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PREFACE 

Nuclear reactor physics is the physics of neutron fission chain reacting systems. 
It encompasses those applications of nuclear physics and radiation transport 
and interaction with matter that determine the behavior of nuclear reactors. As 
such, it is both an applied physics discipline and the core discipline of the field 
of nuclear engineering. 

As a distinct applied physics discipline, nuclear reactor physics originated in 
the middle of the twentieth century in the wartime convergence of international 
physics efforts in the Manhattan Project. It developed vigorously for roughly 
the next third of the century in various government, industrial, and university 
R&D and design efforts worldwide. Nuclear reactor physics is now a relatively 
mature discipline, in that the basic physical principles governing the behavior 
of nuclear reactors are well understood, most of the basic nuclear data needed 
for nuclear reactor analysis have been measured and evaluated, and the 
computational methodology is highly developed and validated. It is now 
possible to accurately predict the physics behavior of existing nuclear reactor 
types under normal operating conditions. Moreover, the basic physical 
concepts, nuclear data, and computational methodology needed to develop 
an understanding of new variants of existing reactor types or of new reactor 
types exist for the most part. 

As the core discipline of nuclear engineering, nuclear reactor physics is 
fundamental to the major international nuclear power undertaking. As of 
2000, there are 434 central station nuclcar power reactors operating worldwide 
to produce 350,442MWe of electrical power. This is a substantial fraction of 
the world's electrical power (e.g., more than 80% of the electricity produced in 
France and more than 20% of the electricity produced in the United States). 
The world's electrical power requirements will continue to increase, parti- 
cularly as the less developed countries strive to modernize, and nuclear power 
is the only proven technology for meeting these growing electricity require- 
ments without dramatically increasing the already unacceptable levels of 
greenhouse gas emission into the atmosphere. 

Nuclear reactors have additional uses other than central station electricity 
production. There are more than 100 naval propulsion reactors in the U.S. fleet 
(plus others in foreign fleets). Nuclear reactors are also employed for basic 
neutron physics research, for matcrials tcsting, for radiation therapy, for the 
production of radio-isotopes for medical, industrial, and national security 
applications, and as mobilc powcr sources for remote stations. In the future, 
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xxvi PREFACE 

nuclear reactors may power deep space missions. Thus nuclear reactor physics 
is a discipline important to the present and future well-being of the world. 

This book is intended as both a textbook and a comprchcnsive reference 
on nuclear reactor physics. The basic physical principles, nuclear data, and 
computational methodology needed to understand the physics of nuclear 
reactors are developed and applied to explain the static and dynamic behavior 
of nuclear reactors in Part 1. This development is at  a level that should be 
accessible to seniors in physics or engineering (i.e., requiring a mathematical 
knowledge only through ordinary and partial differential equations and 
Laplace transforms and an undergraduate-level knowledge of atomic and 
nuclear physics). Mastery of the material presented in Part 1 provides an 
understanding of the physics of nuclear reactors sufficient for nuclear 
engineering graduates at the B.S. and M.S. levels, for most practicing nuclear 
engineers and for others interested in acquiring a broad working knowledge of 
nuclear reactor physics. 

The material in Part 1 was developed in the process of teaching 
undergraduate and first-year graduate courses in nuclear reactor physics at 
Georgia Tech for a number of years. The emphasis in the presentation is on 
conveying the basic physicaI concepts and their application to explain nuclear 
reactor behavior, using the simplest mathematical description that will suffice 
to illustrate the physics. Numerous examples are included to illustrate the step- 
by-step procedures for carrying out the calculations discussed in the text. 
Problems at the end of each chaptcr havc been chosen to provide physical 
insight and to extend the material discussed in the text, whilc providing practicc 
in making calculations; they arc intended as an integral part of the textbook. 
Part 1 is suitable for an undergraduate sernestcr-length coursc in nuclear 
rcactor physics; the material in Part 1 is also suitable for a semester-length first- 
year graduate course, perhaps with sclcctivc augmentation from Part 2. 

The purpose of Part 2 is to augment Part 1 to providc a comprehensive, 
detailed, and advanced development of the principal topics of nuclear rcactor 
physics. There is an emphasis in Part 2 on the theoretical bases for the 
advanccd computational methods of reactor physics. This material pruvidcs a 
comprehensive, though ncucssarily abridged, reference work on advanced 
nuclear reactor physics and the theoretical bases for its computational 
n~ethods. Although thc material stops short of descriptions of specific reactor 
physics codes, it provides the basis for undcrstanding thc code manuals. There 
is more than enough material in Part 2 for a semestcr-length advanccd 
graduate course in nuclear reactor physics. The treatment is necessarily 
somewhat more mathematically intense than in Part 1. 

Part 2 is intended primarily for those who are or would become specialists 
in nuclear reactor physics and reactor physics computations. Mastery of this 
material provides the background for creating the new physics concepts 
necessary for developing new reactor types and for understanding and 
extending the computational methods in existing reactor physics codes 
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(i.e., the stock-in-trade for the professional reactor physicist). Moreover, the 
cxtensive treatment of neutron transport computational methods also provides 
an important component of the background necessary for specialists in 
radiation shielding, for specialists in the applications of neutrons and photons 
in medicine and industry, and for specialists in neutron, photon, and neutral 
atom transport in industrial, astrophysical, and thermonuclear plasmas. 

Any book of this scope owes much to many people besides the author, and 
this one is no exception. The elements of the subject of reactor physics were 
developed by many talented people over the past half-century, and the 
references can only begin to recognize their contributions. In this regard, I note 
the special contribution of R.N. Hwang, who helped prepare certain sections 
on resonance theory. The selection and organization of material has benefited 
from the example of previous authors of textbooks on reactor physics. The 
feedback from a generation of students has assisted in shaping the organization 
and presentation. Several people (C. Nickens, B. Crumbly, S .  Bennett-Boyd) 
supported the evolution of the manuscript through at least three drafts, and 
several other people at Wiley transformed the manuscript into a book. I am 
grateful to all of these people, for without them there would be no book. 

Atlanta, Georgia 
October 2000 





PART 1 
Basic Reactor Physics 





1 Neutron Nuclear Reactions 

The physics of nuclear reactors is determined by the transport of neutrons and their 
interaction with matter within a reactor. The basic neutron nucleus reactions of 
importance in nuclear reactors and the nuclear data used in reactor physics calcula- 
lions are described in this chapter. 

1.1 NEUTRON-INDUCED NUCLEAR FISSION 

Stable NucIides 

Short-range attractive nuclear forces acting among nucleons (neutrons and protons) 
are stronger than the Coulomb repulsive forces acting among protons at distances 
on the order of the nuclear radius (R = 1.25 x 10-"~"%m) in a stable nucleus. 
These forces are such that the ratio of the atomic mass A (the number of neutrons 
plus protons) to the atomic number Z (the number of protons) increases with Z; in 
other words, the stable nuclides become increasingly neutron-rich with increasing 
2, as illustrated in Fig. 1.1. The various nuclear species are referred to as nuclides, 
and nuclides with the same atomic number are referred to as isotopes of the element 
corresponding to 2. We use the notation (e.g., 235~92)  to identify nuclides. 

Binding Energy 

The actual mass of an atomic nucleus is not the sum of the masses (m,) of the Z 
protons and the masses (m,) of A -Z  neutrons of which it is composed. The stable 
nuclides have a mass defect 

This mass defect is conceptually thought of as having been converted to energy 
(E= A C ~ )  at the time that the nucleus was formed, putting the nucleus into a 
negative energy state. The amount of externally supplied energy that would have 
to be converted to mass in disassembling a nucleus into its separate nucleons is 
known as the binding energy of the nucleus, BE = A C ~ .  The binding energy per 
nucleon (BEIA) is shown in Fig. 1.2. 

Any process that results in nuclides being converted to other nuclides with more 
binding energy per nucleon will result in the conversion of mass into energy. The 
combination of low A nuclides lo form higher A nuclides with a higher BEIA value 
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Proton number 

Fig. 1.1 Nuclear stability curve. (From Ref. 1; used with permission of McCraw-Hill.) 

is the basis for the fusion process for the release of nuclear energy. The splitting of 
very high A nuclides to form intermediate-A nuclides with a higher BE/A value is 
the basis of the fission process for the release of nuclear energy. 

Threshold External Energy for Fission 

The probability of any nuclide undergoing fission (reconfiguring its A nucleons into 
two nuclides of lower A) can become quite large if a sufficient amount of external 
energy is supplied to excite the nucleus. The minimum, or threshold, amount of 
such excifatioa energy required to cause fission with high probability depends on 
the nuclear structure and is quite large for nuclides with Z < 90. For nuclides with 
Z > 90, the threshold energy is about 4 to 6 MeV for even-A nuclides, and generally 
is much lower for odd-A nuclides. Certain of the heavier nuclides (e.g., "Opug4 and 
252 Cfg8) exhibit significant spontaneous fission even in the absence of any exter- 
nally supplied excitation energy. 
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Mass number 

Fig. 1.2 Binding energy per nucleon. (From Ref. 1; used with permission of McGraw-Hill.) 

Neutron-Induced Fission 

When a neutron is absorbed into a heavy nucleus (A,Z) to form a compound 
nucleus ( A  + l , Z ) ,  the BEIA value is lower for the compound nucleus than for 

233 235 239 the original nucleus. For some nuclides (e.g., Ug2, U92, Pug4, 2 4 1 ~ ~ 9 4 ) ,  this 
reduction in SE/A value is sufficient that the compound nucleus will undergo 
fission, with high probability, even if the neutron has very low energy. Such nu- 
clides are referred to asfissile; that is, they can be caused to undergo fission by the 
absorption of a low-energy neutron. If the neutron had kinetic energy prior to being 
absorbed into a nucleus, this energy is transformed into additional excitation energy 
of the compound nucleus. All nuclides with Z > 90 will undergo fission with high 
probability when a neutron with kinetic energy in excess of about 1 MeV is ab- 
sorbed. Nuclides such as 232~h90, 238~92 ,  and 2 4 0 ~ ~ 9 4  will undergo fission with 
neutrons with energy of about 1 MeV or higher, with high probability. 

Neutron Fission Cross Sections 

The probability of a nuclear reaction, in this case fission, taking place can be 
expressed in terms of a quantity cr which expresses the probable reaction rate for 
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n neutrons traveling with speed v a distance dx in a material with N nuclides per 
unit volume: 

reaction rate 
U G  

nvN dx 

The units of o are area, which gives rise to the concept of a as a cross-sectional 
area presented to the neutron by the nucleus, for a particular reaction process, and 
to the designation of (3 as a cross section. Cross sections are usually on the order of 
I O - ~ ~ C ~ ~ ,  and this unit is referred to as a barn, for historical reasons. 

The fission cross section, of, is a measure of the probability that a neutron 
and a nucleus interact to form a compound nucleus which then undergoes fission. 
The probability that a compound nucleus will be formed is greatly enhanced if the 
relative energy of the neutron and the original nucleus, plus the reduction in the 
nuclear binding energy, corresponds to the difference in energy of the ground state 
and an excited state of the compound nucleus, so that the energetics are just right 
for formation of a compound nucleus in an excited state. The first excited states of 
the compound nuclei resulting from neutron absorption by odd-A fissile nuclides 
are generally lower lying (nearer to the ground state) than are the first excited states 
of the compound nuclei resulting from neutron absorption by the heavy even-A 
nuclides, which accounts for the odd-A nuclides having much larger absorption and 
fission cross sections for low-energy neutrons than do the even-A nuclides. 

Fission cross sections for some of the principal fissile nuclides of interest for 
nuclear reactors are shown in Figs. 1.3 to 1.5. The resonance structure corresponds 
to the formation of excited states of the compound nuclei, the lowest lying of which 
are at less than 1 eV. The nature of the resonance cross section can be shown to give 
rise to a 1 / ~ ' / '  or 1/v dependence of the cross section at off-resonance neutron 
energies below and above the resonance range, as is evident in these figures. The 
fission cross sections are largest in the thermal energy region E < -1 eV. The ther- 
mal fission cross section for 239Pu94 is larger than that of 2 3 5 ~ 9 2  or 233~92 .  

Fission cross sections for 238~92 and 2%94 are shown in Figs. 1.6 and 1.7. 
Except for resonances, the fission cross section is insignificant below about 1 MeV, 
above which it is about 1 barn. The fission cross sections for these and other even-A 
heavy mass nuclides are compared in Fig. 1.8, without the resonance structure. 

Products of the Fission Reaction 

A wide range of nuclides are formed by the fission of heavy mass nuclides, but the 
distribution of these fission fragments is sharply peaked in the mass ranges 
90 < A  < 100 and 135 < A  < 145, as shown in Fig. 1.9. With reference to the cur- 
vature of the trajectory of the stable isotopes on the n versus p plot of Fig. l .  l ,  most 
of these fission fragments are above the stable isotopes (i.e., are neutron rich) and 
will decay, usually by P-decay (electron emission), which transmutes the fission 
fragment nuclide ( A , Z )  to (A,Z+ I ) ,  or sometimes by neutron emission, which 
transmutes the fission fragment nuclide (A, 2 )  to (A- 1, Z), in both instances toward 
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Pu240 FISSION CROSS MT = 18 

Neutron Energy (eV) 

Fig. 1.7 Fission cross sections for 2 4 0 ~ 9 4 .  (From ht tp : / /ww.dne .bn l .go~ /CoN/  
index.html.) 

Neutron energy, Mev 

Fig. 1.8 Fission cross sections for principal nonfissile heavy mays nuclides. (From Ref. 15; 
used with permission of Argonne National Library.) 
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0 THERMAL NEUTRONS 

A 14-Mev NEUTRONS 

I I 1 I 

70 80 100 120 140 160 

MASSNUMBER 

Fig. 1.9 Yield versus mass number for 2 3 5 ~  fission. (From Ref. 15.) 

the range of stable isotopes. Sometimes several decay steps are necessary to reach a 
stable isotope. 

Usually, either two or three neutrons will be emitted promptly in the fission 
event, and there is a probability of one or more neutrons being emitted subsequently 
upon the decay of neutron-rich fission fragments over the next second or so. The 
number of neutrons, on average, which are emitted in the fission process, v, de- 
pends on the fissioning nuclide and on the energy of the neutron inducing fission, as 
shown in Fig. 1.30. 
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Fig. 1.10 Average number of neutrons emitted per fission. (From Ref. 12; used with 
permission of Wiley.) 

Energy Release 

The majority of the nuclear energy created by the conversion of mass to energy in 
the fission event (207MeV for 2 3 5 ~ 9 2 )  is in the form of the kinetic energy 
(168 MeV) of the recoiling fission fragments. The range of these massive, highly 
charged particles in the fuel element is a fraction of a millimeter, so that the recoil 
energy is effectively deposited as heat at the point of fission. Another 5 MeV is in 
the form of kinetic energy of prompt neutrons released in the fission event, dis- 
tributed in energy as shown in Fig. 1.1 1, with a most likely energy of 0.7 MeV (for 
2 3 5 ~ 9 2 ) .  This energy is deposited in the surrounding material within 10 to 100cm as 
the neutron diffuses, slows down by scattering collisions with nuclei, and is finally 
absorbed. A fraction of these neutron absorption events result in neutron capture 
followed by gamma emission, producing on average about 7MeV in the form of 
energetic capture gammas per fission. This secondary capture gamma energy is 
transferred as heat to the surrounding material over a range of 10 to lOOcm by 
gamma interactions. 

There is also on average about 7MeV of fission energy directly released as 
gamma rays in the fission event, which is deposited as heat within the surrounding 
10 to 100cm. The remaining 20MeV of fission energy is in the form of kinetic 
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E (MeV) 

Fig. 1.11 Fission spectrum for thermal neutron-induced fission in 2 3 5 ~ .  (From Ref. 12; used 
with permission of Wiley.) 

energy of electrons (8 MeV) and neutrinos (12 MeV) from the decay of the fission 
fragments. The electron energy is deposited, essentially in the fuel element, within 
about 1 mm of the fission fragment, but since neutrinos rarely interact with matter, 
the neutrino energy is lost. Although the kinetic energy of the neutrons emitted by 
the decay of fission products is almost as great as that of the prompt fission 
neutrons, there are so few delayed neutrons from fission product decay that their 
contribution to the fission energy distribution is negligible. This fission energy 
distribution for 2 " ~ 9 2  is summarized in Table I. 1. The recoverable energy released 
from fission by thermal and fission spectrum neutrons is given in Table 1.2. 

TABLE 1.1 23s~92 Fission Energy Release 

Form 
Encrgy 
(MeV) Range 

Kinetic energy fission products 168 < mm 
Kinetic energy prompt gammas 7 10-100cm 
Kinetic energy prompt neutrons 5 10-100 cm 
Kinetic energy capture gammas 7 10-100 cm 
Decay of fission products 

Kinetic energy clcctrons 8 -mm 
Kinetic energy neutrinos 12 00 
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TABLE 1.2 Recoverable Energy from Fission 
- 

Isotope Thermal Neutron Fission Neutron 

Source: Data from Ref. 12; used with permission of Wiley. 

Thus, in total, about 200 MeV per fission of heat energy is produced. One Watt 
of heat energy then corresponds to the fission of 3.1 x 10" nuclei per second. Since 
1 g of any fissile nuclide contains about 2.5 x lo2' nuclei, the fissioning of I g of 
fissile material produces about 1 megawatt-day (MWd) of heat energy. Because 
some fissile nuclei will also be transmuted by neutron capture, the amount of fissile 
material destroyed is greater than the amount fissioned. 

1.2 NEUTRON CAPTURE 

Radiative Capture 

When a neutron is absorbed by a nucleus to form a compound nucleus, a number of 
reactions are possible, in addition to fission, in the heavy nuclides. We have already 
mentioned radiative capture, in which the compound nucleus decays by the emis- 
sion of a gamma ray, and we now consider this process in more detail. An energy- 
level diagram for the compound nucleus formation and decay associated with the 
prominent 2 7 8 ~ 9 2  resonance for incident neutron energies of about 4.47 eV is shown 
in Fig. 1.12. The energy in the center-of-mass (CM) system of an incident neutron 
with energy EL in the lab system is E,. = [ A / ( l +  A)]EL. The reduction in binding 
energy due to Ihe absorbed neutron is AEB. If E,+AEB is close to an excited 
energy level of the compound nucleus, the probability for compound nucleus for- 
mation is greatly enhanced. The excited compound nucleus will generally decay by 
emission of one or more gamma rays, the combined energy of which is equal to the 
difference in the excited- and ground-state energy levels of the compound nucleus. 

Radiative capture cross sections, denoted a,, for some nuclei of interest for 
nuclear reactors are shown in Figs. 1.13 to 1.21. The resonance nature of the cross 



14 NEUTRON NUCLEAR REACTIONS 

Incident 

kinetic energy 6.67 '" 
2 3 8 ~  
92 

y Cascade I-- 
Fig. 1.12 Energy-level diagram for compound nucleus formation. (From Ref. 12; used with 
permission of Wiley.) 

Th232 Capture Cross Section MT = 27 

Neutron Energy (eV) 

Fig. 1.13 Radiative capture cross section for 232~h90. (From http://www.dne.hnl.gov/ 
CoNlindex. html.) 
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U233 Capture Cross Section MT = 27 

Neutron Energy (eV) 

Fig. 1.14 Radiative capture cross section for 2 3 3 ~ 9 2 .  (From http://www.dne.bnl.gov/CoN/ 
index. html.) 

U235 CAPTURE CROSS SECTION MT = 18 

lo-' l o0  10' l o 2  l o 3  lo4  lo5  lo6  lo7 
Neutron Energy (eV) 

Fig. 1.15 Radiative capture cross section for 2 3 5 ~ 9 2 .  (Fwm http: / /www.dne.hnl .~v/CuN/ 
index. html.) 
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Neutron Energy (eV) 

Fig. 1.16 Radiative capture cross section for 239Pu94. (From http://www.dne.bnl.gov/ 
CoNlindex. html.) 

U238 Ca~ture Cross Section MT = 27 

10-1 l o 0  lo1  l o2  lo3 lo4 l o5  lo6  107 

Neutron Energy (eV) 

Fig. 1.17 Radiativc capture cross section for 2 3 X ~ 9 2 .  (From http://www.dne.bnl.gov/CoN/ 
index. html.) 
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Pu240 Capture Cross Section MT = 27 

Neutron Energy (eV) 

Pig. 1.18 Radiative capture cross section for 2 4 0 ~ 9 4 .  (From http://www.dne.bnlgov/CoN/ 
index. html.) 

Iron Capture Cross Section MT = 27 

Fig. 1.19 Radiative capture cross section for 56~e26.  (From http://www.dnc.bnl.guv/CoN/ 
index. htrnl.) 
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Na23 Capture Cross Section MT = 27 

I O ' ~  . - '."''' - - ' ' . ' " '  . '..-.-' = '.'..'.' ' . ' ' . ' . . '  ' ' ,',.-' ' .'..'.' ' ' ' , ,q 
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Fig. 1.20 Radiative capture cross section for 2 3 ~ a ,  ,. (From http://www.dne.bnl.gov/CoN/ 
index. html.) 

Hydrogen Capture Cross Section MT = 27 

Neutron Energy (eV) 

Fig. 1.21 Radiative capture cross section for 'R,. (From http://www.dne.bnl.gov/CoN/ 
index. html.) 
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sections over certain ranges correspond to the discrete excited states of the 
compound nucleus that is formed upon neutron capture. These excited states cor- 
respond to neutron energies in the range of a fraction of an eV to lo3 eV for the 
Lissile nuclides, generally correspond to neutron energies of 10 to 104ev for even-A 
heavy mass nuclides (with the notable exception of thermal 2 4 0 ~ ~ 9 4  resonance), and 
correspond to much higher neutron energies for the lower mass nuclides. The l / v  
"off-resonance" cross-section dependence is apparent. 

The Breit-Wigner single-level resonance formula for the neutron capture cross 
section is 

where Eo is the energy (in the CM) system at which the resonance peak occurs (i-e., 
E, + EB matches the energy of an existed state of the compound nucleus), r the full 
width at half-maximum of the resonance, 00 the maximum value of the total cross 
section (at Eo), and r, the radiative capture width (T,/T is the probability that the 
compound nucleus, once formed, will decay by gamma emission). The fission 
resonance cross section can be represented by a similar expression with the fission 
width Tf, defined such that Tf/T is the probability that the compound nucleus, once 
formed, will decay by fission. 

Equation (1.3) represents the cross section describing the interaction of a neu- 
tron and nucleus with relative (CM) energy E,. However, the nuclei in a material 
are distributed in energy (approximately a Maxwellian distribution characterized by 
the temperature of the material). What is needed is a cross section averaged over the 
motion of the nuclei: 

where E and E' are the neutron and nuclei energies, respectively, in the lab system, 
and f,,, (El) is the Maxwellian energy distribution: 

Using Eqs. (1.3) and (IS), Eq. (1.4) becomes 

where 
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A is the atomic mass (arnu) of the nuclei, and 

Neutron Emission 

When the compound nucleus formed by neutron capture decays by the emission of 
one neutron, leaving the nucleus in an excited state which subsequently undergoes 
further delays, the event is referred to as inelastic scattering and the cross section is 
denoted a,. Since the nucleus is left in an excited state, the energy of the emitted 
neutron can be considerably less than the energy of the incident neutron. If the 
compound nucleus decays by the emission of two or more neutrons, the events are 
referred to as n - Zn, n - 3n, and so on, events, and the cross sections are denoted 
0,,2,, o,,fn, on so on. Increasingly higher incident neutron energies are required to 
provide enough excitation energy for single, double, triple, and so on, neutron 
emission. Inelastic scattering is the most important of these events in nuclear 
reactors, but it is most important for neutrons 1 MeV and higher in energy. 

1.3 NEUTRON ELASTIC SCATTERING 

Elastic scattering may take place via compound nucleus formation followed by the 
emission of a neutron that returns the compound nucleus to the ground state of the 
original nucleus. In such a resonance elastic scattering event the kinetic energy of 
the original neutron-nuclear system is conserved. The neutron and the nucleus may 
also interact without neutron absorption and the formation of a compound nucleus, 
which is referred to as potenbid scattering. Although quantum mechanical (s-wave) 
in nature, the latter event may be visualized and treated as a classical hard-sphere 
scattering event, away from resonance energies. Near resonance energies, there is 
quantum mechanical interference between the potential and resonance scattering, 
which is constructive just above and destructive just below the resonance energy. 

The single-level Breit-Wigner form of the scattering cross, modified to include 
potential and interference scattering, is 

where (T,/T) is the probability that, once formed, the compound nucleus de- 
cays to the ground state of the original nucleus by neutron emission, R 5: 

1.25 x ~ o - ' ~ A ' ' ~  centimeters is the nuclear radius, and ho is the reduced neutron 
wavelength. 

Averaging over a Maxwellian distribution of nuclear motion yields the scattering 
cross section for neutron lab energy E and material temperature T: 
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where 

The elastic scattering cross sections for a number of nuclides of interest in 
nuclear reactors are shown in Figs. 1.22 to 1.26. In general, the elastic scattering 
cross section is almost constant in energy below the neutron energies corresponding 
to the excited states of the compound nucleus. The destructive interference effects 
just below the resonance energy are very evident in Fig. 1.26. 

The energy dependence of the carbon scattering cross section is extended to very 
low neutron energies in Fig. 1.27 to illustrate another phenomenon. At sufficiently 
small neutron energy, the neutron wavelength 

Hydrogen Elastic Scattering Cross Section MT = 2 

Neutron Energy (eV) 

Fig, 1.22 Elastic scattering cross section for 'H,.  (From http://www.dne.bnl.gov/CoN/ 
index. html.) 
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Oxygen Elastic Scattering Cross Section MT = 2 

V) V) 

10-1 100 lo1 lo2  103 lo4 l o 5  lo6  10' 
Neutron Energy (eV) 

Fig. 1.23 Elastic scattering cross section for "ox. (From http://www.dne.bnl.gov/CoN/ 
index. html.) 

Na23 Elastic Scattering Cross Section MT = 2 

l o 2  r - 
U) 

f m 
0, 
c 

10-1 100 lo1 lo2  103 lo4 lo5  lo6  107 
Neutron Energy (eV) 

Fig. 1.24 Elastic scattering cross section for 2 3 ~ a 1 j .  (From h~p://www.dne.bnE.gov/CoN/ 
index. html.) 
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Iron Elastic Scattering Cross Section MT = 2 

Neutron Energy (eV) 

Fig. 1.25 Elastic scattering cross section for 56~e26. (From http://www.dne.bnl.gov/CoN/ 
index. html.) 

U238 Elastic Scattering Cross Section MT = 2 , . . . ....., . , . ....., . . . ....., . .,. ....., . . . ....., . . . , ...., . . . .,..., , , ......, . . ...g 

1 0-2 1 1  
1 0 -  100 101 102 l o 3  lo4 l o 5  l o e  l o 7  

Neutron Energy (eV) 

Fig. 1.26 Elastic scattering cross section for 2 3 8 ~ 9 2 .  (From http://www.dne.bnL.gov/CoN/ 
indexhtml.) 
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Neutron energy, eV 

Neutron energy, eV 

Fig. 1.27 Total scattering cross section of 12cb. (From Ref. 12; used with permission of 
Wiley.) 

becomes comparable to the interatomic spacing, and the neutron interacts not with 
a single nucleus but with an aggregate of bound nuclei. If the material has a regular 
structure, as graphite does, the neutron will be diffracted and the energy depend- 
ence of the cross section will reflect the neutron energies corresponding to multi- 
ples of interatomic spacing. For sufficiently small wavelengths, diffraction becomes 
impossible and the cross section is once again insensitive to neutron energy. 

1.4 SUMMARY OF CROSS-SECTION DATA 

Low-Energy Cross Sections 

The Iow-energy total cross sections for several nuclides of interest in nuclear 
reactors are plotted in Fig. 1.28. Gadolinium is sometimes used as a "burnable 
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Energy (eV) 

Fig. 1.28 Low-energy absorption (fission + capture) cross sections for several important 
nuclides. (From Ref. 12; used with permission of Wiley.) 

poison," and xenon and samarium are fission products with large thermal cross 
sections. 

Spectrum-Averaged Cross Sections 

Table 1.3 summarizes the cross-section data for a number of important nuclides 
in nuclear reactors. The first three columns give fission, radiative capture, and 
elastic scattering cross sections averaged over a Maxwellian distribution with 
T = 0.0253 eV, corresponding to a representative thermal energy spectrum. The next 
two columns give the infinite dilution fission and radiative capture resonance in- 
tegrals, which are averages of the respective resonance cross sections over a l / E  
spectrum typical of the resonance energy region in the limit of an infinitely dilute 



TABLE 13 Spectrum-Averaged Thermal, Resonance, and Fast Neutron Cross Sections (barns) 

Thermal Cross Section Resonance Cross Section Fission Spectrum Cross Section 

Nuclide O f  OY G e l  O f  OY Of 9 O e l  CI n on.211 

Source: Data from htp://www.dne.bnl.gov/CoN/index.hhI. 
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concentration of the resonance absorber. The final five columns give cross sections 
averaged over the fission spectrum. 

Example 1.1: Calculation of Macroscopic Cross Section. The macroscopic cross 
section X = No, where N is the number density. The number density is related to 
the density p and atomic number A by N= (p/A)No, where No = 6.022 x is 
Avogadro's number, the number of atoms in a mole. For a mixture of isotopes with 
weight percents w;, the macroscopic cross section is Z = Ciwi(p/A)iNoioi; for ex- 
ample, for a 1 :I wt % mixture of carbon and 2 3 X ~ ,  the macroscopic thermal absorp- 
tion cross section is X, = 0.5(pc/Ac)Nocrac + 0.5(pu/Au)No~au = 0.5(1.60 g/cm3 
per 12 g/mol)(6.022 x atom/mo1)(0.003 x cm2) + oS(l8.9 g/cm3 per 
238 g/mo1)(6.022 x loz3 atom/mol)(2.4 x cm2) = 0.0575 cmpl. 

1.5 EVALUATED NUCLEAR DATA FILES 

Published experimental and theoretical results on neutron-nuclear reactions are 
collected by several collaborating nuclear data agencies worldwide. Perhaps the 
most comprehensive computerized compilation of experimental data is the EXFOR 
computer library (Ref. 11). The computerized card index file CINDA (Ref. 8), 
which contains comprehensive information on measurements, calculations, and 
evaluations of neutron-nuclear data, is updated annually. The plethora of some- 
times contradictory nuclear data must be evaluated before it can be used confidently 
in reactor physics calculations. Such evaluation consists of intercomparison of data, 
use of data to calculate benchmark experiments, critical assessment of statistical 
and systematic errors, checks for internal consistency and consistency with standard 
neutron cross sections, and the derivation of consistent preferred values by appro- 
priate averaging procedures. Several large evaluated nuclear data files are main- 
tained: (1) United States Evaluated Nuclear Data File (ENDFIB), (2) Evaluated 
Nuclear Data Library of the Lawrence Livermore National Laboratory (ENDL), (3) 
United Kingdom Nuclear Data Library (UKNDL), (4) Japanese Evaluated Nuclear 
Data Library (JENDL), (5 )  Karlsruhe Nuclear Data File (KEDAK), (6) Russian 
(formerly Soviet) Evaluated Nuclear Data File (BROND), and (7) Joint Evaluated 
File of NEA Countries (JEF). Processing codes are used to convert these data to a 
form that can be used in reactor physic calculations, as discussed in subsequent 
chapters. 

1.6 ELASTIC SCATTERING KINEMATICS 

Consider a neutron with energy EL = imv; in the laboratory (L) system incident 
upon a stationary nucleus of mass M. Since only the relative masses are important 
in the kinematics, we set m = 1 and M =A.  It is convenient to convert to the center- 
of-mass (CM) system, as indicated in Fig. 1.29, because the elastic scattering event 
is usually isotropic in the CM system. 
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Fig. 1.29 Scattering event in lab and CM systems. (From Ref. 12; used with permission of 
Wiley.) 

The velocity of the CM system in the L system is 

and the velocities of the neutron and the nucleus in the CM system are 

The energy of the neutron in the CM system, E,, is related to the energy of the 
neutron in the lab, EL, by 
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Correlation of Scattering Angle and Energy Loss 

From consideration of conservation of momentum and kinetic energy, it can be 
shown that the speeds of the neutron and the nucleus in the center-of-mass system 
do not change during the scattering event: 

With reference to Fig. 1.30, the scattering angles in the lab and CM systems are 
related by 

v: sin 8, - sin 8, 
tan eL = - 

VC, + V: cos 8, (1/A) + cos 8, 

The law of cosines yields 

which may be combined with Eqs. (1.13) and (1.16) to obtain a relationship be- 
tween the incident and final energies of the neutron in the lab system and the 
scattering angle in the CM system: 

where r = (A- 1 ) 2 / ( ~  + I ) ~ .  

Fig. 1.30 Relation bctween lab and CM scattering angles. (From Ref. 12; used with per- 
mission of Wiley.) 
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Average Energy Loss 

Equation (1.19) states that the ratio of final to incident energies in an elastic 
scattering event is correlated to the scattering angle in the CM system, which in 
turn is correlated via Eq. (1.17) to the scattering angle in the lab system. The 
maximum energy loss (minimum value of ELIEL) occurs for 0, = n (i.e., backward 
scattering in the CM system), in which case EL = EEL. For hydrogen (A = I ) ,  cc = 0 
and all of the neutron energy can be lost in a single collision. For other nuclides, 
only a fraction (1 -a) of the neutron energy can be lost in a single collision, and for 
heavy nuclides (a + 1) this fraction becomes very small. 

The probability that a neutron scatters from energy EL to within a differential 
band of energies dEL about energy EL is equivalent to the probability that a neutron 
scatters into a cone 2n sin 0, d0, about 0,: 

os (EL) P(EL -+ E l )  dEl = -acm (EL, 8,) 27r sin 8, dB, (1.20) 

where the negative sign takes into account that an increase in angle corresponds to a 
decrease in energy, cr, is the elastic scattering cross section, and ~ ~ ~ ( 0 , )  is the cross 
section for scattering through angle 0,. Using Eq. (1.19) to evaluate dEL/d0,, this 
becomes 

E L L  (,,,) 
otherwise 

Except for very high energy neutrons scattering from heavy mass nuclides, elastic 
scattering in the CM is isotropic, c~,,(0,) = a, /4n.  In this case, Eq. (1.21) may be 
written 

os(EL + EL) E u,(EI, )P(EL + EL) = aEL < EL 5 EL ( 1 . ~ ~ 1  (1 - a)EL7 
= 0 ,  otherwise 

The average energy loss in an elastic scattering event may be calculated from 

and the average logarithmic energy loss may be calculated from 
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The number of collisions, on average, required for a neutron of energy Eo to be 
moderated to thermal energies, say 1 eV, can be estimated from 

(no. collisions) - In [Eo(eV) / 1 .O] 

c 
The results are shown in Table 1.4 for Eo = 2 MeV. 

The parameter 5, which is a measure of the moderating ability, decreases with 
nuclide mass, with the result that the number of collisions that are needed to 
moderate a fast neutron increases with nuclide mass. However, the effectiveness 
of a nuclide (or molecule) in moderating a neutron also depends on the relative 
probability that a collision will result in a scattering reaction, not a capture reaction, 
which would remove the neutron. Thus the parameter ~E,/C,, referred to as the 
moderating ratio, is a measure of the effectiveness of a moderating material. Even 
though H20 is the better moderator in terms of the number of collisions required to 
thermalize a fast neutron, D20 is the more effective moderator because the absorp- 
tion cross section for D is much less than that for H. 

Example 1.2: Moderation by a Mixture. The moderating parameters for a mixture 
of isotopes is constructed by weighting the moderating parameters of the individual 
isotopes by their concentrations in the mixture. For example, in a mixture of "C 
and 2 3 8 ~  the average value of @, = Nctcasc + N u ~ u a s u  = Nc(O. 1%) 
(2.3 x cm2) + NU(0.008)(4.8 x 1 0 - ~ ~ c m ~ ) ,  where the fission spectrum range 
elastic scattering cross sections of Table 1.3 have been assumed to hoId also in 
the slowing-down range. The total absorption cross section is C,=Nfluc= 
N"O,~ = Nc(0.002 x 1 0 - ~ ~ c m ~ )  + Nu(280 x I O - ~ ~ C ~ ~ )  in the slowing-down 
range, where the resonance range cross sections from Table 1.3 have been used. 

TABLE 1.4 Number of Collisions, on Average, to 
Moderate a Neutron from 2 MeV to 1 eV 

Moderator 
Number of 

E, Collisions 
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PROBLEMS 

1.1. Demonstrate that the speeds of the neutron and nucleus in the CM system do 
not change in an elastic scattering event by using conservation of momentum 
and kinetic energy. 

1.2. Estimate the probability that a 1-MeV neutron will be moderated to thermal 
without being captured in a mixture of uranium and water with NH/Nu = 1: 1. 
Repeat for a 1: 1 mixure of uranium and carbon. 
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1.3. Neutrons are slowed down to thermal energies in a 1:l mixture of H20 and 
4% enriched uranium (4%235~ ,  96%238~).  Estimate the thermal value of 
q = vof/ (o, + o ). Repeat the calculation for a mixture of (2%235~ ,  
2%239h, 96%234J). 

1.4. Estimate the probability that a fission neutron will have a scattering collision 
with H20 in the mixtures of Problem 1.3. 

1.5. Calculate the average energy loss for neutrons at 1-MeV, 100-keV, 10-keV, and 
1 -keV scattering from carbon. Repeat the calculation for scattering from iron 
and from uranium. 

1.6. Repeat Problem 1.5 for scattering from hydrogen and sodium. 

1.7. Calculate the moderating ratio and the average number of collisions required 
to moderate a fission neutron to thermal for a 1: 1 mixture of 12c : 2 3 8 ~ .  Repeat 
for a 10: 1 mixture. 

1.8. Calculate the thermal absorption cross section for a 1: 1 wt % mixture of 
carbon and 4% enriched uranium (e.g., 4 % 2 3 5 ~ ,  96%238~).  





2 Neutron Chain Fission Reactors 

2.1 NEUTRON CHAIN FISSION REACTIONS 

Since two or three neutrons are released in every neutron-induced fission reaction, 
the possibility of a sustained neutron chain reaction is obvious, as illustrated in 
Fig. 2.1. To sustain a fission chain reaction, one or more of the neutrons produced 
in the fission event must, on average, survive to produce another fission event. There 
is competition for the fission neutrons in any assembly-some will be absorbed in 
fuel nuclides as radiative capture events rather than fission events, some will be 
absorbed by nonfuel nuclides, and some will leak out of the assembly. A scattering 
event does not compete for a neutron because the scattered neutron remains in the 
assembly and available for causing a fission event, but a scattering event does 
change a neutron's energy and thus, because the various cross sections are energy 
dependent, does change the relative likelihood of the next collision being a fission 
event. 

Capture-to-Fission Ratio 

The fission cross sections for the fissile nuclides increase approximately as l / v  with 
decreasing neutron energy, but then so do the capture cross sections of the fissile 
nuclides. The probability that a neutron that is captured in a fissile nuclide causes a 
fission is just of/(a ,- + o, ) = 1 / ( I  f nr/of) = 1/(1+ a), where a = o,/af is refer- 
red to as the capture-to-fusion ratio. The capture-to-fission ratio for the principal 
fissile nuclides decreases as the neutron energy increases. For high neutron ener- 
gies, the fission probability, which varies as ( 1  + a ) ' ,  is larger for 2 3 ' ~ ~  than for 
235 U or *"u, but the situation is reversed for low-energy thermal neutrons. 

Number of Fission Neutrons per Neutron Absorbed in Fuel 

The product of the fission probability for a neutron absorbed in the fuel and the 
average number of neutrons released per fission, q - vn f / (o f  + or ) = v/(l + a), 
provides a somewhat better characterization of the relative capabilities of the vari- 
ous fissile nuclides to sustain a fission chain reaction. This quantity is plotted in 
Fig. 2.2 for the principal fissile nuclides. For high neutron energies, q is larger for 
2 3 9 ~ ~  than for 2 3 5 ~  or 2 3 3 ~ ,  but the situation is reversed for low-energy thermal 
neutrons. 
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Fig. 2.1 Schematic of a fission chain reaction. (From Ref. 3; used with permission of 
Wiley.) 

Neutron Utilization 

The probability that a neutron is absorbed in a fissile nuclide instead of being 
absorbed in another nuclide or leaking from the assembly is 

absorb fissile 
absorb fissile + absorb nonfissile + leak 

- - 
absorb fissile 1 (2.1) 

absorb total ( 1  + leak/absorb total) 3 PNL 

where f is the fraction of the absorbed neutrons which are absorbed in the fissile 
nuclides, or the utilization: 

and PNL refers to the nonleakage probability. Since the absorption cross section, 
o, = of + or, is much greater for thermal neutrons than for fast neutrons for the 
fissile nuclides, but comparable for fast and thermal neutrons for the nonfissile fuel 
nuclides and for structural nuclides, the utilization for a given composition is much 
greater for thermal neutrons than for fast neutrons (and, in fact, is usually referred 
to as the thermal utilization). 

Fast Fission 

The product q f is the number of neutrons produced, on average, from the fission of 
fissile nuclides for each neutron absorbed in the assembly. There will also be 
neutrons produced by the fission of the nonfissile fuel nuclides, mostly by fast 
neutrons. Defining the fast fission factor  total fission neutron production 
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Fig. 2.2 q for the principal fissile nuclides. (From Ref. 9; used with prmission of Electric 
Power Research Institute.) 

rate/fission neutron production rate in fissile nuclides, qfE is the total number of 
fission neutrons produced fur each neutron absorbed in the assembly, and qfEPNL is 
the total number of fission neutrons produced, on average, for each neutron intro- 
duced into the assembly by a previous fission event. 



38 NEUTRON CHAIN FISSION REACTORS 

Resonance Escape 

The parameters q f E must be evaluated by averaging over the energy of the neu- 
trons in the assembly, of course. When the neutron population consists predomi- 
nantly of thermal neutrons, the thermal spectrum-averaged cross sections given in 
Table 1.3 may be used to estimate q andf, and the cross sections averaged over the 
fission spectrum may be used in estimating E, which should now aIso include fast 
fission in the fissile nuclides. In this case, it is necessary to take into account 
separately the capture of fission neutrons while they are slowing down to the 
thermal energy range, predominantly by the capture resonances of the fuel nuclides. 
The probability that a neutron is not captured during the slowing-down process is 
referred to as the resonance escape probability and denoted p. Thls competition for 
neutrons is illustrated schematically in Fig. 2.3 (leakage is neglected). 
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Fig. 2.3 Neutron balance in a thermal neutron fission assembly. (From Ref. I;  used with 
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Kffective Multiplication Constant 

'The product q j k p  PNL is the total number of fission neutrons produced, on average, 
by one fast neutron from a previous fission event. This quantity is referred to as the 
c;fective multiplication constant of the assembly: 

where k, refers to the multiplication constant of an infinite assembly with no 
leakage. 

If exactly one neutron, on average, survives to cause another fission, a condition 
referred to as criticality (k = I), the neutron population in the assembly will remain 
constant. If less than one neutron, on average, survives to produce another fission 
event, a condition referred to as subcriticality (k < l), the neutron population in the 
assembly will decrease. If more than one fission neutron, on average, survives to 
cause another fission, a condition referred to as supercriticality (k > I), the neutron 
population in the assembly will increase. The effective multiplication constant 
depends on the composition (k,) and size (PNL) of an assembly and on the ar- 
rangement of the materials within the assembly (f and p). The composition affects k 
both by the relative number of nuclides of different species that are present and by 
the determination of the neutron energy distribution, which determines the average 
cross sections for each nuclide. The arrangement of materials determines the spatial 
neutron distribution and hence the relative number of neutrons at the locations of 
the various nuclides. 

The fissile nuclide 2 3 5 ~  is only 0.72% of natural uranium. Fuel enrichment to 
achieve a higher fissile content, hence larger value of f ,  is a major means of 
increasing the multiplication constant. The number of fission neutrons produced 
for each neutron absorbed in fissile material, q, is significantly larger for fast 
neutrons than for thermal neutrons, because the capture-to-fission ratio is smaller 
and the number of neutrons per fission is larger. On the other hand, for a given fuel 
enrichment, the utilization, f, is greater for thermal neutrons than for fast neutrons 
because the absorption cross section is much greater for thermal neutrons than for 
fast neutrons for the fissile nuclides, but comparable for fast and thermal neutrons 
for the nonfissile fuel nuclides and for structural nuclides. On the whole, the amount 
of fissile material necessary to achieve a given value of the multiplication constant 
is substantially less in a fast neutron spectrum than in a thermal neutron spectrum. 

Effect of Fuel Lumping 

Lumping the fuel rather than distributing it uniformly can have a significant effect 
on the multiplication constant. For example, if natural uranium is distributed uni- 
formly in a graphite lattice, the values of the various parameters are q = 1.33, 
f 3 0.9, E x 1.05, and p w 0.7, yielding k ,  = 0.88 (i.e., the assembly is subcritical). 
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If the fuel is lumped, the strong resonance absorption at the exterior of the fuel 
elements reduces the number of neutrons that reach the interior of the fuel el- 
ements, increasing the resonance escape probability to p w 0.9. Lumping the fuel 
also reduces the thermal utilizationf, for the same reason, but the effect is not so 
significant. Lumping the fuel was the key to achieving criticality (k = I )  in the first 
graphite-moderated natural uranium reactors and is crucial in achieving criticality 
in present-day D20-moderated natural uranium reactors. 

Leakage Reduction 

The multiplication constant can be increased by reducing the leakage, most of 
which is due to fast neutrons. This can be done simply by increasing the size. 
The leakage can also be reduced by choosing a composition that moderates the 
neutrons quickly before they can travel far or by surrounding the assembly with a 
material with a large scattering cross section (e.g., graphite), which will reflect 
leaking neutrons back into the assembly. 

Example 2.1: Effective Multiplication Factor for a PWR. For a typical pressur- 
ized water reactor (PWR), the various parameters are q = 1.65, f FZ 0.71, E = 1.02, 
and p = 0.87, yielding k ,  FZ 1.04. The nonleakage factors for fast and thermal 
neutrons are typically 0.97 and 0.99, yielding k =  1.00. 

2.3 TZME DEPENDENCE OF A NEUTRON 
FISSION CHAIN ASSEMBLY 

Prompt Fission Neutron Time Dependence 

If there are No fission neutrons introduced into an assembly at t = 0, and if 1 is the 
average time required for a fission neutron to slow down and be absorbed or leak 
out, the number of neutrons, on average, in the assembly at time t =  1 is (k)No. 
Continuing in this fashion, the number of neutrons in the assembly at time t = ml 
(m integer) is (k)mNo. The quantity 1 is typically = s for assemblies in which 
the neutrons slow down to thermal before causing another fission, and is typically w 
1 0 - ~ s  for assemblies in which the fission is produced by fast neutrons. For 
example, a ;% change in absorption cross section, which could be produced by 
control rod motion, causes an approximately 0.005 change in k. The neutron popu- 
lation after 0.1 s in a thermal assembly (0.1 s = lo31) in which k = 1.005, would be 
N(O.l) = ( 1 . 0 0 5 ) ' ~ ~ ~ ~ ~  = 150No. In a thermal assembly with k = 0.995, the neutron 
population after 0.1 s would be N(O.l) = ( 0 . 9 9 5 ) ' ~ ~ ~ ~ ~  x 0.0066No. 

An equation governing the neutron kinetics described above is 
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which simply states that the time rate of change of the neutron population is equal 
to the excess of neutron production (by fission) minus neutron loss by absorption or 
leakage in a neutron lifetime plus any external source that is present. For a constant 
source, Eq. (2.4) has the solution 

which displays an exponential time behavior. Using the same example as above, 
with the source set to zero, leads to N(O.1) = N(0) exp(5.0) = 148N(O) for k = 1.005 
and N(O.l) = N(0) exp (-5.0) = 0.0067N(O) for k = 0.995. 

Source Multiplication 

Equation (2.4) does not have a steady-state solution for k > 0 and does not have a 
unique steady-state solution for k = 1.  However, for k < 1, the asymptotic solution 
is 

This equation provides a method to measure the effective multiplication factor k 
when k < 0 by measuring the asymptotic neutron population which results from 
placing a source So in a multiplying medium. 

Effect of Delayed Neutrons 

It would be very difficult, if not impossible, to control a neutron fission chain 
assembly which responded so dramatically to a ;% change in absorption cross 
section. Fortunately, a small fraction (P ~ 0 . 0 0 7 5  for 2 3 5 ~  fueled reactors) of the 
fission neutrons are delayed until the decay (h FZ 0.08 s-') of the fission fragments. 
For an assembly that was critical prior to t = 0, the equilibrium concentration of 
such delayed neutron precursor fission fragments is found from the balance equa- 
tion: 

where NF is the density of fuel nuclei, No the neutron population, and Co the 
population of delayed neutron precurser fission fragments. 

When the $% change in cross section occurs at t=O, the multiplication of the 
prompt neutrons after 0.1 s ( 1  0001 ) is [(l - p)k]'OOO. During each multiplication 
interval 1 there is a source hlC of delayed neutrons from the decay of fission 
fragments. This source results in ( I  -P)khlC neutrons in the following multiplica- 
tion interval, [(I -P)kj2hK neutrons in the second following multiplication interval, 
and so on. There is such a delayed neutron source in each of the 1000 multiplication 
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intervals in our example. To simplify the problem, we assume that the fission 
fragment concentration does not change (i.e., C= Co). Thus the number of neutrons 
after 0.1 s (10001) is 

where Eq. (2.7) has been used in the last step. Evaluating this expression for 
k = 1.005 yields N(t = 0.1 s) = 3.03No, instead of the 150No found without taking 
the delayed neutrons into account. If we had taken into account the changing fission 
fragment population, we would have found a slightly larger number. Nevertheless, 
the fact that some of the neutrons emitted in fission are delayed results in a rather 
slow and hence controllable response of a neutron chain fission reacting assembly, 
provided that (1 - p)k < 0. 

2.4 CLASSIFICATION OF NUCLEAR REACTORS 

Physics CIassification by Neutron Spectrum 

From the physics viewpoint, the main differences among reactor types arise from 
differences in the neutron energy distribution, or spectrum, which causes differ- 
ences in the neutron-nuclear reaction rates and the competition for neutrons. The 
first level of physics classification categories are then thermal reactors and fast 
reactors, corresponding to the majority of the neutron-nuclear reactions involving 
neutrons in the thermal energy range (E < 1 eV ) and to the majority of the neutron- 
nuclear reactions involving neutrons in the fast energy range (E > 1 keV), respec- 
tively. Representative neutron spectra for thermal (LWR) and fast (LMFBR) reactor 
cores are shown in Fig. 2.4. 

There are important physics differences among the different therma1 reactors 
and among the different fast reactors, but these differences are not so great as the 
physics differences between a thermal reactor and a fast reactor. The capture-to- 
fission ratio, a, is lower and the number of neutrons produced per fission, v, is 
larger in fast reactors than in thermal reactors. This generally results in a larger 
value of k for a given amount of fuel in a fast reactor than in a thermal reactor, or, 
more to the point, a smaller critical mass of fuel in a fast reactor than in a thermal 
reactor. Because of the larger neutron-nuclear reaction rates for thermal neutrons 
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Fig. 2.4 Representative fast (LMFBR) and thermal (LWR) reactor neutron energy distribu- 
tions. F l u x ~ n v  (From Ref. 1; used with permission of Taylor & Francis.) 

than for fast neutrons, the mean distance that a neutron travels before absorption is 
greater in a fast reactor than in a thermal reactor. This implies that the detailed 
distribution of fuel, coolant, and control elements has a much greater effect on the 
local competition for neutrons in a thermal reactor than in a fast reactor and that the 
neutron populations in the different regions of the core are more tightly coupled in a 
fast reactor than in a thermal reactor. 

Engineering Classification by Coolant 

The neutron spectrum is determined primarily by the principal neutron moderating 
material present, and in many cases this material is the coolant. Because the heat 
transport system is such a major aspect of a nuclear reactor, it is also common to 
classify reactors according to coolant. Water-cooled reactors, such as the pressur- 
ized water (PWR) and boiling water (BWR) reactors, which use H20 coolant, and 
the pressurized heavy water reactor (PHWR), which uses D20 coolant, have ther- 
mal neutron spectra because of the excellent moderating properties of hydrogen. 
Since gas is too diffuse to serve as an effective moderator, gas-cooled reactors can 
be either thermal or fast, depending on whether or not a moderator, commonly 
graphite, is included. The early Magnox and subsequent advanced gas reactors 
(AGR) are cooled with C02, and the advanced high-temperature gas-cooled reactor 
(HTGR) is cooled with helium; all are moderated with graphite to achieve a thermal 
spectrum. Designs have been developed for a helium-cooled reactor without gra- 
phite, which is known as the gas-cooled fast reactor (GCFR). The pressure tube 
graphite-moderated reactor (PTGR) is cooled with pressurized or boiling water in 
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pressure tubes, but it is necessary to include graphite to achieve a thermal spectrum. 
The molten salt breeder reactor (MSBR) employs a molten salt fluid which acts as 
both the fuel and the primary coolant loop, and is moderated by graphite to achieve 
a thermal spectrum. The advanced liquid-metal reactor (ALMR) and the liquid- 
metal fast breeder reactor (LMFBR) are cooled with sodium, which is not a parti- 
cularly effective moderator, and the neutron spectrum is fast. 
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PROBLEMS 

2.1. Calculate and plot the thermal value of q for a uranium-fueled reactor as a 
function of enrichment (e.g., percentage 2 3 5 ~  in uranium) over the range 0.07 
to 5.0%. 

2.2. Calculate the thermal utilization in a homogeneous 1: 1 wt % mixture of carbon 
and natural uranium. Repeat the calculation for 4% enriched uranium. 



3 Neutron Diffusion Theory 

In this chapter we develop a one-speed diffusion theory mathematical description of 
nuclear reactors. Such a relatively simple description has the great advantage of 
illustrating many of the important features of nuclear reactors without the complex- 
ity that is introduced by the treatment of important effects associated with the 
neutron energy spectrum and with highly directional neutron transport, which are 
Lhe subjects of subsequent chapters. Moreover, diffusion theory is sufficiently ac- 
curate to provide a quantitative understanding of many physics features of nuclear 
reactors and is, in fact, the workhorse computational method of nuclear reactor 
physics. 

3.1 DERIVATION OF ONE-SPEED DIFFUSION THEORY 

Calculation of the rates of the different reactions of neutrons with the materials in 
the various parts of a nuclear reactor is the fundamental task of nuclear reactor 
physics. This calculation requires a knowledge of nuclear cross sections and their 
energy dependence (Chapter 1) and of the distribution of neutrons in space and 
energy throughout the reactor. The neutron distribution depends on the neutron 
source distribution, which in the case of the fission source depends on the neutron 
distribution itself, and on the interactions with atomic nuclei experienced by the 
neutrons as they move away from the source. The simplest and most widely used 
mathematical description of the neutron distribution in nuclear reactors is provided 
by neutron diffusion theory. For simplicity of explication, the neutrons are treated 
as if they are all of one effective speed, and effects associated with changes in 
neutron energy are suppressed. Such a simplification would be justified in practice 
if the cross sections were averaged over the appropriate neutron energy distribution. 
As a further simplification, the medium is initially assumed to be uniform. 

Partial and Net Currents 

With respect to Fig. 3.1, the rate at which neutrons are scattering in the differential 
volume element dr = ?drdp d$ is Z,c$ dr, where p = cos 0. The fraction of the 
isotropically scattered neutrons leaving dr headed toward the differentia1 area dA 
at the origin is -(r/r) d~/4nr'  = pdA/4~?. Not all of these neutrons reach dA, 
however; some are absorbed and others are scattered again so that they do not 
cross dA. The probability that a neutron leaving dr in the direction of dA actually 
reaches dA is FCr. The differential current j-(0: r, p, $)&A of neutrons passing 
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Fig. 3.1 Definition of coordinate system. (From Ref. 10; used with permission of McGraw- 
Hill.) 

downward through dA which had their last scattering collision in dr is thus 

The total current passing downward through dA is found by integrating this expres- 
sion over the entire upper half-plane (x > 0): 

Now, the first major approximation leading to diffusion theory is made-for the 
purpose of evaluating the integral in Eq. (3.2), the flux is assumed to be sufficiently 
slowly varying in space that it can be approximated by expansion in a Taylor series 
about the origin: 

in which only the first two terms are retained. Using this approximation and the 
trigonometric identity cos P = cos 0, cos 8 + sin 0, sin 8 cos($,-$), and making the 
second major approximation-that absorption is small relative to scattering (e.g., 
C N CS)-Eq. (3.2) can be integrated to obtain the diffusion theory expression for 
the partial downward current density: 
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A similar derivation leads to an expression for the partial upward current density, 

where D is known as the dzfision coeficient. 
The diffusion theory expression for the net current at the origin (positive sign up) 

is 

Carrying out a similar derivation for dA in the x-y and x-z planes leads im- 
mediately to the three-dimensional generalization 

A third assumption-that the neutrons are scattered isotropically-was used in 
the derivation above. The last form of Eq. (3.7) is known as Fick's law, which 
governs the diffusion of many other quantities as well as neutrons. A more accurate 
derivation of diffusion theory from transport theory (Chapter 9) reveals that a better 
approximation for the diffusion coefficient which takes into account anisotropy in 
scattering is given by 

where X, and C, are the total and scattering cross sections and jiO z $A is the 
average cosine of the scattering angle ( A  is the atomic mass number of the scatter- 
ing nuclei). 

Diffusion Theory 

The mathematical formulation of neutron diffusion theory is then obtained by using 
the diffusion theory expression for the neutron current in the neutron balance 
equation on a differential volume element: 
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which states that the time rate of change of the neutron density within a differential 
volume is equal to the external rate at which neutrons are produced in the volume 
by an external source (S) and by fission (vCf+) minus the rate at which neutrons 
are lost by absorption (C,+) and minus the net leakage of neutrons out of the 
volume (V J). Proof that the net leakage out of a differential volume element is 
V J follows from considering the difference of outward and inward currents in a 
cube of dimensions AxAyA,. The net transport of particles out of the cube is 

where a Taylor's series expansion of the current has been made. 

Interface Conditions 

At an interface between regions 1 and 2 at which there is an isotropic source So, the 
partial currents on both side of the interface must be related by 

Subtracting these two equations and using Eqs. (3.4) and (3.5) yields an interface 
condition of continuity of neutron flux: 

Adding the two equations yields 

which, in the absence of an interface source, is a continuity of neutron net current 
condition. 

Boundary Conditions 

At an external boundary, the appropriate boundary condition is found by equating 
the expression for the inward partial current to the known incident current, j'", for 
example, from the right at xb, 
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When the diffusing medium is surrounded by a vacuum or nonreflecting region, 
j"' = 0 and Eq. (3.13) may be written 

A widely used but more approximate vacuum boundary condition is obtained by 
noting that this expression relates the flux and the flux slope at the boundary. If the 
slope of the flux versus x at the boundary (xb) is used to extrapolate the flux outside 
the boundary, the extrapolated flux will vanish at a distance hextrap = $1, = $xi1 
outside the external boundary. A more accurate result from neutron transport theory 
is hextrap = 0.7104h This result gives rise to the approximate vacuum boundary 
condition of zero neutron flux at a distance hextrap outside the physical boundary 
i ~ t  x = a, or $(a + = +(aex) = 0, where we have defined the extrapolated 
boundary 

Since he,,,, is usually very small compared to the typical dimensions of a diffusing 
medium encountered in reactor physics, it is common to use the even more approxi- 
mate vacuum boundary condition of zero flux at the physical external boundary. 

Example 3.1: Typical Values of Thermal Extrapolation Distance. The thermal 
neutron extrapolation distance he,,,, = 0.7104/Ctr = 0.7104/[Z, + (1 -h)Zs] for 
some typical diffusing media are 0.30 cm for H20, 1.79 cm for DzO, 1.95 cm for 
C, and 6.34cm for Na. The approximation that the neutron flux vanishes at the 
boundary of the diffusing medium is valid when the dimension L of the diffusing 
medium is much larger than the extrapolation distance, L >> hex,,,. 

Applicability of Diffusion Theory 

Diffusion theory provides a strictly valid mathematical description of the neutron 
flux when the assumptions made in its derivation-absorption much less likely than 
scattering, linear bpatial variation of the neutron distribution, isotropic scattering- 
are satisfied. The first condition is satisfied for most of the moderating (e.g., water, 
graphite) and structural materials found in a nuclear reactor, but not for the fuel and 
control elements. The second condition is satisfied a few mean free paths away 
from the boundary of large (relative to the mean free path) homogeneous media 
with relatively uniform source distributions. The third condition is satisfied for 
scattering from heavy atomic mass nuclei. One might well ask at this point how 
diffusion theory can be used in reactor physics when a modern nuclear reactor 
consists of thousands of small elements, many of them highly absorbing, with 
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dimensions on the order of a few mean free paths or less. Yet diffusion theory is 
widely used in nuclear reactor analysis and makes accurate predictions. The secret 
is that a more accurate transport theory is used to "make diffusion theory work" 
where it would be expected to fail. The many small elements in a large region are 
replaced by a homogenized mixture with effective averaged cross sections and 
diffusion coefficients, thus creating a computational model for which diffusion 
theory is valid. Highly absorbing control elements are represented by effective 
diffusion theory cross sections which reproduce transport theory absorption rates. 

3.2 SOLUTIONS OF THE NEUTRON DIFFUSION 
EQUATION IN NONMULTIPLYING MEDIA 

Plane Isotropic Source in an Infinite Homogeneous Medium 

Consider an infinite homogeneous nonmultiplying (Xf=O) medium in which a 
plane isotropic source (infinite in the y-z plane) with strength So is located at 
x = 0. Everywhere except at x = 0 the time-independent diffusion equation can be 
written 

where L' - DIE, is the neutron d i m i o n  length. This equation has a general solu- 
tion 4 = A  exp(x/L) + Bexp(-x /L) .  For x > 0, the physical requirement for a finite 
solution at large x requires that A = 0, and the physical requirement that the net 
current must approach ;So as x approaches 0 requires that B = LSo/2D. Following a 
similar procedure for x < 0 leads to similar results, so that the solution may be 
written 

Plane Isotropic Source in a Finite Homogeneous Medium 

Consider next a finite slab medium extending from x = 0 to x = + a  with an iso- 
tropic plane source at x = 0. In this case, the general solution of Eq. (3.16) is more 
conveniently written as 4 = A  sinh(x/L) + B cosh(x/L). The appropriate boundary 
conditions are that the inward partial current vanishes at x = a[i.e., j-(a) = 01 and 
that the inward partial current equals the isotropic source strength as x+ 0 
[i.e., j''" (0) = So]. The resulting solution is 
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If instead of j-(a) = 0, the extrapolated boundary condition $(a,,) = 0 is used, 
the resulting solution is 

When 0.71h,/a << 1 and 2(~, /3~,) ' /*  << 1 (i.e., when the transport mean free path 
is small compared to the dimension of the medium and the absorption cross section 
is small relative to the scattering cross section), these two solutions agree. These 
conditions must also be satisfied in order for diffusion theory to be valid, so we 
conclude that use of the extrapolated zero flux boundary condition instead of the 
zero inward current boundary condition is acceptable. 

Line Source in an Infinite Homogeneous Medium 

Consider an isotropic line source (e.g., infinite along the z-axis) of strength So (per 
centimeter per second) located at r = 0. The general solution of 

is $ =Alo(r/L) + BKo(r/L), where I. and Ko are the modified Bessel functions 
of order zero of the first and second kind, respectively. The physical requirement 
for a finite solution at large r requires that A = 0. The source condition is 
lim(r 4 0 ) 2 ~ r J =  So. The resulting solution for an isotropic line source in an infinite 
homogeneous nonmultiplying medium is 

Homogeneous Cylinder of Infinite Axial Extent 
with Axial Line Source 

Consider an infinitely long cylinder of radius a with an isotropic source on axis. 
The source condition lim(r+ 0)27crJ= So still obtains, but now A = 0 no longer 
holds and the other boundary condition is a zero incident current condition at r = a 
or a zero flux condition at r = a  + he,,,. The latter vacuum boundary condition 
leads to the solution for the neutron flux distribution in an infinite homogeneous 
nonmultiplying cylinder with an isotropic axial line source: 
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Point Source in an Infinite Homogeneous Medium 

The neutron diffusion equation in spherical coordinates is 

This equation has the general solution 4 = ( ~ e ' l ~  + ~ e - ' / ~ ) / r .  The source condition 
is lim(r + 0)47c2~ = So, and the physical requirement for a finite solution at large r 
requires that A = 0, yielding 

Point Source at the Center of a Finite Homogeneous Sphere 

Consider a finite sphere of radius a with a point source at the center. The same 
general solution 4 = ( ~ e ' l ~  + ~ e - ' l ~ ) / r  of Eq. (3.23) is applicable, but the A = 0 
condition must be replaced by a vacuum boundary condition at r=a. Using an 
extrapolated zero flux condition yields 

for the neutron distribution in a finite sphere of homogeneous nonmultiplying 
material with a point source at the center. 

3.3 DIFFUSION KERNELS AND DISTRIBUTED SOURCES 
IN A HOMOGENEOUS MEDIUM 

Infinite-Medium Diffusion Kernels 

The previous solutions for plane, line, and point sources at the origin of slab, 
cylindrical, and spherical coordinate systems in an infinite medium can be general- 
ized immediately to slab, line, and point sources located away from the origin (i.e., 
the location of the coordinate axis in an infinite medium can be offset without 
changing the functional form of the result). The resulting solutions for the neutron 
flux a1 location x or r due to a unit isotropic source at x' and r' may be thought of as 
kernels. The infinite-medium kernels for a plane isotropic source of one neutron per 
unit area per second, a point isotropic source of one neutron per second, a line 
isotropic source of one neutron per unit length, a cylindrical shell source of one 
neutron per shell per unit length per second, and a spherical shell source of one 
neutron per shell per second are 
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L 
Plane : hl ( X  : x') = - e-lx-*llL 

2 0  

Line : q$ ( r  : r' ) = Ko(lr - JIIL) 
21rD 

e-lr-SIIL 
Point: q+,,(r : r') = 

4 4 r  - r'lD 

1 
Cylindrical shell: q5cyl(r : r') = - x 

Ko(rlL)Io(r'/L), r > r' 
Ko(r'/L)Io(r/L),  r < r l  

L 
Spherical shell : q5,yl(r : r') = - ( e - l r - f  IIL - e-lr+.'IIL) 

87rrr'D 

These kernels may be used to construct the neutron flux in an infinite homo- 
geneous nonmultiplying medium due to an arbitrary source distribution So: 

d(r)  = 1 $(r  : r')s0(r1) dr' (3.27) 

For a planar source distribution this takes the form 

and for the more general point source, 

Finite-Slab Diffusion Kernel 

Consider a slab infinite in the y- and z-directions extending from x = -a to x = + a  
with a unit isotropic source at x'. The neutron diffusion equation 

holds everywhere in -a < x < + a except at x = x', the source plane. The continuity 
conditions at the source plane, x = x ' ,  are, from Eqs. (3.11) and (3.12), 

where x' + E indicates an infinitesimal distance to the right of 2, and so on. For the 
vacuum boundary conditions at x = -a and x = a we use the approximate zero flux 
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conditions 

Solving Eq. (3.30) as before and using these source and boundary conditions 
yields the following expressions for the flux at x due to a unit isotropic source at 2, 
or the finite-slab diffusion kernel: 

These kernels may be used to calculate the neutron flux distribution in the slab 
due to a distributed source, So(d): 

Finite Slab with Incident Neutron Beam 

As a further relevant example, consider the first-collision source distribution in a 
slab due to a beam incident from the left at x =  -a: 

Using this source in Eq. (3.34) yields the neutron flux distribution within the slab: 

By using a first-collision source, the highly anisotropic incident beam neutrons 
are treated by first-flight transport theory until they have had a scattering collision 
which (at least partially) converts the beam to a nearly isotropic neutron distribution 
which is amenable to treatment by diffusion theory. The solution for the nearly 
isotropic neutron distribution given by Eq. (3.36) has a maximum some distance 
into the slab at 0 > x  > -a. 

3.4 ALBEDO BOUNDARY CONDITION 

Consider a slab that is infinite in the y- and z-directions located between x=O 
and x =  a with a known inward partial current jf (0) = j:. Upon solving for the 
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ncutron flux distribution for an extrapolated zero flux vacuum boundary condition 
+(a + he,,,) = $(ae,) = 0, it is possible to evaluate the reflection coefficient, or 
albedo, for neutrons entering the slab from the left at x = 0. 

As a / L  becomes large, coth[(a -t- he,,,,,)/L] --t 1, and a + (I-2D/L)/(1 + 2D/L),  
the infinite-medium value. 

Now consider two adjacent slabs, one denoted B and located in the range 
--h < x  5 0  and the other denoted A and located in the range 0 I x  5 a. If we are 
not interested in the neutron flux distribution in slab A but only in the effect of slab 
A on the neutron flux distribution in slab B, the albedo of slab A can be used as an 
albedo boundary condition for the neutron flux solution in slab B. From Eqs. (3.4) 
and ( 3 3 ,  

This albedo boundary condition can also be simplified by a geometric interpreta- 
tion. If the flux in slab B at the interface between slabs A and B (x = 0) is ex- 
trapolated (into slab A) to zero using the slope at the interface given by Eq. (3.38), 
an approximate albedo boundary condition for the flux solution in slab 
B(-b < x < 0) becomes c$B(halbedo) = 0, where 

3.5 NEUTRON DIFFUSION AND MIGRATION LENGTHS 

The distribution of neutrons within a finite or infinite medium is determined by the 
source distribution, the geometry (in a finite medium), and the neutron diffusion 
length, L = ( D / z , ) ' / ~ .  The (thermal) diffusion length is related to the mean-squared 
distance that a thermal neutron travels from the source point to the point at which it 
is absorbed, as may be seen by computing the mean-squared distance to capture for 
(thermal) neutrons emitted by a point source in an infinite medium: 

where Eq. (3.24) has been used for the neutron flux due to a point source at r = 0. It 
is also apparent from the exp ( f ;c /L)  nature of many of the solutions above that L is 
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the physical distmce over which the neutron f u x  can changc by a signilicanl 
amount (i.c., e- '). 

Thermal Diffusion-Length Experiment 

Thc thcrrnal neutron diffusion length can he determined expcrimcntally by measur- 
ing the axial neutron flux dislribulion in a long (with respect to mean free path) 
block of material with an isotropic thermal neutron flux incident on one end (e.g., 
from the thermal column of a reactor). With reference to Fig. 3.2, consider a 
rectangular parallelepiped of length c and cross section 2a x 2b with an incident 
isotropic thermal neutron source So(x, y) at z = 0 which is symmetric in x and y 
about x = 0 and y = 0. The neutron flux in the block satisfies 

and the boundary conditions 

We seek a separable solution to Eq. (3.41 ) of the form +(x,y, 7) = X ( x ) Y ( y ) Z ( z ) .  
Substitution of this form into Eq. (3.41) and division by XYZ yields 

Fig. 3.2 Geomeiry for diffusioi~-len@ experiment. (From Re!'. l0. j 
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where the double prime indicates a second derivative with respect to the respective 
spatial variables. In general, this equation can only be satisfied if each of the terms 
on the left is separately equal to a constant: 

XI1 ( x )  Y" (Y -- 2 
Z" ( z )  

- 4 2 ,  
-- - k; 

X b )  Y ( Y )  Z ( z )  

in which case Eq. (3.43) becomes 

The general solutions to Eqs. (3.44) are 

X ( x )  = A1 sin k l x  $ C1 cos klx 

Y ( y )  = A2 sin k2y + Cz cos kzy (3.46) 

Z(Z)  = ~ ~ e - ~ ' ~  + caek3" 

The x-y symmetry requirement determines that A ,  = A2 = 0. The end condition of 
Eq. (3.42d) may be used to eliminate Cj to obtain 

The extrapolated boundary conditions of Eqs. (3.42b) and ( 3 . 42~ )  require that 
cos kla,, = cos k2bex = 0, which can only be satisfied if kl and k2 have the discrete 
values 

This result, together with Eq. (3.45), requires that k3 can only take on discrete 
values 

Thus the most general soIution of the neutron diffusion equation that satisfies the 
extrapolated boundary conditions of Eqs. (3.42h) to (3.42d) is 

!x 

d(x: y, z )  = A,, cos kl,x cos kZmy e-k31vnz [I - e-2k3n'"(':cx-z)] (3.50) 
n.m=O 
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where A, is a constant that can be determined from Eq. (3.42a), but that is not 
necessary for our purposes. 

Noting that k3mn increases with m and n, the asymptotic form of the neutron flux 
distribution along the z-axis that persists at large distances from z = 0 is 

For very long blocks (large c,,), the term in brackets is unimportant except near the 
end, and the flux decreases exponentially, so that a measurement of the axial flux 
distribution far away from both the source at z = O  and the end at z = c,, should 
provide for experimental determination of k300. The diffusion length then is deter- 
mined from 

The measured diffusion lengths L for thermal neutrons in H20, D20, and graph- 
ite are about 2.9, 170, and 60cm, respectively. The implication of these measure- 
ments is that thermal neutrons would diffuse a root-mean-square distance from the 
point at which they appear (are thermalized) to the point at which they are absorbed 
of 7.1, 416, and 147 cm, respectively, in these three moderators. 

Migration Length 

In a water-or graphite,-moderated reactor, the fission neutrons are born fast (average 
energy about 1.0 MeV) and diffuse as fast neutrons while they are in the process of 
slowing down to become thermal neutrons. In fast reactors, the neutrons are ab- 
sorbed before thermalizing. In a later chapter we return to calculation of the diffu- 
sion of these fast neutrons, but for now we simply indicate that there is an 
equivalent for fast neutrons of the thermal f f i s i o n  length, which for historical 
reasons is identified as the square root of the "age to thermal," qh. For intermediate 
to heavy mass moderators, this quantity can be shown to be equal to one-sixth the 
mean-squared distance a fast neutron diffuses before it thermalizes (for hydro- 
genous moderators, this is the definition of the quantity). 

The mean-squared distance that a neutron travels from birth as a fast fission 
neutron until capture as a thermal neutron is given by 

where M = (tth + L ~ ) ~ / ~  is known as the migration length. 

Example 3.2: Characteristic Diffusion Parameters. Diffusion characteristics for 
some common moderators are given in Table 3.1. The values of D, C,, and L are 
for thermal neutrons. Diffusion characteristics for compositions representative of 
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TABLE 3.1 Diffusion Parameters for Common Moderators 

Moderator ~ e n s i t ~ ( ~ / c m ~ )  D (cm) a ( C )  L (cm) T , ~ ' "  (cm) M (cm) 

Hz0 1 .OO 0.16 2.0 x lop2 2.9 5.1 5.8 
DzO 1.10 0.87 2.9 x lo-' 170 11.4 170 
Graphite 1.60 0.84 2.4 x 59 19 62 

Snvrce: Data from Ref. 4; used with permission of Wiley. 

TABLE 3.2 Diffusion Parameters for Representative Reactor Core 
Types 

Reactor L (cm) T , ~ ' ' ~  (cm) M (cm) Diameter (L) Diameter (M) 
- 

PWR 1.8 6.3 6.6 190 56 
BWR 2.2 7.1 7.3 180 50 
HTGR 12 17 2 1 63 40 
LMFR 5 .Oa 5.0 35 35 
GCFR 6.6" 6.6 35 35 

Source: Data from Ref. 4; used with permission of Wiley. 
%st neutron diffusion length. 

pressurized water (H20) reactors (PWRs), boiling water (H20) reactors (BWRs), 
high-temperature graphite thermal reactors (HTGRs), sodium-cooled fast reactors 
(LMFRs), and gas-cooled fast reactors (GCFRs) are given in Table 3.2. Typical core 
diameters, measured in thermal diffusion lengths and in migration lengths for the 
thermal reactors and measured in fast diffusion lengths for the fast reactors, are also 
given. It is clear from these numbers that most of the diffusion displacement under- 
gone by a fission neutron occurs during the slowing-down process. 

3.6 BARE HOMOGENEOUS REACTOR 

In a fission chain reacting medium (i.e., a medium in which neutron absorption can 
lead to fission and the production of more neutrons), the diffusion equation may or 
may not have an equilibrium steady-state solution, depending on the precise 
amount of multiplication. Thus we must consider the time-dependent diffusion 
equation 

In a finite homogeneous medium (i.e., a bare reactor) the appropriate boundary 
condition is the extrapolated zero flux condition 
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where &, denotes the external boundaries. We further specify an initial condition 

where +o denotes the initial spatial flux distribution at t = 0. 
We use the separation-of-variables technique and look for a solution of the form 

Substituting Eq. (3.57) into Eq. (3.54) and dividing by 4 = JIT yields 

where we have indicated that an expression which depends only on the spatial 
variable and an expression which depends only on the time variable can be equal 
at all spatial locations and times only if both expressions are equal to the same 
constant, -h. The second form of Eq. (3.58) has the solution 

We look for spatial solutions J I  that satisfy 

and the extrapolated spatial boundary conditions of Eq. (3.55). The constant B,, 
known as geometric buckling, depends only on the geometry. 

Slab Reactor 

For example, in a slab reactor extending from x = -a12 to x = + a/2 and infinite in 
the y- and z-directions, Eqs. (3.60) and (3.55) become 

which have solutions $ = $, only for the (infinite) set of discrete spatial eigen- 
values of B, = B,: 

$, (x) = cos B,x, (3.62) 

Using this result in Eq. (3.58) implies that solutions of that equation exist only for 
discrete-time eigenvalues h, given by 
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Thus the solution of Eq. (3 .54)  for a slab reactor is 

nnx 
4 ( ~ ,  t) = C &Tn(t) cos- 

,=odd aex 

where T, is given by Eq. (3.59) with h = A, and An is a constant which may be 
determined from the initial condition of Eq. (3 .56)  and orthogonality: 

nnx 
A, ( x )  = - dx @o ( x )  cos - 

aex 

Since B: < B: < - . . < B: = ( n ~ / a , , ) ~ ,  the time eigenvalues are ordered 
h l  < h3 < . . - < h, = v(C, + D B ~  - v C f )  Thus, after a sufficiently long time 
(t >> 1 /h3), the solution becomes 

7rx 
4 ( x ,  t )  + ~ ~ e - " '  cos B,X  = ~ ~ e - ~ ' k o s  - (3 .66)  

aex 

This result implies that, independent of the initial distribution (as long as Al  # O), 
the asymptotic shape will be the fundamental mode solution corresponding to the 
smallest spatial and time eigenvalues. The asymptotic solution is steady-state only 
if h1 = 0. If h, > 0, the asymptotic solution is decaying in time, and if hl < 0 ,  it is 
increasing in time. When the neutron population is sustained precisely in steady- 
state by the fission chain reaction, the reactor is said to be critical; when the neutron 
population is increasing in time, the reactor is said to be supercritical; and when the 
neutron population is dying away in time, the reactor is said to be subcritical. 
Defining the material buckling, B,, 

the criticality condition for a bare homogeneous reactor may be written: 

Supercritical: X I  < 0, B; > B: 
Critical : A, = 0, B i  = B: 
Subcritical : X1 > 0,  B i  < B: 

Right Circular Cylinder Reactor 

The slab reactor results can be extended immediately to more general geometries 
by replacing Eqs. (3 .61)  and (3 .62)  with the corresponding equations for the other 
geometries. For example, for the more realistic core geometry of a right circular 
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cylinder of radius a and height H, the equation corresponding to Eq. (3.60) is 

and the extrapolated boundary conditions are 

We make further use of the separation-of-variables technique to write 

Substituting Eq. (3.71) into Eq. (3.69) and dividing by RZ yields 

where the second form of the equation indicates that the only way in which the sum 
of an expression which depends only on the r-variable plus an expression which 
depends only on the z-variable can everywhere equal a constant is if the two 
expressions separately are equal to constants. Solutions of these two equations- 
the first expression equal to the first constant and the second expression equal to the 
second constant-which satisfy the corresponding boundary condition of Eqs. 
(3.70), exist only for discrete values of the constants v, (the roots of Jo(vmaex) = 0, 
rn = 1,2, . . .) and K,(K, = nx/He,, n = 1 ,3 , .  . . ). Since the roots of Jo are ordered, 
vl  < v 2 <  . . . < v,, the smallest of the corresponding discrete eigenvalues 
BL = v; + ( n x / ~ , , ) *  is B:, = v: + (~c/H,,)' ,  and the smallest time eigenvalue is 

The corresponding asymptotic solution is 

The criticality condition, hl = 0, corresponds to B: = B: = B:,. 
The geometric bucklings and asymptotic flux solutions are given for the com- 

mon geometries in Table 3.3. 

Interpretation of Criticality Condition 

The criticality condition hl = 0, or ~i = B:, can be rearranged to yield 
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TABLE 3.3 Geometric Bucklings and Critical Flux Profiles Characterizing Some 
Common Core Geometries 

Geometry Geometric Buckling B: Flux Profile 

Slab 

Infinite cylinder 1 ($I2 

Sphere 

KX 
cos - 

aex 

r - l  . xr 
a n  - 

Rex 

xx xy 712 

Rectangular 
parallelepiped 

'&a 4 

Finite cylinder 

Source: Adapted from Ref. 4; used with permission of Wiley. 

where k ,  is the infinite-medium multiplication constant and PNL = (1 + L ~ B ~ ) - '  is 
interpreted as the nonleakage probability. 

If XI#  0, the reactor is not critical and the asymptotic solution will either grow 
indefinitely or decay away in time, because the multiplication of neutrons (the ratio 
of the neutron population in successive generations) is greater or less than, respec- 
tively, unity. Since Eq. (3.75) applies only when k = 1, we can more generally write 

The situation X I  < 0, in which the asymptotic solution increases in time, corre- 
sponds to k > I ,  and the situation hl > 0, in which the asymptotic solution decays in 
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time, corresponds to k < 1. From Eqs. (3.63) and (3.76), 

Since the mean free path to absorption is I/&, the lifetime of a neutron that 
remains in the reactor until absorption is l/vXu. Defining an effective lifetime of a 
neutron in the reactor which takes into account the possibility of leakage before 
absorption, 

enables Eq. (3.77) to be written 

Thus the asymptotic solution of Eq. (3.54) that satisfies the extrapolated boundary 
conditions of Eq. (3.55) can be written 

where $ is the fundamental mode spatial distribution for the specific geometry 
given in Table 3.3. 

Optimum Geometries 

The minimum size for a bare reactor of a given composition that will be critical 
depends on the leakage, hence on the surface-to-volume ratio. The minimum criti- 
cal volume for a rectangular parallelepiped bare reactor occurs for a cube and is 
V z 161.11/~:. For a right circular cylinder, the minimum critical volume bare 
reactor occurs for a radius a = 21'2 x 2.405H/z FZ 1.08H and is V FZ 148.31/~:. 
The minimum critical volume for a spherical bare reactor is 129.88/~:. 

It is generally desirable for the neutron flux to be distributed as uniformly as 
possible over the reactor core. A measure of non-uniformity is the peak-to-volume 
average value. For a homogeneous bare core, the peak value occurs at the center, 
and the peak-to-volume average is (7c/2)'= 3.88 for a rectangular parallelepiped, 
-2.4O57cvI/4 Jl(vl) = 3.65 for a right circular cylinder, and z2/3 = 3.29 for a 
sphere. 

Example 3.3: Critical Size of a Bare Cylindrical Reactor. Although the above 
formalism has been developed for a one-speed description of neutron diffusion, it 
can be generalized to energy-dependent diffusion by using cross sections that are 
averaged over the neutron energy distribution. A typical composition and set of 



TABLE 3.4 Typical PWR Core Composition and Spectrum-Averaged Cross Sections 

n (Jtr (J, Of 
Isotope (loz4 ~ m - ~ )  ( 1 0 - ~ ~ c m ~ )  cm2) cm2) v Z,, (cm-') C, (cm-') vZf (cm-') 

H 2.748 x 0.650 0.294 0 0 1.79 x lop2 8.08 x 0 
0 2.757 x 0.260 1.78 x 0 0 7.16 x 4.90 x 0 
Zr 3.694 x lop3 0.787 0.190 0 0 2.91 x lop3 7.01 x lop4 0 
Fe 1.710 x lop3 0.554 2.33 0 0 9.46 x lop4 3.99 x 0 
235U 1.909 x 1 0 - v . 6 2  484.0 312.0 2.43 3.08 x lo-' 9.24 x lo-' 0.145 
23gu 6.592 x 1.06 2.1 1 0.638 2.84 6.93 x lop3 1.39 x lo-' 1.20 x lop2 
'OB 1.001 x 0.877 3.41 x lo3 0 0 8.77 x 3.41 x lop2 0 
Sum 3.62 x lo-' 0.1532 0.1 570 

Source: Data from Ref. 4; used with permission of Wiley. 
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spectrum-averaged cross sections for a PWR are given in Table 3.4. From the table a 
number of important materials parameters can be determined: D = ;c,, = 9.21 cm, 
L' = DIE, = 60.1 cm2, B; = (vEf - &)ID = 4.13 x ~ m - ~ ,  k, = vZf/C, = 
1.025, and h,,,ap=19.6cm. The criticality condition is B ~ = B ~ =  B 

( x J H , , ) ~  + (2.405/~ex)'.  Fixing the height at 370 crn, the criticality condition re- 
quires that Re, = 127.6 cm or R = 108 cm. 

3.7 REFLECTED REACTOR 

Since the dimensions of a critical core of a given composition depend on the 
fraction of the neutrons that leak out, these dimensions can be reduced if some 
of the leaking neutrons are reflected back into the core. A reflector has the added 
benefit of making the neutron flux distribution in the core more uniform by in- 
creasing the neutron population in the outer region due to reflected neutrons which 
otherwise would have escaped. Figure 3.3 illustrates the neutron flux distributions 
in bare and reflected cores of the same composition and dimension. 

Reflected Slab Reactor 

The mathematical treatment of a reflected reactor can be illustrated most simply by 
considering a slab core of thickness a extending from x =  -a12 to  x =  f a / 2  
reflected on both sides by a nonmultiplying slab of thickness b. If we were to solve 
the time-dependent equations in both the core and reflector as we did for the bare 
core, but now also requiring that the solutions satisfied continuity of flux and 
current conditions at x = + a / 2 ,  we would find a similar but more complicated 

REFLECTOR REACTOR REFLECTOR 

SLOW-NEUTRON FLUX SLOW-NEUTRON FLUX 

-48 -36 -24 -12 0 12 24 36 48 

DISTANCE FROM CENTER (cm) 

Fig. 3 3  Thermal neutron flux in a spherical 2 3 5 ~  watermoderated reactor with and without 
a beryllium oxide reflector. (From Ref. 11;  used with permission of University of Chicago 
Press.) 



result as before-that the solution consists of a sum of spatial eigenfunctions 
corresponding to discrete geometrical eigenvalues, and at long times the dominant 
component is the fundamental mode. Rather than carry through the entire calcula- 
tion, we examine the fundamental mode that obtains at long times. 

The neutron diffusion equations in the core and reflector are 

Core : -Dc- d24c + (Cac - vCfc)  4 c  = 0 
d x 2  

d24R 
(3.81) 

Reflector: -DR- dx2 + CaRdR = o 

The appropriate interface and boundary conditions are symmetry at x = 0, conti- 
nuity of flux and current at x=a/2 ,  and zero flux at the extrapolated boundary 
a / 2  + be,: 

The solution in the core satisfying the symmetry boundary condition Eq. ( 3 . 8 2 ~ )  is 

and the solution in the reflector satisfying the extrapolated boundary condition Eq. 
(3.82d) is 

where = (vCfc - Cac)/Dc and L; = DR/Cac. Using these general solutions 
in the interface conditions of Eqs. (3.82b) and (3.82c), dividing the two equations, 
and rearranging leads to the criticality condition which must be satisfied in order for 
a steady-state solution to exist: 

Bmca Bmcu - D R ~  be, 
- tan ---- - - coth - 

2 2 2DcLR LR 
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Fig. 3.4 Plot of criticality equation for reflected reactor. (From Ref. 10; used with permis- 
sion of McGraw-Hill.) 

The smallest value of a for which a solution of this equation exists is less than 
n/Bmc, as can be seen by plotting both sides of Eq. (3.85), in Fig. 3.4. Since the 
criticality condition for the bare slab was Bmc = ala,,, this result confirms that the 
addition of a reflector reduces the dimension necessary for criticality. 

Reflector Savings 

The difference in the reflected and unreflected critical dimensions is known as the 
reflector savings, 6: 

In the limit of a reflector that is thick in comparison to the neutron diffusion length 
(b>>LR), this reduces to 6 M DCLR/DR. 

Reflected Spherical, Cylindrical, and Rectangular 
Parallelepiped Cores 

A similar calculation can be performed for other core geometries, but with reflec- 
tion in only one direction. The resulting criticality conditions are given in Table 3.5. 

3.8 HOMOGENIZATION OF A HETEROGENEOUS 
FUEL-MODERATOR ASSEMBLY 

In our previous treatment of a homogeneous core, we have implicitly assumed that 
the actual core+onsisting of thousands of fuel and control elements, coolant, and 
structure (Fig. 3.5)--can be represented by some effective homogeneous mixture. 
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Fuel assembly with 
rod-cluster control 

Fuel assembly without 
Rod-cluster rod-cluster control 

control 
element 

l ~ u e l  rod 

PWR assemblies 

~~~l pin Coolant channel HTGR assemblies 
7 I 

BWR assemblies 

Fig. 3.5 Heterogeneous nuclear reactor fuel assemblies. (From Ref. 4; used with permis- 
sion of Wiley.) 

Spatial Self-shielding and Thermal Disadvantage Factor 

We might be tempted to construct this homogeneous mixture by simply volume- 
weighting the number densities of the various fuel, control, moderator, coolant, and 
structural materials, but this procedure would fail to take into account the reduction 
of the neutron population in the region of strong absorbers, a phenomenon known 
as spatial self-shielding We illustrate this phenomenon by considering the thermal 
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neutron flux distribution in a large fuel-moderator assembly consisting of a 
repeating array of slab fuel elements of width 2a interspersed with moderating 
regions of thickness 2(b-a). Since the moderator is much more effective than 
the fuel at slowing down neutrons, we specify a uniform source SM of thermal 
neutrons in the moderator and no thermal neutron source in the fuel. We take as a 
calculational model one-half of the slab fuel element, extending from x = 0 to x = a, 
and one-half of the moderating region, extending from x = u to x = b. The neutron 
diffusion equations in the fuel and moderator are 

The appropriate boundary conditions are symmetry at the fuel and moderator 
midplanes at x = 0 and x= b, respectively. The other two conditions that must be 
satisfied are continuity of flux and current at the fuel-moderator interface at x = a 

The solutions to Eqs. (3.87) that satisfy the conditions of Eqs. (3.88) are 

The thermalflux disadvantage factor is defined as the ratio of the average flux in 
the moderator to the average flux in the fuel: 

where VF=a, VM= b-a, and 
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a u h - a  
E=-coth-, F = -  - a coth (r) 

F LI; LM 

for slab geometry. 
Thermal flux disadvantage factors for repeating arrays formed by other simple 

geometries can be calculated in the same manner and represented by the second 
form of Eq. (3.90). The results for the lattice functions E and F i n  other geometries 
are given in Table 3.6. The volumes are VF = T C R ~  and $ZR' and VM = x a ' - - n ~ ~  and 

n(a3 - R ~ ) ,  for the cylinder and sphere, respectively. 

Effective Homogeneous Cross Sections 

An effective homogeneous fuel cross section averaged over the fuel-moderator 
lattice can be constructed by using the thermal disadvantage factor of Eq. (3.90) 
in the definition 

An effective homogeneous absorption cross section for the moderator can ob- 
viously be constructed by exchanging the F and M subscripts and replacing 5 by 
5-'. These fuel and moderator effective cross sections can then be combined 
(Z:* = Zz: + Cz:) to obtain an effective homogeneous cross section for the 
fuel-moderator assembly to be used in one of the previous homogeneous core 
calculations. Effective homogeneous scattering and transport cross sections can 
be constructed in a similar manner. 

Example 3.4: Flux Disadvantage Factor and Effective Homogenized Cross 
Section in a Slab Lattice. Consider a lattice consisting of a large number of 
1-cm-thick slab fuel plates separated by I cm of water at room temperature, The 
fuel is 10% enriched uranium. The fuel and water number densities are n235 = 

0.00478 x cmP3, 11238 = 0.0430 x cmP3, and n ~ ~ ,  = 0.0334 ~ m - ~ .  Using 
the spectrum-averaged cross sections of Table 3.4 (and constructing effective H 2 0  
0 ' s  as two times the H 0's plus the 0 CT) yields the following material properties 
for thc uranium fuel: C,, = 0.0534 cm-', G, = 2.404 c m ' ,  D = 6.17 cm, and L = 

1.60cm, and for water: C,, = 0.0521 cm- ', C, = 0.0196cm-I, D = 6.40 cm, and 
L= l8.06cm. The geometric parameters in Eqs. (3.90) and (3.91) are 
VF=VM=a=b-a=0.5cm. 

Evaluating Eq. (3.90) yields 5 = 5.04 for the thermal disadvantage factor. 
The effective homogenized fuel absorption and transport cross sections calculat- 
ed from Eq. (3.92) are C$ = 0.398 cmp' and C$ = 0.0089 cm-I. A simple 



TABLE 3.6 Functions E and F for Various Cell Geometries 

Geometrya E and F Functions 

Slab 

a  a 
F = -coth- 

LF LF 
b - a  b - a  E=-  ~ 0 t h  - 
LM LM 

Cylindrical 

Spherical 

Source: Adapted from Ref. 10; used with permission of McGraw-Hill. 

"Shaded areas, fuel; open areas, moderator. 
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homogenization (implicitly assuming that 5 = 1) yields zSrn = 1.202 cm-' and 
lZzm = 0.0267 cm-l, so the effect of the spatial self-shielding ( 6 )  is significant. 

The effective homogenized cross section for the water (moderator) is derived by 
a procedure similar to that in Eq. (3.92) and results in an expression similar to Eq. 
(3.92) but with the M and F subscripts interchanged and 6 replaced by 5 - I .  The 
effective homogenized water absorption and transport cross sections are lZ2 = 
0.0165 cm-' and C$ = 0.0436 cm-', so that the total effective absorption and 
transport cross sections for the lattice are lZZff = X:: + ~2 = 0.3980+ 0.0164 = 
0.4144 cm-' and lZZf = E:? + lZ$h = 0.0089 + 0.0436 = 0.0525 cm-'. 

Note that diffusion theory is not really suitable for calculating the diffusion of 
neutrons in such a lattice because kt, = l/Ct,>> 0.5 cm, the dimension of the diffus- 
ing medium, in both the fuel and the water; and that this example serves more to 
illustrate the application of the methodology than to provide accurate quantitative 
results. 

Thermal Utilization 

Another use of the thermal disadvantage factor is to calculate the thermal utilization 
for the fuel-moderator lattice: 

In both Eq. (3.92) and (3.93), the first term is the result that would be obtained 
with simple volume-weighted homogenization of the fuel and moderator number 
densities, and the second term is a correction that accounts for the flux self-shield- 
ing in the fuel. 

Measurement of Thermal Utilization 

In a finite fuel-moderator assembly with geometry characterized by the geometric 
buckling El, and neutrons becoming thermal at a rate q~ (per second per cubic 
centimeter) in the moderator, the thermal neutron balance i s  

and the thermal utilization is just the fraction of those thermal neutrons which are 
absorbed that are absorbed by the fuel: 
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The ratio of the slowing-down source to the thermal flux at some point in the 
moderator, qM/+,(x), can be determined by irradiating an indum foil (indium has 
an absorption resonance just above thermal) at that point and then measuring the 
total foil activation A,,. Then another indium foil clad in a cadmium jacket, which 
will absorb all the thermal neutrons before they can reach the foil but wiH pass the 
epithermal neutrons, is irradiated at the same location to determine the epithermal 
activation A+. The thermal component of the total activation, Ath =Ato, -Aepi, is 
proportional to the thermal flux at the location of the foil, Ath = c & ~ ( x ) .  The 
epithermal activation is proportional to the slowing-down source, A,, =c,,qM. 
Thus q M / + d x )  = ( c ,~~ /c ,~ ) (A, ,~ /A,~) .  The quantity CR =ACpi/Ath is determined 
by the foil measurements and is known as the cadmium ratio. 

The ratio of constants (cepi/clh) can be determined by irradiating many clad and 
unclad indium foils i n  a large block of pure moderator that has a source emitting Q 
neutrons per second. The neutron balance is 

and the ratio of integrated thermal and epithermal activities is 

These results can be combined to write an expression for the thermal utilization, 

in terms of the experimentally determined quantities CR and p and the local- 
to-average moderator flux ratio, which can be calculated using the foregoing 
formalism. 

Local Power Peaking Factor 

Once effective homogenized cross sections are constructed, the fuel-moderator 
assembly may be treated as a homogeneous region, and the average flux distribu- 
tion in the assembly may be calculated using one of the other techniques discussed 
in this chapter. The average power density in the fuel-moderator assembly is then 
c$?+,,, where C$ is given by an expression such as Eq. (3.92) and 4," is the 
average flux in the fuel-moderator assembly: 
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The peak power density will occur at the location of the maximum neutron flux 
in the fuel element, which is at x= a, as may be seen from Eq. (3.89). The power 
peaking factor-the ratio of the peak to average power densities in the assembly- 
is given by 

where the form of + F ( ~ ) / + F  for a slab fuel-moderator lattice has been used to 
arrive at the second form of the equation. The power peaking is minimized by 
minimizing a/LF and VM/VF 

3.9 CONTROL RODS 

Effective Diffusion Theory Cross Sections for Control Rods 

Locatized highly absorbing control elements such as control rods cannot be calcu- 
lated directly using diffusion theory. However, transport theory can be used to 
determine effective diffusion theory cross sections for use with diffusion theory. 
We illustrate this by considering the BWR example shown in Fig. 3.5 of a core 
consisting of a repeating array of four fuel-moderator assemblies surrounding a 
cruciform control rod. First, the fuel-moderator assemblies must be homogenized, 
using the procedure of Section 3.8 or some more sophisticated procedure based on 
transport theory, yielding a model of a cruciform control rod embedded in a square 
cell of homogeneous fuel-moderator, as shown in Fig. 3.6. If the span, I, of the 
control blade is large compared to the neutron diffusion length in the fuel-mod- 
erator region, the diffusion of neutrons into the rod is essentially one-dimensional. 
We take advantage of this fact to replace the two-dimensional problem by an 
equivalent one-dimensional problem that preserves both the ratio of the control 
rod surface to the fuel-moderator volume and the thickness of the control blade. 
We construct an equivalent model consisting of a repeating array of fuel-moderator 
slabs of thickness 2a and control rod slabs of thickness 2t, where a= 
(m2 - 2tl+ t2)/21, as shown in Fig. 3.6. Our calculational model then is a fuel- 
moderator (half) slab from x = 0 to x = a and a control (half) slab from x = a to 
x = a  + t ,  with symmetry boundary conditions at x = 0 and x = a + t. The neutron 
diffusion equation 
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Fig. 3.6 One-dimensional model of a cruciform control blade cell. (From Ref. 4; used with 
permission of Wiley.) 

is valid in the fuel-moderator slab, where So is a uniform source of neutrons 
slowing down in the fuel-moderator region. The symmetry boundary condition 
for the diffusion theory calculation is 

and a transport boundary condition 

is used at the fuel-moderator interface with the control rod. The parameter a must 
be determined from a transport theory calculation of the control rod region (Chapter 
9). For a slab of width 2t, such a calculation yields 

where C,, is the control rod absorption cross section and En is the exponential 
integral function: 

The solution to Eq. (3.101) which satisfies Eqs. (3.102) and (3.103) is 
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We now define an effective diffusion theory cross section for the control rod by 
requiring that the diffusion theory and transport theory calculations of the neutron 
absorption rate in the control rod agree: 

where 4," is the average diffusion theory flux in the fuel-moderator region, 
A,,11 =(a + t)b is the area of the fuel-moderator plus control rod cell of arbitrary 
transverse direction b, P,  = b is the perimeter of the control rod interface with the 
fuel-moderator region, and J, is the neutron current from the fuel-moderator 
region at the surface of the control rod. It is assumed that all neutrons which enter 
the control rod are absorbed. Combining the results above yields 

for the effective homogeneous control rod cross section to be used in a diffusion 
theory calculation. Note that the C, in this equation is the effective fuel-moderator 
homogenized cross section, and the control rod cross section is hidden in the 
parameter a. 

Example 3.5: Slab Control Plate Effective Cross Section. Consider again the 
lattice of alternating 10% enriched uranium fuel and water slabs, each 1 cm thick, 
discussed in Section 3.8. The effective homogenized lattice cross sections are 
Czff = 0.4144 cm-' and zf,ff = 0.0525 cm-', leading to D~~~ = 6.35 cm and 
L"" = 3.91 cm in the fuel-water lattice. Now consider the placement of 1-cm-thick 
slab natural boron plates (19.9% 'OB) every 10.5 cm in the lattice. With respect 
to Fig. 3.6, t= 0.5 cm and a = 5  cm. The 'OB density in the control slab is 
n~~~ = O.l99(2.45/10.8)(0.6022 x = 0.0271 x 10"cm-~, the absorption cross 
section from Table 3.4 is o ~ , o  = 3.41 x lo-" cm2, and the macroscopic control 
slab absorption cross section is Xu, = 92.535 cm-'. For such large values of 2tC,, 
the exponential integrals approach zero and the transport boundary condition 
parameter a -+ 0.5. Evaluation of Eq. (3.108) with these parameters yields for the 
effective homogenized control cross section z:if = 0.0787 cm-'. Thus, in the 
homogenized representation of the lattice, the effective macroscopic absorption 
cross section is 0.414cm-' with the control plates removed and 0.493cm-' with 
the control plates inserted. The effective transport cross section is 0.0525 c m '  and 
is assumed to be the same with or without the control plates. 

Windowshade Treatment of Control Rods 

Now that we know how to obtain effective homogenized cross sections for the fuel- 
moderator assemblies and for control rods, we can represent the partial insertion of 
a bank of control rods (from the top) into a bare cylindrical core as a two-region 
core diffusion problem, as indicated in Fig. 3.7. The lower, unrodded region is 
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No control 

- 
Fig. 3.7 Insertion of a control rod bank into a bare cylindrical core. (From Ref. 4; used with 
permission of Wiley.) 

represented by the homogenized fuel-moderator cross sections, and the upper 
rodded region is represented by the homogenized fuel-moderator cross sections 
plus the effective control rod cross section. 

The neutron diffusion equation in both the rodded and unrodded regions is of the 
form of Eq. (3.69), and we can anticipate from the development of Section 3.6 that 
a separation of variables solution that satisfies a zero flux boundary condition at 
r = R (we assume that the reactor is sufficiently large that the zero flux condition at 
the external boundary is equivalent to the zero flux condition at the extrapolated 
boundary) will be of the form 

and the function Z(z) will satisfy 

where 

and v, = 2.405 is the smallest root of Jo(vR) = 0. 
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Solving the diffusion equation separately in the rodded and unrodded regions 
and requiring that the solutions vanish at z = 0 and z = H yields 

We require continuity of flux and current at z = h, the interface between the rodded 
and unrodded regions, 

The first condition leads to the relationship 

Amd - - - 
sin (B,U"h) 

Aun sinh[BFd(H - h) ]  

and dividing the two conditions leads to the criticality condition, 

1 1 
tan B,U"h = - - tanh[~:* (H - h) ]  

~ u n Q ' "  DrodBpd 

which may be solved for the rod insertion distance (H - h), for which the reactor is 
just critical. 

The axial neutron flux solution is sketched in Fig. 3.7 for several rod insertions. 
As might be expected, the axial flux distribution is symmetric when the rod bank is 
fully withdrawn and becomes progressively more peaked toward thc holtom of the 
core as the rod bank is inserted farlher downward. Note that in case of rod insertion 
from the bottom, the situation is just reversed. 

3.10 NUMERICAL SOLUTION OF DIFFUSION EQUATION 

Although the semianalytical techniques for solving the neutron diffusion equation 
that we have developed can be exlended to treat reactor models consisting of a 
larger number of different homogeneous regions than we have considered, realistic 
reactor models may consist of hundreds or thousands of different homogenized 
regions, even after the local fuel-moderator homogenizatiun has taken place. 
The fuel concentration may vary from assembly to assembly and within an assem- 
bly in order to make the power distribution more uniform, and even within initially 
uniform assemblies the composition will change differently from location to loca- 
tion with fuel burnup. The standard practice today is to use numerical techniques to 
solve h e  neutron diffusion equation. 
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Finite Merence Equations in One Dimension 

The neutron diffusion equation in a one-dimensional slab reactor model is 

The first step in developing a numerical solution procedure is to replace the con- 
tinuous spatial dependence of the flux, +(x), with the values of the flux at a number 
of discrete spatial locations, +i - $(xi), the solution for which will be the objective 
of the numerical technique. There are many ways to do this, and we will use a 
simple finite-difference approximation. We subdivide the interval 0 5 x 5 a of in- 
terest into I subintervals of length A = a l l .  ( A  more general development would use 
nonuniform subintervals.) A general rule of thumb is that A < L (the neutron diffu- 
sion length) sets an upper limit on the subinterval length (or mesh spacing). 

Next, the terms in Eq. (3.1 16) are each integrated from xi - 4 to xi + $, using the 
following approximations: 

where we have associated C,, Di, and so on, with the subinterval ~ ~ - ~ p  5 
x 5 xi+ The discrete equation associated with xi may be written 

where 
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We have generalized to other one-dimensional geometries, where c = 0, 1, and 2 for 
slab, cylindrical, and spherical, respectively. The significant feature of the set of 
Eqs. (3.118) is nearest-neighbor coupling-the flux at any xi is only directly 
coupled to the flux at the adjacent points and x i+  ,, which greatly facilitates 
their solution. 

Note that the difference equations are formulated only for the I- 1 interior mesh 
points at x1.x2,. . . ,x,-~. The boundary conditions determine the exterior mesh 
points. A zero flux boundary condition at the left boundary corresponds to 
@o = 0, for example. A zero current or symmetry boundary condition at the left 
boundary corresponds to = and would be implemented by setting a l , ~  = 0 and 
a l , l=  LI +(Dl +D~>/A'. 

Forward EliminatiodBackward Substitution Spatial Solution Procedure 

The set of I-1 Eqs. (3.118) can readily be solved by Gaussian elimination, or 
forward elimination backward substitution, for a known fission source Si. The 
Gaussian elimination solution is implemented by subtracting ai,i-l/a,_ 1,~-1 times 
the (i-1)th equation from the ith equation to eliminate the aiZi-, element in the ith 
equation. The modified ith equation is then divided by ai,i. This process is repeated 
successively for i = 1 through i = I-1. Then the manipulated equations can be 
solved successively from i =I- 1 to i = 1 using the algorithms 

for the backward substitution, where 

had previously been constructed on the forward elimination. 

Power Iteration on Fission Source 

The fission source is not known a priori, of course, so the Gaussian elimination 
must be embedded in an iteration on the fission source term, as foIlows. An initial 
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guess of the flux at each point and of the eigenvalue h(O) is made and an initial 
fission source at each point is constructed s?' = v+$i(O)/h(O). The Gaussian elimi- 
nation is performed to determine 4;'). A new estimate of the eigenvalue is made 
from 

and a new fission source is constructed from 

This iteration process is continued [using Eqs. (3.122) and (3.123) with 0 -+ n - 1 
and 1 i n  until the eigenvalues obtained on two successive iterates differ by less 
than some convergence criterion, say E = 

Finite-Difference Equations in Two Dimensions 

In rectangular geometry, the neutron diffusion equation is 

To extend the procedure for developing finite-difference equations which was 
discussed for the one-dimensional case, we consider a rectangle with x-dimension a 
and y-dimension b. We subdivide a into I intervals of length Ax = a l l  and subdivide 
b into J intervals of length Ay = b / J .  
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The diffusion equation is integrated over the mesh box (xi-- < x 5 xi+ l,2, 

yj-1/2 5 y <yj+ and the approximations of Eqs. (3.117) are extended to two 
dimensions to obtain the finite-difference equations: 

The significant feature of these equations is, once again, nearest-neighbor cou- 
pling-the flux at ( i ,  j )  is only directly coupled to the fluxes at (i, j + l), ( i ,  j- 1), 
( i+ l , j ) ,  and (i-1,j).  

The boundary conditions are used to specify c)~ ,~ ,  j, +i,o, and +iJ ,  as discussed 
for the one-dimensional case. 

In order to simplify the notation somewhat, we replace the ( i ,  j )  identification of 
a spatial location with a ( p )  identification. The total number of spatial locations 
is P = ( I - l ) x ( J - 1 ) .  We will choose p = l  for ( i = l , j = l ) ,  p = 2  for ( i=2,  
j = l )  ,..., p=I-1 for ( i=I-1,  j = l ) , p = I  for ( i = 2 ,  j =  l ) , .  . . , p = 2  (1-1) for 
( i  = 1-1, j= 2) ,  and so on. Then the set of finite difference equations may be 
written 

where 

i~~ 1 + D~ +;D,,+~ 
a,, = C, + 

A: 
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Successive Relaxation Solution of Two-Dimensional 
Finite-Difference Equations 

There are a number of possible ways to solve the set of Eqs. (3.127). We describe 
here the wideIy used Gauss-Seidek or successive relaxation method. This is an 
iterative method that proceeds by solving the first equation for assuming S1 
is known and guessing a value for 4 ~ .  . .$,; then solving the second equation for 
$2, assuming that S2 is known, using the value just calculated for and using the 
same guessed values for $3- - -$P; then solving the third equation for $3 assuming 
that S3 is known, using the just ca1cuIated values for and $2, and using the same 
guessed values for 44- . -+P; and continuing thusly until the last equation is solved 
for 4, assuming that S p  is known, and using the just calculated values for 
$, . +$P-l .  The set of new values of . .+p thus calculated provides a new guess 
to be used in a repeated iteration. The general algorithm for the solution at each step 
is 

where rn is the iteration index. This inner iteration is continued until the flux 
solution at each location has converged to within a specified tolerance, E = lop2, 
which may be chosen smaller in regions where exact knowledge of the neutron flux 
is important than in, for example, reflector regions: 

It is possible to accelerate the convergence of the relaxation iteration by using as 
a new flux guess a mixture of the previous flux and the relaxation result of Eq. 
(3.129): 

The acceleration parameter o may be chosen in a number of ways (see Ref. 8), but 
generally varies between 1 and 2. The algorithm of Eq. (3.131) is known as 
successive overrelaxation (SOR). 

Another widely used method for solving the two-dimensional diffusion equa- 
tions is the alternating direction implicit iteration scheme described in Section 16.3. 
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Power Outer Iteration on Fission Source 

The power iteration on the fission source proceeds as described above [i.e., in Eqs. 
(3.122) to (3.124)) but with i replaced by p in the notation of this section, and with 
A replaced by Ax, Ay 

Thus the solution of the finite-difference equations has a two-level iteration 
hierarchy. There is an outer power iteration on the fission source and tbe eigen- 
value, described by Eqs. (3.122) to (3.124). Then for each of the outer iterations, 
there is a series of inner relaxation iterations-described by Eq. (3.129) or (3.131) 
and (3.130)-to converge the flux solution for that outer iterate of the fission source. 

Limitations on Mesh Spacing 

We can obtain some insight as to limitations on mesh spacing by considering the 
source-free diffusion equation in one dimension: 

which can be solved exactly over the mesh interval A =x i+  1 / 2 - ~ i - 1 / 2  centered on 
xi: 

The central difference finite-difference approximation (which we have been 
using) of Eq. (3.132) on this interval can be written 

Comparing the right side of Eq. (3.134) to the exact expression for the left side 
constructed from Eq. (3.133) allows us to define the difference as a measure of the 
error in the finite-difference approximation: 

Clearly, the mesh spacing should be less than the diffusion length. 

3.11 NODAL APPROXIMATION 

In principle, once the local fuel cell heterogeneity in each fuel assembly is 
replaced by effective homogenized cross sections and effective cross sections are 
constructed for the control rods, the three-dimensional finite-difference diffusion 
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equations can be solved for the effective multiplication constant and the neutron 
flux distribution everywhere in a reactor. In practice, it is seldom practical to do so 
because of the large number of simultaneous equations that must be solved. As we 
have seen, accuracy in the finite-difference solution requires that the mesh spacing 
be smaller than the diffusion length, and a typical LWR core is about 200 thermal 
diffusion lengths in each of the three dimensions, which results in several million 
mesh points, hence several million simultaneous equations. 

One means to deal with this situation is to divide the flux solution into two parts. 
The reactor core (and reflector, etc.) is divided into a relatively small number (on 
the order of 100 or less) large regions, or nodes, as depicted in Fig. 3.8. The detailed 
flux distribution within each node is determined from a finite-difference calculation 
just within the node (or set of contiguous nodes); such calculations need be per- 
formed only for every different type of node, since the solution for different nodes 
that have the same internal material distribution and the same boundary conditions 
will be identical. The global flux distribution (i-e., the average value of the flux in 
the different nodes) and the effective multiplication factor are then determined from 
a nodal calculation. 

The general derivation of nodal diffusion theory methods may be illustrated by 
integrating the diffusion equation 

over the spatial domain of each node a to obtain 

where Gauss's Iaw has been used to replace the volume integral over node a, Vn, of 
the divergence with the surface integral over the surface Sn bounding node n of the 

Node cell 

cell n 

Fig. 3.8 Division of a reactor into nodes. (From Ref. 4; used with permission of Wiley.) 
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normal component of the current. In general, the surface S, bounding node n 
consists of the several interfaces S,,! between node n and the contiguous nodes n'. 

Defining the average nodal flux as 

the definition of average nodal cross section follows immediately: 

The treatment of the surface integral term, which represents node-to-node leak- 
age, is not so obvious. However, it is plausible that the gradient of the flux across 
the surface between two adjacent nodes is proportional to the difference in the two 
average nodal fluxes: 

The accuracy of the nodal methods depends to a large extenl on the actual evalua- 
tion of the nodal coupling coefficients a,,,, which is discussed in some detail in 
Chapter 15. A simple approximation results from using an average value 
5 (D.  + Dn!) for the diffusion coefficient on the interface between nodes n and n', 
and assuming the average diffusion coefficient and the flux gradient are both con- 
stant over the interface, which yields 

&,I - (Dn + Dn') 
h , , t  Y 

lnnl (3.141) 

where l,,~ is the distance between the centers of contiguous nodes n and n'. 
Collecting these results leads to the set of N nodal equations for the nodal 

average fluxes and the effective multiplication constant: 

where n E n indicates that the sum is over nodes n' which are contiguous to node n. 
For those nodes n located adjacent to the exterior boundary of the reactor, the 

nodal equations contain the flux $,,I for a nonexistent node on the other side of the 
boundary. For vacuum boundary conditions, this flux $,,I, would be set to zero in 
the equation for node n. For symmetry boundary conditions, $,I = $,, would be 
used in the equation for node n. 
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3.1. Plot the neutron flux distribution given by Eq. (3.24) from r = 0 to r = 25 cm 
away from a point thermal neutron source in an infinite medium of (a)  H20 
(L  = 2.9 cm, D = 0.16 cm); (b) D20 ( L  = 170 cm, D = 0.9 cm); and (c) graph- 
ite (L  = 60 cm, D = 0.8 cm). 

3.2. Plot the neutron flux distribution in a finite slab of width 2a = 10 cm with an 
incident thermal neutron beam from the left, as given by Eq. (3.36), for an 
iron slab (C,= 1.15cm-', D=0.36cm, L= 1.3cm). 

3.3. Derive the albedo boundary condition of Eq. (3.38) from the definition of the 
albedo, a = j - / j+,  and the diffusion theory expressions for partial currents, 
Eqs. (3.4) and (3.5). 

t~roblems I 1  to 13 are longer problems suitable for take-home projects. 
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3.4. A thermal diffusion-length experiment is performed by placing a block of 
diffusing medium with a,, = be,= 175.7cm adjacent to a reactor thermal 
column port and irradiating a series of indium foils placed along the z-axis 
of the block. The saturation activity (disintegrations/min) of foils at various 
locations is (40,000 at z =  28cm), (29,000 at z=4Ocm), (20,000 at 
z = 45 cm), (17,000 at z = 56 cm), (10,000 at z = 70 cm), (8500 at z = 76 cm), 
(5800 at 90cm), and (3500 at 100cm). The experimental error is *lo%. 
Determine the thermal neutron diffusion length. 

3.5. Derive the criticality condition for a bare rectangular parallelepiped core of 
x-dimension a, y-dimension b, and z-dimension c. 

3.6. A typical composition for a PWR core is: H, 2.75 x 1 0 ~ ~ c m - ~ ;  0, 
2.76 x cmP3; Zr, 3.69 x lo2' ~ m - ~ ;  Fe, 1.71 x lo2' cmP3; U 5 ~ ,  
1.91 x 10~Ocm-~; 2 3 8 ~ ,  6.59 x 102'cmP3; and 'OB, 1 x 10 '~cm-~ .  Appro- 
priate spectrum-averaged microscopic cross sections (barns) for these iso- 
topes are a,,/oa/vof = 0.65/0.29/0.0 for H, 0.26/0.0002/0.0 for 0, 
0.79/0.19/0.0 for Zr, 0.55/2.33/0.0 for Fe, 1.62/484.0/758.0 for 2 3 5 ~ ,  
l.O6/2.l l / l .82 for 2 3 8 ~ ,  and 0.89/3410.0/0.0 for 'OB. Calculate the critical 
radius for a right circular cylindrical bare core of fixed height H = 375 cm. 

3.7. Calculate the critical radius for the right circular cylindrical core of Problem 
3.6 with a 20-cm-thick side reflector with DR = 1 cm and XGR = 0.01 cm-'. 

3.8. Calculate the thermal flux disadvantage factor for U 0 2  rods varying from 0.5 
to 2.0 cm in diameter in an H20 moderator for VM/VF varying from 1.0 to 
4.0. Calculate the corresponding effective homogeneous absorption cross 
sections and thermal utilization. Plot the results. 

3.9. Derive an expression analogous to Eq. (3.100) for the power peaking factor 
in a fuel-moderator assembly with cylindrical fuel elements. 

3.10. Derive an expression for the effective diffusion theory absorption cross sec- 
tion for a cylindrical control rod of radius a surrounded by an annular region 
of fuel-moderator extending from r = a to r = R. The transport parameter 
for this geometry is given by (1/3a) = 0.7104 + 0.2524/aCac + O.O949/ 
(a~,,-)~ + . . . . 

,11. Jezebel is a bare, critical, spherical fast reactor assembly with radius 6.3 cm 
constructed of 2 3 9 ~ ~  metal (density 15.4 g/cm3). Using the one-group con- 
stants v = 2.98, of 1.85 barns (1 barn = cm2) oa = 2.11 barns, and 
0, = 6.8 barns and the finite-difference numerical method, calculate the 
effective multiplication constant, h = keff, predicted by diffusion theory. 
h -1 is a measure of the accuracy of diffusion theory for this assembly. 
Should diffusion theory be valid for this assembly? 

3.12. Solve numerically for the eigenvalue and neutron flux distribution in a slab 
reactor consisting of two adjacent core regions each of thickness 50 cm, with 
a 25-cm-thick reflector on each side. The nuclear parameters of the two core 
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regions are (D = 0.65 cm, C, =0.12cm-I, and vCf= 0.185 cm-') and 
(D = 0.75 cm, C, = 0.10 cm-', and vZf = 0.15 cm-I), and the parameters of 
the reflector are (D = 1.15 cm, Z, = 0.01 cm-', and v ~ ~ =  0.0 cm-I). Solve 
this problem analytically and compare the answers. 

3.13. Calculate numerically the effective multiplication constant and the flux dis- 
tribution in a reactor with rectangular (x, y) cross section which is sufficiently 
tall that axial ( 2 )  leakage can be neglected. The core cross section in the x-y 
plane consists of four symmetric quadrants. The upper right quadrant con- 
sists of core region 1, rectangular (0 < x < 50 cm, 60 < y < 100 cm); core 
region 2, rectangular (0 < n < 50 cm, 0 < y < 60 cm); and reflector region 3, 
also rectangular (50 < x < 100 cm, 0 < y < 100 cm). The nuclear parameters 
are: core region 1 ( D  = 0.65 cm, E, = 0.12 cm-l, vEf = 0.185); core region 2 
(D = 0.75 cm, C, = 0.1 0 cm-', vZf = 0.15); and reflector region 3 
(D = 1.15 cm, E, = 0.01 cm- ' , vCf = 0.0). Use vacuum boundary conditions 
except on the boundary ( x  = 0 , 0  < < 100 cm), where a symmetry condition 
should be used. (This is a model for one-half of the symmetric reactor cross 
section.) Plot the x-direction flux distribution at y = 30 and 80 cm. 

3.14. Calculate the thermal extrapolation distance h,,,, for H20 and for a 1: 1 wt 
% homogeneous mixture of H20 and 4% enriched uranium. 

3.15. Estimate the maximum size of the mesh spacing that can be used in a finite- 
difference solution for the thermal neutron flux distribution in an HZO me- 
dium and in a I:1 wt % homogeneous mixture of H 2 0  and 4% enriched 
uranium. 

3.16. Calculate and plot the thermal neutron flux distribution arising from a plane 
neutron source in an H20 medium and in a 1: 1 wt % homogeneous mixture 
of H20 and 4% enriched uranium. 

3.17. Repeat the calculation of Problem 3.16 in a carbon medium and in a 1: 1 wt % 
homogeneous mixture of carbon and 4% enriched uranium. 

3.18. Calculate the albedo boundary condition for the thermal neutron flux in a 1- 
m-thick slab medium with a 1 : 1 wt % homogeneous mixture of H20 and 4% 
enriched uranium which is bounded on both sides by very thick graphite 
slabs. 

3.19. Using the microscopic cross sections and number densities (except for *"u) 
of Table 3.4, determine the critical 2 3 5 ~  enrichment for a bare cylindrical 
core of height H = 350 cm and radius R = 110 cm. Repeat the calculation for 
R = 100 and 120cm. 

3.20. Repeat the calculation in Section 3.8 (Example 3.4) of flux disadvantage 
factor and effective homogenized fueI absorption cross section for a water 
thickness of 2 and 5 cm between fuel plates. 
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3.21. Calculate the power peaking factor in the slab lattices of Problem 3.20. 

3.22. Repeat the calculation of the effective control slab cross section given in 
Section 3.9 (Example 3.5) for a control blade that contains only 2% natural 
boron. 

3.23. Solve Problem 3.12 using a four-node model, one node for each reflector and 
core region. Compare the result with the results of ProbIem 3.12. 





4 Neutron Energy Distribution 

Because the cross sections for neutron-nucleus reactions depend on energy, it is 
necessary to determine the energy distribution of neutrons in order to determine the 
rate of interactions of neutrons with matter, which in turn determines the transport 
of neutrons. We first address this problem by considering the neutron energy dis- 
tribution in an infinite homogeneous medium, for which some analytical results can 
be obtained to provide physical insight. Then the important multigroup method for 
calculating an approximate neutron energy distribution is described. Methods for 
dealing with the rapidly varying neutron energy distribution in the energy range of 
cross-section resonances are described. Then the multigroup calculation of the 
neutron energy distribution is combined with the diffusion theory calculation of 
the spatial neutron distribution to obtain a powerful method for calculating the 
space- and energy-dependent neutron flux distribution in a nuclear reactor. 

4.1 ANALXTICAL SOLUTIONS IN AN INFINITE MEDIUM 

We start our investigation of the neutron energy distribution in a nuclear reactor by 
considering an infinite homogeneous medium in which spatial effects may be 
ignored. The neutron flux within a differential energy interval dE is determined 
by a balance between the source of fission neutrons being created within LIE plus 
neutrons being scattered into dE from some other energy interval dl? and the loss of 
neutrons from within dE due to absorption and to scattering from dE into some 
other energy interval dEf: 

where we have included the infinite medium multiplication constant which may be 
adjusted to ensure that a steady-state solution exists. 

Fission Source Energy Range 

At very high energies, the direct source of fission neutrons into dE is much larger 
than the source of fission neutrons which have been created at higher energies and 

95 
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are slowing down into dE, in which case the first term on the right in Eq. (4.1) can 
be neglected in comparison to the second term, leading to 

where X, = E, + X,. Thus the neutron flux distribution at the higher energies, where 
direct fission neutrons are the principal source, is proportional to the fission spec- 
trum divided by the total cross section. 

This solution can be improved by using Eq. (4.2) as a first iterate on the right 
side of Eq. (4.1) to evaluate 

where we have taken advantage of the fact that scattering of very energetic neutrons 
with much less energetic nuclei will result in an energy loss for the neutron to place 
a lower limit of E on the energies from which a neutron can scatter into dE. At the 
higher energies, where the fission source is important, inelastic scattering is also 
important and must be included in calculation of the correction factor. The im- 
proved energy distribution is also of the form of the fission spectrum divided by the 
total cross section times 1 plus a correction factor that obviously becomes large at 
lower energies where x ( E )  becomes small. Numerical evaluation of the correction 
factor for typical compositions indicates that + ( E )  = x ( E ) / Z , ( E )  represents the 
energy distribution rather well for energies E > 0.5 MeV. 

Slowing-Down Energy Range 

Very few fission neutrons are produced with energy less than about 50 keV. There is 
very little inelastic scattering in this energy range, so the elastic scattering transfer 
function 

\ 0, otherwise 

can be used, where m r [(A- ] ) / ( A  + 1)12 and A is the mass of the scattering nucleus 
in amu. If we limit our attention further to neutron energies greater than only about 
I eV, the neutrons will lose energy in a scattering collision, and we can write the 
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slowing-down equation for the neutron energy distribution 

where the sum is over the various nuclear species present. 

Moderation by Hydrogen Only 

Consider a mixture of hydrogen C ~ H  -. [ (AH-  l ) / ( A H  + 1)12  = 0 and very heavy mass 
nuclei r;c - [(A- l ) / ( A  + 1)12 E 1, for which Eq. (4.5)  becomes 

where the range of integration E < El < E / a i  is so small for the heavy mass nuclei 
that the approximation C ' , ( E 1 ) ~ ( E ' ) / E '  e ; : c~ , (E)+ (E) /E  can be made. This equa- 
tion can be rearranged: 

Difkrcntiating Eq. (4.7) ,  dividing both sides by (C ,  + C r ) @  and integrating from E 
to some arbitrary upper energy El leads to 

[&(El )  + q q E d ( E , )  Za(E1)dE1 4 ( E )  = 
P a  (El + C? IE J, [C,  (El)  + C,H]E1 

The neutron energy distribution varies with energy as $(E)  - 1 / (EC.,(E) + c:) E 
and is exponentially attenuated in magnitude relative to the value at El by any 
absorption that occurs over the interval El > E 1  > E. The overall l / E  energy de- 
pendence of the flux is modified by the energy dependence of X,(E). 

Energy Self-shielding 

In particular, if a large narrow resonance is present, C,(E)  will increase sharply 
over the range of the resonance, causing $ ( E )  I / ( C d ( E )  + c:) to dip sharpiy 
over this range where the resonance cross section is large, as indicated in Fig. 4.1. 
At energies just below the resonance, where C,(E) becomes small again, the flux 
recovers almost to the value just above the resonance, the difference being due to 
the absorption in the resonance. Physically, only those neutrons that are scattered 
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Fig. 4.1 Energy self-shielding of the neutron flux in a large absorption resonance. (From 
Ref. 6; used with permission of MIT Press.) 

into the energy range of the resonance will be absorbed, but those neutrons that are 
scattered from energies above the resonance to energies below the resonance will 
not be affected by the presence of the resonance. This reduction in the neutron flux 
in the energy range of the resonance reduces the resonance absorption relative to 
what it would be if the resonance was not present, a phenomenon known as energy 
self-shielding. 

We can obtain a rough estimate of the importance of energy self-shielding by 
calculating the exponential attenuation due to the resonance under the simplifying 
assumption that the resonance is very large over an energy width AE. Then the 
attenuation factor can be approximated: 

For the first large absorption resonance in 2 3 8 ~  at E = 6.67eV, the width of the 
resonance is about AE =0.027eV, which would absorb only about 4% of the 
neutrons slowing down past the resonance energy according to Eq. (4.9). 

Slowing Down by Nonhydrogenic Moderators with No Absorption 

The case of slowing down by only hydrogen provides valuable physical insight into 
features of the neutron energy distribution in the slowing-down energy range, most 
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notably 4 -- 1 /E  and energy self-shielding of resonances, which remains valid 
under other moderating conditions. To gain some insight into the effect of various 
moderators on the neutron energy distribution, we now consider the case of mod- 
eration by nonhydrogen isotopes, first in the absence of absorption. The slowing- 
down balance equation is 

Guided by the result for slowing down from hydrogen, we look for a solution of the 
form 

Substituting this into Eq. (4.10) leads to the identity 

when it is assumed that the energy dependence of the scattering cross section is the 
same for all isotopes present, establishing that a solution of the form of Eq. (4.1 1) 
satisfies Eq. (4.10) under this assumption. 

Slowing-Down Density 

The slowing-down density at energy E, q(E) ,  is defined as the rate at which 
neutrons are scattered from energies El above E to energies E" below E. With 
reference to Fig. 4.2, this may be written 

The maximum energy E' from which a neutron may scatter elastically below E is 
E/a ,  and the minimum energy E" of a neutron that scalters from an energy E' > E 
to an energy Err < E is Er' = E r a .  Without absorption, the slowing-down density is 
obviously constant in energy. 

Substituting Eq. (4.1 1) into Eq. (4.13) leads to 



100 NEUTRON ENERGY DISTRIBUTION 

Eai 

Fig. 4.2 Energy intervals for neutron slowing-down density. 

where the assumption of a common energy dependence of all scattering cross 
sections has been used again. The quantity cj is the average logarithmic energy 
loss in a collision with a nucleus of species j that was discussed in Chapter 2, and 
is the effective logarithmic energy loss for the mixture of moderators. Using this 
result with Eq. (4.11) leads to the very important relationship between neutron 
slowing-down density and neutron flux: 

Slowing Down with Weak Absorption 

Absorption removes neutrons from the slowing-down process and thereby reduces 
the slowing-down density as the energy decreases. Noting that decreasing energy 
corresponds to -dE, the change in slowing-down density due to absorption is 
described by 

Assuming weak absorption or localized (resonance) absorption near energy E, so 
that the flux given by Eq. (4.15) can be used to evaluate the scattering-in integral, 
the neutron balance equation yields a generalization of Eq. (4.15) for the case of 
weak or resonance absorption 
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where again the assumption of similar energy dependence of the scattering cross 
sections for all species present has been used. Combining Eqs. (4.16) and (4.17) 
yields 

which may be integrated from energy E up to some energy El to obtain 

which describes the attenuation of the neutron slowing-down density due to absorp- 
tion. Making use of Eq. (4.17) yields an expression for the energy dependence of 
the neutron flux 

The neutron flux with nonhydrogenic moderators and weak or resonant absorp- 
tion has an energy dependence 4 - ~ / @ , ( E ) E  and is exponentially attenuated, a 
result very similar to that obtained for moderation by hydrogen only [Eq. (4.8)- 
note that 5 = 1 for hydrogen]. In particular, the energy self-shielding of resonances 
discussed previously is contained in the I/E,(E) dependence of the neutron flux. 

Fermi Age Neutron Slowing Down 

The assumption that the scattering cross sections of all moderating isotopes had the 
hame energy dependence, which was made to obtain a relatively simple solution for 
slowing down by nonhydrogenic moderators, can be avoided in the case of heavy 
moderators. The neutron balance equation for slowing down by a mixture of mod- 
erators is 
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Based on the previous results, we expect that @,(E)E+ is a slowly varying 
function of E. Thus we make a Taylor's series expansion of c{(E')E'+(E') about 
x{(E)E+(E): 

d E' 
E ~ E ~ ( E ~ ) ~ ~ ( E ~ ) = E B { ( E ) $ ( E ) + - [ E ~ ( E ) $ ( E ) ] ~ ~ ~ + . - .  d l n E  (4.22) 

in the scattering-in integrals on the right of Eq. (4.21). If the scattering-in interval 
E/aj to E is small (i.e., if aj= [(Aj-l)/(Aj+ 1)12= l), it should be sufficient to 
retain only the first two terms in the Taylor's series expansion, leading to 

+' E (1 +*) 1 -q L [ E E ; ( E ) $ ( E ) ]  d l n E  + - . . } 

which can be integrated to obtain 

This result for the energy distribution of the neutron flux is identical to the result 
obtained in Eq. (4.20) when C, << X,, but obtained under quite different assump- 
tions. The assumptions in deriving Eq. (4.20) were that the absorption was weak, so 
that the no-absorption relationship between the slowing-down density and the flux 
could be used and that the energy dependence of the scattering cross sections was 
the same for all moderators in the mixture, in order to evaluate the scattering-in 
integrals. The only assumption in deriving Eq. (4.24) was that X{(Et)E'+(E1) varied 
slowly over the scattering-in interval E to E/aj. 

The important results we have obtained about the neutron energy distribution in 
the slowing-down region are +(E) -- ~/E(E)E,(E)E, q x C(E)E,(E)E(~(E) and 
that both the neutron slowing-down density, q, and the neutron flux, (9, are atte- 
nuated exponentially by absorption during the slowing-down process. The expres- 
sions that we have developed for this exponential attenuation are qualitatively 
correct, but need to be refined to explicitly treat the resonance absorption which 
dominates in the slowing-down region. We return to this in Section 4.3. 
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Neutron Energy Distribution in the Thermal Range 

Determination of the neutron energy distribution in the "thermal" range (E less 
than 1 eV or so) is complicated by a number of factors. The thermal motion of the 
nuclei is comparable to the neutron motion, with the consequences that the cross 
sections must be averaged over the nuclear motion and that a scattering event can 
increase, as well as decrease, the energy of the neutron. Since the thermal neutron 
energy is comparable to the binding energy of nuclei in material lattices, the recoil 
of the nucleus will be affected by the binding of the nucleus in the lattice, and the 
neutron scattering kinematics is more complex. Inelastic scattering in which the 
molecular rotational or vibrational states or the crystal lattice vibration state is 
changed also affects the scattering kinematics. At very low energies the neutron 
wavelength is comparable to the interatomic spacing of the scattering nuclei, and 
diffraction effects become important. Accurate calculation of thermal reaction rates 
requires both the calculation of appropriate cross sections characterizing thermal 
neutron scattering and calculation of the energy distribution of neutrons in the 
thermal range. Fortunately, most of the complex details of thermal neutron cross 
sections are not of great importance in nuclear reactor calculations, and reasonable 
accuracy can be obtained with relatively simple models. In this section we char- 
acterize the thermal neutron distribution and reaction rates from relatively simple 
physical considerations. We return to a more detailed discussion of thermal neutron 
cross sections and distributions in Chapter 12. 

The neutron balance equation in the thermal energy range is 

[G ( E )  + Ex ( E ) ]  $ ( E )  = / E'h dE1 Cs (E' + E)$(E') + S(E)  (4.25) 
0 

where the scattering-in integral is from all energies in the thermal range E < Eh, 
and S(E) is the source of neutrons scattered into the thermal energy range from 
E > Eth. An equilibrium solution requires that the total number of neutrons down- 
scattered into the thermal energy range be absorbed, assuming for the moment no 
leakage and no upscatter above Eth: 

where q(Eth) is the neutron slowing-down density past Eth. 
Consider the situation that would obtain if there were no absorption and slowing- 

down source; that is, the neutron flux balance is 

where we have extended the upper limit on the integral to infinity under the 
assumption that the scattering to energies greater than Eth is zero. The principle 



104 NEUTRON ENERGY DISTRIBUTION 

of detailed balance places the following constraint on the scattering transfer cross 
section for a neutron distribution that is in equilibrium, regardless of the physical 
details of the scattering event: 

where M(E, T) is the Maxwellian neutron distribution 

It can be shown that the Maxwellian neutron flux distribution, 

4~ (E, T )  = nv (E) M (E) = ---- 2 n  ("1'2".exp(-~) 
( T ~ T ) ~ "  (4.30) 

- E 
= mr-exp(-g) ( k ~ > ~  

satisfies Eq. (4.27). Thus the principal of detailed balance is sufficient to ensure that 
the equilibrium neutron distribution, in the absence of absorption, leakage, or 
sources, is a Maxwellian distribution characterized by the temperature T of the 
medium (i-e., the neutrons will come into thermal equilibrium with the moderator 
nuclei). The most probable energy of neutrons in a Maxwellian distribution is kT, 
and the corresponding neutron speed is VT= (2 k ~ / r n ) " ~ .  

However, absorption, leakage, and a slowing-down source will distort the actual 
neutron distribution from a Maxwellian. Since most absorption cross sections vary 
as l /v  = 1/(~)"', absorption preferentially removes lower-energy neutrons, effec- 
tively shifting the neutron distribution to higher energies than a Maxwellian at the 
moderator temperature T. A shift to higher energies can be represented approxi- 
mately by a Maxwellian distribution with an effective "neutron temperature" 

where C must be determined experimentally. Leakage can be represented by modi- 
fying the absorption cross section to C, + X,(l+ ~3'). Since D = 1 /3&, leakage 
will preferentially remove higher-energy neutrons, offsetting the effect of absorp- 
tion to some extent. 

In the slowing-down region E > Ethr the neutron flux distribution is l/E, and the 
slowing-down source into the upper part of the thermal energy range will tend to 
make the flux l/E. Thus the hardened Maxwellian must be corrected by the addi- 
tion of a joining term A which is about unity for values of E/kT, > 10 and vanishes 
for values of E/kT, < 5: 
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where h is a normalization factor 

The Maxwellian distribution has some useful properties insofar as calculation of 
the neutron absorption rate in the thermal energy range is concerned. Most absorp- 
tion cross sections are l/v; that is, 

C0 ~a(E0)vo C, (E, T) = 2 = (4.34) 
v v 

where Eo = kT= 0.025 eV and vo = (2k~/m,)"~ = 2200 m/s. The total absorption 
rate integrated over the thermal energy range is 

The quantity $o = nvo is the 2200m/s flux, which when multiplied by the cross 
section evaluated at Eo = 0.025 eV yields the total absorption rate integrated over 
the thermd energy range. Most thermal data compilations include the 2200m/s 
value of the cross section (see Appendix A). From the definitions of 
$T = (2/7~"~)12v [Eq. (4.30)] and of $o = nvo, the appropriate thermal group absorp- 
tion cross section (the quantity that is multiplied by the integral of the neutron flux 
over the thermal energy range to recover R,) for a l /v  absorber in a MaxweIIian 
neutron distribution at neutron temperature Tn is 

Non-l/v correction factors have been developed to correct this expression for 
absorbers that are not I /v. 

Summary 

The fission spectrum divided by the total cross section, $(E) = x (E) /C , (E) ,  repre- 
sents the energy distribution rather well for energies E > 0.5 MeV. In the slowing- 
down range below the fission spectrum, E < 50 keV, and above the thermal range, 
E > 1 eV, $(E) -- ~ /~ (E)c , (E )E  represents the neutron energy distribution. In the 
thermal range, E < 1 eV, a hardened Maxwellian plus a 1/E correction at higher 
energies, $(E) = $,,., (E, T,) + hA(E/kT,)/E, represents the neutron energy distri- 
bution. 
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4.2 MULTIGROUP CALCULATION OF NEUTRON ENERGY 
DISTRIBUTION IN AN INFINITE MEDIUM 

Derivation of Multigroup Equations 

While the neutron energy dependences derived in Section 4.1 provide a qualitative, 
even semiquantitative description of the neutron energy distribution in nuclear 
reactors, the multigroup method is widely used for the quantitative calculation of 
the neutron energy distribution. As we will see, the qualitative results of Section 4.1 
will provide valuable insight as to the choice of weighting functions to be used in 
the preparation of multigroup constants. 

To develop a multigroup calculational method for the energy distribution, we 
divide the energy interval of interest, say 10MeV down to zero, into G intervals, or 
groups, as indicated in Fig. 4.3. The equation describing the neutron energy dis- 
tribution in a very large homogeneous region of a nuclear reactor (where spatial and 
leakage effects may be neglected) is 

This equation can be integrated over the energy interval E, < E < E,-1 of group g 
to obtain 

E, = 10 MeV 

E 1 

EG-I 

EG=O 

Fig. 4.3 Multigroup energy structure. 
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where we have made use of the fact that the sum of integrals over the groups is 
equal to the integral over 0 < E < m. Defining the integral terms in Eq. (4.38) in a 
natural way, 

J ~ ~ - '  dE vCf ( E )  
vc; = 4 (4.39) 

m g  

Eq. (4.38) can be written as 

Equations (4.40) are the multigroup neutron spectrum equations for an injnite 
medium, one in which spatial and leakage effects are unimportant. There are G 
equations and G unknowns, the group fluxes +,, so the problem is well posed. This 
overlooks the fact that the group constants CR depend on the neutron flux and hence 
are also unknown. Actually, the group constants depend only on the energy depend- 
ence of the neutron flux within the group, not on the magnitude of the neutron 
flux, which appears in both the numerator and denominator of the definition of the 
group constants. In practice, some assumption is made about this energy depend- 
ence, so that the group constants are known. From the results of the preceding 
section, we have a pretty good idea about the energy dependence of the neutron flux 
in the fission, slowing-down, and thermal energy ranges, whlch can be used to 
evaluate group constants. 

Summing Eqs. (4.40) over groups yields 
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which identifies k ,  as the ratio of the total neutron production rate by fission to the 
total neutron absorption rate, in accord with our previous discussion of the multi- 
plication constant. 

Mathematical Properties of the Multigroup Equations 

The set of equations (4.40) may be written in matrix notation as 

where A and F are G x G matrices and 4 is a G-element column vector: 

Note that the scattering terms on the diagonal are of the form Xf  - X:+g, 
leading to the concept of a removal cross section Xf  = X: + Cf - X:s*g to repre- 
sent the net loss of neutrons from group g by absorption plus scattering. 

Equations (4.40) or (4.42) are homogeneous equations and thus, by Cramer's 
rule, have nontrivial solutions only if the determinant of the coefficient matrix 
vanishes: 

det A - - F  = O  ( Lm)  
This condition defines an eigenvalue problem for the determination of k,-there 
are only a certain set of G discrete values of k, for which a nontrivial solution 
exists. [Note that we have included k, in the formulation for just this reason. If we 
had not incIuded k,, Eq. (4.44) would be a requirement on the composition of the 
reactor for criticality, and we would be faced with the cumbersome requirement to 
adjust the composition by trial and error until Eq. (4.44) was satisfied.] 
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It is possible to prove that the inverse of the matrix A exists for any physically 
real set of cross sections and number densities. Multiplying Eq. (4.42) by k ,  A-' 
yields 

which is the standard form for a matrix eigenvalue problem. It is possible to prove 
(e.g., Refs. 8, 11, and 12) for this equation that (1) there is a unique real, positive 
eigenvalue greater in magnitude than any other eigenvalue; (2) all of the elements- 
the group fluxes--of the eigenvector corresponding to this largest eigenvalue are 
real and positive; and (3) the eigenvectors corresponding to all other eigenvalues 
have zero or negative elements. Thus the largest value of k ,  for which Eq. (4.44) is 
satisfied is real and positive and the associated group fluxes given by Eq. (4.45) are 
real and positive (i.e., physical). 

Solution of Multigroup Equations 

The multigroup equations have been written in their full generality, allowing up- 
scatter (the terms above the diagonal in A)  as well as downscatter (the terms below 
the diagonal in A)  and a fission spectrum contribution in every group. In fact, 
upscatter takes place only for those groups that are in the thermal energy range 
E s  1 eV, and the fission spectrum contributes only to the higher-energy groups 
E 2 50 keV. Taking these physical considerations into account greatly simplifies 
solution of the multigroup equations. 

Consider, as the simplest example of a multigroup description, the representation 
of the neutrons in a nuclear reactor as being either in a thermal group (E_< 1 eV) or 
in a fast group ( E  > 1 eV ). All of the fission neutrons are produced in the fast group, 
and there is no upscatter from the thermal to the fast group. The two-group equa- 
tions are 

which may readily be solved for 

Note that a critical reactor may operate at many power levels, so the absolute 
magnitude of the group fluxes quite properly cannot be determined by the set of 
homogeneous multigroup equations, but the relative magnitudes of the different 
group fluxes can be determined. 
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A somewhat better multigroup description results from representing the fission 
interval (E > 50 keV ) as a fast group into which all fission neutrons are introduced, 
the slowing-down interval (50 keV > E > 1 eV) as an intermediate group, and the 
thermal region (E < 1 eV) as a thermal group. There would be no upscattering in 
such a group structure, allowing the three-group equations to be written 

with solutions 

Example 4.1: Two-Group Fluxes and k,. A representative set of two-group cross 
sections for a PWR fuel assembly are (z ; j2  = 0.0241 cm-', X: = 0.0121 cm-', 
v ~ ;  = 0.0085) and (X: = 0.121 cm-', V$ = 0.185). From Eq. (4.47) the fast/ 
thermal flux ratio is = 0.121 /O.Ml = 5.02, and k ,  = (0.0085 + 0.185/ 
5.02)/(0.0121+0.0241)= 1.253. The spectrum-averaged one-group absorption 
cross section is X, = (Xi$, + X2+2)/(+1 + $2) = 0.0302 cm-l. 

Preparation of Multigroup Cross-Section Sets 

There exist in the world several sets of evaluated nuclear data (e.g., Refs. 7 and 9), 
which have been both checked for consistency and benchmarked extensively in the 
calculation of experiments designed for data testing. Representation of the cross- 
section data in such data files is generally as follows: 

1. o(Ei) are tabulated pointwise in energy at low energies below the resonance 
region. 

2. Resolved resonance parameters and background cross sections in the resolved 
resonance region. 

3. Unresolved resonance statistical parameters and background cross section in 
the unresolved resonance region. 

4. o(Ei) are tabulated pointwise in energy at energies above the resonance 
region. 
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5. Scattering transfer functions p(Ei, ps) are tabulated pointwise in energy and 
either pointwise in angle (pSj) or as Legendre coefficients. 

The resonance parameters and the construction of multigroup cross sections 
from them are discussed in Section 4.3 and in Chapter 11. 

The scattering transfer function-the probability that a neutron will undergo a 
scattering event which changes its direction from direction R to direction R' 
(ps = l2 a a') and its energy from E to B-is represented as 

where m(E)  = 1 for elastic and inelastic scattering, 2 for (n, 2n), v for fission; 
p(E, ps) is the angular distribution for scattering of a neutron of energy E; and 
g&, E -+I?) is the final energy distribution of a neutron at energy E which has 
scattered through p,. When the scattering angle and energy loss are correlated, as 
they are for elastic scattering, g(p,, E + E' ) = 6(ps-p(E, E')). Otherwise, 
g(psi, Ej -+ E i )  is tabulated. The angular distribution may be tabulated as p(Ei, p,,), 
or the Legendre components may be tabulated pointwise in energy 

where P, is the Legendre polynomial. 
There are a number of codes (e.g., Refs. 2, 4, and 5) which directly process the 

evaluated nuclear data files to prepare multigroup cross sections. These codes 
numerically calculate integrals of the type 

for a specified weighting function, W(E),  which may be a constant: 1/E, x(E) ,  and 
so on. These codes are used to calculatejne-group cross sections in a few hundred 
groups for thermal reactors or ultrafie-group cross sections in a few thousand 
groups for fast reactors. These fine- or ultrafine-group structures are chosen such 
that the results of calculations using the fine- or ultrafine-group cross sections are 
essentially independent of the choice of weighting function, W(E) ,  used in the 
cross-section preparation. 

Once the fine- or ultrafine-group cross sections are prepared, a fine- or ultrafine- 
group spectrum ($,) is calculated for a representative homogenized medium. The 
unit cell heterogeneous structure of the region must be taken into account in 
homogenizing the medium. Resonances must be treated specially, as discussed in 
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Chapter 11. This fine- or ultrafine-group spectrum can then be used to weight the 
fine- or ultrafine-group cross sections to obtain few-group (2 to 10) cross sections 
for thermal reactors or many-group (20 to 30) cross sections for fast reactors: 

The notation g E k indicates that the sum is over all fine or ultrafine groups g within 
few or many group k. 

The few- or many-group cross sections may be calculated for several different 
large regions in a reactor. They are then used in a few- or many-group diffusion or 
transport theory calculation of the entire reactor to determine the effective multi- 
plication constant, power distribution, and so on. Because many such calculations 
must be made, a number of parameterizations of few- and many-group cross sec- 
tions have been developed (e.g., Ref. 10) to avoid the necessity of making the fine- 
or ultrafine-group spectrum calculation numerous times. 

4.3 RESONANCE ABSORPTION 

Resonance Cross Sections 

When the relative (center-of-mass) energy of an incident neutron and a nucleus plus 
the neutron binding energy match an energy level of the compound nucleus that 
would be formed upon neutron capture, the probability of capture is quite large. 
The lowest-energy excited states are only a fraction of 1 eV above the ground state 
and extend up to about 100 keV for heavy mass fuel nuclei (fissile and fertile), but 
start at about lOeV for intermediate mass nuclei and at about lOkeV for lighter 
mass nuclei. The heavier mass isotopes have many relatively low energy excited 
states, which give rise to resonances in the neutron absorption and scattering cross 
sections (Fig. 4.4). 

The neutron resonance absorption phenomena constitute one of the most funda- 
mental subjects in nuclear reactor physics. One of the most effective means of 
treating these phenomena is in terms of the resonance integral concept, which 
has a fundamental premise that the resonance cross sections are representable by 
superposition of many Breit-Wigner resonances with known parameters. This pre- 
mise allows the complex resonance structure to be characterized in a reasonably 
simple way by calculating the contributions of each individual resonance. The 
discussion in this section concentrates on s-wave neutron cross sections in the 
low-energy range. 

As shown in Chapter 1,  the (a, y) capture cross section averaged over the motion 
of the nucleus is given by 
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U238 CAPTURE CROSS SECTION MT = 27 

lo1 I 02 I o3 I o4 I o5 
Neutron Energy (eV) 

Fig. 4.4 2 3 8 ~  capture cross section. (From http://www.bnl.gov/CoN/index.html.) 

and the total scattering cross section, including resonance and potential scattering 
and interference between the two, can be written 

where R is the nuclear radius, ito the neutron DeBroglie wavelength, the functions 

are integrals over the relative motion of the neutron and nucleus, x = 2(Ec,,-Eo)/T, 
it has been assumed that the nuclear motion can be characterized by a Maxwellian 
distribution with temperature T, and E,, is the energy of the neutron in the neu- 
tron-nucleus center-of-mass system. The parameters characterizing the resonance 
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are 00, the peak value of the cross section; Eo, the neutron energy in the center-of- 
mass system at which it occurs; T, the resonance  wid^, T,, the partial width for 
neutron capture; Tf, the partial width for fission; and T,, the partial width for 
scattering. 

Doppler Broadening 

The temperature characterizing the nuclear motion is contained in the parameter 

where A is the atomic mass (amu) and k is the Boltzmann constant. The general 
dependence of the $-function on temperature is indicated in Fig. 4.5. As the 
temperature increases, the peak magnitude of $ at Eo decreases and the magnitude 
away from peak increases. This broadening of the cross section is known as 
Doppler broadening. It can be shown that the area under the curve of the \Ir- 
function remains constant as the temperature changes. Similar behavior results for 
the X-function. The $- and X-functions are tabulated in Tables 4.1 and 4.2. 

The assumption that the nuclear motion can be characterized by a Maxwellian is 
only approximately correct for atoms bound in a crystalline state. Investigation of 
this point indicates that a Maxwellian is a good approximation, but with a slightly 
higher temperature which corresponds to the average energy per vibrational degree 
of freedom of the lattice, including the zero-point energy. In practice, the actual 
material temperature is widely used. 

Fig. 4.5 Temperature broadening of the $-function. (From Ref. 3; used with permission of 
Wiley.) 





TABLE 4.2 X-Function 

Source: Data from Ref. 3; used with permission of Wiley. 
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Resonance Integral 

The total absorption rate per nuclei by a resonance absorber is known as the 
resonance integral, 

Resonance Escape Probability 

The absorption probability for a single resonance depends on the balance between 
absorption and moderation and is given by Rabs = Nresl/qo, where qo = ~C,Ec$,,, is 
the asymptotic slowing-down density above the resonance and N,, is the number 
density of the resonance absorber. If we use +,,, = 1/E to evaluate the resonance 
integral, then Rabs = I / ~ O , ~ ,  where the denominator is the moderating power per 
absorber nucleus. The resonance escape probability is p = 1 -Rbs = 1 -I/cm3 M 

exp(-I/&o,), where Rabs is assumed small for any one resonance. 
The total resonance integral for all resonances is a sum over the individual 

resonance integrals, and the total resonance escape probability is 

1 
p = nBi = exp ( - xili) 

Multigroup Resonance Cross Section 

The resonances within a given energy group in a multigroup treatment can be 
treated as a group capture cross section given by 

where 4 ( E )  - l /E  has been used. 

Practical Width 

The practical width of a resonance is defined as the energy range over which the 
resonance cross section is larger than the nonresonance part of the cross section of 
the resonance nuclide, which from the Breit-Wigner forrnuIa is 

Typically, for low-energy resonances oo/4nR = oo/op -- lo3, so the practical width 
is much larger than the total width. The practical width provides a measure of the 
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range of influence of the resonance, which we will see is important in evaluating the 
neutron flux in the resonance. 

Neutron F l w  in Resonance 

The resonance region is well below the fission spectrum, so the neutron balance in 
the vicinity of the resonance can be written 

where the moderator scattering cross section is assumed to be much larger than its 
absorption cross section and to be effectively constant. The practical width of the 
resonance will generally be much less than the scattering-in interval of the mod- 
erator, T, << Eo(l -aM). For widely spaced resonances, this allows the approximate 
evaluation of the moderator scattering source term with the asymptotic form of the 
neutron flux in the absence of resonances, N l/@;E. We choose the normal- 
ization $,,, = 1 / E  above the resonance energy to obtain 

Narrow Resonance Approximation 

If the practical width of the resonance is also small compared to the scattering-in 
interval of the resonance absorber, T, << Ed-a,,), then the second scattering 
source term can be approximated in the same fashion to obtain 

which can be used in Eq. (4.59) to evaluate the resonance integral: 

where 

a! is the moderator scattering cross section per absorber nucleus and 0,"" = 4 7 ~ ~ '  
is the potential scattering cross section of the resonance absorber. If interference 
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between resonance and potential scattering is neglected, the resonance integral can 
be written 

where the function 

is tabulated in Table 4.3. A generalization of the J-function which includes the 
interference scattering term has been devised, but the form given above is more 
commonly used. 

Wide Resonance Approximation 

If the practical width of the resonance is large compared to the scattering-in interval 
of the resonance absorber, l7, >> Eo(l-a,,), the second scattering source term 
in Eq. (4.64) can be approximated by assuming that EFS(E')+(E')/E' FZ 

C F ( E ) + ( E ) / E ,  which leads to 

'Js 

h(E) = [ C y  ( E )  - E y  (El + Cf] E 
(4.70) 

Using this result to evaluate the resonance integral defined by Eq. (4.59) yields 

where 

Resonance Absorption Calculations 

Data for several of the low-energy resonances in 2 3 8 ~  are given in Table 4.4. Also 
shown is a comparison of the absorption probabilities calculated with the narrow 
and wide resonance approximations with an "exact" solution obtained numerically, 
for a representative fuel-to-moderator ratio for a thermal reactor. The WR approxi- 
mation is more suitable for the lowest-energy resonances, but the narrow reso- 
nance approximation generally is preferable for all but the lowest-energy 
resonances. 



TABLE 4.3 J-Function (0 =2jx 
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Example 4.2: Group Capture Cross Section for 6.67-eV 2 3 8 ~  Resonance. The 
contribution of the 6.67-eV 2 3 8 ~  resonance to the capture cross section of an energy 
group extending from 1 to lOeV is calculated in the narrow resonance approxi- 
mation from a; = I&./ ln(lO/l), where I& = (T,/Eo) (0; + cf) ~ ( 5 ,  p). For 
uranium, o r  = 8.3 barns. For a moderator cross section per fuel atom 
0: = z ~ / N ~  = 60 barns and a temperature T = 330"C, 5 = (T/~)/(E&T/A)'/~ = 

(0.0275 eV/2)/[(6.67eV x 603•‹K x 0.86 x 1 0 - ~ e ~ / ~ ) / 2 3 8 ] ' / ~  =0.361 and P = 

(T+ #)/a0 = (60 + 8.3)/2.15 x lo5 = 31.8 x loP5 = 2J x loP5, or j=4.98. 
Interpolating on j and 5 in Table 4.3 yields J z  88. With these values, I&, z 23 and 
a; a 10 barns. 

Temperature Dependence of Resonance Absorption 

Examination of the function J(c ,  p) of Eq. (4.69) reveals that for any value of P, the 
value of J increases or remains constant as 5 decreases. Since 5- 1/~"*, the 
resonance absorption must increase or remain unchanged when the temperature 
increases. The physical reason for this is that as the temperature increases, the cross 
section (averaged over nuclear motion) decreases in peak value and broadens in 
energy in such a manner as to preserve the area under the cross-section curve, as 
indicated in Fig. 4.5, but the decreasing value of the cross section results in a 
decreasing depression in the neutron flux in the resonance region. This increase 
in absorption cross section with increasing fuel temperature introduces an impor- 
tant negative-feedback Doppler temperature coefficient of reactivity, which is im- 
portant for reactor safety, as discussed in Chapter 5. 

4.4 MULTIGROUP DIFFUSION THEORY 

Multigroup Diffusion Equations 

We consider cohorts of neutrons of different energies diffusing within a nuclear 
reactor. The basic diffusion equation for each cohort, or group, of neutrons is the 
same as derived in Chapter 3, but with absorption generalized to all processes that 
remove the neutron from the cohort or group (i.e., absorption plus scattering to 
another group) and with the source of neutrons for each group specialized to 
include the in-scatter of neutrons from other groups, which are also diffusing within 
the reactor: 
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The definition of group constants given by Eqs. (4.39) is applicable. For the group 
diffusion coefficient there are two plausible definitions: 

D g ( r )  = l: E D  ( r  ( r )  = - I  r Ctr(r, E )  (4.74) 

We return to this issue in Chapter 10, where the multigroup diffusion equations are 
formally derived from energy-dependent transport theory. 

Equations (4.73) constitute a set of homogeneous equations, the solutions of 
which are nontrivial only for certain discrete values of the effective multiplication 
constant, k. It has been shown (Refs. 8 and 12) that the mathematical properties of 
the multigroup diffusion equations are such that the largest such discrete eigenvalue 
is real and positive. The corresponding eigenfunction is unique and nonnegative 
everywhere within the reactor. In other words, mathematically, these equations have 
a physically correct solution corresponding to the largest value of the eigenvalue. 

Wo-Group Theory 

The simplest example of rnultigroup diffusion theory is two-group theory in which 
the fast group contains all neutrons with E Z  I eV and the thermal group contains the 
neutrons that have slowed down into the thermal interval E< 1 eV. This model is 
described by 

and the boundary conditions of the neutron fluxes in both groups vanishing on the 
boundary of the reactor. 

Two-Group Bare Reactor 

For a uniform reactor, the vanishing of the neutron flux on the boundary requires 
that the neutron flux in both groups satisfies 

where B, is the geometric buckling of Chapter 3. Using this form for the group 
fluxes in Eqs. (4.76) Ieads to a pair of homogeneous algebraic equations that can be 
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solved for the effective multiplication constant 

and the flux ratio 

Extending the definition of the diffusion length for the fast group to include 
removal by scattering to the thermal group 

Eq. (4.78) for the effective multiplication constant can be rearranged into a form 
from which the definition of terms in the six-factor formula are apparent: 

where the fast  PA^) and thermal ( p i L )  groups are identified separately. 

One-and-One-Half-Group Theory 

Because the thermal group absorption cross section is generally much larger than 
the fast-group cross section, D'<< D 1 .  This suggests approximating the two-group 
equations by neglecting D2 and using the resulting solution of the thermal group 
equation r$2 = (X:-~/E;)+~ in the fast-group equation to obtain 

which has the form of a one-group diffusion equation for the fast neutrons. This 
method may be extended to account for the diffusion of thermal neutrons by using 
an effective value of the fast diffusion coefficient, 
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which has the effect of replacing the fast diffusion length L1 by the migration 
length; that is, 

The solutions discussed in Chapter 3 for the one-speed neutron diffusion equa- 
tion can be applied immediateIy to l$group theory merely by replacing 
vEf + V Z ~  + VZ; (E:+~ /c:) and D + D& 

Two-Group Theory of Two-Region Reactors 

Consider a rectangular parallelepiped core consisting of a uniform central region 
(material 1) bounded on both ends by regions of the same composition (material 2), 
as depicted in Fig. 4.6. The two-group equations in each material (subscript k )  are 

where group 2 is assumed to be below the fission spectrum. We seek a solution by 
separation of variables, and recalling the results of Chapter 3 look for a solution of 
the form 

The y- and z-components of the gradient operators acting on the trial solutions of 
Eq. (4.86) give rise to a transverse buckling term, 

Fig. 4.6 Three-region reactor model. (From Ref. 6; used with permission of MIT Press.) 
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These trial solutions are substituted into Eqs. (4.85) to obtain equations for the Xgk: 

These equations must satisfy symmetry boundary conditions at x = 0, continuity 
of flux and current interface conditions at x = X I ,  and zero flux at x = x, + x,: 

The procedure for solving Eqs. (4.88) is to look for solutions of a particular form 
with arbitrary constants and then to establish conditions on the arbitrary constants 
by requiring the form to satisfy Eqs. (4.88). In particular, we look for solutions that 
satisfy 

in each region k. Note that we require that Eq. (4.90) be satisfied with the same 
value of B: by both the fast (Xlk)  and thermal (X2.d fluxes in each region k. 
Substituting the solution of the form that satisfies Eqs. (4.90) into Eqs. (4.88) leads 
to a set of equations for each region k: 

which must be satisfied if the solution of Eqs. (4.88) within each material is to have 
the form that satisfies Eqs. (4.90). These are homogeneous equations, which have a 
nontrivial solution only if the determinant of the coefficient matrix vanishes, which 
defines two values B: = p i  and B: = -v: for which Eqs. (4.88) have solutions of 
the form that satisfies Eqs. (4.90): 
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The quantity -vi is always negative, but pi can be positive or negative, depending 
on the value of the two-group constants. Thus there are solutions of Eqs. (4.88) that 
satisfy Eqs. (4.90), which are of the form 

where the second of Eqs. (4.91) has been used to determine the ratio of fast-to- 
thermal group components: 

The symmetry conditions at x = 0 require that A;, = A;, = 0, and the zero flux 
conditions at x = x l  +x2 require that the solution in region 2 be of the form 

X22 (x) = ci2sinp2 (xl + x2 - X) + ci2sinhu2 (x1 + x2 - X) 
(4.95) 

X&) = s2ci2sinp2 (xl + x2 - X) f t2~i2sinhu2(x1 + x2 - X) 

Requiring the solution in region 1 given by Eqs. (4.93) and the solution in region 2 
given by Eqs. (4.95) to satisfy the continuity of flux and current interface conditions 
results in a set of four homogeneous equations for the constants A;,, A;l, ci2,  and 
c;,. The requirement for a nontrivial solution, the vanishing of the determinant of 
the coefficients, then, is the criticality condition 

SlcOSp~xl tlcoshulxl -s2sinp2x2 - t2 sinhv2x2 

det [ s l ~ f  p1 sinp~xl -tl D: u1sinhu1~1 - s ~ D ~ ~ ~ c o s ~ ~ x ~  - f 2 ~ ~ c o ~ h u 2 x 2  
COSplXl coshulxl -sinp2x2 -sinhv2x2 

D : ~ I  sinplxl -D?U, sinhvlxl - D ~ ~ ~ c o s ~ ~ x ~  - D ~ U ~ C O S ~ U ~ X ~  

(4.96) 
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which may be solved for the effective multiplication constant, k. The four equations 
can be solved for three of the constants in terms of the one remaining constant, 
which must be determined from the total reactor power level. 

This procedure could be extended to multiregion reactors, but it becomes 
extremely cumbersome, and direct numerical solution of Eqs. (4.85) becomes 
preferable. 

Two-Group Theory of Reflected Reactors 

The results above can be specialized to the situation of a reflected reactor by setting 
Cf=O in region 2, in which case Eq. (4.92) reduces to 

A solution of the type just described can be carried out in spherical and cylin- 
drical geometry (reflected axially or radially, but not both), as well as in the block 
geometry. The results are summarized in Table 4.5, where Z(R= R, { R , z }  or 
{ x ,  y , z } )  and W are spatial flux shapes in the core and U and V are spatial flux 
shapes in the reflector. 

The thermal flux in the core of a spherical reflected reactor is given by 

and the thermal flux in the spherical shell reflector is given by 

+OR 4: ( r )  = -- [sinhpR (R' - 
r  

The corresponding fast fluxes are related to the thermal fluxes by the factors sk and 
tk given by Eqs. (4.94). These fluxes are plotted for a representative set of two- 
group constants in Fig. 4.7. The much larger ratio c~'~/z: in the reflector than in 
the core causes a peaking of the thermal flux in the reflector at the core-reflector 
interface. Physically, fast neutrons are diffusing out of the core and being slowed 
down into the thermal group in the reflector, where the thermal absorption is greatly 
reduced relative to the core. This same type of peaking of the thermal flux would 
occur in a water gap next to a fuel assembly within the core. 

Numerical Solutions for Multigroup Diffusion Theory 

The numerical solution procedures discussed for the one-speed diffusion equation 
in Section 3.10 are readily extended to the solution of the multigroup diffusion 
equations. The G multigroup equations for the case of G-1 fast groups and a 
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Z(R)  = Jo(ll R) cos I?: 
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A W(R) = I. ( g R )  cos 12z 

w l ( R )  = [,I, (13R) C ~ S  12z 
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w'(R) = msJo(rnlp) sinh m3h 
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R 
U ( R )  = Jo (ml p)  sinh m4 ( d  - h) 

d u'(R) = -m4Jo(ml p )  cosh md(2 - h) m: 5 K: + m: 

V(R)  = Jo (m 1 p)  sinh ms (d  - h) 

V1(R) = -msJo(mlp) coshms(2 - h)  m2 5 -  = K2 4 f 4  

(Continued) 
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COE Reflector 

Fig. 4.7 Fast and thermal fluxes in a reflected spherical reactor with properties (core: 
Dl = D2= 1 cm, c:'~ = 0.009cm-I, Cf, = 0.001, C: = 0.05 cm-l, VE? = 00.57; reflector: 
Dl = D2= 1 cm, ~ f ' ~  = 0.009cm-I, Zf, = 0.001, Z: = 0.0049cm-l, vCj = 0.0. (From 
Ref. 13; used with permission of McGraw-Hill.) 

thermal group G are 

where the fission source is 

The solution procedure is initiated by guessing a fission source distribution, s ; ~ ' ,  
and an effective multiplication constant, k''), and solving the group 1 equation for 

(1)  the first iterate flux, : 

Equation (4.102) is solved iteratively (e.g., by the successive relaxation method 
described in Section 3.10). Next, the group 2 equation is solved for the first iterate 
flux, 4i'): 
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using the just calculated 4;') and an iteration procedure of the type described in 
Section 3.10. This procedure is continued successively to all the lower groups, 
using the just calculated values of the fluxes for higherenergy groups to calculate 
the scattering-in source, to determine the first iterate of all G group fluxes 

(1) [ $ I 1 ) ,  +!), . . . , +c I ,  which are then used to compute a first iterate fission source: 

and a first iterate effective multiplication constant: 

k(') = 
k(O1 J dr SF) ( r )  

J dr ~j" ( r )  

The iterations are continued until the effective multiplication constant converges, as 
described in Section 3.10. 

If a multigroup structure is chosen in which there is more than one group in the 
thermal energy interval E < l eV, there is upscattering among the thermal groups 
and the successive-group solution procedure above must be modified by solving 
simultaneously for the fluxes in the thermal groups or by at iterative solution for the 
thermal group fluxes. 
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4.1. Solve the neutron balance equation in the slowing-down range for the neu- 
tron flux, and determine the neutron slowing-down density, for a mixture of 
nonhydrogenic moderators and no absorption. Compare the result with 
Eq. (4.20) in the no-absorption limit. 

4.2. Consider a very large block of material with composition ( 2 3 5 ~ =  
0.002 x at/crn" = 0.040 x lo24 at/cm3, H20 = 0.022 x 
at/crn" Fe = 0.009 x at/cm" and temperature T =  400•‹C. Calculate 
and plot the neutron flux energy distribution in the fission, slowing-down, 
and thermal regions. 

4.3. Carry out the steps to demonstrate that the Maxwellian distribution of 
Eq. (4.29) satisfies the equilibrium neutron balance equation of Eq. (4.27). 

4.4. Calculate the thermal. group absorption cross section for 2 3 5 ~  at Tpl = 300, 
400, and 500•‹C. 

4.5. Calculate the infinite multiplication constant and the relative group fluxes in 
a very large fuel assembly with the four-group constants given in Table P4.5. 

TABLE P4.5 

Group Group 1: Group 2: Group 3: Group 4: 
Constant 1.35-10 MeV 9.1 keV-1.35 MeV 0.4ev-9.1 keV 0.0-0.4 eV 

?problem 4.12 is a longer problem suitable for a take-home project. 
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4.6. The radiative capture cross section for a certain isotope is measured at the 
following energies: 50 eV, 200 barns; 100 eV, 245 barns; 150 eV, 275 barns; 
300 eV, 200 barns; 350 eV, 180 barns; 400 eV, 210 barns. Calculate a multi- 
group capture cross section for the group E, = 75 eV, Ex - I = 425 eV. 

4.7. Calculate the resonance escape probability for the 6.67 eV 2 3 s ~  resonance at 
T =  300•‹C when the moderator scattering cross section per uranium nucleus 
is z ~ / N , ,  = 50 barns. Calculate the resonance integral using either the nar- 
row or wide resonance approximation; explain your choice. 

4.8. Calculate the contribution of each of the resonances in Table 4.4 to the 
multigroup capture cross section for a group extending from 1 to 300eV 
when the moderator scattering cross section per uranium nucleus is 
c~/N,,, = 75 barns and the temperature is 300•‹C. 

4.9. Repeat the calculation of Problem 4.8 for Z:/N,, = 25 barns. Repeat the 
calculation for 500•‹C. 

4.10. Calculate the total resonance escape probability for the resonances in Table 
4.4 when the moderator scattering cross section per uranium nucleus is 
E?/N,, = 75 barns and the temperature is 300•‹C. 

4.11. Consider a large repeating array of slab fuel assemblies of width 50cm 
separated by 10 cm water-structure slabs. Calculate the thermal and fast flux 
distributions and the infinite multiplication factor for the fuel-water-struc- 
ture array using the two-group cross sections given in Table P4.11. 

TABLE P4.11 

Core Water/Structure 

Group Constant Group 1 Group 2 Group 1 Group 2 

4.12. Write a computer code to solve numerically for the fast and thermal flux 
distributions and the effective multiplication constant in a two-dimensional 
cut through a very tall reactor core. The reactor core extends from 
-50 cm < x < +SO cm. Region 1 of the core extends from 15 cm < y < 
55 cm, and region 2 of the core extends from 55 cm < y < 105 cm. The core 
is entirely surrounded by a 15-cm-thick reflector. The two-group constants 
for the core and reflector are given in Table P4.12. 

4.13. Calculate the reduction of the slowing-down density as a function of energy 
below 5OkeV in a 1 : l  homogeneous mixture of H20 and 3% enriched 
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uranium. (Use the resonance range cross sections of Table 1.3, assuming 
them to be constant in energy.) 

TABLE P4.12 

Core 1 Core 2 Reflector 

Group Constant Group I Group 2 Group 1 Group 2 Group I Group 2 

4.14. Calculate and plot the hardened Maxwellian component of the thermal spec- 
trum for in a 1:l homogeneous mixture of H20 and uranium for natural 
uranium and 4% enriched uranium. (Use the thermal range cross sections 
of Table 1.3, assuming them to be constant in energy, and use C= 1.5.) 

4.15. Calculate the spectrum averaged one group cross sections for Problem 4.5. 

4.16. Extend the development of Section 3.1 1 to derive the equations for a multi- 
group nodal model. 

4.17. Calculate the node average fluxes and the effective multipGcation constant of 
Problem 4.12 using a two-group nodal model. Compare with the results of 
Problem 4.12. 

4.18. Calculate in two-group theory the critical radius of a 3.5-m-high bare cy- 
lindrical core with the cross sections given for core I in Problem 4.12. 

4.19. Repeat the calculation of Problem 4. I8 for the situation in which the core is 
surrounded by a 15-cm-thick annular reflector with the properties given in 
Problem 4.12. Compare the result with the result that would be obtained by 
subtracting the reflector savings from the critical radius for the bare core 
calculated in Problem 4.18. 

4.20. Solve Problem 4.18 in 1; group theory. 





5 Nuclear Reactor Dynamics 

An understanding of the time-dependent behavior of the neutron population in a 
nuclear reactor in response to either a planned change in the reactor conditions or to 
unplanned and abnormal conditions is of the utmost importance to the safe and 
reliable operation of nuclear reactors. We saw in Chapter 2 that the response of the 
prompt neutrons is very rapid indeed. However, unless the reactor is supercritical 
on prompt neutrons alone, the delayed emission of a small fraction of the fission 
neutrons can slow the increase in neutron population to the delayed neutron pre- 
cursor decay time scale of seconds, providing time for corrective control measures 
to be taken. If a change in conditions makes a reactor supercritical on prompt 
neutrons alone, only intrinsic negative feedback mechanisms that automatically 
provide a compensating change in reactor conditions in response to an increase 
in the neutron population can prevent a runaway increase in neutron population 
(and fission power level). However, some of the intrinsic changes in reactor con- 
ditions in response to a change in power level may enhance the power excursion 
(positive feedback), and others may be negative but delayed sufficiently long that 
the compensatory reactivity feedback is out of phase with the actual condition of 
the neutron population in the reactor, leading to power-level instabilities. These 
reactor dynamics phenomena, the methods used for their analysis, and the experi- 
mental techniques for determining the basic kinetics parameters that govern them 
are discussed in this chapter. 

5.1 DELAYED FISSION NEUTRONS 

Neutrons Emitted in Fission Product Decay 

The dynamics of a nuclear reactor or any other fission chain-reacting system under 
normal operation is determined primarily by the characteristics of the delayed 
emission of neutrons from the decay of fission products. The total yield of delayed 
neutrons per fission, vd, depends on the fissioning isotope and generally increases 
with the energy of the neutron causing fission. Although there are a relatively large 
number of fission products which subsequently decay via neutron emission, the 
observed composite emission characteristics can be well represented by defining six 
effective groups of delayed neutron precursor fission products. Each group can be 
characterized by a decay constant, hi, and a relative yield fraction, P i / B .  The 
fraction of the total fission neutrons that are delayed is P = vd/v. The parameters 
of delayed neutrons emitted by fission product decay of several relevant isotopes 
are given in Table 5.1. 



140 NUCLEAR REACTOR DYNAMICS 

TABLE 5.1 Delayed Neutron Parameters 

Fast Neutrons Thermal Neutrons 

Decav Constant Relative Yield Decav Constant Relative Yield 
Group c (s-I) Pi/P hi (s-I) Pi/P 
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TABLE 5.1 (Continued) 

Group 

23SU 

Fast Neutrons Thermal Neutrons 

Decay Constant Relative Yield Decay Constant Relative Yield 
hi (s-I) Pi/ P hi (s-I) PiIP 

vd = 0.0460 
p=0.0164 

0.0132 0.013 
0.0321 0.137 
0.139 0.162 
0.358 0.388 
1.41 0.225 
4.02 0.075 

Effective Delayed Neutron Parameters for Composite Mixtures 

The delayed neutrons emitted by the decay of fission products are generally less 
energetic (average energy about 0.5 MeV) than the prompt neutrons (average en- 
ergy about 2MeV) released directly in the fission event. Thus thes.e delayed neu- 
trons will slow down quicker than the prompt neutrons and experience less 
probability for absorption and leakage in the process (i.e., the delayed and prompt 
neutrons have a difference in their effectiveness in producing a subsequent fission 
event). Since the energy distribution of the delayed neutrons differs from group to 
group, the different groups of delayed neutrons will also have a different effective- 
ness. Furthermore, a nuclear reactor will, of course, contain a mixture of fissionable 
isotopes (e.g., a uranium-fueled reactor will initially contain 2 3 5 ~  and 2 3 8 ~ ,  and 
after operation for some time will also contain some admixture of 2 3 9 ~ ~ ,  240Pu, and 
so on; see Chapter 6). 

To deal with this situation, it is necessary to define an importance function, 
++(r, E), which is the probability that a neutron introduced at position r and energy 
E will ultimately result in a fission (Chapter 13). Then the relative importance (to 
the production of a subsequent fission) of delayed neutrons in group i emitted with 
energy distribution x:, (E) and prompt neutrons from the fission of isotope q emitted 
with energy distribution x;(E)  are 
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The relative effective delayed neutron yield of group i delayed neutrons for 
fissionable isotope q is ciP;, where py is the group i delayed neutron yield of 
fissionable isotope q given in Table 5.1. The effective group i delayed neutron 
fraction for isotope q in a mixture of fissionable isotopes is then 

The effectiveness of delayed neutron group i of fissionable isotope q in a specific - 
admixture of fissionable isotopes and reactor geometry is then yy = yYPf /Pr. In the 
remainder of the book, except when specifically stated otherwise, it is assumed that 
the delayed neutron effectiveness is included in the evaluation of Pi and p, and the 
effectiveness parameter will be suppressed. 

Photoneutrons 

Fission products also emit gamma rays when they undergo P-decay. A photon can 
eject a neutron from a nucleus when its energy exceeds the neutron binding energy. 
Although most nuclei have neutron binding energies in excess of 6 MeV, which is 
above the energy of most gamma rays from fission, there are four nuclei that have 
sufficiently low neutron binding energy, En, to be of practical interest: 2~ (En = 

2.2 MeV ), 9 ~ e  (En = 1.7 MeV ), 6 ~ i  (En = 5.4 MeV ), and 13c (En = 4.9 MeV ). The 
photoneutrons can be considered as additional groups of delayed neutrons. Since 
the P-decay of fission products is generally much slower than the direct neutron 
decay, the photoneutron precursor decay constants are much smaller than the de- 
layed neutron precursor decay constants shown in Table 5. 1 .  The only reactors in 
which photoneutrons are of practical importance are D20-moderated reactors. As 
we shall see, the dynamic response time of a reactor under normal operation is 
largely determined by the inverse decay constants, and consequently, D20 reactors 
are quite sluggish compared to other reactor types. 

5.2 POINT KINETICS EQUATIONS 

The delayed neutron precursors satisfy an equation of the form 
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The one-speed neutron diffusion equation is now written 

where we have taken into account that a fraction p of the fission neutrons is delayed 
and that there is a source of neutrons due to the decay of the delayed neutron 
precursors. 

Based on the results of Chapter 3, we assume a separation-of-variables solution 

where is the fundamental mode solution of 

and B, is the geometric buckling appropriate for the reactor geometry, as discussed 
in Chapter 3. Using this in Eqs. (5.4) and (5.5) leads to the point kinetics equations 

where 

is the mean generation time between the birth of a fission neutron and the subse- 
quent absorption leading to another fission, and 

is the reactivity. The quantity k is the effective multiplication constant, given by 
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For predominantly thermal reactors, vCf and C, are thermal cross sections, and 
L2 should be replaced by kZ2 = L2 + Q, to include the fast diffusion while the 
neutron is slowing down, tth, as well as the thermal diffusion length, L ~ .  For fast 
reactors, all cross sections are averaged over the appropriate fast spectrum. 

The limiting assumption for the validity of the point kinetics equations is the 
assumption of a constant spatial shape. As we will see, this assumption is reason- 
able for transients caused by uniform changes in reactor properties or for reactors 
with dimensions that are only a few migration lengths, M (or diffusion lengths, L), 
but is poor for reactors with dimensions that are very large compared to M in which 
the transient is caused by localized changes in reactor properties (e.g., a nonsym- 
metric control rod withdrawal). However, as we will see in Chapter 16, such spatial 
shape changes can be taken into account in computation of the reactivity and the 
mean generation time, and the point kinetics equations can be extended to have a 
much wider range of validity. 

5.3 PERIOD-REACTIVITY RELATIONS 

Equations (5.8) may be solved for the case of an initially critical reactor in which 
the properties are changed at t = 0 in such a way as to introduce a reactivity po 
which is then constant over time, by Laplace transforming, or equivalently assum- 
ing an exponential time dependence e-"'. The equations for the time-dependent 
parts of n and Ci are 

which can be reduced to 

where 

The poles of the right side-the roots of Y(s) = 0---determine the time dependence 
of the neutron and precursor populations. Y(s) = 0  is a seventh-order equation, 
known as the inverse hour, or more succinctly, the inhour, equation, the solutions 
of which are best visualized graphically, as indicated in Fig. 5.1, where the right- 
hand side of 
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Fig. 5.1 Plot of the function R(w) = w [ A  + CPi / (o  + hi)], which appears in the in-hour 
equation. (From Ref. 4; used with permission of MIT Press.) 

is plotted. The left-hand side, po, would plot as a straight horizontal line, of course, 
and the points at which it crosses the right-hand side are the solutions (roots of 
the equation). For po < 0, indicated by the circles in Fig. 5.1, all the solutions 
sj < 0. For po > 0, indicated by the crosses, there are one positive and six negative 
solutions. 

The solution for the time-dependent neutron flux is of the form 

where the sj are the roots of Y(s) = 0 and the Aj are given by 

After a sufficient time, the solution will be dominated by the largest root so (so > 0 
when po > 0. s o  is the least negative root when po < 0): 

where T - so1 is referred to as the asymptotic period. Measurement of the asymp- 
totic period then provides a means for the experimental determination of the 
reactivity 
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5.4 APPROXIMATE SOLUTIONS OF THE POINT 
NEUTRON KINETICS EQUATIONS 

One Delayed Neutron Group Approximation 

To simplify the problem so that we can gain insight into the nature of the solution of 
the point kinetics equations, we assume that the six groups of delayed neutrons can 
be replaced by one delayed neutron group with an effective yield fraction P = EmPi 
and an effective decay constant h = ZiPihi/P, so that the point kinetics equations 
become 

Proceeding as in Section 5.3 by Laplace transforming or assuming an es' form of the 
solution, the equivalent of Eq. (5.13) for the determination of the roots of the 
reduced in-hour equation is 

which has the solution 

For p > 0, one root is positive and the other negative; for p = 0, one root is zero and 
the other is negative; and for p < 0, both roots are negative. 

The assumed eS* time dependence, when used in Eqs. (5.20), requires that for 
each of the two roots, sl and s2, there is a fixed relation between the precursor and 
the neutron populations: 

which means that the solution of Eqs. (5.20) is of the form 

Now, let us take some parameters typical of a light water reactor: P =0.0075, 
h = 0.08 sp', A = 6 x 1 0 ~ ' ~  s. Except for Ip-PJ FZ 0, one root of Eq. (5.21) will be 
of very large magnitude, and the other will be of very small magnitude. For the 
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larger root, sf >> hp/A and hp/A can be neglected in Eq. (5.21); and for the 
smaller root, s; << hp/A and sz can be neglected. Assuming that Jp-PI/A>>h, 
the solutions of Eq. (5.21) are 

The constants A, and A2 can be evaluated by requiring that the solution satisfy the 
initial condition at t = 0 that is determined by setting p = 0 in Eqs. (5.24), which 
identifies A l  * nop/(p-P) and A2 M -nop/(p-p), where no is the initial neu- 
tron population before the reactivity insertion, so that the solutions of Eqs. (5.24) 
become 

P - P  P  XP n(t) = q  ex^ (Tt) - - exp ( - - r )  ] 
P - P  P - P  P - P  

P 
(5.26) 

" exp ( q t  ) + nx ex. ( - st)] 
At t= 0, before the reactivity insertion, Co = $%/Ah M 1600no. Thus the popu- 

lation of delayed neutron precursors, hence the latent source of neutrons, is about 
1600 times greater than the neutron population in a critical reactor. It is not surpris- 
ing that this large latent neutron source controls the dynamics of the neutron 
population under normal conditions, as we shall now see. 

Example 5.1: Step Negative Reactivity Insertion, p < 0. Equations (5.26) enable 
us to investigate the neutron kinetics of a nuclear reactor. We first consider the case 
of a large negative reactivity insertion p = -0.05 into a critical reactor at t = 0, such 
as might be produced by scramming (rapid insertion) of a control rod bank. With 
the representative light water reactor parameters (P = 0.0075, h = 0.08 sK1, 
h = 6 x 1 o - ~  s), Eqs. (5.26) become 

which is plotted in Fig. 5.2, with T-n. The first term goes promptly to zero on a 
time scale At M A, corresponding physically to readjustment of the prompt neutron 
population to the subcritical condition of the reactor on the neutron generation time 
scale. The second term decays slowly, corresponding to the slow decay of the 
delayed neutron precursor source of neutrons. The neutron population drops 
promptly from no to no/(l-PI$)-the prompt jump--then slowly decays as 
- 

e th / ( ' -B1p) l t .  Thus, scramming a control rod bank cannot immediately shut down 
(reduce the neutron population or the fission rate to near zero) a nuclear reactor or 
other fission chain reacting medium. The delayed neutron precursors decay as 

- [ k / (  1 - P / ~ ) l t  
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Fig. 5.2 Neutron and delayed neutron precursor decay following negative reactivity inser- 
tion p = -0.05 into a critical nuclear reactor. (From Ref. 4; used with permission of MIT 
Press.) 

Example 5.2: Subprompt-Critical (Delayed Critical) Step Positive Reactivity 
Insertion, 0 < p < p. Next, consider a positive reactivity insertion p = 0.0015 < P, 
such as might occur as a result of control rod withdrawal. Equations (5.26) now 
become 

which is plotted in Fig. 5.3. The neutron population increases promptly, on the 
neutron generation time scale-the prompt jump-from no to no/(l -p/P), as the 
prompt neutron population adjusts to the supercritical condition of the reactor, then 
increases as e-[h/ ( ' -P/p) l t ,  governed by the rate of increase in the delayed neutron 
source. The relatively slow rate of increase of the neutron population, following the 

Fig. 5.3 Neutron and delaycd ncutron precursor increase following subprompt-critical 
positive reactivity insertion p = 0.0015 < P into a critical nuclear reactor. (From Ref. 4; used 
with permission of MIT Press.) 
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prompt jump, allows time for corrective control action to be taken before the fission 
rate becomes excessive. 

Example 5.3: Superprompt-Critical Step Positive Reactivify Insertion, p > P. 
Now consider a step increase of reactivity p =0.0115 > P, such as might occur 
as the result of the ejection of a bank of control rods from a reactor. Equations 
(5.26) now become 

The neutron population in the reactor grows exponentially on the neutron genera- 
tion time scale, n -- eL(p-P)'A1t, because the reactor is supercritical on prompt neu- 
trons alone [i.e. k(1-(3) 11. In this example, the neutron population would 
increase by almost a factor of 800 in a tenth of a second, and it would be impossible 
to take corrective action quickly enough to prevent excessive fission heating and 
destruction of the reactor. Fortunately, there are inherent feedback mechanisms that 
introduce negative reactivity instantaneously in response to an increase in the 
fission heating (e.g., the Doppler effect discussed in Sections 5.7 and 5.8), and 
the neutron population will first increase rapidly, then decrease. However, condi- 
tions that would lead to superprompt-critical reactivity insertion are to be avoided 
for reasons of safety Since (3 = 0.0026 for 2 3 3 ~ ,  0.0067 for 2 3 5 ~ ,  and 0.0022 23%u, 
the safe operating range for positive reactivity insertions, 0 < p < J3, is much larger 
for reactors fueled with 2 3 5 ~  than for reactors fueled with 2 3 3 ~  or 23%. 

Prompt-Jump Approximation 

We found that with a reactivity insertion for which the reactor condition is less than 
prompt critical (p < (3) the neutron population changed sharply on the neutron 
generation time scale, then changed slowly on the delayed neutron inverse decay 
constant time scale. If we are not interested in the details of the prompt neutron 
kinetics during the prompt jump, we can simplify the equations by assuming that 
the prompt jump takes place instantaneously in response to any reactivity change, 
and afterward, the neutron population changes instantaneously in response to 
changes in the delayed neutron source (i.e., we set the time derivative to zero in 
the neutron equation). 

Since the delayed neutron precursor population does not respond instantaneously to 
a change in reactivity, Eq. (5.30) is valid with the same delayed precursor popula- 
tion both before and just after a change in reactivity from p, to p, < (3, from which 
we conclude that the ratio of the neutron populations just after and before the 
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reactivity change is 

Use of Eq. (5.30) to eliminate n(t) in the second of Eqs. (5.8) yields a coupled set 
of equations for the time dependence of the precursor density: 

which in the one delayed precursor group approximation takes on the simple form 

The prompt-jump approximation is convenient for numerical solutions because 
it eliminates the fast time scale due to A, which introduces difficulties in time 
differencing methods. Numerical solutions of the point kinetics equations with 
and without the prompt-jump approximation for a variety of reactivity insertions 
indicate that the prompt-jump approximation is accurate to within about 1% for 
reactivities p < 0.5 p. 

Using the one delayed precursor group approximation, the equivalent of 
Eq. (5.30) can be solved for C(t )  and used in the second of Eqs. (5.20) to obtain 

which for a given reactivity variation p(t) can be solved for the neutron population 

n( t )  = no exp 

Example 5.4: Reactivity Worth of Rod Insertion. The neutron flux measured by a 
detector is observed to drop instantaneously from no to 0.5 no when a control rod 
is dropped into a cold highly enriched critical nuclear reactor, in which po =O. 
Using the one-delayed group model with P=0.0065, Eq. (5.31) yields p l =  

P(l -no/nl) = 0.0065(1-2) = -0.0065Aklk. 

Reactor Shutdown 

We mentioned that the large step negative reactivity insertion considered previously 
might be representative of the situation encountered in a reactor shutdown, or 
scram. However, the time required to fully insert control rods is very long compared 
to the prompt neutron generation time that governs the time scale of the prompt 
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jump. We can improve on the representation of the control rod insertion by 
considering a ramp reactivity insertion p(t) = - ~ t .  If we are only interested in cal- 
culating the initial rapid decrease in the neutron population, we can make 
the assumption that the initial precursor concentration remains constant; hence 
the precursor source of delayed neutrons remains constant at its pre-insertion value 

Using this approximation, the equation governing the prompt neutron response to 
the reactivity insertion-the first of Eqs. (5.8)-can be integrated to obtain 

This provides a somewhat better description of the initid reduction in the neutron 
population than do Eqs. (5.27), which, however, would still govern the long-time 
decay after completion of the rod insertion. 

5.5 DELAYED NEUTRON KERNEL AND ZERO-POWER 
TRANSFER FUNCTION 

Delayed Neutron Kernel 

The delayed neutron precursor equations, the second of Eqs. (5.8), can be formally 
integrated to obtain (assuming that Ci = 0 at -m) 

Using this result in the neutron kinetics equation, the first of Eqs. (5.8), yields 

where we have defined the delayed neutron kernel 

Zero-Power Transfer Function 

If the neutron population is expanded about the initial neutron population in the 
critical reactor at t  = 0, 

n ( t )  = no + nl ( t )  (5.41) 
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Eq. (5.39) may be rewritten 

The Laplace transform of a Function of time A(t) is defined as 

Laplace transforming Eq. (5.42) and using the convolution theorem 

A ( t )  B (r  - t )  dt = A (s )  B (s) I 
yields, upon assuming that the term p(t)nl(t) is a product of two small terms and 
can be neglected relative to p(t)no, 

where 

is the zero-power traasjerfunction, which defines the response of the density n, to 
the reactivity. 

The inverse Laplace transformation of Eq. (5.45) and the convolution theorem 
yield the solution for the time dependence of the neutron population as a function of 
the time dependence of the reactivity: 

nl ( t )  = no drZ(t - r)p(r) I t  
where the inverse LapIace transform of the zero-power transfer function is 

and the sj are the roots of the inhour equation, Y(s) = 0, with Y(s) given by 
Eq. (5.14). 
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5.6 EXPERIMENTAL DETERMINATION 
OF NEUTRON KINETICS PARAMETERS 

Asymptotic Period Measurement 

When a critical reactor is perturbed by a step change in properties, the asymptotic 
period may be determined from the response R(t) of neutron detectors by 
T ' = d(ln R)/dt; then the period-reactivity relation or Eq. (5.19) can be used to 
infer the reactivity. For negative reactivities, the asymptotic period, the largest root 
of the inhour equation, is dominated by the largest delayed neutron period and is 
relatively insensitive to the value of the reactivity, so this method is limited practi- 
cally to supercritical reactivity (0 < p) measurements, for which Eq. (5.19) may be 
written 

P A PiIP Pi IP -=-+C-- -- 
PT i=l 1 + XiT - 1 + Ai T 

r=l 

where the fact that safety considerations further limit the practical applicability of 
this method to the delayed critical regime (0 < p < P) has been taken into account 
in writing the second form of the equation. 

Rod Drop Method 

The responses of a neutron detector immediately before (Rowno) and after 
(A, - n,) a control rod is dropped into a critical reactor (po = 0 )  are related by 
Eq. (5.31), which allows determination of the reactivity worth of the rod 

Source Jerk Method 

Consider a subcritical system that is maintained at equilibrium neutron, no, and 
precursor, Cia, populations by an extraneous neutron source rate, S. The neutron 
balance equation is 

If the source is jerked, the prompt-jump approximation for the neutron density 
immediately after the source jerk is 
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because the delayed neutron precursor population will not change immediately. 
These equations and the equilibrium precursor concenkations Cia= pi/hi,A may 
be used to relate the responses of a neutron detector immediately before (Ro - no) 
and after ( R ,  - n l )  the source jerk to the reactivity of the system: 

Pulsed Neutron Methods 

The time dependence of the prompt neutron population in a subcritical fission chain 
reacting medium following the introduction of a burst of neutrons is described by 

since the delayed neutrons will not contribute until later. As discussed in Sec- 
tion 3.6, the asymptotic solution that remains after higher-order spatial transients 
decay is the fundamental mode, which decays exponentially: 

where B, is the fundamental mode geometric buckling for the geometry of the 
system. 

If the neutron detector response, K(r, 1) -- n(r ,  t ) ,  is measured as a function of 
time, then 

Thus the pulsed neutron method can be used to determine -- p/A, assuming that 
p/A is known. If the experiment is performed in a critical system (p =0), the 
measurement yields a value for P/A. In practice, a correction must be made to 
account for transport- and energy-dependent effects which have been neglected in 
this analysis, so that 

Rod Oscillator Measurements 

The rcspcmse of the neutron population, as measured by a neutron detector 
R(tj - n(t) ,  to a sinusoidal osciliation of a control rod that produces a sinusoidal 
reactivity perturbation 

p ( r )  = ,oo sin ur (5.58) 
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can be used to determine a number of neutron kinetics parameters. The response of 
the neutron population to a sinusoidal reactivity perturbation can be calculated from 
Eq. (5.45) by first computing the Laplace transform of Eq. (5.58): 

POW - 
pir) = 2+3 - Pow 

( S  + iw) ( S  - iw) 

and then Laplace inverting Eq. (5.45), or equivalently, by using Eq. (5.58) in 
Eq. (5.47), to obtain 

where cp is the phase angle, defined by 

The first term in Eq. (5.60) arises from the poles of the reactivity [Eq. (5 .  59)]  at 
s = f iw, and the remaining terms arise from the poles of the zero-power transfer 
function Z(s) [i.e., the roots of the inhour equation Y(s) = 0 given by Eq. (5.13)]. For 
a critical system, the largest root of the inhour equation is s=O, so that after 
sufficient time the solution given by Eq. (5.60) approaches 

The average neutron detector response will be (po/oA)Ro,  where Ro is the 
average detector response before the oscillation began. At high oscillation fre- 
quency, the contribution of the first term in Eq. (5.62) to the detector response will 
average to zero and the detector response will reflect the second term. In both cases, 
this provides a means for the experimental determination of po/A in terms of the 
average detector response (R) :  

Zero-Power nansfer Function Measurements 

By varying the frequency of rod oscillation, w, the zero-power transfer function, 
Z(iw), can be measured for a reactor or other critical fission chain reacting system 
by interpreting the detector reading R(t) as 
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Such measurements, when compared with calculation of the transfer function, 
provide an indirect means of determining or confirming the parameters A, Pi, 
and hi. At low frequencies the amplitude of the transfer function approaches 

for w << Xi ,  and the phase angle 4 approaches 

Rossi-ar Measurement 

The prompt neutron decay constant 

can be measured by observing the decay of individual fission reaction chains in 
succession if the process is continued long enough to observe a statistically sig- 
nificant number of decay chains. Assume that a neutron count from a decay chain is 
observed at t = 0. The probability of another neutron count being observed at a later 
time t is the sum of the probability of a count from a chain-related neutron, Q 
exp(at)At, plus the probability of a neutron from another chain, CAt, where Cis  the 
average counting rate: 

P(t)  dt = Cdt + Qe"' dt (5.68) 

We use a statistical argument to determine Q. The probability of a count occur- 
ring at to is Fdto, where F is just the average fission rate in the system. The 
probability of another detector count at tl >to that is chain related to the count 
at to is 

where vp is the number of prompt neutrons per fission and E is the detector effi- 
ciency. The probability of a second chain-related count at t2 > t1 is 

where (vp-1) takes account of the chain-related fission required to produce the 
count at t l .  The three probabilities Pdto, P( t l )d t l  and P(t2)dt2 are treated as 
independent probabilities. Hence the probability for a count in dtl followed by a 
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count in dt2,, both in the chain that produced the count in dto, is obtained by 
multiplying the three probabilities and integrating over -KJ < t < tl: 

where an overbar indicates an average over the prompt neutron emission distribu- 
tion function. 

Noting that v, = kPZ& = kp/(vlCf) and including the probability F2&'dt, dt2 
of a random pair of counts, this becomes 

Since the overall probability of a count in dtl is F&dtl, we need to normalize h i s  
conditional probability by division by F ~ d t , ,  which yields, upon rescaling lime 
from tl = 0, 

This is the Qexp(ut) dl term in Eq. (5.68), so 

In a Rossi-u experiment, the function P(t) of Eq. (5.68) is measured by a time 
analyzer and the random count rate Cdt is subtracted. The parameter a is then 
determined from the remaining Q exp(at) dt term. 

5.7 REACTIVITY FEEDBACK 

Up to this point, we have discussed neutron kinetics-the response of the neutron 
population in a nuclear reactor or other fission chain reacting system to an external 
reactivity input-under the implicit assumption that the level of the neutron popu- 
lation does not affect the properties of the system that determine the neutron 
kinetics, most notably the reactivity. This is the situation when the neutron pupula- 
tion is sufficiently small that the fission heat does not affect the temperature of the 
system (i.e., at zero power). However, in an operating nuclear reactor the neutron 
population is large enough that any change in fission heating resulting from a 
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change in neutron population will produce changes in temperature, which in turn 
will produce changes in reactivity, or reactivity feedback. The combined and 
coupled response of the neutron population and of the temperatures, densities, 
and displacements of the various materials in a nuclear reactor is properly the 
subject of reactor dynamics, but the term is commonly used to also include neutron 
kinetics. 

When the neutron population increases, the fission heating increases. Since this 
heating is deposited in the fuel element, the fuel temperature will increase immedi- 
ately. An increase in fuel temperature will broaden the effective resonance ab- 
sorption (and fission) cross section, generally resulting in an increase in neutron 
absorption and a corresponding reduction in reactivity-the Doppler effect. The 
fuel element will also expand and, depending on the constraints, bend or bow 
slightly, thus changing the local fuel-moderator geometry and Jlux disadvantage 
factor (the ratio of the flux in the fuel to the flux in the moderator), thereby 
producing a change in reactivity. If the increase in fission heating is large enough 
to raise the fuel temperature above the melting point, fuel slumping will occur, 
resulting in a large change in the local fuel-moderator geometry and a correspond- 
ing change in flux disadvantage factor and fuel absorption, producing a further 
change in reactivity. 

Some of the increased fission heat will be transported out of the fuel element 
(time constant of tenths of seconds to seconds) into the surrounding modera- 
tor/coolant and structure, causing a delayed increase in moderator/coolant and 
structure temperature. An increase in moderator/coolant temperature will produce 
a decrease in moderator/coolant density, which causes a change in the local fuel- 
moderator properties and a corresponding change in both the moderator absorption 
and the flux disadvantage factor. In addition, a decrease in moderator density will 
reduce the moderating effectiveness and produce a hardening (shift to higher en- 
ergies) in the neutron energy distribution, which will change the effective energy- 
averaged absorption cross sections for the fuel, control elements, and so on. An 
increase in structure temperature will cause expansion and deformation, producing 
a change in the local geometry that will further affect the flux disadvantage factor. 
These various moderator/coolant changes all produce changes in reactivity. 

The reduction in moderator/coolant density increases the diffusion of neutrons, 
and the increase in temperature causes an expansion of the reactor. The effect of 
increased diffusion is to increase the leakage, and the effect of increased size is to 
reduce the leakage, producing offsetting negative and positive reactivity effects. In 
addition to these internal (to the core) reactivity feedback effects, there are external 
feedback effects caused by changes in the coolant outlet temperature that will 
produce changes in the coolant inlet temperature. 

Temperature Coefficients of Reactivity 

The temperature coefficient of reactivity is defined as 
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To gain physical insight into the various physical phenomena that contribute to the 
reactivity feedback, we first use the one-speed diffusion theory expression for the 
effective multiplication constant for a bare reactor, but extend it to account for fast 
fission by including the ratio G = total fission/thermal fission, to account for the 
resonance absorption of neutrons during the slowing down to thermal energies by 
including the resonance escape probability p, and to account for the leakage of fast 
as well as thermal neutrons by replacing the diffusion length with the migration 
length M: 

which allows us to write 

This formalism lends itself to physical interpretation and can provide quantita- 
tive estimates of reactivity coefficients for thermal reactors, but it is not directly 
applicable to fast reactors. We discuss fast reactor reactivity coefficients in the next 
section, where a perturbation theory formalism that is more appropriate for the 
quantitative evaluation of reactivity coefficients in both fast and thermal reactors is 
introduced. We now discuss reactivity feedback effects on p, f, and PNL; there are 
also smaller reactivity effects associated with q due to shifts in the thermal neutron 
energy distribution and associated with E ,  which latter are similar to the effects 
associated with the thermal utilization factor. 

Doppler Effect 

The resonance capture cross section (one-level Breit-Wigner) is 

where $ is the Doppler broadening shape function, which takes into account the 
averaging of the neutron-nucleus interaction cross section over the thermal motion 
of the nucleus, 

oo is the peak resonance cross section, Ty and r are the capture and total widths of 
the resonance, x = (E- Eo)/ I-, E, = I - / ( ~ E ~ ~ T / A ) " ~ ,  E and Eo are the energies of 
the neutron and of the resonance peak, and A is the mass ol' the nucleus in amu. The 
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total capture in the resonance is given by the resonance integral 

The function $ broadens with increasing temperature, T, characterizing the motion 
of the nucleus. A broadening of the $ function reduces the energy self-shielding in 
the resonance and increases the resonance integral. Thus an increase in fuel tem- 
perature due to an increase in fission heating will cause an increase in the effective 
capture cross section (a,) --I, .  A similar result is found for the fission resonances. 

In thermal reactors, the Doppler effect is due primarily to epithermal capture 
resonances in the nonfissionable fuel isotopes (2"~h, 2 3 8 ~ ,  2 4 0 ~ )  and can be 
estimated by considering the change in resonance escape probability 

where (Zp/NF is the average moderating power per fuel atom, with a sum over 
resonance integrals for all fuel resonances implied, the function 

is tabulated in Table 4.3, and = (Cp/NF)(r/oory). The Doppler temperature 
coefficient of reactivity for a thermal reactor can then be calculated as 

Since the additional fission heating is deposited in the fuel, the fuel temperature, TF, 
increases immediately, and the Doppler effect immediately reduces the reactivity. 
The Doppler effect is a very strong contributor to the safety and operational stabil- 
ity of thermal reactors. 

There are useful fits to the total resonance integrals for 2 3 8 ~ ~ 2  and 2 3 2 ~ h 0 2 :  
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where SF and M F  are surface area and mass of the fuel element. Using this fit, 
Eq. (5.83) becomes 

Fuel and Moderator Expansion Effect on Resonance Escape Probability 

When the fuel temperature increases, the fuel will expand, causing among other 
things a decrease in the fuel density, which affects the resonance escape probability 
and contributes an immediate temperature coefficient of reactivity: 

where (dN/dT)/T= -3(dl/dT)/1= -30, with 0 being the linear coefficient of 
expansion of the material. Since the fuel density decreases upon expansion, the 
resonance absorption decreases, and this reactivity coefficient contribution is posi- 
tive (note that since p < 1, In p < 0). 

After the increase in fission heating has been transported out of the fuel element 
into the coolant/moderator, the moderator temperature, TM, will increase, which 
causes the moderator to expand and contributes a delayed temperature coefficient 
of reactivity: 

1 ~ N M  - - lnp -- 
a& = P ~ N M  ~ T M  - 

(iM 2) = 3 ' 9 ~  1.p (5.87) 

The decreased moderator density rcduces the moderating power, reducing the prob- 
ability that the neutrons will be scattered to energies beneath the resonance, hence 
increasing the resonance absorption and contributing a negative reactivity coeffi- 
cient. 

Example 5.5: Resonance Escape Probability Fuel Temperature Coeficient .for 
U02.  The prompt feedback resulting immediately from an increase in power is 
associated with the increase in fuel temperature, the most significant part of which 
is due to the change in the resonance escape probability due to the Doppler broad- 
ening of resonances, as given by Eq. (5.85), and due to the fuel expansion, as given 
by Eq. (5.86). For a U 0 2  reactor consisting of assemblies of 1-cm-diameter fuel 
pins of height H in a water lattice with z,/NM = 100 and fuel density p = 10 g/cm3, 
S F / M F  = K ~ H / E ( ~ / ~ ) ~ H P  = 0.4, 1(300•‹K) = 11.6 + 22.8 x 0.4 = 20.72, and P" = 
61 + 47(Sk/Mk ) x lop4 = 79.8 x lop4. The resonance escape probability at 
300•‹K is p = exp(-NFl/@,) = exp[-20.72/(100 x 0.948)] = 0.8036, and h ( p )  = 

-0.2186. The Doppler temperature coefficient of reactivity at 300•‹K is 
xyF = l n ( ' ~ ) ~ ' y 2 ~ ' / ~  = (-0.2186)(79.8 x 10-4)/(2)(17.32) = -5.036 x Ak/k.  
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The linear thermal expansion coefficient for U02 is OF= 1.75 x lou5 OK-', and the 
fuel expansion contribution to the resonance escape probability temperature coeffi- 
cient of reactivity is 4, = -3O~ln(p) = -3(1.75 x l o p 5 )  (-0.2186) = 
1.148 x 10-~Ak/k. Thus the total prompt fuel temperature coefficient of reactivity 
due to the resonance escape probability is a;F + c& = -3.888 x 10-~Ak/k. 

Thermal Utilization 

The thermal utilization can be written simply in terms of the effective cell-averaged 
fuel and moderator absorption cross sections discussed in Section.3.8: 

Recalling that C r No, the reactivity coefficient associated with the thermal utili- 
zation has an immediate negative component associated with the fuel temperature 
increase and a delayed positive contribution asswiated with the moderator density 
decrease: 

Account has been taken in writing Eq. (5.89) of the fact that the thermal disadvan- 
tage factor, 5, which is used in the definition of effective homogenized fuel and 
moderator cross sections, will also be affected by a change in temperature. An 
increase in fuel temperature hardens (makes more energetic) the thermal neutron 
energy distribution, which reduces the spectrum average of the l / v  thermal fuel 
cross section and thus reduces the thermal utilization. An increase in the fuel 
temperature also reduces the fuel density, further reducing the thermal utilization. 
An increase in moderator temperature has little effect on the moderator cross 
section but reduces the moderator density, which increases the thermal utilization. 

Nonleakage Probability 

The nonleakage probability can be represented by 

Temperature increases can affect the nonleakage probability by changing the char- 
acteristic neutron migration length, or the mean distance that a neutron is displaced 
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before absorption, and by changing the size of the reactor. Assuming that both of 
these effects are associated primarily with changes in the moderator temperature, 
we write 

An increase in moderator temperature causes a decrease in moderator density, 
which affects the migration area as 

where we have used C, = Cf + Cf = Cf(1 - f). 
The geometric buckling B, = G/lR, where G is a constant depending on geom- 

etry (Table 3.3) and lR is a characteristic physical dimension of the reactor. Thus 

and Eq. (5.91) becomes 

A decrease in moderator density allows neutrons to travel farther before absorp- 
tion, which increases the leakage and contributes a negative reactivity coefficient 
component. Expansion of the reactor means that a neutron must travel farther to 
escape, which contributes a positive reactivity coefficient component. 

Representative Thermal Reactor Reactivity Coefficients 

Reactivity coefficients calculated for representative thermal reactors are given in 
Table 5.2. 

TABLE 5.2 Representative Reactivity Temperature Coefficients in Thermal Reactors 

BWR PWR HTGR 

Doppler (Aklk x lop6  OK-')  -4 to - 1  -4 to - 1  -7 
Coolant void (Aklk x lop6 /% void) -200 to -100 - - 

Moderator (Aklk x 10-"K-') -50 tu -8 -50 to -8 + 1 
Expansion (Aklk x lop6 OK-') --0 --0 --0 

Source: Data from Ref. 3; used with permission of Wiley. 

Example 5.6: U 0 2  Fuel Heat Removal Time Constant. It is important to 
emphasize that the temperature reactivity feedback associated with the various 



164 NUCLEAR REACTOR DYNAMICS 

mechanisms that have been discussed take place at different times. The feedback 
associated with changes in the fuel temperature take place essentially instanta- 
neously, since an increase in fission rate produces an immediate increase in fuel 
temperature. However, the increase in moderator/coolant temperature occurs later, 
after some of the additional heat is conducted out of the fuel element. The heat 
balance equation in the fuel element, 

where p is the fuel density, K the heat conductivity, C the heat capacity, and q"' the 
volumetric fission heat source, can be used to estimate a time constant characteriz- 
ing the conduction of heat out of the fuel element to the interface with the cool- 
antlmoderator for a fuel pin of radius a, z = pca2/K. 

Typical parameters for a U02  fuel element in a thermal reactor are a = 0.5 cm, 
K = 0.024 W/cm - OK, p = 10.0 g/cm3, and C =  220 J/kg. OK. The heat conduc- 
tion time constant for heat removal from the fuel into the coolant is z =  
p c a 2 / ~  = (10g/cm3)(220 ~ / k ~  "K)/(O.O24 J/s cm " ~ ) ( 1 0 ~  g/kg) = 22.9 s. For 
a smaller fuel pin characteristic of a fast reactor with a =0.25 cm, the U02 fuel 
time constant would be about 6s. With a metal fuel instead of UO,, the heat - 
conductivity is much larger, and the heat removal time constants are on the order 
of 0.1 to 1.0s. 

Startup Temperature Defect 

A reactor is initially started up from a cold condition by withdrawing control rods 
until the reactor is slightly subcritical, thus producing an exponentially increasing 
neutron population on a very long period. As the neutron population increases, the 
fission heating and thus the reactor temperature increase. This increase in tempera- 
ture produces a decrease in reactivity (almost all reactors are designed to have a 
negative temperature coefficient) that would cause the neutron population to de- 
crease and the reactor to shut down if the control rods were not withdrawn further to 
maintain an increasing neutron population. The total amount of feedback reactivity 
that must be offset by control rod withdrawal during the course of the startup to 
operating power level is known as the temperature defect. The temperature defects 
for water-moderated reactors, graphite-moderated reactors, and sodium-cooled fast 
reactors are about A k / k =  2-3 x lop2, 0.7 x and 0.5 x respectively. 

5.8 PERTURBATION THEORY EVALUATION 
OF REACTIVlTY TEMPERATURE COEFFICIENTS 

Perturbation Theory 

The multigroup diffusion equations (Chapter 4) are 
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where C,I,, is the cross section for scattering a neutron from group g' to group g, 
C, is the removal cross section for group g, which is equal to the absorption cross 
section plus the cross section for scattering to all other groups, X, is the fraction of 
the fission neutrons in group g, Dg and vCf, are the diffusion coefficient and the nu- 
fission cross section in group g, and +, is the neutron flux in group g. 

We now consider a perturbation in materials properties (e.g., as would be caused 
by a change in local temperature) such that the reactor is described by an equation 
like Eq. (5.96), but with D, + D, + AD,, Z, + C, + A&, where the A terms in- 
clude changes in densities, changes in the energy averaging of the cross-section 
data and energy self-shielding, changes in spatial self-shielding, and changes in 
geometry. If we assume that the perturbation in materials properties is sufficiently 
small that it does not significantly alter the group fluxes, we can multiply the 
unperturbed and perturbed equations by I$:, subtract the two, integrate over the 
volume of the reactor, and sum the resulting equations for all groups to obtain the 
perturbation theory estimate for the change in reactivity associated with the per- 
turbation in material properties: 

The quantity $:, the importance of neutrons in group g in producing a subsequent 
fission event, is discussed in Chapter 13. This expression, together with the sub- 
sidiary calculation of the AC, and AD, terms, including all the effects mentioned 
abovc, provides a practical means for the quantitative evaluation of reactivity 
coefficients in nuclear reactors. 

Example 5.7: Reactivity Worth of Uniform Change in Thermal Absorption Cross 
Section. With the assumption that all of the fission occurs in the thermal group, the 
reactivity worth of a uniform change in thermal absorption cross section in a uni- 
form thermal reactor is Aklk = A Z $ I , ~ / V C ? I ~ ~  E A C ~ / C ~ ,  because Ith, the inte- 
gral over the reactor of the product of the thermal group importance function and 
flux, appearsin both the numerator and denominator, and because in a critical 

th reactor C: vCf . 

We now discuss some fast reactor reactivity coefficients that could not be treated 
by the more approximate method of the preceding section, although we emphasize 
that this perturbation theory calculation is also used for thermal reactor reactivity 
coefficient evaluation. 
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Sodium Void Effect in Fast Reactors 

The reactivity change that occurs when sodium is voided from a fast reactor can be 
separated into leakage, absorption, and spectral components. The leakage and 
spectral components correspond to the first (AD,) and third (AZ,!,,) terms, re- 
spectively, in Eq. (5.97). The absorption component corresponds to the second 
(AX,) and fourth (AvXf) terms in Eq. (5.97), although the change in fission cross 
section is usually small and therefore neglected, and this component is usually 
referred to as the capture component. The spectral and capture components are 
normally largest in the center of the core, where the neutron flux and importance 
function are largest, and the leakage component is normally largest in the outer part 
of the core, where the flux gradient is largest. 

The magnitude of the sodium void coefficient varies directly with the ratio of the 
number of sodium atoms removed to the number of fuel atoms present. The spectral 
component of the sodium void coefficient is generally positive, is more positive for 
2 3 9 ~ ~  than for 2 3 5 ~ ,  and becomes increasingly positive as fissile material concen- 
tration decreases relative to sodium content. The capture component tends to be- 
come more positive with softer neutron spectra because of the 2.85-keV resonance 
in 2 3 ~ a ,  hence to become more positive with increasing sodium concentration 
relative to fuel concentration. The negative leakage component is generally smaller 
than the other two components, although the leakage component can be enhanced 
by the choice of geometrical configuration. As a result, the overall reactivity effect 
of voiding the central part of the core is positive, and may be positive for voiding of 
the entire core. This poses a serious safety concern that must be offset by proper 
design to ensure that other negative reactivity coefficients are dominant. 

Doppler Effect in Fast Reactors 

In fast reactors, the neutron energy spectrum includes the resonance regions of both 
the fissionable ( 2 3 5 ~ ,  2 3 3 ~ ,  239Pu, 2 4 1 ~ ~ )  and nonfissionable (232~h,  2 3 8 ~ ,  2 4 0 ~ )  
fuel isotopes. The Doppler effect in fast reactors is due almost entirely to reso- 
nances below about 25 keV. An increase in fuel temperature will produce an in- 
crease in both the fission and absorption cross sections, and the resulting change in 
reactivity can be positive or negative, depending on the exact composition. The 
temperature coefficient of reactivity can be estimated from 

where NF is the density of fuel nuclei (sum over species implied), @(E) and 4; 
are the importance of a neutron at energy E and of a fission neutron (i.e., the 
number of fissions the neutron subsequently produces). Since in a critical system 
each neutron will on average produce l / v  fissions, 4' = 4; z l / v  is used in the 
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second form of the estimate, and cx = a,/af has also been used. Since a generally 
decreases with increasing neutron energy (Chapter 2), the reactivity change will 
tend to be more positive/Iess negative for metal-fueled cores with a relatively hard 
spectrum. The oxygen in U02 fuel softens (makes less energetic) the energy spec- 
trum and thereby makes the reactivity change more negative/less positive. Detailed 
design calculations, using methods benchmarked against critical experiments, in- 
dicate that in larger reactors with a high fertile-to-fissile ratio the Doppler coeffi- 
cient is sufficiently negative to provide a prompt shutdown mechanism in the event 
of excess fission heating of the fuel. 

Fuel and Structure Motion in Fast Reactors 

The increased fission heating coincident with an increase in the neutron population 
causes the fuel to expand radially and axially and to distort (e.g., bow) due to 
constraints. The expanding fuel first compresses, then ejects, sodium. The addi- 
tional fission heat is transferred to the structure, producing a delayed expansion and 
distortion of the structure. The radial expansion, which is cumulative from the core 
center outward, results in a general outward radial movement of the fuel and in an 
expansion of the size of the reactor. The reactivity effect of this fuel and structure 
motion is highly dependent on the details of the design. However, a few simple 
estimates provide a sense of the magnitude of the effects. 

Example 5.8: Reactivity Effects of Fuel and Structure Expansion. Radial motion 
of the fuel by an amount Ar from an initial radial location r causes a reduction in 
local fuel density which varies as 3, leading to a local density change ANF/NF M 

(rZ-(r+Ar)2/r2= -2Ar/r. Axial fuel expansion leads to linear fuel density 
decreases. The overall expansion reactivity coefficient is a combination of the 
negative effect of reduced fuel density and the positive effect of increased core 
size, hence reduced leakage. An overall expansion reactivity coefficient is of 
the form 

where, for the example of a 1000-MWe U02 reactor with H/D = 0.6, the constants 
are (a=0.143, b=0.282, c=0.131, d=0.281). 

Fuel Bowing 

Fuel distortion (e.g., bowing) is very much a function of how the fuel is con- 
strained. The calculated reactivity effect of inward bowing in the metal fueled 
EBR-I1 was Ak/k = -0.35AV/V = -0.7AR/R = 0.0013. This predicted positive 
reactivity due to bowing exceeded the combined negative reactivity from all other 
effects at full flow and intermediate power, suggesting the possibility of a positive 
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reactivity coefficient over the intermediate power range, consistent with experi- 
mental observation. 

Representative Fast Reactor Reactivity Coefficients 

Reactivity coefficients calculated for a representative fast reactor design are given 
in Table 5.3. 

TABLE 5.3 Reactivity Codicients in a 1000-MWe Oxide-Fueled Fast Reactor 

Temperature Ak/k x lo-' Power: Ak/k x 
"C- I MW- ' 

Sodium expansion core + 3.0 
Sodium expansion reflector -1.6 
Doppler -3.2 
Radial fuel pin expansion + 0.4 
Axial core expansion -4.1 
Radial core expansion -6.8 

Source: Data from Ref. 9; used with permission of American Nuclear Society. 

5.9 REACTOR STABILITY 

Reactor Transfer Function with Reactivity Feedback 

Since the reactor power is related directly to the neutron population, we can rewrite 
the neutron kinetics equations, in particular Eq. (5.39), in terms of the power, 
P=EfnvvXf ~Vol, where Ef is the energy reIease per fission. If we expand the 
power about the equilibrium power Po as P(t)  =Po + Pl(t) and limit consideration 
to the situation IP1/Pol << 1, we find that 

Representing the reactivity as the sum of an external reactivity, pex, such as may 
be caused by control rod motion, and a feedback reactivity, pf, caused by the 
inherent reactivity feedback mechanisms discussed in the preceding two sections, 
the total reactivity may be written 



REACTOR STABILITY 169 

where f (t-T) is the feedback kernel that relates the power deviation P I  = P-Po at 
lime t -z to the resulting reactivity at time t .  

Using the last form of Eq. (5.101) in Eq. (5.100), Laplace transforming (equiva- 
lently, assuming an est time dependence), and rearranging yields a transfer function, 
H(s), relating the external reactivity input to the power deviation from equilibrium: 

PI(S) = 1 - P~F(S)Z(S) '(') popex (s) = ~ ( s ) ~ o p ~ ~ ( s )  

This new transfer function contains the zero-power transfer function, Z(s), which 
relates the prompt and delayed neutron response to the external reactivity, and the 
feedback transfer function, F(s), which relates the feedback reactivity to the power 
deviation P I  = P-Po: 

Note that when Po + 0, H(s) + Z(s). 
The linear stability of a nuclear reactor can be determined by locating the poles 

of H(s) in the complex s-plane. This follows from noting that when Eq. (5.102) is 
Laplace inverted, the solutions for P , ( t )  exp(sjt), where the sj are the poles of 
H(s). Any poles located in the right half of the complex s-plane (i.e., with a positive 
real part) indicate a gruwing value of Pl(t)-an instability. Since Z(s) appears in the 
numerator and denominator of H(s), its poles (the roots of the inhour equation) 
cancel in H(s), and the poles of H(s) are the roots of 

We can anticipate from Eq. (5.104) that the poles of H(s), hence the linear stability 
of the reactor, will depend on the equilibrium power level, Po. 

Stability Analysis for a Simple Feedback Model 

To determine the roots of Eq. (5.104), we must first specify a feedback model in 
order to determine the feedback transfer function, F(s). We consider a two-tem- 
perature model in which the deviation in Ihe fuel temperature from the equilibrium 
value satisfies 

where a involves the heat capacity and density of the fuel and w~ is the inverse of 
the heat transfer time constant of the fuel element (i.e., the time constant for remo- 
val of heat from the fuel element into the coolant/moderator). The tempcrature 
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deviation about the equilibrium value in the coolant/moderator satisfies 

-- dTM(t) - bTF(t - At) - WMTM(~) 
dt 

where b involves the mechanism governing the response of the coolant/moderator 
temperature to a change in the fuel temperature, a~ is the inverse of the heat 
removal time constant for the moderator, and for the sake of generality we assume 
that the coolant mass flow rate is varied in response to the fuel temperature at an 
earlier time (t-At). The same model could be applied to any two-temperature 
representation of a reactor core. For example, we could consider TF to be the 
temperature of a simuItaneously heated fuel-coolant region and TM to represent 
the temperature of the structure in a fast reactor model. Writing 

defines the feedback kernel, f ( t -T) ,  where TF(t) and TM(t) are deviations from the 
equilibrium temperatures. 

Laplace transforming these three equations, using the convolution theorem, and 
combining leads to identification of the feedback transfer function: 

where XF = Q U ~ / O ~  and XM= ( a b ~ ~ / o ~ 0 ~ )  are the steady-state reactivity power 
coefficient for the fuel and coolant/moderator, respectively. Using the zero-power 
uansfer function, Z(s), of Eq. (5.46), but in the one-delayed neutron group approxi- 
mation, and the feedback transfer function, F(s), of Eq. (5.108), Eq.(5.104) for the 
poles of the reactor transfer function with feedback, H(s), becomes 

There are a number of powerful mathematical techniques from the field of linear 
control theory (Nyquist diagrams, root-locus plots, Routh-Hurwitz criterion, itera- 
tive root finding methods, etc.) for finding the roots of Eq. (5.109), or of the more 
complex equations that would result from more detailed reactivity feedback mod- 
els. Some simplification results from limiting attention to growth rates that are 
small compared to the inverse neutron generation time (s << A-I), allowing neglect 
of the A term. We now consider two additional, approximations which allow us to 
obtain valuable physical insights. 
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If we set XM - aM = 0 (i.e., neglect the coolant/moderator feedback), 
Eq. (5.109) can be solved analytically to obtain 

If the fuel power coefficient is positive (XF - czF > O),  the term under the radical 
is positive and greater than unity, both roots are real, and one root is positive, 
indicating an instability. If the fuel power coefficient is negative (XF czF < O), 
the real parts of both roots are negative, indicating stability. 

Threshold Power Level for Reactor Stability 

If we retain XM finite but restrict our consideration to instabilities with growth rates 
much less than the inverse fuel heat removal time constant, s << W E  and set the time 
delay to zero, At = 0 ,  we can again solve Eq. (5.109) analytically for the poles of 
the reactor transfer function, H(s): 

This expression reveals the existence of a threshold equilibrium power level, Po, 
above which a reactor becomes unstable. As Po + 0, the two roots approach 0 and 
-aM, a marginally stable condition, and do not depend on the reactivity power 
coefficients XM and XF. As Po increases, the nature of the solution depends on XM 
and XF Suppose that the fuel power coefficient is positive, XF > 0 ,  and the mod- 
erator power coefficient is negative, XM < 0; this situation might arise, for example, 
in a fast reactor when XF represents the combined Doppler, fuel expansion, and 
sodium void coefficients of the fuel-coolant mixture and XM represents the struc- 
ture expansion coefficient. Taking XI./XM = -; and w~ = $, the roots of 
Eq. (5.1 11) are plotted as a function of (XMIPo/P (denoted at Po) in Fig. 5.4. As 
Po increases from zero, the marginally stable (s = 0 )  root moves into the left-half 
complex s-plane and the (s = wM) root becomes less negative, indicating that the 
reactor would be stable. At IXMIPo/P = 0.0962, the roots become complex conju- 
gates with a real part that increases with Po. At lXMIPm/P > 5, the real part of the 
two roots becomes positive, indicating that the reactor would become unstable 
above a certain threshold operating power level. At IXMIPo/P > 1.664, the roots 
become real and positive, with one increasing and the other decreasing with 
increasing Po, continuing to indicate instability. 
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, Re (s) 

Fig. 5.4 Characteristic roots s+ and s- of Eq. (5.11 1) as a function of critical power level 
Po (IXMIPo/P) (Xr- > 0, XF/XM = -$, WM = is). (Rom Ref. 8; used with permission of Van 
Nostrand.) 

The total power coefficient at steady state is negative (F(0) = XF + XM < 0), but 
the reactor in this example was unstable above a certain threshold power level. The 
positive fuel power feedback was instantaneous because the fuel temperature in- 
creases instantaneously in response to an increase in fission heating. However, the 
coolant/moderator temperature does not increase instantaneously because of mod- 
erator heat removal, but increases on a time scale governed by the moderator heat 
removal time constant o;' following a change in fuel temperature, as may be seen 
by solving Eq. (5.106) for a step increase ATF at t = 0: 

The delay of the moderator temperature response to an increase in the temperature 
of the fuel was neglected; its inclusion would contribute further to the possibility of 
instabilities. It is clear that heat removal time constants play an important role in the 
stability of a reactor. 

The two-temperature feedback model can be generalized to investigate the sta- 
bility of a variety of different feedback models that can be characterized by a fast 
(f)- and a slow (s)- responding temperature. For a fast temperature response that 
was either prompt (af = 0)  or zero (Xf = 0)  plus a slow temperature response with 
a finite time constant (a,# 0) determined either by heat conduction or heat con- 
vection, the results are given in Table 5.4. 

More General Stability Conditions 

A necessary condition for stability is 
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TABLE 5.4 Instability Conditions for Some Simple Two-Temperature 
Feedback Models 

Reactivity Coefficients 

Fast (of = 0) Slow ( w ,  # 0) Heat Removal F(s) InstabiIity 

Xf = 0 X, < 0 Conduction XS None 
1 + s/os 

xf = o X, < o Convection ~ , ~ e - ~ / ~ "  Po > Pthresh 

X,< 0 Conduction Xf +- Po > Ptbresh 
As 

1 + s/o, 

Conduction None 

Xf < O  X, <O Convection X/ + ~ , ~ e  PO > P t h m h  

Source: Data from Ref. 9; used with pemissiun ol American Nuclear Society. 

However, this is not a sufficient condition, as the analysis above, in which 
F(0) = XF + XM < 0 ,  demonstrates. The result discussed in the preceding example 
suggests a useful generalization-a reactor is on the verge of becoming unstable 
when the transfer function, H(s) ,  has a pole with purely imaginary s [i.e., when Eq. 
(5.104) has a purely imaginary root s= io] .  Except for values of o for which 
Z(iw) =0, Eq. (5.104), which determines the poles of the transfer function, can 
be rewritten in the case s = io:  

If this equation has a solution, it corresponds to a condition for which the reactor 
is on the verge of instability. A necessary condition for a solution is that 2 - ' ( i o )  
and F(iw) have the same ratio of real to imaginary parts (i.e., the same phase). If 
Z '(iw) and F(iw) do have the same phase a1 some o)=o,,, there will be some 
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value of Po for which Eq. (5.1 14) has a solution. If this value of Po is physically 
reasonable (Po > O), there is instability onset at this (Po, ow,) condition. The real 
and imaginary parls of 1 /Z(iw) are 

which are both real and positive, thus are in the upper right quadrant of the complex 
plane. Therefore, a necessary condition for G(iw) = 0 to have a solution is that the 
real and imaginary parts of the feedback transfer function, F(io), also lie in the 
same quadrant (i.e., both be real and positive). Hence a necessary condition for an 
instability is 

Re{F(iw)) > 0 and Im{F(iw)) > 0 (5.116) 

We now consider the example above with the simple feedback model of 
Eqs. (5.105) lo (5.108), but with the delay term At =O. The qualitative behavior 
of the real and imaginary parts of F(io) of Eq. (5.108) arc plotted in Fig. 5.5 for 
three different cases, all of which have a negative moderator power coefficient, 

Fig. 5.5 Plut of R = Re{F(im)] + il{b'(iw)}of Eq. (5.108) with A1 -0 :  case (a) X, - 0, 
X,w < 0: case (b), X, < 0, X ,  < 0; case (c), lXhl > X F  > 0. XM < 0. (From Rcf. 8; uscd with 
permission :)f Van Nostrand.) 
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X, < 0. Case (a) corresponds to no reactivity feedback from the fuel (XF = 0); the 
instability criterion of Eq. (5.116) is satisfied for w > ( ~ ~ o ~ ) " ~ ,  even though 
the steady-state power coefficient X(0) = XM < 0. For case (b), with a sufficiently 
large negative value of the fuel power coefficient, XF < 0, the criterion of Eq. (5.116) 
is never satisfied and the reactor is stable. In case (c), the fuel reactivity power coeffi- 
cient is positive but smaller in magnitude than the negative moderator reactivity 
power coefficient, IXMl > lXFI > 0, which is the situation leading to the solution 
of Eq. (5.11 1); the reactor can become unstable, as found above from examination 
of the roots given by Eq. (5.1 11). 

A sufficient condition for unconditional stability (i.e., no power threshold) has 
been shown to be 

which is a requirement that the phase angle of the feedback transfer function, -F(s), 
along the in-axis is between -90" < + < +90•‹; thus the feedback response is 
negative and less than 90" out of phase with the power change that produced it. 
This phase constraint places constraints on the time delays. This sufficient criterion 
for stability has been found to be over restrictive, however. 

The unconditional stability sufficient condition of Eq. (5.1 17) has been used to 
determine unconditional stability criteria for a variety of feedback models that can 
be characterized by a fast ( f )  and a slow (s) responding temperature. The fast 
temperature response was either prompt (af = 0) or determined by heat conduction, 
and the slow temperature response was with a finite time constant (n,# 0) 
determined by either heat conduction or heat convection. The results are given in 
Table 5.5. 

Power Coefficients and Feedback Delay Time Constants 

It is clear from the previous discussion that the reactivity temperature coefficients 
actually enter the analysis as reactor power coefficients, associated with which 
there are time delays related to heat transfer and removal time constants, and that 
the results of the analysis are dependent on the delay times as well as on the 
temperature coefficients. We can generalize the two-temperature model to define 
a general reactor power coefficient: 

where 8p/dTj are the reactivity temperature coefficients corresponding to a change 
in local temperature 5. The quantities d p / d q  are reactivity temperature gradient 
coefficients denoting the change in reactivity due to a change in temperature 



TABLE 5.5 Sufficient Conditions for Unconditional Stability of Two-Temperature Feedback Models 
- - - - - - - --- 

Reactivity Coefficients F(ia) Stability Criterion 

Coupled prompt Xf, conduction X, 

Uncoupled conduction Xf and X,  

Coupled conduction Xf and X, 

Coupled prompt X) convection X, 

Coupled Conduction Xf, convection X, Never unconditionally stable 
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gradient (e.g., as would produce bowing of a fuel element). These reactivity 
coefficients can be calculated as discussed in the two preceding sections. The quan- 
tities dT,/dP and dT,!/aP are the time-dependent changes in local temperature 
and temperature gradients resulting from a change in reactor power and must be 
calculated from models of the distributed temperature response to a change in 
reactor power. 

The time constants that determine the time delays in the various local tempera- 
ture responses to a power increase depend on the specific reactor design. Some 
simple estimates suffice to establish orders of magnitude. The time constant for heat 
transfer out of a fuel pin of radius r or plate of thickness r, density p, heat capacity 
C, and thermal conductivity K is -cf = p ~ ? / ~ ,  which generally varies from a few 
tenths to a few tens of seconds.  he effect of cladding and the surface film drop is to 
increase the time constant for the fuel element. The lumped time constant for the 
coolant temperature is r, = Cc/h + (Z/2v)(l+ CfIC,), where C, and Cfare the heat 
capacities per unit length of the coolant and fuel, respectively, h is the heat transfer 
coefficient between fuel and coolant, Z is the core height, and v is the coolant flow 
speed. Typical values of %vary from a few tenths to a few seconds. 

5.10 MEASUREMENT OF REACTOR TRANSFER FUNCTIONS 

Measurement of the reactor transfer function provides useful information about a 
reactor. A measurement at low power can identify incipient instabilities which 
produce peaks in the transfer function. Provided that the feedback mechanisms 
do not change abruptly with power, the low-power transfer function measurements 
can identify conditions that would be hazardous at high power, thus allowing for 
their correction. Information about the feedback mechanisms can be extracted from 
measurement of the amplitude and phase of the transfer function. Any component 
malfunction that altered the heat removal characteristics of the reactor would affect 
the transfer function, so periodic transfer function measurements provide a means 
to monitor for component malfunction. 

Rod Oscillator Method 

The sinusoidal oscillation of a control rod over a range of frequencies can be used 
to measure the transler function, as described in Section 5.6. The results of 
Eq~(5.60) to (5.64) apply to a reactor with feedback when n&(io) is replaced 
by PoH(im). There are some practical problems in measuring the transfer function 
with rod oscillation. There will be noise in the detector response, which will require 
a sufficiently large reactivity oscillation for the detector response to be separable 
from the noise, and nonlinear effects [i.e., the term pn, which was neglected in Eq. 
(5.42)] may invalidate the interpretation. Furthermore, the oscillation will not be 
perfectly sinusoidal, and it will be necessary to Fourier analyze the detector re- 
sponse to isolate the fundamental sinusoidal component. 
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Correlation Methods 

It is possible to measure the reactor transfer function with a nonperiodic rod 
oscillation. Consider the inverse Laplace transform of Eq. (5.102): 

which relates the relative power variation from equilibrium [P1/Po = ((P-Po)/Po] to 
the time history of the external reactivity-the rod oscillation in this case-includ- 
ing the effect of feedback. The kernel h(t) is the inverse Laplace transform of the 
transfer function, H(s). The cross correlation between the external reactivity and the 
power variation is defined as 

where T is the period if pe, and P I  are periodic and T goes to infinity if not. 
Using Eq. (5.119) in Eq. (5.120) yields 

where $,, is the reactivity autocorrelation function. Taking the Fourier transform of 
Eq. (5.121) yields an expression for the transfer function 

where the transforms 

are known as the cross spectral density and the input or reactivity spectral density, 
respectively. 

If the control rod (or other neutron absorber) position is varied randomly over a 
narrow range and a neutron detector response is recorded, the reactivity autocorre- 
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lation function, $,,, and the reactivity-power cross-correlation function, +,p, can 
he constructed by numerically evaluating the defining integrals over a period of 
about 5 min using a series of delay intervals, T, increasing in discrete steps of about 
AT = 0.01 s. The cross spectral density and reactivity spectral density can then be 
calculated by numerically evaluating the defining Fourier transform; for example, 

F{~&(T)) N q5,,p(nr AT) (COS nu A7 + i sin nw AT)AT (5.124) 
n 

where n varies from a large negative integer to a large positive integer. There are 
sophisticated fast Fourier transform methods which are used in practice for evalua- 
tion of the cross and reactivity spectral densities. 

Experimentally, it is convenient to use a reactivity variation that changes from 
positive to negative at definite times, so that the reactivity autocorrelation function 
is nearly a delta function. For such a pseudorandom binary reactivity variation, 

&(T - t l )  - const S(t - t') (5.125) 

In this case, it follows from Eq. (5.121) that 

and that the amplitude and phase of the transfer function can be extracted from the 
computation of only the cross correlation function. By repeating the Fourier trans- 
forms of Eq. (5.123) for different values of w, the frequency dependence of H 
( N iw) can be determined. 

Reactor Noise Method 

Minor and essentially random variations in temperature and density within a nu- 
clear reactor, such as bubble formation in boiling water reactors, produce small and 
essentially random reactivity variations. Cross correlation of the response of a 
neutron detector, which is proportional to the reactor neutron population or power, 
provides a means of determining the amplitude of the reactor transfer function from 
this noise. Writing the power autocorrelation function 

and using Eq. (5.1 19) yields 
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Fourier transformation then gives 

where the fact that the autocorrelation function of a random reactivity input is a 
delta function, the Fourier transform of which is a constant, has been used in 
writing the final form. Thus the amplitude, but not the phase, of the reactor transfer 
function can be determined from autocorrelation of the reactor noise. Again, the 
frequency dependence is determined by taking the Fourier transform with respect to 
various frequencies, a. This provides a powerful technique for online, nonintrusive 
monitoring of an operating reactor for component malfunction and incipient 
problems. 

Example 5.9: Reactor Transfer Function Measurement in EBR-I. The reactor 
transfer function measurement on the early EBR-I sodium-cooled, metal fuel fast 
reactor provides a good example of the physical insight provided by transfer func- 
tion measurements. The Mark I1 core was stable at lower power levels, but at 
moderate power levels an oscillatory power was observed. The measured transfer 
function is shown in Fig. 5.6: in part (a)  for several values of the coolant flow rate 
(gallons per minute), and in parts (6) and (c)  for several values of the reactor power 
level. At the lower coolant flow rates and the higher power levels there is a pro- 
nounced resonance in the transfer function, suggesting an incipient instability, 
which is not present at the higher flow rates and lower power levels. 

The Mark U core was known to have a prompt reactivity feedback which added 
reactivity with an increase in power or a decrease in coolant flow. However, when 
steady state was achieved following an increase in power at constant flow, the net 
change in reactivity was negative, indicating an overall asymptotic power coeffi- 
cient that was negative. Calculations indicated that the Doppler effect was negli- 
gible, that bowing of the fuel rods toward the center of the core contributed 
significant positive reactivity, and that the outward expansion of the structural 
plates supporting the fuel rods led to a delayed outward movement of the fuel rods 
that contributed negative reactivity. 

A three-temperature model was used to explain the phenomena observed. The 
fast positive reactivity was modeled as due to the fuel bowing, and the delayed nega- 
tive reactivity was modeled as the fuel motion due to the delayed outward motion 
of the fuel rods upon expansion of the structural plates. Heat conduction plus con- 
vection for the two separate structural effects Ied to a three-term representation 
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Fig. 5.6 Reactor transfer function EBR-1: (a) as a function of coolant flow rate; (b, c )  as a 
function of reactor power. (From Ref. 9; used with permission of American Nuclear Society.) 

(b)  0.01 0.1 1 

of the power feedback. After correcting for the frequency dependence of the oscil- 
latory heat flow, the model achieved very good agreement with the transfer function 
measurements. 
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computer codes which model in detail the coupled dynamics of the neutrons, 
temperature, flow, structural motion, change of state, and so on. However, some 
physical insight as to the effects of feedback can be obtained by considering the 
simple model of Section 5.4 in the presence of feedback. 

The point kinetics equations with feedback may be written in the one delayed 
neutron group approximation as 

where a feedback reactivity pf(t) = afT(t) has been added to the step reactivity 
insertion p,,. We will treat the temperature, T, as either a fuel temperature or a 
lumped fuel-moderator temperature which satisfies 

where p is the density, Ef the deposited energy per fission, and 8 z  he heat transfer 
distance) account for conductive heat removal. In Section 5.4 we found that the 
response to a step subprompt-critical (p,, < P )  reactivity insertion into a critical 
reactor was a prompt jump that changed the neutron density from no to 
no/(l  -p,,/P) in a time on the order of the neutron generation time, A, followed 
by a slow rise (p,, > 0) or decay ( p , ,  < 0 )  of the neutron density on the delayed 
neutron decay constant time scale. We examine these two phases of the transient 
separately in the presence of feedback. 

Step Reactivity Insertion tp,, < P): Prompt Jump 

During the initial phase of the transient for a few A following the reactivity inser- 
tion, the delayed neutron precursor decay source is constant at the critical equili- 
brium value LCo = (P/A)n(l .  In the absence of feedback, the solution of Eq. (5.130) 
in this case is 

Assuming that the feedback is on the fuel temperature, which responds instanta- 
neously to an increase in the fission rate, the corresponding solution with feedback 
reactivity is 

n(t )  = no exp 
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On this short time scale t  - A << pCJ0, the solution of Eq. (5.13 1) is 

If the feedback is negative (af < O ) ,  the effect of the feedback is to reduce the 
magnitude of the input reactivity step. If p,, > 0, n and T increase in time and 
pf= afT < 0;  if p,, < 0 ,  n  and T decrease in time and pf = q T  > 0; (To = 0). If the 
feedback is positive ( a f >  O ) ,  the effect of the feedback is to enhance the magnitude 
of the input reactivity step. If pex > 0, n and T increase in time and pf = ufT > 0; if 
p,, < 0 ,  n and T decrease in time and pf = olfT < 0. Thus negative feedback reac- 
tivity would reduce the magnitude of the prompt jump and perhaps reverse the sign 
if the feedback reactivity exceeds the input reactivity; positive feedback reactivity 
would enhance the magnitude of the prompt jump. 

Step Reactivity Insertion (p, < P): Post-Prompt-Jump Transient 

We saw in Section 5.4 that in the absence of feedback, after the initial prompt jump 
in the neutron density on the prompt neutron time scale, the subsequent transient 
evolves on the slower time scale of the delayed neutron precursor decay: 

For the problem with feedback, we make use of the prompt-jump approximation 
(set dnldt = 0 )  and solve Eqs. (5.130) to obtain 

which reduces to Eq. (5.135) when ctf = 0 .  Note that Eq. (5.136) is valid only for 
the time after the prompt jump in neutron density between r = 0  and t = tPj zz A. 
This equation evaluated at tpj implies an effective prompt jump from no 4 no/ 
[1 - (p , ,+rxrT( tp j ) ) /~ ,  to be compared with the effective prompt jump from 
no + nO/(l - p e x / P )  in the case without feedback implied by Eq. (5.135). Equation 
(5.131) can be solved formally for the temperature 

The presence of feedback can have a dramatic effect on the course of the 
transient. Consider a positive step reactivity insertion, 0  < p,, < B, which without 
feedback would result in an exponentially increasing neutron density with period 
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(p/pex-l)/h. With negative reactivity feedback (af < 0), the period becomes 
longer (the rate of increase is slower), or even becomes negative (the neutron 
density decreases in time) if lajT(t) becomes greater than p,,. For a negative step 
reactivity insertion, p,, < 0, and negative reactivity feedback, the presence of feed- 
back with the decreasing temperature causes the decay in the neutron density to 
become slower and even reverse and start increasing if lafT(t)l becomes greater 
than Ip,,l. Thus a reactor with a negative temperature coefficient of reactivity will 
adjust automatically to a step reactivity insertion by seeking a new critical condi- 
tion. For example, when a cold reactor is started up by withdrawing the control 
rods to produce an increasing neutron population and increasing fission heating, the 
negative reactivity will increase also, until the reactor reaches a new temperature 
and neutron population at which it is just critical. A negative temperature coeffi- 
cient of reactivity also allows a reactor to automatically load follow (an increase in 
power output demand will result in a decrease in coolant inlet temperature, which 
produces a positive reactivity that causes the neutron population and the fission rate 
to increase until a new critical condition is reached at higher power). 

5.12 REACTOR FAST EXCURSIONS 

The examination of hypothetical accidents requires the analysis of fast, supercri- 
tical excursions in the neutron population in a reactor. Although this analysis is 
done with sophisticated computer codes, which solve the coupled neutron-thermo- 
dynamics-hydrodynamics equation of state equations, there are several analytical 
models which provide physical insight into the phenomena of fast supercritical 
reactor excursions. Delayed neutron precursors respond too slowly to be important 
in such transients and may be neglected. 

Step Reactivity Input: Feedback Proportional to Fission Energy 

The prompt neutron kinetics equation for a step reactivity input Ako > k p  and a 
feedback negative reactivity proportional to the cumulative fission energy release is 
described by 

where A h  is measured relative to prompt critical and 

The solution of Eq. (5.139) is 
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where 

For transients initiated from low initial power level, Po, R x Ako/A and 

The instantaneous power is 

where the second form is valid only for low initial power. 
Equation (5.143) describes a symmetrical power excursion that increases to a 

maximum power P,,, = ( A ~ ~ / A ) ~ / ~ ( c c ~ / A )  at t x 1.3/(Ako/A) and then decreases 
to zero. The width of the power burst at half maximum is z 3.52/(Ako/A),  and  he 
total fission energy produced in the burst is 2Ako/aR. 

Ramp Reactivity Input: Feedback Proportional to Fission Energy 

If, instead of a step reactivity input, the external reactivity input is a ramp (e.g., as 
might occur in rod withdrawal), Eq. (5.138) becomes 

which has a solution of the form 

a 
E(t)  = - t + periodic function (5.145) 

a E  

The power level has a background (a /%) upon which is superimposed a series of 
oscillations as the net external plus feedback reactivity oscillates about prompt 
critical (p = p). We now examine one of the power oscillations. Differentiating 
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Eq. (5.144) yields an equation for the instantaneous period 9 = ( dP /d t ) /P :  

whch may be combined with Eq. (5.144) to obtain 

This equation has the solution 

1 a P ( t )  a E  
- Q2 ( t )  = - 1n - - - [P ( t )  - pol 
2 A Po A 

The maximum power at the peak of the oscillation occurs when 0 =0 and thus 
satisfies 

where the second form is only valid for Po << P,,, where Po = a / a E  now refers to 
the background power at the beginning of the oscillation. 

Step Reactivity Input: Nonlinear Feedback 
Proportional to Cumulative Energy Release 

The Doppler feedback coefficient in large fast power reactors is not constant but is 
calculated to vary approximately inversely with fuel temperature, and theoretical 
considerations suggest that it varies inversely with fuel temperature to the $ power. 
If we assume no heat loss from the fuel and constant specific heat to relate the fuel 
temperature increase during a transient to the cumulative fission energy release, we 
can represent a broad class of temperature-dependent feedback reactivities as aEEn, 
where Q now refers to the value of the feedback coefficient at the temperature at 
which the transient is initiated. In this case, the prompt neutron dynamics equation 
for a step external reactivity input dko is 

This equation has the solution for the cumulative fission energy release 
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which can be differentiated to obtain the instantaneous power 

Once again, the power increases to a maximum value, in this case 

and then decreases to zero. The total energy release in the burst is 
Etot = [(l + n ) ~ k o / c & ] ' ~ ~ .  

Bethe-Tait Model 

It is clear that the course of a reactor excursion produced by a given external 
reactivity insertion is very sensitive to the feedback reactivity, hence to the evolu- 
tion of the thermodynamic, hydrodynamic, and geometric condition of the reactor. 
The coupled evolution of these variables is calculated numerically in modern ana- 
lyses. However, we can gain valuable physical insight by considering an early 
semianalytical model developed for fast metal fuel reactors. The prompt neutron 
dynamics are determined by 

where Ako is the initiating step reactivity (relative to prompt critical), Akinput is any 
control rod input, Akdispl is the reactivity associated with a displacement of core 
material due to pressure buildup, and Akohe, includes the Doppler effect and other 
nonhydrodynamic reactivity changes. 

The displacement reactivity is given by 

Here p is the material density, u(r, t )  represents a material displacement from r  to 
r +  Ar, and w+(r ,  t )  is the importance of a unit mass of material at location r  to 
producing subsequent fission events. (The importance function is discussed in 
Chapter 13.) 

The displacement is related to the pressure by the hydrodynamic equations 
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and 

An equation of state, represented symbolically as 

relates the pressure to the energy density, e(r, t), and to the density. We neglect 
changes in density and work done in expansion or compression. Differentiating Eq. 
(5.154) twice and using Eq. (5.155) yields 

a2Akdisp1 = - J V p  (r  t )  Vw+ ( r )  dr 
at2 

The analysis proceeds by postulating that there is no feedback, except the 
Doppler effect, until the total energy generated in the core reaches a threshold 
value, I!?, at which point the core material begins to vaporize, thereby building 
up pressure, which causes the core to expand until the negative reactivity associated 
with expansion eventually terminates the excursion. Rather than carry through the 
rather involved derivation (see Ref. 9), we summarize the main results for a sphe- 
rical core. When the energy, E, exceeds the threshold value, it subsequently in- 
creases as 

The pressure near the center of the core is proportional to E - E* s E, so that 
once it becomes large the pressure varies as 

The pressure gradient that tends to blow the core apart is proportional to p /R .  
Thus the radial acceleration produced by the pressure gradient goes as 

Integrating this expression twice yields an expression for the instantaneous core 
radius 
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The excursion terminates when the expansion increases the negative reactivity 
sufficiently to offset the initiating reactivity less any negative Doppler or rod input 
reactivity: 

which occurs at time t given by 

The energy generated up to the time of termination is 

Numerical calculations indicate that the approximate relationships above repre- 
sent quite well excursions resulting from large initial reactivity insertions. For 
modest initiating reactivities, the expression 

is in better qualitative agreement with numerical results. 

5.13 NUMERICAL METHODS 

In practice, numerical methods are used to solve the neutron dynamics equations. 
The solution is made difficult by the difference in time scales involved. The prompt 
neutron time scale is on the order of A = to lop5 s for thermal reactors or lop6 
to lop7 s for fast reactors, while the delayed neutron time scales vary from tenths of 
seconds to tens of seconds. When p is significantly less than P, making the prompt 
jump approximation removes the prompt neutron time scale from the problem, and 
straightforward time-differencing schemes are satisfactory. When it is necessary to 
retain the prompt neutron dynamics (i.e., for transients near or above prompt 
critical), the usual numerical methods for solving ordinary differential equations 
(e.g., Runge-Kutta) are limited by solution stability to extremely small time steps 
over which there is little change in the neutron population. However, a class of 
methods for solving stiff sets of ordinary differential equations (sets with very 
different time constants) have been developed (Refs. 2 and 7) and are now widely 
used for solution of the neutron dynamics equations. 
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PROBLEMS 

5.1. The absorption cross section in a bare, critical thermal reactor is decreased 
by 0.5% by removing a purely absorbing material. Calculate the associated 
reactivity. 
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5.2. A bare metal sphere of essentially pure 2 3 5 ~  is assembled, and the output of 
a neutron detector is observed, after an initial transient, to be increasing 
exponentially with a period T =  1 s. The neutron effectiveness values for 
the six delayed neutron groups are calculated to be yi = 1.10, 1.03, 1.05, 
1.03, 1.01, and 1.01. What is the effective multiplication constant, k, for 
the assembly? 

5.3. Using the one-delayed precursor group approximation, prompt-jump ap- 
proximation, and the reactor parameters P = 0.0075, h = 0.08 s-', A = 
6 x lop5 s, solve for the time dependence of the neutron population over 
the interval O <  t < 10s following the introduction of a ramp reactivity 
p(t) = 0.1 pt into a critical reactor for 0 < t < 5 s. Such a reactivity insertion 
might result from partial withdrawal of a control rod bank. 

5.4. A pulsed neutron measurement was performed in an assembly with 
p = 0.0075 and A = 6 x lop5. An exponential prompt neutron decay constant 
a,, = -100 s-' was measured. What are the reactivity and effective multi- 
plication constant of the assembly? 

5.5. A control rod was partially withdrawn from a critical nuclear reactor for 5 s, 
then reinserted to bring the reactor back to critical. The reactivity worth of 
the partial rod withdrawal was p = 0.0025. Use the prompt-jump approxima- 
tion and a one delayed neutron group approximation to calculate the neutron 
and precursor populations, relative to the initial critical populations, for times 
0 < t < 10 s. Use the neutron kinetic parameters p = 0.0075, h = 0.08 s-', and 
A = 6  x 1 0 ~ ~ s .  

5.6. A control rod bank is scrammed in an initially critical reactor. The signal of 
a neutron detector drops instantaneously to one-third of its prescram level, 
then decays exponentially. Assume one group of delayed neutrons with 
p = 0.0075 and h = 0.08 s, and use A = lop4 s for the reactor lifetime. What 
is the reactivity worth of the control rod bank? How long is needed for the 
power level to reach 1% of the initial prescram level? 

5.7. Plot the real and imaginary parts of the zero-power transfer function versus 
o(s = io) for a 2 3 5 ~  reactor using a one delayed neutron group model with 
p = 0.0075, h = 0.08 s-', and A  = 6 x s. 

5.8. Calculate the Doppler reactivity temperature coefficient for a U02-fueled, 
H20-cooled thermal reactor with long fuel rods 1 cm in diameter operating 
with a fuel temperature of 450K. The moderator macroscopic scattering 
cross section per atom of 2 3 8 ~  is 100. Take the resonance integral at 
300•‹K as I = 10 barns. 

5.9. Derive an expression for the calculation of a void temperature coefficient of 
reactivity for a pressurized water reactor (i.e., the temperature coefficient 
associated with a small fraction of the moderator being replaced with void). 
Repcat the calculation for when the water contains lOOOppm 'OB as a 
"chemical shim." 
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5.10. Calculate the nonleakage reactivity temperature coefficient for a bare 
cylindrical graphite reactor with height-to-diameter ratio HID= 1.0, 
k, = 1.10, migration area M' = 400 cm2, and moderator linear expansion 
coefficient OM= 1 x lop5 "c-'. 

5.11. Calculate the reactivity defect in a PWR with fuel and moderator tempera- 
ture coefficients of aF = - 1.0 x Ak/kl•‹F and aM = -2.0 x lop4 
Ak/kl•‹F when the reactor goes from hot zero power (TF = TM = 530•‹F) to 
hot full power (TF = 1200•‹F and TM = 572•‹F). 

5.12. A critical reactor is operating at steady state when there is a step reactivity 
insertion p = Aklk = 0.0025. Use one group of delayed neutrons, the param- 
eters p = 0.0075, h = 0.08 s-', and A = 6 x lo-", and a temperature coeffi- 
cient of reactivity a ~ =  -2.5 x lop4 "c-'. Assume that the heat removal is 
proportional to the temperature. Write the coupled set of equations that 
describe the dynamics of the prompt and delayed neutrons and the tempera- 
ture. Linearize and solve these equations (e.g., by Laplace transform). 

5.13. Calculate the power threshold for linear stability (in units of P a F / p )  from 
Eq. (5.1 11) for XF/XM= -0.25 and -0.50 and for wM= 0.1, 0.25, and 0.5. 

5.14. Analyze the linear stability of a one-temperature model for a nuclear reactor 
in which the heat is removed by conduction with time constant mi1 and in 
which there is an overall negative steady-state power coefficient, XR < 0. IS 
the reactor stable at all power levels? 

5.15. Repeat problem 5.14 for convective heat removal. 

5.16. Calculate and plot the power burst described by Eq. (5.143) for a fast reactor 
with generation time A = 1 x lop6 s and negative energy feedback coeffi- 
cient Q= -0.5 x lop6 AklklMJ into which a step reactivity insertion of 
Ako = + 0.02 takes place at t = 0. Use Po = 100 MW. 

5.17. A control rod is partially withdrawn (assume instantaneously) from a 23%- 

fueled nuclear reactor that is critical and at low power at room temperature. 
The signal measured by a neutron detector is observed to increase immedi- 
ately to 125% of its value prior to rod withdrawal, and then to increase 
approximately exponentially. What is the reactivity worth of the control 
rod? What is the value of the exponent that governs the long-time exponen- 
tial increase of the signal measured by the neutron detector? 

5.18. In a cold critical PWR fueled with 4% enriched U02, the control rod bank is 
withdrawn a fraction of a centimeter, introducing a positive reactivity of 
p = 0.0005. The neutron flux begins to increase, increasing the fission rate. 
Discuss the feedback reactivity effects that occur as a result of the increasing 
fission heating. 

5.19. Use the temperature coefficients of reactivity given in Table 5.3 to calculate 
the change in reactivity when the core temperature in an oxide-fueled fast 



PROBLEMS 193 

reactor increases from 300•‹C to 500•‹C. Assume uniform temperatures in 
fuel, coolant, and structure. Repeat the calculation for a fuel temperature 
increase to 800•‹C and a coolant and structure temperature increase to 350•‹C. 

5.20. Solve Eqs. (5.133) and (5.134) to calculate the response of the neutron 
population in a UOz-fueled PWR to step rod withdrawal with reactivity 
worth p = 0.002, taking into account a negative fuel Doppler feedback coef- 
ficient of -2 x lop6 Ak/k/"K. The reactor has neutronics properties 
(p = 0.0065, h = 0.08 s-', A = 1.0 x lop4), fission heat deposition in the fuel 
vnCfEf= 250 w/cm3, and fuel properties p = 10.0 g/cm3 and C, = 220 J/kg. 
(Hint: It is probably easiest to do this numerically.) 

5.21. Evaluate the resonance escape probability moderator temperature coefficient 
of reactivity of Eq. (5.87) for a U02 reactor consisting of assemblies of 
I-cm-diameter fuel pins of height H in a water lattice with Z p / N M =  100 
and fuel density p = 10g/crn3. Use OM= 1 x ~ o - ~ / K  for the linear coeffi- 
cient of expansion for water. 

5.22. Derive an explicit expression for the thermal utilization temperature coeffi- 
cient of reactivity of Eq. (5.89) by using Eqs. (3.90) and (3.92) to evaluate 
the dZ:/65 and ac/aTF terms and equivalent relations to evaluate the 
d~2; ' ldk  and dk/dT, terms. 





6 Fuel Burnup 

The long-term changes in the properties of a nuclear reactor over its lifetime are 
determined by the changes in composition due to fuel burnup and the manner in 
which these are compensated. The economics of nuclear power is strongly affected 
by the efficiency of fuel utilization to produce power, which in turn is affected by 
these long-term changes associated with fuel burnup. In this chapter we describe 
the changes in fuel composition that take place in an operating reactor and their 
effects on the reactor, the effects of the samarium and xenon fission products with 
large thermal neutron cross sections, the conversion of fertile material to fissionable 
material by neutron transmutation, the effects of using plutonium from spent fuel 
and from weapons surplus as fuel, the production of radioactive waste, the extrac- 
tion of the residual energy from spent fuel, and the destruction of long-lived 
actinides. 

6.1 CHANGES IN FUEL COMPOSITION 

The initial composition of a fuel element will depend on the source of the fuel. For 
reactors operating on the uranium cycle, fuel developed directly from natural 
uranium will contain a mixture of 2 3 4 ~ ,  2 3 5 ~ ,  and '"u, with the fissile 2 3 5 ~  content 
varying from 0.72% (for natural uranium) to more than 90%, depending on the 
enrichment. Recycled fuel from reprocessing plants will also contain the various 
isotopes produced in the transmutation-decay process of uranium. Reactors opera- 
ting on the thorium cycle will contain 2 3 2 ~ h  and 2 " ~  or 235 U, and if the fuel is from 
a reprocessing plant, isotopes produced in the transmutation-decay process of 
thorium. 

During the operation of a nuclear reactor a number of changes occur in the 
composition of the fuel. The various fuel nuclei are transmuted by neutron capture 
and subsequent decay. For a uranium-fueled reactor, this process produces a variety 
of transuranic elements in the actinide series of the periodic table. For a thorium- 
fueled reactor, a number of uranium isotopes are produced. The fission event 
destroys a fissile nucleus, of course, and in the process produces two intermediate 
massfission products. The fission products tend to be neutron-rich and subsequently 
decay by beta or neutron emission (usually accompanied by gamma emission) and 
undergo neutron capture to be transmuted into a heavier isotope, which itself 
undergoes radioactive decay and neutron transmutation, and so on. The fissile 
nuclei also undergo neutron transmutation via radiative capture followed by decay 
or further transmutation. 



Fuel Transmutation-Decay Chains 

Uranium-235, present 0.72% in natural uranium, is the only naturally occurring 
isotope that is fissionable by thermal neutrons. However, three other fissile (fission- 
able by thermal neutrons) isotopes of major interest as nuclear reactor fuel are 
produced as the result of transmutation-decay chains. Isotopes that can be con- 
verted to fissile isotopes by neutron transmutation and decay are known as fertile 
isotopes. 2 3 9 ~ ~  and 2 4 1 ~ ~  are products of the transmutation-decay chain beginning 
with the fertile isotope 2 3 8 ~ ,  and 233 U is a product of the transmutation-decay 
chain beginning with the fertile isotope 2 3 2 ~ h .  These two transmutation-decay 
chains are shown in Fig. 6.1. Isotopes are in rows with horizontal arrows represent- 
ing (n,y) transmutation reactions, with the value of the cross section (in barns) 
shown. Downward arrows indicate P-decay, with the half-lives shown. Thermal 
neutron fission is represented by a dashed diagonal arrow, and the thermal cross 

Fig. 6.1 Transmutation-decay chains for 2 3 8 ~  and '"~h. (From Ref. 3; used with permis- 
sion of Taylor & Francis.) 



TABLE 6.1 Cross Section and Decay Data for Fuel Isotopes 

Abundance Decay Energy Spontaneous Fis- c$' R 1 ~  R1f a: 
Isotope 

~7 
L I  ,u Mode (MeV) sion Yield (%) (barns) (barns) (barns) (barns) (barns) (barns) 

(Continued) 



TABLE 6.1 (Continued) 
-- - - -  - - 

Abundance Decay Energy Spontaneous Fis- o: O? RI, R 4  (3: 

Isotope (%) 
0; 

h / 2  Mode (MeV) sion Yield (%) (barns) (barns) (barns) (barns) (barns) (barns) 

2 3 9 ~ P  - 236 d fl 0.72 - 33 - 445 - 0.19 1.46 
2 4 0 ~ p  - - - - - - - - - - 

2 3 6 ~ u  - 2.86 y CI 5.9 1.4 x 126 146 401 59 0.15 2.08 
237h - 45 ec 0.22 - - - - - - 

2 3 8 ~ u  - 87.7 y a 5.6 1.9 x lop7 458 15 154 33 0.10 1.99 
239h - 2.41 x lo4y a 5.2 3 x 10-lo 274 698 182 303 0.05 1.80 
240~u  - 6.56 x lo3 y CL 5.3 5.7 x lo-6 264 53 8103 9 0.10 1.36 
2 4 1 ~ u  - 14.4 y I3 0.02 < 2 10-l4 326 938 180 576 0.12 1.65 
2 4 2 ~  - 3.73 x lo5 a 5.0 > 5.5 lop4 17 - 1130 - 0.09 1.13 
2 4 1 ~ m  - 432 y CL 5.6 4 x 10-lo 532 3 1305 14 0.23 1.38 
-- 

Source: Brookhaven National Laboratory Nuclear Data Center, http://www.dne.bnl.gov/CoN/index.html 
"87.3% electron capture, 12.56 P. 
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section is shown. (Fast fission also occurs but is relatively less important in thermal 
reactors.) Natural abundances, decay half-lifes, modes of decay, decay energies, 
spontaneous fission yields, thermal capture and fission cross sections averaged over 
a Maxwellian distribution with kT= 0.0253 eV (nth), infinite-dilution capture and 
fission resonance integrals (RIs), and capture and fission cross sections averaged 
over the fission spectrum (ox) are given in Table 6.1. 

Fuel Depletion-Transmutation-Decay Equations 

Concentrations of the various fuel isotopes in a reactor are described by a coupled 
set of production-destruction equations. We adopt the two-digit superscript con- 
vention for identifying isotopes in which the first digit is the last digit in the atomic 
number and the second digit is the last digit in the atomic mass. We represent the 
neutron reaction rate by o~"cpnnm, although the actual calculation may involve a 
sum over energy groups of such terms. 

For reactors operating on the uranium cycle, the isotopic concentrations are 
described by 
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With respect to Fig. 6.1, a few approximations have been made in writing Eqs. (6.1). 
The neutron capture in 2 3 9 ~  to produce 2 4 0 ~  followed by the decay (t1/2= 14h) 
into 2 4 0 ~ p  and the subsequent decay ( t l / 2  = 7 min) into 2 4 0 ~ ~  is treated as the direct 
production of 2 4 0 ~ ~  by neutron capture in 2 3 9 ~ ,  and the production of 2 4 0 ~ p  by 
neutron capture in 2 3 9 ~ p  followed by the subsequent decay (tl12 = 7 min) of 2 4 0 ~ g  

into 2 4 0 ~ ~  is treated as the direct production of 2 4 0 ~  by neutron capture in *"IVp. 
These approximations have the beneficial effect for numerical solution techniques 
of removing short lime scales from the set of equations, without sacrificing infor- 
mation of interest on the longer time scale of fuel burnup. 

For reactors operating on the thorium cycle, the isotopic concentrations are 
described by 
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Another short-time-scale elimination approximation that neutron capture in 2 3 3 ~ a  
leads directly to 2 3 4 ~  has been made. 

Example 6.1: Depletion of a Pure 2 3 5 ~ - ~ u e l e d  Reactor. As an example of the 
nature of the solution of the equations above, consider the hypothetical case of 
a reactor initially fueled with pure 2 3 5 ~  which operates for 1 year with a con- 
stant neutron flux of 10 '~n/cm~.s .  The solution of the second of Eqs. (6.1) is 
nZ5(t) = nZ5(0) exp(--oi5+t), where at the end of 1 year, o:5c$t = (594 x 

cm2)(1 x 1014 /cm2.s)(3.15 x lo7 s) = 1.87 and n"(t) = 0.154n2' (0). The 
number of atoms that have fissioned in this 1 year is (n(1)- n(0)) x [of/ 
(o f+  oy )] = [0.846nZ5(0)](507/594) = 0.722nZ5(0). Each fission event releases 
192.9MeV of recoverable energy, so the total recoverable fission energy 
release is [0.722nZ5(0)fissions] x (192.9 MeV/fission) x (1.6 x 10-19 M J / M ~ V )  = 

2.23 x 10-l7 x n25(0) MJ. If the initial core loading is lOOkg of 2 3 5 ~ ,  this corre- 
sponds to (2.23 x 10-17) x (105/235) x (6.02 x loz3) = 0.95 x lo9 MJ = 1.1 x 
lo4 M W ~  of recoverable fission energy. 

Neglecting the production of 2 3 6 ~  by electron capture decay of 2 ' h~p ,  the 
solution for n25(t) can be used to solve the third of Eqs. (6.1) to obtain nz6(f)= 
[TI*~(o) OF/ (oi5 - G:~)] [exp(-oi6+t) - exp(-crz5 $t)]. This expression for nZ6(t) 
can be used in the fourth of Eqs. (6.1) to obtain a similar, but more complicated 
solution for n27(t), since we have assumed that nZ8 = 0; and so on. 

Fission Products 

The fission event usually produces two intermediate mass nuclei, in addilion to 
releasing two or three neulrons. Interestingly, the fission product masses are not 
usually equal to about half the mass of the fissioning species, but are distributed in 
mass with peaks at about 100 and 140amu, as shown in Fig. 6.2. The isotopes 
produced by fission tend to be neutron-rich and undergo radioactive decay. They 
also undergo neutron capture, with cross sections ranging from a few tenths of a 
barn to millions d barns. The general production-destruction equation satisfied by 
a fission product species j is 

where y j  is the fraction of fission events that produces a fission product species j, 
hi'j is the decay rate of isotope i to produce isotope j (beta, alpha, neutron, etc., 



202 FUEL BURNUP 

Fig. 6. 
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ion yields for 2 3 5 ~  and 239h. (From Ref. 1 

decay) and oi'j is the transmutation cross section for the production of isotope j by 
neutron capture in isotope j .  Even though the fission products undergo transmuta- 
tion and decay, the total inventory of direct fission products plus their progeny 
increases in time as 

Solution of the Depletion Equations 

The equations above can be integrated to determine composition changes over the 
lifetime of the reactor core loading if the time dependence of the flux is known. 
However, the flux distribution depends on the composition. In practice, a neutron 
flux distribution is calculated for the beginning-of-cycle composition and critical 
control rod position or soluble boron concentration (PWR), and this flux distribu- 
tion is used to integrate the composition equations above over a depletion-time step, 
At,,,. Then the new critical control rod position or soluble boron concentration is 
determined (by trial and error) and the flux distribution is recalculated for use in 
integrating the production-destruction equations over the next depletion time step, 
and so on, until the end of cycle is reached. The maximum value of Atbum depends 
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on how fast the composition is changing and the effect of that composition change 
on the neutron flux distribution and on the accuracy of the numerical integration 
scheme. Excluding, for the moment, the relatively short time scale phenomena 
associated with the xenon and samarium fission products, the time scale of sig- 
nificant composition and flux changes is typically several hundred hours or more. 

The typical process of advancing the depletion solution from time ti, at which 
the composition is known, to time t i ,  is: (1) determine the multigroup constants 
appropriate for the composition at ti, (2) determine the critical control rod positions 
or soluble poison concentration by solving the multigroup diffusion equations for 
the flux at ti (adjusting the control rod positions or boron concentration until the 
reactor is critical), and (3) integrate the various fuel and fission product production- 
destruction equations from ti to ti + , . (The neutron flux solution could be made with 
a multigroup transport calculation or with multigroup or continuous-energy Monte 
Carlo calculation, and the preparation of cross sections could involve infinite media 
spectra and unit cell homogenization calculations or could be based on fitted, 
precomputed constants.) The integration of the production-destruction equations 
can be for a large number of points, using the neutron flux at each point; for each 
fuel pin, using the average flux in the fuel pin; for each fuel assembly, using the 
average flux over the fuel assembly; and so on. 

Assuming that the flux is constant in the interval ti < t < ti + 1, the production- 
destruction equations can be written in matrix notation as 

The general solution to these equations is of the form 

N(ti+l) = exp[A(ti)At]~(ti) + A-' (ti) { e x p [ ~  ( t i ) a t ]  - l)F(ti) (6.6) 

In general, the accuracy of the solution depends on Ath,,, being chosen so that 
(hi + v:(~)Atb~,,, << 1 for all of the isotopes involved. For this reason, it is eco- 
nomical to reformulate the physical production-destruction equations to elimi- 
nate short-time-scale phenomena that do not aect the overall result, as discussed 
previously. There exist a number of computer codes that solve the production- 
destruction equations for input neutron fluxes (e.g., Ref. 7). 

Measure of Fuel Burnup 

The most commonly used measure of fuel burnup is the fission energy release per 
unit mass of fuel. The fission energy release in megawatt-days divided by the total 
mass (in units of 1000 kg or 1 tonne) of fuel nuclei (fissile plus fertile) in the initial 
loading is referred to as megawatt-days per tonne (MWd/T). An equivalent unit is 
~ ~ d / k & - 1 0 ~  MWd/T. For example, a reactor with 100,000 kg of fuel operating 
at 3000MW power level for 1000 days would have a burnup of 30,000 MWd/T. 
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For LWRs the typical fuel burnup is 30,000 to 50,000 MWd/T. Fuel burnup in fast 
reactors is projected up to be about 100,000 to 150,000 MWd/T. 

Fuel Composition Changes with Burnup 

The original fissionable isotope (e.g., 2 ' 5 ~ )  naturally decreases as the reactor oper- 
ates. However, the neutron transmutation of the fertile isotope (e.g., 2 3 8 ~ )  produces 
the fissionable isotope 2 3 9 ~ ~ ,  which in turn is transmuted by neutron capture into 
2 4 0 ~ ~  and higher actinide isotopes. The buildup of the various Pu isotopes as a 
function of fuel burnup for a typical LWR is shown in Fig. 6.3. 

Compositions of spent fuel discharged from representative LWR and LMFBR 
designs are given in Table 6.2. The units are densities (cgs units) times 
which allows construction of macroscopic cross section upon multiplication by 
the microscopic cross section in barns. The composition for the average enrichment 
and burnup of PWR spent fuel is shown in the first column for fuel discharged 
before 1995 and in the second column for fuel discharged after 1995. 

Mass [glkg HM initial] 

Burnup [MWdlkg HM] 

Pig. 6.3 Buildup of Pu isotopes in 4 wt % enriched U 0 2  in an LWR. (Fmm Ref. 1 ; used 
with permission of Nuclear Energy Agency, Paris.) 
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TABLE 6.2 Heavy Metal Composition of Spent U02  Fuel at Discharge" 

Reactor Type LWR LWR LMFBR LMFBR 

Initial enrichment (wt %) 
Power (MW/MTU) 
Burnup (GWd/T) 
Actinides ( I  x 1oZ4cm ') 
234U 

2 X u  

23% 

237U 

238" 

2 3 7 ~ ~  

2 3 9 ~ ~  

238~u  
239~u  
240~u 
2 4 1 ~ u  
242~u 
2 4 1 m  

2 4 3 m  

2 4 2 ~ ~  

2 4 4 ~ ~  

"Calculated with ORIGEN (Ref. 7). 

b<O.OO1%. 

Reactivity Effects of Fuel Composition Changes 

There are a variety of reactivity effects associated with the change in fuel composi- 
tion. The fission of fuel nuclei produces two negative reactivity effects; the number 
of fuel nuclei is reduced and fission products are created, many of which have large 
neutron capture cross sections. The transmutation-decay chain of fertile fuel nuclei 
of a given species produces a sequence of actinides (uranium-fueled reactor) or 
uranium isotopes (thorium-fueled reactor), some of which are fissile. The transmu- 
tation of one fertile isotope into another nonfissile isotope can have a positive or 
negative reactivity effect, depending on the cross sections for the isotopes involved, 
but the transmutation of a fertile isotope into a fissile isotope has a positive re- 
activity effect. Depending on the initial enrichment, the transmutation-decay pro- 
cess generally produces more fissile nuclei than are destroyed early in the cycle, 
causing a positive reactivity effect, until the concentration of transmuted fissile 
nuclei comes into equilibrium. 

The buildup of 2 3 ' ~ ~  early in life of a uranium-fueled reactor produces a large 
positive reactivity effect which may be greater than the negative reactivity effect of 
235 U depletion and fission product buildup. For thermal reactors, q49 < r125. SO the 
buildup of 2 3 ' ~ ~  must exceed the burnup of 2 " ~  in order for a positive reactivity 
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effect. For fast reactors, q49 > T-" for neutron energies in excess of about lOkeV, 
and there can be an initial positive reactivity effect even if the decrease in 2 3 5 ~  is 
greater than the buildup of 239Pu. However, the 2 3 9 ~ ~  concentration will saturate at 
a value determined by the balance between the 2 3 8 ~  transmutation rate and the 
2 3 9 ~ ~  depletion rate, at which point the continued depletion of 2 3 5 ~  and buildup of 
fission products produce a negative reactivity effect that accrues over the lifetime of 
the fuel in the reactor. 

Compensating for Fuel-Depletion Reactivity Effects 

The reactivity effects of fuel depletion must be compensated to maintain criticality 
over the fuel burnup cycle. The major compensating elements are the control rods, 
which can be inserted to compensate positive depletion reactivity effects and with- 
drawn to compensate negative depletion reactivity effects. Adjustment of the con- 
centration of a neutron absorber (e.g., boron in the form of boric acid) in the water 
coolant is another means used to compensate for fuel-depletion reactivity effects. 
Soluble poisons are used to compensate fuel-depletion reactivity in PWRs but not in 
BWRs, because of the possibility that they will plate out on boiling surfaces. Since 
a soluble poison introduces a positive coolant temperature reactivity coefficient 
because an increase in temperature decreases the density of the soluble neutron 
absorber, the maximum concentration (hence the amount of fuel depletion reactiv- 
ity that can be compensated) is limited. 

Burnable poisons (e.g., boron, erbium, or gadolinium elements located in the 
fuel lattice), which themselves deplete over time, can be used to compensate the 
negative reactivity effects of fuel depletion. The concentration of burnable poison 
can be described by 

where fbp is the self-shielding of the poison element (i.e., the ratio of the neutron 
flux in the poison element to the neutron flux in the adjacent fuel assembly). The 
poison concentration is chosen so that the spatial self-shielding of the poison 
elements is large enough (fbp << 1) early in the burnup cycle to shield the poison 
from neutron capture, and the neutron capture rate remains constant in time. After a 
certain time the concentration of the poison nuclei is sufficiently reduced that fbp 
increases and the poison bums out, resulting in an increasing reactivity. If the 
poison starts to burn out at about the same time that the overall fuel depletion 
reactivity effect starts to become progressively more negative (i.e., when the 239Pu 
concentration saturates), the burnout of the poison will at least partially compensate 
the fuel-depletion reactivity decrease. 

Reactivity Penalty 

The buildup of actinides in the 2 3 8 ~  transmutation-decay process introduces a fuel 
reactivity penalty because some of actinides act primarily as parasitic absorbers. 
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While 2 3 9 ~ ~  and 2 4 1 ~  are fissionable in a thermal reactor, and 2 4 0 ~ ~  transmutes 
into "'Pu, m 2 ~ ~  transmutes into 2 4 3 ~ ~  with a rather small cross section, and 2 4 3 ~ ~  

has a rather small fission cross section, so that 2 4 2 ~ ~  is effectively a parasitic 
absorber that builds up in time. The 2 4 3 ~ m  also accumulates and acts primarily 
as a parasitic absorber. Whereas the 24%m, which is produced by the decay of 
2 4 3 ~ ~ ,  can be separated readily, it is difficult to separate the different plutonium 
isotopes from each other, so the negative 242Pu reactivity effect is exacerbated if the 
plutonium is recycled with uranium. A similar problem arises with the 2 3 6 ~  pro- 
duced by radiative capture in 2 3 5 ~ ,  as shown in Fig. 6.4, which is difficult to 
separate from 2 3 5 ~ ,  and with 2 3 7 ~ p ,  which is produced by transmutation of 23%J 

into 2 3 7 ~  followed by beta decay. The 2 3 7 ~ p  can be separated readily, however, and 
does not need to accumulate in recycled fuel. 

End-of-cycle reactivity penalties calculated for the recycle of BWR fuel are 
shown in Table 6.3 after one, two, and three cycles. It was assumed that the 
2 3 7 ~ p  and 2 4 3 ~ m  were removed between cycles, but there was a cycle-to-cycle 
increase in the 2 3 7 ~ p  and 2 4 3 ~ m  reactivity penalties due to the accumulation of 
2 3 6 ~  and 242Pu, respectively. 

Effects of Fuel Depletion on the Power Distribution 

Fuel depletion and the compensating control actions affect the reactor power dis- 
tribution over the lifetime of the fuel in the core. Depletion of fuel will be greatest 
where the power is greatest. The initial positive reactivity effect of depletion will 
then enhance the power peaking. At later times, the negative reactivity effects will 
cause the power to shift away to regions with higher kinanity. Any strong tendency of 

Fig. 6.4 Z 3 5 ~  neutron transmutation-decay chain. (From Rcf. 4; used with permission of 
American Nuclear Society.) 
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TABLE 6.3 Reactivity Penalties with Recycled BWR 
Fuel (% Aklk) 

End of Cycle: 2 3 6 ~  2 3 7 ~ ~  242pU 243Am 

Source: Data from Ref. 16. 

the power distribution to peak as a result of fuel depletion must be compensated by 
control rod movement. However, the control rod movement to offset fuel depletion 
reactivity effects itself produces power peaking; the presence of the rods shields the 
nearby fuel from depletion and when the rods are withdrawn, the higher local k ,  
causes power peaking. Similarly, burnable poisons shield the nearby fuel, produc- 
ing local regions of higher k ,  and power peaking when they burn out. Determina- 
tion of the proper fuel concentration zoning and distribution of burnable poisons 
and of the proper control rod motion to compensate fuel depletion reactivity effects 
without unduly large power peaking is a major nuclear analysis task. 

In-Core Fuel Management 

At any given time, the fuel in a reactor core will consist of several batches that have 
been in the core for different lengths of time. The choice of the number of batches 
is made on the basis of a trade-off between maximizing fuel burnup and minimizing 
the number of shutdowns for refueling, which reduces the plant capacity factor. At 
each refueling, the batch of fuel with the highest burnup is discharged, the batches 
with lower burnup may be moved to different locations, and a fresh or partially 
depleted batch is added to replace the discharged batch. The analysis leading to 
determination of the distribution of the fuel batches within the core to meet the 
salety, power distribution and burnup, or cycle length constraints for fuel burn cycle 
is known as fuel munagement analysis. Although fuel management may be planned 
in advance, it must be updated online to adjust to higher or lower capacity factors 
than planned (which result in lower or higher reactivity than planned at the planned 
refueling time) and unforeseen outages (which result in higher reactivity than 
planned at the planned refueling time). 

Typically, a PWR will have three fuel batches, and a BWR will have four rue1 
batches in the core at any given time and will refuel every 12 to IS months. A 
number of different loading patterns have been considered, with the general con- 
clusion that more energy is extracted from the fuel when the power distribution in 
the core is as flat as possible. In the in-out loading pattern, the reactor is divided 
into concentric annular regions loaded with different fuel batches. The fresh fuel 
batch is placed at the periphery, the highest burnup batch is placed at the center, and 
intermediate burnup batches are placed in between to counter the natural tendency 
of power to peak in the center of the core. At refueling, the central batch is 
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discharged, the other batches are shifted inward, and a fresh batch is loaded on the 
periphery. The in-out loading pattern has been found to go too far in the sense that 
the power distribution is depressed in the center and peaked at the periphery. An 
additional difficulty is the production of a large number of fast neutrons at the 
periphery that leak from the core and damage the pressure vessel. 

In the suutter loading pattern the reactor core is divided into many small regions 
of four to six assemblies from different batches. At refueling, the assemblies within 
each region with the highest burnup are discharged and replaced by fresh fuel 
assemblies. This loading pattern has been found to produce a more uniform power 
distribution and to result in less fast neutron leakage than the in-out pattern. 

Since the pressure vessel damage by fast neutrons became recognized as a 
significant problem, a number of different loading patterns have been developed 
with the specific objective of minimizing neutron damage to the pressure vessel. 
These include placement of only partially depleted assemblies at the core periphery, 
placement of highly depleted assemblies near welds and other critical locations, 
using burnable poisons in peripheral assemblies, replacing peripheral fuel assem- 
blies with dummy assemblies, and others. 

Better utilization of resources argues for the highest possible fuel burnup con- 
sistent with materials damage limitations, and a new higher enrichment fuel has 
been developed that can achieve burnups of up to 50,00OMWd/T in LWRs. The 
higher fuel burnup produces more actinides and fission products with large thermal 
neutron cross sections, which compete more effectively with control rods for thcr- 
ma1 neutrons and reduces control rod worlh, and which produces larger coolant 
temperature reactivity coefficients. Thc higher-enrichment higher-burnup fuel also 
provides the possibility of longer refueling cycles, which improves plant capacity 
factor and reduces power costs. 

6.2 SAMARIUM AND XENON 

The short-term time dependence of two fission product progeny, I4%m and Xe, 
which have very large absorption cross sections, introduces some interesting reac- 
tivity transients when the reactor power level is changed. 

Samarium Poisoning 

Samarium-149 is produced by the beta decay of the fission product ' 4 9 ~ d ,  as 
described in Fig. 6.5. It has a thermal neutron absorption cross section of 4 x lo4 
barns and a large epithermal absorption resonance. The 1.7-h half-life of ' 4 9 ~ d  is 
sufficiently short that ' 4 9 ~ m  can be assumed to be formed directly from fission in 
writing the production-destruction equations for ' 49~m:  
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Fig. 6.5 Characteristics of ' 4 9 ~ m  under representative LWR conditions: (a) transmutation- 
decay chain; {b) fission yields; (c) time dependence. (From Ref. 3; used with permission of 
Taylor & Francis/Hemisphere Publishing.) 

where P and S refer to I4'pm and '49~m,  respectively. These equations have the 
solution, for constant 4, 



At the beginning of life in a fresh core, P(0) = S(0) = 0, and the promethium and 
samarium concentrations build up to equilibrium values: 

The equilibrium value of ' 4 9 ~ m  depends on the neutron flux level. However, the 
equilibrium value of 14%m is determined by a balance between the fission produc- 
tion rate of ' 4 9 ~ m  and the neutron transmutation rate of 14'sm, both of which are 
proportional to the neutron flux, and consequently, does not depend on the neutron 
flux level. The time required for the achievement of equilibrium concentrations 
depends on 4, 0: and hp. For typical thermal reactor flux levels (e.g., 
5 x 10 l3 n/cm2.s), equilibrium levels are achieved in a few hundred hours. 

When a reactor is shut down after running sufficiently long to build up equili- 
brium concentrations, the solutions of Eqs. (6.9) with P(0) = Pq, S(0) = Seq, and 
+ = O  are 

indicating that the I4%m concentration will increase to Se, + P,, as the 14'Pm 
decays into 1 4 9 ~ m  with time constant l /hP= 78 h. If the reactor is restarted, the 
'49~rn  bums out until the I4'prn builds up; then the ' 4 9 ~ r n  returns to its equilibrium 
value. This time dependence of the samarium concentration is illustrated in Fig. 6.5. 

The perturbation theory estimate for the reactivity worth of 14'srn is 

which for the equilibrium concentration becomes 

where we have used the approximation that k z  vEflC.,= I. For a 235~-fueled 
reactor, p:: P, 0.0045. 

Xenon Poisoning 

Xenon-135 has a thermal absorption cross section of 2.6 x lo6 barns. It is produced 
directly from fission, with yield yX", and from the decay of ?, which in turn is 
produced by the decay of the direct fission product I3'~e, with yield yTe, as in- 
dicated in Fig. 6.6. The production-destruction equations may be written, with the 
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Fig. 6.6 Characteristics of ' " ~ e  under representative LWR conditions: (a )  transmutation- 
decay chain; (b) fission yields; (c )  time dependence. (From Ref. 3; used with permission of 
Taylor & Francis/Hemisphere Publishing.) 
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assumption that 1 3 5 ~  is produced directly from fission with yield yTe, 

9 = ? p 9 4  - X'I 
dt 

a = 7xeEj$ + X'I - ( X X  + 4 4 ) ~  
dt 

These equations have the solutions 

-YT'Xf 4 (*  - ,-Yt) + I (0 )e -X'  I ( t )  = - 
A' 

X(t) = hTe + 7xe)cf 4 [l - b-(~x+&y (6.15) 
AX + a:4 

+ rTe%4 - A I W )  [ e - ( ~ x  I ~ O *  - ,-",I + X ( 0 ) e - ( ~  441 
AX - A' + a:+ 

When the reactor is started up from a clean condition in which X(0) = I(0) = 0, 
or the reactor power level is changed, the 1 3 5 ~  and 1 3 5 ~ e  concentrations approach 
equilibrium values: 

with time constants l /h l  = 0.1 h and l / ( h x  + o:q) x 30 h, respectively. 
turbation theory estimate of the reactivity worth of equilibrium xenon is 

(6.16) 

The per- 

(6.17) 

Peak Xenon 

When a reactor is shut down from an equilibrium xenon condition, the iodine and 
xenon populations satisfy Eqs. (6.15) with I(0) =Ie,, X(0) =Xeq, and 4 = 0: 

If @ > (yX/yTe)(hX/o:) ,  the xenon will build up after shutdown to a peak value at 
time 



and then decay to zero unless the reactor is restarted. For 2 3 5 ~ -  and 233~-fueled 
reactors 4 >4 x 10" and 3 x l ~ ' ~ n / c m ~ ~ s ,  respectively, is sufficient for an in- 
crease in the xenon concentration following shutdown. Typical flux values (e.g., 
5 x 1013 n/cm2-s) in thermal reactors are well above these threshold levels, and for 
typical flux values, Eq. (6.19) yields a peak xenon time of M 11.6 h. If the reactor is 
restarted before the xenon has entirely decayed, the xenon concentration will ini- 
tially decrease because of the burnout of xenon and then gradually build up again 
because of the decay of a growing iodine concentration, returning to values of I,, 
and X ,  for the new power level. This time dependence of the xenon concentration 
is illustrated in Fig. 6.6. 

Effect of Power-Level Changes 

When the power level changes in a reactor (e.g., in load following) the xenon 
concentration will change. Consider a reactor operating at equilibrium iodine 
I,(+o) and xenon Xeq($o) at flux level +o. At t = to the flux changes from $o to 

Equations (6.16) can be written 

The xenon concentration during a transient of this type is shown in Fig. 6.7. 
The perturbation theory estimate for the reactivity worth of xenon at any time 

during the transient discussed above is 

Example 6.2: Xenon Reactivity Worth. As an example of xenon buildup, consider 
a 235~-fueled reactor that has operated at a thermal flux level of 5 x 1013 cm-2 s-' 
for two months such that equilibrium xenon and iodine have built in to the levels 
given by Eqs. (6.16). Using @ = 2.6 x lo-'' cm2, til2 = 6.6 h, t?,, = 9.1 h, h = 
In 2/tlI2, y~~ = 0.061, and yxe = 0.003, the equilibrium values of xenon and iodine 
are Xe4 = 0.0203 x 1018 Zf cmP3 and leq = 0.1051 x 10" Cf ~ r n - ~ .  The reactivity 
worth of equilibrium xenon is pze = @ P q / X ,  = 0.022 Ak/k, where the approxi- 
mate criticality condition vXf = Z, has been used. 

If the reactor is shut down for 6 h and then restarted, the xenon reactivity worth 
that must be compensated is, from Eqs. (6.16) and (6.21), px,(t = 6h) % at 
X(t = 6 h)/vEf= (0.634Tq + 0.3671eq) x $/vCJ = 0.017 1 + 0.04 = 0.0571Ak/k. 
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Fig. 6.7 Xenon concentration following power-level changes. (From Ref. 9; used with 
permission of Wiley.) 

The largest contribution to the xenon worth at 6 h after shutdown clearly comes 
from buildup of xenon from the decay of the iodine concentration at shutdown at a 
faster rate than the resulting xenon decays. 

6.3 FERTILE-TO-FISSILE CONVERSION AND BREEDING 

Availability of Neutrons 

The transmutation-decay processes depicted in Fig. 6.1 hold out the potential for 
increasing the recoverable energy content from the world's uranium and thorium 
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resources by almost two orders of magnitude by converting the fertile isotopes 2 3 8 ~  

and 2 3 2 ~ ,  which only fission at very high neutron energies, into fissile isotopes, 
239 Pu and 2 4 1 ~  in the case of 2 3 8 ~ ,  and 2 3 3 ~  in the case of 2 3 2 ~ h ,  which have large 
fission cross sections for thermal neutrons and substantial fission cross sections for 

0.01 0.1 1 .o 10 100 
ENERGY, eV 

I keV 1 Mev 
I I . . _ . . . .. k . . . . I . - . . 

I@ I o3 I o4 I o5 I oE I o7 
ENERGY, eV 

Fig. 6.8 Parameter q Tor the principal fissile nuclei. (From Rcf. 17; uscd with permission of 
Electric Power Research Institute.) 
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fast neutrons. The rate of transmutation of fertile-to-fissile isotopes depends on the 
number of neutrons in excess of those needed to maintain the chain fission reaction 
that are available. In the absence of neutron absorption by anything other than fuel 
and in the absence of leakage, the number of excess neutrons is q - I .  The quanlity 
q is plotted in Fig. 6.8 for the principal fissile isotopes. 

The fertile-to-fissile conversion characteristics depend on the fuel cycle and the 
neutron energy spectrum. For a thermal neutron spectrum (E < 1 eV), 2 3 3 ~  has the 
largest value of q of the fissile nuclei. Thus the best possibility for fertile-to-fissile 
conversion in a thermal spectrum is with the 2 3 2 ~ h - 2 3 3 ~  fuel cycle. For a fast 
neutron spectrum (E > 5 x 104ev), 2 3 9 ~ ~  and 2 4 ' ~  have the largest values of q 
of the fissile nuclei. The LMFBR, based on the 2 3 8 ~ - 2 3 9 ~ ~  fuel cycle, is intended to 
take advantage of the increase of q49 at high neutron energy. 

Conversion and Breeding Ratios 

The instantaneous conversion ratio is defined as the ratio of the rate of creation of 
new fissile isotopes to the rate of destruction of fissile isotopes. When this ratio is 
greater than unity, it is conventional to speak of a breeding ratio, because the 
reactor would then be producing more fissile material than it was consuming. 
Average conversion or breeding ratios calculated for reference reactor designs of 
various types are shown in Table 6.4. 

The values of the conversion ratios for the PWR and BWR are the same because 
of design similarities. The HTGR conversion ratio is somewhat higher because of 
the higher value of q for 2 ' 3 ~  than for 2 3 s ~ .  The improved conversion ratio for the 
CANDU-PHWR is due to the better neutron economy provided by online refueling 
and consequent reduced requirements for control poisons to compensate excess 
reactivity. 

The breeding ratio in an LMFBR can vary over a rather wide range, depending 
on the neutron energy spectrum. Achieving a large value of q and hence a large 
breeding ratio favors a hard neutron spectrum. However, a softer spectrum is 
favored for safety reasons-the lower-energy neutrons which are subject to reso- 
nance absorption become more likely to be radiatively captured than to cause 
fission as the neutron energy is reduced, as discussed in Chapter 5. 

TABLE 6.4 ConversionIBreeding Ratios in Different Reactor Systems 

Conversion Conversion 
Reactor System Initial Fuel Cycle Ratio 

BWR 2-4 wt '70 2 3 5 ~  
238U-239pU 0.6 

PWR 2-4 wt % 2 3 5 ~ ~  
238U-239pu 0.6 

PHWR Natural U 23Xu-239pu 0.8 
HTGR - 5 wt '7O 2 3 5 ~  

232Th-233U 0.8 

LMFBR 10-20 w l  % Pu 2 3 8 ~ - 2 3 9 ~  1.0-1.6 

Source: Data from Ref. 3; used with permission of Taylor & Francis/Hemisphere 
Publishing. 
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6.4 SIMPLE MODEL OF FUEL DEPLETION 

The concepts involved in fuel depletion and the compensating control adjustment 
can be illustrated by a simple model in which the criticality requirement is written as 

where E: is the fuel macroscopic absorption cross section, E t  the moderator 
macroscopic absorption cross section, and C: the combined (soluble and burnable 
poisons plus control rod) control absorption cross section. Assuming that the re- 
actor operates at constant power vEfF(t)+(t) = v~fF(0)+(0) and that v = VC~FIZ: 
is constant in time, the fuel macroscopic absorption cross section at any time is 

The neutron flux is related to the beginning-of-cycle neutron flux by 

where E < 1 is a factor that accounts for the production of new fissionable nuclei via 
transmutation-decay. 

The fission product cross section is the sum of the equilibrium xenon and 
samarium cross sections constructed using Eqs. (6.16) and (6.10), respectively, 
and an effective cross section for the other fission products, 

which accumulate in time from fission with yield yfp,. The quantity yf,~ ofpt is about 
40 to 50 barns per fission. Using these results, Eq. (6.22) can be solved for the value 
of the control cross section that is necessary to maintain criticality: 

The soluble poison will be removed by the end of cycle, and the burnable 
poisons should be fully depleted by that time. Thus the lifetime, or cycle time, 
is the time at which the reactor can no longer be maintained critical with the con- 
trol rods withdrawn as fully as allowed by safety considerations. This minimum 
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control cross section is small, and we set it to zero. The end-of-cycle time can be 
determined from Eq. (6.26) by setting Z: = 0 and solving for tEoc: 

where a is the capture-to-fission ratio for the fuel, and 

km(0)  - 1 
Pex 

km ( 0 )  

i s  the excess reactivity at beginning-of-cycle without xenon, samarium, fission 
products, or control cross section. The initial control cross section (including so- 
luble and burnable poisons) must be able to produce a negative reactivity greater 
than p,,. It is clear from Eq. (6.27) that the cycle lifetime is inversely proportional 
to the power, or flux, level. 

6.5 FUEL REPROCESSING AND RECYCLING 

A substantial amount of plutonium is produced by neutron transmutation of 2 " ~  in 
LWRs. About 220 kg of fissionable plutonium (mainly 2 3 9 ~ ~  and 241Pu) is present 
in the spent fuel discharged from an LWR at a burnup of 45 MWd/T. The spent fuel 
can be reprocessed to recover the plutonium (and remaining enriched uranium) for 
recycling as new fuel. 

Composition of Recycled LWR Fuel 

The potential energy content of the fissile and fertile isotopes remaining in spent 
reactor fuel (Table 6.2) constitutes a substantial fraction of the potential energy 
content of the initial fuel loading, providing an incentive to recover the uranium and 
plutonium isotopes for reuse as reactor fuel. The recycled plutonium concentrations 
calculated for successive core reloads of a PWR are shown in Table 6.5. The initial 
core loading and the first reload were slightly enriched U02. The plutonium dis- 
charged from the first cycle was recycled in the third cycle, that in the second cycle 
in the fourth cycle, and so on, in separate mixed oxide (MOX) UPu02 pins. The 
proportion of MOX increases from about 18% in the second reload to just under 
30% in the sixth and subsequent reloads, for which reloads the plutonium recovered 
from spent MOX and U02 fuel is about the same as was loaded into this fuel at 
beginning-of-cycle (i.e., the plutonium concentration reaches equilibrium). The 
percentage of plutonium in MOX increases from less than 5% on the initial recycle 
load to about 8% in equilibrium, in order to offset the reactivity penalty. 
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TABLE 6 5  Plutonium Concentrations in a PWR Recycling Only Self-Generated 
Plutonium (wt %) 

Loading: 
Recycle: 

Pu in MOX 
MOX of fuel 
'"u discharged 
Discharged Pu 

2 3 9 ~ u  
240pU 
241- 

2 4 2 ~ u  

Source: Data from Ref. 3; used with permission of Taylor & FrancisjHemisphere Publishing. 

Physics Differences of MOX Cores 

The use of MOX fuels in PWRs changes the physics characteristics in several ways. 
The variation with energy of the cross sections for the plutonium isotopes is more 
complex than for the uranium isotopes, as shown in Fig. 6.9. The absorption cross 
sections for the plutonium isotopes are about twice those of the uranium isotopes in 

1 I I ! 

0.001 0.01 0.1 1 .O 3.0 

ENERGY (eV) 

Fig. 6.9 Thermal absorption cross section for 239 Pu. (From Ref. 4; used with permission of 
American Nuclear Society.) 



FUEL REPROCESSING AND RECYCLING 221 

;I lhermal spectrum and are characterized by large absorption resonances in the 
~yitherrnal (0.3 to 1.5 eV) range and by overlapping resonances. Representative 
~hcrrnal neutron spectra in U02  and MOX fuel cells are compared in Fig. 6.10. 

Thermal parameters for 2 3 5 ~  and 23yPu, averaged over a representative LWR 
~hermal neutron energy distribution, are given in Table 6.6. Because of the larger 
thermal absorption cross section for 2 3 9 ~ ~ ,  the reactivity worth of control rods, 

- Burnup 0 MWdtt 

- a  - Burnup 29000 MWd/t 

I o - ~  I o - ~  10-1 % E.eV 

Fig. 6.10 Thermal neutron spectra in U02 and MOX PWR fuel cells. (From Ref. 1; used 
with permission of Nuclear Energy Agency, Paris.) 

TABLE 6.6 Thermal Parameters for 2 3 5 ~  and 2 3 9 ~ ~  in a LWR 

Parameter 23SU 2 3 9 ~ ~  

Fission cross section of (barns) 365 610 
absorption cross section o,, (barns) 430 915 
Nu-fission to absorption q 2.07 1.90 
Delayed neutron fraction P 0.0065 0.002 1 
Generation time A (s) 4.7 lo-5 2.7 x 

Source: Data from Ref. 4; used wilh pein~issirin of American Nuclear Society. 
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burnable poisons, and soluble poisons (PWRs) will be less with MOX fuel than 
with U02, unless the MOX rods can be placed well away from control rods and 
burnable poisons. The higher 2 3 9 ~ ~  fission cross section will lead to greater power 
peaking with MOX than with U02, unless the MOX rods are placed well away from 
water gaps. 

There are reactivity differences between MOX and U02. The buildup of 2 4 0 ~ ~  

and 2 4 2 ~ ~  with the recycling MOX fuel accumulates parasitic absorbers that results 
in a reactivity penalty, as discussed in Section 6.1. The average thermal value of q 
is less for 2 3 9 ~  than for 2 " ~ ,  which requires a larger fissile loading to achieve the 
same initial excess reactivity with MOX as with U02. Furthermore, the temperature 
defect is greater for MOX because of the large low-energy resonances in 2 3 9 ~ ~  and 
2 4 0 ~  shown in Fig. 6.9. However, the reactivity decrease with burnup is less for 
MOX than for U02, because of the lower q for 23% than for 2 3 5 ~ ,  and because of 
the transmutation of 2 4 0 ~ ~  into fissionable 2 4 ' ~ ~ ,  SO that less excess reactivity is 
needed. 

The delayed neutron fractions for 2 3 9 ~ ~ ,  241Pu, and 2 3 5 ~  are in the ratio 
0.0020/0.0054/0.0064, which means that the reactivity insertion required to reach 
prompt critical runaway conditions is less for MOX than for U02 by a factor that 
depends on the 2 3 9 ~ ~ / 2 4 1 P u / 2 3 5 ~  ratio. As the "'PU builds up with repeated 
recycle, the difference between MOX and U02 decreases. The neutron generation 
time is also shorter for MOX than for U02, so that any prompt supercritical 
excursion would have a shorter period. The fission spectrum neutrons are more 
energetic for 239Pu than for 2 3 5 ~ .  On the other hand, because of the large epithermal 
absorption resonances in the plutonium isotopes, the moderator and fuel Doppler 
temperature coefficients of reactivity tend to be more negative for MOX cores than 
for U02 cores. Accumulation of actinides, which are strong emitters of energetic 
alpha particles, leads to higher radioactive decay heat removal requirements with 
MOX. These considerations would tend to limit the MOX fraction in a reload core. 

The yield of 13'xe is about the same for the fission of plutonium as for the 
fission of uranium. Due to the higher thermal absorption cross section of the 
plutonium isotopes, the excess reactivity needed to start up at peak xenon condi- 
tions and the propensity for spatial flux oscillations driven by xenon oscillations 
(Chapter 16) are less in a MOX than a U02 core. 

For plutonium recycle in other reactor types, similar types of physics considera- 
tions would enter. However, the different relative values of q for 2 3 5 ~  and 2 3 9 ~ ~  in 
different spectra (e.g., the epithermal spectrum of a HTGR and the fast spectrum of 
a LMFJ3R) would lead to different conclusions about reactivity penalties. In fact, 
LMFBRs have been designed from the outset with the concept of switching from 
2 3 5 ~  to 2 3 9 ~ ~  as the latter was bred. 

Physics Considerations with Uranium Recycle 

Although it is relatively straightforward to separate uranium from other chemically 
distinct isotopes, it is impractical to separate the various uranium isotopes from 
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each other in the reprocessing step. So recycling uranium means recycling all of the 
uranium isotopes, some of which are just parasitic absorbers and another of which 
leads through subsequent decay to the emission of an energetic gamma. 

Two isotopes present in relatively small concentrations in fresh fuel ( 2 " ~  and 
2 3 6 ~ )  necessitate adding "'u to enrich reprocessed uranium to a higher enrichment 
than is required with fresh uranium fuel. Uranium-234 has a large absorption 
resonance integral and, while only a tiny fraction in natural uranium, will tend to 
be enriched along with 2 3 5 ~ .  Uranium-236 is produced by neutron capture in 2351J 
and by electron capture in 2 3 6 ~ p ,  as shown in Fig. 6.4, and is a parasitic neutron 
absorber with a significant capture resonance integral. Reprocessed uranium is 
made difficult to handle by the decay product '08~1, which emits a 2.6-MeV gamma 
with t l p  = 3.1 min. This radioisotope is produced by a series of alpha decays of 
2 3 2 ~ ,  which is produced by the chain shown in Fig. 6.4. 

Physics Considerations with Plutonium Recycle 

The same type of difficulties exists for plutonium reprocessing as discussed for 
uranium-all of the plutonium isotopes must be recycled. Plutonium-236 decays 
into 2 3 2 ~ ,  which leads to the emission of a 2.6-MeV gamma, as described above. 
Plutonium-238 is produced through neutron transmutation of 2 3 7 ~ p ;  it alpha- 
decays with tl12 = 88 years and constitutes a large shutdown heat source if present 
in sufficient quantity. Plutonium-240 has an enormous capture resonance integral. 
Both 2 3 8 ~ ~  and 2 4 0 ~ ~  contribute a large spontaneous fission neutron source. 
Plutonium-241, while having a large fission cross section, also decays into 
2 4 1 ~ m ,  which has a large thermal capture cross section and a large capture 
resonance integral. Americium-241 also decays into daughter products which 
are energetic gamma emitters. Stored plutonium loses its potency as a fuel over 
time because of the decay of 241Pu into 2 4 1 ~ m .  Plutonium from spent LWR fuel at 
a typical burnup of about 35,000 MWd/T must be utilized within 3 years after 
discharge or it will be necessary to reprocess it again to remove the 2 4 ' ~ m  and 
daughter products. 

Reactor Fueling Characteristics 

Nuclear fuel cycles with plutonium recycle have been studied extensively (e.g., 
Ref. 1). Representative equilibrium fueling characteristics for LWRs operating on 
the 238~-239Pu and 2 3 2 ~ h - 2 3 3 ~  fuel cycles and for a LMFBR operating on the 
2 3 8 ~ - 2 3 9 ~ ~  fuel cycle are shown in Table 6.7. Fuel is partially discharged and 
replenished each year (annual discharge and annual reload), requiring a net 
amount of new fuel (annual makeup) from outside sources. In the absence of 
reprocessing and recycling, the annual reload would have to be supplied from 
outside sources. The LMFBR produces more fuel than it uses and could provide 
the extra fuel needed by the LWRs from the transmutation of 2 3 8 ~  if LMFBRs and 
LWRs were deployed in the ratio of about 75.  
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TABLE 6.7 Representative Fueling Characteristics of 1000-MWt Reactors 

Reactor Type 

Characteristic LWR LWR LMFBR 

Fuel cycle 2 3 2 ~ h L 2 3 3 ~  238~-23YPU 238u-23YpU 

Conversion ratio 0.78 0.71 1.32 
Initial core load (kg) 1,580 2,150 3,160 
Burnup (MWd/T) 35,000 33,000 100,000 
Annual reload (kg) 720 1,000 1,480 
Annual discharge (kg) 435 650 1,690 
Annual makeup (kg) 285 350 (-210) 

Soume: Data from Ref. 8; used with permission of International Atomic Energy Agency. 

6.6 RADIOACTIVE WASTE 

Radioactivity 

The actinides produced in the transmutation-decay of the fuel isotopes and the 
fission products are the major contributors to the radioactive waste produced in 
nuclear reactors, although activated structure and other materials are also present. 
The activity per ton of fuel for representative LWR and LMFBR discharges are 
given in Table 6.8. The fission products account for almost the entire radioactivity 
of spent fuel at reactor shutdown, but because of their short half-lives, this radio- 
activity level decays relatively quickly. In fact, the radioactivity of the spent fuel 
decreases substantially within the first 6 months after removal from the reactor, as 
shown in Table 6.8. The more troublesome fission products from the waste manage- 
ment point of view are those with long half-lives like "TC (tl12 = 2.1 x lo5 years) 
and 12'1 ( t l lZ = 1.59 x 10' years) and those that are gamma emitters, such as 9 0 ~ r  
and ' 3 7 ~ s ,  which produce substantial decay heating. The actinides constitute a 
relatively small part of the total radioactivity at reactor shutdown but become 
relatively more important with time because of the longer half-lives of 2 " ~ ~  and 
2 4 0 ~ ~  and dominate the radioactivity of spent fuel after about 1000 years. 

Hazard Potential 

A simple, but useful, measure of the hazard potential of radioactive material is the 
hazard index, defined as the quantity of water required to dilute the material to the 
maximum permissible concentration for human consumption. The hazard index for 
spent LWR fuel is plotted against time after shutdown in Fig. 6.1 1. Fission products 
dominate the hazard index up to about 1000 years after shutdown, beyond which 
time the transuranics (actinides) become dominant. Including the plutonium in the 
recycled uranium fuel increases the hazard potential because of the con- 
tinued buildup of 239Pu and 2 4 0 ~ ~ .  Beyond 1000 to 10,000 years after shutdown, 



TABLE 6.8 Radioactivity of Representative LWR and LMFBR Spent Fuel at Discharge and at 180 Days (LWR) or 30 Days 
(LMFBR) After Dischargea 

Activity (Ci/tonne Heavy Metal) 

LWR Fuel LMFBR Fuel 

Nuclide Half-Life tl l2 ~ad ia t ions~  Discharge 180d Discharge 30 d 

12.3 y 
10.73 y 
50.5 d 
29.0 y 
64.0 h 
59.0 d 
64.0 d 

3.50 d 
66.0 h 
6.0 h 
2.1 x 10 

40.0 d 
369.0 d 
56.0 min 
7.47 d 

44.6 d 

1.640 x lo3 
1.466 x 10" 
8.939 x 10' 
9.572 x lo4 
9.572 x 10' 
1.269 x lo6 
2.340 x lo6 
2.954 x lo6 
2.108 x lo3 
2.002 lo3 
3.293 x 10' 
2.730 x lo6 
2.125 x lo6 
2.733 x lo6 
1.422 x 10" 
4.418 x lo3 

(Continued) 



TABLE 6.8 (Continurd) 

Activity (Ciltonne Heavy Metal) 

LWR Fuel LMFBR Fuel 

Nuclide Half-Life tTl /z ~ad ia t ions~  Discharge 180d Discharge 30 d 

9.65 d 
60.2 d 

2.73 y 
58.0 d 

109.0 d 
9.4 h 

33.4 d 
70.0 min 
78.0 h 

1.59 x lo7 
8.04 d 
2.285 h 
5.29 d 
2.06 y 

23.0d 
30.1 y 
f 2.79 d 



I4'~a 40.23 h P, r 2.019 x lo6 1.303 x lo2 3.698 x lo4 
I4'ce 32.53 d P, r 1.784 x lo6 3.876 x lo4 3.730 x lo6 
'14ce 284.0 d P9 Y 1.229 x 10' 7.925 x 10" 2.148 x 10' 
1 4 3 ~ r  13.58 d I3 1.657 x 106 1.887 x lo2 3 .O44 x 1 o6 
1 4 7 ~ d  10.99 d 0, Y 7.902 x lo5 9.278 x 10' 1.513 x 10' 
147 pm 2.62 y 0, r 1.031 x lo5 9.859 x 104 6.344 x 10' 
1 4 9 ~ m  53.1 h 0, r 3.919 x lo5 1.326 x lo-l9 9.842 x lo5 
15'sm 93.0 y P + ,  P- ,r  8.658 x lo2 8.696 x lo2 9.693 x lo3 
1 5 2 ~ ~  13.4 y P ' 3 P - , ~  7.838 x lo0 7.635 x lo0 4.759 x 10' 
ls5Eu 4.8 y I% Y 2.540 x lo3 2.365 x lo3 4.305 x lo4 
I69b 72.3 d P3 Y 1.418 x lo3 2.525 x lo2 4.880 x lo3 
2 3 9 ~ P  2.35 d L r 2.435 x lo7 2.050 x 10' 5.990 x lo7 
2 3 8 ~ u  87.8 y a, Y 2.899 x lo3 3.021 x lo3 2.770 x lo4 
2 3 9 ~ u  2.44 x lo4 y a, y, SF 3.250 x lo2 3.314 x lo2 6.247 x lo3 
24OPu 6.54 x lo3 y a, y, SF 4.842 x lo2 4.843 x lo2 8.323 x lo3 
2 4 ' ~ u  15.0 y a? p, r 1.098 x lo5 1.072 x lo5 7.280 x lo5 
2 4 ' ~ m  433.0 y a, r ,  SF 8.023 x 10' 1.657 x lo2 9.091 x lo3 
2 4 2 ~ m  163.0d a, Y, SF 3.666 x lo4 1.717 x lo4 8.467 x lo5 
244 Cm 17.9 d 6 Y 2.772 x lo3 2.720 x lo3 8.032 x lo3 

"Calculated with ORIGEN (Ref. 7).  

bu. alpha panicle; b, elecuw; y, gamma ray; SF, spontaneous fission. 
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Fig. 6.11 Hazard index for spent LWR fuel as a function of time since reactor shutdown. 
(From Ref. 18; used with permission of Woods Hole Oceangraphic Institute.) 

depending on burnup, the hazard potential of spent reactor fuel is less than the 
hazard potential of uranium ore as it is mined from the earth. 

Risk Factor 

In an effort to relate the radioactivity of a given radioisotope to a health hazard, the 
number of curies of radiation from a given radioisotope that would cause cancer (on 
the average) if swallowed by a person has been estimated and is shown as the 
cancer dose per curie (CD/Ci) in Table 6.9. The CD/Ci is not an absolute measure 
of the biological hazard of a given amount of radioactive material, because it does 
not contain any measure of the probability for a sequence of events that would 
result in individual members of a population actually swallowing exactly the 
amount of radioisotopes that would produce a cancer, and no more. However, the 
CD/Ci can be used to construct a relative measure of the biological hazard poten- 
tial. The CD/ton (of heavy metal in the fuel) due to the radioisotopes in discharged 
fuel given in Table 6.8 can be multiplied by the number of tons of heavy metal 
spent fuel discharged from a reactor to construct a total cancer dose (TCD). A 
similar total cancer dose of natural uranium (TCDNU) as it is mined from the earth 



TABLE 6.9 Cancer Dose per Curie for Radioisotopes Present in Spent FueP 

Toxicity Factor Half-Life Toxicity Factor 
Isotope (CD/Ci) (years) (CD/g) 

Actinides and Their Daughters 

455.0 22.3 
15.6 0.03 
36.3 1.60 x lo3 

11 85.0 21.8 
127.3 7.3 lo3 
19.1 7.54 lo4 

372.0 3.28 x lo4 
7.59 2.46 x lo5 
7.23 7.04 x 10' 
7.50 2.34 x lo7 
6.97 4.47 x lo9 

197.2 2.14 x lo6 
246.1 87.7 
267.5 2.41 x lo4 
267.5 6.56 x lo3 
267.5 3.75 lo5 
272.9 433 
267.5 141 
272.9 7.37 x 10" 

6.90 0.45 
196.9 29.1 
163.0 18.1 
284.0 8.5 x lo' 
284.0 4.8 x lo3 

Short-Lived Fission Products 

16.7 29.1 
0.60 7.3 10-3 
5.77 30.2 

Long-Lived Fission Products 

0.17 2.13 x lo5 
64.8 1.57 x lo7 
0.095 1.5 x lo6 
0.84 2.3 x lo6 
0.20 5.73 x 10" 
0.08 7.6 x lo4 
0.03 100 
1.70 1.0 lo" 

Source: Data from Kef, I ;  used with permission of Nuclear Energy Agency, Paris. 

'The toxicity factors are constructed using the methodology described by Bernard L. Cohn. ''Effect$ of 
thc ICRP Publication 30 and the 1980 UEIR Rcport of Hazard Assessments of Iligh Levef Wdste," 
Health Phjs. ,  42 (2) 133-143 (1982) with the following data: ICRP Puhlication 30, Put  4, 88. 19, and 
REIR HI. 880, 19. The factors stand for the fatal cancer doses per gram of isotope injected orally. They 
denote the hazard of the material rather than (he risk because they do not include any account o1palhw;iy 
attenuiltiun processes, b u ~  simply assume oral ingesliun. 
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can be constructed by multiplying the Ci/ton for the radioisotopes in natural 
uranium by the mass of natural uranium that was required to produce the dis- 
charged fuel for which the TCD is calculated. (Typically, about 5 tons of natural 
uranium is needed to produce the fuel for a PWR.) The risk factor is then defined as 
RF - TCD/TCDNU, which may be interpreted as the ratio of the number of 
cancers that would be caused by individual members of a population swallowing 
all of the discharged fuel in portions just sufficient to produce a cancer (on average) 
to the number of cancers that would be caused by individual members of a popula- 
tion swallowing 5 tons of natural uranium in portions just sufficient to produce a 
cancer (on average). The advantage of the risk factor is that the highly uncertain 

101 lo2 l o3  lo4 lo5 lo6 lo7 

Time, y 

Fig. 6.12 Risk factor for LWR spent fuel without recycie. (From Ref. 5; used with permis- 
sion of Elsevier Science Publishers.) 
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Fig. 6.13 Risk factor for LWR spent fuel with 99.5% recycle of h, Am, and Np. (From 
Ref. 5; used with permission of Elsevier Science Publishers.) 

probability of ingestion of radioisotopes is normalized out by being treated in the 
same (highly questionable) way in the numerator (TCD) and denominator 
(TCDNU), so that RF is a measure of the relative cancer potential of spent fuel 
and of the natural uranium from which it was produced. 

The risk factor is plotted for a typical spent fuel loading from a LWR in Fig. 6.12. 
The short-lived fission products are dominant in the decades following discharge, 
but the fission product activity becomes negligible relative to the actinide activity 
after about 200 to 300 years. The potential a-toxicity of the actinide concentration 
is dominated by 2 4 ' ~ r n  over the first 5000 years, then by 2 4 0 ~ ~  up to about 100,000 
years, and thereafter by 2 3 7 ~ p .  Note chat when the risk factor becomes less than 



232 FUEL BURNUP 

unity, the cancer potential of the spent fuel is less than the cancer potential of the 
natural uranium ore from which it was originally made. 

The long-term potential a-toxicity of spent fuel can be reduced dramatically by 
recycling the fuel. Figure 6.13 illustrates risk factor for the same LWR fuel as in 
Fig. 6.12, but now with the Pu, Am, and Np recycled to 99.5% annihilation. After 
about 200-300 years the potential a-toxicity of the spent fuel is less than that of the 
natural uranium from which it was originally produced. As discussed in Section 
6.8, repeatedly recycling the spent fuel to 99.5% annihilation may be feasible, from 
neutron balance considerations, in a fast spectrum reactor, but does not appear to be 
feasible in a thermal reactor. 

6.7 BURNING SURPLUS WEAPONS-GRADE 
URANIUM AND PLUTONIUM 

Composition of Weapons-Grade Uranium and Plutonium 

With the reduction in nuclear weapons worldwide, surplus highly enriched, 
weapons-grade uranium and plutonium become available for use as fuel in nuclear 
reactors. The composition of typical weapons-grade uranium and plutonium is 
compared with the composition of reactor-grade uranium and plutonium in Table 
6.10. Reactor-grade here refers to the typical enriched uranium used in LWRs and 
the plutonium composition created by transmutation in LWR fuel. Although it is 
feasible to de-enrich the weapons-grade uranium, the weapons-grade plutonium 
would be used as is. 

Physics Diffkrences Between Weapons- and Reactor-Grade 
PIutonium-Fueled Reactors 

There are some similarities and some important differences between using 
weapons- and reactor-grade plutonium in an LWR designed for low-enrichment 

TABLE 6.10 Composition of Weapons- and Reactor-Grade Uranium and Pluto- 
nium (wt %) 

Weapons- 
Grade Pu 

Reactor- 
Grade Pu 

Weapons- Reactor- 
Grade U Grade U 
( H m  (LEU) Natural U 

234u 0.12 0.025 0.0057 
23SU 94.00 3.500 0.7193 
23SU 5.88 96.475 99.2750 

Source: Data from Ref. 2; used with permission of National Academy Press. 
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TABLE 6.11 Fuel Doppler Temperature Coefficients of 
Reactivity with Weapons-Grade Plutonium 

Composition Ak/k  ( x 10-7 

K-G U02 (3% 2 ' 5 ~ )  -2.4720 
W-G UOz-ZrOz (0.6% UOz) -0.0017 
W-G U02-Zr02 + W (3% UO) -1.0357 
W-G MOX-Zr02 (2.7% UOz, 0.3% PuOz) -0.9588 
W-G PuOz-Zr02 (0.34% Pu02) -0.0009 
W-G Pu02-Zr02 + W (3% Pu02) - 1.2003 

uranium fuel. The delayed neutron fractions for thermal fission of 239h, '"pa, and 
2 3 5 ~  are in the ratio 0.0021:0.0049:0.0065. Because the delayed neutron fraction is 
smaller in 2 3 9 ~ ~  than in 2 3 5 ~ ,  the subprompt-critical reactivity range is much less 
for plutonium-fueled reactors than for uranium-fueled reactors, as discussed in 
Section 6.5; and because the delayed neutron fraction is much smaller in 239Pu 
than in 2 " ~ ~ ,  reactors fueled with weapons-grade plutonium will have an even 
smaller subprompt-critical reactivity range than reactors fueled with reactor-grade 
plutonium. 

The large resonance integral of 2 4 0 ~ ~  contributes a significant negative Doppler 
coefficient when reactor-grade plutonium is used, but which is absent when 
weapons-gradc plutonium is used. Similarly, the use of weapons-grade uranium 
with the low '"u content would substantially reduced the negative 2 3 8 ~  Doppler 
coefficient relative to the use of reactor-grade uranium. A resonance absorber such 
as tungsten can be added to weapons-grade fuel in order to recover part of the 
negative Doppler coefficient. Calculated Doppler coefficients for a standard LWR 
U02  lattice with reactor-grade uranium and for various combinations of U02Zr02 
and W with weapons-grade uranium and plutonium are given in Table 6.11. 
Because of the higher fission cross section and higher value of q for 2 3 9 ~ u  than 
for 2 3 5 ~  in a fast neutron spectrum, weapons-grade plutonium fuel projects superior 
performance to uranium fuel in fast breeder reactors. 

6.8 TOTAL ENERGY EXTRACTION 

Only about 1% of the energy content of the uranium used to produce the fuel is 
extracted (via fission) in a typical LWR fuel cycle. About 3% of the energy content 
of the mined uranium is stored as tails from the original uranium fuel production 
process, and about 96% remains in the discharged spent fuel in the form of 
uranium, plutonium, and higher-actinide isotopes. With continued reprocessing 
and recychng of spent fuel, there is the possibility of recovering much of this 
remaining energy. 
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To fully consume the initial uranium feedstream, for each transuranic atom 
fissioned there must be one neutron released to sustain the chain reaction and 
one neutron available for capture in 2 3 8 ~  (or 2 4 0 ~ ~ )  to produce 2 3 9 ~  (or 2 4 1 ~ )  
to replace the fissioned atom. There is, of course unavoidable parasitic capture in 
fission products, structure, and the transuranic elements. The continued recycling of 
spent fuel would lead, after long exposure, to equilibrium distributions of the 
transuranic isotopes in the recycled fuel, as shown for thermal and fast neutron 
spectra in Table 6.12. (Note that these concentrations could be altered by blending 
spent fuels from different numbers of recycles.) 

The number of neutrons per fission lost to parasitic capture in the transuranics 
can be estimated from their capture and fission probabilities, which are shown in 
Fig. 6.14 for typical LWR and LMR spectra. For the equilibrium distribution of 
Table 6.12, the number of neutrons per fission lost to parasitic capture is typically 
about 0.25 in a fast neutron spectrum and 1.25 in a thermal neutron spectrum. This 
means that a minimum (not accounting for parasitic capture in fission products, 
control elements, and structure or leakage) number of neutrons released per fission 

TABLE 6.12 Equilibrium Distribution of Transuranic 
Isotopic Masses (%) for Continuously Recycled Fuel in 
Thermal and Fast Reactor Neutron Spectra 

Thermal Reactor 
Isotope Spectrum 

2 3 7 ~ ~  5.51 
4.17 

Fast Reactor 
Spectrum 

0.75 
0.89 

66.75 
24.48 
2.98 
1.86 
0.97 
0.07 
0.44 
0.40 
0.03 
0.28 
0.07 
0.03 

2. 10-3 
6. x lop4 
1. x lop5 
4. 10-5 
7. x 1 0 - ~  
9. lo-' 
4. x 1 0 - ~  

Source: Data from Ref. 14 
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Fig. 6.14 Probability of fission per neutron absorbed for actinide isotopes in thermal and 
fast neutron spectra. (From Ref. 1; used with permission of Nuclear Energy Agency, Paris.) 

to maintain the chain reaction and transmute a fertile isotope into a fissionable 
isotope to repIace each fissioned isotope is 2.25 for the LMR spectrum and 3.25 for 
the LWR spectrum. Physically, more neutrons are wasted transmuting a transuranic 
nuclide into another transuranic nuclide in a thermal spectrum than in a fast spec- 
trum. Since 2.5 < q << 3.25, total energy extraction by repeated recycling in a 
thermal reactor is not possible, but it may be in a fast reactor. We note that sub- 
critical reactors driven by accelerator-spallation or fusion neutron sources could 
also be used for full extraction of the uranium energy content. 

6.9 TRANSMUTATION OF SPENT NUCLEAR FUEL 

General Considerations 

The once-through cycle (OTC), in which slightly enriched U02 fuel ( 2 3 5 ~  increased 
from 0.72% in natural U to 3 to 5%) is irradiated to 30 to 5OGWd/T in a com- 
merciaI reactor and then disposed of in tolo as high-level waste (HLW), is the 
reference nuclear fuel cycle in the United States and a few other countrics. With the 
present low uranium prices, this is the cheapest fuel cycle in the short term. More- 
over, the present U.S. government policy against reprocessing, motivated by pro- 
liferation concerns, is consistent only with the OTC. However, the long-term 
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implications of the OTC are rather unfavorable. The potential energy content of the 
residual fissile material (about 1% each Pu and 2 3 5 ~ )  and of the 2 3 8 ~  ( > 90%) in 
the spent fuel, which constitutes > 90% of the potential energy content of the 
mined uranium, is lost in the OTC. Moreover, all the nuclides that can contribute 
to the potential radiotoxicity of the spent fuel are retained, together with the much 
greater volume of depleted U (mostly 2 3 R ~ ) ,  which makes a relatively small con- 
tribution to the potential radiotoxicity, resulting in the largest possible volume of 
HLW, which must be stored in geological repositories for hundreds of thousands to 
millions of years. 

Today, there are large inventories of plutonium and other minor actinides that 
have accumulated in discharged spent nuclear fuel. Presently, 40,000 tonnes initial 
uranium of spent nuclear fuel has accumulated in the Unites States. This inventory 
continues to grow at a rate of 2000 tonnes/yr. At the current level of nuclear energy 
production in the United States using the OTC, a new repository on the scale of the 
presently proposed Yucca Mountain site would have to be installed about every 30 
years. The objective of transmutation of spent fuel is to reduce both the mass of 
HLW that must be stored in geological repositories and the time of high radio- 
toxicity of that HLW, thus reducing the requirements for both the number of 
repositories and the duration of secured storage. A National Research Council 
(NRC) study recently concluded that the need for a geological repository could 
be reduced, but would not be eliminated, by transmutation. 

The short-term radiotoxicity of the spent fuel is dominated by fission products, 
but after 300 to 500 years only the long-lived radionuclides (particularly 9 9 ~ c  and 
'"1, but also ' 3 5 ~ s ,  9 3 ~ r ,  and others) remain-unfortunately, some of these are 
relatively mobile and contribute disproportionately to the potential radiological 
hazard from spent fuel. However, the long-term potential radiotoxicity of spent 
fuel arises principally from the presence of transuranic actinides (Fu and the so- 
called minor actinides Np, Am, Cm, etc.) produced by transmutation-decay chains 
originating with neutron capture in 2 3 8 ~ ,  which constitute a significant radiation 
source for hundreds of thousands of years. The contributions to the radiotoxicity of 
typical spent nuclear fuel from actinides, fission products, and activated structure 
are shown in Fig. 6.1 5. 

Processing of spent U02 fuel to recover the residual U and Pu reduces the 
potential long-term radiotoxicity of the remaining HLW (minor actinides, fission 
products, activated structure, etc.) by a factor of 10 and reduces the volume by a 
much larger factor, and processing technology (PUREX) capable of 99.9% efficient 
recovery of U and Pu is commercially available in a number of countries (United 
Kingdom, France, Japan, India, Russia, and China). A fuel cycle in which h e  
recovered Pu and U was recycled as a mixed oxide (MOX) U02-Pu02 commercial 
reactor fuel has been envisioned since the beginning of the nuclear energy era, and 
at present a number of commercial reactors are operating with recycled Pu in 
western Europe. (Reprocessed uranium is not being recycled significantly because 
of the low cost of fresh uranium, which does not contain the neutron-absorbing 2 3 6 ~  

that decreases the reactivity of recycled U.) Taking into account further production 
of minor actinides and fission products in the recycled Pu, a single recycle of 
the Pu in spent fuel reduces the potential radiotoxicity of the HLW associated with 
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Fig. 6.15 Radiotoxic inventory of UO, fuel as a function of time [3.7% 2 " ~ ,  45 
GWD/tonne heavy metal; Becquerel (Bq) = 1 disintegration per second = 2.7 x 10 l '  Ci; 
Sievert (Sv) = 100rad equivalent]. (From Ref. 12; used with permission of Nuclear Encrgy 
Agency, Paris.) 
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the original spent fuel only by a factor of 3 (rather than 10). Repeated recycling of 
the MOX fuel is technically feasible and would result in better fuel utilization, but 
the potential radiotoxicity of the HLW associated with the original spent fuel would 
actually increase relative to the OTC because o l  the further production of minor 
actinides and fission products. 

It is clear from the discussion above that to reduce the potential radiological 
hazard associated with spent fuel or the length of time that hazard exists, it is 
necessary (1) to destroy the actinides (Pu and the minor actinides) and (2) to 
destroy the potentially hazardous long-lived fission products. The destruction of 
the minor actinides and long-lived fission products, as well as the Pu, by neutron 
transmutation implies the requirement for separation of these nuclides from the 
waste stream of processed spent fuel for recycling with subsequent fuel loadings. 
Effective separation of Pu with 99.9% efficiency is achieved commercially with the 
PUREX process. The effective separation of Np is technically feasible with a 
modified PUREX process, but practical separation methods for Am, Cm, and the 
long-lived fission products are still in the research stage. The pyrometallurgical 
(PYRO) separation technology presently under development would, unlike the 
PUREX process, allow separation of Np, Am, and Cm along with Pu into a code- 
posited metallic product that could be recycled in a metal-fuel fast reactor, resulting 
in a waste stream essentially free of actinides. 

Since all of the actinides are potentially radiotoxic and since neutron capture 
(n, y) reactions in the actinides just produce other actinides, the only effective way 
to destroy actinides is by neutron fission (n, f )  reactions. Some of the actinides are 
effectively not fissionable in a thermal neutron spectrum, such as exists in almost 
all commercial nuclear reactors, and the probability of fission per neutron absorbed 
is greater for all the actinides in a fast neutron spectrum (see Fig. 6.14). The neutron 
absorption cross sections for the troublesome long-lived fission products are small 
in a thermal neutron spectrum and even smaller in a fast neutron spectrum, imply- 
ing the advantage of a very high flux of thermal neutrons for their effective destruc- 
tion (effective destruction of "'CS may prove impractical because of the presence 
of other neutron-absorbing Cs isotope fission products). 

Conceptual Design Studies 

Several studies of minor actinide transmutation in nuclear reactors have been 
performed. They indicate that recycling of industrial levels of minor actinides as 
well as Pu in thermal neutron spectrum commercial reactors does not significantly 
reduce the overall radiotoxicity and requires an increase in fuel enrichment, with a 
corresponding increase in the cost of energy. On the other hand, recycling minor 
actinides as well as Pu in fast reactors is predicted to reduce the overall radio- 
toxicity of the HLW, but the maximum loading of minor actinides is limited by 
reactor safety considerations. The possibility of recycling Pu and the minor acti- 
nides first in thermal neutron spectrum commercial light water reactors (LWRs) and 
then in dedicated fast reactors has been calculated to he able to reduce the radio- 
toxic inventory in the HLW by a factor of about 100 relative to the OTC. 
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Such studies generally indicate that the transmutation of Pu, minor actinides and 
fission products in critical nuclear reactors would ultimately be Limited by criti- 
cality or safety constraints. While fast reactors could, in principle, burn the mix of 
Pu plus minor actinides and some of the fission products, the available PUREX 
process does not separate the minor actinides with the plutonium from the waste 
stream for recycling. Moreover, it would be difficult to fabricate MOX fuel contain- 
ing the highly radioactive minor actinides in existing facilities. This has led in 
Europe and Japan to consideration of remote fuel fabrication facilities to supply 
fuel containing minor actinides for destruction in dedicated subcritical transmuter 
reactors driven by accelerator spallation neutron sources, while the Pu would be 
consumed in dedicated fast reactors. 

The U.S. ATW concept is to use remote fabrication of fuel containing separated 
Pu plus minor actinides (but no 2 3 8 ~ )  for destruction in a subcritical transmuter 
reactor driven by an external neutron source. A variant of this concept would 
involve first irradiating this Pu plus minor actinide fuel by repeated recycling in 
a critical reactor before the final irradiation in a subcritical transmuter reactor. 

The small delayed neutron fraction of the minor actinides and the generally 
positive reactivity coefficient of fast reactors without 2 3 8 ~  dictates that these acti- 
nide destruction, or transmuter, reactors must remain well subcritical. The reactiv- 
ity coefficient could be made negative by the addition of 2 3 8 ~ ,  which would allow 
the possibility of actinide destruction in critical fast reactors, but that would lead to 
the production of additional Pu and minor actinides by transmutation of 2 3 8 ~ ,  hence 
to a decreased net actinide destruction rate. 

Development of the PYRO separation technology would allow separation of Np, 
Am, and Cm along with Pu, all of which could be recycled in a metal-fuel fast 
reactor, resulting in a waste stream essentially free of actinides. However, it would 
be necessary to include 2 3 8 ~  in the fuel to avoid the safety problems mentioned in 
the preceding paragraph, which would reduce the net destruction rate of the acti- 
nides. Thus safety or net destruction rate constraints on transmutation of actinides 
in critical reactors could be relaxed by operating the reactors subcritical with a 
neutron source. Several studies of subcritical reactors driven by accelerator spalla- 
tion neutron sources and a few studies of subcritical reactors driven by fusion 
neutron sources have predicted significantly higher levels of Pu, minor actinide, 
and/or long-lived fission product destruction than are predicted to be achievable in 
critical nuclear reactors. The optimum scenario for recycling Pu, minor actinides, 
and long-lived fission products in commercial thermal neutron spectrum reactors, in 
dedicated fast neutron spectrum reactors, and in subcritical transmuter reactors 
driven by neutron sources remains the sublject of active investigation. 

The neutron spectrum in a subcritical reactor driven by a neutron source will 
depend more on the moderating and absorption properties, hence the material 
composition, of the subcritical reactor than on the energy spectrum of the source 
neutrons. Thus the material composition in the subcritical reactor can be optimized 
for the transmutation task at hand, without the criticality and safety constraints that 
would be present in a critical reactor. 
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PROBLEMS 

6.1. A reactor loaded initially with 125 kg of 93% enriched 2'% in  t!ne form of 
U 0 2  depletes in a constant neutron flux of + = 5 x 1013 n/cm2. s for one 
effective full power year. Assuming a thermal absorption cross section of 450 
barns for 2 3 5 ~ ,  calculate the average fuel burnup in MWD/T. 
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6.2. Calculate the maximum enrichment at which a mixture of 2 3 5 ~  and 2 3 8 ~  will 
initially breed (i.e., the fissile concentration n2> nn49 will increase in time). 
Use 0i5 = 700 barns, cry = 1050 barns, 0;' = 8 barns, q25=2.0X and 
q49= 2.12 and assume that 2 3 Y ~ ~  is produced instantaneously by neutron 
capture in '"u. 

6.3. Consider a thermal reactor with initial fuel composition 93% 2 " ~  and 7% 
2 3 8 ~  and fuel density 1 8 . 9 ~ / c m ~  with an initial thermal neutron flux of 
3 x 1 014 n/cm2 S. Assume a flux disadvantage factor of 2. Write a computer 
code to calculate the depletion of 2 3 5 ~  and the buildup of 2 3 9 ~ ~  over the first 
2000 h of operation, assuming operation at constant power. Estimate from 
perturbation theory the reactivity decrease associated with the 2 3 5 ~  depletion 
and 2 3 9 ~ ~  buildup over 2000 h of operation. Plot your results as a function of 
time. 

6.4. Estimate from perturbation theory the equilibrium xenon and samarium 
reactivity worth and the reactivity worth of the other fission products as a 
function of time in the reactor of Problem 6.1. Assume that the fuel occupies 
80% of the core and that y f ~ o i P  = 50 barns per fission. Plot your results as a 
function of time. 

6.5. A 235~-fueled nuclear reactor operates with a thermal flux level of 
1 x 1 0 ~ ~ n / c r n ~ . s .  The reactor has been operating at constant power level 
for 2 weeks when it becomes necessary to scram the control rods to shut 
down the core. After detailed investigation it is determined that the scram 
signal was erroneous and it is now necessary to return the reactor to full- 
power operation; 12 h has passcd since shutdown. The control rods are with- 
drawn to the critical prescram position and the reactor is brought to 
temperature, but the reactor is not critical. How much further must the con- 
trol rods be withdrawn to achieve criticality if the control rod bank worth is 
Ap = 0.001 cm-'. 

6.6. Derive the equations that determine the time dependence of thc samarium 
concentration in a reactor that has achieved equilibrium samarium conditions 
at a flux +o when the flux is changed to $,. 

6.7. Calculate the initial excess reactivity needed for the reactor of Problem 
6.2 to have a cycle lifetime of 1.5 years operating at a flux level of 
5 x 1 0 ~ ~ n / c i n ~ . s .  

6.8. Calculate the nuclear (fission) heating density in a PWR U02 fuel clement 
(density IOg/cm" 4% enriched) operating in a thermal neutron flux of 
5 x 1 0 ' ~  n/cm2 s. 

6.9. Calculate the a-decay heating due to plutonium at the end-of-cycle for each 
recycle core loading indicated in Table 6.5. 

6.10. A thermal reactor loaded with 100,000 kg of 3% enriched U02 depletes in a 
constant thermal neutron flux of 5 x l0I3 x n/cm2. s for 1 year. Using a 
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thermal absorption cross section of 500 barns and a capture-to-fission ratio 
of = 0.2 for 2 3 5 ~  and a density of 10 g/cm3 for U02, calculate the average 
fuel burnup in MWd/T. 

6-11, A 235~-fueled reactor has been operated at a thermal flux level of 
5 x 10" n/cm2 s for 2 months, when the power level is reduced by one-half 
for 10 h, then returned to full power. Calculate the reactivity worth of xenon 
just before the reactor is shut down; 10 h later, before it is returned to full 
power; and then again after it has been operating at full power for I0 h. 

6.12. Repeat the calculation of Problem 6.1 1 for full power thermal neutron flux 
levels of 1 x 1013, 5 x 1013, and 1 x 10 '~n/cm~.s .  

6.13. The equilibrium concentration of ' 4 9 ~ m  is independent of power level, and 
when the reactor is shut down, the 1 4 9 ~ m  concentration decreases. Can the 

concentration ever be lower than the equilibrium concentration, once 
that concentration has been attained? 

6.14. Calculate the equilibrium and peak xenon concentrations in cores fueled with 
2 3 3 ~ ,  2 3 5 ~ ,  and 2 3 9 ~ ~ ,  a11 operating at a thermal flux level of 1 x 1014. 

6.15. A uniform bare cylindrical reactor, containing an initial loading of 125 kg 
of 2 3 5 ~ ,  operates until the maximum local 2 3 5 ~  depletion reaches 50%. 
Estimate the total fission energy release from the core. 

6.16. Calculate and plot the activity (Ci/tonne fuel) and the toxicity (cancer 
dose/tonne fuel) of 9 9 ~ c ,  lZ91, 9 0 ~ r ,  and 1 3 7 ~ ~  in spent fuel from a LWR 
from the time of discharge to lo4 years later. 

6.17. Calculate the toxicity (cancer dose/tonne fuel) of the equilibrium concen- 
trations of the transuranic isotopes given in Table 6.12 for continuously 
recycled spent fuel in fast and thermal reactor spectra. 

6.18. Calculate the change in isotopic composition of weapons-grade plutonium 
that is irradiated in a thermal neutron flux of 1 0 ' ~ n / c m ~ .  s for I year. 

6.19. A thermal reactor fueled with 2 " ~  and 2 3 2 ~ h  in the ratio 1:20 is operated for 
1 year with a neutron flux of 8 x 1013 n/cm2 S. Calculate the concentrations 
of 2 3 3 ~  and 2 3 5 ~ ,  in terms of the initial 2 3 5 ~  concentration, at the end of the 
year. What is the annual conversion ratio? 

6.20. Calculate the energy content per unit mass of the original fuel loadings for 
the reactors in Table 6.2. Calculate the fraction of this energy content that is 
released by fission in a single cycle. 



7 Nuclear Power Reactors 

As of 2000, there are 434 central station nuclear power reactors operating 
worldwide to produce 350,442MWe of electrical power. Of this number, 252 are 
pressurized water reactors (PWRs), 92 are boiling water reactors (BWRs), 34 are 
gas-cooled reactors (GCRs) of all types, 39 are heavy water-cooled reactors of all 
types (mostly CANDUs), 15 are graphite-moderated light-water pressure tube re- 
actors (RBMKs), and 2 are liquid-metal fast breeder reactors (LMFBRs). The 
general physics-related characteristics of such reactors are described in the 
following sections. To be quantitative, specific reactors that produce 900 to 
1300MWe (650 MWe in the case of CANDUs) were chosen, but it should be noted 
that reactors of each type can vary greatly in size and power output, so the numbers 
should be understood to be only representative. In addition to the central station 
power reactors mentioned above, there are more than 100 pressurized water naval 
propulsion reactors in the U.S. fleet (plus others in foreign fleets) and numerous 
research and special purpose reactors of various types worldwide. 

7.1 PRESSURIZED WATER REACTORS 

Pressurized water reactors (PWRs) were first developed in the United States based 
on experience from the naval reactor program. The first commercial electric 
power-producing unit started operation at Shippingport, Pennsylvania in 1957. 
The PWR is now widely distributed worldwide. The basic structure of the PWR 
core is the approximately 20cm x 20cm x 4 m high fuel assembly shown in 
Fig. 7.1, consisting of an array of zircaloy-clad U 0 2  fuel pins, or rods, of about 
1 cm diameter. The enrichment varies from about 2 to 4% or more, depending on 
the burnup objective. A typical fuel assembly may consist of a 17 x 17 array of fuel 
pins of about 1 cm diameter. The coolant flows in an open lattice structure which 
permits some flow mixing and is under sufficient pressure that no boiling occurs 
under normal operation. 

Long-term reactivity control is provided by adjustment of the boric acid content 
in the coolant. The soluble poison concentration decreases with fuel burnup to 
compensate fuel reactivity loss and must be reduced to compensate I3'xe and 
L 4 9 ~ r n  buildup following reactor startup. Boron addition and dilution may be used 
to minimize control rod motion for startup and shutdown. Soluble poisons make a 
positive contribution to the moderator temperature coefficient of reactivity (an 
increase in temperature reduces the absorption cross section), so their maximum 
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7.1 Fuel assembly for a pressurized water reactor. (Courtesy of Westinghouse Eler 
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Fig. 7.2 Representative control element pattern in a pressurized water reactor. (Courtesy of 
ABB Combustion Engineering, Inc.) 

concentration is limited, and fixed burnable poisons are used to reduce the control 
requirements that must be met by adjustment of the boric acid concentration. 

Burnable poisons consists of separate shim rods substituted for a fuel rod in the 
fuel assembly. These rods may consist of borosilicate glass rods with stainless steel 
cladding or B4C pellets in an A1203 matrix with zircaloy cladding. The shim rods 
burn out as the fuel depletes, which constitutes a positive reactivity contribution to 
compensate the negative reactivity contribution of fuel depletion, thus reducing the 
requirement for adjustment of the boric acid concentration. 
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Because of the relatively short migration length (about 6 cm) of thermal neutrons 
in a PWR, the active control rods must be distributed. Short-term and rapid inser- 
tion (scram) reactivity control is provided by an assembly of full-length control 
rods driven down into the fuel assembly. For example, the control rod assembly for 
a 17 x 17 pin lattice consists of 24 control fingers connected by a spider, as shown 
in Fig. 7.1. The control rod material is either B4C or a Ag-In-Cd mixture of 
somewhat weaker absorbers that produces less flux peaking upon rod withdrawal. 
"Part-length" rods in which only the lower 25% or so contains poison are used for 
controlling the axial flux distribution, which is necessary to control axial xenon 
oscillations (Chapter 16) as well a s  to minimize axial power peaking. 

Full-length control rods are norma1ly designated as regulating rods, used for the 
normal short-term reactivity adjustments that cannot be handled by adjustment of the 
boric acid concentration, and shutdown or scmm rods, which are held out of the core 
to be available for a rapid negative reactivity insertion if required for safety or a more 
gradual negative reactivity insertion required for normal shutdown. A typical dis- 
tribution of control rods among the assemblies in a PWR core is shown in Fig. 7.2. 

About 190 to 240 fuel assemblies containing 90,000 to 125,000kg of U02 
constitute a typical PWR core, which is about 3.5 m in diameter and 3.5 to 4.0m 
high and is located inside a pressure vessel, as shown in Fig. 7.3. Coolant typically 
enters the pressure vessel near the top, flows downward between the vessel and the 
core, is distributed at the lower core plate, flows upward through the core, and exits 
the vessel at the top. The coolant, which is pressurized to about 15.5MPa 
(2250 psi), typically enters the vessel with a temperature of about 290•‹C and exits 
at about 325•‹C. 

7.2 BOILING WATER REACTORS 

Boiling water reactors (BWRs) were k t  developed in the United States and 
are now found worldwide. The physics of BWRs is similar in many respects to 
that of PWRs. The basic structure of the BWR core is an approximately 
14 cm x 14 cm x 4 m high fuel assembly (Fig. 7.4) consisting of an 8 x 8 array of 
zircaloy-clad U02 fuel pins, or rods, of about 1.3 cm diameter. The enrichment 
varies from 2 to 4% 2 3 5 ~ .  The 8 x 8 fuel pin array is surrounded by a zircaloy fuel 
channel to prevent cross-flow between assemblies. A group of four fuel assemblies 
plus an included cruciform control rod constitutes a fuel module, out of which a 
typical BWR core is built up, as indicated in Fig. 7.5. 

Fuel pins of different enrichment are loaded into each assembly. Fuel pins of 
lower enrichment are located next to the control rod to suppress the flux peaking 
that would otherwise occur when the control rod was withdrawn, leaving a sub- 
stantial water gap. The other pins are arranged to flatten the power distribution 
within the assembly. Long-term reactivity changes to compensate fuel depletion 
and reactivity changes needed for large power level changes are provided by the 
B4C cruciform control rods, which are driven up from the bottom of the core 
because the reactivity worth is greater with the single-phase coolant in the lower 
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Fig. 7.3 Pressurized water reactor. (Courtesy of Westinghouse Electric Corporation.) 

part of the core than with the two-phase coolant in the upper part. Long-term 
compensation of the negative reactivity associated with fuel depletion is provided 
by rnjxing Gd2O3 uniformly with the U02 i n  several fuel pins in each assembly to 
provide a positive reactivity contribution as it bums out. 

Short-term reactivity control is provided by recirculation flow and by con- 
trol rods. Because of the negative coolant/moderalor temperature coefficicnt of 
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FUEL CONTROL ROD IN-CORE 

Fig. 7.5 Four-assembly fuel module for a boiling water reactor. (Courtesy of General 
Electric Company.) 

reactivity, coolant flow rate can be increased to decrease coolant temperature and 
the amount of boiling, making neutron moderation more effective and thus increas- 
ing reactivity. This causes the power level and the coolant temperature to increase, 
which in turn decreases the reactivity, until the reactor is again critical at a higher 
power level. Decreasing the coolant flow rate reduces the power level by a simiIar 
mechanism. Typically, about 750 fuel assemblies containing about 140,000 to 
160,000 kg of U02 constitute a BWR core, which is similar in size to a PWR core 
and is located inside a pressure vessel, as shown in Fig. 7.6. Coolant enters the 
vessel at about 7.2 MPa (1000 psi), flows downward between the vessel wall and the 
shroud, is distributed by the core plate, flows upward through the core and upper 
structure, and exits the core as steam at about 290•‹C. About 30% of the coolant 
flow is recirculated, which has the net effect of increasing the total coolant flow rate 
in the core. 

7.3 PRESSURE TUBE HEAVY WATER-MODERATED REACTORS 

The use of heavy water and online refueling to maintain criticality with natural 
uranium fuel is fundamental to CANDU reactors, which are pressure tube heavy 

Fig. 7.4 Fuel assembly for a boiling water reactor. 1, top fuel guide; 2, channel fastener; 3, 
upper tie plate; 4, expansion spring; 5, locking tab; 6, channel; 7, control rod; 8, fuel rod; 9, 
spacer; 10, core plate assembly; 11, lower tie plate; 12, fuel support piece; 13, fuel pellets; 
14, end plug; 15, channel spacer; and 16, plenum spring. (Courtesy of General Electric 
Company.) 



250 NUCLEAR POWER REACTORS 



PRESSURE TUBE HEAVY WATER-MODERATED REACTORS 251 

water-moderated reactors developed in Canada but now are located in several other 
countries. The basic structure of the CANDU core is the fuel bundle shown in 
Fig. 7.7, which contains natural U 0 2  in 37 zircaloy-clad fuel pins about 1.3 cm in 
diameter and 49 crn long which are separated with spacers. Tkelve fuel bundles are 
placed end to end in a pressure tube through which flows pressurized (IOMPa, 
1450psi) D20. The reactor core consists of 380 fixed calandria tubes in a vessel 
filled with D20 moderator, as shown in Fig. 7.8. A pressure tube containing the 12 
fuel bundles is loaded into each calandria tube, resulting in a core loading of about 
100,000kg of natural U02. The coolant enters each pressure tube at about 265•‹C 
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Pressure Tube 

Zircaloy Bearing Pads 

Canlub Graphite lnterlayer 

Uranium Dioxide Pellets 

Zircaloy Fuel Sheath Bundle Length 500 mm 
Bundle Diameter 100 mm 
Number Of Elements 37 \ 'Zircaloy End Support Plate 

Zircaloy End Cap 

Fig. 7.7 Fuel assembly for a CANDU pressure tube heavy water reactor. (Courtesy of 
Atomic Energy of Canada, Ltd.) 

Fig. 7.6 Boiling water reactor. 1, vent and head spray; 2, steam dryer lifting lug; 3, steam 
dryer assembly; 4, steam outlet; 5, core spray inlet; 6, steam separator assembly; 7, feedwater 
inlet; 8, feedwater sparger; 9, low-pressure coolant injection inlet; 10, core spray line; 11, 
core spray sparger; 12, top guide; 13, jet pump assembly; 14, core shroud; 15, fuel assem- 
blies; 16, core blade; 17, core plate; 18, jet pump/recirculation water inlet; 19, recirculation 
water outlet; 20, vessel support skirt; 21, shield wall; 22, control rod drives; 23, control rod 
drive hydraulic lines; and 24, in-core flux monitor. (Courtesy of General Electric Company.) 
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and exits at about 310•‹C. A typical CANDU core is about 7 m  in diameter 
and about 4 m high. 

On-line refueling is the primary means of long-term reactivity control in 
CANDU reactors. This is augmented by addition of soluble poison to the moderator 
D20 and by the use of boron and gadolinium as burnable poisons admixed with the 
fuel. Because the D20 in the reactor vessel, not the D20 coolant in the pressure 
tubes, is the primary moderator, the usual negative coolant temperature coefficient 
of reactivity present in PWRs and BWRs is not present in the CANDU, and in fact 
the temperature coefficient of reactivity tends to be positive. This requires a much 
more precise active reactivity control system than for PWRs and BWRs. Reactivity 
control in each of 14 chambers is achieved by controlling the amount of H20 
(which is a poison in a D20 system) in response to local neutron flux detector 
measurements. 

Control rods are also employed. Adjuster rods are used for flattening the power 
distribution and for short-term reactivity adjustments. Four cadmium rods clad in 
stainless steel are located above the core, which may be used to supplement the 
adjuster rods in achieving reactivity control or dropped to effect a rapid shutdown, 
or scram. A backup shutdown system consists of injection of a gadolinium nitrate 
solution into the moderator. 

7.4 PRESSURE TUBE GRAPHITE-MODERATED REACTORS 

The world's first commercial nuclear electricity was generated near Moscow in 
1954 by a graphite-moderated pressure tube light water reactor generally known by 
the acronym RBMK from the Russian for "high-power pressure tube reactor." 
Reactors of this type are located in the countries of the former Soviet Union. 
The basic structure of the RBMK core is the fuel channel tube, made of zirconium 
alloyed with 2.5% niobium, shown in Fig. 7.9. Each channel tube consists of two 
fuel strings, which are separately cooled with H20 at 7.2MPa, which enters at 
270•‹C and exits at 284"C, placed end to end. Each fuel string contains 1.8 to 
2.0% enriched U02 in 18 fuel pins about 1.3 cm in diameter and 3.6m long, 
separated with spacers. Each channel tube is placed vertically into a square graphlte 
block 0.25 m on a side and 7 m high. The graphite blocks, 1661 containing a fuel 
channel tube and 222 containing control rod channels, are set side by side to form 
an upright cylinder 12.2 m in diameter containing about 200,000 kg of UOz. 

Since the migration length in graphite is about 60cm, the core is very loosely 
coupled and subject to flux tilting. Furthermore, since the neutron moderation is 
provided by the graphite, the coolant temperature coefficient of reactivity is positive 
because the effect of increased coolant temperature and reduced coolant density is 
to reduce the coolant absorption cross section. As a consequence, the RMBK 
reactor is inherently unstable to power oscillations and it is necessary to control 
the power distribution region by region. Two hundred and eleven cylindrical B4C 
control rods, with graphite extenders to enhance rod effectiveness by displacing 
H20 that would otherwise fill the rod channel when the rod was withdrawn, are 
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Fig. 7.9 Fuel assembly for a RMBK pressure tube graphite reactor. (From Ref. 8.) 

dispersed in the core. Of these, 24 are normally withdrawn from the core to be 
available to produce rapid shutdown. An additional 24 short absorbing rods that 
enter from below are used to control axial xenon oscillations (Chapter 16) and to 
reduce axial power peaking. With a fresh fuel loading, up to 240 additional control 
rods must displace fuel in the tubes in order to hold down reactivity. These con- 
trol channel tubes are replaced with fuel channel tubes as fuel burnup decreases 
reactivity. 

7.5 GRAPHITE-MODERATED GAS-COOLED REACTORS 

The first man-made sustained fission chain reaction took place in a pile of graphite 
in Chicago-with air cooling-which was the prototype for the first experimental 
and production reactors. The original gas-cooled power reactors developed in 
France and England used C02 as a coolant and graphite moderator. The original 



GRAPHITE-MODERATED GAS-COOLED REACTORS 255 

p- Tie Bar 

-Double Skinned Graphite Sleeve 
0 Improved graphite to withstand longer 

reactor dwell 
0 Modified design of graphite sleeve to improve 

strength 
- Brace 

0 Streamlined grids and braces to reduce 
pressure drop 

-Fuel Plns 
Strong cladding material to withstand longer 
reactor dwell 
Coating on pins to reduce oxidation 
Large grained UO, fuel pellets for improved 
fission oroduct retention 

Stainless Steel Cladding 

Ribbing 
Improved heat transfer surface 

I Hollow UO, Fuel Pellet 

fgj 
Fig. 7.10 Fuel assembly for advanced gas reactor. (From Ref. 4; used with permission of 
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MAGNOX reactors consisted of natural uranium bars clad in a low- neutron-absor- 
bing magnesium alloy known as magnox which were placed in holes in graphite 
blocks through which the C02 coolant flows at 300psi, leaving the core at about 
400•‹C. A typical MAGNOX core is about 14m in diameter and 8 m  high. To 
achieve higher coolant outlet temperatures (65OoC), the subsequent advanced 
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gas-cooled reactors (AGRs) operate at 600psi, which requires that the cladding 
consist of a material that can operate at higher temperature, which in turn requires 
that the fuel be enriched. The AGR fuel element consists of 36 tubes made up of 
pellets of 2.3% enriched U02 in stainless steel cladding, which are ribbed to 
improve heat transfer, as shown in Fig. 7.10, encased in a graphite sleeve, and 
inserted in holes in graphite blocks. Excessive corrosion in piping and steam gen- 
erators have led to the abandonment of COT as a coolant; most advanced gas-cooled 
reactors use helium as a coolant. 

As an example of a modem gas-cooled reactor, we consider the high-tempera- 
ture gas-cooled reactor (HTGR). The basic structure of the HTGR core is a hex- 
agonal graphite block containing small channels for stacks of fuel pins arid for 
coolant flow, as shown in Fig. 7.1 1. The fuel consists of coated microspheres of 
93% enriched UC/Th02 contained in fuel pins about 1.6cm in diameter and 6 cm 
long. About 490 fuel assemblies, each with 6.3 rn active fuel height, are placed 
upright side by side to form a core that has a diameter of 8.4m and contains 
1,720kg of U and 37,500kg of Th, as shown in Fig. 7.12. The fuel assemblies 
are arranged in rings of six about a control assembly. Long-term reactivity control 
is provided by B4C loaded into carbon rods which may be loaded into the comer 
locations of each fuel assembly to serve as burnable poison. Short-term reactivity 
control is provided by pairs of control rods that can be inserted into the two larger 
channels in special control assemblies. HTGRs have been deployed only on a 
limited scale. 
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Fig. 7.11 Fuel assembly for a high-temperature gas-cooled reactor. ( C o u r t e s y  of General 
Atomics Company.) 
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Fig. 7.12 High-temperature gas-cooled reactor. (Courtesy of General Atomics Company.) 

7.6 LIQUID-METAL FAST BREEDER REACTORS 

The first generation of electricity from nuclear fission took place at the light bulb 
level in 1952 in a liquid-metal fast breeder reactor an (LMFBR), the EBR-1 in 
Idaho. Several LMFBRs have been operated since then, but this reactor type has not 
yet been deployed on a substantial scale. The physics of the LMFBR, which has a 
fast neutron spectrum, differs significantly from the physics of the previously dis- 
cussed reactors, all of which have a thermal neutron spectrum. 

The basic structure of a modern LMFBR core is the fuel assembly, as indicated 
in Fig. 7.13. The primary fissile nuclide for fast breeders is 239h, and the primary 
fertile nuclide is 2 3 8 ~ .  The fuel assembly consists of about 270 fuel pins containing 
10 to 30% Pu in Pu02-U02 in small pellet form encased in stainless steel cladding. 
The pins, which are about 0.9 cm in diameter and 2.7 m long, are wrapped in wire to 
maintain interpin spacing and placed within a stainless steel tube. The flow of liquid 
sodium is directed by the channel around the array. About 350 such assemblies 
makes up the core of an LMFBR. Another 230 similar assemblies, but with only 
UOz or with a lower Pu content, are placed in a blanket around the core, as shown 
in Fig. 7.14. The total mass of Pu02/U02 is about 32,000k-g. A typical LMFBR 
core is about 1 m high and 2 m in diameter. 

Reactivity control is achieved by control bundles of B4C rods which replace 
fuel assemblies, located in roughly inner and outer (radially) concentric circles. 
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Fig. 7.13 Fuel assemblies for a liquid-metal fast breeder reactor. (Courtesy of Nuclear 
Engineering International.) 

Typically, the bundles are separated into two groups, each of which is capable of 
shutting down the core. The fuel depletion reactivity effect of thermal reactors is 
reversed in LMFBRs, which produce more fissile nuclei than they consume. In 
addition, the negative reactivity effects of fission products, which are primarily 
thermal neutron absorbers such as samarium and xenon, are much less in an 
LMFBR than in a thermal reactor. 

Like the RBMK and CANDU pressure tube reactors, in which the moderator is 
separate from the coolant, the LMFBR tends to have a positive coolant temperature 
coefficient of reactivity, but for a different reason. Reduction of sodium density 
hardens the neutron spectrum, which results in a lower capture-to-fission ratio in 
the fuel and reduces the number of neutrons absorbed in the large 2 3 ~ a  resonance in 
the keV energy range. The fast neutron spectrum means a shorter neutron lifetime 
(the mean time from fission to absorption or leakage of the neutron) than in a 
thermal reactor because the neutron is absorbed or leaks before it slows down in 
an LMFBR (A % 1 0 - ~ s  for LMFBRs as contrasted to lop4 to lop5 s for thermal 
reactors). This implies a more rapid response to superprompt-critical (p > P) re- 
activity insertions. Furthermore, the prompt-critical reactivity level (p = p) with 
plutonium in a fast spectrum (p = 0.0020 for 2 3 9 ~  and P = 0.0054 for 241Pu) is 
smaller than with 2 3 5 ~  in a thermal spectrum (P = 0.0067). On the other hand, the 
reactivity worth of perturbations such as inadvertent control rod withdrawal is 
generally smaller in a fast spectrum because of the smaller value of the absorption 
cross section for fast than for thermal neutrons. 
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Fig. 7.14 Super Phenix liquid-metal fast breeder reactor. (From Ref. 6; used with permis- 
sion of CRC Press.) 

7.7 OTHER POWER REACTORS 

There are also a number of other reactors, most of which have been designed to 
achieve enhanced production of fissile nuclei by neutron transmutation, which have 
been developed through the demonstration stage but not yet implemented on a 
significant scale as power reactors. Two of these are basically modifications of 
conventional thermal light water reactors. The light water breeder reactor (LWBR) 
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operates on a 2 3 2 ~ h - 2 3 3 ~  cycle, which is more favorable than the 2 3 8 ~ - 2 3 9 ~ ~  cycle 
for the production of fissile nuclei by thermal neutron transmutation (Chapter 6).  
The spectral shift light water reactor operates with a mixed D20-H20 coolant to 
achieve a slightly harder neutron spectrum to enhance the transmutation of 2 3 8 ~  

into fissile plutonium early in the cycle and reduces the D20M20 ratio. with burnup 
to soften the spectrum and increase the reactivity to offset reactivity loss due to fuel 
depletion. 

There are also two graphite-moderated thermal reactors designed to achieve 
enhanced production of fissile nuclei. The thermal molten sd t  breeder reactor 
(MSBR), which operates on the 2 3 2 ~ h - 2 3 3 ~  cycle with the fuel contained in a 
circulating molten salt (typically, LiF-BeF2-ThF4-UF4), which also serves as 
the heat removal system, achieves additional enhancement of neutron utilization 
for fissile production by continuous removal of fission products from the recirculat- 
ing fuel. The pebble bed reactor, a variant of the helium-cooled HTGR, contains the 
2 3 2 ~ h - 2 3 3 ~  fuel in 6-cm-diameter graphite spheres that can be poured into and 
drained from a core hopper. 

Designs have been developed for gas-cooled fast reactors (GCFRs) which are 
similar to LMFBR designs, with Pu02/U02 fuel pins clad with stainless steel. The 
fuel pins are ribbed to enhance heat transfer and their spacing is about twice that of 
an LMFBR assembly. 

7.8 CHARACTERISTICS OF POWER REACTORS 

TypicaI parameters relevant to power production are summarized for a number of 
reactor types in Table 7.1. 

TABLE 7.1 Representative Parameters Relevant to Power Production 
for the Major Reactor Types 

Thermal 
Power 
(MWt) 

Core 
Diameter 

(m) 

Core 
Height 

(m) 

Average 
Power 
Density 

(h4w/m3) 

MAGNOX 
AGR 
CANDU 
PWR 
BWR 
RBMK 
LMFBR 

Average 
Linear Fuel Fuel 

Rating Burnup 
(kW/m) (MWd 1 ' )  

33.0 3,150 
16.9 1 1,000 
27.9 26,400 
17.5 38,800 
19.0 24,600 
14.3 15,400 
27.0 153,000 

Source: Date from Ref. 4; used with permission of Taylor & FrancistHemispbere Publishing. 
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7.9 ADVANCED REACTORS 

The design of a next generation of power reactors has recently been completed. 
These designs have, of course, benefited from the extensive operating experience 
with the present generation of power reactors. In the United States the designs also 
have been driven by two major objectives: ( I )  to incorporate passive safety features 
which ensure safety without reliance on active control actions, and (2) to achieve 
smaller size and incorporate modular construction techniques. In Europe, there 
have been separate emphases on passive safety and on accommodating mixed oxide 
(MOX) fuels to recycle plutonium from spent fuel. 

Modular Passively Safe Light Water Reactors 

Modular passively safe light water reactors are advanced PWR and B WR reactors 
with designs based on conventional U02 fuel assemblies with negative temperature 
coefficients. Passive safety is enhanced by designing so that, in the event of a loss- 
of-coolant accident, the core would be flooded with enough water to provide cool- 
ing for 3 days, without operator action (present designs require operator response in 
about 20 min). 

There are four advanced PWR designs developed in the United States (AP-600), 
Europe (PIUS, SIR) and Japan (SPWR), producing from 320 to 600 MWe per unit, 
all with passive emergency core cooling and heat removal systems. In one the 
reactor vessel is submerged in a pool of borated water, which would flood the 
reactor core in the event of a loss of primary coolant, and in another, emergency 
core cooling is provided by a tank of borated water, ensuring in both designs a large 
negative reactivity insertion as well as heat removal. 

The advanced BWR (SBWR) 600-MWe design is based entirely on natural 
circulation of the coolant, eliminating reliance on the recirculation pumps, valves, 
and controls associated with a present generation BWR. Additional passive safety 
features are provided by an enormous suppression pool that surrounds the reactor 
above the core level and the natural circulation cooling of the containment vessel. 

Mixed Oxide PWRs 

The French and Germans are developing a 4250-MWt PWR design (EPR) with 241 
of the standard 17 x 17 array PWR fuel assemblies, but designed to accommodate 
up to 50% mixed Pu02-U02 with up to 5% Pu. Soluble boron and gadolinium 
burnable poison and Ag-In-Cd control rods are used for reactivity control. 

Gas-Cooled Reactors 

The U.S. design of a modular high-temperature gas-cooled reactor (MHTGR) is 
based on the same features as the HTGR, with four modular core units combined to 
produce 538MWe. Each modular core unit operates with a low power density, 
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making it slow to overheat, and is enclosed in a separate underground silo in which 
natural air circulation is sufficient to provide passive cooling. 

Fast Reactors 

The advanced liquid-metal reactor (ALMR) employs a PulU metal alloy fuel in 
pairs of core modules constituting a 606-MWe power block; a core can be built up 
of one, two, or three power blocks. The ALMR design is based on the integral fast 
reactor (IFR) actinide recycle concept. An IFR would generate less actinide waste 
than do light water reactors and can recycle its own actinide waste and the actinide 
waste of light water reactors to recover energy that would otherwise be lost, at the 
same time reducing the waste disposal burden. The passive safety features of the 
ALMR allow extreme off-normal transients-loss of primary coolant flow without 
scram and loss of heat removal by the intermediate system without scram-with 
benign consequences to the reactor core. As discussed in Chapter 8, tests have 
shown that the ALMR can undergo these extreme events without damage. 

7.10 NUCLEAR REACTOR ANALYSIS 

We now turn to a brief discussion of the application of the computational methods 
of reactor physics to analysis of the nuclear, or neutronics, performance of nuclear 
power reactors. More detailed discussions of reactor analysis procedures and a 
description of the various codes employed are given in Refs. 5 and 6. The advanced 
reactor physics calculational methods used in nuclear reactor analysis, in addition 
to those described in previous chapters, are described in Chapters 9 to 16. 

Construction of Homogenized Multigroup Cross Sections 

As the discussion of nuclear power reactors above illustrates, nuclear reactor cores 
are composed of tens of thousands of components of very different material proper- 
ties, some of them highly absorbing fuel and control elements, with dimensions that 
are comparable to or smaller than the neutron diffusion length. Yet the major 
computational tool of nuclear reactor analysis is multigroup diffusion theory, which 
is rigorously valid only in weakly absorbing media at distances of a few diffusion 
lengths away from interfaces with strongly dissimilar media. Furthermore, many of 
the nuclear cross sections depend strongly on the details of the neutron energy 
distribution (e.g., resonances), which in turn are spatially dependent through the 
spatial distribution of materials. Thus the first major step of nuclear reactor analysis 
is to develop equivalent homogenized cross sections for the different fuel assem- 
blies or fuel modules, which incorporate the effects of the detailed neutron dis- 
tribution in space and energy, and to develop an equivalent representation of highly 
absorbing control elements. The word equivalent implies that these approximate 
representations would yieId the same prediction of reaction rates as a detailed 
heterogeneous fine-energy calculation would, were it practical to perform the latter. 
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Construction of such equivalent representations is a major and ongoing reactor 
physics activity. 

The relative importance of the treatment of spatial and energy details differs 
among reactor types. For thermal reactors, in which most of the neutrons are 
absorbed in the thermal energy range where the neutron mean free path is small, 
treatment of the detailed spatial heterogeneity is paramount, and treatment of the 
details of the energy distribution is secondary but still important. On the other hand, 
for fast reactors, in which most of the neutron absorption takes place with fast 
neutrons with Iong mean free paths, treatment of the details of the energy distribu- 
tion is paramount, and the spatial heterogeneity is secondary. 

In a thermal reactor, the homogenization procedure starts at the pin-cell level of 
a fuel pin and the surrounding coolant, moderator, and structure. In a typical 
analysis, a volume-weighted homogenized fine group (30 to 60 fast groups, 15 to 
172 thermal energy points or groups) pin-cell model is constructed, using integral 
transport theory to calculate heterogeneous resonance cross sections for the fuel 
nuclei. This model is used to calculate intermediate group cross sections to be used 
in a transport calculation of the heterogeneous pin cell. The spatially dependent 
intermediate group fluxes are used to construct volume-flux-weighted homogenized 
cross sections, usually with a smaller number of groups, for the pin cell. This is 
repeated for the various types of pin cells in a fuel assembly to obtain an inter- 
mediate group (5 to 15 groups) model for the fuel assembly which represents each 
fuel pin cell as an equivalent homogenized region. Then an intermediate group 
diffusion or transport calculation is performed for the fuel assembly or module, 
taking into account any water gaps, nearby structure or control elements, and so on. 
The intermediate group fluxes from the assembly transport calculation are then used 
to construct volume-flux-weighted few-group diffusion theory cross sections for the 
assembly. UsualIy, separate calculations are performed for the fast and thermal 
(E < 1 eV) energy regions. This process is repeated for the various fuel assemblies 
or modules that compose the core, resulting in equivalent few-group diffusion or 
transport theory cross sections which represent each homogenized fuel assembly or 
module. Supplemental transport calculations are used to construct effective few- 
group diffusion theory cross sections which represent the control elements in a 
diffusion theory model. 

In a fast reactor the procedure is similar, but with more emphasis on treatment of 
the energy structure and of overlapping resonances and less on the treatment of the 
spatial structure (except as it affects the resonance treatment). In a typical analysis, 
an entire fuel assembly or group of similar fuel assemblies is homogenized on a 
volume-weighted basis to obtain an ultrafine-group ( z  2000) model, with integraI 
transport calculations being used to construct heterogeneous resonance cross sec- 
tions for the fuel nuclei. Ultrafine-group spectra are then calculated and used to 
construct fine-group cross sections for use in a multigroup (20 to 40 groups) 
diffusion or transport theory core calculation of the entire core. 

Homogenized multigroup cross sections must be constructed for the variety of 
conditions encountered in subsequent applications because they depend on the 
details of the spatial and spectral flux distributions used in their construction. 



264 NUCLEAR POWER REACTORS 

The presence or absence of a control element or a strong absorber such as xenon, 
the change in fuel composition with burnup, the buildup of plutonium and fission 
products, the different temperature and coolant densities encountered in a transient, 
and other factors, all affect the details of the spatial and spectral distributions and 
must be taken into account in the preparation of equivalent homogenized multi- 
group cross sections. 

Criticality and Flux Distribution Calculations 

The equivalent homogenized multigroup cross sections can be used to perform 
global diffusion or transport theory calculations of the reactor core, with the control 
rod positions adjusted to achieve criticality (k = 1) or with an eigenvalue k calcu- 
lated. If three-dimensional finite-difference representations of the core are used for 
these calculations, the calculated fluxes are averaged global flux distributions. 
However, detailed pin-by-pin flux distributions are needed for the calculation of 
pin power limits and pin fuel depletion. The detailed local flux at the fuel pin-by- 
fuel pin level must be reconstructed by superimposing on this global average flux 
the detailed assembly and pin-cell transport flux distributions that were used in 
preparation of the homogenized multigroup cross sections, with the appropriate 
normalization. 

Frequently, further approximations are made in the calculation of global flux 
distributions, in the interest of computational economy (e.g., nodal models that 
represent the global flux distribution within a fuel assembly or module with a 
few parameter polynomial). In such cases, the detailed local flux on a fuel pin- 
by-fuel pin level again must be reconstructed by superimposing on this representa- 
tion of the global average flux the detailed assembly and pin-cell transport flux 
distributions that were used in the preparation of the homogenized multigroup cross 
sections. Care must be taken that the flux reconstruction procedure is consistent 
with the homogenization procedures and with the procedures used in the develop- 
ment of the approximate global flux calculation model. 

Fuel Cycle Analyses 

Calculation of the multigroup global flux distribution and critical control rod posi- 
tion and reconstruction of the flux distribution on a pin-by-pin basis is coupled with 
the calculation of fuel composition change and fission product buildup on a pin-by- 
pin basis in the multistep fuel cycle analysis calculation. The sequence of calcula- 
tions is first to perform a number of flux calculations to establish the critical control 
rod position and corresponding flux distribution for the fresh fuel loading with and 
without equilibrium xenon and samarium, then solution of the fuel depletion and 
actinidehsion product buildup equations over a depletion time step using the 
initial equilibrium xenon and samarium flux distribution, then solution of neutron 
flux equations several times to establish the critical rod position and flux distribu- 
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tion corresponding to the new fuel composition and fission products, then the 
solution of the fuel depletion and actinide/fission product buildup equations over 
the next depletion time step using the newly calculated flux distribution with 
equilibrium xenon and samarium, and so on. Typical time steps might be 150, 
350, 500, several 1000, and then 2000 MWdT, the initial small time steps taken 
to build up equilibrium xenon and samarium and '"h. Homogenized multigroup 
cross sections must be redetermined at each time step, either from a recomputation 
as described above or from interpolation in a table of fitted cross sections. 

Efficient fuel management requires that the fuel cycle analysis described in the 
preceding paragraph be repeated many times. A series of such calculations will be 
made prior to fuel loading to determine the proper mixture and location of fresh and 
recycled fuel to achieve optimal fuel performance subject to a given set of assump- 
tions about plant availability, power demand schedule, and refueling period. Then 
as the reactor operates and the assumptions are replaced by operating history, 
additional series of calculations are made to adjust the remaining operating plan 
andor refueling date to achieve optimal fuel performance. 

The large number of criticality and flux distribution calculations needed for fuel 
cycle analyses places a computational efficiency requirement on the neutron flux 
solution method. Approximate flux solution methods, such as the nodal model, are 
widely used. However, it should be noted that Monte Carlo codes capable of 
calculating fuel depletion on a point-by-point basis are available. 

In fast breeder reactor calculations, there is a greater emphasis on determination 
of the initial plutonium concentration in the fuel and on the production and destruc- 
tion of actinides with fuel depletion. 

Transient Analyses 

It is necessary to analyze a large number of planned operational transients (e.g., 
startup, power-level change) and potential transients that could result from off- 
normal or accident conditions (e.g., control rod ejection, loss of coolant flow), each 
subject to a variety of assumptions regarding the performance of control and reactor 
systems. Such calculations require solution of the time-dependent equations de- 
scribing the neutron flux distribution and the reactor power level and distribution, 
heat conduction and the temperature distribution, the hydrodynamics and thermo- 
dynamics of the heat transport system, material expansion and movement, and in 
the case of extreme accident scenarios, the equations of state and the equations 
governing the hydrodynamics of melting and vaporizing fuel mixtures. Calculation 
of the neutron flux spatial distribution and level determines the reactivity, which is 
the driving function for any reactor transient, and the heating source level and 
distribution, which is the primary input to the other calculations. 

In the simplest point kinetics model for neutron dynamics, the neutron flux 
distribution is assumed to be fixed and only the amplitude, or power-level, changes. 
The reactivity coefficients associated with fuel and moderator temperature and 
density changes, he1 and structure motion, and so on, are precomputed from a 
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series of static neutron flux and criticality calculations (or from a few such calcula- 
tions supplemented by perturbation theory estimates). Then, as changing tempera- 
tures and densities, fuel and structure motion, and so on, are calculated, the 
reactivity worth of these changes is incorporated into the power-level calculation 
using the reactivity coefficients. 

Reference, or design basis, power distributions are often used in conjunction 
with point kinetics calculations to assess fuel integrity. Separate calculations are 
then performed to assure that the actual power distribution is not more limiting than 
the design basis power distribution. For certain accident simulations (e.g., those 
in which control elements are out of position), the design basis power distributions 
are inappropriate and new power distributions must be calculated based on 
the temperature, density, flow, and other information from the transient analysis 
calculation. 

The reactivity feedback coefficients are determined for reference control rod 
positions and other core conditions. If the control rod positions or the core condi- 
tions are altered significantly, the reactivity coefficients, which depend on a flux- 
adjoint volume weighting of the perturbation, will be different because the flux and 
adjoint distributions will be different. The most important reactivity coefficients 
must be computed for conditions present during the most critical stages of the 
transient analysis. 

The point-kinetics calculation cannot account for effects associated with 
changes in the spatial flux distribution, which may occur, for example, if there is 
a reduction of coolant flow only in one part of the reactor. Such changes in spatial 
flux distribution not only affect the local power distribution and heat source dis- 
tribution but also produce changes in reactivity and in the reactivity coefficients. 
Thus there are situations in which calculation of the space- and time-dependent flux 
distribution is required. Such calculations require, in essence, a series of solutions 
for the spatial flux distribution, using at each step the most recent calculations of 
the temperature, density, and position of the materials in the reactor. Approximate 
flux solution methods, such as the nodal model, are normally used in such cases to 
make the computational requirements tractable. 

Core Operating Data 

Precalculated or on-line calculated values of various core physics parameters and 
responses must be available to the reactor operators to enable them to make core 
operational decisions, such as the control element insertion pattern, and to interpret 
instrument readings. Much of this information is developed in the course of fuel 
management and transient safety analyses, since the safety analysis considers a 
wide range of abnormal and normal conditions. Other information is provided by 
core operating data, although these are usually only for normal operating condi- 
tions. Additional power distribution and criticality calculations are necessary to fill 
in the database. 
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Criticality Safety Analysis 

At various stages of the enrichment, fabrication, and transportation procedures prior 
to loading the fuel into the reactor, and at various stages of the temporary storage, 
processing, transportation, and permanent storage procedures for spent nuclear fuel, 
the nuclear fuel is distributed within a variety of configurations. Examples of such 
configurations are spent fuel assemblies stored in a swimming pool (to provide for 
decay heat removal) at the reactor site and barrels of processed fuel in liquid form 
arrayed on storage racks. Criticality safety requires a rigorous fuel management 
system to insure that the fuel inventories of each storage element is known and that 
the various configurations are well subcritical under all normal and conceivable off- 
normal conditions. Criticality calculations of the type discussed for the case when 
the fuel is loaded into the reactor must also be performed for these various ex- 
reactor configurations. While diffusion theory and the methodology discussed in 
previous chapters may suffice for certain of these configurations, the more rigorous 
transport methods of Chapter 9 are generally required for criticality safety analyses. 

7.11 INTERACTION OF REACTOR PHYSICS 
AND REACTOR THERMAL HYDRAULICS 

Power Distribution 

More than 90% of the recoverable energy released in fission is in the form of 
kinetic energy of fission products and electrons, which is deposited in the fuel 
within millimeters of the site of the fission event, and somewhat less than 10% 
of the energy is in the form of energetic neutrons and gamma rays, which are 
deposited within about lOcm around the fission site. Thus the heat deposition 
distribution is approximately the same as the fission rate distribution: 

The requirement to remove this heat without violating constraints on maximum 
allowable values of materials temperature, heat flux from the fuel into the coolant, 
and so on, places limits on allowable neutron flux peaking factors, fuel element 
dimensions, coolant distribution, and so on. The neutron flux distribution affects the 
temperature in the fuel and coolant/moderator, the temperature of the fuel affects 
the fuel resonance cross section, and the temperature of the coolant/moderator 
affects the moderating power, both of which in turn affect the neutron flux distribu- 
tion. 

An increase in the local resonance absorption in the fuel when the local fuel 
temperature increases results because of the Doppler broadening of the resonances. 
This increase in local fuel absorption cross section will generally reduce the num- 
ber of neutrons that reach thermal locally in LWRs, which will tend to reduce the 
local fission rate and compensate the original increase in fuel temperature. The 
increase in local fuel resonance absorption makes the fuel compete more effectively 
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for local neutrons, which tends to make other nearby absorbers somewhat less 
effective (e-g., reduces the worth of nearby control rods). 

The effect of coolant temperature on neutron moderation is also important. In 
most LWR cores, a local decrease in water density resulting from an increase in 
water temperature will cause a decrease in neutron moderation, which in turn 
causes a decrease in local power deposition. As the coolant passes up through 
the core, the cumulative heat input from the fuel elements causes the axial tem- 
perature distribution to increase with height; conversely, the axial density distribu- 
tion decreases with height. This produces a power distribution peaked toward the 
bottom of the core, which is pronounced in BWRs, for which progressive coolant 
voiding occurs in the upper part of the core. Control rods are inserted from the 
bottom in BWRs to maximize rod worth and to avoid exacerbating this peaking in 
the axial neutron flux at the bottom of the core. The shift toward a harder spectrum 
associated with a local Na density decrease in a fast reactor results in an increase in 
local q, which increases the local heating. The coupling between reactor physics 
and thermal hydraulics is much weaker in gas-cooled reactors, in which the mod- 
erator is separate from the coolant. 

Temperature Reactivity Effects 

The general reactivity effects associated with changes in fuel, coolant/moderator, 
and structural temperatures and their effect on the reactor dynamics were discussed 
in Sections 5.7 to 5.12. The interaction of thermal-hydraulics and reactor physics 
phenomena to produce positive reactivity in the Three Mile Island and ChernobyI 
accidents is discussed in Section 8.4. The overall reactivity effect depends on the 
local changes in temperature and density in each zone of the reactor and the local 
neutron flux, weighted by the relative importance of these local reactivity contribu- 
tions and summed over the reactor. The thermal-hydraulics characteristics of a 
reactor affect not only the local temperature and density changes in response to a 
change in the neutron flux distribution and magnitude, but also affect changes in the 
neutron flux distribution and magnitude in response to changes in local temperature 
and density. 

Coupled Reactor Physics and Thermal-Hydraulics Calculations 

It is clear from the discussion above that the power distribution and effective 
multiplication constant in a nuclear reactor depends not only on the distribution 
of material (fuel, coolant, structure, control) within a reactor core, but also on the 
temperature and density distribution within a reactor core. In the design process, it 
is necessary to determine a self-consistent material and temperature-density dis- 
tribution that makes the reactor critical at operating conditions without violating 
thermal-hydraulics limits. The problem is further complicated by fuel depletion, 
which changes the materials in the fuel during the course of time; the distributions 
of materials and temperature-density must make the reactor critical over its entire 
lifetime without violating thermal-hydraulics limits. This is normally accomplished 
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by trial and error, iterating between static neutron flux and thermal-hydraulics 
calculations until a self-consistent solution is found which can be made critical 
by adjusting control poison levels and which satisfies thermal-hydraulics and safety 
limits over the projected core lifetime. 

Once the design is fixed, it is necessary to analyze a number of operational and 
off-normal transients to ensure that the reactor will operate without violation of 
thermal-hydraulics limits under normal conditions and that it will operate safely 
under off-normal conditions. The transient analyses codes usually solve for the 
neutron power amplitude and distribution and the corresponding temperature and 
density distributions, in some approximation. 
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8 Reactor Safety 

A great deal of effort is devoted to ensuring that nuclear reactors operate safely. The 
fundamental objective of this effort is to ensure that radionuclides are not released 
to create a health hazard to the general public or operating personnel. Fundamental 
considerations of reactor safety, the methodology of safety analyses, reactor acci- 
dents, and the design approach to reactor safety are described in this chapter, with 
an emphasis on the role played by reactor physics. 

8.1 ELEMENTS OF REACTOR SAFETY 

Radionuclides of Greatest Concern 

The radionuclides in a nuclear reactor that could most affect public health if 
released are the fission products and the actinides produced by neutron transmuta- 
tion. For the most part, these radionuclides are harmful only if they are inhaled or 
ingested and concentrated chemically in a susceptible organ. As discussed in Chap- 
ter 6, the short-lived fission products constitute the major source of such radio- 
nuclides in an operating reactor. The most significant fission products and the 
organs they affect are identified in Table 8.1. 

and 13'cs and the isotopes of iodine are of particular concern. Strontium has 
a high fission yield and behaves chemically like calcium and is deposited in bone 
tissue. Both %3r and its daughter 9 0 ~  produce a very high dose per unit activity, 
which is quite damaging to the blood cells produced in bone marrow. The iodine 
radioisotopes are concentrated in the thyroid gland, where they would produce 
tumors. 

Multiple Barriers to Radionuclide Release 

Multiple barriers against fission product (and actinide) release are a key safety 
feature of nuclear reactor design. The fission products in an operating reactor are 
contained within U02 pellets that are packed into clad fuel elements which are 
assembled within the reactor core. The reactor core is located within a pressure 
vessel that in turn is located inside a containment building. Both the pressure vessel 
and the containment building are designed to withstand large overpressures. Thus 
the pellet, clad, pressure vessel, and containment building constitute four barriers 
against the release of fission products. 



TABLE 8.1 Significant Fission Products of Concern for Internal Doses in Reactor Accidents 
- 

Reactor lnventoryb(ci/kwt) 
Radioactive Fission Yield Deposition Internal Dose 

Isotope Half-Life, tllz (%I Fractiona Effective Half-Life (mrem/~Ci) 400 Days Equilibrium 

Bone 
8 9 ~ r  50 d 4.8 0.28 50 d 413 43.4 43.6 
"S~-~'Y 28 Y 5.9 0.12 1 8 ~  44,200 1.45 53.6 
9 1 ~  58 d 5.9 0.19 58 d 337 53.2 53.6 
1 W ~ e - 1 4 4 ~ r  280 d 6.1 0.075 240 d 1,210 34.7 55.4 

Thyroid 
1311 8.1 d 2.9 0.23 7.6 d 1,484 26.3 26.3 
1321 2.4 h 4.4 0.23 2.4 h 54 40.0 40.0 
1331 20 h 6.5 0.23 20h 399 59.0 59.0 
1341 52 m 7.6 0.23 52 m 25 69.0 69.0 
1351 6.7 h 5.9 0.23 6.7 h 124 53.6 53.6 

Kidney 
103RU-103mRh 40 d 2.9 0.01 13 d 6.9 26.3 26.3 
1 w ~ U - 1 0 6 ~  1.0 y 0.38 0.01 19 d 65 1.8 3.5 
1 29mTe- 129q-- 34d 1 .O 0.02 10 d 46 9.1 9.1 

Muscle 
137CS-137m Ba 33 Y 5.9 0.36 17 d 8.6 1.2 53.6 

Source: Data from Ref. 14. 

OFraction of inhaled material that deposits in the indicated tissue. 
b~ somewhat typical average residence time for fuel in an LWR is 400 full-power days; equilibrium inventories are achieved at times that are long compared 
to the radionuclide half-life. 
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Defense in Depth 

The first level of defense against fission product release is to design to prevent the 
occurrence of any event that could result in damage to the fuel or other reactor 
system. Negative reactivity coefficients that lead to inherently stable operating 
conditions, safety margins in design, reliable and known materials performance 
in structures and components, adequate instrumentation and control, and so on, 
are among the preventive measures employed in reactor design. 

The second level of defense are protective systems, which are designed to halt or 
bring under control any transients resulting from operator error or component fail- 
ure that may lead to fuel damage and fission product release within the pressure 
vessel. Reactor scram systems which inject control rods into the core for rapid 
shutdown upon being activated by any one of several signals being outside the 
tolerance range, pressure relief systems, and so on, constitute the reactor protective 
systems. 

The third level of defense is provided by mitigation systems, which limit the 
consequences of accidents if they do occur. Emergency core cooling, emergency 
secondary coolant feedwater, emergency electrical power systems, systems for 
removing fission products that have been released into the reactor hall, and a 
reinforced containment building that can withstand high overpressure are elements 
of the mitigation system. 

Energy Sources 

The potential for the release of fission products is related directly to the amount of 
energy available. The primary energy source is the nuclear energy that is released in 
a positive reactivity insertion. However, there are other important energy sources 
that can play a role in an accident. The heat released in fission product decay is 
7.5% of the operating power and constitutes a substantial heat source for some time 
after the reactor shuts down. There is thermal energy stored in the reactor materials 
which may become redistributed (e.g., the flashing of water to steam upon depres- 
surization). There are several exoergic chemical reactions (Table 8.2) which may 
take place at elevated temperatures during the course of an accident, most of which 
produce hydrogen, which has an explosive potential. 

8.2 REACTOR SAFETY ANALYSIS 

All rea5onably conceivable failures are postulated and analyzed to design reactor 
protective and mitigation systems to prevent accidents, Lo prevent the release of 
fission products in the event of an accident, and to investigate the consequences of 
various accident scenarios for the release of radionuclides. The analyses are per- 
formed with sophisticated computer code systems that model the neutron dynamics 
and fission power production; the temperature, density, state, and location of ma- 
terials within the reactor core and the reactivity worth of changes therein; the 



TABLE 8.2 Properties of Exoergic Reactions of Interest for Reactor Safety 

Reactant Temperature 
(R) ("C) 

Oxide(s) 
Formed 

Zr (liquid) 
S S  (liquid) 
Na (solid) 

C (solid) 

za2 
FeO, Cr203, NiO 
NazO 
NaOH 
CO 
CO2 
Hz0 

Heat of Reactiona with: 

Oxygen Water Hydrogen Produced 
(kcal/kg"R) (kcal/kgOR) with Water (l/kgOR) 

-2883 - 1560 490 
-1 330 to -1430 - 144 to -253 440 

-2162 - 
- - 1466 490 

-2267 + 2700 1870 
-7867 + 2067 3740 

-29,560 - - 

Source: Data from Ref. 15; used with permission of MIT Press. 

"Positive values indicate energy that must be added to initiate an endoergic reaction; negative values indicate energy released by exoergic reactions. 
 elti tin^ point. 
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primary and secondary heat transport system*; the performance of the reactor 
safety protective and mitigation systems; the integrity of the fuel elements, pressure 
vessel and containment structure intended to prevent release of radionuclides; the 
dispersion of any released radionuclides; and a radiological assessment of resulting 
health effects in the population affected. 

Accident scenarios are commonly classified by the initiating event, some of the 
major events being those discussed below. 

Loss of Flow or Loss of Coolant 

Loss-of-flow accidents (LOFAs) would be caused by failure of one or more pumps 
in the primary coolant system, which results in increased temperature and reduced 
density for the coolant. Loss-of-coolant accidents (LOCAs) can be caused by a 
rupture of the primary coolant line, failure of a primary coolant pump seal, inad- 
vertent opening of a pressure relief or safety valve, and so on, and would result in 
increased temperature and decreased density of the coolant and possibly uncovering 
of the core. The negative coolant temperature reactivity coefficient of PWRs and 
BWRs, which would provide for an immediate power reduction, is an important 
feature in the early stages of such accidents. 

Loss of Heat Sink 

When steam flow in the secondary coolant system is decreased or lost due to a 
turbine trip (shutdown) or reduction or loss of feedwater in the secondary coolant 
system, an undercooling accident, or in an extreme case, a loss-of-heat sink acci- 
dent (LOHA), would occur. Such an accident would result in the reduction or 
elimination of heat removal from the primary coolant system, causing the primary 
coolant temperature to increase and the density to decrease. Again, a negative 
coolant temperature coefficient of reactivity is an important feature in the early 
stages of such accidents. 

Reactivity Insertion 

Uncontrolled control rod withdrawal or ejection is the most common type of 
initiator for a reactivity insertion accident. However, there are other reactivity 
insertion mechanisms. The startup of an inactive primary coolant pump (or recir- 
culation loop in a BWR), which injects cold water into the primary coolant system, 
would cause a positive reactivity insertion in reactors with a negative coolant 
reactivity coefficient. A steam line break in the secondary coolant system would 
result in increasing coolant flow in the secondary system, hence in increasing heat 

*A PWR has a primary coolant system that removes heat from the reactor core and carries it to the steam 
generator, or heat exchanger, where the heat is transferred out of the primary coolant through tube walls 
to a cooler secondary coolant which is heated above the vaporization temperature to produce steam that 
is transported to turbines for the pmduction of electricity. 
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removal from the primary coolant, which would also result in a positive reactivity 
insertion in reactors with a negative coolant reactivity coefficient. The potential for 
such cold-water reactivity insertions places limits on the allowed magnitude of 
negative coolant reactivity coefficients. 

Anticipated Transients Without Scram 

Anticipated transients without scram (ATWSs) are certain transient events which 
may occur once or twice in a reactor lifetime, on average, which can be handled by 
the protective system initiating a reactor scram. When the scram system is postu- 
lated to fail, such events may initiate an accident. 

8.3 QUANTITATIVE RISK ASSESSMENT 

Development and application of a methodology for quantification of the risk to 
public and worker safety associated with the occurrence of a reactor accident has 
provided a valuable basis for evaluating the relative safety of nuclear reactors. In 
broad terms, the (public safety) risk associated with a nuclear reactor may be 
characterized in terms of the various sequences of events, or scenarios, that could 
lead to the release of various quantities of radionuclides, the probabilities that each 
sequence of events could occur, and the public or worker health consequences of 
the release of various quantities of radionuclides. 

Probabilistic Risk Assessment 

Safety protective and mitigation systems are designed to minimize component 
damage and prevent radionuclide release for each of the potential accident-initiat- 
ing events described in the preceding section (plus others), if the system works as 
designed. For a given initiating event (e.g., a loss-of-coolant accident), the success 
or failure of the hierarchy of relevant safety systems+lectric power, emergency 
core cooling, fission product removal from the reactor hall, containment-are 
considered sequentially. The frequency of occurrence of the initiating event, h, 
and the failure probabilities, Pi, for each safety system are first identified. Then 
an event tree is constructed, as shown in the upper portion of Fig. 8.1, tracing the 
various pathways that the accident could follow with respect to success or failure of 
the various safety systems. Since the conditional failure probabilities, Pi, are small, 
the overall probability of any given pathway is just the initiation frequency times 
the product of the P, for the different failures in the pathway, if the failure prob- 
abilities are independent. However, the failure probabilities of the various safety 
systems are not independent (e.g., electrical power failure implies also failure of the 
emergency core cooling and fission product removal systems). Accounting for 
correlated failures reduces the event tree, as indicated in the lower portion of 
Fig. 8.1. 
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Fig. 8.1 Event tree logic diagram for a LOCA in an LWR. (From Ref. 13.) 

Quantification of the initiating event frequencies and of the safety system failure 
probabilities is, of course, the essential part of this methodology. A deductive 
technique known as fault tree analysis is employed for this purpose. A given safety 
system failure (e.g., loss of electrical power) requires failure of both the primary 
(off-site power supply) and the backup (on-site diesel generator) systems. Failure of 
the off-site power supplies requires failure of both the power sources on the local 
grid and the tie-in with other power grids, or a failure of the local power grid. Each 
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Radiological Assessment 

The public health consequences of the release of a given inventory of radionuclides 
from a containment building depends on the dose received to various body organs 
by the affected population and the effect of that dose on those organs. The disper- 
sion of radionuclide fallout from the release point depends on wind and weather 
conditions. The population that might be affected by this fallout depends on the 
population pattern of the fallout zone and any evacuation measures that would be 
taken. Calculation of radionuclide dispersion among the affected population is 
relatively straightforward. Most radionuclides must be inhaled or ingested to affect 
public health. Immediately following their release, breathing is the most likely 
pathway for radionuclides to enter the body. Over the longer term, there are many 
possible pathways, including breathing, drinking contaminated water, and eating 
contaminated food at any step in the food chain, that must be considered. Calcula- 
tion of radionuclide uptake by the affected population is uncertain, and worst-case 
assumptions must be made when information is lacking. 

Health effects of radiation exposure fall into three categories: early fatalities 
(acute), early illnesses, and latent effects. Early fatalities-defined as those that 
occur within a year of exposure-follow a linear dose-effect relationship varying 
from 0.01% fatality risk for 320 radt to 99.99% fatality risk for 750 rad whole-body 
radiation exposure has been established from radiation effects data. Early illnesses 
are associated primarily with the respiratory tract and lung impairment in particular. 
A linear dose-effect relationship varying from 5% lung impairment for 3000rad to 
100% impairment for 6000rad internal radiation exposure to the lung has been 
established from radiation effects data. Latent effects of radionuclide ingestion 
include cancer fatalities, thyroid nodules, and genetic damage, which generally 
occur 10 to 40 years after the accident. Linear dose-effect relationships can be 
established for significant levels of radiation exposure, but there are no radiation 
effects data at the low levels of exposure that would be encountered in trying to 
determine the latent effects of radionuclide ingestion following an accident. It is 
common practice to extrapolate the linear dose-effect relationship to zero dose in 
predicting latent health effects, but this practice is controversial because theoretical 
studies suggest that a threshold level of radiation energy deposition is required to 
cause cell damage. The predicted cancer fatality rate, using the linear extrapolation 
to zero dose, is about 100 per lo6 person-rem exposure. 

Reactor Risks 

The estimated frequencies and public health and property damage consequences of 
possible PWR/BWR reactor accidents are given in Table 8.3. The most likely core 

+~adia t ion doses are measured in a variety of units. The rad corresponds to the absorption of 100 
ergs/g of material, and the gray (Gy) is equal to 100 rads. The rem is equal to the radmultiplied by a 
quality factor (1 for x-rays, gammas, and electrons; 10 for neutrons and protons; 20 for alpha 
particles), and the sievert (Sv) is 100 rems. 



TABLE 8.3 Estimated Probabilities and Consequences of a Single Reactor Accident 

Consequences 

Chance per Reactor' per Year 

Normal 
1:2 lo4" 1:106 l:lo7 1:108 l:lo9 incidence 

Early fatalities 
Early illness 
Latent cancer fatalities (per yearlb 
Thyroid nodules [per year)b 
Genetic effects (per year)' 
Total property damage, ($lo9) 
Decontamination area [km2 (mi2)] 

Relocation area [km2 (mi2)] 

Source: Data from Ref. 13. 

This is the predicted chance of core melt pcr reactor year. 
'"These rates would occur in approximately the 10 to 40-year period following a potential accident. 
"This rare would apply to the 6 r s L  generation born after a potential accident. Subsequent generations would experience effects at a lower rate. 
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Fig. 8.3 Predicted frequency of fatality due to accidents from a number of technologies. 
(From Ref. 13.) 

meltdown accident, which has a probability of 5 x lop5 per reactor-year of occur- 
ring, has rather modest consequences. The more serious accidents have lower 
probabilities of occurrence. 

To put the risks of reactor accidents in perspective, the same methodology was 
applied to estimate the public health risks of other technological and natural phe- 
nomena to which the general public are exposed. As shown in Figs. 8.3 and 8.4, the 
risk to public health of the approximately 100 nuclear reactors operating in the 
United States is miniscule by comparison. 

8.4 REACTOR ACCIDENTS 

There have been two major reactor accidents, at Three Mile Island and at 
Chernobyl. It is important to understand what went wrong. Examination of the 
causes provides a basis for the design of reactors with improved safety features 
and operating procedures for the future. 
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Fig. 8.4 Predicted frequency of fatalities due to nuclear reactor accidents and to a num- 
ber of natural events. (From Ref. 13.) 

Three Mile Island 

On March 28, 1979, a series of events took place in unit 2 of the Three Mile Island 
plant near Harrisburg, Pennsylvania that resulted in the only major reactor accident 
in the history of commercial nuclear power in the United States. The TMI-2 unit 
was a standard PWR. Since this accident was associated primarily with the heat 
removal system, a simple diagram of a PWR heat removal system is shown in Fig. 
8.5 to facilitate understanding of the sequence of events. The reactor was operating 
at about 97% of power, but with two valves on the emergency secondary coolant 
feedwater lines inadvertently closed, although the records available to the operators 
showed them to be open. The accident was apparently initiated by unsuccessful 
attempts to carry out a routine procedure of clearing a demineralizer line used to 
maintain secondary coolant purity, which apparently caused a condensate pump trip 
in the secondary cooling system. This led within a second to automatic trips in the 
main feedwater pumps for the secondary coolant system and the turbine. The loss 
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Fig. 8.5 Schematic diagram of a PWR heat removal system. 

of secondary coolant in the steam generators reduced the rate of heat removal from 
the primary coolant loop and the reactor core (a loss of heat sink accident). 

As the primary coolant became hotter and pressure increased, the overpressure 
relief valve in the pressurizer in the primary coolant system opened automatically 
when the (15.55 MPa) set point was exceeded, and 8 s into the accident the core 
protective system caused the control rods to be inserted in response to high coolant 
pressure signals. The primary system cooled following the control rod insertion, 
and the pressure dropped below the 15.21 MPa set point for closure of the over- 
pressure relief valve at about 13 s into the accident, but the valve failed to close, 
although the solenoid deenergized, causing the primary coolant to be lost through 
the open valve into the drain tank at the bottom of the containment building, which 
reduced the pressure in the primary coolant system as well as the coolant level. At 
this point there was a loss of coolant accident, unbeknown to the operators. The 
control panel only indicated that the solenoid had deenergized, and primary coolant 
continued to be lost until the operators closed the blocked valve in the pressurizer 
drain line 142 min into the accident. 

At 14s into the accident, the emergency secondary coolant feedwater pumps 
reached full design pressure, but unbeknown to the operators, the two inadvertently 
closed valves in the emergency secondary system coolant lines prevented the 
emergency secondary coolant from reaching the steam generators. It was another 
8 rnin before an operator noticed low pressure and water levels in the steam gen- 
erators, discovered the closed valves, and opened them to restore secondary coolant 
to the steam generators. 

At about 2 min into the accident, the primary system pressure dropped below the 
11.31-MPa set point of the high-pressure injection system, which then started 
pumping borate water into the core. Because of the particular design, there was 
no direct relationship between the coolant levels in the reactor vessel and in the 
pressurizer. Even with continuing loss of primary coolant, the pressurizer signal 
indicated a filled system, which the operators had been trained to avoid because it 
prevented the pressurizer from fulfilling its function. Thus the operators turned off 
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one of the pumps and throttled back the other pump in the high-pressure injection 
system, resulting in emergency coolant being added at a slower rate than primary 
coolant was being lost through the open pressurizer valve. 

About 73 min into the accident, both primary coolant pumps in the loop to one of 
the two steam generators were shut down in response to indications of vibrations, 
low pressure, and tow coolant flow. This was done to prevent destruction of seals, 
which the operators feared would have caused a loss of coolant accident, still being 
unaware that they already had one on their hands. At about 100 min into the 
accident, the primary coolant pumps in the other loop were shut down for similar 
reasons. The pump shutdown caused the steam and water in the primary coolant 
loop to separate and apparently prevented further coolant circulation through the 
steam generators. The remaining liquid did not cover the core, and decay heat 
caused continuing vaporization of the noncirculating coolant. At about 11 1 min 
into the accident, reactor outlet coolant temperatures rose rapidly to 32YC and 
remained there. As the core became uncovered, the clad temperatures became high 
enough that exoergic Zr-steam reactions occurred, adding energy to the system and 
producing hydrogen. The cladding, with a melting point of 210OoK, became molten 
and began to dissolve the U02 fuel. 

The next 13 h was spent trying various means to reestablish core cooling, which 
was ultimately successful. The reactivation of the high-pressure injection at 
200 min into the accident recovered the core and filled the reactor vessel. A major 
slumping of the molten core occurred at 224min into the accident, resulting in 
molten debris being deposited onto the lower vessel head, where it was apparently 
quenched by the coolant. A sizable hydrogen bubble was created by the Zr-steam 
interactions involving about one-third of the zircaloy in the core, the concentration 
of which became large enough to support combustion, and hydrogen ignition oc- 
curred at about 9.5 h into the accident. However, the pressure was well within the 
design limits of the pressure vessel. The hydrogen was removed during the first 
week. 

Reactor containment was successful in limiting radionuclide releases to less than 
1 % of total inventory, despite extensive core damage. Radiological assessments of 
the radionuclide release estimated average and maximum potential off-site doses of 
0.015 and 0.83 mSv. As a point of reference, a dose of 1 mSv is estimated to result in 
a 1 in 50,000 chance of cancer, as contrasted with the 1 in 7 normal incidence of 
cancer in the population. The TMI-2 accident had no significant public health impact. 

In hindsight, TMI-2 was a huge and costly but poorly instrumented safety 
experiment that provided a convincing demonstration of the safety of a properly 
engineered nuclear reactor. TWO of the major credible accidents-loss of heat sink 
and loss of coolant-took place, while the operators, who were unaware of the state 
of the reactor, took about the worst possible actions for the actual situation in an 
attempt to deal with the situation they thought they had on their hands. Although 
the reactor was destroyed, no one got hurt. By the same token, TMI-2 exposed 
major deficiencies in reactor operating procedures, operator training, and exchange 
of safety-related operating information, which stimulated extensive subsequent 
improvements. 
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Chernobyl 

In the early morning hours of April 26, 1987, a test was being performed on unit 4 
of the Chernobyl nuclear power station about 130 km north of Kiev. The objective 
was to test the use of energy in the turbine during its post-trip coastdown as a 
source of emergency electrical power for cooling the reactor core following a 
scram, ironically to enhance the safety features of the reactor system. The test plan 
called for the power of the RBMK reactor to be reduced from the 3200-MWt full- 
power level to about 1000 to 700MWt and for bypassing some safety systems that 
would have prevented the test conditions from being realized. 

The test was initiated by inserting control rods to reduce power to about 
1600MWt, the emergency core cooling systems were shut off to prevent them 
from drawing power during the test, and the power reduction continued to the 
planned level. However, the operator failed to reprogram the computer to maintain 
power in the range 1000 to 700 MWt, and the power fell to 30 MWt. The majority 
of the control rods were withdrawn to compensate the buildup of xenon, causing the 
power to climb and stabilize briefly at about 200 MWt. At about 20 min into the test, 
all eight pumps were activated to ensure adequate post-test cooling. The normal 
scram trip on high flow level, which would have prevented this, was deactivated. 
The increase in coolant flow reduced coolant temperature and increased coolant 
density, which introduced negative reactivity due to increased neutron absorption in 
the coolant, requiring further control rod withdrawal. This increased coolant density 
also maximized the positive reactivity worth of coolant voiding. The combination 
of low power and high flow produced instability, which required numerous manual 
adjustments, causing the operators to deactivate other emergency shutdown signals. 

At about 22min into the test, the computer indicated excess reactivity. The 
operators blocked the last remaining trip signal just before it would have scrammed 
the reactor, in order to be able to complete the test. Power started to rise and coolant 
voiding in the pressure tubes occurred, leading to a positive reactivity input which 
enhanced the power rise. The operators began control rod insertion from the fully 
withdrawn position. However, the fully withdrawn control rods had graphite fol- 
lowers below the control poison (to enhance rod worth), and these entered the 
active core first, displacing neutron-absorbing water with graphite and thus adding 
further positive reactivity, which accelerated the power increase. The power surged 
to I00 times design full power in the next 4 s, then decreased momentarily. There 
then followed repeated power pulses, one of which may have reached 500 times 
design full power. The fuel disintegrated, breached the cladding, and entered the 
water coolant, causing a steam explosion that lifted the top shield of the reactor 
core, shearing all the coolant pipes and removing all the control rods. The explosion 
was well beyond the rather modest containment design basis and penetrated the 
concrete walls of the reactor building, dispersing burning fuel and graphite, and 
releasing a plume of radioactive gases and particles. 

The accident resulted in 31 early fatalities. Over 1000 people received large 
doses of radiation. Many of the nearby population received doses greater that 
0.25 Sv (25 rern), with the most serious in the range 0.4 to 0.5 Sv (40 to 50rem). 
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As a reference, recommended annual dose limits by the International Council on 
Radiation Protection are 50 mSv (5 rem) whole-body radiation and 500 mSv 
(50rem) for any body part other than the lens of the eye. The radioactivity released 
into the atmosphere fell out in measurable amounts over much of the world. Esti- 
mated individual whole-body doses immediately following the accident were on the 
order of 100 mGy (10 rad) in the immediate vicinity of the plant, 4 mGy (400 mrad) 
in Poland, 1 mGy (100 mad) in the rest of Europe, and 0.01 mGy (1 mrad) in Japan 
and North America. The 24,000 evacuees who received an estimated average dose 
of 0.43 Sv were expected to incur an additional 26 fatal leukemias over the next 
decade, roughly doubling the natural incidence of leukemia fatalities in that 
population. 

On a long-term basis, the predicted collective lifetime doses due to the fallout 
from the Chernobyl accident arc 1.6 x lo4 person-Gy for the evacuated population 
near the site, 4.7 x lo5 person-Gy for the European part of the former USSR, 
1.1 x 10' person-Gy for the Asian part of the former USSR, 5.8 x 10' person- 
Gy for Europe, 2.7 x lo4 person-Gy for Asia, 1.1 x lo3 person-Gy for the United 
States, and 1.2 x lo6 person-Gy for the entire northern hemisphere. The increase in 
the estimated 50-year exposure doses in Europe, for example, varied from a fraction 
of the natural background to a few times the natural background. There is no 
scientific evidence on which to assess the effect, if any, of such small incremental 
doses. However, by extrapolating from higher dose levels, it is possible to estimate 
the long-term health effects of fallout from the Chernobyl accident. The estimated 
increase above natural incidence of fatal cancers in the respective populations due 
to the Chernobyl fallout is 2.4% for the evacuated population near the site, 0.12% 
for the European part of the former USSR, 0.01% for the Asian part of the former 
USSR, 0.02% for Europe, 0.00013% for Asia, and 0.00005% for the northern 
hemisphere. 

Postaccident assessments identified design-related defects as (1) positive coolant 
void reactivity coefficient, (2) easy-to-block safety systems, (3) slow scram (15 to 
20s for full insertion, 5 s for effective negative reactivity), and (4) absence of 
containment and emergency fission product control systems. These design-related 
defects are uniquely applicable to the RBMK reactors, which are deployed only in 
the former Soviet Union. Technical fixes that have been implemented subsequently 
on other RBMK reactors include (1) maximum allowable control rod withdrawal 
limitations, (2) modifications to prevent operators from manually overriding safety 
systems, (3) reduction of the positive coolant void reactivity coefficient, and 
(4) development of an alternative shutdown capability. 

Operator error and lax management were obviously at least partially responsible 
for the Chernobyl accident, and the government placed much of the blame there. 
Six members of plant management were subsequently tried and convicted for 
violation of safety rules, criminal negligence, and so on, and the station director, 
chief engineer, and deputy chief engineer were sentenced to 10 years in a labor 
camp. However, the positive coolant temperature coefficient and the absence of a 
containment building designed to withstand overpressure events were also major 
contributors to the accident. 
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8.5 PASSIVE SAFETY 

The experience of TMI-2 and Chernobyl has led to an emphasis on passive safety in 
the design of advanced reactors. Broadly speaking, the objectives of passive safety 
design are, to the extent possible, for the reactor to be able to maintain a balance 
between power production and heat removal, to shut itself down when an abnormal 
event occurs, and to remove decay heat, without requiring operator action or the 
functioning of engineered safety systems. 

Pressurized Water Reactors 

The AP-600 design features a passive emergency core cooling system consisting of 
water stored in large tanks above the core. During a loss-of-coolant accident, this 
water is injected into the core while the coolant system is still pressurized, and 
flows into the core under gravity when the system depressurizes, without requiring 
either pumps or electrical power. Decay heat, which is normally removed through 
the steam generators, would be removed by the natural circulation of water through 
the core into a large tank above the reactor vessel in the event that the steam 
generators were inoperable. The containment shell is cooled by gravity-driven 
water spray and the natural circulation of air. Because of reliance on passive safety, 
there are only half the number of large pumps as on a standard PWR. 

The PIUS reactor vessel, pressurizer, and steam generators are all immersed in 
borated water. If a pump fails during normal operation, the hydrostatic pressure 
forces the borated water into the core, where it serves both as emergency coolant 
and a shutdown mechanism. The natural circulation between the core and the pool 
of borate water would remove decay heat. 

Boiling Water Reactors 

Main coolant flow for the boiling water reactor (SWBR) design is provided by 
natural circulation, eliminating the need for the recirculation pumps, valves, and 
associated controls of a standard boiling water reactor. In the event of a loss-of- 
coolant accident, steam is vented into a large suppression pool located above the 
core to depressurize the cooling system, which allows water from the pool to 
gravity-flow down into the core to provide emergency core cooling. Decay heat 
can be removed to the suppression pool by natural circulation. The entire system is 
enclosed in a concrete containment structure that is cooled continuously by water 
flow downward from the suppression pool, the evaporation of which provides 
passive heat removal from the core to the atmosphere. 

Integral Fast Reactors 

The approach to safety embodied in the integral fast reactor (IFR) includes (1) large 
design margins between operating conditions and safety limits, (2) reliance on 
passive processes to hold power production in balance with heat removal, and 
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(3) totally passive removal of decay heat. The IFR can be designed to achieve 
passive power regulation, even should equipment in the control and balance-of- 
plant systems fail, for anticipated transient without scram scenarios. The heat 
transport system that removes decay heat operates at ambient pressure, has large 
thermal inertia, is driven by natural convection, is contained along with the core in a 
double-wall top-entry coolant tank, is completely independent of the balance of 
plant equipment, and is always in operation. 

The IFR system can be designed to have an inherent response that prevents 
release of radioactivity, even for accidents of extremely low probability far below 
the design basis level. Processes that are innate consequences of the materials and 
geometry cause dispersal of fuel early enough to avoid prompt criticality and the 
accompanying energy release and to ensure subcriticality and coolability inside an 
intact reactor vessel should significant fuel pin failures cause an accumulation of 
radioactive debris. 

Passive Safety Demonstration 

The passive safety features of the IFR have been demonstrated dramatically in a 
series of tests in the Experimental Breeder Reactor TI (EBR-TI), which has the same 
type of fuel and heat transport system as the ImZ. It was demonstrated that the 
reactor operating at full power would be safely shut down by negative reactivity 
feedback, without benefit of the scram or any other safety system or of operator 
action, upon loss of forced coolant flow and upon loss of heat sink, two of the most 
demanding reactor accident scenarios. Transient temperatures during shutdown 
were measured to be below those of concern for fuel integrity and reactor safety. 

In the first test, the coolant pumps were shut off while the reactor was operating 
at full power with the scram system deactivated (a separate emergency scram 
system was operable but not used). No operator action was taken. The response 
of EBR-TI to the loss of coolant flow is shown in Fig. 8.6. The negative reactivity 
feedback associated with the increase in coolant temperature following the loss of 
coolant flow resulted in a rapid reduction in power, which reduced the coolant 
temperature. Because the metal fuel has a large heat conductivity and operates at 
a temperature only slightly greater than that of the coolant, there is a relatively 
small negative Doppler reactivity coefficient and consequently, relatively little 
positive reactivity addition when the coolant temperature decreases later in the 
transient. 

In the second test, the ability of the system to reject heat from the primary 
coolant was eliminated while the reactor was at full power, with the scram system 
deactivated and no operator action taken. The response of EBR-I1 to the loss of heat 
sink is shown in Fig. 8.7. Again, negative reactivity feedback shut the reactor down 
without any danger to the plant. 
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PART 2 
Advanced Reactor Physics 





9 Neutron Transport Theory 

Calculation of the transport of neutrons and their interaction with matter are 
perhaps the fundamental topics of reactor physics. In this chapter, the major com- 
putational methods used for the transport of neutrons in nuclear reactors are 
described. 

9.1 NEUTRON TRANSPORT EQUATION 

The distribution of neutrons in space and angle is defined by the particle distribu- 
tion function N(r, a, t),  such that N(r,  a, t )  drda is the number of neutrons in 
volume element d r  at position r moving in the cone of directions dn about direc- 
tion a, as depicted in Fig. 9.1. An equation for N(r, lll, t )  can be derived by 
considering a balance on the differential cylindrical volume element of length 
dl = v dt, where v is the neutron speed, and cross-section area dA surrounding the 
direction of neutron motion, as shown in Fig. 9.2. The rate of change of N(r ,  a, t )  
within this differential volume is equal to the rate at which neutrons with direction 
Ln are flowing into the volume element (e.g., across the left face in Fig. 9.2) less the 
rate at which they are flowing out of the volume element (e.g., across the right 
face), plus the rate at which neutrons traveling in direction are being introduced 
into the volume element by scattering of neutrons within the volume element from 
different directions a' and by fission, plus the rate at which neutrons are being 
introduced into the volume element by an external source Sex, minus the rate at 
which neutrons within the volume element traveling in direction lll are being ab- 
sorbed or being scattered into a different direction nl: 
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Fig. 9.1 Particles in dr at location r moving in the cone dQ about the direction a. (From 
Ref. 2; used with permission of Wiley.) 

Fig. 9.2 Incremental volume element for particles at location r moving in the direction 0. 
(From Ref. 2; used with permission of Wiley.) 



NEUTRON TRANSPORT EQUATION 297 

Making a Taylor's series expansion 

to evaluate the streaming term, defining the directional flux distribution 

and taking note of the fact that the scattering from fb' to 0 depends only on 
a .  0 = po, SO that 

and writing C, = C, + C,, leads to the neutron transport equation 

The representation of the neutron streaming operator, il V$, in the common 
geometries is given in Table 9.1, and the respective coordinate systems are defined 
in Figs. 9.3 to 9.5. 

Boundary Conditions 

Boundary conditions for Eq. (9.5) are generally specified by the physical situation. 
For a left boundary at rL with inward normal vector n, such that n . a> 0 indicates 
inward, one of the following boundary conditions is usually appropriate: 

Vacuum: $ ( r L , a ) = 0 ,  a . n > O  
Incident flux known: $(rL, a) = h n ( r ~ ,  0),  0 - n  > 0 (9.6) 
Reflection: +(rL, 0) = (~(0' -+ 0 ) + ( r ~ ,  0 ' ) d a '  

where cc is a reflection or albedo function. 

Scalar Flux and Current 

The scalar flux is the product of the total number of neutrons in a differential 
volume, which is the integral over direction of the number of neutrons with 
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X 

Fig. 9.3 Cartesian space-angle coordinate system. (From Ref. 2; used with permission of 
Wiley.) 

direction within d a  about a, times the speed: 

and the current with respect to the 5-coordinate is the net flow of neutrons in the 
positive 5-direction: 

Partial Currents 

The positive and negative partial currents, with respect to the \-direction, are the 
total neutron flows in the positive and negative 6-directions, respectively: 
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Fig. 9.4 
Wiley.) 

Spherical space-angle coordinate system. (From Ref. 2; used with permission 

9.2 INTEGRAL TRANSPORT THEORY 

The steady-state version of Eq. (9.5) may be written 

where dR is the differential length along the direction fl (i.e., il V = d/dR). This 
equation may be integrated along the direction from ro to r, to obtain 

where a(rl, r) is the optical path length along the direction fl between r' and r: 
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Fig. 9.5 Cylindrical space-angle coordinate system. (From Ref. 2; used with permission of 
Wiley.) 

Isotropic Point Source 

For an isotropic point source of strength So(n/s) located at ro, the directional flux 
outward through the cone di2 about direction i2 is So(di2/4n). The volume element 
dr subtended by this cone at distance R = lr-r'[ away is 4?c dfk  R' dR, as depicted 
in Fig. 9.6. From Eq. (9.1 I), the directional flux at r of uncollided neutrons from an 
isotropic point source at r' (such that the direction fiom i to r is i2) is given by 

Fig. 9.6 Incremental volume subtended by cone d f l  at distance R = Jr-r'J from point r. 
(From Ref. 2; used with permission of Wiley.) 
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Isotropic Plane Source 

The scalar flux of uncollided neutrons at a distance x from a uniform planar iso- 
tropic source can be constructed by treating each point in the plane as an isotropic 
point source and integrating over the plane, as indicated in Fig. 9.7, to obtain 

where the exponential integral function is defined as 

The x-direction current of uncollided neutrons at a distance x from a uniform 
planar isotropic source can be constructed in a similar manner by noting that for a 
neutron originating on the plane with direction Q, the quantity p = a w n x  =x/R: 

A one-dimensional isotropic source distribution So(x) in a slab of thickness a can 
be considered as a distribution of isotropic planar sources, and the uncollided scalar 

Fig. 9.7 Coordinate system for plane isotropic source calculation. (From Ref. 10; used with 
permission of McGraw-Hill.) 
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flux distribution can be constructed by integrating over the contributions from each 
planar source: 

Anisotropic Plane Source 

Using the relations p = cos 0 = x / R  and R~ = x2 + P2 and noting that all source 
neutrons in the annular region 2np dp on the source plane will pass through a point 
at a distance x above the center of the annular region within dp about the same 
value of p, the directional flux of uncollided neutrons which results from an aniso- 
tropic planar source S(p) can be constructed: 

The scalar flux and current of uncollided neutrons at a distance x from an uniform 
anisotropic planar source S(p) are 

I 1 

Jx (x) = I_, &(x, p) d p  = 1 ~ ( p )  a-mGIU)/w d p  

It is convenient to expand the directional dependence of the source: 

in half-range Legendre polynomials: 

which have the orthogonality properties 

With these orthogonality properties, it follows immediately that 
Sn = Sd P,~(P)S(P)~P. 
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Using this expansion in Eq. (9.19), the flux of uncollided neutrons at a distance x  
from an uniform anisotropic planar source is 

where 

B t ( a ( x ,  0)) = 2Ez(a(x ,  0)) - El ( a ( x ,  0 ) ) ,  etc. 

Similarly, the x-directed current of uncollided neutrons at a distance x  from an 
uniform anisotropic planar source is 

where 

Transmission and Absorption Probabilities 

As an example of an application of the formalism above, consider a purely absorb- 
ing slab of thickness u with an isotropic plane source of neutrons on one surface. 
The transmission probability for the slab is just the ratio of the exiting current on 
the opposite surface to the incident partial current on the other surface: 

and the absorption probability is A = 1 -T = 1 -E2(a(a, 0)). 

Escape Probability 

As another example, consider a uniform, purely absorbing slab of thickness a with 
an isotropic neutron source So distributed uniformly throughout. Representing the 
source of neutrons at x  within the slab as a plane isotropic source of strength So/2 to 
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the right and So/2 to the left, the current of neutrons produced by the source at 
x =n' which exit through the surface at x = a is 

The total current of neutrons out through the surface at x = a is found by integrating 
this expression over the slab: 

Using the differentiation property of the exponential integral function 

Eq. (9.30) may be evaluated: 

By symmetry, the current out through the surface at x =  0 must be the same. The 
escape probability from the slab is the ratio of the total current out of the slab 
through both surfaces to the total neutron source rate aso in the slab: 

First-Collision Source for Diffusion Theory 

As a further application, consider a medium with a surface source of neutrons, 
which is highly forward directed but almost isotropic within the forward-directional 
hemisphere, incident on one surface of a diffusing medium; that is, the forward- 
directed neutrons incident on the medium are nearly isotropic within the forward- 
directional hemisphere, but many more neutrons are moving forward into the 
medium than are moving backward out of it. Diffusion theory will not be accurate 
for treating these source neutrons, because diffusion theory is based on an imphit 
assumption that the neutron flux is nearly isotropic over the full angle (this is 
discussed in Section 9.6), even though diffusion theory may otherwise be sufficient 
for the analysis of neutrons once their direction is randomized by a scattering event 
within the medium. The first collision of the incident source neutrons can be 
calculated with integral transport theory and used as a distributed first- 
collision source for the diffusion theory calculation: 
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If the distribution of incident source neutrons is more highly forward directed, 
so that it is anisotropic even over the forward-directional hemisphere, it may be 
represented by an anisotropic plane source and the first-collision source becomes 

Inclusion of Isotropic Scattering and Fission 

Consider again the slab with a distributed isotropic source of neutrons, but now 
with isotropic elastic scattering and fission, as well as absorption represented ex- 
plicitly. The flux of uncollided source neutrons is 

If the first-collision rate at x = x' is considered as a plane isotropic source of once- 
collided neutrons at x', the flux of once-collided neutrons due to the once-collided 
source at x' is 

and the total flux of once-collided neutrons at x is found by integrating over the 
distribution of first-collision sources: 

Continuing in this vein, the flux of n-collided neutrons is given by 

The total neutron flux is the sum of the uncollided, once-collided, twice- 
collided, and so on, fluxes: 
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Thus we have found an integral equation for the neutron flux in a slab with isotro- 
pic scattering and fission, with a kernel [X,(d) + vCf (x')]El(a(x,x')) and a first- 
collision source $So~l(a(x, 0)). 

Distributed Volumetric Sources in Arbitrary Geometry 

The scalar flux of uncollided neutrons resulting from an arbitrary neutron source 
distribution can be constructed by treating each spatial location as a point source 
with strength given by the source distribution for that location. The uncollided 
directional flux at r arising from a point source at r' is given by Eq. (9.13). The 
total uncollided directional flux at r is obtained by integrating over all source points 
r', and the total uncollided scalar flux is then calculated by integrating over a: 

Following the same development as that leading to Eq. (9.40), an integral equa- 
tion for the total neutron flux can be developed for the case of isotropic scattering: 

where exp [-a(r, r')] /47c 1 r-r1l2 is the isotropic point source kernel and 4, given 
by Eq. (9.41) is the uncollided flux contribution. 

The derivations leading to Eqs. (9.40) and (9.42) did not explicitly take bound- 
ary conditions into account. Since scattering source rates integrated over the 
volume of the reactor were used to derive successive n-collided fluxes, the implicit 
assumption was that neutrons which escaped from the reactor did not return. Thus 
these equations are valid with vacuum boundary conditions, but not with reflective 
boundary conditions. 

Flux from a Line Isotropic Source of Neutrons 

Consider the situation illustrated in Fig. 9.8 of a line isotropic source of neutrons 
of strength So(n/cm-s). The point source kernel can be used to construct the 
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LINE 
SOURCE 

R and t in cm. 

p and r in mfp. 

Fig. 9.8 Geometry for calculating flux at P from a line isotropic neutron source 
[t  = x, z = ~ ( x ,  O)]. (From Ref. 3; used with permission of Academic Press.) 

differential scalar flux at a point P located a distance t from the line source due 
to the differential element dz of the line source located at z: 

where a(t,z) denotes the optical thickness along the path of length R from the 
source point at coordinate z to the point P a perpendicular distance t from the line 
source at z = 0. Noting that R = tlcos 0 and dz = R dO/cos 0 = t d0/cos20, the total 
flux at a point at a distance t can be found by integrating the differential flux con- 
tribution from all such differential elements dz: 

where Kil(x) is the Bickley function of order one. 

Bickley Functions 

The general Bickley function is defined as 
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These functions satisfy the following differential and integral laws: 

dKin (x )  -- 
dx 

- -Kin-, ( x )  

and the recurrence relation 

nKin+l ( x )  = ( n  - l)Kin-1 ( x )  + x[Kin-2(x) - ~ i ,  (x ) ]  (9.48) 

The Bickley functions must be evaluated numerically (e.g., Ref. 3). 

Probability of Reaching a Distance t from a Line Isotropic Source Without a 
Collision 

With reference to Fig. 9.9, the probability P that a neutron emitted isotropically 
from point P on the line source is able to get a perpendicular distance t away from 
the line source without having a collision depends on the direction in which the 
neutron is traveling relative to the perpendicular to the line source. The uncollided 
differential neutron current arising from a point on the line source and passing 
through a differential surface area a3 = R d0 t d q  = t2 d0 dqlcos 0 normal to the 
R-direction at a perpendicular distance t from the line source is 

where the optical thickness a(t, z) is taken along the path length R. Integrating over 
all possible values of the angles, the probability of a neutron emitted isotropical- 
ly from a line source crossing the cylindrical surface at a distance t from the line 
source is 

where now a(t, 0) is the optical path length perpendicular to the line source out to 
the cylindrical surface at distance t. 

The Bickiey and exponential integral functions arise because of the assumption 
of spatial symmetry. They take into account that the neutron flight path is always in 
three spatial dimensions, even though symmetry otherwise allows reduction in the 
dimensionality of the problem. 
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LINE 
SOURCE 

Fig. 9.9 Geometry for calculating probability that a neutron from an isotropic line source 
does not have a collision within perpendicular distance t from the line source [ t = x ,  
T = a(x, O ) ] .  (From Ref. 3; used with permission of Academic Press.) 

9 3  COLLlSION PROBABILITY METHODS 

If the volume of the problem of interest is partitioned into discrete volumes, 6, 
within each of which uniform average cross sections and a flat flux are assumed, 
Eq. (9.42) can be integrated over K, and the resuIting equation can be divided by 

to obtain 

which relates the fluxes in the various volumes by the first-flight transmission . . 
probabilities TJ": 

Reciprocity Among 'Ikansmission and Collision Probabilities 

Since a(ri. rj) = u(rj, ri) (i.e., the optical path is the same no matter which way the 
neutron traverses the straight-line distance between ri and r) there is a reciprocity 
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relation between the transmission probabilities: 

Upon multiplication by Eri&, Eq. (9.51) can be written 

where the collision rate in cell i is related to the neutrons introduced by scattering, 
fission, and an external source in all cells j by the collision probabilities 

Because a(ri, rj) = a(rj, ri), there is reciprocity between the collision probabilities; 
that is, 

Collision Probabilities for SIab Geometry 

For a slab lattice the volumes, Vi, become the widths Ai x i  .+ 112 - xi- 112 of the 
slab regions centered at xi, and the slab kernel El(a(x1 ,x) /2  replaces the point 
source kernel in Eq. (9 .53 ,  which becomes 

For j # i, the probability that a neutron introduced in cell j has its next collision in 
cell i is 

where ai , j  - a(xi, xj). For j = i ,  a similar development leads to an expression for the 
probability that a neutron introduced in cell j has its next collision in cell i is 

Collision Probabilities in Two-Dimensional Geometry 

Consider the two-dimensional cross section shown in Fig. 9.10, in which the 
volumes Vi and 5 extend indefinitely in &he direction perpendicular to the page. 
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Fig. 9.10 Geometry for calculating collision probabilities in two-dimensional geometry 
(pi is the optical path length u over the indicated path). (From Ref. 3; used with permission 
of Academic Press.) 

With respect to Fig. 9.9, a neutron emitted at point t defined by the angle cp and 
coordinate y in volume in Fig. 9.10 and traveling in the direction defined by the 
angle cp which passes through volume Vj may be traveling at any angle 
-n/2 5 0  5 n/2 with respect to the horizontal cross section shown in Fig. 9.10. 

The probability that a neutron emitted at point t  will reach some point on the line 
perpendicular to the page which passes through the page at point t' in volume Vj is, 
from Eq. (9.50), given by KiZ(x(d,  t ) ) ,  where a(t', t )  is the optical path length in the 
horizontal plane of Fig. 9.10. With respect to Fig. 9.10, identify ti and 9 as the 
points along the horizontal line between t  and f at which the line passes through 
the surfaces of volumes and Vj, respectively. Thus Ki2(&( t i - t )  + a($ t i ))  is 
the probability that a neutron emitted from point t  in volume Vi in direction cp 
reaches volume Vj, and Kia(Cri(ti-t) + a($, t i )  + a($ + A%, tj)), with Atj being the 
distance in the horizontal plane across volume V,, is the probability that the neutron 
not only reaches volume but continues through volume 5 and emerges from the 
opposite side without a collision, both probabilities being averaged over an iso- 
tropic distribution of neutron directions with respect to the horizontal, as measured 
by the angle 8. The probability that neutrons emitted from point t  in volume V,  with 
direction cp have their first collision in volume Vj is then pi j ( t ,  cp, y)  = -Ki2(Cli 
( t i  - I )  + x(5, ti) + a($ + A$, ti)) + KiQti(ti-t) f cc(tj, ti)).  Averaging this probabil- 
ity over all source points along the line defined by angle cp within volume & and 
using the differential property of the Bickley functions given by Eq. (9.46) leads to 

1 
= - [Ki3(a(t j ,  t i ) )  - Ki3(a(tj,  ti) + a( t ,  + A$, t j ) )  

&ti 
- Ki3(a(tj,  ti) + a ( t i , O ) )  + K i j ( a ( $ ,  ti) 

+ a( t j  + A$, ti) + a( t i ,O)) ]  
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To obtain the average probability P~ that a neutron introduced by an isotropic 
source uniformly distributed over volume V;: will have its first collision in volume 
Vj, this expression must be multiplied by the probability that an isotropically 
emitted neutron source will emit a neutron in the differential direction dcp about 
c p ,  which is dq/27c, and the probability that for a uniform source within V;: the 
neutron will be emitted from along the chord of length ti(y) at coordinate y, which 
is ti(y)dy/V;:, and integrated over all relevant values of cp and y. Note that the vol- 
umes V;: and Vj are actually the respective areas within the planar cross section of 
Fig. 9.10. The result for the collision probability is 

- Ki3(a(tj, ti) + a(tj + At,, t , ) )  - Ki3 (a(t j ,  ti) + a( t i ,  0 ) )  

+ Kh(a(tj, ti) + a($  + At,, t j )  + (.(ti ,  O ) ) ]  (9.61) 

A similar development leads to an expression for the probability that the next 
collision for a neutron introduced in volume & is within that same volume V;:: 

Collision Probabilities for Annular Geometry 

The annular geometry of a fuel pin, its clad, and the surrounding moderator is of 
particular interest. For the annular geometry of Fig. 9.1 1 ,  Eq. (9.61) specializes to 

where 

with the T being optical path lengths ol over the indicated chords in the horizontal 
plane in Fig. 9.1 1 : 

Methods for the numerical evaluation of these expressions are given in Ref. 3. 
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Fig. 9.11 Annular geometry notation for calculation of collision probabilities (T is the opti- 
cal path length a over the indicated path). (From Ref. 3; used with permission of Academic 
Press.) 

9.4 INTERFACE CURRENT METHODS IN SLAB GEOMETRY 

Emergent Currents and Reaction Rates Due to Incident Currents 

Consider the slab geometry configuration depicted in Fig. 9.12, in which a slab 
region i is bounded by Surfaces i and i + 1 with incident currents JT and J;, and 
emergent currents J,: and J;,. The angular flux of particles at x arising from an 
angular flux of neutrons at x' is 

where it is assumed that the total cross section, Z,, is uniform over Ai, and p is the 
cosine of the angle that the particle direction makes with the x-axis. Further assum- 
ing that the incident fluxes, $f and $GI, are isotropically distributed in angle over 
the incident hemisphere (i.e., a double Po approximation), the uncollided currents 
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Xi Xi+ 1 

Fig. 9.12 Nomenclature for slab geometry interface current method. 

emergent from the opposite surface are given in terms of the incident partial cur- 
rents (J? =&$:, J -  r+l  =1$- 2 r+l ) by 

where En is the exponential integral function given by 

The first collision rate for incident particles within Ai is given by 

The fraction ci of the collision rate that is due to scattering (i.e., to events 
that do not remove the particle) from the cohort under consideration (i.e., 
cj = (Csi + vCfi)/Cfi) constitutes a source of once-collided particles, which we 
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assume to be isotropic (4 emerge going to the right and $ to the left) and distributed 
uniformly over Ai. Treating these "scattered" neutrons as a distribution of plane 
isotropic sources, with the source at x' producing exiting uncollided fluxes 

at xi+ 1 and xi ,  respectively, the emergent currents of once-collided particles are 

where the average first-flight escape probability for source particles distributed uni- 
formly over Ai has been defined as 

The collision rate for incident particles undergoing a second collision in Ai is 

As before, the fraction c, of this collision rate constitutes a source of twice-collided 
particles which are assumed to be isotropic. The emergent currents of twice- 
collided particles are given by Eqs. (9.70) but with kil replaced by Riz: 
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Continuing this line of argument, we derive general expressions for the rate at 
which incident particles undergo their nth collision in Ai: 

and for the emergent currents of n-collided incident particles, 

The total collision rate in Ai due to incident currents is obtained by summing 
Eqs. (9.74): 

and the total emergent currents due to incident currents are obtained by summing 
Eq. (9.75) and adding the uncollided contributions of Eqs. (9.67): 

Emergent Currents and Reaction Rates Due to Internal Sources 

We consider a uniform distribution of particle sources within Ai of strength si/Ai 
per unit length. This source is allowed to be anisotropic, with a number sif emitted 
to the right and s; emitted to the left. The emergent currents of uncollided source 
particles are 



INTERFACE CURRENT METHODS IN SLAB GEOMETRY 319 

The first collision rate of source particles within Ai is given by 

As before, treating the fraction ci of these particles that undergo scattering colli- 
sions as an isotropic plane source of once-collided particles, the emergent currents 
of once-collided source particles are given by 

Continuing in this fashion, the general expression for the nth collision rate of 
source particles in Ai is 

and the general expressions for the emergent currents of n-collided source particles 
are 

The total collision rate of source particles within Ai is 

and the total emergent currents due to an anisotropic particle source within Ai are 
obtained by summing Eqs. (9.82) and adding Eqs. (9.78): 
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Total Reaction Rates and Emergent Currents 

The total reaction rate in Ai due to incident currents and to internal sources is 
obtained by adding Eqs. (9.76) and (9.83): 

where the first-flight, or uncollided, transmission probability has been identified: 

Further identifying the total escape probability, 

00 

Pi EE Poi C [ ~ i  (1 - Poi)]" = 
poi 

n=O 1 - c i ( l  -Poi)  

the total reflection probability, 

and the total transmission probability, 

Eqs. (9.77) and (9.84) can be summed to obtain expressions for the total emergent 
currents due to incident currents and internal particle sources: 

The inherent advantage of an interface current formulation of integral transport 
theory is evident from Eqs. (9.90). To solve for the currents across interface i, one 
needs only the currents at interface i + 1 and the source in the intervening region. 
This leads, in essence, to a "four-point" coupling of the unknowns, the partial 
currents at i and i + 1, and the evaluation of only one E3 function for each region. 
By contrast, in the standard collision probabilities formulation of the preceding 
section, the fluxes in all other regions in the problem and the transition probabilities 
from all of these regions to the region in question are needed in order to solve for 
the flux in a given region, in essence coupling all regions in the problem. In both 
formulations, an iterative solution is needed. 
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As formulated above, the interface current method is based on the &Po 
assumption of an isotropic angular flux distribution within the incident hemisphere 
at each interface, for the purpose of calculating the uncollided transmission across 
the region. This assumption is physically plausible for problems with scattering 
(and fission) rates comparable to or larger than absorption rates, because this tends 
to isotropize the flux exiting from a region. However, for problems with an incident 
neutron source on one boundary of an almost purely absorbing medium, the flux 
will become increasingly forward directed with distance into the region. In the limit 
of a purely absorbing region with an incident isotropic neutron source at x = 0, the 
current attenuation at a distance x from the source plane is exactly E2(Zx). If this 
problem is modeled in the interface current formulation and the distance x is 
subdivided into N intervals A, the calculated current attenuation at x is 
n;=:'=, Ez(EA), which differs from the exact answer Ez(EnA). Thus inaccuracies 
might be expected in highly absorbing multiregion problems. 

It is informative to sum Eqs. (9.90) to obtain an intuitively obvious balance 
between incident and emergent currents and internal sources: 

Ji',l + JF = (Ti + R ~ ) ( J :  + J,T,,) + s i p i  
or 

J O U ~  = (Toi + ( 1  - Toi)ciPi)Ji,  + s i p i  

Solving the first of Eqs. (9.90) for J: and using the result in the second equation 
leads to a matrix relation among the partial currents at adjacent surfaces: 

Equation (9.92) is well suited for numerical evaluation simply by marching from 
one boundary of the problem to the other. 

Boundary Conditions 

Boundary conditions take on a particularly simple form for an interface current 
formulation of integral transport. Let x = 0, i = 0 represent the leftmost surface of 
the transport medium. If a vacuum or nonscattering medium with no particle source 
exists for x < 0, then J t  = O is the appropriate boundary condition. If, on the other 
hand, a source-free scattering medium exists for x <0, an albedo or reflection 
condition of the form J$ = $ J i ,  where $ is the reflection coefficient or albedo, 
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is appropriate. Finally, if a known current of particles Ji, is incident upon the 
medium from the left at x = 0, the appropriate boundary condition is Jof = Ji,. 

Response Matrix 

Suppressing internal sources, the matrix equation (9.92) may be written in more 
compact notation: 

(where J indicates a column vector and R indicates a matrix) and applied succes- 
sively to relate the incident and exiting currents on the left boundary, J:, to the 
incident and exiting currents on the right boundary, J:: 

where the matrix R is the matrix product of the matrices Ri for each slab Ai and has 
the form 

in terms of which Eq. (9.94) may be written as the two equations 

which may be solved to obtain the response matrix relationship between the inci- 
dent currents, J: and J;, and the exiting currents, J i  and Jlf.  

Once the response matrix, RM, is evaluated, the exiting currents can be computed 
rapidly for a given set of incident currents. This formalism can be extended in an 
obvious way to treat internal sources. 

9.5 MULTIDIMENSIONAL INTERFACE CURRENT METHODS 

Extension to Multidimension 

The interface current formulation of integral transport theory can be extended to 
two and, in principle, three dimensions. First, for conceptual purposes, we rewrite 
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Eqs. (9.90) by making the identification JT = J:, J; = Jy, JLl = Ji"+"\, 
J;,  = 4:,, and 

where A: is the fraction of escaping source neutrons that escapes to the left across 
surface i and A:+, is the fraction escaping to the right across surface i $- 1. Then, 
using Eqs. (9.85) to (9.89), Eqs. (9.90) may be written 

where Ai = Ai+1 = $ is the fraction of escaping scattered incident neutrons that 
escape across surfaces i and i + I ,  respectively. 

In this form, the terms in Eqs. (9.99) for the emergent currents have a direct 
physical interpretation which leads immediately to a generalization to multidimen- 
sions. The outward current across surface i+ 1 consists of three terms: (1) the 
inward current across surface i times the probability Toi that it is transmitted across 
region i without collision to surface i + 1; (2) the inward currents across all surfaces 
times the probability (1 -Toi) that these currents are not transmitted across region i 
without collision, times the probability ci that the first collision is a "scattering" 
event, times the probability Pi that the scattered neutrons subsequently escape from 
region i, times the probability Ai + that escaping neutrons escape across surface 
i + 1; and (3) the total particle source si in region i times the probability Pi that 
these neutrons will escape from region i, times the probability A:+, that escaping 
source neutrons escape across surface i + 1. Note that Ai+ and can in prin- 
ciple differ because an anisotropic source is allowed [i.e., Ai+] = and A:+, is 
given by Eq. (9.98) for slab geometry]. 

Generalization to multidimensions is straightforward, in principle. Consider the 
two-dimensional configuration in Fig. 9.13. The current from region k into region i 
is denoted fki(rk-i in the figure), the probability that the current entering region i 
from region k is transmitted across region i without collision to contribute to the 
current from region i into region j is denoted T$, and the probability that a collided 
or source neutron escaping from region i escapes into region j is denoted Aij. The 
generalization of Eqs. (9.99) to two-dimensions is then 

where the summation is over all regions k that are contiguous to region i. The 
three terms in Eq. (9.100) correspond physically to (1) the sum of the currents 
incident into region i from all contiguous regions times the probability that each is 
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Uncollided flux Collided flux 

Fig. 9.13 Planar projection of geometry for multidimensional interface current methods. 

transmitted across region i without collision to exit into region j (note that the 
possibility of concave surfaces is allowed by including uncollided transmission 
from region j across region i back into region j); (2) the sum of the currents incident 
into region i from all contiguous regions times the probability that each is not 
transmitted without coilision across region i to any of the contiguous regions, times 
the probability that the first collision is a "scattering" event, times the probability 
that the scattered neutron eventually escapes from region i into region j ;  and (3) the 
source of neutrons in region i times the probability that a source neutron in region 
i eventually escapes into region j .  

Evaluation of Transmission and Escape Probabilities 

The general form for the evaluation of transmission and escape probabilities can be 
developed using the point kernel discussed previously. We treat the case of incident 
fluxes that are distributed isotropically in the incident hemisphere of directions and 
volumetric neutron sources (scattering, fission, external) which are uniformly dis- 
tributed over volume and emitted isotropically in direction. These results can be 
extended to anisotropic incident fluxes and nonuniform and anisotropic volumetric 
source distributions by extending the procedures indicated below. 

The probability that a neutron introduced isotropically at location ri within vol- 
ume escapes without collision across the surface Ski that defines the interface 
between volume 15: and contiguous volume Vk is the probability dn/4nlrski - ril 2 
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that the neutron is traveling within a cone of directions d a  which intersects that 
surface, times the probability exp[-a(rs,, ri)] that the neutron reaches the surface 
at location rs, along the direction fl from ri without a collision, integrated over all 
a that intersect the surface Ski from point ri. This probability is then averaged over 
all points ri within volume & to obtain 

Extension of this expression to treat anisotropic neutron emission would be accom- 
plished by including a hnction f (rSk,, ri) under the integral to represent any direc- 
tional dependence of neutron emission. Extension to include a spatial distribution 
g(ri) of neutron sources would be accomplished by including this function in the 
integrand. 

The probability that an incident unit neutron flux which is isotropically distrib- 
uted over the inward hemisphere of directions entering volume V;: from volume Vk 
across surface Ski is transmitted without collision across volume & to the surface Sji 
which forms the interface with contiguous volume Vj is the product of the prob- 

2 ability risk, da/271(rS,, - rS,i l 2  = (nski . a) dfl/2n(rski - rs,, ( that a neutron inci- 
dent across Ski is traveling within a cone of directions dfl which intersects the 
surface Sji, times the probability exp[-a(rs,;, rs,,)] that the neutron reaches the 
surface at location rs, along the direction rbL from rsk, without a collision, integrated 
over all 11I that intersect the surface Sji from point r.~,,. The quantity ns,, is the unit 
vector normal to the surface Ski in the direction from volume Vk into volume &. 
This probability is then averaged over all points rsk, on Ski, to obtain 

Extension of this expression to include an anisotropic incident neutron flux would 
be accomplished by including a function f (rs,,, rsj,) in the integrand. 

Transmission Probabilities in Two-Dimensional Geometries 

To develop computational algorithms, we consider geometries with symmetry in 
one direction, which are conventionally known as two-dimensional geometries. It is 
important to keep in mind, however, that neutron flight paths take place in three 
dimensions. Consider a volume that is symmetric in the axial direction and 
bounded by flat vertical surfaces, so that a horizontal (x-y) planar slice is as shown 
in Fig. 9.14, with the vertical dimension normal to the page. We want to calculate 
the transmission coefficient from volume 1 through the volume i into volume 3. A 
three-dimensional projection and a verlical projection are shown in Fig. 9.15. The 
points 6 ,  and k j  in Fig. 9.14 are the projection onto the horizontal plane of the 
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cl"i" 
Fig. 9.14 Planar projection of geometry for transmission probability calculation in two- 
dimensions. 

53 

Fig. 9.15 Three-dimensional and axial projection of geometry for transmission probability 
calculation in two-dimensions. 

vertical axes shown in Fig. 9.15. The differential solid angle in this coordinate 
system is 

The incident directional flux forn volume 1 at point el ,  $(r-Rn, fi) is atte- 
nuated when it traverses the distance R to reach the point c3 and enter volume 3: 
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The incident partial current density (n/cm2 s) from volume 1 at point 6 ,  is 

where n,, - 82 = cos Osin $ has been used. When the incident flux is isotropic in the 
incident hemisphere (double-Po approximation), this becomes 

The incident partial current (n/s) is obtained by multiplying by the (arbitrary) axial 
dimension H and integrating over tp 5 5, 5 5:" 

The incident neutrons from volume 1 which enter volume & at cI within the 
solid angle subtended by volume 3 and traverse volume i without collision to enter 
volume 3 constitute an uncollided neutron current out of volume into volume 3, 
and hence a contribution to the incident current into volume 3 from volume i. For 
the moment we write this contribution to the current into volume 3 as 

where no,, f k  = cos 0 sin @,,, may differ from ni, cCZ = cos 0 sin 4 if the interfaces 
with volumes 1 and 3 are not parallel, and $ ( k , )  3 3 indicates angles $ from a point 
5, which intersect the interface with region 3. When the incident flux from volume 
1 is isotropic in the incident directional hemisphere, this becomes 
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The transmission probability for an isotropic incident flux distribution from vol- 
ume 1 that is uniform over ky 5 k1 5 k1;8X can be written in a form that couples 
the contribution to the incident current into volume 3 with the incident current into 
volume i: 

When the incident and exiting surfaces (the interfaces of volumes 1 and i and 
of volumes 3 and i in this example) are not parallel, there is a subtlety about the 
direction to take for no,, in the equations above. The incident current into volume 
i from volume 1 was calculated on the basis of a DP-0 angular flux approximation 
with respect to the orientation of the incident surface. The transport of the un- 
collided incident DP-0 angular flux across region i is properly calculated, and by 
using rbut =mi,, the exiting uncollided partial current in the direction normal to 
the incident surface is properly calculated. So the neutron flow into volume 3 is 
properly calculated, although the direction of this current exiting volume i is not 
normal to the exit surface. In constructing the incident current for region 3 from 
region i, this uncollided contribution from region 1 is added to the uncollided 
contribution from regions 2 and 4 and to the collided contribution, and the combi- 
nation is assumed to have a DP-0 incident angular distribution into volume 3 with 
respect to the orientation of this incident interface of volume 3 (the exiting interface 
of volume i). Thus, in the equations above, no,, = n;, should be used. 

Escape Probabilities in Two-Dimensional Geometries 

The neutron flux per unit surface area, dA, normal to the direction of neutron flight 
at a distance R away from an isotropic point source is ~ X ~ ( - C R ) / ~ X R ~ ,  and with 
reference to Fig. 9.15, the surface area normal to the direction $2 of neutron travel 
is dA = R d0 1 d@ = 1' d0 d$/cos 0. Thus, with reference to Fig. 9.16, an isotropic 
neutron source of unit strength per axial length located at ri within volume V, pro- 
duces an outward current of uncollided neutrons over the surface labeled k3 into 
volume 3 that is described by 
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Fig. 9.16 Planar projection of geometry for escape probability calculation in 
dimensions. 

two 

where Q, 2 S3 indicates the range of < Q, < Q,,,, subtended by side S3 at loca- 
tion ri within volume &. 

The average value of J:,,(X, y) over the planar two-dimensional area Ai of 
volume Vi is just the probability that an isotropic, uniform neutron source si will 
produce an uncollided current siA$Poi from volume into voIume V3: 

The proper value of no,, is the outward normal to the surface in question, and $,,, 
is measured with respect to the orientation of that surface, whereas 4 may be 
measured with respect to a fixed coordinate system, so that in  general +,,,# Q,, 
although it is convenient to orient the coordinate system so that Q,,,, = $. 

The total uncollided escape probability is obtained by summing Eq. (9.112) over 
all volumes Vk that are contiguous to volume Vi: 

and the directional escape fractions are calculated from 
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Using the same arguments as were made for the one-dimensional case in the 
preceding section, the total escape probability, including escape after zero, one, 
two, . . . collisions can be calculated from 

where ci = (& + vZfi)/Zti is the number of secondary neutrons produced per 
collision. 

Simple Approximations for the Escape Probability 

Physical considerations lead to a simple approximation for the first-flight escape 
probability. In the limit that the average neutron path length (1) in a volume V is 
much less than the mean free path h for a collision, the escape probability tends to 
unity. In the limit when (I) >> h, a simple approximation for the first-flight escape 
probability is 1 -exp(-I/ (1)) = h/ (1). If we associate the average neutron path 
length in the volume with the mean chord length 4V/S, where S is the surface area 
of the volume V a simple rational approximation for the escape probability, first 
proposed by Wigner and with which his name is associated, is 

This Wigner rational approximation is known to underpredict the first-flight 
escape probability. However, extensive Monte Carlo calculations have confirmed 
that the first-flight escape probability depends only on the parameter 4V/Sh, and 
improved rational approximations of the form 

have been proposed. The Sauer approximation, developed from theoretical consid- 
erations for cylindrical geometry, corresponds to c=4.58. The best fit to Monte 
Carlo calculations of first-flight escape probabilities for a uniform neutron source 
distribution in volumes with a wide range of geometries and values of the parameter 
4V/Sh was found by using c = 2.09. 

9.6 SPHERICAL HARMONICS (PL) METHODS 
IN ONE-DIMENSIONAL GEOMETRIES 

The spherical harmonics, or PL, approximation is developed by expansion of the 
angular flux and the differential scattering cross section in Legendre polynomials. 
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Legendre Polynomials 

The first few Legendre polynomials are 

and higher-order polynomials can be generated from the recursion relation 

The Legendre polynomials satisfy the orthogonality relation 

With reference to Fig. 9.17, the Legendre polynomials of po = cos 00, the cosine 
of the angle between p' and p, can be expressed in terms of the Legendre poly- 
nomials of p' and p by the addition theorem 
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where the associared kgendre funcrions are defined by 

Neutron Transport Equation in Slab Geometry 

Consider a situation in which there is symmetry in the y- and 2-coordinate direc- 
tions but a variation in properties in the x-coordinate direction. The steady-state 
neutron transport equation (9.5) in this case becomes 

where, with reference to Fig. 9.17, we take advantage of the fact that the scattering 
from a cone of directions p' = cos 0' to a cone of directions p = cos 0 only depends 
on po = cos €lo, the cosine of the angle between p' and p, and not on the incident and 
exiting directions for the scattering event. 

PL Equations 

The P,  equations are based on the approximation that the angular dependence of 
the neutron flux can be expanded in the first L+ 1 Legendre polynomials: 

The angular dependence of the differential scattering cross section is also expanded 
in Legendre polynomials: 

When these expansions are used in Eq. (9.123), the addition theorem of Eq. 
(9.121) is used to replace P m ( k )  with Pm(p) and Pm(pt), the recursion relation of 
Eq. (9.1 19) is used to replace &(p) terms with P,&,(p) terms, the resulting 
equation is multiplied in turn by Pk(p) ( k = O  to L) and integrated over 
- I  5 p 5 1 ,  and the orthogonality relation of Eq. (9.120) is used, the L +  1 PL 
equations 
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are obtained. The n subscript indicates the nth Legendre moment of the angular 
dependent quantity: 

This set of L + 1 equations has a closure problem-they involve L + 2 unknowns. 
This problem is usually resolved by ignoring the term d+L,. l / d x  which appears in 
the n = L equation. 

Boundary and Interface Conditions 

The true boundary condition at the left boundary XL, 

where Jli,(xL, p > 0) is a known incident flux [Jl,,(xL, p > 0) = 0 is the vacuum 
boundary condition], cannot be satisfied exactly by the angular flux approximation 
of Eq. (9.124), for finite L. The most obvious way to develop approximate bound- 
ary conditions that are consistent with the flux approximation is to substitute 
Eq. (9.124) into the exact boundary condition of (9.128), multiply by P,(y), and 
integrate over 0 5 p 5 1. Since it is the odd Legendre polynomials that represent 
directionality (i.e., are different for p and -p), this procedure is repeated for all 
the odd Legendre polynomials m = 1, 3,.  . . , L (or L- 1) as weighting functions to 
obtain, with the use of the orthogonality relation of Eq. (9.120), the Marshak 
boundary conditions 

Equations (9.129) constitute a set of (L + 1)/2 boundary conditions. An additional 
( L f  1)/2 boundary conditions are obtained similarly for the right boundary. The 
Marshak boundary conditions ensure that the exact inward partial current at the 
boundary is incorporated into the solution; that is, 
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A less intuitive set of Mark boundary conditions arises from requiring that the 
flux expansion of Eq. (9.124) satisfy the boundary condition 

for the (L -1- 1)/2 discrete values of pi in the inward direction which are the positive 
roots of PL+ ,(pi) = 0. Another (L + 1)/2 approximate boundary conditions are 
obtained at the other boundary by requiring that the flux expansion satisfy the true 
boundary condition for the (L + 1)/2 discrete values of pi in the inward direction 
which are the negative roots of PL+ = 0. These Mark boundary conditions are 
justified by the fact that analytical solution of the PL equations for a source-free, 
purely absorbing problem in a infinite half-space leads to these conditions. How- 
ever, experience has shown that results obtained with the Mark boundary conditions 
are generally less accurate than results obtained with the Marshak boundary 
conditions. 

A symmetry, or reflective, boundary condition \Ir(xL, p) = JI(xL, -p) obviously 
requires that all odd moments of the flux vanish [i.e., $JxL)=O for n= 
1,3, . . . , odd). 

The exact interface condition of continuity of angular flux 

where E is a vanishingly small distance, cannot, of course, be satisfied exactly by 
the flux approximation of Eq. (9.124), for finite L. Following the same procedure as 
for Marshak boundary conditions, we replace the exact flux with the expansion of 
Eq. (9.124) and require that the first L+ 1 Legendre moments of this relation be 
satisfied (i.e., multiply by P ,  and integrate over - 1 5 p 2 1, for m = 0, . . . , L). 
Using the orthogonality relation of Eq. (9.120) then leads to the interface conditions 
of continuity of the moments: 

There are some subtle reasons why this approximation is not appropriate for even-L 
approximations (see Ref. 6), but since odd-L approximations are almost always 
used, we will only raise a caution. 

PI Equations and Diffusion Theory 

Neglecting the d+*/dw term, the first two of Eqs. (9.126) constitute the P I  equations 
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Noting that Ed = Zs, the total scattering cross section, and that CS1 = FOEs, where 
Po is the average cosine of the scattering angle, and assuming that the source is 
isotropic (i.e., S1 = O ) ,  the second of the P1 equations yields a Fick's law for neutron 
diffusion: 

which, when used in the first of the P1 equations, yields the neutron diffusion 
equation 

where the diffusion coefficient and the transport cross section are defined by 

The basic assumptions made in this derivation of diffusion theory are that the 
angular dependence of the neutron flux is linearly anisotropic: 

and that the neutron source is isotropic, or at least has no linearly anisotropic 
component (S1 = 0). Diffusion theory should be a good approximation when these 
assumptions are valid (i.e., in media for which the distribution is almost isotropic 
because of the preponderance of randomizing scattering collisions, away from 
interfaces with dissimilar media, and in the absence of anisotropic sources). 

The boundary conditions for diffusion theory follow directly from the Marshak 
condition (9.130): 

When the prescribed incident current, J$ = 0, the vacuum boundary condition for 
diffusion theory can be constructed from a geometrical interpretation of the ratio of 
the flux gradient to the flux in this equation to obtain the condition that the extra- 
polated flux vanishes a distance he, outside the boundary: 
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The interface conditions of Eq. (9.133) become in the diffusion approximation 

Simplified PL or Extended Diffusion Theory 

The same procedure used to derive diffusion theory from the P I  equations-solve 
the odd-order equation for the odd-order moment of the flux in terms of a gradient 
of the even-order flux moment and use the result to eliminate the odd-order flux- 
can be used to simplify odd-L PL approximations of higher order. For example, in 
the P3 approximation with an isotropic source and isotropic scattering, the follow- 
ing change of variables is made: 

to facilitate the reduction of the four coupled P3 equations to the two coupled 
diffusion equations 

where 

The Marshak vacuum (JL = 0) boundary conditions of Eq. (9.129) become 

This formulation of the PL equations allows the powerful numerical solu- 
tion techniques for diffusion theory to be used to solve a higher-order transport 
approximation. 
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PL Equations in Spherical and Cylindrical Geometries 

In the case of spherical symmetry, the neutron transport equation becomes 

where r is the magnitude of the radius vector r from the center of the spherical 
geometry and p = fl r. Following the same procedure as above of expanding the 
angular dependence of the flux and differential scattering cross section according 
to Eqs. (9.124) and (9.125) and making use of the addition theorem, orthogonality 
relations, and the recursion relation 

yields the PL equations in spherical geometry: 

For cylindrical symmetry, the formalism becomes more complex because the 
angular flux depends on two components of the neutron direction vector a ,  instead 
of one as in the case of slab and spherical symmetry. With reference to Fig. 9.18, p 
is defined with respect to the angle 0 between and the cylindrical axis, which is 
taken in the 2-direction, and cp is defined as the angle in the x-y plane between the 
x-y projection of fl and the radius vector r, noting that &,/sin0 is a unit vector: 

-, r - 4  
~ = c o s O = ~ ~ ~ , ,  ~ = C O S  - 

sin 8 

The neutron transport equation in systems with cylindrical symmetry becomes 
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Fig. 9-18 Nomenclature for cylindrical geometry PL equations. 

The expansion of the angular dependence of the differential scattering cross 
section is written in this coordinate system as 

where the addition theorem for Legendre polynomials has been used in the last step. 
Using this expansion in Fq. (9.149) and multiplying, in turn, by all functions 
y ( p )  cos(mcp) for which 15 L, and making use of the recursion relations 
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(where it is understood here and below that terms with negative super- or subscripts 
are to be omitted) and the orthogonality relations 

1 m # O  dzr dp ~ p ~ ( p ) ~ l ( p )  cos my cos mly = 
SII&,,,~ , m = 0 

leads to the PL equations with an isotropic source in systems with cylindrical 
symmetry: 

- ""1 + ( X ,  - 8 3 4 ;  = 0, 
r 

where 

The PL equations are equations for the L + 1 flux moments 

in terms of which the angular flux distribution is given by 
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Either the Mark or Marshak boundary conditions are applicable in spherical or 
cylindrical geometry, on the exterior boundary, but these provide only (L+ 1)/2 
conditions. The other ( L +  1)/2 conditions are provided by the requirement for 
symmetry about the origin, which requires the odd flux moments to vanish at the 
origin. The Marshak form of the interface continuity conditions are also applicable 
in these geometries. 

Diffusion Equations in One-Dimensional Geometry 

The P ,  equations may be reduced to a diffusion theory form for spherical and 
cylindrical geometries. In general, letting r be the spatial coordinate upon which 
the flux distribution depends, the P I  equations may be reduced to 

where n = 0 for planar geometry, 1 for cylindrical geometry, and 2 for spherical 
geometry. 

The reduction of the PL equations to coupled diffusion equations that was dis- 
cussed for slab geometry is not possible in spherical and cytindrical geometries 
because it is not possible to eliminate coupling terms containing spatial derivatives 
of the Legendre flux moments. Thus the efficient diffusion theory solution pro- 
cedures cannot be employed with the spherical and cylindrical PL equations, and 
other, generally less efficient iterative methods must be used (e.g., Ref. 6). 

Half-Angle Legendre Polynomials 

The efficacy of the P, method depends on the validity of representing the angular 
dependence of the neutron flux as a low-order continuous polynomial expansion 
over - 1 1 p 1 1. There are situations in which the flux may be highly directional 
and thus not well represented by a continuous polynomial expansion over both 
forward and backward directions, but in which the flux may be well represented 
by separate low-order polynomial expansions over the forward and backward direc- 
tions. The half-angle Legendre polynomials have been developed for this purpose. 
The forward (p > 0) and backward (p < 0) haIf-angle Legendre polynomials are 
defined as 

These polynomials clearly satisfy 
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and may be shown from the orthogonality and recursion relations for the full-range 
Legendre polynomials to satisfy the orthogonality conditions 

and to have the recursion relations 

Double-PL Theory 

Expanding the flux separately in each half-space 0 5 p 5 1 and - 1 5 p 10, 

substituting into Eq. (9.123), weighting in turn by each pT(1 5 L) and integrating 
over 0 5 p 5 1 and by each p; (1 5 L) and integrating over - 1 5 p 5 0, and making 
use of the orthogonality and recursion relations above yields a coupled set of 
2(L + 1) double-PL, or D-PL, equations: 

where 
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The coupling between the forward ( +) and backward (-) flux moment equa- 
tions comes about because of the possibility of scattering from the interval 
- 1 5 p 5 0 to the interval 0 5 p 5 1, and vice versa, as indicated by the scattering 
sums on the right in Eqs. (9.164). The upper limits on these summations arise 
because the expansion of the differential scattering cross section was terminated 
at 2L + 1 .  These scattering terms contain full-range Legendre flux moments which 
must be represented in terms of the half-range moments by using the approximate 
representation of the full-range Legendre polynomials in terms of the half-range 
polynomials: 

where the summation extends to 1 or L, whichever is smaller. This representation 
leads to 

The h a 1  form of the D-PL equations is 

Interface and boundary conditions for the D-PL equations are straightforward 
extensions of the conditions derived for the PL equations. All of the 4; and 4; 
are continuous at interfaces. A vacuum boundary condition requires that the incom- 
ing fiux moments be zero at that boundary [e.g., a vacuum condition on the left 
boundary requires that all 4T (xL)  = 0, and a vacuum condition on the right bound- 
at- requires that all +;(xL)  = 01. A symmetry, or reflective, boundary condition 
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requires that 4: (xL)  = +; (xL). Known incident flux conditions at the left boundary, 
$ i n ( ~ L ,  p > O), or at the right boundary, Jlin(xR, p < 0),  lead to boundary conditions 

The D-PL approximation results in 2(L+ 1) first-order ordinary differential 
equations to be solved for 2(L+ 1) unknowns, the flux moments and +;. 
The same number of first-order ordinary differential equations and unknown flux 
moments +l are obtained in the P,, approximation. In problems in which the 
difference in the number of neutrons moving in the forward and backward direc- 
tional half-spaces is more important than the angular distribution per se, the D-PL 
approximation is more accurate than the P2L approximation with the same number 
of unknowns. Thus the D-PL approximation is to be preferred for interface and 
boundary problems, whereas the PZL approximation is to be preferred for deep 
penetration problems. 

D-Po Equations 

This simplest and most widely used of the D-PL methods is obtained by setting 
L = 0 in the equations above and noting that C& = 1 and C:l = 4 : 

9.7 MULTIDIMENSIONAL SPHERICAL HARMONICS (PL) 
TRANSPORT THEORY 

Spherical Harmonics 

The spherical harmonics are defined as (note that there are several normalizations 
in use) 

in terms of the previously discussed associated Legendre functions. Denoting the 
complex conjugate by an asterisk, it follows that 
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The first few such functions are 

I 
Yl,-1 (p ,  p) = - ~ ~ ( C O S  cP - i sin cp) JZ 

and the remaining spherical harmonics can be generated using the recursion rela- 
tion for the associated Legendre functions defined by Eq. (9.122): 

With respect to Fig. 9.19, the directional cosines along Cartesian coordinate axes 
are given in terms of the spherical harmonics by 

X 
Fig. 9.19 Nomenclature for spherical harmonics. 
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The spherical harmonics satisfy the orthogonality relationship 

and in terms of the spherical harmonics the addition theorem for Legendre poly- 
nomials can be written 

Spherical Harmonics Transport Equations in Cartesian Coordinates 

Expanding the angular dependence of the neutron flux 

and the differential scattering cross section 

L' 21' + 1 
CS (r7 PO) = C -&I (r)PP (Po) 

l'=O 
47r 

in spherical harmonics, substituting the expansions into the neutron transport equa- 
tion 

multiplying by each Y;*, in turn, integrating over da, and making use of the 
orthogonality and recursion relations and the addition theorem yields the spherical 
harmonics equations for the flux moments 
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where QI, is the Y& moment of the external source and the other quantities have 
been discussed previously. 

This formidable set of equations is rarely solved as is; however, it provides the 
basis for the development of a number of useful approximations. Note that the 
equation for each flux moment contains scattering terms involving only that 
same flux moment, so that the coupling among equations for different flux moments 
is entirely through the streaming terms arising from the C! V\lr term. 

PI Equations in Cartesian Geometry 

As was the case in one dimension, the spherical harmonics equations lack closure. 
When the spatial derivatives involving $L+ in the I = L equation are set to zero, 
the three-dimensional PL approximation is obtained. We consider the lowest-order 
P I  approximation in more detail. Using Eqs. (9.173) and (9,173, it can be shown 
that the flux moments are related to the scalar flux and to the currents along the 
various coordinate axes: 

Using these relations to express the flux moments in terms of the scalar flux and the 
currents, Eq. (9.178) becomes (for L = 1) 

Using the flux moments calculated from Eqs. (9.182) in the (1 = 0, rn = 0) equa- 
tion (9.181) yields the exact equation (i.e., it was not necessary to discard a deriva- 
tive of a higher moment in this equation) 
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Adding and subtracting the (1 = 1, m = 1) and (1 = 1, rn = -1) equations (9.18 1) 
yields the approximate (i.e., it was necessary to discard a derivative of a higher 
moment in these equations) equations 

-- I a )  + ( ) J ( )  - E S  ( r ) J ( r )  = (42- n,)Q d n  - Ql, 
3 dx J (9.185) 

-- l r + l ( r ) J y ( r ) - s ( r ) J y ( r ) =  ( a * , ) Q m = Q , ,  
3 aL 

and the (1 = 1, m = 0)  equation yields the approximate equation 

Equations (9.184) to (9.186) are the three-dimensional PI equations in Cartesian 
geometry. 

Diffusion Theory 

The one-dimensional P1 equations led to diffusion theory, and it is of some interest 
to see if the same is true in three dimensions. Equations (9.185) and (9.186) can be 
written as a Fick's law: 

if the anisotropic source terms Ql vanish. Equation (9.187) can be used in Eq. 
(9.184) to obtain the three-dimensional diffusion equation in Cartesian coordinates 

Equation (9.187) and hence also the diffusion equation are thus based on two 
major assumptions: (1) spatial derivatives of higher flux moments & can be ne- 
glected; and (2) anisotropic neutron sources can be neglected. Had we carried out 
the development from the time-dependent transport equation, it would have also 
been necessary to assume that the time derivatives of the current could be neglected 
to obtain a Fick's law. 

9.8 DISCRETE ORDINATES METHODS 
IN ONE-DIMENSIONAL SLAB GEOMETRY 

The discrete ordinate methods are based on a conceptually straightforward evalua- 
tion of the transport equation at a few discrete angular directions, or ordinates, and 
the use of quadrature relationships to replace scattering and fission neutron source 
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integrals over angle with summations over ordinates. The essence of the methods 
are the choice of ordinates, quadrature weights, differencing schemes, and iterative 
solution procedures. In one dimension, the ordinates can be chosen such that the 
discrete ordinates methods are completely equivalent to the PL and D-PL methods 
discussed in Section 9.6, and in fact the use of discrete ordinates is probably the 
most effective way to solve the PL and D-PL equations in one dimension. This 
equivalence does not carry over into multidimensional geometries. 

Making use of the spherical harmonics expansion of the differential scattering 
cross section of Eq. (9.125) and the addition theorem for Legendre polynomials of 
Eq. (9.121), the one-dimensional neutron transport equation (9.123) in slab geo- 
metry becomes 

where the source term includes an external source and, in the case of a multiplying 
medium such as a reactor core, a fission source. We first discuss the solution of the 
fixed external source problem (which implicitly assumes a subcritical reactor) and 
then return to the solution of the critical reactor problem, in which the solution of 
the fixed source problem constitutes part of the iteration strategy. 

Defining N ordinate directions, p,,, and corresponding quadrature weights, w,, 
the integral over the angle in Eq. (9.189) can be replaced by 

where $, - $(pn). The quadrature weights are normalized by 

It is convenient to choose ordinates and quadrature weights that are symmetric 
about p = 0, hence providing equal detail in the description of forward and back- 
ward neutron fluxes. This can be accomplished by choosing 

With such even ordinates, reflective boundary conditions are simply prescribed: 
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Known incident flux, $in(p), boundary conditions, including vacuum conditions 
when = 0, are 

Normally, an even number of ordinates is used (N = even), because this results in 
the correct number of boundary conditions and avoids certain other problems en- 
countered with N = odd. Even with these restrictions, there remains considerable 
freedom in the choice of ordinates and weights. 

PL and D-PL Ordinates 

If the ordinates are chosen to be the L roots of the Legendre polynomial of order N, 

and the weights are chosen to integrate all Legendre polynomials correctly up to 
PN- 1 

then the discrete ordinates equations with N ordinates are entirely equivalent to 
the PN-I equations. To establish this, we multiply Eq. (9.189) by wnPI(pn) for 
0 5 1 < N- I ,  in turn, and use the recursion relation of Eq. (9.119) to obtain 

Summing these equations over 1 < n 5 N yields 

Weights chosen to satisfy Eqs. (9.196) obviously correctly integrate all poly- 
nomials through order N (any polynomial of order a can be written as a sum 
of Legendre polynomials through order n), but fortuitously they also integrate 
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correctly all polynomials through order less than 2N. Thus the term in the scattering 
integral becomes 

and assuming that the angular dependence of the source term can be represented by 
a polynomial of order < 2N: 

where Sl is the Legendre moment of the source given by Eq. (9.127). 
Using Eqs. (9.199) and (9.200), Eqs. (9.198) become 

which, when 4-, is set to zero, are identically the P, equations (9.126) for 
L = N- 1 .  These PL ordinates and weights are given in Table 9.2. 
The D-PL ordinates are the roots of the half-angle Legendre polynomials for 

L = N / 2 - I :  

and the corresponding weights are determined from 

These ordinates and weights may be evaluated from the data in Table 9.2. 
The PL ordinates and weights are preferable to the D-PL ordinates and weights 

for deep penetration problems in heterogeneous media and for problems in which 
anisotropic scattering is important, for both of which the correct calculation of a 
large number of Legendre moments of the flux are required. Conversely, for the 
calculation of highly anisotropic neutron fluxes near boundaries, the D-PL ordinates 
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TABLE 9.2 PN-, Ordinates and Weights 

Source: Data from Ref. 2; used with permission of Wiley 

and weights are preferable. With either set of ordinates and weights, the discrete 
ordinates method in one dimension is essentially a numerical method for solving 
the PL or D-PL equations. Other choices of weights and ordinates can be made to 
specialize the discrete ordinates method to the problem to be solved (e.g., bunching 
ordinates to emphasize an accurate calculation of the neutron flux in a certain 
direction). However, care must be exercised when choosing ordinates and weights 
that do not correctly integrate the low-order angular polynomials, because surpris- 
ing results sometimes turn up. 

Spatial Differencing and Iterative Solution 

Defining cross sections to be constant over xi- 1/2 < x < x i  + 1/2. Eq. (9.1 89), for 
each ordinate, can be integrated over xi- < x < x i  + 1/2 to obtain 
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where $r E $(xh p,), and so on, and Ai=xi+ 1/2-~;-1/2. Using the diamond dif- 
ference relation 

algorithms for sweeping to the right in the direction of neutrons traveling with 

and for sweeping to the left in the direction of neutrons traveling 

(9.206) 

with p,, < 0, 

(9.207) 

are specified. 
The boundary conditions at the left boundary (for incident flux or vacuum 

conditions) are specified for the positive-direction ordinates by Eqs. (9.194) ( e g ,  
$:r/2 = 0, p,, > 0 for a vacuum condition). Note that the physical boundaries are 
located at x l p  and x,, Equations (9.206) are then used to sweep the solutions 
for ordinates p,, > 0 to the right boundary, where conditions similar to Q s .  (9.194) 
specify the boundary conditions (e.g., $,',+'I2 = 0, p, < 0 for a vacuum condition) 
for the ordinates with p,, < 0, and Eqs. (9.207) are used to sweep the solutions for 

< 0 from the right to the left boundary. If there were no scattering or fission 
sources in Q:,, the solution would be complete. However, there are, and this iterate 
of the fluxes must be used to update the Q'" and the double-sweep repeated until 
convergence. If there is a reflective boundary, say on the right, the condition 
+if112 - q 1 / 2  

N + I - n  - is used for the return sweep (the problem should be stated so that 
the reflective boundary is on the right). If there are reflective conditions on both 
boundaries, the boundary conditions on the left must be initially guessed, then 
updated following a double-sweep, and so on, which, of course, slows convergence. 

Limitations on Spatial Mesh Size 

Truncation error determines the allowable spatial mesh size. Consider Eq. (9.189), 
for a given ordinate, but without the source term: 
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The exact solution for the flux at xi+ 1/2 in terms of the flux at x ~ - ~ / ~  is 

The finite difference solution is found by using Eq. (9.205) to eliminate $: in 
Eq. (9.204) with Q1h = 0: 

The error in the approximate solution is 0((~fdi/21~,1)*). The allowable mesh 
spacing is determined by the accuracy required and the smallest value of Ipnl 

Negative fluxes will occur if Ai > 21pnI/~1. Negative flux fix-up schemes have 
been developed, which amount to setting negative fluxes to zero when they occur in 
the iteration, but this introduces difficulties. This problem is sufficiently serious to 
have motivated the development of a number of alternative difference schemes, but 
variants of the diamond differencing scheme remain the most commonly used. 

9.9 DISCRETE ORDINATES METHODS 
IN ONE-DIMENSIONAL SPHERICAL GEOMETRY 

The angles that specify the neutron direction in curvilinear geometry change as the 
neutron moves, as shown in Fig. 9.20. This leads to angular derivatives in the 
neutron streaming operator, making curvilinear geometries qualitatively different 

Fig. 9.20 Change in angular coordinate p = costl as the neutron moves. (From Ref. 2; 
used with permission of Wiley.) 
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from slab geometry. The conservative form of the neutron transport equation in 
spherical geometry is 

Representation of Angular Derivative 

The difference scheme for the angular derivative is determined by the requirement 
that the sum of the angular and radial streaming terms (the first two terms in the 
equation above) satisfy the physical constraint of vanishing for an uniform, iso- 
tropic flux in an infinite medium. Approximating the angular derivative as 

and noting that for an uniform medium and an isotropic fIux that = = 
4,/2, the scalar flux, the requirement that the spatial plus angular derivative terms 
vanish is 

which is an algorithm for determining the an + 1 / 2  once a1f2  is known. By choosing 
a1i2 = O  and N even, Eq. (9.213) yields O ~ N +  = 0, which leads to closure in the 
angular differencing algorithm. 

Using this form for the angular derivative and an angular diamond difference 
relation 

$n = ($n+1/2 + 1Ch-1/2)  

in Eq. (9.211) yields 

The spatial differencing proceeds as for the slab case, but taking into account the 
variation of differential area and volume with radius. 

Iterative Solution Procedure 

The equations are solved by sweeping in the direction of neutron travel. With 
reference to Fig. 9.21, for an S4 ( N = 4 )  calculation, the calculation is started on 
the outer surface of the sphere for the direction n = 4. 
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Fig. 9.21 Sweep of the space-angle mesh for one-dimensional spherical geometry. (From 
Ref. 2; used with permission of Wiley.) 

A known incident flux (including vacuum) boundary condition 

provides a starting value for ${;.I2. The calculation sweeps inward (decreasing i) 
for n = 1 / 2  @ = - I )  using 

Next, the vl row is calculated using the starting value from Eq. (9.216) and using 
Eq. (9.217) and 
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to sweep the solution inward. Then the $iJ2 are calculated from the angular 
diamond difference relation 

These inward sweeps are continued, using, alternatively, Q s .  (9.217) and (9.219) 
for the @: and Eqs. (9.220) for the e+,/, until all the inward (p, < 0, n 5 N/2) 
fluxes are calculated. 

The starting fluxes at the center of the sphere ( i  = 1/2) for the outward ( ~ 1 ,  > 0, 
n > N / 2 )  calculation are determined from the symmetry condition at the center of 
the sphere: 

Then the calculation is swept outward (increasing i )  using for +A 

and the angular diamond difference relation for 4rk+1/2: 

The A's and V's in the equations above are the shell areas and differential volume 
elements at the radii indicated: 

From these directional fluxes the scalar flux is calculated and the scattering and 
fission source terms in Q are updated for the next iteration. 

Acceleration of Convergence 

The numerical solution for the fluxes #, on each double sweep is exact for the 
given scattering and fission source guess Q. The rate of convergence of the solution 
depends on the rate of convergence of these sources. Note from Eq. (9.204) that 
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these sources depend only on the Legendre flux moments defined by Eq. (9.190) as 
a weighted sum over the ordinates of the $;. This suggests that the iterative solution 
for the can be accelerated by advancing the solution for the $f: in a low order 
(e.g., diffusion theory) approximation at intermittent steps during the iteration, 
which is the basis of the synthetic method. 

Another acceleration technique-coarse mesh rebalance-makes use of the fact 
that the converged solution for the $; must satisfy neutron balance. Imposing this 
condition on the unconverged solution over coarse mesh regions that include a 
number of spatial mesh points at intermittent steps in the iteration provides a means 
for accelerating the solution. Both acceleration methods, which are discussed in 
detail in Ref. 2, may become unstable if the spatial mesh spacing is not sufficiently 
small. The synthetic method may even become unstable with small mesh spacing. 
Other acceleration methods, such as Chebychev acceleration, may also be applied 
to accelerate the discrete ordinates solution. 

Calculation of Criticality 

Up to this point, we have discussed solving the discrete ordinates equations for a 
fixed external source. We now consider the critical reactor problem, in which there 
is no external source. In this case the equations above would be modified by the 
inclusion of an effective multiplication constant, k-' ,  as an eigenvalue in the fission 
term. A value ko and an initial flux guess $(O) would be used to evaluate the fission 
5' ' )  and scattering SLO) sources, and the solution above would be carried out to 
obtain a first iterate flux solution $"'. An im roved fission source SF1($( ' ) /k l ) ,  an 

('1 guess k l  = koSf / , and an improved scattering source 
constructed, and the solution would be repeated to obtain 

$(2), and so on, until the eigenvalues obtained on successive iterates converged to 
within a specified tolerance. There are also techniques for accelerating this power 
iteration procedure. 

9.10 MULTIDIMENSIONAL DISCRETE ORDINATES METHODS 

Ordinates and Quadrature Sets 

Two angular coordinates are required to specify the direction of motion in multi- 
dimensional geometries. With reference to Fig. 9.22, denote the direction cosines of 
the neutron direction a with respect to the XI-, XZ-, and x3-coordinate axes as p, q, 
and 5, respectively. Only two of these direction cosines are independent, and since 
a is a unit vector, p2+q2+g2= 1. 

In three-dimensional problems, the flux must be determined in all eight octants 
of the unit sphere over which a varies. In two-dimensional geometries, there is an 
assumption of symmetry in one of the coordinate directions, which reduces to four 
the number of octants over which the flux must be determined. (In one-dimensional 
geometries, there is an assumption of symmetry in two of Lhe coordinate directions, 
and the flux must be determined only within two of the octants.) It is convenient 
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Fig. 9.22 Coordinate system for multidimensional discrete ordinates. (From Ref. 2; used 
with permission of Wiley.) 

to use a set of ordinates that are symmetric in the eight octants (i.e., can satisfy 
reflective conditions across surfaces in the xl-x2 plane, the x2-x3 plane, and the x3- 
xl plane). Then, if the ordinates and weights are constructed for a set of direction 
cosines satisfying pi  + T$ + 5; = 1 in one octant, the ordinates and weights for the 
other octants with direction cosine sets (-p,, qn ,  Sn), (pn, - q n ,  kn), (pn, qn l  -6,). 

( - ~ n ,  -qn, Sn), ( - ~ n ,  rln, - S n h  (cL~, -%n -LA and ( - I& ,  -qn,  - L )  are obtained 
simply by changing the signs of one or more direction cosines. 

The level symmetric quadrcatlsres shown in Fig. 9.23 use the same set of N / 2  
positive values of the direction cosines with respect to each of the three axes (i.e., 
pn = q n  = Sn, n = 1,  . . . , N/2) .  Use of such a quadrature set strictly defines the SN 
method, although the term SN is loosely used more widely as a synonym for discrete 
ordinates. The rotationd symmetry of the level symmetric quadrature set and the 
requirement p i  + q i  + 5; = 1 determines all the direction cosines except one. 
Once pl  is chosen, the other p, are calculated from 

and the q ,  = 6, = p,. For the Sz approximation, with only one direction cosine, 
satisfaction of p: + q :  + 6: = 1 uniquely specifies q 1  = 6 ,  = p1 = m, and 
there are no degrees of freedom in the choice of ordinates. 
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Fig. 9.23 Level symmetric S8 discrete ordinates quadrature set. (From Ref. 2; used 
permission of Wiley.) 

The weights in each octant are normalized by 

with 

where the index n runs over all the (pi, S, kk), i, j ,  k = 1, . . . , N / 2  ordinate combi- 
nations in the octant. For the S2 approximation, with only one ordinate per octant, 
wl = 1. For other SN approximations the level symmetry condition p,, = qn = k,, 
requires that the weights be equal for ordinates obtained by permuting the direction 
cosines, as shown in Fig. 9.24, where the same value of wn is assigned to all the 
ordinates indicated by the same number. 

Note that unlike the situation in one dimension, this level symmetric quadrature 
set does not integrate Legendre polynomials to any given order accurateIy. How- 
ever, even within the restrictions discussed above, there remain a few degrees of 
freedom, and these may be chosen for the purpose of correctly integrating the 
maximum number of Legendre polynomials in each of the angular variables 
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Fig. 9.24 Equal-weighted ordinates for one octant in the SN quadrature. (From Ref. 2; used 
with permission of Wiley.) 

consistent with the number of degrees of freedom. A quadrature set so constructed 
is given in Table 9.3. 

SN Method in Two-Dimensional x-y Geometry 

The discrete ordinates equations in two-dimensional x-y geometry are 

TABLE 9.3 Level Symmetric SN Quadrature Set 

SN n Pn W n 

s4 1 0.35002 0.33333 
2 0.86889 - 

s6 1 0.26664 0.17613 
2 0.68150 0.15721 
3 0.92618 - 

sa 1 0.21822 0.12099 
2 0.57735 0.09074 
3 0.78680 0.09259 
4 0.951 19 - 

s12 1 0.16721 0.07076 
2 0.45955 0.05588 
3 0.62802 0.03734 
4 0.76002 0.05028 
5 0.87227 0.02585 
6 0.97 164 - 

Source: Data from Rcf. 2; used with permission of Wiley. 
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where the spatial dependence has been suppressed, an = (n(pn, q,), and the source 
Q includes a spherical harmonics representation of the scattering source plus a 
fission and external source S: 

and the discrete ordinates approximation for the flux moments are 

Dividing the x-y domain of the problem into mesh boxes xi-1/2 < X  <x i+  112, 

y j - l p  < y < yj+ centered at (xi,yj) with constant cross sections within each mesh 
box, integrating Eq. (9.228) over a mesh box, and defining volume-averaged quan- 
tities 

and surface-averaged fluxes 

yields the neutron balance equation on a mesh box: 

It is necessary to relate the volume-averaged flux to the surface-averaged fluxes 
for each mesh box. There are several methods for doing this, the most common of 
which are the diamond difference method, which is used here, and the theta- 
weighted method. The volume- and surface-averaged fluxes are related in the 
diamond difference method by 



362 NEUTRON TRANSPORT THEORY 

These equations are solved by sweeping the two-dimensional mesh grid in the 
direction of neutron travel. With respect to Fig. 9.25, each iteration (on the scatter- 
ing source) consists of four sweeps through the grid corresponding to the four 
octants. For the octant with (p,, L, 0, q, > O), the sweep is left to right, bottom to 
top; for the octant with (p, < 0, qn > 0), the sweep is right to left, bottom to top; for 
the octant with (p, > 0, q, < O) ,  the sweep is left to right, top to bottom; and for the 
octant with (p, < 0, q n  < O) ,  the sweep is right to left, top to bottom. 

For the octant with (p, > 0, q, > O), Eqs. (9.236) can be used to write Eqs. 
(9.235) as 

Starting with known incident flux (including vacuum) conditions $6127J = 

$ i n ( ~ L , p n  > 0), j =  1,. . . , J  and = $*(yB,qn > 0), i =  1 , .  ..,I, where xL 
refers to the left boundary and y~ refers to the bottom boundary, the flux $L1 
can be calculated with Eq. (9.237). The solution is then swept to the ri ht using, 
alternatively, Eq. (9.235) and (9.236) to calculate $:1271, $:.', . . . , Then 

Known boundary flux 
Calculated flux at cell interface 

A Calculated flux at cell center 

Fig. 9.25 Order of sweeping the two-dimensional (x-y) mesh grid for the octant with 
(pn > 0, qn > 0). (From Ref. 2; used with permission of Wiley.) 
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Eq. (9.236) is used to calculate $ ~ ' 3 1 2 , $ ~ 1 2 , .  . . l ~ 3 / 2 .  Using the boundary 
conditions $i/212 = $ i n ( ~ L ,  p, > 0), Eqs. (9.235) and (9.236) can be used alterna- 
tively to sweep to the right across the j = 2 row, and then Eq. (9.236) can be used to 
sweep to the right across the j = 2; row, and so on, until all the outgoing fluxes 
are calculated. Sweeps through the other three octants are carried out in a similar 
manner but in the order indicated above and with Eqs. (9.235) and (9.236) com- 
bined in such a way as to obtain an algorithm like Eq. (9.237) appropriate for that 
octant. The scalar flux 

and the Legendre moments 

are then constructed and used to evaluate the scattering and fission source terms. 
The process is repeated until source convergence on successive iterations is within a 
specified tolerance. 

Further Discussion 

The discrete ordinates method in multidimensional geometries is highly geometry 
dependent. Because of the coupling of spatial and angular mesh intervals, the 
methodology was initially limited to the regular geometries: parallelepipeds, cylin- 
ders, and spheres. However, the development of triangular spatial mesh techniques 
enables a variety of geometries to be approximated. A number of other ordinate and 
weight quadrature sets have been devised for special purposes (e.g., to emphasize a 
given direction in a deep penetration problem). The acceleration methods discussed 
for the one-dimensional discrete ordinates methods are also used for multidimen- 
sional discrete ordinates solutions, but the higher dimensionality introduces com- 
plications that diminish their efficacy. In problems with optically thick regions in 
which the scattering cross section (within-group scattering cross section in multi- 
group applications) is much larger than the absorption cross section, the source 
convergence can become intolerably slow. In problems with very little scattering 
and localized neutron sources, unphysical oscillations in the angular distribution, 
known as ray effects, arise because of discrete directions in which the solution is 
calculated. There are special remedies for these ray effects, such as a semianalytical 
calculation of a first collision source to be used in a subsequent discrete ordinates 
calculation. These difficulties notwithstanding, the discrete ordinates method pro- 
vides a powerful means for calculating the neutron flux distribution in a nuclear 
reactor core and the surrounding shield and structure, and is widely used for 
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problems in which diffusion theory is inadequate. Detailed discussions of discrete 
ordinates methods can be found in Refs. 2 and 5. 

9.11 EVEN-PARITY TRANSPORT FORMULATION 

The one-group, or within-group, transport equation can be written in the- case of 
isotropic sources and isotropic scattering: 

Defining the ( + ) even- and (-) odd-pwity components of the angular flux 

results in the following identities 

which can be used to demonstrate that the scalar flux and current can be written in 
terms of the even and odd, respectively, components 

Adding Eq. (9.240) written for -a to the same equation written for $2 and using 
Eq (9.241) yields 

and subtracting the same two equations yields 

a.  v$' (r, a) + Ct(r)$- (r, a) = 0 (9.245) 

The second of these equations may be used in the first to eliminate the odd-parity 
flux component, resulting in an equation for the even-parity flux: 
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and Eq. (9.245) may be used to write the current in terms of the even-parity 
component: 

The vacuum boundary condition becomes [from Eqs. (9.242) and (9.245)] 

and the reflection boundary condition is 

where is the direction of spectral reflection relative to incident direction a. 

9.12 MONTE CARLO METHODS 

At a fundamental level, neutron transport through matter is formulated as an essen- 
tially stochastic process. The total cross section is a probability (per unit path length 
and unit atom density), but not a certainty, that a neutron will have a collision while 
traversing a certain spatial interval. If the neutron does have a collision, the cross 
sections for the various processes are probabilities, but not certainties, that the 
collision will be a scattering, radiative capture, fission, and so on, event. The neu- 
tron flux that we have discussed earlier in the chapter is actually the mean, or expec- 
tation, value of the neutron distribution function. The Monte Carlo method directly 
simulates neutron transport as a stochastic process. 

Probability Distribution Functions 

Let us postulate that variable x may take on various values over the interval 
u 5 n 5 b and that there exists a probability distribution function (pdf ), f (x), such 
that f (x) dx is the probability that a variable takes on a value within dx about x.  The 
normalization is chosen such that 

In general, f ( x )  > 0 will not be a monotonically increasing function of x, which 
means that a given value for f does not correspond to a unique value of x. 

A more useful quantity is the cumulative probability distribution function 
(cdf), F(x), defined as the probability that the variable x takes on a value less than 
or equal to x: 
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which is a monotonically increasing function of x. Thus the probability of a neutron 
having a value of x between x and x + dx is F(x + dr)-F(x) = f (x) dr. If K is a 
random number distributed between 0 and 1, the values of x determined from 
F(x) = K will be distributed as f (x). In some cases, it is possible to solve directly 
for x = F -'(K). In other cases, the cumulative distribution function may be known 
as a large table of F(xi) and the value of x determined by interpolation; for example, 
if F(xj) < K < F(xj-,) linear interpolation yields 

There are also methods of selection from the pdf, but it is generally preferable to 
select from the cdf. 

Analog Simulation of Neutron Transport 

By tracing the path of an individual neutron as it traverses matter and considering 
the various processes that may determine its history, we can understand how a 
Monte Carlo calculation simulates the stochastic nature of neutron transport 
through matter. We begin with the source of neutrons in a nuclear reactor, which 
is predominantly if not entirely the fission source. The fission source has a dis- 
tribution in space (we discuss calculation of the fission source distribution in Monte 
Carlo later), a distribution in energy given by the fission spectrum, and a distribu- 
tion in direction that is isotropic. Each of these distributions may be characterized 
by a pdf and a cdf. Generating a random number and selecting from the cdf for 
the spatial fission distribution defines a location in space for the source particle. 
Generating another random number and selecting from the cdf for the fission 
spectrum determines the energy of the source particle. Generating third and fourth 
random numbers and selecting from the cdf's for the two independent angular 
variables (say p = cos 0 and cp) defines the direction of the source neutron. 

Once launched, the source neutron will travel in a straight line until it has a 
collision. The probability that a neutron has a collision at a distance s along the 
flight path is 

which is the pdf for the collision distance s. Generating a random number h and 
selecting s from the cdf 

locates the position of the first collision, in principle. In fact, the process is con- 
siderably complicated by the nonuniform geometry. It is necessary to know the 
composition at the point of the first collision. We treat the medium as piecewise 
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homogeneous and define the lengths of each uniform segment of the straightline 
flight path as si. If 

the collision occurs in the nth region at a distance 

beyond the entrance of the flight path into region n. The actual procedures for 
treating flight paths in complex geometries are quite involved but highly developed. 
Modem Monte Carlo codes can essentially model any geometry exactly, which is a 
great strength of the method. 

Having determined that a collision occurred at a distance s,, into region n on the 
original flight path, it is now necessary to determine what type of nuclide and what 
type of reaction are involved. The probability for a reaction of type x with a nuclide 
of species i is 

where Ni is the number density of nuclide i in region n, nix is the microscopic cross 
section for reaction x for nuclide i at the energy of the neutron. Constructing a pdf 
and a cdf, generating a random number q, and selecting the nuclide and reaction 
type by equating q and the cdf [probably involving table interpolation per Eq. 
(9.252)], the nuclide and reaction type can be determined. 

If the reaction type is absorption, the neutron history is terminated, the energy 
and location of the absorbed neutron are recorded, and another history is started. If 
the reaction type is elastic scattering, another random number is generated and 
equated to the cdf for the cosine of the scattering angle in the center of mass 
(CM) to obtain p,, (it is convenient to work in the CM because the scattering is 
isotropic except for high-energy neutrons scattering from heavy mass nuclei, and 
the pdf and cdf are simple) and by transformation to obtain the scattering angle in 
the lab. For energies above thermal, the energy of the scattered neutron is uniquely 
correlated to b, from the scattering kinematics: 

Knowing E', the cosine of the scattering angle in the lab can be determined from 
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When inelastic scattering or elastic scattering of thermal neutrons from bound 
lattice atoms is involved, the cdf's are more complicated. Generating another 
random number and equating it to the cdf for the azimuthal angle cp, the direction 
of the scattered neutron can be determined. The scattered neutron is treated as 
described above for a fission source neutron, and the calculation is repeated until 
the neutron either leaks from the system or is absorbed. 

Statistical Estimation 

The mean, or expectation, value of a function h(x) of x is defined in terms of the pdf 
for x by 

and the standard deviation, o, and the variance, are defined: 

If N random values of the variable x are chosen from the cdf, as discussed above, 
a statistical estimate of the mean value (h) is 

A bound for the error in an estimate of this type is given by the central limit 
theorem, which states that if many estimates h of (h) are obtained, each estimate 
involving N trials, the variable h is normally distributed about (h) to terms of accu- 
racy o ( I / N " ~ ) .  In the limit N-+ infinity, this theorem takes the form 

[i.e., the probability that the statistical estimate of the mean value of Eq. (9.262) 
is within f M C F / N ' / ~  of the exact value (h) is 68.3% for M =  1 ,  95.4% For M =  2, 
99.7% for M = 3, etc.]. 

In general, the first and second moments of h(x) are unknown. The statistical 
data can be used to construct approximations to these moments. The expectation 
value of h is 
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(i.e., the statistical estimate h is an unbiased estimate of (h)  since (i) = (h ) .  The 
expected value of h2 is 

(i.e., the statistical estimate is a biased estimate of (h2) since (h2) # (h2) .  
Since (h2) = (h2),  the variance in the statistical estimate of 6 (h-bar) can be 

approximated: 

and the mean squared fractional error associated with the statistical estimate 
of h is 

Variance Reduction 

It is clearly important to reduce the mean-squared error in order to increase con- 
fidence in the Monte Carlo calculation of the mean value of a quantity h(x) based an 
a random sampling of the variable x. From Eq. (9.267), this can be accomplished by 
just running more histories, but that involves longer computational times. There are 
other methods of reducing the mean-squared error, or the related variance. 

We now discuss a number of such variance reduction methods. 
The basic idea of importance sampling is to select from a modified distribution 

function that yields the same mean value but a smaller variance. Suppose that in- 
stead of evaluating (h )  and the statistical estimate from Eqs. (9.260) and (9.262), 
we evaluate them from 
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where the values of x,, are now selected from the distribution f *(x) according to the 
procedures described previously. The quantity w(x,) = f (x,,)/f *(xn) is known as a 
weightfiutction. Obviously, the mean value (hl) computed from Eq. (9.260) and the 
mean value (h2) computed from Eq. (9.268) are the same. The statistical estimate 
h2 of Eq. (9.269) and the statistical estimate of Eq. (9.262) both have the 
expectation value (h). However, the variances are different, and this is the point. 
The variances computed by the two sampling procedures are 

The objective is to choose f*(x) so that V2 < Vl. If the distribution h(x) and its 
expectation value were known, the optimum choice off * (x )  would be 

for which V2 = 0. This suggests that a good estimate off  * (x )  could reduce the 
variance significantly. The function f*(x) should be chosen to emphasize those 
neutrons which in some sense are the most important to the quantity that is being 
estimated, (h}, which suggests that it is an importance or adjoint function (Chapter 
13). However, the variance reduction techniques which are in common use are 
schemes for emphasizing neutrons which are most likely to contribute to the tally 
for the quantity of interest, (h), based on experience and intuition. Nonanalog 
variance reduction schemes are implemented by adjusting the neutron weight at 
each event in its history. An event may be a collision, crossing a boundary into a 
different region, and so on. 

An exponential  rans sf or mat ion is useful in penetration problems to increase the 
number of neutron histories which penetrate deeply to contribute to the event of 
interest (e.g., penetration of a shield, penetration into a control rod). If the event of 



interest depends primarily on neutrons moving in the positive x-direction, the cross 
section can be artificially reduced in the x-direction to enhance penetration: 

where 0 5 p 5 1. At a collision, the particle weight must be multiplied by a weight 
we, to preserve the expected weight of the collided neutron; that is, 

must be satisfied, which defines the weight 

When a reaction rate is to be calculated over a small volume in which the 
collision probability is small, the artifice of forced collisions is useful. A neutron 
entering the volume with weight w which would have to travel a distance I to cross 
the volume is split into two neutrons, the first of which passes through the volume 
without collision and the second of which is forced to collide within the volume. 
Since the actual probability for the particle to cross the region without collision 
is exp(-&E), the collided and uncollided neutrons must be given weights w, = 
w[l-exp(-&1)] and w,, = w exp(-&l), respectively. The history of the uncol- 
lided particle with weight w,, is restarted on the exiting surface of the volume. A 
new history is started for the collided particle. The pdf for collision of this second 
particle within the volume is 

Generating a random number &O 5 6 5 I), the distance into the volume at which 
the collision takes place is selected: 

and the subsequent history of the collided particle with weight w, is followed. 
In some problems, the penetration of a neutron to a particular region may be of 

interest, and absorption in other regions may unduly reduce the number of neutrons 
that survive to do so. Absopion weighting can be used as an alternative to termi- 
nating a history by an absorption event. In a collision all outcomes are treated as 
scattering events, but the emerging neutron is given a weight 

to preserve the survival probability. 
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Since continuing the computation of histories of neutrons with small weights is 
inefficient, Russian roulette can be used to either increase the neutron weight or 
terminate the history. A random number k(0 5 5 I 1 )  is generated and compared 
with an input number v typically between 2 and 10. If 8 > l / v ,  the history is 
terminated; if 5 < l / v ,  the history is continued with original neutron weight w 
increased to WRR = WV. 

Splitting can be used to increase the number of histories that penetrate in deep 
penetration problems. When a neutron with weight w crosses a fixed surface in 
the direction of penetration from a region with importance Ii into a region with 
importance li+ the history is terminated and li+ ,/Ii new histories are started for 
neutrons with the same energy and direction and weights w, = wIi/Ii ,  1. Here 
importaace refers to importance with respect to the quantity of interest {h) .  Russian 
roulette can be used in conjunction with splitting to terminate histories of parti- 
cles with low weights moving across the surfaces away from the direction of 
penetration. 

The calculation of reaction rates in various regions, over various energies, and by 
various nuclides is accomplished straightforwardly by tallying each collision event. 
Neutron fluxes and currents can also be constructed by tallying events and surface 
crossings. By definition, the collision rate in a region is equal to the product of the 
cross section times the flux times the volume. Thus, by tallying the collision rate 
(CR), the flux can be calculated from 

A shortcoming of this algorithm is that only particles which collide within the 
volume V will contribute to CR, hence to 4. Another definition of the scalar flux 
is the path length traversed by all particles passing through a volume per unit vol- 
ume per unit time: 

where 1 is the track length per unit time in the volume in question of the nth history. 
Taking into account the weights of neutrons at various stages of their histories, this 
definition of flux becomes 

where w, is the weight the neutron on the nth history had when it traversed the 
volume (note that a neutron history may traverse a given volume more than once, 
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and it should be tallied each time). The variance in the flux estimate is given by 

Currents across surfaces are also of interest. It is straightforward to tally the rate 
at which particles are passing through a given surface in the positive and negative 
directions, p: for history n. The total number of particles per unit time passing 
through the surface in the positive and negative directions can then be estimated 
from 

Here w,, is the weight that the neutron in the nth history had when it crossed through 
the surface to contribute to the tally (note that a neutron in a given history may 
cross through a surface more than once, and it should be tallied each time). The 
partial currents are obtained by dividing by the surface area A, and the net current is 
obtained by subtracting the partial currents: 

If the Monte Carlo calculation is to be used to determine small differences, such 
as reactivity worths of perturbations, or reactivity coefficients, special methods 
must be used to avoid the smaH difference in two calculations being masked by 
statistical errors. The method of correlated sampling addresses this problem by 
using the same sequence of random numbers to generate the sequence of events that 
describes the histories in the two problems. If the system is unchanged, the two 
calculations must yield identical results. So any difference in results is due to the 
perturbation. 

Criticality Problems 

Monte Carlo can be used to calculate the multiplication constant and associated 
eigensolution for the flux distribution. The problem is started with an arbitrary 
spatial distribution of neutrons distributed in the fission energy spectrum and iso- 
tropically in direction. This initial spatial distribution can be uniform or a spatial 
distribution that is the result of a previous Monte Carlo calculation for a similar 
problem or of a deterministic transport (e.g., discrete ordinates) solution for the 
problem at hand. The history of a large number of neutrons in a given generation is 
followed in parallel to termination, thus obtaining a new fission distribution for the 
next generation of neutrons, and the process is repeated until the fission neutron 
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spatial source distribution has settled down. The total number of neutrons in 
successive generations may be increased during the settling down period to obtain 
greater detail only after the solution has settled. Once the spatial fission neutron 
source distribution has settled down, the ratio of the total number of fission neu- 
trons on successive generations is the statistical estimate of the multiplication 
constant. The computational effort in the period before the distribution settles down 
can be reduced by a number of techniques. 

The fission source distribution is determined from generation to generation as 
foIlows. If wn is the weight of the nth history neutron when it has an absorption 
event that terminates the history, then either I, or In + 1 fission neutrons are pro- 
duced at that location in the next generation. The selection is made by writing 

where I, is an integer and 0 < R, < 1 .  A random number c(0 5 6 5 1) is generated. 
If Rn > 6 ,  then In + 1 neutrons are launched in the next generation; otherwise, I, 
neutrons are launched. Track lengths can provide a second estimate of the total 
number of fission neutrons produced by history n: 

YE, w,ln - = total number of secondaries produced by history n (9.286) 
I c a i  

where wni is the neutron weight as it crosses region i and lni is the total track length 
across region i. 

One of the problems in criticality calculations is to prevent the total neutron 
population from increasing or decreasing too much, which it will do if the assembly 
is supercritical or subcritical, respectively. One technique is to change the neutron 
weight at each collision by multiplying the previous weight by the expected number 
of secondary neutrons. A second method is simply to start off each generation with 
the same number of neutrons by eliminating some of the next-generation neutrons 
if there are more neutrons than in the previous generation or using some of the 
neutrons twice if there are less neutrons than in the previous generation. 

Source Problems 

A number of reactor physics problems can be formulated as source problems. The 
most obvious is the shielding problem, where the reactor core can be considered as 
a fixed neutron source. The calculation of resonance absorption of neutrons from a 
slowing-down source in a heterogeneous lattice, the thermalization of neutrons 
from a slowing-down source into the thermal range, and the calculation of tem- 
perature coefficients of reactivity from a fixed fission source in a heterogeneous 
lattice are other problems which are treated as source problems. 
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The resonance cross sections in the resolved region can be represented by values 
at a very large number of energy points or calculated from the Doppler-broadened 
Breit-Wigner formula, and the resonance cross sections in the unresolved region 
can be selected from a pdf based on the statistics of the nuclear level spacing and 
width (Chapter 11). The neutron slowing down through the resonance region is then 
treated by sampling the uniform distribution of neutrons scattered at energy E over 
the interval E to aE, sampling the path length distribution to determine the point of 
collision, sampling the reaction-type distribution to determine whether the collision 
is absorption or scattering, and so on. Effective Doppler-broadened cross sections at 
different temperatures can be used in conjunction with correlated sampling to com- 
pute temperature coefficients of reactivity. 

A source distribution in energy of neutrons slowing down into the thermal range 
in the moderator can be used to launch neutrons isotropically in the thermal energy 
region. The distribution of rotational-vibrational levels (Chapter 12) which affect 
inelastic scattering of neutrons from bound atoms and molecules can be used to 
construct pdf's for inelastic scattering. Then the histories of thermal neutrons can 
be traced until termination by absorption. Path length estimators at different ener- 
gies can be used to estimate the thermal flux spectrum. 

Random Numbers 

Generation of random numbers is essential to a Monte Carlo calculation. There 
exist a number of random number generators-algorithms for generating random 
numbers-and there is a great deal of controversy about just how random they are. 
A discussion of random number generators and several FORTRAN routines for 
generating random numbers are given in Ref. 1. 
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PROBLEMS 

9.1. Rederive the transmission and absorption probabilities for a purely absorbing 
slab given by Eq. (9.28) for the situation in which the incident flux i h  linearly 
anisotropic (i.e., p). 

9.2. Use the orthogonality relation for Legendre polynomials to derive the ortho- 
gonality relation for half-angle polynomials given by Eq. (9.23). 

9.3. Carry through the indicated steps to dcrivc the integral cquation (9.42). 

9.4. Develop analytical expressions for the two-dimensional transmission and 
escape probabiIities of Eqs. (9.1 10) and (9.1 12) for rectangular geometry 
with dimension a, and a, on a side. Evaluate these transmission and first- 
flight escape probabilities for X = 4 V / S h  varying over the range 0.1 < 
X <  10.0. 

9.5. Evaluate the first-flight escape probabilities given by Eq. (9.1 17) with c = 

2.09 for X = 4V/Sh  varying over the range 0.1 < X < 10.0 and compare with 
the results of Problem 9.4. 

9.6. Carry through the indicated steps to derive the PL equations (9.126). 

9.7. Derive the simplified P3 equations (9.143) from the P j  equations and derive 
the boundary conditions of Eqs. (9.145). 

9.8. Demonstrate that when the ordinates and weights given by Eqs. (9.202) and 
(9.203) are used, the discrete ordinates equations with N ordinates reduce 
identically to the D-PN- 1 equations. 
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9.9. Write a code to solve the one-dimensional discrete ordinates equations in 
slab geometry. Solve for the flux in the S2 approximation in a uniform slab 
lOOcm thick with vacuum boundary conditions, with X, = 0.25cm7', 
Ca = 0.15 cm-I, and an isotropic source So = 1014 n/cm s distributed 
over 0 < x  < 25 cm. Repeat for the S4, S8, and S12 approximations. 

9.10. Repeat Problem 9.9 including anisotropic scattering XS1 =0.01 and 
Cs2 = 0.0025. 

9.11. Derive the spatial difference equations for the one-dimensional discrete 
ordinates equations in spherical geometry. Reconcile your results with the 
algorithms of Eqs. (9.219) and (9.223). 

9.12. Write a code to solve the SN equations in two-dimensional x-y geometry. 
Solve for the flux in the S2 approximation in a uniform square 100 cm on a 
side with vacuum boundary conditions, with C, = 0.25cm-', Xd = 
0.15cm-', Cs1 = 0.01, and ZS2 = 0.0025, and an isotropic source So = 
1014 n/cm2 s distributed over 0 < x < 25 cm, 25 < y < 50 cm. Repeat for the 
S4, S8, and S12 approximations. 

9.13. The pdf for variable x is f (x) = 4/n(1 +x2), with 0 5 x 5 1. Show that if a 
random number c(0 5 5 5 1) is generated, the corresponding value of x = 
tan(w4).  

9.14. Derive the simplified P5 diffusion equations and associated Marshak 
boundary conditions from the P5 equations. (Hint: Use Fo=242+ $0, 
F1 = $4, + 42, F2 = 44.) 

9.15. Derive the diffusion theory equation (9.158) from the one-dimensional Pl 
equations in cylindrical and spherical geometries. 

9.16. Derive the spherical harmonics approximation to the neutron transport equa- 
tion in three-dimensional x-y-z geometry given by Eqs. (9.181). 

9.17. Plot the cumulative distribution function corresponding to the fission spec- 
trum given approximately by x(E)  = 0.453 exp(-1.036E) sinh 42.29~ over 
the energy range lo4 eV 5 E 5 lo7 eV, 

9.18. Calculate the maximum spatial mesh size that could be used in a one- 
dimensional S2 calculation for a problem with C, = 0.3 cm-'. Repeat for 
the S4 and S8 approximations. 

9.19. Plot the pdf and cdf for the cross-section distribution in a region with 
X, = 0.15 cm-', and X, = 0.08 cm-I, and Zf = 0.08 cm-I. 

9.20. Write a Monte Carlo code to calculate the multiplication constant and flux 
distribution for one-speed neutrons in a slab reactor of thickness a = l.Om 
with isotropic scattering for which (C, = 0.12 cm-', C, = 0.05 cm-I, 
vZf= 0.15 cm-I) over 0 < x < 50 cm and (E, = 0.10 cm-', X, = 0.05 cm-', 
vCf = 0.12) over 50 < x < 100 cm. 
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9.21. A S(p) -- p2 neutron source is present on the left face of a slab of thickness a 
with absorption cross section C, and isotropic scattering cross section Z,. 
Derive expressions for the uncollided and total neutron currents exiting from 
the right surface of the slab. 



10 Neutron Slowing Down 

The methods used to calculate the slowing down of fast neutrons above the thermal 
energy range are treated in this chapter. We also introduce the lethargy as an 
alternative to the energy variable and develop the formalism in terms of 
lethargy. 

10.1 ELASTIC SCATTERING TRANSFER FUNCTION 

Lethargy 

It is convenient in treating neutron slowing down to replace the energy variable 
with the neutron lethargy 

where Eo is the maximum energy that a neutron might have in a nuclear reactor, say 
10 MeV. The incremental lethargy interval, du, corresponding to the incremental 
energy interval, dE, is 

with the minus sign indicating that as the neutron energy decreases, its lethargy 
increases-hence the name. 

The fact that the total neutron flux in an incremental lethargy interval physically 
is the same as the neutron flux in the corresponding incremental energy interval 
provides a correspondence between the flux per unit energy, $(EL and the flux per 
unit lethargy, +(u): 

Elastic Scattering Kinematics 

The principal results obtained in Chapter 2 from the conservation of energy and 
momentum in an elastic scattering event were the correlation between the energy 
change E' + E and the cosine of the scattering angle in the center-of-mass (CM) 

379 
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system pc = cos Oc: 

and the relation between the cosine of the scattering angle in the lab system, 
pu = cos Qo, and the cosine of the scattering angle in the CM system, 

which may be combined to express the correlation between the scattering angle in 
the lab system and the change in lethargy U = u-u': 

1 
po(U) = - [(A + 1)e-('I2)' - (A  - l)e('/2)u] 

2 
(10.6) 

Elastic Scattering Kernel 

The general lethargy-angle scattering transfer function can be written 

where = 0'- S1 is the cosine of the angle in the lab system between the incident 
and exit directions of a neutron in a scattering collision, as shown in Fig. 10.1, 
p&', p(J is the probability that a neutron of lethargy u' will scatter through an angle 
Q0 = c ~ s - ' ~ ,  and g(po, u' + u)  is the probability that a neutron of lethargy u' which 
scatters through an angle O0 = cos-'po will have a final lethargy u. With the nor- 
malization 

the angular transfer function for scattering through an angle O0 = cos-'pO is 

Writing the lethargy-angle transfer function as a function of (u', U= u - u', h) 
and expanding in Legendre polynomials yields 

where P&J is the lth Legendre polynomial of the argument of the cosine of the 
scattering angle in the lab system, and the orthogonality properties of the Legendre 
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Fig. 10.1 Angles involved in a scattering event. (From Ref. 2; used with permission of MIT 
Press.) 

polynomials can be used to identify the Legendre coefficients of the scattering 
transfer function: 

For elastic scattering, there is a strict lethargy-angle correlation given by 
Eq. (10.6), which means that the probability for a scattering collision that produces 
a lethargy gain within dU about U is equal to the probability for scattering with a 
cosine of the scattering angle within dpo about po when U and po are related by 
Eq. (10.6) and is zero otherwise: 

where the minus sign reflects the fact that an increase in the cosine of the scattering 
angle corresponds to a decrease in the lethargy gain. Using Eq. (10.12) in Eq. 
(10.11) yields 

Making use of the physical fact that the probabilities for scattering through a 
given scattering angle in the lab system to within dpo about po and for scattering 
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through the corresponding [via Eq. (10.5)] scattering angle in the CM system to 
within dpC about pc must be equal: 

and making use of the observation that the experimental scattering data are well 
represented by a Legendre expansion in the cosine of the CM scattering angle 
oc = cos-'pc: 

allows the Legendre moments of the lethargy gain, bY(u1, U ) ,  to be related to the 
Legendre moments of the angular scattering distribution in the CM system, b; (u'), 
which are tabulated in the nuclear data files: 

Using this result in Eq. (10.10) leads to 

for the elastic scattering lethargy-angle transfer function. Integrating this result over 
angle yields the total probability for an elastic scattering event to cause a lethargy 
increase from u' to u: 

Isotropic Scattering in Center-of-Mass System 

The angular distribution of elastic scattering in the CM system may be represented 
by an average value of the cosine of the CM scattering angle given by p, = 
0 . 0 7 ~ ~ ~ ~ ( M e V ) ,  except near scattering resonances. Hence the elastic scattering 
distribution is essentially isotropic in the CM system, except for high-energy 
neutrons scattering from heavy mass nuclei. When the scattering is taken as 
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spherically symmetric in the CM system, the Legendre moments of the angular 
scattering distribution in the CM system are 

bi (u') = us (ul)Sm 

In this case, Eq. (10.18) becomes 

The average lethargy increase with isotropic scattering is 

and the average cosine of the scattering angle in the lab system is 

where A is the atomic mass in amu of the scattering nuclei and a=  [(A-1)/ 
(A + 1)12. Both of these quantities are independent of lethargy for a given spe- 
cies of scattering nuclei. However, the composite values for a mixture, 

Linearly Anisotropic Scattering in Center-of-Mass System 

When only the first two Legendre components of the scattering transfer function in 
the center of mass system are non-zero, Eq. (10.18) becomes 

e i " u '  + u )  = ~,$r)bg (u') + Tol (U)bf (u') 

In this case, the mean lethargy increase in an elastic scattering event, 

2 bi (u') , tiso - - - = r"" [1  - pc (u')] 
large A A b; (u') 
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is reduced by anisotropic scattering (i.e., the moderation in energy is reduced), and 
the average cosine of the scattering angle in the lab system, 

is increased by anisotropic scattering (i.e., the scattering is more forward directed). 
Both 6 and po become lethargy dependent with anisotropic scattering. 

10.2 PI AND B1 SLOWING-DOWN EQUATIONS 

Derivation 

The transport equation of Chapter 9 can immediately be generalized to include 
lethargy dependence by allowing for the scattering removal of neutrons from in- 
cremental interval du and for a scattering source of neutrons into du from other 
incremental intervals du' (in the slowing-down region above 1 eV, the in-scatter 
would only be from u' 5 u): 

= k" du' LC d a ~  Z S ( ~ >  Po, u> u ' ) $ ( ~ ,  u l )  
27r 

Xse,(r, PO, u, u') = 1' du' d a '  2ii 
u-In l / a  

Nr ,  a ' ,  u') + S(r, 0, u) 

where po = a' $2 is the cosine of the angle in the lab system between the incident 
and exit directions of a neutron in a scattering collision. In the last step, inelasti- 
cally scattered and fission neutrons are grouped into a source term and the remain- 
ing scattering term includes only elastic scattering. The macroscopic elastic 
scattering transfer function is a sum over nuclear species of the density times the 
microscopic transfer function of Eq. (10.17): 
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and the lower limit of the in-scatter integral for each species is 1 -ln(l/aj), but this 
is represented symbolically for notational convenience as a single 1-ln(l/a). 

The P,  equations were derived in Chapter 9 for one-dimensional geometry and 
one-speed neutrons by expanding the directional flux in a Legendre polynomial 
series, and this can immediately be generalized to the lethargy-dependent neutron 
flux 

where p = fl n, = flz = cos 9 is the cosine of the angle made by the direction of 
neutron motion with the z-coordinate axis, as indicated in Fig. 10.2, and where the 
current J,  has been associated with the n = 1 component of the flux expansion by 
using the orthogonality properties of the Legendre polynomials: 

Further defining, fix = n, = sin 9 cos cp, a, = fl- n,, = sin 8 sin cp, and 
dn = sin9 d 0  d cp/4n, the P I  expansion of the directional neutron flux in 

Fig. 103 Specification of the directional vector fl in a Cartesian coordinate system. (From 
Ref. 2; used with permission of MIT Press.) 
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three-dimensional geometry is 

In developing the PI equations in one dimension (Chapter 9), the expansion of 
Eq. (10.28) was substituted into the transport equation, and the resulting equation 
was weighted with Po= 1 and integrated over p, and then weighted with 
P1(p = fkJ = p and integrated over y to obtain the two P1 equations. We generalize 
this procedure to three dimensions by substituting Eq. (10.30) into Eq. (10.26) and 
weighting with 1, ax= &, fky = py, and a,= p,, that is, weight with 1 and a, and 
integrating over $2 to obtain the P1 equations in three-dimensional geometry: 

where 

To simplify these P1 equations, Eq. (10.27) is used for the scattering transfer 
function, and the addition theorem for Legendre polynomials, 

is used to relate the cosine of the scattering angle = cos Go to the cosines of the 
angles that the incident and exiting neutron directions make with the z-axis, 
p' = cos 6' and p = cos 8, respectively, as depicted in Fig. 10.1, where Py is the 
associated Legendre function. Using the identities 
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Eqs. (10.32) and (10.33) then can be reduced to 

where the zero subscript on the flux has been dropped and the Legendre moments 
of the elastic scattering transfer functions are defined: 

En particular, the isotropic and linearly anisotropic lethargy change transfer func- 
tions are 

The essential approximation that has been made in deriving Eqs. (10.36) and 
(10.37) is that the angular dependence of the neutron flux can be represented by 
only a linearly anisotropic dependence on the angular variable, as given by 
Eq. (10.30). This approximation should be good at more than a few mean free 
paths away from an interface between very dissimilar media (i.e., in the interior of 
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large homogeneous regions) and more than a few mean free paths away from an 
anisotropic source. 

Solution in Finite Uniform Medium 

To solve Eqs. (10.36) and (10.37), it is assumed that the medium is uniform and that 
the spatial dependence of the flux and the current can both be represented by a 
simple buckling mode [i.e., $(z, u) = $(u) exp(iBz), J(z, u) = J(u) exp(iBz)], so that 
these equations become 

$ ~ $ ( u ) + C , ( u ) J ( u ) = / ~  d ~ ' ~ ~ l ( U , u ' ) J ( u ' ) + S ~ ( u )  (10.42) 
u-ln l / a  

The parameter B may be considered to characterize the leakage from or into the 
medium. Note that this procedure is formally equivalent to Fourier transforming 
Eqs. (10.36) and (10.37). 

These equations may be put in multigroup form by integrating over 
Au, = ug-ugPl and defining 

1 U# C8 = - 
t - Jug du c,, S; = 18-, du S. (u) 

A% us-, 

Here we have used the asymptotic flux solution +(u) - 1, corresponding to 
$(E)  -- 1 / E ,  and assumed that J(u) N 1, also, in evaluating the total and scattering 
cross sections. The multigroup form of the PI  equations is 

Bl Equations 

The principal approximation involved in derivation of the P1 equations is the 
assumption of linear anisotropy in the angular dependence of the neutron flux made 
in Eq. (10.28) or (10.30). There is an alternative formulation that avoids this 
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approximation but instead makes the approximation that the angular dependence of 
the scattering can be represented by an isotropic plus a linearly anisotropic scatter- 
ing transfer function. Returning to Eq. (10.26), but simplified to one-dimensional 
geometry, 

and making the same type of assumption about the spatial dependence [i.e., 
$(z,  p, u )  = $(p, U) exp(iBz)] in a uniform medium leads to 

Dividing by (C, + iBp)  and assuming linearly anisotropic scattering yields 

The approximation of Eq. (10.28) has not been made in deriving this result; the 
quantities $ and J have been identified from the definitions 

Now, Eq. (10.48) is multiplied by 1 and by p and integrated over p to obtain the 
two BI equations 

iBJ(u) + C ,  (u)B(u)  = / du' Cfi  (u' + u)O(u1) + SO ( u )  
u-ln l / a  
r u  (10.50) 

f i ~ B ( u )  + r (u )C , (u )J (u )  = / du' Csl (u' -+ u)  ~ ( u ' )  + Sl ( u )  
u-In l / n  

where 
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The B1 equations differ from the P I  equations [Eqs. (10.44) and (10.45)) only by 
the factor y. The essential B1 approximation is a linearly anisotropic scattering 
transfer function; the essential P I  approximation is linearly anisotropic neutron 
flux. The B1 equations have been found to be somewhat more accurate for slab 
geometries, but clearly the two approximations will differ only when B is signifi- 
cant. The multigroup P I  and Bl  equations are the basis of most multigroup fast 
spectrum codes (e.g., Refs. 4 and 10). Typical neutron energy distributions calcu- 
lated for thermal (PWR) and fast (LMFBR) reactors are shown in Fig. 10.3. 

Few-Group Constants 

The usual procedure in reactor analysis is to solve the multigroup equations (with a 
large number of groups varying from 50 to 100 for thermal reactors to a few 1000 
for fast reactors) for one or more large homogenized regions and then to develop 
few-group (2 to 4 for water-moderated thermal reactors, 5 to I0  for graphite- 
moderated thermal reactors, 20 to 30 for fast reactors) constants which can be used 
in a few-group diffusion theory calculation of the neutron diffusion during the 
slowing-down process. The few-group constants are constructed by using the 
fine-group fluxes to weight the fine-group constants over the fine groups contained 
within a few group. Denoting the fine groups with a g and the few groups with a k, 
the prescriptions for the few-group capture and fission cross sections 

Fig. 10.3 Representative neutron energy distributions in a PWR and a LMFBR (From Ref. 
1 1 ;  used with permission of Taylor & Francis.) 
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and scattering transfer cross sections 

follow directly, where g E k indicates a sum over fine groups g within the lethargy 
interval of few group k. 

There is ambiguity about the definition of the few-group diffusion coefficient, as 
discussed in the following section. An appropriate definition is in terms of a few- 
group directional transport coefficient, defined as 

where J,, is the fine-group current in the 5-direction. The diffusion coefficient is 
related to the transport coefficient by DR = 1/3Zfr. Many other prescriptions for the 
diffusion coefficient are found in practice. 

10.3 DIFFUSION THEORY 

Lethargy-Dependent Diffusion Theory 

It was shown in Chapter 9 that the one-speed PI equations led naturally to diffusion 
theory. Unfortunately, this is not the case for the lethargy-dependent P I  equations of 
Eqs. (10.36) and (10.37). To derive from Eq. (10.37) a relationship of the form 
J(r, E) = -D(r, E)V$(r, E), it is necessary to require further (I) that &(u' + 

U) C S(~1) i3 (~ ' -~ )  or zero; and (2) that J(r, E) and V$(r, E) are parallel. Neither 
of these relations is satisfied in general, which gives rise to a number of ambiguities 
in defining the multigroup diffusion constants, in particular the diffusion coeffi- 
cient. A common way to treat the anisotropic scattering difficulty is to make use of 
the one-speed results to approximate 

which is equivalent to assuming no lethargy change in anisotropic elastic scattering. 
If, in addition, the anisotropic source that would arise from anisotropic inelastic 
scattering is assumed to vanish, then 
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is obtained from Eq. (10.37). This relation, a Fick's law, can be substituted into 
Eq. (10.36) to obtain lethargy-dependent diffusion theory: 

-7 D(r ,  u)Vqb(r, u)  + C,( r ,  u) = 1" dul ~ * ( r ,  U ,  ul )$(r ,  ul)  + SO(T, U )  
u-ln llcr 

where the inelastic and fission contributions to the isotropic source are shown 
explicitly in the last form. 

Directional Diffusion Theory 

In this derivation of lethargy-dependent diffusion theory from neutron transport 
theory, the lethargy change (energy change) in anisotropic scattering was neglected 
entirely. It is possible to formally include anisotropic lethargy change effects by 
defining 

where Jg is the current in the {-direction. Since the lethargy dependence of the 
current could well be different for different 6-directions, a different Ctr2F, could be 
defined by Eq. (10.58) for each coordinate direction 6 = x ,  y, and z, giving rise to dir- 
ectional diffusion coefficients Dg = 1/3Ct,g and to a directional diffusion equation 

I" 1 =Iu du'Eso(r ,~ ,u ' )qb( r ,u ' )+  d u ' ~ ~ n ( r , u l - ~ ) ~ ( r , u l ) + z ~ ( ~ )  
u-ln 1 / a  

Multigroup Diffusion Theory 

Multigroup diffusion theory can be formally derived from the lethargy-dependent 
diffusion equations [Eqs. (10.57) or (10.59)] or directly from the lethargy- 
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dependent P I  equations [Eqs. (10.36) and (10.37)] by integrating over the lethargy 
interval of the group Au, = u,-u,-,. The definition of most of the group quantities 
is the same for all three procedures and is given by Eqs. (10.43), with fission and 
absorption cross sections evaluated similarly to the total cross section. However, the 
definition of the diffusion coefficient is different for the various derivations. In the 
derivation proceeding from Eq. (10.57), the multigroup diffusion term is formally 
defined by the replacement 

but this leaves open how to define D,. Since it is unlikely that lethargy-dependent 
flux gradients will be available, various heuristic definitions suggest themselves; for 
example, 

A similar ambiguity plagues the development of multigroup diffusion equations 
from Eq. (10.59). 

The formal definition of k-direction diffusion coefficient that arises from the 
integration of Eq. (10.37) over Au, is 

The multigroup dilfusion equations have the same form for all derivations: 

where the elastic and inelastic scattering terms have been combined into a single 
scattering term. 
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Boundary and Interface Conditions 

The appropriate transport theory boundary conditions are zero return current at 
external boundaries (unless there is an external beam source): 

where nb is the outward unit vector to the external boundary at rb, and the appro- 
priate interface condition is continuity of directional flux: 

where E is a small quantity. These conditions obviously cannot be satisfied exactly 
by the diffusion theory approximation to the neutron flux. 

The Marshak boundary conditions discussed in Chapter 9 generalize to 

Making use of the partial currents and geometric interpretation discussed in Section 
3.1, this condition can be interpreted as the vanishing of the flux at an extrapolated 
distance 0.71/ZU.(u) outside the physical boundary. Given the ambiguity in defining 
Xdu), the computational difficulties that would ensue from an extrapolated bound- 
ary that varied with lethargy and the fact that the extrapolation distance is typically 
very small relative to the physical dimensions, the approximate boundary condition 
of vanishing flux on the physical boundary is appropriate as an approximation to 
Eq. (10.65): 

As an approximation to the interface condition of Eq. (10.66), we require that 
the first two Legendre moments of this equation be satisfied: 

Using the definitions of scalar flux and current as the first two Legendre moments of 
the angular flux, this may be written 

and for multigroup diffusion theory 
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10.4 CONTINUOUS SLOWING-DOWN THEORY 

Over much of the slowing-down range above (in lethargy) the fission spectrum and 
below the thermal range, neutron slowing down is due primarily to elastic scatter- 
ing. Since there is no lethargy decrease in a scattering event below (in lethargy) the 
thermal range, the scatter-in integral is over lower lethargies only. It has been found 
convenient for computational purposes to replace the elastic scatter-in integral with 
a lethargy derivative of the associated elastic slowing-down density, which is com- 
puted in a coupled calculation, rather than evaluating the scatter-in integral directly, 
The various computational methods that have been developed for this purpose are 
known collectively as continuous slowing-down theory. 

PI Equations in Slowing-Down Density Formulation 

Generalizing the definition of slowing-down density introduced in Chapter 4 to 
include anisotropic scattering, the isotropic slowing-down density is defined as 
the number of neutrons slowing down past energy E, or lethargy u, by isotropic 
(in the lab system) elastic scattering: 

and the tinearly anisotropic slowing-down density is defined as the number of 
neutrons slowing down past lethargy u by linearly anisotropic scattering: 

q: ( x ,  u) - i" dul lm d u " ~ : ,  (x, u' + ul')J(x, u') (10.73) 

These two slowing-down densities are the zeroth and first Legendre components of 
the angular-dependent neutron slowing-down density. 

Making use of Eq. (10.20), the first of these equations can be written explicitly 
as 

and making use of Eq. (10.23), the second of these equations can be written 
explicitly as 
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u f  ln l/w -q (U~)eu'-uN 
qi (x, u) = /' du' du" [ 1 +3pC(u1) ( 1 - 2'1 - ed-u''))] 

U-ln l/ai 1 - ai I -ai 

where Ai is the atomic mass in amu of the scattering nuclei and cwi = [(Ai-1)/ 
(Ai + 1)12. 

These slowing-down densities can be related to the scatter-in integrals in the PI 
equations given by Eqs. (10.36) and (10.37): 

Using Eqs. (10.76) and (10.77) to eliminate the scatter-in integrals in 
Eqs. (10.36) and (10.37) yields an equivalent form of the P I  equations (written 
for one-dimensional dab geometry) 

where the nonelastic cross section 

and the transport cross section 

have been defined in a natural way. 
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Integrating these equations over A~,=u,+~-u,  leads to the multigroup P I  
equations in the slowing-down density formulation of elastic scattering: 

where the multigroup quantities are defined as 

Sf (x) E /"'+' du S, (x, u) 

In this formulation, the natural definition of the group averaged transport equation 
is as a current averaged quantity. 

The same type of difficulty encountered previously in reducing the energy- 
dependent P I  equations to diffusion theory is present in Eq. (10.83); to obtain a 
Fick's law type of relationship J= -Dd+/dx, it is necessary to require that the 
anisotropic source Sf vanish and that the anisotropic slowing-down density not 
change over the group, which would be the case if it was assumed to be identically 
zero. Making these assumptions, the multigroup diffusion equation in the slowing- 
down density formulation is 

with the diffusion coefficient being unambiguously defined in terms of a current 
spectrum-weighted group-averaged transport cross section, which contains some 
anisotropic effects-the average cosines of the scattering angle of the various 
nuclear species are embedded in the definition of the transport coefficient given 
by Eq. (10.81). 

Making the approximation that the spatial dependence can be represented 
by a simple buckling [i.e., +(x, u) = @(u) exp(iBx), J(x, u) = J(u) exp(iBx)] in 
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Eqs. (10.82) and (10.83) reduces these equations to the forms that are found in 
various multigroup spectrum codes: 

The asymptotic forms $,,,(u) -- 1 and J(u),,, 1 are used in Eqs. (10.84) to 
define fine or ultrafine group constants. The few-group constants are then con- 
structed from the solutions 4, and Jg of the fine or ultrafine group calculation: 

where g E k indicates that the sum is over fine groups g within few group k. 

Slowing-Down Density in Hydrogen 

The evaluation of the slowing-down densities in hydrogen is quite straightforward 
because a neutron can scatter from any lethargy to any greater lethargy in a single 
collision, which is implicit in the fact that a~ = 0 .  This fact allows Eqs. (10.72) and 
(10.73) to be written 

&(x, U )  = JIY duf ~ y ( d ) e ~ ' - ~ # J ( x ~  u') 

q1 (x1 U )  = 5 1' du' ~ J ( u ' ) e ~ ( ~ ~ - ~ ) / ' J ( x ,  u') 

These equations may be differentiated to obtain 

which may be put in multigroup form, to be used with Eqs. (10.86), by integration 
over Au,: 
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Heavy Mass Scatterers 

For moderators other than hydrogen, this procedure does not lead to such a simple 
differential equation for the slowing-down density, precisely because it is not pos- 
sible for a neutron to lose all of its energy in a single collision, which means that the 
lower limits on the first integral in Eqs. (10.72) and (10.73) are u-ln(l/ai), not 
zero. At the other extreme from hydrogen are heavy mass nuclei for which the 
maximum lethargy gain in a scattering collision is quite small and it is reasonable 
to expand the integrands in Eqs. (10.72) and (10.73) in Taylor's series: 

a 
Cf (u t )~(uf )  E Cf(u)J(u) + (u' - u) - [Ci(u)J(u)] + - . . (10.94) au 

Various approximations result from keeping different terms in these expansions. 

Age Approximation 

The simplest such approximation, resulting from retaining only the first term in 
Eq. (10.93) and setting = 0, is known as the age approximtion: 

where ti = {p given by Eq. (10.21). With these approximations for q', and qi, Eqs. 
(10.78) and (10.79) become the inconsistent (because of the neglect of q i )  PI  
equations: 

which, with the additional assumption of zero anisotropic source (S1 =0), can be 
reduced to the age-diffusion equation 
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Selengut-Goertzel Approximation 

The age approximation for the slowing-down density, and hence the inconsistent P I  
and age-diffusion equations, are restricted to heavy mass moderators for which the 
interval of the scatter-in integral, In(l/cci), is quite small, and certainly would not be 
appropriate for hydrogen. For a mixture of hydrogen and heavy mass moderators, 
the hydrogen can be treated exactly and the age approximation can be used for the 
remaining nuclei, resulting in the Selengut-Goertzel approximation 

Consistent PI Approximation 

If, instead of setting q; = 0, Eq. (10.73) is evaluated retaining the first term of the 
Taylor's series expansion of Eq. (10.94), to obtain 

where the first Legendre moment of the mean lethargy gain is defined as 

the consistent P I  equations (with the Selengut-Coertzel approximation) are ob- 
tained: 

-- a& (x, .) + So(x, u) 
du 

-- I *(x' ') + [&(x, u) + 6 E:(x, u)] J ( ,  u) = & (x, u) 
3 ax 

Extended Age Approximation 

If the first two terms in the Taylor's series expansion of Eq. (10.93) are retained in 
evaluating Eq. (10.72), the result is 
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where 

Using the balance equation for the elastic slowing-down density in a very large 
region (neglecting leakage) 

allows Eq. (10.103) to be written 

With this extended age approximation, the summation on the right in the first of 
Eqs. (10.101) is replaced by -d(kCt4)/du in the age-diffusion equations. 

Grueling-Goertzel Approximation 

The slowing-down density for hydrogen can be calculated exactly, and the slowing- 
down density for heavy mass nuclei can be well approximated by one of the 
variants of the age approximation given above. However, light nonhydrogen mod- 
erators are not well approximated by any of the age approximations above. Greater 
accuracy can obviously be obtained by retaining more terms in the Taylor's series 
expansions of Eqs. (10.93) and (10.94). In addition, it is possible to construct an 
approximate equation for the isotopic slowing-down densities which has the same 
form as the simple differential equation that describes the hydrogen slowing-down 
density and which reduces to the hydrogen equation when Ai = I .  Retaining three 
terms in the Taylor series expansion of Eq. (10.93) when used with Eq. (10.72) to 
evaluate kkdqbldu + qh yields 

The objective is to develop an equation for q; which is like Eq. (10.90) for 
hydrogen. Neglecting d2+/du2 and choosing 1 6  to make the a+/dlc term vanish 
leads to 
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which is of the same form as Eq. (10.90) for the hydrogen slowing-down density, 
where 

Retaining the first three terms in the Taylor series expansion of Eq. (10.94) when 
used with Eq. (10.73) in a similar calculation leads to an equation similar to the 
hydrogen Eq. (1 0.91 ): 

where 

again has been chosen to make d+/du terms vanish. 

Summary of PI Continuous Slowing-Down Theory 

The PI equations 

and the equations for the elastic slowing-down density, using the exact equations 
for hydrogen and the Grueling-Goertzel approximation for nonhydrogen nuclei, 

2 a97 4 
-- (x. u) + qy(x, u) = 9 Cx(x, u)J(x, u )  
3 d u  
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represent the formulation usually referred to as PI continuous slowing-down 
theory. 

Inclusion of Anisotropic Scattering 

In an ultrafine group calculation for which the group width is less than ln(l/ai) for 
some of the nuclei which contribute strongly to neutron moderation, it is necessary 
to retain a large number of Legendre moments to accurately represent the group 
transfer cross sections, which actually represent the probabilities for scattering to 
within relatively small angular intervals. (This situation is more likely to be found 
in a fast than in a thermal reactor.) The concept of slowing-down density can be 
extended to a higher order of anisotropy by defining the Legendre moments of the 
slowing-down density as the number of neutrons slowing down past lethargy u by 
the lth Legendre moment of the elastic scattering transfer function 

where, recalling Eq. (10.38), we have 

Making a general Taylor series expansion about u in the integrand in Eq. 
(10.1 Id), 

and using Eq. (10.115) yields 

O0 d" 
qf (u) = - - [G' 

dun ,,,+I (u)d1(u)l 
n=O 

where 

CO 

xill (u)  ~i~~ ,n (u)  
lf=0 
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Extending the calculation that was described for the Grueling-Goertzel approxi- 
mation yields an equation for each Legendre moment of the slowing-down 
density 

where 

are chosen to eliminate first derivative terms involving +I.  

The conventional Grueling-Goertzel theory is recovered by retaining only the 
1 = 0,l slowing-down moments, neglecting terms n 2 2 in Eq. (10.1 19) and identi- 
fying 

-Gf,,(4 
af (u) = - 

C.7 (u )  

Inclusion of Scattering Resonances 

An impractically large number of terms may have to be retained in the Taylor's 
series expansion to obtain an accurate approximation for the slowing-down density 
when resonance scattering nuclei are present in the mixture, because resonance 
scattering in nuclei j may cause +, hence x;+ for another nuclear species i, to be a 
rapidly varying quantity. In this case, a better approximation may be developed by 
expanding the total collision density in a Taylor's series: 

Using this expansion to evaluate Eq. (10.1 14) yields 
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where 

1 O 0 1  
H : , ~  (u) = - x (21' -i- 1) du" P1 [po (u' - uN)] 

n! p=-, 

Differentiating Eq. (10.123), 

and carrying out a calculation similar to those described previously results in a hy- 
drogen-like equation for the lth Legendre component of the slowing-down density: 

where 

has been chosen to eliminate first derivative terms involving 

Pl Continuous Slowing-Down Equations 

The lethargy-dependent Pl equations are generalized from the one-speed PI equa- 
tions of Chapter 9 by including a scattering loss term and a scatter-in source of 
neutrons: 

= l o  du' C,J ( x ,  u' -t u) $1 ( x ,  U' ) + Sl (x, U) , I = 1, . . . , L 
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The Legendre moments of the slowing-down density are related to the Legendre 
moments of the scatter-in integral. Differentiating Eq. (10.1 14) yields 

Using this resuIt to eliminate the eladc scatter-in integral in Eq. (10.128) leads to 
the P, continuous slowing-down equations, 

where the nonelastic cross section is 

and the Legendre moments of the slowing-down density are calculated from Eqs. 
(10.126) for nonhydrogenic nuclei and Eqs. (10.90) and (10.91) and similarly 
derived higher Legendre moment equations for hydrogen. 

10.5 MULTIGROUP DISCRETE ORDINATES 
TRANSPORT THEORY 

In situations in which a high degree of angular anisotropy in the neutron flux could 
be expected, the low-order P I  and diffusion theory approximations might be 
inadequate to treat the combined slowing down and transport of neutrons. Such 
situations might arise in the treatment of slowing down in a highly heterogeneous 
lattice consisting of materials of very different properties or in the treatment of 
problems in which there is a highly directional flow of fast neutrons from one 
region to another. For such situations, the discrete ordinates methods of Chapter 
9, extended to treat the neutron slowing down, are well suited. Generalizing the 
expansion of the differential (over scattering angle) elastic scattering cross section 
of Eq. (9.179) to an expansion of the double differential (over scattering angle and 
lethargy change) scattering cross section, and using the addition theorem for 
Legendre polynomials of Eq. (9.177) to relate the cosine of the scattering angle, 
p,,, to the cosines of the incident, p', and exiting, p, directions for the scattering 
event, yields 
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Using this representation of the double differential scattering cross section in the 
neutron transport equation (10.26) yields 

where the Legendre moments of the angular flux, and the scalar flux, 4, are 
defined as 

These equations may be reduced to a set of multigroup equations by integrating 
over the lethargy width Au, = u, + ~ - u ,  of group g: 

G 

(r)#$ (r), g = 1, . . . , G 
g'= 1 

where multigroup quantities have been defined 
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Writing Eqs. (10.135) for each discrete ordinate, a,, results in the set of multi- 
group discrete ordinates equations 

( r )  ( r )  = ( r )  g = I : . .  . ,G  (10.137) 

where the group scattering plus fission plus external source term is 

Equation (10.137), for each group, is of the same form as the discrete ordinates 
equation discussed in Chapter 9. Thus the methods used to solve the discrete 
ordinates equations in Chapter 9 can be applied to solve the multigroup discrete 
ordinates equations, on a group-by-group basis. For a given fission and scattering 
source, the multigroup discrete ordinates equations are solved group by group using 
the methods of Chapter 9. Then on the source iteration, the new scattering and 
fission source for each group are constructed by summing over contributions from 
all groups, and the solution for the multigroup fluxes on a group-by-group basis is 
repeated until convergence. The power iteration procedure for criticality eigenvalue 
calculations is the same as discussed in Chapter 9, but now the fission source is 
summed over the contributions from dl groups. 
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PROBLEMS 

10.1. Calculate the average cosine of the scattering angle in the CM system for 
neutrons at 1 MeV, 100 keV, and 1 keV colliding with uranium, iron, carbon, 
and hydrogen. 

10.2. Calculate the values of the average lethargy increase, 5, and the average 
cosine of the scattering angle in the lab system, PO, for the neutron energies 
and nuclei of Problem 10.1, for isotropic scattering and for linearly aniso- 
tropic scattering. 

10.3. Carry through the steps in the derivation of the lethargy-dependent P I  
equations given by Eqs. (10.36) and (10.37). 

10.4. Cany through the derivation of the isotropic and kinearly anisotropic 
lethargy transfer functions of Eqs. (10.39) and (10.40). 
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10.5. Divide the energy interval 10 MeV > E > 1 eV into 54 equal-lethargy inter- 
vals. Evaluate the multigroup scattering transfer functions z$*~ for carbon 
for g' = 1, 10, and 50. 

10.6. Carry through the steps in the derivation of the lethargy-dependent B 1  
equations given by Eqs. (10.50). 

10.7. Solve for the lethargy-dependent neutron flux and current in an infinite 
medium, using the age approximation of Eqs. (10.96). 

10.8. Derive a differential equation similar to Eqs. (10.90) and (10.91) for the 
higher Legendre moments of the slowing-down density in hydrogen. 

10.9. Derive the multigroup approximation for the P I  continuous slowing-down 
equations, Eqs. (10.112) and (10.113). 

10.10. Write a computer code to solve the multigroup PI  continuous slowing-down 
equations of Problem 10.9 for an assembly consisting of 3% enriched, 
zircalloy-clad U02 and water. The fuel pins are 1 cm in diameter with clad 
thickness of 0.05 cm in a square array with fuel pin center-to-center dis- 
tance of 2.0 cm. Assume that spatial gradients can be neglected. 
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11.1 RESONANCE CROSS SECTIONS 

When the relative (center-of-mass) energy of an incident neutron and a nucleus plus 
the neutron binding energy match an energy level of the compound nucleus that 
would be formed upon neutron capture, the probability of neutron absorption is 
quite large. For the odd-mass fissionable fuel isotopes, resonances occur from a 
fraction of 1 eV up to a few thousand eV, and for the even-mass fuel isotopes, reso- 
nances occur from a few eV to about 10,00OeV, as shown in Figs. 11.1 to 11.4. At 
the lower energies the resonances are well separated, but at the higher energies the 
resonances overlap and become unresolvable experimentally. We first examine the 
widely spaced resonances at lower energy, where spatial self-shielding, as well as 
energy self-shielding, is important. At higher energies, spatial self-shielding be- 
comes less important, but resonance overlap interference effects become important. 

11.2 WIDELY SPACED SINGLE-LEVEL RESONANCES 
IN A HETEROGENEOUS FUEL-MODERATOR LATTICE 

Neutron Balance in Heterogeneous Fuel-Moderator Cell 

At lower energies in the 10-eV range, the neutron mean free path becomes compar- 
able to the fuel and moderator dimensions, and it is important to take into account 
the spatial heterogeneity of the fuel-moderator cell. The fuel assembly in a nuclear 
reactor generally consists of a repeating array of unit celh consisting of fuel, 
rnoderator/coolant, clad, and so on. For simplicity, we consider a two-region unit 
cell of fuel (F) and a separate moderator (M). We allow further for a moderator 
admixed with the fuel (e.g., the oxygen in U02 fuel). We return to the problem of 
calculating the absorption of neutrons in widely spaced resonances which was 
treated for a homogeneous mixture in Section 4.3, but now take into account the 
important spatial self-shielding effects that are present in a heterogeneous fuel- 
moderator lattice. Consider a repeating array of fuel-moderator cells with fuel 
volume VF and moderator volume VM. Define the first-flight escape probabilities 

PFo(E) = probability that a neutron that slows down to energy E in the fuel will 
make its next collision in the moderator 

PMo(E)  = probability that a neutron that slows down to energy E in the 
moderator will make its next collision in the fuel 
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U235 Fission Cross Section MT = 18 

Neutron Energy (eV) 

Fig. 11.1 2 3 5 ~  fission cross section. (From http://www.dne.bnl.gov/CoN/index.htrnl.) 

U235 Capture Cross Section MT = 27 

Neutron Energy (eV) 

Fig. 11.2 2 3 5 ~  capture cross section. (From hrtp://www.dne.bnl.gov/CoN/index.html.) 
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U238 Capture Cross Section MT = 27 

Neutron Energy (eV) 

Fig. 11.3 2 3 8 ~  capture cross section. (From http://www.dne. bnl.gov/CoN/ipldex. hfml.) 

U238 Elastic Scattering Cross Section MT= 2 
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Fig. 11.4 2 1 8 ~  elastic scattering cross section. (From http://www.dne.Anlgov/CoN/ 
index. html.) 
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We assume that these probabilities are uniform over the fuel and moderator, 
respectively. 

The neutron balance equation in the fuel can be written 

+ V M P M ~  ( E )  dEf 
E (1 - aM)E1 

The left side of the equation is the total reaction rate of the fuel plus admixed 
moderator in the fuel volume. The first term on the right side is the source of 
neutrons scattering to energy E in the fuel (from scattering collisions with fuel 
and with admixed moderator nuclei) times the probability (1 -Pm) that their next 
collision is in the fuel, and the second term is the source of neutrons scattering into 
energy E in the moderator times the probability PMo that their next collision is in 
the fuel. 

The practical width of an absorption resonance will generally be much smaller 
than the scattering-in interval of the moderator, T, << (1 -aM)Eo, or of the admixed 
moderator, I?, << (1 -cl,)Eo, which allows us to use the asymptotic form of the 
neutron flux above the resonance energy in the moderator and the fuel, 
$,,,(E) - 1 / E ,  to evaluate the moderator and admixed moderator scattering inte- 
grals in Eq. (11.1), leading to 

Reciprocity Relation 

Define G(rF;rM) as the probability that a neutron isotropically scattered to energy E 
at location r~ in the fuel travels without collision to location r~ in the moderator, 
and G(rM;rF) as the probability that a neutron isotropically scattered to energy E at 
location r~ in the moderator travels without collision to location r~ in the fuel. For 
a uniformly distributed source of neutrons scattering to energy E in each region, the 
following identities must obtain: 
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Since G(rF;rM) and G(rM;rF) depend only on the collision probability along 
the path between rF and r ~ ,  and this probability is independent of the 
direction in which the neutron travels, G(rM;rF) = G(rF;rM), Eqs. ( 1  1.3) may be 
combined to obtain the reciprocity relation between the two first-flight collision 
probabilities: 

If we make the assumption that absorption is very small relative to scattering in the 
moderator, the reciprocity relation may be used to write Eq. (1 1.2) as 

Narrow Resonance Approximation 

If the practical width of the resonance is much smaller than the scattering-in 
interval of the resonance nucleus, T, << (1-nF)Eo, the contribution of the reso- 
nance to the scattering-in integral in Eq. (1  1.5) can be neglected and the asymptotic 
flux in the fuel +(E) - l/E can be used to evaluate the integral to obtain 

Using this form for the neutron flux to evaluate the capture resonance integral 

leads to the narrow resonance approximation for the heterogeneous resonance 
integral: 
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where we have defined an escape cross section: 

PFoIE) 
me + G-e ( E )  = Pro ( E )  

u , ( E )  + uf ' (E)  + m i  

and used the notation $ ( E )  and 0; for the total and potential scattering micro- 
scopic cross sections of the resonance absorber, and ni for the cross section of the 
admixed moderator per fuel nucleus. 

Wide Resonance Approximation 

If the practical width of the resonance is much larger than the scattering-in inter- 
val of the resonance nuclei, T, >> (1 -aF)&, the term ZF(E1)$(E' ) /E'  % 

C F ( E ) + ( E ) / E  in the integrand of Eq. (1 IS), leading to the wide resonance 
approximation for the flux in the fuel region, 

Using this result to evaluate the resonance integral of Eq. (1 1.7) leads to 

where of = 0; f c$ is the microscopic absorption cross section of the resonance 
absorber. 

Evaluation of Resonance Integrals 

Recalling from Section 4.3 the form of the single-level resonance cross section 
averaged over the thermal motion of the nuclei, the (n,y) capture cross section or 
fission cross section averaged over the motion of the nucleus can be written 

CAE, T )  = Po- 

and the total scattering cross section, including resonance and potential scattering 
and interference between the two, can be written 
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where R is the nuclear radius, Lo is the neutron DeBroglie wavelength, and the 
functions 

are integrals over the relative motion of the neutron and nucleus, x =  
2(Ec, - Eo)/T, assuming that the nuclear motion can be characterized by a Max- 
wellian distribution with temperature T, and E,, is the energy of the neutron in the 
neutron-nucleus center-of-mass system. The parameters characterizing the reso- 
nance are oo, the peak value of the cross section; Eo, the neutron energy in the 
center-of-mass system at which it occurs; T, the resonance width; T,, the partial 
width for neutron capture, Tfi the partial width for fission; and I?,, the partial width 
for scattering. The resonance absorption cross section is symmetric about Eo, but 
the scattering cross section is asymmetric because the potential and resonance 
scattering interfere constructively for E >  Eo and destructively for E <  Eo, as 
indicated in Fig. 1 1.4. 

The temperature characterizing the nuclear motion is contained in the parameter 

where A is the atomic mass (amu) and k is the Boltzmann constant. 
Using these forms for the resonance cross sections in Eqs. (1 1.8) and (1 1 . I  I), the 

resonance integrals become in the narrow resonance approximation (neglecting 
interference scattering) 

and in the wide resonance approximation 

7 r-, 
IwR = - (OF, + a,) 1 " 1CI(E,x)dx - ry 2Eo -, +(t, x) + P) - - ( + ) J )  - Eo (11.18) 

where 
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The J(5, P) function is tabulated in Table 4.3. The properties of the moderator 
region do not appear explicitly in these expressions for the resonance integral 
because we have assumed that a neutron which escapes the fuel will have its next 
collision in the moderator and because we assumed that absorption in the moderator 
could be ignored in using the reciprocity relation. 

Infinite Dilution Resonance Integral 

In the infinite dilution limit c r i  f o, >> no, all forms for the resonance integral 
approach the infinite dilution value: 

Infinite dilution resonance integrals for a number of fuel isotopes are given in Table 
1 1.1. Actual resonance integrals will be smaller because of self-shielding effects. 

Equivalence Relations 

For a given resonance absorbing species, assemblies with the same values of 
4 + (5, have the same resonance integral. Furthermore, the heterogeneous assem- 
blies with a given value of 4 + o, have the same resonance integrals as homo- 
geneous assemblies which have moderator scattering cross section per resonance 

TABLE 11.1 Infinite Dilution Total Resonance 
Integrals for Some Heavy Elements" 

Isotope RI(n, Y) (barns) R I h f )  (barns) 

2 3 2 ~ h  84 - 
233" 138 774 
2 3 3 ~ a  864 - 
2 3 4 ~  63 1 7 
235" 133 278 
236U 346 8 

2 3 7 ~ p  661 7 
2 3 9 ~ p  445 - 
239p, 181 302 
24IW 180 573 
241Am 1305 14 
23Bu 278 2 
2~~ 8103 9 
242pU 1130 6 
242 Am 39 1 1258 

aCaIculated with ORIGEN (Ref. 14). 
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absorber nucleus a";" = a: + a,. Equations (1 1.17) and (1 1.18) reduce to the 
homogeneous resonance integrals of Eqs. (4.68) and (4.71) when a, PFo = 0 
(i.e., in the case of a resonance absorber with a homogeneously admixed 
moderator). 

Heterogeneous Resonance Escape Probability 

The resonance capture rate in a fuel-moderator cell with fuel volume VF and 
moderator volume VM is 

We have evaluated the resonance integral for an asymptotic flux above the reso- 
nance $,,, = 1/E,  assumed uniform over the fuel and moderator. Using the asymp- 
totic relationship between the slowing-down density, q, and the flux 

where the'average asymptotic moderating power of the cell is 

indicates that an asymptotic flux of 1/E implies an asymptotic slowing-down 
density of q = tCs. The resonance escape probability for the cell is unity minus 
the resonance absorption probability, and the latter is the resonance absorption rate 
divided by the total number of neutrons slowing down q(VF + VM): 

where cu3 is the cell moderating power per fuel nucleus. The total resonance escape 
probability over an energy group g containing several resonances is 

where i E g indicates all of the resonances within energy group g extending from 
Eg to Eg-, . 

By lumping the fuel, the neutron flux in the fuel is reduced relative to the flux in 
the separate moderator-spatial self-shielding-and it is possible to decrease the 
resonance integral without decreasing the slowing-down power, thus increasing the 
resonance escape probability relative to the value for the same fuel and moderator 
distributed homogeneously. In fact, lumping the natural uranium fuel in the early 
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graphite-moderated reactors was essential to achieving criticality-the resonance 
escape probability increased from about 0.7 in a homogeneous graphite-natural 
uranium assembly to about 0.88 in a heterogeneous assembly. 

Homogenized Multigroup Resonance Cross Section 

An effective multigroup cross section for the resonance absorber can be constructed 
by summing the resonance absorption rates over all of the resonances in the group, 
dividing by the fuel number density, NF, dividing by the volume of the fuel- 
moderator cell, and dividing by the integral of the asymptotic flux over the energy 
interval of the group: 

Improved and Intermediate Resonance Approximations 

The narrow [Tp << (1 -aF )Eo] and wide [Tp >> (1 - a ~ ) E ~ l  resonance approxima- 
tions are limiting cases. For many resonances, the actual situation is intermediate 
to these extremes. It is possible to improve upon the narrow resonance and wide 
resonance approximations using the neutron balance equation to improve the flux 
solution iteratively: 

The initial flux guess can be the narrow or wide resonance approximation, or 
an intermediate resonance approximation which is suggested by comparison of 
the two: 

where h, which is in the range 0 < h < 1, is a parameter to be determined separately 
(Chapter 13). In practice, it is not practical to extend this procedure beyond a single 
iteration. 
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113 CALCULATION OF FIRST-FLIGHT ESCAPE PROBABILITIES 

To evaluate the resonance integrals of Section 11.2 it is first necessary to calculate 
the probability Pm that a neutron reaching energy E in the fuel will have its next 
collision in the moderator. Although this can be done exactly with a Monte C d o  
calculation, a large number of such calculations would be necessary, and a number 
of analytical approximations have been developed. 

Escape Probability for an Isolated Fuel Rod 

For an isolated fuel rod surrounded by moderator, the probability PFO that a neutron 
reaching energy E in the fuel will have its next collision in the moderator is just the 
probability that the neutron will escape from the fuel rod without a collision, Po. 
For a uniform fuel rod, the probability that a neutron created isotropically at loca- 
tion ro within a fuel rod of arbitrary shape (Fig. 11.5) escapes from the fuel rod is 

where h = c;' is the total mean free path, l(ro, 0 )  the distance from ro to the 
surface of the rod in the direction 0 ,  n, the outward normal vector to the surface of 
the fuel rod, ( 0  n,) ds/4d2(ro, 0 )  the solid angle that the surface element ds in the 
direction w subtends, and exp(-l/h) the probability that the neutron will reach the 
surface without collision. 

If the neutrons are created isotropically, the average escape probability is 

If we represent the volume as tubular elements oriented in the fl direction with 
cross-sectional area ds (ni 0 )  where ni is the inward normal unit vector on the rod 

Fig. 11.5 Geometry notation for escape probability calculation. 
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surface, the volume element is dV= dl ds(ni- a), and Eq. (1 1.30) can be integrated 
over length 1 to obtain 

where Zs(R) is the chord length from surface to surface of the rod in direction R. For 
a long fuel plate of thickness a, this may be evaluated exactly: 

where E3 is the exponential integral function. An approximate evaluation is possi- 
ble for a sphere of radius a: 

and for a long cylindrical fuel rod of radius a, 

A more general evaluation may be made by invoking the theory of chord dis- 
tributions. The probability that the length of a chord lies between 1, and 1, +dls is 

where the integral over $2 in the numerator includes only those values of a for 
which 1: = l,, (i.e., is a chord length of the fuel rod). The denominator is readily 
evaluated: 

(Ln n i ) d U  = 27rS pdp = nS I' 
where S is the surface area of the fuel rod. 

In this representation the volume of the fuel rod is 



CALCULATION OF FIRST-FLIGHT ESCAPE PROBABILITIES 423 

and the mean chord length is 

1, bm(ls) dl, = J I, [JJ C=ls (a nil d a d s ]  dl, 
- 1 (n . ( 1  1.38) 

4v 
= L J J l s ( a . n i ) d a d r = - ,  7rs s ( a - n i ) > o  

Hence 

47rv 
- $ ( k )  dl, = 1 (a 'ni )  d a ]  ds ( 1  1.39) 

1s (ni n) >O 

Using these results in Eq. (1 1.3 1) yields 

When the dimensions of the fuel rod are small compared to the mean free path, 
1, << h, this reduces to 

and when the dimensions are large compared to the mean free path, I ,  >> h, 

X 
Po "- 

1, 

which suggests the rational approximation 

The rational approximation is known to underestimate the escape probability. 
An improved approximation for a long cylindrical rod has been obtained by 

integrating an empirical fit for the chord length distribution function: 

An improved rational approximation of the form 
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with c=2.09, has been determined empirically to be more accurate than the 
Wigner approximation and more accurate than the Sauer approximation for all 
geometries other than cylindrical. Note that the approximation of Eq. (11.45) re- 
duces to the Wigner approximation for c = 1 and to the Sauer approximation for 
c=4.58. 

Closely Packed Lattices 

In a Iattice of closely packed fuel elements interspersed in moderating material a 
neutron escaping from a fuel element without collision may traverse a distance in 
moderator without collision and enter another fuel element, where it may have a 
collision with a fuel atom or may pass through uncollided to enter moderator again, 
and so on. In this situation, the probability of a neutron escaping from the fuel 
element in which it is scattered to energy E (Po) is not the same as the probability 
that the neutron will have its next collision in moderator (Pm), but the two are 
related. Let G:) be the probability that a neutron escaping from the original fuel 
element will traverse the line-of-sight distance of moderator se arating the original (5 fuel element from other fuel elements without a collision, Gf be the probability 
that the neutron will traverse the second fuel element without collision to reenter 
moderator, and so on. Then we can write 

The various G?) depend on the lattice geometry and are not the same for successive 
flights in moderator or fuel (i.e., not equal for n = 1 and n = 2 or n = 4 and n = 5). 
However, if we make the approximation that the individual flight probabilities can 
be replaced by an average value, Eq. (1 1.46) can be summed: 

G, can be estimated by analogy with Eq. (1 1.43) or heuristically as 

when, and hm are the mean chord length through the moderator between fuel 
elements and the mean free path of neutrons in the moderator. Such corrections to 
Po are known as Dancoff corrections and allow Pm to be written 

where the factor y accounts for the decrease in the probability that a neutron 
escaping a fuel element will first collide with a moderator nucleus because of the 
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presence of other fuel elements. For fuel rods arranged in a square or hexagonal 
lattice structure, 

where 

11.4 UNRESOLVED RESONANCES 

Unlike the case of the resonances in the resolved energy region (up to a few 
hundred eV or less) where parameters for each individual resonance can be eval- 
uated explicitly from the high-resolution data, the evaluations of such parameters 
become increasingly more difficult as the Doppler and instrument resolution widths 
become much greater than the corresponding natural width in the relatively high 
energy range. Under such circumstances, it is not possible to deal with the physical 
quantities of interest as a function of energy in great detail. Instead, it is necessary 
to estimate the expectation values of these quantities on the basis of statistical 
theory. Two types of expectation values of particular interest in reactor applications 
are the reaction rate of a given process, denoted by (ox@), and the average flux, 
denoted by ($}, in the energy interval where many resonances are present. 

Since the NR-approximation described earlier is usually applicable in the un- 
resolved energy range at relatively high energy, the extension of the J-integral 
approach is quite natural. The expectation values of interest can be expressed in 
terms of the population averages of an ensemble of resonance integrals with their 
resonance parameters determined by the known distribution functions from the 
statistical theory of spectra. In principle, these averages can be determined once 
the average resonance parameters are specified. 

Two types of distributions are needed to characterize the statistical behavior of 
the resonance parameters. According to Porter-Thomas, the partial widths are the- 
oretically expected to exhibit a chi-squared distribution with v degrees of freedom 
about their mean value (T,}: 

where y = Tx/(Tx) and T(v/2) is the gamma function of argument v/2. The degree 
of freedom v is identifiable with the number of open channels for reaction process x. 
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The level spacing between two adjacent levels for a given spin state, 
D = IEk-Ek+ is characterized by the Wigner distribution of the form 

where y = D / ( D ) .  Physically, it signifies the tendency of repulsion between the 
adjacent levels of the same spin sequence. For the integral approach to be de- 
scribed, a level correlation function that specifies the probability of finding any 
level Ekr at a distance IEp - Ek( away from a given level Ek is also required. It is 
related to the Wigner distribution via the convolution integral equation, defined as 
follows: 

For Ep belonging to a different spin sequence with respect to Ek, the levels are 
statistically independent, and consequently, the correlation function becomes unity. 

With the specification of distributions, the averages can be determined once the 
average parameters are provided. For elastic scattering, in which the neutron width 
is explicitly energy dependent, one convenient average parameter usually used is 
the strength fwlction. For neutrons with orbital angular momentum 1, the strength 
function is 

where (l?$l) is the average reduced neutron width for given 1 and k, which is energy 
independent, and (Dk)  is the average level spacing for the sequence in which level k 
occurs, with 

where J is the total spin of the neutron-nuclide system and I is the spin of the target 
nucleus. Statistical resonance parameters for some of the principal nuclides are 
given in Table 11.2. 

The single-level Breit-Wigner formula, now generalized to include spin 
effects, is 

where rrk, m k ,  and rk are the capture (x  = y) or fission ( x  = f )  width, the neutron 
width, and the total width, respectively, for a resonance at Ek, and &, is the 
DeBroglie neutron wavelength. 
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Multigroup Cross Sections for Isolated Resonances 

Using a narrow resonance approximation for the neutron flux, 4 -. I/&, the effec- 
tive multigroup cross section is 

where 

In the unresolved resonance region, statistical averages over the distribution 
functions of Eqs. (11.52) to (11.54) are used to construct an effective multigroup 
cross section for process x: 

Sates 

where o, = Ep/Nm is the potential scattering cross section per resonance nucleus 
and ( * )  indicates averages over statistical distributions of both widths and level 
spacings. 

Self-overlap Effects 

The large Doppler width for high-energy neutrons and the small level spacing 
produce a high degree of self-overlap among the resonances for fissile isotopes, 
and significant but less self-overlap for the fertile isotopes. In fast reactor spectra, 
the self-overlap effect is not important for the fertile isotopes at operating tempera- 
tures, but does affect the temperature dependence of the Doppler effect above about 
10 keV. The effect of the presence of other resonances on the effective cross section 
of resonance k arises from their effect on the flux, $I w 1/&, and gives rise to a 
generalization of the J function: 

where $k and are evaluated for the respective resonance parameters of the 
resonances at Ek and Eki. The evaluation of the second, overlap, term is quite 
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complicated because of the statistical average over resonance parameters and level 
spacings, and useful approximations have been developed (Refs. 5 and 6). 

The multigroup cross section then consists of a term like Eq. (11.58) plus a 
negative overlap correction term: 

Overlap Effects for Different Sequences 

The spacings of resonances belonging to different J-spin states in the same isotope 
or to two different isotopes are not correlated. The most important case is the 
overlap of resonances in a fissile isotope by resonances in a fertile isotope. Neglect- 
ing self-overlap, for the moment, the generalized J function for a fissile isotope with 
a resonance sequence at energies Ek overlapped by a fertile isotope with a reso- 
nance sequence at energies Ei is 

Separating the generalized J-function into the normal J-function and an overlap 
term, as in Eq. (11.61), and making some further approximations, it is possible to 
write the effective multigroup resonance cross section as 

(ri Ji) 

It can be shown that for a single spin state in the fissile isotope, the flux correction 
factor f of Eq. (1 1.59) can be written 

so that the effective multigroup cross section for a fissile isotope overlapped by a 
fertite isotope can be written 

In this approximation, the effect of the resonance overlap is compensated by the 
corresponding change in flux that it produces, and the parameters of the overlap- 
ping fertile isotope sequence do not appear. With respect to Eq. (1 1.64), the effect 
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of the overlapping sequence i enters via the l/& in both the numerator and 
denominator and, to first order, these two effects cancel. 

Combining the self-overlap and different sequence overlap results, the effective 
multigroup cross section for a fissile resonance sequence k with self-overlap and 
with overlap by a fertile isotope resonance sequence i is 

11.5 MULTIBAND TREATMENT OF SPATIALLY 
DEPENDENT SELF-SHIELDING 

Spatially Dependent Self-shielding 

Approximate methods for calculating effective multigroup cross sections for reso- 
nance absorbing isotopes have been discussed in Sections 4.3 and 11.2. It was 
found that the approximate flux to be used in evaluating the resonance integral 
was of the form +(E) N fSS(EI(E)) x M(E), where M(E) is a spectral function with 
an energy dependence that would exist even in the absence of the resonance 
absorber and fss is a self-shielding factor that depends on the energy via the 
dependence of the total cross section on energy [e.g., f,, -- l /(CF(E) + c?) and 
M(E) - 1/E in the narrow resonance approximation for a homogeneous mixture 
given by Eq. (4.65)]. This same general form persists in approximate treatments of 
heterogeneous resonance absorbers, as may be seen from Eqs. (1 1.6) and (1 1.10). 

In the approximate treatment of heterogeneous resonance absorbers discussed in 
Section 11.2, the self-shielding factor, f,, ,  and hence also the resulting multigroup 
cross section, was implicitly assumed to be spatially independent within the reso- 
nance absorber. However, simple physical considerations suggest that the self- 
shielding will be much more pronounced deep within a resonance absorber than 
on its surface, where the neutron spectrum is dominated by neutrons entering from 
the adjacent moderator and, furthermore, that the self-shielding near the surface 
will be different for neutrons entering from the moderator than for neutrons coming 
from deeper within the resonance absorber. Thus, even if accurate spatially constant 
multigroup cross sections that preserve volume-averaged reaction rates are obtained 
for a heterogeneous resonance absorber (e.g., a fuel pin), the spatial dependence of 
reaction rates within the resonance absorber will not be calculated properly, which 
will introduce an error into calculations of fuel depletion, fission heating distribu- 
tion, and so on. Even if the spatial multigroup flux distributions within the reso- 
nance absorber are calculated with multigroup transport theory, there will remain an 
inaccuracy in calculating the spatial distribution of reaction rates because these 
spatially independent volume-averaged multigroup cross sections were used instead 
of spatially dependent cross sections which take into account the spatial depen- 
dence of the self-shielding. 
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The most straightforward way to solve this problem of spatially dependent 
within-group self-shielding might seem to be to further subdivide the normal multi- 
group structure (e.g., 20 to 50 groups) that would be used in a pin-cell transport 
calculation (see Section 14.4) into ultrafine groups in the resonance energy region. 
If the ultrafine groups could be sufficiently numerous that the within-group self- 
shielding term was almost unity (i.e., such that the variation of the cross section 
within any ultrafine group was small), the ultrafine-group cross sections could be 
accurately calculated as described previously, and the spatial self-shielding effect 
on the normal multigroup level would be calculated on the ultrafine-group level. 
However, this procedure is impractical except for special cases because each ultra- 
fine-group width would have to be narrow compared with the width of the reso- 
nances at that energy, resulting in an enormous number of ultrafine groups to span 
the resonance energy region. This approach would not work at all for the unre- 
solved resonances, of course. 

Multiband Theory 

In the multiband method, each normal group is further subdivided, not into finer 
energy intervals as in the ultrafine-group method discussed above, but into intervals 
of the total cross section magnitude which span the variation in the total cross 
section within the normal group. The multiband equations are derived by 
an extension to the derivation of the multigroup equations. Starting with 
the energy-dependent transport equation (with scattering and fission included in a 
general transfer function C,), 

the normal multigroup equations are formally derived by integrating over the 
energy interval E, 5 E < E,- I : 

where 



MULTIBAND TREATMENT OF SPATIALLY DEPENDENT SELF-SHIELDING 433 

The multiband equations are formally derived by a similar process, but now with 
each group ( g )  energy interval subdivided into B cross-section bands ( g ,  b), which 
span the range of total cross section in group g, as depicted in Fig. 11.4. Defining a 
Heaviside function Hgb(E) which is unity For those energy intervals for which the 
total cross section is within the band Xtb+ 1 > C,(E)  2 Ctb and zero elsewhere, the 
multiband equations are derived by first multiplying Eq. (1 1.68) by HZb(E) and then 
integrating over both the energy interval Eg 5 E 5 EgP1 of group g and over the 
total cross-section range Xtb+ 2 C t ( E )  2 Ctb of band b: 

Eg-1  

E 

Fig. 11.6 The Heaviside function Hgb- for the third band in a four-band representation of 
the total cross section ( H g h r 3  = 1.0 in dark energy intervals and = 0.0 elsewhere). (From 
Ref. 11; used with permission of CRC Press.) 



434 RESONANCE ABSORPTION 

where the multiband parameters are given by 

with the quantity Z: normalized such that 

The normal multigroup quantities are related to the multiband quantities within 
the different groups as 

Evaluation of Multiband Parameters 

Direct evaluation of the multiband parameters from the relationships above (actu- 
ally, from the relationships that result when some discrete representation of the 
angular dependence is invoked) is possible in principle, but these relationships may 
be recast into a form that can make use of existing self-shielded multigroup 
libraries. The definition of the normal multigroup cross section for process x as 
an integral over energy can be exactly transformed into an integral over total cross 
section: 
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where use has been made of the approximate relationship +(E)  -M(E)f , , (E)  
discussed previously. Performing the integration over energy first and defining 

JE"-' dE Hgb ( E )  Cx  (E)M(E)  
C X ( q  = Eg J2-' dE M(E)Hgb ( E )  

leads to the equivalent definition of the normal multigroup cross section: 

in terms of the total cross-section probability distribution function p(Z:) ,  defined 
such that p(CT)dZT is just the normalized probability of the total cross section 
being within LET of C; within the energy interval Eg 5 E  5 E g P I .  

For the practical evaluation of Eq. (1 1.78), average values of the cross 
sections CXb for process x in each band b are used to replace the integrals with 
quadratures: 

where 

is the band weight. The computational advantage of this approach relative to a 
direct quadrature approximation of the second form of Eq. (1 1.75) is that L(C:) is 
generally a much smoother function than is X,(E) over the resonance energy range, 
so it is much easier to define an appropriate quadrature. Once the total cross-section 
probability distribution is evaluated, integrals involving this distribution may be 
performed quite accurately and efficiently. 
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Calculation of Multiband Parameters 

Although it would be most straightforward to choose the band structure (&) a priori 
and just evaluate the Pb and the various Xtb, it is more common to use a moments 
method to calculate these multiband parameters to reproduce the results obtained 
using certain limiting forms for the self-shielding. Using a generalized self-shield- 
ing factor of the form 

the band parameters can be calculated by requiring that the multiband expression 
agrees with the known results for various values of Zo and n. As an example, for 
two bands, there are two weighting parameters (PI ,P2)  and for each reaction 
process x two group-band cross sections (X! ' ,  x ! ~ )  in each group. A normal multi- 
group processing code will provide the unshielded V;,= 1 = l / ( X , + ~ ~ ) ~ l ,  the 
totally self-shielded flux-weighted [f,, = I / ( &  + E ~ ) ~ ] ,  and sometimes the totally 
self-shielded current-weighted [f,, = I / ( &  + c ~ ) ~ ]  values of the various cross sec- 
tions in group g, (C:)o, (Z!) l ,  and (X:),, respectively. Requiring that Eq. (1 1.79) 
yield these three values of the total cross section and realizing that Pl + P2 = 1 
yields four equations from which the band parameters can be calculated. It is 
necessary to introduce the ordering Xtl < Xt2 in order to obtain a unique solution, 
since the two bands are otherwise indistinguishable. The solutions are 

where 

Having thus determined ( P I ,  P2, c:', and zf2), the group-band cross sections for 
the individual processes x, (XR,' , c:~) can then be determined by requiring that w. 
(1 1.79) yield the unshielded [,fss = 1 = 1/(E,  + and the totally shielded flux- 
weighted [f,, = l / ( X t +  &)'] cross sections ( Q o  and (C:)l, respectively, which 
yields 
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This general procedure may be extended to more bands. In practice, it has been 
found that two to four bands are sufficient. 

The scattering transfer rate from group g' to group g in the normal multigroup 
theory depends on the scattering cross section in group g', E f ,  and on the transfer 
probability, @'g, that a neutron scattered in group g' will have final energy in 
group g (i.e., c!'" C{ ~8""). The transfer probability does not depend on the 
scattering cross section in either group g' or group g. The usual procedure for 
constructing the group band g' b' to group band gb scattering transfer rate is to 
replace E$' with c$~' and to assume that the transfer probability from group band 
g'b' to group band gb is just the group g' to group g transfer probability times the 
weight pgb of band b in group g (i.e., E$b"gb = ~ $ ~ ' ~ g " + g e ) .  Various extensions of 
this definition of the group-band scattering transfer probability have been sug- 
gested, but its calculation remains heuristic. 

Interface Conditions 

The interface-boundary conditions for multiband transport theory remain some- 
what heuristic as well. Clearly, the continuity of directional group-flux condition 
requires that 

where f s refers to the + and - sides of the interface at r =s .  The argument that 
the cross sections are not correlated across an interface between dissimilar media is 
used to justify the distribution of directional group fluxes crossing an interface from 
- to + side according to the weights on the + side: 

R-Matrix Representation 

The quantum mechanical representation of reaction cross sections is given most 
generally by R-matrix theory, in which the reaction cross section for any incident 
channel c and exit channel c' is generally expressed in terms of the collision matrix 
UC'1 : 

 h his section was prepared with the extensive collaboration of R. N. Hwang 
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where gc and 6,, are the statistical factor and the Kronecker delta, respectively. The 
unitary property of U,,I leads to the expression of the total cross section as a linear 
function of U,?: 

The collision matrix, in turn, can be expressed in terms of the resonance parameter 
matrix R according to Wigner and Eisenbud: 

where 

is a real symmetric matrix and 

The energy-independent parameters Ex, y h ,  and Bc denote the R-matrix state, 
reduced width amplitude and arbitrary boundary parameters, respectively. Of all 
parameters given above, &, Sc, and PC are momentum dependent for the elastic 
scattering channels only. $,, the hard-sphere phase shift factor, is related directly to 
the argument of the outgoing wavefunction at the channel radius, whereas S,, the 
shift factor, and PC, the penetration factor, reflect the real and imaginary parts of its 
logarithmic derivative, respectively, as defined in Table 1 1.3. These quantities, 
along with the matrix R, specify the explicit energy dependence of the cross sec- 
tion. It should be noted that the matrix R is primarily responsible for the sharp rise 
in cross section at the energy near the resonance energy, Ex, while the other energy- 
dependent quantities are relatively smooth by comparison. All energy-independent 
quantities given above are, in principle, determined by the fitting of the experi- 
mental data. 

An alternative expression for the collision matrix is the equivalent level matrix 
representation derived by Wigner, which can provide more analytical insight for the 
dmussions to follow. It is given as 

where the level matrix A is defined as 
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TABLE 11.3 Momentum-Dependent Factors for Various I-States Defined 
at Channel Radius rc (p = kr,) 

Factors 1 =0  I =  1 1 = 2 1=3 

Source: Data from Ref. 12; used with permission of Institute for Nuclear Research and Nuclear Energy, 
Sofia. 

This expression provides a clearer picture of the explicit energy dependence of the 
collision matrix. 

Practical Formulations 

Although the formal R-matrix representation is rigorous on theoretical grounds, it is 
quite obvious that simplifications are required before its deployment as the basis for 
nuclear data evaluations and subsequent use in reactor applications. In the current 
ENDFIB format, four major formalisms pertinent to the treatment of the resonance 
absorption are allowed: the single-level Breit-Wigner (SLBW), multilevel Breit- 
Wigner (MLBW), Adler-Adler (AA), and Reich-Moore (RM) formalisms. These 
formalisms are based on approximations of the formal R-matrix theory to various 
degrees of sophistication. 

With exception of the Reich-Moore formalism, all these formalisms exhibit a 
similar form as a function of energy and can be considered as the consequences of 
various approximations of the Wigner level matrix. It is convenient to cast them 
into the pole expansion form in either the energy or momentum domain (k-plane). 
A simple generic form that is widely used in reactor physics is 

(energy domain) 
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where the superscript x denotes the type of reaction under consideration. The 
superscripts f ,  y, and R will be used to denote fission, capture, and compound 
nucleus (or total resonance) cross sections, respectively. Physically, each term 
retains the general features of a Breit-Wigner resonance upon which the traditional 
resonance integral concept was based. The relationships between these pole and 
residue parameters and the traditional resonance parameters for three of the major 
formalism are tabulated in Table 1 I .4. The use of complex arithmetic here makes 
possible a direct comparison of these traditional formalisms to the rigorous pole 
representation to be discussed later. however, are different and depend on the , , 
approximations assumed. 

Single-Level Breit- Wigner Approximation (SLBW). The SLBW approximation 
represents the limiting case when the resonances are well separated from each 
other. Thus the level matrix A at a given E can be viewed as a matrix with only 
one element. In much of the previous discussion, the resonance integrals were also 
treated in this approximation. In reality, the resonance cross sections clearly cannot 
be taken as a disjoint set of isolated resonances in a rigorous treatment. Ambiguity 
can arise as to what constitutes the macroscopic cross sections in a detailed 
treatment of the neutron slowing-down problem over an energy span consisting 
of many resonances of more than one nuclide. For this reason, the single-level 

TABLE 11.4 Poles and Residues for 'Ikaditional Formalism 

Formalism Poles, dL Residues, 

SLBW 

MLBW 

Adler- Adler 

Same as above Same as above if x EL y 

where 

Source: Data from Ref. 12; used with permission of Institute for Nuclear Research and Nuclear Energy, 
Sofia. 
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description used in practical applications such as that specified in the ENDF/B 
manual is often given in the context of Eq. (1 1.92) as a linear combination of Breit- 
Wigner terms supplemented by the tabulated pointwise smooth data so that the 
continuous nature of the cross sections, and thus the flux, can be preserved. 

Multilevel Breit-Wigner Approximation (MLBW). The MLBW approximation 
corresponds to the situation in which the inverse of the level matrix is taken to 
be diagonal. One constraint for SLBW and MLBW approximations of practical 
interest is that all parameters must be positive. It is worth noting that poles and 
residues are energy dependent, although in many applications they are taken to be 
energy independent. Otherwise, additional terms in the @-domain would result in 
all I > 0 sequences using SLBW and MLBW formalism. 

It should be noted that, strictly speaking, the amplitude and the pole d). are 
also energy dependent for the single-level Breit-Wigner and multilevel Breit- 
Wigner approximations if the explicit energy dependence of the penetration factor 
and the level-shift factor are considered for all 1 > 1 states. In reference to the 
ENDF/B manual, the amplitude of an individual resonance is proportional to the 
penetration factor, while the real part of dh is identifiable as 

The latter is equivalent to assuming that the boundary parameter is set to be 
Bl=SI(IEhl).  Thus the rational function nature of Pl(p) and Sl(p) defined in Table 
11.3 can lead to 2(1+ 1) pole terms for each resonance in the momentum domain, 
instead of two terms. The absolute values of the additional 21 poles are generally 
large compared to those two, resulting from the line-shape function directly, so as 
to reflect the relatively smooth nature of the energy dependence of the penetration 
factor and the level shift factor. The inclusion of these secondary energy effects can 
readily be added within the context of the generalized pole representation to be 
described (Ref. 13). 

Adler-Adler Approximation (A-A). The diagonalization of the inverse level 
matrix A-' leads directly to the pole expansion defined by Eq. (11.92). The 
Adler-Adler approximation is equivalent to the Kapur-Peierls representation, in 
which the poles and residues are assumed to be energy independent. In the context 
of the forgoing discussion, it is equivalent to assuming the energy independence of 
LO of Eq. (1 1.91) when the inverse of A-' is considered. The approximation is 
usuatly restricted to the s-wave sequences of the fissionable isotopes in the low- 
energy region, where the assumption is valid. 

Reich-Moore Formalism. For practical applications, the formal R-matrix 
representation is obviously difficult to use when many levels and channels are 
present. The problem has been simplified significantly by the method proposed 
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by Reich and Moore. The only significant assumption required, in principle, is 

which utilizes the presence of the large number of capture channels and the random 
sign of yb. It is consistent with the observed fact that the total capture width 
distribution is generally very narrow. If one partitions the collision matrix into a 
2 x 2 block matrix arranged such that the upper and lower diagonal blocks consist 
of only noncapture and capture channels, respectively, and utilizes Eq. (1 1.95) as 
well as Wigner's identity between the channel matrix and the level matrix, the 
collision matrix can be reduced to the order of m x m where m is the total number 
of noncapture channels. The reduced collision matrix remains in the same form 
except that the real matrix R is replaced by a complex matrix R' with elements 

The substitution of the reduced R-matrix into the original equation leads to the 
following general form of collision matrix expression for the Reich-Moore approx- 
imation in terms of the familiar notations commonly used in applications: 

where 

and s =S(E)-B.  
It should be noted that the traditional Reich-Moore representation currently 

specified by the ENDF/B manual was originally developed for applications in 
the relatively low energy regions. It is different from the general form given above 
because two additional assumptions were introduced. First, s is taken to be zero. 
The rationale is based on the fact that lim St(E) = -1, implied by the rational 
functions listed in Table 11.3. Thus, by taking limE,* B, = -1, the quantity 
3! = 0 and the level shift factor will not play a role in the low-energy region. 
Second, one elastic scattering channel is allowed in the channel matrix K. Although 
the assumption simplifies the computation required, the issue may still arise for 
nuclides with odd atomic weight, for which the multiple elastic channels still may 
play a role. All evaluated resonance data given in the ENDFIB VI to date are based 
on these assumptions. 

One consequence of the Reich-Moore approximation is that the reduced colli- 
sion matrix is no longer unitary because RLC, is complex. For practical applications, 
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this presents no problem since the total cross section can be preserved if the capture 
cross section is defined as 

All parameters retain the physical as well as the statistical properties specified by 
the formal R-matrix theory. The order of the channel matrix is usually no greater 
than 3 x 3. Hence the method is attractive for data evaluations, and in fact, Reich- 
Moore parameters have become widely available in the new ENDFIB-VI data. 

However, unlike the other three formalisms, resonances defined by the Reich- 
Moore formalism can no longer be perceived in the context upon which the tradi- 
tional resonance theory in reactor physics was based. The direct application of this 
formalism to reactor calculations not only requires the entry of excessive files of 
precomputed, numerically Doppler-broadened pointwise cross sections at various 
temperatures, but also renders useless many well-established methods based on the 
resonance integral concept. Hence there is strong motivation to seek remedies so 
that the newly released Reich-Moore parameters can be fully utilized within the 
framework of the existing methodologies. 

Generalization of the Pole Representation 

Although any given set of R-matrix parameters, including those in the Reich- 
Moore form, can be numerically converted into parameters of the Kapur-Peierls 
type, the parameters so obtained are implicitly energy dependent. With the excep- 
tion of low-lying resonances of a few fissionable isotopes, such dependence is 
generally not negligible. Thus, from the practical point of view, the traditional pole 
expansion is not useful for most nuclides of interest. However, a desirable repre- 
sentation directly compatible with the traditional forms given by Eq. (1 1.94) can be 
derived if the pole expansion is cast into a somewhat different form. 

Rigorous Pole Representation. One attractive means to preserve the rigor of the R- 
matrix description of cross sections is to perform the pole expansion in the 
k-plane (or momentum domain). Such a representation is natural for the SLBW, 
MLBW, and Adler-Adler approximations. The theoretical justification of such a 
representation is based on the rationale that the collision matrix must be single 
valued and meromorphic in the momentum domain. Any function that exhibits such 
properties must be a rational function according to a well-known theorem in 
complex analysis. The rational function characteristics are quite apparent if one 
examines the explicit a-dependence of the collision matrix UC8 defined by Eq. 
(11.89), if the level matrix is expressed as the ratio of the cofactor and the 
determinant of its inverse. By substituting Sl and Pl into Eq. ( 1  1.89) or (1 1.92), 
the quantity Ucc, is expressible in terms of a rational function of order 2(N+ I ) ,  
where N is the total number of resonances. This reflects the polynomial nature of 
the cofactor and the determinant of the inverse level matrix. Thus one obtains via 
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partial fractions the similar pole representation for other approximations. A general 
expression that can be used with all cross-section representations is 

and similarly, 

(4 for the reaction cross section of process x, where R,,J,ji and P I ( )  are pole and 

residue, respectively. Note that the complex conjugate p$* is used here in order 
to cast the expressions into the form defined by Eq. (1 1.92). These equations can be 
viewed as the generalized pole expansion in which all parameters are truly energy 
independent and the energy dependence of the cross sections is specified explicitly 
by the rational terms alone. 

The indices M and jj depend on the type of resonance parameters and assump- 
tions used to generate these pole parameters: 

Adler-Adler: M = N (total number of resonance); jj = 2. All pole parameters 
can be deduced directly via partial fractions. 
SLBWand MLBW M = N, jj = 2 if penetration factor and level shift factor are 
taken to be energy independent, an assumption used in the traditional reso- 
nance integral approach. Otherwise, M = N; jj = 2(1+ 1) if all energy-depen- 
dent features are included. 
Reich-Moore: M =  N +  1; jj= 2 for both scenarios with &(E)  = 0 and 
$ ( E )  # 0 if Eq. (1 1.98) is used. Another possible scenario is to keep the 
traditional expression specified by the ENDFIB manual intact; that is, let 
F = Z  in Eq. (1 1.98), but to introduce the level shift factor via replacing the 
resonance energy EL with 

the same as for the SLBW and MLBW approximations. The resulting number 
of poles becomes M = N; jj = 2(1+ 1). 

By comparing Eqs. (11.94) and (11.101), one is led to the following observa- 
tions: (1) For the s-wave, both the rigorous pole representation and the traditional 
formalism consist of an identical number of terms with the same functional form 
in the momentum domain. In particular, the Adler-Adler formalism for the s-wave 
can be considered as the special case of the former when p?) = -p?) and 
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R!?>, ,)L = R!;), ,. (2) For higher angular momentum states, Eq. (1 1.101) consists of 
either 21 o; '2i~ more terms than those defined by Eq. (11.94). The difference, 
however, is only superficial. The same number of terms would have resulted if 
the detailed energy dependence of the penetration factor and the shift factor had 
been included in Eq. (1 1.94). 

Equations (1  1.101) and (1 1.102) provide the basis whereby any given set of R- 
matrix parameters, in principle, can be converted into pole parameters, although it 
may not be an easy task in practice. The recent availability of R-matrix parameters 
in the Reich-Moore form greatly alleviates the numerical difficulties for such a 
conversion process. One obvious disadvantage of this method is that two to as many 
as 2(1+ 1) terms must be considered for each resonance if the cross section is to be 
evaluated in the momentum domain. This is obviously undesirable for computing 
efficiency, storage requirement, and its amenability to the existing codes for reactor 
calculations. 

Simpljied Pole Representation. The Mxjj poles for a given 1 and J defined in Eqs. 
(11.101) and (11.102) can be divided into two distinct classes. There are 2N 
s-wavelike poles with sharp peaks and distinct spacings, while the remaining 2I 
or 21N poles are closely spaced and are characterized by their extremely large 
imaginary components (or widths). In fact, the contributions of the latter to the 
sums are practically without any resonancelike fluctuations, as if they were a 
smooth constituent. On the other hand, the s-wavelike poles always appear in 
pairs with opposite signs but not necessarily with the same magnitude. These 
characteristics provide a valuable basis for simplification. 

Let q f ) ( f i )  denote the contributions from those additional 21 or 21N terms 
involving poles with giant width. Equation (1 1.102) can be cast into the same form 
as that of Humblet-Rosenfeld: 

where 

and 60 = 0 and 6, = 1 for I > 0. The quantity sjX)(@), physically signifying a 
measure of deviation from the Adler-Adler limit of $)* = -pF) ' ,  is usually not 
onIy small in magnitude but also smooth as a function of energy in the region where 
the calculations take place. Thus s?) (a) and q j"' (a) can be construed as the 
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energy-dependent smooth term in the Humblet-Rosenfeld representation with its 
energy dependence explicitly specified. 

Hence, for a given range of practical interest, the rigorous pole representation 
can be viewed as a combination of fluctuating terms, consisting of N poles with 
~ e { & ) )  > 0 expressed in the energy domain consistent with the traditional form- 
alism and two nonffuctuating (or background) terns attributed to the tails of out- 
lying poles (in reference to the domain fi > 0, where calculations are to take 
place) with negative real component and the poles with extremely large width (or 
11rnbf))l) for 1 > 0 states, respectively. The striking behavior of the fluctuating and 
nonfluctuating components have been confirmed in recent calculations for all major 
nuclei specified by the Reich-Moore parameters in the ENDFIB VI files. 

The smooth behavior of these terms clearly suggests that their energy depen- 
dence can be reproduced by other, simpler functions within the finite interval of 
practical interest. It is well known in numerical analysis that the rational functions 
are best suited to approximate a well-behaved function within a finite range. Hence 
the obvious choice is to set the approximate functions if) (&) and 4f) (a) to be 
rational functions of arbitrary order. Mathematically, they can be viewed as the 
analytic continuations of the original functions $I(&) and 4j")(@) within do- 
main fi > 0. One attractive feature of the method proposed is that the rational 
functions so obtained can be again expressed in the form of a pole expansion via 
partial fraction, that is, 

if NN> MM. c$ and 5; are the poles of the fitted rational functions (i.e., the ratio of 
the two low-order polynomials) for $)(a) and i$)(&), respectively, while r r )  
and t!) are their corresponding residues. 

Doppler Broadening of the Generalized Pole Representation 

Either one of two approaches are usually taken, depending on the accuracy re- 
quired. The rigorous broadening must be carried out in the momentum domain, 
whereas the simplified broadening is based on the approximate kernel in the energy 
domain. In the following discussions, the Doppler-broadened cross section based on 
the traditional formalism and the generalized pole representation are compared. 

Exact Doppler Broadening. The Maxwell-Boltzmann kernel can be expressed 
rigorously as 
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where 

Am = g - - Doppler width in momentum space 

The Doppler broadening of &ox(&') defined by Eq. (1 1.94) in momentum 
space and that defined by Eq. (11.102) lead immediately to: 

a Traditional representation: 

a Generalized pole representation: 

when $)(fi) is insensitive to Doppler broadening and 

and W(z) is the complex probability integral and is directly related to the usual 
Doppler-broadened line shape functions via the relation 

and z = x + i y .  
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In the single-level limit, Eq. (1 1.109) is equivalent to the generalized form of the 
exact Doppler broadening defined by Ishiguro. Thus, except for the superficial 
difference leading to the smooth term 4p)(&)61, Eqs. (1 1 .log) and (1 1.1 10) have 
the same functional form but are characterized by different parameters. From a 
practical point of view, the computational requirements for these equations are 
expected to be comparable if the smooth term is replaced by the approximation 
defined by Eqs. ( 1  1.100) and (I 1.101). 

Approximate Doppler Broadening. For most of the existing codes based on the 
traditional formalism, the Doppler broadening is generally based on the approxi- 
mate Gauss kernel defined in the energy domain 

1 
M(Ex - E )  =- 

(Ex - E )  
fi AE 

where AE = 4- is the Doppler width in the energy domain. 
The validity of such an approximation requires the criterion E  >>>A,. It has 

been well established that the use of the Gauss kernel in the energy domain is 
generally satisfactory for E > 1 eV. The Doppler-broadened cross sections become: 

Traditional .formalism: 

Generalized pole representution afer  simplijcaiioa: 

+ if' (a, T )  + if) ( E )  61 

where 
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PROBLEMS 

11.1. Carry through the steps indicated to derive the narrow resonance approx- 
imation flux of Eq. (11.6) and the wide resonance approximation flux of 
Eq. (11.10). 

11.2. A fuel assembly in a reactor consists of a uniform array of fuel pins 1 cm in 
diameter set in parallel rows such that the center-to-center separation 
between adjacent rows is 3 cm in both ways. The fuel is 2.8% enriched 
U02 operating at 800•‹C. The moderator is H20 at 0.85 g/cm3. Calculate the 
heterogeneous resonance integral in the narrow resonance and the wide 
resonance approximations for the 2 " ~  resonance at 36.8 eV, in the isolated 
fuel rod approximation. 

11.3. Repeat Problem 1 1.2 taking into account the Dancoff correction for a 
closely packed square lattice. 

11.4. Assume that the fuel and moderator in Problem 11.2 are mixed homoge- 
neously together. Calculate the homogeneous resonance integral for the 
2 3 8 ~  resonance at 36.8 eV at 800•‹C. 
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11.5. Calculate the contribution of the 2 3 8 ~  resonance at 36.8 eV to the multi- 
group cross section of a group with E,= lOeV and EgP1 = 100eV, for 
Problems 1 1.2 to 1 1.4. 

11.6. Repeat Problem 11.2 for D20 moderator. Calculate the contribution to the 
multigroup cross section over E, = 100 eV to E,- I = 100 eV. 

11.7. Compare the calculated escape probability for a fuel plate immersed in 
water for values of h/E, in the range 0.1 1 h/l, < 10.0, using the exact 
expression of Eq. (11.32) and the rational approximation of Eq. (1 1.43). 

11.8. Derive the first-flight escape probability for neutrons created uniformly over 
a slab of thickness a given by Eq. (1 1.32). 

11.9. Write a code to calcdate the unresolved 2 3 8 ~  multigroup capture cross 
section of Eq. (11.62) for a group extending from E,= 1 keV to 
E,- = I0 keV. 

11.10. Evaluate the two-band group absorption cross section for a group extending 
from E, = lOeV to E,-I = 100eV for a nuclide for which the absorption 
and total cross sections are C,, = 0.4 cm-' and Xtl = 0.5 cm-I from 
10 1 E 1 50 eV and are XO2 = 0.6 cm-' and Xt2 = 0.8 cm-' from 
5OeV 1 E < 100eV. 



12 Neutron Therrnalization 

The thermalization of neutrons is complicated, relative to neutron slowing down, by 
the fact that the thermal energies of the target nuclei are comparable to the neutron 
energies, so that a neutron may gain or lose energy in a scattering collision, and by 
the fact that the nuclei are generally bound in a lattice or molecular structure, which 
considerably complicates both the calculation of a scattering cross section and the 
scattering kinematics. The objectives of neutron thermalization theory are first to 
calculate cross sections that characterize the thermal neutron scattering and energy 
transfer and then to use these cross sections in calculation of the thermal neutron 
spectrum. In this chapter we consider some approximate models of neutron ther- 
malization that provide useful physical insights, discuss the construction of thermal 
neutron scattering kernels, and then discuss the analytical and numerical calcula- 
tion of the neutron thermal energy spectrum in homogeneous media and hetero- 
geneous reactor lattices. 

12.1 DOUBLE DIFFERENTIAL SCATTERING 
CROSS SECTION FOR THERMAL NEUTRONS 

A quantum mechanical andysis of the scattering event in which an incident neutron 
interacts with an assembly of target nuclei of atomic mass A leads to an expression 
of the differential scattering cross section for scattering from energy El to energy E 
and from direction a1 to direction In: 

where po = fl' a, crb is the scattering cross section for a neutron incident on a 
bound nucleus, 

E ' + E - Z ~ @ E  E - EI 
a = , p=- AkT kT 

(12.2) 

and S(a, B) is a scattering function that depends in a complicated way on the 
detailed dynamics and structure of the scattering material. Hence 
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is the bound atom cross section, given in terms of the free atom cross section, Zf, 
and the ratio of scattering to neutron masses, A. 

12.2 NEUTRON SCATTERING FROM A MONATOMIC 
MAXWELLWN GAS 

Differential Scattering Cross Section 

The simplest, but by no means simple, model of neutron thermalization is for 
neutrons scattering from a monatomic gas of unbound nuclei distributed in energy 
according to a MaxweIlian distribution, for which the scattering function is 

which yields for the differential scattering cross section 

where A is the atomic mass (arnu) of the target nuclei, of is the total scattering cross 
section for a neutron incident on a free nucleus. and 

Integrating Eq. (12.4) over -1 5 po 5 1 and using the relationship between 
and (E, E') for elastic scattering, 

yields for the zeroth Legendre moment of the scattering transfer function, 
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where erf(x) is the error function and 

The upper signs are used when E' < E, and the lower signs are used when E' > E. 

Cold Target Limit 

In the limit T +  0, Eq. (12.7) reduces to the scattering transfer function for elastic 
scattering from a stationary target: 

which was used in Chapter 10 for the treatment of neutron slowing down in the 
energy range well above thermal where the nuclear motion is negligible compared 
to the neutron motion. 

Free-Hydrogen (Proton) Gas Model 

Hydrogen, in the form of water molecules, is a dominant nuclear species for 
neutron thermalization in water-cooled nuclear reactors. The free-hydrogen gas 
model neglects the fact that hydrogen is present in molecular form and treats the 
thermalization of neutrons by a gas of free protons (hydrogen nuclei). For scattering 
from hydrogen nuclei (A = I), the zeroth Legendre moment of the scattering energy 
transfer function of Eq. (12.7) simplifies to 

Radkowsky Model for Scattering from H20 

The Radkowsky model uses the hydrogen gas model of Eq. (12.10) to describe the 
zeroth Legendre moment of the scattering transfer function, and uses 

E,v, (E' -+ E) = Cs (E)P, (E)G(E - E') (12.1 1 )  

to describe the first Legendre moment. The bound-state cross section, &, is related 
to the free-state cross section, Cf, by 
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where A is the mass of an atom bound in a molecule of mass AmO1 and has been set 
to unity in the last step to represent the hydrogen bound in water molecules. 

Application of this model is implemented by adjustment of AmO1 until &, agrees 
with an experimentally measured scattering cross-section, as a function of energy. 
Then po = 2/(3AmO1) is used to calculate &(E) = &(E)[l -po(E)]. 

Heavy Gas Model 

In the limit of large A, the scattering transfer function of Eq. (12.7) can be expanded 
in powers of A-'. When only the leading term is retained, the result is 

where 6' and 6" are the first and second derivatives of the delta function with 
respect to x. Integrating this expression over E defines the total scattering cross 
section in this model: 

Using Eq. (12.13) to evaluate the scatter-in integral yields 

when the property of the derivatives of the delta functions, 

is taken into account. Substituting this expression for the scatter-in integral into the 
neutron balance equation 

yields 

which is the heavy gas model for the thermal neutron spectrum, $(E). 
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123 THERMAL NEUTRON SCATTERING 
FROM BOUND NUCLEI 

The quantum mechanical theory for neutron scattering from a system of bound 
nuclei leads to an expression for the double differential scattering function for 
scattering from energy E' to energy E and from direction a' to direction a: 

where h is the reduced Planck's constant, f i ~  = m(vr-v) is the neutron momentum 
exchange vector, E = El-E is the neutron energy change, and Ccoh and Ei, are the 
bound coherent and incoherent macroscopic cross sections. The coherent scattering 
takes into account the interference of neutrons scattering from different nuclei, which 
is important when the neutron wavelength h(cm) = 2.86 x ~ o - ~ / [ E ( ~ v ) ] ' / ~  is com- 
parable with the spacing between atoms in a crystal or molecule, and the incoherent 
scattering takes into account the scattering of neutrons from isolated nuclei. 

Pair Distribution Functions and Scattering Functions 

The functions G(r, t) and G,(r, t) are pair distributionfinctions. If a scattering target 
atom is at the origin r = 0 at time t = 0, then G(r, t) is the probability that an atom 
will be present within unit volume dr  about r at time t. G(r, t) = G,(r, t) + Gd(r, f ) ,  
where G,(r, t) is the probability that the atom present in dr about r at time t is the 
same atom that was present at r = 0 at time t = 0, and G&, t) is the probability that a 
different atom is present in dr about r at time t. The integrals involving the pair 
distribution functions in Eq. (12.19) are defined as the scattering functions 

Jrn / .i(K .-Cr/h) S ( K ,  G )  = - ( , t) drdt 
2n -, 

with a similar definition for Ss in terms of G,. 
The principle of detailed balance requires that 

be satisfied separately for the incoherent and coherent contributions. Recalling that 

2 4  
M ( E ,  T )  ---- 

( n k ~ ) ~ / ~  
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this detailed balance requirement may be written 

e - E 1 2 k T ~ ( ~ ,  E )  = e E 1 2 k T ~ ( - ~ ,  - E )  (12.23) 

with a similar requirement for S,, which requires that both S(K, E )  and S,(K, E )  be 
even functions of E .  

In many scattering models, S(K, E )  is a function of I?, and an equivalent scatter- 
ing function can be defined: 

1 a2 + P2 s(a, p) = ~ T P ~ S ( K ,  E )  = 
exp ( - 40) 

~ ( T Q >  

where cc and are defined by Eq. (12.2). Using this scattering function, the double 
differential scattering transfer function can be represented as 

( I  + E + ) = p) + CincSS(a, P)] (12.25) 

Intermediate Scattering Functions 

An equivalent representation of the double differential scattering transfer func- 
tion is 

where the intermediate scattering functions are defined: 

Incoherent Approximation 

The interference effects, which are contained entirely in the pair distribution func- 
tion Gd, are important in elastic scattering, but are less important in inelastic 
scattering, particularly in liquids and polycrystalline solids. This observation leads 
to the incoherent approximation, obtained by setting Gd = 0 in Eq. (12.19): 

Ccoh + z i n c  1 JJDO 1 e i ( ~ .  r -a/f i j  ~ . ( ~ ~ - ~ , f l ' + n ) =  4irh -- 
E127r -, G.,. (r, t )  dr dt 
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Note that this approximation retains the coherent scattering cross section, Ccoh. 
With the incoherent approximation, S(a, P) = SJa, P) in Eq. (1 2.25) and xcoh = xinc 

in Eq. (12.24). 

Gaussian Representation of Scattering 

In the incoherent approximation, the intermediate scattering function has a 
Gaussian form in many important cases: 

where 

w coswt dw 
A t + -  = g(w)coth-- ( l T )  I" [ 2kT sinh(wl2kf) 1- w (12.30) 

The properties of a particular moderator are represented in the frequency distribu- 
tion function, g(w). For crystals, g(o) is a true phonon frequency spectrum. For 
liquids and molecules, g(o) contains the diffusive and vibrational characteristics 
and may be temperature dependent. Representative frequency distribution functions 
are: 

3w2 
Debye crystal: dw) = 

1 
Einstein crystal: g(w) = -6(w - 8) 

A 
1 

Molecular liquid: g (w) = -fd (w) + ~ i 6 ( ~  - wi) A 
1 

where 0 = hvm/2nk = Av,/k, v, is the maximum allowed frequency, fd(o) de- 
scribes the frequency distribution associated with diffusive motion of the molecule, 
and the yi6(o-mi) describe the internal vibrations with frequency oi of the indi- 
vidual atoms of which the molecular fluid is composed. 

The corresponding scattering functions in the Gaussian representation are 

&(a, p) = - dteiPt exp [ - aw2(t)] 
21r J" -, (12.32) 

where 
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Measurement of the Scattering Function 

The scattering transfer function can be determined from Eq. (12.25), in the 
incoherent approximation, by measuring &(El + E, a' 4 0). For small values 
of neutron momentum transfer, K ~ ,  and energy transfer, the exponential in Eq. 
(12.32) can be expanded to obtain a relation between the frequency distribution 
function and the measured S,(ct, p): 

P Sda7P) f (P) = 2p sinh - hm - 
2-0 a 

and noting that Iao/2?c = E l - E =  PkT. Thus, by measuring the scattering double 
differential cross section for small momentum and energy transfer events, the 
scattering function S, can be inferred and related to the frequency distribution. This 
enables the experimental determination of g(o), which can then be extrapolated and 
used to calculate scattering transfer functions for larger energy and momentum 
transfers. 

Applications to Neutron Moderating Media 

The double-differential scattering transfer function for water has been calculated 
with a molecular liquid model in which the frequency distribution function is given 
by 

where the first term represents the translational (diffusive) motion of free gas mol- 
ecules, the second term represents hindered rotation (A2 = 2.32, hw/2n: = 0.06 eV ), 
and the third and fourth terms represent vibrational modes with (Aj = 5.84, hwl 
2~ = 0.205 eV) and (A4 = 2.92, h0/27~ = 0.48 1 eV ). This Nelkin distribution func- 
tion was used to evaluate the scattering function of Eq. (12.32), which was then 
used to evaluate the double differential scattering transfer function of Eq. (12.1). 
The results are compared with experimental measurements of the double differen- 
tial scattering transfer function, for different incident neutron energies, in Fig. 12.1. 
Also shown are results calculated with the free-hydrogen gas model of Eq. (12.4). 

The phonon frequency spectrum for graphite, based on two slightly different 
modeh, is shown in Fig. 12.2. Specializing the incoherent approximation for the 
double differential scattering transfer function of Eq. (12.28) to a crystal lattice with 
cubic symmetry and harmonic interatomic forces yields 

f (w) e-hw/2kT 
x exp [s / 

2Am -, 2w sinh(tiw12kT) 
(ePiM - 1) du] m 
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Fig. 12.1 Calculated and measured double differential scattering transfer functions in liquid 
water at various incident neutron energies. (From Ref. 3; used with permission of Wiley.) 

Using the Young-Koppel frequency distribution shown in Fig. 12.2 to evaluate 
Eq. (12.36) yields the inelastic cross section shown in Fig. 12.3. Adding to this 
the absorption cross section of graphite and an elastic scattering cross section 
calculated without making the incoherent approximation, the total calculated cross 
section for graphite is compared to measured values in Fig. 12.3. Here m is the 
neutron mass. 

12.4 CALCULATION OF THE THERMAL NEUTRON SPECTRA 
IN HOMOGENEOUS MEDIA 

Turning now to the calculation of the neutron energy spectrum, the neutron balance 
equation for thermal neutrons, neglecting leakage, is 

The principle of detailed balance for a neutron distribution in equilibrium, 
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Fig. 12.2 Phonon frequency distribution functions for graphite derived from two different 
models. (From Ref. 3; used with permission of Wiley.) 

where M(E, T )  is the Maxwellian neutron particle distribution at temperature T, 

is quite important in developing solutions for the thermal neutron distribution. 

Wigner-Wilkins Proton Gas Model 

The zeroth Legendre moment of the scattering energy transfer funcction for neutron 
scattering from a free gas of hydrogen nuclei with a Maxwellian distribution is 
given by Eq. (12.10). It is convenient to define the dimensionless variable 
x = ( E / ~ T ) ' / '  and to symmetrize the scattering transfer function: 
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Fig. 12.3 Calculated and measured cross sections in graphite (GASKET and SUMMIT 
refer to codes). (From Ref. 3; used with permission of Wiley.) 

In terms of the reduced density, 

Eq. (12.37) can be written 
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or more explicitly, 

where erf(x) is the error function of argument x, 1 /v absorption has been assumed, 
and Zoo = C,(vo = 2200 m/s) is the 2200-m/s macroscopic absorption cross sec- 
tion. 

Equation (1 2.42) can be transformed into a second-order differential equation by 
defining a second-order differential operator which when applied to either erf(x) 
exp(2/2) or exp(-212) yields zero. Such an operator is 

with 

- J?; erf (x) 
a (x )  = b(x) = exp( -2) 

- X 
2 

exp(-x2) 3- x& erf(x) exp(-x2) + f i x  erf(x) 

(12.45) 

When this operator is divided by 

and then applied to Eq. (12.42), the Wigner-Wilkins equation results: 

where 

Appropriate low-energy boundary conditions can be deduced from setting x = 0 
in Eq. (12.43), which leads to the low-energy boundary condition ~ ( 0 )  = 0. The two 
solutions of Eq. (12.43) near x = 0 are a constant and a solution that varies like x ;  
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and only the latter can satisfy the boundary condition ~ ( 0 )  = 0. The other boundary 
condition follows from the requirement that the flux take on the asymptotic 
1 / E -  l / x 2  form from the slowing-down region at high energies in the thermal 
range. 

Defining 

Eq. (12.47) can be reduced to a Ricatti equation: 

At low energies (small x),  Eq. (12.50) has a power series solution 

Defining 

the coefficients are 

The solution can be extended numerically to higher energies (larger x)  by fitting 
a polynomial to values for which the power series is valid, say up to xn, to define the 
polynomials 

which can be used to extrapolate the solution to higher x >x,: 

These algorithms can be used as a predictor coupled with Eq. (12.50) in a 
predictor-corrector type of solution. 
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The boundary condition p(0) = 0, together with p(x) # 0, implies that 

which in turn implies that 

Numerical integration of the exponent then allows the density to be constructed 
from 

n (x) = - X m  exp {r  [ ~ ( d ) P w )  - I] &} (12.58) 
n3l4 V(X)  + Ca0/Cf o x' 

The development can be extended to include non-1 /v absorbers and leakage by 
the replacement 

where B characterizes a simple buckling mode. 
A thermal spectrum calculated for a l /v  absorber and with a thermal resonance, 

and matched to a 1 / E  slowing-down source upper boundary condition, is compared 
with a Maxwellian in Fig. 12.4. The spectrum hardening effects of the l / v  absorber 

Neutron energy, eV 

Fig. 12.4 Comparison of Wigner-Wilkins and Maxwellian thermal neutron spectra for a 
typical PWR composition. (From Ref. 2; used with permission of Wiley.) 
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in preferentially absorbing the lower-energy neutrons and of the l /E  slowing-down 
source in increasing the higher-energy neutron population are apparent, as is the 
flux depression in the vicinity of the resonance. 

Heavy Gas Model 

The heavy gas model given by Eq. (12.18) is a second-order differential equation 
for the thermal neutron flux. It is instructive to rederive that result before looking 
for a solution. We take advantage of the fact that the thermal neutron spectrum is 
expected to be similar to a Maxwellian for small absorption to look for a solution of 
Eq. (12.37) of the form 

and then make use of the detailed balanced condition of Eq. (12.38) to rewrite 
Eq. (12.37): 

Assuming that $ is a slowly varying function of E, we make a Taylor's series 
expansion 

2 d2$(E) d $ ( E ) + l ( E ' E )  + . . .  $(E') = $ ( E )  4- (E' - E)  - 
dl!? 

(12.62) 
dE 2! 

of *(El)  in the scatter-in integral, to obtain 

where the energy moments of the scattering energy transfer function are 

and where the first term in the expansion has canceled with the scattering contribu- 
tion to the total cross section on the left side of the equation. This expansion is valid 
for any scattering transfer function, but its utility depends on rapid convergence of 
the Taylor series, which requires that Cso(E + El)  is strongly peaked about E' = E 
(i.e., for heavy mass moderators which cannot produce a large energy change). 
Making a l / A  expansion of the gas scattering transfer function of Eq. (12.7) and 
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using the result to evaluate Eq. (12.64) yields 

If only krms through n = 2 are retained in Eq. (12.63), the resulting equation is 
identical to Eq. (12.18) to within a factor [A/(l + A ) ] ~ ,  which approaches unity for 
large A. 

It is convenient to rewrite Eq. (12.63) in terms of the variable x = ( E / ~ T ) ' / ~ :  

where l / v  absorption has been assumed and the absorption parameter is 

This equation can be solved exactly in the case of zero absorption (A = 0): 

where El  is the exponential integral function. Since the second term is negative at 
x = 0 and positive for large x, a2 must be zero. 

When absorption is present, Eq. (12.66) can be integrated once to obtain 

where we have used the fact that all of the neutrons slowing down below x-the 
slowing down density &-must be absorbed in the interval x <A' < 0. Integrating 
a second time yields an integral equation: 

that is well suited to solution by iteration. The asymptotic form for the neutron flux 
4 = nv at large values of x is 
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Equation (12.70) can be solved numerically to obtain the thermal neutron spec- 
tmm, $ ( E ) .  The solution is shown in Fig. 12.5 for different values of the parameter 
l- = &Pf. 
Numerical Solution 

Neutron scattering kernels are frequently so complicated that analytical or even 
semianalytical solutions are impractical, in which case direct numerical solution of 
the governing equation is the method of choice. A general numerical solution 
method, applicable to any scattering kernel, is illustrated for the proton gas model, 
for which Eq. (12.37) may be rewritten 

[ ~ ( x )  + I'] N ( x )  = dr' G(x' --, x)N (x') + dxl G(x' -+ x)Nasym (x ' )  1" 

Fig. 12.5 Neutron spectrum predicted by the heavy gas model for a l / v  absorber and 
different values of r = Xno/Xf (From Ref. 2; used with permission of Wiley.) 
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where 

and x, has been chosen so that the asymptotic form IVdsy, from the slowing-down 
range may be used for x' >x, .  In this case, the last term in Eq. (12.72) may be 
written cx er f (x) / (x ,  + r12,  where erf (x)  is the error function. 

Dividing the thermal energy range (0 < x < x,) into I intervals and using the 
trapezoidal rule, the right side of Eq. (12.72) may be approximated: 

i-1 2cxi erf ( x i )  C G(nl --t xi )N(xj )Aj  + G ( x ~  + xi)N(xi)Ai + (12.74) 
J= r (xc + q2 ' 

Equations (12.72) now may be solved directly by matrix inversion or by interation. 
For the iterative solution, the equations are rearranged to obtain 

[k G(xj  -+ xi)N(xj)Aj  + 2cxi erf (xi) N(x i )  = 
(V(x i )  + r) ,=I (& + r12 I (12.75) 

The iterative solution of Eqs. (12.75) proceeds by guessing #')(xi), evaluating 
the right-hand side, calculating N(')(xi), and so on. A convenient starting guess is 
#*'(xi) = NaSym(xi). It is important to enforce neutron conservation during the itera- 
tion, which is done by adjusting c .  

Moments Expansion Solution 

The continuous slowing-down, or moments expansion, methodology that was ap- 
plied in Chapter 1 1  to the neutron slowing-down problem is also applicable to the 
neutron thermalization problem. For heavy elements, the development is similar to 
that of age theory. Defining 

and changing to the lethargy variable, Eq. (12.37) may be written 

where 
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Since +(u) is approximately constant in the slowing-down range above thermal, 
$(ul) is expanded in a Taylor's series about u to obtain 

where 

Noting that for energies above thermal (no upscattering) the nth term in 
Eq. (12.78) is of order (kO)"-' relative to (rX)d+/du, where to is the average 
logarithmic energy loss for scattering by free atoms at rest [b = kiS0 = 1 + a 
In a/ ( l  -a)]. Hence, for scattering from atoms other than hydrogen and deuterium, 
Eq. (12.38) can be truncated after a few terms with little loss in accuracy. 

Differentating Eq. (12.38), truncating terms higher than d2+/du2, solving for 
(@)d2+/du2, using this result in Eq. (12.38), and neglecting terms of order (5;) 
and higher yields 

which can be integrated to obtain 

where 
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The moments of the scattering kernel are given by 

(YE) = ( - 1 ) ' " ~ ~  [(ln a)" - n(ln a)"-' + n(n - 1) (ln 

(- I)"+ 'n! (I + p12 + . . . + (-l)"n!] + -- 
1 - a  4~ 

where p - m/M, the ratio of the masses of the neutron and the scattering atom. For 
scattering by unbound atoms at rest, K(u) + 1 and Eq. (12.81) is identical to the 
Grueling-Goertzel approximation of Chapter 11. For y = 0, Eq. (12.8 1) reduces to 
Fermi age theory. The presence of y # 0 accounts for upscattering in the thermal 
range of energies. It is the decrease in 2, = E, + Es - ( c * ~ ) ,  rather than the 
decrease in EXs, that is the dominant effect of the chemical binding. 

For neutron thermalization by graphite, an explicit expression for the thermal 
spectrum is given by 

where z r (TJE) ' '~ ,  A - 2Ea(T)/pXf, and the other parameters are defined in terms 
of the crystal vibration spectra for perpendicular, pl(o), and parallel, p,(o), 
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vibrations: 

T. = - W , - : 1'' wp,(w) coth- dw 
2T 

where the Oi are the cutoff frequencies for the respective crystal vibration modes. 
These parameters are given for graphite and a free carbon gas in a Maxwellian 
distribution in Table 12.1. 

For hydrogenwus atoms, it is not possible to truncate Eq. (12.78) as described 
above for heavy mass scattering atoms. However, noting that 

(gc) = (-l)"n!C, -I- 0 ( i ) 
for hydrogen, it is possible to obtain a solution +(u) accurate to 0(1/~')  by 
neglecting terms of order 1 / ~ '  and higher in Eq. (12.78), which enables this 
equation to be written 

Operating on Eq. (12.87) with 1 + d/du and integrating then yields 

Expanding Eq. (12.88) in inverse powers of (EIT)''' yields 

TABLE 12.1 Thermalization Parameters for Carbon 

Graphite Free Gas 

T ( " K )  T / T  (K2),, /T2 BaV/T2 TIT ( K ~ ) = , / T ~  B~,/T' 

300 2.363 21.63 25 1 15/4 0 
600 1.432 7.794 2514 1 15/4 0 
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For hydrogen bound in water molecules at 293 K, the thermalization parameters are 
T I T  = 4.345, B,,/? = 126.90, and ( K ~ ) , , / T ~  = 53.63. 

Multigroup Calculation 

The thermal neutron scattering transfer function discussed in the preceding sections 
can be used in a multigroup calculation of the thermal neutron energy spectrum. 
The group-to-group scattering transfer term is defined as 

Evaluation of Eq. (12.90) requires an approximation for the energy dependence of 
the thermal neutron flux over the energy interval E, < E< E, One of the ap- 
proximate thermal neutron spectra above can be used for this purpose, or if the inter- 
vaI is sufficiently small, + = constant can be used. 

The multigroup thermal neutron flux balance equation, neglecting leakage, is 

where S, is the slowing-down source to the upper groups in the thermal energy 
range. 

Applications to Moderators 

The thermal neutron flux distribution has been calculated numerically for water 
with various amounts of admixed cadmium absorber, using both the free gas and 
Nelkin models to calculate the scattering transfer crosb section. Results of the 
calculations are compared with experiment in Fig. 12.6. 

The thermal neutron flux distribution has also been calculated numerically for a 
large graphite block poisoned with boron, using both the crystal model of 
Eq. (1 2.36) and the heavy gas model of Eq. (12.13) to evaluate the scattering 
transfer cross section. The results are compared with experiment in Fig. 12.7. 
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1 
w = =  EXPERIMENTAL (Cd POISON) - BOUND HYDROGEN CALCULATlOl 

Fig. 12.6 Experimental and calculated neutron energy spectrum in water with cadmium 
poisons. (From Ref. 3; used with permission of Wiley.) 

12.5 CALCULATION OF THERMAL NEUTRON ENERGY 
SPECTRA IN HETEROGENEOUS LATTICES 

The  transport equation for neutrons in  the thermal energy region E < Eth 1 eV is 

where 
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0.01 0.1 
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Fig. 12.7 Experimental and calculated neutron energy spectrum in graphite at 323OK. 
(From Ref. 3; used with permission of Wiley.) 

is the source of neutron scattering into the thermal region from the slowing-down 
region. With reference to Section 9.2, this equation can be converted into an 
integral equation for the scalar neutron flux, which for the case of isotropic scatter- 
ing may be written 

Dividing the problem of interest (e.g., a fuel assembIy) up into I spatial regions, 
integrating Eq. (12.94) over the volume & of region i, and defining [by analogy 
with Eq. (9.52)] 

e-a(ri,rj) 

T+(E) E - dri dr, 
i i J ,  Jc, 4+-rj l  2 

leads to a coupled set of equations for the group fluxes $i in each region: 
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Dividing the thermal energy range into G groups and using an appropriate 
differential scattering cross section and weighting spectrum to calculate 

Eqs. (12.96) can be integrated over Eg < E < Eg-l to obtain the set of multigroup 
equations 

Following Section 9.3, define the collision probability 

= V~C;.C;T:-" 

in terms of which Eqs. (12.98) can be written 

The collision probabilities can be calculated by the methods of Section 9.3. The 
multigroup scattering transfer cross sections can be calculated using one of the 
differential scattering cross sections and a plausible weighting function, as dis- 
cussed in this chapter. Then the set of I x G Eqs. (12.100) can be solved for the 
group fluxes in each region. Such methods are widely employed for practical 
calculations of the thermal spectra in heterogeneous reactor fuel assemblies. 

12.6 PULSED NEUTRON THERMALIZATION 

Spatial Eigenfunction Expansion 

The time-dependent diffusion equation that describes the neutron flux distribution 
following the introduction of a pulse Q of neutrons with energy Eo at time t = 0 into 
a uniform but finite nonmultiplying medium is 
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Assuming that the spatial eigenfunctions satisfying 

and the physical boundary conditions form a complete set, the solution of 
Eq. (12.101) can be expanded: 

and the general onthogonality property 

can be used to reduce Eq. (12.101) to a coupled set of equations for the @,,(E, t): 

where Q, = Sdr G,(r>Q(r). 

Energy Eigenfunctions of the Scattering Operator 

The scattering operator So defined by 

possesses an eigenvalue spectrum and a set of eigenfunctions in terms of which the 
energy dependence of the neutron spectrum may be expanded. The general eigen- 
value problem is 

or 

K X ( E )  = -SoxIE) 

The adjoint operator Sof defined (see Chapter 13) by 
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The principle of detailed balance, 

C(E' -+ E)M(E')  = C ( E  -+ E')M(E)  (12.1 10)  

requires that 

x ( E )  = M W x +  ( E )  (12.111) 

where M(E)  is the Maxwellian distribution. Thus the principle of detailed balance 
ensures that the lowest eigenvalue KO = 0 and eigenfunction xo(E) = M(E),  inde- 
pendent of scattering model. 

As an example, consider the heavy gas model of Section 12.2. From Eq. (12.15), 

and from Eq. (12.108), 

The eigenvalues of the direct and adjoint eigenvdue problems of Eqs. (12.107) 
and (12.109) are identical (Chapter 13). Substitution of 

into the adjoint eigenvalue problem 

S t X +  ( E )  + rcxf ( E )  = 0 (12.1 15) 

and working use of Eq. (12.113) reveals that the eigenvdue spectrum is discrete: 

The associated eigenfunctions are the Laguerre polynomials of order unity 
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where 

(1) L ~ ) ( E )  = 1, L, (E) = 2 - E, $ ) (E )  = 3 - 3~ +;E2, . . . (12.118) 

These polynomials constitute a complete set, so any arbitrary function can be 
expanded in them. 

Expansion in Energy Eigenfunctions of the Scattering Operator 

Assuming that the function +,(E, t )  can be represented as 

the homogeneous part of Eq. (12.105) reduces to the eigenvalue problem 

Expanding each r$,(E) in the eigenfunctions of the scattering operator x,(E), 

substituting into Eq. (12.120), multiplying by x;(E), and integrating over energy 
yields 

where 

The set of Eqs. (12.122) formed by multiplying by each x , f ( E )  must simulta- 
neously vanish, which by Cramer's rule requires that 

This is the eigenvalue condition from which the K, are determined. 
The spatial harmonics n > 0 will decay more rapidly than the n = 0 modes, 

because An ,o > lo, due to the larger B:. When all the higher spatial harmonics 
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have become negligible, the neutron pulse will decay as a series of energy 
harmonics of the fundamental spatial mode: 

At long times, 

since h,,~ < h,, for n > 0. If Eq. (12.121) is truncated at one term (i.e., only the 
fundamental energy eigenfunction is retained), then Eq. (12.124) yields 

If the first two terms are retained in Eq. (12.121), then 

Thus measurement of the time decay of the neutron pulse yields information 
about the Maxwellian average diffusion coefficient, Dm The second term in 
Eq. (12,128), which is known as the diffusion cooling term, depends explicitly 
on the thermalizing properties of the medium. 
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PROBLEMS 

12.1. Use the proton gas model of Eqs. (12.51) to (12.53) and (12.58) to calculate 
the low-energy neutron flux distribution in water at 300K. Use 
cry = 38 barns, aFo = 0.66 barn, and cry = 4.2 barns. 

12.2. Use the effective neutron temperature model of Eqs. (4.30) and (4.31) to 
calculate the thermal neutron spectrum in water at 300 K and compare with 
the results of Problem 12.1. 

12.3. Repeat Problems 12.1 and 12.2 including a I/v absorber with 
(3,0 = 25 barns and Na/NHZo = 0.1. 

12.4. An H20-moderated reactor has a thermal. flux of 2.5 x 1 0l4 n/cm2- S. Com- 
pute the absorption rate density in water at density 0.75 g/cm3. 

12.5. Evaluate the heavy gas model expression for the neutron flux in the limit 
E >> kT [Eq. (12.71)) for neutron moderation in graphite at 500K. Use 
oi = 4.8 barns and oZ; = 0.004 barn. 

12.6. Repeat the calculation of Problem 12.5 for an admixture of l /v  absorber 
with oUo = 0.5 barn per carbon atom. 

12.7. Write a computer code to integrate the nonlinear differential equation 
(12.50) describing neutron thermalization in a free proton gas. Use an 
energy mesh of hE= 0.01 eV. Calculate the neutron spectrum in water at 
300 K. Use of = 38 barns, oFO = 0.66 barn, and o? = 4.2 barns. 

12.8. Solve the problem of neutron thennalization in a free proton gas model of 
water at 300 K by direct numerical solution. Compare your results with the 
results of Problem 12.7. 

12.9. Calculate and plot the thermal energy spectrum of neutrons thermalizing in 
graphite and in a Maxwellian gas of carbon atoms of the same density at 
300 K. Use Eq. (12.84). 

12.10. Calculate and plot the thermal energy spectrum of neutrons thermalizing in 
water at 293 K from Eq. (12.89). 



13 Perturbation and Variational 
Methods 

In many situations it is necessary to estimate the effect of numerous individual 
perturbations in the materials properties of the reactor on the multiplication con- 
stant or on a reaction rate in a reactor. Perturbation theory provides a means for 
obtaining an estimate of the change in multiplication constant or reaction rate, 
neglecting the effect of any change in the neutron flux distribution caused by the 
perturbation. Generalized perturbation estimates and variational estimates provide a 
means for taking into account the change in the neutron flux distribution caused by 
the perturbation, without actually having to calculate it, thus providing a powerful 
methodology for calculating reactivity coefficients and for performing sensitivity 
studies. Variational methods also have a much wider application in reactor physics 
in the development of approximations, and several of these are described. 

13.1 PERTURBATION THEORY REACTIVITY ESTIMATE 

MuItigroup Diffusion Perturbation Theory 

Let us return to the question of estimating the reactivity worth of a small change 
made in a critical reactor described by multigroup diffusion theory: 

Assume a change in microscopic cross seclion, density, or geometry such that 
Do -+ Do+ AD, Co-+ Zo + AX. This change will produce a change in the flux 
@o + +n + A+ and a change in effective multiplication constant ko + ko + Ak, such 
that the perturbed system is described by 
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Equation (13.2) can, in principle, be sohed to determine Ak using the methods 
described previously. However, in some applications (e.g., the calculation of reac- 
tivity coefficients associated with many different possible changes or the evaluation 
of the sensitivity of the multiplication constant to cross-section uncertainties) this 
would be impractical because of the large number of such calculations that would 
be involved. The objective of perturbation theory is to provide an estimate of Ak 
without requiring a calculation of the perturbed configuration (i.e., without calcu- 
lating A$. 

Using Eqs. (13.1) to eliminate certain terms in Eqs. (13.2), multiplying the 
resulting equation in each group by an arbitrary (at this point) spatially dependent 
function +:, integrating over the reactor and summing over groups, we obtain an 
exact expression for Ak: 
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if we were willing to calculate A$g in order to evaluate it. However, we wish to 
neglect A$, which appears in two of the [*I  terms on the left side. We might argue 
(for the moment) that since the third [.I term is the product of A+ and AX or AD, 
we can neglect it as being of second order in small quantities. However, we cannot 
make this argument for the first [ 1  term, which is of first order in small quantities, 
as is the second [ - I  term which we wish to evaluate to obtain the perturbation 
estimate of Ak. Thus are we motivated to choose the 4; to cause the first [ - I  term 
in Eq. (13.3) to vanish for arbitrary To determine the equation that must be 
satisfied by c$l, it is necessary to twice integrate by parts the gradient part of the 
first [ -1 term and use the divergence theorem: 

where n, is the outward normal unit vector to the surface of the reactor and the 
integrals over s are surface integrals. A@g, which must satisfy the same boundary 
conditions as $g, vanishes on the surface of the reactor, which causes the second 
term on the right in the final form of Eq. (13.4) to vanish. If we choose a boundary 
condition $gf(r,) = 0 (i.e., 4; vanishes on the surface of the reactor), the first term 
on the right in Eq. (13.4) also vanishes. Using this result in Eq. (13.3) and inter- 
changing the dummy g and g' indices, the vanishing of the first [ - ]  term requires 
that 

which is satisfied for arbitrary if 4; satisfies 

and vanishes on the surface of the reactor: 

q5,f(rs) = 0 ,  g =  1, ..., G 
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With the function $,f which satisfies Eqs. (13.6)  and (13.7) ,  with neglect of the 
third [ I term on the left, and with the approximation ko(ko + Ak) -+ ko, Eq. ( 1  3.3) 
reduces to the perturbation theory expression for the reactivity worth: 

where we indicate by O(A@) that the neglected third [.I term in Eq. (13.3)  intro- 
duces an error of order A$. 

13.2 ADJOINT OPERATORS AND IMPORTANCE FUNCTION 

Adjoint Operators 

Equation (13.6) is mathematically adjoint to Eq. (13.1) ,  when ko t Ak -+ ko, and the 
function 4; is called the adjointfunction. Comparing Eqs. (13.1)  and (13.6)  term 
by term identifies the direct and adjoint operators of multigroup diffusion theory, 
which are denoted symbolically as 

The direct and adjoint operators for group lffusion and group absorption are 
identical; these operators are said to be self-udjoint. On the other hand, the adjoint 
group scattering and fission operators differ from the direct: operators. Note that 
there is an adjoint boundary condition [Eq. (13.7)]  associated with the definition of 
the adjoint group diffusion operator. In terms of these operators, Eq. (13.8)  for the 
perturbation theory estimate of the reactivity worth of a change in reactor properties 
becomes 
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It is clear from the derivation above that the adjoint operators were defined by 
the requirement 

where [B(+)], represents any one of the operators in Eq. (13.9). This definition of 
adjoint group operator is quite general and provides for the immediate generali- 
zation of perturbation theory to multigroup transport theory by replacement of 
[D($)], with the appropriate transport group operator [T($)],. 

This formalism may be generalized immediately from multigroup to energy- 
dependent diffusion or transport theory by replacing the sum over groups by an 
integral over energy. At this point, we introduce the notation 

which allows the compact expression of the perturbation theory estimate of reac- 
tivity worth: 

In this notation, the definition of the adjoint operator becomes 

Importance Interpretation of the Adjoint Function 

We define the neutron importance, $+(r, a, E), as the probability that a cohort of 
N neutrons introduced a1 a given energy E, with a given direction and at a given 
location r in a reactor, will ultimately result in an increase by N in the asymptotic 
neutron population in the reactor. (Actually, we need to speak of neutrons intro- 
duced within dE about E, dr about r, and d f i  about a, but we will leave this 
cumbersome terminology to be understood.) Neutrons introduced with a given 
energy and direction at a given location can (1) move to another location r fdr  
where the importance is different; (2) be captured, which causes the importance to 
become zero; ( 3 )  be scattered into a different energy E' and direction a' where the 
importance is different; or (4) produce fission, which causes the importance of the 
original neutron to become zero, but which produces v new neutrons distributed in 
energy E' and distributed isotropically in direction f i t  with different importances. 
In a critical reactor, the importance must be conserved as the N neutrons move 
about and undergo these various reactions, which can be expressed as 
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Making a Taylor's series expansion 

$+(r + d r ,  a, E) -. @ ( r ,  Cl, E)  + Cl*V$+ ( r ,  a, E )  (13.  

in Eq. (13.15) leads to the transport equation satisfied by the neutron importance: 

+ VCf (," Jjfm dE1 &rda'X(E')$+(r,  N, E') = 0 

The importance of neutrons leaving the reactor is zero, which provides a boundary 
condition for the neutron importance, 

where n, is the outward normal unit vector to the surface of the reactor. 
Compare these equations with the neutron transport equation and surface boun- 

dary condition derived in Chapter 9: 

and 

The neutron transport equation is based on a backward balance of neutrons 
among those neutrons that scattered or were produced in fission or moved from a 
nearby location in the immediate past (i.e., in the interval t-At to t )  and those 
neutrons that are undergoing absorption and scattering now (i.e., at time t). The 
importance equation is based on a forward balance of the importance among those 
neutrons that are being absorbed or scattered now (i.e., at time t )  and the impor- 
tance of those neutrons that will move to a nearby location or be scattered into a 
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different energy and direction or produce fission neutrons with different energy and 
direction in the immediate future (i.e., in the interval t to t f At). 

Eigenvalues of the Adjoint Equation 

In the foregoing development of Eq. (13.17) from physical arguments, the same 
effective multiplication constant was used to achieve a steady-state importance 
balance equation as was used to achieve a steady-state neutron balance equation. 
We now establish formally that the eigenvalues of the neutron balance equation 

and of the adjoint equation 

are identical when the adjoint operators are related to the direct operators by 
Eq. (1 3.14). Multiplying Eq. (13.21) by ++ and integrating over space, direction, 
and energy, multiplying Eq. (13.22) by + and integrating, and making use of 
Eq. (13.14) yields 

13.3 VARIATIONAL/GENERALIZED PERTURBATION 
REACTIVITY ESTIMATE 

In many practical applications, a perturbation to the properties of the reactor will 
cause a change in the neutron flux distribution which has a significant effect on the 
reactivity worth of the perturbation (i.e., the neglected third [ * ]  term in Eq. (13.3) is 
important). The perturbation theory of Section 13.1 can be extended to take into 
account the change in the flux distribution without actually requiring its calculation. 
Such extensions can be developed within the context of variational theory or simply 
as a heuristic extension of perturbation theory; the results are the same except for 
minor differences. This extended perturbation theory is widely used in reactor phys- 
ics in the calculation of reactivity worths (and reaction rate ratios-next section) 
and for the performance of sensitivity studies. Since the variational theory is more 
systematic and has broader applications in reactor physics, we follow the variational 
development of an extended perturbation theory for estimating reactivity worths. 

One-Speed Diffusion Theory 

Consider a critical reactor described by the one-speed diffusion equation 
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where, for convenience of notation, we set 7L = k-' .  Making use of the definition of 
adjoint operator given by Eq. (13.1 1) with G = 1, the one-speed diffusion theory 
adjoint equation satisfies 

Thus the one-speed diffusion equation is self-adjoint and 4 + = 4. 
Now consider perturbations Do -+ D = D o  f AD and & 4 E = &, + AC, which 

cause $0 -* $,, = $0 t- A$ and ?VJ + h = I.,, + Ah. The perturbed system satisfies 

Multiplying Eq. (13.26) by $;, multiplying Eq. (13.25) by +,,, integrating over 
volume subtracting, and rearranging yields an exact expression for the reactivity 
worth of the perturbation: 

If we used the approximation 4 , ~  $o to evaluate Eq. (13.27), we would obtain 
the perturbation theory estimate of the reactivity worth of the change, in one-speed 
diffusion theory: 

which is accurate to first order in A+. 
Variational or generalized perturbation theory allows us to obtain an estimate 

that is accurate to second order in A$. Note that Eq. (13.27) defines a number that 
is evaluated by performing integrals over space (more generally over space and 
energy) involving the functions 4: and +,,. Such a function of functions is known 
as a functional. The idea behind variational theory is to construct an equivalent 
variational functional p ,  + which has the properties: (1) 
pvar{@;, +ex, TZ) has the same value as the functional pex{$t, if 4; and 
$,, are used to evaluate p,, and (2) p, ,{$~l  $, r+) evaluated with functions 4; 
and + = I$,, + 6 4  yields a value that differs from peX{@, I$,,) by 0(64', 6 4  6T'). 
In particular, PVar{d'; $0; Tf ) = ~ex{@ofr  @ex) + o(A$') when $ex = $0 + A@. 

We construct 
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by taking the exact functional of Eq. (13.27) and multiplying it by 1 minus a 
correction functional constructed by premultiplying the exact Eq. (13.26) by r+ 
and integrating over space (space and energy in general). This functional obviously 
satisfies the first of the properties of the variational functional above, because when 
+ = $,,, the correction functional vanishes and the first term reduces identically to 
pex {+:, +ex). Subtracting yields 

The explicit terms on the right in this expression will vanish for arbitrary 64  if l'+ 
is chosen to satisfy 

so that P , ~ , , { $ ~ ,  4, r&) = Pcx{+:, (hex) + Thus evaluation of the varia- 
tional functional of Eq. (13.29) using the functions +: given by Eq. (13.25), l'& 
given by Eq. (13.31), and any function + = 4,,, + 6 4  yields an estimate of the 
reactivity worth of the change which is accurate to 0(6+'). 

Unfortunately, solving Eq. (13.31) requires a knowledge of +,,, avoidance of the 
calculation of which is the purpose of this development. If, instead of Eq. (13.31), 
we use the equation obtained by changing -+ $o 

it can be shown that p,,,{$~, $l T'i) = vex {+;, + 0 ( 6 + ~ ,  64, AT'), where 
r,', = I ' d  -t Art. Thus the variational estimate P,,,(+:, 4, Trj ) is accurate to 
second order in the (presumably) small quantities 6+ and AT. 
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The function I'+ is related to the flux change, A$, caused by the perturbation. 
The equation satisfied by A$ is obtained by using D =Do + AD, C = Zo + AZ, and 
&, = +A$ in Eq. (1 3.26) and making use of Eq. (13.24): 

Comparing this equation with Eq. (13.31), it is apparent that T+ - -A$, since 
4, = $: for one group. A similar relationship may be established for multigroup 
theory. 

Defining the variational flux correction factor 

the variational estimate for the reactivity worth of a change in reactor properties 
may be written 

as the perturbation theory estimate times a flux correction factor. 
The calculations required for the variational estimate include the solution for the 

three spatial functions $:, $o, and for the parameters of the critical reactor and 
the evaluation of the indicated spatial integrals in Eq. (13.29). The left side of 
Eq. (13.32) is identical with the homogeneous Eq. (13.24). However, the useful 
biorthogonalty property (Tot, Fo&,) = 0 can be demonstrated (Ref. 13), which as- 
sures the existence of a solution. Note that the source term on the right of Eq. (1 3.32) 
will in general be the same for all perturbations taking place within a given spatial 
domain, since the magnitude of the perturbations appear in the numerator and de- 
nominator, implying that the calculation of one such Ti for each distinct spatial 
domain of interest will allow the evaluation of the reactivity worths of a large number 
of perturbations of different types and magnitudes w i t h  that spatial domain. 

The reactivity estimate of Eq. (13.35) has been found to be quite accurate when 
the change in properties is such as to produce a positive reactivity (f,, < 0) or a 
small negative reactivity for which 0 < f,, << 1. However, for large negative reac- 
tivities such that f,, -- 1, the (1 - f,,) term becomes inaccurate. In such cases it is 
more accurate to use p,,,= p,,,[l - f,,/(l + , f V J ,  which form can be derived 
from consideration (Ref. 1) of the exact functional of Eq. (13.27). Thus a better 
variational estimate for the reactivity worth is 
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Other Transport Models 

This formalism can be generalized immediately to other representations of neutron 
transport (e.g., multigroup diffusion or transport theory). Let the operator A repre- 
sent the transport, absorption and scattering and the operator F represent the fission. 
Then Eqs. (13.24) and (13.25) for the flux and adjoint in the critical reactor general- 
ize to 

and Eq. (13.26) for the flux in the perturbed reactor generalizes to 

The exact value and perturbation theory estimate of the reactivity worth of the 
perturbation of Eqs. (13.27) and (13.28) become 

Equation (13.32) for the generalized adjoint function Tt becomes 

The variational estimate for the reactivity worth of the perturbation is still given 
by Eq. (I3.36), where now ppe, is given by Eq. (13.41) and the flux correction 
factor is given by 

Reactivity Worth of Localized Perturbations 
in a Large PWR Core Model 

Exact, perturbation theory, and variational calculations were made of the reactivity 
worth of a change in the thermal group absorption cross section in a two-group 
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model of a large (about 40 migration lengths) slab model of a PWR core. The 
perturbations were made in the left quarter of the core model. Small cross-section 
changes produced small reactivity changes that were well estimated by both per- 
turbation and variational methods because the associated flux change was small. 
Larger cross-section changes, which produced larger reactivity worths and signifi- 
cant flux changes were poorly predicted by perturbation theory, but the variational 
flux correction resulted in quite accurate predictions even for flux tilts on the order 
of 100%. The reactivity predictions are shown in Fig. 13.1, and associated flux 
shapes for the unperturbed core and for the core with two of the perturbations are 
shown in Fig. 13.2. The unit of reactivity is pcm= lop5. 

Higher-Order Variational Estimates 

A variational formalism (Refs. 17 and 20) has been developed for making reactivity 
estimates that are accurate to higher order in A 4  = However, the complex- 
ity of such estimates has limited their practical application. 

Fig. 13.1 Reactivity worth of thermal cross-section changes over the left quarter of a 
slab PWR model in two-group diffusion theory: comparison of exact, perturbation theory, 
and variational calculations. (From Rcf. 1; used with permission of American Nuclcar 
Society.) 
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Defining the generalized adjoint function, T i ,  by 

the variational estimate 

where Tio is calculated from Eq. (13.46) but with A + A o  and +, -+ $o, will have a 
second-order error O(AT + A+), as may be demonstrated by evaluating 

Several reaction rate ratios calculated for a multigroup diffusion theory model of 
the spherical ZEBRA fast reactor critical assembly are given in Table 13.1. The 
breeding ratio is the ratio of the 2 3 8 ~  capture rate integrated over the region to the 
239Pu fission rate integrated over the region. The reference assembly composition is 
given in Table 13.2. It is clear that the flux correction provided by the variational 
(generalized perturbation theory) calculation is important in achieving an accurate 
estimate. 

TABLE 13.1 Table Perturbed Reaction Rate Ratios 

Reference 
Ratio Value Perturbation R % m  R R p t  RRw 

Central 0.09866 Add 0.01 at/cm3 0.10241 0.09866 0.10225 

~ 3 0 ; ~  Na 0 + 9.45 cm 
0.09866 Increase 09 10% 0.08964 0.08969 0.08964 
0.09866 Add 0.0015 at/cm3 0.09887 0.09866 0.09884 

Pu 9.45 -+ 22.95 cm 
Core breeding 0.80040 Add 0.01 at/cm3 0.80554 0.80040 0.80549 

ratio Na 0 -+ 9.45 cm 
Assembly 2.1844 Increase 09 10% 1.9939 2.0038 1.9937 

breeding ratio 
2.1844 Add 0.0015 at/crn3 1.6034 1.6446 1.6049 

Pu 9.45 + 22.95 cm 

Source: Data from Ref. 13; used with permission of Academic Press. 
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TABLE 13.2 Composition of Spherical Computational 
Model of ZEBRA Critical Assembly 

Core Blanket 
Isotope (0 + 22.95 cm) (22.95 -+ 49.95 cm) 

Source: Data from Ref. 13; used with permission of Academic 
Press. 

13.5 VARIATIONAL/GENERALIZED PERTURBATION 
THEORY ESTIMATES OF REACTION RATES 

Many problems in reactor physics can be formulated as fixed source problems 
described by 

where the operator A represents transport, absorption, scattering, and if present in 
the particular problem, fission. Let us imagine that Eq. (1 3.49) has been solved for 
$o and then the reactor is perturbed, so that the flux now satisfies 

and we wish to evaluate the reaction rate 

without calculating $,,. The perturbation theory estimate R,,{$o) = 
( C I $ ~ )  + O(A4) obviously is only accurate to zero order in the flux perturbation 
that is caused by the perturbation in the reactor properties. 

Defining an adjoint function, $io, by 

it is easy to show that the variational estimate 

differs from the exact calculation of the reaction rate in the perturbed reactor by a 
second-order term, 

where $&, is calculated from Eq. (13.52) with A +Ao. 
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By making use of the definition of the adjoint operator, it follows that 

implying that the reaction rate can also be calculated by integrating the product of 
the source distribution S and the generalized adjoint function 4; over the volume of 
the reactor. This result suggests the interpretation of 4; as an importance function 
for a source neutron to produce the reaction in question. 

13.6 VARIATIONAL THEORY 

Stationarity 

We have constructed variational extensions of perturbation theory by establishing 
functionals which when evaluated with the exact solutions of the governing equa- 
tions yielded the exact value of a quantity of interest (e.g., reactivity worth, reaction 
rate) and which when evaluated with approximate solutions of the governing equa- 
tions (or exact solutions of equations that approximated the governing equations) 
differed from the exact result by terms of second order in the difference between the 
approximate solutions and the exact solutions. In other words, terms involving first- 
order variations between the exact and approximate solutions vanished when the 
approximate solutions were used in the variational functionals. This property is 
described by stating that the variational functionals are stationary about the exact 
solutions of the governing equations (i.e., the first variations vanish), and the 
functions that make the variational functional stationary (by satisfying the govern- 
ing equations) are known as the stationary functions. This means that the same 
value of the variational functional will be obtained when evaluated with two dif- 
ferent functions that differ infinitesimally, if one of these functions exactly satis- 
fies the governing equations (i.e., is the stationary function of the variational 
functional). 

Minimum principles of various sorts are usually represented by variational func- 
tional~, and the minimum property of the variational functional is a form of sta- 
tionarity condition. However, with a minimum principle or minimum variational 
functional, the value of the variational functional will increase when evaluated with 
any function which differs sufficiently from the stationary function that 642 is 
significant, whereas the value of a stationary variational functional may be greater 
or less than the stationary value when evaluated with a function that differs suffi- 
ciently from the stationary function. 

Roussopolos Variational Functional 

Consider again the variational functional of Eq, (1 3.53), which we now write in the 
more general form known as the Roussopolos ,functional: 
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The stationarity condition is 

For arbitrary and independent variations 64 and 64:, this requires that 

where the subscript s indicates the stationary solution. When the stationary solu- 
tions are used to evaluate the functional of Eq. (13.56), the exact value (Z+,) is 
obtained. When approximate functions-trial functions-$ = 4, + 6 4  and 
$,f = + 64: are used to evaluate the functional of Eq. (13.56), the value 
obtained differs from the exact value by a term of order (64,641,f). 

Schwinger Variational Functional 

The estimate of the reaction rate provided by Eq. (13.56) or (13.53) is obviously 
sensitive to the normalization of the trial functions. The stationarity of the varia- 
tional functional can be used to choose the best normalization. Write x = c+$$ 
and ;C = c4.  Substitute these trial functions into the variational functional of 
Eq. (13.56) and require stationarity with respect to arbitrary and independent var- 
iations 6c and 6c: 

which is satisfied for arbitrary 6c and 6cf only if 

Using these normalizations in Eq. (13.56) yields the equivalent Schwinger varia- 
tional principle: 

the value of which is independent of the normalization of the trial functions. 

Rayleigh Quotient 

Consider the critical reactor eigenvalue problem described by the transport and 
adjoint equations 
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The Rayleigh quotient 

is a variational functional for the eigenvalue. The value of Eq. (13.63) when the 
exact solution of the first of Eqs. (13.63) is used in its evaluation is clearly the exact 
eigenvalue. The requirement that the first variation of the Rayleigh quotient vanish, 

for arbitrary and independent variations 641f and 641 requires that the stationary 
functions 4, and 4; satisfy Eqs. (13.62). 

Construction of Variational Functionals 

Although the construction of variational functionals is usually done by trial and 
error, there is a systematic procedure that can guide the process. The basic idea is to 
add the inner product of some function 4 + or T + with the governing equation for 
c$ to the quantity of interest and then use the stationarity requirement to determine 
the equation satisfied by $I+ or T +. For example, if we want to estimate a reaction 
rate (C+) and 4 is determined by A 4  = S, we construct the Roussopolos functional 
R y , , { 4 + .  $1 = (C4)-(4+, @-A$)) of Eq. (13.56), and find from the stationarity 
requirement that + +  must satisfy A+++ =C. As another example, if we want 
to estimate the reactivity worth (410+, (hoA~-M)@)/(40f,  F4) of changes AF 
and bA leading from (Ao-hoFo)+o=O to (A-kF)+ = 0, we construct 
lJ,,{4,+,c$,I-+) = (4I,+, ( h o A F - ~ ) + ) l ( 4 , + , ~ 4 I ) I l - ( r + , ( A - ~ F ) + ~ l  of 
Eq. (13.29). 

13.7 VARIATIONAL ESTIMATE OF INTERMEDIATE 
RESONANCE INTEGRAL 

Consider, as an application, the elastic slowing down of neutrons in the presence of 
a resonance absorber and a moderator (m), which is described by 
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where om, o, and o, are moderator scattering cross section per atom of resonance 
absorber and the total and scattering microscopic cross sections of the resonance 
absorber, respectively. It has been assumed that the moderator in-scatter integral 
can be evaluated using the asymptotic flux, which is constant in lethargy, and the 
constant has been chosen as unity, in writing the second form of the equation. This 
equation corresponds to the second of Eqs. (13.58). 

The quantity of physical interest is the resonance integral 

Using the definition of adjoint operator given by Eq. (13.14), where ( 0 )  now 
indicates an integral over lethargy, the first of Eqs. (13.58)-the adjoint equa- 
tion-for this problem is 

u+A ,.Ju-ut) 

k + 4u) IR(u)  - duf - a, (u)#,f (u') = a, (u) 1 - a  
(13.67) 

and the Schwinger variational functional of Eq. (13.61) becomes 

In choosing trial functions, we recall the narrow resonance and wide resonance 
approximations of Chapter 4: 

where op is the background scattering cross section of the resonance absorber. 
Making similar approximations in Eq. (13.67) as were made in deriving 
Eqs. (13.69), we can derive approximate adjoint functions. For wide resonances, 
o,$,f is approximately constant over the scattering interval and can be removed 
from the integral in Eq. (13.67), yielding 

In the limit of very narrow resonances the off-resonance form for G,$; can be used 
to evaluate the scattering integral to obtain 
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These results suggest the trial functions 

which contain arbitrary constants h and K that are determined by using Eqs. (13.72) 
in the variational functional of Eq. (13.63) and requiring stationarity with respect to 
arbitrary and independent variations 6 1  and 6 ~ ,  which leads to the transcendental 
equations 

which must be solved for xKh and YKh. where 

where the T's are the resonance widths, and cro and Eo are the peak resonance cross 
section and the energy at which it occurs. 

The variational estimate of the resonance integral is 

which has been shown to provide a more accurate estimate than either the narrow- 
resonance or wide-resonance approximations to the resonance integral for reso- 
nances of 'intermediate' width. 

13.8 HETEROGENEITY REACTIVITY EFFECTS 

As an application of the Raleigh quotient, consider a heterogeneous lattice 
described by collision probability integral transport theory. Equations (12.100) 
become 
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and the corresponding adjoint equations are 

where n and g refer to spatial region and group, e,, is the probability that a neutron 
in group g and region n' has its next collision in region n, and Pg is the cross 
section in group g and region n times the volume of region n divided by the total 
volume of all regions. 

The Rayleight quotient of Eq. (13.63) becomes 

This expression can be used in a number of ways. For example, an approximate flux 
and adjoint distribution (even one based on a homogenized model) can be used as 
trial functions in Eq. (13.77) to obtain a more accurate estimate of the infinite 
multiplication factor in a heterogeneous lattice. 

13.9 VARIATIONAL DERIVATION 
OF APPROXIMATE EQUATIONS 

The requirement that a variational functional be stationary about the function 4, 
which causes the first variation of the functional to vanish is entirely equivalent to 
requiring that the function 4, satisfy the governing equation for $ if the variational 
functional is constructed so that satisfaction of this governing equation is the 
stationarity condition. Thus the equations of reactor physics can be stated equiva- 
lently as stationary variational functionals, just as the equations of particle dy- 
namics can be equivalently stated in terms of a Hamiltonian. For example, the 
statement that 4; and 4, make the Raleigh quotient of Eq. (13.63) stationary is 
entirely equivalent to the statement that 4, and 4; satisfy Eqs. (13.62). This 
equivalence provides a basis for the variational derivation of approximate equa- 
tions. 

As an example, consider a reactor described by one-speed diffusion theory in 
two dimensions: 
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An equivalent variational description is the stationarity requirement for the varia- 
tional functional: 

Recalling that the one-speed diffusion equation is self-adjoint, we look for a 
separable solution: 

$'(XI Y) = ~ ( x , Y )  = ~x(x)&(Y) (13.80) 

of a known function $,(y), perhaps obtained from a one-dimensional calculation, 
and an unknown function $x(x). Substituting Eq. (13.80) into Eq. (13.79) and 
requiring stationarity with respect to arbitrary variations 6@x (4, is specified and 
hence does not allow arbitrary variations) leads to a one-dimensional equation for 
the unknown $x(x): 

where the effective y-independent constants are defined as weighted integrals over y: 

This procedure is referred to as variational synthesis and is described more fully in 
Chapter 15. 

Inclusion of Interface and Boundary Terms 

In deriving Eqs. (13.81) and (13.82) it was implicitly assumed that the known 
function 4 J y )  is continuous over all y, which limits the approximation to trial 
functions $, which are continuous in y. This limitation can be removed if the 
variational functional is modified so that stationarity requires not only satisfaction 
of Eq. (13.78) but also continuity of flux and current across an interface at y = yi. 
Stationarity of the modified functional 
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with respect to arbitrary and independent variations 6 4 ,  over the volume and 
variations 6 4 ;  and 6J: on the interface at y =yi requires both that Eq. (13.78) 
be satisfied everywhere in the reactor except on the interface and that continuity of 
flux and current be satisfied at the interface: 

Boundary terms can be included in a similar fashion, leading to variational func- 
tional~ which admit trial functions that do not satisfy the boundary conditions. 

Inclusion of interface and boundary terms is important for the development of 
synthesis and nodal approximations and is discussed in greater detail in Chapter 15 
as well as in Section 13.11. 

13.10 VARIATIONAL EVEN-PARITY TRANSPORT 
APPROXIMATIONS 

Variational Principle for the Even-Parity Transport Equation 

The even-parity form of the transport equation introduced in Section 9.1 1 is con- 
venient for the development of approximate transport equations when the scattering 
and source are isotropic. A variational functional for the even-parity component of 
the angular flux, which is self-adjoint, may be written 

where the dependence on (r, a) has been suppressed, and the two integrals are over 
the volume Vand the bounding surface S, with n being the outward normal to the 
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surface. Note that here $+ refers to the even component of the angular flux, not an 
adjoint function. Taking the variation of the functional J with respect to arbitrary 
but dependent (since 4 depends on $+) variations 6$+ and 641 about some 
reference functions $of and &, yields 

where integration by parts and the divergence theorem have been used to obtain the 
final form. The requirements that the volume and surface integrals vanish for 
arbitrary and independent variations ti$+ in the volume and on the surface are just 
the transport equation for the one-speed (or within-group) even-parity transport 
equation: 

1 
- f l ~ V [ - n - ~ $ ~ ~ ( r , t L ) ]  +Ej(r)$i(r,fk) - &(r)&,(r) - S ( r )  = 0 

W r )  
(13.87) 

and the vacuum boundary condition satisfied by the even-parity flux component: 

Ritz Procedure 

This is a procedure for constructing an improved approximate solution by combin- 
ing several plausible approximate solutions, each of which perhaps represents some 
feature expected in the exact solution, that is, by approximating the even-parity flux 
by an expansion in known functions xi(r, a): 

The general Ritz method proceeds by substituting this expansion into the varia- 
tional functional describing the system of interest, Eq. (13.85) in our case, and 
requiring stationarity (vanishing of first variations) for arbitrary and independent 
variations of the combining coefficients, ai: 
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fiJ {a) = 0 = 2haT [AU - S]  (13.90) 

where a is a column vector of the ai, aT is the transposed row vector, A is a matrix 
with elements 

and 

Thus the requirement for stationarity of the variational principle defines the a* as the 
solution of 

Diffusion Approximation 

The diffusion approximation was shown in Chapter 9 to follow from a representa- 
tion of the angular flux of the form 

With this representation, the even-parity component of the angular flux is just the 
scalar flux, 

Using this representation for the even-parity flux in the variational principle of 
Eq. (13.85) leads to 

Requiring stationarity with respect to arbitrary and independent variations 641 in the 
volume and on the surface leads to the equation 
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and the boundary condition 

Equation (13.97) differs from the previous diffusion equation only by the c;' 
rather than (& - CLOZs)-l in the first term, and had we neglected anisotropic scat- 
tering ( - t h = O )  in Chapter 9 as we have here, the two would be identical. 
Equation (13.98) specifies that the flux extrapolate to zero a distance 2/3Z, outside 
the boundary, which is the same result (for isotropic scattering) that was obtained 
from P I  theory in Chapter 9. 

One-Dimensional Slab Transport Equation 

In a slab varying from x = 0 to x =a ,  the variational principle of Eq. (13.85) 
becomes 

Requiring stationarity with respect to arbitrary and independent variations 6JI+ 
within 0 < x < a and at x = 0 and x = a yields a one-dimensional transport equation 
for the even-parity flux component: 

and a pair of extrapolated vacuum boundary conditions 

13.11 BOUNDARY PERTURBATION THEORY 

Consider a reactor described by the multigroup diffusion equations, which are 
written in operator notation as 
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with general boundary conditions given by 

where a. and ho are group-dependent operators which may vary with position on 
the surface r,y. 

The adjoint equation is 

where the definition (13.11) or (13.14) of adjoint operator has been used. The 
double integration by parts of the spatial derivative term in the diffusion operator 
yields 

Using the boundary condition of Eq. (13.103) to evaluate the n V b o  term in the 
surface integral reveals that the natural adjoint boundary condition (the condition 
that leads to vanishing of the surface integral) is 

Now let the boundary condition be changed by perturbing bo to bo + bl: 

son-V@+(r,) + (bo -t bl)$+(r,) = 0 and aon*V@(r,) + (bo + bl)4(rs) = 0 
(13.107) 

where Ibl/bol = E << 1. The perturbed flux, which must satisfy a different boundary 
condition and is associated with a different eigenvalue as a consequence, now 
satisfies 

Expanding the perturbed flux and eigenvalue 

where the subscript indicates the order of the term with respect to the small para- 
meter Ibl/bol r & << 1,  and substituting into Eqs. (13.107) and (13.108) results in 
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the following hierarchy of perturbation equations and boundary conditions: 

Order E': 

Ao(r)$o(r> = XoFo(r)$o(r) (13.111) 

son- V40(r,) + b040(r,) = 0 (13.112) 

Order E': 

Order E': 

The leading-order estimate of the eigenvalue is obtained by multiplying 
Eq. (13.111) by @,' and integrating over space and summing over groups (indi- 
cated by ( 0 ) ) :  

The first-order correction to the eigenvalue is obtained by multiplying Eq. (13.1 13) 
by $: and integrating over space and summing over groups, integrating the deri- 
vative term by parts twice, and using the boundary conditions of Eqs. (13.106) and 
(13.1 14): 

where indicates an integral over the surface and a sum over groups. The 
second-order correction to the eigenvalue is obtained by multiplying Eq. (13.1 15) 
by 4; and integrating over space and summing over groups, integrating the deri- 
vative term by parts twice and using the boundary conditions of Eqs. (13.106) and 
(13.114): 
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The perturbation theory estimate, through second order, is 

To evaluate this second-order estimate, it is necessary to solve Eqs. (13.1041, 
(13.111), and (13.113), with the associated boundary conditions. The first two 
equations, for @: and @o, and their boundary conditions are independent of the 
boundary perturbation bl. Upon using Eq. (13.1 18), Eq. (13.1 13) for 4, can be 
written 

showing that the amplitude of depends on the magnitude of the perturbation in 
boundary condition bl. The first-order perturbation theory estimate is h = ho + Al  
and corresponds to omitting the terms in Eq. (13.120), which obviates the 
necessity of calculating 
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PROBLEMS 

13.1. Use one-speed diffusion theory and perturbation theory to estimate the 
reactivity worth of a 0.25% increase in the fission cross section over the 
left half of a critical slab reactor of 1-m thickness. 

13.2. Use two-group diffusion theory perturbation theory to estimate the reactiv- 
ity worth of a 0.5% change in the thermal absorption cross section of a very 
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large core described by: group 1-D = 1.2 cm, C, = 0.012 cm-', C' ' = 
0.018 cm-I, vE - 0.006cm-I; group 2-D = 0.40 cm, E, = 0.120cm-', 

fl- vZf=0.150cm- . 

13.3. Prove that each term in the importance equation [Eq. (13.17jl is mathema- 
tically adjoint to the corresponding term in the neutron transport equation 
[Eq. (13.19)]. 

13.4. Derive the multigroup discrete ordinates adjoint equation for a critical 
reactor (a) directly from the discrete ordinates equations, and (bj by making 
the discrete ordinates approximation of the adjoint transport equation. 

13.5. Derive an explicit expression for the perturbation theory reactivity estimate 
in the multigroup discrete ordinates representation of neutron transport. 

13.6. Solve for the infinite medium neutron flux and adjoint energy distributions 
in a three-group representation: group 1-C, = 0.030 cm-', C' ' = 
0.060 cm-', vCf = 0.004 cm-I; group 2 - 4  = 0.03 1 cm-', C2 ' = 

0.088 cm-', vCf = 0.018 cm-'; group 3-C, = 0.120 cm- ', 
vEf= 0.180cm-'. 

13.7. Carry through the derivation to show that p y a r { + ~ , ~ , I - ~ )  = 

Pex{$;, + 0 ( 6 $ ~ ,  6 + A T ) ,  where Tz = T: + A T +  and T,f is ob- 
tained by solving Eq. (13.32). 

13.8. Consider a critical slab reactor with one-speed diffusion theory constants 
D = l.Ocm, C, = 0.15 cm-', and vCf = 0.16 cm-'. Calculate the flux cor- 
rection function, To+, from Eq. (13.32) for a 1% change in the absorption 
cross section in the left one-fourth of the critical slab. (Hint: Note that I?; is 
orthogonal to +,f = 4, and expand Ti in the higher harmonics of the 
critical reactor eigenfunctions.) 

13.9. Evaluate the variational/generalized perturbation reactivity estimate of 
Eq. (13.36) for Problem 13.8. 

13.10. Carry out the missing steps of the derivation in Section 13.4 to show that 
RRvar{+o> - R L { + e x }  = Q(ArA A+). 

13.11. Consider a critical bare slab reactor described by one-speed diffusion lheory 
with D =  l.Ocm, C,=0.15cm", and vCf=0.16cm-'. Use Eq. (13.47) to 
evaluate the variational estimate for a I %  increase in absorption cross 
section on the absorption-to-fission rate ratio in the right one-tenth of the 
slab core. 

13.12. Use the Rayleigh quotient to estimate the effective multiplication constant 
for a bare cylindrical core with HID = 1, H =  2 m and one-speed diffusion 
theory parameters D = 1 .O cm, C, = 0.15 cm-I, and vCf= 0.16 cm-'. 

13.13. In the window-shade model, a control rod bank can be represented by a 
10% increase in C, for Problem 13.1 1. Use the Rayleigh quotient to esti- 
mate the effective multiplication constant when the control rod bank is 
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inserted halfway, using the flux and adjoint distributions calculated in Pro- 
blem 13.1 1. Recalculate the effective multiplication constant directly (i.e., 
solve the two-region diffusion theory problem) for the control rod bank 
inserted halfway and compare with the variational estimate. 

13.14. Consider a uniform slab nonfissioning assembly of width 50cm in which 
there is a uniform source SJ of fast neutrons in the left half. Calculate the 
thermal absorption rate in the right half (a) directly and (b) using the 
Schwinger variational estimate evaluated trial functions, obtain from an 
infinite medium calculation with a source 1/2S' Use the two-group repxe- 
sentation: fast group-D = 2.0 cm, Z, = 0.006 cm-', and C' ' = 
0.018 cm-'; thermal g r o u p D  = 0.40 cm and Z, = 0.120 cm-I. 

13.15. Repeat the derivation of Section 13.3 for multigroup difksion theory. 

13.16. Discuss how the result of Eq. (13.55) could be employed to calculate the 
response of a localized detector to a point neutron source some distance 
away if the adjoint function is known in the vicinity of the source. 

13.17. Carry through the steps in deriving the variational synthesis approximation 
of Eq. (13.81). 

13.18. Demonstrate that stationarity of the variational functional of Eq. (13.83) 
requires that the diffusion equation be satisfied and that the flux and current 
be continuous at the interface y = yi. (Hint: Consider arbitrary and inde- 
pendent variations of the adjoint flux and current within the volume and on 
the interface.) 

13.19. Derive the transport Eq. (13.100) and the associated boundary conditions of 
Eq. (13.101) from the stationarity of the functional of Eq. (13.99). 

13.20. Consider a uniform slab reactor of thickness 2a with zero flux conditions at 
each boundary, which may be represented as a slab with a zero flux con- 
dition at x = 0 and a symmetry f i  * V+ = 0 condition at x = a. Use boundary 
perturbation theory to derive an estimate for the change in eigenvalue, h i ,  
that would result from replacing the symmetry condition at x = a with the 
condition A V$ + bl4  = 0. 

13.21. In a critical uniform slab reactor in one-group theory, 10% of the neutrons 
leak from the reactor and the other 90% are absorbed. Use perturbation 
theory to calculate the reactivity worth of a 5% increase in absorption cross 
section over the right half of the reactor. Discuss the error in this estimate 
due to the failure to take into account the change in flux distribution caused 
by the increase in absorption cross section. Would the perturbation theory 
estimate be expected to underpredict or overpredict the reactivity worth 
because of this error? Discuss how the effect of this flux change on the 
reactivity worth could be taken into account without actually calculating the 
flux change. 



14 Homogenization 

Nuclear reactor cores are composed of a large number of fuel assemblies, each 
containing a large number of discrete fuel elements of differing composition and 
consisting of separate fuel and cladding regions, coolant, structural elements, burn- 
able poisons, water channels, control rods, and so on-tens to hundreds of thousands 
of discrete, heterogeneous regions. On the other hand, most of the methods for 
calculating criticality and global flux distributions that are in use (in particular 
diffusion theory) are predicated on the existence of large (with respect to a mean 
free path) homogeneous regions. The methods employed to replace a heterogeneous 
lattice of materials of differing properties with an equivalent homogeneous mixture 
of these materials to which the previously discussed methods for the calculation of 
ultrafine group spectra, calculation of the diffusion of neutrons during the slowing- 
down process, and so on, is referred to as homogenization theory. Homogenization 
of a heterogeneous assembly usually proceeds in two steps: a lattice transport 
calculation to obtain the detailed heterogeneous flux distribution within a unit cell 
or fuel assembly, followed by the use of this detailed flux distribution to calculate 
average homogeneous cross sections for the unit cell or assembly. 

The general procedure that is followed in nuclear reactor analysis is to perform 
very detailed energy and spatial calculations on a local basis to obtain cross sec- 
tions averaged over energy and spatial detail which can be used in few group global 
core calculations. For example, for a thermal reactor, a pin-cell transport calcula- 
tion of a cell consisting of the fuel, clad, coolant, and structural in a local region 
may be carried out in 20 to 100 fine groups to obtain homogenized 6 to 20 inter- 
mediate-group cross sections averaged over the pin-cell geometry and the 20 to 100 
fine group spectrum. Several such pin-cell calculations may bc needed for a fuel 
assembly and the adjacent water gaps and control rods. Intermediate-group assem- 
bly transport calculations are then performed for models that represent all fuel pins, 
control rods, water channels, can walls, and so on, associated with a given fuel 
assembly. It is important that the intermediate-group assembly transport calculation 
uses enough groups to represent the spectral interactions among fuel pins of dif- 
ferent composition, control rods, water channels, and so on, at the intermediatc- 
group level. Several such intermediate-group assembly calculations may be needed 
for the reactor core, and a large number of such calculations may be needed to 
represent different operating lemperatures, depletion steps, void fractions, and so 
on. The results of the intermediate-group assembly transport calculations are next 
averaged over the assembly spatial detail and the intermediate-group spectra to 
obtain two to six few-group homogenized assembly cross sections which can be 
used in few-group global core calculations of criticality and flux distribution. 
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We have discussed the procedure of group collapsing to obtain few-group cross 
sections from fine- or intermediate-group spectra in previous chapters. Here we are 
interested in the spatial-averaging procedures used to obtain homogenized cross 
sections appropriately averaged over spatial detail, and in the procedures used to 
construct effective diffusion theory cross sections for regions such as control rods in 
which the basic assumptions of diffusion theory are not satisfied. 

14.1 EQUIVALENT HOMOGENIZED CROSS SECTIONS 

The general problem of homogenization can be illustrated by considering a sym- 
mehic, repeating array of fuel and moderator elements of volumes VF and VM. The 
average absorption cross section for the fuel-moderator unit cell is 

where 

is referred to as thejux disadvantage factor, and @ F  and $M are the average neutron 
fluxes in the fuel and moderator, respectively. The homogenized cell average cross 
section of Eq. (14.1) is equivalent in the sense that if it is multiplied by the exact 
average cell flux 

and the cell volume, the result will be the exact absorption rate in the cell: 

This type of definition can obviously be extended to a multiregion heteroge- 
neous assembly by defining 

The same type of definition defines equivalent cell average fission and scattering 
cross sections. The appropriate definition of the cell average diffusion coefficient is 
less straightforward. An equivalent cell average diffusion coefficient must represent 
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the net leakage from the cell, but that depends on the calculational method which 
will be employed for that purpose. We will return to this subject when we consider 
the detailed homogenization procedures. 

Thus the problem of cell homogenization reduces to the problem of determining 
the flux disadvantage factors, 6 ,  which will enable the homogenized model to 
predict the correct intracell reaction rates, and of determining the equivalent diffu- 
sion coefficients (or other leakage representation) which will enable the homoge- 
nized model to predict correct intercell leakage. Note that it is only necessary to 
know the relative value of the neutron flux in the different regions of the problem, 
not the absolute values, in order to calculate homogenized cross sections, which 
enables calculation of homogenized cross sections for local regions in a reactor 
before the absolute value of the flux is determined from a global calculation (which 
utilizes the homogenized cross sections). Calculation of the flux disadvantage 
factors from diffusion theory was discussed in Chapter 4. We turn now to methods 
that can be used when diffusion theory does not provide an adequate treatment of 
the heterogeneous problem, which is the usual case in a nuclear reactor. 

14.2 ABH COLLISION PROBABILITY METHOD 

The ABH collision probability method (named after its originators-Ref. 15) found 
widespread use for calculation of thermal disadvantage factors before the avail- 
ability of assembly transport codes (discussed in Section 14.4) and provides phy- 
sical insight into the unit cell transport problem. A unit cell of fuel (F)  and 
moderator (M) with zero net current on the cell boundary is assumed. It is further 
assumed that the neutron slowing-down source is uniform in the moderator and 
zero in the fuel. We define 

PFM -- average probability that a neutron born uniformly and isotropically i n  
region F will eventually be absorbed in region M 

PF = average probability that a neutron born uniformly and isotropically in 
region F escapes from the fuel before being absorbed 

p, = conditional probability that a neutron, having escaped from F into M, 
will then be absorbed in M 

A similar probability PMF can be defined for region M. As discussed in Chapter 11, 
there exists a reciprocity relation 

Since neutrons are only slowing down to thermal in the moderator, the reciprocity 
relation can be used to write the thermal utilization factor in terms of PFM: 
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and to write the thermal disadvantage factor 

The probability that a neutron born uniformly and isotropically in the fuel 
escapes into the moderator without making a collision was discussed in Chapter 
1 1  and is given approximately by 

where SF is the surface area of the fuel. If the neutron does not escape but has 
a scattering event [probability (1-Pm) c ~ / c : ] ,  it also has a probability Pm of 
escaping without a second collision. Continuing this line of argument, the total 
probability that the neutron escapes from the fuel into the moderator may be written 

A somewhat more accurate expression, which takes into account the nonuniform 
distribution of the first collisions for a cylindrical fuel rod of radius a, is 

where the parameters a and p are as given in Fig. 14.1 
It is apparenl from Ihe definitions that 

Equation (14.7) can be rearranged to 

Using the reciprocity relation of Eq. (14.6) and, for the purpose of estimating P M  
only, approximating PF M PFO M sF/4vFx;, yields an approximation for the con- 
ditional probability: 
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Fig. 14.1 Parameters ct and P for use in calculation of ABH cylindrical escape probability. 
(From Ref. 11; used with permission of Wiley.) 

We approximate PM,. z PM (5 prohability that a neutron horn in the moderator 
escapes from the moderator before being absorbed). We calculate P,  by solving 
the diffusion equalion in the moderator 

where q~ is the uniform slowing-down density in the moderalor. The boundary 
conditions for Eq. (14.15) are symmetry at the cell boundary and a transport 
boundary condition at the fuel-moderator interface: 

Cell boundary: n, ' 1 7 $ ~  = 0 

1 
fuel - moderator interface: 

where n, is the unit vector normal to the surface and d is a transport parameter 
related to the transport mean free path in the moderator and is given in Fig. 14.2 for 
a cylindrical unit cell. Assuming that all neutrons diffusing from the moderator into 
the fuel are absorbed, PM is just the total neutron flow into the fuel from the 
moderator divided by the total neutron source in the moderator: 
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Transport boundary condition for cylinders. (From Ref. 11; used with permission 

where a is the thickness or radius of the fuel region, b is the thickness of the 
moderator region associated with a fuel element, L'& = D M / E ~ ,  and E(a/LM, 
b/LM) is the lattice function given in Table 3.6. 

With these approximations for pM and PMF given by Eqs. (14.14) and (14.17), 
respectively, and the expression for PF given by Eq. (14.11), Eq. (14.13) can be 
evaluated: 

the disadvantage factor can be calculated from 

and the homogenized cross section can be calculated from Eq. (14.1). 
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Although we have developed the ABH method in the context of thermal neu- 
trons, the same general procedure can be applied to homogenize cross sections for 
any group of a multigroup scheme. 

14.3 BLACKNESS THEORY 

Blackness theory refers to a class of methods for matching an approximate (e.g., 
diffusion theory) solution in one region to a very accurate solution of the transport 
equation in an adjacent region in order to obtain an effective diffusion theory cross 
section that will preserve the transport theory accuracy in the calculation of reaction 
rate. Such a procedure is required in order to treat control rods, lumped burnable 
poisons, and so on, within the context of multigroup diffusion theory. 

Consider a purely absorbing slab occupying the region xi < x 5 xi+ The one- 
speed transport equation within the absorbing slab is 

This equation may be solved for the exiting neutron fluxes $+(xi+ p) to the right 
and *-(xi, p) to the left in terms of the entering fluxes from the left $+(xi, p) and 
from the right $-(xi, p), where the + /- denotes p > O/p < 0: 

where A =x,+  1-xi. The incident fluxes into the purely absorbing region are as- 
sumed to have the Pl form that is consistent with a diffusion theory solution in the 
adjacent fuel-moderating region: 

The currents at the surfaces of the absorbing region can be written 
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Using Eqs. (14.21) to evaluate the exiting fluxes, these equations become 

where Ej and E4 are the exponential integral functions, 

Equations (14.24) can be rearranged to define the blackness parameters 

The parameter cl is the ratio of the average inward current to the average flux at the 
surface of the absorbing slab. This quantity is used as a boundary condition for the 
diffusion theory calculation in the adjacent region, 

(e.g., the transport parameter d of the ABH method is (dlh,, = 1/3a). This transport 
boundary condition was used in Chapter 3 to derive an effective diffusion theory 
cross section for the control rod: 

where a is the half-thickness of the fuel-moderator region denoted by M. Since this 
development was for a purely absorbing slab, the results are valid at any energy, 
provided that the cross sections for that energy are used. 

For a purely absorbing slab with a spatially dependent absorption cross section, 
the results above are valid if the following replacement is made: 
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14.4 FUEL ASSEMBLY TRANSPORT CALCULATIONS 

Pin Cells 

A fuel assembly consists of a large number of fuel pins of differing fuel loading, 
enrichment, burnup, and so on, each of which is clad and surrounded by moderator 
and perhaps other elements, such as structure and burnable poisons, a% depicted in 
Fig. 14.3. At this most detailed level of heterogeneity, the assembly can be con- 
sidered to be made up of a large number of units cells, or pin cells, consisting of 
a fuel pin, cladding, surrounding moderator, and perhaps structure and burnable 
poison. The first step in homogenizing the fuel assembly is to homogenize each of 
the pin cells, by calculating the multigroup flux distribution across the fuel, clad, 
moderator, and so on, and using it to calculate volume-averaged cross sections for 
the pin cell. 

If the pin cell can be considered to be one of a large number of identical pin 
cells, reflective symmetry boundary conditions can be used. However, this assump- 
tion becomes questionable in the vicinity of gaps, control pins, burnable poisons, 
or fuel pins of very different composition (e.g., MOX pins near U02  pins). The 
influence of the surrounding environment can be introduced into the pin-cell cal- 
culation by specifying the partial inward current J -  (and a zero reflection, or black 
boundary conditions) or the net current J = J t - J -  (and a perfectly reflecting 
boundary condition) on the cell boundary. 

Fig. 14.3 Kepresenlalive fuel assembly. (From Ref. 16; used with permission of American 
Nuclear Society.) 
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Wigner-Seitz Approximation 

If the cell associated with each pin is defined symmetrically and such that the cells 
fill the volume of the assembly, the pin-cell boundary will have a noncylindrical 
shape depending on the lattice geometry, generally square or hexagonal. Since the 
pin geometry is cylindrical, it is convenient to approximate the actual pin-cell 
geometry by an equivalent cylindrical cell that preserves moderator volume. The 
approximate Wigner-Seitz cell has a radius R that depends on the pin-to-pin dis- 
tance p  as R=p/n' /2 for a square pitch fuel lattice and R = ~ ( 3 ~ / ' / 2 n ) ' / ~  for a 
hexagonal pitch lattice. 

The change in geometry can lead to an anomalously high flux in the moderator 
of a cell with reflective boundary conditions because a neutron introduced into the 
cell traveling in the direction of a chord that does not pass through the innermost n 
shells before intersecting the reflecting cell boundary will never pass through these 
innermost n shells since spectral reflection from the cylindrical wall will result in 
motion along a similar chord. On the other hand, as shown in Fig. 14.4, correct 
reflection from a square or hexagonal boundary will cause motion into the inner- 
most shells. This problem can be corrected by "white reflection" in a cosine 
distribution with respect to the inward normal. 

Collision Probability Pin-Cell Model 

The collision probability methodology of Section 9.3 can be extended to handle the 
albedo (partial reflection) and incident current conditions that enabIe the environ- 
ment to influence the pin-cell calculations. With reference to Fig. 14.5, consider a 
cylindrical pin-cell consisting of i annular regions. Using the notation of Section 
9.3, define the probability, -yoi, that an uniformly distributed isotropic flux of neu- 
trons at the external surface (SB)  of the pin-cell will suffer a first collision in region i 
before exiting across surface SB: 

Fig. 14.4 Reflection misrepresentation in Wigner-Seitz approximation. (From Ref. 16; 
used with permission of American Nuclear Society.) 



FUEL ASSEMBLY TRANSPORT CALCULATIONS 523 

Fig. 14.5 Cylindrical pin-cell model. 

where !2 > V,. indicates those values of Q that intersect the volume K, n is the 
outward unit vector to the surface SB, a(ri, rB) is the optical distance (e.g., distance 
measured in mean free paths) along the chord from rB to ri,  and n Q/4n is the rate 
at which neutrons in an isotropic flux of unit strength will cross the surface at SB 
into the pin-cell. This probability is related to the first-flight escape probability, Poi, 
that a neutron introduced in volume V;: will exit the pin-cell across surface SB 
without a collision: 

where 1/4n is the isotropic angular flux corresponding to unit scalar flux in Vi amd 
Q C V;: indicates those values of !2 for which a neutron could have reached rg on a 
first flight from within volume x. Except for the &, the numerators are identical, 
reflecting the fact that the probabilities for neutrons traveling from the surface into 
volume V,  without collision and traveling in the opposite direction from within Vi to 
the surface are identical. This allows Eq. (14.30) to be written 

In terms of the probability P ~ / Z , ~ V ,  that neutrons introduced uniformly and iso- 
tropically within volume Vi have their first collision in volume Vj, this may be 



written 

GiVi 1 pij 
70i =-(I $% -zm) j= 1 

A similar line of argument leads to the result that the probability, Ri, that a 
uniformly distributed isotropic flux of neutrons crossing the external surface (SB) of 
the pin-cell will be removed (absorbed or scattered to another group) by a collision 
in region i before exiting across surface SB is related to the total escape probability, 
Pi, that a neutron introduced in volume & will escape (perhaps after multiple 
collisions) out of the pin-cell across surface SB: 

We now wish to construct source and current flux response functions in terms of 
which the flux in any one of the annular regions of the pin-cell can be constructed: 

where Qk is the neutron source density in annular region k, xki(p) is the neutron flux 
produced in region i by a unit neutron source density in region k, taking into 
account possible multiple reflections at the cell boundary with albedo P, and 
Y(p) is the neutron flux produced jn annular region i by unit neutron inward current 
across the cell boundary. The quantities xk"O) and E(O) refer to the response 
functions above when the albedo of the region surrounding the pin-cell is zero 
(it . ,  when there is no reflection of neutrons exiting the pin-cell back across surface 
SB). The response functions xk'(P) and Y'(P) can be calculated in terms of Xk'(0) 
and Y,(O) and the albedo, P. 

For a neutron incident into the pin-cell across the boundary SB, the cell hab an 
effective albedo (1 -R), where 

is the total removal (2, is the cross section for absorption plus scatter to another 
group) probability for a neutron incident on the cell from outside. For a cohort of 
incident neutrons, a fraction R is removed and a fraction (I-R) is returned to 
the boundary SB. Of the (1-R) returned to the boundary, a fraction P (the albedo 
of the surrounding assembly for neutrons exiting the pin-cell) is reflected back into 
the pin-cell. Of the fraction (1 -R)P that enter the cell for a second time, a fraction 
R is removed and a fraction ( I  -R) return to the surface SB a second time, and so on. 
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Thus an inward partial current of neutrons incident across SB is effectively ampli- 
fied by the factor 1 + (1-R)P + [ ( I - R ) ~ ] ~  +. . . = 1/ [1- (1-R)P] .  If ~ ( 0 )  is the 
neutron flux produced in annular region i by unit neulron inward current across the 
cell boundary, without taking into account reflection of exiting neutrons back into 
the pin-cell, the neutron flux due to a unit inward, current taking reflection into 
account, is 

The flux X k ' ( P )  in volume V,  due to a unit neutron source density in volume Vk is 
made up of two components: the flux xki(0)  due to source neutrons from volume Vk 
which have not been reflected from the boundary SB, and the flux due to the number 
of source neutrons PkVk from volume Vk which do reach the boundary and are 
reflected with albedo P .  These reflected neutrons can be treated as an incoming flux, 
and the flux produced by it in volume V,  is found by multipIying by &(PI. The 
resulting expression is 

The collision probability equations (9.54) were derived under the implicit as- 
sumption of no reflection from the external boundary (i.e., @ = 0 )  and no incident 
current. Thus these equations are suitable for calculating the basic response func- 
tions xki(0)  and &(O) when a first collision source term to account for incident 
partial current density j; is included: 

The collision probabilities P" for a cylindrical cell are given by Eqs. (9.63) to 
(9.65). In some applications it may be more convenient to treat the fission neutron 
source as a fixed source and include it in the Q, term. 

The quantities xki(0)  satisfy this equation with a unit source density in volume 
Vk only and no incident current density: 



526 HOMOGENIZATION 

This constitutes a set of l2 equations to be solved for the ~~(0). The quantities K(0) 
satisfy Eq. (14.39) with no volumetric source but with a unit external current 
density: 

a set of I equations to be solved for the Y;:(O). 
In summary, the pin-cell calculation consists of: (1) solve Eqs. (14.40) and 

(14.41) for the isolated pin-cell flux response functions Xk'(0) and K(0); (2) con- 
struct the flux response functions xk'(p) and Y;:(p) which take into account reflection 
from the surrounding medium by the albedo P from Eqs. (14.37) and (14.38); (3) 
calculate the flux in each annular region of the pin-cell using Eq. (14.35); and (4) 
construct homogenized cross sections for the cell using Eq. (14.5). 

Interface Current Formulation 

The outward partial current density from the pin-cell across surface SB consists of 
two components: (1) the source neutrons which are introduced within the pin-cell 
and which are crossing SB for the first time PiViQi), and (2) the incident 
neutrons (j&) which traverse the pin-cell without being removed with probability 
(I-R)-and both components are reflected with probability P and constitute an 
inward current that may traverse the cell without removal, and so on. The total 
outward partial current density due to neutron sources within the pin-cell and 
neutrons incident on the pin-cell from the surrounding medium is 

The inward partial current density across surface SB also has two components: 
(1) the source neutrons that escape from the pin-cell to reach SB for the first time 
(c;=~ PiViQi) and are reflected with probability P, and (2) the incident neutrons 
(j;), both of which may traverse the pin-cell without removal with probability 
(I-R) to reach surface SB and be reflected with probability P, and so on. The total 
incident partial current density is 

The net current density (in the outward direction) across the surface of the pin-cell 
is 
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Multigroup Pin-Cell Collision Probabilities Model 

The pin-cell model above extends immediately to multigroup by making the 
replacements Zti -+ C:, I;,. -+ Zz - ZflTg (i.e., group removal cross section), 

Pii -+ PIi and Ri -+ R!, and extending certain equations to multigroup. Yoi + Yoi? 8 

Equations ( 1  4.40) become 

which can be written in matrix notation as 

and Eqs. (14.41) become 

which can be written in matrix notation as 

Equations (14.37) and (14.38), with the appropriate group cross probabilities, 
can be used to correct the basic flux response functions X;(O) and Yf(0) to account 
for reflection from the surface SB, and the multigroup fluxes in each region of the 
pin-cell can be calculated from the multigroup version of Eq. (14.35): 

Resonance Cross Sections 

Homogenized resonance cross sections are calculated at the pin-cell level using the 
methods discussed in Chapter 11. 
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Full Assembly Transport Calculation 

Once the finest level of heterogeneity has been homogenized with a series of 
pin-cell calculations, the assembly is made up of a large number of homogeneous 
regions (e.g., the square pin-cells of Fig. 14.3), surrounded by structure, water gaps, 
control rods, other dissimilar assemblies, and so on (i.e., the assembly is still 
a heterogeneous medium embedded in a larger-scale heterogeneous medium, the 
reactor core). The next step in the homogenization process is to perform a multi- 
group transport calculation on the pin-cell-homogenized assembly for the purpose 
of obtaining average group fluxes for each homogenized pin-cell that can be used 
to calculate homogenized cross sections that will allow the entire assembly to be 
represented as a homogenized region. 

Any of the transport methods discussed in Chapter 9 (collision probabilities, 
discrete ordinates, Monte Carlo) or even diffusion theory in some cases can be used 
for the full assembly transport calculation. Such calculations are normally per- 
formed using reflective conditions on the assembly boundary, or more correctly 
on the boundary defined by the centerline of the water gap or other medium 
separating adjacent assemblies, thus implicitly assuming an infinite array of iden- 
tical assemblies. The fact that different assemblies have different homogenized 
properties is taken into account in the global core calculation based on a homo- 
genized assembly model which follows assembly homogenization. However, the 
fact that the adjacent assembly is dissimilar or that there is a control rod nearby or 
that there is significant leakage out of or into an assembly affects the assembly 
calculation and hence the homogenized properties of the assembly. Stratagems such 
as extending the boundaries for an assembly calculation into adjacent assemblies or 
over a larger planar region have evolved for dealing with this problem. 

14.5 HOMOGENIZATION THEORY 

When used in the calculation for which they were intended, homogenized cross 
sections, should yield a result that is equivalent, in some sense, to the result that 
would have been obtained if the calculation could be performed with all the spatial 
detail without the need for homogenization. It is useful, in this regard, to develop 
homogenization procedures that would preserve the essential integral properties of 
a global heterogeneous transport calculation, the result of which is assumed known 
for the purpose of development of homogenization procedures, and then to evaluate 
the homogenized cross sections using an approximation to the global heterogeneous 
transport solution. 

Homogenization Considerations 

The neutron flux distribution and effective multiplication constant, k, can be de- 
scribed exactly by multigroup transport theory, which we write in the general form 
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Imagine that we know the solution to Eq. (14.50) and wish to use it to define 
homogenized cross sections which when used in the solution of the homogenized 
transport equation 

yield the same result for certain important quantities as would be obtained if the 
detailed cross sections and the exact solution of Eq. (14.50) were used in their 
evaluation (i.e., preserves certain properties of the exact solution). The most im- 
portant quantities to be preserved are the multiplication constant, k, the group 
reaction rates averaged over the homogenization region, and the group currents 
averaged over the surface of the homogenization region. Preservation of the last 
two quantities requires that 

where V ,  is the volume of the homogenization region i and S; is the kth surface of 
the homogenization region i. Satisfaction of Eqs. (14.52) and (14.53) would also 
ensure preservation of k. 

If the homogenized cross sections are uniform over the homogenization region, 
an exact definition is 

and when dilusion theory is to be used in the homogenized calculation, 
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The practical difficulty in using Eqs. (14.54) and (14.55), of course, is that the exact 
solution of the global transport equation is not known (and never will be, or we 
would not be bothering with homogenization) and the homogenized solution of the 
global diffusion equation is not known prior to solving Eq. (14.5 l), which requires 
the homogenized group constants as input. Another conceptual problem is that the 
integrals in Eq. (14.55) will generally be different for each surface, k, so that it is 
not possible to define a constant value of the homogenized diffusion coefficient 
which preserves the surface-averaged currents over all the surfaces. 

Conventional Homogenization Theory 

The conventional pin-cell or assembly homogenization procedure approximates the 
solution to the global core transport equation, 4g(r) and Jg(r), with the solutions, 
+i(r)  and Ji(r),  to a pin-cell or assembly transport calculation, usually with 
symmetry boundary conditions, n J i (r)  = 0. The numerator of Eq. (14.54) is then 
evaluated using 4; (r) instead of the (unavailable) exact global transport solution 
+g(r). This assembly transport solution, +i(r) ,  is also used to evaluate the flux 
integral in the denominator of Eq. (14.54). A possible choice of the homogenized 
diffusion coefficient is 

Rather large errors have been found in calculations that employed these con- 
ventional homogenization methods when compared with exact solutions for bench- 
mark problems. The major source of error is in the treatment of the homogenized 
diffusion coefficients and the imposition of continuity of flux and current continuity 
boundary conditions at interfaces between homogenization regions. The source of 
the problem is that the homogenized diffusion equation, with continuity of current 
and flux imposed at interfaces, lacks sufficient degrees of freedom to preserve both 
surface currents and reaction rates. 

14.6 EQUIVALENCE HOMOGENIZATION THEORY 

It is possible to require that both the volume-integrated reaction rates and the 
surface-integrated currents from the heterogeneous problem be preserved in the 
homogenized problem [i.e., that Eqs. (14.52) and (14.53) be satisfied] if the con- 
tinuity of flux condition is relaxed. Instead of continuity of flux, the flux interface 
condition 
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is imposed at the interface at xi+l between homogenization regions i and i+ 1, 
where $T(xi+l) and @GI (x;+l) are the homogenized fluxes in homogenization 
regions xi 5 x 5 xi + 1 and xi + 1 5 x 5 xi + 2, respectively, both evaluated at the inter- 
face xi +, between the two, as indicated in Fig. 14.6. S i r n i l ~ l y , & ~ ( x ~ + ~ )  refers to 
the flux discontinuity factor at the lower (minus) interface xi+ of the region 
xi+ 1 5 x 5 xi + 2, and fit refers to the flux discontinuity factor at the upper 
(plus) interface xi + I of the region xi 5 x 5 xi+ 1. The flux discontinuity factors on 
each side of the interface at xi.,. are defined by the ratios of the heterogeneous to 
homogeneous fluxes at this interface: 

Equations (14.57) and (14.58) express the requirement that the heterogeneous flux 
is continuous at the interface and relate the homogeneous to heterogeneous fluxes at 
the interface. The discontinuity factors introduce additional degrees of freedom into 
the homogenization procedure, which permits the satisfaction of Eqs. (14.52) and 
(14.53). 

Let us now consider the implementation of equivalence theory. For the moment, 
we continue to assume the existence of an exact heterogeneous solution for the 
entire core. The evaluation of homogenized cross sections from Eq. (14.54) is 
straightforward. We examine implementation of the requirement of Eq. (14.53) 
for the homogenized multigroup diffusion equation in two dimensions: 

Fig. 14.6 Equivalence theory notation. 
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where the homogenized cross sections for homogenization region (i, j) have been 
calculated from Eq. (14.54) and both homogenized cross sections and diffusion 
coefficients are constant within region (i,j). Integrating this equation over the y- 
dimension of the homogenization region (i, j), which is defined by xi ;. x 5 xi + and 
Y ~ ' ~ L Y I Y ~ + ~ .  yields 

L' 

= ez-' L"" dy 6; (x, y) 
gf=l 

Since the heterogeneous solution is assumed to be known, the heterogeneous 
y-direction leakage (L$~) is known, in principle, and may be used to evaluate the 
y-direction leakage term in Eq. (14.60); that is, 

Furthermore, the known values of the heterogeneous currents (J,) at xi+ and xi can 
be used as boundary conditions for the solution of Eq. (14.60) in the homogeniza- 
tion region ( i ,  j): 

With the (assumed) known values of the heterogeneous fluxes at the interfaces 
and the calculated values of the homogeneous flux integrals, the discontinuity 
factors for region (i, j) at the surfaces at x i + ,  and at xi can be calculated as the 
ratio of helerogeneous-to-homogeneous flux integrals: 
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where 

The global heterogeneous solution will not be known, of course, so the practical 
implementation of the prescriptions above requires their approximation using a 
local heterogeneous solution for an assembly or set of assemblies, usually per- 
formed with a zero current boundary condition. It is important that the same 
approximate heterogeneous solution be used to evaluate the leakage term of Eq. 
(14.61) in Eq. (14.60), to evaluate the boundary conditions of Eq. (14.62) for Eq. 
(14.60), and to evaluate the numerators of the flux discontinuity factors. A similar 
procedure yields the flux discontinuity factors A+ and &, for region ( i , j )  at the 
surfaces at y = yj and y = yj+ The four different flux discontinuity factors for 
region (i, j) will in general be different. 

Note that this procedure can be implemented for any arbitrary definition of the 
homogenized diffusion coefficient. The choice of diffusion coefficient will, of 
course, affect the solution for the homogeneous flux in the calculation above, hence 
affect the value of the computed flux discontinuity factor. A common choice for the 
homogenized diffusion coefficient is the simple heterogeneous flux-weighted value: 

The calculation of flux discontinuity factors can be implemented by using 
assembly calculations of both the heterogeneous and homogeneous fluxes and 
currents. The volume integral of flux over the assembly can be normalized to be 
the same in both calculations. If the homogeneous assembly calculation is carried 
out with zero current symmetry boundary conditions, the homogeneous flux dis- 
tribution is uniform within the homogenization region. Under these approxima- 
tions, the flux discontinuity factor can be calculated entirely from the results of 
the heterogeneous assembly calculation as the ratio of the surface integral of the 
heterogeneous assembly flux to the volume integral of the heterogeneous flux, as 
may be seen by considering 

where 4; (x, y)  is the heterogeneous flux from the assembly calculation, the com- 
mon normalization of the heterogeneous and homogeneous fluxes has been used in 
the second step, and the uniformity of the homogeneous assembly flux with sym- 
metry boundary conditions has been used in the third step. The discontinuity factors 
calculated from Eq. (14.66), referred to as assembly discontinuity factors, will be 
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accurate for assemblies in which the net current almost vanishes over the bound- 
aries, but will be inaccurate for conditions in which there is significant leakage 
across assembly interfaces; this is an area of active research. 

This formulation of equivalence theory is appropriate for any nodal method that 
uses surface-averaged fluxes [e.g., the quantities defined by Eq. (14.64)] in evalu- 
ating node-to-node coupling. The expression for the nodal interface current on the 
interface at xi + , between nodes (i, j) and (a' + 1, j )  is 

Similar expressions obtains for the other nodal interfaces. 

14.7 MULTISCALE EXPANSION HOMOGENIZATION THEORY 

A more formal development of homogenization theory builds on the spatial struc- 
ture typical of a nuclear reactor, a repeating array of highly heterogeneous fuel 
assemblies within an almost periodic (symmetric) configuration with assembly- 
averaged properties that vary slowly from assembly to assembly. This suggests 
the introduction of two spatial scales-the fine scale of the intra-assembly hetero- 
geneity (r-) and the coarse scale of the global inter-assembly variation (rc)-which 
are treated as independent spatial variables. The multiscale homogenization theory 
will be illustrated with one-group diffusion theory, the governing equation for 
which is written with r- and rc as formally independent spatial variables: 

Normalized to a core average diffusion length, L, the spatial gradients are of 
different order: O(Ld/drJ - O(LrflrJ/drf) N &O(Ld/drf ), where E I rf/rc is a 
small parameter on the order of the ratio of the scale lengths of the intra-assembly 
heterogeneity to the assembly dimensions. Making flux and eigenvalue expansions 
in powers of the small parameter E,  

and substituting in Eq. (14.68) yields to leading order o(E'): 
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Equation (14.70) plus the periodic (symmetry) boundary conditions on an assembly 
defines the detailed heterogeneous intra-assembly flux for an assembly k; there will 
be K such heterogeneous assembly problems, corresponding to the K different fuel 
assembly types in the reactor core. The dependence on r, indicated in Eq. (14.70) is 
a dependence on the assembly for which the calculation is made; all intra-assembly 
spatial dependence is represented by the rf dependence. Since no spatial gradients 
with respect to r, occur in Eq. (14.70), the general solution is 

where A&) is an arbitrary function of the global spatial scale parameter which 
will be determined from a higher-order equation. 

The first-order o(E') equation is 

which i s  an inhomogeneous equation of the same form as the homogeneous Eq. 
(14.70). By the Fredholm alternative theorem, Eq. (14.72) has a solution only if the 
right side is orthogonal to the solutions of the equation that is adjoint to Eq. (14.70). 
Since this equation is self-adjoint for one-group diffusion theory (it is not for 
multigroup diffusion theory or transport theory) with periodic boundary conditions, 
a solvability condition for Eq. (14.72) is 

where ( - )  indicates a spatial integral over rf within node k. Equation (14.73) 
provides a calculation for kl .  The solution of Eq. (14.72) consists of a solution 
to the homogeneous equation, which is +o, with an arbitrary multiplier Al(r,), and 
particular solutions corresponding to the terms on the right side: 
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where the particular solutions satisfy 

with periodic assembly boundary conditions. There is an equation of the form of 
the first of Eqs. (14.75) for each coordinate direction. 

The second-order 0(z2) equation is 

which has a solvability condition 

that provides a solution for k2. Integrating Eq. (14.76) over the rf intra-assembly 
heterogeneous spatial scale yields the global diffusion equation with parameters 
averaged over the fuel assembly: 

a a 
- (D) -Ao(rc) + 
arc arc 

where, defining the normalization N -  ($o, $*), the appropriate assembly-averaged 
homogenized nu-fission and absorption cross section are flux-adjoint weighted with 
the detailed intra-assembly solutions 

the elements of the diffusion tensor for a two-dimensional problem are 
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there is a source that acts like an effective fission or absorption cross section, 

and there is a convection term (defined in Ref. 1 j. The source and convection terms 
arise because of the assembly-to-assembly variation of cross sections and diffusion 
coefficient. These terms, which vanish for a reactor with exactly periodic conditions 
associated with each assembly, account for the effect of inter-assembly leakage 
between adjacent assemblies, which is not accounted for in the calculation of $o. 

Thus the solution of Eqs. (14.70) and (14.75), with periodic boundary con- 
ditions, for the detailed intra-assembly flux distribution $0 and supplementary 
intranodal functions gc and q can be used to calculate flux-adjoint-weighted homo- 
genized assembly parameters for a consistently formulated global diffusion equa- 
tion (14.78). This type of multiscale procedure can also be employed to develop a 
global diffusion equation based on assembly homogenization with transport lattice 
calculations replacing Eq. (14.70). 

14.8 FLUX DErI'AIL RECONSTRUCTION 

The homogenization procedure results in homogenized cross sections that can be 
used for an entire fuel assembly or collections of fuel assemblies (e.g., modules) in 
a full core calculation. The resulting flux distribution fiom the full core calculation 
reflecls the global flux distribution, but not the local detailed flux distribution. The 
detailed assembly or module flux calculations that were used in the homogenization 
process must be superimposed on the global flux distribution, and the detailed pin- 
cell flux distributions musl be further superimposed on the assembly or module flux 
distributions. It is important that the assumptions used in reconstructing the detailed 
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flux distribution be consistent, if not identical, with the assumptions made in the 
homogenization process. 
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PROBLEMS 

14.1. Carry through the detailed derivation of the ABH method. 

14.2. Consider a two-region slab geometry model of a unit cell consisting of a 
fuel plate of thickness a = 1 cm with a moderator region of thickness 
b = 2cm on each side, with zero current cell boundary conditions and a 
uniform slowing-down source in the moderator. The fuel is U02, with 
thermal cross sections C, = 0.169 cm-', E, = 0.372 cm-', and 1 - l.~o = 
0.9887. The moderator is H20, with thermal cross sections C, = 
0.022 cmpl, C, = 3.45 cm-', and 1 - po = 0.676. Use the ABH method to 
calculate the thermal disadvantage factor, thermal utilization and homoge- 
nized scattering, and absorption cross sections for the cell. 

14.3. Carry through the detailed derivation of blackness theory. 

14.4. A reactor assembly consists of repeating arrays of three fuel-moderator 
unit cells of the type described in Problem 14.2, then a 0.1-cm-thick boron 
plate with thermal cross sections C, = 25 cm-', C, = 0.346 cm-', and 
(1  -po) = 0.9394, and then another three fuel-moderator unit cells. Use 
blackness theory to calculate an effective diffusion theory cross section to 
represent the boron slabs in the fuel-moderator plus boron plate array. 

14.5. A reactor fuel assembly consists of five of the fuel-moderator boron arrays 
described in Problem 14.4. Use one-group diffusion theory to calculate the 
assembly detailed heterogeneous flux distribution. Calculate the homoge- 
nized assembly absorption and scattering cross sections and diffusion coef- 
ficient and the assembly flux discontinuity factors using equivalence theory. 

14.6. Construct the Wigner-Seitz cell model for a fuel pin I crn in diameter 
within a 2-cm square of moderator. 

14.7. Set up and solve the collision probability equations for Problem 14.6, in 
one-group theory. Use the fuel and moderator parameters given in Problem 
14.2. 

14.8. Calculate the homogenized cross sections for the pin-cell model of Problem 
14.7, using conventional homogenization theory. 
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14.9. Consider a lattice made up of a repeating array of 1-cm-thick fuel plates 
separated by 2 cm of HzO, as described in Problem 14.2, but with different 
fuel enrichments in different plates. Taking a fuel plate and 1 cm of H z 0  on 
each side as an assembly, use diffusion theory to solve for the assembly 
heterogeneous flux, with zero current assembly boundary conditions. Cal- 
culate the homogenized assembly cross sections and diffusion coefficient 
and the assembly flux discontinuity factor, using equivalence homogenized 
theory. 

14.10. Write a one-dimensional Sq code in slab geometry and repeat Problem 14.9 
using an S4 assembly heterogeneous flux. 



15 Nodal and Synthesis Methods 

Even after the local fuel pin, clad, coolant, and so on, heterogeneity is replaced 
by a homogenized representation, a reactor core remains a highly heterogeneous 
medium because of the intra-assembly and assembly-to-assembly variation in fuel 
composition, burnable poisons, control rods, water channels, structure and so on. 
The mesh spacing in a conventional few-group finite-difference model of such a 
core is constrained by two requirements: (1) it must be sufficiently fine to represent 
the remaining spatial heterogeneity adequately, and (2) it must be no larger than the 
shortest (thermal) group diffusion length in order to avoid numerical inaccuracy. A 
few-group finite-difference model that could adequately describe such a core might 
well have 10' to lo6 unknowns (the fluxes in each group at each mesh point). The 
direct solution of such a problem, even in diffusion theory, remains a formidable 
computation that was unthinkable until very recently. For calculations such as fuel 
burnup or transient analysis, in which many full-core spatial solutions are needed, 
direct few-group finite-difference solutions remain impractical. 

A large number of approximation methods have been developed to enable a 
more computationally tractable solution for the effective multiplication constant 
and neutron flux distribution in reactor cores. Following historical precedent, these 
methods can generally be classified as nodal, coarse-mesh, or synthesis methods, 
although the distinction among the categories may be largely a matter of perspec- 
tive and sequencing of calculational steps. 

Nodal methods characterize the global neutron flux distribution in terms of a 
small number of parameters in each of several large regions, or nodes, into which 
the reactor core is subdivided for this purpose. Such methods generally require 
detailed heterogencous intranodal flux distributions to construct homogcnized para- 
meters for each of the many nodes into which a reactor core may be divided and to 
calculate coupling parameters that link the average flux solutions in adjacent nodes. 
Thc global average nodal fluxes must then be combined with the intranodal hetero- 
geneous flux solutions if a heterogeneous flux distribution is required. 

Coarse-mesh rnethud.~ extend the numerical accuracy of conventional finite- 
difference methods by using higher-order approximations for the flux variation 
among mesh points. Like nodal methods, coarse-mesh methods generally requirc 
detailed regional heterogeneous flux distributions in order to construct homoge- 
nized parameters and to combinc with the coarse-mesh solution to construct a 
detailed heterogeneous flux solution. 

Synthesis methods generally combine detailed heterogeneous two-dimensional 
planar flux distributions by means of a one-dimensional axial calculation to obtain 
a global heterogeneous flux solution. Such methods do not require a previous 
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homogenization within large regions of the core as do nodal and coarse mesh 
methods, but in effect perform a homogenization in constructing the parameters 
to be used in the axial synthesis calculation, thus ensuring a certain consistency 
between the homogenization and the approximate model calculation. 

15.1 GENERAL NODAL FORMALISM 

Writing the multigroup neutron balance equations in the form 

and integrating over the volume of node n (Fig. 15.1) yields an integral balance on 
node n: 

(nx-1, n ,  n3 

Fig. 15.1 Nodal model nomenclature. 



GENERAL NODAL FORMALISM 543 

where the nodal average total, scattering, and fission cross sections are defined by 
expressions of the form 

the average nodal flux is 

and the leakage between node n and adjacent node n' is defined by a surface 
integral over the common interface: 

To be more specific, in discussion of the leakage term, we consider a parallelepiped 
node of dimensions Ax, Ay, and Az, as shown in Fig. 15.1. The surface integrals of 
the net x-direction current at the node boundaries at x = + Ax/2 and at -Ax/2 are 
defined as 

with similar definitions for the surface integrals of net y- and z-direction currents at 
f Ay/2 and f A.42, respectively. Surface integrals of the outward and inward x- 
directed partial currents at &/2 are defined in terms of the partial currents directed 
to the right ( J s f )  and to the left (J;) ,  respectively: 

with similar definitions for surface integrals of partial y- and z-direction currents at 
f Ay/2 and f Az/2, respectively. The surface integrals of the net current are related 
to the surface integrals of the partial currents as the net current is related to the 
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partial currents: 

Using these definitions of surface integrals of the net current over the six faces 
bounding the node, the balance equations (15.2) can be written in the more explicit 
form 

The various nodal formulations are distinguished primarily by the methods used to 
evaluate the surface currents in Eq. (15.9). 

In diffusion theory approximation, the x-directed partial currents and the flux are 
related by 

with similar relations for the y- and z-directed partial currents. Thus the surface 
integrals of the flux at f Ax12 

are related to the corresponding surface integrals of the partial currents: 

with similar relations for the y- and 2-directed partial currents at fAy/2 and 
f Az/2, respectively. All surface integrals with the node index n are evaluated in 
the Iimit as the surface is approached from within the nth node. 

As mentioned, the various nodal formulations are distinguished primarily by 
the methods used to evaluate the surface currents in Eq. (15.9). Two rather distinct 
classes of nodal methods have evolved. The first class, often referred to as conven- 
tional or simulation models, makes use of detailed calculations or reactor operating 
experience to evaluate the surface current integrals in terms of differences in node- 
averaged fluxes for adjacent nodes, with empirically adjusted coupling coefficients. 
The second class, sometimes referred to as consistently formulated models, makes 
use of the concept of transverse integration and of higher-order (than ordinary 
finite-difference) approximations to evaluate the surface integrals of the current 
and the internodal coupling terms in order to derive nodaI equations that can be 
expected to converge to the exact solution in the limit of small mesh spacing. 
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15.2 CONVENTIONAL NODAL METHODS 

The first class of nodal models to be considered is based on relatively simple 
mathematical models with parameters that can be adjusted to match the results 
of more detailed calculation or measurement. Such methods are widely used in 
three-dimensional simulators, which play a key role in guiding and interpreting the 
operation of research and power reactors. The basis of such methods is the repre- 
sentation of the neutron flux or neutron fission rate within each of the many 
homogenized fuel assemblies by a single nodal average flux or fission rate that is 
coupled to the average flux or fission rate in adjacent nodes by the internodal 
diffusion of fast neutrons, which is represented by coupling coefficients. The re- 
flector is usually represented by an albedo. Such methods are frequently based on 
~ i - ~ r o u ~  theory. The coupling coefficients and the reflector albedo are normally 
adjusted to provide agreement with more detailed calculations or measurements. 

The earlier versions of this class of nodal methods imposed a continuity of net 
current condition at interfaces: 

where $a is the node-averaged flux, and chose the effective diffusion coefficients 
and coupling parameters a to match interface net currents or nodal average fluxes 
from detailed planar finite-difference calculations. The sometimes unphysical nat- 
ure of the solution or the strong sensitivity to the properties of both adjacent fuel 
assemblies of the coupling coefficients obtained by such net current-matching 
procedures lcd to the development of coupling coefficients based on matching 
partial currents at node interfaces: 

The gross coupling method uses dctailed finite-difference diffusion theory 
Huxes from a heterogeneous planar (x,y) model to calculate interface partial 
currents: 

which are used to evaluate the coupling coefficients, cc. For c$,(kn/2, y) ,  6; and 
4;'' obtained from detailed planar calculations, Eqs. (1 5.14) and (15.6)-with the 
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integral over Az suppressed-are used to evaluate uz and a:+'. The nodal equations 
(1 5.9) in two-dimensional geometry may be written as 

where the node n is designated by sub- and superscripts nx and ny so that the 
adjacent node in the x- and y-directions may be indicated by n,*l and n y f  1 ,  
respectively [e.g., n, nx + 1 refers to the coupling between node n (n,, ny) and the 
adjacent node (nx+ 1 ,  n,) at x = + &/2] (see. Fig. 15.1). 

Most of the conventional nodal models do not make use of detailed planar 
calculations to evaluate the internodal coupling coefficients. Instead, the coupling 
coefficients are reinterpreted in a manner that enables intranodal collision prob- 
ability methods to be used in their evaluation. The one-group version of Eq. (15.16) 
may be rewritten as 

as a balance among the fission neutron production rates in the various nodes, where 

and the coupling terms are of the form 

The new coupling coefficients wnlnx+' may be interpreted as the probability that a 
fission neutron born in node (n,, ny) escapes into node (n,+ 1, ny), and so on, quan- 
tities which readily lend themselves to calculation using collision probabilities or 
other methods. For example, the well-known FLARE code uses 
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where M: is the migration area in node (n,, n,,) and g is an adjustable parameter. 
The two terms correspond to the one-group transport and diffusion kernels for 
leakage from a slab of thickness Axn. A reformulation of the FLARE equations 
in 1; -group theory leads to 

Neutron conservation for an internal node requires that 

where the sum is over the six adjacent nodes. Wm'" represents the probability that a 
neutron created from fission in node rn will be absorbed in node n, since it has been 
assumed that a neutron escaping into an adjacent node is absorbed therein. (This 
assumption can be removed.) For nodes on the surface of the core, an albedo f i n ,  is 
used for each surface r which faces a reflector, so that the balance equation is 

Equations (15.22) and (15.23) are solved iteratively, with the eigenvalue guess 
updated on each iteration by using the most recently calculated S" in the neutron 
balance to evaluate 

Nodal methods of the type described in this section generally require parameter 
adjustment to obtain agreement with more detailed calculations or measurements 
of power distribution, effective multiplication constant, and so on. Computations 
based on these nodal methods run very fast and have found widespread use in three- 
dimensional reactor simulators. 

15.3 TRANSVERSE INTEGRATED NODAL DIFFUSION 
THEORY METHODS 

A second class of nodal methods are those that have been formulated on the basis of 
integrating the three-dimensional diffusion equation over two transverse directions 
to obtain a one-dimensional diffusion equation, with transverse leakage terms, 
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which can be solved within a node by approximating the dependence on the re- 
maining spatial variable, usually with a polynomial. These methods are consistently 
formulated in that they reduce in the limit of small node sizes to the conventional 
finite-difference method for the homogenized reactor model. 

Transverse Integrated Equations 

Integration of the three-dimensional multigroup diffusion equations over the two 
transverse directions to obtain a one-dimensional equation in node n yields 

The x-dependent flux and current averaged over the transverse directions are 

and leakage terms transverse to the x-direction are 

Making the diffusion theory approximation 

the multigroup diffusion theory x-direction transverse integrated equation for node 
n is 
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The node-averaged values of the group flux and transverse leakage terms are 

Integrating Eq. (15.25) over x and using Eqs. (15.32) and (15.33) yields the nodal 
balance equation (15.19). One-dimensional transverse integrated equations in the 
y- and z-directions are derived in a similar manner. 

Polynomial Expansion Methods 

The coarse mesh methods can obtain a higher-order accuracy than conventional 
finite-difference methods by expanding the x-dependence of the flux: 

where the polynomials 

X 
f o ( x ) = l ,  f i ( x ) = - = l  Ax-  

are normalized so that the volume average of the polynomial representation of the 
flux is the volume average of the flux defined by Eq. (15.32): 
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and the surface average of the flux is equal to the surface-averaged flux defined by 
Eq. (15.11) at x =  kAx12: 

These requirements are satisfied by polynomial expansion coefficients, 

and the requirement that 

on the polynomials. 
In terms of these polynomials, the outgoing x-direction surface-averaged cur- 

rents at x = f Ad2 are 

with similar expressions for the y- and z-direction surface-averaged currents at 
kAy/2 and f Azj2,  respectively. 

If the polynomial expansion of the x-direction flux in Eq. (15.34) is terminated at 
I = 2, and similarly for the y-and z-direction expansions, the transverse-integrated 
nodal equations are well posed in terms of node-averaged fluxes and incoming and 
outgoing partial currents over node boundaries (i.e., the number of equations and 
the number of unknowns agree). Equations (15.38) and (15.12) can be used to 
express Eqs. (15.40) and (15.41) in terms of node-averaged flux and partial currents 
at x = ~tAx/2: 
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with similar expressions for the y-and z-direction surface-averaged currents at 
f Ay/2 and kAz/2, respectively. Equation (15.8) can be used to replace the cur- 
rents with partial currents in the nodal balance equation (15.9) to obtain 

Note that this equation could be derived directly by integrating Eq. (15.1) over the 
node. 

The incoming x-direction partial currents to node n may be related to the outgoing 
partial currents from the adjacent node n + 1 at Ax/2. Using the flux discontinuity 
condition discussed in Chapter 14, the surface-averaged fluxes are related by 

where Eq. (15.12) has been used to write the second form of the equation. For unity 
flux discontinuity factors, Eq. (15.45) becomes the continuity of flux condition. The 
surface-averaged current continuity condition 

may be combined with the flux discontinuity condition to obtain 

Imposition of similar conditions at the interface with adjacent node n-1 at - h / 2  
yields 
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Similar expressions are obtained relating the incoming y- and z-direction surface- 
averaged partial currents at f Ay/2 and f Az/2, respectively, to the outgoing partial 
currents from the adjacent nodes in the y- and z-directions. 

The equations above can be derived directly from an expansion of the form 

without recourse to the transverse integration stratagem. In fact, Eqs. (15.44) follow 
directly from Eqs. (15.8) and (15.9), and the interface conditions of Eqs. (15.45) 
and (15.46) arise from other considerations. However, this transverse integration 
stratagem is essential for extending the formalism to higher order. 

For polynomial expansions with I > 2 in Eq. (15.34), the transverse integrated 
equations are no longer well posed in the sense of having the same number of 
equations and unknowns. However, weighted residuals methods can be used to 
develop higher-order approximations, but this requires the further approximation 
of higher-order leakage moments. Multiplying Eq. (15.25) by the spatial function 
wi(x) and integrating yields 

where the ith spatial moment of the flux is 

and the ith spatial moment of the transverse leakage is 

with a similar term for the z-direction transverse leakage. 
The nodal balance equation results from choosing wo = 1 in Eq. ( 1  5.50). 

Numerical comparison with detailed finite-difference solutions indicates that the 
choices w,(x)  = f i (x)  and wZ(x) = f2(x) yield good results. Using these two functions 
and integrating the first term in Eq. (15.50) by parts yields the two equations that 
must be solved for the higher-order flux moments: 
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1 392 fli12 + z;n*;X, XY +- 
(Ax) 

where 

Using M?I(X) = fl(x) and w2(x) = f2(x) and Eq. (15.49) in Eq. (15.51) then yields 
the higher-order expansion coefficients 

Solution of Eqs. (15.54) requires further approximation for the x-dependence of 
the x-direction transverse leakage (and similarly for the y- and z-direction trans- 
verse leakage terms). A number of approximations have been used, but the most 
successful has been the quadratic approximation 

which is assumed, for the purpose of evaluating moments of the transverse leakage, 
to extend over node n and the two nodes adjacenl 10 node n in the x-direction. Use 
of Eq. (15.57) in Eq. (15.52) then makes it possible to evaluate the transverse 
leakage moments in terms of the surface-averaged leakages (thus surface-averaged 
partial currents) in the adjacent nodes. 

Combining results in the thrcc coordinatc directions lcads to an interface current 
balance in cach group of thc form 

The column vectors J;,OUt and J ~ ~ ' "  contain the six outgoing and incoming, respec- 
tively, surface-averaged partial currents for the nth node. The column vector Qi 
contains the node-averaged scatter-in and fission sources to group g, and L; con- 
tains the higher-order spatial moments of the transverse leakage computed using the 
quadratic 13 or some other approximation. The matrices Pi  and Ri contain nodal 
coupling coefficients. A variety of iterative schemes have been devised for solving 
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Eq. (15.58), within an outer power iteration solution procedure. Generally, the 
three-dimensional geometry is subdivided into a number of axial planes, and the 
nodes within each plane are solved (swept) a few times using the most recent values 
for group fluxes in nodes in the adjacent planes. The number of planar sweeps 
required per group generally increases with the planar average diffusion length 
within the group. 

The nodal procedure outlined above uses constant homogenized cross sections 
over the node. In applications where the actual cross sections vary significantly over 
the node, the use of constant cross sections introduces an error in calculating effects 
such as space-dependent internodal burnup. An extension to include low-order 
polynomial dependence of the cross sections over the node has been shown to lead 
to improved accuracy in such cases. 

Analytical Methods 

There are variants of the transverse integrated method in which an analytical solu- 
tion is used in some part of the derivation of the transverse integrated nodal 
equations. In a variant known as the analytical nodal method the one-dimensional 
transverse integrated equation is integrated analytically to relate the nodal leakage 
in that dimension to the nodal average fluxes in the node and in the adjacent nodes 
in that dimension. In another variant known as the nodal Green'sfuaction method, 
the one-dimensional transverse integrated equation is formally solved by the meth- 
od of Green's functions, resulting in expressions that can be used together with the 
polynomial expansion to evaluate coefficients. These are discussed more fully in 
Ref. 2. 

Heterogeneous Flux Reconstruction 

The results of the nodal calculation are global node-averaged fluxes, $, flux dis- 
tributions consisting of the polynomial flux distributions $:(x, y ,  2 )  within each 
node or assembly n [e.g., as constructed from Eqs. (15.34) for each direction] 
and nodal interface currents. These global fluxes and flux distributions are normal- 
ized to the reactor power level. To obtain a more detailed heterogeneous intra- 
assembly flux distribution, it is necessary to superimpose on these nodal average or 
smoothly varying polynomial flux distributions a detailed intranodal flux shape, 
Ai(x,  y ) ,  usually taken from a planar assembly transport calculation: 

The simplest such procedures use an assembly calculation with symmetry boundary 
conditions to determine A:(x,y)  and Eq. (15.59). Improved accuracy has been 
obtained by using the first of Eqs. (15.59) to construct a gross intranodal flux 
distribution that approximates the gross intranodal flux shape from the global 
calculation. Use of the same intranodal flux shape for the nodal homogenization 
and flux reconstruction is necessary for consistency, but this is difficult to achieve in 
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practice without an iteration among the homogenization, nodal solution, and Aux 
reconstruction steps. 

15.4 TRANSVERSE INTEGRATED NODAL INTEGRAL TRANSPORT 
THEORY MODELS 

Transverse Integrated Integral Transport Equations 

The concepts and procedures introduced in Section 15.3 can be extended to develop 
nodal methods based on integral transport theory. To limit the notational com- 
plexity, we discuss the development of integral transport nodal methods in two- 
dimensional rectangular geometry, although we note that three-dimensional models 
are in use for nuclear reactor analysis. Assuming that a detailed heterogeneous 
assembly transport calculation has been performed to produce homogenized multi- 
group constants that are uniform over the domain of node n (-Ax12 I x  < h / 2 ,  
-Ay/2 5 y 5 Ay/2), the transport equation for the multigroup neutron flux within 
node n in two-dimensional Cartesian geometry may be written 

where, for notational convenience, the group in-scatter and fission terms have been 
written as a source term: 

isotropic scattering has been assumed, and the coordinate system is defined such that 

The coordinate system and spatial domain of node n are depicted in Figs. 15.2 and 
15.3. 

Integrating Eq. (1 5.60) over -Ay/2 < y < Ay/2 yields the one-dimensional 
x-direction transverse integrated transport equation for node n: 

A Y / ~  

=L J dy S: (x, y ) = - 1 S; (x)  
4n -Ay/2 4?T 
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y .Q,= sin~cosm=JI-rlcos( 

Fig. 15.2 Coordinate system for two-dimensional nodal transport model. 

Fig. 15.3 Spatial domain for two-dimensional nodal model. 

where the x-direction angular flux is 
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and the transverse leakage term defining the average net neutron loss rate across the 
node boundaries at y -- -Ay/2 and y = Ay/2 is 

Equation (15.63) can be integrated if the scattering, fission, and leakage are 
treated as a known source: 

where the inward-directed average angular fluxes at x = Ax12 and x = -Ar/2 are 

and the outward-directed average angular fluxes at x = d x / 2  and x = - h / 2  are 

The average scalar flux in the x-direction problem is 



558 NODAL AND SYNTHESIS METHODS 

where the exponential integral function is 

and the transverse leakage has been split into an isotropic and an anisotropic 
component: 

1 
Lfy (2, /A, 4) = - ~ f i ?  (A') + ~fy (x', ,u, 4) (15.71) 

4?T 

Polynomial Expansion of Scalar Flux 

Following the same general procedure used to develop the diffusion theory nodal 
model, the scalar flux for the x-direction problem is expanded: 

The expansion coefficients are normalized such that 

and the polynomials 

are used. The moments of the scalar flux are 

so that is the node-averaged scalar flux. 

Isotropic Component of hnsverse Leakage 

The surface average of the isotropic component of the transverse leakage is 



TRANSVERSE INTEGRATED NODAL INTEGRAL TRANSPORT 559 

where the surface average of the outward and inward partial currents at + Ay/2 
and -Ay/2 are 

and 

respectively, with the directional neutron fluxes at +Ay/2 and -Ay/2, $:;: and 
It:;', defined by equations similar to Eqs. (15.67) and (15.68). 

Double-P, Expansion of Surface Fluxes 

The angular dependence of the neutron flux on the surfaces of the node is appro- 
ximated by a double-PI approximation, which allows independent linearly aniso- 
tropic distributions for the incident and exiting fluxes on a surface. In terms of 
the half-space polynomials, which are related to the Legendre polynomials by 
p,f(EJ=Pn(2C-1) for 1 2 5 2 0  and p ; ( t ) = P n ( 2 ( - t I )  for 0 2 6 2 - 1 ,  the 
surface-averaged inward neutron fluxes at + h / 2  are expanded: 

The angular moments of the surface-averaged inward fluxes that appear in Eq. 
(15.79) are 
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Using Eq. (15.79) to evaluate the integrals involving the incident fluxes in 
Eq. (15.69) yields 

Angular Moments of Outgoing Surface Fluxes 

The angular moments of the surface averaged outgoing flux and current at Ax/2 can 
be constructed from Eq. (15.66a), using Eq. (15.79) to expand the angular depen- 
dence of the incoming flux at -Ax/2: 
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The angular moments of the surface-averaged outgoing flux and current at 
-Ax12 can be constructed from Eq. (15.66b1, using Eq. (15.79) to expand the 
angular dependence of the incoming flux at + h / 2 :  

Nodal Transport Equations 

These equations can be written, in terms of matrices and column vectors, in a form 
analogous to the diffusion theory relation of Eq. (15.58): 

The column vectors Q: and L; are defined as for diffusion theory and represent the 
fission plus in-scattcr source and the transverse leakage, respectively. The column 
vector $;""' contains outgoing surface-averaged partial currents [Eqs. (15.83) and 
(15.8S)l and half-angle integrated fluxes [Eqs. (15.82) and (15.84jl; and the column 
vector $;,In contains incoming surface-averaged partial currents and half-angle 
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integrated fluxes [Eqs. (15.80)] for each of the six (in three dimensions) nodal 
surfaces. The matrices and R: contain the nodal coupling coefficients. 

The transverse integrated formulation allows for direct transmission of neutrons 
entering node n over the x-surface at - h / 2  across the node to exit over the 
x-surface at +Ax/2 [e.g., the $:$ and J::: terms in Eqs. (15.82) and (15.83)], 
but does not allow for the direct transmission of neutrons entering node n over an 
x-surface across the node to exit over a y- or 2-surface. 

15.5 TRANSVERSE INTEGRATED NODAL DISCRETE 
ORDINATES METHOD 

A nodal transport equation can also be formulated in terms of the discrete ordinates 
approximation. The development is similar to that of Sections 15.3 and 15.4 and we 
will only briefly examine how the nodal coupling equations are formulated in terms 
of discrete ordinates. In two-dimensional Cartesian geometry, the multigroup dis- 
crete ordinates equations with isotropic scattering within a node of constant homo- 
genized cross section may be written 

where $?(X,Y) = $,(x,~,Q,) is the group flux in the ordinate direction 
a m ,  pm = n, Om, and q m  = n,, a m .  Letting the node extend over - h / 2  < 
x < h / 2 ,  -Ay/2 < y < Ay/2 and integrating Eq. (15.87) over -Ay/2 < y < Ay/2 
leads to the transverse-integrated one-dimensional discrete ordinates equation 

where the y-direction transverse leakage is 

' * ~ / 2 '  a c  (x, y) 
y ( 4  J-c*Y/2, dy 71rn ay = 71m [q,,+(x) - qy- (dl 

and 4J;* = qy (x, Y = f AY/~) .  
We now make a polynomial expansion of Si(x) within the node in the poly- 

nomials 
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integrate Eq. (15.88) over - h / 2  < x  < h / 2  in the direction of neutron flow (i.e., 
from - h / 2  to + h / 2  for f > 0 and in the opposite direction for pm < O) ,  and 
make use of the orthogonality property 

to obtain a relation among the outward-directed fluxes at one boundary, the inward- 
directed fluxes at the other boundary, and the group sources within the node 

where the S; are the coefficients of the polynomial expansion of S:(x). 
Equation (15.88) can be integrated over - h / 2  < x l  < x for pm > 0 and in the 

opposite direction for j.P < 0 to obtain an expression for the flux $yx(x) similar to 
that given by Eq. (15.92) but with the upper limit of the integral replaced by x. This 
expression can expanded in polynomials, multiplied by 5, and integrated over 
- h / 2  < x < h / 2  to obtain an expression for the ith node-averaged flux expansion 
coefficient in terms of the inward flux at & h / 2  and the group sources within the 
node: 

The fluxes at the interface between nodes n-1 and n are coupled by 

which enables the development of equations for solving the x-direction transverse 
integrated equations. A similar procedure is then applied to develop and solve the 
y-direction transverse integrated equations. 

15.6 FINITE-ELEMENT COARSE MESH METHODS 

The finite-element methodology provides a systematic procedure for developing 
coarse mesh equations with higher-order accuracy than the conventional finite- 
difference equations. In the finite-element method, the spatial (or other) 
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dependence of the neutron flux and current are represented by a supposition of trial 
functions which are nonzero only within a limited range of the spatial variables. 
These trial functions are continuous within volumes V,, but may be discontinuous 
across the interfaces between adjacent volumes. The finite-element approximation 
will be developed from a variational principle that admits discontinuous trial func- 
tions, but it could also be derived from a weighted residuals development. 

The development of finite-element approximations will be discussed for one- 
group P I  and diffusion theory. The results can formally be extended to multigroup 
theory by replacing the total and fission cross sections with diagonal cross-section 
matrices, replacing the scattering cross section with the multigroup scattering ma- 
trix, and replacing fluxes and currents with column vectors of multigroup fluxes and 
currents. 

Variational Functional for the PI Equations 

The volume of the reactor core may be subdivided into voh,mes K within which the 
trial functions for the neutron flux and current are continuous. These regions are 
bounded by interfaces Sk across which the trial functions may be discontinuous. A 
variational functional for the one-group P I  equations is 

where the first two terms are sums over the volumes within which the admissible 
trial functions are continuous and the last two terms are surface integrals over 
the interfaces between these volumes. The subscripts k+ and k- refer to limit- 
ing values as the surface k is approached from the positive and negative sides, 
respectively. 

The stationarity of this variational functional with respect to independent and 
arbitrary variations of the adjoint flux (4') and current (J*) within the different 
volumes & requires that 
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(i.e., that the PI  equations are satisfied within the different volumes K). 
The stationarity of this variational functional with respect to independent and 

arbitrary variations of the adjoint flux (4;) and current (Jz) on the interfaces 
between volumes V;: requires that 

(i.e., that the normal component of the current and the flux are continuous across 
each interface). 

Thus, the requirements that the variational functional of Eq. (15.95) is stationary 
with respect to arbitrary and independent variations of the adjoint flux and current 
in each volume V;: and on each interface Sk is equivalent to the requirements that the 
Pi equations are satisfied within each volume and that the normal component 
of the current and the flux are continuous across the interfaces bounding these 
volumes. This equivalence will now be exploited to develop finite-element approx- 
imations for the neutron flux distribution. 

One-Dimensional Finite-Difference Approximation 

Although it is not a finite-element approximation per se, it is instructive to derive 
variationally the conventional finite-difference approximation for a slab extending 
from 0 <x  < a with zero flux boundary conditions. The slab is partitioned into 
N mesh intervals and the flux and current are expanded in piecewise constant 
functions 

where the Hn and Kn are Heaviside functions: 
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1, xn -$hn-1 < X  < x n  + ; h a  
Hn(x) = 

0, otherwise 
(15.102) 

1 ,  X n < X < x n + ~  
Kn(x) = 

0 ,  otherwise 

the domain of which is illustrated in Fig. t5.4. The volumes V,  over which the 
flux and adjoint flux trial functions are continuous are the mesh intervals 
~ ~ - h ~ _ ~ / 2 < x < x ~ + h , / 2 ,  and the surfaces bounding these regions are at 
x ,  - hnP1 /2  and xn + h,/2.  The volumes 6 over which the current and adjoint 
current trial functions are continuous are the mesh intervals x, < x < x n +  ,, and 
the surfaces bounding these regions are at xn and x, + ,. 

For the piecewise constant adjoint flux trial functions of Eq. (15.100), the varia- 
tions on the surfaces are not independent of the variations in the volumes; that is, 
instead of having separate Eqs. (15.96) and (15.98), these two equations must be 
combined, leading in this case to 

Fig. 15.4 Trial functions for tinite-difference approximation. 
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where the materials properties denoted by the subscript n have been taken to be 
uniform in the interval xn 5 x  5 x,, .+ Similarly, the variations of the adjoint current 
trial functions in the volumes and on the surfaces are not independent, requiring 
that Eqs. (15.97) and (15.99) be combined to yield 

Requiring that the variational functional be stationary with respect to arbiu'ary and 
independent variations and 6J,* in each mesh interval yields 

which may be combined to obtain the standard form of the finite-difference diffu- 
sion equation. 

The volumes V ,  over which the flux and adjoint flux trial functions are continuous 
are the mesh intervals ~ , - h , - ~ / 2  < x  < x, + hn/2,  and the surfaces bounding these 
regions are at ~ , - h , - ~ / 2  and xn + hn/2.  

Diffusion Theory Variational Functional 

We shall restrict our attention to trial functions that are continuous over the volume 
of the reactor, which means that the last term in the variational functional of Eq. 
(15.95) is identically zero. We further restrict ourselves to current and adjoint 
current trial functions which satisfy Fick's law, so that the second term in Eq. 
(15.95) is identically zero and the current in the first and third terms may be 
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replaced by -DO$ to obtain the diffusion theory variational functional 

The second form of this functional resulted from integrating the divergence in the 
first term by parts over the various volumes to obtain terms that cancel identically 
with the interior surface terms in the second term and vanish on the outer boundary 
because of the physical boundary condition. Note that this second form of the 
functional admits trial functions which do not identically satisfy continuity of 
-DV+ n, across interior surfaces. 

Linear Finite-Element Diffusion Approximation in One Dimension 

We consider the same problem as above, a slab reactor with zero flux boundary 
conditions in one-group diffusion theory. The neutron flux is expanded 

in tent function trial functions 

x n  < x < %+I 

xn-1 < x  < x n  

otherwise 

depicted in Fig. 15.5. The volumes Vi over which the trial functions 4 and $* of Eq. 
(15.108) and the vectors DV+ and DV+* are continuous are just the mesh intervals 

- h,-, d - hn - h,+l + 

Fig. 15.5 Trial functions for linear finite-element approximation. 
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xn- < x < x,, and the surfaces are the x,. Requiring that the variational functional 
of Eq. (15.107) be stationary with respect to arbitrary and independent variations in 
all the adjoint trial functions yields 

Carrying out the integration results in a three-point coarse mesh equation for each 
mesh point: 

which are similar to the finite-difference equations (15.106), but with more cou- 
pling among mesh points. 

Numerical studies reveal that Eqs. (15.1 11) can achieve the same accuracy as 
Eqs. (15.106) with much larger mesh spacing, hn. This rcsult is physically intuitive 
because the piecewise linear representation of the flux allowed by the trial functions 
of Eqs. (15.109) is more realistic than the step function representation allowed by 
the trial functions of Eqs. (15.100) and (15. 1 Ol), as illustrated in Fig. 15.6. It shnds 
to reason that higher-order polynomial trial functions should provide an even better 
representation of the flux and hence be more accurate. 

Higher-Order Cubic Hermite Coarse-Mesh Diffusion Approximation 

The cubic Hermite interpolating polynomials 

3 

3 (x=) - 2 (x*) , xn-1 I x  5 %  

ff%) = 
3 

Xn+l - x 
3 ( ~ ) ~ - 2 ( ~ )  , 

XI? 5 x 5 &+I 

0, otherwise 1 
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I I I 1 I 

Xn-2 Xn-I Xn %+I Xn+2 

Fig. 15.6 Finite-difference (solid lines) and linear finite-element (dashed lines) representa- 
tion of flux solution. 

H ~ ( x >  = { [ ( ~ ) 2 + ( x ) 3 ] -  i - l i x i x n  

0, otherwise 

H:" ( x )  = 

otherwise 

are frequently used for the development of coarse-mesh finite-element approxima- 
tions. These polynomials have the properties 

These polynomials are used to construct trial functions: 

The second property of Eq. (15.1 13) ensures that this rial function is continuous at 
the x,. Thus the variational functional of Eq. (15.107) admits these trial functions. 

Requiring stationarity of the variational functional with respect to arbitrary and 
independent variations of all the adjoint trial functions in all interior mesh intervals; 
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that is, requiring (6Fd/6+$)6$: = 0, (6Fd/&$~)8~,* = 0, and ( 6 ~ d / 6 + > )  
64:' = 0 for n = 1,. . . , N-1 yields three equations for each mesh point: 

These equations are for the interior mesh intervals. The zero flux boundary condi- 
tion requires 4; and 4; to vanish (or a symmetry boundary condition would 
require, for example, 4: = 4:). However, additional constraints must be imposed 
to evaluate 4; and 4;. Requiring stationarity of the variational functional at the 
external boundaries [i.e., ( 6 ~ d / 6 + ? )  64;' = 0 and ( 6 ~ d / ~ 4 ; * )  6@ = 01 pro- 
vides the additional equations that are necessary to specify the problem completely. 

The use of cubic Hermite polynomials is found to increase the accuracy of 
the finite-element approximation relative to use of the linear polynomiaI of Eq. 
(1 5. log), but, of course, to increase the computing time because three equations per 
mesh point are involved instead of only one. The accuracy of which we are speak- 
ing is the error with respect to an exact solution of the homogenized problem, not 
with respect to an exact solution of the true heterogeneous problem. Although it 
seems plausible that a more accurate solution to the global homogeneous problem, 
when combined with a local heterogeneous solution, wilI yield a more accurate 
solution of the actual global heterogeneous problem, this is not obvious. 

Multidimensional Finite-Element Coarse-Mesh Methods 

In two dimensions, the volume of a core can be partitioned into region volumes y, 
which we refer to as elements. These elements can have a variety of shapes: 
triangles, quadrilaterals, tetrahedral, and so on. A finite-element approximation for 
the solution is represented by a linear combination of shape functions associated 
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with each element, normally polynomials in the local coordinates within the 
element. A shape function has the value unity at its associated coarse mesh point 
and goes to zero at the surface of the volumes associated with that element. 
For example, a quadratic polynomial 

might be used to represent the flux within a triangular element. Usually, the poly- 
nomial is redefined so that the coefficients have the values of the flux at various 
support points throughout the element. A quadratic approximation clearly requires 
six support points, a linear approximation would require three support points, and 
so on. The value of the flux at each support point is an unknown in the resulting 
equations. 

15.7 VARIATIONAL DISCRETE ORDINATES NODAL METHOD 

The nodal and coarse mesh calculations described in Sections 15.2 to 15.4 proceed 
in three distinct steps: (1) the performance of local assembly two-dimensional 
transport calculation and the preparation of homogenized cross sections for each 
node, (2) the global solution of the nodal equations for the average flux in each 
node, and (3) reconstruction of the detailed heterogeneous intranode fluxes. We 
found in considering the coarse mesh methods that the higher-order polynomials 
which better represented the overall flux distribution within the coarse mesh region 
led to more accurate solutions of the homogenized problem, which is solved with 
nodal or coarse mesh equations in step 2. 

It is possible to combine the three steps-homogenization, flux solution, detailed 
flux reconstruction-into a single, self-consistent procedure that uses the detailed 
heterogeneous assembly transport flux directly, instead of a polynomial approxima- 
tion, to represent the flux distribution within the node or coarse mesh region. Since 
a relatively high order transport solution is needed for the heterogeneous assembly 
calculation, but a relatively low order transport calculation will usually suffice for 
the global nodal calculation, we illustrate the development of a methodology that 
can make use of high-order discrete ordinates heterogeneous two-dimensional as- 
sembly calculations as trial functions to develop a low-order discrete ordinates 
nodal calculational model. 

Variational Principle 

A variational principle for the neutron transport equation is 

F [+(r,  a), +* ( r ,  a)] 
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The functional F is a sum over A volumetric reactor regions (or nodes). The first 
term of the sum is an integration over the nodal volume Vh and the entire solid angle 
( 4 ~ ) .  The second term of the sum is a sum over all the interior surfaces v(h) of node 
A; this term is included to allow trial functions that are discontinuous across any 
surface. The notation rx,,,(h) refers to the limit of all the points on the surface v(h) as 
approached from within node h; similarly, r,,(x),h refers to those same points as 
approached from the node adjacent to node h [the node on the other side of surface 
v(7L)I. Each of the terms in this sum is an integral over the surface nx,,,(x) (formed 
by the points rx,,,(~) and the solid angle 47~). The final term in the sum is an integral 
over the exterior surface Sx of node h (formed by the points re,). This term is 
included to allow trial functions that do not satisfy vacuum boundary conditions. In 
the functional I;, n refers to the outward unit normal vector from node h across an 
interior or exterior surface, and H i s  the Heaviside step function. In addition, C,(r), 
Es (P, a' + a ) ,  and vCf(r) are the usual cross sections for removal, scattering from 
angle 0' to a, and neutron production from fission, respectively. Although the 
functional F has been presented in a one-energy-group (or energy-independent) 
form, the extension of the results below to the multigroup case is straightforward. 

The condition (6F/6$*) 6$* = 0 requires that the stationary value of the trial 
function $(r, a )  be identified as the forward angular flux satisfying the Boltzmann 
transport equation, 

as well as the interface continuity and vacuum boundary conditions 

and 

respectively. 
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The condition ( 6 F / 6 $ )  6JI =0 requires that the stationary value of the trial 
function \Ir*(r,O) be identified as the adjoint angular flux satisfying the adjoint 
transport equation 

-a V a  ( r ,  a) + E,(r)+* (r ,  a) = // dOf C s ( r ,  O -+ af)T ( r ,  Of)  
477 

as well as the interface continuity and vacuum boundary conditions 

and 

respectively. 
To apply the functional F to develop a nodal method, the reactor volume is first 

partitioned into I x J x K regions, where I, 3, and K are the number of partitions 
along the x, y, and z coordinates, respectively, and I x J x K is equal to the A of the 
overall sum in F. Node ijk is bounded by the surfaces xi, xi + I ,  yj, yj + 1. z k ,  and z k  + 1 

as illustrated in Fig. 15.7. The nodal or volumetric domain function, designated 
Auk ( x , y , ~ ) ,  is defined as 

x i < X < x i + l , Y j < Y < Y j i l ,  Z k < Z < Z k + l  

Aijk(x, y ,  2 )  = (15.124) 
otherwise 

&+ 1 
(behind) 

zk (below) 

Fig. 15.7 Bounding surface notation 
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The I x J regions in the radial (x-y) plane are called channels. The angular flux 
Jr(x,y,z,fl) is represented in each channel i j  as the product of a one-dimensional 
axial function gW(z,fij and a precomputed two-dimensional planar function 
Ajk(x,y,fk) that is used over the axial domain k. 

The angular dependence of the axial functions gijk(z,fkj is discretized into eight 
functions g;k(z), one for each octant of the unit sphere, and the octant domain 
function is designated An(fl), defined as 

1, within octant n 
An(fk) = (0 ,  otherwise 

The angular geometry is illustrated in Fig. 15.8 with a hypothetical arrangement of 
the 10 Am(fi) in octant 1 (p > O,q > 0, and 6 > 0) for a scheme with M= 80 
(corresponding to an S8 quadrature set). Note that the boundaries between adjacent 
domains are arbitrary. 

The surface area of that part of the unit sphere corresponding to region m within 
octant n is designated wmn, defined as 

where Am" is unity within region m in octant n and otherwise zero. Thus the wmn 
have the same interpretation as standard discrete-ordinates weights, and 
l L ~ = , X ~ ~ w m n  = 1. Note that the notation mn is shortened for "n within n" and 

Fig. 15.8 Angular geometry notation for domain functions Am''(!2) in an S, quadrature. 
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that this notation scheme requires that the MI8 subregions of octant n be ordered 
symmetrically with respect to those of each of the other octants, thus effectively 
specifying the use of a standard level-symmetric quadrature set. This requirement 
may be eliminated with a suitable, though possibly more confusing change of 
notation and is in no way limiting. 

As indicated in Fig. 15.9, the angle a is decomposed into its three direction 
cosines as follows (i, j, and k are the unit vectors along the x,  y, and z axes, 
respectively): 

In addition, the azimuthal angle w is defined (see Fig. 15.9) to be the angle between 
the z-axis and the projection of onto the y-z plane; thus 

q = Jm sin w 

< = JCj7 cos w 

Consistent averages of the 0 direction cosines may be defined as follows: 

pmn "".- & JJ m amn (all, 
octant 

n 

Fig. 15.9 Definition of angles. 
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Using the domain functions defined in Eqs. (15.124) and (l5.125), the trial 
function used for the forward angular flux in the functional F is 

The adjoint angular flux @"(x,y,z,a) is expanded analogously. 
Using the trial function of Eq. (15.130) and the analogous expansion for the 

adjoint flux in F and requiring siationarity of the functional with respec1 to each of 
the adjoint axial functions g;;.(z) yields reduced equations for the forward axial 
functions g;,(z), with homogenized parameters defined in terms of the precom- 
puted nodal basis functions f , J r ( x ,  y)  and fGr(x,y). The equation for each of the 
eight axial functions g;k(z )  is 
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h Eq, (15.131), the homogenized total, fission, and scattering cross sections in 
channel ij and axial region k for octant n are defined consistently as 

and 

respectively. Note that in deriving Eq. (15.134), the scattering cross section 
C,(G a' -, a) has been expanded in a Legendre polynomial of order L, and the 
addition theorem for spherical harmonics has been applied in the usual way. The 
isotropic portion of the homogenized scattering cross section has the same form as 
that of the fission cross section above. 

The transverse leakage from node ijk (i.e., the leakage in the x- and y-directions) 
is defined consistently as 
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The homogenized discrete ordinate for octant n is defined consistently as 

The four parameters required (for each octant) for coupling node ijk to its x- 
direction neighbors, nodes (i - 1)jk and (i + l)jk, are 

The four parameters required (for each octant) for coupling node ijk to its y-direc- 
tion neighbors, nodes i(j- l)k and i ( j  + l)k, are 

ql . . 6' h W ~ ~ V " " ~ ~ ~ ( X , Y ~ ) & ~ ~ ~ ~ ( X , Y , )  

L ( J , J - l ) k ( ~ i )  = j"' hr' dy xfi: wmnJlijy (x, y )xr (x ,y)  

.p dx CfL: w m ' ~ ~  'Y&;r (x, yj+ 1 )AT (x ,  yj+ l )  
ii;k (Y,+l = C" *. JF' dY C:!", w "yI'k"" ( x .  yxjy ( x .  y) 
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Note that the arguments of the Heaviside step functions H in Eqs. (15.131) are the 
direction cosines and qp"  of Eqs. (15.129), but with the single superscript n 
because only the octant needs to be identified. 

The interface conditions that couple node ijk to its axially adjacent neighbors, 
nodes y(k- 1) and ij(k + I), are 

where the coupling parameters are defined as 

Finally, the boundary conditions on Eqs. (15.131) are 

Using the angular flux trial function of Eq. (15.130) in the usual definition of the 
isotropic flux specifies the heterogeneous flux reconstruction equation: 
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Application of the Method 

The steps required for application of the variational nodal discrete-ordinates 
method are the same as those required for standard nodal methods. First, a set of 
fine-mesh high-order two-dimensional calculations is performed for small hetero- 
geneous local regions in the x-y plane, such as assemblies or extended assemblies, 
for the purposes of homogenizing the nodes. (It is also possible to use full two- 
dimensional planar calculations to provide nodal trial functions.) In standard nodal 
methods, even for full three-dimensional global calculations, only two-dimensional 
local calculations are performed, but the manner of axial coupling required for the 
nodes is rarely specified. In the variational nodal discrete-ordinates method, the 
local calculations are performed using the discrete-ordinates (SN) method. The fine- 
mesh SN calculations yield the angular fluxes hjY(x, y), and M=N(N+2) for a 
three-dimensional problem. For this method it is also necessary to calculate the 
adjoint angular SN fluxesJ;;r (x: y) in each node. There is a different homogenized 
cross section defined for each of the eight S2 directions; however, because of the 
axial symmetry obtained by the use of two-dimensional basis functions, only four 
are required. The basis functionsh$"(x, y) andf,;r(x, y) are used with standard SN 
ordinates and weights to compute homogenized parameters in accordance with the 
definitions of Eqs. (15.1 32) to (15.138) and (15.140). 

The second step in standard nodal methodology is a global diffusion-theory 
calculation, which involves (in general, for the transverse integrated methods) three 
one-dimensional equations for the transverse integrated x-, y-, and z-direction 
fluxes. Usually, the problem is reduced to that of finding coefficients of fourth- 
order polynomials. In the variational nodal method, the global equations are one- 
dimensional (z-direction) S2 first-order differential equations, which are equivalent 
in accuracy to the diffusion equations. The spatial discretization to use on the z-axis 
is not specified; thus any method may be used, including coarse-mesh, finite- 
difference, high-order polynomial expansion, or other standard method. 

The final step in the nodal calculation for the standard and variational nodal 
methods is the reconstruction of heterogeneous fluxes or reaction rates from the 
homogeneous (global) calculation results. In the variational nodal method, the f ux 
reconstruction is completely specified by Eq. (15.142). 

15.8 VARIATIONAL PRINCIPLE FOR MULTIGROUP 
DIFFUSION THEORY 

A complete mathematical description of the neutron distribution, within the context 
of multigroup diffusion theory, is provided by a coupled set of partial differential 
equations for the direct and adjoint flux (and current) with associated boundary, 
initial, final, and continuity conditions. An equivalent variational formulation must 
not only have the original equations as Euler equations, but must also embody the 
associated boundary, initial, final, and continuity conditions, either directly or in- 
directly through limitations on the admissible class of trial functions. 
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The following variational principle embodies all these conditions: 

where 

(P* , + = G x 1 column matrices of group adjoint and direct flux, respectively 
j*,j = G x I column matrices of group adjoint and direct current, respec- 

tively-vector quantities 

S*,S = G x 1 column matrices of group adjoint and direct source, respec- 
tively 

Ck, C, = scalar adjoint and direct delayed neutron precursor densities, respec- 
tively 

X = G x G matrix of group removal and scattering cross sections 

X I ,  = G x G diagonal matrix of group transport cross section 

T = G x G diagonal matrix of inverse group neutron speeds 

F = G x 1 column matrix of group nu-fission cross sections 
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X, xm = G x 1 column matrices of prompt- and delayed-fission neutron spec- 
tra, respectively 

A,, 0, = delayed neutron decay rate and precursor yield per fission, respec- 
tively 

The term in the first set of brackets is an integral over the time of interest, 
to 5 t < tF and the volume of the reactor. The Euler equations for this term are the 
direct and adjoint flux, current, and precursor equations, which result from the 
requirement that the first variations of J l  with respect to each of the argument 
functions (+*, +, j*, j, CA, C,) vanishes. In taking the first variation of J 1 ,  integra- 
tion by parts is required, which introduces certain additional terms. The requirement 
that these additional terms vanish, and hence that stationarity of J1  implies satisfac- 
tion of the Euler equations, imposes restrictions on the admissible class of trial 
functions. The purpose of the additional terms, J2-J5, is to remove these restric- 
tions. 

If direct and adjoint flux and current trial functions that are discontinuous across 
an internal interface, Sin, are admitted, a term of the general form of J2 must be 
added to J1  in order that stationarity of the functional J I 2  -. J1  + J2 implies satis- 
faction of the Euler equations and flux and current continuity conditions. The 
subscripts indicate limiting values on the + and - sides, with respect to the unit 
normal vector n, of the surface Sin. y and are arbitrary constants. 

Terms of the general form of J2 have given rise to an overdetermination of 
interface conditions in synthesis applications. Consider, for example, the variation 
of J I 2  with respect to +" (by a variation with respect to the column vector we intend 
separate and independent variations with respect to each element of the column 
matrix): 

For completely arbitrary 6+*T, the first term vanishes only if the expression within 
the first set of braces is identically zero, which is just the condition that the neutron 
balance equation is satisfied. Vanishing of the second term for arbitrary 6 ~ $ ' ; ~  and 

appears to lead to two current continuity conditions. However, continuity of 
adjoint flux requires that 6+;' = 6+*T, and in fact there is only one current con- 
tinuity condition. The difficulty in synthesis applications results from the failure to 
impose the condition = 6+TT on trial functions that are partially specified. 

If direct and adjoint flux and precursor trial functions which are discontjnuous in 
time at f in  are admitted, a term of the general form of J3 must be added to J ,  in order 
that stationarity of the functional J13  -- J 1  4- J3 implies the satisfaction of the Euler 
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equations and flux and precursor time continuity conditions. The + and - argu- 
ments refer to times just after and just before, respectively, ti,. a and b are arbitrary 
constants. An overdetennination problem, analogous to that discussed for J2, has 
also arisen in synthesis applications of J3.  

If direct flux and precursor trial functions that do not satisfy the known initial 
conditions go and hmo, and adjoint flux and precursor trial functions that do not 
satisfy known final conditions gf* and h&, are admitted, J4 must be added to JI in 
order that stationarity of the resulting variational principle implies satisfaction of 
the Euler equations and the appropriate initial and final conditions. Similarly, 
stationarity of J15 -- J1  + J5 implies satisfaction of the Euler equations and the 
external boundary conditions +, + .ejSO n = 0,  +:o + o;o n = 0, even if the flux 
and current trial functions do not satisfy these boundary conditions identically. 

A general second-order variational principle for multigroup diffusion theory can 
also be written which admits the same extended class of trial functions as J of Eq. 
(15.143), and which leads to the same apparent interface overdetermination problem 
in synthesis applications. Using Fick's law to relate flux and current, and integrating 
by parts in Eq. (15.143), leads to 

1 - 1  The diffusion coefficient matrix, D = -& , has been introduced in Eq. (15.145). 
3 
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15.9 SINGLE-CHANNEL SPATIAL SYNTHESIS 

The basic idea of single-channel synthesis is illustrated by the example of a uniform 
reactor with a rod (or bank of rods) partially inserted, as illustrated in Fig. 15.10. A 
few diffusion lengths above and below the rod tip the flux solution is essentially a 
one-dimensional radial flux shape $,d and $unrod, respectively. In the vicinity of 
the rod tip, it is plausible that some mixture of the two flux shapes will describe the 
actual radial flux distribution. The synthesis approximation is developed by using 
trial functions of the form 

with similar expansions for the adjoint flux and current. $, and the J,, are G x G 
diagonal matrices with elements given by the known group expansion functions 
$f(x, y )  and J:(x,  y), while p,, b,, go, and d, are G x 1 column matrices with 
elements given by the cvrresponding unknown group expansion coefficients. (Di- 
rect and adjoint expansion functions must each be linearly independent, but similar 

Control Rod 

4 (r,z> = arod + aunrod (~)$unrod(~) 

Fig. 15.10 Single-channel synthesis example. 
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functions may be used for direct and adjoint expansion functions.) Precursor trial 
functions of the form 

are used, where m is a G x 1 column matrix with unit elements (i.e., a sum vector). 
When the variational principle J of Eq. (1 5.143) is required to be stationary with 

respect to arbitrary variations in the trial functions, which are limited to variations 
in the expansion coefficients because the expansion functions are fixed, equations 
that must be satisfied by the expansion coefficients are obtained. 

If the trial functions above are used throughout the reactor and at all times, then 
J2 and J3 are identically zero. In this case, equations valid for 0 < z < L and t > to 
are obtained from J ,  and that part of J5 contributed by the vertical (side) external 
surface. 

Equations (15.100) can be combined to eliminate b,, gn, and d,, leaving NG 
scalar equations, which can be written in matrix form as 

where A, M, and R are NC x NG matrices, and Fm is an NG x N matrix. R and A 
are radial and axial leakage matrices resulting from the elimination of b,, g,, and 
dn. p and S are NG x 1 column matrices and Cm is a N x 1 column matrix. Thus G 
three-dimensional, time-dependent second-order PDEs (the multigroup diffusion 
equations) are replaced by NG one-dimensional time-dependent second-order PDEs 
[Eq. (15.15 I)]. The M three-dimensional, first-order ODEs (precursor equations) 
are replaced by NM one-dimensional first-order ODEs [last of Eqs. (15.150)l. 
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Boundary conditions at the top (z= L) and bottom (2 = 0) of the model are 
obtained by requiring stationarity of J with respect to arbitrary variations 6dir 
on the top and bottom surfaces: 

Initial conditions are derived by requiring stationarity of J with respect to arbi- 
trary variations 6pLT and 6 C ; ,  at t = to: 

6J 
=0, n'= 1 ,  ..., N 

( to )  

A formally identical result could be obtained by deriving the synthesis equations 
from the second-order variational principle F, the only difference arising in the 
definition of the elements of the leakage matrices R and A in Eq. (15.151). Under 
certain restrictive conditions the two formulations are exactly identical. 

Two-dimensional static flux solutions for x-y slices through the reactor at var- 
ious axial locations and/or for various conditions are normally chosen as expansion 
functions. For some problems different sets of expansion functions are appropriate 
for different axial regions, and it is convenient to use a discontinuous trial function 
formulation. In this case a term of the form of Jz  would be included in the varia- 
tional principle for each x-y planar surface at which the set of expansion functions 
changed. Equation (15.151) would again obtain within each axial zone, with the 
coefficients defined in terms of the expansion functions appropriate to that zone. 
Interface conditions result from the requirement that the variational principle be 
stationary with respect to arbitrary variations ~ j * = * n  and on the interface, 
which results in 
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If every tip>: and GpiY is assumed independent, 2N equations relating the N d, 
are obtained, and similarly the assumption that every 6d iL  and &I:: is indepen- 
dent leads to 2N equations relating the N p,. Hence the system is overdetermined by 
a factor of 2. Several stratagems have evolved for avoiding this difficulty. 

By requiring that the flux (direct and adjoint) and current (direct and adjoint) 
trial functions not be discontinuous at the same interface, the overdetermination 
problem disappears. In this case J::, - J~T- and 6diT = &I;:, and so on. This 
technique of staggering the interfaces at which flux and current expansion functions 
are changed, which has been widely employed, has the disadvantage that sin 
frequently corresponds to a physical interface in the reactor and it is desirable to 
change current and flux expansion functions at the same point. This may be ac- 
complished, for all practical purposes, by allowing the two interfaces at which the 
current and flux trial functions are discontinuous to approach each other arbitrarily 
closely. A second strategy is to select y and q = 0,l. This is essentially what is done 
when a Lagrange multiplier principle is used in deriving the synthesis equations and 
the Lagrange multipliers are expanded in terms of the flux or current expansion 
functions on either the + or - side of the interface. Such interface conditions are 
not symmetric with respect to the arbitrary choice of the + and - sides of the 

*T interface. A third strategy consists of requiring that tip;: = 6piT and = &in. 
With y = q = $, the interface conditions are independent of the arbitrary choice of 
the + and - sides of the interface. Thus all of these stratagems for removing the 
overdetermination of interface conditions have certain unsatisfactory features. 

As mentioned in Section 15.8, overdetermined interface conditions result be- 
cause of failure to impose the restrictions 6+; = 6+: and 6j; = 6j?, which must 
be satisfied if the adjoint flux and current are continuous, upon the trial functions. 
Although these restrictions cannot be imposed exactly, because the trial functions 
are partly specified, they can be imposed in an approximate manner to obtain 
relations among the variations 6pz: and among 6d;T and 8d:T The require- 
ment 64: = 64: becomes 

which cannot, in general, be satisfied exactly. However, this relation can be satisfied 
approximately. Multiplying by an arbitrary diagonal G x G matrix o , ~ ( x ,  y) and 
integrating over the surface sin yields one condition relating the N6pi -  to the 
N 6&+: 

If this is repeated for N different matrix functions on( the resulting set of equations 
may be written 
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where A ,  is an NG x NG matrix and 6p+ is an NG x 1 column matrix. This 
equation may be solved: 

The NG x NG matrix Q may be partitioned into N' diagonal G x G matrices en/,, in 
terms of which the equation above may be written 

where P,,J is one of the N~ diagonal G x G matrices analogous to the en,?. 
Making use of Eqs. (15.157) and (15.158), Eqs. (15.1%) and (15.156) each yield 

Ninterface conditions. These interface conditions have several advantages relative to 
those described previously. The theoretical derivation is consistent and the problem 
of overdetermination never arises. Flux and current trial function discontinuities are 
allowed at the same interface. Unfortunately, these interface conditions are not, in 
general, symmetric with respect to the arbitrary choice of the + and - directions. 

When the physical configuration of the reactor changes significantly during a 
transient, it may be plausible to use different sets of expansion functions over 
different intervals of time. For this situation a term of the form J3 would be 
included in the variational principle for each time interface at which the set of 
expansion functions are changed. Requiring stationarity of the variational principle 
again results in Eqs. (15.150) and (15.151) within each time interval, with the 
coefficients defined in terms of the expansion functions appropriate to the time 
interval. Similarly, the boundary conditions of Eq. (15.152) and the spatial interface 
conditions of Eqs. (15.155) and (15.156), with the coefficients defined in terms of 
the expansion functions appropriate to the time interval, and the initial conditions of 
Eqs. (15.153) and (15.154) are obtained again. In addition, temporal interface 
conditions arise from the J3 term, the variation of which is 

The same type of overdetermination, for the same reason [failure to impose the 
restrictions ti+*(+) = 6+*(-) and 6C;",(+) = 6Ci(-)I, has arisen in connection 
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with the temporal interface conditions. If each variation 6&, (+) and 6p$ (-) is 
(incorrectly) assumed to be independent, the 2N conditions are obtained relating the 
N p,(+) to the N p, (-), and similarly for the KC,,(+) = KC,(-). The strata- 
gems that have been used to remove this apparent overdetermination parallel those 
employed for the spatial interface problem. Staggered discontinuities, in which the 
direct and adjoint flux (and precursor densities) are discontinuous at alternative 
times have been suggested, and the inconvenience of changing expansion functions 
at different times has been essentially eliminated by allowing alternative times 
to approach each other arbitrarily closely. As in the case of the spatial interface, 
the overdetermination never arises if the restrictions 643*(+) = 6+*(-) and 
K C ( + )  = tick(-) are imposed in an approximate manner. 

Adjoint synthesis equations may be derived by an analogous development, in 
this case by requiring stationarity of the functional with respect to the direct ex- 
pansion coefficients. Similar results are obtained except that final conditions, rather 
than initial conditions, are obtained. It is necessary to impose approximateIy the 
conditions 643, = a+-, 6j + = 6j- to obtain restrictions on the variations in the 
Aux and current expansion coefficients at spatial interfaces, and to impose approxi- 
mately the conditions Fr$+) = 6+(-) and 6Cm(+) = 6CJ-) at temporal inter- 
faces, to avoid an overdetermination difficulty. 

15.10 MULTICHANNEL SPATIAL SYNTHESIS 

In Section 15.9 the idea of using different trial functions (i.e., different sets of 
expansion functions) in different axial regions was discussed. It is also possible 
to use different trial functions in different planar regions (channels), a procedure 
referred to as multichannel synthesis. This introduces two attractive possibilities. 
With expansion functions obtained from two-dimensional (x-y) calculations based 
on a mode1 encompassing the entire cross-sectional area of the reactor, the multi- 
channel feature provides the additional flexibility of allowing different expansion 
coefficients to be used in different channels. Thus a greater range of planar flux 
shapes can be synthesized from a given set of expansion functions than is possible 
with the single-channel synthesis of Section 15.9. A second possibility, which has 
not been exploited, is the use of expansion functions in each channel obtained from 
two-dimensional (x-y)  calculations based on a model encompassing only the cross- 
sectional area of the channel. 

The basic idea of multichannel synthesis can be illustrated by the simple ex- 
ample shown in Fig. 15.10. Let the radial dimension of the reactor model be divided 
into two channels, 0 5 r 5 a / 2  and a / 2  5 r 5 a.  Then the flux would be con- 
structed by separately mixing +,d and +,,rod in each channel: 
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The multichannel synthesis equations are derived by using separate trial func- 
tions for each channel, denoted by a superscript c ,  of the form 

with similar expansions for the adjoint flux and current. The x and y components of 
the current are each expanded in two separate types of terms in anticipation of the 
frequent procedure of using J, = -D(LJ$,/dx), and so on. The second term, pro- 
portional to $,, is included both for added flexibility and to ensure the existence of 
coupling between channels across an interface located where W n / d x  may be zero. 

For the sake of illustration, the channel structure will be taken as concentric 
annuli, so that the interface terms J2 are included for each vertical cylindrical 
surface, q,, that separates channels. Because the derivation of initial conditions 
and interface conditions for axial and temporal trial function discontinuities, and 
the inclusion of external boundary terms, are identical to the derivation given in the 
preceding section, they will be omitted. Thus the multichannel synthesis equations 
are obtained from consideration of the stationarity properties of JI2 = J1 + 52, with 
J2 consisting of the terms discussed above. These equations may be written in 
matrix form as 
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The matrices and column matrices in Eqs. (15.162) to (15.147) are of order NG x G 
and NG x I ,  respectively, except for Fk and Ck, which are NG x N and N x 1, 
respectively. 

Equations (15.162) to (15.167) may be combined to eliminate the current expan- 
sion coefficients, resulting in the set of one-dimensional (2) time-dependent matrix 
differential equations 

c = 1, . . . , number of channels 

The matrices R + and R + + in Eqs. (15.168) result from elimination of the current- 
combining coefficients and serve to couple channel c radially to channels c + 1 and 
c + 2, and similarly, R- and R-_ couple channel c to channels c-1 and c-2. This 
general feature of nearest-neighbor and next-nearest-neighbor coupling is charac- 
teristic of the multichannel formulation, independent of the particular choice of 
channel structure. 

Construction of the radial coupling matrices involves the evaluation of surface 
integrals containing normal derivative terms and considerable matrix inversion and 
matrix multiplication. The results are sensitive to the accuracy and consistency with 
which the surface integrals are evaluated, a fact that has hindered exploitation of the 
multichannel formalism. Moreover, the transport cross section is embedded in 
the matrices that lead to R +, and so on, and a change in this quantity requires that 
the matrix inversions and multiplications involved in the construction of R +, and 
so on, be repeated. These factors tend to mitigate the advantages of extra flexibility 
and increased accuracy inherent in the multichannel formulation. See Refs. 10 and 
13 for a more detailed description. 

15.11 SPECTRAL SYNTHESIS 

In previous sections the emphasis has been on synthesizing the spatial dependence 
of the neutron flux, and the approximations that were discussed have, in fact, found 
their greatest application in problems where it was important, but uneconomical, lo 
represent the detailed spatial variation of the flux. Another class of problems exists 
wherein it is important, but uneconomical, to represent the spectral variation of 
the flux in great detail. For such problems an attempt to synthesize the detailed 
spectrum from a few spectral functions is appealing. The general basis of the 
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method is a trial function expansion in each spatial region, or channel c, of the 
form 

with similar expansions for the adjoint flux and current. Here +, and J,are known 
G x 1 column matrices, and a single expansion coefficient pn applies to all the G 
group components of the corresponding expansion function $,. Because the objec- 
tive of the method is to approximate the spectral dependence, it is not necessary to 
make an expansion of the precursor trial function. 

Requiring stationarity of the variational principle with respect to the adjoint 
expansion coefficients yields the spectral synthesis equations within each channel c: 

These two sets of N equations may be written as two matrix equations, and com- 
bined to eliminate the current combining coefficients, 

W ,  A(', C, F, and T are N x N matrices, while p', F i  and Sc are N x 1 column 
matrices. 

For each spatial interface between channels a term of the form of J2 must be 
added to the variational principle. The variation of such a term leads to 

As was the case with the spatial synthesis, it is necessary to impose some form of 
restriction among the allowable variations 6p i+  and 6pi-, and 6b:+ and 6bi-, or to 
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resort to some stratagem such as staggering the interfaces at which flux and current 
may be discontinuous or to set y,q = 1, 0; otherwise, the interface conditions 
appear to be overdetermined. A restriction among the variations arises naturally 
from the requirement that variations S+T, and 64: be equal to ensure continuity, 
and similarly, that 6j; = 6j:. This requirement must be imposed in an approximate 
manner (unless N = G ,  in which case there is no advantage whatsoever to using 
spectral synthesis), and leads to 

Using these relations to eliminate 6pi+ and 6b:+, Eq. (15.174) can then be required 
to be satisfied for arbitrary and independent variations 6p:- and 6bi-, which yields 
the proper number of interface conditions. 

The other strategies that have been suggested may be considered as special cases 
with y, q = 0, 1 and / or P,, = Qnnt = 6,t. Thus, in general, the spatial interface 
conditions may be written in the form 

Note that unless 

Eqs. (15.175) and (15.176) do not reduce to continuity requirements of the 
form 

The conventional few-group approximation is a special case of the spectral 
synthesis approximation in which an expansion function *, or J ,  has nonzero 
elements only for those groups that are to be collapsed into few-group n. Thus 
the result above indicates that continuity of few-group flux and normal current is 
generally not the proper interface condition, obtaining only under the special cir- 
cumstances whereby Eqs. (15.177) are satisfied. 
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If different sets of spectral expansion functions are used in different time inter- 
vals, it is necessary to include terms of the form J3,  the stationarity of which yield 
temporal continuity conditions on the flux expansion coefficients at the time when 
the expansion functions are changed. To avoid an apparent overdetermination of 
continuity conditions, it is necessary either to resort to some stratagem such as 
requiring that the adjoint and direct flux expansion functions change at different 
times or setting a = 0, I, or to impose in an approximate fashion the continuity 
condition 6+*(+) = 6+*(-) to relate 6pi(+) and &pi(-). 

The continuity conditions resulting from this or other derivations can be written 
in the form 

where D, is an N x 1 column matrix. Thus, in general, p,(+) = pn(-) is not the 
continuity condition. Consequently, recalling that a few-group approximation is a 
special case of the spectral synthesis approximation, continuity of few-group fluxes 
at times when the expansion functions (within-group fine-group fluxes) changes is 
generally not the proper continuity condition and obtains only when 

The synthesis approximations lack, in general, the positivity properties asso- 
ciated with the multigroup diffusion equations. A consequence of this is that there 
is no a priori assurance that the fundamental eigenvalue (the one associated with an 
everywhere nonnegative flux solution) is larger in absolute value than any of the 
harmonic eigenvalues. Most numerical iteration schemes used in the solution of the 
synthesis equations converge to the eigenvalue, and corresponding eigenfunction, 
with the largest magnitude, but it is possible that a calculation will not converge to 
the fundamental solution. 

REFERENCES 

1 .  J.  A. Favorite and W. M. Stacey, "A Variational Synthesis Nodal Discrete-Ordinates 
Method," Nucl. Sci. Eng., 132, 181 (1999). 

2. T. M. Sutton and B. N. Aviles, "Diffusion Theory Methods for Spatial Kinetics Cdcula- 
tions," Prog. Nucl. Energy, 30, 119 (1996). 

3. R. T. Ackroyd et al., "Foundations of Finite Element Applications to Neutron Trans- 
port," Prog. Nucl. Energy, 29, 43 (1995); "Some Recent Developments in Finite Ele- 
ment Methods for Neutron Transport," Adv. Nucl. Sci. Technol., 19, 381 (1987). 

4. R. D. Lawrence, "Progress in Nodal Methods for the Solution of the Neutron Diffusion 
and Transport Equations," Prog. Nucl. Energy, 17, 271 (1986); "Three-Dimensional 



596 NODAL AND SYNTHESIS METHODS 

Nodal Diffusion and Transport Methods for the Analysis of Fast-Reactor Critical 
Experiments," Prog. Nucl. Energy, 18, 101 (1986). 

5. J. J. Stamm'ler and M. J. Abbale, Methods of Steady-Stute Reactor Physics in Nuclear 
Design, Academic Press, London (1983), Chap. XI. 

6. N. K. Gupta, "Nodal Methods for Three-Dimensional Simulators," Pmg. N i d .  Energy, 
7, 127 (1981). 

7. J. J. Doming, "Modem Coarse-Mesh Methods: A Development of the 70's," Proc. Con5 
Compurational Methods in Nuclear Engineering, Williamsburg, VA, American Nuclear 
Society, La Grange Park, IL ( 1  979), p. 3-1. 

8. M. R. Wagner, "Current Trends in Multidimensional Static Reactor Calcdations," Proc. 
Con$ Conptational Methods in Nuclear Engineering, Charleston, SC, CONF-750413, 
American Nuclear Society, La Grange Park, IL (1975), p. 1-1. 

9. A. F. Henry, Nucleur-Reactor Analysis, MIT Press, Cambridge, MA (1975), Chap. 1 I ;  
"Refinements in Accuracy of Coarse-Mesh Finite-Difference Solutions of the Group- 
Diffusion Equations," Proc. Semin. Numerical Reactor Calcdations, International 
Atomic Energy Agency, Vienna (1972), p. 447. 

10. W. M. Stacey, "Flux Synthesis Methods in Reactor Physics," Reactor Techno[., 1.5, 210 
(1972); "Variational Flux Synthesis Methods for Multigroup Neutron Diffusion Theo- 
ry," Nucl. Sci. Eng., 47, 449 (1972); "Variational Flux Synthesis Approximations," 
Pmc. IAEA Semin. Nunzerical Reactor Calculations, International Atomic Energy 
Agency, Vienna (1972), p. 561; Variational Method.7 isin Nuclear Reactor Physics, Aca- 
demic Press, New York (1974), Chap. 4. 

11. R. Froehlich, "A Theoretical Foundation for Coarse Mesh Variational Techniques," 
Proc. Int. Conf Research on Reactor Utilization and Reactor Computatiorz, Mexico, 
D. F., CNM-R-2 (1967), p. 219. 

12. S. Kaplan, "Synthesis Methods in Reactor Analysis," Adu. Nucl. Sci. Technol., 3 (1966); 
"Some New Methods of Flux Synthesis," N d .  Sci. Eng., 13, 22 (1962). 

13. E. L. Wachspress et al., "Multichannel Flux Synthesis," Nucl. Sci. Eng., 12,381 (1962); 
"Variational Synthesis with Discontinuous Trial Functions, Pmc. Con$ Applicatioi~~ c.f 
Cumputatio~~trl Merhocls to Reactor Prohlenw, USAEC report ANL-7050, Argonne Na- 
tional Laboratory, Argonne, IL (1965), p. 19 1: "Variational Multichannel Synthesis with 
Discontinuous Trial Functions," USAEC report KAPL-3095, Knolls Atomic Power 
Laboratory, Schenectady, NY (1 965). 

PROBLEMS 

15.1. Derive the nodal fission rate balance equations of Eq. (15.17) from the 
nodal flux balance equations of Eq. (1  5.16). 

15.2. Use the rational approximation for the escape probability to  calculate the 
coupling terms W'."+ ' for cubic nodes. 

15.3. Consider a slab reactor consisting of two core regions each 5 0 c m  thick 
described by the parameters given for core 1 and core 2 in Table P15.3. with 
zero flux conditions on  both external boundaries. Solve for the exace solu- 
tion in two-group diffusion theory. 
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TABLE P15.3 

Group Core 1 Core 2 
Constant 

Group 1 Group 2 Group 1 Group 2 

15.4. Construct a two-node conventional nodal model for the slab reactor of 
Problem 15.1. Solve for the multiplication constant and compare with the 
exact result of Problem 15.3. 

15.5. Derive the transverse integrated nodal diffusion equations given by Eq. 
(15.31) and similar equations in the y- and z-directions. 

15.6. Construct a two-node transverse integrated model for the slab reactor of 
Problem 15.3. Solve for the multiplication constant and compare with the 
exact result. 

15.7. Derive the elements of the matrices P," and R," in the interface current 
balance of Eq. (15.58) for nodal diffusion theory. 

15.8. Derive the nodal balance Eqs. (15.44) directly by integrating the transport 
equation (15.1) for each group over the node. 

15.9. Derive the elements of the matrices P," and R," in the interface current 
balance of Eq. (15.86) for nodal DPltransport theory. 

15.10. Construct a two-coarse-mesh finite-element model for the slab reactor of 
Problem 15.3. Solve for the multiplication constant and compare with the 
exact result. 

15.11. Prove that the two forms of the variational functional Fd of Eq. (15.107) are 
equivalent in that the stationarity of both forms with respect to arbitrary and 
independent variations requires that the diffusion equation is satisfied with- 
in the volumes Vi and that the diffusion theory current is continuous across 
the surfaces separating adjacent volumes. 

15.12. Derive a finite-element coarse-mesh approximation, based on a quadra- 
tic polynomial expansion, for the one-dimensional one-group diffusion 
equation. 

15.13. Carry through lhe derivation to prove that stationarity of the variational 
functional of Eq. (15.143) with respect to arbitrary and independent 
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variations in +*, j*, and CL requires that the stationary functions 4, j, and 
C, satisfy the time-dependent transport equation, Fick's law relation, and 
precursor bdance equation. 

15.14. Derive the time-dependent equations for I$*, j*, and C; by requiring statio- 
narity of the variational function of Eq. (15.143) with respect arbitrary and 
independent variations in 4, j, and C,. 

15.15. Construct a single-channel synthesis model for the slab reactor of Problem 
15.3, but in one-group diffusion theory. Obtain the one-group constants by 
using the two-group constants of Problem 15.3 in a infinite-medium spec- 
trum calculation for and +Z, which can be used to construct effective 
one-group cross sections. Using the trial function +(x)  = a  cos(m/100) for 
the flux and adjoint flux, calculate the multiplication constant and compare 
with the exact result of Problem 15.3. 

15.16. Repeat Problem 15.15 using a two-channel synthesis model. 



16 Space-Time Neutron Kinetics 

The discussion of reactor dynamics in Chapter 5 was based on the implicit assump- 
tion that the spatial neutron distribution remained fixed and only the total neutron 
population changed in time. However, when a critical reactor is perturbed locally, the 
spatial neutron flux distribution, as well as the total neutron population, will change, 
and the change in the spatial flux distribution will affect the change in the total 
neutron population. A very local perturbation (e.g., the withdrawal of a control 
rod) will obviously affect the neutron flux in the immediate vicinity of the perturba- 
tion. However, a local or regional perturbation can also affect the global neutron flux 
distribution (i.e., produce a flux tilt), which will, in turn, alter the reactivity and affect 
the global neutron population. Moreover, for a transient below prompt critical, the 
largest part of the neutron source is due to the decay of delayed neutron precursors, 
which tends to hold back a flux tilt until the delayed neutron precursor distribution 
also tilts. The point kinetics equations discussed in Chapter 5 can be extended to treat 
flux tilts and delayed neutron holdback effects by recomputing the point kinetic 
parameters during the course of a transient. The various methods that have been 
discussed for calculating the spatial distribution of the neutron flux can also be 
extended to calculate the space- and time-varying neutron flux distribution by adding 
neutron density time derivative and delayed neutron precursor source terms and 
appending a set of equations to calculate local delayed neutron precursor densities. 

16.1 FLUX TILTS AND DELAYED NEUTRON HOLDBACK 

Physical insight into the flux tilting and delayed neutron holdback phenomena can 
be obtained by considering a step local perturbation in the material composition of 
an initially critical reactor. In multigroup diffusion theory, the initial critical state of 
the reactor is described by 

which will be written in operator notation as 

where the zero subscript is used to indicate the initial critical state. 
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Now we consider a spatially nonuniform change in materials properties which is 
represented by the changes AA in the destruction operator and AM in the fission 
operator so that A. -+A  =Ao  + AA and Mo -. M = Mo + AM. For changes produc- 
ing reactivities well below prompt critical, the prompt jump approximation may be 
used to describe the neutron kinetics. Making the further approximation of a single 
delayed neutron precursor group, the neutron kinetics is described by 

Expanding about the initial critical distributions 

4 ( r ,  t )  = 4 0 ( r )  + A$(r ,  t )  (16.5) 

linearizing (i.e., ignoring quadratic terms A M A 4 ,  etc.), Laplace transforming, and 
combining the two equations results in an equation for the time dependence of the 
neutron flux A 4  in the frequency domain: 

Modal Eigenfunction Expansion 

We now expand the time-dependent flux, 

where the $, are the spatial eigenfunctions of the initial critical reactor and satisfy 

[e.g., in a uniform slab reactor of width a, +, = sin(nm/a)]. The corresponding 
adjoint eigenfunctions of the initial critical reactor are defined by 

From the definition of the adjoint operator discussed in Chapter 13, the orthogon- 
ality property 
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the relationship 

can be established, where ( X X )  indicates integration over space and summation 
over groups. 

Using the eigenfunction expansion of Eq. (16.8) in Eq. (16.7), multiplying the 
resulting equation by $;, integrating over space and summing over groups, and 
using Eqs. (16.1 1) and (16.12) yields 

which may be inverse Laplace transformed to obtain 

where 

is Ihe mth-mode reactivity. 

Flux Tilts 

If pm # 0, a nonuniform perturbation in materials properties in a critical reactor will 
introduce higher harmonic eigenfunctions into the flux distribution, which becomes 
after the transient terms in Eq. (16.14) have died out 

For a uniform slab reactor in 1; -group diffusion theory, the results of Chapter 3 can 
be used to write the nth-mode eigenvalue: 
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where M' is now the migration area and we have taken advantage of the fact. that 
ko = 1 to write the last form of the equation. 

The amplitude of the first harmonic eigenfunction, which would be the main 
component of a flux tilt, depends on the magnitude of the first harmonic reactivity, 
p,, and on the first harmonic eigenvalue separation, 1 - kl  (note that ko = 1). Using 
Eq. (16.17), the 1 &group diffusion theory estimate for the first harmonic eigen- 
value separation of a uniform slab reactor is 

Thus reactors that are very large in units of migration length (a/M >> 1) will have a 
small first harmonic eigenvalue separation &d will be very "tilty". 

Delayed Neutron Holdback 

As indicated by Eq. (16.14), a tilt will not occur instantaneously upon the introduc- 
tion of a nonunifom step change in materials properties into a critical reactor, but 
will gradually build in over a time r x 2 to 3 z,ii,, where 

Physically, the prompt neutrons respond essentially instantaneously (on the neutron 
lifetime scale) to the change in materials properties, but the delayed neutron source 
only gradually changes from the initial fundamental mode distribution into the 
asymptotic distribution. 

16.2 SPATIALLY DEPENDENT POINT KINETICS 

The multigroup diffusion theory approximation for the space and time depend- 
ence of the neutron flux within a nuclear reactor is described by the set of G 
equations 
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which for notational convenience we shall write in operator notation as 

The space and time dependence of the M groups of delayed neutron precursors are 
described by 

which in operator notation becomes 

where 

A,  F = loss and production operator, respectively 

q5(r, t )  = neutron flux 

Cm(r, t )  = precursor density of type m 

v = neutron speed 

x m ,  A,, pm = fission spectrum, decay constant, and delayed neutron 

fraction, respectively, for precursor type m 

Fp = xpF = fission source for prompt neutrons (xP  is the fission 

spectrum for prompt neutrons; Fm = xmF 

will be the fission source for delayed 

neutrons from precursor group rn in subsequent equations) 

Xo = eigenvalue adjusted to 

render the system critical at time t = 0. 

In the multigroup form of Eqs. (16.20~) and (16.2la), $(r, t )  represents a column 
vector of group fluxes, and A and F are matrices. 

For the initial, static configuration, these equations reduce to 

For the perturbed static configuration (i.e., after the delayed neutrons reach equilib- 
rium), these equations reduce to 
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and the quantity -Ah = ho - he = (k ,  - ko)/keko is called the static reactivity 
worth of the perturbation (k = I-') .  [Note that because Eq. (16.23) is an eigenvalue 
problem, the word static here refers only to the flux distribution, not the amplitude.] 
The static reactivity worth of the perturbation is 

where the static flux adjoint function 4; satisfies 

(The inner product notation ( , ) indicates an integration over volume and a sum 
over energy groups.) 

Derivation of Point Kinetics Equations 

The exact space-time equations are reduced to the point reactor kinetics model 
by writing the flux as a separable product of a shape hnction and an amplitude func- 
tion; that is, 

The point kinetics equations are derived by weighting Eqs. (16.20) and (16.21) with 
the static adjoint flux and integrating over volume and summing over energy: 

7 )  t  - t rn = 1 ,  . . . , M prn ( t )  = --- (16.28) 
4) 

where the dynamic reactivity, prompt neutron generation time, and delayed neutron 
effectiveness are defined as 
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A-' ( t )  = 
kb& v-l$(r, t ) )  - Sdr EL, 4f ( r ) ( l /~g )@(r ,  4 

and 

respectively ( p = y, PI + . a + y,P,, AA = A - A,, and AF= F-Fo). In princi- 
ple, the point kinetics equations can be used to calculate the exact space-time 
neutron flux, if the correct spatial flux shape is used at all times to evaluate the 
parameters defined by Eqs. (16.29) to (16.31). Note that these parameters do not 
depend on the amplitude of the flux, only the flux distribution. 

In a large LWR core, the flux is slow to reach equilibrium in its perturbed static 
distribution, due to the holdback effect of the delayed neutrons. Thus, for the first 
few seconds after a perturbation, the time-dependent flux shape $(r, t )  differs from 
the static perturbed flux shape +,, and the dynamic reactivity of Eq. (1 6.29) differs 
from the static reactivity of Eq. (16.24). 

In the standard implementation of the point kinetics method, the parameters are 
estimated using the initial static flux distribution +o. This approximation corre- 
sponds to first-order perturbation theory, and for the reactivity, it is denoted 

This expression can be shown (Chapter 13) to be a first-order approximation of the 
static reactivity [i.e., p, is an estimate of the difference (-Ah = &-he) of recipro- 
cal eigenvalues for the initial and perturbed core static configurations that is accu- 
rate to first order in the flux perturbation A+ = $,-+" (i.e., error N A+)l. 

Adiabatic and Quasistatic Methods 

If parameters of Eqs. (16.29) to (16.31) calculated with the initial spatial flux shape 
are used throughout the transient calculation, the result is the standard point 
kinetics approximation of Chapter 5.  If the parameters are recomputed at selected 
times during thc transient, using a static neutron flux solution corresponding to the 
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instantaneous conditions of the reactor, the result is an improvement to the standard 
point kinetics known as the adiabatic method. 

In the quasistatic (QS) method, the point-kinetics equations are used for the flux 
amplitude, but the flux shape is recomputed (at time steps t = t,) using 

where At,, = t,-t,,-, is the shape time step. (The precursor density is computed 
directly from the flux history.) When the flux shape from the nth such recalculation 
S, is used directly to estimate the reactivity using the inner-product definition 
[Eq. (16.29)], the result is 

a potentially accurate estimate of the dynamic reactivity, depending, of course, on 
the accuracy of the flux calculation. It is more accurate to use a flux shape inter- 
polated from the most recent known shape s,-, and the best guess for the next 
shape s:, where C represents the most recent (the eth) calculation of S, using Eq. 
(16.33). (The S: are considered converged when the last one satisfies a normal- 
ization constraint.) Regardless of the approximate shape that is used, p,(t) is a first- 
order estimate of the static reactivity corresponding to the reactor conditions at time 
t ,  and it will be referred to as such. 

Variational Principle for Static Reactivity 

A variational estimate, accurate to second order [errorN(~@)'], for the static 
reactivity worth of a perturbation to an altered system (i.e., a system other than 
the one for which c$o and $: were calculated) is 

where the generalized adjoint function T* is calculated using 

(A; - XuF;)r* = 
(AA* - Xo AF*)+g FG 6 

I@;;? (& - Ao W 4 o )  - (4$, Fobo) 

and the function r is calculated using 



SPATIALLY DEPENDENT POINT KINETICS 607 

In Eq. (16.35), the unprimed operators and eigenvalue refer to the altered system 
at time tn and the primed operators and eigenvalue refer to the altered (by previous 
changes from the initial) system plus a perturbation (i.e., A4 =A1-A and 
A F  = F'-F) at time t > t,. The variational functional p,, provides an estimate of 
the static reactivity worth of the perturbation, -Ah = h-h', in the altered system. 
The functional p,, is stationary about the altered and static perturbed altered ad- 
joint and direct eigenvalue equations, respectively [as well as being stationary about 
the equations for r* and r, for which Eqs. (1 6.36) and (1 6.37) are approximations]. 

When p,, is used to estimate the reactivity for the point-kinetics method without 
updating the flux shapes, the initial configuration described by Eqs. (16.22) and 
(16.25) is considered the altered system and $o is used for S. In this case, p,, 
provides a second-order estimate of the static reactivity of Eq. (16.24), rather than 
the dynamic reactivity of Eq. (16.29). In so doing, it ignores the delayed neutron 
holdback effect, an omission that leads to errors in reactivity estimates and con- 
sequent errors in power calculations. 

When p,, is used to estimate the reactivity for the QS method, the configuration 
at the time t, of the most recent shape calculation is considered the altered system, 
and the Sn is used for S. In this case, p,, provides an estimate accurate to second 
order of the static reactivity worth of perturbations made since time t,. This esti- 
mate ignores the delayed neutron holdback effect. The total reactivity worth of all 
perturbations (and alterations) is found by adding this perturbed reactivity worth in 
the altered system to the best available estimate of the dynamic reactivity worth of 
the alteration, which is p,[Sn(r, t,)]. Because it is necessary to use the flux shape 
corresponding to the altered system, it is not appropriate to use the variational static 
reactivity estimate with interpolated flux shapes. 

Variational Principle for Dynamic Reactivity 

To account for the delayed neutron holdback effect on the reactivity, a variational 
principle should be stationary about the solutions of the time-dependent diffusion 
and precursor equations, rather than stationary about the solution of the perturbed 
static diffusion equation. To this end, the following functional was constructed: 

The usual procedure is to require that the functional be stationary with res- 
pect to arbitrary and independent variations of the trial functions over all the 
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independent variables. However, in order to retain the time dependence of the 
dynamic reactivity, the integrals in p, (indicated by (,)) are only over space and 
energy, not time. Thus, the stationarity conditions for the functional are established 
by requiring that it be stationary with respect to arbitrary and independent vari- 
ations of only the space and energy dependencies of the functions T*, G, T, +*, Q, 
and 6,. The following equations result: 

and 

respectively. Comparing Eqs. (16.39) and (16.20), Eqs. (16.40) and (16.21), and 
Eqs. (16.41) and (14.25), it is clear that \IrS and km,  can be identified as the solutions 
$(r, t )  and C,(r, t )  of the exact time-dependent diffusion and precursor equations 
and that $; can be identified as the unperturbed static adjoint flux $:. 

The stationary value of p, is 

the exact, dynamic reactivity worth of a perturbation. To adapt the functional p, for 
use with the QS method, we introduce as a trial function 

and note that the best available approximation for the time derivative of the pre- 
cursor density is 
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Under these conditions [and noting that Q* = 4; is available from Eq. (16.25)], the 
functional becomes 

where the quantity T*(r, t)n(t) has been replaced by a trial function G*(r, t ) .  Note 
that AA and AF here refer to the total perturbation, not the perturbation since the 
most recent shape calculation, and that A =Ao + AA, F = Fo + AF. 

Using Eqs. (16.44) and (16.46) in Eq. (16.43) results in the following equation 
for G*(r, t): 

(AA* - Xo AF*)$T, 
(A* - AoF*)G*(r, t )  = 

F* $6 (16.49) 
($6,  (M - X O  A F ) S ( r ,  t ) )  - ($6: W r :  t ) )  

It is computationally economical to compute the generalized adjoint function G* 
only once for a particular core configuration. In this case, the initial static configu- 
ration is used, resulting in the following approximation: 

(AA* - Xo AF*)$; 
(A;  - XoF;)G* = 

F; 4; ( 1  6.50) 
($6,  (M - A0 AF)So)  - (46, FoSd 

(any magnitude perturbation AA and/or A F  can be used since these operators 
appear in both the numerator and denominator of the same term). Thus G*(r) differs 
only in amplitude from T*(r) of Eq. (16.36). 

The form of the functional represented by Eq. (16.48) is well suited for use with 
the QS method. In the QS method, the point-kinetics equations are used for the flux 
amplitude n(t), the precursor concentration densities C,(r, t )  are updated at each 
time step and are therefore available for use in the variational estimate, and the flux 
shape S(r, t )  is recomputed periodically using Eq. (16.33). The variational dynamic 
reactivity estimate can be used with or without flux shape interpolations. 

It should be noted that the G* of Eq. (16.50) satisfies the orthogonality condition 

(G*, FoSo) = 0 (16.51) 

As a consequence, when the initial flux shape So is used in p, and if the precursor 
density functions C,(r, t )  have the same shape as So, the variational estimate for 
dynamic reactivity reduces to the variational estimate for static reactivity, p , ,  of 
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Eq. (16.35) [in which the second term in the square brackets disappears because of 
Eq. (16.25)]. The effect of this reduction is that until the flux shape is recomputed 
or until some other approximation is made to replace So, the new variational func- 
tional still ignores the delayed neutron holdback effect. 

Numerical tests on a large LWR model indicate that the flux shape computa- 
tional effort required with the QS method can be reduced by a factor of 3 to 4 by 
using the variational estimate of dynamic reactivity. In addition, use of a variational 
reactivity estimate rather than the standard first-order estimate of static reactivity 
can improve the accuracy of the QS method enough that the time-consuming flux 
shape interpolation/recomputation procedure may not be necessary. 

16.3 TIME INTEGRATION OF THE SPATIAL 
NEUTRON FLUX DISTRIBUTION 

The various methods that have been discussed for calculating the spatial neutron 
flux distribution (finite-difference, nodal, finite-element, synthesis, etc.) can be 
extended to calculate the space-time neutron flux distribution by adding a neutron 
density time derivative, distinguishing between prompt and delayed neutron sources 
in the neutron balance equation and appending equations to calculate the delayed 
neutron precursor densities [e.g., Eqs. (16.20) and (16.21)]. Writing the group 
fluxes and precursor densities at every spatial point (e.g., mesh point, node) as a 
column vector JI, and writing the terms of the multigroup neutron and delayed 
neutron precursor balance equations at each spatial point as a matrix H, the space- 
time neutron kinetics equations can be written as a coupled set of ordinary differ- 
ential equations 

Explicit Integration: Forward-Difference Method 

The simplest approximate solution to Eq. (16.52) is obtained by a simple forward- 
difference algorithm, 

where the zgumentp denotes the value at time t,, and At = t, , ,-t,,. In terms of the 
multigroup diffusion equations, this algorithm is 
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and for the precursors, 

where the spatial dependence is implicit. 
This algorithm suffers from a problem of numerical stability, which requires the 

use of such small time steps that the advantage offered by the simplicity of the 
algorithm is usually more than offset by the large number of time steps required. 
The nature of this problem is seen by considering an expansion of +(p) in the 
eigenfunctions of the operator H: 

where 

Substituting Eq. (16.56) into Eq. (16.53) yields 

The condition for numerical stability is that the fundamental mode grow 
more rapidly than the harmonics a,, n 2 2. This requires that 

To ensure this, IwnAtl must be much less than unity. The eigenvalue problem 
of Eq. (16.57) is a generalization to several groups and many spatial points of the 
in-hour equation of Section 5.3. The magnitude of the fundamental eigenvalue is on 
the order of the precursor decay constant, except for highly supercritical transients, 
in which case small time steps must be used in any case. Numerical studies have 
shown that the smallest eigenvalues can be on the order of -(vgZ:), which can be 
about - lo4 for thermal neutrons and about - I o7 for fast neutrons. Thus At < lo-' 
may be required for stability. When the time derivative terms for the epithermal 
groups are assumed to vanish (a useful approximation since 1 /vC >> l/vg, g # G ) ,  
At < lop4 may be required. 

Implicit Integration: Backward-Difference Method 

The numerical stability problem associated with the preceding method can be all 
but eliminated by the backward-dlffeerence algorithm: 
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In terms of the precursor and multigroup diffksion equations, this algorithm is 

Pm 
G 

Cm(p + 1 )  = 
C ~ ( P )  + 

uC?(p + l ) @ ( p  + I ) ,  rn = I , .  . . , M 
i + X m a t  i + x m ~ t g = l  

An expansion of the type of Eq. (16.56) substituted into Eq. (16.60) yields 

and the condition for stability is 

The method is unconditionally stable if 0 > Re(ol } > Re{o,}, n > 2. For 
Re{ol} >0, the stability requirement is determined by the requirement that 
+ ( p  + 1) be a positive vector, which necessitates that 

This requirement is restrictive only for large o, that correspond to fast transients 
where small time steps would be necessary in any case. 

The difficulty with the backward-difference method arises from the necessity of 
inverting a matrix at each time step. The actual matrix that must be inverted is the 
coefficient matrix for the left side of Eq. (16.62); the delayed neutrons can be 
determined directly. Thus, although much larger time steps can be taken with the 
implicit method than with the explicit method, the computation time needed for the 
matrix inversions may more than offset this advantage. The size time step used in 
the backward-difference method is usually limited by the effect of truncation error 
(of order ~ t ~ )  upon the accuracy of the solution rather than by numerical stability. 
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Implicit Integration: 0 Method 

For a constant H in the interval t, 5 t 5 t , ,  ,, Eq. (16.52) has the formal solution 

( 
At2 

+ ( p + l ) = e x p ( A t H ) ) ( p ) =  1 + ~ r B + - H ~ + + ) + ( p )  2! (16.66) 

The algorithms of Eqs. (16.53) and (16.60) may be considered as approximations to 
Eq. (16.66). An improved algorithm results from the prescription 

+(P + 1) - + ( P )  = W~+( ,P  + 1 )  + ( H  - M M P ) I  ( 

with matrix elements or M  and H related by 

m - 0.. 
q - &ij ( 

where the mu, thus the 0u, are chosen so that +(p + 1) calculated from Eq. (16.67) 
agrees with +(p + 1) calculated from Eq. (16.66). This requires that 

Assuming that H has distinct eigenvalues, it may be diagonalized by the 
transformation 

where J and J +  are the modal matrices corresponding to H and H~ (i.e., the 
columns of J and J +  are the eigenvectors of H and H ~ ,  respectively), and I? is a 
diagonal matrix composed of the eigenvalues of H. Thus 

with L diagonal. From this it follows that 

and the factors Qij can be determined from 

after the rtzi, arc found rrom Eq. (16.72). 
Because solving I'or the Qii rigorously would entail a great deal of effort, scveral 

approximations are made in employing this method to arrive at an algorithm lor 
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solution of the multigroup kinetics equations. The delayed neutrons are treated as 
sources, and thus are neglected in the determination of the An average space- 
independent vdue of Gij is calculated based on a flux square weighting procedure. 
The delayed neutron precursors have a separate Oij. Denoting the G g  associated with 
groups g and g' as O,,, and Oij associated with the delayed neutrons as Od, the fol- 
lowing algorithm results: 

In the limit Elgy, Od+ 1 Eqs. (16.73) and (16.74) reduce to the backward- 
difference algorithms of Eqs. (16.61) and (16.62), while Eqs. (16.73) and (16.74) 
reduce to the forward-difference algorithms of Eqs. (16.54) and (16.55) in the limit 
Qgg1, &-' 0. As mentioned, a number of approximations are made in arriving at 
Eqs. (16.73) and (16.74), so the mathematical properties associated with Eqs. 
(16.67) to (16.72) are not rigorously retained by Eqs. (16.73) and (16.74). 

Insight into the stability properties of the 0-method can be gained by considering 
the situation for a constant matrix H and a constant time step At. Expanding the 
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exact solutions of Eq. (16.52) in the eigenfunctions an of H given by Eq. (16.57), 

where the expansion coefficients a, are determined from the initial conditions and 
where ol > o2 > . . . > 0) ' )~ .  For the same eigenfunctions to satisfy Eq. (16.67), 
which becomes 

the eigenvalues must be related by 

1 + {I - 8)wn At 
'Yn = 1 - ow,, At 

The general solution for the 9-approximation of Eq. (16.67) may be written 

where t, =pAt. Comparison with the exact solution of Eq. (16.75) indicates that 
exp(w,t) = exp(wnp At) has been replaced by y{ in the approximate solution. For a 
stable 9 approximation, yn > -1; otherwise, y{ will oscillate and diverge as time 
increases. Thus, Eq. (16.77) and the eigenvalues on can be used to determine a 
maximum stable step size At. 

Numerical experience indicates that the algorithm of Eqs. (16.73) and (16.74) 
is (1) numerically stable for time steps two orders of magnitude greater than are 
required for stability of Eqs. (16.54) and (16.55) and (2) somewhat more accurate 
than the algorithm of Eqs. (16.61) and (16.62) for the same time steps. The algo- 
rithm of Eqs. (16.74) requires inversion of the same type of matrix as does the 
backward-difference algorithm of Eqs. (16.62), and, in addition, requires computa- 
tion of €is$ and &, although the latter computation is negligible with respect to the 
time required for the matrix inversion. In practice, the 9's are predetermined based 
on experience or intuition. 

Implicit Integration: Time-Integrated Method 

The delayed neutron precursor equalions may, in principle, be integrated directly 
between t, and t, + : 
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If the assumption is made that the group-fission rate at each point varies linearly in 
time in the interval t, < t < t,,, Eq. (16.79) yields an implicit integration algorithm 
for the precursors, 

1 - exp(-Am At) - [  hat - 11 2 g= 1 ~ ~ ~ ( P  + l ) Q P ( p  + 1) 

Integration of the multigroup diffusion equation over the interval t, 5 t < t,, , I ,  

with the assumption that all reaction rates vary linearly in that interval, results in an 
implicit integration algorithm for the neutron flux, 

M M 2 xkp,,, 1 - exp(-Am At) 
+ { X : C ~ B ~ ( X ; - X P ) + C ~ ~ [  m= l m= l A,,?At 

M M 1 - exp(-Am At) 
- { x ; - ~ a c x : -  - exp(- A, At 

m= I m= l A, at 

In arriving at Eq. (16.81), integration of the precursors was treated as in Eq. (16.80) 
(i.e., the group-fission rate was assumed to vary linearly). 

Equations (16.80) and (16.81) define the time-integrated algorithm, which, like 
Eqs. (16.73) and (16.74), represents an attempt to reduce the truncation error asso- 
ciated with the simple implicit integration formulas of Eqs. (16.61) and (16.62) 
without materially increasing the computational time required to obtain a solution. 
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All three implicit integration algorithms require inversion (at each time step) of 
roughly the same matrix. Numerical experience indicates that the @-method and the 
time-integrated method yield essentially identical results, and that both methods are 
somewhat more accurate than the backward-difference method. 

Implicit Integration: GAKIN Method 

The mathematical properties of this method derive directly from the properties of 
the spatial finite-difference approximation. This approximation is 

where 

with $ X  and dm representing N x 1 column vectors or group fluxes and rn-type pre- 
cursor densities, respectively, at each of N spatial mesh points. The matrix K can be 
written in terms of N x N submatrices Ki,: 

The N x N matrices Kii are split, 

where D' represents the coupling among mesh points due to the diffusion term. 
By splitting K into a matrix L, which contains all the submatrices below the 

diagonal block; a matrice U,  which contains all the submatrices above the diagonal 
block; and into the block diagonal matrices r and D, 
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Eq. (16.82) may be written 

This equation may formally be integrated over the interval t, 5 t 5 $+I: 

e(t,., , ) = exp(Atr)0(tP) + dt' exp[(At - t f ) r ]  (L + U)%(bp + t') I" 
+ 1'' dt' exp[(At - t1)r]D0(tP + t') 

In the first integral of Eq. (16.91), the approximation 

$(t, + t') = exp(wtl)O(tp) (16.92) 

is made, and the second integral is performed with the approximation 

6(tp + t') = exp[--@(At - t')]d(tp+l). (16.93) 

In generat, o is a diagonal matrix. Using Eqs. (16.92) and (16.93) in Eq. (16.91) 
results in 
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which may be written 

If all the diagonal elements of o are equal to o,, which is the eigenvalue of 

KO, = wn8, (16.96) 

with largest real part, then from Eq. (16.90), 

From the definition of A (with o = all) it can be shown that 

It can be shown that o, is real and simple, and that O1 is positive. For all real values 
of o, hence for w = o,, A can be shown to be nonnegative, irreducible, and primi- 
tive. From the Perron-Frobenius theorem it follows that A has a simple, real, 
largest eigenvalue p, and a corresponding positive eigenvector. The eigenvalue 
p, = exp(At wL) is seen from Eq. (16.98) to have a positive eigenvector that is 
the fundamental-mode solution of the kinetics equations (16.96). If it can be shown 
that p, is the largest eigenvalue of A, Eq. (16.98) indicates that the asymptotic 
solution of the integration algorithm of Eq. (16.95) is the asymptotic solution of 
Eq. (16.82) for a step change in properties, which shows that the method is uncon- 
ditionally numerically stable. 

The transpose matrix has the same properties and eigenvalue spectrum as A :  

By the Perron-Frobenius theorem, has a real, simple eigenvalue, pk, which is 
larger than the real part of the other eigenvalues, and the corresponding eigenvector 
is positive. Premultiplying Eq. (16.93) for n = k by OT, premultiplying Eq. (16.98) 
by qT, and subtracting yields 

Because 8' and q,  are positive, Eq. (16.100) is satisfied only if 

is the real eigenvalue. Thus the method is numerically unconditionally stable. 
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Inversion of the matrix on the left of Eq. (16.94) to obtain A can be accom- 
plished by the inversion of GN x N matrices. In practice, an approximation to w l  is 
obtained by an expression of the form 

where i indicates some component or components of the 0 vector, and different 
values of a, are used in different parts of the reactor (i.e., a # all). 

Alternating Direction Implicit Method 

The implicit integration methods of previous sections all reduced to an algorithm 
for the neutron flux which required the inversion of a matrix at each time step. 
When the finite-difference spatial approximation is employed, this matrix is NG x 
NG, where N is the number of mesh points and G is the number of energy groups. 
In one-dimensional problems, the matrix to be inverted becomes block tridiagonal 
with G x G blocks, and inversion can be accomplished by the backward-elimina- 
tion/fonvard-substitution method and requires the inversion of N G x G matrices. 
In the GAKIN method, this matrix inversion can be accomplished by inverting G 
N x N matrices. 

However, for multidimensional problems, the matrix inversion aqsociated with 
the impIicit methods poses a formidable and time-consuming task. Alternative for- 
mulations of the 0 and GAKIN methods have been proposed to reduce the time 
required for this matrix inversion. Another technique, designed to eliminate this 
same problem, is the alternating direction implicit (ADI) method. The basis of the 
AD1 method is to make the algorithm implicit for one space dimension at a time 
and to alternate the space dimension for which the algorithm is implicit. The ideas 
involved are illustrated by a two-dimensional problem. The equation for the group g 
neutron flux can be written in the notation of Section 16.2 as 

where the N x N diffusion matrix Dg, which represents 

a a a a  -Dg-+-Dg-  
ax ax dy dy 

has been separated into D!, which represents 
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and D&, which represents 

For the time step tp to tp+l ,  an integration algorithm which is implicit in the 
x-direction and explicit in the y-direction is chosen. First define 

then the algorithm is written 

For the time step tp + to t,, + 2, an algorithm that is implicit in the y-direction and in 
the removal, scattering, fission, and precursor terms is chosen: 
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Use, for the sake of definiteness, the implicit integration formulas of Eq. (16.61) 
for the precursors, 

where F8 is an N x N diagonal matrix representing vCj associated with each point. 
Using Eq. (1 6.106), Eq. (1 6.105) becomes 

The solution proceeds by alternating between the algorithms of Eqs. (16.104) and 
(16.107). If there are N ' / ~  mesh points in both the x- and y-directions, the matrices 
that must be inverted in order to solve Eqs. (16.104) and (16.107) can be partjtioned 
so that, rather than inverting an NG x NG matrix, N'/' N'/'G x N ~ / ~ G  matrices are 
inverted. This happens because the matrix to be inverted in Eqs. (16.104) couples 
mesh points only in the x-direction, and the matrix to be inverted in Eq. (16.107) 
couples mesh points only in the y-direction. In the case of Eq. (16.104), each of the 
N'/'G x N'/'G matrices can be further partitioned into G N1I2 x N1I2 matrices, 
because the neutron source terms due to fission, scattering, and precursor decay 
are treated explicitly in this step. More general algorithms treat these source terms 
implicitly in both steps. 

Stiffness Confinement Method 

The set of neutron and delayed neutron precursor equations are referred to as stif 
because of the great difference in the time constants that govern the prompt neutron 
and precursor responses. The accuracy and stability of numerical integration 
methods are usually determined by the shortest time constant, the prompt neutron 
lifetime, which has little effect on the precursor solution. The stzffitess conjinemeat 



TIME INTEGRATION OF THE SPATIAL NEUTRON FLUX DISTRIBUTION 623 

method seeks to confine the difficulty to the neutron equations by decoupling the 
precursor equations through the definition of dynamic frequencies: 

These definitions can be used to replace the time derivatives in the multigroup 
diffusion and precursor equations, which allow the latter to be formally solved 
and used to evaluate the precursor densities in the multigroup diffusion equations, 
resulting in 

These equations are identical to the static multigroup diffusion equations, but with 
modified Lotal and fission cross sections which include the dynamic frequencies. 
Thus, to advance the solution in time, an estimate is made of the dynamic frequen- 
cies, Eqs. (1 6.109) are solved for the group fluxes, the precursors are updated, an 
improved guess of the dynamic frequencies is calculated using the new Aux and 
precursor values, and the iteration is repeated until convergence. 

Symmetric Successive Overrelaxation Method 

Successive over-relaxation is combined with an exponential transformation to 
decouple stiffness in the symmetric successive over-relaxation (SSOR) method. 
The matrix H is first decomposed into a lower L, a diagonal D, and an upper U 
matrix: 

The solution is then advanced iteratively over the ( p  + 1) time step by a forward 
sweep: 
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followed by a backward sweep: 

where 1 5 0 5 2 and n refers to the iteration number. 
An exponential transformation of the multigroup fluxes and the precursor 

densities 

may be made first, using dynamic frequencies calculated from local flux and pre- 
cursor values for the present and previous times: 

With the transformation of Eq. (16.1 13), Eq. (16.52) becomes 

which is integrated using the over-relaxation procedure of Eqs. (16.111) and 
(16.1 12). 

The dynamic frequencies are estimated at the beginning of the time step from 
Eqs. (16.114) to determine wo. A global frequency correction factor Am, is com- 
puted on each iteration by considering Eqs. (16.1 11) and (16.1 12) to each advance 
the solution a half time step. The dynamic frequency is then corrected: 

where now f2 is a matrix containing the local values of the frequencies a. 

Generalized Runge-Kutta Methods 

Runge-Kutta methods have long been popular for integrating ordinary differential 
equations, but the requirement for small time steps to achieve sufficient accuracy 
has limited their application in soiving space-discretized space-time neutron kinet- 
ics problems. However, generalizations of these methods to allow larger time steps 
and increased stability (Ref. 3 )  have recently been applied to these problems. The 
Runge-Kutta method is based on an explicit time differencing of Eq. (16.52) and a 
linear Taylor's series approximation: 
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where the term d(H+)/O,+lp is the partial derivative of the left side of Eq. (16.52) 
with respect to the appropriate multigroup neutron flux or delayed neutron precur- 
sor density evaluated at the beginning of the time step, t = t,. 

The generalized Runge-Kutta methods are based on the algorithm 

for advancing the solution from t,, to t, + where s is the number of stages, ci are 
fixed expansion coefficients, and the column vectors K(p + 1) are found by solving 
a system of N (the number of energy groups times discrete spatial points plus the 
number of delayed neutron precursor groups times the number of discrete spatial 
points) linear equations for each of the s stages (i.e., for s different right sides for 
each time step): 

where H*I ,. is the evaluation of the left side of Eq. (16.52) at the intermediate 
points t,>. where the solution vector is given by 

where y, 'hl, and a,, are fixed constants. The scheme is well suited for a variable 
time step because it employs an embedded Runge-Kutta-Fehlberg estimate for 
$ { p  + l ) ,  which provides the capability to monitor truncation error without in- 
creasing computational time. 

16.4 STABILITY 

In a nuclear reactor operating at steady-state conditions, an equilibrium obtains 
among the interacting neutronic, thermodynamic, hydrodynamic, thermal, xenon, 
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and so on, phenomena. The state of the reactor is defined in terms of the values of 
the state functions* associated with each of these phenomena (e.g., the neutron flux, 
the coolant enthalpy, the coolant pressure). If a reactor is perturbed from an equi- 
librium state, will the ensuing state (1) remain bounded within some specified 
domain of the state functions, (2) return to the equilibrium state after a sufficiently 
long time, or (3) diverge from the equilibrium state in that one or more of the state 
functions takes on a shape outside a specified domain of state functions? This is the 
question of stability. 

In this section we extend the concepts of Section 5.9 to outline a theory appro- 
priate for the stability analysis of spatially dependent reactor models. First, we 
consider the stability analysis of the coupled system of ordinary differential equa- 
tions that results when the spatial dependence is discretized by a finite-difference, 
nodal, or other approximation. Then the extended Lyapunov theory for the stability 
analysis of the coupled partial differential equations which describe spatially con- 
tinuous systems is discussed. 

Classical Linear Stability Analysis 

The finite-difference, time-synthesis, nodal, or point kinetics approximations, and 
the corresponding approximations to the other state function equations, may be 
written as a coupled set of ordinary differential equations relating the discrete state 
variables yi: 

where, for instance, yi may be the neutron flux at node i and yl ,.j may be the 
coolant enthalpy at node j. The coupling among the equations arises because the 
cross sections in the neutronics equations depend on the local temperature, density, 
and xenon concentration, because the temperature, density, and xenon concentra- 
tion depend on the local flux, and because neutron and heat diffusion and coolant 
transport introduces a coupling among the value of the state variables at different 
locations. 

Equations (16.121) may be written as a vector equation, 

where the components of the column vectors y and f are the yi and 6, respectively. 
The equilibrium state ye satisfies 

'In a spatially dependent system such as a nuclear reactor, the state uf the system is defined in terms 
of spatially dependent state functions. When the spatial dependence is discretized by one oC the 
approximations discussed in prcvious scctions, the state of the system is defined in terms of discrete 
state variables. 



If the solution of Eq. (16.122) is expanded about ye, 

and the part of the right-hand side of Eq. (16.122) that is linear in jr is separated out, 
Eq. (16.122) may be written 

The matrix h has constant elements, some of which may depend on the equilibrium 
state. 

Classical linear stability analysis proceeds by ignoring the nonlinear term g in 
Eq. (16.125). It is readily shown that the condition for the stability of the linearized 
equations is that the real part of all eigenvalues of the matrix h are negative. To 
illustrate this, apply a permutation transformation that diagonalizes h to the linear 
approximation to Eq. (16.125): 

pT; (t) P = pThppTy ( t ) ~  (16.126) 

since 

Define X ( r )  = P ~ ~ ( ~ ) P .  Then the transformed equations are decoupled: 

where oi are the eigenvalues of h. The solutions of these equations subject to 
Xi(0) = Xi, are 

which may be written in vector notation as 

where T ( t )  = diag(exp(o;t)). Hence 

If Re{wi) < 0, limt ,, y(t) = 0 (i.e., the state of the system returns to the 
equilibrium state). If Re(w,} > 0, one or more of the components of j approach 
cc as t r no, and the system is unstable. Thus stability analysis of the linearized 
equations amounts to determining if the eigenvalues of the h matrix are in the 
left (stable) or right (unstable)-half complex plane. This determination may be 



628 SPACE-TIME NEUTRON KINETICS 

accomplished most readily by Laplace transforming the linearized equation into the 
frequency domain and then applying one of the methods of linear control theory 
(e.g., Bode, Nyquist, root locus, Hurwitz) that have been developed explicitly for 
this purpose. This methodology was applied in the stability analyses of Chapter 5. 

Lyapunov's Method 

The method of Lyapunov attempts to draw certain conclusions about the stability of 
the solution of Eq. (16.125) without any knowledge of this solution. Essential to 
this method is the choice of a scalar function V@) which is a measure of a metric 
distance of the state y = y, + y  from the equilibrium state y,. Let y( t , jo)  be the 
solution of Eq. (16.125) for the initial condition y(t = 0) =yo. If it can be shown 
that V(y(t,j,)) will be small when V(jo) is small, then y, is a stable equilibrium 
state. If, in addition, it can be shown that V(y(t,y,)) approaches zero for large 
times, y, is an asymptotically s~able equilibrium state. 

Define a scalar function V(y) that depends on all the state variablesyi and which 
has the following properties in some region 9 about the equilibrium state ye: 

1. V(y) is positive definite [i.e., V(y) > 0 if j # 0, V(y) = 0 if j = 01. 

2. limj,o V(y) = 0, limj,, V( j )  = =o. 

3. V(y) is continuous in all its partial derivatives (i.e., dV/6'yi exist and are 
continuous for i = 1, . . . , N ) .  

4. v ( ~ )  evaluated along the solution of Eq. (16.125) is nonpositive; that is, 

A scalar function V(y) satisfying properties 1 to 4 is a Lyapunov function. 

Three theorems based on the Lyapunov function can be stated about the equili- 
brium solution of Eq. (16.125). 

Theorem 16.1: Stability Theorem. If a Lyapunov function exists in some region 
W about y,, this equilibrium state is stable for all initial perturbations in W [i.e., for 
all initial perturbation~j~ in .B, the solution of Eq. (16.125),j(t,yo), remains within 
the region W for all t > 01. 

Theorem 16.2: Asymptotic Stability Theorem. If a Lyapunov function exists in 
some region W about ye, and in addition v evaluated along the solution of Eq. 
(16.125) is negative definite (V  < 0 if y # 0, v = 0 if j = 0) in 92, this equilib- 
rium state is asymptotically stable for all initial perturbations in W [i.'e., for all 
initial perturbations yo in .%, the solution of Eq. (16.125) is y(t,yo) = 0 after a 
sufficiently long time]. 

Theorem 16.3: Instability Theorem. If a scalar function V(y) which has proper- 
ties 1 to 3 exisis in a region .%?: and v evaluated along the solution of Eq. (1 6.125) 
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does not have a definite sign, the equilibrium state y, is unstable for initial pertur- 
bations in 9 [i.e., for initial perturbations y,, in &?, the solution of Eq. (16.125), 
y ( t ,  yo), does not remain in 9%' for all r > 01. 

Mathematical proofs of these theorems can be constructed. Rather than repeat 
these proofs, which may be found in the literature (e.g., Ref. t4), it is more 
informative to consider a topological argument. Properties 1 to 3 define a concave 
upward surface (the function V )  in the phase space defined by the ji. This surface 
has a minimum within the region .@ at j ,  = . . . = j ,  = 0 by property 1,  and 
increases monotonically in value as the ji increase, by properties 2 and 3. Thus 
contours can be drawn in the hyperplane of the ji representing the locus of points at 
which V has a given value. These contours are concentric about the equilibrium 
state ji = 0, i = 1, . . . , N. Proceeding outward from this origin, the value of V 
associated with each contour is greater than the value associated with the previous 
contour. In other words, V(y) is a bowl in the hyperspace of the yi, with center at 
3 . = 0  i =  1: ..., N .  - 1  I 

The outward normal to those contours is 

where i denotes the unit vector in the direction in phase space associated with the 
state variable j i .  The direction in which the state of the system is moving in phase 
space is given by 

For stability, the direction in which the state of the system is moving must never 
be toward regions in which Vis larger (i.e., never away from the equilibrium state): 

For asymptotic stability, the state of the system must always move toward regions 
in which V is smaller (i.e., always move toward the equilibrium state). Thus the 
inequality must always obtain in the foregoing relation. If the system can move 
away from the equilibrium state into regions of larger the 5 is replaced by > in 
the foregoing relation and the equilibrium state is unstable. 

The Lyapunov method yields Lhe same results obtained in the preceding section 
in the limit in which the nonlinear terms are small. The function 
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satisfies properties 1 to 3. Making use of Eq. (16.125) yields 

If the region 9 is defined such that 

a sufficient conditon for v to be negative definite in .%! is that yThj is negative 
definite, a sufficient condition for which is that the eigenvalues of h have negative 
real parts. This is the same result obtained in the linear analysis of the preceding 
section. In this case, the Lyapunov method provides, in addition, the region .% 
within which the linear analysis is valid. 

In applying the Lyapunov method, construction of a suitable Lyapunov function is 
the main consideration. Because the Lyapunov function for a system of equations is 
not unique, the analysis yields sufficient, but not necessary, conditions for stability. 

Lyapunov's Method for Distributed Parameter Systems 

A more basic characterization of a reactor system is in terms of spatially distributed 
state functions, rather than discrete state variables. These state functions satisfy 
coupled partial differential equations, which may be written 

where yi is a state function (e.g., neutron group flux) and f ,  denotes a spatially 
dependent operation involving scalars and spatial derivatives on the state functions. 
These equations may be written 

where y is a column vector of the yi and f is a column vector of the operations 
denoted by the J. 

The extension of Lyapunov's methods to systems described by state functions 
involves the choice of a functional that provides a measure of the distance of the 
vector of state functions y from a specified equilibrium state, ye,. The distance 
between two states y,  andy,, db,,yb], is defined as the metric on the product state 
function space consisting of all possible functions of position that the component 
state functions can take on. 

An equilibrium state y,,(r) satisfying 
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is stable if, for any number E > 0, it is possible to find a number 6 > 0 such that 
when 

then 

where y(r, t;yo) is the solution of Eq. (16.138) with the initial condition y(r, 0) = 

yo(r). If in the limit of large t, the distance dly(r, t;yo), ye,] approaches zero, then ye, 
is asymptotically stable. 

Theorem 16.4: Stability Theorem. For an equilibrium state y,,(r) to be stable, it 
is necessary and sufficient that in some neighborhood of y,(r) that includes the 
equilibrium state there exists a functional V [ y ]  with the following properties: 

1. V is positive definite with respect to d[y,y, ,];  that is, for any C ,  > 0, there 
exists a C2 > 0 depending on C1 such that when dly ,  y,] > C1, then 
Q] > Cz for all 1 > 0, and limdivu,l+o V [ yl = 0. 

2. V is continuous with respect to d[y ,y , ] ;  that is, for any real E > 0, there 
exists a real 6 > 0 such that f l y ]  < c for ally in the state function space for 
0 < r < m, when d[yo,yeq] < 6. 

3.  V [ y ]  evaluated along any solution y of Eq. (16.138) is nonincreasing in time 
for all t > 0 provided that d[yo,y, ,]  < 6", where 60 is a sufficiently small 
positive number. 

Theorem 16.5: Asymptotic Stability Theorem. If, in addirion to these three 
conditions, V i j ]  evaluated along any solution to Eq. (16.1 38) approaches zero 
for large t, the equilibrium state is asymptotically stabte. 

The same type of topological arguments made above in support of the theorems 
for the discrete representation of spatial dependence by coupled ODES are appro- 
priate here, if the state space is generalized to a state function space. Construction of 
a suitable Lyapunov functional is the essential aspect of applying the theory of this 
section. Although the conditions cited in the theorems are necessary and sufficient 
for stability, the Vfunctional chosen may result in more restrictive stability criteria 
than would be obtained from another V-functional. Thus stability analyses employ- 
ing Lyapunov functionals yield only sufficient conditions for stability. 

16.5 CONTROL 

An intended change in the operating state of a nuclear reactor is produced by a 
control action (e.g., withdrawing a bank of control rods, increasing the coolant 
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flow). The nature of the change in operating sfate depends on the control action, 
of course, and a great deal of practical experience exists on how to effect a desired 
change. However, in some cases the intuitive control action can exacerbate, rather 
than correct, a problem-the control-induced xenon spatial oscillations in the large 
production reactors being a good example. The methodology of control theory has 
found some application in nuclear reactor control, and a brief review is provided in 
this section. 

Variational Methods of Control Theory 

When discrete spatial approximations (e.g., nodal, finite-difference) are employed, 
the dynamics of a spatially dependent nuclear reactor model are described by a 
system of ordinary differential equations 

~ r ( t )  = ~ ( Y ~ , . . . , Y N , ~ I ~ . . . , ~ R ) ,  i =  l1...,N (16.141) 

with the initial conditions 

The yi are the state variables (e.g., nodal neutron flux, temperature) and the u, are 
control variables (e.g., control rod cross section in a node). Equation (16.141) may 
be written more compactly by defining vector variables y, u, andf: 

Many problems in control may be formulated as a quest for the control vector u* 
that causes the solution of Eq. (16.143), y*, to minimize a functionalt: 

This control problem may be formulated within the framework of the classical 
calculus of variations by treating the control variables as equivalent to the state 
variables. The theory of the calculus of variations is restricted to variables that are 
continuous in time, which limits the admissible set of control variables. 

The system equations are treated as constraints or subsidiary conditions, and are 
included in the functional with Lagrange multiplier variables: 

t~unclionals of this form may arise when the objective of the control program is to correct a flux 
perturbation in such a manner as to minimize the deviation from the nominal flux distribution, at 
the same time minimizing the rate of change of local Rux densities. Other typical control problems 
are those in which the objective is to attain a given final state in a minimum timc; a functional with 
F =  I and an additional term that provides a measure of the deviation from the specified final state 
is appropriate in,this case. 
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Variations of the modified functional J' (with respect to each yi and u,) are required 
to vanish at the minimum: 

Integrating the 6yi terms by parts and using the initial conditions to set 8yi(to) = 0, 
this expression becomes 

In order lhat Eq. (16.147) be satisfied for arbitrary (but continuous) variations 6yi 
and 624, it  is necessary that 

and that ILi  satisfy the final conditions 

Equations (16.141), (16.148), and (16.149) must be solved simultaneously, 
subject to the initial conditions of Eqs. (16.142) and the final conditions of 
Eq. (16.150), for the optimal controls u: ( t )  and the optimal solutions yr( t ) .  

In  many problems, additional constraints are placed on the allowable values 
that may be taken on by the state variables and control variables. Constraints of 
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the form 

may be added to the functional of Eq. (1 6.144) with Lagrange multiplier variables 
and treated in the same fashion as before. Equations for additional Lagrange multi- 
plier variables and the additional constraint equations are included with Eqs. 
(l6.l4l),  (16.148), and (16.149) in this case. 

When integral constraints of the form 

are present, the functional of Eq. (16.144) is modified with Lagrange multiplier 
constants w,, 

and the derivation proceeds as before with F a F. In addition to Eqs. (16.141), 
(16.148), and (16.149), the constraint equations and expressions for the om are 
obtained. 

Inequality constraints (e.g., maximum control rod shim rates) are encountered 
frequently. Although these can sometimes be reduced to equivalent equality con- 
straints of one of the three types discussed, they generally constitute a class of 
problems that are difficult to treat within the framework of the calculus of varia- 
tions. Another class of such problems is those for which the optimal control is 
discontinuous. 

Dynamic Programming 

An alternative treatment of the variational problem that circumvents the require- 
ment for continuous control variables is provided by dynamic programming. Con- 
sider the problem of determining the control vector u*(t) that causes the solution 
y* ( t )  of Eq. (16.143) to minimize the functional of Eq. (16.144), subject to con- 
straints on the allowable values of the control variable that may be represented by 

To develop the dynamic programming formalism, consider the functional of 
Eq. (16.144) evaluated between a variable lower limit (t,y(t)) and a fixed upper 
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limit (t f ,y(t f)) .  Define the minimum value of this functional as S, a function of the 
lower, variable limit (t,y(t)): 

In writing Eq. (14.153), y is written as an explicit function of y and u to indicate 
that Eq. (16.143) must be satisfied in evaluating the integrand. 

By definition of S, for At > 0, 

where y(t  + At) and y( t )  are related by Eq. (16.143); that is, 

For the optimal choice of u(t') =u* in the interval t < t' 5 t + At, the equality 
obtains in Eq. (16.154). Approximating the integral in Eq. (16.154) by taking 
the integrand constant at its value at t ,  this equation becomest 

Equation (16.156) can be solved by retrograde calculation, starting with the final 
condition 

In each step of the retrograde solution, the optimal manner to proceed from each 
possible state y ( t )  to time tf is computed. Thus, when the initial time is reached, the 
optimal control at each discrete time and the corresponding sequence of states con- 
stituting the optimal trajectory are known. 

Pontryagin's Maximum Principle 

When a Taylor's series expansion of the first term on the right of Eq. (16.156) is 
made, this equation becomes 

$ln Eq. (16.156), the minimization is with respecl to the values of'the control vector at  time t. Thesc 
values are assumed constant over the interval t to t + At. On the other hand, the minimization in Eq. 
(16.153) is with respect to the values taken on by the control vector at all times f',i 5 t'<+. 
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Define the variables 

With these definitions, Eq. (16.158) becomes 

N 

which may be written 

This is the maximum principle of Pontryagin. 
When the vector u( t )  takes on its optimal value, derivatives of the quantity 

within the square brackets with respect to t and yi must vanish, which requires that 

Using the identities 

d?l; a2s 32s IV 
dt 

" + j =  1;  . . . ,  N C+J+-  
i l j  i= 1 ayj 
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these equations become 

Appropriate final conditions for the $i and $,+, can be shown to be 

Thus Eqs. (16. ldl),  (l6.l6l),  (16.162), and (16.163) are solved simultaneously, 
subject to the initial and final conditions of Eqs. (16.142) and (16.164), respectively. 

The computational procedure for solving either the calculus of variations or 
maximum principle equations is generally iterative. At t = to, the y, are known from 
the initial conditions. When the maximum principle formulation is used, initial 
values of Q, are guessed, and the initial value of the control variables are deter- 
mined from Eq. (16.161). Then the yi and $, are calculated at l o  + At from 
Eqs. (16.141) and (16.162) and (16.163) and the control is found from 
Eq. (16.1 61), and so on. This procedure is repeated in small time increments until 
the final time tf. Then $:(tf) and I / J ~ ~  , ( t f )  are compared with the final conditions: 

and the initial values of \Cli and $N, I are changed and the entire process is repeated. 
This is continued until a set of initial values $i(to) and +N+ , ( I , , )  are found that yield 
the correct final values. 

Variational Methods for Spatially Dependent Control Problems 

The basic description of the transient neutron flux and temperature distributions 
within a nuclear reactor is in terms of partial differential equations. It is not clear 
that the optimal control computed by first reducing these equations to ordinary dif- 
ferential equations by discretizing the spatial variablc and then using the methods 
above is the same as would be obtained if the optimal control were determined 
directly from the partial differential equation description of the reactor dynamics. 
The variational formalism can be extended to the partial differential equation des- 
cription of the reactor dynamics. 

The state of the system is specified in terms of state functions y,(r, t )  rather 
than discrete state variables as previously. The function space T,, consisting of 
all possible functions of position that the state function y, can take on, is a compo- 
nent function space, and the product space l- = TI 8 r2 @ .  . . @ rN of all such 
component function spaces is the state function space on which the vector state 
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function y = (yl, . . ., y N )  is defined. Similarly, the vector control function 
u = ( u l , .  . . , uR) is defined on the product space of the component function spaces 
defined by all possible functions of position that the control functions u, can take 
on. The distance between two states y, and yb is defined as the metric on T. 

Equations for nuclear reactor dynamics can be written in the form 

where yi denotes a state function, Li contains a spatial differential operator acting 
on yi, andJ is a spatially dependent function of y and u. The outer boundary of the 
reactor is denoted by R. These equations may be written in matrix form: 

Many control problems may be formulated as the quest for the control vector 
function u for which the solution of Eq. (16.165) minimizes a functional 

The standard calculus-of-variations formulation of this problem begins by add- 
ing Eq. (16.166) to the integrand of Eq. (16.167) with a Lagrange multiplier vector 
function I ( r ,  t) = ( h i , .  . . , AN):  

The control functions u, are treated in the same fashion as the state functions yi. 
Next, the variation of P is required to vanish: 

Integration by parts of the terms involving 6 j i  and ~ ~ i j ~ ~ , ~  and use of the initial 
conditions 6yi(r,  to) = 0 leads to 

n~ommutability of the variational operator 6 and the operators ?)/at and Li imply an assumption of 
continuous variations 6y,, as does the existence of the integrals involving these terms. 
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In arriving at Eq. (16.169), the adjoint operator L+ and the bilinear concomitant Pi 
are defined by the relation 

6J' must vanish for arbitrary variations of yi and u, which requires that the 
Lagrange multiplier functions satisfy the partial differential equations 

the final conditions 

and the boundary conditions 

In addition, 

must be satisfied. 
In this formulation, the u,, as well as the yi, are treated as continuous functions. 

This imposes artificial restrictions on the u,. In some problems the control is 
discontinuous. 

Dynamic Programming for Spatially Continuous Systems 

Proceeding as above, the dynamic programming formalism is developed by con- 
sidering the minimum value of the functional of Eq. (16.167) evaluated between 
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a fixed upper limit and a variable lower limit as a function of the lower limit: 

I n  writing Eq. (16.175), the dependence of the integrand upon Eq. (16.166) is 
shown implicitly, and any constraints on the control vector function are implied 
by u ECL. By definition, 

~ ( t ,  y( r ,  t )  5 ~ ( t  + At, y(r ,  t  + a t ) )  + d i  1" ~ ~ F ( Y ( c  ~ ' ) , Y ( Y ( c  0, ~ ( r ,  0)) 

For the optimal control, the equality obtains. Approximating the integral over time, 
this becomesS 

S(t ,y(r ,  t ) )  = min [S(t + At,y(r ,  t  + At) )  + At drFCy(r, t) ,y(y(r,  t ) ,  u(r ,  t ) ) ) ]  
4t)eNrl 

(16.176) 

Equation (16.176) is the dynamic programming algorithm for the partial differential 
equation description of reactor dynamics. It is solved retrogressively, with the final 
condition 

which is apparent from the defining Eq. (16.175). 

Pontryagin's Maximum Principle for a Spatially Continuous System 

Using a Taylor's series expansion 

as 
S(t + At,y(r:  t + At ) )  = S(t,y(r,  t ) )  + At-  ( t , y ( r ,  t ) )  

at 

Eq. (1 6.176) becomes 

 he minimira~ion in Eq. (16.175) is with respect to the control veclor function over thc time 
interval t 5 r' 5 if. whereas the minimization in Eq. (16.176) is with respect to the control vector 
function evaluated at time r .  
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Define the functions 

as 
$ i ( r , t ) = - - ( t , y ( r , t ) ) ,  i = l ,  . . . ,  N (16.179) 

4 1  

3s 
$N I I ( r ,  t )  = - 5 ( 4 ~ ( r ,  t ) )  (16.180) 

Then Eq. (16.178) becomes 

This is the extension of Pontryagin's maximum principle to the partial differential 
equation description of the reactor dynamics. 

When the optimal u*(t) is chosen, variational derivatives of the quantity within 
the square brackets must vanish. This leads to the boundary conditions 

where Pi is the bilinear concomitant defined in Eq. (16.170), and to the equations 

Identities similar to those just before Eq. (16.162) have been used in arriving at 
these equations. Appropriate final conditions for the $, and $ N L ,  arc 
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The optimal control functions must be found by solving Eqs. (16.166) and (16.182) 
to (16.184). The initial conditions associated with the yi and the final conditions 
associated with the $i and $ N +  I produce a system of equations that must, in 
general, be solved iteratively. This formulation allows discontinuous control func- 
tions and can incorporate constraints on the control functions readily, which are its 
principle advantages with respect to the calculus-of-variations-formulation. 

16.6 XENON SPATIAL OSCILLATIONS 

Xenon-1 35, with a thermal absorption cross section of 2.6 x lo6 barns and a half- 
life against P-decay of 9.2 h, is produced by the fission product decay chain 

The instantaneous production rate of 1 3 5 ~ e  depends on the 1 3 5 ~  concentration 
and hence on the local neutron flux history over the past 50 h or so. On the other 
hand, the destruction rate of ' 3 5 ~ e  depends on the instantaneous flux through the 
neutron absorption process and on the flux history through the ' 3 5 ~ e  decay process. 
When the flux is suddenly reduced in a reactor that has been operating at a thermal 
flux level > 1013 n/cm2 - s, the xenon destruction rate decreases dramatically while 
the xenon production rate is initially unchanged, thus increasing the xenon con- 
centration. The xenon concentration passes through a maximum and decreases to a 
new equilibrium value as the iodine concentration decays away to a new equilib- 
rium value (see Section 6.2). 

When a flux tilt is introduced into a reactor, the xenon concentration will ini- 
tially increase in the region in which the flux is reduced, and initially decrease in 
the region of increased flux, for similar reasons. This shift in the xenon distribution 
is such as to increase (decrease) the multiplication properties of the region in which 
the flux has increased (decreased), thus enhancing the flux tilt. After a few hours the 
increased xenon production due to the increasing iodine concentration in the high- 
flux region causes the high-flux region to have reduced multiplicative properties, 
and the multiplicative properties of the low-flux region increase due to the de- 
creased xenon production associated with a decreasing iodine concentration. This 
decreases, and may reverse, the flux tilt. In this manner it is possible, under certain 
conditions, for the delayed xenon production effects to induce growing oscilla- 
tions in the spatial flux distribution. Such oscillations were common in the large 
production reactors at Hanford and Savannah River, and measures are required to 
control them in most thermal power reactors. 
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Because of the time scale of the iodine and xenon dynamics, prompt and delayed 
neutron dynamics may be neglected (i.e., changes in the neutron flux are assumed 
to occur instantaneously, and the delayed neutron precursors are assumed to be 
always in equilibrium). Moreover, 1 3 5 ~  can be assumed to be formed directly from 
fission. The appropriate equations are 

In writing these equations it is assumed that the xenon absorption cross section is 
zero except in the thermal group (g = G). The absorption cross section, C:, does not 
include xenon. The quantity 02 is the microscopic absorption cross section of xenon 
for thermal neutrons, y and h denote yields and decay constants, and I and X are the 
iodine and xenon concentrations. Changes in the macroscopic cross sections and 
diffusion coefficients are due to control rod motion or temperature feedback. 

Linear Stability Analysis 

One of the features of Eqs. (16.186) to (16.188) that makes their solution by 
analytical methods difficult is the nonlinearity introduced by the xenon absorption 
term (implicit nonlinearities are also introduced by the dependence of the cross 
sections on the flux via the temperature feedback). Linearizing Eqs. (16.186) to 
(16.188) reduces their complexity but also reduces their applicability to a small 
region about the equilibrium point. The linearized equations are used principally for 
investigations of stability; that is, if a small flux tilt is introduced, will this flux tilt 
oscillate spatially with an amplitude that diminishes or grows in time? 

The linearized equations are obtained by expanding about the equilibrium point, 
denoted by a zero subscript: 
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making use of the fact that the equilibrium solutions satisfy the time-independent 
version of Eqs. (16.186) to (16.188), and neglecting terms that are nonlinear in 6c$g 
and 6X: 

G 

yx Ej (r)Sqhg (r, t )  + XibI(r, t) - A,SX(r, t )  
g= 1 

- of (r)xo(r)6dG(r, t) - oz(r)@(r)~~(r, t) = 6 ~ ( r ,  t) (16.191) 

The effect of temperature feedback has been neglected momentarily in writing 
Eqs. (16.189) to (16.191), in that the time dependence of the cross sections has 
been suppressed. Feedback effects will be reintroduced later. 

Upon Laplace transforming the time dependence, Eqs. (16.189) to (16.191) 
become 

Equations (16.192) to (16.194) may be written 
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where 

and H is composed of the coefficient lerms on the left side of Eqs. (16.192) to 
(16.194). 

The solution of Eq. (16.195) is formally 

SY(~,P) = H-l (r ,p)b~o(r ,  t = 0) (16.196) 

Thus the solutions of Eqs. (16.192) to (16.194) are related to the initiating pertur- 
bations by a transfer function matrix, H-'. The condition that the solutions dimin- 
ishl in time is equivalent to the condition that the poles of the transfer function 
(thus the roots of H)  lie in the left-half complex plane. The roots of H are the 
eigenvalues, p, of Eqs. (16.192) to (16.194), with a homogeneous right-hand side. 
These homogeneous equations are known as the p-mode equations. The p-mode 
equations generally have complex eigenfunctions and eigenvalues and must be 
calculated numerically except for the simplest geometries. Numerical determina- 
tion of the p-eigenvalues requires special codes and has been successful only for 
slab geometries. For practical reactor models, it is necessary to resort to approxi- 
mate methods to evaluate the p-eigenvalues. Two methods that have been employed 
successfully are the p- and h-mode approximations. 

p-Mode Approximation 

The p-mode approximation is motivated by recognition that the only manner in 
which Eq. (16.192) differs from a standard static diffusion theory problem is 
through the additional term - ( ~ F $ ~ G x  in the thermal group balance equation. 
Using the homogeneous versions of Eqs. (16.193) and (16.194), this term may 
be written 

where 

l l ~ h c  solutions of Eqs. (16.192) to (16.194) havc an oscillatory timc depcndence if the roots of H 
have an imaginary component. The requirement that these roots lie in the left-half complex plane 
cnsures that thcsc solutions oscillatc with a diminishing amplitude. 
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with 

In applications, the quantity Gf (r,p) is usually assumed equal to fo(r). 
Using these definitions, the p-mode equations [homogeneous versions of 

Eq. (16.192) to (16.194)] may be written in the equivalent form 

If N(r,p) is real, the term NZ? in Eq. (16.202) is formally like a distributed 
poison, and Eq. (16.202) can be solved with standard rnultigroup diffusion theory 
codes. In general, N(r,p) is complex because the p-eigenvalues are complex. The 
essential assumption of the y-mode approximation is that N(r,p) is real. 

There are two types of p-mode approximations and they differ in the treatment 
of the spacial dependence of N(r,p). In the first approximation the spatial depend- 
ence is retained explicitly and ~ ( r , p ) ~ f G ( r )  is treated as a distributed poison, in 
which case Eqs. (16.202) become the standard multigroup criticality equations. A 
value of p is guessed, N(r,p) is evaluated, and Eqs. (16.202) are solved for the 
eigenvalue k (l/k multiplies the fission term in the eigenvalue problem). This 
procedure is repeated until the calculated eigenvalue agrees with the known critical 
eigenvalue; the corresponding value of p is an approximation to the p-eigenvalue 
with the largest real part. 

An alternative p-mode approximation (and the one that gives rise to the name 
p-mode) results when N(r,p) is assumed to be spatially independent: 

In this case, Eqs. (16.202) define an eigenvalue problem for the p-eigenvalues, 
which can be solved, with a slight modification to the coding, by conventional 
multigroup diffusion theory codes. To obtain an estimate of the p-eigenvalue from 
the calculated p-eigenvalue requires definitions of effective values of f j  and f o  
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which account for the spatial dependence of these quantities. In practice, an 
effective fj is usually defined as 

an expression that can be motivated by perturbation theory. The asterisk denotes 
adjoint. Temperature feedback effects are included in the calculation of p-eigen- 
values by perturbation theory. 

A-Mode Approximation 

The h-mode approximation begins with Eqs. (16.192) to (16.194) and expands the 
spatial dependence in the eigenfunctions of the neutron balance operator at the 
equilibrium point (i.e., h-modes): 

normalized such that 

where $$ satisfy equations adjoint to Eq. (16.205) with appropriate adjoint bound- 
ary conditions. It is convenient to treat thermal feedback explicitly in this approxi- 
mation by including a power feedback term 

on the left side of Eq. (16.192) for group G. 
When the iodine is eliminated between Eqs. (16.193) and (16.194), and the flux 

and xenon are expanded in h-modes, 
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the biorthogonality relation of Eq. (16.206) may be used to reduce Eqs. (16.192) to 
(16.194) to a set of 2N algebraic equations in the unknowns A,, and B,,, with 
inhomogeneous terms involving spatial inlcgrals containing GX(r, t = 0) and 
&I{p; t = 0). These equations may be written as a lranskr function relation between 
the inhomogeneous terms R and the column vector A(p) containing the A, 
and B,,: 

Again, the condition for stability is that the poles of H lie in the left-half 
complex p-plane. When N =  1 in the expansion of Eqs. (16.207) and (16.208), 
Eq. (16.209) may be reduced to the scalar relation 

where 

and 

with 

The parameters q, Q, and P, which characterize the reactor in this formulation, 
are defined as 
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The quantity 6f was defined previously as the ratio of the total fission rate to the 
thermal group fission rate and an effective spatially independent value has been 
assumed. The fundamental and first harmonic h-eigenvalues are denoted by ko and 
k ,  , respectively. 

The requirement that the poles of I ^ l ' ( p )  lie in the left-half complex p-plane (i.e., 
that p,> 0) defines a relationship among q, R and P. In practice, P .- q has been 
found to be a good approximation, so that the stability requirement defines a curve 
in the q-R phase plane, as shown in Fig. 16.1. 

The effect of physical parameters upon xenon spatial stability can be traced 
through Eqs. (16.213) and (16.214) and Fig. 16.1. The quantity R is primarily 
determined by the eigenvalue separation l/k,-l/ko. A reactor becomes less stable 
when the eigenvalue separation decreases, which occurs when the dimensions are 
increased, when the migration length is decreased, or when the power distribution is 
flattened. A negative power coefficient (r < 0) increases R, thus making a reactor 
more stable. The quantity q is proportional to the thermal flux level, 4:. An in- 
crease in thermal flux level is generally destabilizing (increasing q), but may be 
stabilizing if a < 0 (increasing 51); that is, for a < 0, an increase in thermal flux 
moves the point characterizing a given reactor in Fig. 16.1 to the right and up. It is 
interesting that an increase in thermal flux level can, under some circumstances, 
be stabilizing, although this is not generally the case. 

Core I ,  seed I, 900 EFPH 

Fig. 16.1 h-mode linear xenon stability criterion. PWR results: open square, calculated 
with feedback; solid square, calculated, no feedback; open triangle, inferred from experi- 
ment. Calculated transients: open circle, decaying oscillation; cross, neutral oscillation; solid 
circle, growing oscillation. (From Ref. 9(c): used with permission of Academic Press.) 
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If yi, Fig. 16.1 predicts stability independent of the value of q. Physically, 
D is a measure of the reactivity required to excite the first harmonic h-mode in 
the presence of power feedback, and yi is a measure of the maximum reactivity that 
can be introduced by iodine decay into xenon. The parameters q and Sl can be 
evaluated using standard multigroup diffusion theory codes. A fundamental h-mode 
flux and first harmonic h-mode flux and adjoint calculations are required. The 
integrals in Eqs. (16.213) and (16.214) may be performed with any code that 
computes perturbation theory-type integrals. Computation of first harmonic flux 
and adjoint requires either that the problem is symmetric so that zero Aux boundary 
conditions may be located on node lines or that the Wielandt iteration scheme be 
employed. Several comparisons with experiment and numerical simulation are 
indicated in Fig. 16.1. The location of the symbol indicates the prediction of the 
stability criterion, and the type symbol indicates the experimental or numerical 
result. 

At 900 effective full power hours (EFPH), Core 1 Seed 1 of the Shippingport 
reactor experienced planar xenon oscillations with a doubling time of 30 h. Using 
this doubling time and the calculated value for q, an experimental may be 
inferred that agrees with the calculated D to within 3%. Core I Seed 4 of the 
Shippingport reactor was observed to be quite unstable at 893 EFPH, and to be 
slightly unstable at 1397 EFPH. These observations are consistent with the predic- 
tions of the stability criterion at 1050 EFPH. 

The finite-difference approximations to Eqs. (16.186) to (1 6.18 8) were solved 
numerically for a variety of two-dimensional three-group reactor models. These 
same reactor models were evaluated for stability with the L m d e  stability criterion. 
The results depicted in Fig. 16.1 indicate that the predictions of the stability cri- 
terion were generally reliable. 

In the analysis of this section the total power was assumed to be held constant 
and the effects of nonlinearities and control rod motion on the stability were 
neglected. Although the effects of xenon dynamics upon the total power in an 
uncontrolled reactor can be evaluated, most reactors can be controlled to yield a 
constant power output. The treatment of nonlinearities and control rod motion is 
discussed next. 

Nonlinear Stability Criterion 

The extended methods of Lyapunov, which were discussed in Section 16.4, are 
applied to derive a stability criterion which includes the nonlinear terms that were 
neglected in the preceding section. Employing a one-group neutronics model and 
retaining the prompt neutron dynamics and expanding the flux, iodine, and xenon 
about their equilibrium states, the equations governing the reactor dynamics may be 
written in matrix form as 
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where 

where v is the neutron speed, cl is the power feedback coefficient, and the other 
notation is as defined previously. 

A Lyapunov functional may be chosen as 

The condition for stability (asymptotic stability) in the sense of Lyapunov is that 
v evaluated along the system trajectory defined by Eq. (16.216) is negative semi- 
definite (definite). 

where p is the smallest eigenvalue of 

Thus the condition for stability is 

For a given reactor model and equilibrium state, characterized by p, relation 
(16.221) defines the domain of perturbations for which a stable response will be 
obtained. For asymptotic stability, the inequality must obtain in relation (16.221). 

The linear eigenvalue problem, Eq. (16.220), which must be solved for p, in- 
volves the matrix L of Eq. (16.217) and its Hermitean adjoint L*. The matrix 
operator i(L* + L) is self-adjoint with a spectrum of real eigenvalues and a com- 
plete set of orthogonal eigenfunctions. 
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The foregoing choice of Lyapunov functional is not unique, As a consequence, 
this type of analysis provides sufficient, but not necessary, conditions for 
stability. 

Control of Xenon Spatial Power Oscillations 

Inclusion of the control system in a stability analysis is difficult primarily because 
of the difficulty encountered in analytically representing the motion of discrete 
control rods required to maintain criticality. Control rod motion has a profound 
effect on the transient response to a perturbation in the equilibrium state in many 
cases, however, and neglect of this effect may invalidate the stability analysis 
completely. 

Variational Control Theory of Xenon Spatial Oscillations 

When the spatial dependence is represented by the nodal approximation, a general 
optimality functional may be written (for a M-node model) 

where 4,  and Nm represent the actual and the desired, respectively, time-dependent 
fluxes in node m, urn is the control in node m, and K is a constant that can be varied 
to influence the relative importance of the two types of terms in the optimality 
functional. The purpose of the control program is to find the u,(t) that minirni- 
zes the optimality functional, subject to the constraints that the reactor remain 
critical, 

and the iodine and xenon dynamics equations are satisfied, 

The m subscript denotes node m and I,,,, is the internodal coupling coefficient of 
the type discussed in Sections 15.2 and 15.3. 
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Equations (16.148) become 

(The symbol o has been used to denote the Lagrange multipliers, since h is con- 
ventionally used to represent the decay constants.) The final conditions correspond- 
ing to Eqs. (16.150) are 

Equations (16.149) are modified somewhat in this case because the optimality func- 
tional depends on the control. The more general relation is 

which becomes 

2Kum(t) -k wlm(t) Sm ( t )  = 0, m = 1 : . . . , M (16.231) 

Equations (16.231) can be used to eliminate the u, from Eqs. (16.223) and 
(16.226). The modified equations, plus Eqs. (16.2241, (16.225), (16.2271, and 
(16.228), constitute a set of 6M equations which, together with the initial and final 
conditions specified above, can be solved for the optimal flux, iodine, xenon, and 
Lagrange multiplier trajectories. The optimal control can then be determined from 
Eqs. (16.231). 

If no approximation is made for the spatial dependence, an equivalent optimality 
functional is 

and the constraints are 



Because the optimality functional contains the control functions, Eqs. (16.174) 
must be modified to 

which becomes 

2Ku(r,  t )  + wl ( r ,  t ) d ( r ,  t )  = 0 (16.242) 

16.7 STOCHASTIC KINETICS 

The evolution of the state of a nuclear reactor is essentially a stochastical process 
and should, in general, be described mathematically by a set of stochastic kinetics 
equations. For most problems in reactor physics it suffices to describe the mean 
value of the state variables in a deterministic manner and to ignore the stochastic 
aspects. However, the stochastic features of the state variables are important in the 
analysis of reactor startups in the presence of a weak source and underlie some 
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experimental techniques, such as the measurement of the dispersion of the number 
of neutrons born in fission, the Rossi-a measurement, and the measurement and 
interpretation of reactor noise. The purpose of this section is to present a compu- 
tationally tractable formalism for the calculation of stochastic phenomena in a 
space- and energy-dependent time-varying zero-power reactor model. 

Forward Stochastic Model 

The spatial domain of a reactor may be partitioned into I space cells, and the energy 
range of interest may be partitioned into G energy cells. Subject to this partitioning, 
the state of the reactor is defined by the set of numbers 

where nig is the number of neutrons in space cell i and energy cell g, and cim is the 
number of m-type delayed neutron precursors in space cell i. 

Define the transition probability P(N't'1Nt) that a reactor that was in state N' at 
time t' will be in state N at time t .  The probability generating function for this 
transition probability is defined by the relation 

c(lv't1l u t )  z C ~ ( ~ ' t ' l ~ t )  n I.$ V E  

N igm 

The summation over N implies a summation over all values of nig and cim for all 
i, g, and m. The quantities uig and vim play the role of transform variables. 

The transition probability will be written 

for mnemonic reasons. This formalism does not denote product probabilities and is 
used only to facilitate the distinction between states that differ only by the number 
of neutrons in one space-energy cell or the number of m-type precursors in one 
space cell. 

Some properties of the probability generating function that will be needed in the 
subsequent analysis are; 

BG 
- (N't' 1 ~ t )  1 u=I = x c~,P(N'~'   IN^) = zim ( t )  (16.247) 
a v i m  N 
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nig ( t )  (nig ( t )  - I),  ig = itg' 
Wig,ilg~ (t)  3 ig # i'g' 

(16.248) 

Yim,iy ( t )  E = nil,, (t)cim ( t )  

cim ( t )  (cim ( t )  - 1 ) im = ilml 
Zim,i~m~ ( f )  = im # i'ml (16.250) 

cim (t) ~ i ~ d  ( t ) ,  

The notation U= l indicates that the expression is evaluated for all uig and vim 
equal to unity. The overbar denotes an expectation vaIue, as defined explicitly in 
Eqs. (16.246) and (16.247). In the foregoing equations and in the subsequent 
development, the dependence of the expectation values at time t on the state of 
the reactor at time t' is implicit. By considering the events that could alter the state 
of the reactor during the time interval t -+ t + At, balance equations for the transi- 
tion probability and the probability generating function may be derived. In the limit 
At -+ 0, the probability of more than one event occurring during At becomes 
negligible, and the balance equations can be constructed by summing over all single 
event probabilities. 

Source neutron emission: 

Capture event (includes capture by detectors): 

Transport event: 
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0 Scattering event: 

0 Delayed neutron emission: 

Fission event: 

The quantity A_,, represents a reaction frequency per neutron, in space cell i and 
energy cell g, and the subscripts c, s,  and f refer to capture, scattering, and fission, 
respectively.# ~ g g '  is the probability that a scattering event which occurred in ener- 
gy cell g transfers a neutron to energy cell g', while X; and x:l are the probabilities 
that a neutron produced by fission and na-type precursor decay, respectively, has 

*For cxample, Af18 = vxEJ, vg=neutron speed; Cffi - fission cross section. 
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energy within energy cell g. The decay constant for precursor type m is Am, and PI, 
is the average ratio of the number of m-type precursors to the number of prompt 
neutrons produced in a fission (P' = CmPm, J. S ,  is the neutron source rate in space 
cell i and energy cell g. The quantity I:, represents the frequency per neutron at 
which neutrons in space cell i and energy cell g will diffuse into space cell i' 
(without a change in energy). The prime on the product operator, n, indicates that 
the product is taken over all i, g, and m except those explicitly shown in the same 
term. The quantity f, is the probability generating function for p,(v,), which is the 
probability distribution function for the number of prompt neutrons emitted in a 
fission that was caused by a neutron in energy cell g: 

A single fissionable species is assumed for simplicity. 
Appropriate balance equations for the transition probability, P, and its probabil- 

ity generating function, G, may be constructed from these terms: 

Means, Variances, and Covariances 

By differentiating Eq. (16.253) with respect to ui, and vim and evaluating the 
resulting expressions for U =  1, equations for the mean value of the neutron 
and precursor distribution, respectively, are obtained [see Eqs. (16.246) and 
(16.247)]: 

Making use of the identities $ E (1 - P)V, where VGs the average number of 
neutrons (prompt and delayed) per fission induced by a neutron in energy cell g, 
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and P' = P/(1- P), it is apparent that these are the conventional space- and 
energy-dependent neutron and precursor kinetics equations in the finite-difference 
multigroup approximation. 

By talung second partial derivatives of Eq. (16.253) with respect to uig and vim, 
and evaluating the result for U =  1, equations for the quantities defined by 
Eqs. (16.248) to (16.250) are derived: 

Equations (16.256) to (16.258) are coupled. 
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From Eqs. (16.248) to (16.250) it is apparent that the solutions of Eqs. (16.256) 
to (16.258) are related to the variances and covariances of the neutron and precursor 
distributions; for example, 

Correlation Functions 

Define the correlation functions 

ni, (t)cpmf (t') = nigcilmf P(N'tt INt) 
N N' 

By differentiating Eqs. (16.262) to (16.265) with respect to t ,  and using Eqs. 
(16.245) to (16.248), (16.254), and (16.255), equations satisfied by the correlation 
functions may be obtained. 

+ [ ~ ~ ~ ~ , g .  ( t )  ( t )  +x;$ A ~ ~ U  (t)]nigll ( t )n i~gf  (1')  ( 1  6.266) 
g"=l 
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where the zero superscript indicates the known state at to. From Eqs. (16.243) and 
(16.245) to (16.250), the following initial conditions may be deduced: 

nu ~0 
G(N Oto l~ to )  = ~ ~ f ~ ~ z  (16.271) 

igm 

{ n ( n  - 1 i'g' = ig 
Wig,itgt (to) = n$n$, , i'g' # ig 

{ ( C  - 1) i'm' = irn 
Zi'm',im (to) = 

C ~ C ; ~ ,  I i'm' # irn 

In practice, it is not possible to ascertain the "known" initial conditions. This 
difficulty may be circumvented by using homogeneous initial conditions and, in a 
subcritical system, taking the asymptotic solution of Eqs. (16.254) to (16.258) as 
the initial conditions for further calculations involving changes in operating con- 
ditions. Alternatively, the time-independent versions of Eqs. (16.254) to (16.258) 
may be solved to provide initial conditions. 

External boundary conditions may be treated by assuming that the space cells on 
the exterior of the reactor are contiguous to a fictitious external space cell in which 
the mean value, variance, or covariance is zero, for the purpose of evaluating the net 
leakage operator. This is equivalent to the familiar extrapolated boundary condition 
of neutron-diffusion theory. 

The interpretation of P(N't11Nt) just discussed leads to an interpretation of the 
correlation functions. For example, nig(t)nitf ( t  ') is the expectation (mean) value of 
the product of the number of neutrons in space cell i' and energy cell g' at t', and the 
number of neutrons in space cell i and energy cell g at t .  When the reactor proper- 
ties are time independent, the ensemble average may be replaced by an average 
over time in a single reactor (the ergodic theory).** In this case, ni,(tf + ~ ) n ? , ( f )  is 
amenable to experimental measurement if the energy and space cells are chosen to 
conform with the detector resolution. The corresponding theoretical quantity is ob- 
tained by solving the time-independent versions of Eqs. (16.266) using the same 

**For a subcritical reactor. 
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type of external boundary treatment discussed before, and employing corrections 
for the detection process and counting circuit statistics. 

Numerical Studies 

Equations (16.254) to (16.258) have been solved numerically for the special case of 
one energy cell, one delayed neutron precursor type, and one spatial dimension, to 
study the characteristics of the neutron and precursor distributions under a variety 
of static and transient conditions. The results of these studies may be characterized 
in terms of the mean value of the neutron (&) and precursor (Fi) distributions in 
region i and in terms of the relative variances in the neutron and precursor distribu- 
tions in region i, which are defined by the relations 

The quantities pi and E~ are measurements of the relative dispersion in the neutron 
and precursor statistical distributions in region i. 

Certain general trends emerge from the numerical studies that have been per- 
formed: 

1. When the reactor is subcritical, the asymptotic values of pi and E~ vary from 
region to region, and within a given region E~ < pi. 

2. When the reactor is subcritical, the asymptotic values of pi and E~ depend on 
the source level and distribution and the degree of subcriticality. In general, 
increasing the source level or the multiplication factor reduces pi and E ~ .  

3. When the reactor is supercritical, pi and ci attain asymptotic values that are 
identical in all regions, and pi = E ~ .  

4. When the reactor is brought from a subcritical to a supercritical configuration, 
pi generally decreases and E~ generally increases. 

5. The asymptotic value of and E~ in a supercritical reactor is sensitive to the 
manner in which the reactor is brought supercritical. 
a. For the withdrawal of a single rod (or group of rods) between fixed limits, 

the more rapid the withdrawal the larger the asymptotic value of pi and E ~ .  

b. When a number of rods are to be withdrawn, each rod at the same rate, 
withdrawing the rods on one side of the reactor and then withdrawing the 
rods on the other side of the reactor results in a larger asymptotic value for 
pi and ci than if all the rods are withdrawn simultaneously. 
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c. Withdrawing a rod (group oC rods) Sl-cm position LL to position C :  then 
~cinserting it (thcm) to position b (a  > b > c) results in a larger asympto- 
tic value of pi and si than if the rod (group of 1-ods) was withdrawn at the 
same rate lkoiu position LL to position h. 

6. Thc tirnc a1 which pi and ci obtain an asymptotic value may differ from region 
to region, particularly if flux tilting is significant. 

7. When the reactor is brought from a subcritical to a supercritical configuration, 
the asymptotic value of pi and E ,  depends on the source levcl and thc initial 
subcritical multiplication factor. 

8. The more supercritical the configuration obtained before L L ~  and ci  attain their 
asymptotic value, the larger this asymptotic value is. 

9. For a supercritical reactor, pi and E~ generally attain their asymptotic value 
when Hi is of the order of 10h /cm3.  

Ln a subcritical reactor, the neutron fluctuations are governed by fluctuations in 
the neutron sources, which are the instantaneous natural and neutron-induced fis- 
sion rates and delayed neutron precursor decay rates, as well as by the fluctuations 
of the fission, capture, and diffusion processes. The precursor fluctuations are 
governed by an integral of the fission fluctuations over several mean lifetimes for 
the precursors (T,,,,,, = ?L-I). This integral dependence of the precursor fluctuations 
on the fluctuations in the fission process tends to smooth out the fluctuations in the 
former relative to fluctuations in the latter: 

Tn a supercritical reactor, the precursor fluctuations still depend on an integral of 
the fission fluctuations over the last few mean prccursor Iifetimcs. I-Iowevcr. the 
major contribulion to the integral now comes from times close to the upper limit of 
the integral. Thus thc precursor fluctuations lend to depend on the instantaneous 
fission fluctuations. Tn a supcrcritical reactor the major source of prompt neutrons 
very quickly becomes the neutron-induced fission rate. Thus thc neutron and pre- 
curaor lluclualions are governed by l-luctuations in the instantaneous fission rates, 
and it is plausible that these fluctuations a,-e st&stically i d e n t i c a ~ . ~ ~  

In a subcritical reactor in which the relative fission and the capture and diffusion 
probabilities vary from region to region, it is rcasonablc to expect (he fluctuations in 
the neulron population to exhibit different statistical characteristics from region to 
region. Similarly. when the relative absorption and scattering probabilities and the 
fission spectrum differ for the various energy groups in a subcritical reactor, the 
fluctuations in the neutron populations in the different energy groups plausibly 
exhibit different statistical characteristics. It is interesting that in a supef-critical 
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reactor the fluctuations in the neutron population exhibit asymptotically the same 
statistical characteristics at all spatial positions and in all energy groups. 

From the numerical results, the behavior of the stochastic distribution of the 
neutron and precursor populations within a reactor can be deduced. In subcritical 
reactors the stochastic neutron distribution is spatially and energy dependent, and 
the stochastic precursor distribution is spatially dependent. In general, in a sub- 
critical reactor, the stochastic neutron distribution is more disperse than the sto- 
chastic precursor distribution at the same spatial location. 

In a supercritical reactor, the asymptotic stochastic neutron distribution is space 
and energy independent and is identical to the asymptotic stochastic precursor 
distribution. As a reactor is brought from a subcritical to a supercritical configura- 
tion, the stochastic neutron distribution generally becomes less disperse, whereas 
the stochastic precursor distribution becomes more disperse. The dispersion of the 
asymptotic distribution in a supercritical reactor depends on the manner in which 
the reactor attains its final configuration as well as on the multiplicative properties 
of the initial and final configurations and the source level. The dispersion of the 
asymptotic distribution is more sensitive to changes that are made to the reactor 
configuration when the mean neutron and precursor densities are small than to later 
changes made in the presence of larger mean neutron and precursor densities. 

Startup Analysis 

The essential problem of the analysis of a reactor startup is determination of the 
probability that the actual neutron population is within a prescribed band about the 
mean neutron population predicted by the deterministic kinetics equations. As a 
specific example, consider a startup excursion that is terminated by a power level 
trip actuating the scram mechanism. The scram is initiated at a finite time after the 
trip point is reached, during which time interval the neutron density continues to 
increase. If the startup procedure consists of shimming out control rods, the prin- 
cipal concern is that the actual neutron population is less than the mean population, 
in which case the neutron density at which the trip point is reached occurs later, 
with the reactor being more supercritical and thus on a shorter period than is 
predicted by the deterministic kinetics equations. Consequently, the power excur- 
sion is more severe than would be predicted deterministically. 

Startup analyses may be separated into two phases, stochastic and deterministic. 
The first phase is analyzed with stochastic kinetics, and the results are used as 
initial conditions, with associated probabilities, for the second phase, which is 
analyzed with deterministic kinetics. Feedback effects generally may be ignored 
during the stochastic phase. A reasonable time to switch from the stochastic to the 
deterministic phase is the time at which the neutron and precursor distributions 
obtain their asymptotic shape. This time may probably be approximated by the lime 
at which p, and E ,  of Eqs. (16.277) and (16.278) attain their asymptotic value. If the 
neutron and precursor distributions [i.e., P(N1t'lNt,)] were known at the switchover 
time t,, the probability that the actual neutron and precursor densities are less than 
some specified values could be calculated. 
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The asymptotic neutron and precursor distributions in a reactor with large 
multiplication and no feedback can be approximated by the gamma distribution, 
which is completely characterized by the mean and variance of the distribution (i.e., 
by iii and pi and Zi and E ~ ) .  Use of the gamma distribution is suggested theoretically 
by the fact that the stationary probability distribution of a variate in a stationary 
multiplicative process approaches a gamma distribution as the multiplication in- 
creases without limit, and is justified empirically by the fact that its use in con- 
junction with a point reactor kinetics model leads to results that are in reasonable 
agreement with the GODIVA weak-source transient data. 

The gamma distribution is 

where is the gamma function, x the ratio of the actual value of the variate to the 
mean value of the variate, and r the ratio of the mean value of the variate to the 
square root of the variance. For example, 

for the monoenergetic model. 
From Eq. (16.279), the probability that x < A can be computed. 

where Ti, is the incomplete gamma function. This can be written entirely in terms 
of tabulated functions by using certain identities, 

( ~ r ) ~ e - ~ ~ ~ ( l ,  r + 1 ,  Ar) 
Prob{x < A} = 

rr(r) 

where M is the confluent hypergeometric function. 

Based on the results of the stochastic phase, initial conditions for the determi- 
nistic phase can be assigned from 

where ni and li are the mean values of the neutron and precursor densities at the 
switchover time, t,. For a given value of A, Eq. (16.282) yields the probability that 
n, (ts> < Afii(t,y), c, (t,) < Aci(t,s). 
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PROBLEMS 

16.1. Estimate the relative "tiltiness" of graphite- and HzO-moderated thermal 
reactors by estimating 1 -kl as a function of slab reactor thickness over the 
range 1 5 a 5 5 m. Calculate the associated time constant for the tilt to take 
place due to delayed neutron holdback. 

16.2. Derive the orthogonality property given by Eq. (16.11) and the relationship 
of Eq. (16.12). 

163. Calculate and plot the delayed neutron holdback time constant ~ t i l ~  as a 
function of the ratio of reactor thickness to migration area for a uniform 
slab reactor. 

16.4. Derive the point-kinetics equations from the multigroup diffusion equa- 
tions. Discuss the physical significance of the point-kinetics parameters. 

16.5. Consider a uniform bare slab reactor in one group diffusion theory 
(D = 1.2 cm, X, = 0.12 cm-', vEf= 0.14 cm-') that is perturbed over the 
left one-half of the slab by a 1% increase in absorption cross section. 
Calculate the critical slab thickness and the unperturbed flux distribution. 
Calculate the generalized adjoint function of Eq. (16.36). Calculate the first- 
order perturbation theory estimate, the variational estimate, and the exact 
value of the reactivity worth of the perturbation. 

16.6. Numerically integrate the point-kinetics equations for the transient ensuing 
from the perturbation in Problem 16.5, using the three different reactivity 
estimates. Use the prompt jump approximation and one group of delayed 
neutrons (A = 0.08 s-l, P = 0.0075). 

16.7. Derive a two-node kinetics model for the slab reactor of Problem 16.5. 
Numerically integrate the kinetics equations for the transient ensuing from 
the perturbation. Use the time-integrated method for the integration of one 
group of delayed neutron precursors and a prompt-jump approximation. 

16.8. Repeat Problem 16.7, but retaining the time derivative in the neutron equa- 
tions and approximating it by the 0-method. Solve the problem with 8 = 0, 
0.5, and 1. 

16.9. Assume that the absorption and fission cross sections in each node of 
Problem 16.7 have power temperature feedback coefficients and that the 
temperature in each node is determined by a balance between fission heat- 
ing and conductive cooling. Analyze the linear stability of the two-node 
model as a function of the feedback coefficient values. 

16.10. It is wished to linearly increase the power in node 1 of the reactor of 
Problems 16.5 and 16.7 by 25% and in node 2 by 50% over 10 s, by with- 
drawing separate control rods in nodes 1 and 2, and then to maintain con- 
stant power. Determine the time history of the change in control rod cross 
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section in each node which will best approximate this desired power 
trajectory. Use the prompt-jump approximation and assume one group of 
delayed neutrons. 

16.11. Construct a Lyapunov functional for the point kinetics equations with one 
delayed neutron precursor group. What can you say about the stability of 
these equations? 

16.12. Consider a reactor described by the point kinetics equation with one group 
of delayed neutron precursors, a conductive heat removal equation, and a 
temperature coefficient of reactivity a~ Analyze the linear stability of this 
reactor model. 

16.13. Construct a Lyapunov function for the reactor model of Problem 16.12 and 
analyze the stability. 

16.14. Carry through the derivation of the h-mode linear stability criterion for 
xenon spatial oscillations discussed in Section 16.6. 

16.15. Analyze the stability with respect to xenon spatial oscillations of the reactor 
of Problem 16.5 as a function of equilibrium flux level and power feedback 
coefficient. Use the h-mode stability criterion. 

16.16. Write a two-node dynamics code for one neutron energy group and one 
delayed neutron precursor group to solve for the time dependences of the 
means and variances in the neutron and precursor populations in a low- 
source startup problem. Use the properties (D = 1.5 cm, Cf= 0.008 cmp', 
C,, = 0.0125 cm-') and (D = 0.1 cm, Cf = 0.008 cm-', Z, = 0.005 cm-') 
for two adjacent slab regions of thickness 150 cm each, the delayed neutron 
parameters p = 0.0075, h = 0,088 s ', and the prompt neutron parameters 
- 
vp = 2.41,Vp(vp - 1) = 3.84. Calculate the startup of the reactor with a 
source of S = 5 x lo2 s-' in the first regions. 

16.17. Calculate the probability that the actual value of the neutron flux is less than 
110% of the mean value as a function of pi, the mean-squared variance in 
the density to the square of the mean value of the density. 





APPENDIX A 
Physical Constants and Nuclear Data 

I. Miscellaneous Physical Constants 
- - 

Avogadro's number, NA 6.022045 x 1 oZ3 mol-' 
Boltzmann constant, k 1.380662 x J /K 

Electron rest mass, me 

Elementary charge, e 
Gas constant, R 
Neutron rest mass, m, 

Planck's constant, h 
Proton rest mass, m, 

Speed of light, c 

0.861735 x CV/K 
9.109534 x kg 
0.51 10034 MeV 
1.6021892 x 10-I9c 
8.31441 ~ m o l - ' / ~  
1.6749544 x kg 
939.5731 MeV 
6.626176 x J/HZ 
1.6726485 x kg 
938.2796 MeV 
2.99792458 x lo8 m/s 

11. Some Useful Conversion Factors 

1 eV 
1 MeV 
1 arnu 

I W  
1 day 
1 mean year 

1.6021892 x 10- '~1  
lo6 e~ 
1.6605655 x lo-'' kg 
931.5016MeV 
1 J/s 
86,400 s 
365.25 days 
8766 h 
3.156 x lo7 s 
3.7000 x l~'~disintegrations/s 
8.617065 x 10- - ' e~  



3 111. 2200-mls Cross Sections for Naturally Occurring Elements [From Reactor Physics Constants, ANL-5800 (1963)l 

Microscopic Macroscopic 
Nuclei Cross Section Cross Section 

per (barns) (cm-') 

Element Atomic Unit 
Atomic or or Density Volume 

No. Compound Mol. Wt. (g/crn3) ( x 1 - PO 5 Da SS Dt Ca & Zt 





3 III. (Continued) 

Microscopic Macroscopic 
Nuclei Cross Section Cross Section 

Per (barns) (cm-I) 

Element Atomic Unit 
Atomic or or Density Volume 

No. Compound Mol. Wt. ( g / ~ ~ 3 )  ( x 1 - DO 5 D a  0 s  0 t  za ZS zt 



+ W u e  has been multiplied by 10'. 
m 

4~olecules/cm3. 
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IV. 2200-m/s Cross Sections of Special Interest 

'OB: a, = 3837b 
"B: o, = 0.005 
13'xe: cr, = 2.7 x lo6 
233U: G, = 49 of = 524 
235~: (J, = 101 Crf = 577 
238 U: o, = 2.73 
2 3 9 ~ ~ :  o, = 274 of = 741 
"OPU: o, = 286 of = 0.03 
2 4 1 ~ ~ :  o, = 425 of = 950 
2 4 2 ~ ~ :  o, = 30 of < 0.2 

This appendix is adapted by permission of John Wiley & Sons from James J. Duderstadt and Louis J. 
Hamilton, Nuclear Reactor Analysis, copyright 0 1976 by John Wiley & Sons, Inc. 



APPENDIX B 
Some Useful Mathematical Formulas 

(1) Solution of First-Order Linear Dzfferential Equations: 

(2 )  Differentiation of a Dejinite Integral: 

( 3 )  Representation of hplacian v2 in Various Coordinate Systems: 

(a) Cartesian: 

(b)  Cylindrical: 
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(c)  Spherical: 

(4 )  Gauss' Divergence Theorem: 

where e, is the unit vector normal to the surface element dS. 
( 5 )  Green's Theorem: 

(6) Taylor Serious Expansion: 

(7 )  Fourier Series Expansion: 

where 

1 nm' 1 mx' 
a,, J dxy(i)s inT,  b,, = A / '  ~ ~ ( ~ ) c u s - ,  

1 -1 1 , -1 I 
(B- 12) 

This appendix is reprinted by permission of John Wiley & Sons from James J.  Duderstadt and Louis J. 
Hamilton, Nuclear Reactor Anulysi~, copyright 0 1976 by John Wiley & Sons, Inc. 



APPENDIX C 
Step Functions, Delta Functions, 
and Other Functions 

I. INTRODUCTION 

Consider the discontinuous function O(x) defined by the properties 

O(x) is the unit "step function" introduced by Heaviside in his development of 
operational calculus (now known as integral transform analysis). One can perform 
numerous operations on @(IF). En particular in can be integrated to yield the ramp 
function 

Let's try something a bit more unusual by taking the derivative of O(x). Clearly 
this is ridiculous, because this derivative, call it 8(x), is undefined at x = 0 because 
O(x) is discontinuous at this point: 

Nevertheless Dirac, Heaviside, and others have made very good use of this strange 
"function." To be more specific, the Dirac &function, 6(x), has the properties 



680 STEP FUNCTIONS, DELTA FUNCTIONS, AND OTHER FUNCTIONS 

In a sense, it resembles a generalization of the Kronecker Bfunction 

The most useful property of the Dirac &function occurs when it is integrated 
along with a well-behaved function, say f (x): 

This property not only is very interesting, but extremely useful in mathematical 
physics. Unfortunately the proof of this property-and, indeed, all of the theory of 
such generalized functions-requires a rather potent dose of mathematics. [Such 
generalized functions are really not functions at all, but rather a class of linear 
functionals' called "distributions" defined on some set of suitable test functions 
(which are "infinitely differentiable with compact support").] 

Fortunately one does not need all of this high-powered mathematics in order to 
use &functions. Only a knowledge of their properties is necessary. 

A. Alternative Representations 

1 . sinX(x - xo) 
S(X - xo) = - lim 

7rTTx--oo (x - xg) ' 

1 .  E 
6(x - xo) = - lim 

T E + O '  (X - X0)2 $ E2 ' 

B. Properties 

(C-1 1) 

(C- 1 2) 

S S(x - y)S(y - a)dy = 6(x - a), (C- 13) 
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(C- 14) 

Actually these properties only make sense when inserted in an integral. For 
example, property (C-8) really should be interpreted as 

C. Derivatives 

Onc can differentiate a &function as many limes as one wishes. The mth derivative 
is defined by 

One can show 

@(x) = (- l)"@+x), (C- 17) 

P~ 'S [ " ' ]  (x) = 0. (C-19) 

Perhaps of more direct use is the application of these properties to the first 
derivative 

J 6'(x - y)S(y - a)dy = 6'(x - a ) ,  

One can generalize the concept of a Bfunction to several dimensions. For ex- 
ample, we would define the three-dimensional &function by 
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Note that we could write this in Cartesian coordinates as 

S(r - r') = S(x - xl )S(y  - y l )S (z  - z'). 

Such multidimensional &functions are of very considerable use in vector calculus. 
More detailed discussions of the Dirac &-function and its relatives are found in 

the following references: 

REFERENCES 

I .  J. W. Dettman, Mathematical Methods in physics and Engineering, 2nd Edition, 
McGraw-Hill, New York (1969). 

2. M. J. Lighthill, Fourier Analysis and Generalized Functions, Cambridge U .  P. (1959). 
3. A. Messiah, Quanrum Mechanics, Vol. I ,  Wiley, New York (1965), pp. 468-470. 

This appendix is reprinted by permission of John Wilcy & Sons from James J. Duderstadt and Louis J .  
Hamilton, Nuclear Reactor Anulysis, copyright 0 1976 by John Wiley & Sons, Inc. 



APPENDIX D 
Some Properties of Special Functions 

(1)  Legendre Functions: 

(a) Defining equation: 

( 1  - x2)fN - 2xf1 + 1 ( 1 +  1)f = 0, 1 = integer. 

(b) Representation: 

I d 1 ,  1 P / (x )  = - - (x  - 1 )  . 
2'1! dx' 

(c)  Properties: 

1 
Po (x)  = 1 ,  PI  (x)  = x, P2 ( x )  = - (3x2 - 1 )  , 

2 

( d )  Recurrence relations: 

Pi+, (x) - xp; (x )  = ( I  +  PI (x) 

( 1  + l)Pl+l (x) - (21 + l )xP1(x) + 1Pl-, (x)  = 0.  

(2 )  Associated Legendre Polynomials: 

(a)  Defining equation: 
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(b) Representation: 

d m  
p;" ( x )  = ( 1  - X2)(m'2) - '&,, pi ( X I .  

(c) Spherical harmonics: 

(d) Properties: 

( 3 )  Bessel Functions: 

( a )  Dejning equation: 

(D- 12) 

(b) Solution: Jn(x), Bessel function of first kind 
Yn(x), Bessel function of second kind 

(c) Representation: 

Jn ( x )  cos (nn)  - J- , (x )  
m ( x )  = sin n.ir 

(d) Hankel .functiuns: 

H:') ( x )  = Jn (x) + iY,, ( x )  

H?) ( x )  = Jn ( x )  - iYn ( x )  

(D- 1 3) 

(D- 1 4) 
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( 4 )  Modified Bessel Functions: 

(a) Dejining equation: 

2 f 1 1 + x f ' - ( 2 + n 2 ) f = ~  

(b) Solution: I,(x), modified Bessel function of first kind 

(D- 15) 

K,(x), modified Bessel function of second kind 

presentation: 

In (x )  = iPn Jn ( ix)  = in Jn (- ix) 
7r '7T K , ( ~ )  = - i "+ '~y )  (h) = - i-"-1 
2 2 

H!) ( - ix) 

d Expansions of Bessel Functions for small x: 

(D- 1 6 )  

(D-  17) 

(D- 18) 

x2 
Yo(r)  = 1 [(? + ln t) Jo(x) + + . , y 1 0.577216 I (D- 1 9 )  

7r 
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(a) Asymptotic expansions for large x: 

e" 1 
lo (x)  = - 1 +-+ JT;;;( 8~ "') 

(b) Recurrence relations: 

xJ; = nJn - xJn+1 = -nJn + x.Tn-1 

2nJn = xJn-i + xJn+i 

XI; = nIn + xZn+1 = -nIn  XI,-^ 

xK; = nKn - xKn+, = -nKn - xKnP1 

JA = -J1 ,  YA = - Y l ,  I; = Z l ,  KA = -Kl 

(c) Integrals: 

(6) Gamma Function: 

(a)  Defnition: 

(D-36) 

(b) Properties: 
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(7)  Error Function: 

(a) Dejinition: 

(b)  Complementary error function: 

(8) Exponential Integrals: 

(a) Dejinition: 

(b)  Properties: 

1 
E, ( x )  = - [ePX - 

n - 1  

" ( - 1 y X  
E , ( x )  = -y - 1 n x -  x--- 

n=l nn! 
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APPENDIX E 
Introduction to Matrices 
and Matrix Algebra 

I. SOME DEFINITIONS 

One defines a matrix of order (m x n )  to be a rectangular array of m rows and n 
columns 

The matrix elements aij will be identified by subscripts denoting their row i and 
column j .  If the matrix has the same number of rows as columns, it is said to be a 
square matrix; for example, 

A diagonal matrix has nonzero elements only aIong its main diagonal: 

A tridiagonal matrix would have nonzero elements only along its central three 
diagonals: 

A = 
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The unit matrix is the diagonal matrix with elements aij = 1, i = j :  

For two matrices to be equal, each of their matrix elements must be equal: 

The transpose of a matrix is obtained by interchanging its rows and columns: 

The determinant of a matrix is formed by taking the determinant of the elements 
of the matrix: 

detA - (A(  = 

Of course, the determinant of a matrix is a scalar-that is, just a number. 
One defines the cofactor of a square matrix for an element ai, by deleting the ith 

row and jth column, calculating the determinant of the remaining array, and multi- 
plying by (-l)'+j: 

(cof A),, = cof 
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We can construct the adjoint or Hermitean conjugate of a matrix by complex- 
conjugating each of its elements and then transposing as 

For example, 

t - (:;: 2 + ( 4  ah) T: ( a h  49 A - 
a22 a;2 4 2  4 2  

If the determinant of a matrix vanishes, det(A) = 0, then the matrix A is said to 
be singular. If det(A) # 0, the matrix is said to be nonsingular. 

11. MATRIX ALGEBRA 

Two matrices of the same order may be added by adding their corresponding 
elements (the same holds for subtraction): 

(E- 12) 

In order for matrix multiplication to be possible, the number of columns of the first 
matrix must equal the number of rows of the second matrix. One then calculates the 
matrix elements of C =A -B as 

or more explicitly 

(E- 13) 

(E- 14) 
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Notice that matrix multiplication is not commutative-that is, A B # B *A in 
general. 

A very important matrix concept is the inverse of a square matrix, A-', which is 
defined by the relation 

The inverse can be calculated as 

1 
A-' = - ( c o f ~ ) ~ .  

IAl 

For example, consider 

Then 

while 

(E- 16) 

Hence 

Notice that if a matrix is singular, that is, det(A) = 0, then it has no inverse. 

This appendix is reprinted by permission of John Wiley & Sons from James I. Duderstadt and Louis J. 
Hamilton, Nuclear Reacror Analysis, copyright (0 1976 by John Wiley & Sons, Inc. 



APPENDIX F 
Introduction to Laplace Transforms 

I. MOTIVATION 

Differential equations play a central role in the description of most scientific phe- 
nomena. Moreover, in many cases these phenomena can be approximately de- 
scribed by a particularly simple type of differential equation-namely, those with 
constant coefficients. In this Appendix we will try to develop one of the most 
powerful tools for solving such equations: the application of integral transforms, 
and more specifically, the use of Laplace transforms to solve differential equations. 

The analogy between the use of transform methods to solve differential equa- 
tions and the use of logarithms to simplify arithmetic operations is quite striking. 
Suppose we wish to multiply two complicated numbers a and b together. Then an 
easy way to do this is to use logarithms 

u - loga, 

n x b-1 "Transform" ]- log a + log b - - + ~ " ~ n v e r t " l - . e ( ' " ~ ~ + ' ~ )  - - a x b  

That is, by first taking logs we have simplified the original problem, reducing it to a 
simple sum. 

This is essentially the idea behind integral transform techniques. Suppose we 
symbolically represent the transform operation on a function as 

Then the idea is to transform the differential equation of interest 

Define the Laplace transform of +(x, t )  with respect to t by 

Now multiplying (F-6) by e-"' and integrating over all times t ,  we find the trans- 
formed partial differential equation becomes 

1 - d2d 
- [ s ~ ( x ,  S) - +(x ,  0)] = D - - c,#(x, s ) .  
2, dx2 
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Since the boundary conditions also depend on time, we must transform them to 
find: 

Hence if we regard s  only as a parameter, the application of Laplace transforms 
has reduced our original partial differential equation (F-6) to an inhomogeneous 
ordinary differential equation in x 

Boundary condition: $(0, s )  = $(1, s )  = 0 (F-8 ) 

We can now solve this in any of the standard ways (e.g., eigenfunction expansions 
or Green's functions) to find $(x, s), and then invert to find 

Hence as should be apparent from these simple examples, Laplace transforms 
can be used to greatly simplify the solution of differential equations by: (a) trans- 
forming the original differential equation, (b) solving the transformed equation 
(which is now presumably a simpler equation such as an algebraic equation or 
ordinary differential equation) for the transformed solution, and (c) finally inverting 
the transformed solution to obtain the desired solution of the original equation. It is 
usually a straightforward task to complete the first two steps. The final step, that of 
inversion, can frequently be accomplished in a "cookbook" fashion by merely 
looking up the inverse in a table of Laplace transforms that some other fellow 
has had to work out. The general theory of how to perform such inversions from 
scratch is important, however, since the inverses of many of the functions one 
encounters in practice are not tabulated. However since it is heavily steeped in 
the theory of functions of a complex variable, we will avoid a detailed discussion of 
Laplace transform inversion via contour integration here and simply refer the reader 
to one of several standard texts.lP3 

11. "COOKBOOK" LAPLACE TRANSFORMS 

We will now set up the recipes for solving differential equations with Laplace 
transforms. First we must determine just what types of equations we can consider: 

(a) This can be any linear differential equation (ordinary or partial) in which the 
variable to be transformed runs from 0 to oo. (such as an initial value 
problem in time or a half-space problem in space.) 
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(b) We will further restrict ourselves to the study of differential equations with 
constant coefficients (i.e., the coefficients in the equation do not depend on 
the variable to which we are applying the transform). This restriction can 
sometimes be relaxed; however we will not consider the more general pro- 
blem of differential equations with variable coefficients here. 

We will define the Laplace transform of a function f (t) by 

(F- 10) 

There are of course some restrictions on the type of function f (t) and the ranges of 
values of s for which this integral will be properly defined, but let's not worry about 
details at this stage of the game. 

The general scheme for transforming the differential equation we are interested 
in solving is the same as before-namely, multiply by e-"' and integrate over all t, 
using liberal integration by parts. One then solves the resulting transformed equa- 
tion and attempts to invert the solution. 

To facilitate in the preparation of a table of Laplace transforms (a cookbook), 
one merely takes the transforms of as many different functions as possible. Several 
useful transforms of general functions 
Derivatives: 

(F- 1 1) 

Recall that we obtained this by integration by parts. Further integration by parts 
yields 

= ~ f ( ~ )  - pf (0) - sn-2f'(o) - . . . - f [n-l](0). (F- 12) 

Integration: 

Proof: 

(F- 1 3 )  
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Differentiation by s: 

Proof: 

dfl d CU 

= 1 dtf(t)  - (e-") = - dl e-"'[(f(t)]. 
ds . o  

Complex translation: 

L{ea"ft)}  = f ( s  - a )  

Proof: 

lw eate-sy(t) = dl e-('-')'f(t) = j ( s  - a ) .  

Real translation: 

L{ f ( t  - a )  @ ( t  - a ) )  = epaY(s)  

where Q(t) is the step function, 

Several examples of more specific transform pairs are: 

sin ot 

COS 0 1  

(F- 14) 

(F- 16) 
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Several other very useful are 
Convolution theorem: 

(F- 17) 

(This result is useful for relating the inverse of the product of two transformed 
functions. j 

Initial value theorem: 

lim f ( t )  = lirn $(s) 
t i 0  S'OO 

(F- 18) 

Final value theorem: 

lirn f ( t )  = lim $(s) 
t+cc s-+o 

(F- 19) 

There are a number of reasonably complete tables of such transform pairs.435 
After obtaining the transformed solution, one can then turn to such tables in an 
effort to Iocate the desired inverse. However in many cases it will be necessary to 
proceed with a direct inversion calculation. 
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INDEX 

ABH method, see Homogenization 
Absorption, 25 
Absorption probability, 305 
Actinides, see Transuranics 
Adiabatic method, see Point kinetics 
Adjoint: 

eigenvalue, 487 
function, 484, 488, 494, 496, 499, 507, 

568, 572, 582, 590, 604 
generalized adjoint function T, 606 
operator, 484 

Albedo: 
boundary condition, 54 
diffusion theory, 54 

Asymptotic period measurement, 153 
Asymptotic shape, 61 

Bare reactors, see Diffusion theory 
Barn, 6 
Bessel functions, 684 
Beta decay, see Radioactive decay 
Bethe-Tait model, 187 
Bickley function, 3 10 
Binding energy, 3 
Blackness theory, see Homogenization 
Breeding ratio, see Fuel composition 
Boltzman equation, 297 
Boundary and interface conditions: 

albedo, see Albedo 
diffusion theory, see Diffusion theory 
extrapolated, see Extrapolation distance 

boundary condition 
Mark, see Mark boundary conditions 
Marshak, see Marshak boundary conditions 
transport theory, see Neutron transport 

theory 
Rreit-Wigner resonance cross section, 19, 20, 

426 
Buckling, geometric, 60, 63, 143 
Buckling, material, 61 
Rurnable poison, 206, 245, 247 

Capture-to-fission ratio, 35 
Center-of-mass system: 28 
Central limit theorem, 368 
Collision probabilities method: 

ABH method, 51 5 
collision probability, 312 
collision probability annular geometry, 314 
collision probability slab geometry, 312 
collision probability two dimensions, 312 
pin-cell model, 522, 527 
reciprocity, 31 1 
thermalization in heterogeneous lattices, 473 
transmission probabilities, 3 1 1 

Compound nucleus, 5 
Control rod: 

cross sections, effective diffusion theory, 77 
follower, 253, 285 
windowshade model, 79 
scram, 246,253, 273, 283, 285 

Control theory: 
dynamic programming, 634 
Pontryagin's maximum principle, 636 
variational, 632 

ConversionJbreeding ratios, 217. See also Fuel 
composition 

Correlation methods, 178 
Criticality: 

critical, 39, 61 
delayed critical, 148 
prompt critical, 149 
subcritical, 39, 61, 147 
supercritical, 39, 61 
super prompt critical, 149 

Criticality condition: 
bare homogeneous reactor, 61 
interpretation, 62 
Monte Carlo, 373 
power ileration, 84, 134 
reflected homogeneous reactor, 68 
two-region, two-group reactor, 128 

Criticality minimum volume, 64 
Criticality safely, see Nuclear reactor analysis 

Cadmium ratio, 76 
Capture, 13 

Cross sections: 
absorption, 47. 672 
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Cross sections (cont.) 
capture, 14, 26, 197, 672 
definition, 5 
elastic scattering, 20, 25, 672 
evaluated, see Evaluated nuclear data files 
fission, 5, 25, 197, 672 
low-energy summary, 25 
macroscopic, 27 
spectrum averaged, 26, 65 
total, 25, 672 
transport, see Transport cross section 
units, 6 
2200 m/s values, 672 

Cross spectral density, 178 
Current: 

net current, 47, 300 
partial currents, 45, 300 

Delayed critical, 148 
Delayed neutrons: 

decay constants, 139 
holdback, 599 
kernel, 151 
neutron kinetics effects, 41, 146 
precursor, 142 
yields, 139 

Densities, elements and reactor materials, 672 
Depletion model, 2 18 
Detailed balance principle, 104, 456, 465 
Diffusion coefficient, 47, 335 

directional, 392 
multigroup, 124, 393 

Diffusion cooling, 479 
Diffusion length, 50, 55, 59 
Diffusion parameters, 58 
Diffusion theory: 

applicability, 49 
boundary and interface conditions, 48, 394 
bare homogeneous reactor, 59 
dcrivation, 47, 334 
directional, 392 
kernels, 52 
lethargy dependent, 391 
multigroup theory, 123, 392, 599 
nonmultiplying media solutions, 50 
numcr~cal solution, 8 1, 129 
one-dimensional geometry, 340 
reflected reactors, 66, 130 
two-region reactors, 126 

Dirac delta function, 679 
Discrete ordinates methods: 

acceleration of convergence, 356 
cylindrical and spherical geometries, 353 
diamond difference scheme, 352, 354, 361 

equivalence with PL equations, 350 
level symmetric quadratures, 358, 576 
multigroup, 406 
nodal, 572 
ordinates and quadratures, 

multidimensional, 357 
ordinates and quadratures, PL and DPL, 349 
ordinates and quadratures, SN, 360 
slab geometry, 347 
spatial finite differencing and iteration: slab 

geometry, 35 1 
spatial finite differencing and iteration, 

SN method in 2D Cartesian 
geometry, 361 

spatial mesh size limitations, 352 
sweeping mesh grid, 354, 362 

Doppler broadening, 114. See also Resonance 
and Reactivity 

Dynamic programming, 639 

Eigenvalue separation, 602, 649 
Elastic scattering: 

average cosine of scattering angle, 383 
average logarithmic energy loss, 30, 383 
cross sections, 22, 672 
energy-angle correlation, 29, 367 
kernel, 380 
kinematics, 27, 379 
Legendre moments of transfer function, see 

Legendre moments of elastic scattering 
transfer function 

moderating ratio, 31 
potential, 20 
resonance, 20 
transfer function, 380 

Emergency core cooling, 273, 283 
Energy release from fission, 12 
Error function, 687 
Eta (number of neutrons per absorption in 

fuel), 37 
Equivalence theory, see Homogenization 
Escape probability, see Integral transport 

theory; Interface current methods; 
Resonance 

Evaluated nuclear data files, 27, 110 
Excitation energy for fission, 4 
Extrapolation distance boundary 

condition, 49, 335 
Even-parity transport theory, .Tee Neutron 

transport theory 
Exponential integral function, 687 

Fermi age, see Neutron slowing down 
Fertile isotopes, 195 
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Few group approximations, 109, 124 
Fick's law, 47, 335, 347, 391 
Finite difference equations: 

diamond difference relation, 352, 354, 361 
diffusion equation, one-dimensional 

slab, 82 
diffusion equation, two-dimensional 

Cartesian, 84 
discrete ordinates, rectangle, 361 
discrete ordinates, slab, 351 
discrete ordinates, sphere, 355 
limitations on mesh spacing, 87, 352 

Finite element methods: 
cubic Hermite approximation, 569 
finite difference approximation, 565 
linear approximation, 568 

First collision source, see Integral transport 
theory 

Fissile isotopes, 5 
Fission: 

cross sections, 7, 197, 672 
energy relcasc, 12 
fast, 36 
neutron chain fission reaction, see Neutron 

chain fission reaction 
neutron yield, 10 
probability per neutron absorbed, 235 
process, 4 
products, 6, 195 
spectrum, I1 
spontaneous, 4, 197 
threshold, 4 

Four-factor formula, 39 
Flux disadvantage factor, see Thermal 

disadvantage factor 
Flux, scalar, 300 
Fuel assemblies, 71,244,248,251,254,255,256, 

258, 521 
Fuel burnup: 

composition changes, 204 
depletion model, 218 
energy extraction, 233 
fission products, see Fission products 
incore fuel management, 208 
reactivity changes, see Reactivity 
transmutation-decay chains, see 

Transmutation-decay chains 
units. 203 

l'ucl composition: 
discharged U02,  204 
equilibrium distribution in rccyclcd fuel, 234 
fertile-lo-fissile conversion and breeding, 2 15 
reactor grade uranium and plutonium, 232 
power distribution, 207 

plutonium buildup, 204 
recycled LWR fuel, 219 
recycled plutonium physics differences, 205, 

223 
recycled uranium physics differences, 222 
weapons-grade uranium and plutonium, 232 

Fuel lumping, 39 
Fuel recycling, see Fuel composition 
Flux tilts, 599, 642 

Gamma function, 686 
Gauss' divergence theorem, 678 
Gaussian elimination, 83 
Gauss-Siedel, 86 
Generalized perturbation theory, see 

Variational methods 
Green's theorem, 678 
Group collapsing, 112, 390, 398 

Hazard index, 234. See also Radioactive waste 
Heterogeneity, see Homogenization 
Homogenization: 

ABH method, 515 
blackness theory, 5 19 
collision probabilities pin cell method, 522 
conventional theory, 530 
cross sections, equivalent homogeneous, 73, 

514 
diffusion theory, 70 
diffusion theory lattice functions F and E, 74 
equivalence theory, 530 
flux (thermal) disadvantage factor, 72, 514, 

516. See also Self-shielding 
flux discontinuity factor, 531 
flux reconstruction, 537, 554 
interfacc current pin cell mcthod, 526 
multiscale expansion theory, 534 
pin-cell model, 521, 527 
resonance cross sections, 420 
spatial self-shielding, see Sell-shielding 
transport houndary conditions, 518, 520 
Wigner-Seitz cell, 522 

Importance function, 141, 370, 485. S w  ulso 
Adjoint function 

Inhour equation, 144 
Integral transport theory: 

absorption probability, 305 
anisotropic plane sourcc, 304 
distributed volumetric scattering and fission 

sources, 307 
escape probability, 305 
first collision source, 306 
half-range Legendre polynomials 



702 INDEX 

Integral transport theory (cont.) 
isotropic line source, 308 
isotropic plane source, 303 
isotropic point source, 302 
probability of traveling a distance r from a 

line source 3 10 
scattering and fission, inclusion of, 307 
transmission probability, 305. See also 

Transmission probability 
Iteration methods: 

acceleration of convergence, 356, 363 
alternating direction implicit, 620 
forward elimination/backwards substitution 

(Gauss elimination), 83 
power, for criticality problems, 83, 134, 87, 

357, 373,408 
scattering, for discrete ordinates equations, 

352,408 
successive over-relaxation, 86, 623 
successive relaxation (Gauss-Seidel), 86, 133 
sweeping over mesh points for 

one-dimensional discrete ordinates, 354 
sweeping over mesh points for 

two-dimensional discrete ordinates, 362 
Interface current methods: 

boundary conditions, 321 
emergent currents, 318, 319, 320, 323 
escape probabilities in slab geometry, 320 
escape probabilities in two-dimensional 

geometries, 325, 328 
escape probabilities rational approximations, 

330 
pin-cell model, 526 
reflection probability in slab geometry, 320 
response matrix, 322 
transmission probabilities in slab geometry, 

320 
transmission probabilities in 

two-dimensional geometry, 325 

J(5.p) resonance function, 120 

Laguerre polynomials, 477 
LaGrange multiplier, 632 
LaPlace transforms, 693 
Laplacian representation, 677 
Legendre polynomials: 

associatcd Legendre functions, 332, 683 
definition and properties, 331, 683 
half-angle Legendre polynomials, 340 

Lcgendre moments of elastic scattering transfcr 
function: 

anisotropic scattering in CM, 383 
definition, 38 1 
isotropic scattering in CM, 382 

Lethargy, 379 
Loss of coolant accident, see Reactor safety 
Loss of flow accident, see Reactor safety 
Lyapunov's method for stability analyers, 

628, 630, 651 

Mark boundary conditions, see Spherical 
harmonics 

Marshak boundary condition, see Spherical 
harmonics 

Matrix algebra, 689 
Maxwellian distribution, 104 
Mean chord length, 423 
Mean free path, 421 
Migration length, 58 
Minimum critical volume, 64 
Mixed oxide fuel, 219, 232, 236 
Moderator properties, 3 1 
Moderating ratio, see Elastic scattering 
Monte Carlo methods: 

absorption weighting, 371 
analog simulation of neutron transport, 366 
correlated sampling, 373 
criticality problems, 373 
cumulative probability distribution 

functions, 365 
exponential transformation, 370 
flux and current estimates, 372 
forced collisions, 37 1 
importance sampling, 369 
probability distribution functions, 365 
Russian roulette, 372 
splitting, 372 
statistical estimation, 368 
variance reduction, 369 

Multigroup theory: 
collision probabilities for 

thermalization, 475 
cross-section definition, 107, 398, 408 
cross-section preparation, 110 
diffusion theory, 123, 392, 599 
discrete ordinates, 406 
few group constants, 112, 390 
fcw group solutions, infinite medium: 109 
mathematical properties, 108 
one and one-half group diffusion theory, 125 
perturbation diffusion theory, 164, 481 
pin-cell collision probabilities model, 527 
resonance cross sections, see Resonance 
two-group diffusion theory, 124, 126, 130 

Multiplication constant, see keK 
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Neutron balance, 38 
Neutron chain fission reaction: 

criticality, 39 
delayed neutron effect on, 40 
effect of fuel lumping, 39 
effective multiplication constant, 39 
neutron balance in a thermal reactor, 35 
process, 35 
prompt neutron dynamics, 40 
resonance escape, 38. See also Resonance 
source multiplication, 41 
utilization, 36 

Neutron diffraction, 21 
Neutron energy distribution: 

fission energy range analytical solution, 95 
multigroup calculation, 106 
resonances, 118 
spectra in U02 and MOX fuel cells, 221 
spectra typical for LWR and LMFBR, 43 
slowing down range analytical solutions, 96 
thermal range analytical solutions, 103 

Neutron slowing down: 
average cosine of scattering angle, 383 
average lethargy increase, 383 
B ,  theory, 388 
consistent PI  approximation, 400 
continuous slowing down theory, 395 
diffusion theory, 123, 392, 599 
discrete ordinates, 406 
elastic scattering kernel, 380 
Fermi age, 101 
hydrogen, 97 
isotropic CM scattering, 382 
Legendre moments, see Legendre moments of 

elastic scattering transfer function 
P I  theory, 3x4 
PI continuous slowing, 402, 405 
slowing down density, see Neutron slowing 

down density 
weak absorption, 100 
without absorption, 98 

Neutron slowing down density: 
anisotropic scattering, 403 
age approximation, 399 
definition, 99, 395 
extended age approximation, 400 
Grueling-Goertzel approximation, 401 
hydrogen, 398 
scattcring resonances, 404 
Selengut-Goertzel approximation, 400 
weak absorption, 100 

Ncutron thermalization: 
collision probability methods for 

heterogeneous lattices, 473 

differential scattering cross section, 
451, 455 

effective neutron temperature, 104 
energy eigenfunctions of scattering 

operator, 476 
free hydrogen model, 453 
Gaussian representation, 457 
heavy gas model, 454, 465 
incoherent approximation, 456 
intermediate scattering function, 456 
measurement of scattering functions, 458 
moments expansion, 468 
monotonic Maxwellian gas, 452 
multigroup calculation, 472 
numerical solution, 467 
pair distribution function, 455 
pulsed neutrons, 475 
Radkowsky model, 453 
scattering function, 455 
spatial eigenfunction expansion, 475 
thermalization parameters for carbon, 471 
Wigner-Wilkins model, 460 

Neutron transport theory: 
boundary conditions, 297 
collision probabilities, see Collision 

probabilities methods 
current, 297 
discrete ordinates, see Discrete ordinates 

methods 
equation, 295 
even parity, 364, 503 
integral, see Integral transport theory 
interface current, see Interface current 

methods 
Monte Carlo, see Monte Carlo methods 
parlial current, 300 
scalar flux, 297 
spherical harmonics, see Spherical 

harmonics methods 
strcaming operator in various 

geometries, 298 
Neutron wavelength, 21, 426 
Nodal methods: 

conventional mcthods, 545 
doublc P, expansion, 559 
formalism, 87, 542 
gross coupling, 545 
polynomial expansim~, 549, 558 
transverse integrated diffusion theory 

methods, 547 
transverse integrated transport theory 

methods, 555 
transverse integrated discrete ordinates 

methods, 562 
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Nodal methods: (cont.) 
transverse leakage, 548, 557, 562, 578 
variational discrete ordinates 

methods, 572 
Noise analysis, 179 
Nonleakage probability. 36, 63, 162 
Nu (number of neutrons per fission). 1 I 
Nuclear reactor analysis: 

homogenized cross sections, 262. See also 
Homogenization 

criticality and flux distribution, 264 
fuel cycle, 264 
transient, 265 
core operating data. 266 
criticalily safety, 267 
safety, see Reactor safety 

Nuclear reactors: 
advanced, 261 
advanced gas cooled reactor AGR, 256 
boiling water reactor BWR, 246, 287 
characteristics of power reactors, 260 
classification by coolant, 43 
classification by neutron spectrum, 42 
high temperature gas cooled reactor 

HTGK, 256 
MAGNOX, 254 
integral fast reactor IFR, 262, 287 
light water breeder reactor LWBR, 259 
liquid metal fast breeder reactor LMFBR, 

257 
molten salt breeder reactor MSBR, 260 
pebble bed reactor. 260 
pressure tube graphite muderated reactor 

RMBK, 253 
pressure tube heavy water reactor CANDU, 

249 
pressurized water reactor PWR, 243,287.288 

Nuclear stability, 4 

ODE solution, 677 
Optical path length. 301 
Orthogonality conditions: 

associated Legendre functions. 339 
half-range Legcndre polynomials. 341 
Legcndre polynomials, 33 1 
reactor eigcnfunctions (h-modes), 600 
spherical harmonics, 345 

Periurbation theory: 
adjoint function, .see Adjoint 
boundary. 506 
generalized. see Variational methods 
multigroup diffusion theory, 164, 481 
reactivity worth, 164. 484, 488 

samarium reactivity worth, 21 1 
xenon reactivity worth, 214 

Photoneutrons, 142 
Physical constants, 671 
Plutonium: 

buildup, 204 
composition-reactor grade, 232 
composition in spent U02  fuel, 205 
composition-weapons grade, 232 
concentrations in recycled PWR fuel, 220 
physics differences between weapons and 

reactor grade, 232 
recycle physics effects, 223 

Point kinetics: 
adiabatic method, 605 
approximate solutions without feedback, 146 
approximate solutions with feedback, 181 
approximate solutions for fast excursions, 

I84 
derivation of equations, 602 
equations, 142 
quasi-static method, 606 
transfer Functions, see Transfer functions 

Poison: 
burnable, see Burnable poison 
control rods, see Control rods 
fission products, see Fuel burnup 
samarium, see Samarium 
soluble, see Soluble poison 
xenon, see Xenon 

Pontryagin's maximum principle, 640 
Power distribution: 

fuel burnup, 207 
thermal-hydraulics, 267 
peaking, 76 
xenon spatial oscillations, see Xenon spatial 

oscillations 
Power iteration, see Iteration methods 
Power peaking. see Powcr distribution 
Prompt jump approximation, 149, I82 
Prompt neutron generation timc, 143 
Prompt neutron lifelime, 40 
Pulsed neutron measurement, 154, 475 
PUREX separation technology. 236 
PWR typical composition and cross sections, 

65, 136, 137 
Pyrometallurgical separation technology, 238 

Quasi-static method, see Point kinetics 

Radioactive decay, 10, 20, 41, 139, 196, 207, 
209, 21 1, 215, 224. 236, 271, 642 

Radioactive waste: 
canccr dose pcr Curie in spent fuel, 229 



INDEX 705 

hazard potential, 224 
radioactivity of LWR and LMFBR spent 

fuel, 225 
radiotoxic inveniury decay of spenl fuel, 237 
risk factor. 228 
toxicity factor, 229 

Reactivity: 
definition, 143. 604 
control rod worth, see Control rod 
feedback, 157 
fuel burnup penalty, 205 
measurement of, 145, 153 
penalty, 206 
perturbation estimate, see Perturbation 

theory 
samarium worth, 21 1 
spectral density, 178 
temperature defect, 164 
variational estimate, see Variational methods 
xenon worth, 213, 214 

Reactivity coefficients: 
Doppler, 158, 159, 166, 233 
delay time constants, 175 
expansion, 161, 167 
fuel bowing, 167 
nonleakage, 162 
power, 175 
representative values, 163, 168 
sodium toid, 166 
temperature, 158 
thermal utilization, 162 

Reactivity control: 
BWRs, 246 
CANDUs. 253 
gas-cooled reactors, 256 
LMFBRs. 257 
PWRs, 243 
RBlWKs. 253 

Reactor accidents: 
anticipated transients without scram, 275 
Chernobyl, 285 
energy sources: 273 
loss of coolant, 275, 283 
loss of flow, 275 
loss of heat sink, 275, 283 
reactivity inscrtion, 275, 285 
Three Mile Island, 282 

Reactor noise, see Noise analysis 
Reactor safety: 

accidents, see Reactor accidents 
analysis. see Reactor safcty analysis 
defense in depth, 273 
multiplc barriers, 271 
passive, 287 

radionuclides of concern, 27 1 
risks, 279 

Reactor safety analysis: 
event tree, 276 
fault tree, 277 
probabilistic risk assessment, 276 
radiulogiwl assessment, 279 

Reactor sbartup analysis, 665 
Reflected rextors. see Diffusion theory 
Reflector savings, 68 
Resonance: 

Adler-Adlei, approximation, 441 
Breit-Wigner, multilevel formula, 441 
Breit-Wiper. single-level formula, 19, 426, 

440 
cross sections, 6,  112, 412 
Dancoff correction, 424 
Doppler broadening, 114, 123, 446 
equivalence relations, 418 
escape probability, 38, 117: 421 
escape probability, closely packed 

lattice, 424 
escape probability, isolated fuel 

element, 421 
heterogeneous fuel-moderator cell, 41 1 
heterogeneous resonance escape 

probability, 419 
homogenized resonance cross section, 420 
infinite dilution rcsonancc integral, 418 
integral, 1 17, 41 5 
intcrmcdiate rcsonance approximation, 420, 

49 8 
J(5,p) function, 120 
muliiband theory, 431 
multigroup cross sections, 117, 420, 

427, 430 
narrow resonance approximation, 118. 415 
overlap of different species. 430 
pole representation, 443 
Porter-Thomas distribution, 425 
practical width. 1 17 
R-matrix representation, 437 
rational approximation. 423 
reciprocity, 414 
Reich-Moore formalism, 441 
resonance escape probability 
self-overIap effects. 427 
self-shielding, 41 1. 431 
statistical resonance parameters, 428 
strength function. 426 
unresolved resonances. 425 
widc rcsonancc approximation, 1 18. 416 

Kesponse matrix. 322 
Rod drop mcasureincnt. 153 
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Rod oscillator measurement, 154, 177 
Rossi-alpha measurement, 156 

Samarium, 209 
Sauer rational approximation, 423 
Self-shielding: 

resonance, 97, 41 1, 418, 431 
spatial, 71, 431, 518 

Soluble poison, 206, 243 
Source jerk measurement, 153 
Space-dependent nuclear reactor kinetics: 

delayed flux tilts, 601 
direct timerintegration, see Time integration 

methods 
dynamic programming, 639 
linear analysis, 643 
Lyapunov's method for nonlinear stability 

analysis, 630, 651 
modal eigenfunction expansion, 600 
Pontryagin's maximum principle, 640 
stochastic, see Stochastic kinetics 
variational control theory, 637 
xenon spatial oscillations, see Xenon 

spatial oscillations 
Spherical harmonics methods: 

associated Legendre functions, see 
Legendre polynomials 

boundary and interface conditions, PL 
theory, 333 

boundary and interface conditions, DPL 
theory, 342 

diffusion equation in one-dimensional 
geometries, 340 

diffusion theory, from PI theory, 334 
diffusion theory, in multidimensional 

geometries, 347 
double PL theory, 341 
extrapolated boundary condition, 335 
half angle Legendre polynomials, see 

Legendre polynomials 
Legendre polynomials, see Legendre 

polynomials 
Mark boundary conditions, 334 
Marshak boundary conditions, 333, 

336, 394 
multidimensional geometry, 343 
PL equations in slab geometry, 332 
PL equations in spherical and cylindrical 

geometries, 337 
simplified PL theory, 336 
spherical harmonic functions, 343, 

6 84 
Stability: 

criteria, 172, 176 

feedback delay, 175 
linear analysis, 626 
Lyapunov's method, 628 
threshold power level, 171 
transfer function analysis, 168 
xenon spatial oscillations, see Xenon 

spatial oscillations 
Stochastic kinetics: 

correlation functions, 660 
forward stochastic model, 655 
means, variances and covariances, 658 
reactor startup analysis, 665 
transition probability, 655 
transition probability generating function, 

655 
Synthesis methods: 

formalism, 50 1 
multichannel, 590 
single channel, 585 
spectral, 592 

Temperature defect, see Reactivity 
Thermal disadvantage factor, 7 1, 5 18 
Thermal-hydraulics: 

interaction with reactor physics, 267 
reactor safety, 273 
reactor stability, 169 

Thermal utilization, 36. 75, 162, 515 
Time eigenvalues, 60 
Time integration methods: 

alternating direction implict, 620 
explicit-forward difference, 610 
implicit-backwards difference, 61 1 
implicit-GAKIN, 6 17 
implicit-theta, 613 
implicit-time integrated, 6 15 
Runge-Kutta, generalized, 624 
stiffness confinement, 622 
symmetric successive over-relaxation, 623 

Transfer functions: 
measurement, 177, 1 80 
with feedback, 168, 180 
zero power, 151, 155 

Transmission probability, 305. See also 
Integral transport theory and Interface 
current methods 

Transmutation-decay chains: 
cross sections and decay data, 197 
fission products, 201 
fuel, 196, 199, 207 

Transmutation of spent nuclear fuel, 235 
Transport boundary condition, 78, 51 7, 

520 
Transport cross section, 47, 335, 391 
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Transuranics: 
cancer dose per Curie in spent fuel, 229 
equilibrium distributions in continuously 

recycled fuel, 234 
probability of fission per neutron, 235 
risk factor in spent fuel, 230 
transmutation, 235 

Unit conversion, 671 
Uranium: 

composition reactor grade, 232 
composition natural, 232 
composition weapons grade, 232 
physics effects of recycle, 222 

Variational methods: 
collision probability theory, 501 
construction of variational 

functionds, 498 
control theory, 632, 637 
diffusion theory, 584 
discontinuous trial functions, 564, 566: 570, 

577, 591 
discrete ordinates transport theory 
dynamic reactivity, 607 
even-parity transport theory, 503 
flux correction factor, 490 
functional, 488 
functional admitting discontinuous trial 

functions, 502, 564, 568, 573, 582, 584 
heterogeneity rcactivity, 500 
interface and boundary terms, 502 

intermediate resonance integral, 498 
multigroup diffusion theory, 58 1 
PI  equations, 564, 582 
Rayleigh quotient, 497, 501 
reaction rates, 495 
reaction rate ratios, 493 
reactivity worth, 487, 490 
Ritz procedure, 504 
Roussopolos functional, 496 
Schwinger functional, 497, 499 
static reactivity, 488, 606 
stationarity, 496 
synthesis, 502. See also Synthesis 
transport equation, 572 
trial functions, 497, 499, 502, 504, 585, 

593, 609 

Weapons grade plutonium and uranium, see 
Fuel composition 

Wigner rational approximation, 423 
Wigner-Seitz approximation, see 

Homogenization 

Xenon, 21 1, 642 
Xenon spatial oscillations: 

h-mode stability analysis, 647 
linear stability analysis. 643 
p-mode stability analysis, 645 
nonlinear stability criterion, 650 
variational control, 652 

ZEBRA composition, 495 
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