (value-determination step). For the current rule R, compute the average cost
g(R) and the relative values υi(R), i ∈ I , as the unique solution to the linear
equations

υi = ci(Ri) − gτi(Ri) +
∑
j∈I

pij (Ri)υj , i ∈ I,

υs = 0,

where s is an arbitrarily chosen state.
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Step 2 (policy-improvement step). For each state i ∈ I , determine an action ai

yielding the minimum in

min
a∈A(i)


ci(a) − g(R)τi(a) +

∑
j∈I

pij (a)υj (R)


 .

The new stationary policy R is obtained by choosing Ri = ai for all i ∈ I with the
convention that Ri is chosen equal to the old action Ri when this action minimizes
the policy-improvement quantity.
Step 3 (convergence test). If the new policy R = R, then the algorithm is stopped
with policy R. Otherwise, go to step 1 with R replaced by R.

In the same way as for the discrete-time Markov decision model, it can be
shown that the algorithm converges in a finite number of iterations to an average
cost optimal policy. Also, as a consequence of the convergence of the algorithm,
there exist numbers g∗ and υ∗

i satisfying the average cost optimality equation

υ∗
i = min

a∈A(i)


ci(a) − g∗τi(a) +

∑
j∈I

pij (a)υ∗
j


 , i ∈ I. (7.2.2)

The constant g∗ is uniquely determined as the minimal average cost per time unit.
Moreover, each stationary policy whose actions minimize the right-hand side of
(7.2.2) for all i ∈ I is average cost optimal. The proof of these statements is left
as an exercise for the reader.

Value-iteration algorithm

For the semi-Markov decision model the formulation of a value-iteration algorithm
is not straightforward. A recursion relation for the minimal expected costs over the
first n decision epochs does not take into account the non-identical transition times
and thus these costs cannot be related to the minimal average cost per time unit.
However, by the data transformation method from Section 7.1, we can convert the
semi-Markov decision model into a discrete-time Markov decision model such that
both models have the same average cost for each stationary policy. A value-iteration
algorithm for the original semi-Markov decision model is then implied by the value-
iteration algorithm for the transformed discrete-time Markov decision model. In the
discrete-time model it is no restriction to assume that all ci(a) = ci(a)/τi(a) are
positive; otherwise, add a sufficiently large positive constant to each ci(a). The
following recursion method results for the semi-Markov decision model:

Step 0. Choose V0(i) such that 0 ≤ V0(i) ≤ mina{ci(a)/τi(a)} for all i. Choose a
number τ with 0 < τ ≤ mini,a τi(a). Let n := 1.
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Step 1. Compute the function Vn(i), i ∈ I , from

Vn(i) = min
a∈A(i)


ci(a)

τi(a)
+ τ

τi(a)

∑
j∈I

pij (a)Vn−1(j) +
(

1 − τ

τi(a)

)
Vn−1(i)


 .

(7.2.3)
Let R(n) be a stationary policy whose actions minimize the right-hand side of
(7.2.3).
Step 2. Compute the bounds

mn = min
j∈I

{Vn(j) − Vn−1(j)], Mn = max
j∈I

{Vn(j) − Vn−1(j)}.

The algorithm is stopped with policy R(n) when 0 ≤ (Mn − mn) ≤ εmn, where ε

is a prespecified accuracy number. Otherwise, go to step 3.
Step 3. n := n + 1 and go to step 1.

Let us assume that the weak unichain assumption from Section 6.5 is satisfied
for the embedded Markov chains {Xn} associated with the stationary policies. It
is no restriction to assume that the Markov chains {Xn} in the transformed model
are aperiodic. Then the algorithm stops after finitely many iterations with a policy
R(n) whose average cost function gi(R(n)) satisfies

0 ≤ gi(R(n)) − g∗

g∗ ≤ ε, i ∈ I,

where g∗ denotes the minimal average cost per time unit. Regarding the choice of
τ in the algorithm, it is recommended to take τ = mini,a τi(a) when the embedded
Markov chains {Xn} in the semi-Markov model are aperiodic; otherwise, τ =
1
2 mini,a τi(a) is a reasonable choice.

Linear programming formulation

The linear program for the semi-Markov decision model is given under the weak
unichain assumption for the embedded Markov chains {Xn}. By the data transfor-
mation and the change of variable uia = xia/τi(a), the linear program (6.3.1) in
Section 6.5 becomes:

Minimize
∑
i∈I

∑
a∈A(i)

ci(a)uia

subject to ∑
a∈A(j)

uja −
∑
i∈I

∑
a∈A(i)

pij (a)uia = 0, a ∈ A(i) and i ∈ I,

∑
i∈I

∑
a∈A(i)

τi(a)uia = 1 and uia ≥ 0, a ∈ A(i) and i ∈ I.
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The algorithm for deriving an optimal stationary policy from the LP solution is the
same as in Section 6.5. In the same way as in Section 6.5 the linear programming
formulation can be extended to cover probabilistic constraints such as the fraction
of time that the system is in some subset I0 of states should not exceed α. In
the situation of probabilistic constraints, the average cost optimal policy usually
involves randomized decisions.

7.3 VALUE ITERATION AND FICTITIOUS DECISIONS

The value-iteration method is often the most preferred method to compute a (nearly)
average cost optimal policy. In each iteration of the method the lower and upper
bounds indicate how much the average cost of the current policy deviates from
the minimal average cost. The computational burden of the value-iteration algo-
rithm depends not only on the number of states, but also on the density of the
non-zero transition probabilities pij (a). By the very nature of the value-iteration
algorithm, it is computationally burdensome to have many non-zero pij (a). In
applications with exponentially distributed times between the decision epochs, the
computational effort of the value-iteration algorithm can often be considerably
reduced by including so-called fictitious decision epochs. The state of the system
is left unchanged at the fictitious decision epochs. The inclusion of fictitious deci-
sion epochs does not change the Markovian nature of the decision process, since
the times between state transitions are exponentially distributed and thus have
the memoryless property. The trick of fictitious decision epochs reduces not only
the computational effort, but also simplifies the formulation of the value-iteration
algorithm. The inclusion of fictitious decision epochs has as a consequence that the
state space must be enlarged with an indicator variable to distinguish between the
fictitious decision epochs and the real decision epochs. However, the greater sim-
plicity in formulation and the reduction in computing times outweigh the enlarged
state space.

Example 7.3.1 Optimal allocation of servers to competing customers

In communication networks an important problem is the allocation of servers to
competing customer classes. Suppose messages of the types 1 and 2 arrive at a
communication system according to independent Poisson processes with respective
rates λ1 and λ2. The communication system has c identical transmission channels
for handling the messages, where each channel can handle only one message at a
time. The system has no buffer for storing temporarily messages that find all chan-
nels occupied upon arrival. Such messages have to be rejected anyway. However,
a newly arriving message may also be rejected when there is a free channel. The
goal is to find a control rule that minimizes the average rejection rate or, equiva-
lently, maximizes the average throughput of accepted messages. In Example 5.4.2
the best control rule was determined within the subclass of L-policies. Markov
decision theory enables us to compute an overall optimal policy. To do so, we
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make the assumption that the transmission times of the messages are exponen-
tially distributed with mean 1/µ1 for type 1 messages and with mean 1/µ2 for
type 2 messages.

Formulation with fictitious decision epochs

A straightforward formulation of the problem as a semi-Markov decision problem
uses the arrival epochs as the only decision epochs. In such a formulation the
vectors (pij (a), j ∈ I ) of one-step transition probabilities have many non-zero
entries. In our specific problem this difficulty can be circumvented by including
the service completion epochs as fictitious decision epochs in addition to the real
decision epochs, being the arrival epochs of messages. By doing so, a transition
from any state is always to one of at most four neighbouring states. In the approach
with fictitious decision epochs, we take as state space

I = {(i1, i2, k) | i1, i2 = 0, 1, . . . , c; i1 + i2 ≤ c; k = 0, 1, 2}.

State (i1, i2, k) with k = 1 or 2 corresponds to the situation in which a type k

message arrives and finds i1 messages of type 1 and i2 messages of type 2 being
transmitted. The auxiliary state (i1, i2, 0) corresponds to the situation in which
the transmission of a message is just completed and i1 messages of type 1 and
i2 messages of type 2 are left behind in the system. Note that the type of the
transmitted message is not relevant. For the states (i1, i2, k) with k = 1 or 2 the
possible actions are denoted by

a =
{

0, reject the arriving message,
1, accept the arriving message,

with the stipulation that a = 0 is the only feasible decision when i1 + i2 = c. The
fictitious decision of leaving the system alone in the state s = (i1, i2, 0) is also
denoted by a = 0. Thanks to the fictitious decision epochs, each transition from
a given state is to one of at most four neighbouring states. In other words, most
of the one-step transition probabilities are zero. Further, the transition probabilities
are extremely easy to specify, because of the fact that min(X1, X2) is exponentially
distributed with mean 1/(α1 + α2) and P {X1 < X2} = α1/(α1 + α2) when X1
and X2 are independent random variables having exponential distributions with
respective means 1/α1 and 1/α2. Put for abbreviation

ν(i1, i2) = λ1 + λ2 + i1µ1 + i2µ2.

Then, for action a = 0 in state s = (i1, i2, k),

psv (0) =




λ1/ν(i1, i2), v = (i1, i2, 1),

λ2/ν(i1, i2), v = (i1, i2, 2),

i1µ1/ν(i1, i2), v = (i1 − 1, i2, 0),

i2µ2/ν(i1, i2), v = (i1, i2 − 1, 0).
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and τs(0) = 1/ν(i1, i2). For action a = 1 in state s = (i1, i2, 1),

psv (1) =




λ1/ν(i1 + 1, i2), v = (i1 + 1, i2, 1),

λ2/ν(i1 + 1, i2), v = (i1 + 1, i2, 2),

(i1 + 1)µ1/ν(i1 + 1, i2), v = (i1, i2, 0),

i2µ2/ν(i1 + 1, i2), v = (i1 + 1, i2 − 1, 0).

and τs(1) = 1/ν(i1 + 1, i2). Similarly, for action a = 1 in state (i1, i2, 2). Finally,
the one-step expected costs cs(a) are simply given by

cs(a) =



1, s = (i1, i2, 1) and a = 0,

1, s = (i1, i2, 2) and a = 0,

0, otherwise.

Value-iteration algorithm

Now, having specified the basic elements of the semi-Markov decision model, we
are in a position to formulate the value-iteration algorithm for the computation of
a (nearly) optimal acceptance rule. In the data transformation, we take

τ = 1

λ1 + λ2 + c1µ1 + c2µ2
.

Using the above specifications, the value-iteration scheme becomes quite simple for
the allocation problem. Note that the expressions for the one-step transition times
τs(a) and the one-step transition probabilities pst (a) have a common denominator
and so the ratio pst (a)/τs(a) has a very simple form. In specifying the value-
iteration scheme (7.2.3), we distinguish between the auxiliary states (i1, i2, 0) and
the other states. In the states (i1, i2, 0) the only possible decision is to leave the
system alone. Thus

Vn(i1, i2, 0) = τλ1Vn−1(i1, i2, 1) + τλ2Vn−1(i1, i2, 2) + τ i1µ1Vn−1(i1 − 1, i2, 0)

+ τ i2µ2Vn−1(i1, i2 − 1, 0) + {1 − τν(i1, i2)}Vn−1(i1, i2, 0),

where Vn−1(i1, i2, 1) = 0 when i1 < 0 or i2 < 0. For the states (i1, i2, 1),

Vn(i1, i2, 1) = min
[
ν(i1, i2) + τλ1Vn−1(i1, i2, 1) + τλ2Vn−1(i1, i2, 2)

+ τ i1µ1Vn−1(i1 − 1, i2, 0) + τ i2µ2Vn−1(i1, i2 − 1, 0)

+ {1 − τν(i1, i2)}Vn−1(i1, i2, 1),

τλ1Vn−1(i1 + 1, i2, 1) + τλ2Vn−1(i1 + 1, i2, 2)

+ τ (i1 + 1)µ1Vn−1(i1, i2, 0) + τ i2µ2Vn−1(i1 + 1, i2 − 1, 0)

+ {1 − τν(i1 + 1, i2)}Vn−1(i1, i2, 1)
]
,
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provided we put Vn−1(i1, i2, 1) = Vn−1(i1, i2, 2) = ∞ when i1+i2 = c+1 in order
to exclude the unfeasible decision a = 1 in the states (i1, i2, 1) with i1 + i2 = c. A
similar expression applies to Vn(i1, i2, 2). This completes the specification of the
recursion step of the value-iteration algorithm. The other steps of the algorithm go
without saying.

The value-iteration algorithm for the semi-Markov decision formulation with
fictitious decision epochs requires the extra states (i1, i2, 0). However, the number
of additions and multiplications per iteration is of the order c2 rather than of the
order c4 as in a straightforward semi-Markov decision formulation. It appears from
numerical experiments that there is a considerable overall reduction in computa-
tional effort when using the formulation with fictitious decision epochs. A further
reduction in the computing times can be achieved by applying modified value
iteration rather than standard value iteration; see Section 6.6.

Numerical investigations indicate that the overall optimal control rule has an
intuitively appealing structure. It is characterized by integers L0, L1, . . . , Lc−1
with L0 ≥ L1 ≥ · · · ≥ Lc−1. One type of message (call it the priority type) is
always accepted as long as not all transmission channels are occupied. An arriving
message of the non-priority type finding i priority type messages present upon
arrival is only accepted when less than Li non-priority type messages are present
and not all channels are occupied. In the numerical example with c = 10, λ1 = 10,
λ2 = 7, µ1 = 10 and µ2 = 1, the optimal Li-values are given by

L0 = L1 = 8, L2 = L3 = 7, L4 = 6, L5 = 5, L6 = 4,

L7 = 3, L8 = 2, L9 = 1.

The minimal average loss rate is 1.767. A challenging open problem is to find
a theoretical proof that an overall optimal policy has the Li-structure. Another
empirical result that deserves further investigation is the finding that the average
loss rate under an Li-policy is nearly insensitive to the form of the probability
distributions of the transmission times; see also the discussion in Example 5.4.2.

7.4 OPTIMIZATION OF QUEUES

The semi-Markov model is a natural and powerful tool for the optimization of
queues. Many queueing problems in telecommunication ask for the computation
of an optimal control rule for a given performance measure. If the control rule is
determined by one or two parameters, one might first use Markov chain analysis
to calculate the performance measure for given values of the control parameters
and next use a standard optimization procedure to find the optimal values of the
control parameters. However, this is not always the most effective approach. Below
we give an example of a controlled queueing system for which the semi-Markov
decision approach is not only more elegant, but is also more effective than a direct
search procedure. In this application the number of states is unbounded. However,
by exploiting the structure of the problem, we are able to cast the problem into
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a Markov decision model with a finite state space. Using a simple but generally
useful embedding idea, we avoid brute-force truncation of the infinite set of states.

Example 7.4.1 Optimal control of a stochastic service system

A stochastic service system has s identical channels available for providing service,
where the number of channels in operation can be controlled by turning channels
on or off. For example, the service channels could be checkouts in a supermarket
or production machines in a factory. Requests for service are sent to the service
facility according to a Poisson process with rate λ. Each arriving request for service
is allowed to enter the system and waits in line until an operating channel is
provided. The service time of each request is exponentially distributed with mean
1/µ. It is assumed that the average arrival rate λ is less than the maximum service
rate sµ. A channel that is turned on can handle only one request at a time. At any
time, channels can be turned on or off depending on the number of service requests
in the system. A non-negative switching cost K(a, b) is incurred when adjusting
the number of channels turned on from a to b. For each channel turned on there
is an operating cost at a rate of r > 0 per unit of time. Also, for each request
a holding cost of h > 0 is incurred for each unit of time the message is in the
system until its service is completed. The objective is to find a rule for controlling
the number of channels turned on such that the long-run average cost per unit of
time is minimal.

Since the Poisson process and the exponential distribution are memoryless, the
state of the system at any time is described by the pair (i, t), where

i = the number of service requests present,

t = the number of channels being turned on.

The decision epochs are the epochs at which a new request for service arrives
or the service of a request is completed. In this example the number of possible
states is unbounded since the state variable i has the possible values 0, 1, . . . .
A brute-force approach would result in a semi-Markov decision formulation in
which the state variable i is bounded by a sufficiently large chosen integer U such
that the probability of having more than U requests in the system is negligible
under any reasonable control rule. This approach would lead to a very large state
space when the arrival rate λ is close to the maximum service rate sµ. A more
efficient Markov decision formulation is obtained by restricting the class of control
rules rather than truncating the state space. It is intuitively obvious that under each
reasonable control rule all of the s channels will be turned on when the number of
requests in the system is sufficiently large. In other words, choosing a sufficiently
large integer M with M ≥ s, it is from a practical point of view no restriction
to assume that in the states (i, t) with i ≥ M the only feasible action is to turn
on all of the s channels. However, this implies that we can restrict the control of
the system only to those arrival epochs and service completion epochs at which
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no more than M service requests remain in the system. By doing so, we obtain a
semi-Markov decision formulation with the state space

I = {(i, t) | 0 ≤ i ≤ M, 0 ≤ t ≤ s},
and the action sets

A(i, t) =
{ {a | a = 0, . . . , s}, 0 ≤ i ≤ M − 1, 0 ≤ t ≤ s,

{s}, i = M, 0 ≤ t ≤ s.

Here action a in state (i, t) means that the number of channels turned on is adjusted
from t to a. This semi-Markov decision formulation involves the following stip-
ulation: if action a = s is taken in state (M, t), then the next decision epoch is
defined as the first service completion epoch at which either M or M − 1 service
requests are left behind. Also, if action a = s is taken in state (M, t), the ‘one-
step’ costs incurred until the next decision epoch are defined as the sum of the
switching cost K(t, s) and the holding and operating costs made during the time
until the next decision epoch. Denote by the random variable TM(s) the time until
the next decision epoch when action a = s is taken in state (M, t). The random
variable TM(s) is the sum of two components. The first component is the time until
the next service completion or the next arrival, whichever occurs first. The second
component is zero if a service completion occurs first; otherwise, it is distributed
as the time needed to reduce the number of service requests present from M + 1 to
M . The semi-Markov decision formulation with an embedded state space makes
sense only when it is feasible to calculate the one-step expected transition times
τ(M,t)(s) and the one-step expected costs c(M,t)(s).

The calculation of these quantities is easy, since service completions occur
according to a Poisson process with rate sµ as long as all of the s channels are
occupied. In other words, whenever M or more requests are in the system, we can
equivalently imagine that a single ‘superchannel’ is servicing requests one at a time
at an exponential rate of sµ. This analogy enables us to invoke the formulas (2.6.2)
and (2.6.3). Taking n = 1 and replacing the mean µ by 1/(sµ) in these formulas,
we find that the expected time needed to reduce the number of requests present
from M + 1 to M , given that all channels are on, is

1/(sµ)

1 − λ/(sµ)
= 1

sµ − λ

and the expected holding and operating costs incurred during the time needed to
reduce the number of requests present from M + 1 to M , given that all channels
are on, is

hM

sµ − λ
+ hsµ

sµ − λ

{
1

sµ
+ λ

sµ(sµ − λ)

}
+ rs

sµ − λ
= h(M+1) + rs

sµ − λ
+ hλ

(sµ − λ)2
.

Here the term hM/(sµ − λ) represents the expected holding costs for the M

service requests which are continuously present during the time needed to reduce
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the number in system from M + 1 to M . If all of the s channels are busy, then
the time until the next event (service completion or new arrival) is exponentially
distributed with mean 1/(λ + sµ) and the next event is generated by an arrival
with probability λ/(λ + sµ). Putting the pieces together, we find

τ(M,t)(s) = 1

λ + sµ
+ λ

λ + sµ

(
1

sµ − λ

)
= sµ

(λ + sµ)(sµ − λ)

and

c(M,t)(s) = K(t, s) + hM + rs

λ + sµ
+ λ

λ + sµ

{
h(M + 1) + rs

sµ − λ
+ hλ

(sµ − λ)2

}
.

Also, by the last argument above,

p(M,t)(M−1,s)(s) = sµ

λ + sµ
and p(M,t)(M,s)(s) = λ

λ + sµ
.

For the other states of the embedded state space I , the basic elements of the
semi-Markov decision model are easily specified. We have

τ(i,t)(a) = 1

λ + min(i, a)µ
, 0 ≤ i ≤ M − 1, 0 ≤ a ≤ s,

and

c(i,t)(a) = K(t, a) + hi + ra

λ + min(i, a)µ
, 0 ≤ i ≤ M − 1, 0 ≤ a ≤ s.

The one-step transition probabilities are left to the reader. Next we formulate the
value-iteration algorithm. In the data transformation we take τ = 1/(λ+ sµ). Then
the recurrence relation (7.2.3) becomes

Vn((i, t)) = min
0≤a≤s

[
{λ + min(i, a)µ}K(t, a) + hi + ra

+ λ

λ + sµ
Vn−1((i + 1, a)) + min(i, a)µ

λ + sµ
Vn−1((i − 1, a))

+
{

1 − λ + min(i, a)µ

λ + sµ

}
Vn−1((i, t))

]

for the states (i, t) with 0 ≤ i ≤ M − 1, 0 ≤ t ≤ s. For the states (M, t),

Vn((M, t)) = 1

sµ
(λ + sµ)(sµ − λ)K(t, s) + hλ

sµ − λ
+ hM + rs

+ sµ − λ

λ + sµ
Vn−1((M − 1, s)) + λ(sµ − λ)

sµ(λ + sµ)
Vn−1((M, s))

+
{

1 − sµ − λ

sµ

}
Vn−1((M, t))

with the convention Vn−1((−1, t)) = 0.
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Numerical results

We consider the switching cost function K(a, b) = κ |a − b| and assume the numer-
ical data

s = 10, µ = 1, r = 30 and h = 10.

The arrival rate λ is 7 and 8, while the proportionality constant κ for the switching
cost has the two values 10 and 25. In each example, we take the bound M = 20 for
the states (i, t) with i ≥ M in which all of the s channels are always turned on. The
value-iteration algorithm is started with V0((i, t)) = 0 for all states (i, t) and uses
the tolerance number ε = 10−3 for its stopping criterion. Our numerical calculations
indicate that for the case of linear switching costs, the average cost optimal control
rule is characterized by parameters s(i) and t (i): the number of channels turned on
is raised up to the level s(i) in the states (i, t) with t < s(i), the number of channels
turned on is left unchanged in the states (i, t) with s(i) ≤ t ≤ t (i) and the number
of channels turned on is reduced to t (i) in the states (i, t) with t > t (i). Table 7.4.1
gives the (nearly) optimal values of s(i) and t (i) for each of the four examples
considered. In each of these examples we applied both standard value iteration
and modified value iteration; see Section 6.6. It was found that modified value
iteration with a dynamic relaxation factor required considerably fewer iterations
than standard value iteration. In the four examples, standard value iteration required

Table 7.4.1 Numerical results obtained by value iteration

λ = 7, κ = 10 λ = 8, κ = 10 λ = 7, κ = 25 λ = 8, κ = 25

i s(i) t (i) s(i) t (i) s(i) t (i) s(i) t (i)

0 0 3 0 4 0 6 0 6
1 1 4 1 4 1 6 1 7
2 2 4 2 5 2 6 2 7
3 2 5 3 5 3 6 3 7
4 3 6 3 6 3 7 3 8
5 4 6 4 7 4 7 4 8
6 5 7 5 8 5 8 5 8
7 5 8 5 8 5 8 6 9
8 6 9 6 9 6 9 6 9
9 6 9 7 10 6 9 7 10

10 7 10 7 10 7 10 7 10
11 8 10 8 10 7 10 7 10
12 8 10 9 10 7 10 8 10
13 9 10 9 10 8 10 8 10
14 9 10 10 10 8 10 9 10
15 10 10 10 10 8 10 9 10
16 10 10 10 10 9 10 10 10
17 10 10 10 10 9 10 10 10
18 10 10 10 10 9 10 10 10
19 10 10 10 10 10 10 10 10

≥20 10 10 10 10 10 10 10 10
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174, 311, 226 and 250 iterations. Modified value iteration required 59, 82, 87 and
71 iterations and ended up with the respective bounds (mn, Mn) = (319.3, 319.5),
(367.1, 367.4), (331.5, 331.8) and (378.0, 378.3) on the minimal average cost.

7.5 ONE-STEP POLICY IMPROVEMENT

The policy-iteration algorithm has the remarkable feature that it achieves the largest
improvements in costs in the first few iterations. These findings underlie a heuristic
approach for Markov decision problems with a multidimensional state space. In
such decision problems it is usually not feasible to solve the value-determination
equations. However, a policy-improvement step offers in general no computational
difficulties. This suggests a heuristic approach that determines first a good estimate
for the relative values and next applies a single policy-improvement step. By the
nature of the policy-iteration algorithm one might expect to obtain a good decision
rule by the heuristic approach. How to compute the relative values to be used
in the policy-improvement step typically depends on the specific application. The
heuristic approach is illustrated in the next example.

Example 7.5.1 Dynamic routing of customers to parallel queues

An important queueing model arising in various practical situations is one in which
arriving customers (messages or jobs) have to be assigned to one of several different
groups of servers. Problems of this type occur in telecommunication networks and
flexible manufacturing. The queueing system consists of n multi-server groups
working in parallel, where each group has its own queue. There are sk servers in
group k (k = 1, . . . , n). Customers arrive according to a Poisson process with rate
λ. Upon arrival each customer has to be assigned to one of the n server groups.
The assignment is irrevocable. The customer waits in the assigned queue until a
server becomes available. Each server can handle only one customer at a time.

The problem is to find an assignment rule that (nearly) minimizes the average
sojourn time per customer. This problem will be analysed under the assumption that
the service times of the customers are independent and exponentially distributed.
The mean service time of a customer assigned to queue k is 1/µk (k = 1, . . . , n).
It is assumed that λ <

∑n
k=1 skµk. In what follows we consider the minimization

of the overall average number of customers in the system. In view of Little’s
formula, the minimization of the average sojourn time per customer is equivalent
to the minimization of the average number of customers in the system.

Bernoulli-splitting rule

An intuitively appealing control rule is the shortest-queue rule. Under this rule
each arriving customer is assigned to the shortest queue. Except for the special
case of s1 = · · · = sn and µ1 = · · · = µn, this rule is in general not optimal. In
particular, the shortest-queue rule may perform quite unsatisfactorily in the situation
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of a few fast servers and many slow servers. Another simple rule is the Bernoulli-
splitting rule. Under this rule each arrival is assigned with a given probability
pk to queue k (k = 1, . . . , n) irrespective of the queue lengths. This assignment
rule produces independent Poisson streams at the various queues, where queue k

receives a Poisson stream at rate λpk . The probabilities pk must satisfy
∑

k pk = 1
and λpk < skµk for k = 1, . . . , n. This condition guarantees that no infinitely
long queues can build up. Under the Bernoulli-splitting rule it is easy to give an
explicit expression for the overall average number of customers in the system.
The separate queues act as independent queues of the M/M/s type. This basic
queueing model is discussed in Chapter 5. In the M/M/s queue with arrival rate
α and s exponential servers each with service rate µ, the long-run average number
of customers in the system equals

L(s, α, µ) = ρ(sρ)s

s!(1 − ρ)2

{
s−1∑
k=0

(sρ)k

k!
+ (sρ)s

s!(1 − ρ)

}−1

+ sρ,

where ρ = α/(sµ). Under the Bernoulli-splitting rule the overall average number
of customers in the system equals

n∑
k=1

L(sk, λpk, µk). (7.5.1)

The best Bernoulli-splitting rule is found by minimizing this expression with respect
to p1, . . . , pn subject to the condition

∑
k pk = 1 and 0 ≤ λpk < skµk for

k = 1, . . . , n. This minimization problem must be numerically solved by some
search procedure (for n = 2, bisection can be used to find the minimum of a
unimodal function in a single variable).

Policy-improvement step

The problem of assigning the arrivals to one of the server groups is a Markov
decision problem with a multidimensional state space. The decision epochs are
the arrival epochs of new customers. The state of the system at a decision epoch
is an n-dimensional vector x = (i1, . . . , in), where ij denotes the number of
customers present in queue j . This description uses the memoryless property of
the exponential service times. The action a = k in state x means that the new
arrival is assigned to queue k. To deal with the optimality criterion of the long-run
average number of customers in the system, we impose the following cost structure
on the system. A cost at rate j is incurred whenever there are j customers in the
system. Then the long-run average cost per time unit gives the long-run overall
average number of customers in the system.

Denote by policy R(0) the best Bernoulli-splitting rule and let p
(0)
k , k = 1, . . . , n

be the splitting probabilities associated with policy R(0). We already pointed out
that the average cost for rule R(0) is easy to compute. Below it will be shown that
the relative values are also easy to obtain for rule R(0). Let us first explain how to
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derive an improved policy from the Bernoulli-splitting rule R(0). This derivation
is based on first principles discussed in Section 6.2. The basic idea of the policy-
improvement step is to minimize for each state x the difference �(x, a, R(0))

defined by

�(x, a, R(0)) = the difference in total expected costs over an infinitely

long period of time by taking first action a and next using

policy R(0) rather than using policy R(0) from scratch

when the initial state is x.

The difference is well defined since the Markov chain associated with policy R(0)

is aperiodic. Under the Bernoulli-splitting rule the n queues act as independent
M/M/s queues. Define for each separate queue j ,

Dj(i) = the difference in total expected costs in queue j over

an infinitely long period of time by starting with i + 1

customers in queue j rather than with i customers.

Then, for each state x = (i1, . . . , in) and action a = k,

�(x, a, R(0)) =
n∑

j=1
j �=k

p
(0)
j [−Dj(ij ) + Dk(ik)] + p

(0)
k × 0

= −
n∑

j=1

p
(0)
j Dj (ij ) + Dk(ik).

Since the term
∑

j p
(0)
j Dj (ij ) does not depend on the action a = k, the step of

minimizing �(x, k, R(0)) over k reduces to the computation of

min
1≤k≤n

{Dk(ik)}.

Hence a remarkably simple expression is evaluated in the policy-improvement
step applied to the Bernoulli-splitting rule. The suboptimal rule resulting from the
single application of the policy-improvement step is called the separable rule. The
performance of this rule will be discussed below.

It remains to specify the function Dk(i), i = 0, 1, . . . , for each queue k. To do
so, consider an M/M/s queue in isolation, where customers arrive according to a
Poisson process with rate α and there are s exponential servers each with service
rate µ. Each arrival is admitted to the queue. The state of the system describes
the number of customers present. A cost at rate j is incurred when there are j

customers present. The long-run average cost per time unit is given by

g = L(s, α, µ).
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The M/M/s queueing process can be seen as a Markov decision process with a
single decision in each state. The decision is to leave the system alone. In this
Markov decision formulation it is convenient to consider the state of the system both
at the arrival epochs and the service completion epochs. In the M/M/s queue the
situation of i customers present just after a service completion is probabilistically
the same as the situation of i customers present just after an arrival. In accordance
with (6.3.1), we define the relative cost function w(i) by

w(i) =
{

K(i) − gT (i), i = 1, 2, . . . ,

0, i = 0,
(7.5.2)

where

T (i) = the expected time until the first return to an empty system starting
with i customers present,

K(i) = the total expected cost incurred until the first return to an empty
system starting with i customers present.

Then, by the economic interpretation of the relative values given in Section 6.3,
we have for any i = 0, 1, . . . that

w(i + 1) − w(i) = the difference in total expected costs over an infinitely long
period of time by starting in state i + 1 rather than in state i.

The desired function Dk(i) for queue k follows by taking

Dk(i) = wk(i + 1) − wk(i) with α = λpk, s = sk and µ = µk.

The basic functions K(i) and T (i) are easy to compute. By conditioning,

Ti = 1

α + iµ
+ α

α + iµ
Ti+1 + iµ

α + iµ
Ti−1, 1 ≤ i ≤ s. (7.5.3)

Ki = i

α + iµ
+ α

α + iµ
Ki+1 + iµ

α + iµ
Ki−1, 1 ≤ i ≤ s. (7.5.4)

where T0 = K0 = 0. Further, we have

Ti = i − s

sµ − α
+ Ts, i > s,

Ki = 1

sµ − α

{
1

2
(i − s)(i − s − 1) + i − s + α(i − s)

sµ − α

}
+ s(i − s)

sµ − α
, i > s.

To see the latter relations, note that the time to reach an empty system from state
i > s is the sum of the time to reach state s and the time to reach an empty system
from state s. By the memoryless property of the exponential distribution, the multi-
server M/M/s queue operates as a single-server M/M/1 queue with service rate sµ

when s or more customers are present. Next, by applying the formulas (2.6.2) and
(2.6.3), we find the formulas for Ti and Ki when i > s. Substituting the expressions
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for Ts+1 and Ks+1 into (7.5.3) and (7.5.4) with i = s, we get two systems of linear
equations for Ti , 1 ≤ i ≤ s and Ki , 1 ≤ i ≤ s. Once these systems of linear
equations have been solved, we can next compute Ti and Ki for any desired i > s.

Summarizing, the heuristic algorithm proceeds as follows.

Heuristic algorithm

Step 1. Compute the best values p
(0)
k , k = 1, . . . , n, of the Bernoulli-splitting

probabilities by minimizing the expression (7.5.1) subject to
∑n

k=1 pk = 1 and
0 ≤ λpk < skµk for k = 1, . . . , n.
Step 2. For each queue k = 1, . . . , n, solve the system of linear equations (7.5.3)
and (7.5.4) with α = λp

(0)
k , s = sk and µ = µk. Next compute for each queue k

the function wk(i) from (7.5.2) with α = λp
(0)
k , s = sk and µ = µk .

Step 3. For each state x = (i1, . . . , in), determine an index k0 achieving the mini-
mum in

min
1≤k≤n

{wk(ik + 1) − wk(ik)}.

The separable rule assigns a new arrival in state x = (i1, . . . , in) to queue k0.

Numerical results

Let us consider the numerical data

s1 = 10, s2 = 1, µ1 = 1 and µ2 = 9.

The traffic load ρ, which is defined by

ρ = λ/(s1µ1 + s2µ2),

is varied as ρ = 0.2, 0.5, 0.7, 0.8 and 0.9. In addition to the theoretically minimal
average sojourn time, Table 7.5.1 gives the average sojourn time per customer for
the Bernoulli-splitting rule (B-split) and for the heuristic separable rule. The table
also gives the average sojourn time per customer under the shortest expected delay
(SED) rule. Under this rule an arriving customer is assigned to the queue in which
its expected individual delay is smallest (if there is a tie, the customer is sent
to queue 1). The results in the table show that this intuitively appealing control
policy performs unsatisfactorily for the case of heterogeneous services. However,
the heuristic separable rule shows an excellent performance for all values of ρ.

Table 7.5.1 The average sojourn times

ρ SED B-split Separable Optimal

0.2 0.192 0.192 0.191 0.191
0.5 0.647 0.579 0.453 0.436
0.7 0.883 0.737 0.578 0.575
0.8 0.982 0.897 0.674 0.671
0.9 1.235 1.404 0.941 0.931
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EXERCISES

7.1 Consider a production facility that operates only intermittently to manufacture a single
product. The production will be stopped if the inventory is sufficiently high, whereas the
production will be restarted when the inventory has dropped sufficiently low. Customers
asking for the product arrive according to a Poisson process with rate λ. The demand of
each customer is for one unit. Demand which cannot be satisfied directly from stock on
hand is lost. Also, a finite capacity C for the inventory is assumed. In a production run, any
desired lot size can be produced. The production time of a lot size of Q units is a random
variable TQ having a probability density fQ(t). The lot size is added to the inventory at the
end of the production run. After the completion of a production run, a new production run is
started or the facility is closed down. At each point of time the production can be restarted.
The production costs for a lot size of Q ≥ 1 units consist of a fixed set-up cost K > 0 and
a variable cost c per unit produced. Also, there is a holding cost of h > 0 per unit kept in
stock per time unit, and a lost-sales cost of p > 0 is incurred for each lost demand. The
goal is to minimize the long-run average cost per time unit. Formulate the problem as a
semi-Markov decision model.
7.2 Consider the maintenance problem from Example 6.1.1 again. The numerical data are
given in Table 6.4.1. Assume now that a repair upon failure takes either 1, 2 or 3 days,
each with probability 1/3. Use the semi-Markov model to compute by policy iteration or
linear programming an average cost optimal policy. Can you explain why you get the same
optimal policy as in Example 6.1.1?

7.3 A cargo liner operates between the five harbours A1, . . . , A5. A cargo shipment from
harbour Ai to harbour Aj (j �= i) takes a random number τij of days (including load and
discharge) and yields a random pay-off of ξij . The shipment times τij and the pay-offs ξij
are normally distributed with means µ(τij ) and µ(ξij ) and standard deviations σ(τij ) and
σ(ξij ). We assume the numerical data:

µ(τij )[σ(τij )]

i\j 1 2 3 4 5

1 - 3
[

1
2

]
6 [1] 3

[
1
2

]
2

[
1
2

]
2 4 [1] - 1

[
1
4

]
7 [1] 5 [1]

3 5 [1] 1
[

1
4

]
- 6 [1] 8 [1]

4 3
[

1
2

]
8 [1] 5 [1] - 2

[
1
2

]
5 2

[
1
2

]
5 [1] 9 [1] 2

[
1
2

]
-

µ(ξij )[σ(ξij )]

i\j 1 2 3 4 5
1 - 8 [1] 12 [2] 6 [1] 6 [1]

2 20 [3] - 2
[

1
2

]
14 [3] 16 [2]

3 16 [3] 2
[

1
2

]
- 18 [3] 16 [1]

4 6 [1] 10 [2] 20 [2] - 6
[

1
2

]
5 8 [2] 16 [3] 20 [2] 8 [1] -

Compute by policy iteration or linear programming a sailing route for which the long-run
average reward per day is maximal.
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7.4 Consider Exercise 2.20 again. Assume that the assignment types j = 1, . . . , n are
numbered or renumbered according to E(ξ)/E(τj ) ≥ E(ξj+1)/E(τj+1) for all j . Use
the optimality equation (7.2.2) to verify that the long-run average reward per time unit is
maximal by accepting only assignments of the types j = 1, . . . , r , where r is the smallest
integer such that

r∑
j=1

λjE(ξj )

/
1 +

r∑
j=1

λjE(τj )


 > E(ξr+1)/E(τr+1)

with E(ξn+1)/E(τn+1) = 0 by convention.

7.5 Adjust the value-iteration algorithm for the control problem from Example 7.3.1 when
finite-source input is assumed rather than Poisson input. Solve for the numerical data c = 10,
M1 = M2 = 10, δ1 = 3, δ2 = 1, µ1 = 4, µ2 = 1, where Mi is the number of customers
from source i and δi is the exponential rate at which a customer from source i generates
new service requests when the customer has no other request in service. Try other numerical
examples and investigate the structure of an optimal control rule.

7.6 Consider a flexible manufacturing facility producing parts, one at a time, for two assem-
bly lines. The time needed to produce one part for assembly line k is exponentially distributed
with mean 1/µk , k = 1, 2. Each part produced for line k is put into the buffer for line k.
This buffer has space for only Nk parts, including the part (if any) in assembly. Each line
takes parts one at a time from its buffer as long as the buffer is not empty. At line k,
the assembly time for one part is exponentially distributed with mean 1/λk , k = 1, 2. The
production times at the flexible manufacturing facility and the assembly times at the lines
are independent of each other. A real-time control for the flexible manufacturing facility is
exercised. After each production at this facility, it must be decided what type of part is to be
produced next. The system cannot produce for a line whose buffer is full. Also, the system
cannot remain idle if not all the buffers are full. The control is based on the full knowledge
of the buffer status at both lines. The system incurs a lost-opportunity cost at a rate of
γk per time unit when line k is idle. The goal is to control the production at the flexible
manufacturing facility in such a way that the long-run average cost per time unit is minimal.
Develop a value-iteration algorithm for this control problem. Solve for the numerical data
µ1 = 5, µ2 = 10, λ1 = 4, λ2 = 8, N1 = N2 = 5, γ1 = γ2 = 1. This problem is based on
Seidman and Schweitzer (1984).

7.7 Consider a tandem network with two assembly facilities in series. The output of the first
station is the input for the second station. Raw material is processed at station 1, and half-
finished goods at station 2. Each of the stations 1 and 2 has a finite buffer for temporarily
storing raw material and half-finished goods. The buffer size is M at station 1 and N
at station 2 (excluding any unit in processing). Units of raw material arrive at station 1
according to a Poisson process with rate λ. A unit of raw material finding the buffer full
at station 1 upon arrival is rejected and is brought elsewhere. Station 1 is a single-server
station and station 2 is a multiple-server station with c servers. Each server can handle only
one unit at a time and the processing times are exponentially distributed with mean 1/µ1
at station 1 and mean 1/µ2 at station 2. If the assembly of a unit is finished at station 1,
it is forwarded to station 2 provided the buffer is not full at station 2; otherwise, the unit
remains at station 1 and blocks this station until room becomes available at station 2. Station
1 cannot start a new assembly as long as it is blocked. The control problem is as follows.
Upon arrival of a new unit at station 1, a decision has to be made to accept this unit or
to reject it. The cost of rejecting a unit at station 1 is R > 0. Also, there is a blocking
cost at rate b > 0 per time unit that station 1 is blocked. The goal is to find a control rule
minimizing the long-run average cost per time unit. Develop a value-iteration algorithm.
Solve for the numerical data λ = 20, µ1 = 15, µ2 = 3, c = 5, M = 10, N = 3, R = 3.5
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and b = 20. Try other numerical examples and investigate whether the optimal control rule
is characterized by integers L0, . . . , LM so that an arriving unit of raw material finding i
units present at station 1 is only accepted when less than Li units are present at station 2.

7.8 Consider the situation that two groups of servers share a common waiting room. The
first group consists of c1 servers and the second group consists of c2 servers. Customers
for the first group arrive according to a Poisson process with rate λ1 and, independently of
this process, customers for the second group arrive according to a Poisson process with rate
λ2. Upon arrival of a new customer, a decision has to be made to accept or reject them.
An accepted customer keeps one place in the waiting room occupied until their service is
completed. The service times of the customers are exponentially distributed with a mean
1/µ1 for a customer going to the first group and mean 1/µ2 for a customer going to the
second group. Each server can handle only one customer at a time and serves only customers
for the group to which the server belongs. The goal is to find a control rule minimizing the
total average rejection rate. Develop a value-iteration algorithm for this control problem.
Solve for the numerical data c1 = c2 = 1, λ1 = 1.2, λ2 = 1, µ1 = µ2 = 1 and M = 15,
where M denotes the number of places in the waiting room. Try other numerical examples
and verify experimentally that the optimal control rule is characterized by two sequences
{a(r)

1 , 0 ≤ r ≤ M} and {a(r)
2 , 0 ≤ r ≤ M} so that an arriving customer of type k finding r

customers of the other type present upon arrival is accepted only if less than a
(k)
r customers

of the same type k are present and the waiting room is not full. This problem is based on
Tijms and Eikeboom (1986).

7.9 Consider the problem of designing an optimal buffer management policy in a shared-
memory switch with the feature that packets already accepted in the switch can be dropped
(pushed out). The system has two output ports and a finite buffer shared by the two output
ports. Packets of types 1 and 2 arrive according to independent Poisson processes with rates
λ1 and λ2. Packets of type i are destined for output port i for i = 1, 2. At each of the
two output ports there is a single transmission channel. Each channel can transmit only one
packet at a time and the transmission time at output port i is exponentially distributed with
mean 1/µi for i = 1, 2. Upon arrival of a new packet, the system has to decide whether to
accept the packet, to reject it, or to accept it and drop a packet of the other type. A packet
that is rejected or dropped is called a lost packet and has no further influence on the system.
The total buffer size is B and it is assumed that an accepted packet occupies a buffer place
until its transmission is completed. The goal is to find a control rule minimizing the overall
fraction of packets that are lost. Develop a value-iteration algorithm. Solve for the numerical
data λ1 = 1, λ2 = 10, µ1 = 2, µ2 = 20 and B = 12. Try other numerical examples and
investigate whether the optimal control rule has a specific structure. This problem is based
on Cidon et al. (1995).

7.10 Consider a two-server facility with heterogeneous servers. The faster server is always
available and the slower server is activated for assistance when too many customers are
waiting. Customers arrive according to a Poisson process with rate λ. The service facility
has ample waiting room. The service times of the customers are independent of each other
and have an exponential distribution. The mean service time is 1/µ1 when service is provided
by the faster server and is 1/µ2 for the slower server, where 1/µ1 < 1/µ2. It is assumed
that the load factor λ/(µ1 + µ2) is less than 1. The slower server can only be turned off
when it has completed a service. The slower server cannot be on when the system is empty.
If the slower server is kept on while customers are waiting for service, it cannot remain idle.
Each server can handle only one customer at a time. Service is non-pre-emptive; that is, the
faster server cannot take over a customer from the slower server. A fixed cost of K ≥ 0 is
incurred each time the slower server is turned on and there is an operating cost of r > 0
per time unit the slower server is on. Also, a holding cost of h > 0 per time unit is incurred
for each customer in the system. The goal is to find a switching rule that minimizes the
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long-run average cost per time unit. Using the embedding idea from Section 7.4, develop
a value-iteration algorithm for the control problem. Solve for the numerical data λ = 3,
µ1 = 2.8, µ2 = 2.2, h = 2, r = 4 and K = 10. Try other numerical examples and
verify experimentally that the optimal control rule is a so-called hysteretic (m,M) rule
under which the slower server is turned on when the number of customers present is M
or more and the slower server is switched off when this server completes a service and
the number of customers left behind in the system is below m. This problem is based
on Nobel and Tijms (2000), who developed a tailor-made policy-iteration algorithm for
this problem.

7.11 Consider again the heterogeneous server problem from Exercise 7.10. Assume now that
there are two slower servers in addition to the faster server, where the two slower servers
may have different speeds. The faster server is always available for service, while the slower
servers are activated for service when too many customers are present. The service time of
a customer is exponentially distributed with mean 1/µi when service is provided by server
i. Server 1 is the faster server and servers 2 and 3 are the slower servers. It is assumed that
λ/(µ1 + µ2 + µ3) < 1 and µ1 > max(µ2, µ3). There is an operating cost of ri > 0 per
time unit when the slower server i is on for i = 2, 3. A holding cost of h > 0 per time unit
is incurred for each customer in the system. There is no switching cost for turning either of
the slower servers on. Develop a value-iteration algorithm for this problem. Assuming that
the slower servers are numbered such that r2/µ2 < r3/µ3, verify experimentally that the
optimal control rule is characterized by critical numbers 1 ≤ m1 < m2 and prescribes using
the slower server 2 when the number of customers present is more than m1, and using both
slow servers when the number of customers present is more than m2.

7.12 Messages arrive at a transmission channel according to a Poisson process with a con-
trollable arrival rate. The two possible arrival rates are λ1 and λ2 with 0 ≤ λ2 < λ1. The
buffer at the transmission channel has ample space for temporarily storing arriving mes-
sages. The channel can only transmit one message at a time. The transmission time of each
message is exponentially distributed with mean 1/µ. It is assumed that λ2/µ < 1. At any
point in time it can be decided to change the arrival intensity from one rate to the other.
There is a fixed cost of K ≥ 0 for changing the arrival rate. An operating cost of ri > 0
per time unit is incurred when the prevailing arrival rate is λi , i = 1, 2. Also, there is a
holding cost of h > 0 per time unit for each message awaiting service. The goal is to find
a control rule that minimizes the long-run average cost per time unit. Using the embedding
idea from Example 7.4.1, develop a value-iteration algorithm for this control problem. Solve
for the numerical data λ1 = 4, λ2 = 2, µ = 5, K = 5, r1 = 1, r2 = 10 and h = 2. Try
other numerical examples and investigate whether the optimal control rule has a specific
structure.

7.13 Customers of types 1 and 2 arrive at a shared resource according to independent
Poisson processes with respective rates λ1 and λ2. The resource has c service units. An
arriving customer of type i requires bi service units. The customer is rejected when less
than bi units are available upon arrival. An accepted customer of type i immediately enters
service and has an exponentially distributed residency time with mean 1/µi . During this
residency time the customer keeps all of the bi assigned service units occupied. These units
are released simultaneously when the customer departs. Develop a value-iteration algorithm
for the computation of a control rule that minimizes the total average rejection rate. Solve
for the numerical data c = 30, b1 = 2, b2 = 5, λ1 = 6, λ2 = 8, µ1 = 1 and µ2 = 0.5.
Try other numerical examples and verify experimentally that the optimal control rule can
be characterized by two monotone sequences {a(r)

1 } and {a(r)
2 }. Under this control rule an

arriving customer of type i finding r customers of the other type present upon arrival is
accepted only when less than a

(r)
i

customers of the same type i are present and at least bi
service units are free.



304 SEMI-MARKOV DECISION PROCESSES

7.14 Consider Exercise 7.13 again, but assume now that the residency times have a Coxian-2
distribution. Develop a value-iteration algorithm to compute the total average rejection rate
under a fixed reservation policy. A reservation policy is characterized by two integers r1 and
r2 with r1 ≥ b1 and r2 ≥ b2. Under the reservation policy an arriving customer of type i is
accepted only if ri or more service units are available. Verify experimentally that the total
average rejection rate for a fixed reservation policy is nearly insensitive to the second and
higher moments of the residency times. For the case of exponentially distributed residency
times, take the average rejection rate of the best reservation policy and verify how close it
is to the theoretically minimal average rejection rate.

7.15 Consider a production/inventory system with N inventory points that share a common
production unit. At the beginning of each period, the production unit can produce for any
number of inventory points, with the stipulation that the total production size is restricted by
the capacity C of the production unit. The production time is negligible for any production
scheme. The demands at the various inventory points are independent of each other. In
each period the demand at inventory point j is Poisson distributed with mean µj for j =
1, . . . , N . Excess demand is lost at any inventory point. The following costs are involved.
The cost of producing zj units for inventory point j equals Kj + cj zj for zj > 0 regardless
of how much is produced for each of the other inventory points. In any period there is a
holding cost of hj > 0 for each unit in stock at inventory point j at the end of the period.
A stockout cost of pj is incurred for each unit of lost demand at inventory point j . Can you
think of a heuristic approach based on solving N one-dimensional problems and performing
a single policy-improvement step? This problem is based on Wijngaard (1979).

BIBLIOGRAPHIC NOTES

Semi-Markov decision processes were introduced in De Cani (1964), Howard
(1964), Jewell (1963) and Schweitzer (1965). The semi-Markov decision model
has many applications, especially in queueing control. The data-transformation
method converting a semi-Markov decision model into an equivalent discrete-time
Markov decision model was introduced in Schweitzer (1971). This uniformization
method was used in the paper of Lippman (1975) to establish the structure of
optimal control rules in queueing applications of continuous-time Markov decision
processes with exponentially distributed times between the decision epochs. The
idea of using fictitious decision epochs is also contained in this paper. The embed-
ding idea used in Section 7.4 is adapted from De Leve et al. (1977); see also Tijms
(1980). Embedding is especially useful for developing a tailor-made policy-iteration
algorithm that operates on a subclass of structured policies. The heuristic approach
of attacking a multidimensional Markov decision problem through decomposition
and a single-improvement step goes back to Norman (1970) and has been success-
fully applied in Krishnan and Ott (1986,1987) and Wijngaard (1979), among others.
The heuristic solution for the dynamic routing problem from Example 7.5.1 comes
from Krishnan and Ott (1987) and has been extended in Sassen et al. (1997) to
the case of general service times. Other heuristic approaches to handle large-scale
Markov decision processes are discussed in Cooper et al. (2003) and Schweitzer
and Seidman (1985).
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CHAPTER 8

Advanced Renewal Theory

8.0 INTRODUCTION

A renewal process is a counting process that generalizes the Poisson process. In
the Poisson process the interoccurrence times between the events are independent
random variables with an exponential distribution, whereas in a renewal process the
interoccurrence times have a general distribution. A first introduction to renewal
theory has been already given in Section 2.1. In that section several limit theorems
were given without proof. These limit theorems will be proved in Section 8.2 after
having discussed the renewal function in more detail in Section 8.1. A key tool
in proving the limit theorems is the so-called key renewal theorem. Section 8.3
deals with the alternating renewal model and gives an application of this model to
a reliability problem. In queueing and insurance problems it is often important to
have asymptotic estimates for the waiting-time probability and the ruin probability.
In Section 8.4 such estimates are derived by using renewal-theoretic methods. This
derivation illustrates the simplicity of analysis to be achieved by a general renewal-
theoretic approach to hard individual problems.

8.1 THE RENEWAL FUNCTION

Let us first repeat some definitions and results that were given earlier in Section 2.1.
The starting point is a sequence X1, X2, . . . of non-negative independent random
variables having a common probability distribution function

F(x) = P {Xk ≤ x}, x ≥ 0

for k = 1, 2, . . . . Letting µ1 = E(Xk), it is assumed that 0 < µ1 < ∞. The
random variable Xk denotes the interoccurrence time between the (k − 1)th and
kth events in some specific probability problem; see Section 2.1 for examples.
Letting

S0 = 0 and Sn =
n∑

i=1

Xi, n = 1, 2, . . . ,

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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we have that Sn is the epoch at which the nth event occurs. For each t ≥ 0, let

N(t) = the largest integer n ≥ 0 for which Sn ≤ t.

Then the random variable N(t) represents the number of events up to time t . The
counting process {N(t), t ≥ 0} is called the renewal process generated by the
interoccurrence times X1, X2, . . . . It is said that a renewal occurs at time t if
Sn = t for some n. Since F(0) < 1 the number of renewals up to time t is finite
with probability 1 for any t ≥ 0. The renewal function M(t) is defined by

M(t) = E[N(t)], t ≥ 0.

For n = 1, 2, . . . , define the probability distribution function Fn(t) by

Fn(t) = P {Sn ≤ t}, t ≥ 0.

The function Fn(t) is the n-fold convolution of F(t) with itself. Using the important
observation that N(t) ≥ n if and only if Sn ≤ t , it was shown in Section 2.1 that

E[N(t)] =
∞∑

n=1

Fn(t), t ≥ 0. (8.1.1)

Moreover, it was established in Section 2.1 that M(t) < ∞ for all t ≥ 0. Another
important quantity introduced in Section 2.1 is the excess or residual life at time
t . This random variable is defined by

γt = SN(t)+1 − t

and denotes the waiting time from time t onwards until the first occurrence of an
event after time t . Using Wald’s equation, it was shown in Section 2.1 that

E(γt ) = µ1{1 + M(t)} − t. (8.1.2)

The following bounds apply to the renewal function:

t

µ1
− 1 ≤ M(t) ≤ t

µ1
+ µ2

µ2
1

,

where µ2 = E(X2
1). The left inequality is an immediate consequence of (8.1.2) and

the fact that γt ≥ 0. The proof of the other inequality is demanding and lengthy.
The interested reader is referred to Lorden (1970).

8.1.1 The Renewal Equation

A useful characterization of the renewal function is provided by the so-called
renewal equation.
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Theorem 8.1.1 Assume that the probability distribution function F(x) of the inte-
roccurrence times has a probability density f (x). Then the renewal function M(t)

satisfies the integral equation

M(t) = F(t) +
∫ t

0
M(t − x)f (x) dx, t ≥ 0. (8.1.3)

This integral equation has a unique solution that is bounded on finite intervals.

Proof The proof of (8.1.3) is instructive. Fix t > 0. To compute E[N(t)], we
condition on the time of the first renewal and use that the process probabilistically
starts over after each renewal. Under the condition that X1 = x, the random variable
N(t) is distributed as 1+N(t −x) when 0 ≤ x ≤ t and N(t) is 0 otherwise. Hence,
by conditioning upon X1, we find

E[N(t)] =
∫ ∞

0
E[N(t) | X1 = x]f (x) dx =

∫ t

0
E[1 + N(t − x)]f (x) dx,

which gives (8.1.3). To prove that the equation (8.1.3) has a unique solution,
suppose that H(t) = F(t) + ∫ t

0 H(t − x)f (x) dx, t ≥ 0 for a function H(t)

that is bounded on finite intervals. We substitute this equation repeatedly into itself
and use the convolution formula

Fn(t) =
∫ t

0
F(t − x)fn−1(x) dx,

where fk(x) denotes the probability density of Fk(x). This gives

H(t) =
n∑

k=1

Fk(t) +
∫ t

0
H(t − x)fn(x) dx, n = 1, 2, . . . . (8.1.4)

Fix now t > 0. Since H(x) is bounded on [0, t], the second term on the right-hand
side of (8.1.4) is bounded by cFn(t) for some c > 0. Since M(t) < ∞, we have
Fn(t) → 0 as n → ∞. By letting n → ∞ in (8.1.4), we find H(t) = ∑∞

k=1 Fk(t)

showing that H(t) = M(t).

Theorem 8.1.1 allows for the following important generalization.

Theorem 8.1.2 Assume that F(x) has a probability density f (x). Let a(x) be a
given, integrable function that is bounded on finite intervals. Suppose the function
Z(t), t ≥ 0, is defined by the integral equation

Z(t) = a(t) +
∫ t

0
Z(t − x)f (x) dx, t ≥ 0. (8.1.5)

Then this equation has a unique solution that is bounded on finite intervals. The
solution is given by
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Z(t) = a(t) +
∫ t

0
a(t − x)m(x) dx, t ≥ 0, (8.1.6)

where the renewal density m(x) denotes the derivative of M(x).

Proof We give only a sketch of the proof. The proof is similar to the proof of
the second part of Theorem 8.1.1. Substituting the equation (8.1.5) repeatedly into
itself yields

Z(t) = a(t) +
n∑

k=1

∫ t

0
a(t − x)fk(x) dx +

∫ t

0
Z(t − x)fn+1(x) dx.

Next, by letting n → ∞, the desired result readily follows. It is left to the reader
to verify that the various mathematical operations are allowed.

The integral equation (8.1.5) is called the renewal equation. This important
equation arises in many applied probability problems. As an application of The-
orem 8.1.2, we derive an expression for the second moment of the excess life at
time t .

Lemma 8.1.3 Assuming that µ2 = E(X2
1) is finite,

E(γ 2
t ) = µ2[1 + M(t)] − 2µ1

[
t +

∫ t

0
M(x) dx

]
+ t2, t ≥ 0. (8.1.7)

Proof Fix t ≥ 0. Given that the epoch of the first renewal is x, the random
variable γt is distributed as γt−x when x ≤ t and γt equals x − t otherwise. Thus

E(γ 2
t ) =

∫ ∞

0
E(γ 2

t | X1 = x)f (x) dx

=
∫ t

0
E(γ 2

t−x)f (x) dx +
∫ ∞

t

(x − t)2f (x) dx.

Hence, by letting Z(t) = E(γ 2
t ) and a(t) = ∫ ∞

t
(x − t)2f (x) dx, we obtain a

renewal equation of the form (8.1.5). Next it is a question of tedious algebra to
derive (8.1.7) from (8.1.6). The details of the derivation are omitted.

8.1.2 Computation of the Renewal Function

The following tools are available for the numerical computation of the renewal
function:

(a) the series representation,

(b) numerical Laplace inversion,

(c) discretization of the renewal equation.
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In Section 2.1.1 we have already seen that the renewal function can be directly
computed from the series representation (8.1.1) when the interoccurrence times
have a gamma distribution. If the interoccurrence times have a Coxian-2 distribution
an explicit expression can be given for the renewal function; see Exercise 8.1. In
general the renewal function M(x) can be computed by numerical inversion of its
Laplace transform. The Laplace transform M∗(s) = ∫ ∞

0 e−sxM(x) dx is given by

M∗(s) = f ∗(s)
s[1 − f ∗(s)]

,

where f ∗(s) = ∫ ∞
0 e−sxf (x) dx denotes the Laplace transform of the probabil-

ity density of the interoccurrence times; see Appendix E. How to proceed with
numerical Laplace inversion is discussed in Appendix F. In this appendix it is
also discussed how to proceed when the Laplace transform f ∗(s) is analytically
intractable.

Next we discuss a simple but useful discretization method. The renewal equation
(8.1.3) for M(t) is a special case of an integral equation which is known in numer-
ical analysis as a Volterra integral equation of the second kind. Many numerical
methods have been proposed to solve such equations. Unfortunately, these meth-
ods typically suffer from the accumulation of round-off errors when t gets larger.
However, using basic concepts from the theory of Riemann–Stieltjes integration, a
simple and direct solution method with good convergence properties can be given
for the renewal equation (8.1.3). This method discretizes the time and computes
recursively the renewal function on a grid of points. For fixed t > 0, let [0, t] be
partitioned according to 0 = t0 < t1, < . . . < tn = t , where ti = ih for a given
grid size h > 0. Put for abbreviation

Mi = M(ih), Fi = F((i − 0.5)h) and Ai = F(ih), 1 ≤ i ≤ n.

The recursion scheme for computing the Mi is as follows:

Mi = 1

1 − F1


Ai +

i−1∑
j=1

(Mj − Mj−1)Fi−j+1 − Mi−1F1


 , 1 ≤ i ≤ n,

starting with M0 = 0. This recursion scheme is a minor modification of the Rie-
mann–Stieltjes method proposed in Xie (1989) (the original method uses Fi instead
of Ai). The recursion scheme is easy to program and gives surprisingly accurate
results. It is remarkable how well the recursion scheme is able to resist the accu-
mulation of round-off errors as t gets larger. How to choose the grid size h > 0
depends not only on the desired accuracy in the answers, but also on the shape of
the distribution function F(x) and the length of the interval [0, t]. The usual way
to find out whether the answers are accurate enough is to do the computations for
both a grid size h and a grid size h/2. In many cases of practical interest a four-
digit accuracy is obtained for a grid size h in the range 0.05 − 0.01. In Table 8.1.1
some results are given for the renewal function of the Weibull distribution, where



312 ADVANCED RENEWAL THEORY

Table 8.1.1 Renewal function for the Weibull distribution

c2
X

= 0.25 c2
X

= 2

t exact asymp t exact asymp

0.1 0.0061 −0.275 0.2 0.3841 0.700
0.2 0.0261 −0.175 0.5 0.7785 1.000
0.4 0.1087 0.025 1.0 1.357 1.500
0.6 0.2422 0.225 1.5 1.901 2.000
0.8 0.4141 0.425 2.0 2.428 2.500
1.0 0.6091 0.625 2.5 2.947 3.000
1.2 0.8143 0.825 3.0 3.460 3.500
1.5 1.124 1.125 3.5 3.969 4.000
2.0 1.627 1.625 5.0 5.485 5.500
2.5 2.125 2.125 7.5 7.995 8.000

a grid size h = 0.02 is used for the case c2
X = 0.25 and a grid size h = 0.01 for

the case c2
X = 2. In both cases the normalization µ1 = 1 is used for the mean

interoccurrence time. The table also gives the values of the asymptotic expansion
of M(x) that will be discussed in Section 8.2.

The discretization algorithm can also be used to solve an integral equation of the
type (8.1.5). The only change is to replace Ai = F(ih) by Ai = a(ih)+a(0)F (ih).
A more sophisticated discretization method for the renewal equation (8.1.5) is
discussed in Den Iseger et al. (1997).

Computation of the distribution of N(t)

Numerical Laplace inversion can also be used to calculate the probability distribu-
tion of N(t). Since the events {N(t) ≥ n} and {Sn ≤ t} are equivalent, we have
P {N(t) ≥ n} = Fn(t) and so

P {N(t) = n} = Fn(t) − Fn+1(t), n = 0, 1, . . . ,

where F0(t) = 1 and Fn(t) = P {Sn ≤ t} for n ≥ 1. Assuming that the probability
distribution function of the interoccurrence times X1, X2, . . . has a probability
density f (t), the probability distribution function Fn(t) of the sum X1 + · · · + Xn

has a probability density fn(t). The Laplace transform of this probability density
is given by

∫ ∞

0
e−st fn(t) dt = E

(
e−s(X1+···+Xn)

)
= [

f ∗(s)
]n

,

where f ∗(s) = ∫ ∞
0 e−sxf (x) dx denotes the Laplace transform of f (x). Using the

relation (E.4) in Appendix E, we thus find
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∫ ∞

0
e−stP {N(t) = n} dt =

[
f ∗(s)

]n − [
f ∗(s)

]n+1

s
, n = 0, 1, . . .

Hence for fixed n the probability P {N(t) = n} can be calculated by numerical
Laplace inversion. Another interesting question is how to compute the probability

lim
t→∞ P {N(t + D) − N(t) = n}, n = 0, 1, . . .

for a given constant D. Denote this probability by an(D). Using the limiting dis-
tribution P {γt ≤ x} from Theorem 8.2.5 in the next subsection and the relations
(E.4) and (E.6) in Appendix E, it is not difficult for the reader to verify that∫ ∞

0
e−sxa0(x) dx = 1

s
− 1 − f ∗(s)

µ1s2
(8.1.8)

∫ ∞

0
e−sxan(x) dx =

(
1 − f ∗(s)

µ1s

) (
[f ∗(s)]n−1 − [f ∗(s)]n

s

)
, n ≥ 1. (8.1.9)

This is a useful result. For example, the probability distribution {an(D)} gives
the limiting distribution of the number of busy servers in the infinite-server queue
with renewal input and deterministic service times (GI /D/∞ queue). This result
is easily proved. Since each customer gets immediately assigned a free server upon
arrival and the service time of each customer equals the constant D, the only
customers present at time t + D are those who have arrived in (t, t + D].

8.2 ASYMPTOTIC EXPANSIONS

In Section 2.2 we proved a law of large numbers for the process {N(t)}:

lim
t→∞

N(t)

t
= 1

µ1
with probability 1. (8.2.1)

The proof was elementary. It is tempting to conclude from (8.2.1) that M(t)/t →
1/µ1 as t → ∞. Although this result is correct, it cannot be directly concluded
from (8.2.1). The reason is that the random variable N(t)/t need not be bounded in
t . For a sequence of unbounded random variables Yn it is not necessarily true that
limn→∞ E(Yn) = E(Y) when Yn converges to Y with probability 1 as n → ∞.
Consider the counterexample in which Yn = 0 with probability 1−1/n and Yn = n

with probability 1/n. Then E(Yn) = 1 for all n, whereas Yn converges to 0 with
probability 1.

Theorem 8.2.1 (elementary renewal theorem)

lim
t→∞

M(t)

t
= 1

µ1
.
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Proof The proof will be based on the relation (8.1.2) for the excess variable. By
the relation (8.1.2), we have µ1[1 +M(t)] − t ≥ 0 and so we obtain the inequality

M(t)

t
≥ 1

µ1
− 1

t
for all t > 0. (8.2.2)

Next we prove that for any constant c > 0,

M(t)

t
≤ 1

µ(c)
+ 1

t

(
c

µ(c)
− 1

)
for all t > 0. (8.2.3)

where µ(c) = ∫ c

0 [1 − F(x)] dx. To prove this inequality, fix c > 0 and consider
the renewal process {N(t)} associated with the sequence {Xn}, where

Xn =
{

Xn if Xn ≤ c,
c if Xn > c.

Since N(t) ≤ N(t), we have M(t) ≤ M(t) for all t ≥ 0. For the renewal process
{N(t)}, the excess life γ t satisfies γ t ≤ c for all t . Since E(X1) = ∫ ∞

0 P {X1 >

x} dx, we have

E(X1) =
∫ c

0
{1 − F(x)} dx = µ(c).

Thus, by (8.1.2),

µ(c)
[
M(t) + 1

] − t ≤ c, t ≥ 0.

This inequality in conjunction with M(t) ≤ M(t) yields the inequality (8.2.3). The
remainder of the proof is simple. Letting t → ∞ in (8.2.2) and (8.2.3) gives

1

µ(c)
≥ lim

t→∞ sup
M(t)

t
≥ lim

t→∞ inf
M(t)

t
≥ 1

µ1

for any constant c > 0. Next, by letting c → ∞ and noting that µ(c) → µ1 as
c → ∞, we obtain the desired result.

So far our results have not required any assumption about the distribution func-
tion F(x) of the interoccurrence times. However, in order to characterize the
asymptotic behaviour of the solution to the renewal equation it is required that
the distribution function F(x) is non-arithmetic. The distribution function F is
called non-arithmetic if the mass of F is not concentrated on a discrete set of
points 0, λ, 2λ, . . . for some λ > 0. A distribution function that has a positive
density on some interval is non-arithmetic. In the discussion below we make for
convenience the even stronger assumption that F(x) has a probability density. To
establish the limiting behaviour of the solution to the renewal equation (8.1.5), we
need also to impose on the function a(x) a stronger condition than integrability. It
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must be required that the function a(x) is directly Riemann integrable. Direct Rie-
mann integrability can be characterized in several ways. A convenient definition is
the following one. A function a(x) defined on [0, ∞) is said to be directly Riemann
integrable when a(x) is almost everywhere continuous and

∑∞
n=1 an < ∞, where

an is the supremum of |a(x)| on the interval [n − 1, n). A sufficient condition
for a function a(x) to be directly Riemann integrable is that it can be written as
a finite sum of monotone, integrable functions. This condition suffices for most
applications.

Theorem 8.2.2 (key renewal theorem) Assume F(x) has a probability density
f (x). For a given function a(t) that is bounded on finite intervals, let the function
Z(t) be defined by the renewal equation

Z(t) = a(t) +
∫ t

0
Z(t − x)f (x) dx, t ≥ 0.

Suppose that a(t) is directly Riemann integrable. Then

lim
t→∞ Z(t) = 1

µ1

∫ ∞

0
a(x) dx.

The proof of this theorem is demanding and will not be given. The interested reader
is referred to Feller (1971). Next we derive a number of useful results from the
key renewal theorem.

Theorem 8.2.3 Suppose F(x) is non-arithmetic with µ2 = E(X2
1) < ∞. Then

lim
t→∞

[
M(t) − t

µ1

]
= µ2

2µ2
1

− 1, (8.2.4)

lim
t→∞

[∫ t

0
M(x) dx −

{
t2

2µ1
+

(
µ2

2µ2
1

− 1

)
t

}]
= µ2

2

4µ3
1

− µ3

6µ2
1

, (8.2.5)

provided that µ3 = E(X3
1) < ∞.

Proof The asymptotic result M(t)/t → 1/µ1 as t → ∞ suggests that, for some
constant c, M(t) ≈ t/µ1 + c for t large. Let us therefore define the function
Z0(t) by

Z0(t) = M(t) − t

µ1
, t ≥ 0.

Assuming for ease that F(x) has a density f (x), we easily deduce from (8.1.3)
that

Z0(t) = a(t) +
∫ t

0
Z0(t − x)f (x) dx, t ≥ 0, (8.2.6)
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where

a(t) = F(t) − t

µ1
+ 1

µ1

∫ t

0
(t − x)f (x) dx, t ≥ 0.

Writing
∫ t

0 (t − x)f (x) dx = ∫ ∞
0 (t − x)f (x) dx − ∫ ∞

t
(t − x)f (x) dx, we find

a(t) = −[1 − F(t)] + 1

µ1

∫ ∞

t

(x − t)f (x) dx.

This shows that a(t) is the sum of two monotone, integrable functions. We have∫ ∞

0
a(t) dt = −

∫ ∞

0
[1 − F(t)] dt + 1

µ1

∫ ∞

0
dt

∫ ∞

t

(x − t)f (x) dx

= −µ1 + 1

µ1

∫ ∞

0
f (x) dx

∫ x

0
(x − t) dt

= −µ1 + 1

µ1

∫ ∞

0

1

2
x2f (x) dx

= −µ1 + µ2

2µ1
.

By applying the key renewal theorem to (8.2.6), the result (8.2.4) follows. The
proof of (8.2.5) proceeds along the same lines. The relation (8.2.4) suggests that,
for some constant c,

∫ t

0
M(x) dx ≈ t2

2µ1
+ t

(
µ2

2µ2
1

− 1

)
+ c for t large.

To determine the constant c, define the function

Z1(t) =
∫ t

0
M(x) dx −

[
t2

2µ1
+ t

(
µ2

2µ2
1

− 1

)]
, t ≥ 0.

By integrating both sides of the equation (8.1.3) over t and interchanging the order
of integration, we get the following renewal equation for the function U(x) =∫ x

0 M(t) dt :

U(t) =
∫ t

0
F(x) dx +

∫ t

0
U(t − x)f (x) dx, t ≥ 0.

From this renewal equation, we obtain after some algebra

Z1(t) = a(t) +
∫ t

0
Z1(t − x)f (x) dx, t ≥ 0, (8.2.7)
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where

a(t) = µ2

2µ2
1

∫ ∞

t

{1 − F(x)} dx

+ 1

µ1

[
t

∫ ∞

t

{1 − F(x)} dx −
∫ ∞

t

x{1 − F(x)} dx

]
.

The function a(t) is the sum of two monotone functions. Each of the two terms is
integrable. Using formula (A.8) in Appendix A, we find after some algebra∫ ∞

0
a(t) dt = µ2

2

4µ2
1

− µ3

6µ1
.

Next, by applying the key renewal theorem to (8.2.7), we obtain (8.2.5).

The asymptotic expansions in Theorem 8.2.3 are very useful. They are accurate
for practical purposes already for moderate values of t . Asymptotic expansions for
the second moment of N(t) are discussed in Exercise 8.3. An immediate conse-
quence of the relations (8.1.2) and (8.1.7) and Theorem 8.2.3 is the following result
for the excess life γt .

Corollary 8.2.4 Suppose F(x) is non-arithmetic. Then

lim
t→∞ E(γt ) = µ2

2µ1
and lim

t→∞ E(γ 2
t ) = µ3

3µ1
.

Next we discuss the limiting distribution of the excess life γt for t → ∞.

Theorem 8.2.5 Suppose F(x) is non-arithmetic. Then

lim
t→∞ P {γt ≤ x} = 1

µ1

∫ x

0
{1 − F(y)} dy, x ≥ 0. (8.2.8)

Proof For fixed u ≥ 0, define Z(t) = P {γt > u}, t ≥ 0. By conditioning on the
time of the first renewal, we derive a renewal equation for Z(t). Since after each
renewal the renewal process probabilistically starts over, it follows that

P {γt > u | X1 = x} =



P {γt−x > u} if x ≤ t,

0 if t < x ≤ t + u,

1 if x > t + u.

By the law of total probability,

P {γt > u} =
∫ ∞

0
P {γt > u | X1 = x}f (x) dx.

This yields the renewal equation

Z(t) = 1 − F(t + u) +
∫ t

0
Z(t − x)f (x) dx, t ≥ 0.
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The function a(t) = 1 − F(t + u), t ≥ 0 is monotone and integrable. By applying
the key renewal theorem it now follows that

lim
t→∞ Z(t) = 1

µ1

∫ ∞

0
{1 − F(y + u)} dy = 1

µ1

∫ ∞

u

{1 − F(y)} dy,

yielding the desired result by using the fact that
∫ ∞

0 {1 − F(y)} dy = µ1.

In many practical applications the asymptotic expansion (8.2.8) gives a useful
approximation to the distribution of γt already for moderate values of t . The limiting
distribution of the excess life is called the equilibrium excess distribution and has
applications in a wide variety of contexts. The equilibrium excess distribution can
be given the following interpretation. Suppose that an outside person observes the
state of the process at an arbitrarily chosen point in time when the process has
been in operation for a very long time. Assuming that the outside person has no
information about the past history of the process, the best prediction the person
can give about the residual life of the item in use is according to the equilibrium
excess distribution.

The asymptotic expansions in Theorem 8.2.3 will be illustrated by the next
example.

Example 8.2.1 The D-policy for controlling the workload

Batches of fluid material arrive at a processing plant according to a Poisson process
with rate λ. The batch amounts are independent random variables having a contin-
uous probability distribution with finite first two moments µ1 and µ2. It is assumed
that λµ1 < 1. The unprocessed material is temporarily stored in an infinite-capacity
buffer. If the processing plant is open, the material is processed at a unity rate.
The plant is controlled by the so-called D-policy. If the inventory of unprocessed
material becomes zero, the plant is temporarily closed down. The plant is reopened
as soon as the buffer content exceeds the threshold value D. The set-up time to
restart the processing is zero. The following costs are incurred. A holding cost at
rate hx is incurred when the buffer content is x. A fixed set-up cost of K > 0 is
incurred each time the plant is reopened. What value of the control parameter D

minimizes the long-run average cost per time unit?

Preliminary analysis

To answer the above question, we first derive some preliminary results for the
M/G/1 queue. Note that the control problem can be seen as an M/G/1 queue in
which the workload is controlled. The workload is defined as the remaining amount
of work for the server. Define the basic functions

t (x) = the expected amount of time until the workload is zero
when the current workload is x and the server is working
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and

h(x) = the expected holding costs incurred until the workload is zero
when the current workload is x and the server is working.

The functions t (x) and h(x) are given by

t (x) = x

1 − λµ1
and h(x) = h

2(1 − λµ1)

(
x2 + λxµ2

1 − λµ1

)
(8.2.9)

for x ≥ 0. The proof is as follows. By conditioning on the number of arrivals
during a time x, it follows that

t (x) = x +
∞∑

n=1

e−λx (λx)n

n!
tn, x ≥ 0,

where tn is defined as the expected amount of time needed to empty the system
when service is begun with n batches (= customers) present. Let us also define hn

as the expected holding cost incurred during the time needed to empty the system
when service is begun with n batches present. Then, using relation (1.1.8),

h(x) = h

2
x2 +

∞∑
n=1

e−λx (λx)n

n!

[
h

n∑
k=1

(
x − kx

n + 1

)
µ1 + hn

]

= h

2
x2 + h

λ

2
x2µ1 +

∞∑
n=1

e−λx (λx)n

n!
hn, x ≥ 0.

The formula tn = nµ1/(1−λµ1) was obtained in Section 2.6. Substituting this into
the above relation for t (x) gives the first relation in (8.2.9). By the same arguments
as used in Section 2.6 to obtain tn, we find

hn =
n∑

k=1

{h1 + (n − k)t1hµ1} = nh1 + 1

2
hµ1n(n − 1)t1.

Substituting this into the relation for h(x) gives

h(x) = h

2
x2 + h

λ

2
x2µ1 + λxh1 + 1

2
hµ1(λx)2t1, x ≥ 0.

Integrating both sides of this equation over the probability density f (x) of the
batch size and noting that h1 = ∫ ∞

0 h(x)f (x) dx, we find an explicit expression
for h1 and next we obtain the second relation in (8.2.9). The details are left to the
reader.
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Analysis of the D-policy

For a given D-policy the stochastic process describing jointly the inventory of
unprocessed material and the status of the plant (on or off) is regenerative. The
epochs at which the plant is closed down are regeneration epochs. Define a cycle
as the time elapsed between two consecutive shutdowns. The long-run average cost
per time unit equals the value of E(cost incurred during one cycle) divided by the
value of E(expected length of one cycle). To find these two expected values, we
define the functions

α(x) = E(time until the buffer content exceeds the level D when the
current buffer content is D − x and there is no processing),

β(x) = E(holding costs incurred until the buffer content exceeds the level D
when the current buffer content is D − x and there is no processing)

for 0 ≤ x ≤ D. In particular, α(D) and β(D) denote the expected length of the
idle period in a cycle and the expected holding costs during that idle period. Also,
define the random variable γD as the excess of the inventory over the level D

when the plant is reopened. Then E
[
t (D + γD)

]
and E

[
h(D + γD)

]
represent

the expected length of the busy period in a cycle and the expected holding cost
incurred during that busy period. Thus, under a given D-policy,

the long-run average cost per time unit = β(D) + K + E[h(D + γD)]

α(D) + E[t (D + γD)]

with probability 1. It remains to find α(D) and β(D). By conditioning on the batch
size,

α(x) = 1

λ
+

∫ x

0
α(x − y)f (y) dy, 0 ≤ x ≤ D,

β(x) = (D − x)h

λ
+

∫ x

0
β(x − y)f (y) dy, 0 ≤ x ≤ D,

where f (y) denotes the density of the batch size. Let M(x) denote the renewal
function in the renewal process in which the interoccurrence times have the batch-
size density f (x). Denote by m(x) the density of M(x). Then it follows from
Theorem 8.1.2 that

α(x) = 1

λ
+

∫ x

0

1

λ
m(y) dy = 1

λ
{1 + M(x)}, 0 ≤ x ≤ D

β(x) = (D − x)h

λ
+ h

λ

∫ x

0
(D − x + y)m(y) dy

= (D − x)h

λ
+ h

λ
DM(x) − h

λ

∫ x

0
M(y) dy, 0 ≤ x ≤ D.
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Table 8.2.1 Approximate and exact values for D

λ = 0.5 λ = 0.8

c2
B

Dapp Dopt error (%) Dapp Dopt error (%)

1
3 2.911 2.911 0.00 2.214 2.214 0.00
1
2 2.847 2.847 0.00 2.155 2.155 0.00

1 1
2 2.259 2.298 0.13 1.545 1.629 0.24

3 1.142 1.588 11.9 0.318 1.049 15.6

Using this result and the formulas (8.2.9), (8.1.7) and (8.1.2), the above expression
for the long-run average cost can be worked out as

g(D) =
Kλ(1 − λµ1) − h

[
D + ∫ D

0 M(y) dy
]

1 + M(D)
+ hD + hλµ2

2(1 − λµ1)
.

The function g(D) is minimal for the unique solution of the equation

D +
∫ D

0
M(y) dy = Kλ(1 − λµ1)

h
. (8.2.10)

In general it is computationally demanding to find an exact solution of this equation.
Except for special cases, one needs numerical Laplace inversion to compute∫ x

0 M(y) dy; see Appendix F. However, an approximate solution to (8.2.10) is
easily calculated when it is assumed that the optimal value of D is sufficiently
large compared to µ1. Then, by Theorem 8.2.3,

∫ D

0
M(y) dy ≈ D2

2µ1
+ D

(
µ2

2µ2
1

− 1

)
+ µ2

2

4µ3
1

− µ3

6µ2
1

.

Table 8.2.1 gives for several examples the optimal value Dopt and the approximate
value Dapp together with the relative error 100× [

g(Dapp) − g(Dopt )/g(Dopt )
]
. In

all examples we take µ1 = 1, h = 1 and K = 25. The arrival rate λ is 0.5 and 0.8.
The squared coefficient of variation c2

B of the batch size is 1
3 , 1

2 , 1 1
2 and 3, where

the first two values correspond to an Erlang distribution and the latter two values
to an H2 distribution with balanced means. Can you give a heuristic explanation
why the optimal value of D decreases when the coefficient of variation of the batch
size increases?

8.3 ALTERNATING RENEWAL PROCESSES

An alternating renewal process is a two-state process alternating between an on-
state and an off-state. The on-times and the off-times are independent and identically
distributed random variables. The two sequences of on-times and off-times are
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mutually independent. For any s > 0, let

Pon(s) = P {the process is in the on-state at time s}

and

U(s) = P {the amount of time the process is in the on-state during [0, s]}.

Theorem 8.3.1 Suppose that the on-times and off-times have exponential distri-
butions with respective means 1/α and 1/β. Then, assuming that an on-time starts
at epoch 0,

Pon(s) = β

α + β
+ α

α + β
e−(α+β)s , s ≥ 0 (8.3.1)

and

P {U(s) ≤ x} =
∞∑

n=0

e−β(s−x)

[
β(s − x)

n!

]n
[

1 −
n∑

k=0

e−αx (αx)k

k!

]
, 0 ≤ x < s.

(8.3.2)
The distribution function P {U(s) ≤ x} has a mass of e−αs at x = s.

Proof Let Poff(s) = P {the process is in the off-state at time s}. By considering
what may happen in the time interval (s, s+�s] with �s small, it is straightforward
to derive the linear differential equation

P ′
on(s) = βPoff(s) − αPon(s), s > 0.

Since Poff(s) = 1−Pon(s), we find P ′
on(s) = β−(α+β)Pon(s), s > 0. The solution

of this equation is given by (8.3.1). The proof of (8.3.2) is more complicated. The
random variable U(s) is equal to s only if the first on-time exceeds s. Hence
P {U(s) ≤ x} has mass e−αs at x = s. Now fix 0 ≤ x < s. By conditioning on the
lengths of the first on-time and the first off-time, we obtain

P {U(s) ≤ x} =
∫ x

0
αe−αy dy

∫ ∞

0
P {U(s − y − u) ≤ x − y}βe−βu du.

Noting that P {U(s − y − u) ≤ x − y} = 1 if s − y − u ≤ x − y, we next obtain

P {U(s) ≤ x} = e−β(s−x)(1 − e−αx)

+
∫ x

0
αe−αy dy

∫ s−x

0
P {U(s − y − u) ≤ x − y}βe−βu du.

Substituting this equation repeatedly into itself leads to the desired result (8.3.2).
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Corollary 8.3.2 Suppose that the on-times and off-times have exponential distri-
butions with respective means 1/α and 1/β. Then, for any t0 > 0 and 0 ≤ x < t0,

lim
t→∞ P {U(t + t0) − U(t) ≤ x}

= β

α + β

∞∑
n=0

e−β(t0−x) [β(t0 − x)]n

n!

[
1 −

n∑
k=0

e−αx (αx)k

k!

]

+ α

α + β

∞∑
n=0

e−β(t0−x) [β(t0 − x)]n

n!

[
1 −

n−1∑
k=0

e−αx (αx)k

k!

]
. (8.3.3)

Proof Since limt→∞ Pon(t) = β/(α + β), it follows that

lim
t→∞ P {U(t + t0) − U(t) ≤ x}

= β

α + β
P {U(t0) ≤ x}

+ α

α + β

[∫ t0−x

0
P {U(t0 − y) ≤ x}βe−βy dy +

∫ ∞

t0−x

βe−βy dy}
]

.

Next it is a matter of algebra to obtain the desired result from (8.3.2).

Exercises 8.4 to 8.8 give results for the alternating renewal process with non-
exponential on- and off-times. The alternating renewal process is particularly useful
in reliability applications. This is illustrated by the next example.

Example 8.3.1 The 1-out-of-2 reliability model with repair

The 1-out-of-2 reliability model deals with a repairable system that has one operat-
ing unit and one cold standby unit as protection against failures. The lifetime of an
operating unit has a general probability distribution function FL(x) having density
fL(x) with mean µL. If the operating unit fails, it is replaced immediately by the
standby unit if available. The failed unit is sent to a repair facility and immediately
enters repair if the facility is idle. Only one unit can be in repair at a time. The
repair time of a failed unit has a general probability distribution function GR(x)

with mean µR . It is assumed that µR << µL. The operating times and repair times
are mutually independent. The system is down when both units are broken down
and is up otherwise.

We are interested in the probability distribution function

A(x, t0) = lim
t→∞ P {the total uptime in (t, t + t0] is ≤ x}

for an interval of length t0. In other words, the performance measure is the prob-
ability distribution function of the total amount of time the system is available
during a time interval of given length t0 when the system has reached statistical
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equilibrium. An approximate analysis will be given. The analysis is based on the
following ideas:

1. Compute the means of the up- and down-periods.

2. Approximate the stochastic process of the up- and down-periods by an alter-
nating renewal process in which both the up-periods and the down-periods are
independent, exponential random variables and the up-periods are independent
of the down-periods.

In view of the assumption µR << µL, the occurrence of a system failure is a rare
event. This justifies the approximate step of assuming an exponential distribution
for the up-period; see also the discussion on rare events at the end of Section 2.2.
A similar justification for approximating the distribution of the downtime by an
exponential distribution cannot be given. However, in view of the fact that the
uptime dominates the downtime, it is reasonable to expect that the distributional
form of the downtime has only a minor effect on the accuracy of the approximation.
The process alternates between the up-state and the down-state. With the possible
exception of the first up-period, the up-periods start when a unit is put into operation
while the other unit enters repair. The system regenerates itself at the beginning
of those up-periods. We assume that epoch 0 is such a regeneration epoch. Let the
random variables τup and τdown denote the lengths of an up-period and a down-
period. Denote by the sequences {Li} and {Ri} the successive operating times and
the successive repair times. Then

E(τup) = E

[
N∑

i=1

Li

]
,

where N = min{n ≥ 1 | Rn > Ln}. The event {N = n} is independent of
Ln+1, Ln+2, . . . for any n ≥ 1. Thus, by Wald’s equation, E(τup) = E(N)µL. Let

q = P {R > L}

where the random variables L and R denote the operating time and the repair time
of a unit. Since P {N = n} = (1 − q)n−1q for n ≥ 1, we find

E(τup) = µL

q
.

By conditioning on the lifetime, we have

q =
∫ ∞

0
{1 − GR(x)}fL(x) dx.

To find E(τdown), note that E(τdown) = E(R − L | R > L). Using the formula
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(A.7) in Appendix A, we find

E(τdown) =
∫ ∞

0
P {R − L > t | R > L} dt

= 1

q

∫ ∞

0

[∫ ∞

0
{1 − GR(x + t)}fL(x) dx

]
dt

= 1

q

∫ ∞

0
fL(x)

[∫ ∞

x

{1 − GR(u)} du

]
dx,

where the latter equality uses an interchange of the order of integration. Interchang-
ing again the order of integration, we next find that

E(τdown) = 1

q

∫ ∞

0
{1 − GR(u)}FL(u) du.

We are now in a position to calculate an approximation for the probability dis-
tribution function of the total uptime in a time interval of given length t0 when
the system has reached statistical equilibrium. An approximation to the desired
probability A(x, t0) is obtained by applying formula (8.3.3) in which 1/α and 1/β

are replaced by E(τup) and E(τdown) respectively. The numerical evaluation of the
right-hand side of (8.3.3) is easy, since the infinite series converges rapidly and
involves only Poisson probabilities. Numerical integration is required to calculate
the integrals for E(τup) and E(τdown). It remains to investigate the quality of the
approximation for the probabilities A(x, t0). Several assumptions have been made
to get the approximation. The most serious weakness of the approximation is the
assumption that the off-time is approximately exponentially distributed. Neverthe-
less it turns out that the approximation performs very well for practical purposes.
Denoting by Dx the probability that the fraction of time the system is unavailable
in the time interval of length t0 is more than x%, Table 8.3.1 gives the approximate
and exact values of Dx for several values of x. Note that Dx = A(1− t0x/100, t0).

Table 8.3.1 The unavailability probabilities

c2
L

= 0.5 c2
L

= 1

D0 D2 D5 D10 D0 D2 D5 D10

c2
R

= 0 app 0.044 0.030 0.016 0.006 0.117 0.086 0.054 0.024
sim 0.043 0.033 0.020 0.005 0.108 0.091 0.066 0.027

c2
R

= 0.5 app 0.051 0.040 0.028 0.015 0.117 0.095 0.068 0.040
sim 0.050 0.040 0.029 0.016 0.109 0.092 0.070 0.042

c2
R

= 1 app 0.056 0.047 0.036 0.024 0.117 0.099 0.077 0.050
sim 0.055 0.047 0.036 0.024 0.110 0.094 0.074 0.050

c2
R

= 4 app 0.076 0.071 0.063 0.053 0.117 0.108 0.096 0.079
sim 0.075 0.069 0.061 0.050 0.112 0.101 0.089 0.072
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The exact values of Dx are obtained by computer simulation. The length of the
simulation run has been taken long enough to ensure that the half-width of the
95% confidence interval for the simulated probability is no more than 0.001. The
lifetime L of a unit has a Weibull distribution with mean E(L) = 1 and the repair
time R of a unit has a gamma distribution with mean E(R) = 0.125. The squared
coefficients of variation of the lifetime and the repair time are c2

L = 0.5, 1 and
c2
R = 0, 0.5, 1, 4. For the length of the interval we have taken t0 = 1.

8.4 RUIN PROBABILITIES

In many applied probability problems asymptotic expansions provide a simple alter-
native to computationally intractable solutions. A nice example is the ruin proba-
bility in risk theory. Suppose claims arrive at an insurance company according to
a Poisson process {N(t)} with rate λ. The successive claim amounts X1, X2, . . .

are positive, independent random variables having a common probability distri-
bution function B(x) with finite mean µ. The claim amounts are independent of
the arrival process. In the absence of claims, the company’s reserve increases at a
constant rate of σ > 0 per time unit. It is assumed that σ > λµ, i.e. the average
premium received per time unit is larger than the average claim rate. Denote by
the compound Poisson variable

X(t) =
N(t)∑
k=1

Xk

the total amount claimed up to time t . If the company’s initial reserve is x > 0,
then the company’s total reserve at time t is x + σ t − X(t). We say that a ruin
occurs at time t if x + σ t − X(t) < 0 and x + σu − X(u) ≥ 0 for u < t . Let

Q(x) = P {X(t) > x + σ t for some t ≥ 0}.
Then Q(x) is the probability that a ruin will ever occur when the initial capital is
x. Since a ruin can occur only at the claim epochs, we can equivalently write

Q(x) = P




k∑
j=1

Xj − σTk > x for some k ≥ 1


 , (8.4.1)

where Tk is the epoch at which the kth claim occurs for k = 1, 2, . . . . We are
interested in the asymptotic behaviour of Q(x) for large x.

The ruin probability Q(x) arises in a variety of contexts. As another example
consider a production/inventory situation in which demands for a given product
arrive according to a Poisson process. The successive demands are independent
and identically distributed random variables. On the other hand, inventory replen-
ishments of the product occur at a constant rate of σ > 0 per time unit. In this
context, the ruin probability Q(x) represents the probability that a shortage will
ever occur when the initial inventory is x.
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The ruin probability as waiting-time probability

A less obvious context in which the ruin probability appears is the M/G/1 queue.
Customers arrive at a single server station according to a Poisson process with rate
λ. The service or work requirements of the successive customers are independent
random variables having a common probability distribution function B(x) with
finite mean µ. The server works at a rate of σ > 0. It is assumed that σ > λµ.
For n = 1, 2, . . . define the random variable Dn by

Dn = the delay in queue of the nth customer (excluding service time).

Assuming that service is in order of arrival, limn→∞ P {Dn ≤ x} exists for all x.
Moreover, letting

Wq(x) = lim
n→∞ P {Dn ≤ x},

it holds that

Wq(x) = 1 − Q(σx), x ≥ 0. (8.4.2)

A proof of these statements goes as follows. Let τn denote the time between the
arrival of the nth and (n + 1)th customers for n = 1, 2, . . . with the convention
that the 0th customer arrives at epoch 0. Then

Dn+1 =
{

Dn + Xn/σ − τn if Dn + Xn/σ − τn ≥ 0,

0 if Dn + Xn/σ − τn < 0.

Hence, letting Un = Xn/σ − τn for n ≥ 1, we have

Dn+1 = max(0, Dn + Un).

Substituting this equation in itself, it follows that

Dn+1 = max{0, Un + max(0, Dn−1 + Un−1)}
= max(0, Un, Un + Un−1 + Dn−1), n ≥ 1.

By a repeated application of this equation and by D1 = 0, we find

max(0, Un, Un + Un−1 + Dn−1)

= max(0, Un, Un + Un−1, . . . , Un + Un−1 + · · · + U1), n ≥ 1.

Since the random variables U1, U2, . . . are independent and identically distributed,
(Un, . . . , U1) has the same joint distribution as (U1, . . . , Un). Thus

Dn+1 = max(0, U1, U1 + U2, . . . , U1 + · · · + Un), n ≥ 1.
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This implies that

P {Dn+1 > x} = P




k∑
j=1

Uj > x for some 1 ≤ k ≤ n


 , x ≥ 0.

Since limn→∞ P {En} = P {limn→∞ En} for any monotone sequence {En} of
events, it follows that limn→∞ P {Dn > x} exists for all x ≥ 0. Moreover,

lim
n→∞ P {Dn > x} = P




k∑
j=1

Xj − σ

k∑
j=1

τj > σx for some k ≥ 1


 , x ≥ 0.

Together this relation and (8.4.1) prove the result (8.4.2).

A renewal equation for the ruin probability

We now turn to the determination of the ruin probability Q(x). For that purpose,
we derive first an integro-differential equation for Q(x). For ease of presentation
we assume that the probability distribution function B(x) of the claim sizes has a
probability density b(x). Fix x > 0. To compute Q(x − �x) with �x small, we
condition on what may happen in the first �t = �x/σ time units. In the absence
of claims, the company’s capital grows from x − �x to x. However, since claims
arrive according to a Poisson process with rate λ, a claim occurs in the first �x/σ

time units with probability λ�x/σ + o(�x), in which case the company’s capital
becomes x − S if S is the size of that claim. A ruin occurs if S > x. Thus, by
conditioning, we get for fixed x > 0,

Q(x − �x) =
(

1 − λ�x

σ

)
Q(x) + λ�x

σ

∫ ∞

x

b(y) dy

+ λ�x

σ

∫ x

0
Q(x − y)b(y) dy + o(�x).

Subtracting Q(x) from both sides of this equation, dividing by h = −�x and
letting �x → 0, we obtain the integro-differential equation

Q′(x) = − λ

σ
{1 − B(x)} + λ

σ
Q(x) − λ

σ

∫ x

0
Q(x − y)b(y) dy, x > 0. (8.4.3)

Equation (8.4.3) can be converted into an integral equation of the renewal type. To
do so, note that

d

dx

∫ x

0
Q(x − y){1 − B(y)} dy

= Q(0){1 − B(x)} +
∫ x

0
Q′(x − y){1 − B(y)} dy
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= Q(0){1 − B(x)} − Q(x − y)}{1 − B(y)}
∣∣∣x0 −

∫ x

0
Q(x − y)b(y) dy

= Q(x) −
∫ x

0
Q(x − y)b(y) dy.

Hence (8.4.3) can be rewritten as

Q′(x) = − λ

σ
{1 − B(x)} + λ

σ

d

dx

∫ x

0
Q(x − y){1 − B(y)} dy (8.4.4)

for x > 0. Integrating both sides of this equation gives

Q(x) = Q(0) − λ

σ

∫ x

0
{1 − B(y)} dy + λ

σ

∫ x

0
Q(x − y){1 − B(y)} dy (8.4.5)

for all x ≥ 0. The unknown constant Q(0) is easily determined by taking the
Laplace transforms of both sides of (8.4.5). Using the relations (E.5), (E.6) and
(E.7) in Appendix E and noting limx→∞ Q(x) = 0, it is readily verified that

Q(0) = λµ/σ,

where µ = E(X) is the mean claim size. The details are left to the reader. Hence
the integro-differential equation (8.4.3) is equivalent to

Q(x) = a(x) +
∫ x

0
Q(x − y)h(y) dy, x ≥ 0, (8.4.6)

where the functions a(x) and h(x) are given by

a(x) = Q(0) − λ

σ

∫ x

0
{1 − B(y)} dy and h(x) = λ

σ
{1 − B(x)}, x ≥ 0.

The equation (8.4.6) has the form of a standard renewal equation except that the
function h(x), x ≥ 0, is not a proper probability density. It is true that the function
h is non-negative, but∫ ∞

0
h(x) dx = λ

σ

∫ ∞

0
{1 − B(x)} dx = λµ

σ
< 1.

Thus h is the density of a distribution whose total mass is less than 1 with a defect
of 1−λµ/σ . Equation (8.4.6) is called a defective renewal equation.

Asymptotic expansion for the ruin probability

A very useful asymptotic expansion of Q(x) can be given when it is assumed that
the probability density of the claim size (service time) is not heavy-tailed. To be
more precise, the following assumption is made.
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Assumption 8.4.1 There are positive numbers a and b such that the complemen-
tary distribution function 1 − B(y) ≤ ae−by for all y sufficiently large.

This assumption excludes probability distributions with long tails like the log-
normal distribution. The assumption implies that the number s0 defined by

s0 = sup

{
s |

∫ ∞

0
esy{1 − B(y)} dy < ∞

}

exists and is positive (possibly s0 = ∞). In addition to Assumption 8.4.1 we make
the technical assumption

lim
s→s0

λ

σ

∫ ∞

0
esy{1 − B(y)} dy > 1.

Then it is readily verified that the equation

λ

σ

∫ ∞

0
eδy{1 − B(y)} dy = 1 (8.4.7)

has a unique solution δ on the interval (0, s0). Next we convert the defective
renewal equation (8.4.6) into a standard renewal equation. This enables us to apply
the key renewal theorem to obtain the asymptotic behaviour of Q(x). Let

h∗(x) = λ

σ
eδx{1 − B(x)}, x ≥ 0.

Then h∗(x), x ≥ 0 is a probability density with finite mean. Multiplying both sides
of equation (8.4.6) by eδx and defining the functions

Q∗(x) = eδxQ(x) and a∗(x) = eδxa(x), x ≥ 0,

we find that the defective renewal function (8.4.6) is equivalent to

Q∗(x) = a∗(x) +
∫ x

0
Q∗(x − y)h∗(y) dy, x ≥ 0. (8.4.8)

This is a standard renewal equation to which we can apply the key renewal theorem.
The function a∗(x) is directly Riemann integrable as can be shown by verifying
that |a∗(x)| ≤ ce−(a−δ)x as x → ∞ for finite constants c > 0 and a > δ. Using
definition (8.4.7) for δ and the relation

∫ ∞
0 {1 − B(y)} dy = µ, we find∫ ∞

0
a∗(x) dx =

∫ ∞

0
eδx

[
λ

σ

∫ ∞

x

{1 − B(y)} dy

]
dx

= λ

σ

∫ ∞

0
{1 − B(y)}

[∫ y

0
eδx dx

]
dy

= λ

δσ

∫ ∞

0

(
eδy − 1

) {1 − B(y)} dy = 1 − ρ

δ
,
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where the load factor ρ is defined by ρ = λµ/σ . Applying the key renewal theorem
from Section 8.2 to the renewal equation (8.4.8), we find

lim
x→∞ Q∗(x) = γ,

where the constant γ is given by

γ = (1 − ρ)

δ

[
λ

σ

∫ ∞

0
yeδy{1 − B(y)} dy

]−1

.

This yields the asymptotic expansion

Q(x) ∼ γ e−δx as x → ∞, (8.4.9)

where f (x) ∼ g(x) as x → ∞ means that limx→∞ f (x)/g(x) = 1. This is an
extremely important result. The asymptotic expansion is very useful for practical
purposes in view of the remarkable finding that already for relatively small values
of x the asymptotic estimate predicts quite well the exact value of Q(x) when the
load factor ρ is not very small. To illustrate this, Table 8.4.1 gives the numerical
values of Q(x) and the asymptotic estimate Qasy (x) = γ e−δx for several examples.
We take µ = 1 and σ = 1. The squared coefficient of variation c2

X of the claim size
X is c2

X = 0 (deterministic distribution), c2
X = 0.5 (E2 distribution) and c2

X = 1.5
(H2 distribution with balanced means). The load factor ρ is 0.2, 0.5 and 0.8. It
turns out that the closer ρ is to 1, the earlier the asymptotic expansion applies.

Table 8.4.1 Exact and asymptotic values for Q(x)

c2
X

= 0 c2
X

= 0.5 c2
X

= 1.5

x Q(x) Qasy (x) Q(x) Qasy (x) Q(x) Qasy (x)

ρ = 0.2 0.5 0.11586 0.07755 0.12462 0.14478 0.13667 0.09737
1 0.02288 0.03007 0.07146 0.07712 0.09669 0.07630
2 0.00196 0.00210 0.02144 0.02188 0.05234 0.04685
3 0.00015 0.00015 0.00617 0.00621 0.03025 0.02877
5 7.20E-7 7.20E-7 0.00050 0.00050 0.01095 0.01085

ρ = 0.5 0.5 0.35799 0.30673 0.37285 0.38608 0.39390 0.34055
1 0.17564 0.18817 0.26617 0.26947 0.31629 0.28632
2 0.05304 0.05356 0.13106 0.13126 0.21186 0.20239
5 0.00124 0.00124 0.01517 0.01517 0.07179 0.07149
10 2.31E-6 2.31E-6 0.00042 0.00042 0.01262 0.01262

ρ = 0.8 0.5 0.70164 0.67119 0.71197 0.71709 0.72705 0.70204
1 0.55489 0.56312 0.62430 0.62549 0.66522 0.65040
2 0.36548 0.36601 0.47582 0.47589 0.56345 0.55825
5 0.10050 0.10050 0.20959 0.20959 0.35322 0.35299
10 0.01166 0.01166 0.05343 0.05343 0.16444 0.16444
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Heavy-tailed distributions

The probability distribution function B(x) of the claim sizes (service times) is said
to be heavy-tailed when B(x) does not satisfy Assumption 8.4.1. An important sub-
class of heavy-tailed distributions is the class of subexponential distributions. Let
X1, X2, . . . be a sequence of non-negative independent random variables which are
distributed according to the probability distribution function B(x). The distribution
function B(x) is said to be subexponential if B(x) < 1 for all x > 0 and

P {X1 + · · · + Xn > x} ∼ nP {X1 > x} as x → ∞ (8.4.10)

for all n ≥ 2. It can be shown that (8.4.10) holds for all n ≥ 2 if it holds for n = 2.
A physical interpretation of subexponentiality follows by noting that condition
(8.4.10) is equivalent to

P {X1 + · · · + Xn > x} ∼ P {max (X1, . . . , Xn) > x} as x → ∞ (8.4.11)

for all n ≥ 2. In other words, subexponentiality means that a very large value
of a finite sum of independent subexponential random variables is most likely
caused by a very large value of one of the random variables. This property makes
subexponentiality a commonly used paradigm in insurance mathematics, especially
in modelling catastrophes. The class of subexponential distributions is a natural
subclass of heavy-tailed distributions. This subclass includes the lognormal distri-
bution, the Pareto distribution and the Weibull distribution with a shape parameter
less than 1. The equivalence of (8.4.10) and (8.4.11) is easily proved. Therefore
note that

P {max (X1, . . . , Xn) > x} = 1 − [B(x)]n

= [1 − B(x)]
n−1∑
k=0

[B(x)]k ∼ n[1 − B(x)]

as x → ∞
and so P {max(X1, . . . , Xn) > x} ∼ nP {X1 > x} as x → ∞. From this result the
equivalence of (8.4.10) and (8.4.11) follows.

Denote by

Be(x) = 1

µ

∫ x

0
{1 − B(y)} dy, x ≥ 0

the equilibrium excess distribution function associated with B(x). Then the follow-
ing result can be proved:

Q(x) ∼ ρ

1 − ρ
[1 − Be(x)] as x → ∞ (8.4.12)

if and only if B(x) is subexponential. Here ρ = λµ/σ . This result is mainly of
theoretical importance. Unlike the asymptotic expansion (8.4.9) for the light-tailed



RUIN PROBABILITIES 333

case, the asymptotic expansion (8.4.12) for the heavy-tailed case is typically bad for
x-values of interest. It takes very large x before the asymptotic expansion (8.4.12)
applies. In practice one has to use numerical Laplace inversion to calculate the tail
probabilities Q(x) in the heavy-tailed case; see Appendix F.

We give no rigorous proof for the result (8.4.12), but we do make it plausible.
To do so, we first establish the relation

Q(x) =
∞∑

n=0

(1 − ρ)ρn[1 − Bn,e(x)], x ≥ 0, (8.4.13)

where B0,e(x) = 1 for all x ≥ 0 and Bn,e(x) is the n-fold convolution of Be(x)

with itself for n ≥ 1. The formula (8.4.13) does not require any condition on the
distribution function B(x). To prove (8.4.13), denote the Laplace transform of Q(x)

by Q∗(s) = ∫ ∞
0 e−sxQ(x) dx. Taking Laplace transforms of both sides of (8.4.5),

we find

Q∗(s) = ρ

s
− ρb∗

e (s)

s
+ ρQ∗(s)b∗

e (s),

where b∗
e (s) is the Laplace transform of the derivative be(x) = (1/µ)[1 − B(x)]

of the equilibrium excess distribution function Be(x). This gives

Q∗(s) = ρ − ρb∗
e (s)

s[1 − ρb∗
e (s)]

= ρ − ρb∗
e (s)

s

∞∑
n=0

ρn[b∗
e (s)]

n

= 1

s
− (1 − ρ)

∞∑
n=0

ρn [b∗
e (s)]

n

s
. (8.4.14)

It is left to the reader to verify that [b∗
e (s)]

n/s is the Laplace transform of Bn,e(x);
see also relation (E.12) in Appendix E. Inversion of (8.4.14) yields

Q(x) = 1 −
∞∑

n=0

(1 − ρ) ρnBn,e(x) =
∞∑

n=0

(1 − ρ) ρn[1 − Bn,e(x)],

proving (8.4.13). Next the expansion (8.4.12) can be made plausible. Assume that
B(x) is subexponential. If in addition an integrability condition is imposed on
B(x) to exclude pathological cases, it can be shown that the equilibrium excess
distribution function Be(x) is subexponential as well. Then 1 − Bn,e(x) ∼ n[1 −
Be(x)] as x → ∞ for all n and thus

Q(x) ∼
∞∑

n=0

(1 − ρ)ρnn[1 − Be(x)] as x → ∞,

which yields (8.4.12) by noting that
∑∞

n=0(1 − ρ)ρnn = ρ/(1 − ρ).
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EXERCISES

8.1 Use Laplace transform theory to verify the following results:
(a) The renewal function associated with the interoccurrence-time density f (x) =

pλ1e−λ1x + (1 − p)λ2e−λ2x is

M(x) = x

E(X)
+ 1

2
(c2

X − 1)[1 − e−(pλ1+(1−p)λ2)x ], x ≥ 0,

where the random variable X denotes the interoccurrence time.
(b) The renewal function associated with the interoccurrence-time density f (x) =

pλe−λx + (1 − p)λ2xe−λx is

M(x) = x

E(X)
+ 1

2
(c2

X − 1)[1 − e−λ(2−p)x ], x ≥ 0.

8.2 For a renewal process let M2(t) = E[N2(t)] be the second moment of the number of
renewals up to time t . Verify that M2(t) satisfies the renewal equation

M2(t) = 2M(t) − F(t) +
∫ t

0
M2(t − x)f (x) dx, t ≥ 0,

where f (x) is the probability density of the interoccurrence times. Next verify that

lim
t→∞ E[N2(t)] −

{
t2

µ2
1

+
(

2µ2

µ3
1

− 3

µ1

)
t

}
= 3µ2

2

2µ4
1

− 2µ3

3µ3
1

− 3µ2

2µ2
1

+ 1,

where µk denotes the kth moment of the density f (x). Also, prove that

lim
t→∞

∫ t

0
E[N2(y)] dy −

[
t3

3µ3
1

+
(

µ2

µ3
1

− 3

2µ1

)
t2 +

(
3µ2

2

2µ4
1

− 2µ3

3µ3
1

− 3µ2

2µ2
1

+ 1

)
t

]

= µ4

6µ3
1

− µ2µ3

µ4
1

+ µ3
2

µ5
1

+ µ3

2µ2
1

− 3µ2
2

4µ3
1

.

8.3 Consider a renewal process generated by the interoccurrence times X1, X2, . . . with
mean µ1 and second moment µ2. Let L1 be the length of the interoccurrence time covering
epoch t . Derive a renewal equation for E(Lt ). Verify the following results:

(a) E(Lt ) = 2µ1 − µ1e−t/µ1 for all t when the Xi are exponentially distributed.
(b) limt→∞ E(Lt ) = µ2/µ1 when the Xi are continuously distributed.
Also derive a renewal equation for P {Lt > x}. Prove that the limiting distribution of Lt

has the density xf (x)/µ1 when the Xi have a probability density f (x). Can you give a
heuristic explanation of why E(Lt ) ≥ µ1?

8.4 Consider an alternating renewal process in which the on-times and the off-times are
generally distributed. The on-times are assumed to have a probability density. Let Pon(t)
be the probability that the process is in the on-state at time t given that an on-time starts at
epoch 0.

(a) Prove that

Pon(t) = 1 − Fon(t) +
∫ t

0
[1 − Fon(t − x)]m(x) dx, t ≥ 0,
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where Fon(t) is the probability distribution function of the on-time and m(x) is the renewal
density for the renewal process in which the interoccurrence time is distributed as the sum
of an on-time and an off-time. Express the Laplace transform of Pon(t) in terms of the
Laplace transforms of the on-time density and the off-time density. Give an expression for
the Laplace transform of E(U(t)) = ∫ t

0 Pon(u) du, where the random variable U(t) denotes
the cumulative on-time during [0, t].

(b) Use the result of (a) to verify that

Pon(t) =
[t/D]∑
k=0

(t − kD)k

µkk!
e−(t−kD)/µ, t ≥ 0,

when the off-time is a constant D and the on-time has an exponential distribution with mean
1/µ.

8.5 Consider the alternating renewal process in which both the on-times and the off-times
have a general probability distribution. Assuming that an on-time starts at epoch 0, denote
by the random variable U(t) the cumulative amount of time the system is in the on-state
during [0, t].

(a) Use Theorem 2.2.5 to verify that U(t) is asymptotically normally distributed with
mean µont/(µon +µoff) and variance (µ2

onσ 2
off +µ2

offσ
2
on)t/(µon +µoff)

3, where µon(µoff)

and σ 2
on(σ 2

off) denote the mean and the variance of the on-time (off-time).
(b) Derive a renewal equation for E(U(t)). Assuming that the on-time distribution and

the off-time distribution are not both arithmetic, prove that

lim
t→∞

[
E(U(t)) − µon

µon + µoff
t

]
=

µonσ 2
off − µoffσ

2
on

2(µon + µoff)
2

+ µonµoff

2(µon + µoff)
.

8.6 Consider the alternating renewal process in which both the on-times and the off-times
have a general probability distribution. Let µon and µoff denote the respective means of an
on-time and an off-time. Denote by Gon(x, t) the joint probability that the system is on at
time t and that the residual on-time at time t is no more than x. Derive a renewal equation
for Gon(x, t). Assuming that the distribution functions of the on-time and off-time are not
both arithmetic, prove that

lim
t→∞ Gon(x, t) = µon

µon + µoff
× 1

µon

∫ x

0
[1 − Fon(y)] dy, x ≥ 0,

where Fon(x) denotes the probability distribution function of the on-time.

8.7 Consider the alternating renewal process. Let Fon(t) and Foff(t) denote the probability
distribution functions of the on-time and the off-time. Assume that these distribution func-
tions have respective densities fon(t) and foff(t). For any fixed t > 0, define Hon(t, x)

(Hoff(t, x)) as the probability that the cumulative on-time during [0, t] is no more than x
given that an on-time (off-time) starts at epoch 0.

(a) Argue the integral equations

Hon(t, x) =
∫ x

0
Hoff(t − u, x − u)fon(u) du, 0 ≤ x < t

Hoff(t, x) = 1 − Foff(t − x) +
∫ t−x

0
Hon(t − u, x)foff(u) du, 0 ≤ x < t.
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(b) By repeated substitution, verify that

Hon(t, x) =
∞∑

n=0

{Fn∗
off (t − x) − F

(n+1)∗
off (t − x)}F(n+1)∗

on (x), 0 ≤ x < t,

Hoff(t, x) =
∞∑

n=0

{Fn∗
off (t − x) − F

(n+1)∗
off (t − x)}Fn∗

on (x), 0 ≤ x < t,

where Fn∗(x) denotes the n-fold convolution of a probability distribution of F(x) with
itself for n ≥ 1 and F 0∗(x) = 1 for all x ≥ 0.

8.8 Consider Exercise 8.7 again. Define for any fixed t0 > 0,


(t0, x) = lim
t→∞ P {the cumulative on-time during the time

interval [t, t + t0] is no more than x}

for 0 ≤ x < t0. Use results from Exercise 8.7 to argue that 
(t0, x) is given by

µon

µon + µoff

∞∑
n=0

{Fn∗
off (t0 − x) − F

(n+1)∗
off (t0 − x)}Fe

on ∗ Fn∗
on (x)

+ µoff

µon + µoff

∞∑
n=0

{Fe
off ∗ Fn∗

off (t0 − x) − Fe
off ∗ F

(n+1)∗
off (t0 − x)}F(n+1)∗

on (x)

+ µoff

µon + µoff
{1 − Fe

off(t0 − x)}, 0 ≤ x < t0,

where Fe(x) denotes the equilibrium excess distribution function of a probability distribution
function F(x) and A ∗ B(x) denotes the convolution of two distribution functions A(x) and
B(x).

8.9 Consider an age-replacement model in which preventive replacements are only possible
at special times. Opportunities for preventive replacements occur according to a Poisson
process with rate λ. The item is replaced by a new one upon failure or upon a preventive
replacement opportunity occurring when the age of the item is T or more, whichever occurs
first. The lifetime of the item has a probability density f (x). The cost of replacing the
item upon failure is c0 and the cost of a preventive replacement is c1 with 0 < c1 < c0.
Determine the long-run average cost per time unit. This problem is motivated by Dekker
and Smeitink (1994).

8.10 A production machine gradually deteriorates in time. The machine has N possible work-
ing conditions 1, . . . , N which describe increasing degrees of deterioration. Here working
condition 1 represents a new system and working condition N represents a failed system.
If the system reaches the working condition i, it stays in this condition during an expo-
nentially distributed time with mean 1/µ for each i with 1 ≤ i < N . A change of the
working condition cannot be observed except for a failure which is detected immediately.
The machine is replaced by a new one upon failure or upon having worked during a time T ,
whichever occurs first. Each planned replacement involves a fixed cost of J1 > 0, whereas
a replacement because of a failure involves a fixed cost of J2 > 0. The replacement time
is negligible in both cases. Also, the system incurs an operating cost of ai > 0 for each
time unit the system is operating in working condition i. Use Lemma 1.1.4 to verify that
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the long-run average cost per time unit is given by


T

N−2∑
k=0

pk + N − 1

µ


1 −

N−1∑
k=0

pk







−1

×

J2 + (J2 − J1)

N−2∑
k=0

pk +
N−2∑
k=0

pk

k+1∑
i=1

ai
T

k + 1
+

N−1∑
i=1

ai

∞∑
k=N−1

pk
T

k


 ,

where pk = e−µT (µT )k/k!. This problem is motivated by Luss (1976).

8.11 Consider a two-unit reliability model with one operating unit and one unit in warm
standby. The operating unit has a constant failure rate of λ0, while the unit in warm standby
has a constant failure rate of λ1. Upon failure of the operating unit, the unit in warm standby
is put into operation if available. The repair time of a failed unit has a general probability
distribution function G(x) with density g(x) and mean µR . The system is down when both
units have failed. For the case of a single repair facility, prove that the long-run fraction of
time the system is down is as follows. This problem is based on Gaver (1963).

µR − ∫ ∞
0 {1 − G(x)}e−λ0x dx

µR + (λ0 + λ1)−1
∫ ∞

0 e−λ0xg(x) dx
.

8.12 Consider an unreliable production unit whose output is temporarily stored in a finite
buffer with capacity K . The buffer serves for the demand process as protection against
random interruptions in the production process. For the output there is a constant demand
at rate ν. When operating, the production unit produces at a constant rate P > ν if the
buffer is not full and produces at the demand rate ν otherwise. If demand occurs while
the unit is down and the buffer is empty then it is lost. The operating time of the unit is
exponentially distributed with mean 1/λ. If a failure occurs, the unit enters repair for an
exponentially distributed time with mean 1/µ. Determine the long-run fraction of demand
lost and determine the average inventory level in the buffer. (Hint : define the state of the
system as (1, x) and (0, x) respectively when the inventory in the buffer is x and the unit is
operating or down. The process regenerates itself each time the system enters state (0,0). Use
differential equations to get the desired performance measures). This problem is motivated
by Wijngaard (1979).

BIBLIOGRAPHIC NOTES

The key renewal theorem has a long history, and analytic proofs were given under
rather restrictive conditions. The reader is referred to the book of Feller (1971) for a
transparent proof under the weak condition of direct Riemann integrability; see also
Asmussen (1987). The results for the alternating renewal process in Section 8.3 are
proved in greater generality in Takács (1957). The material from Example 8.3.1 is
based on the paper of Van der Heijden (1987). The renewal-theoretic method used
in Section 8.4 to derive asymptotic estimates for ruin and waiting-time probabilities
comes from Feller (1971). Another application of this powerful method to a storage
problem for dams is given in De Kok et al. (1984). A good reference on heavy-
tailed distributions is Embrechts et al. (1997).
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CHAPTER 9

Algorithmic Analysis of
Queueing Models

9.0 INTRODUCTION

Queueing models have their origin in the study of design problems of automatic
telephone exchanges and were first analysed by the queueing pioneer A.K. Erlang in
the early 1900s. In planning telephone systems to meet given performance criteria,
questions were asked such as: How many lines are required in order to give a certain
grade of service? What is the probability that a delayed customer has to wait more
than a certain time before getting a connection? Similar questions arise in the design
of many other systems: How many terminals are needed in a computer system so
that 80% of the users get access to a terminal within 20 seconds? What will be
the effect on the average waiting time of customers when changing the size of a
maintenance staff to service leased equipment? How much storage space is needed
in buffers at workstations in an assembly line in order to keep the probability of
blocking below a specified acceptable level?

These design problems and many others concern, in fact, facilities serving a
community of users, where both the times at which the users ask for service and
the durations that the requests for service will occupy facilities are stochastic, so
that inevitably congestion occurs and queues may build up. In the first stage of
design the system engineer usually needs quick answers to a variety of questions
like those posed above. Queueing theory constitutes a basic tool for making first-
approximation estimates of queue sizes and probabilities of delays. Such a simple
tool should in general be preferred to simulation, especially when it is possible to
have a large number of different configurations in the design problem.

In this chapter we discuss a number of basic queueing models that have proved to
be useful in analysing a wide variety of stochastic service systems. The emphasis
will be on algorithms and approximations rather than on mathematical aspects.
We feel that there is a need for such a treatment in view of the increased use
of queueing models in modern technology. Actually, the application of queueing
theory in the performance analysis of computer and communication systems has

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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stimulated much practically oriented research on computational aspects of queueing
models. It is to these aspects that the present chapter is addressed. Here considerable
attention is paid to robustness results. While it was seen in Section 5.2 that many
loss systems (no access of arrivals finding all servers busy) are exactly or nearly
insensitive to the distributional form of the service time except for its first moment,
it will be demonstrated in this chapter that many delay systems (full access of
arrivals) and many delay-loss systems (limited access of arrivals) allow for two-
moment approximations. The approximate methods for complex queueing models
are usually based on exact results for simpler related models and on asymptotic
expansions. The usefulness of asymptotic expansions can hardly be overestimated.

Algorithmic analysis of queueing systems is more than getting numerical answers.
The essence of algorithmic probability is to find probabilistic ideas which make
the computations transparent and natural. However, once an algorithm has been
developed according to these guidelines, one should always verify that it works in
practice. The algorithms presented in this chapter have all been thoroughly tested.
The cornerstones of the algorithms are:

• the embedded Markov chain method,

• the continuous-time Markov chain approach,

• renewal-theoretic methods,

• asymptotic expansions,

• discrete FFT method and numerical Laplace inversion.

This chapter is organized as follows. Section 9.1 reviews some basic concepts
including phase-type distributions and Little’s formula. In Section 9.2 we derive
algorithms for computing the state probabilities and the waiting-time probabilities
in the single-server queue with Poisson input and general service times (M/G/1
queue). These results are extended in Section 9.3 to the single-server queue with
batch Poisson input. In Section 9.4 we consider the finite-buffer M/G/1 queue
and the M/G/1 queue with impatient customers. The solution of these queue-
ing systems can be expressed in terms of the solution for the infinite-capacity
M/G/1 queue. The single-server queue with general interarrival times and ser-
vice times is the subject of Section 9.5. Section 9.6 deals with multi-server queues
with Poisson input, including both the case of single arrivals and the case of batch
arrivals. Tractable exact results are only obtained for the special case of determin-
istic services and exponential services. For the case of general service times we
derive several approximations. These approximations include two-moment approx-
imations that are based on exact results for simpler models and use a linear inter-
polation with respect to the squared coefficient of variation of the service time. In
Section 9.7 the multi-server queue with renewal input is discussed. In particular,
attention is paid to the tractable models with exponential services and determin-
istic services. In Section 9.8 we consider finite-capacity queueing systems with
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limited access of arrivals. In particular, attention is paid to approximations for
the rejection probability. Throughout this chapter numerical results are given in
order to provide insight into the performance of the solution methods. Indispens-
able tools for the solution of queues are the discrete Fast Fourier Transform (FFT)
method and numerical Laplace inversion. This is a remarkable twist in the history
of queueing analysis. The irony is that complaints about the ‘Laplacian curtain’
stimulated to a large extent the development of algorithmic analysis for queues.
Most of the results for queues in the post-war period were in terms of generat-
ing functions or Laplace transforms. For a long time it was believed that such
results were not very useful for computational purposes. However, the situation
dramatically changed with the invention of the discrete FFT method in 1965, one
of the greatest breakthroughs in numerical analysis. The power of this method
was directly realized in the field of engineering, but it took some time before the
immense usefulness of the discrete FFT method was recognized in the field of
applied probability as well.

9.1 BASIC CONCEPTS

In this section we discuss a number of basic concepts for queueing systems. The
discussion is restricted to queueing systems with only one service node. However,
the fundamental results below are also useful for networks of queues.

Let us start by giving Kendall’s notation for a number of standard queueing
models in which the source of population of potential customers is assumed to
be infinite. The customers arrive singly and are served singly. In front of the
servers there is a common waiting line. A queueing system having waiting room
for an unlimited number of customers can be described by a three-part code a/b/c.
The first symbol a specifies the interarrival-time distribution, the second symbol b

specifies the service-time distribution and the third symbol c specifies the number
of servers. Some examples of Kendall’s shorthand notation are:

1. M/G/1: Poisson (Markovian) input, general service-time distribution, 1 server.

2. M/D/c: Poisson input, deterministic service times, c servers.

3. GI/M/c: general, independently distributed interarrival times, exponential (Mar-
kovian) service times, c servers.

4. GI/G/c: general, independently distributed interarrival times, general service-
time distribution, c servers.

The above notation can be extended to cover other queueing systems. For
example, queueing systems have waiting room only for K customers (excluding
those in service) are often abbreviated by a four-part code a/b/c+K . The notation
GIX/G/c is used for infinite-capacity queueing systems in which customers arrive
in batches and the batch size is distributed according to the random variable X.
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Phase-type distributions

In queueing applications it is often convenient to approximate the interarrival time
and/or the service time by distributions that are built out of a finite sum or a
finite mixture of exponentially distributed components, or a combination of both.
These distributions are called phase-type distributions. For practical purposes it
usually suffices to use finite mixtures of Erlangian distributions with the same scale
parameters or Coxian-2 distributions. These distributions are discussed in detail
in Appendix B. The class of Coxian-2 distributions contains the hyperexponential
distribution of order 2 as special case. The hyperexponential distribution always has
a coefficient of variation greater than or equal to 1. This distribution is particulary
suited to model irregular interarrival (or service) times which have the feature that
most outcomes tend to be small and large outcomes occur only occasionally. The
class of mixtures of Erlangian distributions with the same scale parameters is much
more versatile than the class of Coxian-2 distributions and allows us to cover any
positive value of the coefficient of variation. In particular, a mixture of Ek−1 and
Ek distributions with the same scale parameters is convenient to represent regular
interarrival (or service) times which have a coefficient of variation smaller than or
equal to 1. The theoretical basis for the use of mixtures of Erlangian distributions
with the same scale parameters is provided by Theorem 5.5.1. This theorem states
that each non-negative random variable can be approximated arbitrarily closely by a
random sum of exponentially distributed phases with the same means. This explains
why finite mixtures of Erlangian distributions with the same scale parameters are
widely used for queueing calculations.

Performance measures

It is convenient to use the GI/G/c/c + N queue as a vehicle to introduce some
basic notation. Thus, we assume a multi-server queue with c identical servers and
a waiting room of capacity N (≤ ∞) for customers awaiting to be served. A
customer who finds c +N other customers present upon arrival is rejected and has
no further influence on the system. Otherwise, the arriving customer is admitted
to the system and waits in queue until a server becomes available. The customers
arrive according to a renewal process. In other words, the interarrival times are
positive, independent random variables having a common probability distribution
function A(t). The service times of the customers are independent random variables
with a common probability distribution function B(x) and are also independent of
the arrival process. The queue discipline specifying which customer is to be served
next is first-come first-served (FCFS) unless stated otherwise. A server cannot be
idle when customers are waiting in queue and a busy server works at unity rate. A
customer leaves the system upon service completion. Let

λ = the long-run average arrival rate of customers,

E(S) = the mean service time of a customer.
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The random variable S denotes the service time of a customer. Note that λ =
1/E(A), where the random variable A denotes the interarrival time. An important
quantity is the offered load, which is defined as λE(S). This dimensionless quan-
tity indicates the average amount of work that is offered to the system per time
unit. In the GI/G/c queue (N = ∞) the offered load should be less than the
maximum load the system can handle, otherwise infinitely long queues ultimately
build up. Letting

ρ = λE(S)

c
,

the following assumption is made.

Assumption 9.1.1 For the GI/G/c queue the load factor ρ is below 1.

It will be seen below that in the GI/G/c queue the quantity ρ can be interpreted
as the long-run fraction of time that a given server is busy. This explains why ρ is
called the server utilization in the GI/G/c queue. In addition to Assumption 9.1.1
we make the following technical assumption.

Assumption 9.1.2 (a) The interarrival-time distribution A(t) or the service-time
distribution B(t) has a positive density on some interval.

(b) The probability that the interarrival time A is larger than the service time S

is positive.

Define a cycle as the time elapsed between two consecutive arrivals that find
the system empty. Then, under Assumptions 9.1.1 and 9.1.2, it can be shown that
the expected value of the cycle length is always finite. The proof of this result is
quite deep and is not given here; see Wolff (1989). Let us now define the following
random variables:

L(t) = the number of customers in the system at time t (including those
in service),

Lq(t) = the number of customers in the queue at time t (excluding those
in service),

Dn = the amount of time spent by the nth accepted customer in the
queue (excluding service time),

Un = the amount of time spent by the nth accepted customer in the
system (including service time).

The continuous-time stochastic process {L(t)} and {Lq(t)} and the discrete-time
stochastic processes {Dn} and {Un} are all regenerative. The regeneration epochs are
the epochs at which an arriving customer finds the system empty. The regeneration
cycles have finite means. Thus the following long-run averages exist:

L = lim
t→∞

1

t

∫ t

0
L(u) du (the long-run average number in system)
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Lq = lim
t→∞

1

t

∫ t

0
Lq(u) du (the long-run average number in queue)

Wq = lim
n→∞

1

n

n∑
k=1

Dk (the long-run average delay in queue)

W = lim
n→∞

1

n

n∑
k=1

Uk (the long-run average wait in system).

These long-run averages are constants with probability 1. The steady-state probabil-
ities pj and the steady-state waiting-time distribution function Wq(x) are defined by

pj = lim
t→∞ P {L(t) = j}, j = 0, 1, . . .

and
Wq(x) = lim

n→∞ P {Dn ≤ x}, x ≥ 0.

These limits exist and represent proper probability distributions; see Theorem 2.2.4.
As pointed out in Section 2.2, it is often preferable to interpret pj and Wq(x) as
the long-run fraction of time that j customers are in the system and as the long-run
fraction of accepted customers whose delay in queue is at most x. In batch-arrival
queues the above limits need not exist, while pj and Wq(x) can still be defined as
long-run averages. The long-run averages Lq and Wq can be expressed in terms of
the state probabilities pj and the waiting-time probabilities Wq(x):

Lq =
c+N∑
j=c

(j − c)pj and Wq =
∫ ∞

0
{1 − Wq(x)} dx.

It is important to note that the distribution of the number of customers in the
system is invariant to the order of service, provided that the queue discipline is
service-time independent and work-conserving. Here ‘service-time independent’
means that the rule for selecting the next customer to be served does not depend
on the service time of a customer, while ‘work-conserving’ means that the work or
service requirement of a customer is not affected by the queue discipline. Queue
disciplines having these properties include first-come first-served, last-come first-
served and service in random order. The waiting-time distribution will obviously
depend on the order of service.

Let the random variable In = 1 if the nth arrival is rejected and let In = 0
otherwise. Then the long-run fraction of customers who are rejected is given by
the constant

Prej = lim
n→∞

1

n

n∑
k=1

Ik.
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Little’s formula

The most basic result for queueing systems is Little’s formula. This formula relates
certain averages like the average number of customers in queue and the average
delay in queue per customer. Little’s formula is valid for almost any queueing
system. In particular, for the GI/G/c/c + N queue, we have the fundamental
relations

Lq = λ(1 − Prej )Wq, L = λ(1 − Prej )W, (9.1.1)

the long-run average number of busy servers = (1 − Prej )E(S). (9.1.2)

Note that Prej = 0 if N = ∞. A heuristic but insightful motivation of these for-
mulas was given in Section 2.3. The result (9.1.2) has two interesting implications.
First, since each of the c servers carries on average the same load,

the long-run fraction of time a given server is busy = 1

c
λ(1 − Prej )E(S).

In particular, the long-run fraction of time a given server is busy equals ρ in the
GI/G/c queue. Second, since pj represents the long-run fraction of time that j

customers are present, the long-run average number of busy servers is also given
by the expression

∑c−1
j=0 jpj + c

∑
j≥c pj . Thus we obtain the useful identity

c−1∑
j=1

jpj + c


1 −

c−1∑
j=0

pj


 = λ(1 − Prej )E(S). (9.1.3)

In particular, we find the relation p0 = 1 − λE(S) for the GI/G/1 queue. The
above relations can be directly extended to queueing systems with batch arrivals.

9.2 THE M/G/1 QUEUE

In the M/G/1 queue, customers arrive according to a Poisson process with rate
λ and the service times of the customers are independent random variables with a
common general probability distribution function B(x) with B(0) = 0. There is a
single server and an infinite waiting room. Denoting by the random variable S the
service time of a customer, it is assumed that the server utilization ρ = λE(S) is
smaller than 1.

In Section 9.2.1 we derive a recursive algorithm for the computation of the state
probabilities. Several derivations are possible for the recursion relation. Our deriva-
tion uses the so-called regenerative approach, which involves simple renewal-
theoretic arguments. The regenerative approach directly leads to a numerically
stable recursion scheme for the state probabilities and also allows in a natural
way for generalizations to more complex queueing models. Using the technique of
generating functions, we also derive an asymptotic expansion for the state prob-
abilities. Since an explicit expression is available for the generating function of
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the state probabilities, the discrete FFT method provides an alternative method to
compute the state probabilities. In Section 9.2.2 we discuss the computation of the
waiting-time probabilities when service is in order of arrival. Also attention is paid
to an approximation for the waiting-time distribution. This approximation is based
on the asymptotic expansion of the tail of the waiting-time distribution. Further, we
discuss a simple but generally useful two-moment approximation for the waiting-
time percentiles. Section 9.2.3 discusses the probability distribution of the length
of a busy period and the computation of the waiting-time probabilities when the
last-come first-served discipline is used. The distribution of work in system is the
subject of Section 9.2.4.

9.2.1 The State Probabilities

The time-average probability pj can be interpreted as the long-run fraction of
time that j customers are in the system. Using a basic result from the theory of
regenerative processes and a simple up- and downcrossing argument, we derive a
numerically stable recursion scheme for the state probabilities pj .

Theorem 9.2.1 The state probabilities pj satisfy the recursion

pj = λaj−1p0 + λ

j∑
k=1

aj−kpk, j = 1, 2, . . . , (9.2.1)

where the constants an are given by

an =
∫ ∞

0
e−λt (λt)n

n!
{1 − B(t)} dt, n = 0, 1, . . . .

Proof The stochastic process {L(t), t ≥ 0} describing the number of customers
in the system is regenerative. The process regenerates itself each time an arriving
customer finds the system empty. Denoting by a cycle the time elapsed between two
consecutive arrivals who find the system empty, we define the random variables

T = the length of one cycle,

Tj = the amount of time that j customers are present during one cycle

for j = 0, 1, . . . . The expected length of one cycle is finite (this is in fact a
by-product of the analysis in Section 2.6). By Theorem 2.2.3,

pj = E(Tj )

E(T )
, j = 0, 1, . . . . (9.2.2)

By the lack of memory of the Poisson process, E(T0) = 1/λ and so

p0 = 1

λE(T )
. (9.2.3)
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The following simple idea is crucial for the derivation of a recurrence relation
for the probabilities pj . Divide a cycle into a random number of disjoint intervals
separated by the service completion epochs and calculate E(Tj ) as the sum of the
contributions from the disjoint intervals to the expected sojourn time in state j

during one cycle. Thus, for k = 0, 1, . . . , we define the random variable Nk by

Nk = the number of service completion epochs in one cycle
at which k customers are left behind.

Using the lack of memory of the Poisson arrival process, define

Akj = the expected amount of time that j customers are present
during a given service time that starts with k customers present.

Then, noting that the first service in a cycle starts with one customer present,

E(Tj ) = A1j +
j∑

k=1

E(Nk)Akj , j = 1, 2, . . . . (9.2.4)

It should be pointed out that Wald’s equation is used to justify that E(Nk)Akj
is the contribution to E(Tj ) of those service intervals starting with k customers
present. To find another relation between E(Tj ) and E(Nk), observe that for each
k = 0, 1, . . . , the number of downcrossings from state k + 1 to state k in one cycle
equals the number of upcrossings from state k to state k + 1 in one cycle. The
expected number of downcrossings of the {L(t)} process from state k + 1 to state
k in one cycle equals E(Nk) by definition. On the other hand, since the arrival
process is a Poisson process, we have by Corollary 2.4.2 that the expected number
of upcrossings from state k to state k + 1 in one cycle equals λE(Tk). Thus

E(Nk) = λE(Tk), k = 0, 1, . . . . (9.2.5)

Together the relations (9.2.2) to (9.2.5) imply that

pj = λp0A1j +
j∑

k=1

λpkAkj , j = 1, 2, . . . . (9.2.6)

To specify the constants Akj , suppose that at epoch 0 a service starts when k

customers are present. Define the random variable Ij (t) = 1 if at time t the service
is still in progress and j customers are present and let Ij (t) = 0 otherwise. Then,
for j ≥ k,

Akj = E

[∫ ∞

0
Ij (t) dt

]
=
∫ ∞

0
E[Ij (t)] dt

=
∫ ∞

0
P {Ij (t) = 1} dt =

∫ ∞

0
{1 − B(t)}e−λt (λt)j−k

(j − k)!
dt. (9.2.7)

Together (9.2.6) and (9.2.7) yield the desired result.
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The recursion (9.2.1) enables us to compute recursively p1, p2, . . . starting with
p0 = 1 − ρ. In Section 2.5 we proved that p0 = 1 − ρ; see also relation (9.1.3).
The recursion scheme is numerically stable, since the calculations involve only
additions with positive numbers and thus cannot cause a loss of significant digits.
For many service-time distributions of practical interest, numerical integration can
be avoided for the computation of the constants an. Explicit expressions for the an

can be given for the cases of deterministic and phase-type services.
Define the generating function P (z) by

P (z) =
∞∑

j=0

pjz
j , |z| ≤ 1.

Multiplying both sides of (9.2.1) by zj and summing over j , it is a matter of simple
algebra to derive that

P (z) − p0 = λp0z

∞∑
n=0

anz
n + λ{P (z) − p0}

∞∑
n=0

anz
n.

Since p0 = 1 − ρ, we obtain

P (z) = (1 − ρ)
1 − λ(1 − z)α(z)

1 − λα(z)
, (9.2.8)

where α(z) = ∑∞
n=0 anz

n is given by

α(z) =
∫ ∞

0
{1 − B(t)}e−λ(1−z)t dt.

Expression (9.2.8) for P (z) coincides with expression (2.5.8), since
∫∞

0 e−λ(1−z)t

b(t) dt = 1−λ(1− z)α(z) when b(t) is the probability density of the service time.
The discrete FFT method provides an alternative method for the computation of the
state probabilities using the explicit expression (9.2.8) for the generating function
P (z). A by-product of (9.2.8) is the famous Pollaczek–Khintchine formula

Lq = λ2E(S2)

2(1 − ρ)
(9.2.9)

for the long-run average queue size. Using Little’s formula Lq = λWq , it follows
that the long-run average delay in queue per customer is given by

Wq = λE(S2)

2(1 − ρ)
. (9.2.10)
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Asymptotic expansion for the state probabilities

The representation (9.2.8) shows that the generating function P (z) is the ratio of
two functions, N(z) and D(z). These functions allow for an analytic continuation
outside the unit circle when the following assumption is made.

Assumption 9.2.1 (a)
∫∞

0 est {1 − B(t)} dt < ∞ for some s > 0.
(b) lims→B

∫∞
0 est {1 − B(t)} dt = ∞, where B is the supremum over all s with∫ ∞

0
est {1 − B(t)} dt < ∞.

The assumption requires that the service-time distribution is not heavy-tailed. This
is the case in most situations of practical interest. Under Assumption 9.2.1, it can
be obtained from Theorem C.1 in Appendix C that

pj ∼ στ−j as j → ∞, (9.2.11)

where τ is the unique solution of the equation∫ ∞

0
e−λ(1−τ )t {1 − B(t)} dt = 1

λ
(9.2.12)

on the interval (1, 1 + B/λ) and the constant σ is given by

σ = (1 − ρ)

λ2

[∫ ∞

0
te−λ(1−τ )t {1 − B(t)} dt

]−1

. (9.2.13)

It is empirically found that the asymptotic expansion (9.2.11) already applies for
relatively small values of j . The asymptotic expansion can be used to reduce the
computational effort of the recursion scheme (9.2.1). Since pj−1/pj ≈ τ for j

large enough, the recursive calculations can be halted as soon as the ratio pj−1/pj

has sufficiently converged to the constant τ .

9.2.2 The Waiting-Time Probabilities

In this subsection we discuss the computation of the waiting-time probabilities
under the assumption that customers are served in order of arrival. Both exact
methods and approximate methods are discussed.

Exact methods

The following exact methods can be used for the computation of Wq(x):

(a) discretization,

(b) Laplace-inversion,

(c) phase method.
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(a) By relation (8.4.5),

Wq(x) = Wq(0) + λ

∫ x

0
Wq(x − y){1 − B(y)} dy, x ≥ 0 (9.2.14)

with Wq(0) = 1 − ρ. This integral equation can be solved by using the dis-
cretization method discussed in Section 8.1.2. However, when a high accuracy
is required, this method is computationally rather demanding even when it is
combined with the asymptotic expansion for Wq(x) to be given below.

(b) By (2.5.13), the Laplace transform of 1 − Wq(x) is given by∫ ∞

0
e−sx{1 − Wq(x)} dx = ρs − λ + λb∗(s)

s(s − λ + λb∗(s))
, (9.2.15)

where b∗(s) = ∫∞
0 e−sxb(x) dx is the Laplace transform of the service-time

density b(x). In Appendix F the computation of Wq(x) by numerical Laplace
inversion is discussed.

(c) In Section 5.5 it was shown that any service-time distribution function B(x)

can be arbitrarily closely approximated by a distribution function of the form

∞∑
j=1

qj


1 −

j−1∑
k=0

e−µx (µx)k

k!


 , x ≥ 0,

where qj ≥ 0 and
∑∞

j=1 qj = 1. This distribution function is a mixture of Erlangian
distribution functions with the same scale parameters. It allows us to interprete the
service time as a random sum of independent phases each having the same expo-
nential distribution. Example 5.5.1 explains how to use continuous-time Markov
chain analysis for the computation of Wq(x) when the service-time distribution has
the above form. This approach leads to a simple and fast algorithm.

A simple approximation to the waiting-time probabilities

Assume that Assumption 9.2.1 holds. Then, as was shown in Section 8.4,

1 − Wq(x) ∼ γ e−δx as x → ∞, (9.2.16)

with

δ = λ(τ − 1) and γ = σ

τ − 1
, (9.2.17)

where the constants τ and σ are given by (9.2.12) and (9.2.13).
We found empirically that the asymptotic expansion for 1 − Wq(x) is accu-

rate enough for practical purposes for relatively small values of x. However, why
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not improve this first-order estimate by adding a second exponential term? This
suggests the following approximation to 1 − Wq(x):

1 − Wapp(x) = αe−βx + γ e−δx, x ≥ 0. (9.2.18)

The constants α and β are found by matching the behaviour of Wq(x) at x = 0 and
the first moment of Wq(x). Since 1−Wq(0) = Pdelay and Wq = ∫∞

0 {1−Wq(x)} dx,

it follows that

α = Pdelay − γ and β = α(Wq − γ/δ)−1, (9.2.19)

where Pdelay = ρ and an explicit expression for Wq is given by (9.2.10). It should be
pointed out that the approximation (9.2.18) can be applied only if β > δ, otherwise
1 − Wapp(x) for x large would not agree with the asymptotic expansion (9.2.16).
Numerical experiments indicate that β > δ holds for a wide class of service-time
distributions of practical interest. Further support to (9.2.18) is provided by the fact
that the approximation is exact for Coxian-2 services.

Numerical investigations show that the approximation (9.2.18) performs quite
satisfactorily for all values of x. Table 9.2.1 gives the exact values of 1 − Wq(x),
the approximate values (9.2.18) and the asymptotic values (9.2.16) for E10 and E3
service-time distributions. The server utilization ρ is 0.2, 0.5, 0.8. In all examples
the normalization E(S) = 1 is used.

A two-moment approximation for the waiting-time percentiles

In applications it often happens that only the first two moments of the service time
are available. In these situations, two-moment approximations may be very helpful.

Table 9.2.1 The waiting-time probabilities

Erlang-10 Erlang-3
x exact approx asymp exact approx asymp

ρ = 0.2 0.10 0.1838 0.1960 0.3090 0.1839 0.1859 0.2654
0.25 0.1590 0.1682 0.2222 0.1594 0.1615 0.2106
0.50 0.1162 0.1125 0.1282 0.1209 0.1212 0.1432
0.75 0.0755 0.0694 0.0739 0.0882 0.0875 0.0974
1.00 0.0443 0.0413 0.0427 0.0626 0.0618 0.0663

ρ = 0.5 0.10 0.4744 0.4862 0.5659 0.4744 0.4764 0.5332
0.25 0.4334 0.4425 0.4801 0.4342 0.4361 0.4700
0.50 0.3586 0.3543 0.3651 0.3664 0.3665 0.3810
0.75 0.2808 0.2745 0.2887 0.3033 0.3026 0.3088
1.00 0.2127 0.2102 0.2111 0.2484 0.2476 0.2502

ρ = 0.8 0.10 0.7833 0.7890 0.8219 0.7834 0.7844 0.8076
0.25 0.7557 0.7601 0.7756 0.7562 0.7571 0.7708
0.50 0.7020 0.6998 0.7042 0.7074 0.7074 0.7131
0.75 0.6413 0.6381 0.6394 0.6577 0.6573 0.6597
1.00 0.5812 0.5801 0.5805 0.6097 0.6093 0.6103
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However, such approximations should not be used blindly. Numerical experiments
indicate that the waiting-time probabilities are rather insensitive to more than the
first two moments of the service time S provided that the squared coefficient of
variation c2

S is not too large (say, 0 ≤ c2
S ≤ 2) and the service-time density satisfies

a reasonable shape constraint. The sensitivity becomes less and less manifest when
the traffic intensity ρ gets closer to 1.

The motivation for the two-moment approximation is provided by the Pollaczek–
Khintchine formula for the average delay in queue. The expression (9.2.10) for Wq

can be written as

Wq = 1

2
(1 + c2

S)
E(S)

1 − ρ
, (9.2.20)

where c2
S = σ 2(S)/E2(S). Denote by Wq(exp) and Wq(det) the average delay

in queue for the special cases of exponential services (c2
S = 1) and deterministic

services (c2
S = 0). The formula (9.2.20) is equivalent to the representations

Wq = 1

2
(1 + c2

S)Wq(exp), (9.2.21)

and

Wq = (1 − c2
S)Wq(det) + c2

SWq(exp). (9.2.22)

A natural question is whether the representations (9.2.21) and (9.2.22) can be
used as a basis for approximations to the waiting-time probabilities. Numerical
investigations reveal that the waiting-time probabilities themselves do not allow for
two-moment approximations of the forms (9.2.21) and (9.2.22), but the waiting-
time percentiles do allow for such two-moment approximations. The pth percentile
ξ(p) of the waiting-time distribution function Wq(x) is defined as the solution to
Wq(x) = p. In statistical equilibrium the percentage of customers having a delay
in queue no more than ξ(p) is 100p%. Since Wq(0) = 1 − ρ, the percentile ξ(p)

is only defined for 1 − ρ ≤ p < 1. Denote by ξexp(p) and ξdet(p) the percentile
ξ(p) for the cases of exponential services and deterministic services with the same
means E(S). The representation (9.2.21) suggests the first-order approximation

ξapp1(p) = 1

2
(1 + c2

S)ξexp(p), (9.2.23)

while the representation (9.2.22) suggests the second-order approximation

ξapp2(p) = (1 − c2
S)ξdet(p) + c2

Sξexp(p). (9.2.24)

In Section 5.1 it was shown that 1 − Wq(x) = ρ exp [−µ(1 − ρ)x] for all x ≥ 0
when the service time has an exponential distribution with mean 1/µ = E(S).
Hence ξexp(p) is simply computed as ξexp(p) = E(S) ln[ρ/(1 − p)]/(1 − ρ).

A relatively simple algorithm for the computation of ξdet(p) is given in
Section 9.6.2 in the more general context of the M/D/c queue. For higher values



THE M/G/1 QUEUE 353

Table 9.2.2 The waiting-time percentiles η(p)

c2
S

= 0.5 c2
S

= 2

ρ p 0.2 0.5 0.9 0.99 0.999 0.2 0.5 0.9 0.99 0.999

0.2 exa 0.25 0.70 2.06 3.90 5.73 0.32 1.20 4.53 9.30 14.1
app1 0.21 0.65 2.16 4.32 6.48 0.42 1.30 4.32 8.63 13.0
app2 0.26 0.73 1.98 3.87 5.76 0.31 1.14 4.67 9.52 14.4

0.5 exa 0.39 1.09 3.34 6.54 9.75 0.54 2.00 7.12 14.5 21.8
app1 0.33 1.04 3.45 6.91 10.4 0.67 2.08 6.91 13.8 20.7
app2 0.41 1.10 3.33 6.55 9.77 0.53 1.96 7.16 14.5 21.9

0.8 exa 0.91 2.64 8.52 16.9 25.4 1.53 5.14 17.49 35.2 52.8
app1 0.84 2.60 8.63 17.3 25.9 1.67 5.20 17.27 34.5 51.8
app2 0.93 2.63 8.52 16.9 25.4 1.50 5.14 17.49 35.2 52.9

of p (say p ≥ 1 − 1
2ρ) the percentile ξdet(p) can be simply computed from the

asymptotic expansion of Wq(x) for deterministic services.
Table 9.2.2 gives some numerical results. In the table we work with the per-

centiles of the waiting-time distribution of the delayed customers. The probability
that a delayed customer has to wait longer than x is [1 − Wq(x)]/Pdelay, where
Pdelay = 1 − Wq(0). The percentile η(p) is defined as the solution to

1 − 1 − Wq(x)

Pdelay
= p.

The conditional percentiles η(p) are defined for all 0 ≤ p < 1. Note that η(p1) =
ξ(p0) when p0 = 1−(1−p1)ρ. Table 9.2.2 gives the exact and approximate values
of η(p) for E2 services (c2

S = 0.5) and H2 services with the gamma normalization
(c2

S = 2). The numerical results show an excellent performance of the second-order
approximation for all values of ρ and p. The first-order approximation (1/2)(1 +
c2
S)ηexp(p) is only useful for quick engineering calculations when ρ is not too small

(say, ρ > 0.5) and p is sufficiently close to 1 (say, p > 1 − ρ).

9.2.3 Busy Period Analysis

The busy period is an important concept in queueing. A busy period begins when
an arriving customer finds the system empty and ends when a departing customer
leaves the system empty behind. In this subsection we derive the Laplace transform
of the probability distribution of the length of a busy period in the M/G/1 queue.
Also it will be seen that both the transient emptiness probability and the steady-
state waiting-time distribution under the last-come first-served discipline are closely
related to the distribution of a busy period.

Denote by the random variable B the length of a busy period and let β(x) be
the probability density of B. Then the Laplace transform

β∗(s) =
∫ ∞

0
e−sxβ(x) dx (= E(e−sB))
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of the busy period density is determined by the functional equation

β∗(s) = b∗(s + λ − λβ∗(s)), (9.2.25)

where b∗(s) = ∫∞
0 e−sxb(x) dx is the Laplace transform of the probability density

b(x) of the service time of a customer. By relation (E.8) in Appendix E, the Laplace
transform of P {B > x} is given by∫ ∞

0
e−sxP {B > x} dx = 1 − β∗(s)

s
. (9.2.26)

The key to the proof of (9.2.25) is the assertion that the amount of time needed to
empty the system when the system starts with n customers present is distributed as
the sum of the lengths of n independent busy periods B1, . . . , Bn. To see this, note
first that the order of service has no effect on the amount of time needed to empty
the system. Following Takács (1962), imagine now the following service discipline.
The initial n customers C1, . . . , Cn are separated. Customer C1 is served first, after
which all customers (if any) are served who have arrived during the service time
of customer C1, and this way of service is continued until the system is free of all
customers but C2, . . . , Cn. Next this procedure is repeated with customer C2, etc.
This verifies the above assertion. The remainder of the proof is now simple. Let
the random variables S1 and ν1 denote the length of the service initiating the busy
period and the number of customers arriving during that first service time. Then,
by conditioning on S1 and ν1, we find

E(e−sB) =
∫ ∞

0

[ ∞∑
n=0

e−λt (λt)n

n!
E(e−sB | S1 = t, ν1 = n)

]
b(t) dt

=
∫ ∞

0

[ ∞∑
n=0

e−λt (λt)n

n!
E(e−s(t+B0+···+Bn))

]
b(t) dt,

where B0 = 0 and B1, . . . , Bn are independent random variables each having the
same distribution as the busy period B. Thus we find

β∗(s) =
∫ ∞

0

[ ∞∑
n=0

e−λt (λt)n

n!
e−st [β∗(s)]n

]
b(t) dt

=
∫ ∞

0
e−ste−λ[1−β∗(s)]t b(t) dt = b∗(s + λ − λβ∗(s)),

as was to be proved. In the same way as (9.2.25) was derived, we can derive the
generating function of the random variable N which is defined as the number of
customers served in one busy period. Letting F(z) = ∑∞

k=0 P {N = k}zk , it is left
to the reader to verify that

F(z) = zb∗(λ − λF(z)), |z| ≤ 1. (9.2.27)
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Using relation (E.2) in Appendix E, it easily follows from (9.2.25) that the first
two moments of the length of a busy period are given by

E(B) = E(S)

1 − ρ
and E(B2) = E(S2)

(1 − ρ)3
, (9.2.28)

where the random variable S denotes the service time of a customer. The result
(9.2.28) shows that the squared coefficient of variation of the length of a busy period
equals c2

B = (1+c2
S)/(1−ρ), where c2

S is the squared coefficient of variation of the
service time S. The value of c2

B explodes when ρ approaches 1. Consequently, the
density of the busy period has a very long tail for ρ close to 1. As an illustration,
consider the case of gamma services with E(S) = 1 and c2

S = 2. Then the tail
probability P {B > 1000} has the respective values 4.70 × 10−4, 3.63 × 10−3 and
1.15 × 10−2 for ρ = 0.90, 0.95 and 0.99. These values have been computed by
using the general formula

P {B ≤ x} =
∞∑

n=1

∫ x

0
e−λy (λy)n−1

n!
bn(y) dy, x ≥ 0, (9.2.29)

where bn(x) denotes the probability density of the sum S1 + · · · + Sn of n service
times S1, . . . , Sn. The reader is referred to Takács (1962) for a proof of this formula.
The numerical evaluation of this infinite series offers no difficulties when the service
time has a gamma distribution. Then bn(x) is a gamma density as well, so that each
term of the series can be written as an incomplete gamma integral; see Appendix B.
Fast codes for the numerical evaluation of an incomplete gamma integral are widely
available.

If the service times are not gamma distributed, one has to resort to numerical
inversion of the Laplace transform (9.2.26) for the computation of P {B > x}. In
inverting this Laplace transform, the problem is that β∗(s) is not explicitly given
but is given in the form of a functional equation. However, the value of β∗(s) for
a given point s can be simply computed by an iterative procedure.

Iterative procedure for β∗(s)

For a given point s, the function value β∗(s) can be seen as a ‘fixed point’ of the
equation

z = b∗(s + λ − λz).

It was shown in Abate and Whitt (1992) that this equation can be solved by repeated
substitution. Starting with z0 = 1, compute the (complex) number zn from

zn = b∗(s + λ − λzn−1), n = 1, 2, . . . .

The sequence {zn} converges to the desired value β∗(s).
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Transient emptiness probability

The distribution of the length of the busy period is closely related to the transient
emptiness probability p00(t) defined by

p00(t) = P {no customers will be present at time t when
at the current epoch 0 the system is empty}

for t ≥ 0. Defining the Laplace transform p∗
00(s) by

p∗
00(s) =

∫ ∞

0
e−stp00(t) dt,

it holds that

p∗
00(s) = 1

λ + s − λβ∗(s)
. (9.2.30)

The derivation is simple. By conditioning on the epoch of the first arrival and on
the length of the subsequent busy period, it is readily seen that

p00(t) = e−λt +
∫ t

0
h(t − x)λe−λx dx, t ≥ 0,

where

h(u) =
∫ u

0
p00(u − v)β(v) dv.

Taking the Laplace transform of both sides of the integral equation for p00(t) and
using the convolution formula (E.6) in Appendix E, we obtain

p∗
00(s) = 1

s + λ
+ λ

s + λ
p∗

00(s)β
∗(s).

Solving this equation gives the desired result (9.2.30).

Waiting-time probabilities for LCFS service

Under the last-come first-served discipline (LCFS) the latest arrived customer enters
service when the server is free to start a new service. The LCFS discipline was
in fact used in the derivation of the Laplace transform of the busy period. It will
therefore be no surprise that under this service discipline the limiting distribution
of the waiting time of a customer can be related to the distribution of the length
of a busy period. Assuming the LCFS discipline, let Dn be the delay in queue of
the nth arriving customer and let Wq(x) = limn→∞ P {Dn ≤ x}. Then∫ ∞

0
e−sx{1 − Wq(x)} dx = 1

s

{
ρ − λ(1 − β∗(s))

s + λ − λβ∗(s)

}
. (9.2.31)
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We give only a sketch of the proof. Let the random variable D(∞) have Wq(x) as
probability distribution function. By relation (E.8) in Appendix E,

∫ ∞

0
e−sx{1 − Wq(x)} dx = 1 − E(e−sD(∞)

)

s
.

To find E(e−sD(∞)
), let the random variable Un be 0 if the server is idle upon the

nth arrival and let Un be the remaining service time of the service in progress upon
the epoch of the nth arrival otherwise. Under the LCFS discipline, the delay Dn of
the nth arrival depends only on Un. The random variable Dn has a positive mass
at x = 0. Thus

E(e−sDn) = P {Un = 0} + E(e−sDn | Un > 0)P {Un > 0}.
Next the following observation is made. Under the condition that Un = u and that
k new customers arrive during the remaining service time u, the delay in queue of
the nth arrival is distributed as u + ∑k

i=1 Bi , where B1, . . . , Bk are independent
random variables each distributed as the length of a busy period. Hence

E(e−sDn | Un = u) =
∞∑

k=0

e−λu (λu)k

k!
e−su[β∗(s)]k = e−[s+λ(1−β∗(s))]u.

Define now the random variable Rt as the remaining service time of the service
in progress at time t given that the server is busy at time t . Using the PASTA
property, it follows that

lim
n→∞ P {Un = 0} = 1 − ρ and lim

n→∞ P {Un ≤ u | Un > 0} = lim
t→∞ P {Rt ≤ u}.

Using the result

lim
t→∞ P {Rt ≤ u} = 1

E(S)

∫ u

0
{1 − B(y)} dy, u ≥ 0, (9.2.32)

it is a matter of some algebra to verify that

E(e−sD(∞)

) = lim
n→∞ E(e−sDn) = 1 − ρ + λ(1 − β∗(s))

s + λ − λβ∗(s)
.

This result gives (9.2.31). A remark is made about the important result (9.2.32).
It is tempting to conclude this result by considering only those times when the
server is busy and next using the equilibrium excess distribution from renewal
theory; see Theorem 8.2.5. However, more subtle renewal-theoretic arguments are
needed to prove (9.2.32). A probabilistic proof is as follows. Fix u ≥ 0. Let the
random variable I (t) = 1 if the server is busy at time t and the remaining service
time of the service in progress is larger than u and let I (t) = 0 otherwise. The
stochastic process {I (t)} is regenerative. The regeneration epochs are the service
completion epochs at which the server becomes idle. The length of a regeneration
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cycle is continuously distributed with a finite expectation. Thus, by Theorem 2.2.4,
limt→∞ P {I (t) = 1} exists and equals E(D1)/E(L1), where L1 is the length of
one cycle and D1 is the total amount of time in one cycle that a service is in
progress with a remaining service time larger than u. Denoting by N the number
of customers served in one cycle and using Wald’s equation, we find

E(D1) = E(N)

∫ ∞

u

(y − u)b(y) dy = E(N)

∫ ∞

u

{1 − B(y)} dy.

By (9.2.27) and (9.2.28), E(N) = 1/(1 − ρ) and E(L1) = 1/λ + E(S)/(1 − ρ).
This gives

lim
t→∞ P {the server is busy at time t and the remaining service time

of the service in progress is larger than u}

= λ

∫ ∞

u

{1 − B(y)} dy.

Noting that limt→∞ P {the server is busy at time t} exists and equals ρ = λE(S),
the result (9.2.32) follows.

9.2.4 Work in System

Let the random variable Vt be defined by

Vt = the total amount of work that remains to be done on all
customers in the system at time t.

In other words, Vt is the sum of the remaining service times of the customers in the
system at time t . The stochastic process {Vt , t ≥ 0} is called the work-in-system
process or the virtual-delay process. Let

V∞(x) = lim
t→∞ P {Vt ≤ x}, x ≥ 0.

Also, V∞(x) is the long-run fraction of time that the work in system is no more
than x. By the PASTA property, it holds that V∞(x) is identical to the limiting
distribution function Wq(x) of the waiting time of a customer when service is in
order of arrival. In particular, by (2.5.13),∫ ∞

0
e−sx{1 − V∞(x)} dx = ρs − λ + λb∗(s)

s(s − λ + λb∗(s))
, (9.2.33)

where b∗(s) is the Laplace transform of the service-time density b(x). For later
purposes, we mention here the following additional relations for V∞(x):

V ′
∞(x) = λV∞(x) − λ

∫ x

0
V∞(x − y)b(y) dy, x > 0, (9.2.34)
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V ′
∞(x) = λ

d

dx

∫ x

0
V∞(x − y){1 − B(y)} dy, x > 0. (9.2.35)

Since V∞(x) = Wq(x), these formulas follow from relations (8.4.2), (8.4.3) and
(8.4.4); take σ = 1 in these relations. Also, by (8.4.9), it holds under Assump-
tion 9.2.1 that

1 − V∞(x) ∼ γ e−δx as x → ∞, (9.2.36)

where γ and δ are given by (9.2.17).
Unlike the waiting-time distribution, the distribution of the work in system is

invariant among the so-called work-conserving queue disciplines. A queue disci-
pline is called work-conserving when the amount of time a customer is in service
is not affected by the queue discipline.

The maximum work in system during a busy period

Define the random variable Vmax as

Vmax = the maximum amount of work in system during a busy period.

A busy period is the time elapsed between the arrival epoch of a customer finding
the system empty and the next epoch at which the system becomes empty. The
following result holds:

P {Vmax > K} = 1

λ

V ′∞(K)

V∞(K)
, K > 0, (9.2.37)

where V ′∞(x) is the derivative of V∞(x) for x > 0. To prove this result, we fix
K > 0 and define the probability pK(x) for 0 < x < K by

pK(x) = the probability that the work process {Vt } reaches the
level 0 before it exceeds the level K when the current
amount of work in system equals x.

It will be shown that

pK(x) = V∞(K − x)

V∞(K)
, 0 < x < K. (9.2.38)

The proof of this result is as follows. If the amount of work in the system is x < K

upon arrival of a new customer, the workload remains below the level K only if
the amount of work brought along by the customer is less than K − x. Thus, by
conditioning on what may happen in a very small time interval of length �t = �x,
we find

pK(x + �x) = (1 − λ�x)pK(x) + λ�x

∫ K−x

0
pK(x + y)b(y) dy + o(�x).
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This gives the following expression for the derivative of pK(x):

p′
K(x) = −λpK(x) + λ

∫ K−x

0
pK(x + y)b(y) dy, 0 < x < K.

Mimicking the derivation of (8.4.4) gives

p′
K(x) = λ

d

dx

∫ K−x

0
pK(x + y){1 − B(y)} dy, 0 < x < K.

Letting qK(x) = pK(K − x) for 0 < x < K , we thus have

q ′
K(x) = λ

d

dx

∫ x

0
qK(x − y){1 − B(y)} dy, 0 < x < K.

This equation has a unique solution since it can be reduced to a renewal-type
equation. Comparing this equation with equation (9.2.34) reveals that, for some
constant c,

qK(x) = cV∞(x), 0 < x < K.

Since limx→0pK(x) = 1, the result (9.2.38) now follows. It remains to verify
(9.2.37). To do so, note that

P {Vmax > K} = 1 −
∫ K

0
pK(x)b(x) dx

= V∞(K) − ∫ K

0 V∞(K − x)b(x) dx

V∞(K)
. (9.2.39)

The numerator of the last expression equals λ−1V ′∞(K) by relation (9.2.34). This
completes the verification of (9.2.37).

The probability distribution (9.2.37) of Vmax can be calculated by numerical
inversion of the Laplace transforms of V∞(x) and V ′∞(x). The Laplace transform
of 1 − V∞(x) is given by (9.2.33). Letting v∞(x) denote the derivative of V∞(x)

for x > 0 and noting that V∞(x) = V∞(0) + ∫ x

0 v∞(y) dy, we find

∫ ∞

0
e−sxv∞(x) dx = (1 − ρ)

[
λ − λb∗(s)

]
s − λ + λb∗(s)

.

9.3 THE MX/G/1 QUEUE

Queueing systems with customers arriving in batches rather than singly have many
applications in practice, for example in telecommunication. A useful model is
the single-server MX/G/1 queue where batches of customers arrive according
to a Poisson process with rate λ and the batch size X has a discrete probability
distribution {βj , j = 1, 2, . . . } with finite mean β. The customers are served
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individually by a single server. The service times of the customers are independent
random variables with a common probability distribution function B(t). Denoting
by the random variable S the service time of a customer, it is assumed that the
server utilization ρ defined by

ρ = λβE(S)

is smaller than 1. The analysis for the M/G/1 queue can be extended to the
MX/G/1 queue. In Section 9.3.1 we give an algorithm for the state probabilities.
The computation of the waiting-time probabilities is discussed in Section 9.3.2.

9.3.1 The State Probabilities

The stochastic process {L(t), t ≥ 0} describing the number of customers in the
system is regenerative. The process regenerates itself each time an arriving batch
finds the system empty. The cycle length has a continuous distribution with finite
mean. Thus the process {L(t)} has a limiting distribution {pj }. The probability
pj can be interpreted as the long-run fraction of time that j customers are in the
system. The probability p0 allows for the explicit expression

p0 = 1 − ρ. (9.3.1)

To see this, we apply the ‘reward principle’ that was used in Section 2.3 to obtain
Little’s formula. Assume that the system earns a reward at rate 1 whenever a
customer is in service. Then the average reward per time unit represents the fraction
of time that the server is busy. The long-run average reward earned per customer is
equal to E(S), while the long-run average arrival rate of customers is λβ. Hence the
long-run average reward earned per time unit equals λβE(S). The long-run fraction
of time that the server is busy equals 1−p0. This shows that 1−p0 = λβE(S) = ρ.

A recursion scheme for the pj is given in the following theorem.

Theorem 9.3.1 The state probabilities pj satisfy the recursion

pj = λp0

j∑
s=1

βsaj−s + λ

j∑
k=1

(
k∑

i=0

pi

∑
s>k−i

βs

)
aj−k, j = 1, 2, . . . , (9.3.2)

where

an =
∫ ∞

0
rn(t){1 − B(t)} dt, n = 0, 1, . . .

with rn(t) = P {a total of n customers will arrive in (0,t)}.
Proof The proof is along the same lines as the proof of Theorem 9.2.1. The only
modification is with respect to the up- and downcrossing relation (9.2.5). We now
use the following up- and downcrossing argument: the number of downcrossings
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from a state in the set {k + 1, k + 2, . . . } to a state outside this set during one cycle
equals the number of upcrossings from a state outside the set {k + 1, k + 2, . . . } to
a state in this set during one cycle. Thus relation (9.2.5) generalizes to

E(Nk) =
k∑

i=0

E(Ti)λ
∑

s>k−i

βs, k = 0, 1, . . . .

The remainder of the proof is analogous to the proof of Theorem 9.2.1.

The recursion scheme (9.3.2) is not as easy to apply as the recursion scheme
(9.2.1). The reason is that the computation of the constants an is quite burden-
some. In general, numerical integration must be used, where each function eval-
uation in the integration procedure requires an application of Adelson’s recursion
scheme for the computation of the compound Poisson probabilities rn(t), n ≥ 0;
see Section 1.2.

The best general-purpose approach for the computation of the state probabilities
is the discrete FFT method. An explicit expression for the generating function

P (z) =
∞∑

j=0

pjz
j , |z| ≤ 1

can be given. It is a matter of tedious algebra to derive from (9.3.2) that

P (z) = (1 − ρ)
1 − λα(z){1 − G(z)}

1 − λα(z){1 − G(z)}/(1 − z)
, (9.3.3)

where

G(z) =
∞∑

j=1

βjz
j and α(z) =

∫ ∞

0
e−λ{1−G(z)}t (1 − B(t)) dt.

The derivation uses that e−λ{1−G(z)}t is the generating function of the compound
Poisson probabilities rn(t); see Theorem 1.2.1. Moreover, the derivation uses that
the generating function of the convolution of two discrete probability distributions
is the product of the generating functions of the two probability distributions. The
other details of the derivation of (9.3.3) are left to the reader. For constant and
phase-type services, no numerical integration is required to evaluate the function
α(z) in the discrete FFT method.

Asymptotic expansion

The state probabilities allow for an asymptotic expansion when it is assumed that
the batch-size distribution and the service-time distribution are not heavy-tailed.
Let us make the following assumption.
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Assumption 9.3.1 (a) The convergence radius R of G(z) = ∑∞
j=1 βjz

j is larger
than 1. Moreover,

∫∞
0 est {1 − B(t)} dt < ∞ for some s > 0.

(b) lims→B

∫∞
0 est {1 − B(t)} dt = ∞, where B is the supremum over all s with∫ ∞

0
est {1 − B(t)} dt] < ∞.

(c) limx→R0G(x) = 1 + B/λ for some number R0 with 1 < R0 ≤ R.

Under this assumption we obtain from Theorem C.1 in Appendix C that

pj ∼ στ−j as j → ∞, (9.3.4)

where τ is the unique solution to the equation

λα(τ){1 − G(τ)} = 1 − τ (9.3.5)

on (1, R0) and the constant σ is given by

σ = (1 − ρ)(1 − τ )

[
λα′(τ ){1 − G(τ)} − (1 − τ )G′(τ )

1 − G(τ)
+ 1

]−1

. (9.3.6)

A formula for the average queue size

The long-run average number of customers in queue is Lq = ∑∞
j=1(j − 1)pj .

Using the relation P ′(1) = ∑∞
j=1 jpj , we obtain after some algebra from (9.3.3)

that

Lq = 1

2
(1 + c2

S)
ρ2

1 − ρ
+ ρ

2(1 − ρ)

[
E(X2)

E(X)
− 1

]
,

where X denotes the batch size. Note that the first part of the expression for Lq

gives the average queue size in the standard M/G/1 queue, while the second part
reflects the additional effect of the batch size. The formula for Lq implies directly a
formula for the long-run average delay in queue per customer. By Little’s formula
Lq = λβWq .

9.3.2 The Waiting-Time Probabilities

The concept of waiting-time distribution is more subtle for the case of batch arrivals
than for the case of single arrivals. Let us assume that customers from each arrival
group are numbered as 1, 2, . . . . Service to customers from the same arrival group
is given in the order in which those customers are numbered. For customers from
different batches the service is in order of arrival. Define the random variable Dn as
the delay in queue of the customer who receives the nth service. In the batch-arrival
queue, limn→∞ P {Dn ≤ x} need not exist. To see this, consider the particular case
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of a constant batch size of 2. Then P {Dn > 0} = 1 for n even and P {Dn > 0} < 1
for n odd. The limit

Wq(x) = lim
n→∞

1

n

n∑
k=1

P {Dk ≤ x}, x ≥ 0

always exists. To see this, fix x and imagine that a reward of 1 is earned for each
customer whose delay in queue is no more than x. Using renewal-reward theory,
it can be shown that the limit Wq(x) exists and represents the long-run fraction of
customers whose delay in queue is no more than x. If the batch size distribution
is non-arithmetic, then limn→∞ P {Dn ≤ x} exists and equals Wq(x).

Denote by

b∗(s) =
∫ ∞

0
e−sxb(x) dx

the Laplace transform of the probability density b(x) of the service time of a
customer. Let β∗

SC(s) be the Laplace transform of the probability density of the
total time needed to serve all customers from one batch. It is left to the reader to
verify that

β∗
SC(s) =

∞∑
k=1

βk[b∗(s)]k = G(b∗(s)).

The following result now holds:∫ ∞

0
e−sx{1 − Wq(x)} dx = 1 − W ∗

SC(s)W ∗
r (s)

s
, (9.3.7)

where

WSC(s∗) = (1 − ρ)s

s − λ + λβ∗
SC(s)

and W ∗
r (s) = 1 − G(b∗(s))

β[1 − b∗(s)]

with β = ∑∞
k=1 kβk denoting the average batch size. The waiting-time probabili-

ties Wq(x) can be numerically obtained from (9.3.7) by using numerical Laplace
inversion.

We give only a heuristic sketch of the proof of (9.3.7). A rigorous treatment
is given in Van Ommeren (1988). An essential part of the proof is the following
result. For k = 1, 2, . . . , let

ηk = the long-run fraction of customers taking the kth position in their batch.

Then it holds that

ηk = 1

β

∞∑
j=k

βj , k = 1, 2, . . . . (9.3.8)
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To prove this result, fix k and imagine that a reward of 1 is earned for each customer
taking the kth position in its batch. Then the long-run average reward per customer
is ηk by definition. By the renewal-reward theorem, the long-run average reward per
customer equals the expected reward

∑∞
j=k βj earned for a single batch divided

by the expected batch size β. This gives (9.3.8). Consider now a test customer
belonging to a batch that arrives when the system has reached steady state. Denote
by D(∞) the delay in queue of this test customer. The delay D(∞) can be written
as D(∞) = X0 + X1, where X0 is the delay caused by the customers present
just before the batch of the test customer arrives and X1 is the delay caused by
customers belonging to the batch of the test customer. The random variables X0

and X1 are independent of each other and so E(e−sD(∞)
) = E(e−sX0)E(e−sX1).

Assuming that the position of the test customer in the batch is distributed according
to {ηk}, we have by (9.3.8) that

E(e−sX1) =
∞∑

k=1

ηk[b∗(s)]k−1 = 1

β

∞∑
k=1

[b∗(s)]k−1
∞∑

j=k

βj

= 1

β

∞∑
j=1

βj

j∑
k=1

[b∗(s)]k−1 = 1 − G(b∗(s))
β[1 − b∗(s)]

.

To find E(e−sX0), note that an arriving group of customers can be considered as
a singly arriving supercustomer. The probability density of the total time to serve
a supercustomer has the Laplace transform β∗

SC(s). In other words, the delay in
queue of the first customer of each batch can be described by a standard M/G/1
queue for which the service-time density has the Laplace transform β∗

SC(s). Thus,
using the result (2.5.12) for the M/G/1 queue,

E(e−sX0) = (1 − ρ)s

s − λ + λβ∗
SC(s)

.

Since
∫∞

0 e−sx{1 − Wq(x)} dx = s−1[1 − E(e−sD(∞)
)] by relation (E.8) in

Appendix E, we have now derived (9.3.7) heuristically.

Alternative algorithm

A simpler algorithm than numerical Laplace inversion can be given for the
MX/D/1 queue with deterministic services. This alternative algorithm is discussed
in Section 9.5.3 in the more general context of the MX/D/c queue. A simple algo-
rithm is also possible when the service time of a customer is a mixture of Erlangian
distributions with the same scale parameters. In this case the service time of a cus-
tomer can be interpreted as a random sum of independent phases each having
an exponentially distributed length with the same mean. The MX/G/1 queue with
generalized Erlangian services is in fact an MY /M/1 queue in which the batch size
Y is distributed as the total number of service phases generated by all customers in
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one batch. For this particular MX/G/1 queue the waiting-time probabilities Wq(x)

can be computed by a modification of the algorithm given in Example 5.5.1.

Approximations for the waiting-time probabilities

Suppose that Assumption 9.3.1 is satisfied and let b(t) denote the density of the
service-time distribution function B(t). Then the following asymptotic expansion
applies:

1 − Wq(x) ∼ γ e−δx as x → ∞,

where δ is the smallest positive solution to

∞∑
j=1

βj

{∫ ∞

0
eδt b(t) dt

}j

= 1 + δ

λ

and the constant γ is given by

γ = (1 − ρ)δ

λβ


1 − λ

∫ ∞

0
teδt b(t) dt

∞∑
j=1

jβj

{∫ ∞

0
eδt b(t) dt

}j−1



−1

×
[

1 −
∫ ∞

0
eδt b(t) dt

]−1

.

9.4 M/G/1 QUEUES WITH BOUNDED WAITING TIMES

In Section 9.2.4 we studied the limiting distribution function V∞(x) of the work
in system in the M/G/1 queue. This distribution function will play a key role in
the analysis of both the finite-buffer M/G/1 queue with partial overflow and the
M/G/1 queue with impatient customers.

9.4.1 The Finite-Buffer M/G/1 Queue

Consider the M/G/1 queue with a finite buffer, i.e. the finite dam model. Instead
of a service time of a customer, we speak of the amount of work brought in by
a customer. Customers arrive according to a Poisson process with rate λ. The
amounts of work brought in by the customers are independent random variables
having a common probability distribution function B(x) with probability density
b(x). Denoting by µ the first moment of the amount of work brought in by a
customer, it is assumed that ρ = λµ is less than 1. Each customer puts their
amount of work into a buffer. The buffer has a finite capacity of K . A customer
who brings more work than can be stored in the buffer causes an overflow, where
only the excess of work is lost (partial overflow). The buffer is emptied at a unity
rate whenever there is work in the buffer. The finite-buffer M/G/1 queue has
a variety of applications such as dam and production/inventory systems with a
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finite storage space and telecommunication systems with a finite buffer for storing
incoming data.

An important characteristic of the finite-buffer M/G/1 queue is

π(K) = the long-run fraction of arrivals that cause a partial overflow.

The following result can be proved:

π(K) = 1

λ

V ′∞(K)

V∞(K)
, (9.4.1)

where V∞(x) is defined in Section 9.2.4. It is remarkable that π(K) is identical to
the probability P {Vmax > K}, where Vmax is the maximal buffer content during
a busy period in the infinite-buffer model; see relation (9.2.37). The proof of the
result (9.4.1) is based on the proportionality relation

VK(x) = V∞(x)

V∞(K)
for 0 ≤ x ≤ K, (9.4.2)

where VK(x) is defined by

VK(x) = lim
t→∞ P {V (K)

t ≤ x}

with the random variable V
(K)
t denoting the amount of work in the buffer at time t .

We defer the proof of (9.4.2) to later. First we sketch how the result (9.4.1) can be
obtained from the proportionality relation (9.4.2). A customer who finds an amount
of work x in the buffer upon arrival causes an overflow only if the customer brings
an amount of work larger than K −x. In statistical equilibrium the amount of work
in the buffer seen by an arrival has VK(x) as probability distribution function by
the PASTA property. Hence, by conditioning,

π(K) = {1 − B (K)}VK(0) +
∫ K

0
{1 − B(K − x)}vK(x) dx,

where vK(x) denotes the derivative of VK(x) for x > 0. Using (9.4.2), it is not
difficult to verify by partial integration that

π(K) = 1

V∞(K)

[
V∞(K) −

∫ K

0
V∞(K − x)b(x) dx

]
.

By (9.2.34) the term between brackets equals λ−1V
′
∞(K), proving (9.4.1).

Assuming that the probability distribution function B(x) satisfies Assumption
9.2.1, it follows from (9.2.36) that

π(K) ∼ γ δ

λ
e−δK as K → ∞,

where γ and δ are given by (9.2.17).
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Derivation of the proportionality relation

Several proofs can be given for the proportionality relation (9.4.2). An insight-
ful proof can be based on renewal-theoretic arguments. The workload process
{V (K)(t), t ≥ 0} regenerates itself each time the buffer becomes empty. Let a
cycle be the time interval between two consecutive regeneration epochs. Denote
by the random variable T (K) the length of one cycle and by the random variable
T (K)(x) the amount of time in one cycle that the work in system is no more than x.
The corresponding random variables for the workload process {Vt } in the infinite-
buffer M/G/1 queue are denoted by T (∞) and T (∞)(x). Then, by the theory of
regenerative processes,

VK(x) = E
[
T (K)(x)

]
E(T (K))

and V∞(x) = E
[
T (∞)(x)

]
E(T (∞))

(9.4.3)

for 0 ≤ x ≤ K . The crucial observation is that T (K)(x) has the same distribution as
T (∞)(x) for any 0 ≤ x ≤ K . The assumption of Poisson arrivals and the assumption
of partial overflow of work in excess of the buffer capacity are essential in order
to establish this result. A rigorous proof requires a lot of technical machinery. The
result can be made plausible as follows. In the infinite-buffer model the distribution
of T (∞)(x) for 0 ≤ x ≤ K does not depend on the duration of excursions of the
workload process above the level K . The workload process in the infinite-buffer
system returns to the level K after each upcrossing of the level K . However, by the
lack of memory of the Poisson process, the situation in the infinite-buffer system
at the epochs at which a return to level K occurs is probabilistically the same as in
the finite-buffer system at the epochs at which an overflow of level K occurs. This
explains why T (K)(x) and T (∞)(x) have the same distribution for any 0 ≤ x ≤ K .
Thus we can conclude from (9.4.3) that, for the constant γ = E[T (∞)]/E(T (K)),

VK(x) = γV∞(x), 0 ≤ x ≤ K. (9.4.4)

Since VK(K) = 1, we next get the desired result (9.4.2). A rigorous proof of (9.4.4)
can be found in Hooghiemstra (1987).

Other performance measures

Other performance measures of interest are:

f (K) = the long-run fraction of input that overflows,

I (K) = the long-run average amount of work in the buffer.

The following results hold:

f (K) = (1 − ρ)[1 − V∞(K)]

ρV∞(K)
(9.4.5)
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I (K) = K − 1

V∞(K)

∫ K

0
V∞(x) dx. (9.4.6)

The proof of (9.4.5) is based on Little’s formula for the average number of busy
servers. The long-run fraction of time the server is busy equals 1 − VK(0) =
1 − V∞(0)/V∞(K). Hence, by Little’s formula,

λ(1 − f (K))µ = 1 − V∞(0)

V∞(K)
.

Since V∞(0) = 1−ρ, the formula (9.4.5) next follows. Using partial integration, the
result (9.4.6) directly follows by using (9.4.2). The performance measures π(K),
f (K) and I (K) can be calculated by using numerical Laplace inversion for the
computation of V∞(x), V ′∞(x) and

∫ x

0 V∞(y) dy from the corresponding Laplace
transforms. The formula (9.4.5) for the overflow probability f (K) has an interesting
form. It is our conjecture that this structural form provides a useful approximation
to the overflow probability in more complex finite-buffer models such as the finite-
buffer fluid model with a Markov modulated Poisson input process determined by
a number of independent on-off sources. The solution of the infinite-buffer version
of this model is given in the classic paper of Anick et al. (1982); see also Schwartz
(1996). In this paper the linear differential equations for the work in system are
solved through eigenvalues and eigenvectors.

9.4.2 An M/G/1 Queue with Impatient Customers

A queueing system often encountered in practice is one in which customers wait for
service for a limited time and leave the system if service has not begun within that
time. Practical examples of queueing systems with customer impatience include
real-time telecommunication systems in which data received after a hard deadline
are useless, telecommunication systems in which subscribers give up due to impa-
tience before the requested connection is established and inventory systems with
perishable goods.

In this subsection we consider an M/G/1 queue in which customers arrive
according to a Poisson process with rate λ. The service or work requirements
of the customers are independent random variables having a general probability
distribution function B(x) with finite mean µ. It is assumed that ρ = λµ is less
than 1. The service discipline is first-come first-served. Each arriving customer
enters the system, but is only willing to wait in queue for a fixed time τ > 0. A
customer who waits for a time τ without his service having begun leaves the system
after that time τ and becomes a lost customer. A basic measure for the quality of
service in such a system is the fraction of customers who are lost. Define the
performance measure Ploss by

Ploss = the long-run fraction of customers who are lost.
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The following result holds:

Ploss = (1 − ρ)P {W(∞)
q > τ }

1 − ρP {W(∞)
q > τ }

, (9.4.7)

where the random variable W
(∞)
q is distributed as the steady-state delay in queue of

a customer in the standard M/G/1 queue with service in order of arrival. That is,
P {W(∞)

q ≤ x} = Wq(x). The computation of Wq(x) is discussed in Section 9.2.2.
The proof of (9.4.7) is very similar to that of (9.4.1). To obtain the formula for Ploss ,
it is no restriction on the mathematical analysis to assume that customers finding
an amount of work in system larger than τ upon arrival do not enter the system but
are immediately lost. Using this convention, denote by the random variable V

(τ)
t

the amount of work in system at time t and let V (τ)(x) = limt→∞ P {V (τ)
t ≤ x}

for x ≥ 0. Then, using the PASTA property,

Ploss = 1 − V (τ)(τ ). (9.4.8)

By the same arguments as used to obtain (9.4.4), there is a constant γ so that

V (τ)(x) = γV∞(x), 0 ≤ x ≤ τ. (9.4.9)

To find the constant γ , we use Little’s formula for the average number of busy
servers. Since 1 − V (τ)(0) gives the fraction of time the server is busy,

λ(1 − Ploss )µ = 1 − V (τ)(0). (9.4.10)

Since V (τ)(0) = γV∞(0) and V∞(0) = 1 − ρ, we obtain from (9.4.10) that

Ploss = (1 − ρ)(γ − 1)

λµ
. (9.4.11)

Also, by (9.4.8), Ploss = 1 − γV∞(τ ) and so

γ = 1

1 − ρ [1 − V∞(τ )]
. (9.4.12)

Finally, the desired result (9.4.7) follows by substituting (9.4.12) in (9.4.11) and
noting that V∞(x) equals the waiting-time distribution function Wq(x). Assuming
that the service-time distribution function satisfies Assumption 9.2.1, it follows
from (9.4.7) and the asymptotic expansion (9.2.16) that

Ploss ∼ (1 − ρ) γ e−δτ

1 − ργ e−δτ
∼ (1 − ρ) γ e−δτ as τ → ∞,

where γ and δ are given by (9.2.17). In other words, Ploss decreases exponen-
tially fast as τ gets larger. The structural form of (9.4.7) is remarkable. The loss
probability is expressed in terms of the waiting-time probability P {W(∞)

q > τ }.
The latter probability represents for the M/G/1 queue without impatience the
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probability that a customer arriving in steady state has to wait longer than a time τ

when service is in order of arrival. The result (9.4.7) can be shown to hold for the
M/M/c queue with impatient customers as well; see Boots and Tijms (1999). In
fact the result (9.4.7) applies to both the MX/G/1 queue and the MX/M/c queue
with impatient customers. In Section 9.8 the structural form (9.4.7) will again be
encountered in queueing systems with finite buffers. It will be seen that the loss
probabilities in a finite-buffer queue can often be expressed in terms of the solution
for the corresponding infinite-buffer queue. This finding is extremely useful from a
computational point of view: to analyse the finite-buffer model for different buffer
sizes it suffices to compute only once the solution for the infinite-buffer model.

9.5 THE GI /G/1 QUEUE

This section deals with the GI/G/1 queue in which the interarrival times and the
service times both have a general probability distribution. The server utilization ρ

is assumed to be smaller than 1. Computationally tractable results can be obtained
only for special cases. However, the exact results for simpler models may be used
as a basis for approximations to the complex GI/G/1 model; see also the discussion
in Section 9.7. The discussion will concentrate on the computation of the waiting-
time probabilities for the cases of phase-type services and phase-type arrivals. For
these cases the computational method is based on numerical Laplace inversion.
The embedded Markov chain method is an alternative approach when the service
times are distributed as a mixture of Erlangian distributions with the same scale
parameters. The probabilistic approach for this particular case will be discussed
first. The discussion below assumes that service is in order of arrival.

9.5.1 Generalized Erlangian Services

Suppose that the service-time density b(t) is given by

b(t) =
m∑

i=1

qi

µit i−1e−µt

(i − 1)!
, t ≥ 0,

where qm > 0. In other words, with probability qi the service time of a customer
is the sum of i independent phases each having an exponential distribution with
mean 1/µ. Thus we can define the embedded Markov chain {Xn} by

Xn = the number of uncompleted service phases just before the arrival
of the nth customer.

Denoting by {πj , j = 0, 1, . . . } the equilibrium distribution of this Markov chain,
we find by the same arguments as used to derive (5.1.7) that

Wq(x) = 1 −
∞∑

k=0

e−µx (µx)k

k!


1 −

k∑
j=0

πj


 , x ≥ 0. (9.5.1)



372 ALGORITHMIC ANALYSIS OF QUEUEING MODELS

Thus we have a computationally useful algorithm for the waiting-time distribution
when the probabilities πj can be efficiently computed. These probabilities are the
unique solution to the equilibrium equations

πj =
∞∑

k=0

πkpkj , j = 0, 1, . . . (9.5.2)

together with the normalizing equation
∑∞

j=0 πj = 1, where the pij are the one-step
transition probabilities of the Markov chain {Xn}. The pij are easily found. Since
service completions of phases occur according to a Poisson process with rate µ as
long as the server is busy, it is readily seen that for any i ≥ 0

pij =
m∑

k=max(j−i,1)

qk

∫ ∞

0
e−µt (µt)i+k−j

(i + k − j)!
a(t) dt, 1 ≤ j ≤ i + m,

where a(t) denotes the probability density of the interarrival time. The geometric
tail approach from Section 3.4.2 can be used to reduce the infinite system of linear
equations (9.5.2) to a finite system of linear equations. To see that

πj+1

πj

∼ η as j → ∞ (9.5.3)

for some constant 0 < η < 1, note that for any i ≥ 0 the one-step transition
probability pij equals 0 for j > i + m and depends on i and j only through the
difference j − i for j ≥ 1. Next we can apply a general result from Section 3.4.2
to obtain (9.5.3). Using the expression for pij , the equation (3.4.9) reduces after
some algebra to

wm −
{∫ ∞

0
e−µ(1−w)ta(t) dt

} m∑
i=1

qiw
m−i = 0. (9.5.4)

The decay factor η is the largest root on (0,1) of this equation. By replacing πj

for j ≥ M by πMηj−M for an appropriately chosen integer M , we obtain a finite
system of linear equations.

9.5.2 Coxian-2 Services

Suppose that the service time S of a customer has a Coxian-2 distribution with
parameters (b, µ1, µ2). That is, S is distributed as U1 with probability 1 − b and
S is distributed as U1 + U2 with probability b, where U1 and U2 are indepen-
dent exponentials with respective means 1/µ1 and 1/µ2. Then the waiting-time
distribution function Wq(x) allows for the explicit expression

1 − Wq(x) = a1e−η1x + a2e−η2x, x ≥ 0, (9.5.5)
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where η1 and η2 with 0 < η1 < min(µ1, µ2) ≤ η2 are the roots of

x2 − (µ1 + µ2)x + µ1µ2 − {µ1µ2 − (1 − b)µ1x}
∫ ∞

0
e−xta(t) dt = 0. (9.5.6)

The function a(t) denotes the interarrival-time density and

a1 = [−η2
1η2 + η1η2(µ1 + µ2) − η2µ1µ2]/ [µ1µ2(η1 − η2)]

a2 = [η1η
2
2 − η1η2(µ1 + µ2) + η1µ1µ2]/ [µ1µ2(η1 − η2)] .

A derivation of this explicit result can be found in Cohen (1982). In particular,
Pdelay and Wq are given by

Pdelay = 1 − η1η2

µ1µ2
and Wq = − (µ1 + µ2)

µ1µ2
+ 1

η1
+ 1

η2
. (9.5.7)

Since the computation of the roots of a function of a single variable is standard fare
in numerical analysis, the above results are very easy to use for practical purposes.
Bisection is a safe and fast method to compute the roots.

9.5.3 The GI /Ph/1 Queue

The results in Section 9.5.2 can be extended to the GI/Ph/1 queue with phase-
type services. Let b∗(s) = ∫∞

0 e−st b(t) dt denote the Laplace transform of the
service-time density b(t). For phase-type service b∗(s) can be written as

b∗(s) = b1(s)

b2(s)

for polynomials b1(s) and b2(s), where the degree of b1(s) is smaller than the
degree of b2(s). Let m be the degree of b2(s). It is no restriction to assume that
b1(s) and b2(s) have no common zeros and that the coefficient of sm in b2(s) is
equal to 1. Also, let a∗(s) = ∫∞

0 e−st a(t) dt denote the Laplace transform of the
interarrival-time density a(t). It is assumed that a∗(s) and b2(s) have no common
zero. In Cohen (1982) it has been proved that∫ ∞

0
e−sx{1 − Wq(x)} dx = 1

s

{
1 − b2(s)

b2(0)

m∏
i=1

ηi

ηi + s

}
, (9.5.8)

where η1, . . . , ηm are the roots of

b2(−s) − a∗(s)b1(−s) = 0 (9.5.9)

in the right half-plane {s|Re(s) > 0}. Moreover,

Pdelay = 1 − 1

b2(0)

m∏
i=1

ηi (9.5.10)
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and

Wq = −b′
2(0)

b2(0)
+

m∑
i=1

1

ηi

, (9.5.11)

where b′
2(0) is the derivative of b2(s) at s = 0. Once the roots η1, . . . , ηm have

been computed, the waiting-time probabilities can be obtained by numerical Laplace
inversion of (9.5.8). A few words are in order on the computation of the (com-
plex) roots η1, . . . , ηm. If the interarrival-time density is a phase-type density as
well, then equation (9.5.9) reduces to a polynomial equation. Standard methods are
available to compute the roots of a polynomial equation; see Appendix G. Another
important case is the case of constant interarrival times. For the D/Ph/1 queue,
equation (9.5.9) becomes

b2(−s) − e−sDb1(−s) = 0. (9.5.12)

For Coxian-2 services this equation is a special case of (9.5.6) and has two real
roots that are easily found by bisection. In general the equation (9.5.12) can be
numerically solved by tools discussed in Appendix G. In Appendix G we give
special attention to the numerical solution of (9.5.12) when the service-time dis-
tribution is a mixture of an Erlang (m − 1, µ) distribution and an Erlang (m, µ)

distribution.

9.5.4 The Ph/G/1 Queue

For phase-type arrivals the Laplace transform a∗(s) = ∫∞
0 e−st a(t) dt of the prob-

ability density a(t) of the interarrival time can be written as

a∗(s) = a1(s)

a2(s)
,

for polynomials a1(s) and a2(s), where the degree of a1(s) is lower than the degree
of a2(s). Let m be the degree of a2(s). It is no restriction to assume that a1(s) and
a2(s) have no common zeros and that the coefficient of sm in a2(s) is equal to 1.
Also, let b∗(s) = ∫∞

0 e−st b(t) dt denote the Laplace transform of the service-time
density b(t). It is assumed that b∗(s) and a2(s) have no common zero. For the case
of m ≥ 2, it follows from results in Cohen (1982) that

∫ ∞

0
e−sx

{
1 − Wq(x)

}
dx = 1

s

{
1 − −αa2(0)s(1 − ρ)

a2(−s) − b∗(s)a1(−s)

m−1∏
i=1

δi − s

δi

}
,

(9.5.13)
where δ1, . . . , δm−1 are the roots of

a2(−s) − b∗(s)a1(−s) = 0 (9.5.14)
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in the right half-plane {s|Re(s) > 0} and

α = a′
2(0) − a′

1(0)

a2(0)
.

As usual, a′
2(0) and a′

1(0) denote the derivatives of a2(s) and a1(s) at s = 0.
Moreover,

Pdelay = 1 − (1 − ρ)αa2(0)

m−1∏
i=1

δi (9.5.15)

and

Wq = ρ

2(1 − ρ)E(S)

{
E(S2) + E(A2) + 2E(S)

a′
1(0)

a1(0)
− 2α

a′
2(0)

a2(0)
+

m−1∑
i=1

1

δi

}
,

(9.5.16)
where the random variables S and A represent the service time and the interarrival
time. If m = 1 (i.e. Poisson input), formulas (9.5.13), (9.5.15) and (9.5.16) remain
valid provided we put the empty product equal to 1 and the empty sum equal
to 0. Note that there is a subtle difference between equations (9.5.9) and (9.5.14):
equation (9.5.9) has m roots with Re(s) > 0 and the other equation has m−1 roots.
The explanation lies in the asymmetric role of the interarrival time A and the service
time S in the ergodicity condition E(S)/E(A) < 1. For the numerical computation
of the roots of equation (9.5.14) the same remarks apply as for equation (9.5.9). In
particular, the Ph/D/1 queue is important. It will be seen in Section 9.7 that the
waiting-time distribution in the multi-server GI/D/c queue can be found through
an appropriate Ph/D/1 queue.

9.5.5 Two-moment Approximations

The general GI/G/1 queue is very difficult to analyse. In general one has to resort
to approximations. There are several approaches to obtain approximate numerical
results for the waiting-time probabilities:

(a) Approximate the service-time distribution by a mixture of Erlangian distribu-
tions or a Coxian-2 distribution.

(b) Approximate the continuous-time model by a discrete-time model and use the
discrete FFT method.

(c) Use two-moment approximations.

Approach (a) has been discussed in Sections 9.5.1 and 9.5.2. This approach
should only be used when the squared coefficient of variation of the service time
is not too large, say 0 ≤ c2

S ≤ 2.
Let us now briefly discuss approach (b) for the GI/G/1 queue. This approach

is based on Lindley’s integral equation. Define the random variables
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Dn = the delay in queue of the nth customer,

Sn = the service time of the nth customer,

An = the interarrival time between the nth and (n + 1)th customers.

For ease, let us assume that the service times and interarrival times have probability
densities b(t) and a(t). In the same way as in Section 8.4, we obtain

Dn+1 = max(0, Dn + Un), n = 1, 2, . . . , (9.5.17)

where Un = Sn −An. Using this recurrence equation, it is not difficult to show that
the waiting-time distribution function Wq(x) satisfies the so-called Lindley integral
equation

Wq(x) =
∫ x

−∞
Wq(x − t)c(t) dt, x ≥ 0, (9.5.18)

where c(t) is the probability density of the Un. Note that c(t) is the convolution
of a(−t) and b(t). A discretized version of Lindley’s integral equation can be
effectively solved by using the discrete FFT method. The details will not be given
here, but can be found in Ackroyd (1980) and Tran-Gia (1986). In De Kok (1989)
a moment-approximation method is suggested to solve Lindley’s integral equation.
This method is generally applicable and yields good approximations to the waiting-
time probabilities. In particular, the moment-approximation method is well suited
for both the GI/D/1 queue and the D/G/1 queue.

KLB approximation

Using a hybrid combination of basic queueing results and experimental analysis,
the following two-moment approximations for the delay probability and the aver-
age delay in queue per customer were obtained by Krämer and Langenbach-Belz
(1976):

P KLB
delay = ρ + (c2

A − 1)ρ(1 − ρ) ×




1 + c2
A + ρc2

S

1 + ρ(c2
S − 1) + ρ2(4c2

A + c2
S)

if c2
A ≤ 1,

4ρ

c2
A + ρ2(4c2

A + c2
S)

if c2
A > 1,

WKLB
q = ρE(S)

2(1 − ρ)
(c2

A + c2
S) ×




exp

{
−2(1 − ρ)(1 − c2

A)2

3ρ(c2
A + c2

S)

}
if c2

A ≤ 1,

exp

{
−(1 − ρ)(c2

A − 1)

c2
A + 4c2

S

}
if c2

A > 1.
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Table 9.5.1 Some numerical results for the GI/G/1 queue

ρ = 0.2 ρ = 0.5 ρ = 0.8

Pdelay Wq Pdelay Wq Pdelay Wq

D/E4/1 exact 0.000 0.000 0.047 0.017 0.446 0.319
KLB 0.005 0.000 0.091 0.009 0.457 0.257

D/E2/1 exact 0.001 0.000 0.116 0.078 0.548 0.757
KLB 0.009 0.000 0.143 0.066 0.557 0.717

E4/D/1 exact 0.009 0.002 0.163 0.050 0.578 0.386
KLB 0.021 0.000 0.188 0.028 0.621 0.344

E2/D/1 exact 0.064 0.024 0.323 0.177 0.702 0.903
KLB 0.064 0.016 0.313 0.179 0.719 0.920

E2/H2/1 exact 0.110 0.203 0.405 1.095 0.752 4.825
KLB 0.088 0.239 0.375 1.169 0.743 4.917

H2/E2/1 exact 0.336 0.387 0.650 1.445 0.870 5.281
KLB 0.255 0.256 0.621 1.103 0.869 4.756

These approximations are only useful as rough estimates for practical engineering
purposes provided that the traffic load on the system is not small and c2

A is not too
large. In fact, one should be very careful in using the KLB approximation when c2

A

is larger than 1. A reason for this is that performance measures in queueing systems
are usually much more sensitive to the shape of the interarrival-time density than to
the shape of the service-time density, particularly when the traffic load on the sys-
tem is light. To illustrate the KLB approximation, Table 9.5.1 gives some numerical
results. The H2 distributions in the table refer to a hyperexponential distribution
with gamma normalization and a squared coefficient of variation equal to 2.

9.6 MULTI-SERVER QUEUES WITH POISSON INPUT

Multi-server queues are notoriously difficult and a simple algorithmic analysis is
possible only for special cases. In principle any practical queueing process could
be modelled as a Markov process by incorporating sufficient information in the
state description, but the dimensionality of the state space would grow quickly
beyond any practical bound and would therefore obstruct an exact solution. In many
situations, however, one resorts to approximation methods for calculating measures
of system performance. Useful approximations for complex queueing systems are
often obtained through exact results for simpler related queueing systems.

In this section we discuss both exact and approximate solution methods for the
state probabilities and the waiting-time probabilities in multi-server queues with
Poisson arrivals. The general M/G/c queue does not allow for a tractable exact
solution except for the special cases of the M/M/c queue and the M/D/c queue.
The M/M/c queue was analysed in detail in Section 5.1. An exact analysis for
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the M/D/c queue will be given in Section 9.6.1. In Section 9.6.2 we consider the
M/G/c queue with general service times and give several approximations including
two-moment approximations based on exact results for the M/M/c queue and the
M/D/c queue. In Section 9.6.3 we consider the MX/G/c queue with batch arrivals
and general service times. In particular, the MX/M/c queue and the MX/D/c

queue are dealt with.

9.6.1 The M/D/c Queue

In this model the arrival process of customers is a Poisson process with rate λ, the
service time of a customer is a constant D, and c identical servers are available. It
is assumed that the server utilization ρ = λD/c is smaller than 1.

An exact algorithm analysis of the M/D/c queue goes back to Crommelin (1932)
and is based on the following observation. Since the service times are equal to the
constant D, any customer in service at time t will have left the system at time
t + D, while the customers present at time t + D are exactly those customers
either waiting in queue at time t or having arrived in (t, t + D). Let pj (s) be the
probability of having j customers in the system at time s. Then, by conditioning
on the number of customers present at time t ,

pj (t + D) =
c∑

k=0

pk(t)e
−λD (λD)j

j !
+

c+j∑
k=c+1

pk(t)e
−λD (λD)j−k+c

(j − k + c)!

for j = 0, 1, . . . , since the number of arrivals in a time D is Poisson distributed
with mean λD. Next, by letting t → ∞ in these equations, we find that the
time-average probabilities pj satisfy the linear equations

pj = e−λD (λD)j

j !

c∑
k=0

pk +
c+j∑

k=c+1

pke−λD (λD)j−k+c

(j − k + c)!
, j ≥ 0. (9.6.1)

Also, we have the normalizing equation
∑∞

j=0 pj = 1. This infinite system of
linear equations can be reduced to a finite system of linear equations by using the
geometric tail approach discussed in Section 3.4.2. It will be shown below that the
state probabilities pj exhibit the geometric tail behaviour

pj ∼ στ−j as j → ∞, (9.6.2)

where τ is the unique solution of the equation

eλD(1−τ )τ c = 1 (9.6.3)

on the interval (1, ∞) and the constant σ is given by

σ = (c − λDτ)−1
c−1∑
k=0

pk(τ
k − τ c). (9.6.4)
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Since pj/pj−1 ≈ τ−1 for j large enough, we replace pj for j ≥ M by pMτ−(j−M)

for an appropriately chosen integer M . Then the infinite system of linear equations
(9.6.1) together with the normalizing equation

∑∞
j=0 pj = 1 is reduced to a finite

system of linear equations of dimension M + 1. A relatively small value of M is
usually good enough for practical purposes. The value of M does not grow beyond
any practical bound when the traffic load on the system gets close to 1. It is an
empirical fact that the asymptotic expansion (9.6.2) already applies for relatively
small values of j . For practical purposes the value M = 1

2 (1+ρ)c+10ρ
√

c seems
large enough to obtain the state probabilities to at least nine decimal places (e.g.
for c = 25 and ρ = 0.99 we have M = 75, which is in marked contrast with
the brute-force value N = 1056 that is required when the infinite system of linear
equations is truncated such that �∞

i=Npi ≤ 10−9). In general the geometric tail
approach leads to a relatively small system of linear equations that can usually
be solved by a standard Gaussian elimination method. This approach requires that
beforehand we compute the constant τ from (9.6.3). Using logarithms, the equation
(9.6.3) is equivalent to λD(1 − τ ) + c ln(τ ) = 0. Noting that λD = cρ and using
the transformation η = 1/τ , it follows that τ can be obtained by computing the
unique η ∈ (0, 1) satisfying

ρ(1 − η) + η ln(η) = 0.

We can conclude that the state probabilities in the M/D/c queue can be routinely
computed by solving a finite system of linear equations. An accuracy check on the
calculated values of the pj is Little’s relation

c−1∑
j=1

jpj + c


1 −

c−1∑
j=0

pj


 = λD (9.6.5)

for the average number of busy servers. An alternative and more advanced method
for computing the state probabilities is based on the discrete FFT method. Before
giving this method, we derive the generating function of the state probabilities. This
generating function will also be used to verify the asymptotic expansion (9.6.2).

Generating function

Let P (z) = ∑∞
j=0 pjz

j for |z| ≤ 1. Multiplying both sides of (9.6.1) by zj and
summing over j gives

P (z) = eλD(z−1)

c∑
k=0

pk +
∞∑

j=1

zj

c+j∑
k=c+1

pke−λD (λD)j−k+c

(j − k + c)!

= eλD(z−1)

c∑
k=0

pk +
∞∑

k=c+1

pkz
k−c

∞∑
j=k−c

e−λD (λD)j−k+c

(j − k + c)!
zj−k+c
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= eλD(z−1)

c∑
k=0

pk + eλD(z−1)

∞∑
k=c+1

pkz
k−c

= eλD(z−1)z−c

c∑
k=0

pkz
c + eλD(z−1)z−c

[
P (z) −

c∑
k=0

pkz
k

]
.

This gives the desired result

P (z) =
∑c−1

k=0 pk(z
k − zc)

1 − zceλD(1−z)
. (9.6.6)

The generating function P (z) is the ratio of two functions that allow for an ana-
lytic continuation outside the unit circle. Next the asymptotic expansion (9.6.2) fol-
lows by applying Theorem C.1 in Appendix C. Also, we obtain after considerable
algebra from (9.6.6) that the average queue size is given by

Lq = 1

2c(1 − ρ)


(cρ)2 − c(c − 1) +

c−1∑
j=2

{c(c − 1) − j (j − 1)}pj


 . (9.6.7)

An expression for the average delay in queue per customer next follows by using
Little’s formula Lq = λWq .

The discrete FFT method for the state probabilities

An alternative method for the computation of the probabilities pj is to use the
discrete FFT method. We cannot directly apply this method to (9.6.6) since the
expression for P (z) involves the unknowns p0, . . . , pc−1. However, by a generally
useful method, we can obtain from (9.6.6) an explicit expression for P (z). The
method is to compute first the zeros of the denominator on the right-hand side of
(9.6.6) in the region |z| ≤ 1 in the complex plane. The denominator 1− zceλD(1−z)

has c distinct zeros z0, z1, . . . , zc−1 inside or on the unit circle, where z0 = 1. A
simple algorithm for the computation of these roots is given in Appendix G. Each
zero zk must also be a zero of the numerator on the right-hand side of (9.6.6) for
the simple reason that P (z) = ∑∞

j=0 pjz
j is analytic for |z| ≤ 1. Thus we can

write (9.6.6) as

P (z) = δ(z − 1)

1 − zceλD(1−z)

c−1∏
k=1

(z − zk)

for some constant δ. Since P (1) = 1, we find by using L’Hôpital’s rule that

δ = −c(1 − ρ)/

c−1∏
k=1

(1 − zk) .
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This gives for P (z) the following explicit expression:

P (z) = c(1 − ρ)(1 − z)

1 − zceλD(1−z)

c−1∏
k=1

(
z − zk

1 − zk

)
, |z| ≤ 1. (9.6.8)

This expression for P (z) allows for a direct application of the FFT method. It
is important to have an accuracy check on the calculated complex roots zk and
the subsequent calculations by the discrete FFT method. Such an accuracy check
is provided by Little’s relation (9.6.5). Another accuracy check is obtained by
calculating the average queue size Lq both from formula (9.6.7) and from the
direct expression Lq = ∑∞

j=c(j − c)pj .

Waiting-time probabilities

In the paper of Crommelin (1932) an explicit expression has been derived for Wq(x)

in terms of an infinite alternating series. However, this explicit expression turns out
to be of little computational use and is therefore not further discussed. It is possible
to deduce a recursion scheme for Wq(x) from Crommelin’s original derivation, but
this recursion scheme is also hampered by numerical difficulties. It took more than
sixty years before a satisfying solution was found for the computation of Wq(x).
An elegant and numerically stable algorithm was found by Franx (2001) using an
ingenious argument. The following expression holds for Wq(x):

Wq(x) =
kc−1∑
j=0

Qkc−1−j e−λ(kD−x) [λ(kD − x)]j

j !
, (k − 1)D ≤ x < kD (9.6.9)

for k = 1, 2, . . . , where

Qj =
c+j∑
i=0

pi, j = 0, 1, . . . .

The first step in the proof is to assume that the arriving customers are assigned
in cyclic order to the servers: the customers with labels i, i + c, i + 2c, . . . are
assigned to server i for i = 1, . . . , c (the nth arriving customer gets label n). This
service discipline is not violating the assumption of service in order of arrival since
the service times are deterministic. Denote by Wj the waiting time in queue of the
customer with label j . It is assumed that there is a single queue in front of all c

servers. Fix now x > 0. Also fix the positive integer k by (k − 1)D ≤ x < kD.
Next choose any integer n such that n > kc. Consider now the customers with the
labels n − kc and n. Both customers are served by the same server. This server is
called the marked server. To derive P (Wn ≤ x), we condition upon the number
of waiting customers in the queue just after the epoch at which the customer with
label n− kc enters service with the marked server. Distinguish between two cases:
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(a) There are at least kc customers waiting in queue just after the epoch at which
the customer with label n − kc enters service. Then the customer with label
n must be among those waiting customers and its waiting time in queue is
D + (k − 1)D which is larger than x.

(b) There are i ≤ kc − 1 customers waiting in queue just after the epoch at
which the customer with label n−kc enters service. Denote this epoch by S∗.
Since the customer with label n is the (kc)th customer to enter service after
epoch S∗, the customer with label n is not yet present at epoch S∗ and is the
(kc − i)th customer to arrive after epoch S∗. Suppose that the customer with
label n arrives at epoch S∗+y. Distinguish between the two cases y < kD−x

and y ≥ kD − x.

(b1) y < kD−x. Since y < kD−x ≤ kD−(k−1)D = D the customer with label
n arrives during the service time of the customer with label n − kc. Thus the
waiting time in queue of the customer with label n equals D − y + (k − 1)D,
which is larger than x.

(b2) y ≥ kD − x. The amount of time that the customer with label n spends
in queue during the service time of the customer with label n − kc equals
max(D − y, 0). The customer with label n is the kth customer to be served
by the marked server after the customer with label n − kc. Hence

Wn ≤ max(D − y, 0) + (k − 1)D

≤ max(D − (kD − x), 0) + (k − 1)D

= x − (k − 1)D + (k − 1)D = x.

Denote now by Sj the epoch at which the customer with label j enters service
and let L+

j be the number of customers waiting in queue just after epoch Sj ,

j = 1, 2, . . . . Under the condition that L+
n−kc = i with i ≤ kc − 1 the customer

with label n will be the (kc − i)th customer to arrive after epoch Sn−kc. Denote by
An the number of arrivals during the interval [Sn−kc, Sn−kc +kD−x]. The random
variable An is Poisson distributed with mean λ(kD − x). The above arguments
show that

Wn ≤ x if and only if L+
n−kc ≤ kc − 1 and An ≤ kc − 1 − L+

n−kc.

This leads to

P (Wn ≤ x) =
kc−1∑
i=0

P (L+
n−kc = i)

kc−1−i∑
�=0

e−λ(kD−x) [λ(kD − x)]�

�!
.

For fixed x and k, we now let n → ∞. This gives

Wq(x) =
kc−1∑
i=0

qi

kc−1−i∑
�=0

e−λ(kD−x) [λ(kD − x)]�

�!
, (9.6.10)
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where qi = limj→∞ P (L+
j = i). It remains to find the limiting probabilities qi .

These limiting probabilities can be obtained by a simple up- and downcrossing
argument: the long-run fraction of customers finding k other customers in queue
upon arrival equals the long-run fraction of customers leaving k other customers
behind in queue when entering service. This holds for any integer k ≥ 0. For
k �= 0 we also have that the long-run fraction of arrivals finding k other customers
in queue equals the long-run fraction of arrivals who find k + c other customers
in the system. This latter fraction equals the time-average probability pc+k by the
PASTA property. Hence we find

qi = pc+i for i = 1, 2, . . . and q0 =
c∑

j=0

pj .

Interchanging the order of summation in (9.6.10), the result (9.6.9) now follows.

Asymptotic expansion

It is also possible to give an asymptotic expansion for 1 − Wq(x):

1 − Wq(x) ∼ γ e−λ(τ−1)x as x → ∞, (9.6.11)

where
γ = σ

(τ − 1)τ c−1

with τ and σ as in (9.6.3) and (9.6.4). To prove this result, we fix u with 0 ≤ u < D

and let x run through (k − 1)D + u for k = 1, 2, . . . . Defining

br(u) =
r∑

j=0

Qr−j e
−λ(D−u) [λ(D − u)]j

j !
for r = 0, 1, . . . ,

we have by (9.6.9) that

1 − Wq(x) = 1 − bkc−1(u) for x = (k − 1)D + u.

Next consider the generating function Bu(z) = ∑∞
r=0(1 − br(u))zr . Since the

generating function of the convolution of two discrete sequences is the product of
the generating functions of the separate sequences, it follows that

Bu(z) = 1

1 − z
− Q(z)eλ(D−u)(z−1),

where Q(z) = ∑∞
j=0 Qjz

j . Since Qj = ∑c+j

k=0 pk, we find after some algebra that

Q(z) = z−c

1 − z

[
P (z) −

c−1∑
k=0

pk(z
k − zc)

]
=

eλD(1−z)

c−1∑
k=0

pk(z
k − zc)

(1 − z)(1 − zceλD(1−z))
,
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where the latter equality uses (9.6.6). This leads to

Bu(z) =

[
1 − zceλD(1−z) − eλu(1−z)

c−1∑
k=0

pk(z
k − zc)

]
/(1 − z)

1 − zceλD(1−z)
.

Next, by Theorem C.1 in Appendix C and τ ceλD(1−τ ) = 1, we find

1 − bj (u) ∼ σe−λ(τ−1)u

τ − 1
τ−j as j → ∞.

Take now j = kc − 1 and x = (k − 1)D + u. Then 1 − bj (u) = 1 − Wq(x). Since
the equation τ ceλD(1−τ ) = 1 implies τ−(k−1)c = e−λ(τ−1)(k−1)D, we obtain

1 − bkc−1 ∼ σe−λ(τ−1)x

(τ − 1)τ c−1
as k → ∞,

which proves the desired result (9.6.11).

9.6.2 The M/G/c Queue

In this multi-server model with c servers the arrival process of customers is a
Poisson process with rate λ and the service time S of a customer has a general
probability distribution function B(t). It is assumed that the server utilization ρ =
λE(S)/c is smaller than 1.

The M/G/c queue with general service times permits no simple analytical solu-
tion, not even for the average waiting time. Useful approximations can be obtained
by the regenerative approach discussed in Section 9.2.1. In applying this approach
to the multi-server queue, we encounter the difficulty that the number of customers
left behind at a service completion epoch does not provide sufficient information
to describe the future behaviour of the system. In fact we need the additional infor-
mation of the elapsed service times of the other services (if any) still in progress. A
full inclusion of this information in the state description would lead to an intractable
analysis. However, as an approximation, we will aggregate the information of the
elapsed service times in such a way that the resulting approximate model enables
us to carry through the regenerative analysis. A closer look at the regenerative
approach reveals that we need only a suitable approximation to the probability
distribution of the time elapsed between service completions. We now make the
following approximation assumption with regard to the behaviour of the process at
the service completion epochs.

Assumption 9.6.1 (approximation assumption) (a) If at a service completion
epoch, k customers are left behind in the system with 1 ≤ k < c, then the time
until the next service completion epoch is distributed as min(Se

1, . . . , Se
k ), where
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Se
1, . . . , Se

k are independent random variables that have the equilibrium excess dis-
tribution function

Be(t) = 1

E(S)

∫ t

0
{1 − B(x)}dx, t ≥ 0,

as probability distribution function.
(b) If at a service completion epoch, k customers are left behind in the system

with k ≥ c, then the time until the next service completion is distributed as S/c,
where S denotes the original service time of a customer.

This approximation assumption can be motivated as follows. First, if not all
c servers are busy, the M/G/c queueing system may be treated as an M/G/∞
queueing system in which a free server is immediately provided to each arriving
customer. For the M/G/∞ queue in statistical equilibrium it was shown by Takács
(1962) that the remaining service time of any busy server is distributed as the
residual life in a renewal process with the service times as the interoccurrence
times. The same is true for the M/G/1 queue; see formula (9.2.32). The equilibrium
excess distribution of the service time is given by Be(t); see Theorem 8.2.5. Second,
if all of the c servers are busy, then the M/G/c queue may be approximated by
an M/G/1 queue in which the single server works c times as fast as each of the c

servers in the original multi-server system. It is pointed out that the approximation
assumption holds exactly for both the case of the c = 1 server and the case of
exponentially distributed service times.

Approximations to the state probabilities

Under the approximation assumption the recursion scheme derived in Section 9.2.1
for the M/G/1 queue can be extended to the M/G/c queue to yield approximations
p

app
j to the state probabilities pj . These approximations are given in the next

theorem, whose lengthy proof may be skipped at first reading. The approximation
to the state probabilities implies an approximation to the waiting-time probabilities.
The latter approximation is discussed in Exercise 9.11.

Theorem 9.6.1 Under the approximation assumption,

p
app
j = (cρ)j

j !
p

app
0 , j = 0, 1, . . . , c − 1, (9.6.12)

p
app
j = λaj−cp

app
c−1 + λ

j∑
k=c

bj−kp
app
k , j = c, c + 1, . . . , (9.6.13)

where the constants an and bn are given by

an =
∫ ∞

0
{1 − Be(t)}c−1{1 − B(t)}e−λt (λt)n

n!
dt, n = 0, 1, . . . ,
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bn =
∫ ∞

0
{1 − B(ct)}e−λt (λt)n

n!
dt, n = 0, 1, . . . .

Proof In the same way as in the proof of Theorem 9.2.1, we find

p
app
j = λp

app
0 A0j +

j∑
k=1

λp
app
k Akj , j = 1, 2, . . . , (9.6.14)

where the constant Akj is defined by

Akj = the expected amount of time that j customers are present during the
time until the next service completion epoch when a service has just
been completed with k customers left behind in the system.

By the same argument as used to derive (9.2.7), we find under the approximation
assumption that

Akj =
∫ ∞

0
{1 − B(ct)}e−λt (λt)j−k

(j − k)!
dt, k ≥ c and j ≥ k. (9.6.15)

However, the problem is to find a tractable expression for Akj when 0 ≤ k ≤
c − 1. An explicit expression for Akj involves a multidimensional integral when
0 ≤ k ≤ c − 1. Fortunately, this difficulty can be circumvented by defining, for
any 1 ≤ k ≤ c and j ≥ k, the probability Mkj (t) by

Mkj (t) = P {j − k customers arrive during the next t time units and the
service of none of these customers is completed in the next t time
units when only c − k servers are available for the new arrivals}.

Then, using the approximation assumption,

Akj =
∫ ∞

0
{1 − Be(t)}kMkj (t) dt, 1 ≤ k ≤ c − 1, j ≥ k. (9.6.16)

Further, we have

A0j =
∫ ∞

0
{1 − B(t)}M1j (t) dt, j ≥ 1.

The definition of Mkj (t) implies that

Mkk (t) = e−λt , k ≥ 1 and Mcj (t) = e−λt (λt)j−c

(j − c)!
, j ≥ c.

Next we derive a differential equation for Mkj (t) when j > k. By conditioning on
what may happen in the first �t time units, we find for any 1 ≤ k ≤ c − 1 and
j > k that

Mkj (t + �t) = (1 − λ�t)Mkj (t) + λ�t{1 − B(t)}Mk+1,j (t) + o(�t), t > 0.
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Hence, for any 1 ≤ k ≤ c − 1 and j > k,

M
′
kj (t) = −λMkj (t) + λ{1 − B(t)}Mk+1,j (t), t > 0.

Multiplying both sides of this differential equation by {1−Be(t)}k, integrating over
t and using (9.6.16), we find after partial integration that

Akj = Bk+1,j − k

λE(S)
Bkj , 1 ≤ k ≤ c − 1, j > k, (9.6.17)

where Bkj is a shorthand notation for

Bkj =
∫ ∞

0
{1 − Be(t)}k−1{1 − B(t)}Mkj (t) dt.

Next it is easy to establish the recursion scheme for p
app
j . To verify (9.6.12), we

use induction. Obviously, (9.6.12) holds for j = 0. Suppose now that (9.6.12)
holds for j = 0, . . . , n− 1 for some 1 ≤ n ≤ c − 1. Then, by (9.6.14) and (9.6.17)

p
app
n (1 − λAnn ) = λp

app
0 A0n +

n−1∑
k=1

λp
app
k

{
Bk+1,n − k

λE(S)
Bkn

}

=
n−1∑
k=0

λp
app
k Bk+1,n −

n−1∑
k=1

λp
app
k−1Bkn = λp

app
n−1Bnn , (9.6.18)

where the second equality uses A0n = B1n and uses the induction assumption
that p

app
k = cρp

app
k−1/k for 1 ≤ k ≤ n − 1. Using partial integration it is readily

verified that Bnn = (1−λAnn)E(S)/n. Hence we obtain from (9.6.18) that p
app
n =

cρp
app
n−1/n, which completes the induction step. To verify (9.6.13) we first note that

λp
app
0 A0j +

c−1∑
k=1

λp
app
k Akj = λp

app
c−1Bcj , j ≥ c. (9.6.19)

The derivation of this relation is similar to that of (9.6.18). Inserting (9.6.19) into
(9.6.14) and using (9.6.15), the desired result (9.6.17) follows.

Computational aspects

The recursion scheme for p
app
j is easy to apply in practice. In general the constants

an and bn have to be evaluated by numerical integration. An explicit expression
for bn can be given for deterministic and phase-type services. To compute the an,
it is recommended to use Gauss–Legendre integration for deterministic services.
To do so for phase-type services, the infinite integral for an must be first reduced
to an integral over (0, 1) by using that E[g(X)] = E[g(F−1(U))] when F(x) =
P {X ≤ x} and U is uniformly distributed on (0, 1) (take F(x) = Be(x)). The
computational effort of the approximation algorithm depends only to a slight degree
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on c, as opposed to exact methods for which the computing times quickly increase
when c gets larger. For the first c state probabilities, we have

p
app
j = p

exp
j , j = 0, 1, . . . , c − 1, (9.6.20)

where p
exp
j denotes the state probability pj in the M/M/c queue. To prove (9.6.20),

sum both sides of (9.6.3) over j ≥ c. This yields

∞∑
j=c

p
app
j = ρ

1 − ρ
p

app
c−1. (9.6.21)

By (5.1.8) and (9.6.12),

p
exp
j = cρ

j
p

exp
j−1 and p

app
j = cρ

j
p

app
j−1 for 1 ≤ j ≤ c − 1,

Hence, for some constant γ, p
app
j = γp

exp
j for 0 ≤ j ≤ c−1. To verify that γ = 1,

we use (9.6.21) and (5.1.9) to obtain

ρ

1 − ρ
p

app
c−1 = 1 −

c−1∑
j=0

p
app
j = 1 −

c−1∑
j=0

γp
exp
j = 1 − γ

(
1 − P

exp
delay

)

= 1 − γ + γρ

1 − ρ
p

exp
c−1.

and so ρp
app
c−1/ (1 − ρ) = 1 − γ + ρp

app
c−1/ (1 − ρ). This implies that γ = 1 and

so (9.6.20) holds. The relation (9.6.20) says that the approximate queueing system
behaves like an M/M/c queue when not all of the c servers are busy. As a by-
product of the above proof, we find for the delay probability Pdelay = ∑∞

j=c pj

that

P
app
delay = P

exp
delay,

where P
exp
delay denote Erlang’s delay probability in the M/M/c queue. It has long

been known that Erlang’s delay probability gives a good approximation to the
delay probability in the general M/G/c queue. Further support for the quality
of the approximation to the state probabilities pj is provided by the result that
p

app
j /p

app
j−1 is asymptotically exact as j → ∞. This result will be proved below.

The generating function

The algorithm in Section 5.1 gives a very simple scheme to compute p
app
j = p

exp
j

for 0 ≤ j ≤ c − 1. Define the generating function

Pq(z) =
∞∑

j=0

p
app
c+j z

j , |z| ≤ 1.
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It is a matter of simple algebra to derive from (9.6.13) that

Pq(z) = λp
app
c−1

α (z)

1 − λβ (z)
, (9.6.22)

where

α(z) =
∫ ∞

0
{1 − Be(t)}c−1{1 − B(t)}e−λ(1−z)t dt,

β(z) =
∫ ∞

0
{1 − B(ct)}e−λ(1−z)t dt.

The discrete FFT method can be used to obtain the p
app
j for j ≥ c.

Also, the generating function Pq(z) enables us to obtain an approximation to
the average queue size. Since Lq = ∑∞

j=c(j − c)pj , the derivative P ′
q(1) yields

an approximation to Lq. By differentiation of (9.6.22), we find after lengthy alge-
bra that

L
app
q =

[
(1 − ρ)γ1

c

E(S)
+ ρ

1

2
(1 + c2

S)

]
Lq(exp), (9.6.23)

where c2
S = σ 2(S)/E2(S) and

γ1 =
∫ ∞

0
{1 − Be(t)}c dt.

The quantity Lq(exp) denotes the average queue size in the M/M/c queue. If c2
S ≤

1, the constant γ1 is very well approximated by (c+1)−1c2
SE(S)+c−1(1−c2

S)E(S).
The approximation (9.6.23) has the term γ1 in common with the approximation pro-
posed in Boxma et al. (1979). This approximation improves the first-order approx-
imation 1

2

(
1 + c2

S

)
Lq(exp) to Lq through

LBox
q = 1

2
(1 + c2

S)
2Lq(exp)Lq(det)

2αLq(det) + (1 − α)Lq(exp)
,

where α = 1
c−1

[
E(S2)
γ1E(S)

− c − 1
]

and Lq(det) denotes the average queue size in
the M/D/c queue.

Table 9.6.1 gives for several examples the exact and approximate values of
Pdelay and Lq. We consider the cases of deterministic service (c2

S = 0), E2 service
(c2

S = 0.5) and H2 service with the gamma normalization (c2
S = 2). In the table

we also include the two-moment approximation

L
app2
q = (1 − c2

S)Lq(det) + c2
SLq(exp). (9.6.24)
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Table 9.6.1 Exact and approximate results

c2
S

= 0 c2
S

= 0.5 c2
S

= 2

Pdelay Lq Pdelay Lq Pdelay Lq

c = 2 exac 0.3233 0.177 0.3308 0.256 0.3363 0.487
ρ = 0.5 app 0.3333 0.194 0.3333 0.260 0.3333 0.479

app2 — 0.176 — 0.255 — 0.491

c = 5 exa 0.1213 0.077 0.1279 0.104 0.1335 0.181
ρ = 0.5 app 0.1304 0.087 0.1304 0.107 0.1304 0.176

app2 — 0.076 — 0.103 — 0.185

c = 10 exa 0.0331 0.024 0.0352 0.030 0.0373 0.048
ρ = 0.5 app 0.0361 0.025 0.0361 0.030 0.0361 0.047

app2 — 0.023 — 0.030 — 0.049

c = 2 exa 0.7019 1.445 0.7087 2.148 0.7141 4.231
ρ = 0.8 app 0.7111 1.517 0.7111 2.169 0.7111 4.196

app2 — 1.442 — 2.143 — 4.247

c = 5 exa 0.5336 1.156 0.5484 1.693 0.5611 3.250
ρ = 0.8 app 0.5541 1.256 0.5541 1.723 0.5541 3.191

app2 — 1.155 — 1.686 — 3.277

c = 25 exact 0.1900 0.477 0.2033 0.661 0.2164 1.173
ρ = 0.8 approx 0.2091 0.495 0.2091 0.663 0.2091 1.178

approx2 — 0.477 — 0.657 — 1.196

c = 50 exa 0.0776 0.214 0.0840 0.282 0.0908 0.471
ρ = 0.8 app 0.0870 0.207 0.0870 0.277 0.0870 0.488

app2 — 0.211 — 0.279 — 0.485

This two-moment approximation can be found in Cosmetatos (1976) and Page
(1972). The useful special-purpose approximation

L
app
q (det) = 1

2

[
1 + (1 − ρ)(c − 1)

√
4 + 5c − 2

16cρ

]
Lq(exp)

to Lq(det) was proposed in Cosmetatos (1976). The results in Table 9.6.1 for the
approximation (9.6.24) use this approximation to Lq(det).

Asymptotic expansions

It is assumed that the probability distribution function Bc(t) = B(ct) satisfies
Assumption 9.2.1. In other words, the service-time distribution is not heavy-tailed.
Let B = sup[s | ∫∞

0 est {1 − B(ct)} dt < ∞]. Then, using (9.6.22) and Theorem
C.1 in Appendix C, it is a routine matter to verify that

p
app
j ∼ σappτ

−j as j → ∞, (9.6.25)
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where τ is the unique solution to the equation∫ ∞

0
e−λ(1−τ )t {1 − B(ct)} dt = 1

λ
(9.6.26)

on the interval (1, 1 + B/λ). The constant σapp is given by

σapp = p
app
c−1τ

c−1
∫∞

0 e−λ(1−τ )t {1 − Be(t)}c−1{1 − B(t)}dt

λ
∫∞

0 te−λ(1−τ )t {1 − B(ct)} dt
. (9.6.27)

In Section 9.7 we give asymptotic expansions for the state probabilities and the
waiting-time probabilities in the general GI/G/c queue. Using equation (9.6.26)
and equation (9.7.4), it is not difficult to verify that p

app
j /p

app
j−1 is asymptoti-

cally exact as j → ∞. Also, an approximation to the asymptotic expansion of
the waiting-time probabilities can be given. Using (9.6.25) and (9.7.1) to (9.7.4),
we find

1 − Wq(x) ∼ γ e−λ(τ−1)x as x → ∞, (9.6.28)

where an approximation to γ is given by

γapp = σapp

(τ − 1)τ c−1
. (9.6.29)

Two-moment approximations for the waiting-time percentiles

It is convenient to work with the percentiles η(p) of the waiting-time distribution
of the delayed customers. The percentiles η(p) are defined for all 0 ≤ p < 1; see
Section 9.2.2. Just as in the M/G/1 case, we suggest the first-order approximation

ηapp1(p) = 1

2
(1 + c2

S)ηexp(p) (9.6.30)

and the second-order approximation

ηapp2(p) = (1 − c2
S)ηdet(p) + c2

Sηexp(p), (9.6.31)

where ηexp(p) and ηdet(p) are the corresponding percentiles for the M/M/c queue
and the M/D/c queue. Both approximations require that the squared coefficient
of variation of the service time is not too large (say, 0 ≤ c2

S ≤ 2) and the traffic
load on the system is not very small. In the multi-server case the fraction of
time that all servers are busy is an appropriate measure for the traffic load on the
system. This fraction is given by Pdelay. The second-order approximation (9.6.31)
performs quite satisfactorily for all parameter values. The simple approximation
(9.6.30) is only useful for quick engineering calculations when Pdelay is not small
and p is sufficiently close to 1 (say, p > 1 − Pdelay). Table 9.6.2 gives for several
examples the exact value and the approximate values (9.6.30) and (9.6.31) for the
conditional waiting-time percentiles. It also includes the asymptotic value based on
the approximation (9.6.28). We consider the cases of E2 services (c2

S = 0.5) and
H2 services with gamma normalization (c2

S = 2).
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Table 9.6.2 Conditional waiting-time percentiles

c2
S

= 0.5 c2
S

= 2

p 0.2 0.5 0.9 0.99 0.2 0.5 0.9 0.99

c = 2 exa 0.200 0.569 1.72 3.32 0.256 0.930 3.48 7.15
ρ = 0.5 app1 0.167 0.520 1.73 3.45 0.335 1.04 3.45 6.91

app2 0.203 0.580 1.70 3.31 0.264 0.920 3.52 7.20
asy 0.282 0.609 1.73 3.33 0.158 0.907 3.47 7.14

c = 5 exa 0.082 0.240 0.722 1.37 0.099 0.339 1.32 2.78
ρ = 0.5 app1 0.067 0.208 0.691 1.38 0.134 0.416 1.38 2.76

app2 0.082 0.243 0.725 1.36 0.104 0.346 1.32 2.82
asy 0.146 0.277 0.725 1.36 — 0.296 1.32 2.79

c = 5 exa 0.193 0.554 1.74 3.42 0.274 0.962 3.43 6.96
ρ = 0.8 app1 0.167 0.520 1.73 3.45 0.335 1.04 3.45 6.91

app2 0.192 0.556 1.73 3.42 0.284 0.967 3.44 6.98
asy 0.218 0.562 1.74 3.42 0.232 0.954 3.42 6.96

c = 25 exa 0.040 0.118 0.364 0.703 0.052 0.174 0.649 1.35
ρ = 0.8 app1 0.033 0.104 0.345 0.691 0.067 0.208 0.691 1.38

app2 0.040 0.119 0.365 0.701 0.055 0.179 0.651 1.36
asy 0.048 0.117 0.353 0.690 0.038 0.182 0.676 1.38

9.6.3 The MX/G/c Queue

In the MX/G/c queue the customers arrive in batches rather than singly. The
arrival process of batches is a Poisson process with rate λ. The batch size has a
probability distribution {βj , j = 1, 2, . . . } with finite mean β. The service times of
the customers are independent of each other and have a general distribution with
mean E(S). There are c identical servers. It is assumed that the server utilization
ρ, defined by

ρ = λβE(S)

c
,

is smaller than 1. The customers from different batches are served in order of arrival
and customers from the same batch are served in the same order as their positions
in the batch. A computationally tractable analysis can only be given for the special
cases of exponential services and deterministic services. We first analyse these
two special cases. Next we discuss a two-moment approximation for the general
MX/G/c queue.

The MX/M/c queue

The process {L(t)} describing the number of customers present is a continuous-
time Markov chain. Equating the rate at which the process leaves the set of states
{i, i + 1, . . . } to the rate at which the process enters this set of states, we find for
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the state probabilities pj the recursion scheme

min(i, c)µpi =
i−1∑
k=0

pkλ
∑

s≥i−k

βs, i = 1, 2, . . . , (9.6.32)

where µ = 1/E(S). Starting with p0 := 1, we successively compute p1, p2, . . .

and next obtain the desired pi by normalization. The normalization can be based
on Little’s relation

c−1∑
j=0

jpj + c(1 −
c−1∑
j=0

pj ) = cρ (9.6.33)

stating that the average number of busy servers equals cρ. The computational effort
of the recursion scheme can be reduced by using the asymptotic expansion

pj ∼ στ−j as j → ∞, (9.6.34)

where τ is the unique solution of the equation

λτ [1 − β(τ)] = cµ(1 − τ ) (9.6.35)

on the interval (1, R) and the constant σ is given by

σ =
(τ − 1)

c−1∑
i=0

(c − i)piτ
i/c

1 − λτ 2β ′(τ )/(cµ)
. (9.6.36)

Here β(z) = ∑∞
j=1 βjz

j and R is the convergence radius of the power series β(z).

To establish the asymptotic expansion, it is assumed that R > 1. In other words,
the batch-size distribution is not heavy-tailed. The derivation of the asymptotic
expansion (9.6.34) is routine. Define the generating function P (z) = ∑∞

j=0 pjz
j ,

|z| ≤ 1. It is a matter of simple algebra to derive from (9.6.32) that

P (z) =
(1/c)

c−1∑
i=0

(c − i)piz
i

1 − λz{1 − β(z)}/{cµ(1 − z)} .

Next, by applying TheoremC.1 in Appendix C, we obtain (9.6.34).
From the generating function we also derive after considerable algebra that the

long-run average queue size is given by

Lq = 1

c(1 − ρ)

c−1∑
j=1

j (c − j)pj + ρ

2(1 − ρ)

{
E(X2)

E(X)
− 1

}
+ ρ

1 − ρ
− cρ,

where the random variable X denotes the batch size.
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Next we discuss the computation of the steady-state probability distribution func-
tion Wq(x) of the waiting time of a customer. The function Wq(x) is defined in
the same way as in Section 9.3.2. To find Wq(x), we need the probabilities

zj = the long-run fraction of customers who have j other customers in
front of them just after arrival, j = 0, 1, . . . .

The delay in queue of a customer who has j ≥ c other customers in front of him just
after arrival is the sum of j − c + 1 independent exponentials with common mean
1/(cµ). Hence this conditional waiting time has an Ej−c+1 distribution and so

1 − Wq(x) =
∞∑

j=c

zj

j−c∑
k=0

e−cµx (cµx)k

k!
, x ≥ 0.

A computationally better representation for Wq(x) is

1 − Wq(x) =
∞∑

k=0

e−cµx (cµx)k

k!


1 −

k+c−1∑
j=0

zj


 , x ≥ 0. (9.6.37)

The probabilities zj are easily expressed in terms of the pj . To do so, let

ηk = 1

β

∞∑
j=k

βj , k = 1, 2, . . . .

Then, as shown in Section 9.3.2, the probability ηk gives the long-run fraction of
customers who take the kth position in their batch. Since the long-run fraction of
batches finding m other customers present upon arrival equals pm, we find

zj =
j∑

m=0

pmηj−m+1, j = 0, 1, . . . .

For the case of exponential services this formula can be considerably simplified.
Using the recursion relation (9.6.32), we have

zj = µ

λβ
min(j + 1, c)pj+1, j = 0, 1, . . . . (9.6.38)

This completes the specification of the exact algorithm (9.6.37) for the computation
of the waiting-time probabilities Wq(x). The computational effort can further be
reduced by using an asymptotic expansion for 1 − Wq(x). Inserting (9.6.34) and
(9.6.38) into (9.6.37), we find after some algebra that

1 − Wq(x) ∼ στ−c

τ − 1
e−cµ(1−1/τ)x as x → ∞, (9.6.39)

where τ and σ are given by (9.6.35) and (9.6.36).
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The MX/D/c queue

Suppose that the service time of each customer is a constant D. Denoting by
pj (t) the probability that j customers are present at time t, we find by the same
arguments as used in Section 9.6.2 that

pj (t + D) =
c∑

k=0

pk(t)rj (D) +
c+j∑

k=c+1

pk(t)rj−k+c(D), j = 0, 1, . . . ,

where the compound Poisson probability rj (D) is defined by

rj (D) = the probability that exactly j customers arrive during
a given time interval of length D, j = 0, 1, . . . .

Letting t → ∞, we find the system of linear equations

pj = rj (D)

c∑
k=0

pk +
c+j∑

k=c+1

rj−k+c(D)pk, j = 0, 1, . . . (9.6.40)

together with the normalizing equation
∑∞

j=0 pj = 1. Just as in the M/D/c case,
this infinite system of equations can be reduced to a finite system of linear equations
by using the geometric tail behaviour of the pj . It holds that

pj ∼ στ−j as j → ∞, (9.6.41)

where τ is the unique root of the equation

τ ceλD{1−β(τ)} = 1 (9.6.42)

on the interval (1, R) and the constant σ is given by

σ = [c − λDτβ ′(τ )]−1
c−1∑
j=0

pj (τ
j − τ c). (9.6.43)

As before, β(z) = ∑∞
j=1 βjz

j and the number R denotes the convergence radius
of the power series β(z). It is assumed that R > 1.

In general, however, it is computationally simpler to compute the state proba-
bilities pj by applying the discrete FFT method to the generating function P (z) =∑∞

j=0 pjz
j . In the same way as (9.6.6) was derived, we obtain

P (z) =

c−1∑
j=0

pj (z
j − zc)

1 − zceλD{1−β(z)} , (9.6.44)
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since the generating function of the compound Poisson probabilities rj (D) is given
by e−λD{1−β(z)}; see Theorem 1.2.1. Before the discrete FFT method can be applied,
the unknown probabilities p0, . . . , pc−1 must be removed from (9.6.44). To do so,
we proceed in the same way as in Section 9.6.1 and rewrite P (z) in the explicit form

P (z) = c(1 − ρ)(1 − z)

1 − zceλD{1−β(z)}

c−1∏
k=1

(
z − zk

1 − zk

)
, (9.6.45)

where z0 = 1, z1, . . . , zc−1 are the c distinct roots of zceλD{1−β(z)} = 1 inside
or on the unit circle. The computation of the (complex) roots z1, . . . , zc−1 is
discussed in Appendix G. The asymptotic expansion (9.6.41) follows from the
generating function (9.6.44) and Theorem C.1 in Appendix C. Also, we obtain
after considerable algebra from (9.6.44) that the long-run average queue size is
given by

Lq = 1

2c(1 − ρ)


(cρ)2 − c(c − 1) +

c−2∑
j=2

{c(c − 1)

− j (j − 1)}pj + cρ

(
E(X2)

E(X)
− 1

)]
,

where the random variable X denotes the batch size. This relation can be used as
an accuracy check on the calculated values of the probabilities pj .

Waiting-time probabilities in the MX/D/c queue

In the batch-arrival MX/D/c queue, the waiting-time probability Wq(x) is defined
as the long-run fraction of customers whose waiting time in queue is no more than
x, x ≥ 0. The expression (9.6.9) for Wq(x) in the M/D/c queue can be extended
to the MX/G/c queue. For any x with (k − 1)D ≤ x < kD and k = 1, 2, . . . , it
holds that

Wq(x) =
kc−1∑
m=0

ηm+1

kc−1−m∑
j=0

Qkc−1−m−j rj (kD − x) (9.6.46)

where Qj = ∑c+j

i=0 pi for j = 0, 1, . . . and the probability ηr is defined by

ηr = 1

β

∞∑
j=r

βj , r = 1, 2, . . . .

This result is due to Franx (2002). Its proof will be omitted. The asymptotic
expansion

1 − Wq(x) ∼ γ e−λ[β(τ)−1]x as x → ∞ (9.6.47)
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holds with

γ = σ [β(τ) − 1]

(τ − 1)2τ c−1β
,

where τ and σ are given by (9.6.42) and (9.6.43). This result can be derived in a
similar way as expansion (9.6.11) for the M/D/c queue was obtained.

The MX/G/c queue

An exact and tractable solution for the MX/G/c queue is in general not possible
except for the special cases of deterministic services and exponential services.
Using the solutions for these special cases, we can give useful approximations for
the general MX/G/c queue. A practically useful approximation to the average
delay in queue per customer is

W
app
q = (1 − c2

S)Wq(det) + c2
SWq(exp),

provided that c2
S is not too large (say, 0 ≤ c2

S ≤ 2) and the traffic load is not
very small. It was pointed out in Section 9.3 that the first-order approximation
1
2 (1 + c2

S)Wq(exp) is not applicable in the batch-arrival queue. A two-moment

Table 9.6.3 The percentiles η(p) for the MX/E2/c queue

Constant batch size Geometric batch size

c ρ p 0.80 0.90 0.95 0.99 0.80 0.90 0.95 0.99

1 0.2 exa 2.927 3.945 4.995 7.458 5.756 8.122 10.49 15.98
app 2.836 3.901 4.967 7.440 5.745 8.116 10.49 15.99

1 0.5 exa 5.107 7.170 9.231 14.02 9.044 12.84 16.64 25.45
app 5.089 7.154 9.219 14.01 9.040 12.84 16.64 25.47

2 0.2 exa 1.369 1.897 2.431 3.661 2.989 4.172 5.355 8.101
app 1.354 1.887 2.419 3.656 2.982 4.167 5.353 8.106

2 0.5 exa 2.531 3.561 4.592 6.985 4.600 6.498 8.395 12.80
app 2.535 3.567 4.599 6.996 4.601 6.501 8.401 12.81

5 0.2 exa 0.621 0.845 1.063 1.560 1.298 1.773 2.246 3.345
app 0.640 0.853 1.066 1.560 1.305 1.779 2.253 3.354

5 0.5 exa 1.063 1.476 1.889 2.846 1.898 2.657 3.417 5.179
app 1.069 1.482 1.895 2.853 1.905 2.665 3.425 5.190

10 0.5 exa 0.553 0.764 0.971 1.451 0.980 1.360 1.740 2.622
app 0.566 0.772 0.979 1.458 0.991 1.371 1.751 2.634

10 0.7 exa 0.923 1.295 1.667 2.530 1.547 2.181 2.815 4.287
app 0.930 1.302 1.673 2.536 1.556 2.190 2.824 4.297
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approximation to the percentiles η(p) of the waiting-time distribution of the delayed
customers is provided by

ηapp(p) = (1 − c2
S)ηdet(p) + c2

Sηexp(p), 0 < p < 1.

However, it turns out that in the batch-arrival case the two-moment approximation
to η(p) works only for the higher percentiles. Fortunately, higher percentiles are
usually the percentiles of interest in practice. Table 9.6.3 gives for the MX/E2/c

queue the exact and approximate values of the conditional waiting-time percentiles
η(p) both for the case of a constant batch size and the case of a geometrically
distributed batch size. In both cases the mean batch size E(X) = 3. The normal-
ization E(S) = 1 is used for the service time. The percentiles ηexp(p) for exponen-
tial services and ηdet(p) for deterministic services have been computed from the
asymptotic expansions (9.6.39) and (9.6.47). These asymptotic expansions already
apply for moderate values of x provided the traffic load on the system is not very
small. An appropriate measure for the traffic load is the probability that all servers
are simultaneously busy. This probability is given by PB = 1 − ∑c−1

j=0 pj . As a
rule of thumb, the asymptotic expansions can be used for practical purposes for
x ≥ E(X)E(S)/

√
c when PB ≥ 0.2.

9.7 THE GI/G/c QUEUE

It seems obvious that the general GI/G/c queue offers enormous difficulties in
getting practically useful results. Nevertheless, using specialized techniques for
solving large-scale systems of linear equations for structured Markov chains, the
continuous-time Markov chain approach has proved to be quite useful for an exact
analysis of the GI/G/c queue when the interarrival time and service time both have
phase-type distributions; see also Van Hoorn and Seelen (1986) for an approxima-
tive analysis. By a detailed state description involving sufficient information about
the number of customers present and the status of both the arrival in progress
and the services in progress, it is possible to set up the equilibrium equations for
the microstate probabilities. The resulting large-scale system of linear equations
possesses a structure enabling the application of specialized algorithms to solve
numerically the equations, provided the number of servers is not too large; see
Seelen et al. (1985) and Takahashi and Takami (1976). However, this numerical
approach is not suited to routine calculations. The specialized algorithms involve
a clever use of asymptotic expansions for the GI/G/c queue. It is assumed that
the server utilization ρ = λE(S)/c is smaller than 1, where λ denotes the average
arrival rate and E(S) is the mean service time.

Asymptotic expansions

Under Assumption 9.2.1 with B(t) replaced by B(ct), asymptotic expansions can
be given for the state probabilities pj and the waiting-time probabilities Wq(x). It
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holds that

pj ∼ στ−j as j → ∞ (9.7.1)

and

1 − Wq(x) ∼ σδ

λ(τ − 1)2τ c−1
e−δx as x → ∞. (9.7.2)

Assuming that the interarrival time and the service time have probability densities
a(x) and b(x), the constant δ is the unique solution to the characteristic equation∫ ∞

0
e−δxa(x) dx

∫ ∞

0
eδy/cb(y) dy = 1 (9.7.3)

on the interval (0, B) with B = sup{s | ∫∞
0 est {1 − B(ct)} dt < ∞}. The constant

τ (> 1) is given by

τ =
[∫ ∞

0
e−δxa(x) dx

]−1

. (9.7.4)

An explicit expression for the constant σ cannot be given in general. A proof of
the above asymptotic expansions is beyond the scope of this book. The asymp-
totic expansions were established by Takahashi (1981) for the case of a phase-
type interarrival-time distribution and a phase-type service-time distribution. How-
ever, the class of phase-type distributions is dense in the class of all probabil-
ity distributions on the non-negative axis. Thus, one might conjecture that the
asymptotic expansions hold for a general interarrival-time distribution and a gen-
eral service-time distribution provided that the service-time distribution is not
heavy-tailed.

Two-moment approximations

In this section we restrict ourselves to the particular models of the GI/M/c queue
with exponential services and the GI/D/c queue with deterministic services. These
models allow for a relatively simple algorithmic analysis. The results for these
models may serve as a basis for approximations to the complex GI/G/c queue.
Several performance measures P , such as the average queue length, the average
waiting time per customer and the (conditional) waiting-time percentiles, can be
approximated by using the familiar interpolation formula

Papp = (1 − c2
S)PGI/D/c + c2

SPGI/M/c (9.7.5)

provided c2
S is not too large and the traffic load on the system is not very light.

In this formula PGI/D/c and PGI/M/c denote the exact values of the specific per-
formance measure for the special cases of the GI/D/c queue and the GI/M/c

queue with the same mean service time E(S). Table 9.7.1 gives for several values
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Table 9.7.1 Some numerical results for the E10/E2/c queue

ρ = 0.5 ρ = 0.8 ρ = 0.9

c Lq η(0.8) η(0.95) Lq η(0.8) η(0.95) Lq η(0.8) η(0.95)

1 exa 0.066 1.21 2.21 0.780 2.59 4.78 2.21 4.99 9.25
app 0.082 1.19 2.17 0.813 2.57 4.76 2.25 5.14 9.25

5 exa 0.006 0.277 0.499 0.452 0.551 0.993 1.75 1.02 1.87
app 0.009 0.243 0.452 0.466 0.530 0.968 1.76 1.02 1.86

of c and ρ the exact and approximate values of the average queue size Lq and the
conditional waiting-time percentiles η(0.8) and η(0.95) for the E10/E2/c queue.
In all examples the normalization E(S) = 1 is used. The above linear interpolation
formula is in general not to be recommended for the delay probability, particularly
not when c2

S is close to zero. For example, the delay probability has the respective
values 0.0776, 0.3285 and 0.3896 for the E10/D/5 queue, the E10/E2/5 queue and
the E10/M/5 queue, each with ρ = 0.8. Interpolation formulas like the one above
should always be accompanied by a caveat against their blind application. The
above interpolation formula reflects the empirical finding that measures of system
performance are in general much more sensitive to the interarrival-time distribution
than to the service-time distribution, in particular when the traffic load is light.

9.7.1 The GI/M/c Queue

In the GI/M/c queue the service times of the customers are exponentially dis-
tributed with mean 1/µ. In addition to the time-average probabilities pj , let

πj = the long-run fraction of customers who find
j other customers present upon arrival.

There is a simple relation between the pj and the πj . We have

min(j, c)µpj = λπj−1, j = 1, 2, . . . . (9.7.6)

This relation equates the average number of downcrossings from state j to state
j − 1 per time unit to the average number of upcrossings from state j − 1 to state
j per time unit; see also Section 2.7.

The probabilities πj determine the waiting-time distribution function Wq(x).
Note that the conditional waiting-time of a customer finding j ≥ c other customers
present upon arrival is the sum of j − c + 1 independent exponentials with mean
1/(cµ) and thus has an Erlang distribution. Hence, by conditioning,

1 − Wq(x) =
∞∑

j=c

πj

j−c∑
k=0

e−cµx (cµx)k

k!
, x ≥ 0. (9.7.7)
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This expression can be further simplified. To show this, we use that

πj+1

πj

= η, j ≥ c − 1 (9.7.8)

for some constant 0 < η < 1. The proof of this result is a replica of the proof of
the corresponding result for the GI/M/1 queue; see (3.5.15). Hence

πj = ηj−c+1πc−1, j ≥ c − 1. (9.7.9)

As a by-product of (9.7.6) and (9.7.7) we have

pj = ηj−cpc, j ≥ c. (9.7.10)

Substituting (9.7.9) into (9.7.8) yields

1 − Wq(x) = η

1 − η
πc−1e−cµ(1−η)x, x ≥ 0. (9.7.11)

The constant η is the unique solution of the equation

η =
∫ ∞

0
e−cµ(1−η)ta(t) dt (9.7.12)

on the interval (0,1). To see this, note that {πj } is the equilibrium distribution of the
embedded Markov chain describing the number of customers present just before
an arrival epoch. Substituting (9.7.9) into the balance equations

πj =
∞∑

k=j−1

πk

∫ ∞

0
e−cµt (cµt)k+1−j

(k + 1 − j)!
a(t) dt, j ≥ c

easily yields the result (9.7.12).
By the relations (9.7.6), (9.7.9) and (9.7.10), the probability distributions {pj }

and {πj } are completely determined once we have computed π0, . . . , πc−1 or
p0, . . . , pc. These c unknowns can be rather easily computed for the special cases
of deterministic, Coxian-2 and Erlangian interarrival times. If one is only inter-
ested in the waiting-time probabilities (9.7.11), these computations can be avoided.
An explicit expression for the delay probability ηπc−1/(1 − η) is given in Takács
(1962). For the case of c = 1 (GI/M/1 queue), ηπc−1/(1 − η) = η.

Deterministic arrivals

Suppose there is a constant time D between two consecutive arrivals. Define the
embedded Markov chain {Xn} by

Xn = the number of customers present just before the nth arrival.
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Denoting the one-step transition probabilities of this Markov chain by pij , the πj

are the unique solution to the equations

πj =
∞∑

k=j−1

πkpkj , j = 1, 2, . . .

together with the normalizing equation
∑∞

j=0 πj = 1. Substituting (9.7.9) into these
equations yields that π0, . . . , πc−1 are the unique solution to the finite system of
linear equations

πj =
c−2∑

k=j−1

πkpkj + πc−1p
∗
c−1, j , 1 ≤ j ≤ c − 1,

c−2∑
j=0

πj + πc−1

1 − η
= 1, (9.7.13)

where

p∗
c−1,j =

∞∑
k=c−1

ηk−c+1pkj , 1 ≤ j ≤ c − 1.

The constant η is the unique solution to the equation η = exp [−cµD(1−η)] on the
interval (0,1). It remains to specify the pkj for 1≤ j ≤ c − 1. Since the probability
that an exponentially distributed service time is completed within a time D equals
1 − exp (−µD), we have

pkj =
(

k + 1

j

)
e−µDj (1 − e−µD)k+1−j , 0 ≤ k ≤ c − 1 and 0 ≤ j ≤ k + 1.

The probabilities pkj for k > c − 1 require a little bit more explanation. We first
note that the times between service completions are independent exponentials with
common mean 1/(cµ) as long as c or more customers are present. Thus, starting
with k+1 ≥ c customers present, the time until the (k+1−c)th service completion
has an Ek+1−c distribution. By conditioning on the epoch of this (k+1−c)th service
completion, we find for any k ≥ c that

pkj =
∫ D

0

(
c

j

)
e−µ(D−x)j {1 − e−µ(D−x)}c−j (cµ)k+1−c xk−c

(k − c)!
e−cµx dx

=
(

c

j

)
e−jµDcµ

∫ D

0

(cµx)k−c

(k − c)!
(e−µx − e−µD)c−j dx, 0 ≤ j ≤ c.

This expression is needed to evaluate p∗
c−1,j . We find

p∗
c−1,j = pc−1,j + cµη

(
c

j

)
e−jµD

∫ D

0
ecµηx(e−µx − e−µD)c−j dx
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for 1 ≤ j ≤ c − 1. Numerical integration must be used to calculate p∗
c−1,j for

1 ≤ j ≤ c − 1. A convenient method is Gauss–Legendre integration. The other
coefficients pkj of the linear equations (9.7.13) are simply computed as binomial
coefficients. Once the linear equations (9.7.13) have been solved, we can compute
the various performance measures.

The analysis for the D/M/c queue can straightforwardly be generalized to the
GI/M/c queue. However, in general, the expression for pkj with k ≥ c is quite
complicated and leads to a cumbersome and time-consuming calculation of p∗

c−1,j .
Fortunately, a much simpler alternative is available when the interarrival time has
a phase-type distribution.

Coxian-2 arrivals

Suppose that the interarrival time has a Coxian-2 distribution with parameters
(b, λ1, λ2). In other words, the interarrival time first goes through phase 1 and
next it is finished with probability 1 − b or goes through a second phase 2 with
probability b, where the phases are independent exponentials with respective means
1/λ1 and 1/λ2.

The state probabilities pj for 0 ≤ j ≤ c can be calculated by using the
continuous-time Markov chain approach. Define X(t) as the number of customers
present at time t and let Y(t) be the phase of the interarrival time in progress at
time t . The process {(X(t), Y (t))} is a continuous-time Markov chain with state
space I = {(n, i) | n = 0, 1, . . . ; i = 1, 2}. Denoting the equilibrium probabilities
of this Markov chain by pni , we have pn = pn1 + pn2. By equating the rate at
which the system leaves the set of states having at least n customers present to the
rate at which the system enters this set, we obtain

min(n, c)µ(pn1 + pn2) = λ1(1 − b)pn−1,1 + λ2pn−1,2, n ≥ 1. (9.7.14)

This system of equations is augmented by the equations

[min(n, c)µ + λ2]pn2 = min(n + 1, c)µpn+1,2 + λ1bpn1, n ≥ 0. (9.7.15)

These equations follow by equating the rate out of state (n, 2) to the rate into
this state. A closer examination of equations (9.7.14) and (9.7.15) reveals that
they cannot be solved recursively starting with p0 := 1. Nevertheless, a recursive
computation of p0, . . . , pc is possible since

pn+1,i

pni
= η, n ≥ c and i = 1, 2. (9.7.16)

The relation (9.7.16) extends the relation pn+1/pn = η for n ≥ c. A proof of the
relation (9.7.16) is not given here. It can be deduced from Lemma 3.5.10 and gen-
eral results in Takahashi (1981). The constant η can be computed beforehand from
equation (9.7.12). Using the expression for Coxian-2 density given in Appendix B,
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this equation becomes

r1λ1

cµ(1 − η) + λ1
+ r2λ2

cµ(1 − η) + λ2
= η, (9.7.17)

where r1 = 1 − bλ1/(λ1 − λ2) and r2 = 1 − r1. Here it is assumed that λ1 �= λ2.
Once η is known, we can express pc2 into pc1. Substituting pc+1,2 = ηpc2 into
(9.7.15) with n = c yields

(cµ + λ2)pc2 = cµηpc2 + λ1bpc1.

The following algorithm can now be given.

Algorithm

Step 0. Calculate first η as the unique root of equation (9.7.17) on (0,1). Let pc1 := 1
and pc2 := λ1b{cµ(1 − η) + λ2}−1pc1.
Step 1. For k = c − 1, . . . , 0, use equation (9.7.14) with n = k + 1 and equation
(9.7.15) with n = k to solve for pk1 and pk2.
Step 2. Calculate pn := pn1+pn2 for n = 0, 1, . . . , c and next use relation (9.7.10)
to normalize the pn as

pn :=

c−1∑

j=0

pj + pc

1 − η




−1

pn, n = 0, 1, . . . , c.

Generalized Erlangian arrivals

Suppose that the interarrival time has density

a(t) =
m∑

i=1

qiα
i t i−1

(i − 1)!
e−αt , t ≥ 0,

where qm > 0. In other words, with probability qi an interarrival time is the
sum of i independent phases each having an exponential distribution with mean
1/α. We again use the continuous-time Markov chain approach to compute the
probabilities pj . Define X(t) as the number of customers present at time t and let
Y(t) be the number of remaining phases of the interarrival time in progress at time
t . The process {(X(t), Y (t))} is a continuous-time Markov chain with state space
I = {(n, i) | n ≥ 0; 1 ≤ i ≤ m}. By equating the rate at which the system leaves
the set of states having at least n customers present to the rate at which the system
enters this set, we find

min(n, c)µpn = αpn−1,1, n ≥ 1. (9.7.18)
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Moreover, by rate out of state (n, i) = rate into state (n, i),

[min(n, c)µ + α]pni = αpn,i+1 + min(n + 1, c)µpn+1,i + αqipn−1,1

for n ≥ 0 and 1 ≤ i ≤ m, where pn,m+1 = p−1,1 = 0 by convention. Again a
rather simple solution procedure can be given in view of

pn+1,i

pn,i

= η, n ≥ c and 1 ≤ i ≤ m.

A proof of this result will not be given here. The decay factor η is the unique
solution to the equation

η =
m∑

i=1

qi

αi

[cµ(1 − η) + α]i

on the interval (0, 1). By substitution of (9.7.18) into the balance equation for pni ,

we obtain for each n ≥ 0 that

[min(n, c)µ + α]pni = αpn,i+1 + min(n + 1, c)µpn+1,i

+ qi min(n, c)µ

m∑
j=1

pnj , 1 ≤ i ≤ m. (9.7.19)

In particular, since pc+1,i = ηpci for 1 ≤ i ≤ m,

(cµ + α)pci = αpc,i+1 + cµηpci + qicµ

m∑
j=1

pcj , 1 ≤ i ≤ m. (9.7.20)

The probabilities p0, . . . , pc can now be computed as follows.

Algorithm

Step 0. Calculate the decay factor η. Let pc1 := 1.
Step 1. Solve the linear equations (9.7.20) with 2 ≤ i ≤ m to obtain pci for
2 ≤ i ≤ m.
Step 2. For k = c − 1, . . . , 0, solve the linear equations (9.7.19) with n = k to
obtain pki for 1 ≤ i ≤ m.
Step 3. Calculate pn := ∑m

j=1 pnj for n = 0, 1, . . . , c and normalize the pn as

pn :=

c−1∑

j=0

pj + pc

1 − η




−1

pn, n = 0, 1, . . . , c.

The algorithm requires that a system of linear equations of order m is solved c

times. This is computationally feasible provided m is not too large.
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9.7.2 The GI/D/c Queue

In the GI/D/c queue the arrival process of customers is a renewal process and
the service time of each customer is equal to the constant D. Let us consider the
situation that the interarrival-time distribution has a probability density a(t) with
Laplace transform

a∗(s) =
∫ ∞

0
e−st a(t) dt.

We first discuss the computation of the state probabilities

pj = lim
t→∞ pj (t), j = 0, 1, . . . ,

where pj (t) = P {j customers will be present at time t}. In a similar way as in
the M/D/c queue, the probabilities pj can be computed from a system of linear
equations. Let

an(D) = lim
t→∞ an(t, D), n = 0, 1, . . . ,

where an(t, D) = P {n customers will arrive in (t, t + D]}, t > 0. Mimicking the
derivation of (9.6.1), we obtain the equilibrium equations

pj = aj (D)

c∑
k=0

pk +
c+j∑

k=c+1

pkaj−k+c(D), j = 0, 1, . . . . (9.7.21)

These linear equations are obtained by letting t → ∞ in

pj (t + D) =
c∑

k=0

pk(t)aj (t, D) +
c+j∑

k=c+1

pk(t)aj−k+c(t, D).

To solve the linear equations (9.7.21) together with
∑∞

j=0 pj = 1, we need first to
compute the probabilities an(D). These probabilities can be numerically obtained
by Laplace inversion. In Section 8.1 it was shown that∫ ∞

0
e−sxa0(x) dx = 1

s
− λ(1 − a∗(s))

s2
(9.7.22)

and ∫ ∞

0
e−sxan(x) dx = λ[(1 − a∗(s)]2[a∗(s)]n−1

s2
, n ≥ 1. (9.7.23)

The infinite system of linear equations for the pj can be reduced to a finite system
by using the geometric tail approach discussed in Section 3.4.2. By (9.7.1),

pj

pj−1
∼ τ−1 as j → ∞,
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where τ = eδD/c and δ is the unique solution of the equation

eδD/c

∫ ∞

0
e−δxa(x) dx = 1 (9.7.24)

on the interval (0, ∞). Hence a finite system of linear equations is obtained for the
pj by replacing pj by pMτ−(j−M) for j ≥ M with M a sufficiently large integer.

Waiting-time probabilities

In general it is not possible to give a tractable algorithm for the waiting-time proba-
bilities in the GI/D/c queue. An exception is the Ek/D/c queue. The waiting-time
probabilities in the Ek/D/c queue are the same as the waiting-time probabilities
in the M/D/kc queue with the same server utilization as in the Ek/D/c queue.

Theorem 9.7.1 The waiting-time distribution function Wq(x) in the multi-server
GI/D/c queue is the same as in the single-server GI(c∗)/D/1 queue in which the
interarrival time is distributed as the sum of c interarrival times in the GI/D/c queue.

Proof Since the service times are deterministic, it is no restriction to cyclically
assign the customers to the c servers. Then server k gets the customers numbered as
k, k + c, k + 2c, . . . for k = 1, . . . , c. This simple observation proves the theorem.

The theorem has the following important corollary.

Corollary 9.7.2 The waiting-time distribution function Wq(x) in the Ek/D/c

queue is identical to the waiting-time distribution in the M/D/kc queue with the
same server utilization.

Proof An Erlang (k, α) distributed random variable has the same distribution as
the sum of k independent random variables each having an exponential distribution
with mean 1/α. Consider now the Ek/D/c system with mean interarrival time
k/α and the M/D/kc system with mean interarival time 1/α. By Theorem 9.7.1,
both the waiting-time distribution in the Ek/D/c system and the waiting-time
distribution in the M/D/kc system are the same as the waiting-time distribution
in the Eck/D/1 queue with mean interarrival time ck/α. This gives the desired
result.

What can be done for the case of a general interarrival-time distribution? Then
an approximation to the waiting-time probabilities can be computed by using Theo-
rem 9.7.1. The idea is to approximate the GI(c∗)/D/1 queue by an Ph/D/1 queue
by replacing the interarrival-time distribution by a tractable phase-type distribution
that matches the first two or three moments. Section 9.5.4 discusses algorithms to
compute the waiting-time probabilities in the Ph/D/1 queue.
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9.8 FINITE-CAPACITY QUEUES

This section considers queueing systems having room for only a finite number
of customers. Each customer finding no waiting place available upon arrival is
rejected. A rejected customer is assumed to have no further influence on the system.
In finite-capacity systems the finite waiting room acts as a regulator on the queue
size and so no a priori assumption on the offered load is needed. A practical
problem of considerable interest is the calculation of the rejection probability. A
basic problem in telecommunication and production is the design of finite buffers
such that the rejection probability is below a prespecified value. In this section it
will be shown that the rejection probability for the finite-buffer model can often
be expressed in terms of the state probabilities for the corresponding infinite-buffer
model. This result greatly simplifies the calculation of the smallest buffer size such
that the rejection probability is below a prespecified value. Before discussing this
result in Section 9.8.2, we first discuss in Section 9.8.1 an approximation to the
state probabilities in the M/G/c/c + N queue.

9.8.1 The M/G/c/c + N Queue

The M/G/c/c queueing model has a Poisson input with rate λ, a general service-
time distribution, c identical servers and N waiting positions for customers to await
service. An arriving customer who finds all c servers busy and all N waiting places
occupied is rejected. A tractable exact solution of this model is only possible for
the case of a single server (M/G/1/N queue), the case of exponential services
(M/M/c/c + N queue) and the case of no waiting room (M/G/c/c queue). The
M/G/c/c queue (Erlang loss model) was discussed in detail in Section 5.2 and
the M/M/c/c + N queue was dealt with in Exercise 5.1.

In the M/G/c/c + N queue the service time S of a customer has a general
probability distribution function B(x) with B(0) = 0. No restriction is imposed on
the load factor ρ defined by ρ = λE(S)/c. Let {pj , 0 ≤ j ≤ N + c} denote the
limiting distribution of the number of customers present. The next theorem extends
the approximation that was given in Theorem 9.6.1 for the state probabilities in the
infinite-capacity M/G/c queue. An approximation to the waiting-time probabilities
(percentiles) in the M/G/c/c+N is outlined in Exercise 9.14. This approximation
is based on the approximation to the state probabilities.

Theorem 9.8.1 Under Assumption 9.6.1, the state probabilities pj are approxi-
mated by

p
app
j = (cρ)j

j !
p

app
0 , 0 ≤ j ≤ c − 1,

p
app
j = λp

app
c−1aj−c + λ

j∑
k=c

p
app
k bj−k, c ≤ j ≤ N + c − 1,
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Table 9.8.1 Numerical results for Prej in the M/G/c/c + N queue (c = 5).

ρ = 0.5 ρ = 0.8 ρ = 1.5

c2
S

N = 1 N = 5 N = 1 N = 5 N = 1 N = 5

0 app 0.0286 0.00036 0.1221 0.0179 0.3858 0.3348
exa [0.0281– [0.00032– [0.1212– [0.0168– [0.3854– [0.3332–

0.0293] 0.00038] 0.1236] 0.0182] 0.3886] 0.3372]

1
2 app 0.0311 0.0010 0.1306 0.0308 0.3975 0.3395

exa 0.0314 0.0010 0.1318 0.0314 0.4000 0.3400

2 app 0.0370 0.0046 0.1450 0.0603 0.4114 0.3555
exa 0.0366 0.0044 0.1435 0.0587 0.4092 0.3537

p
app
j = ρp

app
c−1 − (1 − ρ)

N+c−1∑
k=c

p
app
k , j = N + c,

where ρ = λE(S)/c and the constants an and bn are the same as in Theorem 9.6.1.

Proof The proof of the theorem is a minor modification of the proof of Theo-
rem 9.6.1. The details are left to the reader.

The result of Theorem 9.8.1 is exact for both the case of multiple servers with
exponential service times and the case of a single server with general service
times, since for these two special cases the approximation assumption holds exactly.
Further support for the approximate result of the theorem is provided by the fact
that the approximation is exact for the case of no waiting room (N = 0).

Numerical investigations indicate that the approximation for the state proba-
bilities is accurate enough for practical purposes. Table 9.8.1 gives the exact and
approximate values of the rejection probability Prej for several examples. The prob-
ability Prej denotes the long-run fraction of customers who are rejected. By the
PASTA property,

Prej = pN+c.

In all examples we take c = 5 servers. Deterministic services (c2
S = 0), E2 services

(c2
S = 1

2 ) and H2 services with gamma normalization (c2
S = 2) are considered. For

the latter two services, the exact values of Prej are taken from the tabulations of
Seelen et al. (1985). For deterministic services, computer simulation was used to
find Prej . In the table we give the 95% confidence intervals. It is interesting to
point out that the results in Table 9.8.1 support the long-standing conjecture for the
GI/G/c/c + N queue that Prej → 1 − 1/ρ as N → ∞ when ρ > 1.

A proportionality relation

For the case of ρ < 1 the computational work can be considerably reduced when
the approximation to Prej must be computed for several values of N . Denote by
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p
(∞)
j (app) the approximation given in Theorem 9.6.1 to the state probability p

(∞)
j

in the infinite-capacity M/G/c queue. This approximation requires that ρ < 1. An
inspection of the recursion schemes in Theorems 9.6.1 and 9.8.1 reveals that, for
some constant γ ,

p
app
j = γp

(∞)
j (app), j = 0, 1, . . . , N + c − 1. (9.8.1)

The constant γ is given by γ = [1 − ρ
∑∞

j=N+c p
(∞)
j (app)]−1. In the next section

it will be seen that this proportionality relation implies

P
app
rej =

(1 − ρ)

∞∑
j=N+c

p
(∞)
j (app)

1 − ρ

∞∑
j=N+c

p
(∞)
j (app)

, (9.8.2)

where P
app
rej = p

app
N+c denotes the approximation to Prej . The computation of the

probabilities p
(∞)
j (app) was discussed in Section 9.6.2.

The approximations p
app
j and p

(∞)
j (app) are exact both for the case of multiple

servers with exponential service times and for the case of a single server with
general service times. Therefore relations (9.8.1) and (9.8.2) hold exactly for the
M/M/c/c+N queue and the M/G/1/N + 1 queue. For these particular queueing
models the proportionality relation (9.8.1) can be directly explained by a simple
probabilistic argument. This will be done in the next subsection. It is noted that for
the general M/G/c/c + N queue the proportionality relation is not satisfied when
the exact values of pj and p

(∞)
j are taken instead of the approximate values.

9.8.2 A Basic Relation for the Rejection Probability

In this section a structural form will be revealed for the rejection probability. In
many situations the rejection probability can be expressed in terms of the state
probabilities in the infinite-capacity model. In the following, pj and p

(∞)
j denote

the time-average state probabilities for the finite-capacity model and the infinite-
capacity model. To ensure the existence of the probabilities p

(∞)
j , it is assumed

that the server utilization ρ is smaller than 1.

Theorem 9.8.2 Both for the M/M/c/c + N queue and the M/G/1/N + 1 queue
it holds that

pj = γp
(∞)
j , j = 0, 1, . . . , N + c − 1 (9.8.3)

for some constant γ > 0. The constant γ is given by γ = [1 − ρ
∑∞

j=N+c p
(∞)
j ]−1

and the rejection probability is given by
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Prej =
(1 − ρ)

∞∑
j=N+c

p
(∞)
j

1 − ρ

∞∑
j=N+c

p
(∞)
j

. (9.8.4)

Proof The proof of (9.8.3) is based on the theory of regenerative processes.
The process describing the number of customers present is a regenerative stochas-
tic process in both the finite-capacity model and the infinite-capacity model. For
both models, let a cycle be defined as the time elapsed between two consecutive
arrivals that find the system empty. For the finite-capacity model, we define the
random variables

T = the length of one cycle,

Tj = the amount of time that j customers are present during one cycle.

The corresponding quantities for the infinite-capacity model are denoted by T (∞)

and T
(∞)

j . By the theory of regenerative processes,

pj = E(Tj )

E(T )
and p

(∞)
j =

E(T
(∞)

j )

E(T (∞))
, j = 0, 1, . . . , N + c. (9.8.5)

The crucial observation is that the random variable Tj has the same distribution
as T

(∞)
j for any 0 ≤ j ≤ N + c − 1 both in the M/M/c/c + N queue and

in the M/G/1/N + 1 queue. This result can be roughly explained as follows.
Suppose that at epoch 0 a cycle starts and let the processes {L(t)} and {L(∞)(t)}
describe the number of customers present in the finite-capacity system and in the
infinite-capacity system. During the first cycle the behaviour of the process {L(t)} is
identical to that of the process {L(∞)(t)} as long as the processes have not reached
the level N + c. Once the level N + c has been reached, the process {L(∞)(t)}
may temporarily make an excursion above the level N + c. However, after having
reached the level N + c, both the process {L(t)} and the process {L(∞)(t)} will
return to the level N + c − 1. This return to the level N + c − 1 occurs at a
service completion epoch. At a service completion epoch the elapsed service times
of the other services in progress are not relevant. In the M/G/1/N + 1 queue
the reason is simply that no other services are in progress at a service completion
epoch and in the M/M/c/c + N queue the explanation lies in the memoryless
property of the exponential service-time distribution. Also, it should be noted that
at a service completion epoch the elapsed time since the last arrival is not relevant
since the arrival process is a Poisson process. Thus we can conclude that after a
downcrossing to the level N + c − 1 the behaviour of the process {L(∞)(t)} is
again probabilistically the same as the behaviour of the process {L(t)} as long as
the number of customers present stays below the level N + c. These arguments
make it plausible that the distribution of Tj is the same as that of T

(∞)
j for any
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0≤ j ≤ N + c − 1. Next it follows from (9.8.5) that (9.8.3) holds with

γ = E(T (∞))

E(T )
.

The proportionality relation (9.8.3) is the key to the proof of (9.8.4). We first
note that in the finite-capacity model the average number of busy servers equals
λ(1 − Prej )E(S) by Little’s formula. Writing λ(1 − Prej )E(S) as cρ(1 − Prej ), it
follows that

cρ(1 − Prej ) =
N+c∑
j=0

min(j, c)pj =
c−1∑
j=0

jpj + c(1 −
c−1∑
j=0

pj ).

Substituting (9.8.3) in this equation gives

cρ(1 − Prej ) = γ

c−1∑
j=0

jp
(∞)
j + c(1 − γ

c−1∑
j=0

p
(∞)
j )

= γ

c−1∑
j=0

jp
(∞)
j + c[1 − γ (1 −

∞∑
j=c

p
(∞)
j )]

= γ

∞∑
j=0

min(j, c)p
(∞)
j + c − cγ.

By Little’s formula, the average number of busy servers equals cρ in the infinite-
buffer model and so

∑∞
j=0 min(j, c)p

(∞)
j = cρ. This leads to

cρ(1 − Prej ) = γ cρ + c − cγ.

Solving for γ gives

Prej = (1 − ρ)(γ − 1)

ρ
. (9.8.6)

Also, using the PASTA property,

Prej = pN+c = 1 −
N+c−1∑

j=0

pj = 1 − γ

N+c−1∑
j=0

p
(∞)
j

= 1 − γ [1 −
∞∑

j=N+c

p
(∞)
j ]. (9.8.7)

By (9.8.6) and (9.8.7), γ = [1−ρ
∑∞

j=N+c p
(∞)
j ]−1. Next the result (9.8.4) follows.

It is important to point out that the assumption of a single server with general
service times or multiple servers with exponential service times was only used for
the proof of (9.8.3). The proof of (9.8.4) does not use this assumption, but is solely
based on the proportionality relation (9.8.3).
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Table 9.8.2 Numerical results for the D/M/c/c + N queue

ρ = 0.8 ρ = 0.95

N = 0 N = 10 N = 25 N = 0 N = 50 N = 75

c = 5 app 1.02E-2 6.99E-4 6.59E-7 1.48E-1 1.39E-6 6.83E-9
exa 1.11E-2 7.49E-4 7.06E-7 1.59E-1 1.44E-6 6.74E-9

c = 25 app 1.59E-3 1.44E-4 1.37E-7 4.98E-2 7.54E-7 3.53E-9
exa 1.71E-3 1.55E-4 1.46E-7 5.23E-2 7.80E-7 3.65E-9

c = 100 app 2.16E-4 2.08E-6 1.97E-9 9.60E-3 1.94E-7 9.07E-10
exa 2.32E-4 2.23E-6 2.11E-9 9.96E-3 2.00E-7 9.39E-10

Interpretation of formula (9.8.4)

Define for the infinite-capacity M/G/c queue the tail probability

�
(∞)
N+c = the long-run fraction of customers who find N + c or

more other customers present upon arrival.

By the PASTA property �
(∞)
N+c = ∑∞

j=N+c p
(∞)
j , and so formula (9.8.4) can be

written in the more insightful form

Prej = (1 − ρ)�
(∞)
N+c

1 − ρ�
(∞)
N+c

. (9.8.8)

Practitioners often use the tail probability �
(∞)
N+c from the infinite-capacity model as

an approximation to the rejection probability in the finite-capacity model. The for-
mula (9.8.8) shows that this is a poor approximation when ρ is not very small. The
approximation �

(∞)
N+c differs by a factor (1−ρ)−1 from the right-hand side of (9.8.8)

when N gets large. The improved approximation (9.8.8) is just as easy to use as
the approximation �

(∞)
N+c. In queueing systems in which the proportionality relation

(9.8.3) does not necessarily holds, the structural form (1 − ρ)�
(∞)
N+c/(1 − ρ�

(∞)
N+c)

can nevertheless be used as an approximation to Prej . In Exercise 9.14 this will
be illustrated for the single-server queue with a Markov modulated arrival process.
Here we illustrate the performance of the approximation (1−ρ)�

(∞)
N+c/(1−ρ�

(∞)
N+c)

to the rejection probability in the D/M/c/c +N queue with deterministic arrivals.
Table 9.8.2 gives the approximate and exact values of Prej for several examples.
The numerical result shows an excellent performance of the approximation. In
all examples the approximate value of Prej is of the same order of magnitude
as the exact value. This is what is typically needed when a heuristic is used for
dimensioning purposes.

9.8.3 The MX/G/c/c + N Queue with Batch Arrivals

Theorem 9.8.2 can be extended to the batch-arrival MX/G/c/c+N queue. In this
model batches of customers arrive according to a Poisson process with rate λ and
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the batch size X has a discrete probability distribution {βj , j ≥ 1} with mean β.
Denoting by µ the mean service time of a customer, it is assumed that the load
factor ρ = λβµ/c is smaller than 1. As before {pj , 0 ≤ j ≤ N + c} denotes the
limiting distribution of the number of customers present. For finite-buffer queues
with batch arrivals we must distinguish between these two cases:

(a) Partial rejection: an arriving batch whose size exceeds the remaining capacity
of the buffer is partially rejected by turning away only those customers in
excess of the remaining capacity.

(b) Complete rejection: an arriving batch whose size exceeds the remaining capac-
ity of the buffer is rejected in its entirety.

The emphasis of the discussion will be on the case of partial rejection. We first
derive an expression for the tail probability �

(∞)
N+c in the infinite-capacity MX/G/c

queue. Let {p(∞)
j } denote the time-average probabilities in the infinite-capacity

MX/G/c queue. Then, by the PASTA property,

the long-run fraction of batches finding k other customers present upon arrival

= p
(∞)
k , k = 0, 1, . . . . (9.8.9)

Suppose that the customers are numbered as 1, 2, . . . in accordance with the order in
which the batches arrive and in accordance with the relative positions the customers
take within the same batch. Define for j = 0, 1, . . . ,

π
(∞)
j = the long-run fraction of customers who have j other customers in front

of them just after arrival (including customers from the same batch).

In Section 9.3.2 we have already shown that

the long-run fraction of customers taking the rth position in their batch

= 1

β

∞∑
j=r

βj , r = 1, 2, . . . .

This result in conjunction with (9.8.9) gives

π
(∞)
j = 1

β

j∑
k=0

p
(∞)
k

∞∑
s=j−k+1

βs, j = 0, 1, . . . . (9.8.10)

Hence, in the infinite-capacity model, the long-run fraction of customers having
N + c or more customers in front of them just after arrival is given by

�
(∞)
N+c =

∞∑
j=N+c

1

β

j∑
k=0

p
(∞)
k

∞∑
s=j−k+1

βs. (9.8.11)
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As before, let Prej denote the long-run fraction of customers who are rejected in
the finite-capacity model. For the MX/G/c/c + N queue with partial rejection,
we approximate Prej by

Prej ≈ (1 − ρ)�
(∞)
N+c

1 − ρ�
(∞)
N+c

. (9.8.12)

The approximation (9.8.12) to Prej holds exactly for the MX/G/1/N queue with
partial rejection and the MX/M/c/c + N queue with partial rejection. It is left to
the reader to verify that the proportionality relation (9.8.3) remains valid for these
special cases. In the proof of Theorem 9.8.2 one needs only to modify formula
(9.8.7). In the MX/G/c/c + N model with partial rejection,

Prej = 1

β

N+c∑
k=0

pk

∞∑
s=N+c−k+1

(k + s − N − c)βs.

This result follows by noting that the fraction of customers rejected is the ratio of
the average number of customers rejected per batch and the average batch size.

Complete rejection

In the MX/G/c/c + N queue with complete rejection it is no longer true that the
proportionality relation (9.8.3) holds for the case of a single server with general
service times and for the case of multiple servers with exponential service times.
However, one might make the heuristic assumption that pj ≈ γp

(∞)
j for 0 ≤ j ≤

N + c − 1. Exercise 9.19 is to verify that this heuristic assumption leads to the
approximation

Prej ≈
(1 − ρ)


1 −

N+c−1∑
j=0

u
(∞)
j




1 − ρ


1 −

N+c−1∑
j=0

u
(∞)
j




, (9.8.13)

where

u
(∞)
j = 1

β

j∑
k=0

p
(∞)
k

N+c−k∑
s=j−k+1

βs.

A remarkable result is that for the case of a constant batch size Q with Q ≤
N + 1 the approximation (9.8.13) is exact for both the MX/G/1/N + 1 queue
with complete rejection and the MX/M/c/c + N queue with complete rejection;
see Exercises 9.20 and 9.21. In these cases with a constant batch size Q it holds
that pj ≈ γp

(∞)
j for any 0 ≤ j ≤ N + c − Q.
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Table 9.8.3 The MX/G/1/N + 1 queue with complete rejection

Geometric Two-point

c2
S

N = 0 N = 50 N = 250 N = 0 N = 50 N = 250

0.1 app 8.99E-1 1.40E-2 1.62E-7 8.86E-1 8.88E-3 1.29E-8
exa 9.40E-1 1.59E-2 1.82E-7 8.86E-1 9.01E-3 1.31E-8

10 app 8.99E-1 6.09E-2 2.64E-4 8.86E-1 5.58E-2 1.79E-4
exa 9.40E-1 6.21E-2 2.68E-4 8.86E-1 5.55E-2 1.79E-4

Table 9.8.3 gives some numerical results for Prej in the MX/G/1/N + 1 queue
with complete rejection. For the batch size we consider both the two-point distri-
bution P {X = 1} = P {X = 7} = 0.5 and the geometric distribution P {X = j} =
(1/4)(3/4)j−1 for j ≥ 1. In both cases the mean batch size β = 4. The service-
time distributions are the E10 distribution (c2

S = 0.1) and the H2 distribution with
the gamma normalization (c2

S = 10). The offered load ρ is taken equal to 0.8. The
results in Table 9.8.3 indicate that the approximation (9.8.13) performs quite well
for practical purposes.

Asymptotic expansion for Prej

For larger values of the buffer capacity N , the calculation of Prej can further be
simplified when an asymptotic expansion for the tail probabilities in the infinite-
buffer model is known. If Prej = (1−ρ)

∑∞
j=N+c π

(∞)
j /[1−ρ

∑∞
j=N+c π

(∞)
j ] and

an asymptotic expansion π
(∞)
j ∼ σηj as j → ∞ is known, then

Prej ≈ (1 − ρ)σηN+c/(1 − η)

1 − ρσηN+c/(1 − η)
≈ (1 − ρ)σηN+c/(1 − η) for large N.

To illustrate this, consider the single-server MX/G/1/N + 1 queue with partial
rejection. For the MX/G/1 queue the asymptotic expansion π

(∞)
j ∼ σηj as j →

∞ holds when the service time is not heavy-tailed, where the constants σ and
η = 1/τ are determined by the relations (9.3.5) and (9.3.6). When using the
asymptotic expansion one needs only to calculate the root of a non-linear equation
in a single variable.

Two-moment approximation

The practical applicability of the formulas for Prej stands or falls with the computa-
tion of the state probabilities π

(∞)
j . In some queueing models it is computationally

feasible to calculate these probabilities using embedded Markov chain analysis or
continuous-time Markov chain analysis. However, in many queueing models the
exact computation of the state probabilities π

(∞)
j is not practically feasible. This
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is for instance the case in the MX/G/c queue with general service times. In such
situations one might try to approximate the exact solution of the complex model
through the exact solutions of simpler related models. In this chapter we have
already seen several examples of such two-moment approximations. The rejection
probability itself is not directly amenable to a two-moment approximation, but
indirectly a two-moment approximation is possible through the ‘percentile’ N(α)

defined by

N(α) = the minimal buffer size for which the rejection probability Prej

does not exceed the value α.

This will be illustrated for the MX/G/c/c +N queue. Denoting by c2
S the squared

coefficient of the service time of a customer, the two-moment approximation to
N(α) is given by

Napp(α) = (1 − c2
S)Ndet (α) + c2

SNexp(α), (9.8.14)

where Ndet (α) and Nexp(α) are the (approximate) values of the minimal buffer
size N(α) for the MX/D/c/c + N queue and the MX/M/c/c + N queue. The
buffer sizes Ndet (α) and Nexp(α) are computed by using the (approximate) formula
for Prej in the particular cases of deterministic services and exponential services.
Relatively simple algorithms are available to compute the state probabilities π

(∞)
j in

the MX/M/c queue and the MX/D/c queue; see Section 9.6.3. The two-moment
approximation (9.8.14) is only recommended when c2

S is not too large (say, 0 ≤
c2
S ≤ 2).

Table 9.8.4 illustrates the performance of the two-moment approximation (9.8.14)
for the M/G/c/c+N queue, where the number of servers has the two values c = 1
and c = 10. For both Erlang-2 services (c2

S = 0.5) and H2 services with gamma
normalization (c2

S = 2), the approximate and exact values of N(α) are given for
several values of α. Any fractional value resulting from the interpolation formula
(9.8.14) has been rounded up. The results in the table show an excellent perfor-
mance of the two-moment approximation and also nicely demonstrate that N(α)

increases logarithmically in α as α increases.

9.8.4 Discrete-Time Queueing Systems

Many practical queueing systems operate on a discrete-time basis. A discrete-time
queueing system is characterized by time-slotted service. A new service can only
start at the beginning of a time slot, and the service time is a multiple of time slots.
In applications the discrete-time queueing systems typically have finite buffers
to store incoming packets. Packets are the entities to be served. Let us assume
that there are c service channels and a buffer of capacity N to store incoming
packets. The buffer excludes any packet in service. Each service channel can handle
only one packet at a time. A new service can only start at the beginning of a
time slot. The service times of the packets are independent of each other. It is
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Table 9.8.4 The minimal buffer size in the M/G/c/c + N queue

ρ = 0.5 ρ = 0.8

α 10−2 10−4 10−6 10−8 10−10 10−2 10−4 10−6 10−8 10−10

c=1

c2
S

= 1
2 exa 4 9 15 20 25 10 26 41 57 73

app 4 10 15 20 25 10 26 41 57 73
c2
S

= 2 exa 7 16 26 35 45 19 49 80 110 141
app 7 17 25 36 46 19 50 80 111 140

c=10

c2
S

= 1
2 exa 1 7 12 17 23 8 24 39 55 71

app 1 7 13 17 23 8 24 39 55 71
c2
S

= 2 exa 1 10 20 29 39 14 44 74 105 135
app 1 10 20 29 39 14 45 75 106 135

assumed that the number of time slots needed to serve a packet has a geometric
distribution {(1 − r)n−1r, n ≥ 1}. The case of deterministic services is included as
a special case (r = 1). In many telecommunication applications the service time
of a packet is deterministic and equals one time slot. A served packet leaves the
system at the end of the time slot in which the service is completed. The numbers of
packets arriving in the system during consecutive time slots are independent non-
negative random variables with the common probability distribution {an, n ≥ 0}.
It is assumed that the packets arrive individually during the time slots and that
an arriving packet is rejected when it finds the buffer full upon arrival. It is no
restriction to use the convention of individual arrivals provided that the partial
rejection strategy applies when arrivals actually occur in batches. The load factor
ρ is defined as

ρ = λµ

c
,

where λ = ∑∞
n=1 nan is the arrival rate of new packets and µ = 1/r is the mean

service time of a packet. Let

Prej = the long-run fraction of packets that are rejected.

Under the assumption of ρ < 1 an approximation to Prej can be given in terms
of the state probabilities in the corresponding infinite-buffer model. Assuming that
ρ < 1, define for the infinite-buffer model the probability u

(∞)
j by

u
(∞)
j = the long-run fraction of time slots at whose beginnings there are

j packets in the system

for j = 0, 1, . . . . By the assumption of geometrically distributed service times, the
process describing the number of packets present at the beginning of a time slot is
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a discrete-time Markov chain. This Markov chain was analysed in Example 3.4.1
for the particular case of deterministic services. Letting

U(z) =
∞∑

j=0

u
(∞)
j zj , |z| ≤ 1,

a minor modification of the Markov-chain analysis in Example 3.4.1 yields

U(z) =
A(z)

c−1∑
k=0

u
(∞)
k [zc(r + (1 − r)z)k − zk(r + (1 − r)z)c]

zc − (r + (1 − r)z)cA(z)
, (9.8.15)

where A(z) = ∑∞
n=0 anz

n. This expression is well suited for numerical purposes.
First the c unknowns u

(∞)
0 , . . . , u

(∞)
c−1 are determined by computing the complex

roots of the denominator of (9.8.15); see Appendix G. Next the discrete FFT method
can be applied to obtain the numerical values of the state probabilities u

(∞)
j . In

order to obtain the approximation to Prej in the finite-buffer model, we need the
tail probability

∑∞
j=N+c π

(∞)
j for the infinite-buffer model. In the infinite-buffer

model the probability π
(∞)
j is defined as

π
(∞)
j = the long-run fraction of packets who find j other packets

present upon arrival.

By the same arguments as used to obtain (9.8.10), we find

π
(∞)
j = 1

λ

j∑
k=0

u
(∞)
k

∞∑
s=j−k+1

as, j = 0, 1, . . . . (9.8.16)

The proposed approximation to Prej in the finite-buffer model is

Prej ≈
(1 − ρ)

∞∑
j=N+c

π
(∞)
j

1 − ρ

∞∑
j=N+c

π
(∞)
j

. (9.8.17)

It has been shown in Gouweleeuw and Tijms (1998) that for the single-server
case this approximation is asymptotically exact for large N (more precisely, the
approximation (9.8.17) is exact for the single-server case when the probability of
more than N arrivals during one time slot equals zero). In general it turns out
that (9.8.17) provides an excellent approximation to the rejection probability. To
illustrate this, Table 9.8.5 gives some numerical results for the case of determin-
istic service times. The number of servers is c = 1 and c = 2, while the Poisson
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Table 9.8.5 Numerical results for the discrete-time queue

c = 1 c = 2

N Poisson Geometric N Poisson Geometric

1 exa 3.406×10−1 4.737×10−1 2 exa 2.379×10−1 4.133×10−1

app 3.024×10−1 4.119×10−1 app 1.879×10−1 3.481×10−1

5 exa 5.505×10−2 1.260×10−1 5 exa 6.595×10−2 1.970×10−1

app 5.504×10−2 1.254×10−1 app 6.044×10−2 1.859×10−1

10 exa 1.481×10−2 5.081×10−2 10 exa 1.693×10−2 9.054×10−2

app 1.481×10−2 5.081×10−2 app 1.592×10−2 8.849×10−2

50 exa 3.294×10−6 5.178×10−4 50 exa 3.702×10−6 3.036×10−3

app 3.294×10−6 5.178×10−4 app 3.511×10−6 3.001×10−3

100 exa 1.046×10−10 2.656×10−6 100 exa 6.626×10−13 1.476×10−5

app 1.046×10−10 2.656×10−6 app 6.283×10−13 1.460×10−5

distribution and the geometric distribution are considered for the distribution {an}
of the number of arrivals during one time slot. In all examples we take the load
factor ρ = 0.9.

To conclude this section, it is noted that the approximation to Prej can be
extended to discrete-time queueing systems with correlated input. In many applica-
tions the input is not renewal but correlated. The switched-batch Bernoulli process
is often used for modelling correlated input processes. In this model there is an
underlying phase process that is alternately in the states 1 and 2, where the sojourn
times in the successive states are independent random variables that have a discrete
geometric distribution. The mean of the geometric sojourn time and the distribution
of the number of arrivals in a time slot depend on the state of the phase process.
Exercise 9.16 is to work out the approximation to Prej in this useful model with
correlated input.

EXERCISES

9.1 Consider the M/G/1 queue with exceptional first service. This model differs from the
standard M/G/1 queue only in the service times of the customers reactivating the server
after an idle period. Those customers have special service times with distribution function
B0(t), while the other customers have ordinary service times with distribution function B(t).
Use the regenerative approach to verify that the state probabilities can be computed from the
recursion scheme (9.2.1) in which λp0aj−1 is replaced by λp0aj−1, where an is obtained
by replacing B(t) by B0(t) in the integral representation for an. Also, argue that p0 satisfies
1−p0 = λ[p0µ0 + (1−p0)µ1], where µ1 and µ0 denote the means of the ordinary service
times and the special service times.

9.2 Consider the M/G/1 queue with server vacations. In this variant of the M/G/1 queue
a server vacation begins when the server becomes idle. During a server vacation the server
performs other work and is not available for providing service. The length V of a server
vacation has a general probability distribution function V (x) with density v(x). If upon return
from a vacation the server finds the system empty, a new vacation period begins, otherwise
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the server starts servicing. Denote by p0j (p1j ) the time-average probability that j customers
are present and the server is on vacation (available for service). Use the regenerative approach
to verify the recursion scheme:

p0j = 1 − ρ

E(V )

∫ ∞

0
e−λt (λt)j

j !
{1 − V (t)} dt, j ≥ 0,

p1j = 1 − ρ

E(V )

j∑
k=1

νkaj−k + λ

j∑
k=1

(p0k + p1k)aj−k, j ≥ 1,

where an is given in Theorem 9.2.1 and νk is the probability of k arrivals during a single
vacation period. (Hint : take as cycle the time elapsed between two consecutive epochs at
which either the server becomes idle or finds an empty system upon return from vacation.)

9.3 Consider an M/G/1 queueing system in which the service time of a customer depends on
the queue size at the moment the customer enters service. The service time has a probability
distribution function B1(x) when R or fewer customers are present at the moment the
customer enters service; otherwise, the service time has probability distribution function
B2(x). Denote by p1j (p2j ) the time-average probability that j customers are in the system
and service according to B1(B2) is provided. Use the regenerative approach to verify the
recursion scheme

p1j = λp0a
(1)
j−1 + λ

min(j,R)∑
k=1

p1ka
(1)
j−k

, j = 1, 2, . . . .

p2j = λ

j∑
k=R+1

(p1k + p2k)a
(2)
j−k

, j > R,

where a
(i)
n is the same as the constant an in Theorem 9.2.1 except that B(t) is replaced by

Bi(t), i = 1, 2. Also, argue that 1 − p0 = λ{µ1
∑R

j=0 p1j + µ2(1 −∑R
j=0 p1j )}, where µi

is the mean of the distribution function Bi . (Hint : note that the long-run fraction of service
completions at which j customers are left behind equals the long-run fraction of customers
finding j other customers present upon arrival.)

9.4 Consider the M/G/1 retrial queue from Exercise 2.33 again. Let p0j (p1j ) denote the
long-run fraction of time that the server is idle (busy) and j customers are in orbit for
j = 0, 1, . . . .

(a) Use the regenerative aproach to establish the recursions

jνp0j = λp1,j−1, j = 1, 2, . . . ,

p1j = λaj

1 − λa0
p00 + 1

1 − λa0

j∑
k=1

(
λaj−k+1 + λ2

kν
aj−k

)
p1,k−1, j = 1, 2, . . . ,

where ak = ∫∞
0 e−λt (λt)k(1/k!){1−B(t)} dt with B(t) denoting the probability distribution

function of the service time of a customer. (Hint : let T0j (T1j ) denote the amount of time
during one cycle that the server is idle (busy) and j customers are in orbit and let N0j
denote the number of service completions in one cycle at which j customers are left behind
in orbit. Argue that λE(T1,j−1) = E(N0j ) for j ≥ 0, λE(T1,j−1) = jνE(T0j ) for j ≥ 1

and E(T1j ) = ∑j+1
k=0 E(N0k)Akj for j ≥ 0, where Akj is defined as the expected amount
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of time that j customers are in orbit during a given service time when k customers were
left behind in orbit at the completion of the previous service time.)

(b) Use generating functions to verify that

p00 = (1 − ρ) exp

(
−λ2

ν

∫ 1

0

α(z)

1 − λα(z)
dz

)
,

where α(z) = ∫∞
0 e−λt (1−z){1 − B(t)} dt .

(c) Instead of the M/G/1 queue with a linear retrial rate, consider the M/G/1 queue
with a constant retrial rate. That is, retrials occur according to a Poisson process with rate
ν when the orbit is not empty. Modify the above results. This problem is based on De Kok
(1984).

9.5 Consider the M/G/1 queue with exponential first service from Exercise 9.1 again.
Assume that service is in order of arrival. Let Wq(x) denote the limiting distribution function
of the delay in queue of a customer.

(a) Verify that the generating function P(z) = ∑∞
j=0 pj zj is given by

P(z) = p0[1 − λ(α(z) − zα0(z))]

1 − λα(z)
,

where α(z) = ∫∞
0 e−λ(1−z)t {1 − B(t)} dt and α0(z) = ∫∞

0 e−λ(1−z)t {1 − B0(t)} dt .
(b) Verify that the relation (2.5.14) also applies to the M/G/1 queue with server vacations,

where E(zL
(∞)
q ) = p0 + 1

z [P(z) − p0]. Next prove that

∫ ∞

0
e−sx {1 − Wq(x)} dx = 1

s

[
1 − p0 − λp0(1 − b∗

0(s))

s − λ + λb∗(s)

]
,

where b∗
0(s) = ∫∞

0 e−sxb0(x) dx is the Laplace transform of the density of the exceptional
first service and b∗(s) = ∫∞

0 e−sxb(x) dx is the Laplace transform of the density of the
ordinary service.

9.6 Consider again the M/G/1 queue with server vacations from Exercise 9.2. Assuming
that service is in order of arrival, let Wq(x) denote the limiting distribution function of the
delay in queue of a customer.

(a) Letting P0(z) = ∑∞
j=0 p0j zj and P1(z) = ∑∞

j=1 p1j zj , verify from the recursion
scheme in Exercise 9.2 that

P0(z) = 1 − ρ

E(V )
ν(z) and P1(z) = zP0(z)

λα(z)

1 − λα(z)
,

where ν(z) = ∫∞
0 e−λ(1−z)t {1 − V (t)} dt and α(z) = ∫∞

0 e−λ(1−z)t {1 − B(t)} dt . Argue

that relation (2.5.14) also applies to the M/G/1 queue with server vacations where E(zL
(∞)
q )

is given by P0(z) + P1(z)/z.
(b) Verify that the Laplace transform of 1 − Wq(x) is given by∫ ∞

0
e−sx {1 − Wq(x)} dx = 1 − η∗(s)ξ∗(s)

s

where ξ∗(s) = (1 − ρ)s/[s − λ + λb∗(s)] and η∗(s) is the Laplace transform of the density
[1 − V (x)]/E(V ). Here b∗(s) is the Laplace transform of the service-time density, ξ∗(s)

corresponds to E(e−sD∞ ) in the standard M/G/1 queue without vacations and η∗(s) is the
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Laplace transform of the equilibrium excess density of the vacation time. Decomposition
results of this type are discussed more generally in Fuhrmann and Cooper (1985).

9.7 Consider the (R, S) inventory model with limited order sizes. In this model the inventory
position is reviewed every R periods. At each review the inventory position is ordered up
to the level S provided that the order size does not exceed the constant Q; otherwise, the
replenishment order is of size Q. It is assumed that Q > µR, where µR is the mean demand
between two reviews. The lead time of a replenishment order is negligible. The cumulative
demands between successive reviews are independent random variables. Demand in excess
of on-hand inventory is back ordered.

(a) Let the random variable ξk denote the cumulative demand between the kth and (k+1)th
review and let �i denote the difference between S, the order-up-to level, and the inventory
position just after the ith review. Verify the Lindley equation

�i = max(0,�i−1 + ξi−1 − Q).

(b) Use the results (9.5.5) and (9.5.17) for the D/G/1 queue to derive an explicit expres-
sion for the long-run fraction of demand that is back ordered when the demand variables ξk
have a Coxian-2 distribution.
9.8 A certain product is produced at a constant rate of r > 0. The product is temporarily
stored in a finite buffer with capacity K . The production is stopped when the buffer is full.
A stopped production is resumed as soon as the stock level falls below K by a customer
demand. Customers asking for the product arrive according to a Poisson process with rate
λ. The demand of each customer is for a constant amount of D. The customer is satisfied
with the amount in the buffer when the stock level is below D. It is assumed that λD < r .
One wishes to choose the buffer size K such that the long-run fraction of customers with
partially unsatisfied demand is below a prespecified level α with α small. Use results from
Section 9.4.1 to show that the required buffer K(α) is approximately given by

K(α) ≈ 1

δ
ln

(
γ δ

λα

)
,

where δ > 0 is the unique solution of eδD = 1 + rδ/λ and the constant γ is given by
γ = (1 − ρ)/(δD − (1 − ρ)) with ρ = λD/r .

9.9 A finite buffer storing a liquid material is emptied at a constant rate of r > 0. Customers
bringing in the liquid material arrive according to a Poisson process with rate λ. The buffer
has a finite capacity of K > 0. If a customer brings in an amount of work that is larger than
the remaining room in the buffer, the whole amount of work of the customer is rejected. The
amounts of work brought in by the customers are independent and identically distributed
positive random variables. This queueing model is known as the M/G/1 queue with bounded
sojourn time. Let πrej (K) be defined as the long-run fraction of customers who are rejected.

(a) For the case that the amount of work brought in by a customer is a constant D, argue
that πrej (K) equals the loss probability in the M/G/1 queue with impatient customers
from Section 9.4.2, where the service time equals D/r and the impatience time τ equals
(K − D)/r . In particular, conclude that

πrej (K) ∼ (1 − ρ)2eδD

δD − (1 − ρ)
e−δK as K → ∞

where ρ = λD/r < 1 and δ > 0 is the unique solution of eδD = 1 + rδ/λ. If the amount of
work brought in by a customer has an exponential distribution with mean α, then it follows
from results in Gavish and Schweitzer (1977) that

πrej (K) ∼ (1 − ρ)e−ρe−(1−ρ)K/α as K → ∞
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provided that ρ = λα/r is smaller than 1. It is an open problem whether the asymptotically
exponential expansion for πrej (K) holds when the amount of work brought in by a customer
has a general distribution with a non-heavy tail.

(b) Let K(α) be the smallest value of K for which πrej (K) ≤ α. Use the discretization
method from Example 5.5.2 to investigate the performance of the two-moment approxima-
tion K(α) ≈ (1 − c2

S
)Kdet (α) + c2

S
Kexp(α) for α small and 0 ≤ c2

S
≤ 2, where Kdet (α)

and Kexp(α) are determined by the asymptotic expansions in (a). Here c2
S

is the squared
coefficient of variation of the amount of work brought in by a customer. This problem is
based on De Kok and Tijms (1985).

9.10 Consider the M/G/c queue with service in order of arrival. Prove that relation (2.5.14)
remains valid. Derive from this relation that

E[L(∞)
q (L

(∞)
q − 1) · · · (L(∞)

q − k + 1)] = λkE(Dk∞), k = 1, 2, . . . .

9.11 Consider the M/G/c queue with service in order of arrival. Let V (x) denote the
conditional waiting-time distribution function of a delayed customer. That means V (x) =
[Wq(x) − Wq(0)]/Pdelay . Denote by v(x) the derivative of V (x) for x > 0.

(a) Use relation (2.5.14) to verify that

∞∑
j=0

pc+j zj = Pdelay

∫ ∞

0
e−λ(1−z)xv(x) dx.

(b) Let p
app
j

denote the approximation to pj from Theorem 9.6.1 and let vapp(x) be the
corresponding approximation to v(x). Use (9.6.21) and (9.6.23) to verify that the Laplace
transform of vapp (x) is given by

∫ ∞

0
e−st vapp(t) dt = (1 − ρ)α∗(s)

1 − ρβ∗(s)
,

where the Laplace transforms α∗(s) and β∗(s) are given by

α∗(s) = c

µ

∫ ∞

0
e−st {1 − Be(t)}c−1{1 − B(t)} dt, β∗(s) = c

µ

∫ ∞

0
e−st {1 − B(t)} dt.

Here Be(t) is the excess equilibrium distribution function of the service time.
(c) Verify by inversion of the Laplace transform of vapp(x) that

Vapp (x) = (1 − ρ){1 − (1 − Be(x))c} + λ

∫ x

0
Vapp (x − y){1 − B(cy)} dy, x ≥ 0.

Assuming that the service-time distribution is not heavy-tailed, use the same arguments as
in Section 8.4 to verify that

1 − Vapp (x) ∼ e−δx
∫∞

0 eδy [1 − ρBe(cy) − (1 − ρ){1 − (1 − Be(y))c}] dy

λ
∫∞

0 yeδy{1 − B(cy)} dy

as x → ∞, where δ > 0 is the solution to λ
∫∞

0 eδt {1 − B(ct)} dt = 1. This problem is
based on Van Hoorn and Tijms (1982).
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9.12 Use exact results from Section 9.5.3 to verify numerically that

P
app
delay = 1 − B(D)∫∞

D eδ(t−D)b(t) dt
and W

app
q =

∫∞
D (t − D)b(t) dt

B(D) − 1 + ∫∞
D eδ(t−D)b(t) dt

are excellent approximations to Pdelay and Wq in the D/G/1 queue. Here B(t) and b(t)

are the probability distribution function and the probability density of the service time. The
constant δ is the unique positive solution to e−δD

∫∞
0 eδyb(y) dy = 1. These approximations

for the D/G/1 queue are due to Fredericks (1982).

9.13 Consider the machine-repair model from Exercise 5.2. Assume now that the service time
S of a request has a general probability distribution function B(x). Extend the approximate
analysis of the M/G/c queue in Section 9.6.2 to the machine-repair model. Verify that the
resulting approximation to the limiting distribution {pj } of the number of service requests
in the system is given by

p
app
j

= (Nj )[νE(S)]jp
app
0 , 0 ≤ j ≤ c − 1

p
app
j

= (N − c + 1)ναcj p
app
c−1 +

j∑
k=c

(N − k)νβkj p
app
k

, c ≤ j ≤ N

with

αcj =
∫ ∞

0
{1 − Be(t)}c−1{1 − B(t)}φcj (t) dt, βkj =

∫ ∞

0
{1 − B(ct)}φkj (t) dt,

where Be(t) denotes the equilibrium excess distribution of B(t) and φkj (t) is given by

φkj (t) =
(
N−k
j−k

)
(1 − e−νt )j−ke−νt (N−j), t > 0 and k ≥ j ≥ c.

9.14 Consider the finite-capacity M/D/c/c + N queue with deterministic services. It is
assumed that the server utilization is less than 1. Let Wq(x) be the limiting distribution of
the delay in queue of an accepted customer. For k = 1, . . . , c, let

Uk(x) =
c∑

j=k

(
c

j

)( x

D

)j (
1 − x

D

)c−j
, 0 ≤ x ≤ D

be the probability distribution function of the kth order statistic of c independent random vari-
ables that are uniformly distributed on (0,D). An approximation to Wq(x) can be calculated
by the following algorithm:
Step 0. Use the results of Theorem 9.8.1 to compute approximations p

app
j

to the state
probabilities pj in the M/D/c/c + N queue.

Step 1. Approximate 1 − Wq(x) by
∑N+c−1

j=c
[papp

j
/(1 − p

app
N+c

)]Vj (x), where Vkc+r (x) is
given by 1 − Ur+1(x − kD) for k ≥ 0 and 0 ≤ r ≤ c − 1.

Use computer simulation to find out how well this approximation to Wq(x) performs.
Investigate the quality of the approximation to Wq(x) which results by approximating pj

through γp∞
j

for 0 ≤ j ≤ N + c − 1 in accordance with (9.8.3), where p
(∞)
j

is the state
probability in the M/D/c queue. Further, investigate how well the two-moment approxima-
tion (9.6.31) works for the conditional waiting-time percentiles in the M/G/c/c +N queue
(the computation of Wq(x) in the M/M/c/c + N queue is discussed in Exercise 5.1).

9.15 Consider a single-server queueing system in which the arrival process is the result of
the superposition of m homogeneous on-off sources. Each source is alternately on and off,
where the on-time has an exponential distribution with mean 1/νon and the off-time has
an exponential distribution with mean 1/νoff . The sources act independently of each other.
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Whenever a source is on, it generates service requests according to a Poisson process with
rate δ. There is a buffer of capacity N for temporarily storing service requests which find the
server busy upon arrival; an arriving service request finding the buffer full is rejected. The
service time of a request is distributed as a mixture of Erlangian distributions with the same
scale parameters. This queueing system is a special case of the so-called MAP/G/1/N + 1
queue with a Markov modulated Poisson arrival process.

Develop a computer program to test the performance of formula (9.8.8) as an approximate
formula for the rejection probabilities Prej . Use the results from Exercise 5.27 to compute

the customer-average probabilities π
(∞)
j

in the infinite-buffer model. Check your computer
program with the results that are given below for the case of E2 services, m = 25 sources,
νon = νoff = 0.1 and the two values 0.2 and 0.8 for the system load ρ.

ρ = 0.2 exa app ρ = 0.8 exa app

N = 0 1.708 × 10−1 1.723 × 10−1 N = 0 4.496 × 10−1 4.616 × 10−1

N = 5 1.766 × 10−5 1.817 × 10−5 N = 5 5.455 × 10−2 5.825 × 10−2

N = 10 1.972 × 10−9 2.042 × 10−9 N = 50 9.453 × 10−7 1.002 × 10−6

N = 15 2.437 × 10−13 2.530 × 10−13 N = 100 6.139 × 10−12 6.511 × 10−12

9.16 Consider the discrete-time SBBP/D/c/c + N queueing system. In this model there is
an underlying phase process that is alternately in the states 1 and 2. The sojourn times in the
successive states are independent positive random variables that have a geometric distribution
with mean 1/ωi in state i for i = 1, 2. If the phase process is in state i at the beginning
of a time slot, then the number of packets arriving during that time slot has the discrete
probability distribution {a(i)

k
, k ≥ 0} for i = 1, 2. This phase process is called a switched-

batch Bernoulli process (SBBP). There is a buffer of capacity N to store incoming packets.
Any arriving packet finding the buffer full is rejected. The transmission of a packet can only
start at the beginning of a time slot. The transmission time of a packet is deterministic and
equals any time slot. There are c service channels. Letting αi = ∑∞

k=1 ka
(i)
k

for i = 1, 2, the
system load ρ is defined by ρ = λ/c with λ = (α1/ω1 + α2/ω2)/(1/ω1 + 1/ω2) denoting
the average arrival rate of packets. It is assumed that ρ < 1. For the infinite-buffer model,
define u

(∞)
n,i

as the long-run fraction of time slots at whose beginning n packets are present

and the phase process is in state i. Let U(i)(z) = ∑∞
n=0 u

(∞)
n,i

zn for i = 1, 2.
(a) Use discrete-time Markov chain analysis to verify that

U(1)(z) =

c−1∑
k=0

[A(1)(z){γ1zc − γA(2)(z)}u(∞)
k,1 + A(2)(z)ω2z

cu
(∞)
k,2 ] × (zc − zk)

z2c − [γ1A(1)(z) + γ2A(2)(z)]zc + γA(1)(z)A(2)(z)
,

where A(i)(z) = ∑∞
n=0 a

(i)
n zn and γi = 1 − ωi for i = 1, 2 and γ = 1 − ω1 − ω2. The

expression for U(2)(z) is obtained by interchanging the roles of 1 and 2 in the expression
for U(1)(z). Argue that

2∑
i=1

c−1∑
n=1

nu
(∞)
n,i

+ c


1 −

2∑
i=1

c−1∑
n=0

u
(∞)
n,i


 = cρ

and argue that an additional 2c−1 relations between the 2c unknowns u
(∞)
n,i

for 0 ≤ n ≤ c−1

and i = 1, 2 are obtained by noting that U(1)(z) and U(2)(z) are analytic for |z| ≤ 1.
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(b) For the infinite-buffer model, let π
(∞)
j

be the long-run fraction of packets that find j

other packets in the system upon arrival. Argue that

π
(∞)
j

= 1

λ

j∑
k=0

2∑
i=1

u
(∞)
k,i

∞∑
s=j−k+1

a
(i)
s , j = 0, 1, . . . .

(c) Develop a computer program for the discrete-time SBBP/D/c/c + N queue. Check
your computer program with the results below for the parameter values c = 3, ω1 =
0.4, ω2 = 0.2, α1 = 1.4 and α2 = 2.0. In case 1 a Poisson distribution is taken for each of
the distributions {a(1)

n } and {a(2)
n }; in case 2 a geometric distribution is taken for {a(1)

n } and
a Poisson distribution for {a(2)

n }.
N = 5 N = 10 N = 20 N = 30

Case 1 exa 1.683 × 10−2 2.194 × 10−4 3.908 × 10−8 6.965 × 10−12

app 1.085 × 10−2 1.689 × 10−4 3.024 × 10−8 5.390 × 10−12

Case 2 exa 3.781 × 10−2 2.927 × 10−3 3.101 × 10−5 3.413 × 10−7

app 2.603 × 10−2 2.245 × 10−3 2.506 × 10−5 2.816 × 10−7

9.17 Consider the D/M/c/c+N queue and the M/M/c/c+N queue with the same average
arrival rate and the same mean service time. For these two models, denote by Ndet (α) and
Nexp (α) the smallest value of N for which the rejection probability is below a prespecified
level α. Verify experimentally that Ndet (α) ≈ 1

2Nexp(α).

9.18 Consider the finite-capacity variants of the M/G/1 queue with exceptional first ser-
vice from Exercise 9.1, the M/G/1 queue with server vacations from Exercise 9.2 and the
M/G/1 queue with variable service rate from Exercise 9.3. Verify that the structural form
(9.8.4) for Prej remains valid for these queueing models. Do the same for the finite-capacity
variant of the M/M/c queue with impatient customers from Exercise 5.3.

9.19 Consider the batch-arrival MX/G/c/N + c queue with complete rejection of a batch
when an arriving batch of customers does not find enough room in the buffer for the whole
batch. Let Prej denote the long-run fraction of customers who are rejected.

(a) Argue that

Prej = 1

β

N+c∑
k=0

pk

∑
s>N+c−k

sβs .

(b) Using the approximation assumption pj ≈ γp
(∞)
j

for j = 0, 1, . . . , N+c−1, modify
the proof of part (b) of Theorem 9.8.2 to obtain the approximation (9.8.13) to Prej .

9.20 Consider the batch-arrival MX/G/c/c+N queue with complete rejection. Suppose that
the batch-size distribution {βj } has the property that

∑Q
s=1 βs = 1 for some 1 ≤ Q ≤ N +1.

Prove that pj = γp
(∞)
j

for 0 ≤ j ≤ N + c − Q for both the MX/G/1/N + 1 queue and

the MX/M/c/c + N queue. (Hint: define T , Tj , T (∞), T
(∞)
j

as in the proof of part

(a) of Theorem 9.8.2 and let Nk and N
(∞)
k

denote the number of service completions in

one cycle at which k customers are left behind. Argue first that E(Nk) = E(N
(∞)
k

) for

0 ≤ k ≤ N + c − Q. Next conclude that E(Tj ) = E(T
(∞)
j

) for 0 ≤ j ≤ N + c − Q, since
E(Nj ) = λE[Tj + . . . + Tj+1−Q] for 0 ≤ j ≤ N + c − Q.)
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9.21 Consider the batch-arrival MX/G/c/c + N queue with complete rejection. Suppose
that the batch size is a constant Q with 1 ≤ Q ≤ N + 1. Prove that the approximation
(9.8.13) to Prej is exact for both the MX/G/1/N + 1 queue and the MX/M/c/c + N
queue.

BIBLIOGRAPHIC NOTES

The queueing theory literature is voluminous. A good account of the basic theory is
provided by the books of Cooper (1991), Kleinrock (1975,1976) and Takács (1962).
A book emphasizing the analysis of the transient behaviour of queues is Newell
(1971). A thorough treatment of most of the background material in Section 9.1
can be found in the book of Wolff (1989). The regenerative approach used in
Sections 9.2 and 9.3 to analyse single-server queues with Poisson input has its
origin in the paper of Hordijk and Tijms (1976). This versatile approach was used
in Tijms et al. (1981) and Tijms and Van Hoorn (1982) to give an approximate
analysis of multi-server queues with state-dependent Poisson input; see also Van
Hoorn (1984). For finite-capacity queues of the M/G/1 type the structural form
for the rejection probability was noticed in the papers of Keilson and Servi (1989)
and Tijms and Van Ommeren (1989). The papers of Sakasegawa et al. (1993)
and Tijms (1992) provide theoretical and empirical support to this formula as an
approximation to a broad class of queueing systems; see also Gouweleeuw (1996).
The material on two-moment approximations for the minimal buffer size is based
on De Kok and Tijms (1985) and Gouweleeuw and Tijms (1996).
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Takács, L. (1962) Introduction to the Theory of Queues . Oxford University Press, Oxford.
Takahashi, Y. (1981) Asymptotic exponentiality of the tail of the waiting time distribution

in a Ph/Ph/c queue. Adv. Appl. Prob., 13, 619–630.
Takahashi, Y. and Takami, Y. (1976) A numerical method for the steady-state probabilities of

a GI/G/c queueing system in a general class. J. Operat. Res. Soc. Japan, 19, 147–157.
Tijms, H.C. (1992) Heuristics for finite-buffer queues. Prob. Engng Inform. Sci., 6, 277–285.
Tijms, H.C. and Van Hoorn, M.H. (1982) Computational methods for single-server and

multi-server queues with Markovian input and general service times. In Applied Prob-
ability Computer Sciences, The Interface, edited by R.L. Disney and T.J. Ott, Vol. II,
pp. 71–102. Birkhäuser, Boston.
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Appendices

APPENDIX A. USEFUL TOOLS IN APPLIED PROBABILITY

This appendix summarizes some basic tools that can be found in most introductory
texts on probability.

Law of total expectation

In many applied probability problems it is only possible to compute certain prob-
abilities and expectations by using appropriate conditioning arguments. Since con-
ditional expectations are based on additional information, they are often easier to
compute than unconditional expectations. The law of total expectation states that,
for any two random variables X and Y defined on the same probability space,

E(X) =
∑
y

E(X | Y = y)P {Y = y} (A.1)

when Y has a discrete distribution and

E(X) =
∫ ∞

−∞
E(X | Y = y)f (y) dy (A.2)

when Y has a continuous distribution with probability density f (y). It is assumed
that the relevant expectations exist. The law of total probability is a special case
of the law of total expectation:

P {X ≤ x} =
∑
y

P {X ≤ x | Y = y}P {Y = y} (A.3)

when Y has a discrete distribution and

P {X ≤ x} =
∫ ∞

−∞
P {X ≤ x | Y = y}f (y) dy (A.4)

A First Course in Stochastic Models H.C. Tijms
c© 2003 John Wiley & Sons, Ltd. ISBNs: 0-471-49880-7 (HB); 0-471-49881-5 (PB)
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when Y has a continuous distribution with probability density f (y). The law of
total expectation and the law of total probability will be frequently used in this
book. We illustrate these laws by two examples.

Example A.1 Service with interruptions

A single unloader is available to unload ships. The unloading time U of a ship
has a given probability density f (t) with finite mean γ . The unloading process,
however, is subject to interruptions. Those interruptions have exogenous causes and
occur according to a Poisson process with rate λ. The durations of the interruptions
are independent and identically distributed random variables with mean δ. After
an interruption the unloading of the ship is resumed at the point it was stopped
by the interruption. What is the expected amount of time needed to complete the
unloading of the ship?

Letting the completion time C denote the total amount of time needed to complete
the unloading of the ship, the answer to the above question is

E(C) = γ (1 + λδ). (A.5)

To verify this, let N denote the number of interruptions during the unloading of
the ship. By conditioning upon the unloading time U of the ship, it follows from
the law of total probability that

P {N = n} =
∫ ∞

0
P {N = n | U = t}f (t) dt

=
∫ ∞

0
e−λt (λt)n

n!
f (t) dt , n = 0, 1, . . . .

By conditioning on N and letting Ri denote the duration of the ith interruption, it
follows from the law of total expectation that

E(C) =
∞∑

n=0

E(C | N = n)P {N = n}

=
∞∑

n=0

E(U + R1 + · · · + Rn | N = n)P {N = n}

=
∞∑

n=0

E(U | N = n)P {N = n} +
∞∑

n=1

E(R1 + · · · + Rn)P {N = n}

and so

E(C) = E(U) +
∞∑

n=1

nE(R1)P {N = n} = E(U) + E(R1)E(N).

Since E(N | U = t) = λt , we have E(N) = ∫∞
0 λtf (t) dt = λγ and thus (A.5)

follows.
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Example A.2 The double-up strategy in roulette

In European roulette the wheel is divided in 37 sections, numbered as 1, . . . , 36
and 0. Of the sections numbered from 1 to 36, 18 are red and 18 are black. The
section marked 0 is assumed to be winning for the house. You have decided to bet
on 10 spins of the wheel and to use the double-up strategy. You bet each time on
red. Your initial bet is ¤1. You double your bet each time red does not come up.
If red appears, you start again with a bet of ¤1. You get paid twice your bet when
red comes up and you lose your bet otherwise. What is the expected value of your
loss after a playing round of 10 bets and what is the expected value of the total
amount you bet during the playing round?

To answer these questions, note that the betting process starts anew each time red
comes up except that fewer bets are left. Instead of considering 10 bets, consider
a playing round of n bets under the double-up strategy and define the random
variables Ln and An by

Ln = the player’s loss after a playing round of n bets,

An = the total amount the player bets in a playing round of n bets.

To compute the expected values of Ln and An, it is natural to condition on the
random variable Y denoting the number of spins of the wheel until red comes up
for the first time. Obviously, Y is geometrically distributed with parameter p = 18

37 .
By conditioning on Y and noting that the player’s profit is ¤1 each time red comes
up, it follows that

E (Ln) = [−1 + E (Ln−1)
]
p + [−1 + E (Ln−2)

]
(1 − p) p + · · ·

+ [−1 + E (L1)] (1 − p)n−2 p +
[
1 + 2 + · · · + 2n−1

]
(1 − p)n ,

E (An) = [1 + E (An−1)
]
p + [1 + 2 + E (An−2)

]
(1 − p) p + · · · + [1 + 2

+ · · · + 2n−2+ E (A1)] (1 − p)n−2p +
[
1 + 2 +· · ·+ 2n−1

]
(1 −p)n−1 .

Since 1 + 2 + · · · + 2k−1 = 2k − 1, we thus have the recursions

E (Ln) =
n−1∑
k=0

[−1 + E (Ln−k−1)
]
(1 − p)k p + (2n − 1

)
(1 − p)n ,

E (An) =
n−2∑
k=0

[
2k+1 − 1 + E (An−k−1)

]
(1 − p)k p + (2n − 1

)
(1 − p)n−1

for n ≥ 1 with the boundary condition E (L0) = E(A0) = 0. These relations
enable us to compute recursively the values of E(Ln) and E(An). In particular,
E(L10) = 0.9421 and E(A10) = 34.858. To conclude, we remark that explicit
expressions for E(Ln) and E(An) can be derived from the recursive relations by
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using the generating-function technique to be discussed in Appendix C. Omitting
the details, we state

E(Ln) = −pn + 1 − p

1 − 2p

[
(2 (1 − p))n − 1

]
, n ≥ 1,

E(An) = 1

1 − 2p
E(Ln), n ≥ 1.

Indeed E(Ln)/E(An) = 1 − 2p = 1
37 in accordance with the fact that the house

percentage in European roulette is 2.702%.

Convolution formula

Let X1 and X2 be two independent, non-negative random variables with respective
probability distribution functions F1(x) and F2(x). For ease assume that F2(x)

has a probability density f2(x). Then, by a direct application of the law of total
probability, we have the convolution formula

P {X1 + X2 ≤ x} =
∫ x

0
F1(x − y)f2(y) dy, x ≥ 0.

Moments of a non-negative random variable

Let N be a non-negative, integer-valued random variable. A useful formula is

E(N) =
∞∑

k=0

P {N > k}. (A.6)

To verify this result, write
∑∞

k=0 P {N > k} = ∑∞
k=0
∑∞

j=k+1 P {N = j} and
interchange the order of summation. The relation (A.6) can be generalized. For
any non-negative random variable X with probability distribution function F(x),

E(X) =
∫ ∞

0
[1 − F(x)] dx. (A.7)

A probabilistic proof of (A.7) is as follows. Imagine that X is the lifetime of a
machine. Define the indicator variable I (t) by I (t) = 1 if the machine is still
working at time t and by I (t) = 0 otherwise. Then, by E[I (t)] = P {I (t) = 1}
and P {I (t) = 1} = P {X > t}, it follows that

E(X) = E

[∫ ∞

0
I (t) dt

]
=
∫ ∞

0
E [I (t)] dt =

∫ ∞

0
P {X > t} dt,

which proves (A.7). The interchange of the order of expectation and integration is
justified by the non-negativity of I (t). The result (A.7) can be extended to

E(Xk) = k

∫ ∞

0
xk−1 [1 − F(x)] dx, k = 1, 2, . . . . (A.8)
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To see this, note that (A.7) implies

E(Xk) =
∫ ∞

0
P {Xk > t} dt =

∫ ∞

0
P {X > t1/k} dt

and next use the change of variable t = xk .

Mean and variance of a random sum of random variables

Let X1, X2, . . . be a sequence of independent and identically distributed random
variables whose first two moments are finite. Also, let N be a non-negative and
integer-valued random variable having finite first two moments. If the random
variable N is independent of the random variables X1, X2, . . . , then

E

(
N∑

k=1

Xk

)
= E(N)E(X1), (A.9)

var

(
N∑

k=1

Xk

)
= E(N)var(X1) + var(N)E2(X1), (A.10)

where E2(X1) is the shorthand notation for [E(X1)]2. The proof uses the law of
total expectation. By conditioning on N , we find

E

(
N∑

k=1

Xk

)
=

∞∑
n=0

E

(
N∑

k=1

Xk | N = n

)
P {N = n}

=
∞∑

n=0

E

(
n∑

k=1

Xk

)
P {N = n} =

∞∑
n=0

nE(X1)P {N = n},

which verifies (A.9). Note that the second equality uses that the random variables
X1, . . . , Xn are independent of the event {N = n}. Similarly,

E



(

N∑
k=1

Xk

)2 =
∞∑

n=0

E



(

N∑
k=1

Xk

)2

| N = n


P {N = n}

=
∞∑

n=0

[nE(X2
1) + n(n − 1)E2(X1)]P {N = n}

= E(N)E(X2
1) + E[N(N − 1)]E2(X1). (A.11)

Using σ 2(S) = E(S2) − E2(S), we obtain (A.10) from (A.9) and (A.11).
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Wald’s equation

The result (A.9) remains valid when the assumption that the random variable N is
independent of the sequence X1, X2, . . . is somewhat weakened. Suppose that the
following conditions are satisfied:

(i) X1, X2, . . . is a sequence of independent and identically distributed random
variables with finite mean,

(ii) N is a non-negative, integer-valued random variable with E(N) < ∞,

(iii) the event {N = n} is independent of Xn+1, Xn+2, . . . for each n ≥ 1.

Then it holds that

E

(
N∑

k=1

Xk

)
= E(X1)E(N). (A.12)

This equation is known as Wald’s equation. It is a very useful result in applied
probability. To prove (A.12), let us first assume that the Xi are non-negative. The
following trick is used. For n = 1, 2, . . . , define the random variable Ik by

Ik =
{

1 if N ≥ k,

0 if N < k.

Then
∑N

k=1 Xk =∑∞
k=1 XkIk and so

E

(
N∑

k=1

Xk

)
= E

( ∞∑
k=1

XkIk

)
=

∞∑
k=1

E(XkIk),

where the interchange of the order of expectation and summation is justified by the
non-negativity of the random variables involved. The random variable Ik can take
on only the two values 0 and 1. The outcome of Ik is completely determined by the
event {N ≤ k−1}. This event depends on X1, . . . , Xk−1, but not on Xk, Xk+1, . . . .
This implies that Ik is independent of Xk . Consequently, E(XkIk) = E(Xk)E(Ik)

for all k ≥ 1. Since E(Ik) = P {Ik = 1} and P {Ik = 1} = P {N ≥ k}, we obtain
(A.9) from (A.6) and

E

(
N∑

k=1

Xk

)
=

∞∑
k=1

E(X1)P {N ≥ k}.

For the general case, treat separately the positive and negative parts of the Xi .
The assumption E(N) < ∞ is essential in Wald’s equation. To illustrate this,

consider the symmetric random walk {Sn, n ≥ 0} with S0 = 0 and Sn = X1 +
· · · + Xn, where X1, X2, . . . is a sequence of independent random variables with
P {Xi = 1} = P {Xi = −1} = 1

2 for all i. Define the random variable N as
N = min{n ≥ 1 | Sn = −1}, that is, N is the epoch of the first visit of the random
walk to the level −1. Then E(X1 + · · · + XN) = −1. Noting that E(Xi) = 0, we
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have, however, that E(X1 + · · · + XN) is not equal to E(N)E(X1). The reason is
that E(N) = ∞.

Example A.3 A reliability problem

To illustrate Wald’s equation, consider the following reliability problem. An elec-
tronic system has a built-in redundancy in the form of a standby unit to support an
operating unit. The two units are identical. When the operating unit fails, its tasks
are immediately taken over by the standby unit if available. A failed unit immedi-
ately enters repair. The system goes down when the operating unit fails while the
other unit is still in repair. The lifetime L of an operating unit is assumed to have
a continuous probability distribution F(x) with finite mean µ. The repair time of
a failed unit is a constant α > 0. The successive lifetimes of the operating unit are
independent of each other. A repaired unit is as good as new. Both units are in
perfect condition at time 0. What is the expected time until the system goes down
for the first time?

To solve this problem, denote by L0 the lifetime of the operating unit installed
at time 0 and denote by L1, L2, . . . the lifetimes of the subsequent operating units.
Then the time until the first system failure is distributed as L0 + L1 + · · · + LN ,
where the random variable N denotes the first n ≥ 1 for which Ln is less than
the nth repair time. The random variables L1, . . . , Ln and the event {N = n} are
mutually dependent, but the event {N = n} is independent of Ln+1, Ln+2, . . . for
each n ≥ 1. Hence we can apply Wald’s equation. This gives

E(time until the first system failure) = E(L0) + E(L1)E(N)

= µ [1 + E(N)] .

To find E(N), note that N has a geometric distribution with parameter p = P {L <

α}. Hence E(N) = 1/F (α) and so

E(time until the first system failure) = µ

[
1 + 1

F(α)

]
.

In practical applications the mean lifetime will be much larger than the mean
repair time. In other words, the occurrence of a system failure is a rare event. For
those situations there is a deep but extremely useful result stating that the time
until the first system failure is approximately exponentially distributed ; see also
Example 2.2.4.

Coefficient of variation

Let X be a positive random variable with finite mean E(X) and finite standard
deviation σ(X). The coefficient of variation of X is defined by

cX = σ(X)

E(X)
.
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Since this quantity is dimensionless, it is a very useful measure for the variability of
the random variable X. Usually one works with the squared coefficient of variation
c2
X rather than with cX. For example, the deterministic distribution has c2

X = 0,
the exponential distribution has c2

X = 1 and the Erlang distribution with shape
parameter k has the intermediate value c2

X = 1/k.

Failure rate function

Let X be a positive random variable with a probability distribution function F(t)

and a continuous probability density f (t). For example, the random variable X

represents the lifetime of some item. The failure, or hazard, rate function of the
random variable X is defined by

r(t) = f (t)

1 − F(t)

for those values of t with F(t) < 1. The failure rate has a useful probabilistic
interpretation. Think of the random variable X as the lifetime of an item. The
probability that an item of age t will fail in the next �t time units is given by

P {t < X ≤ t + �t | X > t} = P {t < X ≤ t + �t}
P {X > t}

= f (t)�t

1 − F(t)
+ o(�t) as �t → 0.

Hence r(t)�t gives approximately the probability that an item of age t will fail in
the next �t time units when �t is small. Hence the name ‘failure rate’. Noting that
−r(t) is the derivative of the function ln[1 − F(t)], it follows that the failure rate
function r(t) determines uniquely the corresponding lifetime distribution function
F(t) by

1 − F(t) = exp

{
−
∫ t

0
r(x) dx

}
, t ≥ 0.

As a consequence, the case of a constant failure rate r(x) = λ for all x corresponds
to the exponential distribution function F(x) = 1−e−λx , x ≥ 0. In other words, an
item in use is as good as new when its lifetime is exponentially distributed. Other
important cases are the case of an increasing failure rate (the older, the worse) and
the case of a decreasing failure rate (the older, the better). A random variable with
an increasing (decreasing) failure rate can be shown to have the property that its
coefficient of variation is smaller (larger) than 1. The failure rate is a concept that
enables us to discriminate between distributions on physical considerations.

Convergence theorems

To conclude this appendix, we state a number of basic convergence theorems that
will be used in this book. These theorems can be found in any textbook on real
analysis, e.g. Rudin (1964).
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Theorem A.1 Let anm, n, m = 0, 1, . . . be real numbers. If all the numbers anm

are non-negative or if
∑∞

n=0
∑∞

m=0 |anm| < ∞, then

∞∑
n=0

∞∑
m=0

anm =
∞∑

m=0

∞∑
n=0

anm.

This theorem is a special case of what is known as Fubini’s theorem in analysis.

Theorem A.2 Let {pm, m = 0, 1, . . . } be a sequence of non-negative numbers.
Suppose that the numbers anm, n, m = 0, 1, . . . are such that

lim
n→∞ anm = am

exists for all m = 0, 1, . . . .

(a) If all numbers anm are non-negative, then

lim
n→∞ inf

∞∑
n=0

anmpm ≥
∞∑

m=0

ampm.

(b) If there is a finite constant M > 0 such that |anm| ≤ M for all n, m and if∑∞
m=0 pm < ∞, then

lim
n→∞

∞∑
m=0

anmpm =
∞∑

m=0

ampm.

The first part of the theorem is a special case of Fatou’s lemma and the second
part of the theorem is a special case of the bounded convergence theorem.

The above theorems can be stated in greater generality. For example, a more
general version of the bounded convergence theorem is as follows. Let {Xn} be a
sequence of random variables that converge with probability 1 to a random variable
X. Then

lim
n→∞ E(Xn) = E(X)

provided that |Xn| ≤ Y , n ≥ 1, for some random variable Y with E(Y) < ∞.
Recall that convergence with probability 1 means that

P {ω ∈ �: lim
n→∞ Xn(ω) = X(ω)} = 1,

where � is the common sample space of the random variables Xn, n ≥ 1, and the
random variable X. Often one uses the term ‘almost sure convergence’ instead of
the term ‘convergence with probability 1’.

Finally, we mention the important concept of the Cesaro limit. A sequence
{an, n ≥ 1} of real numbers is said to have a Cesaro limit if limn→∞(1/n)

∑n
k=1 ak

exists. A sequence {an} may have a Cesaro limit while the ordinary limit does
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not exist. For example, suppose that an = 1 for n even and an = 0 for n odd.
Then limn→∞an does not exist, while limn→∞(1/n)

∑n
k=1 ak = 1/2. However, if

the ordinary limit exists then the Cesaro limit exists as well and is equal to the
ordinary limit.

APPENDIX B. USEFUL PROBABILITY DISTRIBUTIONS

This appendix discusses a number of important distributions which have been
found useful for describing random variables in inventory, reliability and queueing
applications. In particular, attention is paid to the practical problem of fitting a
tractable distribution to the first two moments of a positive random variable.

The exponential distribution

A positive random variable X is said to be exponentially distributed with parameter
λ > 0 when it has the probability density

f (t) = λe−λt , t ≥ 0.

The corresponding probability distribution function F(t) is given by

F(t) = 1 − e−λt , t ≥ 0.

Its mean and squared coefficient of variation are given by

E(X) = 1

λ
and c2

X = 1.

The exponential distribution is of extreme importance in applied probability. The
main reason for this is its memoryless property and its intimate relation with the
Poisson process. The memoryless property states that

P {X > t + x | X > t} = e−λx, x ≥ 0,

independently of t . In other words, imagining that X represents the lifetime of
an item, the residual life of the item has the same exponential distribution as the
original lifetime, regardless of how long the item has already been in use. The
memoryless property is in agreement with the constant failure rate property of the
exponential distribution.

The following well-known results for the exponential distribution are very use-
ful. If X1 and X2 are two independent random variables that are exponentially
distributed with respective means 1/λ1 and 1/λ2, then, for any t ≥ 0,

P {min(X1, X2) ≤ t} = 1 − e−(λ1+λ2)t and P {X1 < X2} = λ1

λ1 + λ2
. (B.1)
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In other words, the minimum of the two exponentially distributed lifetimes X1 and
X2 is exponentially distributed with mean 1/(λ1 + λ2) and the probability that the
lifetime X1 expires earlier than the lifetime X2 is λ1/(λ1 + λ2).

Example B.1 A first-passage time problem

An electronic system has two crucial components, 1 and 2, that operate indepen-
dently of each other. The lifetime of component i has an exponential distribution
with mean 1/αi for i = 1, 2. If a component breaks down, it is replaced by a
new one. The time needed to replace component i by a new one is exponentially
distributed with mean 1/βi for i = 1, 2. The system continues to operate as long as
one of the components is functioning, but it fails when none of the two components
works. Both components are in perfect condition at time 0. What is the expected
time until the first system failure?

Let us say that the system is in state 1 (2) if only component 1 (2) is functioning
and it is in state 3 when both components are functioning. In view of the memory-
less property of the exponential distribution, we can define the random variable Ti

as the time until the first system failure when the current state of the system is state
i. We wish to compute E(T3). To do so, we derive a system of linear equations
in E(Ti) for i = 1, 2, 3. By conditioning on the next state and using the results in
(B.1), it follows that

E(T1) = 1

α1 + β2
+ β2

α1 + β2
E(T3), E(T2) = 1

α2 + β1
+ β1

α2 + β1
E(T3),

E(T3) = 1

α1 + α2
+ α2

α1 + α2
E(T1) + α1

α1 + α2
E(T2).

These equations are easily solved for E(T3).

The gamma distribution

A positive random variable X is said to be gamma (α, λ) distributed when it has
the probability density

f (t) = λαtα−1


(α)
e−λt , t ≥ 0,

where α > 0 is the shape parameter and λ > 0 is the scale parameter. The symbol

(α) denotes the complete gamma function which is defined by


(α) =
∫ ∞

0
e−t tα−1 dt, α > 0.

This function has the property that 
(α + 1) = α
(α) for α > 0. In particular,

(α) = (α − 1)! if α is a positive integer. The probability distribution function
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F(t) of a gamma (α, λ) distributed random variable X is given by

F(t) = 1


(α)

∫ λt

0
e−uuα−1 du, t ≥ 0.

The latter integral is known as the incomplete gamma function. The class of gamma
distributions is closed in the following sense. If X1 and X2 are two independent ran-
dom variables that are gamma (α1, λ) and gamma (α2, λ) distributed, then X1 +X2
has a gamma (α1 +α2, λ) distribution (an easy way to prove this is to use Laplace
transforms; see Appendix E). In particular, the sum of n independent random vari-
ables each having the same gamma (α, λ) distribution is gamma (nα, λ) distributed.
In queueing applications the gamma distribution is often used to model service-
time distributions and in inventory applications to model demand distributions. The
numerical evaluation of the gamma distribution function is hardly more difficult
than that of the standard normal distribution function. Fast numerical procedures
for the computation of the incomplete gamma function are widely available; see
for example Press et al. (1992).

The mean and the squared coefficient of variation of a gamma (α, λ) distributed
random variable X are given by

E(X) = α

λ
and c2

X = 1

α
.

This result shows that a unique gamma distribution can be fitted to each positive
random variable with given first two moments. To characterize the shape and the
failure rate of the gamma density, we distinguish between the cases c2

X < 1 (α > 1)

and c2
X ≥ 1 (α ≤ 1). The gamma density is always unimodal ; that is, the density

has only one maximum. For the case c2
X < 1 the density first increases to the

maximum at t = (α − 1)/λ > 0 and next decreases to zero as t → ∞, whereas
for the case c2

X ≥ 1 the density has its maximum at t = 0 and thus decreases from
t = 0 onwards. The failure rate function is increasing from zero to λ if c2

X < 1 and
is decreasing from infinity to zero if c2

X > 1. The exponential distribution (c2
X = 1)

has a constant failure rate λ and is a natural boundary between the cases c2
X < 1

and c2
X > 1.

The Erlang distribution

The Erlang (Ek) distribution is a special case of the gamma distribution. For a pos-
itive integer k, the Erlang (k, λ) distribution is nothing else than the gamma (α, λ)

distribution with α = k. The probability density and the probability distribution
function of an Erlang (k, λ) distributed random variable X are

f (t) = λktk−1

(k − 1)!
e−λt and F(t) = 1 −

k−1∑
j=0

e−λt (λt)j

j !
, t ≥ 0.

The Erlang (k, λ) distribution has a very useful interpretation. An Erlang (k, λ)

distributed random variable X can be decomposed as the sum of k independent
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random variables each having an exponential distribution with the same mean 1/λ;
see also Appendix E. The Erlang probability distribution function can be numeri-
cally evaluated without using a general code for the incomplete gamma integral. For
fixed t , the Poisson probabilities pj (t) = e−λt (λt)j /j ! can be recursively calculated
from p0(t) = e−λt and pj (t) = (λt/j)pj−1(t) for j = 1, 2, . . . . However, expo-
nent underflow may occur in the calculation of p0(t) when λt is very large. There
is a simple trick to avoid the exponent underflow. Define qj (t) = ln

[
pj (t)

]
. The

recursion scheme q0(t) = −λt and qj (t) = ln(λt/j) + qj−1(t) for j ≥ 1 offers no
numerical difficulties at all. Any desired pj (t) is calculated from pj (t) = exp[qj (t)]
if qj (t) ≥ −100 (say) and pj (t) = 0 otherwise. The trick of working with loga-
rithms is one of the most useful tricks to avoid underflow in numerical analysis.
Logarithms enable us to reduce the manipulation with extremely large (small)
numbers to the manipulation with moderately sized numbers.

The lognormal distribution

A positive random variable X is said to be lognormally distributed when it has the
probability density

f (t) = 1

αt
√

2π
exp

[
−1

2
[ln(t) − λ]2/α2

]
, t > 0,

where the shape parameter α is positive and the scale parameter λ may assume
each real value. The probability density function F(t) equals

F(t) = �

(
ln(t) − λ

α

)
, t > 0,

where �(x) = (1/
√

2π)
∫ x

−∞ exp(−u2/2) du is the standard normal probability
distribution function. The mean and the squared coefficient of variation of the
lognormal distribution are given by

E(X) = exp

(
λ + 1

2
α2
)

and c2
X = exp(α2) − 1.

Thus a unique lognormal distribution can be fitted to each positive random variable
with given first two moments. The lognormal density is always unimodal with a
maximum at t = exp(λ − α2). The failure rate function first increases and next
decreases to zero as t → ∞ and thus the failure rate is only decreasing in the
long-life range.

The Weibull distribution

A positive random variable X is said to be Weibull distributed when it has the
probability density

f (t) = αλ(λt)α−1exp[−(λt)α], t > 0,
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with the shape parameter α > 0 and scale parameter λ > 0. The corresponding
probability distribution function F(t) is given by

F(t) = 1 − exp[−(λt)α], t ≥ 0.

The mean and the squared coefficient of variation of the Weibull random variable
X are

E(X) = 1

λ



(
1 + 1

α

)
and c2

X = 
(1 + 2/α)

[
(1 + 1/α)]2
− 1.

A unique Weibull distribution can be fitted to each positive random variable with
given first two moments. For that purpose a non-linear equation in α must be
numerically solved. The Weibull density is always unimodal with a maximum at
t = λ−1(1 − 1/α)1/α if c2

X < 1 (α > 1), and at t = 0 if c2
X ≥ 1 (α ≤ 1). The

failure rate function is increasing from 0 to infinity if c2
X < 1 and is decreasing

from infinity to zero if c2
X > 1.

The gamma and Weibull densities are similar in shape, and for c2
X < 1 the log-

normal density takes on shapes similar to the gamma and Weibull densities. For
the case c2

X ≥ 1 the gamma and Weibull densities have their maximum value at
t = 0; most outcomes tend to be small and very large outcomes occur only occa-
sionally. The lognormal density goes to zero as t → 0 faster than any power of
t , and thus the lognormal distribution will typically produce fewer small outcomes
than the other two distributions. This explains the popular use of the lognormal
distribution in actuarial studies. The differences between the gamma, Weibull and
lognormal densities become most significant in their tail behaviour. The densi-
ties for large t go down like exp[−λt], exp[−(λt)α] and exp[− 1

2 [ln(t) − λ]2/α2].
Thus, for given values of the mean and the coefficient of variation, the lognormal
density always has the longest tail. The gamma density has the second longest
tail only if α > 1; that is, only if its coefficient of variation is less than one.
In Figure B.1 we illustrate these facts by drawing the gamma, Weibull and log-
normal densities for c2

X = 0.25, where E(X) is taken to be 1. To conclude this
appendix, we discuss several useful generalizations of exponential and Erlangian
distributions. In many queueing and inventory applications there is a very substan-
tial (numerical) advantage in using the generalized distributions rather than other
distributions.

Generalized Erlangian distributions

An Erlang-k (Ek) distributed random variable can be represented as the sum of
k independent exponentially distributed random variables with the same means. A
generalized Erlangian distribution is one built out of a random sum of exponen-
tially distributed components. A particularly convenient distribution arises when
these components have the same means. In fact, such a distribution can be used
to approximate arbitrarily closely any distribution having its mass on the positive
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Figure B.1 The gamma, lognormal and Weibull densities

half-axis; see also Section 5.5. We discuss two special cases of mixtures of Erlan-
gian distributions with the same scale parameters. First, we consider the Ek−1,k

distribution which is defined as a mixture of Ek−1 and Ek distributions with the
same scale parameters. The probability density of an Ek−1,k distribution has the
following form:

f (t) = pµk−1 tk−2

(k − 2)!
e−µt + (1 − p)µk tk−1

(k − 1)!
e−µt , t ≥ 0,

where 0 ≤ p ≤ 1. In other words, a random variable having this density is with
respective probabilities p and 1−p distributed as the sum of k−1 and k independent
exponentials with common mean 1/µ. By choosing the parameters p and µ as

p = 1

1 + c2
X

[
kc2

X −
√

k(1 + c2
X) − k2c2

X

]
and µ = k − p

E(X)
,
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the associated Ek−1,k distribution fits the first two moments of a positive random
variable X provided that

1

k
≤ c2

X ≤ 1

k − 1
.

We note that only coefficients of variation between 0 and 1 can be achieved by
mixtures of the Ek−1,k type. Also, it is noteworthy that the Ek−1,k density can be
shown to have an increasing failure rate.

Next we consider the E1,k distribution, which is defined as a mixture of E1 and
Ek distributions with the same scale parameters. The density of the E1,k distribution
has the form

f (t) = pµe−µt + (1 − p)µk tk−1

(k − 1)!
e−µt , t ≥ 0,

where 0 ≤ p ≤ 1. By choosing

p =
2kc2

X + k − 2 −
√

k2 + 4 − 4kc2
X

2(k − 1)(1 + c2
X)

and µ = p + k(1 − p)

E(X)
,

the associated E1,k distribution fits the first two moments of a positive random
variable X provided that

1

k
≤ c2

X ≤ k2 + 4

4k
.

Hence the E1,k distribution can also achieve values of c2
X with c2

X > 1.
For use in applications the Ek−1,k density is generally better suited than the E1,k

density since the Ek−1,k density is always unimodal and has a shape similar to the
frequently occurring gamma density. The E1,k density may be useful in sensitivity
analysis. For both theoretical and practical purposes it is often easier to work with
mixtures of Erlangian distributions than with gamma distributions, since mixtures
of Erlangian distributions with the same scale parameters allow for the probabilistic
interpretation that they represent a random sum of independent exponentials with
the same means.

Hyperexponential distribution

A commonly used representation of a positive random variable with a coefficient of
variation greater than 1 is a mixture of two exponentials with different means. The
distribution of such a mixture is called a hyperexponential distribution of order 2,
an H2 distribution. The density of the H2 distribution has the form

f (t) = p1µ1e
−µ1t + p2µ2e

−µ2t , t ≥ 0,

where 0 ≤ p1, p2 ≤ 1. Note that always p1 + p2 = 1, since the density f (t)

represents a probability mass of 1. In words, a random variable having the H2 den-
sity is distributed with probability p1 (p2) as an exponential variable with mean
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1/µ1 (1/µ2). The hyperexponential density always has a coefficient of variation
of at least 1 and is unimodal with a maximum at t = 0. The failure rate func-
tion of the hyperexponential distribution is decreasing. The H2 density has three
parameters and is therefore not uniquely determined by its first two moments. For
a two-moment fit, the H2 density with balanced means is often used; that is, the
normalization p1/µ1 = p2/µ2 is used. The parameters of the H2 density having
balanced means and fitting the first two moments of a positive random variable X

with c2
X ≥ 1 are

p1 = 1

2

(
1 +

√
c2
X − 1

c2
X + 1

)
, p2 = 1 − p1, µ1 = 2p1

E(X)
, µ2 = 2p2

E(X)
.

In the context of a Coxian-2 distribution we give below another normalization we
believe to be a more natural one. A three-moment fit by an H2 density is not
always possible, but it is unique whenever it exists. An H2 density can only be
fitted to the first three moments m1, m2 and m3 of a positive random variable X

with c2
X > 1 when the requirement m1m3 ≥ 3

2m2
2 is satisfied; see Whitt (1982). If

m1m3 = 3
2m2

2 then the H2 fit is the exponential density, otherwise the parameters
of the three-moment fit are given by

µ1,2 = 1

2

{
a1+

√
a2

1 − 4a2

}
, p1 = µ1(1 − µ2m1)

µ1 − µ2
, p2 = 1 − p1,

where a2 = (6m2
1 − 3m2)/(

3
2m2

2 −m1m3) and a1 = (1 + 1
2m2a2)/m1. The require-

ment m1m3 ≥ 3
2m2

2 holds for both a gamma distributed and a lognormal distributed
random variable X with c2

X > 1.

Coxian-2 distribution

The hyperexponential density requires that the weights p1 and p2 are non-negative.
However, in order that p1µ1exp(−µ1t)+p2µ2exp(−µ2t) represents a probability
density, it is not necessary to require that p1 and p2 are both non-negative. The
class of H2 distributions can be shown to be a subclass of the class of so-called
Coxian-2 (C2) distributions. A random variable X is said to be Coxian-2 distributed
if X can be represented as

X =
{

X1 + X2 with probability b,

X1 with probability 1 − b,

where X1 and X2 are independent random variables having exponential distribu-
tions with respective means 1/µ1 and 1/µ2. In words, the lifetime X first goes
through an exponential phase X1 and then through a second exponential phase X2
with probability b or it goes out with probability 1 − b; see Figure B.2. It can be
assumed without loss of generality that µ1 ≥ µ2.
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exp(m1) exp(m2)

1 − b

b

Figure B.2 The Coxian distribution with two phases

A Coxian-2 distribution having parameters (b, µ1, µ2) with µ1 < µ2 can be shown
to have the same probability density as the Coxian-2 distribution having parameters
(b∗, µ∗

1, µ∗
2) with µ∗

1 = µ2, µ∗
2 = µ1 and b∗ = 1 − (1 − b)µ1/µ2. Assuming that

µ1 ≥ µ2, the Coxian-2 distributed random variable X has the density

f (t) =
{

p1µ1e
−µ1t + (1 − p1)µ2e

−µ2t if µ1 	= µ2,

p1µ1e
−µ1t + (1 − p1)µ

2
1te

−µ1t if µ1 = µ2,

where p1 = 1 − bµ1/(µ1 − µ2) if µ1 	= µ2 and p1 = 1 − b if µ1 = µ2. Thus the
class of H2 densities is contained in the class of Coxian-2 densities. Note that the
H2 distribution allows for two different but equivalent probabilistic interpretations.
The H2 distribution can be interpreted in terms of exponential phases in parallel
and in terms of exponential phases in series.

The density of a Coxian-2 distributed random variable X always has a unimodal
shape. Moreover, it holds that

c2
X ≥ 1

2
,

where c2
X ≥ 1 only if the density has the form p1µ1exp(−µ1t) + p2µ2exp(−µ2t)

for non-negative p1 and p2. The Coxian-2 density has three parameters (b, µ1, µ2).
Hence an infinite number of Coxian-2 densities can in principle be used for a two-
moment fit to a random variable X with c2

X > 1
2 (the E2 density is the only possible

choice when c2
X = 1

2 ). A particularly useful choice for a two-moment match is the
Coxian-2 density with parameters

µ1 = 2

E(X)


1 +

√√√√c2
X − 1

2

c2
X + 1


 , µ2 = 4

E(X)
− µ1, b = µ2

µ1
{µ1E(X) − 1}.

This particular Coxian-2 density has the remarkable property that its third moment
is the same as that of the gamma density with mean E(X) and squared coefficient
of variation c2

X. The unique Coxian-2 density having this property will therefore
be called the Coxian-2 density with gamma normalization. This normalization is a
natural one in many applications.
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A two-stage process with negative probabilities

For c2
X < 1

2 it is not possible to fit a Coxian-2 distribution to the first two moments
of the positive random variable X. A fit using an Ek,k−1 distribution requires many
stages when c2

X is close to zero and thus might be unattractive in (queueing) appli-
cations. A remarkable alternative involving two exponential stages was proposed
in Nojo and Watanabe (1987). The positive random variable X is approximated
through a two-stage process. The process starts in stage 1. It stays in stage 1 for
an exponentially distributed time with mean 1/γ . Upon completion of the sojourn
time in stage 1, the process expires with probability p1 and moves to stage 2 with
probability 1 − p1. The sojourn time in stage 2 is also exponentially distributed
with the same mean 1/γ . Upon completion of the sojourn time in stage 2, the
process expires with probability p2 and returns to stage 1 with probability 1 − p2.
In stage 1 the process starts anew. The idea is to approximate the random variable
X by the time until the process expires. Using results from Appendix E, it is not
difficult to verify that the Laplace transform of this lifetime is given by

f ∗(s) = γp1s + γ 2 (p1 + p2 − p1p2)

s2 + 2γ s + γ 2 (p1 + p2 − p1p2)
.

The moments of the lifetime are directly obtained from the Laplace transform
f ∗(s); see (E.2) in AppendixE. If c2

X < 1
2 and the first three moments m1, m2

and m3 satisfy m1m3 < 3
2m2

2, it is nearly always possible to match the first three
moments of f ∗(s) with the first three moments of X by allowing for negative values
of p1 and p2 but requiring that γ > 0. This is particularly true when c2

X = 0. A
surprising finding is that in many (queueing) applications excellent approximations
are obtained by replacing the random variable X through the two-stage process and
treating p1 and p2 as if they were probabilities.

APPENDIX C. GENERATING FUNCTIONS

The generating function (or z-transform) of a discrete probability distribution {pk ,
k = 0, 1, . . . } is defined by

P (z) =
∞∑

k=0

pkz
k, |z| ≤ 1.

The variable z is usually taken as a real-valued variable, but in certain applications
it may be convenient to treat z as a complex-valued variable. It is easily verified
that the probability distribution {pk , k = 0, 1, . . . } can be recovered analytically
from the compressed function P (z) by

pk = 1

k!

dkP (z)

dzk

∣∣∣∣
z=0

, k = 0, 1, . . . . (C.1)

The result (C.1) shows that a discrete probability distribution is uniquely determined
by its generating function. Also, the moments of the probability distribution {pk}
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are readily obtained from P (z). For example, the first two moments are obtained
from the relations

∞∑
k=0

kpk = P ′(1) and
∞∑

k=1

k(k − 1)pk = P ′′(1).

In general the relation (C.1) is only of theoretical value. It is often possible to
obtain an explicit expression for P (z) when the probabilities pk are unknown (e.g.
from a difference equation for the pk). In Appendix D we discuss the discrete
Fast Fourier Transform algorithm to recover the pk numerically when an explicit
expression for P (z) is available. Usually it is not possible to analytically recover
the pk from (C.1).

A useful probabilistic interpretation can be given to P (z). If the random variable
N is distributed according to {pk}, then

P (z) = E(zN). (C.2)

A direct consequence of this relation is that the generating function of the con-
volution of two discrete probability distributions is the product of the generating
functions of these two probability distributions. More specifically, suppose that the
random variable N = X + Y , where X and Y are two independent discrete ran-
dom variables with respective probability distributions {ak , k = 0, 1, . . . } and {bk ,
k = 0, 1, . . . } . Let pk = P {N = k}, k = 0, 1, . . . . Then the generating function
P (z) of the distribution {pk} is given by

P (z) = A(z)B(z), (C.3)

where A(z) and B(z) are the generating functions of the probability distributions
{ak} and {bk}. This follows from E(zX+Y ) = E(zX)E(zY ). In practice it is usually
faster to compute the pj by applying the discrete Fast Fourier Transform method
rather than using the convolution formula pj =∑j

k=0 aj−kbk for j ≥ 0.

Example C.1 The coupon-collecting problem

Suppose there are r different types of coupons and each time we obtain a coupon it
is equally likely to be any one of the r types. How do we compute the probability
distribution of the number of coupons we need to collect for a complete set of
coupons? Denote this number by the random variable X. The random variable X

can be written as
X = Y1 + · · · + Yr ,

where Yi is the number of additional coupons that need to be collected to increase
the number of different coupons in the collection from i −1 to i. The random vari-
ables Y1, . . . , Yr are independent of each other and Yi has a geometric distribution
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with parameter αi = 1 − (i − 1)/r . The generating function of Yi is

Pi(z) =
∞∑

k=1

αi(1 − αi)
k−1zk = αiz

1 − (1 − αi)z
.

Noting that α1 = 1 and letting βi = 1 − αi = (i − 1)/r , it follows from (C.3) that
the generating function P (z) =∑∞

k=1 P {X = k}zk is given by

P (z) = P1(z) · · · Pr(z) = α2 · · ·αrz
r

(1 − β2z) · · · (1 − βrz)
.

Using partial-fraction expansion, we next find

P (z) = α2 · · ·αrz
r

[
γ2

1 − β2z
+ · · · + γr

1 − βrz

]
,

where the residue γi is given by

γi =
r∏

=2
	=i

(
1

1 − β/βi

)
, i = 2, . . . , r.

Noting that
∑∞

j=1(1−p)pj−1zj = (1−p)z/(1− (1−p)z), we can invert the final
expression for P (z) to obtain

P {X = k} = α2 · · · αr

[
γ2β

k−r
2 + · · · + γrβ

k−r
r

]
, k ≥ r. (C.4)

Example C.2 Success runs

Another illustration of the usefulness of the generating function approach is the
analysis of success runs in independent Bernoulli trials. How do we compute the
probability that in n independent Bernoulli trials with success probability p there is
some sequence of s consecutive successes? For fixed s, denote this probability by
Pn for n ≥ 0. The probability Pn can be written as Pn =∑n

j=0 pj for n = 0, 1, . . . ,
where the probability pj is defined as

pj = the probability that for the first time a sequence of s

consecutive successes occurs at the j th trial.

Note that {pj , j = 0, 1, . . . } is a probability distribution with
∑∞

j=0 pj = 1.
Obviously pj = 0 for j < s and ps = ps . For j > s, we have the recursion

pj =
s∑

k=1

pk−1(1 − p)pj−k, j = s + 1, s + 2, . . . .

To prove this, fix j > s and denote by A the event that a sequence of s consecu-
tive successes occurs for the first time at the j th trial. The event A can only occur
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if one of the mutually exclusive events B1, . . . , Bs occurs, where Bk is the event
that each of the first k − 1 trials have success as outcome but the kth trial does
not. Noting that P (A) = pj , P (Bk) = pk−1(1 − p) and P (A | Bk) = pj−k , the
recursion follows by applying the law of conditional probabilities. As an alternative
to the recursion scheme, the probabilities pj can also be numerically obtained by
numerical inversion of the generating function. Multiplying both sides of the above
recursion for pj by zj and summing over j , it follows that the generating function
P (z) =∑∞

j=0 pjz
j satisfies

P (z) = psz
s +

∞∑
j=s+1

zj

s∑
k=1

pk−1(1 − p)pj−k

= psz
s +

s∑
k=1

zkpk−1(1 − p)

∞∑
j=s+1

pj−kz
j−k

= psz
s + P (z)

s∑
k=1

zkpk−1(1 − p).

This gives

P (z) = pszs

1 −
s∑

k=1

pk−1(1 − p)zk

. (C.5)

Hence an explicit expression has been obtained for the generating function P (z) of
the unknown probabilities {pj }. Using this expression the unknown probabilities pj

can also be numerically obtained by applying the discrete Fast Fourier Transform
method from Appendix D. A simple but extremely useful method to compute pj for
large j is to use an asymptotic expansion. This approach will be discussed below in
a general setting. To do so, some basic concepts from complex function theory are
needed such as the concept of an analytic function. In a nutshell, a function on a
domain in the complex plane is called analytic when the function is differentiable
infinitely often on that domain. A fundamental theorem from complex function
theory states that a function f (z) is analytic in the complex region |z| < R if
and only if f (z) allows for the power series representation f (z) =∑∞

n=0 fnz
n for

|z| < R.

Asymptotic expansion

Suppose that the generating function P (z) = ∑∞
j=0 pjz

j of an (unknown) proba-
bility distribution {pj , j = 0, 1, . . . } has the form

P (z) = N(z)

D(z)
. (C.6)

The generating function P (z) is defined for |z| ≤ 1, but assume that N(z) and
D(z) are analytic functions whose domains of definition can be extended to a
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region |z| < R in the complex plane for some R > 1. It is essential that the radius
R is larger than 1. Note that the generating function (C.5) is indeed of the form
(C.6), where the numerator and denominator are analytic functions on the whole
complex plane (R = ∞). It is no restriction to assume that N(z) and D(z) have
no common zeros; otherwise, cancel out common zeros. Let us further assume that
the following regularity conditions are satisfied:

C1 The equation D(z) = 0 has a real root z0 on the interval (1,R).

C2 The function D(z) has no zeros in the domain 1 < |z| < z0 of the complex
plane.

C3 The zero z = z0 of D(z) is of multiplicity 1 and is the only zero of D(z) on
the circle |z| = z0.

The following theorem is of utmost importance. The insightful proof of the
theorem is included for completeness. Recall that f (x) ∼ g(x) as x → ∞ means
that f (x)/g(x) → 1 as x → ∞.

Theorem C.1 Under the conditions C1 to C3,

pj ∼ γ0z
−j

0 as j → ∞, (C.7)

where the constant γ0 is given by

γ0 = − 1

z0

N(z0)

D′(z0)
. (C.8)

Here D′(z0) denotes the derivative of D(x) at x = z0.

Proof We first mention the following basic facts from complex function theory.
The most important fact is that a function f (z) is analytic at a point z = a if
and only if f (z) can be expanded in a power series f (z) = ∑∞

n=0 an(z − a)n in
|z − a| < ρ for some ρ > 0. The coefficient an of the Taylor series is the nth
derivative of f (z) at z = a divided by n!. The analytic function f (z) is said to
have a zero of multiplicity k in z = a if a0 = · · · = ak−1 = 0 and ak 	= 0. Another
basic result is the following. The Taylor series

∑∞
n=0 an(z−a)n of a function f (z)

at the point z = a coincides with the function f (z) in the interior of the largest
circle whose interior lies wholly within the domain on which f (z) is analytic.

The proof of (C.7) now proceeds as follows. The conditions C1 to C3 imply
that there is a circle around z = 0 with radius R0 larger than z0 such that P (z) is
analytic in |z| < R0 except for the isolated point z = z0. Since D(z) has a zero of
multiplicity 1 at z = z0, it follows from the Taylor series that D(z) = (z− z0)φ(z)

in |z| < R0, where φ(z) is an analytic function with φ(z0) 	= 0. Thus we can write
P (z) as P (z) = H(z)/(z − z0) for some analytic function H(z) in |z| < R0 with
H(z0) 	= 0. Using a Taylor expansion H(z) = H(z0) + (z − z0)U(z), we next find
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that P (z) can be represented as

P (z) = r0

z − z0
+ U(z) (C.9)

in |z| < R0, z 	= z0. Here U(z) is an analytic function in the domain |z| < R0 and
the residue r0 = H(z0) is given by

r0 = lim
z→z0

(z − z0)P (z) = N(z0)/D
′(z0).

The remainder of the proof is simple. Since U(z) is analytic for |z| < R0 we have
the power series representation U(z) = ∑∞

j=0 uj z
j for |z| < R0. Let R1 be any

number with z0 < R1 < R0. Then, for some constant b,
∣∣uj

∣∣ ≤ bR
−j

1 for all j ≥ 0.
This follows from the fact that the series

∑∞
j=0 ujz

j is convergent for z = R1.
Using the power series representation of U(z) and the fact that the power series
representation P (z) =∑∞

j=0 pjz
j extends to |z| < z0, it follows from (C.9) that

∞∑
j=0

pjz
j = −r0

z0

∞∑
j=0

(z/z0)
j +

∞∑
j=0

ujzj , |z| < z0.

Equating coefficients yields
pj = −r0z

−j−1
0 + uj , j ≥ 0.

Since
∣∣uj

∣∣ ≤ bR
−j

1 for some constant b and R1 > z0, the coefficient uj tends to

zero faster than z
−j

0 . Hence we can conclude the asymptotic expansion (C.7).

It is noted that Theorem C.1 does not require that {pj } is a probability distri-
bution. The theorem applies to any sequence {pj , j = 0, 1, . . . } with pj ≥ 0 for
all j and

∑∞
j=0 pj < ∞. The asymptotic expansion (C.7) is very useful for both

theoretical and computational purposes. It appears that in many applications the
asymptotic expansion for pj can be used for relatively small values of j . To illus-
trate this, consider the generating function (C.5) for the problem of success runs.
This generating function P (z) is the ratio of the two analytic functions N(z) = pszs

and D(z) = 1−∑s
k=1 pk−1(1−p)zk whose domains of definition can be extended

to the whole complex plane (R = ∞). It is readily verified that the equation

1 −
s∑

k=1

pk−1(1 − p)xk = 0

has a unique root z0 on the interval (1, ∞). Hence condition C1 is satisfied. The
verification of the technical conditions C2 and C3 is omitted and is left to the
interested reader. The unique root z0 of the above equation must be numerically
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Table C.1 The exact and approximate values for Qn

s = 2 s = 5

n exact approximate n exact approximate

5 0.50000 0.50156 15 0.831543 0.831541
10 0.173828 0.173824 50 0.4558865475 0.4558865475
15 0.06024170 0.06024171 100 0.1931794513 0.1931794513
25 0.0072355866 0.0072355866 200 0.0346871989 0.0346871989

calculated. A safe and fast method to compute z0 is the bisection method. Once z0
is computed, we can approximately calculate pj from

pj ≈ p(pz0)
s

(1 − p)

s∑
k=1

k(pz0)
k

z
−j

0 for j large enough.

Denoting by Qn =∑∞
j=n pj the probability that it takes n or more Bernoulli trials

to obtain a sequence of s consecutive successes, we give in Table C.1 the exact and
approximate values of Qn for several values of n. We take p = 0.5 and s = 2 and
s = 5. The numerical results in Table C.1 confirm the finding that the asymptotic
expansion (C.7) is remarkably accurate and already applies for relatively small
values of j . This finding is very important for practical purposes.

APPENDIX D. THE DISCRETE FAST FOURIER TRANSFORM

The discrete Fast Fourier Transform (FFT) method is a very powerful method to
recover numerically the values of unknown probabilities pk , k = 0, 1, . . . when
an explicit expression is available for the generating function P (z) =∑∞

k=0 pkz
k .

The FFT method has many other applications. Another applied probability problem
for which the discrete FFT method may be very useful is the calculation of the
convolution of two or more discrete probability distributions. The discrete FFT
method represents a breakthrough in numerical analysis.

Before stating the discrete FFT method for the numerical inversion of a generat-
ing function, here are some basic facts from discrete Fourier analysis. The discrete
Fourier transform takes n numbers f0, . . . , fn−1 into n coefficients c0, . . . , cn−1
such that there is a one-to-one correspondence between {fk} and {ck}. The fk are
real or complex numbers and the ck are complex numbers. A finite Fourier series

n−1∑
k=0

ck eikx
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is sought that agrees with f at n equally spaced points xl = 2π/n between 0 and
2π . More specifically, we look for complex numbers c0, . . . , cn−1 such that

n−1∑
k=0

ck eik(2π/n) = f,  = 0, . . . , n − 1. (D.1)

It is convenient to write these linear equations in matrix notation as

Fc = f.

Here F is a complex-valued matrix whose (, k)th element (F )k is given by

(F )k = wk, , k = 0, . . . , n − 1,

where the complex number w is defined by

w = e2πi/n.

Let F be the matrix whose elements are the complex conjugates of the elements
of the matrix F . The matrix F has the nice property that

FF = FF = nI, (D.2)

where I is the identity matrix (the column vectors of the symmetric matrix F

form an orthogonal system). To verify this, let w = e−2πi/n denote the complex
conjugate of w. The inproduct of the rth row of F and the sth column of F is
given by

γrs = w0w0 + wrws + w2rw2s + · · · + w(n−1)rw(n−1)s .

For r = s each term equals e0 = 1 and so the sum γrs is n. For r 	= s the sum γrs

can be written as 1 + α + · · · + αn−1 = (1 − αn)/(1 − α) with α = wrws( 	= 1).
Since wn = e2πi = 1 and wn = e−2πi = 1, we have αn = 1 and so γrs = 0 for
r 	= s. This gives (D.2). By (D.2), we have F−1 = (1/n)F . It now follows that
the vector c of Fourier coefficients is given by c = (1/n)Ff . Componentwise, we
have

ck = 1

n

n−1∑
=0

f e−2πik/n, k = 0, . . . , n − 1. (D.3)

This inversion formula parallels the formula ck = (2π)−1
∫ π

−π
f (x) e−ikx dx in

continuous Fourier analysis. Notice that (D.3) inherits the structure of (D.1).
In many applications, however, we proceed in reverse order: we know the

Fourier coefficients ck and wish to calculate the original coefficients fj . By the
formula (D.1) we can transform c back into f . The matrix multiplications in (D.1)
would normally require n2 multiplications. However, the discrete FFT method per-
forms the multiplications in an extremely fast and ingenious way that requires
only n log2(n) multiplications instead of n2. The key to the method is the simple
observation that the discrete Fourier transform of length n (n even) can be written
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as the sum of two discrete Fourier transforms, each of length n/2. Suppose we
know the ck and wish to compute the f from (D.1). It holds that

n−1∑
k=0

ck e2πik/n =
1
2 n−1∑
k=0

c2k e2πi(2k)/n +
1
2 n−1∑
k=0

c2k+1 e2πi(2k+1)/n

=
1
2 n−1∑
k=0

c2k e2πik/(n/2) + w

1
2 n−1∑
k=0

c2k+1 e2πik/(n/2). (D.4)

The discrete Fourier transform of length n can thus be written as the sum of two
discrete Fourier transforms each of length n/2. This beautiful trick can be applied
recursively. For the implementation of the recursive discrete FFT procedure it is
convenient to choose

n = 2m

for some positive m (if necessary, zeros can be added to the sequence f0, . . . , fn−1
in order to achieve that n = 2m for some m). The discrete FFT method is numer-
ically very stable (it is a fast and accurate method even for values of n with an
order of magnitude of a hundred thousand). The discrete FFT method that calcu-
lates the original coefficients fj from the Fourier coefficients ck is usually called
the inverse discrete FFT method. Ready-to-use codes for the discrete FFT method
are widely available. The discrete FFT method is a basic tool that should be part
of the toolbox of any applied probabilist. It is noted that the discrete FFT method
can be extended to a complex function defined over a multidimensional grid.

Numerical inversion of the generating function

Suppose an explicit expression is available for the generating function

P (z) =
∞∑

=0

pz
, |z| ≤ 1.

How do we obtain the unknown probabilities p? Choose an integer n = 2m

such that

∞∑
j=n

pj ≤ ε

for some prespecified accuracy number ε, say ε = 10−12 (often one can find a
known distribution {aj } such that

∑∞
j=k pj ≤ ∑∞

j=k aj for all k; otherwise, the
truncation integer n has to be found by trial and error). Then calculate the complex
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numbers

ck = 1

n
P (e−2πik/n), k = 0, . . . , n − 1 (D.5)

from the explicit expression for P (z). Note that each of the points zk = e−2πik/n,
k = 0, . . . , n − 1 satisfies zn = 1 and thus lies on the unit circle |z| = 1. By the
power series representation of P (z) and the choice of the integer n, we have

ck ≈ 1

n

n−1∑
=0

p e−2πik/n, k = 0, . . . , n − 1.

This relation is of the same form as (D.3). Thus the unknown probabilities p can
be calculated by applying the inverse discrete FFT method to the known vector
(c0, . . . , cn−1).

Example D.1 The M/D/1 queue

Consider the M/D/1 queue with deterministic services. In Section 2.5 it was shown
that the generating function of the limiting distribution {pk} of the number of
customers present is given by

P (z) = (1 − λD)(1 − z)

1 − zeλD(1−z)
, |z| ≤ 1,

where λ is the arrival rate of customers and D is the fixed service time of a
customer with λD < 1. Hence the state probabilities {pk} can be calculated by
applying the discrete FFT method. In the specific problem of the M/D/1 queue,
the explicit expression for the generating function P (z) is of the form Q(z)/R(z).
In such a situation one should verify whether or not R(z) has zeros on the unit
circle |z| = 1 (each zero of R(z) on the unit circle must also be a zero of Q(z)

since P (z) = ∑∞
k=0 pkz

k is analytic for |z| ≤ 1). If a point zk = e−2πik/n is a
zero of R(z), the corresponding Fourier coefficient ck cannot be calculated directly
from (D.5) but can be found by applying L’Hospital’s rule to Q(z)/R(z) at the
point z = zk (often z0 = 1 is a zero as is the case in the M/D/1 problem).

APPENDIX E. LAPLACE TRANSFORM THEORY

This appendix gives a brief outline of some results from Laplace transform theory
that are useful in applied probability problems. Suppose that f (x) is a continuous
real-valued function in x ≥ 0 such that |f (x)| ≤ AeBx , x ≥ 0, for some constants
A and B. The Laplace transform of f (x) is defined by the integral

f ∗(s) =
∫ ∞

0
e−sxf (x) dx
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as a function of the complex variable s with Re(s) > B. The integral always
exists when Re(s) > B. If f (x) is the probability density of a random variable
X, the Laplace transform f ∗(s) is defined for all s with Re(s) > 0 and can be
interpreted as

f ∗(s) = E(e−sX). (E.1)

Moreover, we then have

E(Xk) = (−1)k lim
s→0

dkf ∗(s)
dsk

, k = 1, 2, . . . . (E.2)

The results (a) to (c) below can easily be verified from the definition of Laplace
transform. In the statements it is assumed that the various integrals exist.
(a) If the function f (x) = ag(x) + bh(x) is a linear combination of the functions
g(x) and h(x) with Laplace transforms g∗(s) and h∗(s), then

f ∗(s) = ag∗(s) + bh∗(s). (E.3)

(b) If F(x) = ∫ x

0 f (y) dy, then∫ ∞

0
e−sxF (x) dx = f ∗(s)

s
. (E.4)

If f (x) has a continuous derivative f ′(x) then∫ ∞

0
e−sxf ′(x) dx = sf ∗(s) − f (0). (E.5)

(c) If the function f (x) is given by the convolution

f (x) =
∫ x

0
g(x − y)h(y) dy

of two functions g(x) and h(x) with Laplace transforms g∗(s) and h∗(s), then

f ∗(s) = g∗(s)h∗(s). (E.6)

In addition to these results, we mention without proof the following useful
Abelian theorem. If

∫∞
0 e−sxf (x) dx is convergent for Re(s) > 0 and limx→∞ f (x)

exists, then

lim
x→∞ f (x) = lim

s→0
s

∫ ∞

0
e−sxf (x) dx. (E.7)

In applied probability problems one often encounters the situation of a non-negative
random variable X that has a positive mass at x = 0 and a density on (0, ∞). Then∫ ∞

0
e−sxP {X > x} dx = 1 − E(e−sX)

s
. (E.8)
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Using that E(e−sX) = P {X = 0}+ ∫∞
0 e−sxπ(x) dx and P {X > x} = 1−P {X =

0} − ∫ x

0 π(y) dy with π(x) denoting the derivative of P {X ≤ x} for x > 0, the
relation (E.8) follows directly from (E.3) and (E.4). Of course the result (E.8) also
holds when X has a zero mass at x = 0.

In specific applications requiring the determination of some unknown function
f (x) it is often possible to obtain the Laplace transform f ∗(s) of f (x). A very use-
ful result is that a continuous function f (x) is uniquely determined by its Laplace
transform f ∗(s). In principle the function f (x) can be obtained by inversion of its
Laplace transform. Extensive tables are available for the inverse of basic forms of
f ∗(s); see for example Abramowitz and Stegun (1965). An inversion formula that
is sometimes helpful in applications is the Heaviside formula. Suppose that

f ∗(s) = P (s)

Q(s)
,

where P (s) and Q(s) are polynomials in s such that the degree of P (s) is smaller
than that of Q(s). It is no restriction to assume that P (s) and Q(s) have no zeros
in common. Let s1, . . . , sk be the distinct zeros of Q(s) in the complex plane. For
ease of presentation, assume that each root sj is simple (i.e. has multiplicity 1).
Then it is known from algebra that P (s)/Q(s) admits the partial fraction expansion

P (s)

Q(s)
= r1

s − s1
+ r2

s − s2
+ · · · + rk

s − sk
,

where rj = lims→sj (s − sj )P (s)/Q(s) and so rj = P (sj )/Q
′(sj ), 1 ≤ j ≤ k. The

inverse of the Laplace transform f ∗(s) = P (s)/Q(s) is now given by

f (x) =
k∑

j=1

P (sj )

Q′(sj )
esj x, (E.9)

as can be verified by taking the Laplace transform of both sides of this equation.
This result is readily extended to the case in which some of the roots of Q(s) = 0
are not simple. For example, the inverse of the Laplace transform

f ∗(s) = P (s)

(s − a)m
,

where P (s) is a polynomial of degree lower than m, is given by

f (x) = eax

m∑
j=1

P (m−j)(a)xj−1

(m − j)!(j − 1)!
. (E.10)

Here P (n)(a) denotes the nth derivative of P (x) at x = a with P (0)(a) = P (a).
It is usually not possible to give an explicit expression for the inverse of a

given Laplace transform. In those situations the unknown function f (x) may be
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obtained by numerical inversion of its Laplace transform f ∗(s). Numerical inver-
sion methods that perform well for probability functions f (x) are discussed in
Appendix F.

Example E.1 The Erlang distribution

Suppose that X1, . . . , Xn are independent random variables having a common
exponential distribution with mean 1/µ. Then X1 + · · · + Xn has the probability
density

µnxn−1e−µx

(n − 1)!
, x ≥ 0,

that is, X1 + · · · + Xn is Erlang (n, µ) distributed. To prove this, note that the
Laplace transform of the probability density fn(x) of X1 + · · · + Xn is given by

f ∗
n (s) = E[e−s(X1+···+Xn)]

= E(e−sX1) · · ·E(e−sXn).

Noting that E(e−sXi ) = ∫∞
0 e−sxµe−µx dx = µ/(s+µ) for all s with Re(s) > −µ,

it follows that

f ∗
n (s) = µn

(s + µ)n
.

Using (E.10), the inversion of f ∗
n (s) shows that fn(x) is indeed given by the Erlang

(n, µ) density.

Example E.2 The renewal function

Consider a renewal process for which the probability distribution function B(x) of
the interoccurrence times of the events has a probability density b(x). The renewal
function M(x) is defined by

M(x) =
∞∑

n=1

Bn(x), (E.11)

where Bn(x) is the probability distribution function of X1+· · ·+Xn. That is, Bn(x)

is the n-fold convolution of B(x) with itself. The distribution function Bn(x) has
a probability density bn(x). Since bn(x) is the density of X1 + · · · + Xn,∫ ∞

0
e−sxbn(x) dx = E

[
e−s(X1+ ··· +Xn)

]
= [b∗(s)

]n
,

where b∗(s) = ∫∞
0 e−sxb(x) dx. By (E.4),

∫ ∞

0
e−sxBn(x) dx =

[
b∗(s)

]n
s

. (E.12)
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Thus we find M∗(s) =∑∞
n=1 s−1[b∗(s)]n, which yields the general formula

M∗(s) = b∗(s)
s[1 − b∗(s)]

. (E.13)

This expression can be inverted for the Erlang density. As an illustration, consider
the case of b(x) = λ2xe−λx . Then b∗(s) = [λ/(λ + s)]2 and so

M∗(s) = λ2

s2(s + 2λ)
.

Partial-fraction expansion gives

M∗(s) = − 1
4 s + 1

2λ

s2
+

1
4

s + 2λ
.

By applying (E.3), (E.9) and (E.10), we obtain

M(t) = 1

2
λt − 1

4
+ 1

4
e−2λt , t ≥ 0.

APPENDIX F. NUMERICAL LAPLACE INVERSION

For a long time numerical Laplace inversion had the reputation of being difficult and
numerically unreliable. However, contrary to previous impressions, it is nowadays
not difficult to compute probabilities and other quantities of interest in probability
models by using reliable Laplace inversion methods. This appendix briefly discusses
two effective Laplace inversion algorithms. These algorithms involve complex cal-
culations. There is nothing magic about doing calculations with complex numbers.
These calculations can be reduced to operations with real numbers by dealing sep-
arately with the real part and the imaginary part of the complex numbers. Simple
facts such as the relation eix = cos(x) + i sin(x) for any real x and the represen-
tation z = reiθ for any complex number z are typically used in the calculations in
addition to the basic rules for adding and multiplying two complex numbers. Here
i denotes the complex number with i2 = −1. Certain computer languages such as
the language C++ have automatic provision for doing complex calculations. In
many applied probability problems it is possible to derive an expression for the
Laplace transform of some unknown function. Let the real-valued function f (t) be
an unknown function in the variable t ≥ 0. Suppose its Laplace transform

f ∗(s) =
∫ ∞

0
e−st f (t) dt

in the complex variable s is known. Assume that the function f (t) satisfies the
following conditions:

1. f (t) is of bounded variation on any finite interval.
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2. f (t) is continuous for t ≥ 0.

3. For any b > 0 the function e−btf (t) is monotone for t ≥ t0(b) for some number
t0(b).

4.
∫∞

0 e−bt |f (t)| dt < ∞ for any b > 0.

In probability applications the function f (t) is often the complementary cumula-
tive probability distribution function of a continuous random variable. In this case
the conditions 1 to 4 are automatically satisfied. A basic result from analysis is that
a real-valued function f (t) is of bounded variation if and only if it can be writ-
ten as the difference of two monotone functions. Under the above conditions the
following version of the Poisson summation formula from Fourier analysis holds:

∞∑
n=−∞

f

(
t + 2πn

h

)
e−b(t+2πn/h) = h

2π

∞∑
n=−∞

f ∗(b + inh)einht

for any constants h, b > 0. This Poisson summation formula is the basis for the
following algorithm of Abate and Whitt (1992).

Inversion algorithm of Abate and Whitt

In Abate and Whitt (1992) it was shown that

f (t) = e
1
2 a

2t
f ∗
( a

2t

)
+ e

1
2 a

t

∞∑
k=1

(−1)kRe

(
f ∗
(

a + 2kπi

2t

))
− ε(a, t) (F.1)

for any constant a > 0, where the error term ε(a, t) is given by

ε(a, t) =
∞∑

n=1

e−naf ((2n + 1)t).

To calculate f (t) from (F.1) for a given value of t , we need f ∗(s) for the sequence
{(a + 2kπ)/2t, k = 0, 1, . . . } of complex numbers. In calculating f (t) through the
representation (F.1) there are three possible sources of error. First the discretization
error associated with ε(a, t). Second, the truncation error associated with approxi-
mately calculating the infinite series in (F.1). Third, the round-off error associated
with subtracting positive numbers that are close to each other. The discretization
error can be controlled by choosing the constant a sufficiently large. Assuming that
the function f (t) is bounded by 1, as typically holds in probability applications, it
follows from the inequality

|ε(a, t)| ≤ e−a

1 − e−a
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that the discretization error can be limited to 10−8 by choosing a = 19.1 and to
10−13 by choosing a = 28.3. However, the constant a should not be chosen unnec-
essarily large. The risk of losing significant digits when calculating the infinite series
in (F.1) increases when the constant a gets too large. A useful method of summa-
tion for the infinite series in (F.1) is the classical Euler summation method. This
method proves to be quite effective in accelerating the convergence of the alternat-
ing infinite series in (F.1). Also, the method decreases the risk of losing significant
digits in the calculations. In Euler summation the infinite series

∑∞
k=0(−1)kak in

(F.1) is approximated by the Euler sum

E(m, n) =
m∑

k=0

(mk )2−mSn+k

for appropriately chosen values of m and n, where

Sj =
j∑

k=0

(−1)kak.

Numerical experience shows that the Euler sum E(m, n) computes the infinite
series

∑∞
k=0(−1)kak in (F.1) usually with an error of 10−13 or less when n = 38

and m = 11 are taken (this requires the computation of only 50 terms). For more
details the interested reader is referred to Abate and Whitt (1992). The Abate–Whitt
algorithm gives excellent results for functions f (t) that are sufficiently smooth
(say, twice continuously differentiable). However, the inversion algorithm performs
less satisfactorily for points at which the function f (t) or its derivative is not
differentiable.

Inversion algorithm of Den Iseger

Another simple algorithm to invert Laplace transforms was given in Den Iseger
(2002). In general this algorithm outperforms the Abate–Whitt algorithm in sta-
bility and accuracy. The strength of the Den Iseger algorithm is the fact that in
essence it boils down to an application of the discrete FFT algorithm. The Den
Iseger algorithm has the additional advantage of inverting the Laplace transform
simultaneously at several points. Suppose you wish to calculate f (t) for a number
of points in the interval [0, t0]. For appropriately chosen values of � > 0 and
M > 1 with (M − 1)� = t0, the algorithm calculates the function values f (�)

for  = 0, 1, . . . , M − 1. The algorithm is based on the representation

f (�) ≈ eb

�

n∑
j=1

αj

∫ 1

−1
Re

[
f ∗
(

b + iλj + iπt

�

)]
cos(π(t + 1)) dt (F.2)

for appropriately chosen values of b and n, where the abscissae λj and the weights
αj for j = 1, . . . , n are given numbers that depend only on n. The error in (F.2)
converges very fast to zero as n gets larger. For practical purposes it suffices to
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Table F.1 The constants αj and λj for n = 8, 16

αj (n = 8) λj

2.00000000000000000000E+00 3.14159265358979323846E+00
2.00000000000009194165E+00 9.42477796076939341796E+00
2.00000030233693694331E+00 1.57079633498486685135E+01
2.00163683400961269435E+00 2.19918840702852034226E+01
2.19160665410378500033E+00 2.84288098692614839228E+01
4.01375304677448905244E+00 3.74385643171158002866E+01
1.18855502586988811981E+01 5.93141454252504427542E+01
1.09907452904076203170E+02 1.73674723843715552399E+02

αj (n = 16) λj

2.00000000000000000000E+00 3.14159265358979323846E+00
2.00000000000000000000E+00 9.42477796076937971539E+00
2.00000000000000000000E+00 1.57079632679489661923E+01
2.00000000000000000000E+00 2.19911485751285526692E+01
2.00000000000000025539E+00 2.82743338823081392079E+01
2.00000000001790585116E+00 3.45575191894933477513E+01
2.00000009630928117646E+00 4.08407045355964511919E+01
2.00006881371091937456E+00 4.71239261219868564304E+01
2.00840809734614010315E+00 5.34131955661131603664E+01
2.18638923693363504375E+00 5.99000285454941069650E+01
3.03057284932114460466E+00 6.78685456453781178352E+01
4.82641532934280440182E+00 7.99199036559694718061E+01
8.33376254184457094255E+00 9.99196221424608443952E+01
1.67554002625922470539E+01 1.37139145843604237972E+02
4.72109360166038325036E+01 2.25669154692295029965E+02
4.27648046755977518689E+02 6.72791727521303673697E+02

take n as large as 8 or 16 to achieve a very high precision. In Table F.1 we give
both for n = 8 and n = 16 the abscissae λj and the weights αj for j = 1, . . . , n.

It is convenient to rewrite (F.2) as

f (�) ≈ eb

�

n∑
j=1

αj

∫ 2

0
Re

[
f ∗
(

b + iλj + iπ(t − 1)

�

)]
cos(πt) dt.

Put for abbreviation g = 1
2

∑n
j=1 αj

∫ 2
0 Re

[
f ∗
(

b+iλj+iπ(t−1)

�

)]
cos(πt) dt . Then

f (�) ≈ (2eb/�)g. The integral in g is calculated by using the trapezoidal rule
approximation with a division of the integration interval (0, 2) into 2m subintervals
of length 1/m for an appropriately chosen value of m. It is recommended to take
m = 4M . This gives

g ≈ 1

2m

2m−1∑
p=1

f ∗
p cos

(
πp

m

)
+ f ∗

0 + f ∗
2m

2
, (F.3)
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where f ∗
p is defined by

f ∗
p =

n∑
j=1

αj Re

[
f ∗
(

b + iλj + iπ(p/m − 1)

�

)]
, p = 0, 1, . . . , 2m.

The approximation of (2eb/�)g to f (�) is extraordinarily accurate. Rather
than calculating from (F.3) the constants g for  = 0, 1, . . . , M − 1 by direct
summation, it is much better to use the discrete Fast Fourier Transform method to
calculate the constants g for  = 0, 1, . . . , 2m − 1. More important than speeding
up the calculations, the discrete FFT method has the advantage of its numerical
stability. To see how to apply the discrete FFT method to (F.3), define ĝk by

ĝk =
{

1
2 (f ∗

0 + f ∗
2m), k = 0,

f ∗
k , k = 1, . . . , 2m − 1.

Then, we can rewrite the expression (F.3) for g as

g ≈ 1

2m
Re

[
2m−1∑
k=0

ĝke2πik/2m

]
(F.4)

for  = 0, 1, . . . , 2m − 1. The discrete FFT method can be applied to this repre-
sentation. Applying the inverse discrete FFT method to the vector (ĝ0, . . . , ĝ2m−1)

yields the sought vector (g0, . . . , g2m−1). Here is a summary of the algorithm:

Input: M , �, b, n and m.

Output: f (k�) for k = 0, 1, . . . , M − 1.

Step 1: Calculate for p = 0, 1, . . . , 2m and 1 ≤ j ≤ n,

f ∗
jp = Re

[
f ∗
(

b + iλj + iπ(p/m − 1)

�

)]
.

Next calculate f ∗
p = ∑n

j=1 αjf
∗
jp for p = 0, 1, . . . , 2m. Let ĝ0 = 1

2 (f ∗
0 + f ∗

2m)

and ĝk = f ∗
k for k = 1, . . . , 2m − 1.

Step 2: Apply the inverse discrete FFT method to the vector (ĝ0, . . . , ĝ2m−1) in
order to obtain the desired vector (g0, . . . , g2m−1).

Step 3: Let f (�) = (2eb/�)g for 0 ≤  ≤ M − 1.

In step 3 of the algorithm g is multiplied by eb. In order to avoid numerical
instability, it is important to choose b not too large. Assuming that the ratio m/M

is large enough, say 4, numerical experiments indicate that b = 22/m gives results
that are almost of machine accuracy 2E − 16 (in general, it is best to choose
b somewhat larger than − ln(ξ)/(2m) where ξ is the machine precision). If f

is sufficiently smooth, it usually suffices to take n = 8, otherwise n = 16 is
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recommended. The parameter M is taken as a power of 2 (say, M = 32 or M = 64)

while the parameter m is chosen equal to 4M . The choices of M and � are not
particularly relevant when f is smooth enough (theoretically, the accuracy increases
when � gets smaller). In practice it is advisable to apply the algorithm for � and
1
2� to see whether or not the results are affected by the choice of �.

Non-smooth functions

The Den Iseger algorithm may also perform unsatisfactorily when f or its derivative
has discontinuities. In such cases the numerical difficulties may be circumvented
by using a simple modification of the algorithm. To do this, assume that f ∗(s) can
be represented as

f ∗(s) = v(s, ex0s) (F.5)

for some real scalar x0 and some function v(s, u) with the property that for any
fixed u the function v(s, u) is the Laplace transform of a smooth function. As an
example, consider the complementary waiting-time distribution f (t) = P {Wq > t}
in the M/D/1 queue with deterministic service times D and service in order of
arrival; see Chapter 9. This function f (t) is continuous but is not differentiable at
the points t = D, 2D, . . . . The Laplace transform f ∗(s) of f (t) is given by

f ∗(s) = ρs − λ + λe−sD

s[s − λ + λe−sD]
, (F.6)

where λ is the average arrival rate and ρ = λD < 1. Then (F.5) applies with

x0 = −D and v(s, u) = ρs − λ + λu

s(s − λ + λu)
.

In this example we have indeed that for any fixed u the function v(s, u) is the
Laplace transform of an analytic (and hence smooth) function.

In the modified Den Iseger algorithm the basic relation (F.2) should be modi-
fied as

f (�) ≈ eb

�

n∑
j=1

αj

∫ 1

−1
vj (t) cos(π(t + 1)) dt (F.7)

with

vj (t) = Re

[
v

(
b + iλj + iπt

�
, exp

(
iπx0

�
− b + iπt

�

))]
.

It is essential that in (F.7) the constant � > 0 is chosen such that |x0| is a multiple of
�, where x0 comes from (F.5). As before, the integral in (F.7) can be approximated
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Table F.2 The waiting-time probabilities

t P {Wq > t}
1 0.554891814301507
5 0.100497238246398

10 0.011657108265013
25 0.00001819302497
50 3.820E-10

by the composite trapezoidal rule. In (F.3) the quantity f ∗
p should now be read as

f ∗
p =

n∑
j=1

αj

×Re

[
v

(
b + iλj + iπ(p/m − 1)

�
, exp

(
iπx0

�
− b + iπ(p/m − 1)

�

))]
.

The modification (F.7) gives excellent results (for continuous non-analytic functions
one usually has an accuracy two or three figures less than machine precision). To
illustrate this, we apply the modified approach to the Laplace transform (F.6) for
the M/D/1 queue with service time D = 1 and traffic intensity ρ = 0.8. In
Table F.2 the values of f (t) = P {Wq > t} are given for t = 1, 5, 10, 25 and 50.
The results in Table F.2 are accurate in all displayed decimals (13 to 15 decimals).
The calculations were done with M = 64, � = 1, m = 4M , b = 22/m and n = 8.
The inverse discrete FFT method was used to compute the g from (F.4).

In sharp contrast with the accuracy of the modified approach (F.7), I found for the
M/D/1 example the values 0.55607 and 0.55527 for P {Wq > t} with t = 1 when
using the unmodified Den Iseger inversion algorithm and the Abate–Whitt algo-
rithm. These values give accuracy to only three decimal places. In the Abate–Whitt
algorithm I took a = 19.1, m = 11 and n = 38 (I had to increase n to 5500 to get
the value 0.5548948 accurate to five decimal places). The M/D/1 example shows
convincingly how useful is the modification (F.7).

A scaling procedure

In applied probability problems one is often interested in calculating very small
probabilities, e.g. probabilities in the range of 10−12 or smaller. In many cases
asymptotic expansions are very useful for this purpose, but it may also be possible
to use Laplace inversion with a scaling procedure. Such a scaling procedure was
proposed in Choudhury and Whitt (1997). The idea of the procedure is very simple.
Suppose that the function f (t) is non-negative and that the (very small) function
value f (t0) is required at the point t0 > 0. The idea is to transform f (t) into the
scaled function

fa0,a1(t) = a0e−a1t f (t), t ≥ 0
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for appropriately chosen constants a0 and a1 such that fa0,a1(t) is a probability
density with mean t0. The choice of the parameters a0 and a1 is intended to make
fa0,a1(t) not too small. The unknown value fa0,a1(t0) is computed by numerically
inverting its Laplace transform f ∗

a0,a1
(s), which is given by

f ∗
a0,a1

(s) = a0f
∗(s + a1).

Once fa0,a1(t0) is computed the desired value f (t0) is easily obtained. The com-
putation of the constants a0 and a1 is as follows:

1. Determine the smallest real number s∗ such that
∫∞

0 e−sxf (x) dx is convergent
for all s with Re(s) > s∗ (possibly s∗ = −∞).

2. Try to find the real root a1 of the equation

df ∗(s)/ds

f ∗(s)
+ t0 = 0

on the interval (s∗, ∞). Since the function −[1/f ∗(s)] df ∗(s)/ds can be shown
to be decreasing on the interval (s∗, ∞), this equation has at most one root.

3. Determine a0 = 1/f ∗(a1).

In many applications this procedure works surprisingly well. We used the mod-
ified Den Iseger algorithm in combination with the scaling procedure to compute
P {Wq > t} for t = 75, 100 and 125 in the M/D/1 example discussed above.
The respective values 8.022E − 15, 1.685E − 19 and 3.537E − 24 were calculated.
Those values were exactly the same as the values obtained from the asymptotic
expansion for P {Wq > t} for t large.

Analytically intractable Laplace transforms

Sometimes the Laplace transform f ∗(s) of the unknown function f (t) is not given
in an explicit form, but contains an analytically intractable expression. To illustrate
this, consider the Laplace transform M∗(s) of the renewal function M(t) for a
renewal process. As shown by formula (E.12) in Appendix E, the Laplace transform
M∗(s) is given by

M∗(s) = b∗(s)
s[1 − b∗(s)]

,

where b∗(s) is the Laplace transform of the interoccurrence-time density b(t).
Suppose now that this density is given by a lognormal density. In this particular
case it is not possible to give an explicit expression for b∗(s) and one has to handle
an analytically intractable integral. How do we handle this? Suppose we wish to
compute M(t) for a number of t-values in the interval [0, t0]. The key observation
is that, by the representation (E.11), the renewal function M(t) for 0 ≤ t ≤ t0
uses the interoccurrence-time density b(t) only for 0 ≤ t ≤ t0. The same is true
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for the waiting-time distribution function Wq(t) in the M/G/1 queue with service
in order of arrival. Then it follows from the representation (8.2.10) that Wq(t)

for 0 ≤ t ≤ t0 requires the service-time density b(t) only for 0 ≤ t ≤ t0. If the
Laplace transform b∗(s) of the density b(t) is analytically intractable, the idea is
to approximate the density b(t) by a polynomial P (t) on the interval [0, t0] and by
zero outside this interval. Consequently, the intractable Laplace transform b∗(s) is
approximated by a tractable expression

b∗
app(s) =

∫ t0

0
e−stP (t) dt.

A naive approach uses a single polynomial approximation P (t) for the whole inter-
val [0, t0]. A polynomial approximation that is easy to handle is the Chebyshev
approximating polynomial. Gauss–Legendre integration is then recommended to
evaluate the required function values of b∗

app(s). A code to compute the func-
tion values of the Chebyshev approximating polynomial at the points used in the
numerical integration procedure can be found in the sourcebook by Press et al.
(1992). One has a smooth function P (t) when using a single Chebyshev polyno-
mial approximation P (t) for the whole interval [0, t0]. However, a better accuracy
is obtained by a more refined approach in which the function b(t) on the interval
[0, t0] is replaced by a piecewise polynomial approximation on each of the subin-
tervals of length � with � as in (F.2). Den Iseger (2002) suggests approximating
b(t) on each of the subintervals [k�, (k + 1)�) by a linear combination of Leg-
endre polynomials of degrees 0, 1, . . . , 2n − 1 with n as in (F.2). This leads to an
approximating function with discontinuities at the points k�. However, this diffi-
culty can be resolved by the modification (F.7) for non-smooth functions. Details
can be found in Den Iseger (2002). A simpler approach seems possible when the
analytically intractable Laplace transform b∗(s) is given by b∗(s) = E(e−sX) for
a continuous random variable X with a strictly increasing probability distribution
function F(x). Then b∗(s) = E[g(U, s)] for a uniform (0, 1) random variable
U , where g(u, s) = exp(−sF−1(u)). The (complex) integral

∫ 1
0 g(u, s) du can be

evaluated by Gauss–Legendre integration. The required numerical values of the
inverse function F−1(u) may be obtained by using bisection.

APPENDIX G. THE ROOT-FINDING PROBLEM

The analysis of many queueing problems can be simplified by computing first the
roots of a certain function inside or on the unit circle in the complex plane. It is a
myth that the method of finding roots in the complex plane is difficult to use for
practical purposes. In this appendix we address the problem of finding the roots of
the equation

1 − zceλD{1−β(z)} = 0 (G.1)

inside or on the unit circle. Here c is a positive integer, β(z) = ∑∞
j=1 βj z

j is the
generating function of a discrete probability distribution {βj , j ≥ 1} and the real
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numbers λ and D are positive constants such that λDβ/c < 1 with β =∑∞
j=1 jβj .

This root-finding problem arises in the analysis of the multi-server MX/D/c queue
with batch arrivals. The equation (G.1) has c roots inside or on the unit circle. The
proof is not given here, but is standard in complex analysis and uses the so-called
Rouché theorem; see for example Chaudry and Templeton (1983). Moreover, all
the c roots of (G.1) are distinct. This follows from the following general result in
Dukhovny (1994): if K(z) is the generating function of a non-negative, integer-
valued random variable such that K ′(1) < c and

∣∣zK ′(z)
∣∣ ≤ K ′(1) |K(z)| for

|z| ≤ 1, then all the roots of the equation zc = K(z) in the region |z| ≤ 1 are
distinct. Apply this result with K(z) = e−λD{1−β(z)} and note that K(z) is the
generating function of the total number of arrivals in a compound Poisson arrival
process; see Section 1.2.

To obtain the roots of (G.1) it is not recommended to directly apply New-
ton–Raphson iteration to (G.1). In this procedure numerical difficulties arise when
roots are close together. This difficulty can be circumvented by a simple idea. The
key to the numerical solution of equation (G.1) is the observation that it can be
written as

zceλD{1−β(z)} = e2πik (G.2)

where k is any integer. The next step is to use logarithms. The general logarithmic
function of a complex variable is defined as the inverse of the exponential function
and is therefore a many-valued function (as a consequence of ez+2πi = ez). It
suffices to consider the principal branch of the logarithmic function. This principal
branch is denoted by ln(z) and adds to each complex number z 	= 0 the unique
complex number w in the infinite strip −π < Im(w) ≤ π such that ew = z. The
principal branch of the logarithmic function of a complex variable can be expressed
in terms of elementary functions by

ln(z) = ln(r) + iθ

using the representation z = reiθ with r = |z| and −π < θ ≤ π . Since eln(z) = z

for any z 	= 0, we can write (G.2) as

ec ln(z)+λD{1−β(z)} = e2πik

with k is any integer. This suggests we should consider the equation

c ln(z) + λD{1 − β(z)} = 2πik (G.3)

where k is any integer. If for fixed k the equation (G.3) has a solution zk , then
this solution also satisfies (G.2) and so zk is a solution of (G.1). The question is
to find the values of k for which the equation (G.3) has a solution in the region
|z| ≤ 1. It turns out that the c distinct solutions of (G.1) are obtained by solving
(G.3) for the c consecutive values of k satisfying −π < 2πk/c ≤ π . These values
of k are k = −(c−1)/2�, . . . , c/2�, where a� is the largest integer smaller than
or equal to a. In solving (G.3) for these values of k, we can halve the amount of
computational work by letting k run only from 0 to c/2�. To see this, note that the



472 APPENDICES

complex conjugates of ln(z) and β(z) are given by ln(z) and β(z) (use that β(z)

is a power series in z with real coefficients). Thus, if z is a solution to (G.3) with
k = , then the complex conjugate z is a solution to (G.3) with k = −. Hence it
suffices to let k run only from 0 to c/2�. Further, note that the solution of (G.3)
with k = 0 is given by z0 = 1. For each k with 1 ≤ k ≤ c/2� the equation (G.3)
can be solved by using the well-known Newton–Raphson method. This powerful
method uses the iteration

z(n+1) = z(n) − h(z(n))

h′(z(n))

when the equation h(z) = 0 has to be solved. Applied to the equation (G.3), the
iterative scheme becomes

z
(n+1)
k = z

(n)
k × 1 − (λD/c)[1 + z

(n)
k β ′(z(n)

k ) − β(z
(n)
k )] − ln(z

(n)
k ) + 2πik/c

1 − (λD/c)z
(n)
k β ′(z(n)

k )
,

where β ′(z) is the derivative of β(z). The starting value z
(0)
k for the Newton–

Raphson iteration has to be chosen properly. To make an appropriate choice for
z
(0)
k , we have a closer look at the equation (G.3). Let us rewrite this equation as

ln(z) = (λD/c){β(z)− 1}+ 2πik/c and analyse it for the case of light traffic with
λ → 0. Then the solution of the equation tends to e2πik/c. Inserting z = e2πik/c

on the right-hand side of the equation for ln(z) yields

z
(0)
k = exp

[
(λD/c){β(e2πik/c) − 1} + 2πik/c

]
.

We empirically verified that this is an excellent choice for the starting value of the
Newton–Raphson scheme. In the above approach the roots of (G.1) are calculated
by solving (G.3) separately for each value of k. If some roots are close together,
Newton–Raphson iteration may converge each time to the same root when this pro-
cedure is directly applied to (G.1). However, this numerical difficulty is eliminated
when (G.3) is used as an intermediary.

The above approach for solving 1 − zceλD{1−β(z)} = 0 can be modified to find
the roots of the equation

zc − A(z) = 0

inside or on the unit circle when A(z) is the generating function of a non-negative,
integer-valued random variable. Assuming that A(0) 	= 0 (otherwise, z = 0 is a
root), the equation zc − A(z) = 0 can be transformed into the equation

c ln(z) − ln(A(z)) = 2πik

where k is any integer. In general it is recommended to solve this equation by the
modified Newton–Raphson method; see Stoer and Bulirsch (1980). In the modified
Newton–Raphson method the step size is adjusted at each iteration in order to
ensure convergence. In the special case that zc − A(z) is a polynomial in z, the
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equation zc − A(z) = 0 can be also solved as an eigenvalue problem. Solving the
nth degree polynomial equation zn − c1z

n−1 − · · · − cn−1z − cn = 0 with cn 	= 0
is equivalent to finding the eigenvalues of the matrix

A =




c1 c2 c3 . . . cn−1 cn

1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . .

. . . . . . . .

. . . . . . . .

0 0 0 . . . 1 0




.

Fast and reliable codes for computing eigenvalues are widely available.
Finally, we discuss the computation of the (complex) roots of the equation

(α − s)m − e−sDαm−1(α − ps) = 0 (G.4)

in the right half-plane {s | Re(s) > 0}, where m > 0 is a given integer and α >

0, D > 0 and 0 ≤ p < 1 are given numbers. This equation appears in the analysis
of the Ph/D/1 queue and the D/Ph/1 queue; see Section 9.5. The computation
of the roots of equation (G.4) is more subtle than the computation of the roots of
(G.1). The reason is that equation (G.4) has m − 1 roots when m − p > αD and
m roots when m − p < αD. To handle this subtlety, Newton–Raphson iteration
should be used in combination with Smale’s homotopy method. To explain this,
we first rewrite (G.4) as

um − e−αD(1−u)(1 − p + pu) = 0 (G.5)

by the change of variable u = 1− s/α. The roots of this equation have to be found
in the region {u | Re(u) < 1} of the complex plane. In this region the equation
(G.5) always has m − 1 (complex) roots. If m − p < αD then the equation has an
additional root on (0, 1). This real root is most easily found by repeated substitution:

u+1 =
[
e−αD(1−u)(1 − p + pu)

]1/m

,  = 0, 1, . . . ,

starting with u0 = 1−1/m. Next we discuss the computation of the m−1 complex
roots of (G.5). Put for abbreviation γ = αD/m. In the same way as in the analysis
of (G.1), we transform (G.5) into

ln(u) = −(1 − u)γ + 1

m
ln(1 − p + pu) + 2πi

k

m
(G.6)

for k = 1, 2, . . . , m − 1. To solve (G.6) for fixed k, we use Smale’s continuation
process in which parameters γ and p are continued from γ = 0, p = 0 onwards
to γ = γ , p = p. For fixed k and given step size Nstep, the equation

ln(u) = −(1 − u)γj + 1

m
ln(1 − pj + pju) + 2πi

k

m
(G.7)
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is solved by Newton–Raphson iteration successively for j = 1, . . . , Nstep with

γj = j

Nstep

γ and pj = j
p

Nstep

.

The Newton–Raphson iteration solving (G.7) for a given value of j starts with
u0 = u(j−1) with u(j−1) denoting the solution of (G.7) with j − 1 instead of
j . For j = 1 we take the starting value u0 = e2πik/m, being the solution of
ln(u) = 2πik/m. The procedure is very robust against the choice of Nstep.
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Doubly stochastic, 135
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Excess life, 37, 71, 308, 317
Exponential distribution, 440

Failure rate, 438
Fast Fourier Transform method, 455
Fatou’s lemma, 439
FFT method, see Fast Fourier Transform

method
Fictitious decision epochs, 287
Finite-capacity queues, 408–420
Finite-source queues, 224, 425
First passage time, 48, 92, 170
Flow rate equation method, 150



476 INDEX

Fluid flow model, 369

Gamma distribution, 441
Gamma normalization, 448
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state probabilities, 406
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approximations, 375, 424
state probabilities, 398
waiting-time probabilities, 371
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Laplace transform, 458
Law of total expectation, 431
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Leaky bucket control, 138
Lindly equation, 376
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Machine repair model, 224, 425
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Markov chains, 81–186
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Markov decision processes, 233–305
discrete-time, 233–277
linear programs, 252, 286
policy iteration, 247, 284
probabilistic constraints, 255
semi-Markov, 279–305
value iteration, 259, 285
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Markovian property, 82, 142
Matrix geometric method, 161
M/D/c queue, 378

state probabilities, 378, 380
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Mean recurrence time, 95
Mean-value algorithm, 224
Memoryless property, 2, 440
Metropolis-Hastings algorithm, 117
M/G/1 queue, 58, 211, 327, 345

bounded sojourn time, 213, 423
busy period, 353
exceptional first service, 420, 422
finite buffer, 366
impatient customers, 369
LCFS service, 356
mean queue size, 58
priorities, 76
processor sharing, 208
server vacation, 421, 422
state probabilities, 60, 65, 346,

348
waiting-time probabilities, 63, 65,

212, 327, 349
work in system, 358
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rejection probability, 410
state probabilities, 408, 410
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M/G/c queue, 384, 424
delay probability, 388
mean queue size, 389
state probabilities, 385
waiting-time probabilities, 391, 424

M/G/c/c + N queue, 224, 408
rejection probability, 410
state probabilities, 408, 410
waiting-time probabilities, 425

M/G/∞ queue, 9, 32, 72
M/M/1 queue, 188

state probabilities, 189
waiting-time probabilities, 190

M/M/c queue, 190, 198
state probabilities, 191
waiting-time probabilities, 192

M/M/c/c + N queue, 224, 408
Modified value iteration, 264
MX/D/c queue, 395

state probabilities, 395
waiting-time probabilities, 396

MX/G/1 queue, 360
state probabilities, 361
waiting-time probabilities, 363

MX/G/c queue, 392, 397
MX/G/c/c + N queue, 413

complete rejection, 415, 427
partial rejection, 414

MX/G/∞ queue, 30, 32
group service, 30, 228
individual service, 30

MX/M/c queue, 392
state probabilities, 393
waiting-time probabilities, 394

N-policy, 66
Network of queues, 214–224
Non-arithmetic, 314
Nonstationary queues, 32, 169
Null-recurrent, 95
Numerical Laplace inversion, 462

Offered load, 343
On-off sources, 162, 369, 425
Open networks of queues, 215
Optimization of queues, 290

Panjer’s algorithm, 20
Parrando’s paradox, 135
PASTA property, 57
Phase method, 36, 209

Phase-type distribution, 209, 342
Poisson process, 1–18

compound, 18
Markov modulated, 24
nonstationary, 22, 32
switched, 27

Policy-improvement step, 240
Policy-iteration algorithm, 247, 284
Pollaczek-Khintchine formula, 58, 68,

352
Positive recurrent, 95
Preemptive-resume discipline, 209,

219
Priority queues, 76
Probabilistic constraints, 255
Processor sharing, 208
Product-form solution, 216

Randomized policy, 256
Rare event, 48, 437
Recurrent state, 94
Recurrent subclass, 120, 124
Regenerative approach, 345
Regenerative process, 40
Relative value, 240, 246
Reliability models, 47, 49, 184, 323,

337, 437
Renewal equation, 308, 310
Renewal function, 35, 308, 461

asymptotic expansion, 36, 315, 334
computation, 36, 310, 334

Renewal process, 34, 308
central limit theorem, 46

Renewal-reward process, 41
central limit theorem, 46

Renewal-reward theorem, 41
Residual life, 37, 71, 308, 317
Retrial queue, 77, 421
Reversibility, 116, 194, 226
Root-finding methods, 470
Ruin probability, 326

(S − 1, S) inventory model, 9, 195
backordering, 9
lost sales, 195

(s, S) policy, 85, 275
Semi-Markov decision process, 279–305
Server utilization, 189, 343
Shortest-queue, 161, 295
Spectral expansion method, 161
Square-root formula, 12, 200
State classification, 119
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Stationary policy, 237
Subexponential distribution, 332
Successive overrelaxation, 108
Success runs, 89, 451

T-policy, 77
Time-average probabilities, 69
Traffic equations, 216, 220
Traffic load, 391
Transient analysis, 87, 162

expected rewards, 169
first-passage times, 92, 170
reward distribution, 176
sojourn time, 173
state probabilities, 163, 168,

182
Transient state, 94
Transition rate diagram, 146

Two-moment approximations, 351, 375,
391, 397, 399, 416

Unichain, 239
Unichain assumption, 247
Uniformization method, 166, 173
Up and downcrossing, 69

Vacation models, 66, 77, 318, 421
Value-determination step, 247
Value iteration algorithm, 259, 285

modified, 264

Waiting-time paradox, 39
Wald’s equation, 436
Weak unichain assumption, 252
Weibull distribution, 443
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