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A NOTE ON THE SIXTH EDITION

For the present edition I have completely revised the ‘Generaliza-
tion of Gravitation Theory’ under the title ‘Relativistic Theory of
the Non-symmetric Field’. For I have succeeded—in part in col-
laboration with my assistant B. Kaufman—in simplifying the
derivations as well as the form of the field equations. The whole
theory becomes thereby more transparent, without changing its
content.

A. E.
December 1954



SPACE AND TIME IN
PRE-RELATIVITY PHYSICS

The theory of relativity is intimately connected with the theory
of space and time. I shall therefore begin with a brief investiga-
tion of the origin of our ideas of space and time, although in
doing so I know that I introduce a controversial subject. The
object of all science, whether natural science or psychology, is to
co-ordinate our experiences and to bring them into a logical
system. How are our customary ideas of space and time related
to the character of our experiences?

The experiences of an individual appear to us arranged in a
series of events; in this series the single events which we
remember appear to be ordered according to the criterion of
‘earlier’ and ‘later’, which cannot be analysed further. There
exists, therefore, for the individual, an I-time, or subjective time.
This in itself is not measurable. I can, indeed, associate numbers
with the events, in such a way that a greater number is associated
with the later event than with an earlier one; but the nature of
this association may be quite arbitrary. This association I can



define by means of a clock by comparing the order of events
furnished by the clock with the order of the given series of
events. We understand by a clock something which provides a
series of events which can be counted, and which has other
properties of which we shall speak later.

By the aid of language different individuals can, to a certain
extent, compare their experiences. Then it turns out that certain
sense perceptions of different individuals correspond to each
other, while for other sense perceptions no such correspondence
can be established.

We are accustomed to regard as real those sense perceptions
which are common to different individuals, and which therefore
are, in a measure, impersonal. The natural sciences, and in par-
ticular, the most fundamental of them, physics, deal with such
sense perceptions. The conception of physical bodies, in particu-
lar of rigid bodies, is a relatively constant complex of such sense
perceptions. A clock is also a body, or a system, in the same
sense, with the additional property that the series of events
which it counts is formed of elements all of which can be
regarded as equal.

The only justification for our concepts and system of concepts
is that they serve to represent the complex of our experiences;
beyond this they have no legitimacy. I am convinced that the
philosophers have had a harmful effect upon the progress of
scientific thinking in removing certain fundamental concepts
from the domain of empiricism, where they are under our con-
trol, to the intangible heights of the a priori. For even if it should
appear that the universe of ideas cannot be deduced from
experience by logical means, but is, in a sense, a creation of the
human mind, without which no science is possible, nevertheless
this universe of ideas is just as little independent of the nature of
our experiences as clothes are of the form of the human body.
This is particularly true of our concepts of time and space, which
physicists have been obliged by the facts to bring down from the
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Olympus of the a priori in order to adjust them and put them in a
serviceable condition.

We now come to our concepts and judgments of space. It is
essential here also to pay strict attention to the relation of
experience to our concepts. It seems to me that Poincaré clearly
recognized the truth in the account he gave in his book, La
Science et l’Hypothèse. Among all the changes which we can per-
ceive in a rigid body those are marked by their simplicity
which can be made reversibly by a voluntary motion of the
body; Poincaré calls these changes in position. By means of
simple changes in position we can bring two bodies into con-
tact. The theorems of congruence, fundamental in geometry,
have to do with the laws that govern such changes in position.
For the concept of space the following seems essential. We can
form new bodies by bringing bodies B, C, . . . up to body A; we
say that we continue body A. We can continue body A in such a
way that it comes into contact with any other body, X. The
ensemble of all continuations of body A we can designate as the
‘space of the body A’. Then it is true that all bodies are in the
‘space of the (arbitrarily chosen) body A’. In this sense we
cannot speak of space in the abstract, but only of the ‘space
belonging to a body A’. The earth’s crust plays such a dominant
rôle in our daily life in judging the relative positions of bodies
that it has led to an abstract conception of space which certainly
cannot be defended. In order to free ourselves from this fatal
error we shall speak only of ‘bodies of reference’, or ‘space of
reference’. It was only through the theory of general relativity
that refinement of these concepts became necessary, as we shall
see later.

I shall not go into detail concerning those properties of the
space of reference which lead to our conceiving points as elem-
ents of space, and space as a continuum. Nor shall I attempt to
analyse further the properties of space which justify the concep-
tion of continuous series of points, or lines. If these concepts are
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assumed, together with their relation to the solid bodies of
experience, then it is easy to say what we mean by the three-
dimensionality of space; to each point three numbers, x1, x2, x3

(co-ordinates), may be associated, in such a way that this associ-
ation is uniquely reciprocal, and that x1, x2 and x3 vary continu-
ously when the point describes a continuous series of points (a
line).

It is assumed in pre-relativity physics that the laws of the
configuration of ideal rigid bodies are consistent with Euclidean
geometry. What this means may be expressed as follows: Two
points marked on a rigid body form an interval. Such an interval
can be oriented at rest, relatively to our space of reference, in a
multiplicity of ways. If, now, the points of this space can be
referred to co-ordinates x1, x2, x3, in such a way that the differ-
ences of the co-ordinates, ∆x1, ∆x2, ∆x3, of the two ends of the
interval furnish the same sum of squares,

s2 = ∆x1
2 + ∆x2

2 + ∆x3
2 (1)

for every orientation of the interval, then the space of reference
is called Euclidean, and the co-ordinates Cartesian.* It is suf-
ficient, indeed, to make this assumption in the limit for an infin-
itely small interval. Involved in this assumption there are some
which are rather less special, to which we must call attention on
account of their fundamental significance. In the first place, it is
assumed that one can move an ideal rigid body in an arbitrary
manner. In the second place, it is assumed that the behaviour of
ideal rigid bodies towards orientation is independent of the
material of the bodies and their changes of position, in the sense
that if two intervals can once be brought into coincidence, they
can always and everywhere be brought into coincidence. Both of

* This relation must hold for an arbitrary choice of the origin and of the
direction (ratios ∆x1 : ∆x2 : ∆x3) of the interval.
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these assumptions, which are of fundamental importance for
geometry and especially for physical measurements, naturally
arise from experience; in the theory of general relativity their
validity needs to be assumed only for bodies and spaces of refer-
ence which are infinitely small compared to astronomical
dimensions.

The quantity s we call the length of the interval. In order that
this may be uniquely determined it is necessary to fix arbitrarily
the length of a definite interval; for example, we can put it equal
to 1 (unit of length). Then the lengths of all other intervals may
be determined. If we make the xν linearly dependent upon a
parameter λ,

xν = aν + λbν,

we obtain a line which has all the properties of the straight lines
of the Euclidean geometry. In particular, it easily follows that by
laying off n times the interval s upon a straight line, an interval of
length n.s is obtained. A length, therefore, means the result of a
measurement carried out along a straight line by means of a unit
measuring-rod. It has a significance which is as independent of
the system of co-ordinates as that of a straight line, as will appear
in the sequel.

We come now to a train of thought which plays an analogous
rôle in the theories of special and general relativity. We ask the
question: besides the Cartesian co-ordinates which we have used
are there other equivalent co-ordinates? An interval has a phys-
ical meaning which is independent of the choice of co-
ordinates; and so has the spherical surface which we obtain as
the locus of the end points of all equal intervals that we lay off
from an arbitrary point of our space of reference. If xν as well as
x′ν (ν from 1 to 3) are Cartesian co-ordinates of our space of
reference, then the spherical surface will be expressed in our two
systems of co-ordinates by the equations
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∑∆xν
2 = const. (2)

∑∆x′ν2 = const. (2a)

How must the x′ν be expressed in terms of the xν in order that
equations (2) and (2a) may be equivalent to each other? Regard-
ing the x′ν expressed as functions of the xν, we can write, by
Taylor’s theorem, for small values of the ∆xν,

∆x′ν =�
α

∂x′ν

∂xα

∆xα + 
1

2�αβ

∂2x′ν

∂xα∂xβ

 ∆xα∆xβ . . .

If we substitute (2a) in this equation and compare with (1), we
see that the x′ν must be linear functions of the xν. If we therefore
put

x′ν = αν +∑
a

bναxα (3)

or

∆x′ν =∑
a

bνα∆xα (3a)

then the equivalence of equations (2) and (2a) is expressed in
the form

∑∆x′ν2 = λ∑∆xν
2 (λ independent of ∆xν) (2b)

It therefore follows that λ must be a constant. If we put λ = 1,
(2b) and (3a) furnish the conditions

∑
v

bναbνβ = δαβ (4)
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in which δαβ = 1, or δαβ = 0, according as α = β or α ≠ β. The
conditions (4) are called the conditions of orthogonality, and
the transformations (3), (4), linear orthogonal transformations.
If we stipulate that s2 = ∑ ∆xν

2 shall be equal to the square of the
length in every system of co-ordinates, and if we always measure
with the same unit scale, then λ must be equal to 1. Therefore
the linear orthogonal transformations are the only ones by
means of which we can pass from one Cartesian system of co-
ordinates in our space of reference to another. We see that in
applying such transformations the equations of a straight line
become equations of a straight line. Reversing equations (3a) by
multiplying both sides by bνβ and summing for all the ν’s, we
obtain

∑ bνβ∆x′ν =∑
να

bναbνβ∆xα =∑
a

δαβ∆xα = ∆xβ (5)

The same coefficients, b, also determine the inverse substitution
of ∆xν. Geometrically, bνα is the cosine of the angle between the
x′ν axis and the xα axis.

To sum up, we can say that in the Euclidean geometry there
are (in a given space of reference) preferred systems of co-
ordinates, the Cartesian systems, which transform into each
other by linear orthogonal transformations. The distance s
between two points of our space of reference, measured by a
measuring-rod, is expressed in such co-ordinates in a particu-
larly simple manner. The whole of geometry may be founded
upon this conception of distance. In the present treatment,
geometry is related to actual things (rigid bodies), and its
theorems are statements concerning the behaviour of these
things, which may prove to be true or false.

One is ordinarily accustomed to study geometry divorced
from any relation between its concepts and experience. There
are advantages in isolating that which is purely logical and
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independent of what is, in principle, incomplete empiricism.
This is satisfactory to the pure mathematician. He is satisfied if he
can deduce his theorems from axioms correctly, that is, without
errors of logic. The questions as to whether Euclidean geometry
is true or not does not concern him. But for our purpose it is
necessary to associate the fundamental concepts of geometry
with natural objects; without such an association geometry is
worthless for the physicist. The physicist is concerned with the
question as to whether the theorems of geometry are true or
not. That Euclidean geometry, from this point of view, affirms
something more than the mere deductions derived logically
from definitions may be seen from the following simple
consideration:

Between n points of space there are 
n(n − 1)

2
 distances, Sµν;

between these and the 3n co-ordinates we have the relations

sµν
2 = (x1(µ) − x1(ν))

2 + (x2(µ) − x2(ν))
2 + . . .

From these 
n(n − 1)

2
 equations the 3n co-ordinates may be

eliminated, and from this elimination at least 
n(n − 1)

2
− 3n

equations in the sµν will result.* Since the sµν are measurable
quantities, and by definition are independent of each other,
these relations between the sµν are not necessary a priori.

From the foregoing it is evident that the equations of trans-
formation (3), (4) have a fundamental significance in Euclid-
ean geometry, in that they govern the transformation from
one Cartesian system of co-ordinates to another. The Cartesian

* In reality there are 
n(n − 1)

2
 − 3n + 6 equations.
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systems of co-ordinates are characterized by the property that in
them the measurable distance between two points, s, is expressed
by the equation

s2 = ∑ ∆xν
2

If K(xν) and K′(xν) are two Cartesian systems of co-ordinates,
then

∑ ∆xν
2 = ∑ ∆x′ν2

The right-hand side is identically equal to the left-hand side
on account of the equations of the linear orthogonal transform-
ation, and the right-hand side differs from the left-hand side
only in that the xν are replaced by the x′ν. This is expressed by the
statement that ∑ ∆xν

2 is an invariant with respect to linear
orthogonal transformations. It is evident that in the Euclidean
geometry only such, and all such, quantities have an objective
significance, independent of the particular choice of the Car-
tesian co-ordinates, as can be expressed by an invariant with
respect to linear orthogonal transformations. This is the reason
why the theory of invariants, which has to do with the laws that
govern the form of invariants, is so important for analytical
geometry.

As a second example of a geometrical invariant, consider a
volume. This is expressed by

V = ��� dx1 dx2 dx3

By means of Jacobi’s theorem we may write

��� dx′1 dx′2 dx′3 = ��� 
∂(x′1, x′2, x′3)
∂(x1, x2, x3)

 dx1 dx2 dx3

where the integrand in the last integral is the functional
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determinant of the x′ν with respect to the xν, and this by (3) is
equal to the determinant |bµν| of the coefficients of substitution,
bνα. If we form the determinant of the δµα from equation (4),
we obtain, by means of the theorem of multiplication of
determinants,

1 = |δαβ| = |∑
ν

bνα bνβ| = | bµν|
2; |bµν| = ± 1. (6)

If we limit ourselves to those transformations which have the
determinant + 1* (and only these arise from continuous
variations of the systems of co-ordinates) then V is an invariant.

Invariants, however, are not the only forms by means of which
we can give expression to the independence of the particular
choice of the Cartesian co-ordinates. Vectors and tensors are
other forms of expression. Let us express the fact that the point
with the current co-ordinates xν lies upon a straight line. We have

xν − Aν = λBν (ν from 1 to 3)

Without limiting the generality we can put

∑ Bν
2 = 1

If we multiply the equations by bβν (compare (3a) and (5))
and sum for all the ν’s, we get

x′β − A′β = λB′β

where we have written

* There are thus two kinds of Cartesian systems which are designated as ‘right-
handed’ and ‘left-handed’ systems. The difference between these is familiar to
every physicist and engineer. It is interesting to note that these two kinds of
systems cannot be defined geometrically, but only the contrast between them.
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B′β =∑
ν

bβνBν; A′β =∑
ν

bβνAν

These are the equations of straight lines with respect to a
second Cartesian system of co-ordinates K′. They have the same
form as the equations with respect to the original system of
co-ordinates. It is therefore evident that straight lines have a
significance which is independent of the system of co-ordinates.
Formally, this depends upon the fact that the quantities
(xν − Aν) − λBν are transformed as the components of an interval,
∆xν. The ensemble of three quantities, defined for every system
of Cartesian co-ordinates, and which transform as the compon-
ents of an interval, is called a vector. If the three components
of a vector vanish for one system of Cartesian co-ordinates, they
vanish for all systems, because the equations of transforma-
tion are homogeneous. We can thus get the meaning of the
concept of a vector without referring to a geometrical repre-
sentation. This behaviour of the equations of a straight line
can be expressed by saying that the equation of a straight line is
co-variant with respect to linear orthogonal transformations.

We shall now show briefly that there are geometrical entities
which lead to the concept of tensors. Let P0 be the centre of a
surface of the second degree, P any point on the surface, and ξν

the projections of the interval P0P upon the co-ordinate axes.
Then the equation of the surface is

∑ aµνξµξν = 1

In this, and in analogous cases, we shall omit the sign of summa-
tion, and understand that the summation is to be carried out for
those indices that appear twice. We thus write the equation of
the surface

aµνξµξν = 1

space and time in pre-relativity physics 11



The quantities aµν determine the surface completely, for a given
position of the centre, with respect to the chosen system of
Cartesian co-ordinates. From the known law of transformation
for the ξν (3a) for linear orthogonal transformations, we easily
find the law of transformation for the aµν*:

a′στ = bσµbτνaµν

This transformation is homogeneous and of the first degree in
the aµν. On account of this transformation, the aµν are called
components of a tensor of the second rank (the latter on account
of the double index). If all the components, aµν, of a tensor with
respect to any system of Cartesian co-ordinates vanish, they van-
ish with respect to every other Cartesian system. The form and
the position of the surface of the second degree is described by
this tensor (a).

Tensors of higher rank (number of indices) may be defined
analytically. It is possible and advantageous to regard vectors as
tensors of rank 1, and invariants (scalars) as tensors of rank 0. In
this respect, the problem of the theory of invariants may be so
formulated: according to what laws may new tensors be formed
from given tensors? We shall consider these laws now, in order
to be able to apply them later. We shall deal first only with the
properties of tensors with respect to the transformation from
one Cartesian system to another in the same space of reference,
by means of linear orthogonal transformations. As the laws are
wholly independent of the number of dimensions, we shall leave
this number, n, indefinite at first.

Definition. If an object is defined with respect to every system
of Cartesian co-ordinates in a space of reference of n dimensions
by the nα numbers Aµνρ . . . (α = number of indices), then these

* The equation a′στξ′σξ′τ
= 1 may, by (5), be replaced by a′στbµσbντξσξτ

= 1,
from which the result stated immediately follows.
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numbers are the components of a tensor of rank α if the
transformation law is

A′µ′ν′ρ′ . . . = bµ′µbν′ν bρ′ρ . . . Aµνρ . . . (7)

Remark. From this definition it follows that

Aµνρ . . . BµCνDρ . . . (8)

is an invariant, provided that (B), (C), (D) . . . are vectors. Con-
versely, the tensor character of (A) may be inferred, if it is
known that the expression (8) leads to an invariant for an
arbitrary choice of the vectors (B), (C), &c.

Addition and Subtraction. By addition and subtraction of the
corresponding components of tensors of the same rank, a tensor
of equal rank results:

Aµνρ . . . ± Bµνρ . . . = Cµνρ . . . (9)

The proof follows from the definition of a tensor given above.
Multiplication. From a tensor of rank α and a tensor of rank β

we may obtain a tensor of rank α + β by multiplying all the
components of the first tensor by all the components of the
second tensor:

Tµνρ . . . αβγ . . . = Aµνρ . . . Bαβγ . . . (10)

Contraction. A tensor of rank α − 2 may be obtained from one
of rank α by putting two definite indices equal to each other and
then summing for this single index:

Tρ . . . = Aµµρ . . . (=∑
µ
Aµµρ . . .) (11)
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The proof is

A′µµρ . . . = bµαbµβbργ . . . Aαβγ . . .
= δαβbργ . . . Aαβγ . . . = bργ . . . Aααγ . . .

In addition to these elementary rules of operation there is also
the formation of tensors by differentiation (‘Erweiterung’):

Tµνρ . . . α = 
∂Aµνρ . . .

∂xο

(12)

New tensors, in respect to linear orthogonal transformations,
may be formed from tensors according to these rules of
operation.

Symmetry Properties of Tensors. Tensors are called symmetrical or
skew-symmetrical in respect to two of their indices, µ and ν, if
both the components which result from interchanging the
indices µ and ν are equal to each other or equal with opposite
signs.

Condition for symmetry: Aµνρ = Aνµρ

Condition for skew-symmetry: Aµνρ = − Aνµρ

Theorem. The character of symmetry or skew-symmetry
exists independently of the choice of co-ordinates, and in this
lies its importance. The proof follows from the equation defin-
ing tensors.

SPECIAL TENSORS

I. The quantities δρσ (4) are tensor components (funda-
mental tensor).

Proof. If in the right-hand side of the equation of trans-
formation A′µν = bµαbνβAαβ, we substitute for Aαβ the quantities
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δαβ (which are equal to 1 or 0 according as α = β or α ≠ β), we
get

A′µν = bµαbνα = δµν

The justification for the last sign of equality becomes evident if
one applies (4) to the inverse substitution (5).

II. There is a tensor (δµνρ . . .) skew-symmetrical with respect
to all pairs of indices, whose rank is equal to the number of
dimensions, n, and whose components are equal to + 1 or − 1
according as µνρ . . . is an even or odd permutation of 123 . . .

The proof follows with the aid of the theorem proved above
|bρσ| = 1.

These few simple theorems form the apparatus from the
theory of invariants for building the equations of pre-relativity
physics and the theory of special relativity.

We have seen that in pre-relativity physics, in order to specify
relations in space, a body of reference, or a space of reference, is
required, and, in addition, a Cartesian system of co-ordinates.
We can fuse both these concepts into a single one by thinking
of a Cartesian system of co-ordinates as a cubical framework
formed of rods each of unit length. The co-ordinates of the
lattice points of this frame are integral numbers. It follows from
the fundamental relation

s2 = ∆x1
2 + ∆x2

2 + ∆x3
2 (13)

that the members of such a space-lattice are all of unit length.
To specify relations in time, we require in addition a standard
clock placed, say, at the origin of our Cartesian system of co-
ordinates or frame of reference. If an event takes place any-
where we can assign to it three co-ordinates, xν, and a time t, as
soon as we have specified the time of the clock at the origin
which is simultaneous with the event. We therefore give
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(hypothetically) an objective significance to the statement of the
simultaneity of distant events, while previously we have been
concerned only with the simultaneity of two experiences of
an individual. The time so specified is at all events independent
of the position of the system of co-ordinates in our space of
reference, and is therefore an invariant with respect to the
transformation (3).

It is postulated that the system of equations expressing
the laws of pre-relativity physics is co-variant with respect to
the transformation (3), as are the relations of Euclidean geo-
metry. The isotropy and homogeneity of space is expressed in
this way.* We shall now consider some of the more important
equations of physics from this point of view.

The equations of motion of a material particle are

m
d2xν

dt2
 = Xν (14)

(dxν) is a vector; dt, and therefore also 
1

dt
, an invariant; thus �dxν

dt �
is a vector; in the same way it may be shown that �d

2xν

dt2 � is a

vector. In general, the operation of differentiation with respect to
time does not alter the tensor character. Since m is an invariant

* The laws of physics could be expressed, even in case there were a preferred
direction in space, in such a way as to be co-variant with respect to the trans-
formation (3); but such an expression would in this case be unsuitable. If there
were a preferred direction in space it would simplify the description of natural
phenomena to orient the system of co-ordinates in a definite way with respect
to this direction. But if, on the other hand, there is no unique direction in space
it is not logical to formulate the laws of nature in such a way as to conceal the
equivalence of systems of co-ordinates that are oriented differently. We shall
meet with this point of view again in the theories of special and general
relativity.
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(tensor of rank 0), �m 
d2xν

dt2 � is a vector, or tensor of rank 1 (by the

theorem of the multiplication of tensors). If the force (Xν) has a

vector character, the same holds for the difference �md2xν

dt2
 − Xν�.

These equations of motion are therefore valid in every other
system of Cartesian co-ordinates in the space of reference. In the
case where the forces are conservative we can easily recognize
the vector character of (Xν). For a potential energy, Φ, exists,
which depends only upon the mutual distances of the particles,
and is therefore an invariant. The vector character of the force, Xν

= − 
∂Φ

∂xν

, is then a consequence of our general theorem about the

derivative of a tensor of rank 0.
Multiplying by the velocity, a tensor of rank 1, we obtain the

tensor equation

�md2xν

dt2
 − Xν� dxµ

dt
 = 0

By contraction and multiplication by the scalar dt we obtain the
equation of kinetic energy

d�mq2

2 � = Xν dxµ

If ξν denotes the difference of the co-ordinates of the material
particle and a point fixed in space, then the ξν have vector

character. We evidently have 
d2xν

dt2
 = 

d2ξν

dt2
, so that the equations

of motion of the particle may be written

m
d2ξν

dt2
 − Xν = 0
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Multiplying this equation by ξµ we obtain a tensor equation

�md2ξν

dt2
 − Xν�ξµ = 0

Contracting the tensor on the left and taking the time average
we obtain the virial theorem, which we shall not consider
further. By interchanging the indices and subsequent subtrac-
tion, we obtain, after a simple transformation, the theorem of
moments,

d

dt�m�ξµ

dξν

dt
 − ξν

dξµ

dt �� = ξµXν − ξνXµ (15)

It is evident in this way that the moment of a vector is not a
vector but a tensor. On account of their skew-symmetrical char-
acter there are not nine, but only three independent equations of
this system. The possibility of replacing skew-symmetrical ten-
sors of the second rank in space of three dimensions by vectors
depends upon the formation of the vector

Aµ = 12 Aστδστµ

If we multiply the skew-symmetrical tensor of rank 2 by the
special skew-symmetrical tensor δ introduced above, and con-
tract twice, a vector results whose components are numerically
equal to those of the tensor. These are the so-called axial vectors
which transform differently, from a right-handed system to a
left-handed system, from the ∆xν. There is a gain in picturesque-
ness in regarding a skew-symmetrical tensor of rank 2 as a vector
in space of three dimensions, but it does not represent the exact
nature of the corresponding quantity so well as considering it a
tensor.
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We consider next the equations of motion of a continuous
medium. Let ρ be the density, uν the velocity components con-
sidered as functions of the co-ordinates and the time, Xν the
volume forces per unit of mass, and pνσ the stresses upon a sur-
face perpendicular to the σ-axis in the direction of increasing xν.
Then the equations of motion are, by Newton’s law,

ρ
duν

dt
 = − 

∂pνσ

∂xσ

 + ρXν

in which 
duν

dt
 is the acceleration of the particle which at time t has

the co-ordinates xν. If we express this acceleration by partial
differential coefficients, we obtain, after dividing by ρ,

∂uν

∂t
 + 

∂uν

∂xσ

uσ = − 
1

ρ

∂pνσ

∂xσ

 + Xν (16)

We must show that this equation holds independently of the
special choice of the Cartesian system of co-ordinates. (uν) is a

vector, and therefore 
∂uν

∂t
 is also a vector. 

∂uν

∂xσ

 is a tensor of rank

2, 
∂uν

∂xσ

uτ is a tensor of rank 3. The second term on the left results

from contraction in the indices σ, τ. The vector character of the
second term on the right is obvious. In order that the first term
on the right may also be a vector it is necessary for pνσ to be a

tensor. Then by differentiation and contraction 
∂pνσ

∂xσ

 results, and

is therefore a vector, as it also is after multiplication by the

reciprocal scalar 
1

ρ
. That pνσ is a tensor, and therefore transforms

according to the equation
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p′µν = bµα bνβ pαβ

is proved in mechanics by integrating this equation over an
infinitely small tetrahedron. It is also proved there, by application
of the theorem of moments to an infinitely small parallel-
epipedon, that pνσ = pσν, and hence that the tensor of the stress is
a symmetrical tensor. From what has been said it follows that,
with the aid of the rules given above, the equation is co-variant
with respect to orthogonal transformations in space (rotational
transformations); and the rules according to which the quan-
tities in the equation must be transformed in order that the
equation may be co-variant also become evident.

The co-variance of the equation of continuity,

∂ρ

∂t
 + 

∂(ρuν)

∂xν

 = 0 (17)

requires, from the foregoing, no particular discussion.
We shall also test for co-variance the equations which express

the dependence of the stress components upon the properties of
the matter, and set up these equations for the case of a compres-
sible viscous fluid with the aid of the conditions of co-variance.
If we neglect the viscosity, the pressure, p, will be a scalar, and
will depend only upon the density and the temperature of the
fluid. The contribution to the stress tensor is then evidently

pδµν

in which δµν is the special symmetrical tensor. This term will also
be present in the case of a viscous fluid. But in this case there will
also be pressure terms, which depend upon the space derivatives
of the uν. We shall assume that this dependence is a linear one.
Since these terms must be symmetrical tensors, the only ones
which enter will be
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α�∂uµ

∂xν

 + 
∂uν

∂xµ

� + βδµν

∂uα

∂xα

�for 
∂uα

dxα

 is a scalar�. For physical reasons (no slipping) it is

assumed that for symmetrical dilatations in all directions, i.e.
when

∂u1

∂x1

 = 
∂u2

∂x2

 = 
∂u3

∂x3

;
∂u1

∂x2

, &c. = 0

there are no frictional forces present, from which it follows that

β = − 2
3 α. If only 

∂u1

∂x3

 is different from zero, let p31 = − η
∂u1

∂x3

, by

which α is determined. We then obtain for the complete stress
tensor,

pµν = p δµν − η��∂uµ

∂xν

 + 
∂uν

∂xµ

� − 
2

3 �∂u1

∂x1

 + 
∂u2

∂x2

 + 
∂u3

∂x3
�δµν� (18)

The heuristic value of the theory of invariants, which arises
from the isotropy of space (equivalence of all directions),
becomes evident from this example.

We consider, finally, Maxwell’s equations in the form which
are the foundation of the electron theory of Lorentz.
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∂h3

∂x2

 − 
∂h2

∂x3

 = 
1

c
 
∂e1

∂t
 + 

1

c
i1

∂h1

∂x3

 − 
∂h3

∂x1

 = 
1

c
 
∂e2

∂t
 + 

1

c
i2 (19)

· · · ·
∂e1

∂x1

 + 
∂e2

∂x2

 + 
∂e3

∂x3

 = ρ










∂e3

∂x2

 − 
∂e2

∂x3

 = − 
1

c

∂h1

∂t

∂e1

∂x2

 − 
∂e3

∂x1

 = − 
1

c

∂h2

∂t
(20)

· · · ·
∂h1

∂x1

 + 
∂h2

∂x2

 + 
∂h3

∂x3

 = 0










i is a vector, because the current density is defined as the
density of electricity multiplied by the vector velocity of the
electricity. According to the first three equations it is evident that
e is also to be regarded as a vector. Then h cannot be regarded as
a vector.* The equations may, however, easily be interpreted if h
is regarded as a skew-symmetrical tensor of the second rank.
Accordingly, we write h23, h31, h12, in place of h1, h2, h3 respec-
tively. Paying attention to the skew-symmetry of hµν, the first
three equations of (19) and (20) may be written in the form

∂hµν

∂xν

 = 
1

c
 
∂eµ

∂t
 + 

1

c
iµ (19a)

* These considerations will make the reader familiar with tensor operations
without the special difficulties of the four-dimensional treatment; corre-
sponding considerations in the theory of special relativity (Minkowski’s
interpretation of the field) will then offer fewer difficulties.
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∂eµ

∂xν

 − 
∂eν

∂xµ

 = + 
1

c

∂hµν

∂t
(20a)

In contrast to e, h appears as a quantity which has the same type
of symmetry as an angular velocity. The divergence equations
then take the form

∂eν

∂xν

 = ρ (19b)

∂hµν

∂xρ

 + 
∂hνρ

∂xµ

 + 
∂hρµ

∂xν

 = 0 (20b)

The last equation is a skew-symmetrical tensor equation of the
third rank (the skew-symmetry of the left-hand side with respect
to every pair of indices may easily be proved, if attention is paid
to the skew-symmetry of hµν). This notation is more natural than
the usual one, because, in contrast to the latter, it is applicable
to Cartesian left-handed systems as well as to right-handed
systems without change of sign.
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THE THEORY OF SPECIAL
RELATIVITY

The previous considerations concerning the configuration of
rigid bodies have been founded, irrespective of the assumption
as to the validity of the Euclidean geometry, upon the hypothesis
that all directions in space, or all configurations of Cartesian
systems of co-ordinates, are physically equivalent. We may
express this as the ‘principle of relativity with respect to direc-
tion’, and it has been shown how equations (laws of nature) may
be found, in accord with this principle, by the aid of the calculus
of tensors. We now inquire whether there is a relativity with
respect to the state of motion of the space of reference; in other
words, whether there are spaces of reference in motion relatively
to each other which are physically equivalent. From the stand-
point of mechanics it appears that equivalent spaces of reference
do exist. For experiments upon the earth tell us nothing of
the fact that we are moving about the sun with a velocity of
approximately 30 kilometres a second. On the other hand, this
physical equivalence does not seem to hold for spaces of



reference in arbitrary motion; for mechanical effects do not
seem to be subject to the same laws in a jolting railway train as in
one moving with uniform velocity; the rotation of the earth
must be considered in writing down the equations of motion
relatively to the earth. It appears, therefore, as if there were Car-
tesian systems of co-ordinates, the so-called inertial systems,
with reference to which the laws of mechanics (more generally
the laws of physics) are expressed in the simplest form. We may
surmise the validity of the following proposition: if K is an iner-
tial system, then every other system K′ which moves uniformly
and without rotation relatively to K, is also an inertial system; the
laws of nature are in concordance for all inertial systems. This
statement we shall call the ‘principle of special relativity’. We
shall draw certain conclusions from this principle of ‘relativity
of translation’ just as we have already done for relativity of
direction.

In order to be able to do this, we must first solve the following
problem. If we are given the Cartesian co-ordinates, xν, and the
time, t, of an event relatively to one inertial system, K, how can
we calculate the co-ordinates, x′ν, and the time, t′, of the same
event relatively to an inertial system K′ which moves with uni-
form translation relatively to K? In the pre-relativity physics this
problem was solved by making unconsciously two hypotheses:

1. Time is absolute; the time of an event, t′, relatively to K′ is
the same as the time relatively to K. If instantaneous signals could
be sent to a distance, and if one knew that the state of motion of
a clock had no influence on its rate, then this assumption would
be physically validated. For then clocks, similar to one another,
and regulated alike, could be distributed over the systems K and
K′, at rest relatively to them, and their indications would be
independent of the state of motion of the systems; the time of
an event would then be given by the clock in its immediate
neighbourhood.

2. Length is absolute; if an interval, at rest relatively to K, has a
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length s, then it has the same length s, relatively to a system K′
which is in motion relatively to K.

If the axes of K and K′ are parallel to each other, a simple
calculation based on these two assumptions, gives the equations
of transformation

x′ν = xν − aν − bνt �t′ = t − b (21)

This transformation is known as the ‘Galilean Transformation’.
Differentiating twice by the time, we get

d2x′ν

dt2
 = 

d2xν

dt2

Further, it follows that for two simultaneous events,

x′ν
(1) − x′ν

(2) = xν
(1) − xν

(2)

The invariance of the distance between the two points results
from squaring and adding. From this easily follows the co-
variance of Newton’s equations of motion with respect to the
Galilean transformation (21). Hence it follows that classical
mechanics is in accord with the principle of special relativity if
the two hypotheses respecting scales and clocks are made.

But this attempt to found relativity of translation upon the
Galilean transformation fails when applied to electromagnetic
phenomena. The Maxwell-Lorentz electromagnetic equations
are not co-variant with respect to the Galilean transformation. In
particular, we note, by (21), that a ray of light which referred to
K has a velocity c, has a different velocity referred to K′, depend-
ing upon its direction. The space of reference of K is therefore
distinguished, with respect to its physical properties, from
all spaces of reference which are in motion relatively to it
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(quiescent ether). But all experiements have shown that electro-
magnetic and optical phenomena, relatively to the earth as
the body of reference, are not influenced by the translational
velocity of the earth. The most important of these experiments
are those of Michelson and Morley, which I shall assume are
known. The validity of the principle of special relativity with
respect to electromagnetic phenomena also can therefore hardly
be doubted.

On the other hand, the Maxwell-Lorentz equations have
proved their validity in the treatment of optical problems in
moving bodies. No other theory has satisfactorily explained the
facts of aberration, the propagation of light in moving bodies
(Fizeau), and phenomena observed in double stars (De Sitter).
The consequence of the Maxwell-Lorentz equations that in a
vacuum light is propagated with the velocity c, at least with
respect to a definite inertial system K, must therefore be regarded
as proved. According to the principle of special relativity, we
must also assume the truth of this principle for every other
inertial system.

Before we draw any conclusions from these two principles we
must first review the physical significance of the concepts ‘time’
and ‘velocity’. It follows from what has gone before, that
co-ordinates with respect to an inertial system are physically
defined by means of measurements and constructions with the
aid of rigid bodies. In order to measure time, we have supposed
a clock, U, present somewhere, at rest relatively to K. But we
cannot fix the time, by means of this clock, of an event whose
distance from the clock is not negligible; for there are no
‘instantaneous signals’ that we can use in order to compare the
time of the event with that of the clock. In order to complete the
definition of time we may employ the principle of the constancy
of the velocity of light in a vacuum. Let us suppose that we place
similar clocks at points of the system K, at rest relatively to it, and
regulated according to the following scheme. A ray of light is
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sent out from one of the clocks, Um, at the instant when it indi-
cates the time tm, and travels through a vacuum a distance rmn, to
the clock Un; at the instant when this ray meets the clock Un the

latter is set to indicate the time tn = tm + 
rmn

c .* The principle of the

constancy of the velocity of light then states that this adjustment
of the clocks will not lead to contradictions. With clocks so
adjusted, we can assign the time to events which take place near
any one of them. It is essential to note that this definition of time
relates only to the intertial system K, since we have used a system
of clocks at rest relatively to K. The assumption which was made
in the pre-relativity physics of the absolute character of time (i.e.
the independence of time of the choice of the inertial system)
does not follow at all from this definition.

The theory of relativity is often criticized for giving, without
justification, a central theoretical rôle to the propagation of light,
in that it founds the concept of time upon the law of propagation
of light. The situation, however, is somewhat as follows. In order
to give physical significance to the concept of time, processes of
some kind are required which enable relations to be established
between different places. It is immaterial what kind of processes
one chooses for such a definition of time. It is advantageous,
however, for the theory, to choose only those processes concern-
ing which we know something certain. This holds for the
propagation of light in vacuo in a higher degree than for any other
process which could be considered, thanks to the investigations
of Maxwell and H. A. Lorentz.

* Strictly speaking, it would be more correct to define simultaneity first,
somewhat as follows: two events taking place at the points A and B of the
system K are simultaneous if they appear at the same instant when observed
from the middle point, M, of the interval AB. Time is then defined as the
ensemble of the indications of similar clocks, at rest relatively to K, which
register the same simultaneously.
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From all of these considerations, space and time data have
a physically real, and not a mere fictitious, significance; in
particular this holds for all the relations in which co-ordinates
and time enter, e.g. the relations (21). There is, therefore, sense
in asking whether those equations are true or not, as well as in
asking what the true equations of transformation are by which
we pass from one inertial system K to another, K′, moving rela-
tively to it. It may be shown that this is uniquely settled by means
of the principle of the constancy of the velocity of light and the
principle of special relativity.

To this end we think of space and time physically defined with
respect to two inertial systems, K and K′, in the way that has been
shown. Further, let a ray of light pass from one point P1 to
another point P2 of K through a vacuum. If r is the measured
distance between the two points, then the propagation of light
must satisfy the equation

r = c . ∆t

If we square this equation, and express r2 by the differences of
the co-ordinates, ∆xν, in place of this equation we can write

∑ (∆xν)
2 − c2∆t2 = 0 (22)

This equation formulates the principle of the constancy of the
velocity of light relatively to K. It must hold whatever may be
the motion of the source which emits the ray of light.

The same propagation of light may also be considered rela-
tively to K′, in which case also the principle of the constancy of
the velocity of light must be satisfied. Therefore, with respect to
K′, we have the equation

∑ (∆x′ν)
2 − c2∆t′2 = 0 (22a)

Equations (22a) and (22) must be mutually consistent with
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each other with respect to the transformation which transforms
from K to K′. A transformation which effects this we shall call a
‘Lorentz transformation’.

Before considering these transformations in detail we shall
make a few general remarks about space and time. In the pre-
relativity physics space and time were separate entities. Specifi-
cations of time were independent of the choice of the space of
reference. The Newtonian mechanics was relative with respect
to the space of reference, so that, e.g. the statement that two
non-simultaneous events happened at the same place had no
objective meaning (that is, independent of the space of refer-
ence). But this relativity had no rôle in building up the theory.
One spoke of points of space, as of instants of time, as if they
were absolute realities. It was not observed that the true ele-
ment of the space-time specification was the event specified by
the four numbers x1, x2, x3, t. The conception of something
happening was always that of a four-dimensional continuum;
but the recognition of this was obscured by the absolute char-
acter of the pre-relativity time. Upon giving up the hypothesis of
the absolute character of time, particularly that of simultaneity,
the four-dimensionality of the time-space concept was
immediately recognized. It is neither the point in space, nor the
instant in time, at which something happens that has phys-
ical reality, but only the event itself. There is no absolute
(independent of the space of reference) relation in space, and
no absolute relation in time between two events, but there is an
absolute (independent of the space of reference) relation in
space and time, as will appear in the sequel. The circumstance
that there is no objective rational division of the four-
dimensional continuum into a three-dimensional space and a
one-dimensional time continuum indicates that the laws of
nature will assume a form which is logically most satisfactory
when expressed as laws in the four-dimensional space-time
continuum. Upon this depends the great advance in method
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which the theory of relativity owes to Minkowski. Considered
from this standpoint, we must regard x1, x2, x3, t as the four co-
ordinates of an event in the four-dimensional continuum. We
have far less success in picturing to ourselves relations in this
four-dimensional continuum than in the three-dimensional
Euclidean continuum; but it must be emphasized that even in
the Euclidean three-dimensional geometry its concepts and
relations are only of an abstract nature in our minds, and are
not at all identical with the images we form visually and
through our sense of touch. The non-divisibility of the four-
dimensional continuum of events does not at all, however,
involve the equivalence of the space co-ordinates with the time
co-ordinate. On the contrary, we must remember that the time
co-ordinate is defined physically wholly differently from the
space co-ordinates. The relations (22) and (22a) which when
equated define the Lorentz transformation show, further, a dif-
ference in the rôle of the time co-ordinate from that of the
space co-ordinates; for the term ∆t2 has the opposite sign to the
space terms, ∆x1

2 ∆x2
2, ∆x3

2.
Before we analyse further the conditions which define the

Lorentz transformation, we shall introduce the light-time, l = ct,
in place of the time, t, in order that the constant c shall not enter
explicitly into the formulas to be developed later. Then the
Lorentz transformation is defined in such a way that, first, it
makes the equation

∆x1
2 + ∆x2

2 + ∆x3
2 − ∆l2 = 0 (22b)

a co-variant equation, that is, an equation which is satisfied with
respect to every inertial system if it is satisfied in the inertial
system to which we refer the two given events (emission and
reception of the ray of light). Finally, with Minkowski, we intro-
duce in place of the real time co-ordinate l = ct, the imaginary
time co-ordinate
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x4 = il = ict (� − 1 = i)

Then the equation defining the propagation of light, which
must be co-variant with repect to the Lorentz transformation,
becomes

∑
(4)

∆xν
2 = ∆x1

2 + ∆x2
2 + ∆x3

2 + ∆x4
2 = 0 (22c)

This condition is always satisfied* if we satisfy the more general
condition that

s2 = ∆x1
2 + ∆x2

2 + ∆x3
2 + ∆x4

2 (23)

shall be an invariant with respect to the transformation. This
condition is satisfied only by linear transformations, that is,
transformations of the type

x′µ = aµ + bµαxα (24)

in which the summation over the α is to be extended from α = 1
to α = 4. A glance at equations (23) (24) shows that the Lorentz
transformation so defined is identical with the translational and
rotational transformations of the Euclidean geometry, if we dis-
regard the number of dimensions and the relations of reality.
We can also conclude that the coefficients bµα must satisfy the
conditions

bµαbνα = δµν = bαµbαν (25)

Since the ratios of the xν are real, it follows that all the aµ and the

* That this specialization lies in the nature of the case will be evident later.
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bµα are real, except a4, b41, b42, b43, b14, b24, and b34, which are
purely imaginary.

Special Lorentz Transformation. We obtain the simplest transfor-
mations of the type of (24) and (25) if only two of the co-
ordinates are to be transformed, and if all the aµ, which merely
determine the new origin, vanish. We obtain then for the indices
1 and 2, on account of the three independent conditions which
the relations (25) furnish,

x′1 = x1 cos � − x2 sin �

x′2 = x1 sin � + x2 cos �
(26)

x′3 = x3

x′4 = x4








This is a simple rotation in space of the (space) co-ordinate
system about the x3-axis. We see that the rotational transfor-
mation in space (without the time transformation) which we
studied before is contained in the Lorentz transformation as a
special case. For the indices 1 and 4 we obtain, in an analogous
manner,

x′1 = x1 cos ψ − x4 sin ψ

x′4 = x1 sin ψ + x4 cos ψ
(26a)

x′2 = x2

x′3 = x3








On account of the relations of reality ψ must be taken as
imaginary. To interpret these equations physically, we introduce
the real light-time l and the velocity υ of K′ relatively to K, instead
of the imaginary angle ψ. We have, first,
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x′1 = x1 cos ψ − il sin ψ

l′ = − ix1 sin ψ + l cos ψ

Since for the origin of K′, i.e. for x′1 = 0, we must have x1 = υl, it
follows from the first of these equations that

υ = i tan ψ (27)

and also

sin ψ = 
− iυ

�1 − υ2

cos ψ = 
1

�1 − υ2

(28)







so that we obtain

x′1 = 
x1 − υl

�1 − υ2

l′  = 
l − υx1

�1 − υ2
(29)

x′2 = x2

x′2 = x2










These equations form the well-known special Lorentz trans-
formation, which in the general theory represents a rotation,
through an imaginary angle, of the four-dimensional system of
co-ordinates. If we introduce the ordinary time t, in place of the

light-time l, then in (29) we must replace l by ct and υ by 
υ

c
.
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We must now fill in a gap. From the principle of the constancy
of the velocity of light it follows that the equation

∑ xν
2 = 0

has a significance which is independent of the choice of the
inertial system; but the invariance of the quantity ∑ ∆xν

2 does not
at all follow from this. This quantity might be transformed with
a factor. This depends upon the fact that the right-hand side of
(29) might be multiplied by a factor λ, which may depend on υ.
But the principle of relativity does not permit this factor to be
different from 1, as we shall now show. Let us assume that we
have a rigid circular cylinder moving in the direction of its axis.
If its radius measured at rest with a unit measuring-rod is equal
to R0, its radius R in motion might be different from R0, since the
theory of relativity does not make the assumption that the shape
of bodies with respect to a space of reference is independent of
their motion relatively to this space of reference. But all direc-
tions in space must be equivalent to each other. R may therefore
depend upon the magnitude q of the velocity, but not upon its
direction; R must therefore be an even function of q. If the cylin-
der is at rest relatively to K′ the equation of its lateral surface is

x′2 + y′2 = R0
2

If we write the last two equations of (29) more generally

x′2 = λx2

x′2 = λx3

then the lateral surface of the cylinder referred to K satisfies the
equation

x2 + y2 = 
R0

2

λ2
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The factor λ therefore measures the lateral contraction of the
cylinder, and can thus, from the above, be only an even function
of υ.

If we introduce a third system of co-ordinates, K″, which
moves relatively to K′ with velocity υ in the direction of the
negative x-axis of K, we obtain, by applying (29) twice,

x″1 = λ(υ)λ(− υ)x1

· · · ·

· · · ·

l″ = λ(υ)λ( − υ)l

Now, since λ(υ) must be equal to λ(− υ), and since we assume
that we use the same measuring-rods in all the systems, it fol-
lows that the transformation of K″ to K must be the identical
transformation (since the possibility λ = − 1 does not need to be
considered). It is essential for these considerations to assume
that the behaviour of the measuring-rods does not depend upon
the history of their previous motion.

Moving Measuring-Rods and Clocks. At the definite K time, l = 0, the
position of the points given by the integers x′1 = n, is with
respect to K, given by x1 = n �1 − υ2; this follows from the first of
equations (29) and expresses the Lorentz contraction. A clock
at rest at the origin x1 = 0 of K, whose beats are characterized
by l = n, will, when observed from K′, have beats characterized by

l′ = 
n

�1 − υ2

this follows from the second of equations (29) and shows that
the clock goes slower than if it were at rest relatively to K′. These
two consequences, which hold, mutatis mutandis, for every system
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of reference, form the physical content, free from convention, of
the Lorentz transformation.

Addition Theorem for Velocities. If we combine two special Lorentz
transformations with the relative velocities υ1 and υ2, then the
velocity of the single Lorentz transformation which takes the
place of the two separate ones is, according to (27), given by

υ12 = i tan (ψ1 + ψ2) = i
tan ψ1 + tan ψ2

1 − tan ψ1 tan ψ2

 = 
υ1 + υ2

1 + υ1υ2

(30)

General Statements about the Lorentz Transformation and its Theory of Invari-
ants. The whole theory of invariants of the special theory of
relativity depends upon the invariant s2 (23). Formally, it has the
same rôle in the four-dimensional space-time continuum as
the invariant ∆x1

2 + ∆x2
2 + ∆x3

2 in the Euclidean geometry and in
the pre-relativity physics. The latter quantity is not an invariant
with respect to all the Lorentz transformations; the quantity s2 of
equation (23) assumes the rôle of this invariant. With respect to
an arbitrary inertial system, s2 may be determined by measure-
ments; with a given unit of measure it is a completely determin-
ate quantity, associated with an arbitrary pair of events.

The invariant s2 differs, disregarding the number of dimen-
sions, from the corresponding invariant of the Euclidean geo-
metry in the following points. In the Euclidean geometry s2 is
necessarily positive; it vanishes only when the two points con-
cerned come together. On the other hand, from the vanishing of

s2 = ∑ ∆xν
2 = ∆x1

2 + ∆x2
2 + ∆x3

2 − ∆l2

it cannot be concluded that the two space-time points fall
together; the vanishing of this quantity s2, is the invariant condi-
tion that the two space-time points can be connected by a light
signal in vacuo. If P is a point (event) represented in the four-
dimensional space of the x1, x2, x3, l, then all the ‘points’ which
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can be connected to P by means of a light signal lie upon
the cone s2 = 0 (compare Fig. 1, in which the dimension x3 is
suppressed).

The ‘upper’ half of the cone may contain the ‘points’ to which
light signals can be sent from P; then the ‘lower’ half of the cone
will contain the ‘points’ from which light signals can be sent to
P. The points P′ enclosed by the conical surface furnish, with P, a
negative s2; PP′, as well as P′P is then, according to Minkowski, of
the nature of a time. Such intervals represent elements of pos-
sible paths of motion, the velocity being less than that of light.*

Figure 1

* That material velocities exceeding that of light are not possible, follows from
the appearance of the radical �1 − υ2 in the special Lorentz transformation (29).
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In this case the l-axis may be drawn in the direction of PP′ by
suitably choosing the state of motion of the inertial system. If P′
lies outside of the ‘light-cone’ then PP′ is of the nature of a space;
in this case, by properly choosing the inertial system, ∆l can be
made to vanish.

By the introduction of the imaginary time variable, x4 = il,
Minkowski has made the theory of invariants for the four-
dimensional continuum of physical phenomena fully analogous
to the theory of invariants for the three-dimensional continuum
of Euclidean space. The theory of four-dimensional tensors of
special relativity differs from the theory of tensors in three-
dimensional space, therefore, only in the number of dimensions
and the relations of reality.

A physical entity which is specified by four quantities, Aν, in
an arbitrary inertial system of the x1, x2, x3, x4, is called a 4-vector,
with the components Aν, if the Aν correspond in their relations
of reality and the properties of transformation to the ∆xν; it may
be space-like or time-like. The sixteen quantities Aµν then form
the components of a tensor of the second rank, if they transform
according to the scheme

A′µν = bµαbνβ Aαβ

It follows from this that the Aµν behave, with respect to their
properties of transformation and their properties of reality, as
the products of the components, Uµ, Vν, of two 4-vectors, (U)
and (V). All the components are real except those which contain
the index 4 once, those being purely imaginary. Tensors of the
third and higher ranks may be defined in an analogous way. The
operations of addition, subtraction, multiplication, contraction
and differentiation for these tensors are wholly analogous to
the corresponding operations for tensors in three-dimensional
space.

Before we apply the tensor theory to the four-dimensional
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space-time continuum, we shall examine more particularly the
skew-symmetrical tensors. The tensor of the second rank has, in
general, 16 = 4 .4 components. In the case of skew-symmetry
the components with two equal indices vanish, and the com-
ponents with unequal indices are equal and opposite in pairs.
There exist, therefore, only six independent components, as is
the case in the electromagnetic field. In fact, it will be shown
when we consider Maxwell’s equations that these may be
looked upon as tensor equations, provided we regard the elec-
tromagnetic field as a skew-symmetrical tensor. Further, it is
clear that a skew-symmetrical tensor of the third rank (skew-
symmetrical in all pairs of indices) has only four independent
components, since there are only four combinations of three
different indices.

We now turn to Maxwell’s equations (19a), (19b), (20a),
(20b), and introduce the notation:*

�23

h23

�31

h31

�12

h12

�14

− iex

�24

− iey

�34

−iez
� (30a)

J1 J2 J3 J4
(31)1

c
ix

1

c
iy

1

c
iz iρ






with the convention that �µν shall be equal to −�νµ. Then
Maxwell’s equations may be combined into the forms

∂�µν

∂xν

 = Jµ (32)

* In order to avoid confusion, from now on we shall use the three-dimensional
space indices x, y, z instead of 1, 2, 3, and we shall reserve the numeral indices
1, 2, 3, 4 for the four-dimensional space-time continuum.
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∂�µν

∂xσ

 + 
∂�νσ

∂xµ

 + 
∂�σµ

∂xν

 = 0 (33)

as one can easily verify by substituting from (30a) and (31).
Equations (32) and (33) have a tensor character, and are
therefore co-variant with respect to Lorentz transformations, if
the �µν and the Jµ have a tensor character, which we assume.
Consequently, the laws for transforming these quantities from
one to another allowable (inertial) system of co-ordinates are
uniquely determined. The progress in method which electro-
dynamics owes to the theory of special relativity lies princi-
pally in this, that the number of independent hypotheses is
diminished. If we consider, for example, equations (19a) only
from the standpoint of relativity of direction, as we have done
above, we see that they have three logically independent terms.
The way in which the electric intensity enters these equations
appears to be wholly independent of the way in which the
magnetic intensity enters them; it would not be surprising if

instead of 
∂eµ

∂l
, we had, say, 

∂2eµ

∂l 2
, or if this term were absent.

On the other hand, only two independent terms appear in equa-
tion (32). The electromagnetic field appears as a formal unit; the
way in which the electric field enters this equation is determined
by the way in which the magnetic field enters it. Besides the
electromagnetic field, only the electric current density appears as
an independent entity. This advance in method arises from the
fact that the electric and magnetic fields lose their separate exist-
ences through the relativity of motion. A field which appears to
be purely an electric field, judged from one system, has also
magnetic field components when judged from another inertial
system. When applied to an electromagnetic field, the general
law of transformation furnishes, for the special case of the
special Lorentz transformation, the equations
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e′x = ex h′x = hx

e′y =
ey − υhz

�1 − υ2
h′y =

hy + υez

�1 − υ2 (34)

e′z =
ez + υhy

�1 − υ2
he′z =

hz − υey

�1 − υ2









If there exists with respect to K only a magnetic field, h, but no
electric field, e, then with respect to K′ there exists an electric
field e′ as well, which would act upon an electric particle at rest
relatively to K′. An observer at rest relatively to K would designate
this force as the Biot-Savart force, or the Lorentz electromotive
force. It therefore appears as if this electromotive force had
become fused with the electric field intensity into a single entity.

In order to view this relation formally, let us consider the
expression for the force acting upon unit volume of electricity,

k = �e + [i, h] (35)

in which i is the vector velocity of electricity, with the velocity
of light as the unit. If we introduce Jµ and �µ according to
(30a) and (31), we obtain for the first component the
expression

�12 J2 + �13 J3 + �14 J4

Observing that �11 vanishes on account of the skew-symmetry of
the tensor (�), the components of k are given by the first three
components of the four-dimensional vector

Kµ = �µν Jν (36)

and the fourth component is given by
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K4 = �41 J1 + �42 J2 + �43 J3
= i(exix + eyiy + eziz) = iλ (37)

There is, therefore, a four-dimensional vector of force per unit
volume, whose first three components, k1, k2, k3, are the
pondermotive force components per unit volume, and whose
fourth component is the rate of working of the field per unit
volume, multiplied by �−1.

A comparison of (36) and (35) shows that the theory of
relativity formally unites the pondermotive force of the electric
field, ρe, and the Biot-Savart or Lorentz force [i × h].

Mass and Energy. An important conclusion can be drawn from
the existence and significance of the 4-vector Kµ. Let us imagine
a body upon which the electromagnetic field acts for a time. In

Figure 2
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the symbolic figure (Fig. 2) Ox1 designates the x1-axis, and is at
the same time a substitute for the three space axes Ox1, Ox2, Ox3;
Ol designates the real time axis. In this diagram a body of finite
extent is represented, at a definite time l, by the interval AB; the
whole space-time existence of the body is represented by a strip
whose boundary is everywhere inclined less than 45° to the l-
axis. Between the time sections, l = l1 and l = l2, but not extend-
ing to them, a portion of the strip is shaded. This represents
the portion of the space-time manifold in which the electro-
magnetic field acts upon the body, or upon the electric charges
contained in it, the action upon them being transmitted to the
body. We shall now consider the changes which take place in the
momentum and energy of the body as a result of this action.

We shall assume that the principles of momentum and energy
are valid for the body. The change in momentum, ∆Ix, ∆Iy, ∆Iz,
and the change in energy, ∆E, are then given by the expressions

∆Ix = �
l1

l0
 dl � kx dx dy dz = 

1

i
 � K1 dx1 dx2 dx3 dx4

· · · · · · ·

· · · · · · ·

∆E = �
l1

l0
 dl � λ dx dy dz = 

1

i
 � 

1

i
 K4 dx1 dx2 dx3 dx4

Since the four-dimensional element of volume is an invariant,
and (K1, K2, K3, K4) forms a 4-vector, the four-dimensional integ-
ral extended over the shaded portion transforms as a 4-vector,
as does also the integral between the limits l1 and l2, because the
portion of the region which is not shaded contributes nothing to
the integral. It follows, therefore, that ∆Ix, ∆Iy, ∆Iz, i∆E form a 4-
vector. Since the quantities themselves may be presumed to
transform in the same way as their increments, we infer that the
aggregate of the four quantities

the meaning of relativity44



Ix, Iy, Iz, iE

has itself vector character; these quantities are referred to an
instantaneous condition of the body (e.g. at the time l = l1).

This 4-vector may also be expressed in terms of the mass m,
and the velocity of the body, considered as a material particle. To
form this expression, we note first, that

− ds2 = dτ2 = − (dx1
2 + dx2

2 + dx3
2) − dx4

2

(38)
= dl2(1 − q2)





is an invariant which refers to an infinitely short portion of the
four-dimensional line which represents the motion of the
material particle. The physical significance of the invariant dτ

may easily be given. If the time axis is chosen in such a way
that it has the direction of the line differential which we are
considering, or, in other terms, if we transform the material
particle to rest, we shall have dτ = dl; this will therefore be
measured by the light-seconds clock which is at the same place,
and at rest relatively to the material particle. We therefore call τ
the proper time of the material particle. As opposed to dl, dτ is
therefore an invariant, and is practically equivalent to dl for
motions whose velocity is small compared to that of light.
Hence we see that

uσ = 
dxσ

dτ
(39)

has, just as the dxν, the character of a vector; we shall designate
(uσ) as the four-dimensional vector (in brief, 4-vector) of
velocity. Its components satisfy, by (38), the condition

∑ uσ
2 = − 1 (40)
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We see that this 4-vector, whose components in the ordinary
notation are

qx

�1 − q2
,

qv

�1 − q2
,

qz

�1 − q2
,

i

�1 − q2
(41)

is the only 4-vector which can be formed from the velocity
components of the material particle which are defined in three
dimensions by

qx = 
dx

dl
, qy = 

dy

dl
, qz = 

dz

dl

We therefore see that

�m dxµ

dτ
� (42)

must be that 4-vector which is to be equated to the 4-vector of
momentum and energy whose existence we have proved above.
By equating the components, we obtain, in three-dimensional
notation,

Ix = 
mqx

�1 − q2

· · · 
(43)

· · ·

E = 
m

�1 − q2










We recognize, in fact, that these components of momentum
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agree with those of classical mechanics for velocities which
are small compared to that of light. For large velocities
the momentum increases more rapidly than linearly with the
velocity, so as to become infinite on approaching the velocity
of light.

If we apply the last of equations (43) to a material particle at
rest (q = 0), we see that the energy, E0, of a body at rest is equal
to its mass. Had we chosen the second as our unit of time, we
would have obtained

E0 = mc2 (44)

Mass and energy are therefore essentially alike; they are only
different expressions for the same thing. The mass of a body is
not a constant; it varies with changes in its energy.* We see
from the last of equations (43) that E becomes infinite when
q approaches 1, the velocity of light. If we develop E in powers
of q2, we obtain,

E = m + 
m

2
q2 + 

3

8
mq4 + . . . (45)

The second term of this expansion corresponds to the kinetic
energy of the material particle in classical mechanics.

Equations of Motion of Material Particles. From (43) we obtain,
by differentiating by the time l, and using the principle of
momentum, in the notation of three-dimensional vectors,

* The emission of energy in radio-active processes is evidently connected
with the fact that the atomic weights are not integers. The equivalence between
mass at rest and energy at rest which is expressed in equation (44) has been
confirmed in many cases during recent years. In radio-active decomposition
the sum of the resulting masses is always less than the mass of the decompos-
ing atom. The difference appears in the form of kinetic energy of the generated
particles as well as in the form of released radiational energy.
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K = 
d

dl �
mq

�1 − q2 � (46)

This equation, which was previously employed by H. A.
Lorentz for the motion of electrons, has been proved to be true,
with great accuracy, by experiments with β-rays.

Energy Tensor of the Electromagnetic Field. Before the development
of the theory of relativity it was known that the principles of
energy and momentum could be expressed in a differential form
for the electromagnetic field. The four-dimensional formulation
of these principles leads to an important conception, that of the
energy tensor, which is important for the further development
of the theory of relativity.

If in the expression for the 4-vector of force per unit volume,

Kµ = �µν Jν

using the field equation (32), we express Jµ in terms of the field
intensities, �µν, we obtain, after some transformations and
repeated application of the field equations (32) and (33), the
expression

Kµ = − 
∂Tµν

∂xν

(47)

where we have written*

Tµν = − 14�αβ
2δµν + �µα�να (48)

The physical meaning of equation (47) becomes evident if in
place of this equation we write, using a new notation,

* To be summed for the indices α and β.

the meaning of relativity48



kx = − 
∂pxx

∂x
 − 

∂pxy

∂y
 − 

∂pzz

∂z
 − 

∂(ibx)

∂(il)

· · · · · · ·
(47a)

· · · · · · ·

iλ = − 
∂(isx)

∂x
 − 

∂(isy)

∂y
 − 

∂(isz)

∂z
 − 

∂(− η)

∂(il)










or, on eliminating the imaginary,

kx = −
∂pxx

∂x
−

∂pxy

∂y
−

∂pxz

∂z
−

∂bx

∂l

· · · · ·
(47b)

· · · · ·

λ = − 
∂sx

∂x
 − 

∂sy

∂y
 − 

∂sz

∂z
 − 

∂η

∂l










When expressed in the latter form, we see that the first three
equations state the principle of momentum; pxx . . . pzx are the
Maxwell stresses in the electromagnetic field, and (bx, by, bz) is
the vector momentum per unit volume of the field. The last of
equations (47b) expresses the energy principle; s is the vector
flow of energy, and η the energy per unit volume of the field. In
fact, we get from (48) by introducing the following expressions
well known from electrodynamics,
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pxx = − hxhx + 12(hx
2 + hy

2 + hz
2)

− exex + 12(ex
2 + ey

2 + ez
2)

Pxy = − hxhy

− exey

pxz = − hxhz

− exez

(48a)

· · · · · · ·

· · · · · · ·

bx = sx = eyhz − ezhy

· · · · · · ·

· · · · · · ·

η = + 12(ex
2 + ey

2 + ez
2 + hx

2 + hy
2 + hz

2)






















We notice from (48) that the energy tensor of the electro-
magnetic field is symmetrical; with this is connected the fact that
the momentum per unit volume and the flow of energy are
equal to each other (relation between energy and inertia).

We therefore conclude from these considerations that the
energy per unit volume has the character of a tensor. This has
been proved directly only for an electromagnetic field, although
we may claim universal validity for it. Maxwell’s equations
determine the electromagnetic field when the distribution of
electric charges and currents is known. But we do not know the
laws which govern the currents and charges. We do know,
indeed, that electricity consists of elementary particles (elec-
trons, positive nuclei), but from a theoretical point of view we
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cannot comprehend this. We do not know the energy factors
which determine the distribution of electricity in particles of
definite size and charge, and all attempts to complete the theory
in this direction have failed. If then we can build upon Maxwell’s
equations at all, the energy tensor of the electromagnetic field is
known only outside the charged particles.* In these regions,
outside of charged particles, the only regions in which we can
believe that we have the complete expression for the energy
tensor, we have, by (47),

∂Tµν

∂xν

 = 0 (47c)

General Expressions for the Conservation Principles. We can hardly
avoid making the assumption that in all other cases, also, the
space distribution of energy is given by a symmetrical tensor,
Tµν, and that this complete energy tensor everywhere satisfies
the relation (47c). At any rate we shall see that by means of this
assumption we obtain the correct expression for the integral
energy principle.

Let us consider a spatially bounded, closed system, which,
four-dimensionally, we may represent as a strip, outside of
which the Tµν vanish. Integrate equation (47c) over a space

section. Since the integrals of 
∂Tµ1

∂x1

, 
∂Tµ2

∂x2

 and 
∂Tµ3

∂x3

 vanish

because the Tµν vanish at the limits of integration, we obtain

∂
∂l 	 � Tµ4 dx1 dx2 dx3� = 0 (49)

* It has been attempted to remedy this lack of knowledge by considering the
charged particles as proper singularities. But in my opinion this means giving
up a real understanding of the structure of matter. It seems to me much better
to admit to our present inability rather than to be satisfied by a solution that is
only apparent.
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Inside the parentheses are the expressions for the momentum of
the whole system, multiplied by i, together with the negative
energy of the system, so that (49) expresses the conservation
principles in their integral form. That this gives the right concep-
tion of energy and the conservation principles will be seen from
the following considerations.

PHENOMENOLOGICAL REPRESENTATION OF THE
ENERGY TENSOR OF MATTER

Hydrodynamical Equations. We know that matter is built up of
electrically charged particles, but we do not know the laws
which govern the constitution of these particles. In treating
mechanical problems, we are therefore obliged to make use of
an inexact description of matter, which corresponds to that of

Figure 3
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classical mechanics. The density, σ, of a material substance and
the hydrodynamical pressures are the fundamental concepts
upon which such a description is based.

Let σ0 be the density of matter at a place, estimated with
reference to a system of co-ordinates moving with the matter.
Then σ0, the density at rest, is an invariant. If we think of the
matter in arbitrary motion and neglect the pressures (particles of
dust in vacuo, neglecting the size of the particles and the tempera-
ture), then the energy tensor will depend only upon the velocity
components, uν and σ0. We secure the tensor character of Tµν by
putting

Tµν = σ0uµuν (50)

in which the uµ, in the three-dimensional representation, are
given by (41). In fact, it follows from (50) that for q = 0, T44 =
− σ0 (equal to the negative energy per unit volume), as it
should, according to the principle of the equivalence of mass
and energy, and according to the physical interpretation of
the energy tensor given above. If an external force (four-
dimensional vector, Kµ) acts upon the matter, by the principles of
momentum and energy the equation

Kµ = 
∂Tµν

∂xν

must hold. We shall now show that this equation leads to the
same law of motion of a material particle as that already
obtained. Let us imagine the matter to be of infinitely small
extent in space, that is, a four-dimensional thread; then by
integration over the whole thread with respect to the space
co-ordinates x1, x2, x3, we obtain
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 �K1 dx1 dx2 dx3 = �∂T14

∂x4

dx1 dx2 dx3 =

− i
d

dl 	�σ0

dx1

dτ
 
dx4

dτ
 dx1 dx2 dx3�

Now � dx1 dx2 dx3 dx4 is an invariant, as is, therefore, also

� σ0 dx1 dx2 dx3 dx4. We shall calculate this integral, first with

respect to the inertial system which we have chosen, and second,
with respect to a system relatively to which the matter has the
velocity zero. The integration is to be extended over a filament of
the thread for which σ0 may be regarded as constant over the
whole section. If the space volumes of the filament referred to
the two systems are dV and dV0 respectively, then we have

� σ0 dV dl = � σ0 dV0 dτ

and therefore also

� σ0 dV = � σ0 dV0 
dτ

dl
 = � dm i

dτ

dx4

If we substitute the right-hand side for the left-hand side in

the former integral, and put 
dx1

dτ
 outside the sign of integration,

we obtain,

Kx = 
d

dl�m
dx1

dτ
� = 

d

dl�
mqx

�1 − q2�
We see, therefore, that the generalized conception of the energy
tensor is in agreement with our former result.
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The Eulerian Equations for Perfect Fluids. In order to get nearer to
the behaviour of real matter we must add to the energy tensor a
term which corresponds to the pressures. The simplest case is
that of a perfect fluid in which the pressure is determined by a
scalar p. Since the tangential stresses pxy, &c., vanish in this
case, the contribution to the energy tensor must be of the form
p δνµ. We must therefore put

Tµν = σuµuν + p δµν (51)

At rest, the density of the matter, or the energy per unit volume,
is in this case, not σ but σ − p. For

− T44 = − σ
dx4

dτ

dx4

dτ
 − pδ44 = σ − p

In the absence of any force, we have

∂Tµν

∂xν

 = σuν

∂uµ

∂xν

 + uµ 
∂(σuν)

∂xν

 + 
∂p

∂xµ

 = 0

If we multiply this equation by uµ� = 
dxµ

dτ
� and sum for the u’s we

obtain, using (40)

− 
∂(σuν)

∂xν

 + 
dp

dτ
 = 0 (52)

where we have put 
∂p

∂xµ

 
dxµ

dτ
 = 

dp

dτ
. This is the equation of continu-

ity, which differs from that of classical mechanics by the term 
dp

dτ
,
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which, practically, is vanishingly small. Observing (52), the
conservation principles take the form

σ
duµ

dτ
 + uµ

dp

dτ
 + 

∂p

∂xµ

 = 0 (53)

The equations for the first three indices evidently correspond
to the Eulerian equations. That the equations (52) and (53)
correspond, to a first approximation, to the hydrodynamical
equations of classical mechanics, is a further confirmation
of the generalized energy principle. The density of matter (or
of energy) has tensor character. (Specifically it constitutes a
symmetrical tensor.)
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THE GENERAL THEORY
OF RELATIVITY

All of the previous considerations have been based upon the
assumption that all inertial systems are equivalent for the
description of physical phenomena, but that they are preferred,
for the formulation of the laws of nature, to spaces of refer-
ence in a different state of motion. We can think of no cause
for this preference for definite states of motion to all others,
according to our previous considerations, either in the per-
ceptible bodies or in the concept of motion; on the contrary, it
must be regarded as an independent property of the space-
time continuum. The principle of inertia, in particular, seems
to compel us to ascribe physically objective properties to the
space-time continuum. Just as it was consistent from the
Newtonian standpoint to make both the statements, tempus est
absolutum, spatium est absolutum, so from the standpoint of the
special theory of relativity we must say, continuum spatii et
temporis est absolutum. In this latter statement absolutum means not
only ‘physically real’, but also ‘independent in its physical



properties, having a physical effect, but not itself influenced by
physical conditions’.

As long as the principle of inertia is regarded as the keystone
of physics, this standpoint is certainly the only one which is
justified. But there are two serious criticisms of the ordinary
conception. In the first place, it is contrary to the mode of think-
ing in science to conceive of a thing (the space-time continuum)
which acts itself, but which cannot be acted upon. This is the
reason why E. Mach was led to make the attempt to eliminate
space as an active cause in the system of mechanics. According to
him, a material particle does not move in unaccelerated motion
relatively to space, but relatively to the centre of all the other
masses in the universe; in this way the series of causes of mech-
anical phenomena was closed, in contrast to the mechanics of
Newton and Galileo. In order to develop this idea within the
limits of the modern theory of action through a medium, the
properties of the space-time continuum which determine inertia
must be regarded as field properties of space, analogous to the
electromagnetic field. The concepts of classical mechanics afford
no way of expressing this. For this reason Mach’s attempt at a
solution failed for the time being. We shall come back to this
point of view later. In the second place, classical mechanics
exhibits a deficiency which directly calls for an extension of the
principle of relativity to spaces of reference which are not in
uniform motion relatively to each other. The ratio of the masses
of two bodies is defined in mechanics in two ways which differ
from each other fundamentally; in the first place, as the recip-
rocal ratio of the accelerations which the same motive force
imparts to them (inert mass), and in the second place, as the
ratio of the forces which act upon them in the same gravitational
field (gravitational mass). The equality of these two masses, so
differently defined, is a fact which is confirmed by experiments
of very high accuracy (experiments of Eó́tvó́s), and classical
mechanics offers no explanation for this equality. It is, however,
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clear that science is fully justified in assigning such a numerical
equality only after this numerical equality is reduced to an equal-
ity of the real nature of the two concepts.

That this object may actually be attained by an extension of
the principle of relativity, follows from the following considera-
tion. A little reflection will show that the law of the equality of
the inert and the gravitational mass is equivalent to the assertion
that the acceleration imparted to a body by a gravitational field is
independent of the nature of the body. For Newton’s equation of
motion in a gravitational field, written out in full, is

(Inert mass) . (Acceleration) = (Intensity of the gravitational
field) . (Gravitational mass)

It is only when there is numerical equality between the inert
and gravitational mass that the acceleration is independent of
the nature of the body. Let now K be an inertial system. Masses
which are sufficiently far from each other and from other
bodies are then, with respect to K, free from acceleration. We
shall also refer these masses to a system of co-ordinates K′,
uniformly accelerated with respect to K. Relatively to K′ all the
masses have equal and parallel acceleration; with respect to K′
they behave just as if a gravitational field were present and K′
were unaccelerated. Overlooking for the present the question
as to the ‘cause’ of such a gravitational field, which will
occupy us later, there is nothing to prevent our conceiving this
gravitational field as real, that is, the conception that K′ is ‘at
rest’ and a gravitational field is present we may consider as
equivalent to the conception that only K is an ‘allowable’ sys-
tem of co-ordinates and no gravitational field is present. The
assumption of the complete physical equivalence of the sys-
tems of co-ordinates, K and K′, we call the ‘principle of equival-
ence’; this principle is evidently intimately connected with the
law of the equality between the inert and the gravitational
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mass, and signifies an extension of the principle of relativity to
co-ordinate systems which are in non-uniform motion rela-
tively to each other. In fact, through this conception we arrive
at the unity of the nature of inertia and gravitation. For,
according to our way of looking at it, the same masses may
appear to be either under the action of inertia alone (with
respect to K) or under the combined action of inertia and
gravitation (with respect to K′). The possibility of explaining
the numerical equality of inertia and gravitation by the unity
of their nature gives to the general theory of relativity, accord-
ing to my conviction, such a superiority over the conceptions
of classical mechanics, that all the difficulties encountered in
development must be considered as small in comparison with
this progress.

What justifies us in dispensing with the preference for inertial
systems over all other co-ordinate systems, a preference that
seems so securely established by experience? The weakness of
the principle of inertia lies in this, that it involves an argument in
a circle: a mass moves without acceleration if it is sufficiently far
from other bodies; we know that it is sufficiently far from other
bodies only by the fact that it moves without acceleration. Are
there, at all, any inertial systems for very extended portions of
the space-time continuum, or, indeed, for the whole universe?
We may look upon the principle of inertia as established, to a
high degree of approximation, for the space of our planetary
system, provided that we neglect the perturbations due to the
sun and planets. Stated more exactly, there are finite regions,
where, with respect to a suitably chosen space of reference,
material particles move freely without acceleration, and in
which the laws of the special theory of relativity, which have
been developed above, hold with remarkable accuracy. Such
regions we shall call ‘Galilean regions’. We shall proceed from
the consideration of such regions as a special case of known
properties.
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The principle of equivalence demands that in dealing with
Galilean regions we may equally well make use of non-inertial
systems, that is, such co-ordinate systems as, relatively to inertial
systems, are not free from acceleration and rotation. If, further,
we are going to do away completely with the vexing question as
to the objective reason for the preference of certain systems of
co-ordinates, then we must allow the use of arbitrarily moving
systems of co-ordinates. As soon as we make this attempt ser-
iously we come into conflict with that physical interpretation of
space and time to which we were led by the special theory of
relativity. For let K′ be a system of co-ordinates whose z′-axis
coincides with the z-axis of K, and which rotates about the latter
axis with constant angular velocity. Are the configurations of
rigid bodies, at rest relatively to K′, in accordance with the laws
of Euclidean geometry? Since K′ is not an inertial system, we do
not know directly the laws of configuration of rigid bodies with
respect to K′, nor the laws of nature, in general. But we do know
these laws with respect to the inertial system K, and we can
therefore infer their form with respect to K′. Imagine a circle
drawn about the origin in the x′y, plane of K′, and a diameter of
this circle. Imagine, further, that we have given a large number of
rigid rods, all equal to each other. We suppose these laid in series
along the periphery and the diameter of the circle, at rest rela-
tively to K′. If U is the number of these rods along the periphery,
D the number along the diameter, then, if K′ does not rotate
relatively to K, we shall have

U

D
 = π

But if K′ rotates we get a different result. Suppose that at a def-
inite time t, of K we determine the ends of all the rods. With
respect to K all the rods upon the periphery experience the
Lorentz contraction, but the rods upon the diameter do not
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experience this contraction (along their lengths!).* It therefore
follows that

U

D
 > π

It therefore follows that the laws of configuration of rigid
bodies with respect to K′ do not agree with the laws of con-
figuration of rigid bodies that are in accordance with Euclidean
geometry. If, further, we place two similar clocks (rotating with
K′), one upon the periphery, and the other at the centre of the
circle, then, judged from K, the clock on the periphery will go
slower than the clock at the centre. The same thing must take
place, judged from K′, if we do not define time with respect to K′
in a wholly unnatural way (that is, in such a way that the laws
with respect of K′ depend explicitly upon the time). Space and
time, therefore, cannot be defined with respect to K′ as they were
in the special theory of relativity with respect to inertial systems.
But, according to the principle of equivalence, K′ may also be
considered as a system at rest, with respect to which there is a
gravitational field (field of centrifugal force, and force of
Coriolis). We therefore arrive at the result: the gravitational field
influences and even determines the metrical laws of the space-
time continuum. If the laws of configuration of ideal rigid
bodies are to be expressed geometrically, then in the presence
of a gravitational field the geometry is not Euclidean.

The case that we have been considering is analogous to that
which is presented in the two-dimensional treatment of surfaces.
It is impossible in the latter case also, to introduce co-ordinates
on a surface (e.g. the surface of an ellipsoid) which have a simple

* These considerations assume that the behaviour of rods and clocks depends
only upon velocities, and not upon accelerations, or, at least, that the influence
of acceleration does not counteract that of velocity.
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metrical significance, while on a plane the Cartesian co-
ordinates, x1, x2, signify directly lengths measured by a unit
measuring-rod. Gauss overcame this difficulty, in his theory of
surfaces, by introducing curvilinear co-ordinates which, apart
from satisfying conditions of continuity, were wholly arbitrary,
and only afterwards were these co-ordinates related to the
metrical properties of the surface. In an analogous way we
shall introduce in the general theory of relativity arbitrary co-
ordinates, x1, x2, x3, x4, which shall number uniquely the space-
time points, so that neighbouring events are associated with
neighbouring values of the co-ordinates; otherwise, the choice
of co-ordinates is arbitrary. We shall be true to the principle of
relativity in its broadest sense if we give such a form to the laws
that they are valid in every such four-dimensional system of
co-ordinates, that is, if the equations expressing the laws are
co-variant with respect to arbitrary transformations.

The most important point of contact between Gauss’s theory
of surfaces and the general theory of relativity lies in the metrical
properties upon which the concepts of both theories, in the
main, are based. In the case of the theory of surfaces, Gauss’s
argument is as follows. Plane geometry may be based upon the
concept of the distance ds, between two infinitely near points.
The concept of this distance is physically significant because
the distance can be measured directly by means of a rigid
measuring-rod. By a suitable choice of Cartesian coordinates this
distance may be expressed by the formula ds2 = dx1

2 + dx2
2. We

may base upon this quantity the concepts of the straight line as

the geodesic �δ� ds = 0�, the interval, the circle, and the angle,

upon which the Euclidean plane geometry is built. A geometry
may be developed upon another continuously curved surface, if
we observe that an infinitesimally small portion of the surface
may be regarded as plane, to within relatively infinitesimal
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quantities. There are Cartesian co-ordinates, X1, X2, upon such a
small portion of the surface, and the distance between two
points, measured by a measuring-rod, is given by

ds2 = dX1
2 + dX2

2

If we introduce arbitrary curvilinear co-ordinates, x1, x2, on the
surface, then dX1, dX2, may be expressed linearly in terms of dx1,
dx2. Then everywhere upon the surface we have

ds2 = g11 dx1
2 + 2g12 dx1 dx2 + g22 dx2

2

where g11, g12, g22 are determined by the nature of the surface
and the choice of co-ordinates; if these quantities are known,
then it is also known how networks of rigid rods may be laid
upon the surface. In other words, the geometry of surfaces may
be based upon this expression for ds2 exactly as plane geometry is
based upon the corresponding expression.

There are analogous relations in the four-dimensional space-
time continuum of physics. In the immediate neighbourhood of
an observer, falling freely in a gravitational field, there exists no
gravitational field. We can therefore always regard an infinit-
esimally small region of the space-time continuum as Galilean.
For such an infinitely small region there will be an intertial
system (with the space co-ordinates, X1, X2, X3, and the time co-
ordinate X4) relatively to which we are to regard the laws of the
special theory of relativity as valid. The quantity which is directly
measurable by our unit measuring-rods and clocks,

dX1
2 + dX2

2 + dX3
2 − dX4

2

or its negative,

ds2 = − dX1
2  − dX2

2 − dX3
2 + dX4

2 (54)
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is therefore a uniquely determinate invariant for two neighbour-
ing events (points in the four-dimensional continuum), pro-
vided that we use measuring-rods that are equal to each other
when brought together and superimposed, and clocks whose
rates are the same when they are brought together. In this the
physical assumption is essential that the relative lengths of
two measuring-rods and the relative rates of two clocks are
independent, in principle, of their previous history. But this
assumption is certainly warranted by experience; if it did not
hold there could be no sharp spectral lines, since the single
atoms of the same element certainly do not have the same listing,
and since—on the assumption of relative variability of the single
atoms depending on previous history—it would be absurd to
suppose that the masses or proper frequencies of these atoms
ever had been equal to one another.

Space-time regions of finite extent are, in general, not
Galilean, so that a gravitational field cannot be done away with
by any choice of co-ordinates in a finite region. There is, there-
fore, no choice of co-ordinates for which the metrical relations
of the special theory of relativity hold in a finite region. But the
invariant ds always exists for two neighbouring points (events)
of the continuum. This invariant ds may be expressed in arbitrary
co-ordinates. If one observes that the local dXν may be expressed
linearly in terms of the co-ordinate differentials dx, ds2 may be
expressed in the form

ds2 = gµν dxµ dxν (55)

The functions gµν describe, with respect to the arbitrarily
chosen system of co-ordinates, the metrical relations of the
space-time continuum and also the gravitational field. As in the
special theory of relativity, we have to discriminate between
time-like and space-like line elements in the four-dimensional
continuum; owing to the change of sign introduced, time-like
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line elements have a real, space-like line elements an imaginary
ds. The time-like ds can be measured directly by a suitably chosen
clock.

According to what has been said, it is evident that the formu-
lation of the general theory of relativity requires a generalization
of the theory of invariants and the theory of tensors; the
question is raised as to the form of the equations which are
co-variant with respect to arbitrary point transformations. The
generalized calculus of tensors was developed by mathem-
aticians long before the theory of relativity. Riemann first
extended Gauss’s train of thought to continua of any number
of dimensions; with prophetic vision he saw the physical
meaning of this generalization of Euclid’s geometry. Then fol-
lowed the development of the theory in the form of the
calculus of tensors, particularly by Ricci and Levi-Civita. This
is the place for a brief presentation of the most important
mathematical concepts and operations of this calculus of tensors.

We designate four quantities, which are defined as functions
of the xν with respect to every system of co-ordinates, as com-
ponents, Aν, of a contra-variant vector, if they transform in a
change of co-ordinates as the co-ordinate differentials dxν. We
therefore have

Aµ′ = 
∂x′µ

∂xν

A (56)

Besides these contra-variant vectors, there are also co-variant
vectors. If Bν are the components of a co-variant vector, these
vectors are transformed according to the rule

B′µ = 
dxν

∂x′µ

Bν (57)

The definition of a co-variant vector is chosen in such a way that
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a co-variant vector and a contra-variant vector together form a
scalar according to the scheme,

� = Bν Aν (summed over the ν).

For we have

B′µ Aµ′ = 
∂xα

∂x′µ

 
∂x′µ

∂xβ

 Bα Aβ = Bα Aα

In particular, the derivatives 
∂�

∂xα

 of a scalar �, are components of a

co-variant vector, which, with the co-ordinate differentials, form

the scalar 
∂�

∂xα

 dxα; we see from this example how natural is the

definition of the co-variant vectors.
There are here, also, tensors of any rank, which may have co-

variant or contra-variant character with respect to each index; as
with vectors, the character is designated by the position of the
index. For example, Aµ

ν denotes a tensor of the second rank,
which is co-variant with respect to the index µ, and contra-
variant with respect to the index ν. The tensor character indicates
that the equation of transformation is

Aν′µ = 
∂xα

∂x′µ

 
∂x′ν

∂xβ

 Aβ
α (58)

Tensors may be formed by the addition and subtraction of
tensors of equal rank and like character, as in the theory of
invariants of orthogonal linear substitutions, for example,

Aν
µ + Bν

µ = C ν
µ (59)

The proof of the tensor character of Cν
µ depends upon (58).
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Tensors may be formed by multiplication, keeping the char-
acter of the indices, just as in the theory of invariants of linear
orthogonal transformations, for example,

A ν
µ Bστ = Cν

µστ (60)

The proof follows directly from the rule of transformation.
Tensors may be formed by contraction with respect to two

indices of different character, for example,

Aµ
µστ = Bστ (61)

The tensor character of Aµ
µστ determines the tensor character of

Bστ. Proof—

A µ′µστ = 
∂xα

∂x′µ

 
∂x′µ

∂xβ

 
∂xs

∂x′σ

 
∂xt

∂x′τ

 A β
αst = 

∂xs

∂x′σ

 
∂xt

∂x′τ

A α
αst

The properties of symmetry and skew-symmetry of a tensor
with respect to two indices of like character have the same
significance as in the theory of special relativity.

With this, everything essential has been said with regard to
the algebraic properties of tensors.

The Fundamental Tensor. It follows from the invariance of ds2

for an arbitrary choice of the dxν, in connexion with the con-
dition of symmetry consistent with (55), that the gµν are com-
ponents of a symmetrical co-variant tensor (Fundamental
Tensor). Let us form the determinant, g, of the gµν, and also
the co-factors, divided by g, corresponding to the various gµν.
These co-factors, divided by g, will be denoted by gµν, and their
co-variant character is not yet known. Then we have

gµα gµβ = δ β
α = 





1 if α = β

0 if α ≠ β
(62)
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If we form the infinitely small quantities (co-variant vectors)

dξµ = gµα dxα (63)

multiply by gµβ and sum over the µ, we obtain, by the use of (62),

dxβ = gβµ dξµ (64)

Since the ratios of the dξµ are arbitrary, and the dxβ as well as the
dξµ are components of vectors, it follows that the gµν are the
components of a contra-variant tensor* (contra-variant funda-
mental tensor). The tensor character of δ β

α (mixed fundamental
tensor) accordingly follows, by (62). By means of the funda-
mental tensor, instead of tensors with co-variant index character,
we can introduce tensors with contra-variant index character,
and conversely. For example,

Aµ = gµαAα

Aµ = gµα Aα

T σ
µ = gσνTµν

Volume Invariants. The volume element

� dx1 dx2 dx3 dx4 = dx

is not an invariant. For by Jacobi’s theorem,

* If we multiply (64) by 
∂x′α

∂xβ

, sum over the β, and replace the dξµ by a

transformation to the accented system, we obtain

dx′α = 
∂x′σ

∂xµ

 
∂x′α

∂xβ

gµβdξ′σ

The statement made above follows from this, since, by (64), we must also have
dx′α = gσα′ dξ′σ, and both equations must hold for every choice of the dξ′σ.
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dx1 = 
 dx′µ

dxν


 dx (65)

But we can complement dx so that it becomes an invariant. If we
form the determinant of the quantities

g′µν = 
∂xα

∂x′µ

 
∂xβ

∂x′ν

 gαβ

we obtain, by a double application of the theorem of multiplica-
tion of determinants,

g′ = |g′µν| = 
 ∂xν

∂x′µ



2

.|gµν| = 
 ∂x′µ

∂xν



−2

 g (66)

We therefore get the invariant,

� g′ dx′ = � g dx

Formation of Tensors by Differentiation. Although the algebraic
operations of tensor formation have proved to be as simple as
in the special case of invariance with respect to linear orthogonal
transformations, nevertheless in the general case, the invariant
differential operations are, unfortunately, considerably more
complicated. The reason for this is as follows. If Aµ is a contra-

variant vector, the coefficients of its transformation, 
dx′µ

dxν

, are

independent of position only if the transformation is a linear

one. Then the vector components, Aµ + 
∂Aµ

∂xα

 dxα, at a neighbouring

point transform in the same way as the Aµ, from which follows
the vector character of the vector differentials, and the tensor

character of 
∂Aµ

∂xα

. But if the 
∂x′µ

∂xν

 are variable this is no longer true.
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That there are, nevertheless, in the general case, invariant dif-
ferential operations for tensors, is recognized most satisfactorily
in the following way, introduced by Levi-Civita and Weyl. Let
(Aµ) be a contra-variant vector whose components are given
with respect to the co-ordinate system of the xν. Let P1 and P2 be
two infinitesimally near points of the continuum. For the infini-
tesimal region surrounding the point P1, there is, according to
our way of considering the matter, a co-ordinate system of the Xν

(with imaginary X4-co-ordinate) for which the continuum is
Euclidean. Let A µ

(1) be the co-ordinates of the vector at the point
P1. Imagine a vector drawn at the point P2, using the local system
of the Xν, with the same co-ordinates (parallel vector through
P2), then this parallel vector is uniquely determined by the vector
at P1 and the displacement. We designate this operation, whose
uniqueness will appear in the sequel, the parallel displacement
of the vector Aµ from P1 to the infinitesimally near point P2. If we
form the vector difference of the vector (Aµ) at the point P2 and
the vector obtained by parallel displacement from P1 to P2, we
get a vector which may be regarded as the differential of the
vector (Aµ) for the given displacement (dxν).

This vector displacement can naturally also be considered
with respect to the co-ordinate system of the xν. If A

ν are the co-
ordinates of the vector at P1, Aν + δAν the co-ordinates of the
vector displaced to P2 along the interval (dxν), then the δAν do not
vanish in this case. We know of these quantities, which do not
have a vector character, that they must depend linearly and
homogeneously upon the dxν and the Aν. We therefore put

δAν = − Γ ν
αβA

α dxβ (67)

In addition, we can state that the Γ ν
αβ must be symmetrical

with respect to the indices α and β. For we can assume from a
representation by the aid of a Euclidean system of local co-
ordinates that the same parallelogram will be described by the
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displacement of an element d(1)xν along a second element d(2)xν as
by a displacement of d(2)xν, along d(1)xν. We must therefore have

d(2)xν + (d(1)xν − Γ ν
αβ d

(1)xα d
(2)xβ) = d(1)xν + (d(2)xν  − Γν

αβ d
(2)xα d

(1)xβ)

The statement made above follows from this, after interchanging
the indices of summation, α and β, on the right-hand side.

Since the quantities gµν determined all the metrical properties
of the continuum, they must also determine the Γ ν

αβ. If we con-
sider the invariant of the vector Aν, that is, the square of its
magnitude,

gµν AµAν

which is an invariant, this cannot change in a parallel displace-
ment. We therefore have

0 = δ(gµν AµAν ) = 
∂gµν

∂xα

 AµAν dxα  + gµν AµδAν + gµν AνδAµ

or, by (67),

�∂gµν

∂xα

 − gµβΓ
β
να − gνβΓ

β
µα�AµAν dxα = 0

Owing to the symmetry of the expression in the brackets
with respect to the indices µ and ν, this equation can be valid
for an arbitrary choice of the vectors (Aµ) and dxν only when
the expression in the brackets vanishes for all combinations
of the indices. By a cyclic interchange of the indices µ, ν, α,
we obtain thus altogether three equations, from which we
obtain, on taking into account the symmetrical property of
the Γ α

µν,
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[µν
α ] = gαβΓ

β
µν (68)

in which, following Christoffel, the abbreviation has been used,

[µν
α ] = 

1

2 �∂gµα

∂xν

 + 
∂gνα

∂xµ

 − 
∂gµν

∂xα

� (69)

If we multiply (68) by gασ and sum over the α, we obtain

Γ σ
µν = µν

σ gσα �∂gµα

∂xν

 + 
∂gνα

∂xµ

 − 
∂gµν

∂xα

� = {µν
σ } (70)

in which {µν
σ } is the Christoffel symbol of the second kind. Thus

the quantities Γ are deduced from the gµν. Equations (67) and
(70) are the foundation for the following discussion.

Co-variant Differentiation of Tensors. If (Aµ + δAµ) is the vector
resulting from an infinitesimal parallel displacement from P1 to
P2, and (Aµ + dAµ) the vector Aµ at the point P2, then the difference
of these two,

dAµ − δAµ = �∂Aµ

∂xσ

 + Γ µ
σα Aα�dxσ

is also a vector. Since this is the case for an arbitrary choice of the
dxσ, it follows that

A µ
σ = 

∂Aµ

∂xσ

 + Γ µ
σα Aα (71)

is a tensor, which we designate as the co-variant derivative of the
tensor of the first rank (vector). Contracting this tensor, we
obtain the divergence of the contra-variant tensor Aµ. In this we
must observe that according to (70),
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Γ σ
µσ = 12 g

σα 
∂gσα

∂xµ

 = 
1

� g
 
∂�g

∂xµ

(72)

If we put, further,

Aµ �g = Aµ (73)

a quantity designated by Weyl as the contra-variant tensor
density* of the first rank, it follows that,

A = 
∂Aµ

∂xµ

(74)

is a scalar density.
We get the law of parallel displacement for the co-variant

vector Bµ by stipulating that the parallel displacement shall be
effected in such a way that the scalar

� = AµBµ

remains unchanged, and that therefore

AµδBµ + Bµ δAµ

vanishes for every value assigned to (Aµ). We therefore get

δBµ = Γ α
µσ Aαdxσ (75)

From this we arrive at the co-variant derivative of the co-
variant vector by the same process as that which led to (71),

* This expression is justified, in that Aµ�g dx = Aµdx has a tensor character. Every
tensor, when multiplied by �g, changes into a tensor density. We employ capital
Gothic letters for tensor densities.
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Bσµ = 
∂Bµ

∂xσ

 − Γ α
µσ Bα (76)

By interchanging the indices µ and σ, and subtracting, we get
the skew-symmetrical tensor,

�µσ = 
∂Bµ

∂xσ

 − 
∂Bσ

∂xµ

(77)

For the co-variant differentiation of tensors of the second and
higher ranks we may use the process by which (75) was
deduced. Let, for example, (Aστ) be a co-variant tensor of the
second rank. Then Aστ EσFτ is a scalar, if E and F are vectors. This
expression must not be changed by the δ-displacement; express-
ing this by a formula, we get, using (67), δAστ, whence we get
the desired co-variant derivative,

Aστ;ρ = 
∂Aστ

∂xρ

 − Γα
σρ Aατ − Γα

τρ Aσα (78)

In order that the general law of co-variant differentiation of
tensors may be clearly seen, we shall write down two co-variant
derivatives deduced in an analogous way:

Aτ
σ;ρ = 

∂Aτ
σ

∂xρ

 − Γ α
στ Aτ

α + Γτ
αρ Aα

σ (79)

Aστ
;ρ  = 

∂Aστ

∂xρ

 + Γ σ
αρ Aατ + Γτ

αρ Aσα (80)

The general law of formation now becomes evident. From these
formulæ we shall deduce some others which are of interest for
the physical applications of the theory.
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In case Aστ is skew-symmetrical, we obtain the tensor

Aστρ = 
∂Aστ

∂xρ

 + 
∂Aτρ

∂xσ

 + 
∂Aρσ

∂xτ

(81)

which is skew-symmetrical in all pairs of indices, by cyclic
interchanges and addition.

If, in (78), we replace Aστ by the fundamental tensor, gστ, then
the right-hand side vanishes identically; an analogous statement
holds for (80) with respect to gστ; that is, the co-variant deriva-
tives of the fundamental tensor vanish. That this must be so we
see directly in the local system of co-ordinates.

In case Aστ is skew-symmetrical, we obtain from (80), by
contraction with respect to τ and ρ,

Aσ = 
∂Aστ

∂xτ

(82)

In the general case, from (79) and (80), by contraction with
respect to τ and ρ, we obtain the equations,

Aσ = 
∂Aα

α

∂xα

 − Γ α
σβA

β
α (83)

Aσ = 
∂Aσα

∂xα

 + Γ σ
αβA

αβ (84)

The Riemann Tensor. If we have given a curve extending from the
point P to the point G of the continuum, then a vector Aµ, given
at P, may, by a parallel displacement, be moved along the curve
to G. If the continuum is Euclidean (more generally, if by a
suitable choice of co-ordinates the gµν are constants) then the
vector obtained at G as a result of this displacement does not
depend upon the choice of the curve joining P and G. But
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otherwise, the result depends upon the path of the displacement.
In this case, therefore, a vector suffers a change, ∆Aµ (in its
direction, not its magnitude), when it is carried from a point P
of a closed curve, along the curve, and back to P. We shall now
calculate this vector change:

∆Aµ = � δAµ

As in Stokes’s theorem for the line integral of a vector around a
closed curve, this problem may be reduced to the integration
around a closed curve with infinitely small linear dimensions;
we shall limit ourselves to this case.

We have, first, by (67),

∆Aµ = − �Γµ
αβ Aα dxβ

In this, Γ µ
αβ is the value of this quantity at the variable point G

of the path of integration. If we put

ξµ = (xµ)G − (xµ)P

Figure 4
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and denote the value of Γ µ
αβ at P by Γµ

αβ, then we have, with
sufficient accuracy,

Γ
µ
αβ = Γ µ

αβ + 
∂Γ

µ
αβ

∂xν

 ξν

Let, further, Aα be the value obtained from Aα by a parallel dis-
placement along the curve from P to G. It may now easily be
proved by means of (67) that Aµ − Aµ is infinitely small of the
first order, while, for a curve of infinitely small dimensions
of the first order, ∆Aµ is infinitely small of the second order.
Therefore there is an error of only the second order if we put

Aα = Aα − Γα
στ A

σ ξτ

If we introduce these values of Γ µ
αβ and Aα into the integral,

we obtain, neglecting all quantities of a higher order than the
second,

∆Aµ = − �∂Γ µ
σβ

∂xα

 − Γ µ
ρβ Γ

ρ
σα�Aσ � ξα dξβ (85)

The quantity removed from under the sign of integration refers
to the point P. Subtracting 12d(ξxξβ) from the integrand, we obtain

1
2 � (ξα dξβ − ξβ dξα)

This skew-symmetrical tensor of the second rank, fαβ, character-
izes the surface element bounded by the curve in magnitude and
position. If the expression in the brackets in (85) were skew-
symmetrical with respect to the indices α and β, we could con-
clude its tensor character from (85). We can accomplish this by
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interchanging the summation indices α and β in (85) and
adding the resulting equation to (85). We obtain

2∆Aµ = − Rµ
σαβ Aσf αβ (86)

in which

R µ
σαβ = − 

∂Γ µ
σα

∂xβ

 + 
∂Γ µ

σβ

∂xα

 + Γ µ
ρα Γ ρ

σβ − Γ µ
ρβ Γ ρ

σα (87)

The tensor character of R µ
σαβ follows from (86); this is the

Riemann curvature tensor of the fourth rank, whose properties
of symmetry we do not need to go into. Its vanishing is a
sufficient condition (disregarding the reality of the chosen co-
ordinates) that the continuum is Euclidean.

By contraction of the Riemann tensor with respect to the
indices µ, β, we obtain the symmetrical tensor of the second
rank,

Rµν = − 
∂Γ α

µν

∂xα

 + Γ α
µβ Γ β

να + 
∂Γ α

µα

∂xν

 − Γ α
µν Γ β

αβ (88)

The last two terms vanish if the system of co-ordinates is so
chosen that g = constant. From Rµν we can form the scalar,

R = gµνRµν (89)

Straightest (Geodesic) Lines. A line may be constructed in such a
way that its successive elements arise from each other by parallel
displacements. This is the natural generalization of the straight
line of the Euclidean geometry. For such a line, we have

δ�dxµ

ds � = − Γ µ
αβ 

∂xα

ds
 dxβ
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The left-hand side is to be replaced by 
d2xµ

ds2
,* so that we have

d2xµ

ds2
 + Γ µ

αβ 
dxα

ds
 
dxβ

ds
 = 0 (90)

We get the same line if we find the line which gives a stationary
value to the integral

� ds or � �gµν dxµ dxν

between two points (geodesic line).

* The direction vector at a neighbouring point of the curve results, by a parallel
displacement along the line element (dxβ), from the direction vector of each
point considered.
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THE GENERAL THEORY OF
RELATIVITY (continued)

We are now in possession of the mathematical apparatus which
is necessary to formulate the laws of the general theory of rela-
tivity. No attempt will be made in this presentation at system-
atic completeness, but single results and possibilities will be
developed progressively from what is known and from the
results obtained. Such a presentation is most suited to the
present provisional state of our knowledge.

A material particle upon which no force acts moves, accord-
ing to the principle of inertia, uniformly in a straight line. In the
four-dimensional continuum of the special theory of relativity
(with real time co-ordinate) this is a real straight line. The
natural, that is, the simplest, generalization of the straight line
which is meaningful in the system of concepts of the general
(Riemannian) theory of invariants is that of the straightest, or
geodesic, line. We shall accordingly have to assume, in the sense
of the principle of equivalence, that the motion of a material
particle, under the action only of inertia and gravitation, is



described by the equation,

d2xµ

ds2
 + Γ µ

αβ 
dxα

ds
 
dxβ

ds
 = 0 (90)

In fact, this equation reduces to that of a straight line if all the
components, Γ µ

αβ, of the gravitational field vanish.
How are these equations connected with Newton’s equations

of motion? According to the special theory of relativity, the gµν as
well as the gµν, have the values, with respect to an inertial system
(with real time co-ordinate and suitable choice of the sign
of ds2),

−1

0

0

0

0

−1

0

0

0

0

−1

0

0

0

0

1

(91)







The equations of motion then become

d2xµ

ds2
 = 0

We shall call this the ‘first approximation’ to the gµν-field. In
considering approximations it is often useful, as in the special
theory of relativity, to use an imaginary x4-co-ordinate, as then
the gµν, to the first approximation, assume the values

−1

0

0

0

0

−1

0

0

0

0

−1

0

0

0

0

−1

(91a)
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These values may be collected in the relation

gµν = − δνµ

To the second approximation we must then put

gµν = − δµν + γµν (92)

where the γµν are to be regarded as small of the first order.
Both terms of our equation of motion are then small of the

first order. If we neglect terms which, relatively to these, are
small of the first order, we have to put

ds2 = − dxν
2 = dl2(1 − q2) (93)

Γ µ
αβ = − δµα[

αβ
σ ] = − [αβ

µ ] = 
1

2 �∂γαβ

∂xµ

 − 
∂γαµ

∂xβ

 − 
∂γβµ

∂xα

� (94)

We shall now introduce an approximation of a second kind. Let
the velocity of the material particles be very small compared to
that of light. Then ds will be the same as the time differential, dl.

Further, 
dx1

ds
, 
dx2

ds
, 
dx3

ds
 will vanish compared to 

dx4

ds
. We shall assume,

in addition, that the gravitational field varies so little with the
time that the derivatives of the γµν by x4 may be neglected. Then
the equation of motion (for µ = 1, 2, 3) reduces to

d2xµ

dl2
 = 

∂
∂xµ

�γ44

2 � (90a)

This equation is identical with Newton’s equation of motion for

a material particle in a gravitational field, if we identify �γ44

2 �
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with the potential of the gravitational field; whether or not this is
allowable, naturally depends upon the field equations of gravita-
tion, that is, it depends upon whether or not this quantity satis-
fies, to a first approximation, the same laws of the field as the
gravitational potential in Newton’s theory. A glance at (90) and
(90a) shows that the Γ µ

βα actually do play the rôle of the inten-
sity of the gravitational field. These quantities do not have a
tensor character.

Equations (90) express the influence of inertia and gravitation
upon the material particle. The unity of inertia and gravitation is
formally expressed by the fact that the whole left-hand side of
(90) has the character of a tensor (with respect to any trans-
formation of co-ordinates), but the two terms taken separately
do not have tensor character. In analogy with Newton’s equa-
tions, the first term would be regarded as the expression for
inertia, and the second as the expression for the gravitational
force.

We must next attempt to find the laws of the gravitational
field. For this purpose, Poisson’s equation,

∆� = 4πΚρ

of the Newtonian theory must serve as a model. This equation
has its foundation in the idea that the gravitational field arises
from the density ρ of ponderable matter. It must also be so in the
general theory of relativity. But our investigations of the special
theory of relativity have shown that in place of the scalar density
of matter we have the tensor of energy per unit volume. In the
latter is included not only the tensor of the energy of ponderable
matter, but also that of the electromagnetic energy. We have
seen, indeed, that in a more complete analysis the energy tensor
can be regarded only as a provisional means of representing
matter. In reality, matter consists of electrically charged particles,
and is to be regarded itself as a part, in fact, the principal part, of
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the electromagnetic field. It is only the circumstance that we have
no sufficient knowledge of the electromagnetic field of con-
centrated charges that compels us, provisionally, to leave
undetermined, in presenting the theory, the true form of this
tensor. From this point of view it is at present appropriate to
introduce a tensor, Tµν, of the second rank of as yet unknown
structure, which provisionally combines the energy density
of the electromagnetic field and that of ponderable matter; we
shall denote this in the following as the ‘energy tensor of
matter’.

According to our previous results, the principles of
momentum and energy are expressed by the statement that the
divergence of this tensor vanishes (47c). In the general theory of
relativity, we shall have to assume as valid the corresponding
general co-variant equation. If (Tµν) denotes the co-variant
energy tensor of matter, T ν

σ the corresponding mixed tensor
density, then, in accordance with (83), we must require that

0 = 
∂T α

σ

∂xα

 − Γ α
σβT

β
α (95)

be satisfied. It must be remembered that besides the energy den-
sity of the matter there must also be given an energy density of
the gravitational field, so that there can be no talk of principles of
conservation of energy and momentum for matter alone. This is
expressed mathematically by the presence of the second term in
(95), which makes it impossible to conclude the existence of an
integral equation of the form of (49). The gravitational field
transfers energy and momentum to the ‘matter’, in that it exerts
forces upon it and gives it energy; this is expressed by the second
term in (95).

If there is an analogue of Poisson’s equation in the general
theory of relativity, then this equation must be a tensor equa-
tion for the tensor gµν of the gravitational potential; the energy
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tensor of matter must appear on the right-hand side of this
equation. On the left-hand side of the equation there must be a
differential tensor in the gµν. We have to find this differential
tensor. It is completely determined by the following three
conditions:

1. It may contain no differential coefficients of the gµν higher
than the second.

2. It must be linear in these second differential coefficients.
3. Its divergence must vanish identically.
The first two of these conditions are naturally taken from

Poisson’s equation. Since it may be proved mathematically that
all such differential tensors can be formed algebraically (i.e.
without differentiation) from Riemann’s tensor, our tensor must
be of the form

Rµν + agµν R

in which Rµν and R are defined by (88) and (89) respectively.
Further, it may be proved that the third condition requires a
to have the value − 1

2. For the law of the gravitational field we
therefore get the equation

Rµν − 12 gµν R = − κkTµν (96)

Equation (95) is a consequence of this equation. κ denotes a
constant, which is connected with the Newtonian gravitation
constant.

In the following I shall indicate the features of the theory
which are interesting from the point of view of physics, using as
little as possible of the rather involved mathematical method.
It must first be shown that the divergence of the left-hand
side actually vanishes. The energy principle for matter may be
expressed, by (83),

the meaning of relativity86



0 = 
∂T α

σ

∂xα

 − Γ α
σβT

β
α (97)

in which T α
σ = Tστ gτα �− g

The analogous operation, applied to the left-hand side of (96),
will lead to an identity.

In the region surrounding each world-point there are sys-
tems of co-ordinates for which, choosing the xµ-co-ordinate
imaginary, at the given point,

gµν = gµν = − δµν 	 = − 1 if µ = ν

= 0 if µ ≠ ν

and for which the first derivatives of the gµν and the gµν vanish.
We shall verify the vanishing of the divergence of the left-hand
side at this point. At this point the components Γ α

σβ vanish, so
that we have to prove the vanishing only of

∂
∂xσ

[�− g gνσ(Rµν − 2gµνR)]

Introducing (88) and (70) into this expression, we see that the
only terms that remain are those in which third derivatives of
the gµν enter. Since the gµν are to be replaced by − δµν, we obtain,
finally, only a few terms which may easily be seen to cancel each
other. Since the quantity that we have formed has a tensor
character, its vanishing is proved for every other system of co-
ordinates also, and naturally for every other four-dimensional
point. The energy principle of matter (97) is thus a mathe-
matical consequence of the field equations (96).

In order to learn whether the equations (96) are consistent
with experience, we must, above all else, find out whether they
lead to the Newtonian theory as a first approximation. For this
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purpose we must introduce various approximations into these
equations. We already know that Euclidean geometry and the law
of the constancy of the velocity of light are valid, to a certain
approximation, in regions of a great extent, as in the planetary
system. If, as in the special theory of relativity, we take the fourth
co-ordinate imaginary, this means that we must put

gµν = − δµν + γµν (98)

in which the γµν are so small compared to 1 that we can neglect
the higher powers of the γµν and their derivatives. If we do this,
we learn nothing about the structure of the gravitational field,
or of metrical space of cosmical dimensions, but we do learn
about the influence of neighbouring masses upon physical
phenomena.

Before carrying through this approximation we shall trans-
form (96). We multiply (96) by gµν, summed over the µ and ν;
observing the relation which follows from the definition of
the gµν,

gµν gµν = 4

we obtain the equation

R = κgµνTµν = κT

If we put this value of R in (96) we obtain

Rµν = − κ(Tµν − 12 gµνT) = − κT *µν (96a)

When the approximation which has been mentioned is carried
out, we obtain for the left-hand side,

− 
1

2
 �∂

2γµν

∂x2
α

 + 
∂2γαα

∂xµ∂xν

 − 
∂2γµα

∂xν∂xα

 − 
∂2γνα

∂xµ∂xα

�
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or

− 
1

2

∂2γµν

∂x 2
α

 − 
1

2

∂
∂xν

 �∂γ′µα

∂xα

� + 
1

2

∂
∂xµ

�∂γ′να

∂xα

�
in which has been put

γ′µν = γµν − 12 γσσ δµν (99)

We must now note that equation (96) is valid for any system
of co-ordinates. We have already specialized the system of co-
ordinates in that we have chosen it so that within the region
considered the gµν differ infinitely little from the constant values
− δµν. But this condition remains satisfied in any infinitesimal
change of co-ordinates, so that there are still four conditions to
which the γµν may be subjected, provided these conditions do
not conflict with the conditions for the order of magnitude of
the γµν. We shall now assume that the system of co-ordinates is
so chosen that the four relations—

0 = 
∂γ′µν

∂xν

 = 
∂γµν

∂xν

 − 
1

2

∂γσσ

∂xµ

(100)

are satisfied. Then (96a) takes the form

∂2γµν

∂xα
2
 = 2κT*µν (96b)

These equations may be solved by the method, familiar in
electrodynamics, of retarded potentials; we get, in an easily
understood notation,

γµν = − 
κ

2π
 � 

T*µν(x0, y0, z0, t − r)

r
 dV0 (101)

the general theory of relativity (continued) 89



In order to see in what sense this theory contains the Newton-
ian theory, we must consider in greater detail the energy tensor
of matter. Considered phenomenologically, this energy tensor is
composed of that of the electromagnetic field and of matter in
the narrower sense. If we consider the different parts of this
energy tensor with respect to their order of magnitude, it fol-
lows from the results of the special theory of relativity that the
contribution of the electromagnetic field practically vanishes in
comparison to that of ponderable matter. In our system of units,
the energy of one gram of matter is equal to 1, compared to
which the energy of the electric fields may be ignored, and also
the energy of deformation of matter, and even the chemical
energy. We get an approximation that is fully sufficient for our
purpose if we put

Tµν = σ
dxµ

ds

dxν

ds (102)

ds2 = gµν dxµdxν






In this, σ is the density at rest, that is, the density of the ponder-
able matter, in the ordinary sense, measured with the aid of
a unit measuring-rod, and referred to a Galilean system of
co-ordinates moving with the matter.

We observe, further, that in the co-ordinates we have chosen,
we shall make only a relatively small error if we replace the gµν

by − δµν, so that we put

ds2 = − ∑ dxµ
2 (102a)

The previous developments are valid however rapidly the
masses which generate the field may move relatively to our
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chosen system of quasi-Galilean co-ordinates. But in astronomy
we have to do with masses whose velocities, relatively to the co-
ordinate system employed, are always small compared to the
velocity of light, that is, small compared to 1, with our choice of
the unit of time. We therefore get an approximation which is
sufficient for nearly all practical purposes if in (101) we replace
the retarded potential by the ordinary (non-retarded) potential,
and if, for the masses which generate the field, we put

dx1

ds
 = 

dx2

ds
 = 

dx3

ds
 = 0,

dx4

ds
 = 

�−1 dl

dl
 = �−1 (103)

Then we get for Tµν and Tµν the values

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

−σ

(104)







For T we get the value σ, and, finally, for T*µν the values,

σ

2
0 0 0

(104a)

0
σ

2
0 0

0 0
σ

2
0

0 0 0 −
σ

2











We thus get, from (101),
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γ11 = γ22 = γ33 = − 
κ

4π
 � 

σ dV0

r

γ44 = + 
κ

4π
 � 

σ dV0

r
(101a)







while all the other γµν vanish. The last of these equations, in
connexion with equation (90a), contains Newton’s theory of
gravitation. If we replace l by ct we get

d2xµ

dt2
 = 

κc2

8π

∂
∂xµ

 � 
σ dV0

r
(90b)

We see that the Newtonian gravitation constant K, is connected
with the constant κ that enters into our field equations by the
relation

Κ =
κc2

8π
(105)

From the known numerical value of K, it therefore follows that

κ =
8πΚ

c2
=

8π.6·67.10−8

9.1020
= 1·86.10−27 (105a)

From (101) we see that even in the first approximation the
structure of the gravitational field differs fundamentally from
that which is consistent with the Newtonian theory; this differ-
ence lies in the fact that the gravitational potential has the char-
acter of a tensor and not a scalar. This was not recognized in the
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past because only the component g44, to a first approximation,
enters the equations of motion of material particles.

In order now to be able to judge the behaviour of measuring-
rods and clocks from our results, we must observe the following.
According to the principle of equivalence, the metrical relations
of the Euclidean geometry are valid relatively to a Cartesian sys-
tem of reference of infinitely small dimensions, and in a suitable
state of motion (freely falling, and without rotation). We can
make the same statement for local systems of co-ordinates
which, relatively to these, have small accelerations, and therefore
for such systems of co-ordinates as are at rest relatively to the
one we have selected. For such a local system, we have, for two
neighbouring point events,

ds2 = − dX1
2 − dX2

2 − dX3
2 + dT2 = − dS2 + dT2

Where dS is measured directly by a measuring-rod and dT by a
clock at rest relatively to the system: these are the naturally
measured lengths and times. Since ds2, on the other hand, is
known in terms of the co-ordinates x, employed in finite
regions, in the form

ds2 = gµν dxµ dxν

we have the possibility of getting the relation between natur-
ally measured lengths and times, on the one hand, and the
corresponding differences of co-ordinates, on the other hand.
As the division into space and time is in agreement with
respect to the two systems of co-ordinates, so when we equate
the two expressions for ds2 we get two relations. If, by (101a),
we put

ds2 = − �1 +
κ

4π
 � 

σ dV0

r � (dx1
2 + dx2

2 + dx3
2) + �1 −

κ

4π
 � 

σ dV0

r � dl2
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we obtain, to a sufficiently close approximation,

�dX1
2 + dX2

2 + dX3
2

= �1 +
κ

8π
 � 

σ dV0

r � �dx1
2 + dx2

2 + dx3
2 (106)

dT = �1 −
κ

8π
 � 

σ dV0

r � dl









The unit measuring-rod has therefore the co-ordinate length,

1 − κ

8π
 � 

σ dV0

r

in respect to the system of co-ordinates we have selected. The
particular system of co-ordinates we have selected insures that
this length shall depend only upon the place, and not upon the
direction. If we had chosen a different system of co-ordinates
this would not be so. But however we may choose a system of
co-ordinates, the laws of configuration of rigid rods do not agree
with those of Euclidean geometry; in other words, we cannot
choose any system of co-ordinates so that the co-ordinate differ-
ences, ∆x1, ∆x2, ∆x3, corresponding to the ends of a unit
measuring-rod, oriented in any way, shall always satisfy the rela-
tion ∆x1

2 + ∆x2
2 + ∆x3

2 = 1. In this sense space is not Euclidean,
but ‘curved’. It follows from the second of the relations above
that the interval between two beats of the unit clock (dT = 1)
corresponds to the ‘time’

1 +
κ

8π
 � 

σ dV0

r

in the unit used in our system of co-ordinates. The rate of a clock
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is accordingly slower the greater is the mass of the ponderable
matter in its neighbourhood. We therefore conclude that spectral
lines which are produced on the sun’s surface will be displaced
towards the red, compared to the corresponding lines produced
on the earth, by about 2.10−6 of their wave-lengths. At first, this
important consequence of the theory appeared to conflict with
experiment; but results obtained during the past years seem to
make the existence of this effect more and more probable, and it
can hardly be doubted that this consequence of the theory will
be confirmed within the next years.

Another important consequence of the theory, which can be
tested experimentally, has to do with the path of rays of light.
In the general theory of relativity also the velocity of light
is everywhere the same, relatively to a local inertial system.
This velocity is unity in our natural measure of time. The law of
the propagation of light in general co-ordinates is therefore,
according to the general theory of relativity, characterized, by
the equation

ds2 = 0

To within the approximation which we are using, and in the
system of co-ordinates which we have selected, the velocity of
light is characterized, according to (106), by the equation

�1 +
κ

4π
 � 

σ dV0

r �(dx1
2 + dx2

2 + dx3
2) = �1 −

κ

4π
 � 

σ dV0

r � dl2

The velocity of light L, is therefore expressed in our co-ordinates
by

�dx1
2 + dx2

2 + dx3
2

dl
= 1 −

κ

4π
� σ dV0

r
(107)
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We can therefore draw the conclusion from this, that a ray of
light passing near a large mass is deflected. If we imagine the
sun, of mass M, concentrated at the origin of our system of co-
ordinates, then a ray of light, travelling parallel to the x3-axis, in
the x1 − x3 plane, at a distance ∆ from the origin, will be
deflected, in all, by an amount

α = �
+∞

−∞

1

L

∂L

∂x1

 dx3

towards the sun. On performing the integration we get

α =
κM

2π∆
(108)

The existence of this deflection, which amounts to 1 .7′ for ∆
equal to the radius of the sun, was confirmed, with remarkable
accuracy, by the English Solar Eclipse Expedition in 1919, and
most careful preparations have been made to get more exact
observational data at the solar eclipse in 1922. It should be noted
that this result, also, of the theory is not influenced by our
arbitrary choice of a system of co-ordinates.

This is the place to speak of the third consequence of the
theory which can be tested by observation, namely, that which
concerns the motion of the perihelion of the planet Mercury.
The secular changes in the planetary orbits are known with such
accuracy that the approximation we have been using is no longer
sufficient for a comparison of theory and observation. It is
necessary to go back to the general field equations (96). To solve
this problem I made use of the method of successive approxima-
tions. Since then, however, the problem of the central sym-
metrical statical gravitational field has been completely solved by
Schwarzschild and others; the derivation given by H. Weyl in his
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book, Raum-Zeit-Materie, is particularly elegant. The calculation
can be simplified somewhat if we do not go back directly to the
equation (96), but base it upon a principle of variation that is
equivalent to this equation. I shall indicate the procedure only in
so far as is necessary for understanding the method.

In the case of a statical field, ds2 must have the form

ds2 = − dσ2 + f2 dx4
2 �dσ2 = ∑

1−3
γαβ dxα dxβ

(109)

where the summation on the right-hand side of the last equation
is to be extended over the space variables only. The central
symmetry of the field requires the γµν to be of the form,

γαβ
= µδαβ

+ λxαxβ (110)

f2, µ and λ are functions of r = �x1
2 + x2

2 + x3
2 only. One of these

three functions can be chosen arbitrarily, because our system of
co-ordinates is, a priori, completely arbitrary; for by a substitution

x′4 = x4

x′α
= F(r)xα

we can always insure that one of these three functions shall be an
assigned function of r′. In place of (110) we can therefore put,
without limiting the generality

γαβ = δαβ + λxαxβ (110a)

In this way the gµν are expressed in terms of the two quantities
λ and f. These are to be determined as functions of r, by intro-
ducing them into equation (96), after first calculating the Iσ

µν

from (109) and (110a). We have
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Γ σ
αβ

=
1

2

xσ

r
.

xαxβ
+ 2λrδαβ

1 + λr2
(for α, β, σ = 1, 2, 3)

Γ 4
44 = Γ α

4β
= Γ 4

αβ
= 0 (for α, β = 1, 2, 3) (110b)

Γ 4
4 α

=
1

2
f−2

∂f2

∂xα

, Γ α
44 = −

1

2
gαβ

∂f2

∂xβ








With the help of these results, the field equations furnish
Schwarzschild’s solution:

ds2 = �1 −
A

r� dl2 −
dr2

1 −
A

r

+ r2(sin2 θ d�2 + dθ 2)
(109a)

in which we have put

x4 = l

x1 = r sin θ sin �

x2 = r sin θ cos � (109b)

x3 = r cos θ

A = 
κM

4π










M denotes the sun’s mass, centrally symmetrically placed
about the origin of co-ordinates; the solution (109) is valid only
outside of this mass, where all the Tµν vanish. If the motion of
the planet takes place in the x1 − x2 plane then we must replace
(109a) by

ds2 = �1 − 
A

r� dl2 − 
dr2

1 −
A

r

− r2d�2 (109c)
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The calculation of the planetary motion depends upon equa-
tion (90). From the first of equations (110b) and (90) we get,
for the indices, 1, 2, 3,

d

ds
 �xα 

dxβ

ds
− xβ 

dxα

ds � = 0

or, if we integrate, and express the result in polar co-ordinates,

r2 
d�

ds
= constant (111)

From (90), for µ = 4, we get

0 =
d2l

ds2
+

1

f2
af2

dxα

dxα

ds

dl

ds
=

d2l

ds2
+

1

f2
df2

ds

dl

ds

From this, after multiplication by f2 and integration, we have

f 2
dl

ds
= constant (112)

In (109c), (111) and (112) we have three equations between
the four variables s, r, l and �, from which the motion of the
planet may be calculated in the same way as in classical mechan-
ics. The most important result we get from this is a secular
rotation of the elliptic orbit of the planet in the same sense as the
revolution of the planet, amounting in radians per revolution to

24π3a2

(1 − e2)c2T2
(113)

where a = the semi-major axis of the planetary orbit in
centimetres.
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e = the numerical eccentricity.

c = 3 .10+10, the velocity of the light in vacuo.

T = the period of revolution in seconds.

This expression furnishes the explanation of the motion of the
perihelion of the planet Mercury, which has been known for a
hundred years (since Leverrier), and for which theoretical
astronomy has hitherto been unable satisfactorily to account.

There is no difficulty in expressing Maxwell’s theory of the
electromagnetic field in terms of the general theory of relativity;
this is done by application of the tensor formation (81), (82)
and (77). Let �µ be a tensor of the first rank, to be interpreted as
an electromagnetic 4-potential; then an electromagnetic field
tensor may be defined by the relations,

�µν
=

∂�µ

∂xµ

−
∂�ν

∂xµ

(114)

The second of Maxwell’s systems of equations is then defined by
the tensor equation, resulting from this,

∂�µν

∂xρ

+
∂�νρ

∂xµ

+
∂�ρµ

∂xν

= 0 (114a)

and the first of Maxwell’s systems of equations is defined by the
tensor-density relation

∂Fµν

∂xν

= ℑµ (115)

in which
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Fµν = �− g gµσ gντ�στ

ℑµ = �− g ρ
dxν

ds

If we introduce the energy tensor of the electromagnetic field
into the right-hand side of (96), we obtain (115), for the special
case ℑµ = 0, as a consequence of (96) by taking the divergence.
This inclusion of the theory of electricity in the scheme of the
general theory of relativity has been considered arbitrary and
unsatisfactory by many theoreticians. Nor can we in this way
understand the equilibrium of the electricity which constitutes
the elementary electrically charged particles. A theory in which
the gravitational field and the electromagnetic field do not
enter as logically distinct structures would be much preferable.
H. Weyl, and recently Th. Kaluza, have put forward ingenious
ideas along this direction; but concerning them, I am convinced
that they do not bring us nearer to the true solution of the
fundamental problem. I shall not go into this further, but shall
give a brief discussion of the so-called cosmological problem,
for without this, the considerations regarding the general theory
of relativity would, in a certain sense, remain unsatisfactory.

Our previous considerations, based upon the field equations
(96), had for a foundation the conception that space on the
whole is Galilean-Euclidean, and that this character is disturbed
only by masses embedded in it. This conception was certainly
justified as long as we were dealing with spaces of the order of
magnitude of those that astronomy has mostly to do with. But
whether portions of the universe, however large they may be,
are quasi-Euclidean, is a wholly different question. We can
make this clear by using an example from the theory of surfaces
which we have employed many times. If a certain portion of a
surface appears to be practically plane, it does not at all follow
that the whole surface has the form of a plane; the surface
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might just as well be a sphere of sufficiently large radius. The
question as to whether the universe as a whole is non-
Euclidean was much discussed from the geometrical point of
view before the development of the theory of relativity. But
with the theory of relativity, this problem has entered upon a
new stage, for according to this theory the geometrical prop-
erties of bodies are not independent, but depend upon the
distribution of masses.

If the universe were quasi-Euclidean, then Mach was wholly
wrong in his thought that inertia, as well as gravitation, depends
upon a kind of mutual action between bodies. For in this case,
for a suitably selected system of co-ordinates, the gµν would be
constant at infinity, as they are in the special theory of relativity,
while within finite regions the gµν would differ from these con-
stant values by small amounts only, for a suitable choice of co-
ordinates, as a result of the influence of the masses in finite
regions. The physical properties of space would not then be
wholly independent, that is uninfluenced by matter, but in the
main they would be, and only in small measure, conditioned by
matter. Such a dualistic conception is even in itself not satisfac-
tory; there are, however, some important physical arguments
against it, which we shall consider.

The hypothesis that the universe is infinite and Euclidean at
infinity, is, from the relativistic point of view, a complicated
hypothesis. In the language of the general theory of relativity it
demands that the Riemann tensor of the fourth rank, Riklm, shall
vanish at infinity, which furnishes twenty independent condi-
tions, while only ten curvature components, Rµν, enter into the
laws of the gravitational field. It is certainly unsatisfactory to
postulate such a far-reaching limitation without any physical
basis for it.

But in the second place, the theory of relativity makes it
appear probable that Mach was on the right road in his thought
that inertia depends upon a mutual action of matter. For we shall
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show in the following that, according to our equations, inert
masses do act upon each other in the sense of the relativity of
inertia, even if only very feebly. What is to be expected along the
line of Mach’s thought?

1. The inertia of a body must increase when ponderable masses
are piled up in its neighbourhood.

2. A body must experience an accelerating force when neigh-
bouring masses are accelerated, and, in fact, the force must
be in the same direction as that acceleration.

3. A rotating hollow body must generate inside of itself a
‘Coriolis field’, which deflects moving bodies in the sense of
the rotation, and a radial centrifugal field as well.

We shall now show that these three effects, which are to be
expected in accordance with Mach’s ideas, are actually present
according to our theory, although their magnitude is so small
that confirmation of them by laboratory experiments is not
to be thought of. For this purpose we shall go back to the
equations of motion of a material particle (90), and carry
the approximations somewhat further than was done in
equation (90a).

First, we consider λ44 as small of the first order. The square of
the velocity of masses moving under the influence of the gravi-
tational force is of the same order, according to the energy equa-
tion. It is therefore logical to regard the velocities of the material
particles we are considering, as well as the velocities of the
masses which generate the field, as small, of the order 12. We shall
now carry out the approximation in the equations that arise
from the field equations (101) and the equations of motion
(90) so far as to consider terms, in the second member of (90),
that are linear in those velocities. Further, we shall not put ds and
dl equal to each other, but, corresponding to the higher
approximation, we shall put
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ds = �g44 dl = �1 −
γ44

2 � dl

From (90) we obtain, at first,

d

dl ��1 +
γ44

2 � dxµ

dl � = − Γ µ
αβ

dxα

dl

dxβ

dl �1 +
γ44

2 � (116)

From (101) we get, to the approximation sought for,

−γ11 = − γ22 = − γ33 = γ44 =
κ

4π
 � 

σ dV0

r

γ4 α
= −

iκ

2π�σ
dxα

ds
 dV0

r

(117)

γαβ
= 0









in which, in (117), α and β denote the space indices only.

On the right-hand side of (116) we can replace 1 + 
γ44

2
 by 1

and − Γ αβ
µ  by [αβ

µ ]. It is easy to see, in addition, that to this degree
of approximation we must put

[44
µ ] = − 1

2

∂γ44

∂xµ

+
∂γ4µ

∂x4

[α 4
µ ] =

1

2 �∂γ4µ

∂xα

 − 
∂γ4α

∂xµ

�
[αβ

µ ]  = 0

in which α, β and µ denote space indices. We therefore obtain
from (116), in the usual vector notation,
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d

dl
 [(1 + σ)v]  = grad σ + 

∂A

∂l
 + [rot A × v]

σ = 
κ

8π
 � 

σ dV0

r
(118)

A= 
κ

2π �σ
dxα

dl
dV0

r











The equations of motion, (118), show now, in fact, that

1. The inert mass is proportional to 1 + σ, and therefore
increases when ponderable masses approach the test body.

2. There is an inductive action of accelerated masses, of the

same sign, upon the test body. This is the term 
∂A

∂l
.

3. A material particle, moving perpendicularly to the axis of
rotation inside a rotating hollow body, is deflected in the
sense of the rotation (Coriolis field). The centrifugal
action, mentioned above, inside a rotating hollow body,
also follows from the theory, as has been shown by
Thirring.*

Although all of these effects are inaccessible to experiment,
because κ is so small, nevertheless they certainly exist accord-
ing to the general theory of relativity. We must see in them a
strong support for Mach’s ideas as to the relativity of all inertial
actions. If we think these ideas consistently through to the end
we must expect the whole inertia, that is, the whole gµν-field, to be

* That the centrifugal action must be inseparably connected with the existence
of the Coriolis field may be recognized, even without calculation, in the special
case of a co-ordinate system rotating uniformly relatively to an inertial system;
our general co-variant equations naturally must apply to such a case.
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determined by the matter of the universe, and not mainly by the
boundary conditions at infinity.

For a satisfactory conception of the gµν-field of cosmical
dimensions, the fact seems to be of significance that the relative
velocity of the stars is small compared to the velocity of light. It
follows from this that, with a suitable choice of co-ordinates,
g44 is nearly constant in the universe, at least, in that part of
the universe in which there is matter. The assumption appears
natural, moreover, that there are stars in all parts of the universe,
so that we may well assume that the inconstancy of g44 depends
only upon the circumstance that matter is not distributed
continuously, but is concentrated in single, celestial bodies and
systems of bodies. If we are willing to ignore these more local
non-uniformities of the density of matter and of the gµν-field, in
order to learn something of the geometrical properties of the
universe as a whole, it appears natural to substitute for the actual
distribution of masses a continuous distribution, and further-
more to assign to this distribution a uniform density σ. In this
imagined universe all points with space directions will be geo-
metrically equivalent; with respect to its space extension it will
have a constant curvature, and will be cylindrical with respect to
its x4-co-ordinate. The possibility seems to be particularly satis-
fying that the universe is spatially bounded and thus, in
accordance with our assumption of the constancy of σ, is of
constant curvature, being either spherical or elliptical; for then
the boundary conditions at infinity which are so inconvenient
from the standpoint of the general theory of relativity, may be
replaced by the much more natural conditions for a closed space.

According to what has been said, we are to put

ds2 = dx4
2 − γµν dxµ dxν (119)

in which the indices µ and ν run from 1 to 3 only. The γµν

will be such functions of x1, x2, x3, as correspond to a three-
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dimensional continuum of constant positive curvature. We must
now investigate whether such an assumption can satisfy the field
equations of gravitation.

In order to be able to investigate this, we must first find what
differential conditions the three-dimensional manifold of con-
stant curvature satisfies. A spherical manifold of three dimen-
sions, embedded in a Euclidean continuum of four dimensions,*
is given by the equations

x1
2 + x2

2 + x3
2 + x4

2 = a2

dx1
2 + dx2

2 + dx3
2 + dx4

2 = ds2

By eliminating x4, we get

ds2 = dx1
2 + dx2

2 + dx3
2 + 

(x1 dx1 + x2 dx2 + x3 dx3)
2

a2 − x1
2 − x2

2 − x3
2

Neglecting terms of the third and higher degrees in the xν, we
can put, in the neighbourhood of the origin of co-ordinates,

ds2′ = �δµν + 
xµxν

a2 � dxµ dxν

Inside the brackets are the gµν of the manifold in the neigh-
bourhood of the origin. Since the first derivatives of the gµν, and
therefore also the Γ σ

µν, vanish at the origin, the calculation of the
Rµν for this manifold, by (88), is very simple at the origin. We
have

Rµν = − 
2

a2
δµν = − 

2

a2
gµν

* The aid of a fourth space dimension has naturally no significance except that
of a mathematical artifice.
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Since the relation Rµν = 
2

a2
gµν is generally co-variant, and since

all points of the manifold are geometrically equivalent, this rela-
tion holds for every system of co-ordinates, and everywhere in
the manifold. In order to avoid confusion with the four-
dimensional continuum, we shall, in the following, designate
quantities that refer to the three-dimensional continuum by
Greek letters, and put

Pµν = − 
2

α2
γµν (120)

We now proceed to apply the field equations (96) to our
special case. From (119) we get for the four-dimensional
manifold,

Rµν = Pµν for the indices 1 to 3

R14 = R24 = R34 = R44 = 0 � (121)

For the right-hand side of (96) we have to consider the energy
tensor for matter distributed like a cloud of dust. According to
what has gone before we must therefore put

Tµν = σ
dxµ

ds

dxν

ds

specialized for the case of rest. But in addition, we shall add
a pressure term that may be physically established as follows.
Matter consists of electrically charged particles. On the basis
of Maxwell’s theory these cannot be conceived of as electro-
magnetic fields free from singularities. In order to be consistent
with the facts, it is necessary to introduce energy terms, not
contained in Maxwell’s theory, so that the single electric par-
ticles may hold together in spite of the mutual repulsions
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between their elements, charged with electricity of one sign. For
the sake of consistency with this fact, Poincaré has assumed a
pressure to exist inside these particles which balances the elec-
trostatic repulsion. It cannot, however, be asserted that this pres-
sure vanishes outside the particles. We shall be consistent with
this circumstance if, in our phenomenological presentation,
we add a pressure term. This must not, however, be confused
with a hydro-dynamical pressure, as it serves only for the
energetic presentation of the dynamical relations inside matter.
Accordingly we put

Tµν = gµα gνβ σ
dxα

ds

dxβ

ds
 − gµνp (122)

In our special case we have, therefore, to put

Tµν = γµνp (for µ and ν from 1 to 3)

T44 = σ − p

T  = − γµνγµνp + σ − p = σ − 4p

Observing that the field equation (96) may be written in the
form

Rµν = − κ(Tµν − 12 gµνT)

we get from (96) the equations,

+ 
2

a2
γµν = κ �σ2 − p�γµν

0 = − κ �σ2 + p�
From this follows
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p = − 
σ

2

a = � 2

κσ

(123)







If the universe is quasi-Euclidean, and its radius of curvature
therefore infinite, then σ would vanish. But it is improbable that
the mean density of matter in the universe is actually zero; this is
our third argument against the assumption that the universe is
quasi-Euclidean. Nor does it seem possible that our hypothetical
pressure can vanish; the physical nature of this pressure can be
appreciated only after we have a better theoretical knowledge of
the electromagnetic field. According to the second of equations
(123) the radius, a, of the universe is determined in terms of the
total mass, M, of matter, by the equation

a = 
Mκ

4π2
(124)

The complete dependence of the geometrical upon the physical
properties becomes clearly apparent by means of this equation.

Thus we may present the following arguments against the
conception of a space-infinite closed, and for the conception of a
space-bounded closed, universe:

1. From the standpoint of the theory of relativity, to postulate
a closed universe is very much simpler than to postulate the
corresponding boundary condition at infinity of the quasi-
Euclidean structure of the universe.

2. The idea that Mach expressed, that inertia depends upon
the mutual action of bodies, is contained, to a first approxima-
tion, in the equations of the theory of relativity; it follows from
these equations that inertia depends, at least in part, upon
mutual actions between masses. Thereby, Mach’s idea gains in
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probability, as it is an unsatisfactory assumption to make that
inertia depends in part upon mutual actions, and in part upon an
independent property of space. But this idea of Mach’s cor-
responds only to a finite universe, bounded in space, and not
to a quasi-Euclidean, infinite universe. From the standpoint of
epistemology it is more satisfying to have the mechanical prop-
erties of space completely determined by matter, and this is
the case only in a closed universe.

3. An infinite universe is possible only if the mean density of
matter in the universe vanishes. Although such an assumption is
logically possible, it is less probable than the assumption that
there is a finite mean density of matter in the universe.
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APPENDIX I

On the ‘cosmologic problem’

Since the first edition of this little book some advances have been
made in the theory of relativity. Some of these we shall mention
here only briefly:

The first step forward is the conclusive demonstration of the
existence of the red shift of the spectral lines by the (negative)
gravitational potential of the place of origin (see p. 95). This
demonstration was made possible by the discovery of so-called
‘dwarf stars’ whose average density exceeds that of water by a
factor of the order 104. For such a star (e.g. the faint companion
of Sirius), whose mass and radius can be determined,* this red
shift was expected, by the theory, to be about twenty times as

* The mass is derived from the reaction on Sirius by spectroscopic means,
using the Newtonian laws; the radius is derived from the total lightness and
from the intensity of radiation per unit area, which may be derived from the
temperature of its radiation.



large as for the sun, and indeed it was demonstrated to be within
the expected range.

A second step forward, which will be mentioned briefly, con-
cerns the law of motion of a gravitating body. In the initial
formulation of the theory the law of motion for a gravitating
particle was introduced as an independent fundamental assump-
tion in addition to the field law of gravitation—see Eq. 90 which
asserts that a gravitating particle moves in a geodesic line. This
constitutes a hypothetic translation of Galileo’s law of inertia to
the case of the existence of ‘genuine’ gravitational fields. It has
been shown that this law of motion—generalized to the case of
arbitrarily large gravitating masses—can be derived from the
field-equations of empty space alone. According to this deriva-
tion the law of motion is implied by the condition that the field
be singular nowhere outside its generating mass points.

A third step forward, concerning the so-called ‘cosmologic
problem’, will be considered here in detail, in part because of its
basic importance, partly also because the discussion of these
questions is by no means concluded. I feel urged toward a more
exact discussion also by the fact that I cannot escape the impres-
sion that in the present treatment of this problem the most
important basic points of view are not sufficiently stressed.

The problem can be formulated roughly thus: On account of
our observations on fixed stars we are sufficiently convinced that
the system of fixed stars does not in the main resemble an island
which floats in infinite empty space, and that there does not exist
anything like a centre of gravity of the total amount of existing
matter. Rather, we feel urged toward the conviction that there
exists an average density of matter in space which differs from
zero.

Hence the question arises: Can this hypothesis, which is sug-
gested by experience, be reconciled with the general theory of
relativity?

First we have to formulate the problem more precisely. Let us
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consider a finite part of the universe which is large enough so
that the average density of matter contained in it is an approxi-
mately continuous function of (x1, x2, x3, x4). Such a subspace can
be considered approximately as an inertial system (Minkowski
space) to which we relate the motion of the stars. One can
arrange it so that the mean velocity of matter relative to this
system shall vanish in all directions. There remain the (almost
random) motions of the individual stars, similar to the motions
of the molecules of a gas. It is essential that the velocities of the
stars are known by experience to be very small as compared to
the velocity of light. It is therefore feasible for the moment to
neglect this relative motion completely, and to consider the
stars replaced by material dust without (random) motion of the
particles against each other.

The above conditions are by no means sufficient to make the
problem a definite one. The simplest and most radical specializa-
tion would be the condition: The (naturally measured) density,
ρ, of matter is the same everywhere in (four-dimensional) space,
the metric is, for a suitable choice of co-ordinates, independent
of x4 and homogeneous and isotropic with respect to x1, x2, x3.

It is this case which I at first considered the most natural
idealized description of physical space in the large; it is treated
on pages 105–11 of this book. The objection to this solution is
that one has to introduce a negative pressure, for which there
exists no physical justification. In order to make that solution
possible I originally introduced a new member into the equation
instead of the above-mentioned pressure, which is permissible
from the point of view of relativity. The equations of gravitation
thus enlarged were:

(Rik − 12 gikR) + Λgik + κTik = 0 (1)

where Λ is a universal constant (‘cosmologic constant’). The
introduction of this second member constitutes a complication
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of the theory, which seriously reduces its logical simplicity. Its
introduction can only be justified by the difficulty produced by
the almost unavoidable introduction of a finite average density of
matter. We may remark, by the way, that in Newton’s theory
there exists the same difficulty.

The mathematician Friedman found a way out of this
dilemma.* His result then found a surprising confirmation by
Hubble’s discovery of the expansion of the stellar system (a red
shift of the spectral lines which increases uniformly with dis-
tance). The following is essentially nothing but an exposition of
Friedman’s idea:

FOUR-DIMENSIONAL SPACE WHICH IS ISOTROPIC
WITH RESPECT TO THREE DIMENSIONS

We observe that the systems of stars, as seen by us, are spaced
with approximately the same density in all directions. Thereby
we are moved to the assumption that the spatial isotropy of the
system would hold for all observers, for every place and every
time of an observer who is at rest as compared with surrounding
matter. On the other hand we no longer make the assumption
that the average density of matter, for an observer who is at rest
relative to neighbouring matter, is constant with respect to time.
With this we drop the assumption that the expression of the
metric field is independent of time.

We now have to find a mathematical form for the condition
that the universe, spatially speaking, is isotropic everywhere.
Through every point P of (four-dimensional) space there is the
path of a particle (which in the following will be called ‘geo-
desic’ for short). Let P and Q be two infinitesimally near points of

* He showed that it is possible, according to the field equations, to have a finite
density in the whole (three-dimensional) space, without enlarging these field
equations ad hoc. Zeitschr. f. Phys., 10 (1922).
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such a geodesic. We shall then have to demand that the expres-
sion of the field shall be invariant relative to any rotation of the
co-ordinate system keeping P and Q fixed. This will be valid for
any element of any geodesic.*

The condition of the above invariance implies that the entire
geodesic lies on the axis of rotation and that its points remain
invariant under rotation of the co-ordinate system. This means
that the solution shall be invariant with respect to all rotations of
the co-ordinate system around the triple infinity of geodesics.

For the sake of brevity I will not go into the deductive deriva-
tion of the solution of this problem. It seems intuitively evident,
however, for the three-dimensional space that a metric which
is invariant under rotations around a double infinity of lines
will be essentially of the type of central symmetry (by suitable
choice of co-ordinates), where the axes of rotations are the radial
straight lines, which by reasons of symmetry are geodesics. The
surfaces of constant radius are then surfaces of constant (posi-
tive) curvature which are everywhere perpendicular to the
(radial) geodesics. Hence we obtain in invariant language:

There exists a family of surfaces orthogonal to the geodesics.
Each of these surfaces is a surface of constant curvature. The
segments of these geodesics contained between any two surfaces
of the family are equal.

Remark. The case which has thus been obtained intuitively is
not the general one in so far as the surfaces of the family could
be of constant negative curvature or Euclidean (zero curvature).

The four-dimensional case which interests us is entirely
analogous. Furthermore there is no essential difference when
the metric space is of index of inertia 1; only that one has to
choose the radial directions as timelike and correspondingly

* This condition not only limits the metric, but it necessitates that for every
geodesic there exist a system of co-ordinates such that relative to this system
the invariance under rotation around this geodesic is valid.
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the directions in the surfaces of the family as spacelike. The axes
of the local light cones of all points lie on the radial lines.

CHOICE OF CO-ORDINATES

Instead of the four co-ordinates for which the spatial isotropy of
the universe is most clearly apparent, we now choose different
co-ordinates which are more convenient from the point of view
of physical interpretation.

As timelike lines on which x1, x2, x3 are constant and x4 alone
variable we choose the particle geodesics which in the central
symmetric form are the straight lines through the centre. Let
x4 further equal the metric distance from the centre. In such
co-ordinates the metric is of the form:

ds2 = dx4
2 − dσ2

dσ2 = γik dxi dxk (i, k = 1, 2, 3)� (2)

dσ2 is the metric on one of the spherical hypersurfaces. The γik

which belong to different hypersurfaces will then (because of
the central symmetry) be the same form on all hypersurfaces
except for a positive factor which depends on x4 alone:

γik = γ
0

ikG
2 (2a)

where the γ
0
 depend on x1, x2, x3 only, and G is a function of x4

alone. We have then:

dσ
0

2 = γ
0

ik dxi dxk (i, k = 1, 2, 3) (2b)

is a definite metric of constant curvature in three dimensions,
the same for every G.

Such a metric is characterized by the equations:
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R
0

iklm − Bγ
0

ilγ
0

km − γ
0

imγ
0

kl = 0 (2c)

We can choose the co-ordinate system (x1, x2, x3) so that the line
element becomes conformally Euclidean:

dσ
0

2 = A2(dx1
2 + dx2

2 + dx3
2) i.e. γ

0
ik = A2δik (2d)

where A shall be a positive function of r (r = x1
2 + x2

2 + x3
2) alone.

By substitution into the equations, we get for A the two
equations:

− 
1

r
 �A′

Ar�
′
 + �A′

Ar�
2

 = 0

− 
2A′
Ar

 − �A′
A �

2

 − BA2 = 0

(3)







The first equation is satisfied by:

A = 
c1

c2 + c3r
2

(3a)

where the constants are arbitrary for the time being. The second
equation then yields:

B = 4
c2c3

c1
2

(3b)

About the constants c we get the following: If for r = 0, A shall
be positive, then c1 and c2 must have the same sign. Since a
change of sign of all three constants does not change A, we can
make c1 and c2 both positive. We can also make c2 equal to 1.
Furthermore, since a positive factor can always be incorporated
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into the G2, we can also make c1 equal to 1 without loss of
generality. Hence we can set:

A = 
1

1 + cr2
; B = 4c (3c)

There are now three cases:

c > 0 (spherical space)

c < 0 (pseudospherical space)

c = 0 (Euclidean space)

By a similarity transformation of co-ordinates (x1′ = axi, where
a is constant), we can further get in the first case c = 1

4, in the
second case c = − 14.

For the three cases we then have respectively:

A = 
1

1 +
r2

4

; B = + 1

A = 
1

1 −
r2

4

; B = − 1 (3d)

A = 1; B = 0











In the spherical case the ‘circumference’ of the unit space

(G = 1) is �
∞

−∞
 

dr

1 +
r2

4

 = 2π the ‘radius’ of the unit space is 1. In all

three cases the function G of time is a measure for the change
with time of the distance of two points of matter (measured on a
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spatial section). In the spherical case, G is the radius of space at
the time x4.

Summary. The hypothesis of spatial isotropy of our idealized
universe leads to the metric:

ds2 = dx4
2 − G2A2(dx1

2 + dx2
2 + dx3

2) (2)

where G depends on x4 alone, A on r (= x1
2 + x2

2 + x3
2) alone,

where:

A = 
1

1 +
z

4
r2

(3)

and the different cases are characterized by z = 1, z = − 1, and
z = 0 respectively.

THE FIELD EQUATIONS

We must now further satisfy the field equations of gravitation,
that is to say the field equations without the ‘cosmologic
member’ which had been introduced previously ad hoc:

(Rik − 12 gikR) + κTik = 0 (4)

By substitution of the expression for the metric, which was
based on the assumption of spatial isotropy, we get after
calculation:

Rik − 
1

2
gikR = � z

G2
 + 

G′2

G2
 + 2

G″
G �GAδik (i,k = 1, 2, 3)

R44 − 
1

2
g44R = − 3� z

G2
 + 

G′2

G2 � (4a)

Ri 4 − 12 gi 4R = 0 (i = 1, 2, 3)
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Further, we have for Tik, the energy tensor of matter, for ‘dust’:

Tik = ρ
dxi

ds

dxk

ds
(4b)

The geodesics, along which the matter moves, are the lines
along which x4 alone varies; on them dx4 = ds. We have:

T44 = ρ (4c)

the only component different from zero. By lowering of the
indices we get as the only non-vanishing component of Tik:

T44 = ρ (4d)

Considering this, the field equations are:

z

G2
 + 

G′2

G2
 + 2

G″
G

 = 0

z

G2
 + 

G′2

G2
 − 

1

3
 κρ = 0

(5)







G′
G

 is the curvature in the spatial section x4 = const. Since G is in

all cases a relative measure for the metric distance of two

material particles as function of time, 
G′
G

 expresses Hubble’s

expansion. A drops out of the equations, as it has to if there
shall be solutions of the equations of gravity of the required
symmetrical type. By subtraction of both equations we get:

G″
G

 + 
1

6
κρ = 0 (5a)
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Since G and ρ must be everywhere positive, G″ is everywhere
negative for non-vanishing ρ. G(x4) can thus have no minimum
nor a point of inflection; further, there is no solution for which
G is constant.

THE SPECIAL CASE OF VANISHING SPATIAL
CURVATURE (z = 0)

The simplest special case for non-vanishing density ρ is the case
z = 0, where the sections x4 = const. are not curved. If we set
G′
G

 = h, the field equations in this case are:

2h′ + 3h2 = 0

3h2 = κρ
� (5b)

The relation between Hubble’s expansion h and the average
density ρ, which is given in the second equation, is comparable
to some extent with experience, at least as far as the order of
magnitude is concerned. The expansion is given as 432km./sec.
for the distance of 106 parsec. If we express this in the system of
measures used by us (cm.—as unit length; unit of time—that of
motion of light of one cm.) we get:

h = 
432 .105

3·25 .106 .365 .24 .60 .60
. � 1

3 .1010� = 4·71 .10−28

Since further (see 105a) κ = 1·86 .10−27, the second equation of
(5b) yields:

ρ = 
3h2

κ
 = 3·5 .10−28 g./cm.

This value corresponds, according to the order of magnitude,
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somewhat with the estimates given by astronomers (on the basis
of the masses and parallaxes of visible stars and systems of stars).
I quote here as example G. C. McVittie (Proceedings of the Physical
Society of London, vol. 51, 1939, p. 537): ‘The average density is
certainly not greater than 10−27 g./cm.3 and is more probably of
the order 10−29 g./cm.3.’

Owing to the great difficulty of determining this magnitude I
consider this for the time being a satisfactory correspondence.
Since the quantity h is determined with greater accuracy than ρ,
it is probably not an exaggeration to assert that the determin-
ation of the structure of observable space is tied up with the
more precise determination of ρ. Because, due to the second
equation of (5), the space curvature is given in the general case
as:

zG−2 = 13κρ − h2 (5c)

Hence, if the right side of the equation is positive, the space is of
positive constant curvature and therefore finite; its magnitude
can be determined with the same accuracy as this difference.
If the right side is negative, the space is infinite. At present ρ is
not sufficiently determined to enable us to deduce from this
relation a non-vanishing mean curvature of space (the section
x4 = const.).

In case we neglect spatial curvature, the first equation of (5c)
becomes, after suitable choice of the initial point of x4:

h = 
2

3
.
1

x4

(6)

This equation has a singularity for x4 = 0, so that such a space has
either a negative expansion and the time is limited from above
by the value x4 = 0, or it has a positive expansion and begins to
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exist for x4 = 0. The latter case corresponds to what we find
realized in nature.

From the measured value of h we get for the time of existence
of the world up to now 1·5 .109 years. This age is about the same
as that which one has obtained from the disintegration of
uranium for the firm crust of the earth. This is a paradoxical
result, which for more than one reason has aroused doubts as
to the validity of the theory.

The question arises: Can the present difficulty, which arose
under the assumption of a practically negligible spatial curva-
ture, be eliminated by the introduction of a suitable spatial
curvature? Here the first equation of (5), which determines the
time-dependence of G, will be of use.

SOLUTION OF THE EQUATIONS IN THE CASE OF
NON-VANISHING SPATIAL CURVATURE

If one considers a spatial curvature of the spatial section
(x4 = const.), one has the equations:

zG−2 + �2G″
G

 + �G′
G �

2

� = 0

zG−2 + �G′
G �G′

G
 − 

1

3
κρ = 0

(5)







The curvature is positive for z = +1, negative for z = −1. The first
of these equations is integrable. We first write it in the form:

z + 2GG″ + G′2 = 0 (5d)

If we consider x4 (= t) as a function of G, we have:

G′ = 
1

t′
, G″ = �1t′�

′
 
1

t′
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If we write u(G) for 
1

t′
, we get:

z + 2Guu′ + u2 = 0 (5e)

or

z + (Gu2)′ = 0 (5f)

From this we get by simple integration:

zG + Gu2 = G0 (5g)

or, since we set u = 
1

dt

dG

 = 
dG

dt
:

�dG

dt �
2

 = 
G0 − zG

G
(5h)

where G0 is a constant. This constant cannot be negative, as we
see if we differentiate (5h) and consider that G″ is negative
because of (5a).

(a) Space with positive curvature

G remains in the interval 0 ≤ G ≤ G0. G is given quantitatively by a
sketch like the following [top of p. 126].

The radius G rises from 0 to G0 and then again drops continu-
ously to 0. The spatial section is finite (spherical)

1
3κρ − h2 > 0 (5c)
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(b) Space with negative curvature

�dG

dt �
2

 = 
G0 + G

G

G increases with t from G = 0 to G = + ∞ (or goes from G = ∞ to

G = 0). Hence 
dG

dt
 decreases monotonically from + ∞ to 1 as

illustrated by the sketch:

This is then a case of continued expansion with no contrac-
tion. The spatial section is infinite, and we have:
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1
3κρ − h2 < 0 (5c)

The case of plane spatial section, which was treated in the
previous section, lies between these two cases, according to the
equation:

�dG

dt �
2

 = 
G0

G
(5h)

Remark. The case of negative curvature contains as a limiting

case that of vanishing ρ. For this case �dG

dt �
2

= 1 (see sketch 2).

This is the Euclidean case; since the calculations show that the
curvature tensor vanishes.

The case of negative curvature with non-vanishing ρ

approaches this limiting case more and more closely, so that
with increasing time the structure of space will be less and less
determined by the matter contained in it.

From this investigation of the case of non-vanishing curvature
results the following. For every state of non-vanishing (‘spatial’)
curvature, there exists, as in the case of vanishing curvature, an
initial state in which G = 0 where the expansion starts. Hence
this is a section at which the density is infinite and the field is
singular. The introduction of such a new singularity seems
problematical in itself.*

It appears, further, that the influence of the introduction of a
spatial curvature on the time interval between the start of the

* However, the following should be noted: The present relativistic theory of
gravitation is based on a separation of the concepts of ‘gravitational field’ and
of ‘matter’. It may be plausible that the theory is for this reason inadequate for
very high density of matter. It may well be the case that for a unified theory
there would arise no singularity.
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expansion and the drop to a fixed value h = 
G′
G

 is negligible in its

order of magnitude. This time interval may be obtained by
elementary calculations from (5h), which we shall omit here.
We restrict ourselves to the consideration of an expanding space
with vanishing ρ. This, as mentioned before, is a special case of
negative spatial curvature. The second equation of (5) yields
(considering the reversal of sign of the first member):

G′ = 1

Hence (for suitable initial point for x4)

G = x4

h = 
G′
G

 = 
1

x4

(6a)

Hence this extreme case yields for the duration of the expansion
the same result as the case of vanishing spatial curvature (see
Eq. 6) except for a factor of order of magnitude 1.

The doubts mentioned in connection with Eq. (6), namely
that this would give such a remarkably short duration for the
development of the stars and systems of stars which are observ-
able at present, cannot therefore be removed by the introduction
of a spatial curvature.

EXTENSION OF THE ABOVE CONSIDERATIONS BY
GENERALIZATION OF THE EQUATION WITH
RESPECT TO PONDERABLE MATTER

For all the solutions reached up to now, there exists a state of the
system at which the metric becomes singular (G = 0) and the
density ρ becomes infinite. The following question arises: Could
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not the rise of such singularities be due to the fact that we
introduced matter as a kind of dust which does not resist
condensation? Did we not neglect, without justification, the
influence of the random motion of the single stars?

One could, for example, replace dust whose particles are at
rest relative to each other, by one whose particles are in random
motion relative to each other like the molecules of a gas. Such
matter would offer a resistance to adiabatic condensation which
increases with that condensation. Will not this be able to prevent
the rise of infinite condensation? We shall show below that such
a modification in the description of matter can change nothing
of the main character of the above solutions.

‘PARTICLE-GAS’ TREATED ACCORDING TO
SPECIAL RELATIVITY

We consider a swarm of particles of mass m in parallel motion.
By a proper transformation this swarm can be considered at rest.
The spatial density of the particles, σ, is then invariant in the
Lorentz sense. Related to an arbitrary Lorentz system

Tuν = mσ
dxu

ds

dxν

ds
(7)

has invariant meaning (energy tensor of the swarm). If there
exist many such swarms we get, by summation, for all of them:

Tuν = m�
p

σp�dxu

ds �p

 �dxν

ds �p

(7a)

In relation to this form we can choose the time axis of the
Lorentz system so that: T14 = T24 = T34 = 0. Further, we can
obtain by spatial rotation of the system: T12 = T23 = T31 = 0. Let,
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further, the particle gas be isotropic. This means that T11 = T22 =
T33 = p. This is an invariant as well as T44 = u. The invariant:

J = Tuνguν  = T44 − (T11 + T22 + T33) = u − 3p (7b)

is thus expressed in terms of u and p.
It follows from the expression for Tuν that T11, T22, T33 and T44

are all positive; hence the same is true for T11, T22, T33, T44.
The equations of gravity are now:

1 + 2GG″ + G2 + κT11 = 0

− 3G−2(1 + G′2) + κT44 = 0
� (8)

From the first it follows that here too (since T11 > 0) G″ is always
negative where the member T11 for given G and G′ can only
decrease the value of G″.

From this we see that the consideration of a random relative
motion of the mass points does not change our results
fundamentally.

SUMMARY AND OTHER REMARKS

(1) The introduction of the ‘cosmologic member’ into the
equations of gravity, though possible from the point of view of
relativity, is to be rejected from the point of view of logical
economy. As Friedman was the first to show one can reconcile
an everywhere finite density of matter with the original form of
the equations of gravity if one admits the time variability of the
metric distance of two mass points.*

* If Hubble’s expansion had been discovered at the time of the creation of
the general theory of relativity, the cosmologic member would never have
been introduced. It seems now so much less justified to introduce such a
member into the field equations, since its introduction loses its sole original
justification—that of leading to a natural solution of the cosmologic problem.
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(2) The demand for spatial isotropy of the universe alone leads
to Friedman’s form. It is therefore undoubtedly the general
form, which fits the cosmologic problem.

(3) Neglecting the influence of spatial curvature, one obtains
a relation between the mean density and Hubble’s expansion
which, as to order of magnitude, is confirmed empirically.

One further obtains, for the time from the start of the expan-
sion up to the present, a value of the order of magnitude of 109

years. The brevity of this time does not concur with the theories
on the developments of fixed stars.

(4) The latter result is not changed by the introduction of
spatial curvature; nor is it changed by the consideration of the
random motion of stars and systems of stars with respect to each
other.

(5) Some try to explain Hubble’s shift of spectral lines by
means other than the Doppler effect. There is, however, no sup-
port for such a conception in the known physical facts. Accord-
ing to such a hypothesis it would be possible to connect two
stars, S1 and S2, by a rigid rod. Monochromatic light which is sent
from S1 to S2 and reflected back to S1 could arrive with a different
frequency (measured by a clock on S1) if the number of wave-
lengths of light along the rod should change with time on the
way. This would mean that the locally measured velocity of light
would depend on time, which would contradict even the special
theory of relativity. Further it should be noted that a light signal
going to and fro between S1 and S2 would constitute a ‘clock’
which would not be in a constant relation with a clock (e.g. an
atomistic clock) in S1. This would mean that there would exist
no metric in the sense of relativity. This not only involves the
loss of comprehension of all those relations which relativity
has yielded, but it also fails to concur with the fact that
certain atomistic forms are not related by ‘similarity’ but by
‘congruence’ (the existence of sharp spectral lines, volumes of
atoms, &c.).
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The above considerations are, however, based on wave theory,
and it may be that some proponents of the above hypothesis
imagine that the process of the expansion of light is altogether
not according to wave theory, but rather in a manner analogous
to the Compton effect. The assumption of such a process with-
out scattering constitutes a hypothesis which is not justified
from the point of view of our present knowledge. It also fails
to give a reason for the independence of the relative shift of
frequency from the original frequency. Hence one cannot but
consider Hubble’s discovery as an expansion of the system of
stars.

(6) The doubts about the assumption of a ‘beginning of the
world’ (start of the expansion) only about 109 years ago have
roots of both an empirical and a theoretical nature. The astron-
omers tend to consider the stars of different spectral types as age
classes of a uniform development, which process would need
much longer than 109 years. Such a theory, therefore, actually
contradicts the demonstrated consequences of the relativistic
equations. It seems to me, however, that the ‘theory of evolution’
of the stars rests on weaker foundations than the field equations.

The theoretical doubts are based on the fact that for the time
of the beginning of the expansion the metric becomes singular
and the density, ρ, becomes infinite. In this connexion the fol-
lowing should be noted: The present theory of relativity is based
on a division of physical reality into a metric field (gravitation)
on the one hand, and into an electromagnetic field and matter on
the other hand. In reality space will probably be of a uniform
character and the present theory be valid only as a limiting case.
For large densities of field and of matter, the field equations and
even the field variables which enter into them will have no real
significance. One may not therefore assume the validity of the
equations for very high density of field and of matter, and one
may not conclude that the ‘beginning of the expansion’ must
mean a singularity in the mathematical sense. All we have to
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realize is that the equations may not be continued over such
regions.

This consideration does, however, not alter the fact that the
‘beginning of the world’ really constitutes a beginning, from the
point of view of the development of the now existing stars and
systems of stars, at which those stars and systems of stars did not
yet exist as individual entities.

(7) There are, however, some empirical arguments in favour of
a dynamic concept of space as required by the theory. Why does
there still exist uranium, despite its comparatively rapid decom-
position, and despite the fact that no possibility for the creation
of uranium is recognizable? Why is space not so filled with
radiation as to make the nocturnal sky look like a glowing sur-
face? This is an old question which so far has found no satisfac-
tory answer from the point of view of a stationary world. But it
would lead too far to go into questions of this type.

(8) For the reasons given it seems that we have to take the
idea of an expanding universe seriously, in spite of the short
‘lifetime’. If one does so, the main question becomes whether
space has positive or negative spatial curvature. To this we add
the following remark.

From the empirical point of view the decision boils down to
the question whether the expression 1

3κρ − h2 is positive
(spherical case) or negative (pseudospherical case). This seems
to me to be the most important question. An empirical deci-
sion does not seem impossible at the present state of astron-
omy. Since h (Hubble’s expansion) is comparatively well
known, everything depends on determining ρ with the highest
possible accuracy.

It is imaginable that the proof would be given that the world is
spherical (it is hardly imaginable that one could prove it to be
pseudospherical). This depends on the fact that one can always
give a lower bound for ρ but not an upper bound. This is the case
because we can hardly form an opinion on how large a fraction
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of ρ is given by astronomically unobservable (not radiating)
masses. This I wish to discuss in somewhat greater detail.

One can give a lower bound for ρ (ρs) by taking into con-
sideration only the masses of radiating stars. If it should appear

that ρs > 
3h2

κ
 then one would have decided in favour of spherical

space. If it appears that ρs < 
3h2

κ
 one has to try to determine the

share of non-radiating masses ρd. We want to show that one

can also find a lower bound for 
ρd

ρs

.

We consider an astronomical object which contains many
single stars and which can be considered with sufficient accur-
acy to be a stationary system, e.g. a globular cluster (of known
parallax). From the velocities which are observable spectro-
scopically one can determine the field of gravitation (under
plausible assumptions) and thereby the masses which generate
this field. The masses which are so computed one can compare
with those of the visible stars of the cluster, and so find at least a
rough approximation for how far the masses which generate the
field exceed those of the visible stars of the cluster.

One obtains thus an estimate for 
ρd

ρs

 for the particular cluster.

Since the non-radiating stars will on the average be smaller
than the radiating ones, they will tend on the average to greater
velocities than the larger stars due to their interaction with the
stars of the cluster. Hence they will ‘evaporate’ more quickly
from the cluster than the larger stars. It may therefore be
expected that the relative frequency of the smaller heavenly
bodies inside the cluster will be smaller than that outside of it.

One can therefore obtain in �ρd

ρs
�

k

 (relation of densities in the
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above cluster) a lower bound for the ratio 
ρd

ρs

 in the whole space.

One therefore obtains as a lower bound for the entire average
density of mass in space:

ρs�1 + �ρd

ρs
�

k
�

If this quantity is greater than 
3h2

κ
 one may conclude that space is

of a spherical character. On the other hand, I cannot think of any
reasonably reliable determination of an upper bound for ρ.

(9) Last and not least: The age of the universe, in the sense
used here, must certainly exceed that of the firm crust of the
earth as found from the radioactive minerals. Since determina-
tion of age by these minerals is reliable in every respect, the
cosmologic theory here presented would be disproved if it
were found to contradict any such results. In this case I see no
reasonable solution.
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APPENDIX II

Relativistic theory of the
non-symmetric field

Before starting with the subject proper I am first going to discuss
the ‘strength’ of systems of field equations in general. This
discussion is of intrinsic interest quite apart from the particular
theory presented here. For a deeper understanding of our
problem, however, it is almost indispensable.

ON THE ‘COMPATIBILITY’ AND THE ‘STRENGTH’ OF
SYSTEMS OF FIELD EQUATIONS

Given certain field variables and a system of field equations for
them, the latter will not in general determine the field com-
pletely. There still remain certain free data for a solution of the
field equations. The smaller the number of free data consistent
with the system of field equations, the ‘stronger’ is the system. It



is clear that in the absence of any other viewpoint from which to
select the equations, one will prefer a ‘stronger’ system to a less
strong one. It is our aim to find a measure for this strength of
systems of equations. It will turn out that such a measure can be
defined which will even enable us to compare with each other
the strengths of systems whose field variables differ with respect
to number and kind.

We shall present the concepts and methods involved here
in examples of increasing complexity, restricting ourselves to
four-dimensional fields, and in the course of these examples we
shall successively introduce the relevant concepts.

First example: The scalar wave equation*

�,11 + �,22 + �,33 − �,44 = 0

Here the system consists of only one differential equation for one
field variable. We assume � to be expanded in a Taylor series in
the neighbourhood of a point P (which presupposes the analytic
character of �). The totality of its coefficients describes then the
function completely. The number of nth order coefficients (that
is, the nth order derivatives of � at the point P) is equal to
4.5 . . . (n + 3)

1.2 . . . n
 �abbreviated �4n��, and all these coefficients could

be freely chosen if the differential equation did not imply certain
relations between them. Since the equation is of second order,
these relations are found by (n − 2) fold differentiation of the

equation. We thus obtain for the nth order coefficients � 4
n −2�

conditions. The number of nth order coefficients remaining
free is therefore

* In the following the comma will always denote partial differentiation; thus,

for example, �i, = 
∂�

∂xi
, �,11 = 

∂2�

∂x1∂x1
, etc.

appendix ii 137



z = �4n� − � 4
n − 2� (1)

This number is positive for any n. Hence, if the free coefficients
for all orders smaller than n have been fixed, the conditions
for the coefficients of order n can always be satisfied without
changing the coefficients already chosen.

Analogous reasoning can be applied to systems consisting of
several equations. If the number of free nth order coefficients
does not become smaller than zero, we call the system of equa-
tions absolutely compatible. We shall restrict ourselves to such sys-
tems of equations. All systems known to me which are used in
physics are of this kind.

Let us now rewrite equation (1). We have

� 4

n − 2 � = �4

n �
(n − 1)n

(n + 2)(n + 3)
= �4

n � �1 −
z1

n
+

z2

n2
+ . . . �

where z1 = + 6.
If we restrict ourselves to large values of n, we may neglect the

terms 
z2

n2
 etc. in the parenthesis, and we obtain for (1)

asymptotically

z ∼ �4n�
z1

n
= �4n�

6

n
(1a)

We call z1 the ‘coefficient of freedom’, which in our case has the
value 6. The larger this coefficient, the weaker is the correspond-
ing system of equations.

Second example: Maxwell’s equations for empty space

�is
,3 = 0; �ik,1 + �kl,i + �li,k = 0
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�ik results from the antisymmetric tensor �ik by raising the
co-variant indices with the help of

ηik = �
− 1

�− 1

− 1

+ 1

These are 4 + 4 field equations for six field variables. Among
these eight equations there exist two identities. If the left-hand
sides of the field equations are denoted by Gi and Hikl respectively,
the identities have the form

Gi
,i ≡ 0; Hikl,m − Hklm,i + Hlmi,k − Hmik,l = 0

In this case we reason as follows:
The Taylor expansion of the six field components furnishes

6�4n�
coefficients of the nth order. The conditions that these nth order
coefficients must satisfy are obtained by (n − 1) fold differen-
tiation of the eight field equations of the first order. The number
of these conditions is therefore

8� 4

n − 1�
These conditions, however, are not independent of each other,
since there exist among the eight equations two identities of
second order. They yield upon (n − 2) fold differentiation

appendix ii 139



2� 4
n − 2�

algebraic identities among the conditions obtained from the
field equations. The number of free coefficients of nth order is
therefore

z = 6�4n� − �8� 4
n − 1� − 2� 4

n − 2��
z is positive for all n. The system of equations is thus ‘absolutely

compatible’. If we extract the factor �4n� on the right-hand side

and expand as above for large n, we obtain asymptotically

z = �4n��6 − 8
n

n + 3
+ 2

(n − 1)n

(n+ 2)(n + 3)�

∼ �4n��6 − 8�1 −
3

n� + 2�1 −
6

n��

∼ �4n��0 +
12

n �
Here, then, z1 = 12. This shows that—and to what extent—this
system of equations determines the field less strongly than in the
case of the scalar wave equation (z1 = 6). The circumstance that
in both cases the constant term in the parenthesis vanishes
expresses the fact that the system in question does not leave free
any function of four variables.

Third example: The gravitational equations for empty space. We write
them in the form

Rik = 0; gik,l − gskΓ
s
il − gisΓ

s
ik = 0
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The Rik contain only the Γ and are of first order with respect to
them. We treat here the g and Γ as independent field variables.
The second equation shows that it is convenient to treat the Γ as
quantities of the first order of differentiation, which means that
in the Taylor expansion

Γ = Γ
0

+ Γ
1

s x s + Γ
2

st x
s xt + . . .

we consider Γ
0
 to be of the first order, Γ

1 s of the second order, and

so on. Accordingly, the Rik must be considered as of second order.
Between these equations there exist the four Bianchi identities
which, as a consequence of the convention adopted, are to be
considered as of third order.

In a generally co-variant system of equations a new circum-
stance appears which is essential for a correct enumeration of the
free coefficients: fields that result from one another by mere co-
ordinate transformations should be considered only as different
representations of one and the same field. Correspondingly, only
part of the

10 �4n�

nth order coefficients of the gik serves to characterize essentially
different fields. Therefore, the number of expansion coefficients
that actually determine the field is reduced by a certain amount
which we must now compute.

In the transformation law for the gik,

gik* =
∂xa

∂xi*

∂xb

∂xk*
gab

gab and gik* represent in fact the same field. If this equation is
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differentiated n times with respect to the x*, one notices that all
(n + 1)st derivatives of the four functions x with respect to the x*
enter into the nth order coefficients of the g*-expansion; i.e.

there appear 4� 4
n + 1� numbers that have no part in the character-

ization of the field. In any general-relativistic theory one must

therefore subtract 4� 4
n + 1� from the total number of nth order

coefficients so as to take account of the general co-variance of
the theory. The enumeration of the free coefficients of nth order
leads thus to the following result.

The ten gik (quantities of zero order of differentiation) and the
forty Γ

l
ik (quantities of first order of differentiation) yield in

view of the correction just derived

10�4n� + 40 � 4
n − 1� − 4 � 4

n − 1�

relevant coefficients of nth order. The field equations (10 of the
second and 40 of the first order) furnish for them

N = 10 � 4
n − 2� + 40� 4

n − 1�

conditions. From this number, however, we must subtract the
number of the identities between these N conditions, viz.

4 � 4
n − 3�

which result from the Bianchi identities (of the third order).
Hence we find here
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z = �10�4n� + 40 � 4
n − 1� − 4 � 4

n − 1��
− �10� 4

n − 2� + 40� 4
n − 1�� + 4 � 4

n − 3�

Extracting again the factor �4n� we obtain asymptotically for

large n

z ∼ �4n��0 +
12

n �. Thus z1 = 12

Here, too, z is positive for all n so that the system is absolutely
compatible in the sense of the definition given above. It is
surprising that the gravitational equations for empty space
determine their field just as strongly as do Maxwell’s equations
in the case of the electromagnetic field.

RELATIVISTIC FIELD THEORY

General remarks

It is the essential achievement of the general theory of relativity
that it has freed physics from the necessity of introducing the
‘inertial system’ (or inertial systems). This concept is unsatisfac-
tory for the following reason: without any deeper foundation it
singles out certain co-ordinate systems among all conceivable
ones. It is then assumed that the laws of physics hold only for
such inertial systems (e.g. the law of inertia and the law of the
constancy of the velocity of light). Thereby, space as such is
assigned a role in the system of physics that distinguishes it from
all other elements of physical description. It plays a determining
role in all processes, without in its turn being influenced by
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them. Though such a theory is logically possible, it is on the
other hand rather unsatisfactory. Newton had been fully aware
of this deficiency, but he had also clearly understood that no
other path was open to physics in his time. Among the later
physicists it was above all Ernst Mach who focussed attention on
this point.

What innovations in the post-Newtonian development of the
foundations of physics have made it possible to overcome the
inertial system? First of all, it was the introduction of the field
concept by, and subsequent to, the theory of electromagnetism
of Faraday and Maxwell, or to be more precise, the introduction
of the field as an independent, not further reducible funda-
mental concept. As far as we are able to judge at present, the
general theory of relativity can be conceived only as a field the-
ory. It could not have developed if one had held on to the view
that the real world consists of material points which move under
the influence of forces acting between them. Had one tried to
explain to Newton the equality of inertial and gravitational mass
from the equivalence principle, he would necessarily have had to
reply with the following objection: it is indeed true that relative
to an accelerated co-ordinate system bodies experience the same
accelerations as they do relative to a gravitating celestial body
close to its surface. But where are, in the former case, the masses
that produce the accelerations? It is clear that the theory of rela-
tivity presupposes the independence of the field concept.

The mathematical knowledge that has made it possible to
establish the general theory of relativity we owe to the geo-
metrical investigations of Gauss and Riemann. The former has,
in his theory of surfaces, investigated the metric properties of a
surface imbedded in three-dimensional Euclidean space, and he
has shown that these properties can be described by concepts
that refer only to the surface itself and not to its relation to the
space in which it is imbedded. Since, in general, there exists no
preferred co-ordinate system on a surface, this investigation led
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for the first time to expressing the relevant quantities in general
co-ordinates. Riemann has extended this two-dimensional
theory of surfaces to spaces of an arbitrary number of dimen-
sions (spaces with Riemannian metric, which is characterized by
a symmetric tensor field of second rank). In this admirable
investigation he found the general expression for the curvature
in higher-dimensional metric spaces.

The development just sketched of the mathematical theories
essential for the setting up of general relativity had the result
that at first Riemannian metric was considered the fundamental
concept on which the general theory of relativity and thus the
avoidance of the inertial system were based. Later, however, Levi-
Cività rightly pointed out that the element of the theory that
makes it possible to avoid the inertial system is rather the infini-
tesimal displacement field Γ l

ik. The metric or the symmetric ten-
sor field gik which defines it is only indirectly connected with the
avoidance of the inertial system in so far as it determines a
displacement field. The following consideration will make this
clear.

The transition from one inertial system to another is deter-
mined by a linear transformation (of a particular kind). If at
two arbitrarily distant points P1 and P2 there are two vectors A

1

i

and A
2

i respectively whose corresponding components are equal

to each other (A
1

i =A
2

i), this relation is conserved in a permissible

transformation. If in the transformation formula

Ai* = 
∂xi*

∂xa
Aa

the coefficients 
∂xi*

∂xa
 are independent of the xa, the transformation

formula for the vector components is independent of position.
Equality of the components of two vectors at different points P1

and P2 is thus an invariant relation if we restrict ourselves to
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inertial systems. If, however, one abandons the concept of the
inertial system and thus admits arbitrary continuous transforma-

tions of the co-ordinates so that the 
∂xi*

∂xa
 depend on the xa, the

equality of the components of two vectors attached to two dif-
ferent points in space loses its invariant meaning and thus vec-
tors at different points can no longer be directly compared. It is
due to this fact that in a general relativistic theory one can no
longer form new tensors from a given tensor by simple differen-
tiation and that in such a theory there are altogether much fewer
invariant formations. This paucity is remedied by the introduc-
tion of the infinitesimal displacement field. It replaces the iner-
tial system inasmuch as it makes it possible to compare vectors at
infinitesimally close points. Starting from this concept we shall
present in the sequel the relativistic field theory, carefully
dispensing with anything that is not necessary to our purpose.

The infinitesimal displacement field �

To a contravariant vector Ai at a point P (co-ordinates xt) we
correlate a vector Ai + δAi at the infinitesimally close point
(xi + dxi) by the bilinear expression

δAi = − Γ i
st A

s dxt (2)

where the Γ are functions of x. On the other hand, if A is a vector
field, the components of (Ai) at the point (xt + dxt) are equal to
At + dAt where*

dAi = Ai
,t dxt

* As before ‘,t’ denotes ordinary differentiation 
∂

∂xt
 .
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The difference of these two vectors at the neighbouring point
xt + dxt is then itself a vector

(Ai
,t + AsΓ i

st) dxt ≡ Ai
t dxt

connecting the components of the vector field at two infini-
tesimally close points. The displacement field replaces the
inertial system inasmuch as it effects this connection formerly
furnished by the inertial system. The expression within the
parenthesis, Ai

t for short, is a tensor.
The tensor character of Ai

t determines the transformation law
for the Γ. We have first

Ai
k* = 

∂xi*

∂xi

∂xk

∂xk*
 Ai

k

Using the same index in both co-ordinate systems is not meant
to imply that it refers to corresponding components, i.e. i in x
and in x* run independently from 1 to 4. After some practice this
notation makes the equations considerably more transparent. We
now replace

Ai
k* by Ai*

,k* + As*Γ i
sk*

Ai
k by Ai

,k + AsΓ i
sk

and again Ai* by 
∂xi*

∂xi
 Ai,

∂
∂xk*

 by 
∂xk

∂xk*
.

∂
∂xk

This leads to an equation which, apart from the Γ *, contains
only field quantities of the original system and their derivatives
with respect to the x of the original system. Solving this equation
for the Γ* one obtains the desired transformation formula

Γ i
kl* = 

∂xi*

∂xi

∂xk

∂xk*

∂xl

∂xl*
 Γ i

kl − 
∂2xi*

∂xs∂xt

∂xs

∂xk*

∂xt

∂xl*
(3)
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whose second term (on the right-hand side) can be somewhat
simplified:

− 
∂2xi*

∂xs∂xt

∂xs

∂xk*

∂xt

∂xl*
 = − 

∂
∂xl* �∂xi*

∂xs � ∂xs

∂xk*

= − 
∂

∂xl*�∂xi*

∂xk*� + 
∂xi*

∂xs*

∂2xs

∂xk*∂xl*
 = 

∂xi*

∂xs
 

∂2xs

∂xk*∂xl*
(3a)

We call such a quantity a pseudo tensor. Under linear transfor-
mations it transforms as a tensor, whereas for non-linear
transformations a term is added which does not contain
the expression to be transformed, but only depends on the
transformation coefficients.

Remarks on the displacement field

1. The quantity Γ̃ i
kl (≡ Γ i

lk) which is obtained by a trans-
position of the lower indices also transforms according to (3)
and is therefore likewise a displacement field.

2. By symmetrizing or anti-symmetrizing equation (3) with
respect to the lower indices k*, l* one obtains the two equations

Γ
i
kl* (= 12(Γ

i
kl* + Γ i

lk*)) = 
∂xi*

∂xi

∂xk

∂xk*

∂xl

∂xl*
Γ

i
lk − 

∂2xi*

∂xs∂xt

∂xs

∂xk*

∂xt

∂xl*

Γ i
kl
v
* (= 12(Γ

i
kl* − Γ i

lk*)) = 
∂xi*

∂xi

∂xk

∂xk*

∂xl

∂xl*
Γ i

kl
v

Hence the two (symmetric and anti-symmetric) constituents of
Γ

i
kl transform independently of each other, i.e. without mixing.

Thus they appear from the point of view of the transformation
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law as independent quantities. The second of the equations
shows that Γ i

kl
v
 transforms as a tensor. From the point of view of

the transformation group it seems therefore at first unnatural to
combine these two constituents additively into one single
quantity.

3. On the other hand, the lower indices of Γ play quite dif-
ferent roles in the defining equation (2) so that there is no
compelling reason to restrict the Γ by the condition of sym-
metry with regard to the lower indices. If one does so neverthe-
less, one is led to the theory of the pure gravitational field. If,
however, one does not subject the Γ to a restrictive symmetry
condition, one arrives at that generalization of the law of gravita-
tion that appears to me as the natural one.

The curvature tensor

Although the Γ-field does not itself have tensor character, it
implies the existence of a tensor. The latter is most easily
obtained by displacing a vector Ai according to (2) along the
circumference of an infinitesimal two-dimensional surface
element and computing its change in one circuit. This change
has vector character.

Let x
0
 be the co-ordinates of a fixed point and xt those of

another point on the circumference. Then ξt = xt −  x
0
 is small for

all points of the circumference and can be used as a basis for the
definition of orders of magnitude.

The integral � δAi to be computed is then in more explicit
notation

− �Γ
i
s A

s dxt or − �Γ
i
st A

s dξt

Underlining of the quantities in the integrand indicates that they
are to be taken for successive points of the circumference (and
not for the initial point, ξt = 0).
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We first compute in the lowest approximation the value of Ai

for an arbitrary point ξt of the circumference. This lowest
approximation is obtained by replacing in the integral, extended
now over an open path, Γ i

st and As by the values Γ i
st and As for the

initial point of integration (ξt = 0). The integration gives then

Ai = Ai − Γ i
stA

s � dξt = Ai − Γ i
stA

sξ t.

What are neglected here, are terms of second or higher order in
ξ. With the same approximation one obtains immediately

Γ
i
st = Γ i

st + Γ i
st,rξ

r

Inserting these expressions in the integral above one obtains
first, with an appropriate choice of the summation indices,

− �(Γ
i
st + Γ i

st,qξ
q) (As − Γ s

pq Apξ q)dξt

where all quantities, with the exception of ξ, have to be taken for
the initial point of integration. We then find

− Γ i
st A

s � dξ t − Γ i
st,q As � ξ q dξ t + Γ i

stΓ
s
pq Ap � ξ q dξt

where the integrals are extended over the closed circumference.
(The first term vanishes because its integral vanishes.) The term
proportional to (ξ)2 is omitted since it is of higher order. The
two other terms may be combined into

[− Γ i
pt,q + Γ i

stΓ
s
pq]Ap � ξ q dξt

This is the change ∆Ai of the vector Ai after displacement along
the circumference. We have

� ξ q dξ t = � d(ξ qξ t) − � ξ t dξ q = − � ξ tdξ q
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This integral is thus antisymmetric in t and q, and in addition it
has tensor character. We denote it by f tq

v. If f tq were an arbitrary
tensor, then the vector character of ∆Ai would imply the tensor
character of the bracketed expression in the last but one formula.
As it is, we can only infer the tensor character of the bracketed
expression if antisymmetrized with respect to t and q. This is the
curvature tensor

R i
klm ≡ Γ i

kl,m − Γ i
km,l − Γ i

slΓ
s
km + Γ i

smΓ
s
kl (4)

The position of all indices is hereby fixed. Contracting with
respect to i and m one obtains the contracted curvature tensor

Rik ≡ Γ s
ik,s − Γ s

is,k − Γ s
itΓ

t
sk + Γ t

skΓ
t
st (4a)

The �-transformation

The curvature has a property which will be important in the
sequel. For a displacement field Γ we may define a new Γ *
according to the formula

Γ
l
ik* = Γ l

ik + δ l
iλ,k (5)

where λ is an arbitrary function of the co-ordinates, and δl
i is the

Kronecker tensor (‘λ-transformation’). If one forms R i
klm(Γ *) by

replacing Γ * by the right-hand side of (5), λ cancels so that

R i
klm(Γ *) = R i

klm(Γ )�and Rik(Γ *) = Rik(Γ )
(6)

The curvature is invariant under λ-transformations (‘λ-
invariance’). Consequently, a theory which contains Γ only
within the curvature tensor cannot determine the Γ-field com-
pletely but only up to a function λ, which remains arbitrary. In
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such a theory, Γ and Γ * are to be regarded as representations
of the same field, in the same way as if Γ * were obtained from
Γ merely by a co-ordinate transformation.

It is noteworthy that the λ-transformation, contrary to a co-
ordinate transformation, produces a non-symmetric Γ * from
a Γ that is symmetric in i and k. The symmetry condition for
Γ loses in such a theory its objective significance.

The main significance of λ-invariance lies in the fact that it
has an influence on the ‘strength’ of the system of the field
equations, as we shall see later.

The requirement of ‘transposition invariance’

The introduction of non-symmetric fields meets with the fol-
lowing difficulty. If Γ l

ik is a displacement field, so is Γ̃ l
ik(= Γ l

ki). If
gik is a tensor, so is g̃ik (= gki). This leads to a large number of co-
variant formations among which it is not possible to make a
selection on the principle of relativity alone. We shall demon-
strate this difficulty by an example and we shall show how it can
be overcome in a natural manner.

In the theory of the symmetric field the tensor

(Wikl ≡)gik,l − gskΓ
s
il − gisΓ

s
lk

plays an important part. If it is put equal to zero, one obtains an
equation which permits to express the Γ by the g, i.e. to elimin-
ate the Γ. Starting from the facts that (1) Ai

t ≡ Ai
,t + AsΓ

i
st is a

tensor, as proved earlier, and that (2) an arbitrary contravariant
tensor can be expressed in the form ∑

t
A
(t)

i B
(t)

k, it can be proved

without difficulty that the above expression has tensor charac-
ter also if the fields g and Γ are no longer symmetric.

But in the latter case, the tensor character is not lost if, e.g., in
the last term Γ s

lk is transposed, i.e. replaced by Γ s
kl (this follows

from the fact that gis(Γ
s
kl − Γ

s
lk) is a tensor). There are other
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formations, though not quite so simple, that conserve the tensor
character and can be regarded as extensions of the above expres-
sion to the case of the non-symmetric field. Consequently, if one
wants to extend to non-symmetric fields the relation between
the g and the Γ obtained by setting the above expression equal to
zero, this seems to involve an arbitrary choice.

But the above formation has a property that distinguishes it
from the other possible formations. If one replaces in it simul-
taneously gik by g̃ik and Γ

l
ik by Γ̃

l
ik and then interchanges the

indices i and k it is transformed into itself: it is ‘transposition
symmetric’ with respect to the indices i and k. The equation
obtained by putting this expression equal to zero is ‘trans-
position invariant’. If g and Γ are symmetric, this condition is, of
course, also satisfied; it is a generalization of the condition that
the field quantities be symmetric.

We postulate for the field equations of the non-symmetric
field that they be transposition invariant. I think that this postulate,
physically speaking, corresponds to the requirement that posi-
tive and negative electricity enter symmetrically into the laws of
physics.

A glance at (4a) shows that the tensor Rik is not completely
transposition symmetric, since it transforms by transposition
into

(Rik* =)Γ
s
ik,s − Γ s

sk,i − Γ s
itΓ

t
sk + Γ s

ikΓ
t
ts (4b)

This circumstance is the basis of the difficulties that one
encounters in the endeavour to establish transposition invariant
field equations.

The pseudo tensor U l
ik

It turns out that a transposition symmetric tensor can be formed
from Rik by the introduction of a somewhat different pseudo
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tensor U l
ik instead of Γ

l
ik. In (4a) the two terms that are linear

in Γ can be formally combined to a single one. One replaces
Γ

s
ik,s − Γ s

is,k by (Γ
s
ik − Γ t

it δ
s
k),s and defines a new pseudo tensor U l

ik

by the equation

Ul
ik ≡ Γ l

lk − Γ t
it δ

l
k (7)

Since

U t
it = − 3Γ

l
it

as follows from (7) by contraction with respect to k and l, we
obtain the following expression for Γ in terms of U:

Γ
l
ik = Ul

ik − 13U
t
it δ

l
k (7a)

Inserting these in (4a) one finds

Sik ≡ Us
ik,s− Us

itU
t
sk + 13U

s
isU

t (8)

for the contracted curvature tensor in terms of U. This expres-
sion, however, is transposition symmetric. It is this fact that
makes the pseudo tensor U so valuable for the theory of
non-symmetric fields.

λ-transformation for U. If in (5) the Γ are replaced by the U,
one obtains by a simple calculation

U l
ik* = U l

ik + (δ
l
iλ,k − δ l

kλ,i) (9)

This equation defines the λ-transformation for the U. (8) is
invariant with respect to this transformation (Sik(U*) = Sik(U)).

The transformation law for U. If in (3) and (3a) the Γ are
replaced by the U with the help of (7a), one obtains
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U l
ik* = 

∂2xs

∂xi*∂xk*

∂xi

∂xi*

∂xk

∂xk*
 U l

ik + 
∂xl*

∂xs

∂2xs

∂xi*∂xk*
 − δ l*

k*

∂xt*

∂xs

∂2xs

∂xi*∂xk*
(10)

Note that again the indices referring to both systems assume all
the values from 1 to 4 independently of each other, even though the
same letter is being used. Regarding this formula it is note-
worthy that on account of the last term it is not transposition
symmetric with respect to the indices i and k. This peculiar
circumstance can be clarified by demonstrating that this trans-
formation may be regarded as a composition of a transposition
symmetric co-ordinate transformation and a λ-transformation.
In order to see that we write first the last term in the form

− 
1

2�δ
l*
k*

∂xt*

∂xs

∂2xs

∂xi*∂xt*
 + δl*

i*

∂xt*

∂xs

∂2xs

∂xk*∂xt*�

+ 
1

2�∂
l*
i*

∂xt*

∂xs

∂2xs

∂xk*∂xt*
 − δ l*

k* 
∂xt*

∂xs

∂2xs

∂xs∂λt*�
The first of these two terms is transposition symmetric. Let us
combine it with the first two terms of the right-hand side of
(10) to an expression Kl

ik*. Let us now consider what we get if
the transformation

U l
ik* = K l

ik*

is followed by the λ-transformation

U l
ik** = U l

ik* + δl*
i*λ,k* − δ l*

k*λ,i*

The composition yields
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Ul
ik** = Kl

ik* + (δ
l*
i*λ,k* − δ l*

k*λ,i*)

This implies that (10) may be regarded as such a composition
provided the second term of (10a) can be brought into the form
δ

l*
i*λ,k* − δ

l*
k*λ,i*. For this it is sufficient to show that a λ exists

such that

1

2

∂xt*

∂xs

∂2xs

∂xk*∂xt*
 = λ,k* (11)

�and
1

2

∂xt*

∂xs

∂2xs

∂xi*∂xt*
 = λi,*�

In order to transform the left-hand side of the so far hypothetical

equation we must first express 
∂xt*

∂xs
 by the coefficients of the

inverse transformation, 
∂xa

∂xb*
. On the one hand,

∂xp

∂xt*

∂xt*

∂xs
 = δp

s (a)

On the other,

∂xp

∂xt*
V s

t* = 
∂xp

∂xt*

∂D

∂�∂xs

∂xt*�
 = Dδp

s

Here, Vs
t* denotes the co-factor of 

∂xs

∂xt*
, and may in turn be

expressed as the derivative of the determinant D = 
 ∂xa

∂xb* 
  with

respect to 
∂xs

∂xt*
. Therefore, we have also
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∂xp

∂xt*
·
∂ log D

∂�∂xs

∂xt*�
 = δp

s (b)

It follows from (a) and (b) that

∂xt*

∂xs
 = 

∂ log D

∂�∂xs

∂xt*�
Because of this relation the left-hand side of (11) can be written
as

1

2

∂ log D

∂�∂xs

∂xt*�
 �∂xs

∂xt*�
,k*

 = 
1

2
 
∂ log D

∂xk*

This implies that (11) is indeed satisfied by

λ = 12 log D

This proves that the transformation (10) can be regarded as a
composition of the transposition symmetric transformation

Ul
ik* = 

∂xl*

∂xl

∂xi

∂xi*

∂xk

∂xk*
 Ul

ik + 
∂xl*

∂xs

∂2xs

∂xi*∂xk*

− 
1

2 �δ
l*
k*

∂xt*

∂xs

∂2xs

∂xi*∂xt*
 + δl*

i*

∂xt*

∂xs

∂2xs

∂xk*∂xt*� (10b)

and a λ-transformation. (10b) may thus be taken in place of
(10) as transformation formula for the U. Any transformation of
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the U-field that only changes the form of the representation can
be expressed as a composition of a co-ordinate transformation
according to (10b) and a λ-transformation.

Variational principle and field equations

The derivation of the field equations from a variational principle
has the advantage that the compatibility of the resulting system
of equations is assured and that the identities connected with
the general co-variance, the ‘Bianchi identities’, as well as the
conservation laws result in a systematic manner.

The integral to be varied requires as integrand � a scalar
density. We shall construct such a density from Rik or Sik. The
simplest procedure is to introduce a co-variant tensor density �ik

of weight 1 in addition to Γ or U respectively, setting

� = �ik Rik (= �ik Sik) (12)

The transformation law for the �ik must be

�ik* = 
∂xi*

∂xi

∂xk*

∂xk
�ik 
 ∂xt

∂xt* 
 (13)

where again the indices referring to different co-ordinate sys-
tems, in spite of the use of the same letters, are to be treated as
independent of each other. We obtain indeed

��* dτ* = �∂xi*

∂xi

∂xk*

∂xk
�ik 
 ∂xt

∂xt* 
 . 
∂xs

∂xi*

∂xt

∂xk*
 Sst 
 ∂xr*

∂xr 
 dτ

= �� dτ

i.e. the integral is transformation invariant. Furthermore, the
integral is invariant with respect to a λ-transformation (5) or (9)
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because Rik as expressed by the Γ or U respectively, and hence
also �, is invariant with respect to a λ-transformation. From this
it follows that also the field equations to be derived by variation

of ∫�dτ are co-variant with respect to co-ordinate and to

λ-transformations.
But we also postulate that the field equations are to be trans-

position invariant with respect to the two fields �, Γ or the field
�, U. This is assured if � is transposition invariant. We have seen
that Rik is transposition symmetric if expressed in the U, but not
if expressed in the Γ. Hence � is only transposition invariant if
we introduce in addition to the �ik the U (but not the Γ) as field
variables. In that case, we are sure from the beginning that the

field equations derived from ∫�dτ by variation of the field

variables are transposition invariant.
By variation of � (equations (12) and (8)) with respect to

the � and U we find

δ� = Sik δ�ik − �ik
l δUl

ik + (�ikδUs
ik),s

where Sik = Us
ik,s − Us

itU
t
sk + 13U

s
isU

t
tk

�ik
l = �ik

,l + �sk(Ui
sl − 13U

t
st δ

i
l)

(14)

+ �is(Uk
ls − 13U

t
ts δ

K
l)








The field equations

Our variational principle is

δ��� dτ� = 0 (15)

The �ik and U l
ik are to be varied independently, their variations

vanishing at the boundary of the domain of integration. This
variation gives first of all
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� δ� dτ = 0

If the expression given in (14) is inserted here, the last term
of the expression for δ� does not give any contribution since
δU l

ik vanishes at the boundary. Hence we obtain the field
equations

Sik = 0 (16a)

�ik
l = 0 (16b)

They are—as is already evident from the choice of the variational
principle—invariant with respect to co-ordinate and to λ-
transformations and also transposition invariant.

Identities

These field equations are not independent of each other.
Between them exist 4 + 1 identities. That is, there exist 4 + 1
equations between their left-hand sides that hold regardless of
whether or not the �-U field satisfies the field equations.

These identities can be derived by a well-known method from

the fact that ∫� dτ is invariant with respect to co-ordinate and to

λ-transformations.
For it follows from the invariance of ∫� dτ that its variation

vanishes identically if one inserts in δ� the variations δ� and δU
which arise from an infinitesimal co-ordinate transformation or
an infinitesimal λ-transformation respectively.

An infinitesimal co-ordinate transformation is described by

xi* = xi + ξi (17)

where ξi is an arbitrary infinitesimal vector. We must now
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express the δ�ik and δU l
ik by the ξi using the equations (13) and

(10b). Because of (17) one must replace

∂xa*

∂xb
by δ

a
b + ξa

,b,
∂xa

∂xb*
by δ

a
b  − ξa

,b

and omit all terms that are of higher than first order in ξ. Thus
one obtains

δ�ik(= �ik* − �ik)

= �skξ i
,s + �isξ k

,s − � ikξ s
,s + [− �ik

,sξ
s] (13a)

δUl
ik (= Ul

ik* − Ul
ik)

= Us
ikξ

l
,s − Ul

skξ
s
,i − Ul

isξ
s
,k + ξ l

,ik + [− Ul
ik,sξ

s] (10c)

Note here the following. The transformation formulae furnish
the new values of the field variables for the same point of the continuum.
The calculation indicated above first gives expressions for δ�ik

and δUl
ik without the terms in brackets. In the calculus of vari-

ation, on the other hand, δ�ik and δUl
ik denote the variations for

fixed values of the co-ordinates. In order to obtain these the terms in
brackets have to be added.

If one inserts in (14) these ‘transformation variations’ δ� and
δU, the variation of the integral ∫� dτ vanishes identically. If
furthermore the ξi are so chosen that they vanish together with
their first derivatives at the boundary of the domain of integra-
tion, the last term in (14) gives no contribution. The integral

�(Sikδ�ik − �ik
l δUl

ik) dτ

vanishes therefore identically if the δ�ik and δUl
ik are replaced by

the expressions (13a) and (10c). Since this integral depends
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linearly and homogeneously on the ξi and their derivatives, it
can be brought into the form

��i ξ
i dτ

by repeated integration by parts, where �i, is a known expres-
sion (of first order in Sik and of second order in �ik

l). From this
follow the identities

�i ≡ 0 (18)

These are four identities for the left-hand sides Sik and �ik
l of

the field equations, which correspond to the Bianchi identities.
According to the terminology introduced before, these identities
are of third order.

There exists a fifth identity corresponding to the invariance
of the integral ∫�dτ with respect to infinitesimal λ-
transformations. Here we have to insert in (14)

δ�ik = 0, δUl
ik = δl

iλ,k − δ l
kλ,i

where λ is infinitesimal and vanishes at the boundary of the
domain of integration. One obtains first

��ik
l (δ

l
iλ,k − δ l

kλ,i) dτ = 0

or, after integration by parts,

2 ��is
vs,iλ dτ = 0

(where, generally, �ik
vl = 12(�ik

l − �ki
l ))

This furnishes the desired identity

�is
vs,i ≡ 0 (19)
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In our terminology this is an identity of second order. For � is
vs

we obtain from (14) by straightforward computation

�is
vs ≡ �is

v,s (19a)

If the field equation (16b) is satisfied, we have thus

�is
v,s = 0 (16c)

Remark on the physical interpretation. A comparison with Maxwell’s
theory of the electromagnetic field suggests the interpretation
that (16c) expresses the vanishing of the magnetic current
density. If this is accepted, it is evident which expression should
denote the electric current density. One can assign a tensor gik to
the tensor density �ik by setting

�ik = gik�− |gst| (20)

where the co-variant tensor gik is correlated to the contravariant
one by the equations

gisg
ks = δk

i (21)

From these two equations we obtain

gik = �ik(− |�st|)−1
2

and then gik from equations (21). We may then assume that

(aikl) = gik,l
v

 + gkl,i
v

 + gli,k
v

(22)

or

�m = 16 η
iklmaikl (22a)

expresses the current density, where ηiklm is Levi-Cività’s tensor
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density (with components ±1) antisymmetric in all indices. The
divergence of this quantity vanishes identically.

The strength of the system of equations (16a), (16b)

In applying here the method of enumeration described above
one must take into account the fact that all the U* obtained from
a given U by λ-transformations of the form (9) actually rep-
resent the same U-field. This has the consequence that the nth

order coefficients of the Ul
ik-expansion incorporate �4n� nth order

derivatives of λ whose choice is of no consequence for the dis-
tinction of actually differing U-fields. Thus the number of expan-
sion coefficients relevant for the enumeration of the U-fields is

decreased by �4n�. By the enumeration method we obtain for the

number of free nth order coefficients

z = �16�4

n � + 64� 4

n − 1� − 4� 4

n − 1� − �4

n ��

− �16� 4

n − 2 � + 64� 4

n − 1��

+ �4� 4

n − 3 � + � 4

n − 2�� (23)

The first bracket represents the total number of relevant nth
order coefficients which characterize the �-U-field, the second
the reduction of this number due to the existence of the
field equations, and the third bracket gives the correction to
this reduction on account of the identities (18) and (19).
Computing the asymptotic value for large n we find
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z ∼ �4n�
z1

n
(23a)

where

z1 = 42

The field equations of the non-symmetric field are thus
considerably weaker than those of the pure gravitational field
(z1 = 12).

The influence of λ-invariance on the strength of the system of equations.
One may be tempted to bring about transposition invariance of
the theory by starting from the transposition invariant
expression

� = 12(�ikRik + �̃ikR̃ik)

(instead of introducing the U as field variables). Of course, the
resulting theory will be different from the one expounded
above. It can be shown that for this � no λ-invariance exists.
Here, too, we obtain field equations of the type (16a), (16b),
which are transposition invariant (with respect to � and Γ).
Between them, there exist, however, only the four ‘Bianchi iden-
tities’. If one applies the method of enumeration to this system,
then, in the formula corresponding to (23), the fourth term in
the first bracket and the second term in the third bracket are
missing. One obtains

z1 = 48

The system of equations is thus weaker than the one chosen by
us and is therefore to be rejected.

Comparison with the previous system of field equations. This is given by
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Γ
s
is
V

 = 0 Rik = 0

gik,l − gskΓ
s
il − gisΓ

s
lk = 0 Rik,l

v
 + Rkl,i

v
 + Rli,k

v
 = 0

where Rik is defined by (4a) as a function of the Γ (and where
Rik = 12(Rik + Rki), Rik

v
 = 12(Rik − Rki)).

This system is entirely equivalent to the new system (16a),
(16b) since it has been derived from the same integral by vari-
ation. It is transposition invariant with respect to the gik and Γ l

ik.
The difference, however, lies in the following. The integral to be
varied is itself not transposition invariant, nor is the system of
equations that is at first obtained by its variation; it is, however,
invariant with respect to the λ-transformation (5). In order to
obtain transposition invariance here, one has to use an artifice.
One formally introduces four new field variables, λi, which after
variation are so chosen that the equations Γ s

is
v
 = 0 are satisfied.*

Thus the equations obtained by variation with respect to the Γ
are brought into the indicated transposition invariant form.
But the Rik-equations still contain the auxiliary variables λi. One
can, however, eliminate them, which leads to a decomposition
of these equations in the manner stated above. The equations
obtained are then also transposition invariant (with respect to
the � and Γ).

Postulating the equations Γ
s
is
v
 = 0 involves a normalization

of the Γ-field, which removes the λ-invariance of the system of
equations. As a result, not all equivalent representations of a
Γ-field appear as solutions of this system. What takes place here,
is comparable to the procedure of adjoining to the field equa-
tions of pure gravitation arbitrary additional equations which
restrict the choice of co-ordinates. In our case, moreover, the
system of equations becomes unnecessarily complicated. These
difficulties are avoided in the new representation by starting

* By setting Γ l
ik* = Γ l

ik + δl
iλk.
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from a variational principle that is transposition invariant with
respect to the � and U, and by using throughout the � and U as
field variables.

The divergence law and the conservation law of
momentum and energy

If the field equations are satisfied and if, moreover, the variation
is a transformation variation, then, in (14), not only Sik and �ik

l

vanish, but also δ�, so that the field equations imply the
equations

(�ikδUs
ik),s = 0

where δU s
ik is given by (10c). This divergence law holds for any

choice of the vector ξi. The simplest special choice, i.e. ξi

independent of the x, leads to the four equations

� s
t,s ≡ (�ikUs

ik,t),s = 0

These can be interpreted and applied as the equations of conser-
vation of momentum and energy. It should be noted that such
conservation equations are never uniquely determined by the
system of field equations. It is interesting that according to
the equations

�s
t ≡ �ikUs

ik,t

the density of the energy current (�1
4, �2

4, �3
4) as well as the

energy density �4
4 vanish for a field that is independent of x4.

From this one can conclude that according to this theory a
stationary field free from singularities can never represent a
mass different from zero.

The derivation as well as the form of the conservation laws
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become much more complicated if the former formulation of
the field equations is used.

GENERAL REMARKS

A. In my opinion the theory presented here is the logically sim-
plest relativistic field theory which is at all possible. But this does
not mean that nature might not obey a more complex field
theory.

More complex field theories have frequently been proposed.
They may be classified according to the following characteristic
features:

(a) Increase of the number of dimensions of the continuum.
In this case one must explain why the continuum is apparently
restricted to four dimensions.

(b) Introduction of fields of different kind (e.g. a vector field)
in addition to the displacement field and its correlated tensor
field gik (or �ik).

(c) Introduction of field equations of higher order (of
differentiation).

In my view, such more complicated systems and their
combinations should be considered only if there exist physical-
empirical reasons to do so.

B. A field theory is not yet completely determined by the
system of field equations. Should one admit the appearance of
singularities? Should one postulate boundary conditions? As to
the first question, it is my opinion that singularities must be
excluded. It does not seem reasonable to me to introduce into a
continuum theory points (or lines, etc.) for which the field
equations do not hold. Moreover, the introduction of singular-
ities is equivalent to postulating boundary conditions (which are
arbitrary from the point of view of the field equations) on ‘sur-
faces’ which closely surround the singularities. Without such a
postulate the theory is much too vague. In my opinion the
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answer to the second question is that the postulation of bound-
ary conditions is indispensable. I shall demonstrate this by an
elementary example. One can compare the postulation of a

potential of the form � = ∑
m

r
 with the statement that outside the

mass points (in three dimensions) the equation ∆� = 0 is satis-
fied. But if one does not add the boundary condition that �

vanish (or remain finite) at infinity, then there exist solutions
that are entire functions of the x (e.g. x2

1 − 1
2(x2

2 + x3
2)) and

become infinite at infinity. Such fields can only be excluded
by postulating a boundary condition in case the space is an
‘open’ one.

C. Is it conceivable that a field theory permits one to under-
stand the atomistic and quantum structure of reality? Almost
everybody will answer this question with ‘no’. But I believe that
at the present time nobody knows anything reliable about it.
This is so because we cannot judge in what manner and how
strongly the exclusion of singularities reduces the manifold of
solutions. We do not possess any method at all to derive system-
atically solutions that are free of singularities. Approximation
methods are of no avail since one never knows whether or not
there exists to a particular approximate solution an exact solu-
tion free of singularities. For this reason we cannot at present com-
pare the content of a nonlinear field theory with experience.
Only a significant progress in the mathematical methods can
help here. At the present time the opinion prevails that a field
theory must first, by ‘quantization’, be transformed into a
statistical theory of field probabilities according to more or
less established rules. I see in this method only an attempt to
describe relationships of an essentially nonlinear character by
linear methods.

D. One can give good reasons why reality cannot at all be
represented by a continuous field. From the quantum phenom-
ena it appears to follow with certainty that a finite system
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of finite energy can be completely described by a finite set of
numbers (quantum numbers). This does not seem to be in
accordance with a continuum theory, and must lead to an
attempt to find a purely algebraic theory for the description of
reality. But nobody knows how to obtain the basis of such a
theory.
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