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PREFACE

Nugclear reactor physics is the physics of neutron fission chain reacting systems.
[t encompasses those applications of nuclear physics and radiation transport
and interaction with matter that determine the behavior of nuclear reactors. As
such, it is both an applied physics discipline and the core discipline of the field
of nuclear engineering.

As a distinct applied physics discipline, nuclear reactor physics originated in
the middle of the twentieth century in the wartime convergence of international
physics efforts in the Manhattan Project. It developed vigorcusly for roughly
the next third of the century in various government, industriai, and university
R&D and design efforts worldwide. Nuclear reactor physics is now a relatively
mature discipline, in that the basic physical principles governing the behavior
of nuclear reactors are well understood, most of the basic nuclear data needed
for nuclear reactor analysis have been measured and evaluated, and the
computational methodology is highly developed and validated. It is now
possible to accurately predict the physics behavior of existing nuclear reactor
types under normal operating conditions. Moreover, the basic physical
concepts, nuclear data, and computational methodology needed to develop
an understanding of new variants of existing reactor types or of new reactor
types exist for the most part.

As the core discipline of nuclear engineering, nuclear reactor physics is
fundamental to the major international nuclear power undertaking. As of
2000, there arc 434 central station nuclear power reactors operating worldwide
to produce 350,442 MWe of electrical power. This is a substantial fraction of
the world’s electrical power (e.g., more than 80% of the electricity produced in
France and more than 20% of the electricity produced in the United States).
The world’s electrical power requirements will continue to increase, parti-
cularly as the less developed countries strive to modcrnize, and nuclear power
is the only proven technology for meeting these growing electricity require-
ments without dramatically increasing the already unacceptable levels of
greenhouse gas emission into the atmosphere.

Nuclear reactors have additional uses other than central station electricity
production. There are more than 100 naval propulsion reactors in the U.S. fleet
(plus others in foreign fleets). Nuclear reactors are also employed for basic
ncutron physics research, for materials testing, for radiation therapy, for the
production of radio-isotopes for medical, industrial, and national security
applications, and as mobilec power sources for remote stations. In the future,

XXY



XXvi PREFACE

nuclear reactors may power deep space missions. Thus nuclear reactor physics
is a discipline important to the present and future well-being of the world.

This book is intended as both a textbook and a comprchensive reference
on nuclear reactor physics. The basic physical principles, nuclear data, and
computational methodology needed to understand the physics of nuclear
reactors are developed and applied to explain the static and dynamic behavior
of nuclear reactors in Part 1. This development is at a level that should be
accessible to seniors in physics or engineering (i.e., requiring a mathematical
knowledge omnly through ordinary and partial differential equations and
Laplace transforms and an undergraduate-level knowledge of atomic and
nuclear physics). Mastery of the material presented in Part 1 provides an
understanding of the physics of nuclear reactors sufficient for nuclear
engineering graduates at the B.S. and M.S. levels, for most practicing nuclear
engineers and for others interested in acquiring a broad working knowledge of
nuclear reactor physics.

The material in Part 1 was developed in the process of teaching
undergraduate and first-year graduate courses in nuclear reactor physics at
Georgia Tech for a number of years. The emphasis in the presentation is on
conveying the basic physical concepts and their application to explain nuclear
reactor behavior, using the simplest mathematical description that will suffice
to illustrate the physics. Numerous examples are included to illustrate the step-
by-step procedures for carrying out the calculations discussed in the text.
Problems at the end of each chapter have been chosen to provide physical
insight and to extend the material discussed in the text, while providing practice
in making calculations; they arc intended as an integral part of the textbook.
Part | is suitable for an undergraduate semester-length course in nuclear
reactor physics; the material in Part 1 is also suitable for a semester-length first-
vear graduate course, perhaps with sclective augmentation from Part 2.

The purpose of Part 2 is to augment Part 1 to provide a comprehensive,
detailed, and advanced development of the principal topics of nuclear rcactor
physics. There is an emphasts in Part 2 on the theoretical bases for the
advanced computational methods of reactor physics. This material provides a
comprehensive, though nccessarily abridged, reference work on advanced
nuclear reactor physics and the theoretical bases for its computational
methods. Although the material stops short of descriptions of specific reactor
physics codes, it provides the basis for understanding the code manuals. There
is more than enough material in Part 2 for a semester-length advanced
graduate course in nuclear reactor physics. The treatment is necessarily
somewhat more mathematically intense than in Part 1.

Part 2 is intended primarily for those who are or would become specialists
in nuclear reactor physics and reactor physics computations. Mastery of this
material provides the background for creating the new physics concepts
necessary for developing new reactor types and for understanding and
extending the computational methods in existing reactor physics codes
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(i.e., the stock-in-trade for the professional reactor physicist). Moreover, the
cxtensive treatment of neutron transport computational methods also provides
an important component of the background necessary for specialists in
radiation shielding, for specialists in the applications of neutrons and photons
in medicine and industry, and for specialists in neutron, photon, and neutral
atom transport in industrial, astrophysical, and thermonuclear plasmas.

Any bock of this scope owes much to many people besides the author, and
this one is no exception. The elements of the subject of reactor physics were
developed by many talented people over the past half-century, and the
references can only begin to recognize their contributions. In this regard, I note
the special contribution of R.N. Hwang, who helped prepare certain sections
on resonance theory. The selection and organization of material has benefited
from the example of previous authors of textbooks on reactor physics. The
feedback from a generation of students has assisted in shaping the organization
and presentation. Several people (C. Nickens, B. Crumbly, S. Bennett-Boyd)
supported the evolution of the manuscript through at least three drafts, and
several other people at Wiley transformed the manuscript into a book. 1 am
grateful to all of these people, for without them there would be no book.

Atlanta, Georgia WESTON M. STACEY
October 2000






PART 1
Basic Reactor Physics






1 Neutron Nuclear Reactions

The physics of nuclear reactors is determined by the transport of neutrons and their
interaction with matter within a reactor. The basic neutron nucleus reactions of
importance in nuclear reactors and the nuclear data used in reactor physics calcula-
tions are described in this chapter.

1.1 NEUTRON-INDUCED NUCLEAR FISSION

Stable Nuclides

Short-range attractive nuclear forces acting among nucleons (neutrons and protons)
are stronger than the Coulomb repulsive forces acting among protons at distances
on the order of the nuclear radius (R~ 1.25 x 107*A'3cm) in a stable nucleus.
These forces are such that the ratio of the atomic mass A (the number of neutrons
plus protons) to the atomic number Z (the number of protons) increases with Z; in
other words, the stable nuclides become increasingly neutron-rich with increasing
Z, as illustrated in Fig. 1.1. The various nuclear species are referred to as nuclides,
and nuclides with the same atomic number are referred to as isotopes of the element
corresponding to Z. We use the notation X, (e.g., 235U92) to identify nuclides.

Binding Energy

The actual mass of an atomic nucleus is not the sum of the masses () of the Z
protons and the masses (m,,) of A — Z neutrons of which it is composed. The stable
nuclides have a mass defect

A= [Zmy + (A — Z)my) — *m, (1.1}

This mass defect is conceptually thought of as having been converted to energy
(E:Acz) at the time that the nucleus was formed, putting the nucleus into a
negative energy state. The amount of externally supplied energy that would have
to be converted to mass in disassembling a nucleus into its separate nucleons is
known as the binding energy of the nucleus, BE = Ac*. The binding energy per
nucleon (BE/A) is shown in Fig. 1.2.

Any process that results in nuclides being converted to other nuclides with more
binding energy per nucleon will result in the conversion of mass into energy. The
combination of low A nuclides to form higher A nuclides with a higher BE/A value

3
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Fig. 1.1 Nuclear stability curve, (From Ref. 1; used with permission of McGraw-Hill.)

is the basis for the fusion process for the release of nuclear energy. The splitting of
very high A nuclides to form intermediate-A nuclides with a higher BE/A value is
the basis of the fission process for the release of nuclear energy.

Threshold External Energy for Fission

The probability of any nuclide undergoing fission (reconfiguring its A nucleons into
two nuclides of lower A} can become quite large if a sufficient amount of external
energy is supplied to excite the nucleus. The minimum, or threshold, amount of
such excitation energy required to cause fission with high probability depends on
the nuclear structure and is quite large for nuclides with Z < 90. For nuclides with
Z > 90, the threshold energy is about 4 to 6 MeV for even-A nuclides, and generally
is much lower for odd-A nuclides. Certain of the heavier nuclides (e.g., **°Pug, and
%2(fyg) exhibit significant spontaneous fission even in the absence of any exter-
nally supplied excitation energy.
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Fig. 1.2 Binding energy per nucleon. (From Ref. 1; used with permission of McGraw-Hill.)

Neutron-Induced Fission

When a neutron is absorbed into a heavy nucleus (4,Z) to form a compound
nucleus (A +1,Z), the BE/A value is lower for the compound nucleus than for
the original nucleus. For some nuclides {e.g., B3Ug,, P9Ug,, PPugy, **'Pugy), this
reduction in BE/A value is sufficient that the compound nucleus will undergo
fission, with high probability, even if the neutron has very low energy. Such nu-
clides are referred to as fissile; that is, they can be caused to undergo fissicn by the
absorption of a low-energy neutron. If the neutron had kinetic energy prior to being
absorbed into a nucleus, this energy is transformed into additional excitation energy
of the compound nucleus. All nuclides with Z > 90 will undergo fission with high
probability when a neutron with kinetic energy in excess of about 1MeV is ab-
sorbed. Nuclides such as ***Thgg, 2*2Us,, and **°Pug, will undergo fission with
neutrons with energy of about 1 MeV or higher, with high probability.

Neutron Fission Cross Sections

The probability of a nuclear reaction, in this case fission, taking place can be
expressed in terms of a quantity ¢ which expresses the probable reaction rate for
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n neutrons traveling with speed v a distance dx in a material with N nuclides per
unit volume:

reaction rate

1.2
7 nvN dx (12)

The units of ¢ are area, which gives rise to the concept of ¢ as a cross-sectional
area presented to the neutron by the nucleus, for a particular reaction process, and
to the designation of G as a cross section. Cross sections are usually on the order of
10~2* cm?, and this unit is referred to as a barn, for historical reasons.

The fission cross section, o5 is a measure of the probability that a neutron
and a nucleus interact to form a compound nucleus which then undergoes fission.
The probability that a compound nucleus will be formed is greatly enhanced if the
relative energy of the neutron and the original nucleus, plus the reduction in the
nuclear binding energy, correspends to the difference in energy of the ground state
and an excited state of the compound nucleus, so that the energetics are just right
for formation of a compound nucleus in an excited state. The first excited states of
the compound nuclei resuiting from neutron absorption by odd-A fissile nuclides
are generally lower lying (nearer to the ground state) than are the first excited states
of the compound nuclei resulting from neutron absorption by the heavy even-A
nuclides, which accounts for the odd-A nuclides having much larger absorption and
fission cross sections for low-energy neutrons than do the even-A nuclides.

Fission cross sections for some of the principal fissile nuclides of interest for
nuclear reactors are shown in Figs. 1.3 to 1.5. The resonance structure corresponds
to the formation of excited states of the compound nuclei, the lowest lying of which
are at less than 1 eV. The nature of the resonance cross section can be shown to give
rise to a l/El/ % or 1/v dependence of the cross section at off-resonance neutron
energies below and above the resonance range, as is evident in these figures. The
fission cross sections are largest in the thermal energy region E < ~1eV. The ther-
mal fission cross section for >**Pug, is larger than that of 50Uy, or 2*Uy,.

Fission cross sections for 238ng and 2‘J'OPI.194 are shown in Figs. 1.6 and 1.7.
Except for resonances, the fission cross section is insignificant below about 1 MeV,
above which it is about 1 barn. The fission cross sections for these and other even-A
heavy mass nuclides are compared in Fig. 1.8, without the resonance structure.

Products of the Fission Reaction

A wide range of nuclides are formed by the fission of heavy mass nuclides, but the
distribution of these fission fragments is sharply peaked in the mass ranges
90 < A < 100 and 135 <A < 145, as shown in Fig. 1.9. With reference to the cur-
vature of the trajectory of the stable isotopes on the n versus p plot of Fig. 1.1, most
of these fission fragments are above the stable isotopes (i.e., are neutron rich) and
will decay, usually by B-decay (electron emission), which transmutes the fission
fragment nuclide (4,Z) to (A,Z+ 1), or sometimes by neutron emission, which
transmutes the fission fragment nuclide (4, Z) to {A—1, Z), in both instances toward



NEUTRON-INDUCED NUCLEAR FISSION 7

U233 Fissian Cross Section MT = 18

TrTTeTYTTT T YT T —TTrrTenT MBLARALLL Emas ae an matn.

10°

T T TTAT

102

T 'Ill‘ll
et s34l

10"

Cross Section (barns)

I‘llllll
et i gl

FEETEY

109

ettt

101 109 10" 102 108 10* 108 108 107

Neutron Energy (eV)

Fig. 1.3 Fission cross sections for >**Uy,. (From http://www.dne.bnl.gov/CoN/index.
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Fig. 1.5 Fission cross sections for >°Pug,. (From htp://www.dne.bnl.gov/CoN/
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the range of stable isotopes. Sometimes several decay steps are necessary to reach a
stable isotope.

Usually, either two or three neutrons will be emitted promptly in the fission
event, and there is a probabitity of one or more neutrons being emitted subsequently
upon the decay of neutron-rich fission fragments over the next second or so. The
number of neutrons, on average, which are emitted in the fission process, v, de-
pends on the fissioning nuclide and on the energy of the neutron inducing fission, as
shown in Fig. 1.10.
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Fig. 1.10 Average number of neutrons emitted per fission. (From Ref. 12: used with
permission of Wiley.)

Energy Release

The majority of the nuclear energy created by the conversion of mass to energy in
the fission event (207MeV for ***Uy,) is in the form of the kinetic energy
{168 MeV) of the recoiling fission fragments. The range of these massive, highly
charged particles in the fuel element is a fraction of a millimeter, so that the recoil
energy is effectively deposited as heat at the point of fission. Another SMeV is in
the form of Kinetic energy of prompt neutrons released in the fission event, dis-
tributed in energy as shown in Fig. 1.11, with a most likely energy of 0.7 MeV (for
25,,). This energy is deposited in the surrounding material within 10 to 100 cm as
the neutron diffuses, slows down by scattering collisions with nuclei, and is finally
absorbed. A fraction of these neutron absorption events result in neutron capture
followed by gamma emission, producing on average about 7MeV in the form of
energetic capture gammas per fission. This secondary capture gamma energy is
transferred as heat to the surrounding material over a range of 10 to 100cm by
gamma interactions.

There is also on average about 7 MeV of fission energy directly released as
gamma rays in the fission event, which is deposited as heat within the surrounding
10 to 100cm. The remaining 20 MeV of fission energy is in the form of kinetic
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Fig. 1.11 Fission spectrum for thermal neutron-induced fission in 23°U. (From Ref. 12; used

with permission of Wiley.)

energy of electrons (§ MeV) and neutrinos (12 MeV) from the decay of the fission
fragments. The electron energy is deposited, essentially in the fuel element, within
about 1 mm of the fission fragment, but since neutrinos rarely interact with matter,
the neutrino energy is lost. Although the kinetic energy of the neutrons emitted by
the decay of fission products is almost as great as that of the prompt fission
neutrons, there are so few delayed neutrons from fission product decay that their
contribution to the fission energy distribution is negligible. This fission energy
distribution for ***Uy, is summarized in Table 1.1. The recoverable energy released
from fission by thermal and fission spectrum neutrons is given in Table 1.2.

TABLE 1.1 Uy, Fission Energy Release

Energy

Form (MeV) Range
Kinetic energy fission products 168 < mm
Kinetic energy prompt gammas 7 10-100cm
Kinetic energy prompt neutrons 5 10-100cm
Kinetic energy capture gammas 7 10-100cm
Decay of fission products

Kinetic energy electrons 8 ~mm

Kinetic energy neutrinos 12 o0
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TABLE 1.2 Recoverable Energy from Fission

Isotope Thermal Neutron Fission Neutron
33y 190.0 —
B3y 1929 —
2%y 1985 —
24lpy 200.3 —
B2y — 184.2
B4y — 188.9
236y — 1914
zEy — 193.9
ZNp — 193.6
8py — 196.9
240py —_ 196.9
242py — 200.0

Source: Data from Ref. 12; used with permission of Wiley.

Thus, in total, about 200 MeV per fission of heat energy is produced. One Watt
of heat energy then corresponds to the fission of 3.1 x 10'° nuclei per second. Since
1 g of any fissile nuclide contains about 2.5 x 10%! nuclei, the fissioning of 1g of
fissile material produces about 1 megawatt-day (MWd) of heat energy. Because
some fissile nuclei will also be transmuted by neutron capture, the amount of fissile
material destroyed is greater than the amount fissioned.

1.2 NEUTRON CAPTURE

Radiative Capture

When a neutron is absorbed by a nucleus to form a compound nucleus, a number of
reactions are possible, in addition to fission, in the heavy nuclides. We have already
mentioned radiative capture, in which the compound nucleus decays by the emis-
sion of a gamma ray, and we now consider this process in more detail. An energy-
level diagram for the compound nucleus formation and decay associated with the
prominent 2381y, resonance for incident neutron energies of about 6.67 eV is shown
i Fig. 1.12. The energy in the center-of-mass (CM) system of an incident neutron
with energy E; in the lab system is E.=[A/(1 + A)]E;. The reduction in binding
energy due to the absorbed neutron is AEg. If E. 4 AEg is close to an excited
energy level of the compound nucleus, the probability for compound nucleuns for-
mation is greatly enhanced. The excited compound nucleus will generally decay by
emission of one or more gamma rays, the combined energy of which is equal to the
difference in the excited- and ground-state energy levels of the compound nucleus.

Radiative capture cross sections, denoted o, for some nuclei of interest for
nuclear reactors are shown in Figs. 1.13 to 1.21. The resonance nature of the cross
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Fig. 1.14 Radiative capture cross section for 2*Us,. (From http: / [www.dne.bnl.gov/CoN/
index.html.)
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Pu240 Capture Cross Section MT =27

106 ML LA AR AR LA | AELEARLARLA § N v T hhhid ] v L MBS A4
10° 3
108 E
E 3
o -
8
g
g 3
Q B
[4r] 2 N
A 10 !
[} ]
(&) ]
107 3
100 3
10—1 PR | et aaanl siaaaul s Lol NSRRI e "l PV
101 100 10! 102 10° 104 10% 108 107

Neutron Energy (eV)

Fig. 1.18 Radiative capture cross section for >*°Uy,. (From htip:/ /www.dne.bri.gov/CoN/
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sections over certain ranges correspond to the discrete excited states of the
compound nucleus that is formed upon neutron capture. These excited states cor-
respond to neutron energies in the range of a fraction of an eV to 10°eV for the
fissile nuclides, generally correspond to neutron energies of 10 to 10*eV for even-A
heavy mass nuclides (with the notable exception of thermal 24°Pu94 Tesonance), and
correspond to much higher neutron energies for the lower mass nuclides. The 1/v
“off-resonance™ cross-section dependence is apparent.

The Breit-Wigner single-level resonance formula for the neutron capture cross
section is

T, (E\"? 1 2
oy(E;) = 00—1:' (_E ) T2 y= f(Ec — Ey) (1.3)
C

where Eq is the energy (in the CM) system at which the resonance peak occurs (i.e.,
E_.+ Ep matches the energy of an existed state of the compound nucleus), I" the full
width at half-maximum of the resonance, 6, the maximum value of the total cross
section (at Eo), and I, the radiative capture width (I",/T" is the probability that the
compound nucleus, once formed, will decay by gamma emission). The fission
resonance cross section can be represented by a similar expression with the fission
width [, defined such that I';/T" is the probability that the compound nucleus, once
formed, will decay by fission.

Equation (1.3) represents the cross section describing the interaction of a neu-
tron and nucleus with relative (CM) energy E.. However, the nuclei in a material
are distributed in energy (approximately a Maxwellian distribution characterized by
the temperature of the material). What is needed is a cross section averaged over the
motion of the nuclei:

G(E,T) = ‘1;(17) / dE'\V(E) — ¥(E')|o(E)fmen (B, T) (1.4)

where F and E' are the neutron and nuclei energies, respectively, in the lab system,
and f.x (E') is the Maxwellian energy distribution:

froax(E') = (:,;2"7?)37 VE e EIM (1.5)

Using Eqgs. (1.3) and (1.5), Eq. (1.4) becomes

1/2
o) =22 (2) e (1.6)
where
2 r
x=5(E-E), §{= BT/ (1.7)
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A is the atomic mass (amu) of the nuclei, and

dy

£ [ /sy
U(£,x) = E_ﬁ e~ (1/0—y)ye %
-0

1.8
1+ y? (18)

Neutron Emission

When the compound nucleus formed by neutron capture decays by the emission of
one neutron, leaving the nucleus in an excited state which subsequently undergoes
further delays, the event is referred to as inelastic scattering and the cross section is
denoted o;,. Since the nucleus is left in an excited state, the energy of the emitted
neutron can be considerably less than the energy of the incident neutron. If the
compound nucleus decays by the emission of two or more neutrons, the events are
referred to as n — 2n, n— 3n, and so on, events, and the cross sections are denoted
Gp2ns On,3m ON S0 on. Increasingly higher incident neutron energies are required to
provide enough excitation energy for single, double, triple, and so on, neutron
emission. Inelastic scattering is the most important of these events in nuclear
reactors, but it is most important for neutrons 1 MeV and higher in energy.

1.3 NEUTRON ELASTIC SCATTERING

Elastic scattering may take place via compound nucleus formation followed by the
emission of a neutron that returns the compound nucleus to the ground state of the
original nucleus. In such a resonance elastic scattering event the kinetic energy of
the original neutron—nuclear system is conserved. The neutron and the nucleus may
also interact without neutron absorption and the formation of a compound nucleus,
which is referred to as potential scattering. Although quantum mechanical (s-wave)
in nature, the latter event may be visualized and treated as a classical hard-sphere
scattering event, away from resonance energies. Near resonance energies, there is
quantum mechanical interference between the potential and resonance scattering,
which is constructive just above and destructive just below the resonance energy.

The single-level Breit—Wigner form of the scattering cross, modified to include
potential and interference scattering, is

>+ 4R (1.9)

n(%)m 1 o2R
T

(E.) = oo— [ 2
o) = o0 E. 1432 X L4y

where (I',,/T") is the probability that, once formed, the compound nucleus de-
cays to the ground state of the original nucleus by neutron emission, R~
1.25 x 107 "2A"/> centimeters is the nuclear radius, and Aq is the reduced neutron
wavelength.

Averaging over a Maxwellian distribution of nuclear motion yields the scattering
cross section for neutron lab energy E and material temperature T
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OB T) = o0 26 5) + B x(3) + 4R (110

where

ye~ (/AG—PE _
x{&,x) \/_/ Ty ———dy (1.1

The elastic scattering cross sections for a number of nuclides of interest in
nuclear reactors are shown in Figs. 1.22 to 1.26. In general, the elastic scattering
cross section is almost constant in energy below the neutron energies corresponding
to the excited states of the compound nucleus. The destructive interference effects
just below the resonance energy are very evident in Fig. 1.26,

The energy dependence of the carbon scattering cross section is extended to very
low neutron energies in Fig. 1.27 to illustrate another phenomenon. At sufficiently
small neutron energy, the neutron wavelength

h 286x107
V2mE  \/E(eV)

h
Ao =-= 1.12
0 P ( )
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Fig. 1.22 Elastic scattering cross section for 'H,. (From htip:/ /www.dne.bnl.gov/CoN/
index.html.)
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Fig. 1.23  Elastic scattering cross section for 'Og. (From hutp: / fwww.dne.bnl.gov/CoN/
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Fig. 1.25 FElastic scattering cross section for **Feys. (From hitp: / /www.dne.bnl.gov/CoN/
index.html.)

U238 Elastic Scattering Cross Section MT =2

MMM B e e 054 amen s S n L B S e g e e B e | — TrITYY ~rrrrrer

103 E
Tg 102 | 3
8 | z
S i T
= 10 ‘ 3
3 ) ‘ 5
121
g -
G 10° E

1071 4

10’2 azigiil e boidal bt d il b ik il PR A PRI | Aot b i arial 1 aaaaul A1 L Alaal

10! 10 101 102 10% 104 10° 108 107

Neutron Energy (eV)

Fig. 1.26 FElastic scattering cross section for 22Ug,. (From http: / /www.dne.bnl.gov/CoN/
index.html.)



24 NEUTRON NUCLEAR REACTIONS

10
- FO O —1 O
c 5= \_\
=)
& -
@ }—
(2]
: ‘_\
e
o
©
5 1.0
© =
i1 P Eilll [EENEET) b1 11111} 11 111t
10 10°% 10? 10 1
Neutron energy, eV
10
.E ® ®
. - \
c
e} .
g3
@ h./_\
31.0_
5 F u \
(&) l—
s 05
= =
|- o
01 P10l It 1 1iili i 11 1)1l 11 111l
104 105 108 107 10°

Neutron energy, eV

Fig. 1.27 Total scattering cross section of 12¢... (From Ref. 12; used with permission of
Wiley.)

becomes comparable to the interatomic spacing, and the neutron interacts not with
a single nucleus but with an aggregate of bound nuclei. If the material has a regular
structure, as graphite does, the neutron will be diffracted and the energy depend-
ence of the cross section will reflect the neutron energies corresponding to multi-
ples of interatomic spacing. For sufficiently small wavelengths, diffraction becomes
impossible and the cross section is once again insensitive to neutron energy.

14 SUMMARY OF CROSS-SECTION DATA

Low-Energy Cross Sections

The low-energy total cross sections for several nuclides of interest in nuclear
reactors are plotted in Fig. 1.28. Gadolinium is sometimes used as a “burnable
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Fig. 1.28 Low-energy absorption (fission + capture) cross sections for several important
nuclides. (From Ref. 12; used with permission of Wiley.)

poison,” and xenon and samarium are fission products with large thermal cross
sections.

Spectrum-Averaged Cross Sections

Table 1.3 summarizes the cross-section data for a number of important nuclides
in nuclear reactors. The first three columns give fission, radiative capture, and
elastic scattering cross sections averaged over a Maxwellian distribution with
T=0.0253 &V, corresponding to a representative thermal energy spectrum. The next
two columns give the infinite dilution fission and radiative capture resonance in-
tegrals, which are averages of the respective resonance cross sections over a 1/E
spectrum typical of the resonance energy region in the limit of an infinitely dilute



97

TABLE 1.3 Spectrum-Averaged Thermal, Resonance, and Fast Neutron Cross Sections (barns)

Thermal Cross Section

Resonance Cross Section

Fission Spectrum Cross Section

Nuclide oy Gy Cal Sf oy oy oy el Cin On,on
B3s 469 41 11.9 774 138 1.9 0.07 4.4 1.2 4%x1073
s U 507 87 15.0 278 133 1.2 0.09 46 1.8 12 x 1073
3%y, 698 274 7.8 303 182 1.8 0.05 44 1.5 4%107?
H1pyg, 938 326 11.1 573 180 1.6 0.12 5.2 0.9 21 x 1073
2 Thyg — 6.5 137 — 84 0.08 0.09 4.6 29 14 x 1073
2387, — 24 94 2 278 0.31 0.07 4.8 26 12x1073
0Py, 0.05 264 15 8.9 8103 1.4 0.09 43 2.0 4x107?
22Pygy — 16.8 8.3 5.6 1130 1.1 0.09 4.8 19 7x1073
H, — 0.29 205 — 0.15 — 4x10™° 3.9 — —
2y, — 5% 107 3.4 - 3x107* — 7% 107° 25 — —
10, — 443 2.1 — 022 — 8x 1073 2.1 0.07 —
20, — 0.003 47 — 0.002 —_ 2% 1073 2.3 0.01 —
160, - 2x107* 3.8 - 6x107* — 9% 1077 27 — —
BNa,, — 0.47 3.0 - 0.31 — 2x 107 27 05 —
3Fe,s — 25 12.5 — 14 — 3x 1073 3.0 07 —
17110 — 1.1 10.6 — 6.9 — 0.01 5.0 0.7 —_
133%e, — 27%x10°  38x10° — 7.6 x 10° — 0.01 49 1.0 —
498 me, — 6.0 x 10* 373 — 3.5 % 10° — 022 4.6 22 —
157G dgs — 1.9 x 10° 819 — 761 — 0.11 47 2.2 11 x 1073

Source: Data from htip: / /www.dne.bnl.gov/CoN [index.html.
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concentration of the resonance absorber. The final five columns give cross sections
averaged over the fission spectrum.

Example 1.1: Calculation of Macroscopic Cross Section. The macroscopic cross
section £ = No, where N is the number density. The number density is related to
the density p and atomic number A by N=(p/A)N,, where Ny=6.022 x 102 is
Avogadro’s number, the number of atoms in a mole. For a mixture of isotopes with
weight percents w;, the macroscopic cross section is X = Zw(p/A)Noo;; for ex-
ample, for a 1:1 wt % mixture of carbon and 238, the macroscopic thermal absorp-
tion cross section is Z, = 0.5(pc/Ac)NoGac+ 0.5(py/Ay)NgG .y = 0.5(1.60 g/cm’
per 12 g/mol)(6.022 x 10%* atom/mol)(0.003 x 10~** cm?) 4 0.5(18.9 g/cm” per
238 g/mol)(6.022 x 10* atom/mol)(2.4 x 10~**cm?) =0.0575cm™".

1.5 EVALUATED NUCLEAR DATA FILES

Published experimental and theoretical results on neutron—nuclear reactions are
collected by several collaborating nuclear data agencies worldwide. Perhaps the
most comprehensive computerized compilation of experimental data is the EXFOR
computer library (Ref. 11). The computerized card index file CINDA (Ref. 8),
which contains comprehensive information on measurements, calculations, and
evaluations of neutron—nuclear data, is updated annually. The plethora of some-
times contradictory nuclear data must be evaluated before it can be used confidently
in reactor physics calculations. Such evaluation consists of intercomparison of data,
use of data to calculate benchmark experiments, critical assessment of statistical
and systematic errors, checks for internal consistency and consistency with standard
neutron cross sections, and the derivation of consistent preferred values by appro-
priate averaging procedures. Several large evaluated nuclear data files are main-
tained: (1) United States Evaluated Nuclear Data File (ENDF/B), (2) Evaluated
Nuclear Data Library of the Lawrence Livermore National Laboratory (ENDL), (3)
United Kingdom Nuclear Data Library (UKNDL), (4) Japanese Evaluated Nuclear
Data Library (JENDL), (5) Karlsruhe Nuclear Data File (KEDAK), (6) Russian
(formerly Soviet) Evaluated Nuclear Data File (BROND), and (7} Joint Evaluated
File of NEA Countries (JEF). Processing codes are used to convert these data to a
form that can be used in reactor physic calculations, as discussed in subsequent
chapters.

1.6 ELASTIC SCATTERING KINEMATICS

Consider a neutron with energy E; = %mvi in the laboratory (L) system incident
upon a stationary nucleus of mass M. Since only the relative masses are important
in the kinematics, we set m = 1 and M = A. It is convenient to convert to the center-
of-mass (CM) system, as indicated in Fig. 1.29, because the elastic scattering event
is usually isotropic in the CM system.
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Fig. 1.29 Scattering event in lab and CM systems. (From Ref. 12; used with permission of
Wiley.)

The velocity of the CM system in the L system is

VL
1+A

(VL +AV,) = (1.13)

1
T4

and the velocities of the neutron and the nucleus in the CM system are

A
Ve =VL—Vem = \/3
A4+1 (1.14)
-1
Ve=—Vem :mVL

The energy of the neutron in the CM system, E,, is related to the energy of the
neutron in the lab, E;, by

1 1 A 1 A
v AV2 v =

E 1.1
2V At12 LT Axgt (1.15)

E. =
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Correlation of Scattering Angle and Energy Loss

From consideration of conservation of momentum and kinetic energy, it can be
shown that the speeds of the neutron and the nucleus in the center-of-mass system
do not change during the scattering event:

vi=v A v
c = Ye = L

Ajl' (1.16)
Vé = VC :A+1VL

With reference to Fig. 1.30, the scattering angles in the lab and CM systems are
related by

;. .
v, sin g, sin 6,

= 1.17
Vem + Vicosf.  (1/A) +cosb, (1.17)

tan 0; =

The law of cosines yields

(V’c)z + (ch)2 - (V’L)2
(A+1)?

(1.18)

cos(m — ) =

which may be combined with Eqs. (1.13) and (1.16) to obtain a relationship be-
tween the incident and final energies of the neutron in the lab system and the
scattering angle in the CM system:

%m(vi)zzli’L_AZ—i—l—kZAcoch_(1+a)+(1—a)COS9c (1.19)
Im(vi)’  Eu (4+1) 2 '

where o= (A—1)%/(A + 1)

Vel = 1vgl

Fig. 1.30 Relation between lab and CM scattering angles, (From Ref. 12; used with per-
mission of Wiley.)
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Average Energy Loss

Equation (1.19) states that the ratio of final to incident energies in an elastic
scattering event is cotrelated to the scattering angle in the CM system, which in
turn is correlated via Eq. (1.17) to the scattering angle in the [ab system. The
maximum energy loss (minimum value of E} /E;) occurs for 8. == (i.e., backward
scattering in the CM system), in which case E] = aF;. For hydrogen (A=1), «=0
and all of the neutron energy can be lost in a single collision. For other nuclides,
only a fraction (1—a) of the neutron energy can be lost in a single collision, and for
heavy nuclides (o — 1) this fraction becomes very small.

The probability that a neutron scatters from energy E, to within a differential
band of energies dE] about energy E is equivalent to the probability that a neutron
scatters into a cone 21 sin 8. d0,. about 9.

a;{EL)P(EL — E;)dE; = —0cm(EL, 0:)27 sin 0, db, (1.20)

where the negative sign takes into account that an increase in angle corresponds to a
decrease in energy, o, is the elastic scattering cross section, and G (8.} is the cross
section for scattering through angle 0. Using Eq. (1.19) to evaluate dE} /d0,, this
becomes

4roem(EL, 0.)

P(EL — E;) = { (1 — @)ELo,(EL)’
0, otherwise

ok S B < B (1.21)

Except for very high energy neutrons scattering from heavy mass nuclides, elastic
scattering in the CM is isotropic, 0.m(0.) = o,/47n. In this case, Eq. (1.21) may be
written

a5(Ey — L) = 0,(EL)P(EL — Ej) = %

=10, otherwise

CEEL $ E;’_ S EL (122)

The average energy loss in an elastic scattering event may be calculated from
Ep

(AF;) = EL — / dE,E;P(EL, — E}) = %(1 - a)E; (1.23)
aEy

and the average logarithmic energy loss may be calculated from

Ey, EL
C!{E[_ EL

a A—17° [A+1
= —_ 1
l—alna ! 2A n(A—l)

(1.24)
=1+
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The number of collisions, on average, required for a neutron of energy g to be
imoderated to thermal energies, say 1eV, can be estimated from

In[Eg(eV)/1.0]
£

The results are shown in Table 1.4 for Eg=2MeV.

The parameter &, which is a measure of the moderating ability, decreases with
nuclide mass, with the result that the number of collisions that are needed to
moderate a fast neutron increases with nuclide mass. However, the effectiveness
of a nuclide (or molecule) in moderating a neutron also depends on the relative
probability that a collision will result in a scattering reaction, not a capture reaction,
which would remove the neutron. Thus the parameter £X,/X,,, referred to as the
moderating ratio, is a measure of the effectiveness of a moderating material. Even
though H,0 is the better moderator in terms of the number of collisions required to
thermalize a fast neutron, D,O is the more effective moderator because the absorp-
tion cross section for D is much less than that for H.

{no. collisions) ~~ (1.25)

Example 1.2: Moderation by a Mixture. The moderating parameters for a mixture
of isotopes is constructed by weighting the moderating parameters of the individual
isotopes by their concentrations in the mixture. For example, in a mixture of 2c
and 2%®U the average value of EX,=NcEcO,c+Nylyosw=Nc(0.158)
(2.3 x 107%* cm?) + N(0.008)(4.8 x 1072 cm?), where the fission spectrum range
elastic scattering cross sections of Table 1.3 have been assumed to hold also in
the slowing-down range. The total absorption cross section is X,=NcG,c=
Ny6.u = Nc(0.002 x 10724 cm?) + Ny(280 x 107**em?) in the slowing-down
range, where the resonance range cross sections from Table 1.3 have been used.

TABLE 1.4 Number of Collisions, on Average, to
Moderate a Neutron from 2MeV to 1eV

Number of
Moderator 3 Collisions EX,/Z,
H 1.0 i4 —_
D 0.725 20 —
H;0 0.920 16 7t
D,O 0.509 29 5670
He 0.425 43 83
Be 0.209 69 143
C 0.158 91 192
Na 0.084 171 1134
Fe 0.035 411 35

28y 0.008 1730 0.0092
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PROBLEMS

1.1. Demonstrate that the speeds of the neutron and nucleus in the CM system do

not change in an elastic scattering event by using conservation of momentum
and kinetic energy.

1.2. Estimate the probability that a 1-MeV neutron will be moderated to thermal

without being captured in a mixture of uranium and water with Ny/Ny = 1:1.
Repeat for a 1:1 mixure of uranium and carbon.



1.4.

1.5.

1.6.
1.7.

1.8.
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. Neutrons are slowed down to thermal energies in a 1:1 mixture of H,O and

4% enriched uranium (4%2>°U, 96%%°8U). Estimate the thermal value of
n=voy/ (o.+0¢). Repeat the calculation for a mixture of Q%>*U,
2%%*°Pu, 96%>*U).

Estimate the probability that a fission neutron will have a scattering collision
with H>O in the mixtures of Problem 1.3.

Calculate the average energy loss for neutrons at 1-MeV, 100-keV, 10-keV, and
1-keV scattering from carbon. Repeat the calculation for scattering from iron
and from uranium.

Repeat Problem 1.5 for scattering from hydrogen and sodium.

Calculate the moderating ratio and the average number of collisions required
to moderate a fission neutron to thermal for a 1:1 mixture of 12C : 28U, Repeat
for a 10: 1 mixture.

Calculate the thermal absorption cross section for a 1:1 wt% mixture of
carbon and 4% enriched uranium (e.g., 4%*33U, 96%*>%U).






2 Neutron Chain Fission Reactors

2.1 NEUTRON CHAIN FISSION REACTIONS

Since two or three neutrons are released in every neutron-induced fission reaction,
the possibility of a sustained neutron chain reaction is obvious, as illustrated in
Fig. 2.1. To sustain a fission chain reaction, one or more of the neutrons produced
in the fission event must, on average, survive to produce another fission event. There
is competition for the fission neutrons in any assembly—some will be absorbed in
fuel nuclides as radiative capture events rather than fission events, some will be
absorbed by nonfuel nuclides, and some will leak out of the assembly. A scattering
event does not compete for a neutron because the scattered neutron remains in the
assembly and available for causing a fission event, but a scattering event does
change a neutron’s energy and thus, because the various cross sections are energy
dependent, does change the relative likelihood of the next collision being a fission
event.

Capture-to-Fission Ratio

The fission cross sections for the fissile nuclides increase approximately as 1/v with
decreasing neutron energy, but then so do the capture cross sections of the fissile
nuclides. The probability that a neutron that is captured in a fissile nuclide causes a
fission is just of/(o,; + o) = 1/(1 + 6,/cs) =1/(1 + o), where & = &, /oyis refer-
red to as the capture-to-fission ratio. The capture-to-fission ratio for the principal
fissile nuclides decreases as the neutron energy increases. For high neutron ener-
gies, the fission probability, which varies as (1 + o) ', is larger for 2°Pu than for
235U or 23U, but the situation is reversed for low-energy thermal neutrons.

Number of Fission Neutrons per Neutron Absorbed in Fuel

The product of the fission probability for a neutron absorbed in the fuel and the
average number of neutrons released per fission, n = voy/(cs+ 0, )=Vv/(1 +),
provides a somewhat better characterization of the relative capabilities of the vari-
ous fissile nuclides to sustain a fission chain reaction. This quantity is plotted in
Fig. 2.2 for the principal fissile nuclides. For high neutron energies, 1 is larger for
23%py than for 25U or 2*U, but the situation is reversed for low-energy thermal
neutrons.

35
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Fig. 2.1 Schematic of a fission chain reaction. {From Ref. 3; used with permission of
Wiley.)

Neutron Utilization

The probability that a neutron is absorbed in a fissile nuclide instead of being
absorbed in another nuclide or leaking from the assembly is

absorb fissile

absorb fissile + absorb nonfissile + leak (2.1)
__absorb fissile 1 ’

= = /P
absorb total (1 + leak/absorb total) Pr

where fis the fraction of the absorbed neutrons which are absorbed in the fissile
nuclides, or the utilization:

Nﬁso-gs
NﬁSUles + fvl:;the:ra'gther

f= (2.2)
and Py refers to the nonleakage probability. Since the absorption cross section,
6, =G + Gy, is much greater for thermal neutrons than for fast neutrons for the
fissile nuclides, but comparable for fast and thermal neutrons for the nonfissile fuel
nuclides and for structural nuclides, the utilization for a given composition is much
greater for thermal neutrons than for fast neutrons (and, in fact, is usually referred
to as the thermal utilization).

Fast Fission

The product 1 fis the number of neutrons produced, on average, from the fission of
fissile nuclides for each neutron absorbed in the assembly. There will also be
neutrons produced by the fission of the nonfissile fuel nuclides, mostly by fast
neutrons. Defining the fast fission factor ge=total fission neutron production
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Fig. 22 n for the principal fissile nuclides. (From Ref. 9; used with permission of Electric
Power Research Institute.)

rate/fission neutron production rate in fissile nuclides, 1 f& is the total number of
fission neutrons produced for each neutron absorbed in the assembly, and 1 fePy is
the total number of fission neutrons produced, on average, for each neutron intro-
duced into the assembly by a previous fission event.
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Resonance Escape

The parameters 1 f¢ must be evaluated by averaging over the energy of the neu-
trons in the assembly, of course. When the neutron population consists predomi-
nantly of thermal neutrons, the thermal spectrum-averaged cross sections given in
Table 1.3 may be used to estimate 1 and f, and the cross sections averaged over the
fission spectrum may be used in estimating €, which should now also include fast
fission in the fissile nuclides. In this case, it is necessary to take into account
separately the capture of fission neutrons while they are slowing down to the
thermal energy range, predominantly by the capture resonances of the fuel nuclides.
The probability that a neutron is not captured during the slowing-down process is
referred to as the resonance escape probability and denoted p. This competition for
neutrons is illustrated schematically in Fig. 2.3 (leakage is neglected).
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Fig. 2.3 Neutron balance in a thermal neutron fission assembly. (From Ref. 1; used with
permission of Taylor & Francis.)
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2.2 CRITICALITY

Kffective Multiplication Constant

‘The product 7 fep Py is the total number of fission neutrons produced, on average,
by one fast neutron from a previous fission event. This quantity is referred to as the
effective multiplication constant of the assembly:

k= T)fEPPNL = kooPNL (23)

where k.. refers to the multiplication constant of an infinite assembly with no
leakage.

If exactly one neutron, on average, survives to cause another fission, a condition
referred to as criticality (k= 1), the neutron population in the assembly will remain
constant. If less than one neutron, on average, survives to produce another fission
event, a condition referred to as subcriticality (k < 1), the neutron populaticn in the
assembly will decrease. If more than one fission neutron, on average, survives to
cause another fission, a condition referred to as supercriticality (k > 1), the neutron
population in the assembly will increase. The effective multiplication constant
depends on the composition (k) and size (Pnp) of an assembly and on the ar-
rangement of the materials within the assembly (f and p). The composition affects £
both by the relative number of nuclides of different species that are present and by
the determination of the neutron energy distribution, which determines the average
cross sections for each nuclide. The arrangement of materials determines the spatial
neutron distribution and hence the relative number of neutrons at the locations of
the various nuclides.

The fissile nuclide 2*>U is only 0.72% of natural uranium. Fuel enrichment to
achieve a higher fissile content, hence larger value of f, is a major means of
increasing the multiplication constant. The number of fission neutrons produced
for each neutron absorbed in fissile material, 7, is significantly larger for fast
neutrons than for thermal neutrons, because the capture-to-fission ratio is smaller
and the number of neutrons per fission is larger. On the other hand, for a given fuel
enrichment, the utilization, f, is greater for thermal neutrons than for fast neutrons
because the absorption cross section is much greater for thermal neutrons than for
fast neutrons for the fissile nuclides, but comparable for fast and thermal neutrons
for the nonfissile fuel nuclides and for structural nuclides. On the whole, the amount
of fissile material necessary to achieve a given value of the multiplication constant
is substantially less in a fast neutron spectrum than in a thermal neutron spectrum.

Effect of Fuel Lumping

Lumping the fuel rather than distributing it uniformly can have a significant effect
on the multiplication constant. For example, if natural uranium is distributed uni-
formly in a graphite lattice, the values of the various parameters are 1y~ 1.33,
f0.9, £/ 1.05, and p=0.7, yielding k., =~ 0.88 (i.e., the assembly is subcritical}.
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If the fuel is lumped, the strong resonance absorption at the exterior of the fuel
elements reduces the number of neutrons that reach the interior of the fuel el-
ements, increasing the resonance escape probability to p~ 0.9. Lumping the fuel
also reduces the thermal utilization f, for the same reason, but the effect is not so
significant. Lumping the fuel was the key to achieving criticality (k= I} in the first
graphite-moderated natural uranium reactors and is crucial in achieving criticality
in present-day D;O-moderated natural uranium reactors.

Leakage Reduction

The multiplication constant can be increased by reducing the leakage, most of
which is due to fast neutrons. This can be done simply by increasing the size.
The leakage can also be reduced by choosing a composition that moderates the
neutrons quickly before they can travel far or by surrounding the assembly with a
material with a large scattering cross section (e.g., graphite), which will reflect
leaking neutrons back into the assembly.

Example 2.1: Effective Multiplication Factor for a PWR. For a typical pressur-
ized water reactor (PWR), the various parameters are 1~ 1.65, f~0.71, e = 1.02,
and p~0.87, yielding k., ~1.04. The nonleakage factors for fast and thermal
neutrons are typically 0.97 and 0.99, yielding & =~ 1.00.

2.3 TIME DEPENDENCE OF A NEUTRON
FISSION CHAIN ASSEMBLY

Prompt Fission Neutron Time Dependence

If there are Ny fission neutrons introduced into an assembly at =0, and if { is the
average time required for a fission neutron to slow down and be absorbed or leak
out, the number of neutrons, on average, in the assembly at time =1 is (k)N.
Continuing in this fashion, the number of neutrons in the assembly at time ¢ = ml
(m integer) is (k)"No. The quantity [ is typically ~ 10™*s for assemblies in which
the neutrons slow down to thermal before causing another fission, and is typically =
107%s for assemblies in which the fission is produced by fast neutrons. For
example, a %% change in absorption cross section, which could be produced by
control rod motion, causes an approximately 0.005 change in k. The neutron popu-
tation after 0.1 s in a thermal assembly (0.1s= 10° {) in which & = 1.0035, would be
N(0.1) = (1.005)'%°Ny ~ 150N, In a thermal assembly with k= 0.995, the neutron
population after 0.1s would be N(0.1) = (0.995)' %N, ~ 0.0066N,.
An equation governing the neutron kinetics described above is

dN(t) k-1
= TN(t) + 8(1) (2.4)
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which simply states that the time rate of change of the neutron population is equal
to the excess of neutron production (by fission) minus neutron loss by absorption or
leakage in a neutron lifetime plus any external source that is present. For a constant
source, Eq. (2.4) has the solution

SU ¢ e
S [et Dt 1] (2.5)

N(t) = N(0)elk V7 +
which displays an exponential time behavior. Using the same example as above,
with the source set to zero, leads to N(0.1) = N(0) exp(5.0) = 148N(0) for k =1.005
and N(0.1) = N(0) exp (—5.0) =0.0067N(0) for k=0.995.

Source Multiplication

Equation (2.4) does not have a steady-state solution for £ >0 and does not have a
unique steady-state solution for k= 1. However, for £ < 1, the asymptotic solution
is
IAY
N, asymptotic = —k _01 (26)

This equation provides a method to measure the effective multiplication factor £
when k < 0 by measuring the asymptotic neutron population which results from
placing a source Sp in a multiplying medium.

Effect of Delayed Nentrons

It would be very difficult, if not impossible, to control a neutron fission chain
assembly which responded so dramatically to a 1% change in absorption cross
section. Fortunately, a small fraction (p = 0.0075 for 235U fueled reactors) of the
fission neutrons are delayed until the decay () =20.08 s™'} of the fission fragments.
For an assembly that was critical prior to t=0, the equilibrium concentration of
such delayed neutron precursor fission fragments is found from the balance equa-
tion:

dCy

dt =0= ﬂl/NfO'vao - ).Co == gNg - )\C(] (27)

where Nr is the density of fuel nuclei, Ny the neutron population, and Cy the
population of delayed neutron precurser fission fragments.

When the 1% change in cross section occurs at =10, the multiplication of the
prompt neutrom after 0.1s (10000) is [(1—PB)k]'®. During each multiplication
interval [ there is a source A/C of delayed neutrons from the decay of fission
fragments. This source results in (I1—p)4AIC neutrons in the following multiplica-
tion interval, [(I—B)k]ZMC neutrons in the second following multiplication interval,
and so on. There is such a delayed neutron source in each of the 1000 multiplication
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intervals in our example. To simplify the problem, we assume that the fission
fragment concentration does not change (i.e., C = Cp). Thus the number of neutrons
after 0.1 (10007) is

N(10000) = [(1 — B)K"No + NCo[(1 — B)K™ " + NCo[(1 — B)k]™ 2
+ - 4 MCo(1 — Bk + ACo

(1 &1 - )™
1 —k(1 - ) (2.8)

m B
{“1 M [1 RO )

8
+1—k(1—ﬂ)}N°

where Eq. (2.7) has been used in the last step. Evaluating this expression for
k=1.005 yields N(t=0.1s)=3.03N,, instead of the 150N, found without taking
the delayed neutrons into account. If we had taken into account the changing fission
fragment population, we would have found a slightly larger number. Nevertheless,
the fact that some of the neutrons emitted in fission are delayed results in a rather
slow and hence controllable response of a neutron chain fission reacting assembly,
provided that (1—B)k < 0.

[(1 — B)K]"No + MCo

fl

2.4 CLASSIFICATION OF NUCLEAR REACTORS

Physics Classification by Neutron Spectrum

From the physics viewpoint, the main differences among reacior types arise from
differences in the neutron energy distribution, or spectrum, which causes differ-
ences in the neutron—nuclear reaction rates and the competition for neutrons. The
first level of physics classification categories are then thermal reactors and fast
reactors, corresponding to the majority of the neutron—nuclear reactions involving
neutrons in the thermal energy range (E < 1€V ) and to the majority of the neutron—
nuclear reactions involving neutrons in the fast energy range (E > 1keV ), respec-
tively. Representative neutron spectra for thermal (LWR) and fast (LMEFBR) reactor
cores are shown in Fig. 2.4.

There are important physics differences among the different thermal reactors
and among the different fast reactors, but these differences are not so great as the
physics differences between a thermal reactor and a fast reactor. The capture-to-
fission ratio, o, is lower and the number of neutrons produced per fission, v, is
larger in fast reactors than in thermal reactors. This generally results in a larger
value of & for a given amount of fuel in a fast reactor than in a thermal reactor, or,
more to the point, a smaller critical mass of fuel in a fast reactor than in a thermal
reactor. Because of the larger neutron—nuclear reaction rates for thermal neutrons
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Fig. 2.4 Representative fast (LMFBR) and thermal (LWR) reactor neutron energy distribu-
tions. Flux =nv (From Ref. 1; used with permission of Taylor & Francis.)

than for fast neutrons, the mean distance that a neutron travels before absorption is
greater in a fast reactor than in a thermal reactor. This implies that the detailed
distribution of fuel, coolant, and control elements has a much greater effect on the
local competition for neutrons in a thermal reactor than in a fast reactor and that the
neutron populations in the different regions of the core are more tightly coupled in a
fast reactor than in a thermal reactor.

Engineering Classification by Coolant

The neutron spectrum is determined primarily by the principal neutron moderating
material present, and in many cases this material is the coolant. Because the heat
transport system is such a major aspect of a nuclear reactor, it is also common to
classify reactors according to coolant. Water-cooled reactors, such as the pressur-
ized water (PWR) and boiling water (BWR) reactors, which use H,O coolant, and
the pressurized heavy water reactor (PHWR), which uses D,O coolant, have ther-
mal neutron spectra because of the excellent moderating properties of hydrogen.
Since gas is too diffuse to serve as an effective moderator, gas-cooled reactors can
be either thermal or fast, depending on whether or not a moderator, commonly
graphite, is included. The early Magnox and subsequent advanced gas reactors
(AGR) are cooled with CO,, and the advanced high-temperature gas-cooled reactor
(HTGR) is cooled with helium; all are moderated with graphite to achieve a thermal
spectrum. Designs have been developed for a helium-cooled reactor without gra-
phite, which is known as the gas-cooled fast reactor (GCFR). The pressure tube
graphite-moderated reactor (PTGR) is cooled with pressurized or boiling water in
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pressure tubes, but it is necessary to include graphite to achieve a thermal spectrum.
The molten salt breeder reactor (MSBR) employs a molten salt fluid which acts as
both the fuel and the primary coolant loop, and is moderated by graphite to achieve
a thermal spectrum. The advanced liquid-metal reactor (ALMR) and the liquid-
metal fast breeder reactor (LMFBR) are cooled with sodium, which is not a parti-
cularly effective moderator, and the neutron spectrum is fast.
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PROBLEMS

2.1. Calculate and plot the thermal value of m for a uranium-fueled reactor as a
function of enrichment (e.g., percentage >>°U in uranium) over the range 0.07
to 5.0%.

2.2. Calculate the thermal utilization in a homogeneous 1:1 wt % mixture of carbon
and natural uranium. Repeat the calculation for 4% enriched uranium.



3 Neutron Diffusion Theory

In this chapter we develop a one-speed diffusion theory mathematical description of
nuclear reactors. Such a relatively simple description has the great advantage of
illustrating many of the important features of nuclear reactors without the complex-
ity that is introduced by the treatment of important effects associated with the
neutron energy spectrum and with highly directional neutron transport, which are
the subjects of subsequent chapters. Moreover, diffusion theory is sufficiently ac-
curate to provide a quantitative understanding of many physics features of nuclear
reactors and is, in fact, the workhorse computational method of nuclear reactor
physics.

3.1 DERIVATION OF ONE-SPEED DIFFUSION THEORY

Calculation of the rates of the different reactions of neutrons with the materials in
the various parts of a nuclear reactor is the fundamental task of nuclear reactor
physics. This calculation requires a knowledge of nuclear cross sections and their
energy dependence (Chapter 1) and of the distribution of neutrons in space and
energy throughout the reactor. The neutron distribution depends on the neutron
source distribution, which in the case of the fission source depends on the neutron
distribution itself, and on the interactions with atomic nuclei experienced by the
neutrons as they move away from the source. The simplest and most widely used
mathematical description of the neutron distribution in nuclear reactors is provided
by neutron diffusion theory. For simplicity of explication, the neutrons are treated
as if they are all of one effective speed, and effects associated with changes in
neutron energy are suppressed. Such a simplification would be justified in practice
if the cross sections were averaged over the appropriate neutron energy distribution.
As a further simplification, the medium is initially assumed to be uniform.

Partial and Net Currents

With respect to Fig. 3.1, the rate at which neutrons are scattering in the differentiat
volume element dr = r’drdudy is Z,¢ dr, where p=cos®. The fraction of the
isotropically scattered neutrons leaving dr headed toward the differential area dA
at the origin is —(r/r)-dA /4nr’ = udA /4wr”. Not all of these neutrons reach dA,
however; some are absorbed and others are scattered again so that they do not
cross dA. The probability that a neutron leaving dr in the direction of dA actually
reaches dA is e~>". The differential current j_(O: r, pi, V) drdA of neutrons passing

45
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Fig. 3.1 Definition of coordinate system. (From Ref. 10; used with permission of McGraw-
Hill.)

downward through dA which had their last scattering collision in dr is thus

“E s p(r, g, ) dr dA
42

Jo(0:r p ) drda =12 (3.1)

The total current passing downward through dA is found by integrating this expres-
sion over the entire upper half-plane (x> 0}

x 2 1 dA
o= [ar [ av | et 5 (3:2)

Now, the first major approximation leading to diffusion theory is made—for the
purpose of evaluating the integral in Eq. (3.2), the flux is assumed to be sufficiently
slowly varying in space that it can be approximated by expansion in a Taylor series
about the origin:

B(r) = §(0) + £ V(0) + 5 [PV?(0)] + - (33)

in which only the first two terms are retained. Using this approximation and the
trigonometric identity cos f = cos 0, cos 8 4 sin 0, sin 0 cos(y,—Vr), and making the
second major approximation—that absorption is small relative to scattering (e.g.,
2 ~2)—Eq. (3.2) can be integrated to obtain the diffusion theory expression for
the partial downward current density:
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1 ds(0)

. 1 1 1
J=(0) = 36(0) + 5= IV(0)] o5, = 24(0) +z= -

1 1 dp(0)
3?0 3P

(3.4)

A similar derivation leads to an expression for the partial upward current density,

() = Lat0) - 10?0 35)

where D is known as the diffusion coefficient.

The diffusion theory expression for the net current at the origin (positive sign up)
is
_1 a¢(0) _ . d9(0)

- p¥2 (3.6)

Jx(0) =j+(0) —j-(0) = R dx

Carrying out a similar derivation for dA in the x—y and x—z planes leads im-
mediately to the three-dimensional generalization

1

10 =~ 3%,

V$(0) = —DV¢(0) (3.7)

A third assumption—that the neutrons are scattered isotropically—was used in
the derivation above. The last form of Eq. (3.7) is known as Fick’s law, which
governs the diffusion of many other quantities as well as neutrons. A more accurate
derivation of diffusion theory from transport theory (Chapter 9) reveals that a better
approximation for the diffusion coefficient which takes into account anisotropy in
scattering is given by

(3.8)

where X, and X; are the total and scattering cross sections and fij ~ %A is the
average cosine of the scattering angle (A is the atomic mass number of the scatter-
ing nuclei).

Diffusion Theory

The mathematical formulation of neutron diffusion theory is then obtained by using
the diffusion theory expression for the neutron current in the neutron balance
equation on a differential volume element:

%:S+y2f¢-za¢»v4

= S+ V5¢ — T + VDV

(3.9)
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which states that the time rate of change of the neutron density within a differential
volume is equal to the external rate at which neutrons are produced in the volume
by an external source (S) and by fission (vZ ¢ ) minus the rate at which neutrons
are lost by absorption (Z,$) and minus the net leakage of neutrons out of the
volume (V - J). Proof that the net leakage out of a differential volume element is
V + J follows from considering the difference of outward and inward currents in a
cube of dimensions A,A A,. The net transport of particles out of the cube is

[Ve(x + Ax) — LONAA, + Uy (y + A)) = ()] A,
+ [Jz(z + Az) - JZ(Z)]AJCA)’

al, o9,
~ (E Ax) AA, + (6—;Ay) AA,

+ (% A},) DA, =V TANA,

where a Taylor’s series expansion of the current has been made.

Interface Conditions

At an interface between regions 1 and 2 at which there is an isotropic source Sp, the
partial currents on both side of the interface must be related by

i20) =18+ (0)

j(0) = 185 + j2(0) 310

Subtracting these two equations and using Eqs. (3.4) and (3.5) yields an interface
condition of continuity of neutron flux:

$2(0) = ¢1(0) (3.11)
Adding the two equations yields
J2(0) = J1(0) + So (3.12)

which, in the absence of an interface source, is a continuity of neutron net current
condition.

Boundary Conditions

At an external boundary, the appropriate boundary condition is found by equating
the expression for the inward partial current to the known incident current, j'°, for
example, from the right at x;,
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in __ :l_ 1 dep(xp)
Jo= 4¢)(Xb) + 2 dx

(3.13)

When the diffusing medium is surrounded by a vacuum or nonreflecting region,
j"=0 and Eg. (3.13) may be written

1dp 1 3%,
P AT, )

(3.14)

A widely used but more approximate vacuum boundary condition is obtained by
noting that this expression relates the flux and the flux slope at the boundary. If the
slope of the flux versus x at the boundary (x,) is used to extrapolate the flux outside
the boundary, the extrapolated flux will vanish at a distance Aextrap = 2Ae = 25"
outside the external boundary. A more accurate result from neutron transport theory
i Aextrap = 0.7104hy. This result gives rise to the approximate vacuum boundary
condition of zero neutron flux at a distance Acyyap oOutside the physical boundary
at x=a, or (@ + Aexirap) = P(@ex) =0, where we have defined the extrapolated
boundary

Gex = A + Aextrap (315)

Since Aeyirap is usually very small compared to the typical dimensions of a diffusing
medium encountered in reactor physics, it is common to use the even more approxi-
mate vacuum boundary condition of zero flux at the physical external boundary.

Example 3.1: Typical Values of Thermal Extrapolation Distance. The thermal
neutron extrapolation distance Aexeap=0.7104/%,=0.7104/[Z, 4+ (1—pg)Z;] for
some typical diffusing media are 0.30c¢m for H,0, 1.79 cm for D50, 1.95cm for
C, and 6.34cm for Na. The approximation that the neutron flux vanishes at the
boundary of the diffusing medium is valid when the dimension L of the diffusing
medium is much larger than the extrapolation distance, L > Aexirap.

Applicability of Diffusion Theory

Diffusion theory provides a strictly valid mathematical description of the neutron
flux when the assumptions made in its derivation—absorption much less likely than
scattering, linear spatial variation of the neutron distribution, isotropic scattering—
are satisfied. The first condition is satisfied for most of the moderating (e.g., water,
graphite) and strectural materials found in a nuclear reactor, but not for the fuel and
control elements. The second condition is satisfied a few mean free paths away
from the boundary of large (relative to the mean free path) homogeneous media
with relatively uniform source distributions. The third condition is satisfied for
scattering from heavy atomic mass nuclei. One might well ask at this point how
diffusion theory can be used in reactor physics when a modern nuclear reactor
consists of thousands of small elements, many of them highly absorbing, with



50 NEUTRON DIFFUSION THEORY

dimensions on the order of a few mean free paths or less. Yet diffusion theory is
widely used in nuclear reactor analysis and makes accurate predictions. The secret
is that a more accurate transport theory is used to “make diffusion theory work”™
where it would be expected to fail. The many small elements in a large region are
replaced by a homogenized mixture with effective averaged cross sections and
diffusion coefficients, thus creating a computational model for which diffusicn
theory is valid. Highly absorbing control elements are represented by effective
diffusion theory cross sections which reproduce transport theory absorption rates.

3.2 SOLUTIONS OF THE NEUTRON DIFFUSION
EQUATION IN NONMULTIPLYING MEDIA

Plane Isotropic Source in an Infinite Homogeneous Medium

Consider an infinite homogeneous nonmultiplying (X,=0) medium in which a
plane isotropic source (infinite in the y—z plane) with strength Sy is located at
x=0. Everywhere except at x =0 the time-independent diffusion equation can be
written

d*p(x)
dx

—éq&(x) —0 (3.16)

where L?= D/Z, is the neutron diffusion length. This equation has a general solu-
tion ¢ =A exp(x/L) + Bexp(—x/L). For x > 0, the physical requirement for a finite
solution at large x requires that A =0, and the physical requirement that the net
current must approach %S[) as x approaches 0 requires that B = LSy/2D. Following a
similar procedure for x <0 leads fo similar results, so that the solution may be
written

(3.17)

Plane Isotropic Source in a Finite Homogeneous Medium

Consider next a finite slab medium extending from x=0 to x= +a with an iso-
tropic plane source at x = (. In this case, the general solution of Eq. (3.16) is more
conveniently written as ¢ =A sinh(x/L) + B cosh(x/L). The appropriate boundary
conditions are that the inward partial current vanishes at x=ali.e., j (@) =0] and
that the inward partial current equals %.thc isotropic source strength as x— 0

i.e., j*(0) = 180]. The resulting solution is

sinh[{a — x)/L] + (2D/L) cosh[(a — x) /L)
“"R(D/L) 1 1L — 2(D]L) — 1]2e-alL

p(x) = (3.18)
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If instead of j~{a) =0, the extrapolated boundary condition ¢p(a.,)=0 is used,
the resulting solution is

sinh((aex — x) /L]
p(x) = 4S9 sinh{aex /L) + (2D /L) cosh(aex /L)

(3.19)

When 0.71%,/a < 1 and 2(Z,/ 3):“)1/ 2«1 (i.e., when the transport mean free path
is small compared to the dimension of the medium and the absorption cross section
is small relative to the scattering cross section), these two solutions agree. These
conditions must also be satisfied in order for diffusion theory to be valid, so we
conclude that use of the extrapolated zero flux boundary condition instead of the
zero inward current boundary condition is acceptable.

Line Source in an Infinite Homogeneous Medium

Consider an isotropic line source (e.g., infinite along the z-axis) of strength Sy (per
centimeter per second) located at »r=0. The general solution of

1d [ do(r) 1

is ¢ =Aly(r/L}+ BK(r/L), where Iy and K, are the modified Bessel functions
of order zero of the first and second kind, respectively. The physical requitement
for a finite solution at large r requires that A=0. The source condition is
lim(r — 0)2mrJ = 8. The resulting solution for an isotropic line source in an infinite
homogeneous nonmultiplying medium is

_ SoKo(r/L)

#r) =22 (321)

Homogeneous Cylinder of Infinite Axial Extent
with Axial Line Source

Consider an infinitely long cylinder of radius ¢ with an isotropic source on axis.
The source condition lim(r— 0)2nrJ =S, still obtains, but now A =0 no longer
holds and the other boundary condition is a zero incident current condition at r=a
or a zero flux condition at r=a -+ Aeyyap. The latter vacuum boundary condition
leads to the solution for the neutron flux distribution in an infinite homogeneous
nonmultiplying cylinder with an isotropic axial line source:

Sollo(aex/L)Ko(r/L) — Ko(aex /L)lo(r/L)]

2nDIy(ae /L) (322)

Plr) =
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Point Source in an Infinite Homogeneous Medium

The neutron diffusion equation in spherical coordinates is

Ld [ Zdiﬁi(rr)

Ear r ———] —éqﬁ(r) =0 (3.23)

This equation has the general solution ¢ = (Ae'/* + Be~"/} /r. The source condition
is lim(r — 0)4xr’J = S, and the physical requirement for a finite solution at large r
requires that A =0, yielding

So e—r/L
9(r) = 47rD

(3.24)

Point Source at the Center of a Finite Homogeneous Sphere

Consider a finite sphere of radius a with a point source at the center. The same
general solution ¢ = (Ae’’" + Be™"/1)/r of Eq. (3.23) is applicable, but the A =0
condition must be replaced by a vacuum boundary condition at r=a. Using an
extrapolated zero flux condition yields

_ So Siﬂh[(aex - r)/L]
o(r) = 4nrD Siﬂh(aex/L)

(3.25)

for the neutron distribution in a finite sphere of homogeneous nonmultiplying
material with a point source at the center.

3.3 DIFFUSION KERNELS AND DISTRIBUTED SOURCES
IN A HOMOGENEOUS MEDIUM

Infinite-Medium Diffusion Kernels

The previous solutions for plane, line, and point sources at the origin of slab,
cylindrical, and spherical coordinate systems in an infinite medium can be general-
ized immediately to slab, line, and point sources located away from the origin (i.e.,
the location of the coordinate axis in an infinite medium can be offset without
changing the functional form of the result). The resulting solutions for the neutron
flux at location x or r due to a unit isotropic source at x’ and ¥’ may be thought of as
kernels. The infinite-medium kernels for a plane isotropic source of one neutron per
unit area per second, a point isotropic source of one neutron per second, a line
isotropic source of one neutron per unit length, a cylindrical shell source of one
neutron per shell per unit length per second, and a spherical shell source of one
neutron per shell per second are
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Plane: ¢p1 (x : x’) = ELﬁe—lx—#l/L

- Ko(jr—r'I/L)
Line: ) =——
ine: ¢y(r:r') 7D
) , iad
Point: ¢pe(r: ') = m (3.26)

1 {Ko(r/L)Io(r’/L), r>r

Cylindrical shell: @cy (r: r) = ——= x :
Y 2D "\ Ko(F/L)o(r/L), <V
L
- ) DY —r—rI/L _ —lr+rl/L
Spherical shell: ¢y (r : ') rpm—r (e e )

These kernels may be used to construct the neutron flux in an infinite homo-
geneous nonmultiplying medium due to an arbitrary source distribution Sy:

é(r) = / $(r : 1)So(t') dr’ (3.27)
For a planar source distribution this takes the form
® So(x')L
(x) = / So)L v gy (3.28)
oo 2D

and for the more general point source,

' (3.29)

Finite-Slab Diffusion Kernel

Consider a slab infinite in the y- and z-directions extending from x=—atox= +a
with a unit isotropic source at x’. The neutron diffusion equation

d*$(x)
dx2

-6 =0 (3.30)

holds everywhere in —a < x < + a except at x = x/, the source plane. The continuity
conditions at the source plane, x=x/, are, from Egs. (3.11) and (3.12),

P +¢) = p(x' —¢)

JX +e)=J —e)+1 (331)

where x’ + ¢ indicates an infinitesimal distance to the right of ¥/, and so on. For the
vacuum boundary conditions at x = —a and x = a we use the approximate zero flux
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conditions
$(—a) = ¢(a) =0 (3.32)
Solving Eq. (3.30) as before and using these source and boundary conditions

yields the following expressions for the flux at x due to a unit isotropic source at x’,
or the finite-slab diffusion kernel:

_ sinh{(a + )/Ljsinh{(a — x)/L]

b4 (x x) (D/L)sinh(2a/L) T (3.33)
bz : ) = Sobl(a —x)/Lsinhl(a + /L |
- (D/Lysinh(2a/L) ’

These kernels may be used to calculate the neutron flux distribution in the slab
due to a distributed source, So(x’):

o) = [ o) lx: X) A + / So)p-r:)dd (334)

Finite Slab with Incident Neutron Beam

As a further relevant example, consider the first-collision source distribution in a
slab due to a beam incident from the left at x = —a:

So(x) = goXge &t (3.35)
Using this source in Eq. (3.34) yields the neutron flux distribution within the slab:

q()Ese_):r{1

%) = 557 = (1/2))sinh(2a/L) [ezrasmh (E%_x') " e—%mn(“ -LH>
_ e‘z‘xsinh(z—z)] (3.36)

By using a first-collision source, the highly anisotropic incident beamn neutrons
are treated by first-flight transport theory until they have had a scattering collision
which (at least partially) converts the beam to a nearly isotropic neutron distribution
which is amenable to treatment by diffusion theory. The solution for the nearly
isotropic neutron distribution given by Eq. (3.36) has a maximum some distance
into the slab at 0 > x> —a.

3.4 ALBEDO BOUNDARY CONDITION

Consider a slab that is infinite in the y- and z-directions located between x=0
and x=a with a known inward partial current j*(0) = ji. Upon solving for the
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ncutron flux distribution for an extrapolated zero flux vacuum boundary condition
$(a + hexrap) = Plaex) =0, it is possible to evaluate the reflection coefficient, or
albedo, for neutrons entering the slab from the left at x=0.

:j_ 0) 1= (2D/L)coth(ae /L)
~j+(0) " 1+ (2D/L)coth(aex /L)

e}

(3.37)

As a/L becomes large, coth[(a + Aexerap)/L] — 1, and & — (1-2D/L)/(1 + 2D/L),
the infinife-medium value.

Now consider two adjacent slabs, one denoted B and located in the range
—b<x <0 and the other denoted A and located in the range 0 <x <a. If we are
not interested in the neutron flux distribution in slab A but only in the effect of stab
A on the neutron flux distribution in slab B, the albedo of slab A can be used as an
albedo boundary condition for the neutron flux solution in slab B. From Egs. (3.4)
and (3.5),

1 dés| _ _ J+(0)—j(0) =_£(1—0¢A) (3.38)
¢ dx |, 2[j+(0) +j-(0)] 2\1+o4 '
This albedo boundary condition can also be simplified by a geometric interpreta-
tion. If the flux in slab B at the interface between slabs A and B (x=0) is ex-
trapolated (into slab A) to zero using the slope at the interface given by Eq. (3.38),
an approximate albedo boundary condition for the flux solution in slab
B(—b < x < 0) becomes ¢g(Azpedo) =0, where

1+ o
Matbedo = 0.71XE ( - aj) (3.39)

3.5 NEUTRON DIFFUSION AND MIGRATION LENGTHS

The distribution of neutrons within a finite or infinite medium is determined by the
source distribution, the geometry (in a finite medium), and the neutron diffusion
length, L= (D/X,)"/?. The (thermal) diffusion length is related to the mean-squared
distance that a thermal neutron travels from the source point to the point at which it
is absorbed, as may be seen by computing the mean-squared distance to capture for
(thermal) neutrons emitted by a point source in an infinite medium:

2= [(;x} r*(4mr’E,¢) dr _ f(;’° PBeIL gy

I @rrs.gydr [ rer/ldr

= 6L2 (3.40)

where Eq. (3.24) has been used for the neutron flux due to a point source at r=0. It
is also apparent from the exp (+x/L) nature of many of the solutions above that L is
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the physical distance over which the neutron flux can change by a signilicant
amount (i.c., e~ hy,

Thermal Diffusion-Length Experiment

The thermal neutron diffusion length can be determined experimentally by measur-
ing the axial neutron flux distribution in a long (with respect to mean free path)
block of material with an isotropic thermal neutron flux incident on one end (e.g.,
from the thermal column of a reactor). With reference to Fig. 3.2, consider a
rectangular parallelepiped of length ¢ and cross section 2a x 2b with an incident
isotropic thermal neutron source So(x,y) at z=0 which is symmetric in x and y
about x=0 and y=0. The neutron flux in the block satisfies

g;f gf "%f—é¢:0 (3.41)
and the boundary conditions
Jo(x,3,0) = 3 So(x,) (3.42a)
O Zapr,y,2) =0 (3.42b)
@, 2ber,z) =0 (3.42¢)
Hx,y,Cex) =0 (3.42d)

We seek a separable solution to Eq. (3.41) of the form &(x, v, ) = X(x)Y(y)Z(2).
Substitution of this form into Eq. (3.41) and division by XYZ yields

Fig. 3.2 Geometry for diffusion-length experiment. (From Ref. 10}
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X' ¥Yo) 20 _ L
X TY0) T2 I B4)

where the double prime indicates a second derivative with respect to the respective
spatial variables. In general, this equation can only be satisfied if each of the terms
on the left is separately equal to a constant:

X'x) _ ') _ Z'z) _
X0 = K, Sy =ck T 0" i3 (3.44)

in which case Eq. (3.43) becomes

1
k3 :ﬁ+kf+k§ (3.45)
The general solutions to Egs. (3.44) are

X(x) = Ay sinkyx + Cy cos kyx

¥Y(y) = Az sinkpy + Crcoskyy (3.46)

Z(z) = Aze™ + Gzt

The x~y symmetry requirement determines that A} =A; =0. The end condition of
Eq. (3.42d) may be used to eliminate C; to obtain

Z(z) = Aye 02 [1 — e Hslend] (3.47)

The extrapolated boundary conditions of Eqs. (3.42b) and (3.42c) require that
cos kid.;, = o8 kab., = 0, which can only be satisfied if k; and k, have the discrete
values

kl,,zzf"r 2n+1), n=01,...
ex (3.48)
= 2 1 =01,...
kZm Zbex( m + )7 m 07 )

This result, together with Eq. (3.45), requires that k; can only take on discrete
values

1
2 2
—kln +k2m +

K-k 77

3nm

(3.49)

Thus the most general sofution of the neutron diffusion equation that satisfies the
extrapolated boundary conditions of Eqs. (3.42b) to (3.424d) is

[o.u]
dlx,y,z) = Z Apy €08 kx cOS kopy e‘k’”"z[l — e_2k3'""(”“_z)] {3.50)

nm=0
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where A,,, is a constant that can be determined from Eq. (3.42a), but that is not
necessary for our purposes.

Noting that k3,,, increases with m and », the asymptotic form of the neutron flux
distribution along the z-axis that persists at large distances from z=0 is

$(0,0,z) =~ Agge 2|1 — = 2wnlcex=2)] (3.51)

For very long blocks (large c.y), the term in brackets is unimportant except near the
end, and the flux decreases exponentially, so that a measurement of the axial flux
distribution far away from both the source at z=0 and the end at 7= c,, should
provide for experimental determination of k3. The diffusion length then is deter-
mined from

1 x \? r \?2
ﬁ - k%OO - (zaex) B (Zbex) (3.52)

The measured diffusion lengths L for thermal neutrons in H,O, D,0, and graph-
ite are about 2.9, 170, and 60 cm, respectively. The implication of these measure-
ments is that thermal neutrons would diffuse a root-mean-square distance from the
point at which they appear (are thermalized ) to the point at which they are absorbed
of 7.1, 416, and 147 cm, respectively, in these three moderators.

Migration Length

In a water-or graphite-moderated reactor, the fission neutrons are born fast (average
energy about 1.0 MeV) and diffuse as fast neutrons while they are in the process of
slowing down to become thermal neutrons. In fast reactors, the neutrons are ab-
sorbed before thermalizing. In a later chapter we return to calculation of the diffu-
sion of these fast neutrons, but for now we simply indicate that there is an
equivalent for fast neutrons of the thermal diffusion length, which for historical
reasons is identified as the square root of the “age to thermal,” Ty, For intermediate
to heavy mass moderators, this quantity can be shown to be equal to one-sixth the
mean-squared distance a fast neutron diffuses before it thermalizes (for hydro-
genous moderators, this is the definition of the quantity).

The mean-squared distance that a neutron travels from birth as a fast fission
neutron until capture as a thermal neutron is given by

7 = 6(mm + L?) = 6M? (3.53)
where M = (ty, + Lz)l/ 2 is known as the migration length.
Example 3.2: Characteristic Diffusion Parameters. Diffusion characteristics for

some common moderators are given in Table 3.1. The values of D, X, and L are
for thermal neutrons. Diffusion characteristics for compositions representative of
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TABLE 3.1 Diffusion Parameters for Common Moderators

Moderator  Density(g/cm®) D (em) Z,(cm™") L(m) t4"*(cm) M (cm)

H0 1.00 0.16 20x%x1072 2.9 5.1 5.8
D,0 1.10 0.87 29%107° 170 11.4 170
Graphite 1.60 0.84 24x10™" 59 19 62

Source: Data from Ref. 4; used with permission of Wiley.

TABLE 3.2 Diffusion Parameters for Representative Reactor Core

Types

Reactor L(cm) tthl/ 2(cm) M(cm) Diameter (L) Diameter (M)
PWR i.8 6.3 6.6 190 56
BWR 2.2 7.1 7.3 180 50
HTGR 12 17 21 63 40
LMFR 5.0° 5.0 35 35
GCFR 6.6° 6.6 35 35

Source: Data from Ref. 4; used with permission of Wiley.
“Fast neutron diffusion length.

pressurized water (H,O) reactors (PWRs), boiling water (I1,0) reactors (BWRs),
high-temperature graphite thermal reactors (HTGRs), sodium-cooled fast reactors
(LMFRs), and gas-cooled fast reactors (GCFRs) are given in Table 3.2, Typical core
diameters, measured in thermal diffusion lengths and in migration lengths for the
thermal reactors and measured in fast diffusion lengths for the fast reactors, are also
given. It is clear from these numbers that most of the diffusion displacement under-
gone by a fission neutron occurs during the slowing-down process.

3.6 BARE HOMOGENEOUS REACTOR

In a fission chain reacting medium (i.e., a medium in which neutron absorption can
lead to fission and the production of more neutrons), the diffusion equation may or
may not have an equilibrium steady-state solution, depending on the precise
amount of multiplication. Thus we must consider the time-dependent diffusion
equation

189(v,1)

SO DV, 1) + Ba(r,) = (1) (3:54)

In a finite homogeneous medium (i.e., a bare reactor) the appropriate boundary
condition is the extrapolated zero flux condition

D(aex, 1) =0 (3.55)
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where a., denotes the external boundaries. We further specify an initial condition

¢(r,0) = o(r) (3.56)

where ¢ denotes the initial spatial flux distribution at 1 =0.
We use the separation-of-variables technique and look for a solution of the form

o(r,1) = (r)T(z) (3.57)
Substituting Eq. (3.57) into Eq. (3.54) and dividing by ¢ =T yields

19T

% [DV? + (v5; ~ Za)yp] = T = 2 (3.58)

where we have indicated that an expression which depends only on the spatial
variable and an expression which depends only on the time variable can be equal
at all spatial locations and times only if both expressions are equal fo the same
constant, —A. The second form of Eq. (3.58) has the solution

T(t) = T(0)e™™ (3.59)
We look for spatial solutions { that satisfy
V2h(r) = —B2y(r) (3.60)

and the extrapolated spatial boundary conditions of Eq. (3.55). The constani By,
known as geometric buckling, depends only on the geometry.

Slab Reactor

For example, in a slab reactor extending from x = —a/2 to x= + a/2 and infinite in
the y- and z-directions, Egs. (3.60) and (3.55) become

e --mw, w(%)=v(2) =0 e

which have solutons y =1, only for the (infinite) set of discrete spatial eigen-
values of B, =B,

2
() = c08 By, Bi:(Z-”), n=1,3,5,... (3.62)
X

Using this result in Eq. (3.58) implies that solutions of that equation exist only for
discrete-time eigenvalues A, given by
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M = v(E4 + DB — v¥y) (3.63)

Thus the solution of Eq. (3.54) for a slab reactor is

X

$(x,1) = 3 AuTa(t) cos”

r=odd Aex

(3.64)

where T, is given by Eq. (3.59) with A=A, and A, is a constant which may be
determined from the initial condition of Eq. (3.56) and orthogonality:

2 Gex /2
Aplx) =— dx ¢o(x) cos mx

Qex J—a,,) Aex

(3.65)

Since B} < B} < --- < B2 = (nm/ax)’, the time eigenvalues are ordered
A <hs <---<h,=V(E, —I—DB,ZI —vZs). Thus, after a sufficiently long time
(t >1/%3), the solution becomes

O(x,t) — Aje M cosBix = AjeM! cos > (3.66)

Aex

This result implies that, independent of the initial distribution (as long as A; #0),
the asymptotic shape will be the fundamental mode solution corresponding to the
smallest spatial and time eigenvalues. The asymptotic solution is steady-state only
if A, =0. If 4; > 0, the asymptotic solution is decaying in time, and if A; <0, it is
increasing in time. When the neutron population is sustained precisely in steady-
state by the fission chain reaction, the reactor is said to be critical; when the neutron
population s increasing in time, the reactor is said to be supercritical; and when the
neutron population is dying away in time, the reactor is said to be subcritical.
Defining the material buckling, B,

I/Ef — Ea _ sz/za —1

2
B D 12

(3.67)

the criticality condition for a bare homogeneous reactor may be written:

Supercritical: A, < 0, B2 > B}
Critical: A =0, B. =B (3.68)
Subcritical: A\ >0, B2 < B?

Right Circular Cylinder Reactor

The slab reactor results can be extended immediately to more general geometries
by replacing Eqs. (3.61) and (3.62) with the corresponding equations for the other
geometries. For example, for the more realistic core geometry of a right circular
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cylinder of radius @ and height H, the equation corresponding to Eq. (3.60) is

10 [ p(r,0)] | ¥(r2) .,
;5 [I‘ or ] + (922 - _Bg(r’ Z)TIJ('”, Z) (369)
and the extrapolated boundary conditions are
— Hex _
w(aexy Z) - ’ll) r, :I': T = 0 (370)

We make further use of the separation-of-variables technique to write
P(r,z) = R(r)Z(z) (3.71)
Substituting Eq. (3.71) into Eq. (3.69) and dividing by RZ yields

1 18 [ 6R(r) 1 0%Z(z) _
R(r)ror [r or ] Z(z) 0z =V e =B (72

where the second form of the equation indicates that the only way in which the sum
of an expression which depends only on the r-variable plus an expression which
depends only on the z-variable can everywhere equal a constant is if the two
expressions separately are equal to constants. Solutions of these two equations—
the first expression equal to the first constant and the second expression equal to the
second constant—which satisfy the corresponding boundary condition of Egs.
(3.70), exist only for discrete values of the constants v, (the roots of Jo(V,aex) =0,
m=12,...) and x,{k, =nn/Hey, n=1,3,...). Since the roots of Jy are ordered,
vi<vp < ...<V, the smallest of the corresponding discrete eigenvalues
B2, = V2 + (nn/He)? is B3, = V2 4 (m/Hex )%, and the smallest time eigenvalue is

2
M = v{z:a +D{Vf + (; ) ] - uzf} =v(B}, —B) =v(B: - B.) (3.73)

The corresponding asymptotic solution is

#(r,z,1) = Ando <ﬂ) cos (;Irz )e“’\” (3.74)
ex

Aex

The criticality condition, A, =0, corresponds to B2, = Bg = B3,.
The geometric bucklings and asymptotic flux solutions are given for the com-
mon geometries in Table 3.3.

Interpretation of Criticality Condition

The criticality condition A, =0, or B = Bf,, can be rearranged to yield
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TABLE 3.3 Geometric Bucklings and Critical Flux Profiles Characterizing Some
Common Core Geometries

Geometry Geometric Buckling B; Flux Profile
r \2 cos X
Slab . ) e
2 vir
Infinite cylinder il ) Jo R
R X
eX
™\’ r~!sin—
Sphere R ) Rex
X
2 2 2 nx Ty nz
T T n COS— €08 —COS —
Rectangula.r a— ) =+ ( b_ ) + ( c—) Gex bex Cex
parallelepiped ex ex X

Finite cylinder

2 2 A\ 4 T
vy, (o Jogcos T
Rex I’{ex eX ex

Source: Adapted from Ref. 4; used with permission of Wiley.

1 _ sz/xa koo

= = koPrL (3.75)
2R2 2R2
1 +I?B2 1+ L°BE

where k. is the infinite-medium multiplication constant and Pnp. = (1 + LzBézg)_1 is
interpreted as the nonleakage probability.

If &, 0, the reactor is not critical and the asymptotic solution will either grow
indefinitely or decay away in time, because the multiplication of neutrons (the ratio
of the neutron population in successive generations) is greater or less than, respec-
tively, unity. Since Eq. (3.75) applies only when k = 1, we can more generally write

vEs/ X,
k=" —p p 3.76
1+12B2 = N (3.76)

The situation A, <0, in which the asymptotic solution increases in time, corre-
sponds to k> 1, and the situation A; > (), in which the asymptotic solution decays in
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time, corresponds to k< 1. From Egs. (3.63) and (3.76),

M =v(B} - B) =vZ.(1 +LZB%)(1 —%) (3.77)

Since the mean free path to absorption is 1/%,, the lifetime of a neutron that
remains in the reactor until absorption is 1/vZ,. Defining an effective lifetime of a
neutron in the reactor which takes into account the possibility of leakage before
absorption,

1 Pny
l=——— =" 378
vE(1+12B) VI, B78)

enables Eq. (3.77) to be written

1-%

N=—

(3.79)

Thus the asymptotic solution of Eq. (3.54) that satisfies the extrapolated boundary
conditions of Eq. (3.55) can be written

Pasy (1, 1) — Ay (r)elle D/ (3.80)

where { is the fundamental mode spatial distribution for the specific geometry
given in Table 3.3.

Optimum Geometries

The minimum size for a bare reactor of a given composition that will be critical
depends on the leakage, hence on the surface-to-volume ratio. The minimum criti-
cal volume for a rectangular parallelepiped bare reactor occurs for a cube and is
V =~ 161.11/B3 . For a right circular cylinder, the minimum critical volume bare
reactor occurs for a radius a =2'/% x 2.405H/x~ 1.08H and is V ~ 148.31/B>,.
The minimum critical volume for a spherical bare reactor is 129.88/B2,.

It is generally desirable for the neutron flux to be distributed as uniformly as
possible over the reactor core. A measure of non-uniformity is the peak-to-volume
average value. For a homogeneous bare core, the peak value occurs at the center,
and the peak-to-volume average is (1/2)> =3.88 for a rectangular parallelepiped,
—2.405mv, /4 J1(v))=3.65 for a right circular cylinder, and n2/3:3.29 for a
sphere.

Example 3.3: Critical Size of a Bare Cylindrical Reactor. Although the above
formalism has been developed for a one-speed description of neutron diffusion, it
can be generalized to energy-dependent diffusion by using cross sections that are
averaged over the neutron energy distribution. A typical composition and set of
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TABLE 3.4 Typical PWR Core Compeosition and Spectrum-Averaged Cross Sections

b Gy O, Of
Isotope (10**em™) (10~**cm?) (107**em?» (107%*cm? v 3 (em™ Z, (cm™) vis em™h
H 2.748 x 1072 0.650 0.294 0 0 1.79 x 1072 8.08 x 1073 0
0 2757 x 1072 0.260 1.78 x 107* 0 0 7.16 x 1073 490 % 107° 0
Zr 3.694 % 1072 0.787 0.190 0 0 291 %1073 7.01x107* 0
Fe 1710 x 1073 0.554 2.33 0 0 9.46 x 1074 3.99 x 1073 0
23y 1.909 x 1074 1.62 484.0 312.0 243 3.08 x 1074 9.24 x 1072 0.145
238y 6.592 x 1073 1.06 2.11 0.638 2.84 693 %1073 1.39x 1072 1.20x 1072
log 1.001 x 1073 0.877 3.41 % 10° 0 0 8.77 x 107° 3.41x 1072 0
Sum 3.62x 1072 0.1532 0.1570

Source: Data from Ref. 4; used with permission of Wiley.
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spectrum-averaged cross sections for a PWR are given in Table 3.4. From the table a
number of important materials parameters can be determined: D = 3 Zt, =9.21cm,
1’=D/X,=60.1¢cm? B2 = (vZ; ~ 3,)/D = 4.13 x 10~4cm2, k = Va2, =
1.025, and  Aextrap= 19 6cm. The criticality condition is B% = 32
(m/Hex)” + (2.405 /Rex) Fixing the height at 370 cm, the criticality condition re-
quires that R., = 127.6cm or R =108 cm,

3.7 REFLECTED REACTOR

Since the dimensions of a critical core of a given composition depend on the
fraction of the neutrons that leak out, these dimensions can be reduced if some
of the leaking neutrons are reflected back into the core. A reflector has the added
benefit of making the neutron flux distribution in the core more uniform by in-
creasing the neutron population in the outer region due to reflected neutrons which
otherwise would have escaped. Figure 3.3 illustrates the neutron flux distributions
in bare and reflected cores of the same composition and dimension.

Reflected Slab Reactor

The mathematical treatment of a reflected reactor can be illustrated most simply by
considering a slab core of thickness a extending from x=—a/2 t0 x= +a/2
reflected on both sides by a nonmultiplying slab of thickness &. If we were to solve
the time-dependent equations in both the core and reflector as we did for the bare
core, but now also requiring that the solutions satisfied continuity of flux and
current conditions at x= +a/2, we would find a similar but more complicated

REFLECTOR REACTOR REFLECTOR

SLOW-NEUTRON FLUX
WITH REFLECTOR —=

F SLOW-NEUTRON FLUX
WITHOUT REFLECTOR

Y 2 U I Y Ny
48 -36 24 -12 0 12 24 36 48
DISTANCE FROM CENTER fem)

Fig. 3.3 Thermal neutron flux in a spherical 233U water-moderated reactor with and without
a beryllium oxide reflector. (From Ref. 11; used with permission of University of Chicago
Press.)
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result as before—that the solution consists of a sum of spatial eigenfunctions
corresponding to discrete geometrical eigenvalues, and at long times the dominant
component is the fundamental mode. Rather than carry through the entire calcula-
tion, we examine the fundamental mode that obtains at long times.

The neutron diffusion equations in the core and reflector are

d2
Core: —Dc—¢2C + (Eac - VEfC)(bC =0

dgig (3.81)
Reflector: —DREE; + Seror =0

The appropriate interface and boundary conditions are symmetry at x =0, conti-
nuity of flux and current at x=a/2, and zero flux at the extrapolated boundary
a2+ bey:

=0 {3.82a}

3)-
(2)-

(bR (g + bex) =0 (3.82d)

or <g) (3.82b)
A (

g) (3.82¢)

The solution in the core satisfying the symmetry boundary condition Eq. (3.82a) is
(pc(x) = AC cos Bmcx (383)

and the solution in the reflector satisfying the extrapolated boundary condition Eq.
(3.82d) is

(a/2) + bex — x

¢Pr = Ag sinh (3.84)

where B2 . = (VE;c — XZuc)/Dc and L = Dg/Z,c. Using these general solutions
in the interface conditions of Egs. (3.82b) and (3.82¢), dividing the two equations,
and rearranging leads to the criticality condition which must be satisfied in order for
a steady-state solution to exist:

Bmca Bmca DRd bex
t - th 2ex 3.85
2 T T aDeLe M Ik (3.85)
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Fig. 3.4 Plot of criticality equation for reflected reactor. (From Ref. 10; used with permis-
sion of McGraw-Hill.)

The smallest value of a for which a solution of this equation exists is less than
/B¢, as can be seen by plotting both sides of Eq. (3.85), in Fig. 3.4. Since the
criticality condition for the bare slab was B,,c = %/, this result confirms that the
addition of a reflector reduces the dimension necessary for criticality.

Reflector Savings

The difference in the reflected and unreflected critical dimensions is known as the
reflector savings, o:

1 DcB,, bex
& = a(bare) — a(reflected) = B—tan‘1 (LD—ELR tanhf—) {3.86)
mC R R

In the limit of a reflector that is thick in comparison to the neutron diffusion length
(b>>>Lg), this reduces to 6 = DcLg/Dg.

Reflected Spherical, Cylindrical, and Rectangular
Parallelepiped Cores

A similar calculation can be performed for other core geometries, but with reflec-
tion in only one direction. The resulting criticality conditions are given in Table 3.5.

3.8 HOMOGENIZATION OF A HETEROGENEOUS
FUEL-MODERATOR ASSEMBLY

In our previous treatment of a homogeneous core, we have implicitly assumed that
the actual core—consisting of thousands of fuel and control elements, coolant, and
structure (Fig. 3.5)—can be represented by some effective homogeneous mixture.
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Fig. 3.5 Heterogeneous nuclear reactor fuel assemblies. (From Ref. 4; used with permis-
sion of Wiley.)

Spatial Self-Shielding and Thermal Disadvantage Factor

We might be tempted to construct this homogeneous mixture by simply volume-
weighting the number densities of the various fuel, control, moderator, coolant, and
structural materials, but this procedure would fail to take into account the reduction
of the neutron population in the region of strong absorbers, a phenomenon known
as spatial self-shielding. We illustrate this phenomenon by considering the thermal
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neutron flux distribution in a large fuel—moderator assembly consisting of a
repeating array of slab fuel elements of width 2q interspersed with moderating
regions of thickness 2(b—a). Since the moderator is much more effective than
the fuel at slowing down neutrons, we specify a uniform source Sjs of thermal
neutrons in the moderator and no thermal neutron source in the fuel. We take as a
calculational model one-half of the slab fuel element, extending fromx=0tox=a,
and one-half of the moderating region, extending from x=a to x =b. The neutron
diffusion equations in the fuel and moderator are

d2¢p ()C)
dx?

d2 ¢M ()C)
dx?

Fuel: —Dp + Zrdp(x) =0

(3.87)

Moderator: —Dyy + Zamdu(x) = Su |

The appropriate boundary conditions are symmetry at the fuel and moderator
midplanes at x=0 and x = b, respectively. The other two conditions that must be
satisfied are continuity of flux and current at the fuel-moderator interface at x=a

d¢r(0) _
——=0 (3.88a)
dou(b)
=0 (3.88b)
¢p(a) = ng(a) (3.88C)
dor(a)  dom(a)
Dp == = Dy —— (3.88d)

The solutions to Eqs. (3.87) that satisfy the conditions of Egs. (3.88) are

brlx) = Sy cosh(x/Lr)

{(1/Dr) coth(a/ L) + (Lr/Dae) cothi(b — @)/ Lus) H(Dr /L) S sitit(a/ Lr)
o) = Su [, o cosh[(b — x)/Ly] :|
™M Tout {(Lr/Ds) coth(a/Li) + (Lt /Da) coth[(b — a)/Luy] }Dat [Lys) sinh[(b — a) /Ly

(3.89)

The thermal flux disadvantage factor is defined as the ratio of the average flux in
the moderator to the average flux in the fuel:

e M _ afy du(x)dx _ VpSar (VMzaM
br

(b—a) [Tor(x)dx  VuZam \ VrZar F+E- 1) (3.90)

where Vie=a, Vyy=b—a, and
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a a b—a b—a
E = —coth— F = > 91
L co " . coth( ) (3.91)

for slab geometry.

Thermal flux disadvantage factors for repeating arrays formed by other simple
geometries can be calculated in the same manner and represented by the second
form of Eq. (3.90). The results for the lattice functions E and F’ in other geometries
are given in Table 3.6. The volumes are V= nR? and 4575133 and Vy; = na’~1R? and
3n(a® — R?), for the cylinder and sphere, respectively.

Effective Homogeneous Cross Sections

An effective homogeneous fuel cross section averaged over the fuel-moderator
lattice can be constructed by using the thermal disadvantage factor of Eq. (3.90)
in the definition

off _  SarPrVr _ YarVr VPt Vi
F T BeVE+ GV Ve + Vi Ve +EVy

— Ehom 1+ VM/VF
F A1+ EVu/Vr

(3.92)

An effective homogeneous absorption cross section for the moderator can ob-
viously be constructed by exchanging the F and M subscripts and replacing & by
£7! These fuel and moderator effective cross sections can then be combined
(26 = 3 4 7Y to obtain an effective homogeneous cross section for the
fuel—moderator assembly to be used in one of the previous homogeneous core
calculations. Effective homogeneous scattering and transport cross sections can
be construcied in a similar manner.

Example 3.4: Flux Disadvantage Factor and Effective Homogenized Cross
Section in a Slab Lattice. Consider a lattice consisting of a large number of
l-cm-thick slab fuel plates separated by | cm of water at room temperature. The
fuel is 10% enriched uranium. The fuel and water number densities are rn3s =
0.00478 x 10**cm ™2, ny35 =0.0430 x 10%* ecm ™3, and ny,0 = 0.0334 cm~>. Using
the spectrum-averaged cross sections of Table 3.4 (and constructing effective H,O
G’s as two times the H o’s plus the O o) yields the following material properties
for the uranium fuel: ¥, =0.0534cm™!, 6,=2.404cm ™', D=6.17cm, and L=
1.60cm, and for water: X, =0.0521cm™ ', X,=0.0196cm™!, D=6.40cm, and
L=18.06cm. The geometric parameters in Eqs. (3.90) and (3.91) are
Ve=Vy=a=b—a=0.5cm.

Evaluating Eq. (3.90) yields £=5.04 for the thermal disadvantage factor.
The effective homogenized fuel absorption and transport cross sections calculat-
ed from Eq. (3.92) are X = 0.398 cm~! and ZT = 0.0089 cm~!. A simple
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TABLE 3.6 Functions E and F for Various Cell Geometries

Geometry”® E and F Functions
¢
N
% l F=2coh 2
Lp Lr
Slab %&\ " 1 =t L_M” coth bL;“
e
_ (pr/Lr)Io(pr/Lr)
21\ (pr /L)
Cylindrical E= (/L) (Pis — PF) [ Lo(Pr/Laa) K (Paa/Lax) + Ko{pr/Lae) 1 (Paa/Lus)
2p L1 (Pat /L) Kr(Pr/Laa) — Ki(Pae/Lag)1 (Pr /Lns)
__ (re/Lr)" tanh(rs/L)
3[(rr/LF) — tanh(rs /Lp)]
Spherical Ee ry— 1 — (ryg /L) coth[(ryr — rr)/Ly]

© 3rpLl, 1 —ryrr/LYy — [(rm — r7)/Lu coth[(rass — rF)/Lu]

Source: Adapted from Ref. 10; used with permission of McGraw-Hill.

“Shaded areas, fuel; open areas, moderator.
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homogenization (implicitly assuming that £=1) yields 22}“‘ =1.202 cm™! and
xhom = 0.0267 cm™!, so the effect of the spatial self-shielding (&) is significant.

The effective homogenized cross section for the water (moderator) is derived by
a procedure similar to that in Eq. (3.92) and results in an expression similar to Eq.
(3.92) but with the M and F subscripts interchanged and & replaced by &~'. The
effective homogenized water absorption and transport cross sections are Egﬁg =
0.0165 cm~! and = = 0.0436 cm™!, so that the total effective absorption and
transport cross sections for the lattice are &7 = X 4 3¢ — 0.3980+ 0.0164 =
0.4144 cm™! and X = =60 4 3efl — 0.0089 + 0.0436 = 0.0525 cm ™.

Note that diffusion theory is not really suitable for calculating the diffusion of
neutrons in such a lattice because A, = 1/Z;>> 0.5 cm, the dimension of the diffus-
ing medium, in both the fuel and the water; and that this example serves more to
illustrate the application of the methodology than to provide accurate quantitative
results.

Thermal Utilization

Another use of the thermal disadvantage factor is to calculate the thermal utilization
for the fuel-moderator lattice:

fr = _ Sarp Vi ) _ YarVF 2erVE + oV
YorOpVE + By Ve Zar Vi 4 Zam Vit Xar VE + EXayt Vi (3.93)
— foom ZarVr + YapVu
ek Ve + &8V

In both Eq. (3.92) and (3.93), the first term is the result that would be obtained
with simple volume-weighted homogenization of the fuel and moderator number
densities, and the second term is a correction that accounts for the flux self-shield-
ing in the fuel.

Measurement of Thermal Utilization

In a finite fuel-moderator assembly with geometry characterized by the geometric
buckling B, and neutrons becoming thermal at a rate gy, {per second per cubic
centimeter) in the moderator, the thermal neutron balance is

anVi = (Sam®p Vi + SardVr) (1 4+ L*B2) (3.94)

and the thermal utilization is just the fraction of those thermal neutrons which are
absorbed that are absorbed by the fuel:

.
o YarfrVe (3.95)
Lar @ VE + Zam Py Vi
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The ratio of the slowing-down source to the thermal flux at some point in the
moderator, ¢s;/ d(x), can be determined by irradiating an indium foil (indium has
an absorption resonance just above thermal) at that point and then measuring the
total foil activation A.,. Then another indium foil clad in a cadmium jacket, which
will absorb all the thermal neutrons before they can reach the foil but will pass the
epithermal neutrons, is irradiated at the same location to determine the epithermal
activation A.y. The thermal component of the total activation, Ay = A — Aepis 1S
proportional to the thermal flux at the location of the foil, Ay, = cydagdx). The
epithermal activation is proportional to the slowing-down source, Ay = Cepigum-
Thus gar/ arx) = (Cepi/ Cn)(Aepi/Am)- The quantity CR=Agy;/Ay is determined
by the foil measurements and is known as the cadmium ratio.

The ratio of constants {cep; /cm) can be determined by irradiating many clad and
unclad indium foils in a large block of pure moderator that has a source emitting ¢
neutrons per second. The neutron balance is

Sar [ $)dr= [ a)dx =0 (3.96)
and the ratio of integrated thermal and epithermal activities is

o= fAth(x)dx - Cepif(f)(x)dx:@ 1
T JAgix)dx  cn [q(x)dx  cw Tam

(3.97)

These results can be combined to write an expression for the thermal utilization,

Sy (1 + L*B?) _1+L232 Py
qMm PCR  ¢p(x)

fe=1- (3.98)

in terms of the experimentally determined quantities CR and p and the local-
to-average moderator flux ratio, which can be calculated using the foregoing
formalism.

Local Power Peaking Factor

Once effective homogenized cross sections are constructed, the fuel-moderator
assembly may be treated as a homogeneous region, and the average flux distribu-
tion in the assembly may be calculated using one of the other techniques discussed
in this chapter. The average power density in the fuel-moderator assembly is then
Z;gd)av, where z;;f is given by an expression such as Eq. (3.92) and ¢,, is the
average flux in the fuel-moderator assembly:

_ VetV _ o 1+ E(Vu/ Vi)

Gav = = 3.99
- Ve + Vi or 1+ (Var/Vr) (3-99)
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The peak power density will occur at the location of the maximum neutron flux
in the fuel element, which is at x=a, as may be seen from Eq. (3.89). The power
peaking factor—the ratio of the peak to average power densities in the assembly—
is given by

Fpp= E;Tﬁ;i“_) - (1 +K"1) drla) _ (1 +ﬂ) 4 coth 2

Vu 1/a\* 1 /a\* a
=(1+v,,)[1+5(a) (o) ] e

(3.100)

where the form of ¢g(a)/¢r for a slab fuel-moderator lattice has been used to
arrive at the second form of the equation. The power peaking is minimized by
minimizing a/Lr and Vy/Vr

3.9 CONTROL RODS

Effective Diffusion Theory Cross Sections for Control Rods

Localized highly absorbing control elements such as control rods cannot be calcu-
lated directly using diffusion theory. However, transport theory can be used to
determine effective diffusion theory cross sections for use with diffusion theory.
We illustrate this by considering the BWR example shown in Fig. 3.5 of a core
consisting of a repeating array of four fuel-moderator assemblies surrounding a
cruciform control rod. First, the fuel-moderator assemblies must be homogenized,
using the procedure of Section 3.8 or some more sophisticated procedure based on
transport theory, yielding a model of a cruciform control rod embedded in a square
cell of homogeneous fuel-moderator, as shown in Fig. 3.6. If the span, /, of the
control blade is large compared to the neutron diffusion length in the fuel-mod-
erator region, the diffusion of neutrons into the rod is essentially one-dimensional.
We take advantage of this fact to replace the two-dimensional problem by an
equivalent one-dimensional problem that preserves both the ratio of the control
rod surface to the fuel-moderator volume and the thickness of the control blade.
We construct an equivalent model consisting of a repeating array of fuel-moderator
slabs of thickness 2a and control rod slabs of thickness 2¢, where a=—
(m?—2d+ 1) /21, as shown in Fig. 3.6. Our calculational model then is a fuel—
moderator (half) slab from x=0 to x=a and a control (half) slab from x=a to
x=a+t, with symmetry boundary conditions at x=0 and x =a +¢. The neutron
diffusion equation

& p(x)

-D
dx?

+ E.0(x) = Sg (3.101)




78 NEUTRON DIFFUSION THEORY
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Fig. 3.6 One-dimensional model of a cruciform control blade cell. (From Ref. 4; used with
permission of Wiley.)

is valid in the fuel-moderator slab, where S is a uniform source of neutrons
slowing down in the fuel-moderator region. The symmetry boundary condition
for the diffusion theory calculation is

dg(0)
= 102
0 (3.102)
and a transport boundary condition
Ja) _ o (3.103)

$la)

is used at the fuel-moderator interface with the control rod. The parameter o must
be determined from a transport theory calculation of the control rod region (Chapter
9). For a slab of width 2¢, such a calculation yields

I 2 (284ct)
201 4 3E, (2% 4c2)]

(3.104)

where X, is the control rod absorption cross section and E, is the exponential
integral function:

E,,(g)z‘/1 e #u" du (3.105)

The solution to Eq. (3.101) which satisfies Egs. (3.102) and (3.103) is

S acosh(x/L)
¢(x) = . [l ~ acosh(a/L) + (D/L)sinh(a/L)

(3.106)



CONTROL RODS 79

We now define an effective diffusion theory cross section for the control rod by
requiring that the diffusion theory and transport theory calculations of the neutron
absorption rate in the control rod agree:

EEffd’avAce]l = Pch (3107)

where ¢,, is the average diffusion theory flux in the fuel-moderator region,
Acen ={(a+ )b is the area of the fuel-moderator plus control rod cell of arbitrary
transverse direction b, P, = b is the perimeter of the control rod interface with the
fuel-moderator region, and J, is the neutron current from the fuel-moderator
region at the surface of the control rod. It is assumed that all neutrons which enter
the control rod are absorbed. Combining the results above yields

Eeff _iﬁ_laqs(a) _ z--:a:
¢ " Aend a ¢  aS/ o+ (1/Lycoth(a/L)] -1

(3.108)

for the effective homogeneous control rod cross section to be used in a diffusion
theory calculation. Note that the X, in this equation is the effective fuel-moderator
homogenized cross section, and the control rod cross section is hidden in the
parameter o.

Example 3.5: Slab Control Plate Effective Cross Section. Consider again the
lattice of alternating 10% enriched uranium fuel and water slabs, each 1cm thick,
discussed in Section 3.8. The effective homogenized lattice cross sections are
=M = 0.4144cm™ and I =0.0525cm™!, leading to D*"=6.35cm and
=391 cm in the fuel-water lattice. Now consider the placement of 1-cm-thick
slab natural boron plates (19.9% 19B) every 10.5cm in the lattice. With respect
to Fig. 3.6, t=05cm and a=5cm. The 198 density in the control slab is
ng1o=0.199(2.45/10.8)(0.6022 x 10°*) =0.0271 x 10?* cm >, the absorption cross
section from Table 3.4 is og1o=3.41 x 1072'cm?, and the macroscopic control
slab absorption cross section is T, = 92.535 cm™. For such large values of 21,
the exponential integrals approach zero and the transport boundary condition
parameter o — 0.5. Evaluation of Eq. (3.108) with these parameters yields for the
effective homogenized control cross section X = 0.0787cm™'. Thus, in the
homogenized representation of the lattice, the effective macroscopic absorption
cross section is 0.414 cm™" with the control plates removed and 0.493cm ™" with
the control plates inserted. The effective transport cross section is 0.0525 em ! and
is assumed to be the same with or without the control plates.

Windowshade Treatment of Control Rods

Now that we know how to obtain effective homogenized cross sections for the fuel—
moderator assemblies and for control rods, we can represent the partial insertion of
a bank of control rods (from the top) into a bare cylindrical core as a two-region
core diffusion problem, as indicated in Fig. 3.7. The lower, unrodded region is
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Fig. 3.7 Insertion of a control rod bank into a bare cylindrical core. (From Ref. 4; used with
permission of Wiley.)

represented by the homogenized fuel-moderator cross sections, and the upper
rodded region is represented by the homogenized fuel-moderator cross sections
plus the effective control rod cross section.

The neutron diffusion equation in both the rodded and unrodded regions is of the
form of Eq. (3.69), and we can anticipate from the development of Section 3.6 that
a separation of variables solution that satisfies a zero flux boundary condition at
r=R (we assume that the reactor is sufficiently large that the zero flux condition at
the external boundary is equivalent to the zero flux condition at the extrapolated
boundary) will be of the form

144
¥(r,2) = Z(2)Jo (715) (3.109)
and the function Z(z) will satisfy
&z,
2 HBZ(2) =0 (3.110)
where
gl (Y (3.111)
@ 12 Rex ‘

and v, =2.405 is the smallest root of Jy(VR) =0.
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Solving the diffusion equation separately in the rodded and unrodded regions
and requiring that the solutions vanish at z=0 and z = H yields

Zun(z) = Aug Siﬂ(BE"Z), 0<z<h (3.112)
Zrod(z) = Aroa sinh [BPY(H — z)], h<z<H :

We require continuity of flux and current at z = h, the interface between the rodded
and unrodded regions,

Zun (h) = Zrod (h)
AdZyn(h) D dZoq(h) (3.113)

D, =
n dz rod dz

The first condition leads to the relationship

Arod _ sin(B‘Z‘“h) (3.114)
Ay sinh[BP4(H — h)] ’
and dividing the two conditions leads to the criticality condition,
1
tan B"h = — ——— tanh[BX" (H — h)] (3.115)

DunBlzm DrodBEOd
which may be solved for the rod insertion distance (H — k), for which the reactor is
just critical.

The axial neutron flux solution is sketched in Fig. 3.7 for several rod insertions.
As might be expected, the axial flux distribution is symmetric when the rod bank is
fully withdrawn and becomes progressively more peaked toward the botiom of the
core as the rod bank is inserted farther downward. Note that in case of rod insertion
from the bottom, the situation is just reversed.

3.10 NUMERICAL SOLUTION OF DIFFUSION EQUATION

Although the semianalytical techniques for solving the neutron diffusion equation
that we have developed can be extended to treat reactor models consisting of a
larger number of different homogeneous regions than we have considered, realistic
reactor models may consist of hundreds or thousands of different homogenized
regions, even after the local fuel-moderator homogenization has taken place.
The fuel concentration may vary from assembly to assembly and within an assem-
bly in order to make the power distribution more uniform, and even within initially
uniform assemblies the composition will change differently from location to loca-
tion with fuel burnup. The standard practice today is to use numerical techniques to
solve the neutron diffusion equation.
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Finite Difference Equations in One Dimension

The neutron diffusion equation in a one-dimensional slab reactor model is

dé(x)
dx

+ Ta(x)9(r) = VT () (3.116)

~iD(x) X

dx

The first step in developing a numerical solution procedure is to replace the con-
tinuous spatial dependence of the flux, ¢(x), with the values of the flux at a number
of discrete spatial locations, ¢; = ¢(x;), the solution for which will be the objective
of the numerical technique. There are many ways to do this, and we will use a
simple finite-difference approximation. We subdivide the interval 0 <x <a of in-
terest info f subintervals of length A =a/I. (A more general development would use
nonuniform subintervals.) A general rule of thumb is that A < L (the neutron diffu-
sion Iength) sets an upper limit on the subinterval length {(or mesh spacing).

| [=A—] | | ! | |

X0 X1 X2 .. Xi-1 Xi Xitleonnn. X1 Xy

Xi—1/2  Xiy1/2

Next, the terms in Eq. (3.116) are each integrated from x; —% to x; + %, using the
following approximations:

xi+(1/2)A
/ xS0 (2)(x) ~ A

—(1/2)A
x+(1/2)A d 4 d
/x;—(lfl)A dx(de( )df) Eqs xi+1/24 - Df x+1/20 (3.117)
%(D + Diyy) d)H—IA L
_%(Di—l +Dy) ¢i ‘A¢i—l

where we have associated X,;, D;, and so on, with the subinterval x_;/; <
x <X; 4 172. The discrete equation associated with x; may be written

1 .
GiptGim1 + Aiii + a1 0001 = Xfiqf’i =5 i=1,...,71-1 (3.118)

where

__1(DiADa\(,_ ¢
G-t =75 A2 2i—1

(Di—l +2D; + Dy )

Qi = ai A2
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1 (Dipy+D; c
e = —5 (o= )1
Giixt 2< A? )( +2i—1) (3.119)

ﬁ‘:llzﬁ

We have generalized to other one-dimensional geometries, where ¢ =0, 1, and 2 for
slab, cylindrical, and spherical, respectively. The significant feature of the set of
Egs. (3.118) is nearest-neighbor coupling—the flux at any x; is only directly
coupled to the flux at the adjacent points x;_, and x; |, which greatly facilitates
their solution.

Note that the difference equations are formulated only for the /—1 interior mesh
points at xi,xy,...,%,_;. The boundary conditions determine the exterior mesh
points. A zero flux boundary condition at the left boundary corresponds to
¢ =0, for example. A zero current or symmetry boundary condition at the left
boundary corresponds to ¢o = ¢, and would be implemented by setting a; 9 =0 and
a1 =Zg + (D +Dy)/ A%

Forward Elimination/Backward Substitution Spatial Solution Procedure

The set of I—1 Eqgs. (3.118) can readily be solved by Gaussian elimination, or
forward elimination backward substitution, for a known fission source S;. The
Gaussian elimination solution is implemented by subtracting a;;_,/a;_.1,_ times
the (i—1)th equation from the ith equation to eliminate the a;;_; element in the ith
equation. The modified ith equation is then divided by a; ;. This process is repeated
successively for i=1 through {=/—1. Then the manipulated equations can be
solved successively from i=7—1 to i=1 using the algorithms

11 =y
G2 = —Ar29r-1 + oy
(3.120)
¢ = —Aidip + o
for the backward substitution, where
A = %’ A; = il
aii ai; — ai14i_)
S S — a1 (3.121)
o] =—, o= ——"
aiy a;; — aij_1Ai_|

had previously been constructed on the forward elimination.

Power Iteration on Fission Source

The fission source is not known a priori, of course, so the Gaussian elimination
must be embedded in an iteration on the fission source term, as follows. An initial
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guess of the flux ¢< ) at each point and of the e1genvalue 7»(0) is made and an initial
fisston source at each point is constructed S(O) = VX d) / A% The Gaussian elimi-
nation is performed to determine d) . A new estimate of the eigenvalue is made
from

> DINADYN
/\[1) — Zx-l v ¢’ 0 ~ t-l v f()? (3122)
> Alaii- 1<I5i L+ au¢ +ai,i4—l¢j+1] Ei:l Eﬁ<25,~ A/XO
and a new fission source is constructed from
1
St = vsse)) (3.123)

I A(l

This iteration process is continued [using Egs. (3.122) and (3.123) with0 —n—1
and 1 — n until the eigenvalues obtained on two successive iterates differ by less
than some convergence criterion, say € = 107>:

Am) _ AG-1)
‘ )\(n—-l)

l <e (3.124)

Finite-Difference Equations in Two Dimensions

In rectangular geometry, the neutron diffusion equation is

Ap(x,y)
+ Xy ¢ s
By (x,2)(x,y) (125)

- %D(x, ¥) %q‘)(x-, y)— %D(W)
= %ui}(x,y}(ﬁ(x: ¥}

To extend the procedure for developing finite-difference equations which was
discussed for the one-dimensional case, we consider a rectangle with x-dimension a
and y-dimension &. We subdivide a into I intervals of length A, = a/I and subdivide
b into J intervals of length A, =b/J.

L ] [ ] L} e L J [ ] L YJ

* Yi-i
[ ] L] [ ] ® :
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L | ] [ ] L ] yj
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° [ ] L L L ] [ ] e [} [ ] [ ] yj—l
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L} L ] L ] L ] L ] . [ ] L ] [} L ] )’1
s . . . . . . . e
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The diffusion equation is integrated over the mesh box (xi_1/2 <x<xiqyp;
¥i—1/2 <y <¥j+1/2) and the approximations of Eqs. (3.117) are extended to two
dimensions to obtain the finite-difference equations:

BN Vil Th PR (0 e VR P
> A% i1, 2 Af i+l

(D A D, LDt D)
2\ A Al

Di_1j+D;;+ %Di+1,j (3.126)
Al
IDijo1 +Dij+ 4Dy
+ A2 ®i,j
y
:Vzﬁ,j(bi)j, i:l,...,l—l; j=1,...,J—1

1
+ (Ea,j +2

The significant feature of these equations is, once again, nearest-neighbor cou-
pling—the flux at (i,j) is only directly coupled to the fluxes at (i,j+ 1), (i,j—1),
((+1,/), and (i—1,)).

The boundary conditions are used to specify ¢g_j, §1 ;, $:0, and ¢ 5, as discussed
for the one-dimensional case.

In order to simplify the notation somewhat, we replace the (i, ) identification of
a spatial location with a (p) identification. The total number of spatial locations
is P=(I-1)x (J—1). We will choose p=1 for (i=1,j=1}), p=2 for (i=2,
j=0,....p=I-1for i=I-1,j=1), p=Ifor i=2,j=1),...,p=2 (I-1) for
(i=I-1, j=2), and so on. Then the set of finite difference equations may be
written

a gL+ aipdr+aisds + -t agp+ -+ aedp = S
ay1B1 + azohy + azads + -+ arpdy + -+ a2pdp = Sp
as 1 +azady tazads + -+ azpdp+ o Faspdp = Sp (3.127)

101 + apady + apads + -+ appd, + -+ appdp = Sp

where
1 1
—D 1 + D +_D +1
24p P P
app = Yap + A2 :

X

%Dp—l +Dp + %DP+I
+ Az
'y

_ 1({Dyi+D, 1 {Dy+ Dy
ot =\ Tar ) et T\ T A

X
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_ 1(D,+D, 1 (Dpus +D,
ot ==3\T ) W=\ &
¥ ¥y

apq =0, g#p—1, p+1, p-I, p+I
Sﬁ,:uﬂﬁgép

(3.128)

Successive Relaxation Solution of Two-Dimensional
Finite-Difference Equations

There are a number of possible ways o solve the set of Eqgs. (3.127). We describe
here the widely used Gauss-Seidel or successive relaxation method. This is an
iterative method that proceeds by solving the first equation for ¢,, assuming S,
is known and guessing a value for ¢, - - - ¢p; then solving the second equation for
¢, assuming that S, is known, using the value just calculated for ¢;, and using the
same guessed values for ¢3- - -¢p; then solving the third equation for ¢, assuming
that S5 is known, using the just calculated values for ¢; and ¢, and using the same
guessed values for ¢4 - -¢p; and continuing thusly until the last equation is solved
for ¢p assuming that Sp is known, and using the just calculated values for
&y - *dp_y. The set of new values of ¢;- - -dp thus calculated provides a new guess
to be used in a repeated iteration. The general algorithm for the solution at each step
is

1 g1 P
¢£,’"+1) = " [gfp - Zap,q¢¢{qm+l) - Z a,,,q@(]'”)] (3.129)
pp g=1

gq=p+1

where m is the iteration index. This inner iteration is continued until the flux
solution at each location has converged to within a specified tolerance, &~ 1072,
which may be chosen smaller in regions where exact knowledge of the neutron flux
is important than in, for example, reflector regions:

Qb {m+1) ¢ (m)
‘ )

< &p (3.130)

It is possible to accelerate the convergence of the relaxation iteration by using as
a new flux guess a mixture of the previous flux and the relaxation result of Eq.
(3.129):

¢,(,m+1) =(1- )¢(m) + — [Sfp Zapq¢ D — Z “p,q¢<(IM)J (3.131)

g=p+1

The acceleration parameter o may be chosen in a number of ways (see Ref. 8), but
generally varies between 1 and 2. The algorithm of Eq. (3.131) is known as
successive overrelaxation (SOR).

Another widely used method for solving the two-dimensional diffusion equa-
tions is the alternating direction implicit iteration scheme described in Section 16.3.
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Power Outer Iteration on Fission Source

The power iteration on the fission source proceeds as described above [i.c., in Egs.
(3.122) to (3.124)] but with i replaced by p in the notation of this section, and with
A replaced by A, A,

Thus the solution of the finite-difference equations has a two-level iteration
hierarchy. There is an outer power iteration on the fission source and the eigen-
value, described by Egs. (3.122) to (3.124). Then for each of the outer iterations,
there is a series of inner relaxation iterations—described by Eq. (3.129) or (3.131)
and (3.130)—to converge the flux solution for that outer iterate of the fission source.

Limitations on Mesh Spacing

We can obtain some insight as to limitations on mesh spacing by considering the
source-free diffusion equation in one dimension:

d2
Ex—?—%zo (3.132)

which can be solved exactly over the mesh interval A =x;; ;/,—x;_;,> centered on
X

d(xir12) = € Y p(x;) = e p(xi_1 o) (3.133)

The central difference finite-difference approximation (which we have been
using) of Eq. (3.132) on this interval can be written

(xir12) + d(xim12) = [2 + (%) 2] P(x:) {3.134)

Comparing the right side of Eq. (3.134) to the exact expression for the left side
constructed from Eq. (3.133) allows us to define the difference as a measure of the
error in the finite-difference approximation:

3 (A\?
error_Z(—E) 4o (3.135)

Clearly, the mesh spacing should be less than the diffusion length. .

3.11 NODAL APPROXIMATION

In principle, once the local fuel cell heterogeneity in each fuel assembly is
replaced by effective homogenized cross sections and effective cross sections are
constructed for the control rods, the three-dimensicnal finite-difference diffusion
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equations can be solved for the effective multiplication constant and the neutron
flux distribution everywhere in a reactor. In practice, it is seldom practical to do so
because of the large number of simultaneous equations that must be solved. As we
have seen, accuracy in the finite-difference solution requires that the mesh spacing
be smaller than the diffusion length, and a typical LWR core is about 200 thermal
diffusion lengths in each of the three dimensions, which results in several million
mesh points, hence several million simuitaneous equations.

One means to deal with this situation is to divide the flux solution into two parts.
The reactor core (and reftector, etc.) is divided into a relatively small number (on
the order of 100 or less) large regions, or nodes, as depicted in Fig. 3.8. The detailed
flux distribution within each node is determined from a finite-difference calculation
just within the node (or set of contiguous nodes); such calculations need be per-
formed only for every different type of node, since the solution for different nodes
that have the same internal material distribution and the same boundary conditions
will be identical, The global flux distribution (i.e., the average value of the flux in
the different nodes) and the effective multiplication factor are then determined from
a nodal calculation.

The general derivation of nodal diffusion theory methods may be illustrated by
integrating the diffusion equation

VDV + e = %zqu (3.136)
over the spatial domain of each node n to obtain
1
—/ dS"-DVd)-l-/ anbdr-:E/ vipdr, n=1,...,N (3.137)
Sn Vn Vn

where Gauss’s law has been used to replace the volume integral over node n, V,,, of
the divergence with the surface integral over the surface S, bounding node r of the

/1

[ |.Node cell n

777

Nade celf ' ]

N

Fig. 3.8 Division of a reactor into nodes. (From Ref. 4; used with permission of Wiley.)
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normal component of the current. In general, the surface S, bounding node n
consists of the several interfaces S, between node » and the contigucus nodes »'.
Defining the average nodal flux as

1
hy = Vn/v d(r)dr (3.138)

the definition of average nodal cross section follows immediately:

1

Y, = m/v Yu(r)o(r)dr, Vi, = / vEs(r)o(r)dr (3.139)

BnVn

The treatment of the surface integral term, which represents node-to-node leak-
age, is not so obvious. However, it is plausible that the gradient of the flux across
the surface between two adjacent nodes is proportional to the difference in the two
average nodal fluxes:

"_ann’((ﬁn - ¢n’) = dE'DV¢ (3140)
St

The accuracy of the nodal methods depends to a large extent on the actual evalua-
tion of the nodal coupling coefficients oy, which is discussed in some detail in
Chapter 15. A simple approximation results from using an average value
1{D, + Dy) for the diffusion coefficient on the interface between nodes n and »’,
and assuming the average diffusion coefficient and the flux gradient are both con-
stant over the interface, which yields

Snn"l D,+ D /
Qo ™ 2 (D ") (3.141)

lrm’

where {,, is the distance between the centers of contiguous nodes » and »'.
Collecting these results leads to the set of N nodal equations for the nodal
average fluxes and the effective multiplication constant:

1
- Z Ot Gt + (Z Qny + EanVn> n = 'I;VEthnqsna n=1,...,N (3142)

n'en n'en

where n € r indicates that the sum is over nodes n’ which are contiguous to node n.

For those nodes n located adjacent to the exterior boundary of the reactor, the
nodal equations contain the flux ¢,, for a nonexistent node on the other side of the
boundary. For vacuum boundary conditions, this flux ¢,,, would be set to zero in
the equation for node n. For symmetry boundary conditions, ¢,y = ¢, would be
used in the equation for node n.
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PROBLEMS!

3.1. Plot the neutron flux distribution given by Eq. (3.24) from r=0to r=25cm

away from a point thermal neutron source in an infinite medium of (a) H,O
(L=29cm, D=0.16cm); (b) D,O (L=170cm, D =0.9cm); and {c) graph-
ite (L.=60cm, D=0.8cm).

3.2. Plot the neutron flux distribution in a finite slab of width 2a = 10 cm with an

incident thermal neutron beam from the left, as given by Eq. (3.36), for an
iron slab (X, =1.15cm™!, D=0.36cm, L= 1.3 cm).

3.3. Derive the albedo boundary condition of Eq. (3.38) from the definition of the

albedo, a=j_/j , and the diffusion theory expressions for partial currents,
Egs. (3.4) and (3.5).

TProblems 11 o 13 are longer problems suitable for take-home projects.
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3.5.

3.6.

3.7

38.

3.9.

3.10.

3.11.
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A thermal diffusion-length experiment is performed by placing a block of
diffusing medium with @, = b, =175.7cm adjacent to a reactor thermal
column port and irradiating a series of indium foils placed along the z-axis
of the block. The saturation activity (disintegrations/min) of foils at various
locations is (40,000 at z=28cm), (29,000 at z=40cm), (20,000 at
z=45cm), (17,000 at z=56cm), (10,000 at z =70 cm), (8500 at z="76cm),
(5800 at 90cm), and (3500 at 100cm). The experimental error is £10%.
Determine the thermal neutron diffusion length.

Derive the criticality condition for a bare rectangular parallelepiped core of
x-dimension a, y-dimension b, and z-dimension c.

A typical composition for a PWR core is: H, 2.75 x 10%2cm™; 0O,
276 x 10%cem™>; Zr, 3.69x10*' em % Fe, 1.71 x10*'cm™% U,
1.91 x 102°cm—3; 238U, 6.59 x 10210m_3; and 1OB, 1x10%cem™3. Appro-
priate spectrum-averaged microscopic cross sections (barns) for these iso-
topes are o,/0,/vo;= 0.65/0.29/0.0 for H, 0.26/0.0002/0.0 for O,
0.79/0.19/0.0 for Zr, 0.55/2.33/0.0 for Fe, 1.62/484.0/758.0 for *°U,
1.06/2.11/1.82 for **U, and 0.89/3410.0/0.0 for '°B. Calculate the critical
radius for a right circular cylindrical bare core of fixed height H =375 cm.

Calculate the critical radius for the right circular cylindrical core of Problem

3.6 with a 20-cm-thick side reflector with Dg=1cm and X,z =0.01cm ™.

Calculate the thermal flux disadvantage factor for UO, rods varying from 0.5
to 2.0 cm in diameter in an H,O moderator for V,,/Vr varying from 1.0 to
4.0. Calculate the corresponding effective homogeneous absorption cross
sections and thermal utilization. Plot the results.

Derive an expression analogous to Eq. (3.100) for the power peaking factor
in a fuel-moderator assembly with cylindrical fuel elements.

Derive an expression for the effective diffusion theory absorption cross sec-
tion for a cylindrical control rod of radius a surrounded by an annular region
of fuel-moderator extending from r=a to r=R. The transport parameter
for thig geometry is given by (1/30)=0.7104 4 0.2524/aZ -+ 0.0949/
(aEac) +....

Jezebel is a bare, critical, spherical fast reactor assembly with radius 6.3 cm
constructed of **°Pu metal (density 15.4 g/cma). Using the one-group con-
stants v=298, o 1.85 barns (1 barn=10"**cm”) o,=2.11 barns, and
G, = 6.8 barns and the finite-difference numerical method, calculate the
effective multiplication constant, A=k, predicted by diffusion theory.
»—1 is a measure of the accuracy of diffusion theory for this assembly.
Should diffusion theory be valid for this assembly?

Solve numerically for the eigenvalue and neutron flux distribution in a slab
reactor consisting of two adjacent core regions each of thickness 50 cm, with
a 25-cm-thick reflector on each side. The nuclear parameters of the two core
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3.13

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.
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regions are (D=0.65cm, X,=0.12cm™’, and vI,=0.185cm™") and
(D=0.75¢m, £,=0.10cm™ !, and vi=0.15 cm™"), and the parameters of
the reflector are (D=1.15cm, £,=0.01cm™}, and vE~=0.0 cm™ ). Solve
this problem analytically and compare the answers.

Calculate numerically the effective multiplication constant and the flux dis-
tribution in a reactor with rectangular (x, y) cross section which is sufficiently
tall that axial (z) leakage can be neglected. The core cross section in the x—y
plane consists of four symmetric quadrants. The upper right quadrant con-
sists of core region 1, rectangular (0 <x < 50cm, 60 <y < 100cm); core
region 2, rectangular (0 <x < 50cm, 0 <y < 60cm); and reflector region 3,
also rectangular (50 < x < 100cm, 0 <y < 100cm). The nuclear parameters
are: core region 1 (D=0.65cm, X,=0.12cm ™", vE, =0.185); core region 2
(D=075¢cm, ,=0.10cm™", vX,=0.15); and reflector region 3
(D=1.15cm, Z,=0.01cm™', vZ;=0.0). Use vacuum boundary conditions
except on the boundary (x=0, 0 <y <100 cm), where a symmetry condition
should be used. (This is a model for one-half of the symmetric reactor cross
section,) Plot the x-direction flux distribution at y =30 and 80 cm.

Calculate the thermal extrapolation distance Aexump for H>O and for a 1:1 wt
% homogeneous mixture of H,O and 4% enriched uranium.

Estimate the maximum size of the mesh spacing that can be used in a finite-
difference solution for the thermal neutron flux distribution in an H,O me-
dium and in a [:1 wt% bhomogeneous mixture of H,O and 4% enriched
uranium.

Calculate and plot the thermal neutron flux distribution arising from a plane
neutron source in an H,O medium and in a 1:1 wt % homogeneous mixture
of H,O and 4% enriched uranium.

Repeat the calculation of Problem 3.16 in a carbon medium and in a 1:1 wt %
homogeneous mixture of carbon and 4% enriched uranium.

Calculate the albedo boundary condition for the thermal neutron flux in a 1-
m-thick slab medium with a 1:1 wt % homogeneous mixture of H,O and 4%
enriched uranium which is bounded on both sides by very thick graphite
slabs.

Using the microscopic cross sections and number densities (except for 2350)
of Table 3.4, determine the critical >°U enrichment for a bare cylindrical
core of height H =350 cm and radius R =110 cm. Repeat the calculation for
R=100 and 120cm.

Repeat the calculation in Section 3.8 (Example 3.4) of flux disadvantage
factor and effective homogenized fuel absorption cross section for a water
thickness of 2 and 5 cm between fuel plates.
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3.21. Calculate the power peaking factor in the slab lattices of Problem 3.20.

3.22, Repeat the calculation of the effective control slab cross section given in
Section 3.9 (Example 3.5) for a control blade that contains only 2% natural
boron.

3.23. Solve Problem 3.12 using a four-node model, one node for each reflector and
core region. Compare the result with the results of Problem 3.12.






4 Neutron Energy Distribution

Because the cross sections for neutron—nucleus reactions depend on energy, it is
necessary to determine the energy distribution of neutrons in order to determine the
rate of interactions of neutrons with matter, which in turn determines the transport
of neutrons. We first address this problem by considering the neutron energy dis-
tribution in an infinite homogeneous medium, for which some analytical results can
be obtained to provide physical insight. Then the important multigroup method for
calculating an approximate neutron energy distribution is described. Methods for
dealing with the rapidly varying neutron energy distribution in the energy range of
cross-section resonances are described. Then the multigroup calculation of the
neutron energy distribution is combined with the diffusion theory calculation of
the spatial neutron distribution to obtain a powerful method for calculating the
space- and energy-dependent neutron flux distribution in a nuclear reactor.

4.1 ANALYTICAL SOLUTIONS IN AN INFINITE MEDIUM

‘We start our investigation of the neutron energy distribution in a nuclear reactor by
considering an infinite homogeneous medium in which spatial effects may be
ignored. The neutron flux within a differential energy interval dE is determined
by a balance between the source of fission neutrons being created within 4E plus
neutrons being scattered into dE from some other energy interval E’ and the loss of
neutrons from within dE due to absorption and to scattering from JE into some
other energy interval dE’;

(Sa(E) + B (E)$(E) dE = [ [ ane — po)

%2 / " iV EYE)| B 4)

o8] o

where we have included the infinite medium multiplication constant which may be
adjusted to ensure that a steady-state solution exists.

Fission Source Energy Range

At very high energies, the direct source of fission neutrons inte dF is much larger
than the source of fission neutrons which have been created at higher energies and

95
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are slowing down into dE, in which case the first term on the right in Eq. (4.1) can
be neglected in comparison to the second term, leading to

00(E) = X500 [ amvmeee) - 52

X const. (4.2)

where Z, = X, + Z,. Thus the neutron flux distribution at the higher energies, where
direct fission neutrons are the principal source, is proportional to the fission spec-
trum divided by the total cross section.

This solution can be improved by using Eq. (4.2) as a first iterate on the right
side of Eq. {4.1) to evaluate

sV(E) = —:—E) [ /; ~ aE (B — E)O(E) + x(E) x const.}
1

- [ /E F i sE — B XE) 4 x(E)] X const. (4.3)

b
% (E) %(E"

X(E) L [® s X(E)
= S E) X const. [l +@/E dE'5,(E' — E) E,(E’)]

where we have taken advantage of the fact that scattering of very energetic neutrons
with much less energetic nuclei will result in an energy loss for the neutron to place
a lower limit of E on the energies from which a neutron can scatter into dE. At the
higher energies, where the fission source is important, inelastic scattering is also
imporiant and must be included in calculation of the correction factor. The im-
proved energy distribution is also of the form of the fission spectrum divided by the
total cross section times 1 plus a correction factor that obviously becomes large at
lower energies where ¥(E) becomes small. Numerical evaluation of the correction
factor for typical compositions indicates that ¢(E)=y(E)/Z,(E) represents the
energy distribution rather well for energies E > 0.5 MeV.

Slowing-Down Energy Range

Very few fission neutrons are produced with energy less than about 50keV. There is
very little inelastic scattering in this energy range, so the elastic scattering transfer
function

(E") E
_— E<E <=
T(E - E={ E(1-a) - T a (4.4)
0, otherwise

can be used, where 2 =[(A—1)/(A + 1)I? and A is the mass of the scattering nucleus
in amu. If we limit our attention further to neutron energies greater than only about
1 eV, the neutrons will lose energy in a scattering collision, and we can write the
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slowing-down equation for the neutron energy distribution

E/a, LJ E/ ¢(E,)
-3 [ Ty @3)

where the sum is over the various nuclear species present.

Moderation by Hydrogen Only

Censider a mixture of hydrogen oy = [(Ag—1)/(Ax + l)]2 =0 and very heavy mass
nuclei a={(A-1)/(A+ 1)]2 = 1, for which Eq. (4.5) becomes

S(E)$(E) = /E so(E) %

Eleg  TIENG(E)
dE' —=2~———~ 7
]#H/ E'(l - q; )

JE (4.6)
= [ eo(E) E+Z 21 (E)H(E)

H %
where the range of integration E < E' < E/a; is so small for the heavy mass nuclei

that the approximation T/(E')$(E')/E' ~ ¥/ (E)$(E)/E can be made. This equa-
tion can be rearranged:

mu(E) + 3008 = [ 20 X ap (47)

Differentiating Eq. (4.7), dividing both sides by (X, + Zﬁ’ )¢ and integrating from £
1o some atbitrary upper energy E; leads to

$(E) =

[Sa(E)) + SHE p(E)) Eo S (ENdE
s - mEemE| ¢

The neutron energy distribution varies with energy as (E) ~ 1/(Z(E) + Z)E
and is exponentially attenuated in magnitude relative to the value at E, by any
absorption that occurs over the interval E; > E' > E. The overall 1/FE energy de-
pendence of the flux is modified by the energy dependence of Z,(E).

Energy Self-Shielding

In particular, if a large narrow resonance is present, Z,(E) will increase sharply
over the range of the resonance, causing ¢(E) ~ 1/(Z.(E) + Z7) to dip sharply
over this range where the resonance cross section is large, as indicated in Fig. 4.1.
At energies just below the resonance, where X,(E) becomes small again, the flux
recovers almost to the value just above the resonance, the difference being due to
the absorption in the resonance. Physically, only those neutrons that are scattered
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D(E) o(E)

-

=== = O(E)

AN’ o (E)

E

Fig. 4.1 Energy self-shielding of the neutron flux in a large absorption resonance. (From
Ref. 6; used with permission of MIT Press.)

into the energy range of the resonance will be absorbed, but those neutrons that are
scattered from energies above the resonance to energies below the resonance will
not be affected by the presence of the resonance. This reduction in the neutron flux
in the energy range of the resonance reduces the resonance absorption relative to
what it would be if the resonance was not present, a phenomenon known as energy
self-shielding.

We can obtain a rough estimate of the importance of energy self-shielding by
calculating the exponential attenuation due to the resonance under the simplifying
assumption that the resonance is very large over an energy width AE. Then the
attenuation factor can be approximated:

For the first large absorption resonance in 2*®U at E=6.67 eV, the width of the
resonance is about AE=0.027eV, which would absorb only about 4% of the
neutrons slowing down past the resonance energy according to Eq. (4.9).

Slowing Down by Nonhydrogenic Moderators with No Absorption

The case of slowing down by only hydrogen provides valuable physical insight into
features of the neutron energy distribution in the slowing-down energy range, most
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notably ¢~ 1/E and energy self-shielding of resonances, which remains valid
under other moderating conditions. To gain some insight into the effect of various
moderators on the neutron energy distribution, we now consider the case of mod-
eration by nonhydrogen isotopes, first in the absence of absorption. The slowing-
down balance equation is

T (E)H(E ZEJ(E)qs(E Z / dE' lfi)jg? (4.10)

Guided by the result for slowing down from hydrogen, we look for a soluticn of the
form

c cC
ET(E)  EY, Si(E)

¢(E) = (4.11)

Substituting this into Eq. (4.10) leads to the identity
Elini(E"y  dE' it ¢
~CY H=== 412
AN A e ROy S

when it is assumed that the energy dependence of the scattering cross section is the
same for all isotopes present, establishing that a solution of the form of Eq. {4.11)
satisfies Eq. (4.10) under this assumption.

Slowing-Down Density

The slowing-down density at energy E, g(E), is defined as the rate at which
neutrons are scattered from energies E' above E to energies E” below E. With
reference to Fig. 4.2, this may be written

E/w, ; &(E'
g(E) = Z/ /quldE E,(l_( )) (4.13)

The maximum energy £’ from which a neutron may scatter elastically below E is
E/u, and the minimum energy E” of a neutron that scatters from an energy E' > E
to an energy E"” < E is E" = E'a.. Without absorption, the slowing-down density is
obviously constant in energy.

Substituting Eq. (4.11) into Eq. (4.13) leads to

L fE o)
an) =3 [ e [ ae BB - a)ET

yE

:cz<1+‘i‘f1"a’) cZg,Z g = CEE)

(4.14)
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Fig. 4.2 Energy intervals for neutron slowing-down density.

where the assumption of a common energy dependence of all scattering cross
sections has been used again. The quantity §; is the average logarithmic energy
loss in a collision with a nucleus of species j that was discussed in Chapter 2, and §
is the effective logarithmic energy loss for the mixture of moderators. Using this
result with Eq. (4.11) leads to the very important relationship between neutron
slowing-down density and neutron flux;

q(E) = ES,(E)EH(E) (4.15)

Slowing Down with Weak Absorption

Absorption removes neutrons from the slowing-down process and thereby reduces
the slowing-down density as the energy decreases. Noting that decreasing energy
corresponds to —dFE, the change in slowing-down density due to absorption is
described by

dq(E) _
5 = Za(E)$(E) (4.16)

Assuming weak absorption or localized (resonance) absorption near energy E, so
that the flux given by Eq. (4.15) can be used to evaluate the scattering-in integral,
the neutron balance equation yields a generalization of Eq. (4.15) for the case of
weak or resonance absorption
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E/oy ¢(EI)
PIN( E) 2
)+ 5ENom =3 [ e R
> /E/“f 1 DIE)dE g
~gq = —
e &1 —oy) I(E) (B EE

where again the assumption of similar energy dependence of the scattering cross
sections for all species present has been used. Combining Eqgs. (4.16) and (4.17)
yields

(4.17)

dg(E) — _ EH(E)q(E) (4 18)
dE  E&[S.(E) + 5s(E)) '
which may be integrated from energy E up to some energy E; to obtain
(E) = q(E1) ex { - / B Bl(ENdE } (4.19)
T ZEEVENT Je @5a®) + 5 EF |

which describes the attenuation of the neutron slowing-down density due to absorp-
tion. Making use of Eq. (4.17) yields an expression for the energy dependence of
the neutron flux

(Za(Ey) + Zs(E)|E(E)E1¢(Er)
(

HE) = T EaE) + S ERB)E

SO Y

Ey
'e"p{‘ e EE) DB + 5, (E)E

The neutron flux with nonhydrogenic moderators and weak or resonant absorp-
tion has an energy dependence ¢ ~ 1/EZ,(E)E and is exponentially attenuated, a
result very similar to that obtained for moderation by hydrogen only [Eq. (4.8)—
note that £ = | for hydrogen]. In particular, the energy self-shielding of resonances
discussed previously is contained in the 1/Z,(E) dependence of the neutron flux.

Fermi Age Neutron Slowing Down

The assumption that the scattering cross sections of all moderating isotopes had the
same energy dependence, which was made to obtain a relatively simple solution for
slowing down by nonhydrogenic moderators, can be avoided in the case of heavy
moderators. The neutron balance equation for slowing down by a mixture of mod-

erators is
E/aj El)¢(Ef)
Z/ E, B —a) (4.21)
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Based on the previous results, we expect that £X,(E)Ed is a slowly varying
function of E. Thus we make a Taylor’s series expansion of X/ (E')E'¢p(E’) about

T(E)ES(E):

!

ERY(E)G(E) = EEUENE) + T ET(E)S(E)In s+ (422)

dInE

in the scattering-in integrals on the right of Eq. (4.21). If the scattering-in interval
E/o; to E is small (i.e., if a;= [(A—-1)/A;+ D]J?~ 1), it should be sufficient to
retain only the first two terms in the Taylor’s series expansion, leading to

E/oy E .
500 =3 [ Gt e PO

E y
sl @)+ |

= Z {2£(E)¢>(E) (4.23)
+3(1+308) S e EeE) +- |
~{z@0© + ZEER @]+ |

which can be integrated to obtain

$(E) =

Elé(El) (El)qb(El)ex _ EIM

This result for the energy distribution of the neutron flux is identical to the result
obtained in Eq. (4.20) when Z, < Z;, but obtained under quite different assump-
tions. The assumptions in deriving Eq. (4.20) were that the absorption was weak, so
that the no-absorption relationship between the slowing-down density and the flux
could be used and that the energy dependence of the scattering cross sections was
the same for all moderators in the mixture, in order to evaluate the scattering-in
integrals. The only assumption in deriving Eq. (4.24) was that .(E')E'¢(E') varied
slowly over the scattering-in interval E to E/a;.

The important results we have obtained about the neutron energy distribution in
the slowing-down region are ¢(E) ~ 1/&(E)Z.(E)E, q ~ §(E)Z,(E)EG(E) and
that both the neutron slowing-down density, ¢, and the neutron flux, ¢, are atte-
nuated exponentially by absorption during the slowing-down process. The expres-
sions that we have developed for this exponential attenuation are qualitatively
correct, but need to be refined to explicitly treat the resonance absorption which
dominates in the slowing-down region. We return to this in Section 4.3.
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Neutron Energy Distribution in the Thermal Range

Determination of the neutron energy distribution in the ‘“‘thermal” range (F less
than 1eV or so) is complicated by a number of factors. The thermal motion of the
nuclei is comparable to the neutron motion, with the consequences that the cross
sections must be averaged over the nuclear motion and that a scattering event can
increase, as well as decrease, the energy of the neutron. Since the thermal neutron
energy is comparable to the binding energy of nuclei in material lattices, the recoil
of the nucleus will be affected by the binding of the nucleus in the lattice, and the
neutron scattering kinematics is more complex. Inelastic scattering in which the
molecular rotational or vibrational states or the crystal lattice vibration state is
changed also affects the scattering kinematics. At very low energies the neutron
wavelength is comparable to the interatomic spacing of the scattering nuclei, and
diffraction effects become important. Accurate calculation of thermal reaction rates
requires both the calculation of appropriate cross sections characterizing thermal
neutron scattering and calculation of the energy distribution of neutrons in the
thermal range. Fortunately, most of the complex details of thermal neutron cross
sections are not of great importance in nuclear reactor calculations, and reasonable
accuracy can be obtained with relatively simple models. In this section we char-
acterize the thermal neutron distribution and reaction rates from relatively simple
physical considerations. We return to a more detailed discussion of thermal neutron
cross sections and distributions in Chapter 12.
The neutron balance equation in the thermal energy range is

Eu

[Ze(E) + ENOE) = [ dE T(E — E)OE) + S(E) (4.25)

where the scattering-in integral is from all energies in the thermal range E < Ey,,
and S(E) is the source of neutrons scattered into the thermal energy range from
E > Ey,. An equilibrium solution requires that the total number of neutrons down-
scattered into the thermal energy range be absorbed, assuming for the moment no
leakage and no upscatter above Ey,:

/0 " 4B S,(E)$(E) = q(Eu) (4.26)

where g{Ey,) is the neutron slowing-down density past Ey,.
Consider the situation that would obtain if there were no absorption and slowing-
down source; that is, the neutron flux balance is

S (E)H(E) = /0 " AES(E — E))(E) (a.27)

where we have extended the upper limit on the integral to infinity under the
assumption that the scattering to energies greater than Eg, 15 zero. The principle
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of detailed balance places the following constraint on the scattering transfer cross
section for a neutron distribution that is in equilibrium, regardless of the physical
details of the scattering event:

VE(E' — EYM(E',T) = vI4(E — EVYM(E, T) (4.28)

where M(E, T) is the Maxwellian neutron distribution
27 E
= ——— \/ El - 4.2
vED (nkT)>? exP< kT) (4.29)

It can be shown that the Maxwellian neutron flux distribution,

$m(E,T) = nv(E)M(E) = (TZ;T%E (-3—1) Y exp( - g)

R : E
= (j)TWeXp( “ﬁ)

satisfies Eq. (4.27). Thus the principal of detailed balance is sufficient to ensure that
the equilibrium neutron distribution, in the absence of absorption, leakage, or
sources, is a Maxwellian distribution characterized by the temperature 7 of the
medium (i.e., the neutrons will come into thermal equilibrium with the moderator
nuclei). The most probable energy of neutrons in a Maxwellian distribution is k7,
and the corresponding neutron speed is vy= (2 kT/m)".

However, absorption, leakage, and a slowing-down source will distort the actual
neutron distribution from a Maxwellian. Since most absorption cross sections vary
as 1/v=1/ (E)"2, absorption preferentially removes lower-energy neutrons, effec-
tively shifting the neutron distribution to higher energies than a Maxwellian at the
moderator temperature 7. A shift to higher energies can be represented approxi-
mately by a Maxwellian distribution with an effective “neutron temperature”

CT,
T, = T(l + o ) (4.31)

where C must be determined experimentally. Leakage can be represented by modi-
fying the absorption cross section to =, — Z,(1 + DB?). Since D = 1/33,, leakage
will preferentially remove higher-energy neutrons, offsetting the effect of absorp-
tion to some extent.

In the slowing-down region E > Ey;,, the neutron flux distribution is 1/E, and the
slowing-down source into the upper part of the thermal energy range will tend to
make the flux 1/£. Thus the hardened Maxwellian must be corrected by the addi-
tion of a joining term A which is about unity for values of £/kT, > 10 and vanishes
for values of E/kT, < 5:
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E/kT,
S(E) = pw(E, T,) + & /4T (432)
where A 1s a normalization factor
_ (v7/2)
A=dr =" &, (4.33)

The Maxwellian distribution has some useful properties insofar as calcuilation of
the neutron absorption rate in the thermal energy range is concerned. Most absorp-
tion cross sections are 1/v; that is,

0
5(E,T) = Ze — ZalBo)vo

: . (4.34)

where Eq=kT=0.025eV and vo=(2kT/ m,)? =2200 m/s. The total absorption
rate integrated over the thermal energy range is

Ew
R, = / dE EH(E, T)VnM(E, T,,) = Ea(Eo)Vong = Ea (E())Gﬁ() (435)
0

The quantity ¢g=nvyg is the 2200m/s flux, which when multiplied by the cross
section evaluated at Ey=0.025¢eV yields the total absorption rate integrated over
the thermal energy range. Most thermal data compilations include the 2200m/s
value of the cross section (see Appendix A). From the definitions of
dr=/n' Zypy [Eq. (4.30)] and of ¢y = nvy, the appropriate thermal group absorp-
tion cross section {the quantity that is multiplied by the integral of the neutron flux
over the thermal energy range to recover R,) for a 1/v absorber in a Maxwellian
neutron distribution at neutron temperature T, is

: 1/2
2= (1) V) (4.36)

Non-1/v correction factors have been developed to correct this expression for
absorbers that are not 1/v.

Summary

The fission spectrum divided by the total cross section, $(E) =x(E)/Z,(E), repre-
sents the energy distribution rather well for energies £>> 0.5 MeV. In the slowing-
down range below the fission spectrum, £ < 50keV, and above the thermal range,
E>1¢eV, $(E) ~ 1/E(E)X,(E)E represents the neutron energy distribution. In the
thermal range, E < 1eV, a hardened Maxwellian plus a 1/E correction at higher
energies, O(E) = ¢y (E, T,) + MA(E/KT,)/E, represents the neutron energy distri-
bution.
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4.2 MULTIGROUP CALCULATION OF NEUTRON ENERGY
DISTRIBUTION IN AN INFINITE MEDIUM

Derivation of Multigroup Equations

While the neutron energy dependences derived in Section 4.1 provide a qualitative,
even semiquantitative description of the neutron energy distribution in nuclear
reactors, the multigroup method is widely used for the quantitative calculation of
the neutron energy distribution. As we will see, the qualitative results of Section 4.1
will provide valuable insight as to the choice of weighting functions to be used in
the preparation of multigroup constants.

To develop a multigroup calculational method for the energy distribution, we
divide the energy interval of interest, say 10 MeV down to zero, into G intervals, or
groups, as indicated in Fig. 4.3. The equation describing the neutron energy dis-
tribution in a very large homogeneous region of a nuclear reactor (where spatial and
leakage effects may be neglected) is

[Za(E) + S(E)|S(E) = /0 T dE'S,(E — E)O(E)

+ Kk(? /0 " vE(E')p(E') (4.37)

This equation can be integrated over the energy interval E, < E<E,_; of group g
to obtain

Eq = 10 MeV

Eq

EG=0

Fig. 4.3 Multigroup energy structure.
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] o dE[E,(E) + S4(E)|$(E) = / i dEi / e dE' S(E' — E)o(E')
. a s E, = Ik, ¥
Eg—l

1 G 1B,
+ 2 [T aEXE® S / dE'vE (E')$(E)
g'= ra

koo Ji,
(4.38)

where we have made use of the fact that the sum of integrals over the groups is
equal to the integral over 0 < E < co. Defining the integral terms in Eq. (4.38) in a
natural way,

£,y E,_,
o= [ aEom), x= [ dEXE)
E,; Eg
et dE $,.(E)$(E Ee-t dE v5(E)
55 = Jg, d)a( )o(E) | v = iEs_é_f_ (4.39)
2 ]
E, Ey_ G
SE—g — fE: 'dE ng, "dE'Y5(E' — E)¢(E') 8 = Z Ef—'g’
: ¢g’ ’ g'=1
Eq. (4.38) can be written as
G Yo & ,
(E§+Z§)¢g=ZEfqg¢g’+k—_gzyzﬁ¢g'7 g: 1:"'3G (440)
gl=1 (& 0] gl=1

Equations (4.40) are the multigroup neutron spectrumn equations for an infinite
medium, one in which spatial and leakage effects are unimportant. There are G
equations and G unknowns, the group fluxes ¢,, so the problem is well posed. This
overlooks the fact that the group constants 2# depend on the neutron flux and hence
are also unknown. Actually, the group constants depend only on the energy depend-
ence of the neutron flux within the group, not on the magnitude of the neutron
flux, which appears in both the numerator and denominator of the definition of the
group constants. In practice, some assumption is made about this energy depend-
ence, so that the group constants are known. From the results of the preceding
section, we have a pretty good idea about the energy dependence of the neutron flux
in the fission, slowing-down, and thermal energy ranges, which can be used to
evaluate group constants.

Summing Eqgs. (4.40) over groups yields

. Zf=1 Vz};qbg

= 4.41
o Thos )

(ool
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which identifies k., as the ratio of the total neutron production rate by fission to the

total neutron absorption rate, in accord with our previous discussion of the multi-
plication constant.

Mathematical Properties of the Multigroup Equations

The set of equations (4.40) may be written in matrix notation as

Ad — kins = (A - k—l—F)qb =0 (4.42)

X

where A and F are G x G matrices and ¢ is a G-element column vector:

- 2[11 4 2; _ E‘:—»l _2?—)1 _Ei—d .. __ESG—)I
. _251‘_’2 25 4 E? _ E?—»Z _ZE’;—Q . _ESG—Q
S hat —-yC Y D 3 ) )
(4.43)
[ xivE} x,uE} XluE} e X,VEfG o1
XV xavE} xavE} o xavEf b2
F= . . ) ¢ =
| X6VE} XGL/ZJ}2 XGVE; e XguEfG b6

Note that the scattering terms on the diagonal are of the form Xf — X27%,
leading to the concept of a removal cross section L¥ = Z& + X8 — 87 to repre-
sent the net loss of neutrons from group g by absorption plus scattering.

Equations (4.40) or (4.42) are homogeneous equations and thus, by Cramer’s
rule, have nontrivial solutions only if the determinant of the coefficient matrix
vanishes:

det (A - EI—F) =0 (4.44)

(o]

This condition defines an eigenvalue problem for the determination of k..—there
are only a certain set of G discrete values of k., for which a nontrivial solution
exists. [Note that we have included &, in the formulation for just this reason. If we
had not included k.., Eq. (4.44) would be a requirement on the composition of the
reactor for criticality, and we would be faced with the cumbersome requirement to
adjust the composition by trial and error until Eq. (4.44) was satisfied.]
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It is possible to prove that the inverse of the matrix A exists for any physically
real set of cross sections and number densities. Multiplying Eq. (4.42) by ko, A"
yields

kotp =A"'Fp (4.45)

which is the standard form for a matrix eigenvalue problem. It is possible to prove
(e.g., Refs. 8, 11, and 12) for this equation that (1) there is a unique real, positive
eigenvalue greater in magnitude than any other eigenvalue; (2) all of the elements—
the group fluxes—of the eigenvector corresponding to this largest eigenvalue are
real and positive; and (3) the eigenvectors corresponding to all other eigenvalues
have zero or negative elements. Thus the largest value of &, for which Eq. (4.44) is
satisfied is real and positive and the associated group fluxes given by Eq. (4.45) are
real and positive (i.e., physical).

Solution of Multigroup Equations

The multigroup equations have been written in their full generality, allowing up-
scatter {the terms above the diagonal in A) as well as downscatter (the terms below
the diagonal in A) and a fission spectrum contribution in every group. In fact,
upscatter takes place only for those groups that are in the thermal energy range
E< 1eV, and the fission spectrum contributes only to the higher-energy groups
E > 50keV. Taking these physical considerations into account greatly simplifies
solution of the multigroup equations.

Consider, as the simplest example of a multigroup description, the representation
of the neutrons in a nuclear reactor as being either in a thermal group (E<< 1eV) or
in a fast group (£>1eV ). All of the fission neutrons are produced in the fast group,
and there is no upscatter from the thermal to the fast group. The two-group equa-
tions are

1
(Se+ I, = — (vEp) +vTidn)
X

(4.46)
S = 51
which may readily be solved for
2 vIi + (817222 n?
¢1 = iquj koo = 'f ( 8 / u) ‘f (447)
52 o+ 52

Note that a critical reactor may operate at many power levels, so the absolute
magnitude of the group fluxes quite properly cannot be determined by the set of
homogeneous multigroup equations, but the relative magnitudes of the different
group fluxes can be determined.
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A somewhat better multigroup description results from representing the fission
interval (E > 50keV ) as a fast group into which all fission neutrons are introduced,
the slowing-down interval (50keV > E > 1eV) as an intermediate group, and the
thermal region (E < 1eV) as a thermal group. There would be no upscattering in
such a group structure, allowing the three-group equations to be written

1
(B + 72+ 57 = }%—(VE}QM + V24 + VE ¢3)
(B2 +217%)¢2 = 0%
Taps =T P + 2

(4.48)

with solutions

by =[BT/ (E24+T70)p, b= [(Ei ? +m2:§23 2)/22] )

1-2

%
— 1 2 s
koo = [sz + sz _——}]‘21 T 22_’3 (449)

22-—’3
+ 5} (2;*3 +5r s 2}*2)} / i+ S+ 570

Example 4.1: Two-Group Fluxes and k... A representative set of two-group cross
sections for a PWR fuel assembly are (272 = 0.0241 cm™!, =} = 0.0121cm™!,
vZ; = 0.0085) and (X} =0.121cm™, vZ7 = 0.185). From Eq. (4.47) the fast/
thermal flux ratio is ¢;/d,=0.121/0.241=5.02, and k,,=(0.0085+ 0.185/
5.02)/(0.0121 +0.0241) = 1.253. The spectrum-averaged one-group absorption
cross section is X, = (ZLd; + Z20,)/(0 + ;) = 0.0302cm ™.

Preparation of Multigroup Cross-Section Sets

There exist in the world several sets of evaluated nuclear data (e.g., Refs. 7 and 9),
which have been both checked for consistency and benchmarked extensively in the
calculation of experiments designed for data testing. Representation of the cross-
section data in such data files is generally as follows:

1. o(E;) are tabulated pointwise in energy at low energies below the resonance
region.

2. Resolved resonance parameters and background cross sections in the resolved
resonance region.

3. Unresolved resonance statistical parameters and background cross section in
the unresolved resonance region.

4. o(E;) are tabulated pointwise in energy at energies above the resonance
region.
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5. Scattering transfer functions p(E;, ;) are tabulated pointwise in energy and
either pointwise in angle (p,;) or as Legendre coefficients.

The resonance parameters and the construction of multigroup cross sections
from them are discussed in Section 4.3 and in Chapter 11.

The scattering transfer function—the probability that a neutron will undergo a
scattering event which changes its direction from direction Q to direction ¥
(u,=Q- Q') and its energy from E to E'—is represented as

o5(tts, E — E') = m(E)o(E)p(E, is)g (s, E — E') (4.50)

where m(E) =1 for elastic and inelastic scattering, 2 for (n,2n), v for fission;
P(E, 1, is the angular distribution for scattering of a neutron of energy E; and
g(u,, E— E’) is the final energy distribution of a neutron at energy E which has
scattered through ;. When the scattering angle and energy loss are correlated, as
they are for elastic scattering, g(u,E— E')=38u,—n(E,E)). Otherwise,
g1y, E; — Ey) is tabulated. The angular distribution may be tabulated as p(E;, pg),
or the Legendre components may be tabulated pointwise in energy

PalEs) = f P )p(E ) (451)

where P, is the Legendre polynomial.

There are a number of codes (e.g., Refs. 2, 4, and 5) which directly process the
evaluated nuclear data files to prepare multigroup cross sections. These codes
numerically calculate integrals of the type

& dE o (EYW(E)

[er" dEW(E)

o5 = / " E o (BYW(E) L jg'_l dE' po(E) / /E E dE W(E)

X

of =
(4.52)

for a specified weighting function, W(E), which may be a constant: 1/E, y(E), and
so on. These codes are used to calculate fine-group cross sections in a few hundred
groups for thermal reactors or ultrafine-group cross sections in a few thousand
groups for fast reactors. These fine- or ultrafine-group structures are chosen such
that the results of calculations using the fine- or ultrafine-group cross sections are
essentially independent of the choice of weighting function, W(E), used in the
cross-section preparation.

Once the fine- or ultrafine-group cross sections are prepared, a fine- or ultrafine-
group spectrum (¢,) is calculated for a representative homogenized medium. The
unit cell heterogeneous structure of the region must be taken into account in
homogenizing the medium. Resonances must be treated specially, as discussed in
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Chapter 11. This fine- or ultrafine-group spectrum can then be used to weight the
fine- or ultrafine-group cross sections to obtain few-group (2 to 10) cross sections

for thermal reactors or many-group (20 to 30} cross sections for fast reactors:

K _ 2gek0®Py

Paekls (4.53)
b=k _ Egékzg’Ek’Uf_'glﬁbg
g, =
Egek¢g

The notation g € k indicates that the sum is over all fine or ultrafine groups g within
few or many group k.

The few- or many-group cross sections may be calculated for several different
large regions in a reactor. They are then used in a few- or many-group diffusion or
transport theory calculation of the entire reactor to determine the effective multi-
plication constant, power distribution, and so on. Because many such calculations
must be made, a number of parameterizations of few- and many-group cross sec-
tions have been developed {e.g., Ref. 10) to avoid the necessity of making the fine-
or ultrafine-group spectrum calculation numerous times.

4.3 RESONANCE ABSORPTION

Resonance Cross Sections

When the relative (center-of-mass) energy of an incident neutron and a nucleus plus
the neutron binding energy match an energy level of the compound nucleus that
would be formed upon neutron capture, the probability of capture is quite large.
The lowest-energy excited states are only a fraction of 1eV above the ground state
and extend up to about 100 keV for heavy mass fuel nuclei (fissile and fertile), but
start at about 10eV for intermediate mass nuclei and at about 10keV for lighter
mass nuclei. The heavier mass isotopes have many relatively low energy excited
states, which give rise to resonances in the neutron absorption and scattering cross
sections (Fig. 4.4).

The neutron resonance absorption phenomena constitute one of the most funda-
mental subjects in nuclear reactor physics. One of the most effective means of
treating these phenomena is in terms of the resonance integral concept, which
has a fundamental premise that the resonance cross sections are representable by
superposition of many Breit—Wigner resonances with known parameters. This pre-
mise allows the complex resonance structure to be characterized in a reasonably
simple way by calculating the contributions of each individual resonance. The
discussion in this section concentrates on s-wave neutron cross sections in the
low-energy range.

As shown in Chapter 1, the (n, ) capture cross section averaged over the motion
of the nucleus is given by
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Fig. 44 7*U capture cross section. (From http://www.bnl.gov/CoN/index html.)
1/2
| e
¥ 0

&) = (2} wte (4.54)

and the total scattering cross section, including resonance and potential scattering
and interference between the two, can be written

OB, T) = 00 6 3) + T (6 3) + 4 (455)

where R is the nuclear radius, Aq the neutron DeBroglie wavelength, the functions

-5 / ¥ ayye D

Yﬁ(f,x) _‘2\/7—_‘_ —ooe 1"’)’2 (456)
S / e L

x(&,x) = 7 _Doe 11,72 (4.57)

are integrals over the relative motion of the neutron and nucleus, x =2(E.,—Ey)/T,
it has been assumed that the nuclear motion can be characterized by a Maxwellian
distribution with temperature 7, and E,,, is the energy of the neutron in the neu-
tron—nucleus center-of-mass system. The parameters characterizing the resonance
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are gy, the peak value of the cross section; Ey, the neutron energy in the center-of-
mass system at which it occurs; I", the resonance width; I',, the partial width for
neutron capture; I's the partial width for fission; and I',, the partial width for
scattering.

Doppler Broadening

The temperature characterizing the nuclear motion is contained in the parameter

r

(AEokT /A)'* (4.58)
where A is the atomic mass (amu) and & is the Boltzmann constant. The general
dependence of the Y-function on temperature is indicated in Fig. 4.5. As the
temperature increases, the peak magnitude of { at Ey decreases and the magnitude
away from peak increases. This broadening of the cross section is known as
Doppler broadening. It can be shown that the area under the curve of the -
function remains constant as the temperature changes. Similar behavior results for
the x-function. The V- and y-functions are tabulated in Tables 4.1 and 4.2.

The assumption that the nuclear motion can be characterized by a Maxwellian is
only approximately correct for atoms bound in a crystalline state. Investigation of
this point indicates that a Maxwellian is a good approximation, but with a slightly
higher temperature which corresponds to the average energy per vibrational degree
of freedom of the lattice, including the zero-point energy. In practice, the actual
material temperature is widely used.

A
T T1<T< T3
~
w
.+
T3
ﬁ::—__f___/ } \\ N

Fig. 4.5 Temperature broadening of the y-function. (From Ref. 3; used with permission of
Wiley.}
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TABLE 4.2 x-Function

¢ 0 0.5 1 2 4 6 8 10 20 40
0.05 0 0.00120 0.00239 0.00478 (.00951 0.01415 0.01865 0.02297 0.04076 0.05221
0.10 0 0.00458 0.00915 0.01821 .03573 0.05192 0.06626 0.07833 0.10132 0.05957
0.15 0 0.00986 0.01968 0.03894 0.07470 0.10460 0.12690 0.14096 0.12219 0.05341
0.20 0 0.01680 0.03344 0.06567 0.12219 0.16295 0.18538 0.19091 0.11754 0.05170
0.25 0 0.02515 0.04994 0.09714 0.17413 0.21909 0.23168 0.22043 0.11052 0.05103
0.30 0 0.03470 0.06873 0.13219 0.22694 0.26757 0.26227 0.23199 0.10650 0.05069
0.35 0 0.04529 0.08940 0.16976 0.27773 0.30564 0.27850 0.23236 0.10437 0.05049
0.40 0 0.05674 0.11160 0.20890 0.32442 0.33286 0.28419 0.22782 0.10316 0.05037
0.45 0 0.06890 0.13498 0.24880 (.36563 0.35033 0.28351 0.22223 0.10238 0.05028
0.50 0 0.08165 0.15927 0.28875 0.40075 035998 0.27979 0.21729 0.10185 0.05022

Source: Data from Ref. 3; used with permission of Wiley.
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Resonance Integral

The total absorption rate per nuclei by a resonance absorber is known as the
resonance integral,

L= [ o@oEaE (4.59)

Resonance Escape Probability

The absorption probability for a single resonance depends on the balance between
absorption and moderation and is given by Rabs = Nres//qo, Where go=EZEd,y is
the asymptotic slowing-down density above the resonance and N, is the number
density of the resonance absorber. If we use {asy = 1/E to evaluate the resonance
integral, then R,,s=1/€0;, where the denominator is the moderating power per
absorber nucleus. The resonance escape probability is p=1—Rys= 1-I/Eo, ~
exp(—1/€0;), where R, is assumed small for any one resonance.

The total resonance integral for all resonances is a sum over the individual
resonance integrals, and the total resonance escape probability is

p=TIlpi = exp( - —g-szili) (4.60)

Multigroup Resonance Cross Section

The resonances within a given energy group in a multigroup treatment can be
treated as a group capture cross section given by

ff:*‘ dE o, (E)¢(E) Y b
[FraEgE) (1)

(4.61)

g —
0-'7

where ¢p{E) ~ 1/FE has been used.

Practical Width

The practical width of a resonance is defined as the energy range over which the
resonance cross section is larger than the nonresonance part of the cross section of
the resonance nuclide, which from the Breit—Wigner formula is

o ao
~ o —' =, /T .
Ly V 47R? \ o» (4.62)

Typically, for low-energy resonances 6/4nR = co/G, ~ 10%, so the practical width
is much larger than the total width. The practical width provides a measure of the
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range of influence of the resonance, which we will see is important in evaluating the
neutron flux in the resonance.

Neutron Flux in Resonance

The resonance region is well below the fission spectrum, so the neutron balance in
the vicinity of the resonance can be written

E[ayd’fziu’é(E!) /Efa'esd_E’Z;es(E/)(ﬁ(E/)
E

res M7 i —
[Z°(E) + Z{'|¢(E) = /E 7 1o T 1—a, 46

where the moderator scattering cross section is assumed to be much larger than its
absorption cross section and to be effectively constant. The practical width of the
resonance will generally be much less than the scattering-in interval of the mod-
erator, I',, < Eg(1—a,). For widely spaced resonances, this allows the approximate
evaluation of the moderator scattering source term with the asymptotic form of the
neutron flux in the absence of resonances, ¢pgy ~ 1/ EZME. We choose the normal-
ization ¢,.y = 1/E above the resonance energy to obtain

[ZF(E) + £6(E) =

M E/oz,u / §res / '
B, [ImERENE) (g

E E 1 — Qe

Narrow Resonance Approximation

If the practical width of the resonance is also small compared to the scaitering-in
interval of the resonance absorber, I', < Eo(1—0tie,), then the second scattering
source term can be approximated in the same fashion to obtain

E ————————————Ei{ " (4.65)
elE) = [5(m) + W] |
which can be used in Eq. (4.59) to evaluate the resonance integral:
dE SMaEe T o0 (&, x) dx
I = bt E _F TP % (gTes M / )
e [ N [ s e s
(4.66)
where
oM 4 gres .o 1/2
=-* 7 f={ =+ 4.67
ﬂ an ! ( F g ) ( )

oM is the moderator scattering cross section per absorber nucleus and 6,° = 4nR?
is the potential scattering cross section of the resonance absorber. If interference
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between resonance and potential scattering is neglected, the resonance integral can
be written

Re =510 + 7 (6.0) (468
where the function
, x) dx
e = [T (4.69)

is tabulated in Table 4.3. A generalization of the J-function which includes the
interference scattering term has been devised, but the form given above is more
commonly used.

Wide Resonance Approximation

If the practical width of the resonance is large compared to the scattering-in interval
of the resonance absorber, I',>> Eo(1—ais), the second scattering source term
in Eq. (4.64) can be approximated by assuming that ZI*(E")$(E')/E =~
Z(E)d(E)/E, which leads to

EM
[Zf(E) — XFS(E) + ZY]E

dwr(E) = (4.70)

Using this result to evaluate the resonance integral defined by Eq. (4.59) vields

i =y T,
fom = /fa7(E) S(E) — Srs(B) + 5M By J(& 5) (4.71)
where
AT
v _Ys *
18 N ao F,.', (472)

Resonance Absorption Calculations

Data for several of the low-energy resonances in *>*U are given in Table 4.4. Also
shown is a comparison of the absorption probabilities calculated with the narrow
and wide resonance approximations with an “exact” solution obtained numerically,
for a representative fuel-to-moderator ratio for a thermal reactor. The WR approxi-
mation is more suitable for the lowest-energy resonances, but the narrow reso-
nance approximation generally is preferable for all but the lowest-energy
resonances.
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TABLE 4.3 J-Function (B=27x10"%)"

JEB)
j £=0.1 £=0.2 (=03 £=04 (=05 (=06 {=07 {=08 (=09 {=1.0
0 497902 4.970(2) 4.969(2) 4.968(2) 4.968(2) 4.968(2) 4.967(2) 4.967(2) 4967(2)  4.967(2)
1 353 3.517 3514 3513 3513 3513 3,513 3513 3513 3.513
2 2514 2491 2487 2485 2485 2484 2.484 2.484 2.484 2.484
3 1801 1.767 1.761 1.759 1.758 1757 1.757 1.757 1.757 1.757
4 1307 1.257 1.248 1.245 1.244 1.243 1.243 1.243 1.242 1.242
5 9.667(1) 8.993(1) 8.872(1) 8.831(1) 8.812(1) 8.802(1) 8.796(1) 8.792(1) 8.790(1)  8.788(1)
6 7355 6.501 6.335 6.278 6.252 6.238 6.230 6.225 6.221 6.218
7 5773 4777 4.562 4485 4450 4.430 4.419° 4412 4.407 4.403
8  4.647 3.589 3.328 3230 3.183 3.158 3.143 3.133 3.126 3.121
9 3.781 2.759 2471 2354 2297 2.265 2.245 2.232 2.223 2.217
10 3.045 2.153 1.867 1.741 1.675 1.638 1.614 1.598 1.587 1.579
11 2367 1.676 1423 1.301 1.235 1.194 1.168 1.151 1.138 1.129
12 1730 1.268 1.074 9.718(0) 9.119(0) 8.739(0) 8.484(0) 8.304(0) 8.174(0)  8.077(0)
13 1164 9.081(0) 7.815(0) 7.087 6.629 6.322 6.107 5.950 5.833 5.744
14 7.17200) 6.014 5342 4914 4624 4419 4.268 4.154 4.066 3.997
15 4088 3.658 3371 3.169 3.022 2911 2.826 2759 2.706 2.663
16 2204 2.067 1.966 1.889 1.829 1.781 1.743 1.712 1.687 1.666
17 1.148 1.109 1.078 1.053 1.033 1.016 1.002 9.904(—1)  9.805(—1) 9.722(~1)
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Example 4.2: Group Capture Cross Section for 6.67-eV **U Resonance. The
contribution of the 6.67-eV **U resonance to the capture cross section of an energy
group extending from 1 to 10eV is calculated in the narrow resonance approxi-
mation from of = IV /In(10/1), where I = (I',/Eo)(oy* + oM)J(€, ). For
uramum, o = 8.3bamms. For a moderator cross section per fuel atom
= ZM/NF = 60barns and a temperature 7= 330°C, §= (l"/2)/(E0kT/A)'/2
(0 0275V /2)/[(6.67 eV x 603°K x 0.86 x 10™* eV/K)/238]1/2 =0.361 and =
(0“"'*'+ o) /oy = (60 + 8.3)/2.15 x 10° =31.8 x 107 =2 x 1075, or j=4.98.
Interpolatmg onj and & in Table 4.3 yields J ~ 88. With these values, [[{; =~ 23 and

0'5 = 10 barns.

Temperature Dependence of Resonance Absorption

Examination of the function J(&, B) of Eq. (4.69) reveals that for any value of 3, the
value of J increases or remains constant as & decreases. Since £~1/ T2, the
resonance absorption must increase or remain unchanged when the temperature
increases. The physical reason for this is that as the temperature increases, the cross
section (averaged over nuclear motion) decreases in peak value and broadens in
energy in such a manner as to preserve the area under the cross-section curve, as
indicated in Fig. 4.5, but the decreasing value of the cross section results in a
decreasing depression in the neutron flux in the resonance region. This increase
in absorption cross section with increasing fuel temperature introduces an impor-
tant negative-feedback Doppler temperature coefficient of reactivity, which is im-
portant for reactor safety, as discussed in Chapter 5.

44 MULTIGROUP DIFFUSION THEORY

Multigroup Diffusion Equations

We consider cohorts of neutrons of different energies diffusing within a nuclear
reactor. The basic diffusion equation for each cohort, or group, of neutrons is the
same as derived in Chapter 3, but with absorption generalized to all processes that
remove the neutron from the cohort or group (i.e., absorption plus scattering to
another group) and with the source of neutrons for each group specialized to
include the in-scatter of neutrons from other groups, which are also diffusing within
the reactor:

—V -DE(r)Vey(r) + DE(r) g (r) = Zﬂg ~E(r)e(r)y
g'te

1 G
Wnglvzﬁ (Ngg(r), g=1,....G
g:

(4.73)
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The definition of group constants given by Eqs. (4.39) is applicable. For the group
diffusion coefficient there are two plausible definitions:

D)= [ depinErotn /o) =5 [ aeHREL o) @

£

or

1 1

P ) T S [ R Bt B o)

(4.75)

We return to this issue in Chapter 10, where the multigroup diffusion equations are
formally derived from energy-dependent transport theory.

Equations (4.73) constitute a set of homogeneous equations, the solutions of
which are nontrivial only for certain discrete values of the effective multiplication
constant, k. It has been shown (Refs. 8 and 12) that the mathematical properties of
the multigroup diffusion equations are such that the largest such discrete eigenvalue
is real and positive. The corresponding eigenfunction is unique and nonnegative
everywhere within the reactor. In other words, mathematically, these equations have
a physically correct solution corresponding to the largest value of the eigenvalue.

Two-Group Theory

The simplest example of mulitigroup diffusion theory is two-group theory in which
the fast group contains all neutrons with £ >1eV and the thermal group contains the
neutrons that have slowed down into the thermal interval E < 1 eV. This model is
described by

1
—V DIV + (5 + BN = (051 +VER)
-V D¥Vey + X3¢y = 2172,

(4.76)

and the boundary conditions of the neutron fluxes in both groups vanishing on the
boundary of the reactor.

Two-Group Bare Reactor

For a uniform reactor, the vanishing of the neutron flux on the boundary requires
that the neutron flux in both groups satisfies

V24h(r) + Boy(r) = 0 (4.77)

where B, is the geometric buckling of Chapter 3. Using this form for the group
fluxes in Egs. (4.76) leads to a pair of homogenecus algebraic equations that can be
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solved for the effective multiplication constant

UE} $i=2 1/2%
k= 12 g Ty =) g v2 1 g2 (4.78)
e+ X2+ DB, X, + X7+ DBy Y+ DB
and the flux ratio
¥2 4+ p’Rp?
¢ = a—ZI_Tg% (4.79}

Extending the definition of the diffusion length for the fast group to include
removal by scattering to the thermal group

D! D!

2 _ _v
HTEEEe

(4.80)

Eq. (4.78) for the effective multiplication constant can be rearranged into a form
from which the definition of terms in the six-factor formula are apparent:

vy vElgy -2 1 1
= (5) (i) (e ) () (5
32 yEquz DD s 1+ LlBg 1+ Lng (4.81)

= (1) (€)(P)(Pr) (PRL)

where the fast (P}, ) and thermal (P%;) groups are identified separately.

One-and-One-Half-Group Theory

Because the thermal group absorption cross section is generally much larger than
the fast-group cross section, D* < D'. This suggests approximating the two-group
equations by neglecting D? and using the resulting solution of the thermal group
equation > = (Z!72/32)¢! in the fast-group equation to obtain

1 2]—»2
-V D'V + 3¢y = p (m} + v} —-ZT> b1 (4.82)
which has the form of a one-group diffusion equation for the fast neutrons. This

method may be extended to account for the diffusion of thermal neutrons by using
an effective value of the fast diffusion coefficient,

5! 4 312

Dj; = D'+
e Eg

D? (4.83)
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which has the effect of replacing the fast diffusion length L; by the migration
length; that is,

D! D?
M=+ 4.84
1 2;_]_2;_42_*_23 ( 8)
The solutions discussed in Chapter 3 for the one-speed neutron diffusion equa-
tion can be applied immediately to lé—group theory merely by replacing
vEf — VE; + VEF(Z{7?/2]) and D — Dl

Two-Group Theory of Two-Region Reactors

Consider a rectangular parallelepiped core consisting of a uniform central region
(material 1) bounded on both ends by regions of the same composition (material 2),
as depicted in Fig. 4.6. The two-group equations in each material (subscript k) are

‘ 1
_Dltvqulk(xa ¥, Z) + Zfl’kq&lk(x’ Y Z) == % [Vz}k¢lk(xa Y, Z) + 1/2}(]52[((){3, Y, Z)]

”Div2¢2k(x1ya Z) + Ezk@k(x,)’, Z) = 2;};_)2¢1 (x,)’, Z)
(4.85)

where group 2 is assumed to be below the fission spectrum. We seek a solution by
separation of variables, and recalling the results of Chapter 3 look for a solution of
the form

Gu(x,¥,2) = Xk (x)coszﬁylcoszﬂ—zzl (4.86)

The y- and z-components of the gradient operators acting on the trial solutions of
Eq. (4.86) give rise to a fransverse buckling term,

b v
!_ Xq l Xy i X4 - X o
] ] 1 1 _r
1 ] ] 1
? | { : 2y
l B | l 1
: ! : ? -X
SN SN N g s E— — >
e s s //
”I '; ’I ’/ 221
,/ ,’ Vi S
R { ,/ / Vi \ S f '/
" Material {2) / Materiat {1}/ *Material (2)

V4

Fig. 4.6 Three-region reactor model. (From Ref. 6; used with permission of MIT Press.)
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2 2
(7
2= (57) +(5) (487)

These trial solutions are substituted into Eqs. (4.85) to obtain equations for the X,

it 1
-—D}[ lek(x) + (Z:]-k + Dlchiz)Xlk(x) = % [I/Ejlka(x) + VE?ngk(x)]

82X 2k (x )
Ox?

(4.88)
—D;, + (B2 + DiB2) Xou(x) = T X (x)

These equations must satisfy symmetry boundary conditions at x = 0, continuity
of flux and current interface conditions at x =x;, and zero flux at x=x; + x;:

d—Xilxiz =0, ng(x1 +x)=0 ( )
4.89
dX, dX{(x
Xo1(x1) = X2 (1), —Df—gfd)ﬁﬂl= —D‘g%ﬁ

The procedure for solving Eqgs. (4.88) is to look for solutions of a particular form
with arbitrary constants and then to establish conditions on the arbitrary constants
by requiring the form to satisfy Eqs. (4.88). In particular, we look for solutions that
satisfy

d2X.. (x
—di+() + B2Xp(x) = 0 (4.90)

in each region k. Note that we require that Eq. (4.90) be satisfied with the same
value of B}‘; by both the fast (X;;) and thermal (X»;) fluxes in each region k.
Substituting the solution of the form that satisfies Eqs. (4.90) into Eqs. {4.88) leads
to a set of equations for each region £:

k
(—S)Xulx) + (D{BE + DB, + 52 )Xo (x) = 0

1
(D,{Bi + DB + %, — -yzf‘k)xlk(x) — (VS5 ) X (x) = 0 @91)

which must be satisfied if the solution of Eqs. (4.88) within each material is to have
the form that satisfies Eqs. (4.90). These are homogeneous equations, which have a
nontrivial solution only if the determinant of the coefficient matrix vanishes, which
defines two values B? = p? and Bf = —v; for which Egs. (4.88) have solutions of
the form that satisfies Eqs. (4.90):
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1/32 Sy -k vE
PRI W

2\ D? D}
. 02, T kvng S 2% Ych Mo
2D? 2D} DLD?
- - k -1l Kk (4.92)
1(% y — kv
2 _ 2 ak 7l ‘fk
= (=)
32, D ok WERN?  KWERE
2D7 D} DD}

The quantity —v? is always negative, but p? can be positive or negative, depending
on the value of the two-group constants. Thus there are solutions of Egs. (4.88) that
satisfy Eqgs. (4.90), which are of the form

Xoi(x) = A} singyx + A3, cospyx + A3 sinhyx + A3 coshx (4.93)
Xu(x) = skAéksinukx + skAgkcosukx + tkAgksinhukx + tkA;'kcosthx ’

where the second of Eqs. (4.91) has been used to determine the ratio of fast-to-
thermal group components:

_ Di(p; +B3) + %5

Sk
o
~ (4.94
DR} + BY) + 22, )
= 12
sk

The symmetry conditions at x =0 require that A}, = A3, = 0, and the zero flux
conditions at x =x, 4+ x, require that the solution in region 2 be of the form

Xp(x) = Chpsinup(x) + x2 — x) + Caysinhvy (x1 +x3 — x)

. ) (4.95)

X2(x) = szCézsmuz(xl +x—x)+ t2C§251nh1/2(x1 +x — x)
Requiring the solution in region 1 given by Egs. (4.93) and the solution in region 2
given by Egs. (4.95) to satisfy the continuity of flux and current interface conditions
results in a set of four homogeneous equations for the constants A3, A%/, Cl,, and
C2,. The requirement for a nontrivial solution, the vanishing of the determinant of
the coefficients, then, is the criticality condition

§1COSHX] ticoshvixy —stin,u.zJCz —tasinhusxo
det siDipysingnxy  —1 Dlygsinhyyxg —szDigzcosmxg —tzD‘%coshvzxz —0
COS{i1 X coshvx) —singpx; —sinhe,xy
Diugsingyx;  —Diugsinhvgx;  —D3pacospaxs  —D2unscoshinig

(4.96)
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which may be solved for the effective multiplication constant, k. The four equations
can be solved for three of the constants in terms of the one remaining constant,
which must be determined from the total reactor power level.

This procedure could be extended to multiregion reactors, but it becomes
extremely cumbersome, and direct numerical solution of Eqs. (4.85) becomes
preferable.

Two-Group Theory of Reflected Reactors

The results above can be specialized to the situation of a reflected reactor by setting
2s=0 in region 2, in which case Eq. (4.92) reduces to

22
_V% — _B2 a2

x!

2 2 r2
p2=—B -
%" D2

yz_D%7

(4.97)

A solution of the type just described can be carried out in spherical and cylin-
drical geometry (reflected axially or radially, but not both), as well as in the block
geometry. The results are summarized in Table 4.5, where Z(R=R, {R,z} or
{x,y,z}) and W are spatial flux shapes in the core and U and V are spatial flux
shapes in the reflector.

The thermal flux in the core of a spherical reflected reactor is given by

@2(r) = % (sinycr + asinhy,r) (4.98)

and the thermal flux in the spherical shell reflector is given by

Ga(r) = ¢—:R [sinhpgp(R" — r) + bsinhvg (R — r)] (4.99)
The corresponding fast fluxes are related to the thermal fluxes by the factors s, and
t, given by Egs. (4.94). These fluxes are plotted for a representative set of two-
group constants in Fig. 4.7. The much larger ratio Z;_‘Z / Zﬁ in the reflector than in
the core causes a peaking of the thermal flux in the reflector at the core—reflector
interface. Physically, fast neutrons are diffusing out of the core and being slowed
down into the thermal group in the reflector, where the thermal absorption is greatly
reduced relative to the core. This same type of peaking of the thermal flux would

occur in a water gap next to a fuel assembly within the core.

Numerical Solutions for Multigroup Diffusion Theory

The numerical solution procedures discussed for the one-speed diffusion equation
in Section 3.10 are readily extended to the solution of the multigroup diffusion
equations. The G multigroup equations for the case of G—1 fast groups and a
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ZR)=Jg(iR)cos bz
Z'(R) = —hJi(liR)cos Lz
W(R) = Iy(5R) coslpz
W(R) = Li,(hR) coshhz

lle;LZ—l2 125—7% B=)4E

Cylinder: Side Reflector (R) = [lo(l4R) Ko (l4R) o 141?) Ko(/sR)] cos foz
( ) = LI (I4R) K0(14R ) +IO(I4R)K1 (l4R)] cos bz

(R) = [lo(lsR) Ko(IsR) — To(IsR') Ko(I5R)] cos bz
( ) = I5{I1{lsR) Ko(lsR )+ 10(I5R YK 1{IsR)}cos bz

Ii:n -I—l2 152_n4+12

Z{R) = Jo{m p) cos myh
Z'(R) = —myJo(mi p) sinmph
W(R) = Jo(mp) coshmsh
W/(R) = myJo(my p) sinh mzh

Cylinder: End Reflectors my = 2-‘}?5 m% = LLZ _ m% m% =4+ mi’
R ;
U(R) = Jo(m1p) sinh my(d —~ h)

) =

U'(R) = —muJo(m1p) coshm4(c~l - h) mi = K3 + m1
)
)

V(R) = Jo(m,p) sinhms(d — h)
V/(R) = —msJo(nmp) coshms(d — b) md = &} +mi
(Continued)
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A
Core Reflector

o)
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L sinh k(R

rsin Br
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o

(a) {b)
Fig. 4.7 Fast and thermal fluxes in a reflected spherical reactor with properties {core:
Dy=Dy=1cm, 72 =0.009cm™', =} = 0.001, £ = 0.05cm™", vE} = 0.057; reflector:
Dy=D,=1cm, X!7? =0.009cm™!, 2‘ = 0.001, 22 =0. 0049cm—1, vE? = 0.0. (From
Ref. 13; used with permission of McGraw-Hill.)
thermal group G are

1
~V.D'V¢ + Ty = _XISf

1 —
—V- DV + Sidy = Sy + 2

(4.100)
VDV + Xl = 1X3sf +5 70+ 50
—V . DVg + S8¢c = i + B2 + -+ B8 %6
where the fission source is
G
S;(r) = Zl VEE(r)gg(r) (4.101)
o

The solution procedure is initiated by guessing a fission source distribution, S, ,
and an effective multlphcatlon constant, k¥, and solving the group | equation for
the first iterate fux, ¢1 :

~v-D'Vg{ + Bl = —x1 58" (4.102)

Equation (4.102) is solved iteratively (e.g., by the successive relaxation method
describ{ed in Section 3.10). Next, the group 2 equation is solved for the first iterate
flux, by

V-DVei) + 523 = o xast + 512 (4.103)

£(0)
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using the just calculated ¢$” and an iteration procedure of the type described in
Section 3.10. This procedure is continued successively to all the lower groups,
using the just calculated values of the fluxes for higher-energy groups to calculate
the scattering-in source, to determine the first iterate of all G group fluxes

[d)gl), (’pgl), ceey d)g}], which are then used to compute a first iterate fission source:
My _ Y

S (r) = Zl ij‘f(r)¢§l)(r) (4.104)
P

and a first iterate effective multiplication constant:

£ fdr S}l) {r)

U —
fdr S}O}(r)

(4.105)

The iterations are continued uatil the effective multiplication constant converges, as
described in Section 3.10.

If a multigroup structure is chosen in which there is more than one group in the
thermal energy interval E < I eV, there is upscattering among the thermal groups
and the successive-group solution procedure above must be modified by solving
simultaneously for the fluxes in the thermal groups or by at iterative solution for the
thermal group fluxes.
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PROBLEMS!

4.1. Solve the neutron balance equation in the slowing-down range for the neu-

tron flux, and determine the neutron slowing-down density, for a mixture of
nonhydrogenic moderators and no absorption. Compare the result with
Eq. (4.20) in the no-absorption limit.

42, Consider a very large block of material with composition (**°U=

0.002 x 10** at/cm®, ?®U=0.040 x 10** at/cm®, H,0=0.022 x 10**
at/cm®, Fe=0.009 x 10?* at/cm®) and temperature T=400°C. Calculate
and plot the neutron flux energy distribution in the fission, slowing-down,
and thermal regions.

4.3. Carry out the steps to demonstrate that the Maxwellian distribution of

Eq. (4.29) satisfies the equilibrium neutron balance equation of Eq. (4.27).

4.4. Calculate the thermal group absorption cross section for *°U at T, = 300,

400, and 500°C.

4.5. Calculate the infinite multiplication constant and the relative group fluxes in

a very large fuel assembly with the four-group constants given in Table P4.5.

TABLE P4.5

Group Group 1: Group 2: Group 3: Group 4:
Constant 1.35-10MeV ~ 9.1keV-1.35MeV  0.dev-9.1keV  0.0-04eV
1 0.575 0.425 0 0

vEr (em™") 0.0096 0.0012 0.0177 0.1851
¥, {em™) 0.0049 0.0028 0.0305 0.1210
TEstem ™) 0.0831 0.0585 0.0651 —

D (cm) 2.162 1.087 0.632 0.354

"Problem 4.12 is a longer problem suitable for a take-home project.
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4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

NEUTRON ENERGY DISTRIBUTION

The radiative capture cross section for a certain isotope is measured at the
following energies: 50eV, 200 barns; 100eV, 245 barns; 150eV, 275 barns;
300 eV, 200 barns; 350eV, 180 barns; 400eV, 210 barns. Calculate a multi-
group capture cross section for the group E,=75eV, E,_| =425¢V.

Calculate the resonance escape probability for the 6.67 eV 238 resonance at
7T =300°C when the moderator scattering cross section per uranium nucleus
18 Zf /Nies = 50 barns. Calculate the resonance integral using either the nar-
row or wide resonance approximation; explain your choice.

Calculate the contribution of each of the resonances in Table 4.4 to the
multigroup capture cross section for a group extending from 1 to 300eV
when the moderator scattering cross section per uranjum nucleus is
ZSM /Nies = 75barns and the temperature is 300°C.

Repeat the calculation of Problem 4.8 for £ /Ny, = 25 barns. Repeat the
calculation for 500°C.

Calculate the total resonance escape probability for the resonances in Table
44 when the moderator scattering cross section per uranium nucleus is
ZJS” /Niwes = 75 barns and the temperature is 300°C.

Consider a large repeating array of slab fuel assemblies of width 50cm
separated by 10 cm water—structure slabs. Calculate the thermal and fast flux
distributions and the infinite multiplication factor for the fuel-water—struc-
ture array using the two-group cross sections given in Table P4.11.

TABLE P4.11

Core Water/Structure

Group Constant Groupl Group2 Group!  Group 2

% 1.0 0.0 0.0 0.0
vEr (em 1) 0.0085  0.1851 0.0 0.0
%, (cm ") 0.0121 0.12] 0.0004 0.020
%1-2 ecm™") 0.0241 — 0.0493 —
D (cm) 1.267 0.354 1.130 0.166

Write a computer code to solve numerically for the fast and thermal flux
distributions and the effective multiplication constant in a two-dimensional
cut through a very tall reactor core. The reactor core extends from
—50cm < x < +50cm. Region 1 of the core extends from 15cm<y<
55cm, and region 2 of the core extends from 55cm <y < 105cm. The core
is entirely surrounded by a 15-cm-thick reflector. The twe-group constants
for the core and reflector are given in Table P4.12.

Calculate the reduction of the slowing-down density as a function of energy
below 50keV in a 1:1 homogeneous mixture of H,O and 3% enriched
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uranium. {(Use the resonance range cross sections of Table 1.3, assuming
them to be constant in energy.)

TABLE P4.12

Core 1 Core 2 Reflector

Group Constant Group | Group2  Groupl Group2 Groupl Group 2

v, 1.0 0.0 1.0 0.0 0.0 0.0
v {cm™") 0.0085 0.1851 0.006 0.150 0.0 0.0
T, (em ) 0.0121 0.121 0.010 0.100 0.0004 0.020
ni=2 (em™") 0.0241 — 0.016 0.000 0.0493 —
D {cm) 1.267 0.354 1.280 0.400 1.130 0.166

4.14. Calculate and plot the hardened Maxwellian component of the thermal spec-
trum for in a 1:1 homogeneous mixture of H,O and uranium for natural
uranium and 4% enriched uranium. (Use the thermal range cross sections
of Table 1.3, assuming them to be constant in energy, and use C=1.5.)

4.15. Calculate the spectrum averaged one group cross sections for Problem 4.5.

4.16. Extend the development of Section 3.11 to derive the equations for a multi-
group nodal model.

4.17. Calculate the node average fluxes and the effective multiplication constant of
Problem 4.12 using a two-group nodal model. Compare with the results of
Problem 4.12.

4,18. Calculate in two-group theory the critical radius of a 3.5-m-high bare cy-
lindrical core with the cross sections given for core 1 in Problem 4.12,

4.19. Repeat the calculation of Problem 4.18 for the situaticn in which the core is
surrounded by a 15-cm-thick annular reflector with the properties given in
Problem 4.12. Compare the result with the result that would be obtained by
subtracting the reflector savings from the critical radius for the bare core
calculated in Problem 4.18.

4,20. Solve Problem 4.18 in 1% group theory.






5 Nuclear Reactor Dynamics

An understanding of the time-dependent behavior of the neutron population in a
nuclear reactor in response to either a planned change in the reactor conditions or to
unplanned and abnormal conditions is of the utmost importance to the safe and
reliable operation of nuclear reactors. We saw in Chapter 2 that the response of the
prompt neutrons is very rapid indeed. However, unless the reactor is supercritical
on prompt neutrons alone, the delayed emission of a small fraction of the fission
neutrons can slow the increase in neutron population to the delayed neutron pre-
cursor decay time scale of seconds, providing time for corrective control measures
to be taken. If a change in conditions makes a reactor supercritical on prompt
neutrons alone, only intrinsic negative feedback mechanisms that automatically
provide a compensating change in reactor conditions in response to an increase
in the neutron population can prevent a runaway increase in neutron population
{and fission power level). However, some of the intrinsic changes in reactor con-
ditions in response to a change in power level may enhance the power excursion
(positive feedback), and others may be negative but delayed sufficiently long that
the compensatory reactivity feedback is out of phase with the actual condition of
the neutron population in the reactor, leading to power-level instabilities. These
reactor dynamics phenomena, the methods used for their analysis, and the experi-
mental techniques for determining the basic kinetics parameters that govern them
are discussed in this chapter.

5.1 DELAYED FISSION NEUTRONS

Neutrons Emitted in Fission Product Decay

The dynamics of a nuclear reactor or any other fission chain-reacting system under
normal operation is determined primarily by the characteristics of the delayed
emission of neutrons from the decay of fission products. The total yield of delayed
neutrons per fission, v, depends on the fissioning isotope and generally increases
with the energy of the neutron causing fission. Although there are a relatively large
number of fission products which subsequently decay via neutron emission, the
observed composite emission characteristics can be well represented by defining six
effective groups of delayed neutron precursor fission products. Each group can be
characterized by a decay constant, A,, and a relative yield fraction, B;/B. The
fraction of the total fission neutrons that are delayed is f =v,/v. The parameters
of delayed neutrons emitted by fission product decay of several relevant isotopes
are given in Table 5.1.

139
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TABLE 5.1 Deiayed Neutron Parameters

Fast Neutrons

Thermal Neutrons

Decay Constant

Relative Yield

Decay Constant

Relative Yield

Group G B:/B A 571 B:/B

23y vz =0.00731 v, =0.00667
p=0.0026 B =0.0026

1 0.0125 0.096 0.0126 0.086

2 0.0360 0.208 0.0337 0.299

3 0.138 0.242 0.139 0.252

4 0.318 0.327 0.325 0.278

5 1.22 0.087 1.13 0.051

6 3.15 0.041 2.50 0.034

25y vg=0.01673 vy=0.01668
B =0.0064 B =0.0067

1 00127 0.038 0.0124 0.033

2 0.0317 0213 0.0305 0.219

3 0.115 0.188 0.111 0.196

4 0311 0.407 0.301 0.395

5 1.40 0.128 1.14 0.115

6 3.87 0.026 3.01 0.042

P9y vy=0.0063 vz =0.00645
B=10.0020 B =0.0022

1 0.0129 0.038 0.0128 0.035

2 0.0311 0.280 0.0301 0.298

3 0.134 0.216 0.124 0.211

4 0.331 0.328 0.325 0.326

5 1.26 0.103 1.12 0.086

6 3.21 0.035 2.69 0.044

Hpy V= 0.0152 v, =0.0157

B= 0.0054

1 —_ — 0.0128 0.010

2 — — 0.0297 0.229

3 — — 0.124 0.173

4 - - 0.352 0.390

5 — — 1.61 0.182

6 _ — 3.47 0.016

22Th v, =0.0531
B=0.0203

1 0.0124 0.034

2 0.0334 0.150

3 0.121 0.155

4 0.321 0.446

5 1.21 0.172

6 3.29 0.043
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TABLE 5.1 (Continued)

Fast Neutrons Thermal Neutrons

Decay Constant  Relative Yield Decay Constant Relative Yield

Group A (sTh B:/B A s™h B:/B
¥y v, = 0.0460
B=0.0164
1 0.0132 0.013
2 0.0321 0.137
3 0.139 0.162
4 0.358 0.388
5 141 0.225
6 4.02 0.075
240py v,=0.0090
B =0.0029
1 0.0129 0.028
2 0.0313 0.273
3 0.135 0.192
4 0.333 0.350
5 1.36 0.128
6 404 0.029

Effective Delayed Neutron Parameters for Composite Mixtures

The delayed neutrons emitted by the decay of fission products are generally less
energetic (average energy about 0.5 MeV) than the prompt neutrons (average en-
ergy about 2MeV) released directly in the fission event. Thus these delayed neu-
trons will slow down quicker than the prompt neutrons and experience less
probability for absorption and leakage in the process (i.e., the delayed and prompt
neutrons have a difference in their effectiveness in producing a subsequent fission
event). Since the energy distribution of the delayed neutrons differs from group to
group, the different groups of delayed neutrons will also have a different effective-
ness. Furthermore, a nuclear reactor will, of course, contain a mixture of fissionable
isotopes (e.g., a uranium-fueled reactor will initially contain »°U and ?*®U, and
after operation for some time will also contain some admixture of 239Pu, 240Pu, and
so on; see Chapter 6).

To deal with this situation, it is necessary to define an importance function,
¢* (r, E), which is the probability that a neutron introduced at position r and energy
E will ultimately result in a fission (Chapter 13). Then the relative importance (to
the production of a subsequent fission) of delayed neutrons in group { emitted with
energy distribution XZ,-(E) and prompt neutrons from the fission of isotope g emitted
with energy distribution y(E) are
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i - / av / dEXL(E)é" (1, E) / BV (EWN,(r)o(rE)  (5.1)
0 1}

I, = / av fo " dEXA(E)GH (1, E) /0 " SEVAEIW, (NS E)  (52)

The relative effective delayed neutron yield of group i delayed neutrons for
fissionable isotope g is I;B7, where Bf is the group i delayed neutron yield of
fissionable isotope g given in Table 5.1. The effective group i delayed neutron
fraction for isotope ¢ in a mixture of fissionable isotopes is then

=16 > u(i- 26;/34) + iﬂfﬂ] (53)

The effectiveness of delayed neutron group i of fissionable isotope g in a specific
admixture of fissionable isotopes and reactor geometry is then v¢ = y?B7/p?. In the
remainder of the book, except when specifically stated otherwise, it is assumed that
the delayed neutron effectiveness is included in the evaluation of §; and B, and the
effectiveness parameter will be suppressed.

Photoneutrons

Fission products also emit gamma rays when they undergo p-decay. A photon can
eject a neutron from a nucleus when its energy exceeds the neutron binding energy.
Although most nuclei have neutron binding energies in excess of 6 MeV, which is
above the energy of most gamma rays from fission, there are four nuclei that have
sufficiently low neutron binding energy, E,, to be of practical interest: D (E,=
2.2 MeV), “Be (E,=1.7MeV), °Li (E, =5.4MeV), and °C (E,=4.9MeV). The
photoneutrons can be considered as additional groups of delayed neutrons. Since
the B-decay of fission products is generally much slower than the direct neutron
decay, the photoneutron precursor decay constants are much smaller than the de-
layed neutron precursor decay constants shown in Table 3. 1. The only reactors in
which photoneutrons are of practical importance are D>O-moderated reactors, As
we shall see, the dynamic response time of a reactor under normal operation is
largely determined by the inverse decay constants, and consequently, DO reactors
are quite sluggish compared to other reactor types.

5.2 POINT KINETICS EQUATIONS

The delayed neutron precursors satisfy an equation of the form

%?(r, 1) = BwZe(r, 0)d(r, 1) — MCi(r, 1), i=1,...,6 (5.4)
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The one-speed neutron diffusion equation is now written

%@%%Q—Dmov%0ﬁ+ihm0ﬂnﬂ
6
= (1= BySr(r,)o(r, 1) + > NCilr, ) (s.5)
i=1

where we have taken into account that a fraction  of the fission neutrons is delayed
and that there is a source of neutrons due to the decay of the delayed neutron
precursors.

Based on the results of Chapter 3, we assume a separation-of-variables solution

$(r,0) =vn@r(r),  Cilr,1) = CO)ya () (5.6)
where v, is the fundamental mode solution of
V4 + Blitpy = 0 (5.7)

and B, is the geometric buckling appropriate for the reactor geometry, as discussed
in Chapter 3. Using this in Egs. (5.4) and (5.5) leads to the point kinetics equations

dn(t H-8 ;
d(t) :P()A ,-;(t)—i—;/\ici(t)

dci(t) B .
i —Xn(t)—/\,C,(t), i=1,...,6

(5.8)

where

A= (wEp)! (5.9)

is the mean generation time between the birth of a fission neutron and the subse-
quent absorption leading to another fission, and

VEF — Sa(1+12B2) k(1) - 1

p(t) = 5, =0 (5.10)

is the reactivity. The quantity k is the effective multiplication constant, given by

I/EF/E[,

kEl+L2B§

(5.11)
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For predominantly thermal reactors, vZ,and X, are thermal cross sections, and
L? should be replaced by M? =2 + 1y to include the fast diffusion while the
neutron is slowing down, 1y, as well as the thermal diffusion length, L?. For fast
reactors, all cross sections are averaged over the appropriate fast spectrum.

The limiting assumption for the validity of the point kinetics equations is the
assumption of a constant spatial shape. As we will see, this assumption is reason-
able for transients caused by uniform changes in reactor properties or for reactors
with dimensions that are only a few migration lengths, M (or diffusion lengths, L),
but is poor for reactors with dimensions that are very large compared to M in which
the transient is caused by localized changes in reactor properties {(e.g., a nonsym-
metric control rod withdrawal). However, as we will see in Chapter 16, such spatial
shape changes can be taken into account in computation of the reactivity and the
mean generation time, and the point kinetics equations can be extended to have a
much wider range of validity.

5.3 PERIOD-REACTIVITY RELATIONS

Equations (5.8} may be solved for the case of an initially critical reactor in which
the properties are changed at t=0 in such a way as to introduce a reactivity po
which is then constant over time, by Laplace transforming, or equivalently assum-
ing an exponential time dependence ¢~*. The equations for the time-dependent
parts of n and C; are

sn(s) = pﬂ_ —I—Z)\C

(5.12)
Bi ;
sCi(s) = T a(s) — NCi(s), i=1,...,6
which can be reduced to
f(S, Ry, CZO)
n(s) 7(s) (5.13}

where

Y(s)—pg—s(A+Zs+/\> (5.14)

The poles of the right side—the roots of ¥(s) = 0—determine the time dependence
of the neutron and precursor populations. Y(s)=0 is a seventh-order equation,
known as the inverse hour, or more succinctly, the inhour, equation, the solutions
of which are best visnalized graphically, as indicated in Fig. 5.1, where the right-
hand side of

pg—s<A+ZS+)\> (5.15)
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Fig. 5.1 Plot of the function R(®)=o[A + Zf;/(w+ A;)], which appears in the in-hour
equation. (From Ref. 4; used with permission of MIT Press.)

is plotted. The left-hand side, py, would plot as a straight horizontal line, of course,
and the points at which it crosses the right-hand side are the solutions (roots of
the equation). For py < 0, indicated by the circles in Fig. 5.1, all the solutions
5; < 0. For py >0, indicated by the crosses, there are one positive and six negative
solutions.

The solution for the time-dependent neutron flux is of the form

6
n(t) =Y A (5.16)
=0

where the s; are the roots of ¥(s)=0 and the A; are given by

A= (A+gsyf_"/\i>/[1 +kzj;af%] (5.17)

After a sufficient time, the solution will be dominated by the largest root 59 (5o >0
when pg > 0, sq is the least negative root when py < 0):

n(t) ~ Age™ = Age'/T (5.18)

where T = s is referred to as the asymptotic period. Measurement of the asymp-
totic period then provides a means for the experimental determination of the
reactivity

! ~_ B

i=l
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54 APPROXIMATE SOLUTIONS OF THE POINT
NEUTRON KINETICS EQUATIONS

One Delayed Neutron Group Approximation

To simplify the problem so that we can gain insight into the nature of the solution of
the point kinetics equations, we assume that the six groups of delayed neutrons can
be replaced by one delayed neutron group with an effective yield fraction = Z;y;B;
and an effective decay constant A =2,B;A,/B, so that the point kinetics equations
become

dn _p—p

dn_p—B ac B
dt~ A

+AC, =T (5.20)

Proceeding as in Section 5.3 by Laplace transforming or assuming an e* form of the
solution, the equivalent of Eq. (5.13) for the determination of the roots of the
reduced in-hour equation is

sz_(_f’zﬂ_ )s_%‘lzo (5.21)

which has the solution

(5.22)

For p > 0, one root is positive and the other negative; for p = 0, one root is zero and
the other is negative; and for p <0, both roots are negative.

The assumed ¢ time dependence, when used in Egs. (5.20), requires that for
each of the two roots, s; and s,, there is a fixed relation between the precursor and
the neutron populations:

) B _ _(p=8B_ S
n(t)  Alsiz+2) ( A 1=2>/ A (5.23)

which means that the solution of Eqgs. (5.20) is of the form

B

B
RYOESY

eV + Ay———e?  (5.24)

— 51! S21 =
n(r} A’ 4+ Aze™, C(t) A(S2+)\)

Now, let us take some parameters typical of a light water reactor: p=0.0075,
A=0.085"", A=6 x 10™°s. Except for |p—B| ~ 0, one root of Eq. (5.21) will be
of very large magnitude, and the other will be of very small magnitude. For the
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larger root, 53 3> Ap/A and Ap/A can be neglected in Eq. (5.21); and for the
smaller root, s3 < Ap/A and s? can be neglected. Assuming that |p—B|/A >2,
the solutions of Eq. (5.21) are

- A
51 = ”—Xﬁ 52 = mp_—pﬁ (5.25)

The constants A; and A, can be evaluated by requiring that the solution satisfy the
initial condition at =0 that is determined by setting p=0 in Egs. (5.24), which
identifies A1~ nep/(p—P) and A, =~ —noB/(p—PB), where ngy is the initial neu-
tron population before the reactivity insertion, so that the solutions of Egs. (5.24)
become

1l (50 (%)
0 = [(p fﬂﬂ)z oo (75 ) + e (- ﬁ%’)]

At 1=0, before the reactivity insertion, Cy = Bng/AX = 1600n,. Thus the popu-
lation of delayed neutron precursors, hence the latent source of neutrons, is about
1600 times greater than the neutron population in a critical reactor. It is not surpris-
ing that this large latent neutron source controls the dynamics of the neutron
population under normal conditions, as we shall now see.

(5.26)

Example 5.1: Step Negative Reactivity Insertion, p < 0. Equations (5.26) enable
us to investigate the neutron kinetics of a nuclear reactor. We first consider the case
of a large negative reactivity insertion p = —0.05 into a critical reactor at =0, such
as might be produced by scramming (rapid insertion) of a control rod bank. With
the representative light water reactor parameters (B=0.0075, A=0.08s""
A =6 x 1075s), Eqgs. (5.26) become

n(t) = no(0.87e_958‘ + 0-13e_0'0'58‘)

C(t) = n(0.0113¢7% 4 156327006%) 5-27)
which is plotted in Fig. 5.2, with T=n. The first term goes promptly to zero on a
time scale At= A, corresponding physically to readjustment of the prompt neutron
population to the subcritical condition of the reactor on the neutron generation time
scale. The second term decays slowly, corresponding to the slow decay of the
delayed neutron precursor source of neutrons. The neutron population drops
promptly from no to ng/(1—p/B)—the prompt jump—then slowly decays as
g~ MU=B/ON Ty scramming a control rod bank cannot immediately shut down
(reduce the neutron population or the fission rate to near zero) a nuclear reactor or

other fission chain reacting medium. The delayed neutron precursors decay as
~[ASO=B/m]t
e .
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Fig. 5.2 Neutron and delayed neutron precursor decay following negative reactivity inser-
tion p=—0.05 into a critical nuclear reactor. (From Ref. 4; used with permission of MIT
Press.)

Example 5.2: Subprompt-Critical (Delayed Critical) Step Positive Reactivity
Insertion, 0 < p < 3. Next, consider a positive reactivity insertion p=0.0015 < §,
such as might occur as a result of control rod withdrawal. Equations (5.26) now
become

n(t) = no(_0_25e—100t + 1.2560‘02t)

5.28
C(t) = np(0.3125¢1%" + 1562.5¢°) (5.28)

which is plotted in Fig. 5.3. The neutron population increases promptly, on the
neutron generation time scale—the prompt jump—{from rg to ny/(1—p/P), as the
prompt neutron population adjusts to the supercritical condition of the reactor, then
increases as e M/ 1=B/P)lt governed by the rate of increase in the delayed neutron
source. The relatively slow rate of increase of the neutron population, following the

2.5} o 14000
2.25} «—
l"
() 2.00f -~ 13200
- C()
0o 175 T
1.50% 12400
1.25
1.0 1600
0 10 20 30 40

f(sec)

Fig. 5.3 Neutron and delayed neutron precursor increase following subprompt-critical
positive reactivity insertion p =0.0015 < P into a critical nuclear reactor. (From Ref. 4; used
with permission of MIT Press.)
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prompt jump, allows time for corrective control action to be taken before the fission
rate becomes excessive.

Example 5.3: Superprompt-Critical Step Positive Reactivity Insertion, p > 3.
Now consider a step increase of reactivity p=0.0115> 3, such as might occur
as the result of the ejection of a bank of control rods from a reactor. Equations
(5.26) now become

n(t) = ng(2.9¢%7 — 1.9¢702)

C(t) = ny(5.4e%7 + 1563 0%) (3:29)
The neutron population in the reactor grows exponentially on the neutron genera-
tion time scale, 7 ~ ' ®~P/A¥ because the reactor is supercritical on prompt neu-
trons alone [i.e. k(1—P)>1]. In this example, the neutron population would
increase by almost a factor of 800 in a tenth of a second, and it would be impossible
to take corrective action quickly enough to prevent excessive fission heating and
destruction of the reactor. Fortunately, there are inherent feedback mechanisms that
introduce negative reactivity instantaneously in response to an increase in the
fission heating (e.g., the Doppler effect discussed in Sections 5.7 and 5.8), and
the neutron population will first increase rapidly, then decrease. However, condi-
tions that would lead to superprompt-critical reactivity insertion are to be avoided
for reasons of safety. Since = 0.0026 for 233, 0.0067 for 235, and 0.0022 **Pu,
the safe operating range for positive reactivity insertions, 0 < p < B, is much larger
for reactors fueled with 2*°U than for reactors fueled with ***U or 2°Pu.

Prompt-Jump Approximation

We found that with a reactivity insertion for which the reactor condition is less than
prompt critical {p < p) the neutron population changed sharply on the neutron
generation time scale, then changed slowly on the delayed neutron inverse decay
constant time scale. If we are not interested in the details of the prompt neutron
kinetics during the prompt jump, we can simplify the equations by assuming that
the prompt jump takes place instantaneously in response to any reactivity change,
and afterward, the neutron population changes instantaneously in response to
changes in the delayed neutron source (i.e., we set the time derivative to zero in
the neutron cquation).

6
0= [p(1) — Bln(r) + A 3 ACi(r) (5.30)

Since the delayed neutron precursor population does not respond instantaneously to
a change in reactivity, Eq. (5.30) is valid with the same delayed precursor popula-
tion both before and just after a change in reactivity from pg to p, < B, from which
we conclude that the ratio of the neutron populations just after and before the
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reactivity change is

m_B-p

= B (5.31)

Use of Eq. (5.30) to eliminate n(t) in the second of Eqgs. (5.8) yields a coupled set
of equations for the time dependence of the precursor density:

aci B
RO ; ANGi(t) — NCi(t) (5:32)

which in the one delayed precursor group approximation takes on the simple form

dc(r)  AC()
& 1= p(1)/B (-33)

The prompt-jump approximation is convenient for numerical solutions because
it eliminates the fast time scale due to A, which introduces difficulties in time
differencing methods. Numerical solutions of the point kinetics equations with
and without the prompt-jump approximation for a variety of reactivity insertions
indicate that the prompt-jump approximation is accurate to within about 1% for
reactivities p < 0.5p.

Using the one delayed precursor group approximation, the equivalent of
Eq. (5.30) can be solved for C(¢) and used in the second of Egs. (5.20) to obtain

o) - {20 [i’;(t—’)+ Apm]n(r) 0 (5.34)

which for a given reactivity variation p(f) can be solved for the neutron population

n(r) = ngexp [/Otp—(tllé—):tﬁggﬁdt'] (5.35)

Example 5.4: Reactivity Worth of Rod Insertion. The neutron flux measured by a
detector is observed to drop instantaneously from ng to 0.5 ng when a control rod
is dropped into a cold highly enriched critical nuclear reactor, in which pg=0.
Using the one-delayed group model with B =0.0065, Eq. (5.31) yields p;=
B(1—ng/ny)=0.0065(1—2) = —0.0065Ak/k.

Reactor Shutdown

We mentioned that the large step negative reactivity insertion considered previously
might be representative of the situation encountered in a reactor shutdown, or
scram. However, the time required to fully insert control rods is very long compared
to the prompt neutron generation time that governs the time scale of the prompt
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jump. We can improve on the representation of the control rod insertion by
considering a ramp reactivity insertion p(f) = —&t. If we are only interested in cal-
culating the initial rapid decrease in the neutron population, we can make
the assumption that the initial precursor concentration remains constant; hence
the precursor source of delayed neutrons remains constant at its pre-insertion value

/\,C,(O) = %n(] (536)

-

i=1

Using this approximation, the equation governing the prompt neutron response to
the reactivity insertion—the first of Egs. (5.8)—can be integrated to obtain

n(t) =no [exp[—% (%stz—kﬂt)} -f—%/otexp{ —% [g(rz —(’)% +;3’(t—r’)] }a’t’}
(5.37)

This provides a somewhat better description of the initial reduction in the neutron
population than do Eqgs. (5.27), which, however, would still govern the long-time
decay after completion of the rod insertion.

5.5 DELAYED NEUTRON KERNEL AND ZERO-POWER
TRANSFER FUNCTION

Delayed Neutron Kernel

The delayed neutron precursor equations, the second of Eqgs. (5.8), can be formally
integrated to obtain (assuming that C; =0 at —oo)

Ci{t) = / ﬁ’n(t M=) gy = /ﬁ’ e N n(t — 7)dr. (5.38)

Using this result in the neutron kinetics equation, the first of Eqgs. (5.8), yields

dn(t) _ (p(f)A —ﬁ)n(,) + / L Doyt~ rdr (5.39)

dt

where we have defined the delayed neutron kernel
EE)\ﬁl - (5.40)

Zero-Power Transfer Function

If the neutron population is expanded about the initial neutron population in the
critical reactor at =0,

n(r) = ng + ny(z) (5.41)
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Eq. (5.39) may be rewritten

dni(t)  pOme  plOimie

dt A + A © +/OOO§D(T)['11(I — 1) —m(t) dr (5.42)

The Laplace transform of a function of time A(#) is defined as

Als) = /0 " A)e di (5.43)

Laplace transforming Eq. {5.42) and using the convolution theorem

P [ /0 T AMB(r —1) dt] — A(s)B(s) (5.44)

yields, upon assuming that the term p(Hn,(¢) is a product of two small terms and
can be neglected relative to p(f)ng,

ni(s) = noZ(s)p(s) (5.45)

where

Z(s) ——( +ZV+A> (5.46)

is the zero-power transfer function, which defines the response of the density #, to
the reactivity.

The inverse Laplace transformation of Eq. (5.45) and the convolution theorem
yield the solution for the time dependence of the neutron population as a function of
the time dependence of the reactivity:

nm(f) =ng /OthZ(t - T)p(T) (5.47)

where the inverse Laplace transform of the zero-power transfer function is

7 £5(t=T)

1
O S i e N EWPESYC

(5.48)

and the s; are the roots of the inhour equation, ¥(s)=0, with ¥(s) given by
Eq. (5.14).
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5.6 EXPERIMENTAL DETERMINATION
OF NEUTRON KINETICS PARAMETERS

Asymptotic Period Measurement

When a critical reactor is perturbed by a step change in properties, the asymptotic
period may be determined from the response R(r) of neutron detectors by
T~ ! =d(In R)/ds; then the period—reactivity relation of Eq. (5.19) can be used to
infer the reactivity. For negative reactivities, the asymptotic period, the largest root
of the inhour equation, is dominated by the largest delayed neutron period and is
relatively insensitive to the value of the reactivity, so this method is limited practi-
cally to supercritical reactivity (0 < p) measurements, for which Eq. (5.19) may be
written

p_A & BB BB
B_B"T'JF;H,\,-T_Z (549)

where the fact that safety considerations further limit the practical applicability of
this method to the delayed critical regime (0 < p < ) has been taken into account
in writing the second form of the equation.

Rod Drop Method

The responses of a neutron detector immediately before (Rg~nn) and after
(R ~n,) a control rod is dropped into a critical reactor (po=0) are related by
Eq. (5.31), which allows determination of the reactivity worth of the rod

R
2o (5.50)

s R,
Source Jerk Method

Consider a subcritical system that is maintained at equilibrium neutron, ng, and
precursor, C;, populations by an extraneous neutron source rate, S. The neutron
balance equation is

p—B <
(—A )n0+;)\iCiO+SZO (5.51)

If the source is jerked, the prompt-jump approximation for the neutron density
immediately after the source jerk is

-8 6
(”T)n1+;,\ic,-0=0 (5.52)
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because the delayed neutron precursor population will not change immediately.
These equations and the equilibrium precursor concentrations Cip= B;/A. A may
be used to relate the responses of a neutron detector immediately before (Ry ~ ng)
and after (R, ~ n,) the source jerk to the reactivity of the system:

P (5.53)

Pulsed Neutron Methods

The time dependence of the prompt neutron population in a subcritical fission chain
reacting medium following the introduction of a burst of neutrens is described by

10¢(r, 1)
v ot

= DV?¢(r,1) — [Za — (1 — B)wiflo(r,1) (5.54)

since the delayed neutrons will not contribute until later. As discussed in Sec-
tion 3.6, the asymptotic solution that remains after higher-order spatial transients
decay is the fundamental mode, which decays exponentially:

n(r,t) ~ Ay (r)e™” [me--pmroals (5.55)

where B, is the fundamental mode geometric buckling for the geometry of the
systemn.

If the neutron detector response, R(r, )~ n(r.,t), is measured as a function of
time, then

_ LR _
T Rdt

p— 8
A

o v[vS(1 - B) - 5, — DB}] = (5.56)

Thus the pulsed neutron method can be used to determine ~ p/A, assuming that
B/A is known. If the experiment is performed in a critical system (p=0), the
measurement yields a value for B/A. In practice, a correction must be made to
account for transport- and energy-dependent effects which have been neglected in
this analysis, so that

o = v[w(1 — ) — %y — DB, — CB} + - -] (5.57)

Rod Oscillator Measurements

The response of the neutron population, as measured by a neutron detector
Rty ~n(r), to a sinusoidal osciliation of a control rod that preduces a sinusoidal
reactivity perturbation

p(r) = po sin wi (5.58)
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can be used to determine a number of neutron kinetics parameters. The response of
the neuvtron population to a sinusoidal reactivity perturbation can be calculated from
Eq. (5.45) by first computing the Laplace transform of Eq. (5.58):

Pow Pow
= 5.59
s +w? (54 iw)(s — iw) (5:59)

ps) =

and then Laplace inverting Eq. (5.45), or equivalently, by using Eq. (5.58) in
Eq. (5.47), to obtain

&5t

(w? + 5?)(dY/ ds),,

6
ni (1) = nopo[|Z(iw)|sin(wt + ¢)] Z (5.60)

where o is the phase angle, defined by

Im{Z(iw)}

Re{Z(io)} (561)

tang =

The first term in Eq. (5.60) arises from the poles of the reactivity [Eq. (5. 59)] at
s =t im, and the remaining terms arise from the poles of the zero-power transfer
function Z(s) [i.e., the roots of the inhour equation Y(s) = 0 given by Eq. (5.13)]. For
a critical system, the largest root of the inhour equation is s =0, so that after
sufficient time the solution given by Eq. (5.60) approaches

n1(t) ~ nopo | |Z(iw)| sin(wt + ¢) + ﬁ {5.62)

The average neutron detector response will be (po/®A)Ry, where Ry is the
average detector response before the oscillation began. At high oscillation fre-
quency, the contribution of the first term in Eq. (5.62) to the detector response will
average to zero and the detector response will reflect the second term. In both cases,
this provides a means for the experimental determination of pg/A in terms of the
average detector response (R):

Po_ A8 — Ko (5.63)

Zero-Power Transfer Function Measurements

By varying the frequency of rod oscillation, ®, the zero-power transfer function,
Z(iw), can be measured for a reactor or other critical fission chain reacting system
by interpreting the detector reading R(f) as

R{t) — Ry = Ropo [|Z(iw)| sin(wt + ¢} + WLA (5.64)
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Such measurements, when compared with calculation of the transfer function,
provide an indirect means of determining or confirming the parameters A, B;
and A At low frequencies the amplitude of the transfer function approaches

lW|—-" Zﬁx

for o < A,;, and the phase angle ¢ approaches

tan ¢ — — Zﬂ'/ﬂ/ Zﬁ’/ﬁ (5.66)

(5.65)

Rossi-a Measurement

The prompt neutron decay constant

_ldn k(1 -p)-1
=-—= ] (5.67)
can be measured by observing the decay of individual fission reaction chains in
succession if the process is continued long enough to observe a statistically sig-
nificant number of decay chains. Assume that a neutron count from a decay chain is
observed at r= (. The probability of another neutron count being observed at a later
time ¢ is the sum of the probability of a count from a chain-related neutron, Q
exp(or)At, plus the probability of a neutron from another chain, CAr, where C is the
average counting rate:

P(f)dt = Cdt + Qe* dt (5.68)

We use a statistical argument to determine (J. The probability of a count occur-
ring at ty is Fdty, where F is just the average fission rate in the system. The
probability of another detector count at #; > #o that is chain related to the count
at fp is

P(tl) dy = {-,‘VPVZfea(Il_tﬂ) dty (569)

where v, is the number of prompt neutrons per fission and € is the detector effi-
ciency. The probability of a second chain-related count at £ > 1) is

P(t) dty = (v, — 1) vy} gp, (5.70)
where (v,—1) takes account of the chain-related fission required to produce the
iz q P

count at t;. The three probabilities Fdty, P(f))dt, and P(t,)dt, are treated as
independent probabilities. Hence the probability for a count in dt; followed by a
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count in df;, both in the chain that produced the count in dt, is obtained by
multiplying the three probabilities and integrating over —oo <t <f;:

!

1 J—
P(Il , Iz) dt df, = / FEZ (V; - l7p> (sz)zea(rl+t2_2t0)dto dt, dt,
—oc

2 (5.71)
vy
=F¢* <J/§ - 17p> 7( 22) 27" gy, dr

where an overbar indicates an average over the prompt neutron emission distribu-
tion function.

Noting that v, =k,%,/Z;=k,/(v[Z;) and including the probability F°c*dt, dt,
of a random pair of counts, this becomes

(12 — Bp) k2e* =) dty dt

P(t1, 1) dty dt, = F*e2dt, dty + Fe? it
(1 2) 1 U2 1 2 2113(1—](1,)1

(5.72)

Since the overall probability of a count in df; is Fedt;, we need to normalize this
conditional probability by division by Fedt), which yields, upon rescaling time
from ¢, =0,

s(u_]% -v,) kK

P(t), tr)dndt, = —2— P e™dr 5.73
(l 2) 1642 Ug z(l_kp)l ( )

This is the @ exp(out) dt term in Eq. (5.68), so

Q= vz 21—kl

In a Rossi-« experiment, the function P(f) of Eq. (5.68) is measured by a time
analyzer and the random count rate Cdr is subtracted. The parameter o« is then
determined from the remaining Q exp(a) dr term.

5.7 REACTIVITY FEEDBACK

Up to this point, we have discussed neutron kinetics—the response of the neutron
population in a nuclear reactor or other fission chain reacting system to an external
reactivity input—under the implicit assumption that the level of the neutron popu-
lation does not affect the properties of the system that determine the neutron
kinetics, most notably the reactivity. This is the situation when the neutron popula-
tion is sufficiently small that the fission heat does not affect the temperature of the
system (i.e., at zero power). However, in an operating nuclear reactor the neutron
population is large encugh that any change in fission heating resulting from a
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change in neutron population will produce changes in temperature, which in turn
will produce changes in reactivity, or reactivity feedback. The combined and
coupled response of the neutron population and of the temperatures, densities,
and displacements of the various materials in a nuclear reactor is properly the
subject of reactor dynamics, but the term is commonly used to also include neutron
kinetics.

When the neutron population increases, the fission heating increases. Since this
heating is deposited in the fuel element, the fuel temperature will increase immedi-
ately. An increase in fuel temperature will broaden the effective resonance ab-
sorption (and fission) cross section, generally resulting in an increase in neutron
absorption and a corresponding reduction in reactivity—the Doppler effect. The
fuel element will also expand and, depending on the constraints, bend or bow
slightly, thus changing the local fuel-moderator geometry and flux disadvantage
factor (the ratio of the flux in the fuel to the flux in the moderator), thereby
producing a change in reactivity. If the increase in fission heating is large enough
to raise the fuel temperature above the melting point, fuel slumping will occur,
resulting in a large change in the local fuel-moderator geometry and a correspond-
ing change in flux disadvantage factor and fuel absorption, producing a further
change in reactivity.

Some of the increased fission heat will be transported out of the fuel element
(time constant of tenths of seconds to seconds) into the surrounding modera-
tor/coolant and structure, causing a delayed increase in moderator/coolant and
structure temperature. An increase in moderator/coolant temperature will produce
a decrease in moderator/coolant density, which causes a change in the local fuel—-
moderator properties and a corresponding change in both the moderator absorption
and the flux disadvantage factor. In addition, a decrease in moderator density will
reduce the moderating effectiveness and produce a hardening (shift to higher en-
ergies) in the neutron energy distribution, which will change the effective energy-
averaged absorption cross sections for the fuel, control elements, and so on. An
increase in structure temperature will cause expansion and deformation, producing
a change in the local geometry that will further affect the flux disadvantage factor.
These various moderator/coolant changes all produce changes in reactivity.

The reduction in moderator/coolant density increases the diffusion of neutrons,
and the increase in temperature causes an expansion of the reactor. The effect of
increased diffusion is to increase the leakage, and the effect of increased size is to
reduce the leakage, producing offsetting negative and positive reactivity effects. In
addition to these internal (to the core) reactivity feedback effects, there are external
feedback effects caused by changes in the coolant outlet temperature that will
produce changes in the coolant inlet temperature.

Temperature Coefficients of Reactivity

The temperature coefficient of reaciivity is defined as

Ap B(k—l) 16k 10k

or = P2
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To gain physical insight into the various physical phenomena that contribute to the
reactivity feedback, we first use the one-speed diffusion theory expression for the
effective multiplication constant for a bare reactor, but extend it to account for fast
fission by including the ratio € = total fission/thermal fission, to account for the
resonance absorption of neutrons during the slowing down to thermal energies by
including the resonance escape probability p, and to account for the leakage of fast
as well as thermal neutrons by replacing the diffusion length with the migration
length M:

UZf 1 _ I/Ef 25 1

C b = S T B - S S, 0+ B

nfPne — nfepPne (5.76)

which allows us to write

__18!] 16 laf 18p 1 BPNL

or=rartzartror " par T P oT (5.77)

This formalism lends itself to physical interpretation and can provide quantita-
tive estimates of reactivity coefficients for thermal reactors, but it is not directly
applicable to fast reactors. We discuss fast reactor reactivity coefficients in the next
section, where a perturbation theory formalism that is more appropriate for the
quantitative evaluation of reactivity coefficients in both fast and thermal reactors is
introduced. We now discuss reactivity feedback effects on p, f, and Py ; there are
also smaller reactivity effects associated with 1 due to shifts in the thermal neutron
energy distribution and associated with €, which latter are similar to the effects
associated with the thermal utilization factor.

Doppler Effect

The resonance capture cross section (one-level Breit—Wigner) is

Oy = UO\/%%w(x7 E) (578)

where ¥ is the Doppler broadening shape function, which takes into account the
averaging of the neutron-nucleus interaction cross section over the thermal moticn
of the nucleus,

\/§47r / —l=-y)*e?/4] dy
= .7
¥(x, &) i e Y (5.79)

Ty is the peak resonance cross section, I'y and I' are the capture and total widths of
the resonance, x = (E~Ep)/ T, £ =T/ (4E0kT/A)1/ %, E and E, are the energies of
the neutron and of the resonance peak, and A is the mass of the nucleus in amu. The
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total capture in the resonance is given by the resonance integral

I = / o (E)$(E) dE (5.80)

The function {r broadens with increasing temperature, 7, characterizing the motion
of the nucleus. A broadening of the W function reduces the energy self-shielding in
the resonance and increases the resonance integral. Thus an increase in fue! tem-
perature due to an increase in fission heating will cause an increase in the effective
capture cross section {o,) ~ I,. A similar result is found for the fission resonances.

In thermal reactors, the Doppler effect is due primarily to epithermal capture
resonances in the nonfissionable fuel isotopes (**Th, #*%U, 2*°Pu) and can be
estimated by considering the change in resonance escape probability

p= e_(NFI'y/@:n) (581)

where £X,/Nr is the average moderating power per fuel atom, with a sum over
resonance integrals for all fuel resonances implied, the function

N [T Y8
J(S,ﬁ)=/0 w(x7£)+ﬁ,dx (5.82)

is tabulated in Table 4.3, and B'=(Z,/Nr)(I'/col’,). The Doppler temperature
coefficient of reactivity for a thermal reactor can then be calculated as

10k 1¢ 101
p_ o0 10k 1% _, (8) (5.83)

% = or; " koT;  pote | '\I0Tr

Since the additional fission heating is deposited in the fuel, the fuel temperature, T},
increases immediately, and the Doppler effect immediately reduces the reactivity.
The Doppler effect is a very strong contributor to the safety and operaiional stabil-
ity of thermal reactors.

There are useful fits to the total resonance integrals for >**UQ, and B2ThO,:

I(300°K) = 11.6 +22.8 < ;—F)
F

I(Tr) = I(300°K) [1 + ﬂ”( T(°K) — \/3“0_0)]

s (5.84)

MU, : ' =61 x 1074 +47 x 10—4<Mi>

F

B2ThO, : B =97 x 107 + 120 x 10*4(%5)
F
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where Sr and Mp are surface area and mass of the fuel element. Using this fit,
Eq. (5.83) becomes

B 1 ﬁ/r
of =—In [p(?:OO“K)] TR (5.85)

Fuel and Moderator Expansion Effect on Resonance Escape Probability

When the fuel temperature increases, the fuel will expand, causing among other
things a decrease in the fuel density, which affects the resonance escape probability
and contributes an immediate temperature coefficient of reactivity:

aTF —paNF 87} N

, 1 8p N, 1 6Nk
—_ — ln _—
Nr 0T

) = —36p lnp (5.86)

where (dN/dT)/T=—3(dl/dT)/l=—36, with © being the linear coefficient of
expansion of the material. Since the fuel density decreases upon expansion, the
resonance absorption decreases, and this reactivity coefficient contribution is posi-
tive (note that since p < 1, In p <0).

After the increase in fission heating has been transported out of the fuel element
into the coolant/moderator, the moderator temperature, Ty, will increase, which
causes the moderator to expand and contributes a delayed temperature coefficient
of reactivity:

aTM o paNM BTM -

p _ 1 Op ONu_ (1 Ny
Ny OTy

Inp ——) =30y lnp {(5.87)

The decreased moderator density reduces the moderating power, reducing the prob-
ability that the neutrons will be scattered to energies beneath the resonance, hence
increasing the resonance absorption and contributing a negative reactivity coeffi-
cient.

Example 5.5: Resonance Escape Probability Fuel Temperature Coefficient for
UQ,. The prompt feedback resulting immediately from an increase in power is
associated with the increase in fuel temperature, the most significant part of which
is due to the change in the resonance escape probability due to the Doppler broad-
ening of resonances, as given by Eq. (5.85), and due to the fuel expansion, as given
by Eq. {5.86). For a UO, reactor consisting of assemblies of 1-cm-diameter fuel
pins of height H in a water lattice with Z,/N,, = 100 and fuel density p=10g/ cm?®,
Sp/Mp= mdH/n(d/2)*Hp = 0.4, I(300°K) =11.6 +22.8 x 0.4 =20.72, and p" =

61 +47S./ M) x 107* = 79.8 x 10~*. The resonance escape probability at
300°K is p =exp(—Ngl/EX,) =exp[—20.72 /(100 x 0.948)] = 0.8036, and In(p) =
—0.2186. The Doppler temperature coefficient of reactivity at 300°K is
%D = In(p)B"/2T"/% = (—0.2186)(79.8 x 10™%)/(2)(17.32) = —5.036 x 107> Ak/k.
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The linear thermal expansion coefficient for UO; is 8= 1.75 x 107°°K~!, and the
fuel expansion contribution to the resonance escape probability temperature coeffi-
cient of reactivity is o, = —30rIn(p) = —3(1.75 x 107%) (-0.2186) =
1.148 x 10~3Ak/k. Thus the total prompt fuel temperature coefficient of reactivity
due to the resonance escape probability is ol + o, = —3.888 x 107°Ak/k.

Thermal Utilization
The thermal utilization can be written simply in terms of the effective cell-averaged
fuel and moderator absorption cross sections discussed in Section 3.8:
- S
Tl yeff BF 4 3M

(5.88)

Recalling that X = No, the reactivity coefficient associated with the thermal utili-
zation has an immediate negative component associated with the fuel temperature
increase and a delayed positive contribution associated with the moderator density
decrease:

196 _
for

~—

r F
(1—f L(1305 10%7 & IBNF)

of 0Ty | S O 0Ty | Ny OTr
M
_ _1_{30y+ 1 0¥ ot 1 ONy (5.89)
(TzldTM EZ’ O OTy Ny 0Ty

/1 1 9xF o I oxM o
=0 ( - o, + o)~ (s o)
= o, + o,

Account has been taken in writing Eq. (5.89) of the fact that the thermal disadvan-
tage factor, &, which is used in the definition of effective homogenized fuel and
moderator cross sections, will also be affected by a change in temperature. An
increase in fuel temperature hardens (makes more energetic) the thermal neutron
energy distribution, which reduces the spectrum average of the 1/v thermal fuel
cross section and thus reduces the thermal utilization. An increase in the fuel
temperature also reduces the fuel density, further reducing the thermal utilization.
An increase in moderator temperature has little effect on the moderator cross
section but reduces the moderator density, which increases the thermal utilization.

Nonleakage Probability

The nonleakage probability can be represented by

1

P~ ————
M T M

(5.90)

Temperature increases can affect the nonleakage probability by changing the char-
acleristic neutron migration length, or the mean distance that a neutron is displaced
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before absorption, and by changing the size of the reactor. Assuming that both of
these effects are associated primarily with changes in the moderator temperature,
we write

1 OPnL MzB; (1 oM? 1 333) (5.91)

Py 8Ty 1+ M2B2\M2 0Ty +B_§3TM

An increase in moderator temperature causes a decrease in moderator density,
which affects the migration area as

1 aM> 19Dy 1 8%Y(1-f) 1 1 of
M20Ty Dy OTy XM 0Ty 2Tr 1—fOT

where we have used £, = =¥ + F = ZM(1 — ).
The geometric buckling B, = G/Ig, where G is a constant depending on geom-
etry (Table 3.3) and I is a characteristic physical dimension of the reactor. Thus

832 2 2
LU (Ly'oG/ (1 2k 553
B; 0Ty G 0Ty lr Oy
and Eq. (5.91) becomes
1 oP M?B: /2 &l 1 1 of
Py 1 YTNL g (2 YR _ - 4
i P 0Ty 1+ M?B2 (lR 0Ty Moty " 1 —fBT) >34

A decrease in moderator density allows neutrons to travel farther before absorp-
tion, which increases the leakage and contributes a negative reactivity coefficient
component. Expansion of the reactor means that a neutron must travel farther to
escape, which contributes a positive reactivity coefficient component.

Representative Thermal Reactor Reactivity Coefficients

Reactivity coefficients calculated for representative thermal reactors are given in
Table 5.2.

TABLE 5.2 Representative Reactivity Temperature Coefficients in Thermal Reactors

BWR PWR HTGR
Doppler (Ak/k x 1075°K™") —410 —1 -4 to —1 -7
Coolant void (Ak/k x 107%/% void) —200 to —100 — —
Moderator (Ak/k x 107%°K™") —50 to —8 ~50t0 —8 +1
Expansion (Ak/k x 107K Y ~0 ~0 =~

Source: Data from Ref. 3; used with permission of Wiley.

Example 5.6: UO, Fuel Heat Removal Time Constant. It is important to
emphasize that the temperature reactivity feedback associated with the various
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mechanisms that have been discussed take place at different times. The feedback
associated with changes in the fuel temperature take place essentially instanta-
neously, since an increase in fission rate produces an immediate increase in fuel
temperature. However, the increase in moderator/coolant temperature occurs later,
after some of the additional heat is conducted out of the fuel element. The heat
balance equation in the fuel element,

arN _ ., 0 (redT m
pC(Eu)_r 5;( o )+q (5.95)

where p is the fuel density, « the heat conductivity, C the heat capacity, and g" the
volumetric fission heat source, can be used to estimate a time constant characteriz-
ing the conduction of heat out of the fuel element to the interface with the cool-
ant/moderator for a fuel pin of radius a, T~ pCa®/x.

Typical parameters for a UO; fuel element in a thermal reactor are a =0.5 cm,
«=0.024W/cm-°K, p=10.0g/cm’, and C=220J/kg-°K. The heat conduc-
tion time constant for heat removal from the fuel into the coolant is T=
pCa®/x ={(10g/cm>)(220 /kg+°K)/(0.024 J/s+cm+°K)(10° g /kg) =22.9s. For
a smaller fuel pin characteristic of a fast reactor with ¢ =0.25 cm, the UQ; fuel
time constant would be about 6s. With a metal fuel instead of UQO,, the heat
conductivity is much larger, and the heat removal time constants are on the order
of 0.1 to 1.0s.

Startup Temperature Defect

A reactor is initially started up from a cold condition by withdrawing control rods
until the reactor is slightly subcritical, thus producing an exponentially increasing
neutron population on a very long period. As the neutron population increases, the
fission heating and thus the reactor temperature increase. This increase in tempera-~
ture produces a decrease in reactivity (almost all reactors are designed to have a
negative temperature coefficient) that would cause the neutron population to de-
crease and the reactor to shut down if the control rods were not withdrawn further to
maintain an increasing neutron population. The total amount of feedback reactivity
that must be offset by control rod withdrawal during the course of the startup to
operating power level is known as the temperature defect. The temperature defects
for water-moderated reactors, graphite-moderated reactors, and sodium-cooled fast
reactors are about Ak/k=2-3 x 1072, 0.7 x 1072, and 0.5 x 1072, respectively.

5.8 PERTURBATION THEORY EVALUATION

OF REACTIVITY TEMPERATURE COEFFICIENTS

Perturbation Theory

The multigroup diffusion equations (Chapter 4) are



PERTURBATION THEORY EVALUATION 165

G G

, 1

—V* D, Vo, + ngg’)g = E ng_,g¢ge +%Xg E uEfg:qbg:, g=1...,G
g'#g g'=

(5.96)

where T, _,, is the cross section for scattering a neutron from group g’ to group g,
2., is the removal cross section for group g, which is equal to the absorption cross
section plus the cross section for scattering to all other groups, Y, is the fraction of
the fission neutrons in group g, D, and v, are the diffusion coefficient and the nu-
fission cross section in group g, and ¢, is the neutron flux in group g.

We now constder a perturbation in materials properties (e.g., as would be caused
by a change in local temperature) such that the reactor is described by an equation
like Eq. (5.96), but with Dy, — D, +AD,, £, — X, + AZ,, where the A terms in-
clude changes in densities, changes in the energy averaging of the cross-section
data and energy self-shielding, changes in spatial self-shielding, and changes in
geometry. If we assume that the perturbation in materials properties is sufficiently
small that it does not significantly alter the group fluxes, we can multiply the
unperturbed and perturbed equations by ¢, subtract the two, integrate over the
volume of the reactor, and sum the resulting equations for all groups to obtain the
perturbation theory estimate for the change in reactivity associated with the per-
turbation in material properties:

Ak & G
e Z; / dr [qﬁ;v . (Apgw,,,) — GT AT e+ OF > AT ey
pm

§#8
G G G
+ b Xg Z A(szg’)d’g’] - Z / d’"(ﬁb;Xg Z szg’d’g’) (5.97)
g'=1 =1 g'=1

The quantity d);, the importance of neutrons in group g in producing a subsequent
fission event, is discussed in Chapter 13. This expression, together with the sub-
sidiary calculation of the AZ, and AD, terms, including all the effects mentioned
above, provides a practical means for the quantitative evaluation of reactivity
coefficients in nuclear reactors.

Example 5.7: Reactivity Worth of Uniform Change in Thermal Absorption Cross
Section. With the assumption that all of the fission occurs in the thermal group, the
reactivity worth of a uniform change in thermal absorption cross section in a unj-
form thermal reactor is Ak/k = AZ® Ly /vER T, ~ AZYP/EE, because Iy, the inte-
gral over the reactor of the product of the thermal group importance function and
flux, appears in both the numerator and denominator, and because in a critical
reactor X & vI{.

We now discuss some fast reactor reactivity coefficients that could not be treated
by the more approximate method of the preceding section, although we emphasize
that this perturbation theory calculation is also used for thermal reactor reactivity
coefficient evaluation.
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Sodium Void Effect in Fast Reactors

The reactivity change that occurs when sodium is voided from a fast reactor can be
separated into leakage, absorption, and spectral components. The leakage and
spectral components correspond to the first (ADg) and third (AZy_.) terms, re-
spectively, in Eq. (5.97). The absorption component corresponds to the second
(AZ,,) and fourth (AvZ;) terms in Eq. (5.97), although the change in fission cross
section is usually small and therefore neglected, and this component is usually
referred to as the capture component. The spectral and capture components are
normally largest in the center of the core, where the neutron flux and importance
function are largest, and the leakage component is normally largest in the outer part
of the core, where the flux gradient is largest.

The magnitude of the sodium void coefficient varies directly with the ratio of the
number of sodium atoms removed to the number of fuel atoms present. The spectral
component of the sodium void coefficient is generally positive, is more positive for
239py than for 2*>U, and becomes increasingly positive as fissile material concen-
tration decreases relative to sodium content. The capture component tends to be-
come more positive with softer neutron spectra because of the 2.85-keV resonance
in **Na, hence to become more positive with increasing sodium concentration
relative to fuel concentration. The negative leakage component is generally smaller
than the other two components, although the leakage component can be enhanced
by the choice of geometrical configuration. As a result, the overall reactivity effect
of voiding the central part of the core is positive, and may be positive for voiding of
the entire core. This poses a serious safety concern that must be offset by proper
design to ensure that other negative reactivity coefficients are dominant.

Doppler Effect in Fast Reactors

In fast reactors, the neutron energy spectrum includes the resonance regions of both
the fissionable (235U, B3y, 23%py, 241Pu) and nonfissionable (232Th, 38y, 24°Pu)
fuel isotopes. The Doppler effect in fast reactors is due almost entirely to reso-
nances below about 25keV. An increase in fuel temperature will produce an in-
crease in both the fission and absorption cross sections, and the resulting change in
reactivity can be positive or negative, depending on the exact composition. The
temperature coefficient of reactivity can be estimated from

Ok _ " Baf e 60'7 60’f

o= [ Ne|o o= ot )G+ 57 ) | et e
1 Gor

F v 8TF

(5.98)

~

(v—1—a)$(E)dE

where N is the density of fuel nuclei (sum over species implied), $* (E) and d);
are the importance of a neutron at energy £ and of a fission neutron (i.e., the
number of fissions the neutron subsequentiy produces). Since in a critical system
each neutron will on average produce 1/v fissions, ¢T ¢j+ =2 1/v is used in the
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second form of the estimate, and o = 6,/c¢ has also been used. Since a generally
decreases with increasing neutron energy (Chapter 2), the reactivity change will
tend to be more positive/less negative for metal-fueled cores with a relatively hard
spectrum. The oxygen in UQ, fuel softens (makes less energetic) the energy spec-
trum and thereby makes the reactivity change more negative/less positive. Detailed
design calculations, using methods benchmarked against critical experiments, in-
dicate that in larger reactors with a high fertile-to-fissile ratio the Doppler coeffi-
cient is sufficiently negative to provide a prompt shutdown mechanism in the event
of excess fission heating of the fuel.

Fuel and Structure Motion in Fast Reactors

The increased fission heating coincident with an increase in the neutron population
causes the fuel to expand radially and axially and to distort (e.g., bow) due to
constraints. The expanding fuel first compresses, then ejects, sodium. The addi-
tional fission heat is transferred to the structure, producing a delayed expansion and
distortion of the structure. The radial expansion, which is cumulative from the core
center outward, results in a general outward radial movement of the fuel and in an
expansion of the size of the reactor. The reactivity effect of this fuel and structure
motion is highly dependent on the details of the design. However, a few simple
estimates provide a sense of the magnitude of the effects.

Example 5.8: Reactivity Effects of Fuel and Structure Expansion. Radial motion
of the fuel by an amount Ar from an initial radial location r causes a reduction in
local fuel density which varies as r?, leading to a local density change ANp/Np =
(P—(r+ Ar)®/r* =~ —2Ar/r. Axial fuel expansion leads to linear fuel density
decreases. The overall expansion reactivity coefficient is a combination of the
negative effect of reduced fuel density and the positive effect of increased core
size, hence reduced leakage. An overall expansion reactivity coefficient is of
the form

AR ANp AH ANg
P — -—+b —+d 5.99
T (a R N Nr )radial N (C H N Nf >axial ( )

where, for the example of a 1000-MWe UQ; reactor with H/D = 0.6, the constants
are (a=0.143, b=0.282, ¢ =0.131, d=10.281).

Fuel Bowing

Fuel distortion (e.g., bowing) is very much a function of how the fuel is con-
strained. The calculaied reactivity effect of inward bowing in the metal fueled
EBR-II was Ak/k =~ —0.35AV/V ~—0.7AR/R ~0.0013. This predicted positive
reactivity due to bowing exceeded the combined negative reactivity from all other
effects at full flow and intermedtiate power, suggesting the possibility of a positive
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reactivity coefficient over the intermediate power range, consistent with experi-
mental observation.

Representative Fast Reactor Reactivity Coefficients

Reactivity coefficients calculated for a representative fast reactor design are given
in Table 5.3.

TABLE 5.3 Reactivity Coefficients in a 1000-MWe Oxide-Fueled Fast Reactor

Temperature Ak/k x 10~ Power: Ak/k x 107°

oo~ 1 MW~
Sodium expansion core +3.0 +0.085
Sodium expansion reflector —1.6 —0.081
Doppler —3.2 —0.628
Radial fuel pin expansion +04 +0.117
Axial core expansion -4.1 —0.181
Radial core expansion —6.8 —0.182

Source: Data from Ref. 9; used with permission of American Nuclear Society.

59 REACTOR STABILITY

Reactor Transfer Funciion with Reactivity Feedback

Since the reactor power is related directly to the neutron population, we can rewrite
the neutron kinetics equations, in particular Eq. (5.39), in terms of the power,
P =EsnvvXis-Vol, where E;is the energy release per fission. If we expand the
power about the equilibrium power Pg as P(f) =Py + P\(f) and limit consideration
to the situation |P;/Pg| < 1, we find that

) _ % {P(r)Po + /ODO dr3D(T)[P1(t — 7) — Pl(‘)]} (5100)

dt

Representing the reactivity as the sum of an external reactivity, pex, such as may
be caused by control rod motion, and a feedback reactivity, py caused by the
inherent reactivity feedback mechanisms discussed in the preceding two sections,
the total reactivity may be written

p(£) = pex(t) + pr(t)
_.pex / ft-TPl ) T (5101)
- pex / f Pl t— T)
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where f(t—1) is the feedback kernel that relates the power deviation P| = P—Py at
time #—1 to the resulting reactivity at time ¢.

Using the last form of Eq. (5.101} in Eq. (5.100), Laplace transforming (equiva-
lently, assuming an e” time dependence), and rearranging yields a transfer function,
H(s), relating the external reactivity input to the power deviation from equilibrium:

Pi(s)= 1_JP$P0pex (s) = H(5)Popex(s) (5.102)

oF (5)Z(s)

This new transfer function contains the zero-power transfer function, Z(s), which
relates the prompt and delayed neutron response to the external reactivity, and the
feedback transfer function, F(s), which relates the feedback reactivity to the power
deviation P, =P—Pq:

pr(s) = F(s)Pi(s) (5.103)

Note that when Py — 0, H(s) — Z(s).

The linear stability of a nuclear reactor can be determined by locating the poles
of H(s) in the complex s-plane. This follows from noting that when Eq. (5.102) is
Laplace inverted, the solutions for P,(t) ~ exp(s;¢), where the s; are the poles of
H(s). Any poles located in the right half of the complex s-plane (i.e., with a positive
real part) indicate a growing value of P,(f)—an instability. Since Z(s) appears in the
numerator and denominator of H(s), its poles (the roots of the inhour equation)
cancel in H{s), and the poles of H(s) are the roots of

1~ P,F(s)Z(s) =0 (5.104)

We can anticipate from Eq. (5.104) that the poles of H(s), hence the linear stability
of the reactor, will depend on the equilibrium power level, Py,

Stability Analysis for a Simple Feedback Model

To determine the roots of Eq. (5.104), we must first specify a feedback model in
order to determine the feedback transfer function, F(s). We consider a two-tem-
perature model in which the deviation in the fuel temperature from the equilibrium
value satisfies

dTF(f)
dt

:RP](t) —CJJFTF(t) (5105)

where g involves the heat capacity and density of the fuel and @ is the inverse of
the heat transfer time constant of the fuel element (i.e., the time constant for remo-
val of heat from the fuel element into the coolant/moderator). The temperature
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deviation about the equilibrium value in the coolant/moderator satisfies

dTM(t)
dt

= bTF(I - At) - WMTM(I) (5106)

where b involves the mechanism governing the response of the coolant/moderator
temperature to a change in the fuel temperature, my, is the inverse of the heat
removal time constant for the moderator, and for the sake of generality we assume
that the coolant mass flow rate is varied in response to the fuel temperature at an
earlier time (t—Af). The same model could be applied to any two-temperature
representation of a reactor core. For example, we could consider Ty to be the
temperature of a simultaneously heated fuel—coolant region and Ty, to represent
the temperature of the structure in a fast reactor model. Writing

p(1) = pex(t) + arTr(t) + anTu(t) = pex(t) + /0 t f(t—D)P(T)dr  (5.107)

defines the feedback kernel, f(t—t), where Tr(f) and Ty,(¢) are deviations from the
equilibrium temperatures.

Laplace transforming these three equations, using the convolution theorem, and
combining leads to identification of the feedback transfer function:

Xr XMe_SA'

F(s) = 15 s/wr + (14 s/wr)(1 + s/wp)

(5.108)

where Xy = atr/wr and Xy, = (abty,/0F 0p) are the steady-state reactivity power
coefficient for the fuel and coolant/moderator, respectively. Using the zero-power
transfer function, Z(s), of Eq. (5.46), but in the one-delayed neutron group approxi-
mation, and the feedback transfer function, F(s), of Eq. (5.108), Eq.(5.104) for the
poles of the reactor transfer function with feedback, H(s), becomes

1— Po XF + XMeSAt
sA+8/(s+ M) |1 +s/we (1 +s/wr)(1+ s/wn)

=0  (5.109)

There are a number of powerful mathematical techniques from the field of linear
control theory (Nyquist diagrams, root-locus plots, Routh—Hurwitz criterion, itera-
tive root finding methods, etc.) for finding the roots of Eq. (5.109}, or of the more
complex equations that would result from more detailed reactivity feedback mod-
els. Some simplification results from limiting attention to growth rates that are
small compared to the inverse neutron generation time (s < A1), allowing neglect
of the A term. We now consider two additional approximations which allow us to
obtain valuable physical insights.
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If we set Xp~opu=0 (ie., neglect the coolant/moderator feedback),
Eq. (5.109) can be solved analytically to obtain

)\ 14
si:%wp(P(?F—l) [l:l:\/1+4(g;§i//?(_ {;’2) (5.110)

I the fuel power coefficient is positive (Xg ~ o > 0), the term under the radical
is positive and greater than unity, both roots are real, and one root is positive,
indicating an instability. If the fuel power coefficient is negative (Xr~ oF <0),
the real parts of both roots are negative, indicating stability.

Threshold Power Level for Reactor Stability

If we retain X, finite but restrict our consideration to instabilities with growth rates
much less than the inverse fuel heat removal time constant, s < @ and set the time
delay to zero, Ar=0, we can again solve Eq. (5.109) analytically for the poles of
the reactor transfer function, H{s):

12
PoXr [ X, PuXr PoXr
el [ )
S:{:Z—-Z—LLJM T Xt 1£<1+ 5
5 [1_Po;fr~ ();_g+1+ﬁ)]
(5.111)

This expression reveals the existence of a threshold equilibrium power level, Py,
above which a reactor becomes unstable. As £, — 0, the two roots approach 0 and
—a)y, a marginally stable condition, and do not depend on the reactivity power
coefficients X, and X As Py increases, the nature of the solution depends on Xj,
and X Suppose that the fuel power coefficient is positive, Xz >0, and the mod-
erator power coefficient is negative, X7 < 0; this situation might arise, for example,
in a fast reactor when Xy represents the combined Doppler, fuel expansion, and
sodium void coefficients of the fuel—coolant mixture and X, represents the struc-
ture expansion coefficient. Taking Xp/Xpy = —1 and wy =3, the roots of
Eq. (5.111) are plotted as a function of [Xy|Po/B (denoted at Pp) in Fig. 5.4. As
P, increases from zero, the marginally stable (s = 0) root moves into the left-half
complex s-plane and the (s = wy,) root becomes less negative, indicating that the
reactor would be stable, At |X,|Po/Pp = 0.0962, the roots become complex conju-
gates with a real part that increases with Py. At |Xy|Po/B > 2, the real part of the
two roots becomes positive, indicating that the reactor would become unstable
ahove a certain threshold operating power level. At |X,,|Po/p > 1.664, the roots
become real and positive, with one increasing and the other decreasing with
increasing Py, continuing to indicate instability.
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Fig. 5.4 Characteristic roots s and 5_ of Eq. {5.111) as a function of critical power level
Po (|XulPo/PB) (Xp > 0,Xr/Xa = —%, Wy = 15). (From Ref. 8; used with permission of Van
Nostrand.)

The total power coefficient at steady state is negative (F(0) = Xr+ X,, < 0), but
the reactor in this example was unstable above a certain threshold power level. The
positive fuel power feedback was instantaneous because the fuel temperature in-
creases instantaneously in response to an increase in fission heating. However, the
coolant/moderator temperature does not increase instantaneously because of mod-
erator heat removal, but increases on a time scale governed by the moderator heat
removal time constant o, following a change in fuel temperature, as may be seen
by solving Eq. (5.106) for a step increase ATy at t=0:

0, t< At

ATy = 5.112
M {}%—3}(1 _ e—w‘u(r-kAt))’ t> At ( )
The delay of the moderator temperature response to an increase in the temperature
of the fuel was neglected; its inclusion would contribute further to the possibility of
instabilities. It is clear that heat removal time constants play an important role in the
stability of a reactor.

The two-temperature feedback model can be generalized to investigate the sta-
bility of a variety of different feedback models that can be characterized by a fast
(f)- and a slow (s)- responding temperature. For a fast temperature response that
was either prompt (0 = 0) or zero (X; = 0) plus a slow temperature response with
a finite time constant (0,3 Q) determined either by heat conduction or heat con-
vection, the results are given in Table 5.4.

More General Stability Conditions

A necessary condition for stability is

F(0) = /Omf(r)dt <0 (5.113)
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TABLE 5.4 Instability Conditions for Some Simple Two-Temperature
Feedback Models

Reactivity Coefficients

Fast (e, = 0} Slow (w,#0) Heat Removal F(s) Instability
Xr=0 X; <0 Conduction O None
1+ 5/

X=0 X, <0 Convection X o3/ Po > Piresn
X >0 X, < 0 Conduction X; + Xs Py>P

S s f 1+s/o, 0 thresh
X <0 X, <0 Conduction Xr + Xs None

! ¢ F T T ¥ s/os
X >0 X;<0 Convection X; + Xse"s/ o Py > Piech
X <0 X, <0 Convection X + X;e sfws Py > Pihiesh

. X. e~ 5/0n Ss2
X =0 Xa<0 Convection sL€ + T s/on Jom Py > Paresh
Xo<or>0 Conduction o

Source: Data from Ref. 9; used with permission of Ametican Nuclear Society.

However, this is not a sufficient condition, as the analysis above, in which
F(0)=Xy + X3 <0, demonstrates. The result discussed in the preceding example
suggests a useful generalization—a reactor is on the verge of becoming unstable
when the transfer function, H(s), has a pole with purely imaginary s [i.e., when Eq.
(5.104) has a purely imaginary root s =iw]. Except for values of @ for which
Z(iw) =0, Eq. (5.104), which determines the poles of the transfer function, can
be rewritten in the case s =im:

ﬁjiw

1 L & :
7o)~ PyF(iw) = iwA + ; — PyF(iw) =0 (5.114)
If this equation has a solution, it corresponds to a condition for which the reactor
is on the verge of instability. A necessary condition for a solution is that Z i)
and F(im) have the same ratio of real to imaginary parts (i.e., the same phase). If
Z '(iw) and F(iw) do have the same phase al some o = (), there will be some
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value of Py for which Eq. (5.114) has a solution. If this value of Py is physically
reasonable (Pg > 0}, there is instability onset at this (Pg, @) condition. The real
and imaginary parts of 1/Z(iw) are

. 1 o 6 wlﬂj
R(’{ Z(iw) } =257 N

J=1

i L wiN
Im{ Z(iw) } =whs ,.__Z,uﬂ A2

(5.115)

which are both real and positive, thus are in the upper right quadrant of the complex
plane. Therefore, a necessary condition for G(iw) =0 to have a solution is that the
real and imaginary parts of the feedback transfer function, F(i®), also lie in the
same quadrant (i.e., both be real and positive). Hence a necessary condition for an
instahility is

Re{F(iw)} >0 and Im{F(iw)} >0 (5.116)
We now consider the example above with the simple feedback model of
Eqgs. (5.105) to (5.108), but with the delay term A: =0. The qualitative behavior

of the real and imaginary parts of F(im) of Eq. (5.108) arc plotted in Fig. 5.5 for
three different cases, all of which have a negative moderator power ceefficient,

Im [F(iw)]

Re [F(io)]

Fig. 5.5 Plot of R=Re{F(in)} + i[F(iw)}of Eq. (5.108) with Ar—0: case (a) X, =0,
Xur < 0: case (b}, Xp <0, Xy < 0; case (¢), |[Xy| 2> Xp >0, Xy < 0. (From Ref. 8; used with
permission of Van Nostrand.)
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X < 0. Case (a) corresponds to no reactivity feedback from the fuel (X =0); the
instability criterion of Eq. (5.116) is satisfied for o > (coMmf)l/ ?, even though
the steady-state power coefficient X(0) = X,, < 0. For case (b), with a sufficiently
large negative value of the fuel power coefficient, Xy < 0, the criterion of Eq. (5.116)
is never satisfied and the reactor is stable. In case (c), the fuel reactivity power coeffi-
cient is positive but smaller in magnitude than the negative moderator reactivity
power coefficient, |X, > |X#| >0, which is the situation leading to the solution
of Eq. (5.111); the reactor can become unstable, as found above from examination
of the roots given by Eq. (5.111).

A sufficient condition for unconditional stability (i.e., no power threshold) has
been shown to be

Re{F(iw)} = /0 " Fl)cos(wr)dt < 0 (5.117)

which is a requirement that the phase angle of the feedback transfer function, -F(s),
along the iw-axis is between —90° < ¢ < +90°; thus the feedback response is
negative and less than 90° out of phase with the power change that produced it.
This phase constraint places constraints on the time delays. This sufficient criterion
for stability has been found to be over restrictive, however.

The anconditional stability sufficient condition of Eq. (5.117) has been used to
determine unconditional stability criteria for a variety of feedback models that can
be characterized by a fast (f) and a slow (s) responding temperature, The fast
temperature response was either prompt (@ = 0) or determined by heat conduction,
and the slow temperature response was with a finite time constant (o, 0)
determined by either heat conduction or heat convection. The results are given in
Table 5.5.

Power Coefficients and Feedback Delay Time Constants

It is clear from the previous discussion that the reactivity temperature coefficients
actually enter the analysis as reactor power coefficients, associated with which
there are time delays related to heat transfer and removal time constants, and that
the results of the analysis are dependent on the delay times as well as on the
temperature coefficients. We can generalize the two-temperature model to define
a general reactor power coefficient:

dp OT; dp OT;(1)
X(t):jZ(—a% a}(f)+a—1’fj, 5 ) (5.118)

where dp/3T; are the reactivity temperature coefficients corresponding to a change
in local temperature 7;. The quantities 9p/ 6ij are reactivity temperature gradient
coefficients denoting the change in reactivity due to a change in temperature
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TABLE 5.5 Sufficient Conditions for Unconditional Stability of Two-Temperature Feedback Models

Reactivity Coefficients

F(iw)

Stability Criterion

Coupled prompt X;; conduction X

Uncoupled conduction Xr and X;

Coupled conduction X;and X;

Coupled prompt Xy, convection X

Coupled Conduction X, convection X

X
X+t
7 147 o/o

X X,
- 4
l+ia/oy 1+1iafa

X X,

1+io/o + (I1+io/o)l+ion/w;)

Xf +Xse—i w/ws

X X e~ /o
- + ;
I+infor  14+i0/o

X <0and Xy + X, <0

Xf + Xs S 01
Xy + X505 < 0, and
Xf(\)fz + Xg@? <0

Xf <0,
Xy + X, <0, and
Xf(Df - Xs(OS < 0

Xf < 0and
-X 2> X

Never unconditionally stable
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gradient (e.g., as would produce bowing of a fuel element). These reactivity
coefficients can be calculated as discussed in the two preceding sections. The quan-
tities 9T;/OP and OT;/OP are the time-dependent changes in local temperature
and temperature gradients resulting from a change in reactor power and must be
calcutated from models of the distributed temperature response to a change in
reactor power.

The time constants that determine the time delays in the various local tempera-
ture responses to a power increase depend on the specific reactor design. Some
simple estimates suffice to establish orders of magnitude. The time constant for heat
transfer out of & fuel pin of radius r or plate of thickness r, density p, heat capacity
C, and thermal conductivity K is T, = pCr?/x, which generally varies from a few
tenths to a few tens of seconds. The effect of cladding and the surface film drop is to
increase the time constant for the fuel element. The lumped time constant for the
coolant temperature is T. = C./k + (Z/2v)(1 + Cs/C.), where C. and Cyare the heat
capacities per unit length of the coolant and fuel, respectively, 4 is the heat transfer
coefficient between fuel and coolant, Z is the core height, and v is the coolant flow
speed. Typical values of t.vary from a few tenths to a few seconds.

5.10 MEASUREMENT OF REACTOR TRANSFER FUNCTIONS

Measurement of the reactor transfer function provides useful information about a
reactor. A measurement at low power can identify incipient instabilities which
produce peaks in the transfer function. Provided that the feedback mechanisms
do not change abruptly with power, the low-power transfer function measurements
can identify conditions that would be hazardous at high power, thus allowing for
their correction. Information about the feedback mechanisms can be extracted from
measurement of the amplitude and phase of the transfer function. Any component
malfunction that altered the heat removal characteristics of the reactor would affect
the transfer function, so periodic transfer function measurements provide a means
to monitor for component malfunction,

Read Oscillator Method

The sinusoidal oscillation of a control rod over a range of frequencies can be used
to measure the transfer function, as described in Section 5.6. The results of
Eqgs.(5.60) to (5.64) apply to a reactor with feedback when nyZ{iw) is replaced
by PgH(i®). There are some practical problems in measuring the transfer function
with rod oscillation. There will be noise in the detector response, which will require
a sufficiently large reactivity oscillation for the detector response to be separable
from the noise, and nonlinear effects [i.c., the term pry which was neglected in Eq.
(5.42)] may invalidate the interpretation. Furthermore, the oscillation will not be
perfectly sinusoidal, and it will be necessary to Fourier analyze the detector re-
sponse to isolate the fundamental sinusoidal component.
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Correlation Methods

It is possible to measure the reactor transfer function with a nonperiodic rod
oscillation. Consider the inverse Laplace transform of Eq. (5.102):

Pyr) = /_t Pex(T)h(t — T)dT = /000 plt — T)h(T)dT (5.119)

which relates the relative power variation from equilibrium [P, /Po = ((P-Pg)/Po] to
the time history of the external reactivity—the rod oscillation in this case—includ-
ing the effect of feedback. The kernel h(z) is the inverse Laplace transform of the
transfer function, H(s). The cross correlation between the external reactivity and the
power variation is defined as

1 [ 17
Pop = ﬁ\/—T Pex(t)P1(t + T)dt = 2T L Pex(t — T)P1(t)dt (5.120)

where T is the period if pex and P, are periodic and T goes to infinity if not.
Using Eq. (5.119) in Eq. (5.120) yields

1 T oo
0P =57 [ oatt=1)| [ bula = Ot 1a0 | a
_ /0 ooh(t’)[% /_ : per(t = ) pet = r’)dr]dz’ (5.121)

= /0 by — )

where ¢, is the reactivity autocorrelation function. Taking the Fourier transform of
Eq. (5.121) yields an expression for the transfer function

H(—iw) = 5 210D} (5.122)

F{dsp(1)}

where the transforms

Flop)} = [ e dpir)ar
/‘°° (5.123)

Fipwrt = [ " T ()

are known as the cross spectral density and the input or reactivity spectral density,
respectively,

If the control rod (or other neutron absorber) position is varied randomly over a
narrow range and a neutron detector response is recorded, the reactivity autocorre-



MEASUREMENT OF REACTOR TRANSFER FUNCTIONS 179

lation function, ¢p,, and the reactivity-power cross-correlation function, ¢pp, can
be constructed by numerically evaluating the defining integrals over a period of
about 5 min using a series of delay intervals, T, increasing in discrete steps of about
At=0.01s. The cross spectral density and reactivity spectral density can then be
calculated by numerically evaluating the defining Fourier transform; for example,

F{pop(1)} =Y _ dop(n, AT)(cOs nw At + i sin nw A7)Ar (5.124)

where n varies from a large negative integer to a large positive integer. There are
sophisticated fast Fourier transform methods which are used in practice for evalua-
tion of the cross and reactivity spectral densities.

Experimentally, it is convenient to use a reactivity variation that changes from
positive to negative at definite times, so that the reactivity autocorrelation function
is nearly a delta function. For such a pseudorandom binary reactivity variation,

bpp(T — 1) = const §(t — ') (5.125)
In this case, it follows from Eq. (5.121) that

¢pp(T) =~ const h(T) ' (5.126)

F{ppp(T)} ~ const H(—iw)
and that the amplitude and phase of the transfer function can be extracted from the
computation of only the cross correlation function. By repeating the Fourier trans-
forms of Eq. (5.123) for different values of m, the frequency dependence of H
(~iw) can be determined.

Reactor Noise Method

Minor and essentially random variations in temperature and density within a nu-
clear reactor, such as bubble formation in boiling water reactors, produce small and
essentially random reactivity variations. Cross correlation of the response of a
neutron detector, which is proportional to the reactor neutron population or power,
provides a means of determining the amplitude of the reactor transfer function from
this noise. Writing the power autocorrelation function

1T
érp(T) Eﬁ[TPI(I)Pl(t+T) dr (5.127)

and using Eq. (5.119) yields

1 T 0 [¢'s)
Brr(r) = 3= /_ & /0 1) pes(t — 1) /0 (") oot +7 — ) i
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< ’ i I'” 1 T / /1 s
_/0 h(z)/ﬂ h( )[ﬁ];Tpex(I—t)pex(t—f-T—t )dt]dzdz

o0 oo (5.128)
= [T hyar [T He) g+t - ) 0
0 0
Fourter transformation then gives
H(—iw)H(iw) = [H{iw) = F{orr(r)}  F{rr(7)} (5.129)

T F{dp(1)} T const

where the fact that the autocorrelation function of a random reactivity input is a
delta function, the Fourier transform of which is a constant, has been used in
writing the final form. Thus the amplitude, but not the phase, of the reactor transfer
function can be determined from autocorrelation of the reactor noise. Again, the
frequency dependence is determined by taking the Fourier transform with respect to
various frequencies, o. This provides a powerful technique for online, nonintrusive
monitoring of an operating reactor for component malfunction and incipient
problems.

Example 5.9: Reactor Transfer Function Measurement in EBR-1. The reactor
transfer function measurement on the early EBR-I sodium-cooled, metal fuel fast
reactor provides a good example of the physical insight provided by transfer func-
tion measurements. The Mark II core was stable at lower power levels, but at
moderate power levels an oscillatory power was observed. The measured transfer
function is shown in Fig. 5.6: in part () for several values of the coolant flow rate
(gallons per minute), and in parts (b) and (c) for several values of the reactor power
level. At the lower coolant flow rates and the higher power levels there is a pro-
neunced resonance in the transfer function, suggesting an incipient instability,
which is not present at the higher flow rates and lower power levels,

The Mark U core was known te have a prompt reactivity feedback which added
reactivity with an increase in power or a decrease in coolant flow. However, when
steady state was achieved following an increase in power at constant flow, the net
change in reactivity was negative, indicating an overall asymptotic power coeffi-
cient that was negative. Calculations indicated that the Doppler effect was negli-
gible, that bowing of the fuel rods toward the center of the core contributed
significant positive reactivity, and that the outward expansion of the structural
plates supporting the fuel rods led to a delayed outward movement of the fuel rods
that contributed negative reactivity.

A three-temperature model was used to explain the phenomena observed. The
fast positive reactivity was modeled as due to the fuel bowing, and the delayed nega-
tive reactivity was modeled as the fuel motion due to the delayed outward motion
of the fuel rods upon expansion of the structural plates. Heat conduction plus con-
vection for the two separate structural effects led to a three-term representation
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Fig. 5.6 Reactor transfer function EBR-1: (a) as a function of coolant flow rate; (&,c) as a
function of reactor power. (From Ref. 9; used with permission of American Nuclear Society.)

of the power feedback. After correcting for the frequency dependence of the oscil-
latory heat flow, the model achieved very good agreement with the transfer function
measurements.

5.11 REACTOR TRANSIENTS WITH FEEDBACK

The dynamics equations are intrinsically nonlinear when [eedback effects are
included. The calculation of reactor transients is carried out with very sophisticated
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computer codes which model in detail the coupled dynamics of the neutrons,
temperature, flow, structural motion, change of state, and so on. However, some
physical insight as to the effects of feedback can be obtained by considering the
simple model of Section 5.4 in the presence of feedback.

The point kinetics equations with feedback may be written in the one delayed
neutron group approximation as

dr;(tt) _ (pex + a:f(r) - ﬁ) n(t) + AC(7)

dC(1)
dr

(5.130)

= gn(r) - AC(n)

where a feedback reactivity py(z) = o d(f) has been added to the step reactivity
insertion p.y. We will treat the temperature, 7, as either a fuel temperature or a
lumped fuel-moderator temperature which satisfies

dT(t)

PCr =4

= E;Xvn(t) — 6T(t) = vSyn(r) — 0T(2) (5.131)

where p is the density, Er the deposited energy per fission, and 0 ~ x/(heat transfer
distance) account for conductive heat removal. In Section 5.4 we found that the
response to a step subprompt-critical {(p.x < [}) reactivity insertion into a critical
reactor was a prompt jump that changed the neutron density from ng to
np/(1—pex/B) in a time on the order of the neutron generation time, A, followed
by a slow rise (pex > 0) or decay (p., <0} of the neutron density on the delayed
neutron decay constant time scale. We examine these two phases of the transient
separately in the presence of feedback.

Step Reactivity Insertion (p.. < B): Prompt Jump

During the initial phase of the transient for a few A following the reactivity inser-
tion, the delayed neutron precursor decay source is constant at the critical equili-
brium value ACq = (f/A)n,. In the absence of feedback, the solution of Eq. (5.130)
in this case is

n(t):noexp(pex_ )[ ﬁ/ exp ( P By )dt] I—sz/ﬂ (5.132)

Assuming that the feedback is on the fuel temperature, which responds instanta-
neously to an increase in the fission rate, the corresponding solution with feedback
reactivity is

n(t) = ngexp (W:) [1 +§/{: exp (_Wld)d{]
(5.133)
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On this short time scale z~ A < pC,/9, the solution of Eq. (5.131) is

t
T(r) ~ BV / n(')dt (5.134)
pCp Jo

If the feedback is negative (ay< 0), the effect of the feedback is to reduce the
magnitude of the input reactivity step. If pex >0, n and T increase in time and
pr=0,T < 0; if pex <0, n and T decrease in time and py = o7 > 0; (To=0). If the
feedback is positive (o> 0), the effect of the feedback is to enhance the magnitude
of the input reactivity step. If pe, > 0, n and T increase in time and pr = ol > 0; if
Pex <0, n and T decrease in time and py = o < 0. Thus negative feedback reac-
tivity would reduce the magnitude of the prompt jump and perhaps reverse the sign
if the feedback reactivity exceeds the input reactivity; positive feedback reactivity
would enhance the magnitude of the prompt jump.

Step Reactivity Insertion (p., < B): Post-Prompt-Jump Transient

We saw in Section 5.4 that in the absence of feedback, after the initial prompt jump
in the neutron density on the prompt neutron time scale, the subsequent transient
evolves on the slower time scale of the delayed neutron precursor decay:

= ORI gl

For the problem with feedback, we make use of the prompt-jump approximation
(set dn/dt=0) and solve Egs. (5.130) to obtain

t 13
nyp €Xp {“)\ (t - fo 1—[pex+{gth(l’)]/5) }
(5.136)

n(t) = = lpm F & TO1/8

which reduces to Eq. (5.135) when o = 0. Note that Eq. (5.136) is valid only for
the time after the prompt jump in neutron density between =0 and =1, = A.
This equation evaluated at #,; implies an effective prompt jump from ny— no/
[1—(pex + %I(z))/Bl, to be compared with the effective prompt jump from
ng— ng/(1—pex/PB) in the case without feedback implied by Eq. (5.135). Equation
(5.131) can be solved formally for the temperature

T(r) = % / t n(?)exp —(0/pCp)(t — ¢ )df (5.137)

P 0

The presence of feedback can have a dramatic effect on the course of the
transient. Consider a positive step reactivity insertion, 0 < p., < 8, which without
feedback would result in an exponentially increasing neutron density with period
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(B/pex—1}/A. With negative reactivity feedback (ay < 0), the period becomes
longer (the rate of increase is slower), or even becomes negative (the neutron
density decreases in time) if |a{7(z) becomes greater than p.,. For a negative step
reactivity insertion, p.y < 0, and negative reactivity feedback, the presence of feed-
back with the decreasing temperature causes the decay in the neutron density to
become slower and even reverse and start increasing if |oZ(f)| becomes greater
than [pe|- Thus a reactor with a negative temperature coefficient of reactivity will
adjust automatically to a step reactivity insertion by seeking a new critical condi-
tion. For example, when a cold reactor is started up by withdrawing the control
rods to produce an increasing neutron population and increasing fission heating, the
negative reactivity will increase also, until the reactor reaches a new temperature
and neutron population at which it is just critical. A negative temperature coeffi-
cient of reactivity also allows a reactor to automatically load follow (an increase in
power output demand will result in a decrease in coolant inlet temperature, which
produces a positive reactivity that causes the neutron population and the fission rate
to increase until a new critical condition is reached at higher power).

5.12 REACTOR FAST EXCURSIONS

The examination of hypothetical accidents requires the analysis of fast, supercri-
tical excursions in the neutron population in a reactor. Although this analysis is
done with sophisticated computer codes, which solve the coupled neutron—thermo-
dynamics—hydrodynamics equation of state equations, there are several analytical
models which provide physical insight into the phenomena of fast supercritical
reactor excursions. Delayed neutron precursors respond too slowly to be important
in such transients and may be neglected.

Step Reactivity Input: Feedback Proportional to Fission Energy

The prompt neutron kinetics equation for a step reactivity input Aky >k and a
feedback negative reactivity proportional to the cumulative fission energy release is
described by

LdP) _k—1_ Mko—ogB(t) _ Ak _oz [y (5.138)
1]

P dt A A A A
where Ak is measured relative to prompt critical and

E() = / Py, ap=2K (5.139)
= 0 y E = BE .

The solution of Eq. (5.139) is

(Ako/A) +R  1—e®

Aky/A)]
aFE/A _%ggiAZ:ﬁAye Rt 41

E(t) = (5.140)
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where

R= \/<%)2+2<95)P0 (5.141)

For transients initiated from low initial power level, Py, R~ Aky/A and

E(1) ~ (2(Ako/og) (1 — e~ (Bha/A)ty) / <%e—mko/mf + 1) (5.142)

The instantaneous power is

L 2R (R4 (Ako/A) a /(R (Dk/A) e
PO =E0 =4 h (R - (Akz/A))e / ((R - (Ako/A)>e * 1)
—~ 4(Ak0/ A)4 o (Bko/A)t (Ako/ A)2 o (Bko/A) g
= on/A) / [2 (/A Fs + 1} (5.143)

where the second form is valid only for low initial power.

Equation (5.143) describes a symmetrical power excursion that increases to a
maximum power P, = (Ako/A)?/2(ag/A) at 122 1.3 /(Ako/A) and then decreases
to zero. The width of the power burst at half maximum is = 3.52/(Ako/A), and the
total fission energy produced in the burst is 2Akg/ 0.

Ramp Reactivity Input: Feedback Proportional to Fission Energy

If, instead of a step reactivity input, the external reactivity input is a ramp {e.g., as
might occur in rod withdrawal), Eq. (5.138) becomes

1dP(t) at—agE(t) at of [’
- = == _ZE [ pyar 144
P at A A, P (5-144)
which has a solution of the form
E(t) = aiz + periodic function (5.145)
E

The power level has a background (a/ag) upon which is superimposed a series of
oscillations as the net exiernal plus feedback reactivity oscillates about prompt
critical (p=P). We now examine one of the power oscillations. Differentiating
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Eq. (5.144) yields an equation for the instantaneous period 0 = (dP/dr)/P:
- —P(1) (5.146)

which may be combined with Eq. (5.144) to obtain

dP opP
_— 5.147
do  a/A — (ag/A)P ( )
This equation has the solution
1, a Pit) ag
50 (®)= 10 Py A [P(r) — Po] (5.148)

The maximum power at the peak of the oscillation occurs when 8 =0 and thus
satisfies

a . Puax a _ Prax
=P —In—~—In—— 5.149
Prax o + or n P, or n Po ( )

where the second form is only valid for Py < Pay, Where Py=a/oz now refers to
the background power at the beginning of the oscillation.

Step Reactivity Input: Nonlinear Feedback
Proportional to Cumulative Energy Release

The Doppler feedback coefficient in large fast power reactors is not constant but is
calculated to vary approximately inversely with fuel temperature, and theoretical
considerations suggest that it varies inversely with fuel temperature to the % power.
If we assume no heat loss from the fuel and constant specific heat to relate the fuel
temperature increase during a transient to the cumulative fission energy release, we
can represent a broad class of temperature-dependent feedback reactivities as agE”,
where oz now refers to the value of the feedback coefficient at the temperature at
which the transient is initiated. In this case, the prompt neutron dynamics equation
for a step external reactivity input Ak is

1dP(t) Aky o .
FTFT_KE[E@)] (5.150)

This equation has the solution for the cumulative fission energy release

1/n
E(r) = [(n +1) i’f"] / [1+ ne~(vdko/M) 1/n (5.151)
E
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which can be differentiated to obtain the instantaneous power

. Ako) ™[, Ak n
P(t) =E(:) = {(n—i—]) "] (nZTO)e_("A""/A)’ / [1+ ne~(wko/Br) /D

o
(5.152)

Once again, the power increases to a maximum value, in this case

Prax =

n (Ako/A)’H-l 1/n
14+n{ of/A

and then decreases to zero. The total energy release in the burst is
Eo = [(1+ n)AkO/me]l/n'

Bethe—-Tait Model

It is clear that the course of a reactor excursion produced by a given external
reactivity insertion is very sensitive to the feedback reactivity, hence to the evolu-
tion of the thermodynamic, hydrodynamic, and geometric condition of the reactor.
The coupled evolution of these variables is calculated numerically in modern ana-
lyses. However, we can gain valuable physical insight by considering an early
semianalytical model developed for fast metal fuel reactors. The prompt neutron
dynamics are determined by

1dP(r) _k-1-5 Ok
P dt = A A

= Ak + Akinput(l‘) + Akdispl(t) + Akother(t) (5153)

where Ak is the initiating step reactivity (relative to prompt critical), Akiypy, is any
control rod input, Akyp is the reactivity associated with a displacement of core
material due to pressure buildup, and Akyge, includes the Doppler effect and other
nonhydrodynamic reactivity changes.

The displacement reactivity is given by

Akgispi (1) = /p(r, tu(r,t) s Vwt(r)dr (5.154)

Here p is the material density, u(r, r) represents a material displacement from r to
r+ Ar, and w* (r,1) is the importance of a unit mass of material at location 7 to
producing subsequent fission events. (The importance function is discussed in
Chapter 13.)

The displacement is related to the pressure by the hydrodynamic equations

o*u(r,1)
o

= —Vp(r,1) (3.155)
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and

Op(r, 1)
ot

+Ve [p(r, ) a"gt ’ ’)] ~0 (5.156)

An equation of state, represented symbolically as
p(r,1) = ple(r,1), p(r, 1)) (5.157)

relates the pressure to the energy density, e(r,f), and to the density. We neglect
changes in density and work done in expansion or compression. Differentiating Eq.
(5.154) twice and using Eq. (5.155) yields

2 .
%fj‘sﬂ =— / Vp(r,1)* Vw* (r) dr (5.158)

The analysis proceeds by postulating that there is no feedback, except the
Doppler effect, until the total energy generated in the core reaches a threshold
value, E*, at which point the core material begins to vaporize, thereby building
up pressure, which causes the core to expand until the negative reactivity associated
with expansion eventually terminates the excursion. Rather than carry through the
rather involved derivation (see Ref. 9), we surminarize the main results for a sphe-
rical core. When the energy, E, exceeds the threshold value, it subsequently in-
creases as

E—E = E (M6 _ ) (5.159)

The pressure near the center of the core is proportional to E— E™ =~ E, so that
once it becomes large the pressure varies as

p ~ EN \8K/A): (5.160)

The pressure gradient that tends to blow the core apart is proportional to p/R.
Thus the radial acceleration produced by the pressure gradient goes as

R~|Vp| = %e“”‘/‘“’ (5.161)

Integrating this expression twice yields an expression for the instantaneous core
radius

C1A?
R/(t) ~Ril +(A;7)2R2€(Ak/f\)r (5.162)
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The excursion terminates when the expansion increases the negative reactivity
sufficiently to offset the initiating reactivity less any negative Doppler or rod input
reactivity:

Akdispl (R, - R) = Ak, — Akother - Akinput = AK (5'163)

which occurs at time ¢ given by

3p2
@aw/ny _ _(AK)'R i
¢ Cy Akgigp1 A2 (5.164)

The energy generated up to the time of termination is

(Ak/)3R2

E~ (5.165)

Numerical calculations indicate that the approximate relationships above repre-
sent quite well excursions resulting from large initial reactivity insertions. For
modest initiating reactivities, the expression

(E_ 1) N [M]w (5.166)

E* A?

is in better qualitative agreement with numerical results.

5.13 NUMERICAL METHODS

In practice, numerical methods are used to solve the neutron dynamics equations.
The solution is made difficult by the difference in time scales involved. The prompt
neutron time scale is on the order of A =10"*to 107> s for thermal reactors or 10~°
to 10~ s for fast reactors, while the delayed neutron time scales vary from tenths of
seconds to tens of seconds. When p is significantly less than B, making the prompt
jump approximation removes the prompt neutron time scale from the problem, and
straightforward time-differencing schemes are satisfactory. When it is necessary to
retain the prompt neutron dynamics (i.e., for transients near or above prompt
critical}, the usual numerical methods for solving ordinary differential equations
{e.g., Runge—-Kutta) are limited by solution stability to extremely small time steps
over which there is little change in the neutron population. However, a class of
methods for solving stiff sets of ordinary differential equations (sets with very
different time constants) have been developed (Refs. 2 and 7) and are now widely
used for solution of the neutron dynamics equations.
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PROBLEMS

5.1. The absorption cross section in a bare, critical thermal reactor is decreased

by 0.5% by removing a purely absorbing material. Calculate the associated
reactivity.
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A bare metal sphere of essentially pure 2*°U is assembled, and the output of
a neutron detector is observed, after an initial transient, to be increasing
exponentially with a period T=1s. The neutron effectiveness values for
the six delayed neutron groups are calculated to be y;=1.10, 1.03, 1.05,
1.03, 1.01, and 1.01. What is the effective multiplication constant, %, for
the assembly?

Using the one-delayed precursor group approximation, prompt-jump ap-
proximation, and the reactor parameters B=0.0075, A=0.08s"!, A=
6 x 107>, solve for the time dependence of the neutron population over
the interval 0 <t< 10s following the introduction of a ramp reactivity
p(2)=0.1p¢ into a critical reactor for 0 < ¢ < 5s. Such a reactivity insertion
might result from partial withdrawal of a control rod bank.

A pulsed neutron measurement was performed in an assembly with
B =0.0075 and A =6 x 10~>. An exponential prompt neutron decay constant
oo =—100s"" was measured. What are the reactivity and effective multi-
plication constant of the assembly?

A control rod was partially withdrawn from a critical nuclear reactor for 5s,
then reinserted to bring the reactor back to critical. The reactivity worth of
the partial rod withdrawal was p =0.0025. Use the prompt-jump approxima-
tion and a one delayed neutron group approximation to calculate the neutron
and precursor populations, relative to the initial critical populations, for times
0 < 7 < 10s. Use the neutron kinetic parameters f§ = 0.0075, A =0.08 s~ ", and
A=6x10""s,

A control rod bank is scrammed in an initially critical reactor. The signal of
a neutron detector drops instantaneously to one-third of its prescram level,
then decays exponentially. Assume one group of delayed neutrons with
B=0.0075 and A= 0.08 s, and use A= 10™*s for the reactor lifetime. What
is the reactivity worth of the control rod bank? How long is needed for the
power level to reach 1% of the initial prescram level?

Plot the real and imaginary parts of the zero-power transfer function versus
o(s = i) for a **°U reactor using a one delayed neutron group model with
B=0.0075, A=0.08s"", and A=6x 10">s.

Calculate the Doppler reactivity temperature coefficient for a UO,-fueled,
H;0-cooled thermal reactor with long fuel rods 1 cm in diameter operating
with a fuel temperature of 450 K. The moderator macroscopic scattering
cross section per atom of 2381 is 100. Take the resonance integral at
300°K as /=10 barns.

Derive an expression for the calculation of a void temperature coefficient of
reactivity for a pressurized water reactor (i.e., the temperature coefficient
associated with a small fraction of the moderator being replaced with void).
Repeat the calculation for when the water contains 1000ppm '°B as a
“chernical shim.”



192

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.
5.16.

517,

5.18.

5.19.

NUCLEAR REACTOR DYNAMICS

Calculate the nonleakage reactivity temperature coefficient for a bare
cylindrical graphite reactor with height-to-diameter ratio H/D=1.0,
k-, =1.10, migration area M? =400 cm?, and moderator linear expansion
coefficient 6, =1 x 107° °C~!, ‘

Calculate the reactivity defect in a PWR with fuel and moderator tempera-
ture coefficients of or=—1.0x 107> Ak/k/°F and oz =—2.0x107*
Ak/k/°F when the reactor goes from hot zero power (Tr= T, =530°F) to
hot full power (TF=1200°F and Tj,=572°F).

A critical reactor is operating at steady state when there is a step reactivity
insertion p = Ak/k=0.0025. Use one group of delayed neutrons, the param-
eters p=0.0075, A =0.08 s, and A=6x10s, and a temperature coeffi-
cient of reactivity o= —2.5 x 107* °C~'. Assume that the heat removal is
proportional to the temperature. Write the coupled set of equations that
describe the dynamics of the prompt and delayed neutrons and the tempera-
ture. Linearize and solve these equations (e.g., by Laplace transform).

Calculate the power threshold for linear stability (in units of PoXr/B) from
Eq. (5.111) for Xp/Xp,=—0.25 and —0.50 and for w,,=0.1, 0.25, and 0.5.

Analyze the linear stability of a one-temperature model for a nuclear reactor
in which the heat is removed by conduction with time constant o' and in
which there is an overall negative steady-state power coefficient, Xg < 0. Is
the reactor stable at all power levels?

Repeat problem 5.14 for convective heat removal.

Calculate and plot the power burst described by Eq. (5.143) for a fast reactor
with generation time A =1 x 107°s and negative energy feedback coeffi-
cient og = —0.5 x 107% Ak/k/MJ into which a step reactivity insertion of
Akyg= + 0.02 takes place at t=0. Use Py =100 MW.

A control rod is partially withdrawn (assume instantaneously) from a >**U-
fueled nuclear reactor that is critical and at low power at room temperature.
The signal measured by a neutron detector is observed to increase immedi-
ately to 125% of its value prior to rod withdrawal, and then to increase
approximately exponentially. What is the reactivity worth of the control
rod? What is the value of the exponent that governs the long-time exponen-
tial increase of the signal measured by the neutron detector?

In a cold critical PWR fueled with 4% enriched UQ,, the control rod bank is
withdrawn a fraction of a centimeter, introducing a positive reactivity of
p=0.0005. The neutron flux begins to increase, increasing the fission rate.
Discuss the feedback reactivity effects that occur as a result of the increasing
fission heating.

Use the temperature coefficients of reactivity given in Table 5.3 to calculate
the change in reactivity when the core temperature in an oxide-fueled fast
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reactor increases from 300°C to 500°C. Assume uniform temperatures in
fuel, coolant, and structure. Repeat the calculation for a fuel temperature
increase to 800°C and a coolant and structure temperature increase to 350°C.

Solve Egs. (5.133) and (5.134) to calculate the response of the neutron
population in a UO,-fueled PWR to step rod withdrawal with reactivity
worth p=0.002, taking into account a negative fuel Doppler feedback coef-
ficient of —2x 107® Ak/k/°K. The reactor has neutronics properties
(B=10.0065,.=0.08 s A=1.0x 1074), fission heat deposition in the fuel
vaZ =250 W /cm?, and fuel properties p=10.0 g/cm’® and C, =2207J/kg.
(Hint: Tt is probably easiest to do this numerically.)

Evaluate the resonance escape probability moderator temperature coefficient
of reactivity of Eq. (5.87) for a UQ, reactor consisting of assemblies of
l-cm-diameter fuel pins of height A in a water lattice with Z,/Ny, = 100
and fuel density p=10g/cm’. Use 8,,=1x 107*/K for the linear coeffi-
cient of expansion for water.

Derive an explicit expression for the thermal utilization temperature coeffi-
cient of reactivity of Eq. (5.89) by using Eqs. (3.90) and (3.92) to evaluate
the OZF /9% and HE/OTr terms and equivalent relations to evaluate the
d=M/d¥ and di/dT,, terms.






6 Fuel Burnup

The long-term changes in the properties of a nuclear reactor over its lifetime are
determined by the changes in composition due to fuel burnup and the manner in
which these are compensated. The economics of nuclear power is strongly affected
by the efficiency of fuel utilization to produce power, which in turn is affected by
these long-term changes associated with fuel burnup. In this chapter we describe
the changes in fuel composition that take place in an operating reactor and their
effects on the reactor, the effects of the samarium and xenon fission products with
large thermal neutron cross sections, the conversion of fertile material to fissionable
material by neutron transmutation, the effects of using plutonium from spent fuel
and from weapons surplus as fuel, the production of radioactive waste, the extrac-
tion of the residual energy from spent fuel, and the destruction of long-lived
actinides.

6.1 CHANGES IN FUEL COMPOSITION

The initial composition of a fuel element will depend on the source of the fuel. For
reactors operating on the uranium cycle, fuel developed directly from natural
uranium will contain a mixture of 234U, 2331, and BSU, with the fissile 2**U content
varying from 0.72% (for natural uranium) to more than 90%, depending on the
enrichment. Recycled fuel from reprocessing plants will also contain the various
1sotopes produced in the transmutation—decay process of uranium. Reactors opera-
ting on the thorium cycle will contain “>*Th and ***U or **U, and if the fuel is from
a reprocessing plant, isotopes produced in the transmutation—decay process of
thorium.

During the operation of a nuclear reactor a number of changes occur in the
composition of the fuel. The various fuel nuclei are transmuted by neutron capture
and subsequent decay. For a uranium-fueled reactor, this process produces a variety
of transuranic elements in the actinide series of the periodic table. For a thorium-
fueled reactor, a number of uranium isotopes are produced. The fission event
destroys a fissile nucleus, of course, and in the process produces two intermediate
mass fissior products. The fission products tend to be neutron-rich and subsequently
decay by beta or neutron emission (usually accompanied by gamma emission) and
undergo neutron capture to be transmuted into a heavier isotope, which itself
undergoes radioactive decay and neutron transmutation, and so on. The fissile
nuclei also undergo neutron transmutation via radiative capture followed by decay
or forther transmutation.

195
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Fuel Transmutation—-Decay Chains

Uranium-235, present 0.72% in natural uranium, is the only naturally occurring
isotope that is fissionable by thermal neutrons. However, three other fissile (fission-
able by thermal neutrons) isotopes of major interest as nuclear reactor fuel are
produced as the result of transmutation—decay chains. Isotopes that can be con-
verted to fissile isotopes by neutron transmutation and decay are known as fertile
isotopes. ***Pu and **'Pu are products of the transmutation—decay chain beginning
with the fertile isotope **®U, and ***U is a product of the transmutation—~decay
chain beginning with the fertile isotope 2*Th. These two transmutation—decay
chains are shown in Fig. 6.1. Isotopes are in rows with horizontal arrows represent-
ing (n,y) transmutation reactions, with the value of the cross section (in barns)
shown. Downward arrows indicate P-decay, with the half-lives shown. Thermal
neutron fission is represented by a dashed diagonal arrow, and the thermal cross
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Fig. 6.1 Transmutation—decay chains for **U and Z**Th. (From Ref. 3; used with permis-
sion of Taylor & Francis.)
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TABLE 6.1 Cross Section and Decay Data for Fuel Isotopes

v

Abundance Decay Energy  Spontaneous Fis- G;h G}h RI, RI, ol c
[sotope (%) tij Mode (MeV) sion Yield (%) (bams)  (barns) (barns)  (barns) (barns) (barns)
32Th 100 141 x 10"y o 4.1 <1x107° 7 — 84 — 0.09 0.08
233Th — 223m B 12 — 1285 13 643 11 0.09 0.11
ZTh — 24.1d B 0.27 — 2 — 94 — 0.11 0.04
233py — 27.0d B 0.57 — 35 — 864 — 0.28 0.33
234py — 6.7h B 2.2 — — — — —_— —_ —
By — 68.9y P 5.4 — 64 66 173 364 0.03 2.01
Hy — 159 x 10°y o 49 <6x107° 41 469 138 774 0.07 1.95
ol 0.0057 246 x10°y o 49 1.7%x107° 88 6 631 7 022 1.22
25y 0.719 7.04 x 10%y ® 4.7 7.0x%107° 87 507 133 278 0.09 1.24
) — 234 x 10%y o 4.6 9.6x107° 5 54 346 8 0.11 0.59
=7y — 6.75d B 0.52 — 392 1 1084 49 0.93 0.74
B8y 99.27 447 x 10% o 43 5%107° 2 10 278 2 0.07 0.31
3y — 23.5m B 1.3 — — — — — — —
240y — 14.1h B 0.39 — — — — — — —
ZNp — 154 x 10°y ec” 0.94 — 621 2453 259 1032 0.19 1.92
Be 0.49 — — — — — — —
BINp — 2.14 x 10%y a 5.0 <2x 1071 144 20 661 7 0.17 1.33
¥Np — 2.12d i} 1.3 — 399 1835 201 940 0.11 1.42
{Continued)
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TABLE 6.1 (Continued)

Abundance Decay Energy  Spontaneous Fis- c‘y“ 0'}1‘ RI, Rif o} 0'}‘

Isotope {%) ty Mode MeV) sion Yield (%) (barns)  (barns) (barns)  (barns) (barns)  (barns)
Z%Np — 2364 B 0.72 — 33 — 445 — 0.19 146
2400 _ o . o _ . . _ _ _ _

Z36py — 286y o 59 1.4 %1077 126 146 401 59 0.15 2.08
BTpy — 45 ec 0.22 — — — — — — —

Z38py — 87.7y o 5.6 1.9 x 1077 458 15 154 33 0.10 1.99
239py — 241 % 10%y o 52 3x 10710 274 698 182 303 0.05 1.80
240py — 656 x 10%y o 53 57%x107° 264 53 8103 9 0.10 1.36
24lpy — 144y B 0.02 <2 %107 326 938 180 576 0.12 1.65
242py — 373x 107y o 5.0 >55%x107* 17 — 1130 — 009 1.13
2#Am — 432y o 5.6 4x10710 532 3 1305 14 0.23 1.38

Source: Brookhaven National Laboratory Nuclear Data Center, http:/ /www.dne.bnl.gov/CoN/index.html.

“87.3% electron capture, 12.5% J.
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section is shown. (Fast fission also occurs but is relatively less important in thermal
reactors.) Natural abundances, decay half-lifes, modes of decay, decay energies,
spontaneous fission yields, thermal capture and fission cross sections averaged over
a Maxwellian distribution with kT = 0.0253 eV (c™), infinite-dilution capture and
fission resonance integrals (RIs), and capture and fission cross sections averaged
over the fission spectrum (c*) are given in Table 6.1.

Fuel Depletion—Transmutation—Decay Equations

Concentrations of the various fuel isotopes in a reactor are described by a coupled
set of production—destruction equations. We adopt the two-digit superscript con-
vention for identifying isotopes in which the first digit is the last digit in the atomic
number and the second digit is the last digit in the atomic mass. We represent the
neutron reaction rate by o}"@n"™", although the actual calculation may involve a
sum over energy groups of such terms.

For reactors operating on the uranium cycle, the isotopic concentrations are
described by

8%?_ — 0%4 ¢n24

ag—js = o3 gn’ — o gn™

8;_;6 = 0315 en® — a§6¢n26 + AXp36
_ag; — 0,2),6(]5"26 4 0_’21?2n¢n28 _ )\271127
3;_;’3 = P

3%:9 = P — (X 4 Py
5%:" = o7, on¥T — (AF + g% g)n’
_3(;2; = N o2 g

6;_38 — U§Y7¢”37 _ ()\38 + 0,28¢)n38
3%39 = N — (O 4 6P g)n® (6.1)
3%:8 P g

n

339,39 _ 49 .49 | 48 . 48
=A"n" —o, ¢n"” + 0 ¢n

ot
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on*

= f/9 on* — o én*0 4 03;) on® + aig on
on#l

5= 0':0(75;140 - +031¢)n41
n*?

gt _ t;l ¢n*! — o2gn®
87’143
el af(bn‘u — (AP + P
on!
5= At (351 ozlqﬁ)nﬂ
8;:2 _ 0’571 ¢! — 052 g
on33
- = AB,® 0,33 on> + 032 on

With respect to Fig. 6.1, a few approximations have been made in writing Egs. (6.1).
The neutron capture in 2*°U to produce **°U followed by the decay (¢;,,=14h)
into 240Np and the subsequent decay (¢, /> =7 min) into 249y is treated as the direct
production of 24Py by neutron capture in 2%, and the production of 240Np by
neutron capture in ***Np followed by the subsequent decay (#» =7 min) of **’Np
into 2*°Pu is treated as the direct production of **Pu by neutron capture in “*Np.
These approximations have the beneficial effect for numerical solution techniques
of removing short time scales from the set of equations, without sacrificing infor-
mation of interest on the longer time scale of fuel burnup.

For reactors operating on the thorium cycle, the isotopic concentrations are
described by

g
8;;)3 _ 22 én — OB 4 023 $)n%
6;:3 = AB0 _ (A 4 51313
o 22
gt = —(\2 + 02¢) n?
an23
= 372(]5 w2 4 ABp® — g2 2 (6.2)
8;:4 _ 03,3¢ n? 4 a;3¢ n'3 — g2 n2t
On®

4 24 25 25
o St —elen
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anzﬁ
25 25 26 26
TR ¢n” —o,pn
8?127
Bl — U?yﬁ(/l) n26 _ ()\27 + 0%7(;5)”27
an37
o — )\27n27 _ 0_27¢ n37

Another short-time-scale elimination approximation that neutron capture in >Pa
leads directly to 234U has been made.

Example 6.1: Depletion of a Pure ®°U-Fueled Reactor. As an example of the
nature of the solution of the equations above, consider the hypothetical case of
a reactor initially fueled with pure **U which operates for 1 year with a con-
stant neutron flux of 10" n/cm®s. The solution of the second of Egs. (6.1) is
n>(#) =n>>(0) exp(—cXdt), where at the end of 1 year, o2°dpr=(59%4 x
107 em®)(1 x 10" /em?-s)(3.15 x 107s)=1.87 and n*(t)= 0.154n>> (0). The
number of atoms that have fissioned in this 1 year is (r(1)— n(0)} x [Gf/
(6 + o)1 = [0.84617°(0)1(507/594) = 0.722n°(0). Each fission event releases
192.9MeV of recoverable energy, so the total recoverable fission energy
release is [0.722n*>(0)fissions] x (192.9 MeV /fission) x (1.6 x 10~'° MJ/MeV ) =
2.23 x 1077 x #n*3(0) M. If the initial core loading is 100kg of *°U, this corre-
sponds to (223 x 10717) x (10°/235) x (6.02 x 10%)=0.95 x 10° MF=1.1 x
10* MWd of recoverable fission energy.

Neglecting the production of ***U by electron capture decay of *®Np, the
solution for #2>(r) can be used to solve the third of Egs. (6.1) to obtain 7255 =
[n>(0) 035 /(o2 — 636)][exp(—csg6(|)t) — exp( —035(1)[)]. This expression for n*%(t)
can be used in the fourth of Egs. (6.1) to obtain a similar, but more complicated
solution for #%7(¢), since we have assumed that 7*® =0; and so on.

Fission Products

The fission event usually produces two intermediate mass nuclei, in addilion to
releasing two or three neutrons. Interestingly, the fission product masses are not
usually equal to about half the mass of the fissioning species, but are distribated in
mass with peaks at about 100 and 140amu, as shown in Fig. 6.2. The isotopes
produced by fission tend to be neutron-rich and underge radioactive decay. They
also undergo neutron capture, with cross sections ranging from a few tenths of a
barn to millions of barns. The general production—destruction equation satisfied by
a fission product species j is

dn; i Ay . .
@ = 2 O T = (N oy (6.3)

where v; is the fraction of fission events that produces a fission product species J,
A7 is the decay rate of isotope i to produce isotope j (beta, alpha, neutron, etc.,
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Fig. 6.2 Fission yields for 2°U and ***Pu. (From Ref. 15.)

decay) and oV is the transmutation cross section for the production of isotope j by
neutron capture in isotope j. Even though the fission products undergo transmuta-
tion and decay, the total inventory of direct fission products plus their progeny
increases in time as

dnﬁ, _ % __ )
e ZJ: e zj:%Ebe (6.4)

Solution of the Depletion Equations

The equations above can be integrated to determine composition changes over the
lifetime of the reactor core loading if the time dependence of the flux is known.
However, the flux distribution depends on the composition. In practice, a neutren
flux distribution is calculated for the beginning-of-cycle composition and critical
control rod position or soluble boron concentration (PWR), and this flux distribu-
tion is used to integrate the composition equations above over a depletion-time step,
Atyum- Then the new critical control rod position or soluble boron concentration is
determined (by trial and error) and the flux distribution is recalculated for use in
integrating the production—destruction equations over the next depletion time step,
and sc on, until the end of cycle is reached. The maximum value of At depends
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on how fast the composition is changing and the effect of that composition change
on the neutron flux distri