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Foreword

Introductions to solid state physics have, ever since the initial book by F. Seitz in 1940,
concentrated on simple crystals, with few atoms per cell, bonded together by strong ionic,
covalent, or metallic bonds. References to weaker bonds, such as van der Waals forces in
rare gases, or to geometric or chemical disorder (e.g., alloys or glasses) have been limited.

The physical understanding of this field started well before Seitz’s book and led to a
number of Nobel prizes after the last war. Applications cover classical metallurgy, elec-
tronics, geology and building materials, as well as electrical and ionic transport, chemical
reactivity, ferroelectricity and magnetism.

But in parallel with this general and well publicized trend, and sometimes earlier as
far as physical concepts were concerned, an exploration and increasingly systematic study
of softer matter has developed through the twentieth century. More often in the hands of
physical chemists and crystallographers than those of pure physicists, the field had for a
long time a reputation of complexity. If progress in polymers was steady but slow, interest
in liquid crystals had lain dormant for forty years, after a bright start lasting through 1925,
to be revived in the late 1960s based on their possible use in imaging techniques. The
optoelectronic properties of the field in general are even more recent.

Maurice Kleman’s initial research interests have been in the study of magnetoelastic
effects in ferromagnetic crystals and films, a field where he was able to apply Kröner’s
techniques of infinitesimal dislocations to the study of inhomogeneous magnetism in walls,
lines, and points, as initiated by P. Weiss and developed notably by L. Néel. When P.G. de
Gennes started developing an interest in liquid crystals in Orsay, it was natural for Kleman
to turn his own attention to this field, where many mesoscopic phenomena have to be
attacked from somewhat similar points of view. True to his initial interests, Kleman kept
as a main objective the understanding of the possible defects of such structures, a line of
attack first explored by my grandfather G. Friedel and revived in the 1950s by Kleman’s
friend C.F. Frank. Kleman is now well known for his work in the general field of defects in
soft matter, summarized in part in a little book on points, lines, and walls. The other author,
Oleg D. Lavrentovich, studied in Kiev the structures of liquid crystal droplets, which he
produced by a new method, with controlled surface anchoring conditions, which allowed
him to recognize rather early the presence of a TGB phase as foreseen by analogy with
superconductors of the second kind. After a long stay as a visiting scientist in Orsay with
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Forewordvi

Kleman, where he studied, with P. Boltenhagen, the splitting of oily streaks into focal conic
domains, he has taken a position at Kent State University. Maurice Kleman and Oleg D.
Lavrentovich now present us the results of their researches and teachings at the graduate
and postgraduate levels in soft matter physics. Structure properties only are considered
here.

As made clear in Chapters 1 to 4, soft matter is here mostly made of molecules weakly
bound by intermolecular forces of various origins, excluding metallic, covalent, and ionic
bonds. Thus soft matter can encompass biological matter, although not much of this is
treated in this book, except for some properties of assembled DNA molecules. Because of
the often complex and flexible forms of the molecules involved, entropy plays a leading
role at the origin of various possible forms of “mesomorphic” phases of the liquid crystals,
as well as of many easily produced distortions or defects. Extensions of similar concepts
to liquid, amorphous, or quasicrystalline phases met in “strong” solids are stressed. To
study simply the phase changes involved, one has first to define an order parameter with
its characteristic phase and amplitude, smoothly varying in space and time. This approach,
popularized by Landau, effectively neglects local atomic or thermal inhomogeneities but
provides a general framework applicable to similar mesoscopic problems in superfluidity,
magnetism, or phase changes in strong solids. The general concepts derived for analyz-
ing phase changes in the main types of liquid crystals are thus compared with similar
approaches for strong superconductivity or very anisotropic magnetism.

The two following chapters relate to possible static or dynamic distortions in liquid
crystals: Chapter 5, on elasticity, gives a particularly clear presentation of a field where
boundary conditions play a leading role; Chapter 6 presents many aspects of dynamics and
viscosity.

Chapter 7, on fractals and growth phenomena, introduces the subject of surface ef-
fects, which is pursued further in Chapter 13. Here again, the two aspects of static and
dynamical properties are clearly distinguished, even if the field treated could justify longer
developments.

Finally, a large part of the book covers the problems of line and point defects in the
various liquid crystal phases, as compared with classical strong crystals. This rich field,
which covers much original work by the authors, is presented in a rather complete and
original way. The two last chapters cover colloids and polymers in a clear, albeit summary,
way.

Taken as a whole, this book provides a good introduction to the general background
in the study of soft matter. The main concepts involved are presented in a clear and simple
way. Short exercises at the end of each chapter together with a short bibliography help read-
ers to broaden their knowledge. The core of the book concentrates on liquid crystals, their
numerous phases and their possible static and dynamic conformations, with an emphasis
on the role played by boundary conditions and especially free surfaces. But soft matter is
not restricted to liquid crystals: Polymers and colloids are also considered, if more briefly.
And the various concepts developed for the study of liquid crystals find their equivalents in
some problems of “strong” matter: the role of lines and points defects in magnetism, var-
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ious types of dislocations in liquids, amorphous or quasicrystalline phases; these various
aspects are properly mentioned, though not treated to the same depth.

As rightly emphasized by the authors, a striking feature of soft matter is the specific
role played by the mesoscopic range. In most cases, the direct molecular interactions are of
short range. But the way to pave space with such molecules, of various forms, flexibilities,
and viscosities, keeping a reasonably compact and stable arrangement, can lead to a variety
of different solutions that might differ at long range only. In the search for such solutions,
the concept of coherence length was first developed in similar problems of magnetism and
superfluidity: This is a measure of the size of the mesoscopic range where a type of ar-
rangement imposed on the border of a range is transmitted, with decreasing strength, to the
other border. But from the study of soft matter, a new concept has emerged, that of range of
frustration; in many cases, a local or especially stable arrangement of atoms or molecules
cannot be extended far, because it creates too large intermolecular tensions. Examples re-
ferred to in this book are the double twist in cholesterics and the icosahedral packing of
atoms in liquid, amorphous, or quasicrystalline phases. In such cases, the frustration range
is limited by the development and suitable folding of disclination lines, as for instance in
blue phases. Thus the nature and symmetry of short-range intermolecular forces can dom-
inate not only the size of the network of dislocations but the long-range structure of the
network. The authors have contributed greatly to the emergence of such a concept, and if
anything, it could have been developed even further in this book.

Like most of their predecessors, the authors introduce the line singularities (disloca-
tions, disclinations) by the Volterra process, then classify possible singularities (points,
lines, walls) by the topological approach introduced by G. Toulouse and M. Kleman. The
subject is treated in a progressive way, first in solids, then in smectics A, with their dislo-
cations, disclinations, and specific focal conics, where the authors have recently added to
our knowledge. Cholesterics and nematics are then treated in depth, with a discussion of
liquid relaxation and the general importance of topological classification.

It is indeed rightly stressed that the Volterra process starts with a solid medium, while
the topological approach assumes complete viscous relaxation of stresses on an at least
partly liquid medium. As this relaxation increases from smectics to cholesterics and ne-
matics, the passage through a Volterra process might look more and more artificial, and
indeed it is a pity that no more has been done on the physical properties of disclinations
in nematics, related to the noncommutativity of their topology: What is the equivalent of
F.C. Frank’s “kinks,” produced by the crossing of two dislocations in a crystal, when two
disclinations cross in a nematic?

However, liquid relaxation after a Volterra process in a frozen medium helps us to
understand a number of characteristic features of the singular lines in liquid crystals: It re-
duces the stored energy of dislocations and disclinations and allows all these singular lines
to be flexible and mobile; for disclinations, it fixes the orientation of the cut surface of the
initial Volterra process, so as to minimize the energy; it allows the topological elimination
of some lines by an escape into the third dimension, thus creating pairs of singular points;
it also allows the characteristic rotation to be tangent to the disclination line, even a curved
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one. The Volterra process can finally explain in a natural way why a number of dislocation
configurations can be maintained, although not predicted by topological arguments: This
can refer, for instance, to slip at low temperatures in amorphous solids or in quasicrystals;
it can also refer to boundary or initial conditions, which can maintain lines with a relaxed
and continuous core, such as cracks in motion and disclinations in a tube of nematics with
molecules perpendicular to the surface of the tube.

These remarks justify, I think, the plan followed by the authors, although liquid re-
laxation could have been introduced earlier in the book, for dislocations as well as for
disclinations or focal conics. The continuous distribution of infinitesimal dislocations pro-
duced by such relaxations is precisely that first imagined by Volterra in continuous solids
and which J.F. Nye, B.A. Bilby, and E. Kröner developed later in the context of flexion and
torsion of solids, as recalled earlier in the book.

Some other comments could be made in the presentation of the book, if not in its
substance

• The long-range Landau approach to phase changes neglects short-range order effects,
which can be significant even in first-order transitions. Thus, as already pointed out in
1930 by G. Foëx, the short-range effects observed in the magnetic properties on both
sides of a nematic isotropic transition do not necessarily imply a second-order phase
transition at the equivalent of a Curie point in a ferromagnet; but their effects, known
in the nematic phase since before the First World War as “swarms” (responsible for
turbidity and correctly analyzed in the long-wave limit by P.G. de Gennes), as well as
the equivalent effects observed by light scattering in G. Durand’s group in the early
1970s in the isotropic phase, strongly reduce the latent heat and increase the temper-
ature variations of the effective Landau parameters. Indeed, the large (optical) range
of these fluctuations poses the question of the convergence of a Landau development,
which in fact limits itself to very small groups of molecules. Similarly, short-range ori-
entational order can exist in polymers without them showing a transition to a nematic
phase, as shown, for example, by B. Deloche in molten polymers as well as in poly-
meric membranes, using resonance techniques. By skipping rather quickly over such
effects, the authors might give too rigid a picture of a field where fluctuations are all
important.

• Some “historical” references could have been usefully more fully developed. Thus to
say that dislocations in solids began to be studied just before the Second World War
probably refers to the fundamental work produced by J.W. Burgers and by R. Peierls
in 1939; but the concept of dislocation and disclination lines in continuous solids dates
from Volterra, before the First World War; and its transfer to crystals dates from the
early 1920s, together with many applications to crystal plasticity. On the other hand,
the “Cano” geometry of a tilt boundary of a smectic or cholesteric in a wedge is due to
Grandjean using a mica crack and was most probably understood as presented in Figure
8.22 by G. Friedel in the early 1930s. Cano only added a specific way of aligning
molecules in a definite direction along glass plates.
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• Finally, research in soft matter has been helped by a transfer of concepts developed in
strong solids, and this is made very clear in this book. Conversely, concepts developed
in soft matter have been transferred to the study of strong solids or of biological ma-
terials. This is mentioned here in a number of cases, but it is not the main subject of
this book. It can be hoped that another publication will cover in depth recent progress
in these fields, where the authors have been active.

In conclusion, I am very happy to introduce a book that presents in a condensed but
clear way many facets of a very rich and fascinating field.

Jacques Friedel
Paris, France
January 2001
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Series Preface

Partially Ordered Systems

Many familiar materials have neither the precise order of crystalline solids nor the com-
pletely random structure of liquids and gases. Colloids such as milk, soap, and detergent
solutions; liquid crystals, well known from flat electronic displays; gels; and many kinds
of ultrastrong fibers are all partially ordered systems. Such systems have emerged as an
important field of study not only from the point of view of basic physics, but also with
practical applications in materials science and other disciplines.

This series includes research monographs and graduate-level texts that deal with con-
densed systems at microscopic, mesoscopic, or macroscopic scales that do not have full
long-range spatial and orientational orders. These systems—some of which have also been
called soft matter, complex fluids, or supermolecular fluids—include complex liquids with
molecules or aggregates of molecules organized on long scales; liquid crystals, composed
of monomers or polymers; colloids; molecular crystals; quasicrystals; granular materials;
disordered systems; and aggregates. Books in the series cover all aspects of the materi-
als, their structures, properties, and formation, as well as percolation and the formation of
fractals and spatiotemporal patterns.

Lui Lam
San Jose, California

xi



This page intentionally left blank



Preface

What Is Soft Matter? Scope of This Book

What we call “soft matter” covers a large variety of systems, from polymers to colloids,
from liquid crystals to surfactants, and from soap bubbles to solutions of macromolecules.
All of these materials are of increasing industrial importance. Although they have long been
an eminent domain of research for chemists, physicists are now taking a keen interest in
them. Soft matter systems indeed raise problems of physics of completely new types. What
makes their unity is difficult to formulate precisely (one speaks of “complex systems,” a
qualification that at least does justice to their structural properties). We try to distinguish
some characteristic proper to them all.

All systems that fall under the name of soft matter belong, with very few exceptions, to
organic chemistry. In fact, when one speaks of colloidal gold, or of colloidal silica, refer-
ence is made more to a material texture than to the material itself, whereas colloid science,
in the general understanding, addresses organic solutions characterized by dispersion or
solution of one phase in another, such that interface phenomena are of great relevance. The
term colloid is widely accepted, and even favored, but no clear unified definition of the
concept has yet emerged.

This digression being made, let us note that the building blocks of soft matter are or-
ganic molecules with often complicated architectures, anisometric in shape, and bound by
weak interactions. The stability range of these phases is, therefore, close to room tempera-
ture, and small changes in temperature are enough to induce phase transitions accompanied
most usually by small latent heat or sometimes by chemical decomposition. This is to say
that entropy, rather than enthalpy, is a quantity to be considered first and foremost. Biolog-
ical matter (proteins, membranes, DNA and their associates, like viruses or microtubules)
enter into the class of materials under this heading of soft matter when studied by physi-
cists. An important characteristic of these materials is that they are not in equilibrium in
vivo, but this fundamental property of living matter is completely outside the scope of this
volume.

xiii
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Soft matter, in particular liquid crystals, display phenomena of order of a very original
nature, intermediary between those of crystalline solids and those of disordered phases. A
considerable outgrowth of the theory of phase transitions, and of the theory of the order
parameter singularities, has followed their discovery, with some remarkable features like
the “phases with defects” (frustrated phases). The concepts that have been developed in this
area have found applications in other parts of physics (quasicrystals, amorphous media,
superfluids).

The specific nature of disorder in polymers has also required development of a com-
pletely new type of description of random media, the physics of scaling laws. Examples
of new types of phase transitions (e.g., the sol–gel transition) have also encouraged new
insights in the physics of tenuous media, using the notion of fractals.

Finally, let us stress the importance, at a fundamental as well as at an applied level,
of their transport properties (diffusivity, viscosity), of their viscoelastic properties (e.g.,
flow under shear of liquid crystals, phase transitions under shear, plastic deformation of
polymers), and of surface and interface phenomena (wetting, role of long-range forces),
which define a large domain of renewal of mesoscopic physics, where we find the interplay
of molecular and macroscopic concepts (hydrodynamics, rheology, capillarity). Not all of
these topics will be covered in this textbook, which is essentially an introduction to the
physics of soft matter.

Soft matter physics is condensed matter physics, and it goes hand in hand with solid
state physics. One expects that a certain number of phenomena display neighboring, if not
similar, aspects in both disciplines, to their mutual enrichment. We have therefore included
in the introductory chapters a number of developments common to the whole of condensed
matter physics, relating to stucture (atomic and molecular arrangements), cohesion (chem-
ical bond), defects, and phase transitions. However, the reader should not expect that we
have put the bases of both disciplines on an equal footing. For example, in our discussion
of the interactions between atoms or molecules, we favor an exposition that emphasizes the
chemical bond picture, not the infinite body electrons spatial configuration, which would
fit better the description of phenomena in solid crystals. Therefore, a traditional classifica-
tion like conductors versus insulators is hardly mentioned. The reader will also notice that
we have put stress on the question of defects, extending it largely, this time, to the case of
solids, in order to place it in a general perspective. The subject dates back to the beginning
of the last century—liquid crystals are indeed the material for which the concept of defects
was first developed—and has always looked particularly difficult to many students. Per-
sonal interest led us to develop this topic, but this is not the only reason. The general theory
of defects has benefited from the discovery of many liquid crystalline phases; on the other
hand, a new interest in the rheological properties of complex materials can benefit from
our knowledge of the plasticity of solids. A number of concepts well investigated in this
field for solids take their place in liquid crystals, with obvious differences: For example,
the viscous relaxation of defects in a nematic yields situations that present less hysteresis
than does solid friction in solids. Apart from this particular emphasis, we believe that all
essentials are treated in a sufficiently detailed way to offer access to the whole subject of
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soft matter. The chapter on the hydrodynamics of nematics is introduced by a reminder of
the standard hydrodynamics of isotropic fluids.

**************

Some technicalities: The list of references has been restricted on purpose to textbooks,
review papers, and articles, when the subject they treat is not accessible in a review. Each
chapter is accompanied by a few problems, generally with solutions, which either permit
readers to test their understanding of the concepts developed in the chapter, or to extend
some special points not treated in the body of the text. This is also the role of some appen-
dices. We have also added a table of conversions of units.

Note added in proof:
In the color insert, please note that the scale bar in Fig. 3.14 should read “100 µm”

instead of “100 ∞ m.”
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authors thank them heartily.

We also acknowledge the support of CNRS and NSF for making possible the collabo-
ration between the two authors.

Maurice Kleman
Paris, France

Oleg D. Lavrentovich
Kent, Ohio



This page intentionally left blank



Contents

Foreword v

Series Preface xi

Preface xiii

1 Condensed Matter: General Characters, the Chemical Bond, and
Particle Interactions 1
1.1. Entropy in Disordered Systems . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Central Forces and Directional Forces Between Atoms . . . . . . . . . . 3

1.2.1. Metallic Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2. Bonds Formed by Fluctuating Dipoles . . . . . . . . . . . . . . 4
1.2.3. Covalent Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4. Ionic Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.5. From Ionic Bond to Covalent Bond in Crystals . . . . . . . . . . 7

1.3. Forces Between Molecules . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1. Electrostatic Bond in a Dielectric Medium . . . . . . . . . . . . 7
1.3.2. Electric Dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3. Induced Dipoles, Polarizability . . . . . . . . . . . . . . . . . . 11
1.3.4. Repulsive Forces . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.5. Empirical Potentials of Interactions . . . . . . . . . . . . . . . . 18
1.3.6. Water, Hydrogen Bond, and Hydrophilic and

Hydrophobic Effects . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4. van der Waals Forces Between Macroscopic Particles . . . . . . . . . . . 21

1.4.1. Pairwise Summation of Molecular Forces;
Hamaker Constant . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2. Retardation Effects . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.3. London Interactions in a Medium, Lifshitz Theory . . . . . . . . 27
1.4.4. Casimir Interactions . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5. Polymers and Biological Molecules . . . . . . . . . . . . . . . . . . . . 29
1.5.1. Synthetic Polymers . . . . . . . . . . . . . . . . . . . . . . . . 29

xvii



Contentsxviii

1.5.2. Aminoacids, Proteins . . . . . . . . . . . . . . . . . . . . . . . 31
1.5.3. DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5.4. Associations of Proteins: TMV, Microtubules . . . . . . . . . . . 36

2 Atomic and Molecular Arrangements 42
2.1. Atomic Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.1. Packing Densities . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.2. Liquids and Amorphous Media . . . . . . . . . . . . . . . . . . 45
2.1.3. Geometrical Frustration . . . . . . . . . . . . . . . . . . . . . . 47
2.1.4. Incommensurate Phases and Quasicrystals . . . . . . . . . . . . 49

2.2. Molecular Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.1. Plastic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.2. The Building Blocks of Liquid Crystals . . . . . . . . . . . . . . 55
2.2.3. Classification of the Mesomorphic Phases . . . . . . . . . . . . 59
2.2.4. Isotropic Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.3. Perturbations of the Crystalline Order . . . . . . . . . . . . . . . . . . . 71
2.3.1. Weak Perturbations . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.2. Strong Perturbations . . . . . . . . . . . . . . . . . . . . . . . . 72

3 The Order Parameter: Amplitude and Phase 76
3.1. The Order Parameter Space . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1.1. Superfluid Helium . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.1.2. Heisenberg Ferromagnets . . . . . . . . . . . . . . . . . . . . . 78
3.1.3. X-Y Ferromagnets . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.1.4. Uniaxial Nematics . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.1.5. Crystalline Solids . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.1.6. Order–Disorder Transitions in Alloys . . . . . . . . . . . . . . . 83

3.2. The Specific Order Parameter of Liquid Crystals: The Director . . . . . . 83
3.2.1. Microscopic Definition . . . . . . . . . . . . . . . . . . . . . . 83
3.2.2. Macroscopic Properties . . . . . . . . . . . . . . . . . . . . . . 86

3.3. Light Propagation in Anisotropic Media; Application to
Director Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3.1. Fresnel Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3.2. Ordinary and Extraordinary Waves . . . . . . . . . . . . . . . . 92
3.3.3. Observations in Polarized Light. Microscopy . . . . . . . . . . . 95

4 Phase Transitions 105
4.1. Landau–de Gennes Model of the Uniaxial Nematic–Isotropic

Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2. Nematic Order and Statistical Theory of Rigid Rodlike Particles . . . . . 109

4.2.1. Free Energy of a Solution of Spherical Particles . . . . . . . . . 109
4.2.2. Free Energy of a Solution of Rigid Rods . . . . . . . . . . . . . 113



Contents xix

4.3. Maier–Saupe Mean Field Theory of the Isotropic–Nematic Transition . . 115
4.4. The Smectic A–Nematic Transition . . . . . . . . . . . . . . . . . . . . 117

4.4.1. Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.2. Ginzburg–Landau Expansion . . . . . . . . . . . . . . . . . . . 118
4.4.3. Analogy with Superconductors . . . . . . . . . . . . . . . . . . 120
4.4.4. Characteristic Lengths . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.5. Anomalies of K2 and K3 Coefficients . . . . . . . . . . . . . . . 123
4.4.6. Abrikosov Phases with Dislocations . . . . . . . . . . . . . . . . 124

4.5. Kosterlitz–Thouless Model of Phase Transitions . . . . . . . . . . . . . . 129

5 Elasticity of Mesomorphic Phases 135
5.1. Uniaxial Nematics and Cholesterics . . . . . . . . . . . . . . . . . . . . 135

5.1.1. Elastic Free Energy Density . . . . . . . . . . . . . . . . . . . . 135
5.1.2. Geometrical Interpretations of Director Deformations . . . . . . 137
5.1.3. Material Elastic Constants . . . . . . . . . . . . . . . . . . . . . 140

5.2. Lamellar Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2.1. Free Energy Density . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2.2. Splay and Saddle-Splay Deformations . . . . . . . . . . . . . . 145
5.2.3. Free Energy Density for Small Deformations . . . . . . . . . . . 148

5.3. Free Energy of a Nematic Liquid Crystal in an External Field . . . . . . . 149
5.4. Standard Applications of the Elasticity of Nematics . . . . . . . . . . . . 153

5.4.1. Minimization of the Free Energy in the Generic Case . . . . . . 153
5.4.2. Hybrid-Aligned Nematic Film . . . . . . . . . . . . . . . . . . . 157
5.4.3. External Field Effects: Characteristic Lengths and

Frederiks Transitions . . . . . . . . . . . . . . . . . . . . . . . 161
5.5. Standard Applications of the Elasticity of Smectics . . . . . . . . . . . . 164

5.5.1. Smectic Phase with Small Deformations . . . . . . . . . . . . . 164
5.5.2. Smectic Phase with Large Deformations and

Topological Deformations . . . . . . . . . . . . . . . . . . . . . 167
5.6. Thermodynamic Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 170

5.6.1. Thermodynamic Fluctuations in Nematics . . . . . . . . . . . . 171
5.6.2. Thermodynamic Fluctuations in Smectics . . . . . . . . . . . . . 173

Appendix A: One-Dimensional Variational Problem . . . . . . . . . . . . . . . 174
5.A.1. Fixed Boundary Conditions . . . . . . . . . . . . . . . . . . . . 174
5.A.2. Soft Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 176

Appendix B: Formulae for Fourier Transforms . . . . . . . . . . . . . . . . . . 177

6 Dynamics of Isotropic and Anisotropic Fluids 184
6.1. Velocity Field and Stress Tensor . . . . . . . . . . . . . . . . . . . . . . 185

6.1.1. Material Derivatives and Components of Fluid Motion . . . . . . 185
6.1.2. Body and Surface Forces. Stress Tensor . . . . . . . . . . . . . . 187

6.2. Isotropic Fluid in Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 189



Contentsxx

6.2.1. Conservation of Mass: Contunuity Equation . . . . . . . . . . . 189
6.2.2. Linear Momentum Equation . . . . . . . . . . . . . . . . . . . . 189
6.2.3. Energy Balance Equation . . . . . . . . . . . . . . . . . . . . . 191
6.2.4. Entropy Production Equation . . . . . . . . . . . . . . . . . . . 192
6.2.5. Viscous Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . 195
6.2.6. Navier–Stokes Equations. Reynolds Number. Laminar and

Turbulent Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.3. Nematodynamics in Ericksen–Leslie Model . . . . . . . . . . . . . . . . 198

6.3.1. Angular Momentum Equation . . . . . . . . . . . . . . . . . . . 199
6.3.2. Energy Balance Equation . . . . . . . . . . . . . . . . . . . . . 200
6.3.3. Entropy Production Equation . . . . . . . . . . . . . . . . . . . 200
6.3.4. Nondissipative Dynamics . . . . . . . . . . . . . . . . . . . . . 202
6.3.5. Dissipative Dynamics . . . . . . . . . . . . . . . . . . . . . . . 202

6.4. Nematodynamics in Harvard Theory . . . . . . . . . . . . . . . . . . . . 205
6.4.1. Director Dynamics and Dissipative Stress Tensor . . . . . . . . . 205
6.4.2. Summary of Nematodynamics . . . . . . . . . . . . . . . . . . 206

6.5. Applications of Nematodynamics . . . . . . . . . . . . . . . . . . . . . . 210
6.5.1. Nematic Viscosimetry . . . . . . . . . . . . . . . . . . . . . . . 210
6.5.2. Flow-Aligning and Tumbling Nematics with Director in the

Shear Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.5.3. Instabilities with the Director Field Perpendicular

to the Shear Plane . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.6. Hydrodynamic Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7 Fractals and Growth Phenomena 223
7.1. Basic Fractal Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.1.1. Length of a Line . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.1.2. Koch Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.1.3. Self-Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.1.4. Estimating Fractal Dimensions . . . . . . . . . . . . . . . . . . 228
7.1.5. Deterministic and Stochastic Fractals . . . . . . . . . . . . . . . 230
7.1.6. Brownian Motion and Random Walks . . . . . . . . . . . . . . . 232
7.1.7. Pair Correlation Function . . . . . . . . . . . . . . . . . . . . . 233
7.1.8. Inner and Outer Cutoffs . . . . . . . . . . . . . . . . . . . . . . 235

7.2. Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.2.1. Geometrical Percolation . . . . . . . . . . . . . . . . . . . . . . 235
7.2.2. Percolation and Second-Order Phase Transitions . . . . . . . . . 239
7.2.3. Finite Clusters at the Percolation Threshold . . . . . . . . . . . . 240
7.2.4. Fractal Dimension of the Percolation Cluster . . . . . . . . . . . 242
7.2.5. Percolation on Bethe Lattice . . . . . . . . . . . . . . . . . . . . 243
7.2.6. Percolation and the Renormalization Group . . . . . . . . . . . . 245

7.3. Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247



Contents xxi

7.3.1. Cluster–Cluster Aggregation . . . . . . . . . . . . . . . . . . . 249
7.3.2. The Witten–Sander Model of Diffusion-Limited Aggregation . . 249
7.3.3. Continuum Laplacian Model . . . . . . . . . . . . . . . . . . . 250

7.4. Viscous Fingering in the Hele–Shaw Cell . . . . . . . . . . . . . . . . . 252
7.4.1. Flow in Thin Cells . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.4.2. Instability of Interface . . . . . . . . . . . . . . . . . . . . . . . 254

8 Dislocations in Solids. Plastic Relaxation 261
8.1. Elasticity of Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . 261

8.1.1. Linear Elasticity: A Summary . . . . . . . . . . . . . . . . . . . 261
8.1.2. Applied Stresses and Internal Stresses . . . . . . . . . . . . . . 264

8.2. Volterra Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
8.2.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
8.2.2. Elastic Observables Related to Volterra Defects . . . . . . . . . 266

8.3. Simple Topological Characteristics of Dislocations . . . . . . . . . . . . 269
8.3.1. Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . 269
8.3.2. Dislocations in Crystals . . . . . . . . . . . . . . . . . . . . . . 270
8.3.3. Imperfect Dislocations. Stacking Faults and Twins . . . . . . . . 272

8.4. Some Remarks on the Elastic Energy of a Dislocation . . . . . . . . . . . 272
8.4 1. Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
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C H A P T E R 1

Condensed Matter: General
Characteristics, the Chemical Bond,
and Particle Interactions

It is classic to distinguish three states of matter: gas, liquid, and solid. In the first approx-
imation, the gas state is characterized by the absence of interactions between atoms or
molecules, which therefore display statistical disorder. The requirement of maximum of
entropy controls this state. Gases are outside the scope of this textbook. In contrast, the
more condensed liquid and solid phases are controlled not only by entropy, but also by
interparticle interactions. These states are stabilized by a complex interplay between at-
tractive interactions, which are responsible for the condensation of chemical species, and
repulsive interactions. The balance yields a local order, defined on some characteristic
length. In crystals, this local order reproduces on distances much larger than the interpar-
ticle distances, so that one can speak of long-range order. Long-range order of crystalline
materials is described in terms of the elements of the group of symmetry under which this
order is invariant. Independently of the type of arrangement, all condensed matter media
in liquid or solid states present some common features as follows:

1. The energies of interactions that stabilize the local order vary in the range 0.1 eV÷10 eV
per atom or molecule. The order of magnitude that is frequently met is 1 eV.

2. The molar volumes are all of the same order of magnitude; typical distances between
atoms are of the order of 1 Å.

3. Vibration frequencies of atomic bonds are of the order of 1013–1014 Hz.

Differences are to be attributed to the chemical nature of the bonds, and to molecular
organization.

1
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1.1. Entropy in Disordered Systems

The number η1 of ways to introduce one atom, one molecule, one object, in brief, what we
shall call one particle, in a volume V of solvent much larger than the volume displaced by
the particle, is proportional to V ; i.e., η1 = AV , where A is some constant of proportion-
ality. Let us introduce n identical solute particles and make a hypothesis that A does not
depend on the number of particles already present; this is more true the smaller the volume
occupied by n particles is compared with V . Then, the number of ways to introduce these
n particles is

ηn = (AV )n

n! , (1.1)

where the number of equivalent permutations n! takes into account that the particles are
identical. The associated entropy S = kB ln ηn is given by

S ∼= kBn ln(AV e/n), (1.2)

if one uses the approximate formula ln n! = n ln n
e , valid when n is large. The free energy

of the solution of noninteracting particles reads as

F = U − T S = n[ f0(T )− kB T ln(V/n)], (1.3)

where the A and the e terms have been lumped into the internal energy n f0(T ). Let us
introduce, in accordance with a standard thermodynamic definition, a “partial pressure”
related to the solute particles

p ≡ −(∂F/∂V )T,n = nkB T/V = ckB T ; (1.4)

here, c = n/V is the concentration of particles. The physical meaning of p, the partial
derivative of the free energy at constant n, can be understood as follows. Imagine that the
solution of particles and a pure solvent are in contact through a membrane that is permeable
for the solvent but not for the particles. The quantity −p dV is the free energy variation
of the system in a reversible process in which the volume of the solution is varied by an
infinitesimal amount dV . Therefore, p is the normal force per unit area exerted by the so-
lution on the membrane, measured along the outer normal; p is called the osmotic pressure
(see also Chapter 4). Note that with the present free energy (1.3), equation (1.4) can be
rewritten as pV = RT , i.e., as the equation of state of an ideal gas, if V is understood as
the volume of solution that contains 1 mole of the solute; R = 8.31 J/(mole · K) is the gas
constant.

Equation (1.4) is modified when one takes into account interactions between particles,
hence, the use of the so-called “virial” expansion

p = ckB T (1 + cv + · · ·), (1.5)
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where the second virial coefficient v has the dimension of volume and comes from pair
interactions between particles. Terms of higher order in (1.5) would correspond to interac-
tions involving three particles, four particles, and so on. If no attractive interactions exist
and the particles are approximated by hard spheres of radius r0, then it can be shown that
v is an excluded volume:

v = 1

2
× 4

3
π(2r0)

3 = 4vp, (1.6)

where vp is the volume of one particle (see Chapter 4). Generally, v accounts for both
repulsions and attractions and is calculated from the pair interaction potential w12(r) func-
tion of the distance, assuming central forces,

v = 1

2

∞∫

r=0

[1 − exp(−w12/kB T )]4πr2 dr. (1.7)

Note that in the presence of solvent, the potential w12(r) depends not only on the direct
particle-particle interactions, but also on particle-solvent and solvent-solvent interactions.
Thus, the last expression is justified only when the solvent can be treated as a continuum
medium whose presence can be accounted for in w12(r).

The virial expansion is used to describe dilute solutions of micelles, macromolecules,
proteins, and so on. Consider a solution made of two constituents, solvent A and solute B,
say. Let wAA, wB B , and wAB be the interactions energies of the pairs AA, BB, and AB at
their distance of closest approach a, which we take as the same for all pairs (the volume
of a molecule of constituent A or B is a3): the quantity w = wAB − (wAA + wB B)/2
measures the effective interaction between two particles A and B (see Chapter 15, where
it is also shown that w > 0 if the forces of interaction are van der Waals forces). In such
a case, the molecules A and B separate at low temperature. One can formally distinguish
two types of situations: (1) weak attractive interactions, w � kB T ; (2) strong attractive
interactions. These two situations are often referred to as the “good” and the “poor” sol-
vents, respectively. The related excluded volume is v = (1−2w/kB T )a3 (see Chapter 15).
In poor solvents, a temperature exists at which attractive and repulsive forces compensate
each other, v = 0, and the system behaves as an ideal solution with noninteracting par-
ticles of vanishing volumes. Conditions under which the second virial coefficient vanishes
are often called “theta-conditions.”

1.2. Central Forces and Directional Forces Between Atoms

We give here a brief summary. For details, refer to the textbooks cited at the end of this
chapter.
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(a) (b)

Figure 1.1. Face-centered (a) and body-centered (b) cubic lattices.

1.2.1. Metallic Bond

The valence electrons circulate freely in a metallic crystal, making it a unique, gigantic
molecule. The globally attractive bonding effect of this sea of valence electrons is nondi-
rectional, and, hence, responsible for close-packed structures, i.e., where each atom, con-
sidered as a sphere, is surrounded by as many atoms as possible. The interatomic distances
are determined by the repulsive steric forces. Close packing is often an excellent first-order
approximation in the study of local ordering. Face-centered cubic (FCC) and hexagonal
close-packed lattice (HCP) crystals are the most packed structures of atoms of equal sizes
(Fig. 1.1a). The body-centered cubic structure (BCC) is less compact (Fig. 1.1b) and is
favored at higher temperatures in the same systems, due to the larger entropy of vibration.

1.2.2. Bond Formed by Fluctuating Dipoles

Electrically neutral species such as rare gas atoms or nonionic organic molecules are held
together by van der Waals attraction forces (also known as dispersion forces). For rare gas
atoms (e.g., argon), in which the averaged positions of negative and positive charges coin-
cide, these forces were first analyzed by London: Fluctuating electric dipoles of one neutral
particle induce a dipole moment in the other; see Section 1.3.3. The resulting crystalline
structures are close-packed, also in relation to the nondirectional character of this bond.
The London energies as well as other van der Waals energies in general are weak, often
less than kB T per atom at room temperatures. The corresponding crystalline arrangements
are stable only at low temperatures; they melt with a low latent heat.



1.2 Central Forces and Directional Forces Between Atoms 5

Table 1.1. Energies of typical atomic bonds.

Energy Energy
per bond, per bond,

Bond Structure kJ/mole eV/molecule

Ionic Na+Cl− 750 7.77
Covalent C ≡ N 870 9.02

(example: HCN)
C = O (H2CO) 690 7.15
C = C (C2H4) 600 6.22
O–H (H2O) 460 4.77
C–H (CH4) 430 4.46
C–C (C2H6) 360 3.73
F–F (F2) 150 1.55

Metallic Na 109 1.13
Al 311 3.22

Hydrogen bond N–H . . .O = C; 10–50 0.10–0.51
C = O . . .H–O–C

1.2.3. Covalent Bond

In a pair of atoms connected by a covalent bond, each atom contributes one electron to
form an electron pair shared by the two atoms. A covalent structure is characterized by the
number z of bonds per atom: z = 4 for C, Si, and Ge; and z = 2 for S, Se, and Te. In
the first case, one expects three-dimensional (3D) atomic arrangement (e.g., two interpen-
etrating FCC lattices for C in diamond). In the second case, one gets more or less coiled
polymeric chains, which can arrange in 3D strongly anisotropic crystals, where the chains
are interstabilized by dispersion forces. Covalent bonds are strongly directional. Their en-
ergy is high, of the order of 100 kcal/mole ∼ 102 − 103 kJ/mole ∼ 1 − 10 eV/molecule
(Table 1.1).

1.2.4. Ionic Bond

Ionic bonding occurs because of complete electron transfer from one atom to another. This
transfer of one or more electrons converts the neutral atoms into ions of an opposite charge
with a strong electrostatic interaction between them. The ionic bonds are strong, yielding
crystals that are stable at room temperature. A classic example is a sodium chloride (NaCl)
crystal (melting point 801◦C) with a cubic structure in which each negatively charged chlo-
ride is surrounded by six positively charged sodium ions (and each sodium is surrounded
by six chloride ions) (Fig. 1.2).

The main contribution to the energy of interaction of two ions with charges z1e and

z2e is the Coulomb potential watt = z1z2e2

4πεε0r , which is attractive when the ionic valencies
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Na

Cl

Na

CI

Figure 1.2. Cubic lattice of NaCl.

z1 and z2 are of opposite signs; here, ε is the relative dielectric permittivity of the medium
in which the ions are located (also known as the dielectric constant), ε0 is the permittivity
of free space, and r is the distance between the atoms. When the two atoms come close to
each other, repulsion becomes important.

To calculate the energy of cohesion of an ionic crystal such as NaCl, one has to sum
up all Coulomb forces between the atoms. The energy of cohesion carried by an ion ze is
the sum of the pair potentials (changed sign) of interactions of that ion with all other ions
zi e; i.e.,

µ = −
∑

i

w(ri ) = − ze2

4πεε0

∑
i

zi

ri
. (1.8)

Let µ = M e2

4πεε0a , where M is the Madelung constant defined by the geometry of packing
and a is the distance between two opposite charges. For the cubic NaCl lattice, M = 1.748
and a = 0.276 nm. With ε = 1, ε0 = 8.854 × 10−12 F m−1, e = −1.602 × 10−19C,
one gets µ ≈ 1.5 × 10−18 J, which is substantially larger than the thermal energy kB T ≈
4 × 10−21 J at room temperature. The energy needed to dissociate 1 mole of the crystal
into a gas of ions is then estimated as U = µNAV = 890 kJ/mole (≈ 8 eV/atom), where
NAV = 6.022 × 1023 mole−1 is the Avogadro number. In reality, repulsion forces make
U somehow smaller; however, the correction is small (≈ 15%). Thus, the ionic bonds are
very strong.

Intermediate situations, in which the same atoms can be bound by forces of mixed type
(e.g., ionocovalent) can exist.
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1.2.5. From Ionic Bond to Covalent Bond in Crystals

Alkali halides (I-VII crystals) are the standard examples of nearly ideal ionic crystals. They
all crystallize in the NaCl FCC structure, except Cs halides. Doubly ionized II-VI crystals
like CaSe are weakly covalent, to the extent that the Ca2+ ion is partly shielded by a fraction
of electron in its neighborhood, electron fraction that is not transferred to Se2−, and that
the electronic cloud is slightly distorted along the directions joining Ca2+ to Se2−. These
characters are accentuated in III-V crystals like AsGa, where the ionic transfer is small and
more electrons shared among atoms. AsGa crystallizes in the zincblende structure, which
is characteristic of tetravalent crystals. Like diamond, the zincblende structure is made of
two interpenetrating FCC lattice, but each of them is occupied by a different type of atom.

1.3. Forces Between Molecules

As soon as the predominant forces are not purely electrostatic or covalent, the bonding
energies between particles are weak and we enter the domain of “soft matter.” Predominant
interactions are now screened ionic, dipolar, and van der Waals interactions.

1.3.1. Electrostatic Bond in a Dielectric Medium

We often deal with atoms or molecules soluble in water, so that even when the ions are
present, their interactions are screened by water with a large dielectric constant, ε ≈ 78.
Salts such as NaCl are easily dissolved in water, because the electric fields are strongly
reduced (by a factor of 1/ε), so that µ is of the order of kB T or even smaller. Moreover,
the entropy of the statistical mixture of ions also contributes to decreasing the free energy.
Ionic surfactants such as sodium stearate, NaC18H35O2 (Fig. 1.3), also easily ionize in
water according to this principle.

Note that each hydrophilic anion of sodium stearate carries a “hydrophobic” aliphatic
moiety CnH2n+1 that shows no affinity to the aqueous environment. When the concentra-
tion of such amphiphilic molecules is higher than a so-called critical micellar concentra-
tion (CMC), they aggregate in the form of roughly spherical micelles. The hydrocarbon
tails are hidden in the core of the micelle, whereas the polar heads are located on the sur-
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Figure 1.3. Ionic surfactant: molecule of sodium stearate dissolves in water.
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face of the micelle where they can interact with the surrounding water and counterions
(such as Na+). As the concentration increases, the micelles can transform into bilayers that
extend and organize in space in various fascinating geometries to be described later.

1.3.2. Electric Dipoles

Molecules of “weakly” ordered media are frequently electrically dipolar. Asymmetric
molecules, bound internally by covalent bonds, often show permanent electric dipoles.
The dipoles occur when the covalent bond connects two different atoms. Figure 1.4 shows
an example of an HCl molecule with a covalent bond formed by a spherically symmetric
1s-orbital of hydrogen and an elongated 3p-orbital of chlorine.

Although the molecule is electrically neutral, the mean positions of positive and neg-
ative charges do not coincide. The absolute value of the dipole moment u = ql (a charge
times a length) is measured in Debye units (1D = 3.336.10−30 C.m). The dipole moment
of two elementary charges separated by 1 Å is about 4.8 D. The dipole vector is directed
from the negative charge to the positive one (in some chemical literature, an opposite di-
rection is taken).

The existence of an electric dipole may also depend on the environment. Some phos-
pholipids such as DMPC (dimyristoyl phosphatidylcholine) become ionized in the pres-
ence of water, whereas the charged entities do not separate from the molecule (Fig. 1.5).
This is also the case with the 20 aminoacids (alanine, valine, leucine, etc., all chiral, except
glycine), which are the basic building blocks of the primary (linear) structure of biological
polymers (Fig. 1.6). We shall refer to the structure that is neutral overall but contains an
equal number of locally charged centers of either sign as a dipolar ion, or a zwitterion.

Cl
-

Cl H
+

H

+

Figure 1.4. Dipole moment of the HCl molecule. The 3p-orbital and the 1s-orbital have one electron
each. The resulting covalent bond with two electrons is polar: The electron cloud is denser about the
Cl atom.
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Mol. Wt.: 678

O O
O

O

O

P
O

OO

N

Dimyristoyl phosphatidylcholine (DMPC)

C36H72NO8 P

Figure 1.5. Zwitterion: surfactant molecule DMPC (dimyristoyl phosphatidylcholine) in water.

H2N C C

H
OH

O

H3N C C

H
O

O

C2H5NO2
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high pH
alcaline solution

low pH,
acid solution

H3N C

H

H2N C C

H
O

O

aminoacid: neutral form

aminoacid: zwitterion 
in neutral solution

R

R

R

R

C

OH

O

Figure 1.6. Aminoacids (that differ in side group R) exist mainly as zwitterions when in neutral water
solutions. An increase in pH of the solution yields an excess of anionic forms, whereas a decrease in
pH results in more cations.
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Table 1.2. Dipole moments of some atomic groups and bonds.

Dipole, Dipole
Group/bond moment, D Group/bond moment, D

C6 H6 (benzene) 0 H2O 1.85
CO2 0 NH3 1.47
CCl4 0 CH3COOH 1.7
CH3CN 3.9 CH 0.4
CN in cyanoethane NH2 in propylamine
C2H5CN 4.02 C3H5NH2 1.17
cis C = C 0.33 trans C = C 0

(in cis-2-butene) (in trans-2-butene)
OH in propanol C–COOH 1.7
C3H7OH 1.68

Dipole moments of typical atomic groups are listed in Table 1.2. Note that the dipole
moment depends on both the chemical structure of the molecule and on its conformation.

The interaction ion-dipole plays an important role in the solvation of ions, i.e., in the
phenomenon of clustering of solvent molecules-dipoles around the ion. If the solvent is
water, then the ion is said to be hydrated. For example, a cation (e.g., Na+) attracts and
orients a neighboring dipole along the line joining the charge and the dipole, i.e., along
the direction with angle θ = 0 in Fig. 1.7. A hydrated ion might grow to large sizes: This
is how the nucleation of rain droplets in clouds is explained. The gain of energy between

θ
+

+

+

_

Figure 1.7. Ion-dipole interaction: hydrated cation.
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the dipole oriented at random and the dipole θ = 0 must be equal to or larger than kB T
to stabilize the hydrated complex, which can be very stable if the dipolar ion is small and
highly charged.

Attractive dipole-dipole and free dipole-free dipole (or Keesom) interactions are
weaker than is the ion-dipole interaction, and lead to less stable constructions. A free
dipole is a dipole capable of taking all directions in space. Therefore, the energy of inter-
action is calculated by taking an ensemble average over orientations, as in the Langevin
model of paramagnetism:

wd−d(r) = −u2
1u2

2

3(4πεε0)2 kB T r6
, (1.9)

when kB T > u1u2/4πεε0r3. Note that wd−d ∝ 1/T : Higher temperatures enhance ro-
tation of molecules and, thus, reduce orientational order of the dipoles. The Keesom in-
teraction is one of the three attractive interactions between electrically neutral molecules.
The other two already mentioned are London interactions between molecules with no per-
manent dipoles and Debye interactions between permanent and induced dipoles. All three
scale as 1/r6 and have a generic name of van der Waals forces.

1.3.3. Induced Dipoles, Polarizability

An electric field E , either applied or caused by a neighboring molecule, induces an electric
dipole uind = α0 E on a neighboring molecule by separating the centers of the positive and
negative charges; α0 is the polarizability of the molecule. The model in Fig. 1.8 helps to

R

- e

R

+e

E

- e

+e

l

θ

Figure 1.8. Electric field induces a dipole moment in a neutral system (an electron rotating around a
proton).
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estimate this induced moment uind in a simple case of an electron rotating around a proton.
The electron is subjected to two forces: the Coulomb attractive force with the nuclear
charge and the shifting force of the external field E . The change in the Coulomb force

caused by the shift is roughly Fc = e2

4πε0 R2 sin θ ∼ e2l
4πε0 R3 = euind

4πε0 R3 , and the field-induced
force is FE = eE . At equilibrium, Fc = FE and

uind = 4πε0 R3 E = α0 E . (1.10)

Here, we assume that the induced dipole is always oriented along the field; thus, α0 =
4πε0 R3 is a scalar quantity. With R = 1 Å, ε0 = 8.85 × 10−12 F/m, one gets an estimate
α0 = 10−40 C2m2/J for the polarizability of an atom or a small molecule in vacuum.
However, larger molecules may have much larger polarizabilities, because α0 ∝ R3. Fur-
thermore, if the freely rotating molecule has a permanent dipole moment u, an external
field would restrict free rotation of such a molecule so that the time-average polarization
would be different from zero. The resulting orientational polarizability equals u2/3kB T .
For weakly polar liquid crystalline molecules such as N-(p-methoxybenzylidene)-p’-
butylaniline (MBBA) and p-pentyl-p’-cyanobiphenyl (5CB), typical values of the total
polarizabilities are in the range (10 − 100) × 10−40 C2m2/J. Note finally that MBBA,
5CB, and most of other molecules are anisometric. As a result, the induced dipole depends
on the orientation of the molecule in the field, and the polarizability is a tensor.

The ion-neutral molecule and dipole-neutral molecule (or Debye) interactions are dis-
cussed in terms of field-induced dipoles. The Debye interaction scales as the Keesom inter-
action but is temperature independent. Finally, the London or dispersion forces are caused
by fluctuative interactions between neutral atoms or molecules with no permanent dipoles.
Actually, these forces are independent of the particular type of the molecule, because the
fluctuations of the charge density are a universal quantum mechanic effect. Thus, the Lon-
don interactions are present in any condensed matter system; they are treated in some detail
below and in Section 1.4. The term “dispersion” originates in the dispersion of light in the
visible, UV, and IR parts of the spectrum, and it should not be confused with the term “dis-
persion” describing colloidal systems: The frequencies at which an electromagnetic field
causes a fluctuating dipole in a nonpolar molecule are absorption frequencies.

Fluctuations of charge densities induce mutual dipole moments in the neighboring
molecules. The attractive character of interaction can be qualitatively derived from the
tendency of the fluctuating polarizations to be in phase along the line joining the particles
and in antiphase in the normal plane. London derived the dispersion energy of two neutral
atoms treated as quantum oscillators, with frequency ν of the orbiting s-electrons, as1

wL ≈ − 3

2(4πε0)2

α1α2

r6

hν1ν2

(ν1 + ν2)
= −C12

r6
, (1.11)

1F. London, Trans. Faraday Soc. 33, 8 (1937).
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Table 1.3. Pair interaction energies of neutral molecules separated by distance 5 Å (data compiled
from J. A. Campbell, Chemical Systems: Energetics, Dynamics, Structure, W.H. Freeman and
Company, San Francisco, 1970).

Energy (in J/mole) of interaction
Dipole at T = 298 K and a = 5 Å Boiling

Molecule moment, D wd−d wL temp., K

He 0 0 3 4.2
CCl4 0 0 7.5 × 103 350.9
CO 0.1 0.01 290 81.0
HCl 1 71 460 189.4

where α1 and α2 are the polarizabilities of the two molecules, h = 6.63 × 10−34J s is
the Planck constant. The positive constant C12 of the dimension J × m6 is the “material”
parameter of interacting particles independent on the separation distance r .

For atoms and very small molecules, the interactions are weak and unlikely to form
stable, ordered phases at room temperatures. Noticing that Ii = hνi is some characteristic
molecular energy that can be approximated by its first ionization potential, which is of
the order of 10−18J, and α1 = α2 = 3 × 10−40 C2m2/J (which would correspond to the

molecular radii Ri ≈ 1.3 Å in (1.10)), one estimates the constant C = 3α2 I
4(4πε0)

2 ≈ 3R6 I
4 in

(1.11) as C ≈ 0.6 × 10−77 J m6. At distance r = 3 Å, the corresponding attraction energy
|wL | ≈ 8 × 10−21 J is larger than kB T at room temperature. Hence, fairly large nonpolar
molecules can be kept in a condensed state exclusively due to the London forces. Even
when the molecules are polar, the London forces still make a significant contribution, 20–
99% of the total energy. The second strongest interactions of polar molecules are usually
Keesom forces (see Table 1.3).

1.3.4. Repulsive Forces

Interactions between molecules include the attractive forces considered above and repul-
sive forces. Most of the time, the repulsive forces are caused by electrostatic repulsion
between particles having charges of the same sign or by short-range steric repulsion. Steric
repulsion originates largely from the Pauli exclusion principle and shows up when the
electron clouds of two particles approach each other too closely; these interactions are
hard to describe. In the simplest model of hard-core spherical particles of radius r0, the
energy of repulsion is assumed to be infinitely large when the separation between the cen-
ters is less than 2r0 and zero when the separation is larger than 2r0. In more realistic ap-
proaches, the repulsion potential at r > 2r0 is often represented by an exponential decrease
wrep ∝ exp(−r/const), where const is positive, or, to simplify algebra in calculations in-
volving both attractive (1.11), and repulsive forces, as
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(a) (b)

(c) (d)

Figure 1.9. Molecular shape provokes different geometries of surfactant monolayer: (a) flat, (b) cylin-
drical, (c) spherical, and (d) saddle-like. The radii of curvature of the membranes can be different
from the molecular length; see, e.g., (c).

wrep = B

r12
, (1.12)

where B is a positive constant.
Both electrostatic and steric repulsions appear in phases of interfaces, for example, in

the lamellar phases of membranes. Because of the steric forces, the shape of the molecules
has a pronounced effect on the nature of packing. Packing of amphiphilic molecules in
monolayers or bilayers and cylindrical and spherical micelles depends in an extremely
sensitive way on the molecular shape (Fig. 1.9). Note also that in the lamellar phases, spa-
tial fluctuations of membranes are at the origin of a specific repulsive (Helfrich) potential
that stabilizes the lamellar phases against attractive London forces, in the case of nonionic
surfactants.

Table 1.4 summarizes schematic classification of molecular interactions that are as-
sumed to take place in vacuum.
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Chapter 1 Condensed Matter18

1.3.5. Empirical Potentials of Interactions

Ad hoc potentials are frequently introduced in the calculations to simulate pair potentials.
With the development of computers, it became possible to simulate the behavior of large
ensembles of particles specifying their shape and repulsive and attraction forces. The most
frequently used potentials are the following two:

• Hard spheres with weak attraction

w(r) =



−w0

(r0

r

)m
, for r0 ≤ r <∞,

∞, for 0 ≤ r < r0.

(1.13)

• Lennard–Jones potential

wL J (r) = 4w0

[(r0

r

)12 −
(r0

r

)6
]
, (1.14)

where w0 is a positive constant that corresponds to the energy minimum located at separa-
tion distance r = 21/6r0 (Fig. 1.10).

The potentials above refer to spherically symmetric interactions. Approaches to take
into account orientational degrees of freedom of nonspherical particles have been recently

-2

-1

0

1

2

3

4

5

0.5 1 2 2.5

Energy wLJ / w0

Distance r / r
0

Figure 1.10. Lennard–Jones potential of interaction between two neutral particles.
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developed, with the purpose of computer simulations of phases such as nematic liquid
crystals. Among them are the Gay-Berne potential (a form of the Lennard–Jones potential
with orientation-dependent parameters), and the Lebwohl-Lasher potential, in which the
molecular positions are fixed, but deviations from parallel alignment of molecules cost
energy.

1.3.6. Water, Hydrogen Bond, and Hydrophilic and
Hydrophobic Effects

Water is the most abundant and the most important terrestrial liquid. It is an exceptional
liquid by its chemical properties: very high melting and vapor temperatures, large latent
heat of vaporization, lesser density in the solid (ice) than in the liquid state, and so on.
All of these peculiarities are explained by the presence of the hydrogen bond between
H2O molecules. The hydrogen bond forms when a hydrogen atom covalently bonded to a
strongly electronegative atom X acquires a partial positive charge δ+ that is strong enough
to form an essentially electrostatic bond with another electronegative atom Y (Fig. 1.11).

Hence, the symbol XH . . .Y. Typically, X,Y = O, N, F, Cl, S. The bond might
connect either separate molecules (intermolecular hydrogen bond) or groups within the
same molecule (intramolecular hydrogen bond). The hydrogen bond is of the order of 2
to 10 kcal/mole (0.1 to 0.5 eV/molecule), which is between the van der Waals bond (typ-
ically, 0.01 eV/molecule) and the covalent bond (≈ 5 eV/molecule). The significance of
the hydrogen bonding can be illustrated by a simple comparison of boiling temperatures of
water (100◦C) and methane CH4 (−164◦C) with no hydrogen bonds. The hydrogen bond
plays a crucial role in establishing spatial geometry of molecular packing; e.g., in water, it
leads to the local tetrahedral coordination of the oxygen atom (Fig. 1.12a).

The associative character of the hydrogen bond in water explains the hydrophobic ef-
fect, i.e., extremely weak solubility of nonpolar molecules (such as alkanes
CH3(CH2)nCH3) in water. Nonpolar particles cannot participate in the formation of
hydrogen bonds. When isolated individually in water, such particles are surrounded by
a “cage” of water molecules (Fig. 1.12b). To preserve the tetrahedral network, the water
molecules of the cage should choose only specific orientations that avoid interruption of
hydrogen bonds by the particle. This additional ordering is entropically unfavorable and

Figure 1.11. A hydrogen bond between two atomic groups XH and YR that contain strongly elec-
tronegative atoms (X and Y).
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(a)

(b)

Figure 1.12. (a) Hydrogen bonds of water lead to tetrahedral coordination of oxygen atoms; the
structure is labile because the molecules can reorient and reestablish new directions of hydrogen
bonds. (b) Water molecules form a “cage” around the nonpolar particle. The hydrogen bonds preserve
the tetrahedral coordination; however, the freedom of water molecules to reorient is restricted by the
dissolved particle that cannot form hydrogen bonds.
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explains why the nonpolar particles are hydrophobic: It costs a higher energy to immerse
a nonpolar particle in water. It is the same hydrophobic effect that is responsible for the
attraction between nonpolar molecules in water: The molecules aggregate to reduce the
surface area of the cage, i.e., to reduce the loss of entropy.

Finally, it is usual to speak of a hydrophilic effect for the molecules that interact
strongly with water. The balance of hydrophobic and hydrophilic interactions controls the
behavior of amphiphilic molecules that contain both hydrophobic and hydrophilic groups.

From a more general point of view, one will notice that the forces of dispersion, nondi-
rectional (or weakly directional, as in the case of liquid crystals), and attractive are respon-
sible for the stability of molecular assemblies and their close-packed character, whereas the
hydrogen bonds, which are directional, shape their configurations and their short-distance
order.

1.4. van der Waals Forces Between Macroscopic Particles

1.4.1. Pairwise Summation of Molecular Forces; Hamaker Constant

Colloidal particles with size usually in the range between micrometers and nanometers
often aggregate (coagulation and flocculation). The phenomenon suggests that the particles
are attracted to each other by forces acting over a distance of the order of the particle size.
It has long been recognized that these attractive long-range forces result from the van
der Waals molecular interactions considered in the previous sections 1.3.2 and 1.3.3. The
counterbalancing repulsive forces are of steric and electrostatic origin (see Chapter 14).

Although the molecular attractive potential (1.11), wL = −C12/r6 decays quickly
with molecular distances, scaling from microscopic to macroscopic distances leaves the
van der Waals forces undiminished. The simplest way to calculate the van der Waals po-
tential Vv dW for two macroscopic particles is to assume pairwise additivity of individual
molecular interactions, as if they happen in the absence of any other molecules. Further-
more, one can replace the addition of individual molecular interactions (1.11) by integra-
tion; i.e., consider the matter as a continuum with an average number of molecules per unit
volume, ρ = const (dimension m−3). The energy of interaction of two macroscopic bodies
of densities ρ1, ρ2, occupying volumes V1 and V2 in free space, is then

Vv dW = −
∫

V1

dV1

∫

V2

dV2
ρ1ρ2C12

| r1 − r2 |6 ; (1.15)

here, | r1 − r2 | is the distance between volume elements dV1 and dV2 of the bodies 1 and
2. The constant C12 depends on molecular parameters such as polarizability, but not on
the geometry of the bodies. Therefore, pairwise summation allows one to represent the van
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der Waals potential as a product of a geometrical factor embodied in the double volume
integral

Vv dW = − A12

π2

∫ ∫

V1,V2

dV1 dV2

| r1 − r2 |6 , (1.16)

and a material factor ρ1ρ2C12, often presented through the so-called Hamaker constant

A12 = π2ρ1ρ2C12 (1.17)

(dimension: Joules), a fundamental quantity in characterization of van der Waals forces.
The consequence of the inversed sixth-power distance dependence of the potential (1.11)
is that the energy of interaction (1.16) of two bodies remains constant when all distances
(sizes and separations) are scaled by the same factor λ:V → λ3V, r → λr (see Prob-
lem 1.3). Two “molecules” of radii 0.2 nm at a distance of 1 nm would interact with the
same energy as two spheres of radii 0.2 µm at a distance of 1 µm. The integral (1.16) has
been calculated for a variety of simple geometries (see Table 1.5).

The typical values of the Hamaker constant for most condensed phases are in the range
(0.4 − 4) × 10−19 J (see Chapter 11 in Israelashvili, 1992). The range is narrow, because
according to (1.11) and (1.10), C12 ∝ α1α2 ∝ R3

1 R3
2, whereas ρ1ρ2 ∼= R−3

1 R−3
2 (R1 and

R2 are molecular radii), so that A12 ∼= ρ1ρ2C12 ∼= const. A very rough estimate (for the

particles of the same sort) would be A = π2ρ2C ≈ π2
(

4
3πR3

)−2
3
4 R6 I ≈ 4 × 10−19J.

Microscopic potential wL (1.11) and macroscopic potential Vv dW (1.16) were both
derived under approximation that the information about the state of one fluctuating dipole
is transferred to its counterpart (1) instantly and (2) without any distortions from the atoms
nearby. Thus, two important comments are in order.

1.4.2. Retardation Effects

In reality, electromagnetic fields need a finite time to propagate. If the propagation time
becomes comparable to the electron vibration period, then the fluctuating dipoles in
the London picture become less correlated. With a typical period of electron vibrations
T = 10−16s and the speed of light c = 3 × 108m/s, the characteristic length rr ∼= cT at
which the “retardation” becomes significant, is about 30 nm for free space; it can be signif-
icantly shorter in a medium where the propagation of electromagnetic waves is slower. The
retarded London interactions have a steeper power law 1/r7 instead of 1/r6 when r ≥ rr .
To see this qualitatively,2 let us replace the frequency ν in the potential (1.11) by c/λ, where

λ is the wavelength of fluctuation of the electron density: wLr ∼= −α2

r6
hc
λ

. For a given sep-
aration r , fluctuations with λ� r are too fast to produce noticeable correlations, and there

2D. Tabor, Solids, Liquids and Gases, Cambridge University Press, 1979, p. 19–21.
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ā h
×

{ 1
+

h ā
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would be no contribution to the London interaction. However, if the fluctuations are slow
enough, λ ≥ r , the correlation between two electronic systems is good, and the “retarded”

potential would scale as wL ∼= −α2hc
r7 . This retardation or Casimir-Polder3 effect is spe-

cific for the dispersion forces caused by electronic fluctuations. The range of the validity of
the correction 1/r6 → 1/r7 is limited, not only from below (by rr ), but also from above.
Really, at finite temperatures, the molecules experience other types of fluctuations, e.g.,
vibrational with characteristic times Tv ≈ 10−13s. The resulting attractive interactions are
not retarded at scales of cTv ≈ 30µ m, which are much larger than rr . In addition, other
interactions, such as permanent dipole interactions, do not experience any retardation ef-
fects at all; they scale as ∝ 1/r6 and, thus, become predominant at r � rr . A cumulative
effect is that the r -dependence of the van der Waals interactions changes from ∝ 1/r6 to
∝ 1/r7 and then back to ∝ 1/r6 as the separation r between two particles increases. In
practice, the retardation effect is of importance in the range 5 nm < r < 100 nm.

1.4.3. London Interactions in a Medium, Lifshitz Theory

Interactions between molecules or macroscopic particles immersed in a solvent are differ-
ent from their interactions in vacuum. Effective charges, permanent dipole moments, and
polarizabilities can be greatly modified by the separating medium. London’s model and its
extension (1.16)–(1.17) to macroscales through pairwise summation become prohibitively
complicated when the “many-body” effects are taken into account. Both the many body
problem and the problem of retardation effect are eliminated in the continuum Lifshitz
theory4 that describes the solution and interacting particles in terms of their bulk proper-
ties, the frequency-dependent dielectric permittivities, which replace the individual atomic
polarizabilities. The theory is built on quantum electrodynamics, and it is not considered
here. Qualitatively, the role of the intervening medium can be illustrated in the Lifshitz
approach as follows.

A particle is represented as a dielectric sphere of radius Ri and dielectric constant εi . In
free space, the polarizability of the particle would be related to εi as5 αi = 4πε0 R3

i × εi −1
εi +2 .

Note that αi → 0 when εi → 1. Similarly, a quantity that matters in interactions through a
dielectric medium of permittivity εm , would be the excess polarizibility ∝ (εi − εm). When
εi = εm , the particle is “lost” in the background. Therefore, the constant C12 ∝ α1α2 and
the Hamaker constant A12 ∝ C12 ∝ α1α2 should both scale as (ε1 − εm)(ε2 − εm). The
van der Waals forces that are always attractive in vacuum become repulsive in a solvent
with dielectric constant εm intermediate between the dielectric permittivities of the two
interacting particles, e.g., ε1 > εm > ε2. When the interacting particles have the same
material properties, ε1 = ε2, the interaction remains attractive.

3H.G.B. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
4E.M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1955) [Sov. Phys. JETP 2, 73 (1956)]; I.E. Dzyaloshinskii, E.M.

Lifshitz, and L.P. Pitaevskii, Zh. Eskp. Teor. Fiz. 37, 229 (1959) and Adv. Phys. 10, 165 (1961).
5L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, vol. 8, 2nd edition, Pergamon Press,

Oxford, 1984.
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In Lifshitz theory, the distance dependencies of the interparticles potentials are the
same as in the theory based on pairwise summations; all results in Table 1.5 remain valid
for interactions in vacuum (retardation effects are naturally incorporated into the Lifshitz
theory). An important and advantageous feature is that the Lifshitz theory calculates the
Hamaker constant from the frequency-dependent dielectric functions; the latter reflect the
collective character of interactions and can be directly measured. Obviously, the Lifshitz
theory should not be expected to work well on very small molecular scales, not only be-
cause of the atomic graininess of matter, but also because of the repulsive forces.

Note that we considered the dispersion forces for dielectrically isotropic media. When
the dielectric properties are anisotropic, the van der Waals interaction would depend not
only on the distance between the particles, but also on their mutual orientation; an illustra-
tion employing liquid crystalline droplets was given by de Gennes.6

London forces play an essential part in the phenomena of adhesion, surface tension,
physical adsorption, flocculation, aggregation of particles in water, and in the conformation
of condensed macromolecules such as proteins and polymers, because they are long-range,
unscreened, and sum up to non-negligible quantities. Also, these attractive forces constitute
one of the main contributions to the close-packed character of liquid crystal phases, in
which anisometric molecules with anisotropic polarizability are orientationally ordered.

1.4.4. Casimir Interactions

In our above consideration of interactions in a medium, we did not consider the effects
of boundaries and interfaces. The boundaries and interfaces impose certain restrictions on
fluctuations in the system. These restrictions are not favored from the entropy point of
view. Thus, the system should adjust to prevent the decrease of entropy. Suppose, for ex-
ample, that the fluctuations in an initially infinite system are restricted by a pair of parallel
plates separated by a distance d. In the semi-infinite regions outside of the plates, the spec-
trum of fluctuations is continuous, whereas between the plates, the modes of fluctuations
become discrete. To make this restrictive space smaller, the system tends to decrease d.
In other words, the geometrical restriction on fluctuations causes interaction between the
plates. These geometrically imposed interactions of entropic origin are generally called
Casimir interactions. In 1948, Casimir7 considered the electromagnetic field between two
parallel electrodes. Because the electric field must vanish at the conducting surfaces, the
electromagnetic fluctuations in the cavity between the plates are restricted and the plates
experience interaction (in this case, with an attraction potential ∝ 1/d3). Similar interac-
tions, both attractive and repulsive, can occur in soft matter systems. In the latter case, one
deals with thermal fluctuations of the field that describes some order in the system rather
than with the quantum fluctuations of the electromagnetic field. Although both the Casimir
and van der Waals (London) interactions are fluctuations-mediated, they might differ in

6P.G. de Gennes, C.R. Acad Sci. 271, 469 (1970).
7H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
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scaling properties (d-dependencies) and magnitudes. We will return to this question in
Section 13.2.4; for a general review, see Kardar and Golestanian.8

1.5. Polymers and Biological Molecules

1.5.1. Synthetic Polymers

Polymers (or macromolecules) are molecules of high molecular mass composed of many
small structural units connected by strong covalent bonds. Natural polymers are proteins,
cellulose, and rubber. Polymers composed by identical structural units are called ho-
mopolymers. Copolymers contain more than one unit along the chain. The geometry of the
macromolecule depends on the valency structure of the structural units. In the simplest case
of linear polymers, each unit is connected to precisely two neighbors, such as in the linear
polyethylene in Fig. 1.13a; the structural unit is –CH2–. In branched macromolecules, a
number of structural units show a valency greater than two and connect to three or more
neighboring units (Fig. 1.13b). Finally, some polymers show three-dimensionally intercon-
nected units and are called either cross-linked polymers or network structures (Fig. 1.13c).
Vulcanization of rubber is an example of a linear polymer cross-linked into a network.

The polymers are synthesized by chemical reactions that connect low-molecular
monomers into macromolecules. The structural unit of the macromolecule might have
the same chemical formula as the monomer (so-called addition polymers) or lack certain
atoms present in the monomer (condensation polymers). Polymerization then produces
a byproduct, e.g., water, as in the case of aminoacids polymerized into peptides and
proteins. Besides the covalent bond, other molecular interactions, especially hydrogen
bonding, play an important role in organization of biological molecules and polymers,
such as aminoacids and proteins, as considered in the next paragraph.

Obviously, the geometry of the macromolecule is of prime importance in macroscopic
arrangements. If the macromolecule is sufficiently regular (linear homopolymers, for ex-
ample), it often shows an orientational order, whereby macromolecules align parallel to
each other, thanks to the dispersive interactions. This orientational order might be long-
range; in which case, one deals with a polymer with liquid crystalline order (Chapters 2
and 3) at high temperatures. Kevlar is a well-known example of a nematic liquid crystalline
polymer above 300◦C, yielding materials of unusual strength when quenched at room tem-
perature. The orientational order might also be only short-range: Because the stiffness of
the polymer chain is finite, a macromolecule can fold or change its orientation in space to
get around the other chains. As a result, the orientationally aligned domains are interrupted
by nonoriented regions. On the other hand, often, the macroscopic order in linear polymers
is even stronger than a simple parallel alignment of chains: Structural units that belong
to parallel chains find themselves coordinated in a periodic lattice. The size of crystallites
is usually substantially smaller than is the extended length of the macromolecule, and the

8M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999).
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(a) (b)

monomers

(c)

Figure 1.13. Polymers of different geometries: (a) linear, (b) branched, and (c) cross-linked.
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Figure 1.14. Polymer often show short-range orientational and crystalline order.

whole structure is an alternating pattern of crystalline and amorphous regions (Fig. 1.14).
At increased temperatures, this crystalline (or, more properly, semicrystalline) order melts.
Upon decrease in the temperature, polymers with more or less extended amorphous regions
transform into a glass state with immobilized chains.

Linear and branched polymers dissolve in suitable solvents. In contrast, their cross-
linked counterparts cannot be readily dissolved; instead, they absorb the solvent and swell.
Obviously, the properties of the polymers change as their molecular weight increases dur-
ing polymerization. The most dramatic changes can be observed during cross-linking of
linear polymers: With the increase of the molecular weight, at some well-defined gel point,
the polymer transforms from a viscous fluid into an elastic gel. We will return to the phys-
ical properties of the polymers in the next chapters (mostly Chapter 15).

1.5.2. Aminoacids, Proteins

Aminoacids are nitrogen-containing monomers from which biopolymers such as peptides
(polymers containing no more than 100 aminoacid subunits) and proteins (polymers with
a larger number of subunits) are built. The generic form of all 20 aminoacids found in
proteins is represented by a central carbon atom C (often denoted Cα) with four groups
attached in a tetrahedral fashion. Three of these groups are common for all aminoacids:
a hydrogen atom H, a carboxy group COOH, and an amino group NH2 (Fig. 1.6). The
only difference between the aminoacids is in the fourth group, the chain R. R-chain can
be hydrophilic (e.g., R = CH2 − OH, serine; R = CH2 − SH, cysteine), hydrophobic
(R = CH3, alanine; R = CH2 − (CH3)2, valine), negatively charged (R = CH2 − COO−,
aspartic acid), or positively charged (R = CH2)4 − NH+

2 , lysine). In all examples, the
four groups attached to the central carbon Cα are chemically different. Such tetrahedral
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Figure 1.15. Chiral L (on the left side) and D (on the right side) enantiomers of alanine: No movement
in space can result in overlapping of the two forms.
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construction has no plane of symmetry; the Cα atom with four different groups is called an
asymmetric carbon. There is only one aminoacid, glycine, in which R = H and, thus, two
groups are identical. Therefore, all aminoacids, except glycine, can exist in two different
forms, called L and D enantiomers, which are mirror images of each other (Fig. 1.15);
they are called chiral. The property confers optical activity on chiral aminoacids (unless
the material contains the L and D enantiomers in equal proportion). Proteins found in
nature are composed exclusively of the L-aminoacids; the mechanism of the symmetry
breaking during evolution remains unclear, but as Pasteur noticed long ago, the lack of
mirror symmetry of biological objects, added to the fact that most biological objects are of
L-type, indicates a possibly unique and rare source of life.

Aminoacids are joined together during protein synthesis by peptide bonds. One
molecule of water per aminoacid is released during the reaction (Figs. 1.16 and 1.17).

Figure 1.17. A piece of a polymer chain of silk: Glycine R = H and alanine R = CH3 groups are
randomly distributed along the chain.
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The four-atom peptide unit (CO–NH) is rigid and planar, because the bond between
C and N has partial double character, which hinders free rotation of atoms around the
main chain (Fig. 1.18). The rigidity of the peptide bond allows proteins to maintain a well-
defined three-dimensional structure.

In contrast, the main-chain C–Cα bond and N–Cα bond are single bonds that allow
rotations and, hence, folding of the protein chain in many different ways. This folding is
characterized by a hierarchical structure. Most importantly, the seemingly irregular pro-
teins have a remarkably regular feature called the secondary structure to contrast it with
the primary structure, which is understood as the sequence of aminoacids. The secondary
structure comes with two building elements, α-helices and β-sheets. The notations reflect
the order in which these forms were discovered by Linus Pauling.9

The secondary structure occurs because of hydrogen bonding between the groups NH
and C = O that belong to different peptide units. In the α-helix, the C = O group of the
n-th aminoacid residue is bound to the NH group of the (n +4)-th residue (Fig. 1.19a). The
main chain is coiled in a helicoidal fashion that puts the n-th unit close to the (n + 3)-th
and the (n + 4)-th units in space. For example, α-keratin, which is a protein found in skin,
nails, hair, and feathers, forms an α-helix. In β-sheets, the main chain remains almost fully
stretched out; the hydrogen bonds occur between NH and C = O groups that belong to
different polypeptide strands (Fig. 1.19b). These strands can be chemically connected and
belong to the same main-chain. The reverse in direction is provided by hairpin turns in
which the n-th CO group is bound to the (n + 3)-th NH group. β-sheets are formed, for
example, in silk fibroin. Note that the β-sheets made of chiral aminoacids have their strands
twisted. Usually, a single protein molecule contains both α-helix and β-sheets parts.

The secondary structure together with a complex interplay of hydrophobic, hy-
drophilic, hydrogen-bond, and van der Waals interactions result in higher levels of confor-
mational hierarchy, the so-called tertiary and quaternary structures. As already indicated,
the side R-groups of aminoacids come in different types, polar and nonpolar. A protein

C N

O

H

C N

O

H

Figure 1.18. Rigid and planar geometry of a peptide unit is caused by a partial double character of
the bond between atoms C and N.

9L. Pauling, The Nature of the Chemical Bond, 3rd edition, Cornell University Press, Ithaca, New York, 1960.
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Figure 1.19. (a) Right-handed α-helix of a polypeptide main-chain stabilized by hydrogen bonds
(shown by thin lines) between n-th and (n+4) aminoacid residues. The diameter of the helix is about
5 Å. There are approximately 3.6 residues per turn of the helix. The side R-groups orient toward the
outer region of the helix. (b) Schematic structure of β-sheet formed by hydrogen bonds between
protein strands. The strands can be either parallel (three strands on the left side) or antiparallel (three
strands on the right side).

globule soluble in water is organized to hide the hydrophobic R-groups inside and to expose
the hydrophilic R-groups outside at the protein-water interface. On the contrary, proteins
that transverse cell membranes have hydrophobic sides to fit properly the hydrophobic
environment of the lipid bilayer (Fig. 1.20).

The complex three-dimensional hierarchy of proteins makes possible their biologi-
cal functioning: Chemically and geometrically distinctive sites and pockets of the protein
globule selectively react to the surrounding molecules.



Chapter 1 Condensed Matter36

Figure 1.20. Membrane proteins have hydrophobic lateral sides to fit the hydrophobic part of the
lipid bilayer; the parts with hydrophilic surfaces are outside the membrane.

1.5.3. DNA

Unlike the van der Waals interactions, the hydrogen-bond interaction is very specific. To
form a hydrogen bond, two molecules must possess the needed groups, and they must have
a proper shape and mutual orientation, as illustrated by the α-helix. Hydrogen bonding also
shapes the most important biological molecules of DNA and RNA, which control genetic
information in living systems. In these molecules, four bases, adenine, guanine, cytosine,
and thymine (in DNA) or uracil (in RNA), are chemically attached to the backbone, either
ribose (in RNA) or desoxyribose (in DNA). The bases of one chain form hydrogen bonding
with the bases of a neighboring chain. Here, again, NH groups serve as a hydrogen-bond
donor and the carbonyl C = O groups serve as acceptors. Hydrogen bonding together
with steric effects results in a highly specific pairing: Cytosine is paired with guanine, and
adenine is paired with thymine (or uracil in RNA) (Fig. 1.21a,b). The best match between
the complementary bases is provided when the two neighboring chains twist around each
other (Fig. 1.21c). Note that the direction of the hydrogen bond is normal to the axis of the
double helix. The sequence of bases along the strand keeps genetic information written in
a four-letter alphabet.

1.5.4. Associations of Proteins: TMV, Microtubules

Folded proteins contain an array of chemically and geometrically distinctive sites that can
selectively bind the surrounding molecules. Thus, proteins can serve as building blocks
in supramolecular structures such as enzymes, ribosomes, and viruses. The aggregation
is based on noncovalent bonds and, thus, is easy to control and modify. Interestingly, the
tobacco mosaic virus (TMV) has a form of a hard rod; the length of TMV rods can be
controlled in the laboratory. TMV solutions show liquid crystalline structures10 and serve
as an excellent model to study the nature of orientational order.

10A. Klug, Fed. Proceed. 31, 30 (1972).
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Figure 1.21. Hydrogen bonds between bases of two strands, (a) cytosine-guanine and (b) adenine-
thymine, lead to the double helix structure of DNA (c).
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Figure 1.22. Assembling of protein globules into (a) dimers and (b) chains.
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28 nm

tubuline
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Figure 1.23. Microtubule: (a) normal cross section with 13 tubuline polypeptides; (b) side view shows
tubuline dimers. After L. Stryer, Biochemistry, 4th edition, W.H. Freeman and Company, New York,
1064 pp., 1995, and B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular
Biology of the Cell, Garland Publishing, Inc., New York, 1146 pp., 1983.
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Proteins can form regular supramolecular units by themselves. Imagine, for example,
that the protein globule has two complementary sites at the external surface. Bonding of
such complementary sites might result in formation of protein dipoles, chains (Fig. 1.22),
flat sheets, and even spherical and cylindrical shells. A hollow microtubule formed by
dimers of α- and β-tubuline is shown in Fig. 1.23.

Problem 1.1. Calculate the second virial coefficient for

(a) a hard-core potential w12(r) =
{

0, r > 2r0,

∞, r < 2r0.

(b) a square-well potential w12(r) =



∞, 0 < r < r1,

−w0, r1 < r < r2,

0, r2 < r.

(c) a Lennard–Jones potential w12(r) = 4w0

[( r0
r
)12 − ( r0

r
)6

]
.

Answers:

(a) v = 1
2

2r0∫
r=0

[1 − exp(−w12/kB T )]4πr2dr = 16πr3
0

3 .

(b) v = 2πr3
1

3

[
1 −

(
r3

2
r3

1
− 1

)
(ew0/kB T − 1)

]
.

(c) v = 16πr3
0

3
4w0
kB T

∞∫
x=0

[
12
x12 − 6

x6

]
exp

{
− 4w0

kB T

(
1

x12 − 1
x6

)}
x2dx , where x = r0/r ; expanding

exp
{
− 4w0

kB T x6

}
, one gets v = 16πr3

0
3

∑∞
n=0 αn

(
4w0
kB T

) 2n+1
4 , αn = − 2

4n!
(

2n−1
4

)
. (See Re-

ichl.11)

Problem 1.2. Real gases generally do not follow the Boyle-Mariotte law pV = const derived for the
ideal gas with no interactions. The van der Waals equation of state written for 1 mole of a “nonideal”
gas as (p + a

V 2 )(V − b) = RT takes into account both attractive and repulsive forces by introducing
two phenomenological parameters a and b. Attractive forces are responsible for the gas-liquid phase
transition that is predicted by the van der Waals equation. In some cases, the equation can be used
to describe solutions, e.g., large (on molecular scale) colloidal particles dispersed in water; the two-
dimensional version of the van der Waals equation is often applied to surfactant monolayers. (a)
Write the van der Waals equation for α moles. (b) Find the second virial coefficient and the theta-
temperature (known as the Boyle temperature TB in gases). (c) Find the behavior of the product pV
during isothermic compression when the temperature of the system is below and above the Boyle
temperature TB . (d) Write a van der Waals equation for a two-dimensional system of area S subjected
to a surface pressure�.

11L.E. Reichl, A Modern Course in Statistical Physics, Edward Arnold, Kent, U.K., 1980, p. 364.
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Answers:

(a)
(

p + α2a
V 2

)
(V − αb) = αRT ; the pressure correction is proportional to α2 because the proba-

bility of interaction of particles is proportional to the number of pair collisions, i.e., the square of
their concentration.

(b) v = kB
R

(
b − a

RT

)
; TB = a

Rb .

(c) pV is monotonously increasing for T > TB and nonmonotonous (with a minimum) for T < TB .

(d)
(
�+ a

S2

)
(S − b) = RT .

Problem 1.3. How does the energy of interaction − dV1dV2| r1−r2 |α [see (1.16)] between two volume ele-
ments dV2 and dV1 change when all distances (separation, particles sizes) are scaled by a factor λ?

Answers: The energy changes as λ6−α .

Problem 1.4. Plot the Lebwohl-Lasher potential wL L = −w0 P2(cos θ) as the function of the angle
θ between the axes of two particles; P2(cos θ) = 1

2 (3 cos2 θ − 1) is the second-order Legendre
polynomial, and w0 is a positive constant. Can this potential describe a ferroelectric state?

Answers: See Advances in the Computer Simulations of Liquid Crystals, Edited by P. Pasini and C.
Zannoni, NATO Science Series, Ser. C: Math. and Phys. Sciences, 545, 430 pp., Kluwer Acad. Publ.
(2000), for a detailed discussion of Lebwohl-Lasher, Gay-Berne and other models.

Problem 1.5. Derive the van der Waals potential of interaction of two spheres and two parallel flat
slabs of different thickness.

Answers: Table 1.5; for details of calculations, see J. Mahanty and B. W. Ninham (1976).

Problem 1.6. Consider the van der Waals potential (1.16) for two unlike particles 1 and 2 in a solvent
(dielectric constants ε1 �= ε2 and εm , respectively), and show that attraction between them is weaker
than the arithmetic mean of attractions between the pair of like particles (1,1) and the pair of particles
(2, 2); the interparticle distances are the same in all cases.

Answers: The dispersion energy (through the Hamaker constant) scales as −(ε1 − εm)(ε2 − εm)
for unlike particles, and −(ε1 − εm)2 and −(ε2 − εm)2 for the like particles; the stated result follows

from the fact that (ε1−εm)(ε2−εm) < (ε1−εm )
2+(ε2−εm )

2

2 . In a multicomponent mixture, there is an
effective van der Waals attraction between like particles that tends to aggregate them; see Israelachvili
(1992) for further discussion. Note, however, that this result is not always correct (E.I. Kats, private
communication). One can imagine, for example, that the ε1 �= ε2 and ε1 = ε2 situations correspond
to different regimes (retarded and nonretarded) of van der Waals interactions. In general, one has to
remember that the interactions depend on ε defined by the whole range of the frequency spectrum
and not by one particular frequency.
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C H A P T E R 2

Atomic and Molecular Arrangements

This is not the place to discuss in detail the crystalline arrangements of atoms. Most text
books on condensed matter physics describe the 14 Bravais lattices (groups of translations)
and the 230 Schönflies–Fedorov groups (translations and point symmetries). These groups
exhaust all possible symmetry groups with 3D discrete translations. In classic crystallog-
raphy, the elements that build the symmetry of the group are atoms; they can be generally
represented by points or, when the picture requires more complex characters, by the den-
sity of matter. Because of the large (compared with kB T ) binding energies, the atoms can
be considered as fixed, and the symmetries can be easily visualized through rigid displace-
ments (translations, rotations). These symmetries are not the main concerns of soft matter
physics. In soft matter, the order is related to the specific peculiarities of molecular shapes,
and fluidity, hence, entropy, are more relevant factors. We first describe how the concept of
atomic order can be extended when taking into account the precise shapes of the atoms, no
longer considered as points, and how these extensions enter naturally in the description of
“complex” soft systems.

2.1. Atomic Order

2.1.1. Packing Densities

Our discussion of the chemical bond shows, in a first approximation, that condensed matter
structures are packings whose density is limited by steric hindrances, as long as directional
bonds (mostly covalent) are not predominant. Regular lattices of hard spheres with the
densest possible packing are said to be close packings. As an example in two dimensions,
the densest possible regular close packing of disks is provided by a triangular lattice with
lattice parameter equal to the diameter of the disk; this is also the densest possible 2D
packing, random and aperiodic packings included. This lattice is of hexagonal symmetry;
each disk touches six others.

In three dimensions, the two types of regular atomic order that ensure close packing of
highest known density are the face-centered cubic (FCC) and the hexagonal close packing
(HCP) lattices. In both cases one has a stacking of hexagonally tiled dense two-dimensional

42
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(a)

(b) (c)

A

B

C

Figure 2.1. The close packing of hard disks on a plane is provided by a triangular lattice with hexag-
onal symmetry. In three dimensions, the close-packed structures can be built by stacking triangular
layers of spheres. Each sphere in one layer is located directly above or below interstices among
(a) three atoms in the adjacent layers. Two distinctive geometries are (b) FCC and (c) HCP lattices.

planes, arranged in the order either as ABCABC . . . (FCC lattices) or . . .ABAB . . . (HCP
lattices) (Fig. 2.1).

Each atom has Z = 12 neighbors in the first coordination shell. The dense planes are
perpendicular to the ternary axis of the cube in the FCC case. The ratio between the volume
occupied by spheres in contact over the total volume, the so-called packing fraction, is
pFCC = pHCP = 0.74048 . . . . Of course, for a system at finite temperature, this value is
achieved only if the pressure is infinite. The centers of the 12 spheres in contact with a given
sphere are at the vertices of a polyhedron of coordination, the cuboctahedron (Fig. 2.2),
which has 14 faces (eight equilateral triangles and six squares); all edges are equal (the
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Figure 2.2. Cuboctahedron for . . .ABC . . . type of packing.

cuboctahedron is an example of a semi-regular polyhedron). Each atom has four nearest
neighbors on the sphere of coordination.

Consider two successive planes A and B; the interstices between spheres that lie in the
mid-surface are of two types:

1. The tetrahedral sites are the centers of four spheres packing (e.g., three in A, one in B),
which are mutually in contact; the centers of the spheres are at the vertices of a regular
tetrahedron (Fig. 2.3a).

Figure 2.3. Interstitial sites of a (a) tetrahedral and (b) octahedral type in a close-packed lattice of
spheres; the shown spheres are reduced in size.
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2. The octahedral sites are the centers of six spheres packing (three in A, three in B),
which are mutually in contact; the centers of the spheres are at the vertices of a regular
octahedron (Fig. 2.3b).

It is important to recognize that tetrahedral sites yield the highest possible local density
of any polyhedral site (defined as the packing fraction of the inner part of the polyhedron);
therefore, the FCC and HCP lattices show spatial modulations of density at a microscopic
characteristic length.

2.1.2. Liquids and Amorphous Media

In both liquids and amorphous media, the local order can be defined as the arrangement
of the nearest (and the next nearest) neighbors. In a liquid, the density fluctuates only lo-
cally, but takes a well-defined spatially averaged value; this is a thermodynamically stable
phase. On the contrary, the global arrangements in a glass or an amorphous metal depend
critically on the conditions of fabrication (quench, irradiation, etc.), and these are not ther-
modynamically stable phases.

Diffraction techniques (X-ray, neutrons, etc.) have been used to obtain information
about the local order by measuring the “radial distribution function,” which determines how
the matter density around an atom, averaged over all atoms, depends on the distance from
the atom. The essential features of the experimental data are well understood within the
framework of a model worked out by Bernal,1 according to which liquids and amorphous
media are dense random-packings (DRP) of hard spheres. The packing fraction of a well-
relaxed DRP is about 0.637. Bernal has used the polyhedral sites approach to analyze his
hand-made systems of equal spheres, showing that 86% of the polyhedra are tetrahedra,
6% are octahedra, and the remaining ones, in their great majority, have triangular faces (he
calls them deltahedra). Among various types of deltahedra, there are large cages with 8, 9,
and 10 vertices enclosing an “empty” space (“Bernal’s holes”).

A dual approach to the description of a packing is the averaged number 〈Z〉 of geo-
metrical neighbors of each particle. It can be defined as the average number of faces of the
so-called Voronoi polyhedron built around a particle (Fig. 2.4).

To construct the Voronoi polyhedron of a given particle, first connect this particle to
all other particles of the set by line segments, then add the planes� that are perpendicular
bisectors to these segments, and finally, select those planes � that set the bounds of the
largest polyhedron not intersected by any other plane �. In solid crystals, the Voronoi
polyhedra are nothing other than the well-known Wigner–Seitz cells; in FCC and HCP
lattices, as already stated, the number of faces is the number of atoms in contact with a
given atom; i.e., Z = 12. More generally, the number of faces measures the number of
nearest neighbors, whether they be in close contact or not in close contact in a hard sphere
model.

1J.D. Bernal, Proc. Roy. Soc. A 280, 299 (1964).
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Figure 2.4. Voronoi polyhedron for a disordered system.

The Voronoi analysis emphasizes the average number of faces 〈Z〉 of the Voronoi cell
and the frequency f p of finding a face with p edges. Were the packing perfectly icosahedral
(we shall soon see why the consideration of icosahedra is of interest), we would have
〈Z〉 = 12 and f5 = 1 (the Voronoi cells would then all be dodecahedral). Finney’s relaxed
DRP model gives f2 = 0.02, f4 = 0.2, f5 = 0.43, f6 = 0.32, and f7 = 0.03. The
average number 〈p〉 of edges per face is easily related to 〈Z〉 (see Coxeter2) by use of the
Euler–Poincaré relation for a polyhedron (a Voronoi cell):

v − e + f = 2, (2.1)

where v is the number of vertices, e is the total number of edges, and f is the number
of faces. Let us apply (2.1) to a regular polyhedron with q = 3 edges at each vertex. One
obtains easily a relation between the number of faces f and the number of edges p of each
face, viz., f = 12/(6 − p). We use the same relation as relating the averaged values〈Z〉
and 〈p〉 in a set of Voronoi cells:

〈Z〉 = 12

6 − 〈p〉 . (2.2)

A DRP model for a well-relaxed system of soft spheres yields 〈p〉 ≈ 5.12 and 〈Z〉 ≈
13.6. A non-relaxed (less compact) DRP yields larger values than does the relaxed one.
Note that for a body-centered cubic (BCC) crystal, the same calculation yields, with Z =

2H.S.M. Coxeter, Ill. J. Math. 2, 746 (1958).
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14, 〈p〉 ≈ 5.15, i.e., larger values than for the relaxed DRP. These data point to the fact
that the packing fraction decreases on the average when the number of neighbors increases.
Compacity of matter, which is at the origin of the (meta) stability of metallic glasses,
requires high-packing fractions.

2.1.3. Geometrical Frustration

Tetrahedral arrangements, which are the most compact local close packings, and defects in
these arrangements, which allow for diversity of coordination numbers, are the main ingre-
dients to describing random packings of monoatomic fluids and metallic glasses. Because
a centered, regular icosahedron is made of 20 equal tetrahedra having a common vertex,
at the center of the icosahedron (Fig. 2.5), one expects local icosahedral symmetry.

Icosahedral order, in fact, slightly deviates from the close-packing in the sense that 12
equal spheres in contact with a sphere of the same radius are not in contact among them-
selves. Such an assembly of 13 spheres is stabilized by a balance between the (disfavorable)
elastic distortion energy of the tetrahedron, and the (favorable) vibrational entropy. In ef-
fect, in a perfect icosahedral cluster of 13 atoms, the distance between the central atom and
the atoms at the vertices is about 5% shorter than the distance between the neighboring
atoms at the vertices, hence, a compressive stress at the central atom and a resulting elastic
energy. But, contrarily, the larger distances between surface atoms produce some beneficial
surface entropy.

Despite this divergence with close-packing, the local density of an icosahedral arrange-
ment is larger than in a close-packed FCC or HCP structure. Therefore, there are reasons
to believe that the icosahedral arrangement has a lower energy than the FCC or HCP ones.
Lennard–Jones pair potential calculations for small aggregates confirm these conclusions.

(a) (b) (c)

Figure 2.5. Tetrahedral and icosahedral order: (a) five regular tetrahedra around the common edge
cannot fill space without frustration; the top faces of five tetrahedra are not shown in the picture;
(b) five distorted tetrahedra with the axis of five-fold symmetry; (c) an icosahedron with one of the
five-fold symmetry axes.
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The problem is that one cannot tile space in a regular manner with icosahedra, be-
cause of their five-fold symmetry, an element of symmetry that is forbidden in a trans-
lation symmetric tiling of space. Trying to propagate icosahedral order coherently from
a local icosahedral cluster results in irregularities (double coverings or vacancies, loss of
positional correlations). This is an example of a frequent phenomenon in soft matter and
complex systems, called geometrical frustration. In the present case, it is at the origin of a
modulation of the coordination number around an average value Z , which is closer to 14
than to 12 (see above). Now, the reason why it is a positive extra-coordination, rather than
a negative one, is obviously related to the sign of deviations to close packing alluded to
above.

More elaborate quantitative treatments of this question have been proposed; they rely
on the introduction of the concept of a curved crystal, see Kleman 1989. Assuming that

(a) (b)

(d)(c)

Figure 2.6. Introducing a disclination line into (a) an icosahedron with Z = 12. The body is (b) cut,
and (c) a wedge of material bounded by symmetry-equivalent surfaces is added between the two lips
of the cut; (d) the relaxed deltahedron has Z = 14 and a disclination line along the axis of the cut.
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the structure is entirely tetrahedral, the theory of curved crystals shows that the tetrahedra
pack mainly in the shape of centered icosahedra (Z = 12), except along certain atomic
directions, which can be understood as defect lines of an ideal icosahedral structure. Fig-
ure 2.6 visualizes how these lines can be obtained from a perfect icosahedron, in a so-called
“Volterra process” (to be explained in greater detail in Chapter 8). In the case shown here,
the Volterra process transforms Z = 12 into Z = 14. Observe that the process amounts to
an addition of a 2π/5 angular section of an icosahedron between the lips of an opened cut
surface �, afterward allowing the medium to relax elastically. This is our first encounter
with the (badly defined) notion of a defect, here, a disclination line.

As a matter of fact, lines of defects of the above type were first advocated by Frank
and Kasper3 to describe periodic crystals of complex metallic alloys whose crystalline
arrangements can be analyzed in terms of packing of non-regular tetrahedra: Given the
different sizes of atoms that compose the phase, close-packing is the best description. The
relation with liquids and amorphous metals is obvious. In these Frank and Kasper phases,
the local coordination number takes the values Z = 8, 9, 10, 12, 14, 15, or 16 for atoms
located along the defect lines (Fig. 2.7).

2.1.4. Incommensurate Phases and Quasicrystals

In physics of crystals, phonons are small amplitude thermal vibrations of the atoms. As is
well known, phonons in position ri can be described in terms of eigenmodes, each mode
uk(ri , t) = Uk(ri ) exp i(k · ri − ωt) carrying a wavevector k and a frequency ω/(2π);
uk(ri , t) has the lattice periodicity (Bloch theorem), and ki = 2π

ai

n
N (n = 1, 2, . . . , N ) is a

reciprocal space vector, Nai is the size of the sample in the i-direction, ai is the lattice pa-
rameter (Born–von Karman boundary conditions). k is continuous with values in the first
Brillouin zone when the sample is infinite. When the temperature varies, the frequency of
a particular mode might tend to zero, whereas its amplitude increases, for a value of k that
is incommensurate with the lattice periodicity. Such a “soft mode” is a precursor to a “dis-
placive” phase transition in which the new periodicity 2π/| k | coexists with the “old” one.
The result is an “incommensurate phase” (for example: thiourea SC(NH2)2, the natural
mineral calaverite, etc.). Such a phenomenon can also be understood as a modulation of
the periodicity with an incommensurate period.

Figure 2.8 illustrates how a one-dimensional (1D) periodic structure with atoms reg-
ularly positioned at xn = na (a is the period, n is an integer) can be modulated in a
commensurate and in an incommensurate manner. The atomic shifts in both modulated
states are described by the same function ∼ sin(2παxn/a). When the number α < 1 is
rational, the modulated state is also periodic, with a larger unit cell. When α is irrational,
the structure has no period and is said to be incommensurate. The incommensurate states
might emerge when the forces responsible for cohesion play in opposite directions; e.g.,
the first neighbors show repulsive interactions, and the second neighbors show attractive

3F.C. Frank and J.S. Kasper, Acta Cryst. 11, 84 (1958); Acta Cryst. 12, 483 (1959).
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Z=12

Z=14

Z=15

Figure 2.7. Frank–Kasper deltahedra as coordination shells with different Z surrounding an atom.
Atoms depicted in dark grey are along the disclination lines.

X

X

X

a

b

c

a

Figure 2.8. (a) One-dimensional periodic structure of atoms located at xn = na and its two modu-
lated versions with atomic shifts ∼ sin(2παxn/a): (b) commensurate modulation, α = 0.6, periodic
structure with a unit cell five times larger than that of the initial chain; (c) incommensurate modula-
tion, α = 0.62 . . . close to the irrational number τ−1 = (√5 − 1)/2; no periodicity.
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ones. In fact, incommensurate modulations are fairly frequent, either acting on the atoms
directly, as above, or indirectly, through a coupling to the electronic density waves (Peierls
instability) or to the spin density waves.

Modulated crystals in d dimensions (which are not crystals in the strict sense; there is
some kind of “disorder,” because the neighborhood of a given species of atom continuously
changes in space) have been given a crystallographic description by using an embedding
in a space of dimension d + n, where n is the number of modulations. This is illustrated
by Fig. 2.9 for the case d = 1, n = 1. The “physical space” � (actually, � is a line in
our example) is obtained as a cut of a 2D square lattice, and the 1D modulated structure
along � is a projection of the atoms of the 2D crystal. The cut-and-project method is due
to the Dutch school of crystallography.4 If the slope of � with respect to the 2D lattice is
rational, the projected structure is periodic along �. If the slope is irrational, the projected
set is not periodic. Obviously, if all atoms of the 2D lattice are projected onto � that has
an irrational slope, the resulting set on � would be dense: The Delaunay condition, which

S

S

S '

Figure 2.9. Illustration in d +n = 2 dimensions of the crystallography of periodically modulated and
quasicrystalline materials. A 2D square lattice projects onto a line� either as a 1D periodic structure
when the slope of � is rational (upper left corner) or as an incommensurate aperiodic structure when
the slope is irrational (central part).

4P.M. deWolff, Acta Crystallogr. A30, 777 (1974); N.G. De Brujn, Proc. Konig. Ned. Akad. Weten A84, 39
(1981); T. Janssen, Acta Crystallogr. A42, 261 (1985).
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states that there should be a nonvanishing minimum distance between atoms, would not
be obeyed. To restrict this density, only those atoms are projected that are within a finite
distance from �. In this case, there is a well-defined mean distance between the projected
points on �, but the actual distances are modulated so that when the cut is irrational, the
projected points repeat with two distances incommensurate with this mean distance, along
an aperiodic sequence.

Prior to incommensurate atomic structures, it was recognized that some rare earths
metals show a 1D helimagnetic structure,5 incommensurate with the lattice parameter, due
to a subtle competition between antiferromagnetic nearest neighbors and ferromagnetic
next nearest neighbors interactions.

A particular type of incommensurability occurs in quasicrystals, a large family of com-
plex metallic alloys, such as AlMn, AlFeCu, and AlLiCu, which have a local icosahedral
order and no crystalline repeat distance, but keep long-range icosahedral correlations. Non-
crystallographic symmetry enforces incommensurability. Other quasicrystalline symme-
tries met in nature are pentagonal, octagonal, decagonal, and dodecagonal. Quasicrystals
with nearly free electrons, like AlLiCu, are stabilized seemingly by a special value of the
number of valence electrons per atom, which yields to a depletion of the density of states
near the Fermi level, according to a mechanism for stability discussed long ago by Jones
and Hume-Rothery6 for much simpler alloys. The prime experimental data for incommen-
surate phases or quasicrystalline alloys is their diffraction pattern. The pattern is indexed on
an incommensurate basis, for example, as above, where n = 1 with two incommensurate
periods a and b, by difraction spots in positions qlm = 2π(l/a + m/b). The integers l and
m can evidently be chosen in such a way that qlm takes a value as close as one wishes to any
value given in advance: The diffraction pattern is dense. However, it does not appear to the
experimentalist as continuous, because the Bragg spots are of unequal intensities, as can be
inferred from a calculation of the diffraction pattern. Physical examples are (1) the Penrose
pattern (Fig. 2.10), which mimics observed 2D decagonal crystal; the (dense) diffraction
pattern can be obtained as a linear combination of base vectors along the edges of a regular
pentagon; (2) the icosahedral pattern, whose diffraction pattern is a linear combination of
base vectors along the edges of a regular icosahedron. The cut-and-project method intro-
duced above for the incommensurate case can be extended to those quasicrystalline cases,
with d = 2, n = 2 in the pentagonal case (hence, the pentagonal case is a 2D crystallo-
graphic cut of a four-dimensional crystal, whose atomic surfaces are 2D objects), and with
d = 3, n = 3 in the icosahedral case.

Some of the Frank and Kasper phases can be thought of as rational approximants of
quasicrystals, the cut being rational but close to the irrational fundamental one. Hence,
local icosahedral symmetry is still present, but the medium is periodic.

5A. Yoshimori, J. Phys. Soc. Japan 14, 807 (1951); J. Villain, Chem. Phys. Solids 11, 303 (1959); T.A. Kaplan,
Phys. Rev. 116, 888 (1959).

6J. Friedel, Helv. Phys. Acta 61, 538 (1988).
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(a)

(b)

Figure 2.10. (a) Penrose tiling. (b) Simulation of a growing icosahedral quasicristal (courtesy V.
Dmitrienko); notice the dodecahedral facetting.

2.2. Molecular Order

Everything said above about positional order referred to spherical particles. Because the
molecules are not spherical, they establish not only translational but also orientational
order. For particular ranges of temperature or concentration, the systems of nonspheri-
cal molecules produce mesophases (phases “intermediate” between regular crystals and
isotropic fluids), in which either the positional order is kept but the orientational order
is lost (plastic crystals) or the orientational order is preserved but the positional order is
partially or completely lost (liquid crystals).

2.2.1. Plastic Crystals

Plastic crystals are made of almost spherical molecules. The nonsphericity allows one to
define a “molecular axis” at each site, but the anisotropy of interactions is too small to pre-
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Figure 2.11. Plastic crystal: Positional order of particles with no orientational order. Spherical sym-
metry is restored on the average.

vent molecules from free rotation at increased temperatures: Although the molecules are
correlated in position, the orientations of axes are not correlated (Fig. 2.11). Typical ex-
amples are Cl2 and the recently discovered crystals, whose building units are Buckminster
Fuller’s “buckyballs” (fullerenes) of chemical formula C60. The carbon atoms are located
at the vertices of a polyhedron and have three bonds with neighboring carbon atoms on
the same polyhedron; each bond can be thought of as an edge of the polyhedron, which is
made of 20 regular hexagons and 12 regular pentagons, assuming that all edges have equal
length.

2.2.2. The Building Blocks of Liquid Crystals

Liquid crystals are made of strongly anisometric molecules, either elongated (calamitic
molecules) or disk-like (discotic molecules). As a rule, the inner part of mesogenic
molecules is rigid (phenyl groups) and the outer part flexible (aliphatic chains). This
double character explains altogether the existence of steric interactions (between rod-like
or disk-like cores of the molecules) yielding orientational order and the fluidity of the
mesomorphic phases. Typical examples follow.
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2.2.2.1. p-Pentyl-p’-Cyanobiphenyl (5CB) and p-Octyl-p’-Cyanobiphenyl (8CB)

The most studied single-component nematic liquid crystals, cyanobiphenyls are now the
prime materials used in liquid crystal display devices, due to their chemical stability, high
dielectric, and optical anisotropy. They were first synthesized by Gray.7 Figure 2.12 shows
5CB.

solid
22.5oC← → nematic

35oC← → isotropic

C N

C18H19N
Mol. Wt.: 249

4 D

Figure 2.12. Chemical formula, molecular structure, and phase diagram of 5CB. Note that the ben-
zene rings are located in different planes.

solid
24oC← → smectic A 

34oC← → nematic
42.6oC← → isotropic

C N

CN

C21H25N
Mol. Wt.: 291

Figure 2.13. Antiparallel dipole arrangements of 8CB molecules and phase diagram of 8CB.

7G.W. Gray, J. Phys. 36, C1, 337 (1975).
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C18H21NO
Mol. Wt.: 267.37

Figure 2.14. Chemical formula and molecular structure of MBBA.

solid
81oC← → columnar

87oC← → isotropic

O O
O

OO
OOO

O

O

O
O

C90H114O12
Mol. Wt.: 1388

Figure 2.15. Discotic molecules of hexa-heptyloxybenzoate of benzene form columnar phases. See
S. Chandrasekhar, B.K. Sadashiva, K.A. Suresh, N.V. Madhusudana, S. Kumar, R. Shashidhar, and
G. Venkatesh, J. Phys. (Paris) Colloq. 40, C3–120 (1979).
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The terminal cyanogroup results in a large longitudinal dipole moment (∼ 4D). Be-
cause of strong dipole–dipole interactions, the molecules form antiparallel configurations.
The effect is especially pronounced in the smectic phase of 8CB where an individual smec-
tic layer is formed by a pair of molecules. The thickness of such a layer is approximately
1.4 of the length of a single extended 8CB molecule (Fig. 2.13).

2.2.2.2. N-(p-Methoxybenzylidene)-p’-Butylaniline (MBBA)

MBBA (Fig. 2.14) is another example of a well-studied substance forming a uniaxial ne-
matic phase at room temperature. The molecule is less polar than is a 5CB molecule.

2.2.2.3. Discotic Molecules

Flat molecular cores tend to be parallel to each other; the flexible hydrocarbon chains are
much more disordered (Figs. 2.15 and 2.16).

2.2.2.4. Amphiphilic Molecules, Polymers

The substances above produce thermotropic mesophases, i.e., phases with a single com-
ponent, whose phase transitions can be induced by a change in temperature. Lyotropic
mesophases occur when anisometric amphiphilic molecules (soaps, phospholipids, and
various types of surfactant molecules, including those used in the cosmetic industry) are

168oC← → 253oC← →

O O

O

O
O

O

O

O
O

O

OO

O

O
O

O
O

O

C102 H120 O18
Mol. Wt.: 1634

solid discotic nematic isotropic

Figure 2.16. Hexa-n-hexyloxybenzoate-triphenylene: chemical structure, phase diagram, and one of
the possible molecular configurations; note that the chains are not necessarily parallel to the central
disk group. See N.H. Tinh, H. Gasparoux, and C. Destrade, Mol. Cryst. Liq. Cryst. 68, 101 (1981).
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Figure 2.17. Molecular structure of phospholipids: (a) phosphatidylserine, (b) phosphatidylethanol-
amine, and (c) phosphatidylcholine (lecithin). The number of carbon atoms in the aliphatic chains
varies, usually between 16 and 20. The two chains might be of different length.
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added to a solvent, such as water, brine, or oil. Amphiphiles have two distinct parts: a (po-
lar) hydrophilic head and a (nonpolar) hydrophobic, oleophilic tail (generally aliphatic).
Figure 2.17 depicts a general molecular structure of phospholipids that are present in bi-
ological cell membranes. Two aliphatic chains keep the cross section of the molecule
from varying much from the polar head to the aliphatic part. The building units of ly-
otropic phases are aggregates of many amphiphilic molecules (micelles) rather than single
molecules. The architecture of the molecule has consequences in the relative stability of
different aggregates.

As an example, consider water solutions of a one-tailed amphiphile (such as sodium
dodecyl sulphate, SDS). For concentrations above the critical micellar concentration
(CMC), these molecules form aggregates of different shapes (Fig. 2.18), the simplest ones
being spherical micelles, whose size scales with the size of the molecule, i.e., between
20 Å and 50 Å. The geometry prevents the hydrophobic tails from the contact with wa-
ter. Mixing different amphiphilic substances might result in the formation of anisometric
micelles.

At a higher concentration of the surfactant, one might get cylindrical micelles, infinite
cylinders, bilayers, inverse cylinders, and inverse micelles. These complex elements are
in turn building blocks for various phases with long-range order, considered later in this
chapter.

Synthetic macromolecules, made of mesogenic monomers, attached either chain-like
(Fig. 2.19a) or comb-like to a backbone (Fig. 2.19b), may also be building blocks for liquid
crystalline phases. Biological polymers [DNA, PB(L or D)G, xanthane, etc.] form liquid
crystal phases in solutions in vitro, due to the rigidity of their backbones. Some viruses
with highly anisometric shape, such as tobacco mosaic virus (TMV), also form lyotropic
liquid crystalline phases in solutions.

An interesting example of lyotropic mesomorphism is presented by the so-called
chromonic liquid crystals.8 The family embraces a range of dyes, drugs, nucleic acids,
antibiotics, carcinogens, and anticancer agents. The molecules are plank-like or disk-like
(rather than rod-like), with polar solubilizing groups at the periphery and an aromatic cen-
tral core. Aggregation of molecules, caused primarily by face-to-face adhesion of aromatic
cores, results in cylindrical stacks or other geometries, different from the micelles formed
by rod-like surfactant molecules.

2.2.3. Classification of the Mesomorphic Phases
Mesomorphic phases (also called liquid crystals) are intermediary between liquids and
solids. They show manifold possible structures; many can belong to the same compound
(polymorphism). There are four basic types of liquid crystalline phases, classified accord-
ing to the dimensionality of the translational correlations of building units: nematic (no
translational correlations), smectic (1D correlations), columnar (2D correlations), and var-
ious 3D-correlated structures, such as cubic phases.

8J. Lydon, Curr. Opin. Colloid Interface Sci. 3, 458 (1998).
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Figure 2.18. (a) Spherical micelle, (b) cylindrical micelles, (c) inverted spherical micelles, and
(d) anisometric micelle.
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Figure 2.19. Polymers with mesogenic groups in (a) main-chain and (b) side chains are capable of
forming thermotropic and lyotropic liquid crystalline phases.

2.2.3.1. Nematics

Uniaxial nematics, noted N, are optically uniaxial phases (Fig. 2.20). The unit vector n
along the optic axis is called the director. Even when the building units are polar (such as
5CB molecules), molecular flip-flops and head-to-head overlapping establish centrosym-
metric (average) arrangement in the nematic bulk. Thus, n and −n are equivalent notations,
n ≡ −n. The director is an axis of continuous rotational symmetry: the symmetry point
group of the N phase is the same as that of a homogeneous circular cylinder, viz. D∞h . The
molecules, which are anisometric in shape, align in average parallel to n, this averaging
being made over all “directions” of the individual molecules. The difficulty is to define
unequivocally a relevant direction in each individual molecule. Nevertheless, the process
makes sense, for the reason that n is unequivocally experimentally defined (for example, as
an optical axis; see Chapter 3). A suitable choice for an individual direction can be along
some chemically defined axis of the molecule, in the case of calamitics made of rod-like
building units (Fig. 2.20a), or along some chemical “normal” to the disk in the case of
discotics (Fig. 2.20b).

Another already mentioned property of N phases is their fluidity: the centers of gravity
of the molecules are not correlated. Thus the continuous group of Euclidean translations
R3 belongs to the complete group of symmetry.

In biaxial nematics NB, the symmetry point group is one of a prism (Fig. 2.21). Known
NB phases are rare: They are documented for anisotropic micelles and some mesogenic
polymers, and it is most plausible that the symmetry is that of a prism with a rectangular
cross section. An NB phase is characterized by three directors, n, t, and m = n × t, such
that n ≡ −n, t ≡ −t, and m ≡ −m.

When the building block (molecule or aggregate) is chiral, i.e., not equal to its mir-
ror image, the nematic phase might show twist (Fig. 2.22). It is then called a cholesteric
phase N*.
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Figure 2.20. Uniaxial (a) calamitic and (b) discotic nematics can be viewed as a system of elongated
rods or disks with axes a oriented preferentially along a common director n. Directions n and −n
are equivalent even if the molecular axis a is a true vector. The units in the picture represent ei-
ther individual molecules in the case of thermotropic nematics or micelles in the case of lyotropic
nematics.

n

m
t

Figure 2.21. Biaxial nematic phase.
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p

Figure 2.22. Cholesteric phase: a twisted nematic.

A rotation by an angle α about the cholesteric axis c is equivalent to a translation
pα/2π ; p is here the pitch of the cholesteric twist, and it is twice the periodicity along the
c axis. An N* phase can be characterized by three directors: n, “along” the local molecular
axes, c along the axis of helicity (which is also the optic axis if the pitch is much smaller
than the light wavelength), and m = n × c, “perpendicular” to both n and c. These three
directors form a trihedron of directions (n = −n, c = −c, m = −m) that rotates with the
cholesteric pitch. Both NB and N* phases are liquid phases (no correlations in molecular
positions).

2.2.3.2. Smectic Phases

Smectics are layered phases with quasi–long-range 1D translational order of centers of
molecules in a direction normal to the layers. This positional order is not exactly the long-
range order as in normal 3D crystals: As shown by Landau,9 and Peierls,10 the fluctuative
displacements of layers in a 1D lattice diverge logarithmically with the linear size of the
sample. However, the effect is noticeable only on scales 1 km and more; typical samples
are thinner, (10–100) µm or even less. Within the layers, the molecules show fluid-like ar-
rangement, bond-orientation order (discussed below), or solid-like arrangement. Although
the structures of the latter type have non-zero shear elastic constants, these constants are
much smaller than in regular 3D crystals. It is not clear if these structures, called smectics

9L.D. Landau, Phys. Z. Sowjet Union 2, 26 (1937).
10R.E. Peierls, Annales de l’Institut Henri Poincaré 5, 177 (1935).
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Figure 2.23. (a) Thermotropic smectic A phase with periodic modulation of density; (b) lyotropic Lα
phase with surfactant bilayers separated by water; the layer of water might be much thicker than the
surfactant bilayer.

of B, E, G, H, J, and K-types, maintain a true long-range order of the molecular positions
in the direction normal to the layers. We will not consider these phases further.

Smectics with liquid layers are of three types, as described below.

• Smectic A (SmA) is a uniaxial medium with the optic axis perpendicular to the layers;
the director n is along the normal to the layers (Fig. 2.23). There is no long-range
positional order within the layers; each layer is a 2D fluid.

• Smectic C (SmC) is also composed of a 1D stack of fluid layers; however, it is a
biaxial phase because the long axes a of the molecules are tilted with respect to the
layers’ normal t (Fig. 2.24). The axes a average to the “nematic” director n, if no
attention is paid to the layers. The so-called tilt plane formed by n and t that contains
the optical axes is a plane of mirror symmetry. Another operation of symmetry is a π-
rotation around the axis C2 that is perpendicular to the tilt plane. Because of the layered
structure, the twofold symmetry axis C2 lies either in the midplane of the smectic layers
or in the plane between two layers. The combination of mirror reflection and twofold
axis of rotation yields inversion symmetry.

The three operations of symmetry (mirror reflection, C2 axis, and inversion) lead to
interesting properties of the unit vector v specified by the projections of the molecules
onto the smectic planes. This vector is not a director nor a vector. Viewed in a labo-
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Figure 2.24. Smectic C phase (achiral): (a) general structure; (b) elements of symmetry; see text.

ratory coordinate frame, a π-rotation around the C2 axis transforms v into −v (and t
into −t). The vector −v is shifted along t after such a rotation, either by the half or
the whole SmC layer’s spacing, depending on the position of the C2 axis. Because the
SmC slab after such a rotation is not distinguishable from the original state, it implies
a “director” character of v, v ≡ −v. Consider now a π-rotation around the layers’
normal t, which is not a symmetry axis. Such a rotation transforms v into −v in the
laboratory coordinate frame, but the two states are clearly not identical, because the
molecules are tilted in the opposite direction. Thus, this rotation does not identify the
states v and −v. This dual character of v reflects in the nature of topological defects
(see Section 12.1.7).

Another subtle point concerns the orientational order along C2. Because of the lay-
ered structure of SmC, a π-rotation around the “nematic” director n is not an allowed
operation of symmetry, in contrast to the N phase. Because of the mirror symmetry,
however, there is no electric polarization along C2. The situation changes when the
molecules are chiral, as discussed in the next paragraph.

• Smectic C∗ (SmC∗) composed of chiral molecules is a chiral version of SmC. The
molecular tilt precesses around the normal to the layers (Fig. 2.25). The chirality sup-
presses the mirror and inversion symmetries, because mirror reflections and inversion
would change the handedness (left vs right) of the helix. Therefore, as pointed out by
R.B. Meyer,11 the electric polarization p along the C2 axis normal to the tilt plane is
not cancelled by the symmetry. In the unperturbed helical SmC∗, the local tilt plane
rotates from layer to layer and so does the local polarization vector p (Fig. 2.25). The
net polarization P averaged over distances much larger than the helicoidal pitch is thus
zero. However, if one confines a very thin SmC∗ slab between two rigid plates (parallel

11R.B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, J. Phys. (Paris) Lett. 36, L69 (1975).
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Figure 2.25. Chiral smectic C (SmC∗) with periodic precession of the tilted molecules around the
normal to the layers.

to the plane of drawing in Fig. 2.25) that favor an in-plane orientation of the molecules,
the SmC∗ helix can be unwound. Such a “surface-stabilized” ferroelectric film has a
nonzero net polarization P directed either toward or outward from the reader. Applying
an electric field of certain polarity to the bounding surfaces, one reverses the direction
of P and thus reverses the direction of the molecular tilt θ ↔ −θ . Such reorientation
produces drastic optical changes when the film is wieved between crossed polarizers
(see Section 3.3.3). This effect, discovered by Clark and Lagerwall,12 is used to con-
struct fast informational displays. Recent advances in chemical design (e.g., synthesis
of banana-like molecules) have produced smectic phases with a rich variety of fer-
roelectric properties; some show antiferroelectricity and ferrielectricity; see the book
Chirality in Liquid Crystals (2000).

Some smectic phases with liquid layers display hexagonal bond-orientational order
in the layers. They are called hexatic smectics. For example, in hexatic smectic B, the
molecules are normal to the layers and have no positional order within the layers, as
in SmA. However, they show long-range hexagonal ordering of the directions that link
the molecules (bond ordering) (see Chapter 4). Tilted versions of the hexatic B phase
are hexatic smectics F and I. Note that the layers in A, C, and C∗ and the hexatic
smectics are not correlated; these phases have been used as experimental models to
verify theories of 2D media.

12N.A. Clark and S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
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(a) (b)

Figure 2.26. (a) Thermotropic hexagonal columnar phase formed by disk-like molecules. The in-
termolecular distances are random along the columns but fixed along a 2D crystalline lattice in the
normal plane. (b) Lyotropic hexagonal columnar phase formed by cylindrical micelles; the picture
shows a 2D cut normal to the cylinders.

2.2.3.3. Columnar Phases

Columnar phases show 2D long-range positional order with translational symmetries.
Hexagonal columnar phases are often formed by columns of discotic molecules (Fig. 2.26)
or by lyotropic cylinders. Other 2D symmetries have not been investigated thoroughly,
because they are less frequent.

2.2.3.4. Tridimensional Phases

• Lyotropic cubic phases are formed of bilayers that extend along the three directions
of space. The case of lyotropics has been studied in great detail: The mean surface
of the bilayers is close to a periodic minimal surface, i.e., a surface whose principal
curvatures σ1 and σ2 are everywhere equal and opposite: σ1 + σ2 = 0. This condition
minimizes the bending energy of the bilayers (notions of surface geometry and elastic-
ity theory will be studied in later chapters). The overall geometry of these cubic phases
is complex to discuss in great detail; note only that the periodic arrangement refers to
the layers rather than to the individual molecules, which are free to move within the
layers. There are at least three types of lyotropic cubic phases known to date; one is
shown in Fig. 2.27.
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Figure 2.27. Lyotropic cubic phase.

• Blue phases are made of chiral molecules that organize in an inhomogeneous way
on the following basis. Let n0 be some director, e.g., along the axis Z in Fig. 2.28.
In the local state of the smallest energy, the chiral molecules in the vicinity of n0
have the tendency to rotate helically along all directions perpendicular to n0, not only
along one direction c, as in the N∗ phases. This geometry, which is called a double-
twist, is energetically preferable to the 1D twist, at least for some chiral materials.
However, as the distance from the director n0‖Z increases, the cholesteric cylindrical
shells become flatter and the double twist smoothly disappears. The director far-field
configuration comes closer to the 1D twist of the N∗ phase; the energy gain is reduced.
Thus, the double twist cannot extend over the whole 3D space. A typical radius of the
energy-gaining cylindrical region about the n0 axis is the half-pitch p/2. Now, these
cylinders of finite radius cannot tile space continuously. The situation is reminiscent
of the phenomenon of frustration, already met in Frank and Kasper phases. According
to the most current models of BP’s, this frustration is relieved by defect lines (of the
disclination type), either regularly distributed or in disorder, also as in the Frank and
Kasper phases or metallic glasses. Figure 2.28 illustrates how three cylinders of double
twist generate a singularity in the region where they merge.

The blue phases of types BPI and BPII are modeled as regular networks of discli-
nation lines with periodicity of the order of p. Indeed, the 3D periodic structure of
these phases is revealed in their nonzero shear moduli, ability to grow well-faceted
monocrystals, and ability of Bragg reflection in the visible part of the spectrum (which
is natural because p is of the order of a few tenths of a micron). The latter explains the
name: When viewed under a polarizing microscope, the blue phases often appear blue.
Usually, they exist in a very narrow temperature range (∼ 1 K) between the isotropic
and the N∗ phases. The third identified phase, BPIII, which normally occurs between
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Figure 2.28. Blue phases are composed of regions with double twist; three such regions with a singu-
larity that relieves frustration between them are shown in the picture. Two cylinders with double twist
match at the contact point if the director tilt at their surfaces is π/4; however, the region where all
three cylinders meet is singular. In current models, such singularities form a network of disclination
lines. The circle marks the “core” of the disclination; the insert shows the director lines around the
core.

the isotropic melt and BPII, is less understood. It might be a melted array of discli-
nations. Note that although most blue phases were observed in thermotropic systems,
double-twist geometries can occur in solutions of biological polymers, such as DNA.

2.2.4. Isotropic Phases

We shall classify several systems under the heading of isotropic phases, such as follows.

• BPIII. This phase has the same molecular double-twisted arrangement as BPI and BPII
at small scales, but it is believed that the cylinders form long, random, flexible, inter-
twined “worms.”

• Phases of associated colloids. (i) Micelles, which are either roughly spherical or worm-
like closed assemblies of surfactants, whose size, or size distribution, is in thermo-
dynamic equilibrium with the solvent; (ii) The isotropic L3 sponge phase, which is
described according to the most current views as a bilayer of surfactant that extends
through all space in a random fashion and divides the solvent into two connected con-
tinuous domains; this thermodynamic phase is sometimes referred to as “the plumber’s
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Figure 2.29. A model of lyotropic sponge phase: A bilayer that divides the solvent into two connected
continuous domains.

nightmare” (see Fig. 2.29); (iii) Microemulsions, made of a monolayer of surfactant
that extends through all space in a random fashion, separating two solvents of different
natures, such as oil and water; this is again a thermodynamic phase.

• colloidal solutions (of macromolecules, proteins, or of biological polymers) and
molten polymers (see Chapter 15).

The elements of the above classification are phases at thermodynamical equilibrium:
The solutions are supposed to be in a “good” solvent. We shall not use the term of solution
for metastable dispersions (in a “poor” solvent).

In the examples above, the solvent is an isotropic fluid. The last decade saw an explo-
sive growth of interest in mesomorphic solvents. Mesomorphic solvents are very special
because they impose their orientational (nematics) and positional (smectics) order onto the
solute particles. For example, by orienting dye molecules in a nematic matrix, one can ob-
tain a system with electrically-switchable dicroism. Adding a solute particle to a smectic
host might lead to a nanoscale segregation: Depending on the chemical affinity to the host,
the solute particles might segregate either inside the smectic layers or in the space between
them.13 The variety of phenomena becomes even richer when one dissolves a monomer
into a liquid crystalline matrix and then polymerizes it in this matrix. Although polymer-
liquid crystal composites are still lacking complete description, their widely known rep-
resentatives, such as polymer-dispersed liquid crystals and polymer-stabilized liquid crys-
tals14 already found practical applications, mainly in the display industry.

13See, e.g., M.A. Glaser, In Advances in the Computer Simulations of Liquid Crystals, Edited by P. Pasini and
C. Zannoni, NATO Science Series, Ser. C: Math. and Phys. Sciences, v.545, p. 263, sec. 4.2 (2000).

14Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, Edited by G.P. Crawford
and S. Zumer, Taylor & Francis, 1996, 506 pp.
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2.3. Perturbations of the Crystalline Order

We shall make a distinction between the perturbations of small energy, which can relax in
a finite time toward equilibrium, and those of large energy, which build singularities of the
order parameter (a term to be defined later).

2.3.1. Weak Perturbations

Thermal fluctuations of small amplitude, large wavelength l = 2π/| k | compared with
atomic or molecular distances, and small frequency compared with atomic or molecular
frequencies are weak perturbations. Among these are phonons in crystalline solids, spin
waves in ferromagnets, and fluctuations of the optical axis in nematics (Fig. 2.30). Fluctu-
ations are analyzed as sums of eigenmodes

u0(r) =
∑

k

u0(k, r) exp i(k · r − ωt), (2.3)

whose frequency ω/2π and wavevectors k depend on the nature of the order, in fact on the
group of symmetry; the eigenmodes form a representation of this group.

Any weak perturbation imposed on the system can be analyzed as a sum of indepen-
dent eigenmodes. Weak perturbations belong to the kingdom of linear physics and do not
modify the order because k = | k | is much smaller than 2π/a: the atoms, molecules, or
spins do react cooperatively.

Soft modes occur when for some special value of k, say, kc, and near some temperature
Tc, the mode frequency ω → 0 and the amplitude remains finite; they are the precursors of
second-order phase transitions with symmetry change. They were mentioned earlier.

(a) (b)

Figure 2.30. Fluctuations: (a) longitudinal phonon wave of atomic displacements; the arrows show
the direction and the amplitude of displacement; (b) fluctuation of the director field (optic axis) in an
uniaxial nematic.



Chapter 2 Atomic and Molecular Arrangements72

2.3.2. Strong Perturbations

By definition, strong perturbations are perturbations that “break” the order parameter. They
can be either point-like (point defects in solids, singular points in nematics, etc.), line-
like (dislocations in solids, vortex lines in the superfluid phase of 3He, disclinations in
liquid crystals, focal conics in smectics, etc.), or surface-like (grain boundaries in solids or
smectics, Bloch wall in ferromagnets, etc.). In the spirit of the approach to defects favored
by the metallurgists, the analysis is still linear at some distance from the object. That is,
it can be done in the framework of weak perturbations, which implies conservation of the
order parameter and cooperative linear response, but needs a different description in the
vicinity of the object, where the order parameter is truly singular. This is the core of the
defect.

Strong perturbations can also be classified as thermodynamical (spontaneous) or im-
posed. Strong thermodynamical perturbations are, for example, the point defects of solids
(vacancies or interstitials, Fig. 2.31). They are spread at random in the lattice, hence, their
stabilization by the entropy of disorder, which competes with their (positive) internal en-
ergy (to create them). Another example is provided by some models of the solid - liquid
transition, which assume that the liquid state is announced by a spontaneous multiplica-
tion of dislocation lines in the solid, again stabilized by their entropy of disorder. Other
examples occuring in soft matter will appear in the course of this textbook. Finally, some
periodic phases of the frustrated type, such as the Frank and Kasper phases and the blue
phases, are often described in terms of defects, whose internal energy should be negative,
because they do not carry entropy of disorder.

(a) (b)

Figure 2.31. Point defects in a crystal caused by an (a) interstitial atom and (b) vacancy.
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Imposed strong perturbations are, for example, nonequilibrium point defects nucleated
as a result of radiation damage; dislocations in solids resulting from growth phenomena
or from work-hardening; disclinations that nucleate, change shape, or disappear in liquid
crystals under shear flow; Bloch walls in a ferromagnet that are involved in structural mod-
ifications under magnetic field action.

These strong perturbations affect a number of physical phenomena, in particular, non-
reversible phenomena (stress-strain curves of solids, hysteresis of magnetic phenomena,
dissipative phenomena in liquid crystals under flow), both at mesoscopic scales (at which
these singularities show up) and at macroscopic scales (at which these singularities gather
into more or less defined textures).

One of the purposes of this textbook is precisely to give the conceptual means to clas-
sify the various types of singularities of an ordered medium (this classification depends
on the symmetry of the order parameter) and to understand their behavior under various
actions.

Problem 2.1. (a) Show that the exact value of the packing fraction for the FCC lattice is π
√

2/6;
(b) copper has an FCC structure. Calculate its density taking the atom radius equal to 1.28 Å.

Problem 2.2. Show that there are twice as many tetrahedral sites as octahedral sites in an ordered
close-packed structure.

Answers: Each atom is surrounded by 12 atoms at the vertices of a cubooctahedron with six square
facets and eight triangular facets. This is true whether the order is FCC or HCP. Hence, attached to
each atom, there are six octahedra and eight tetrahedra. Each octahedron shares six vertices, and each
tetrahedron shares four vertices. Therefore, the mean number of tetrahedra per atom is two and the
mean number of octahedra per atom is one.

Problem 2.3.

(a) Show that for any polyhedron, v − e + f = 2 (the number of vertices v, of edges e, of faces
f ). Hint: Construct any polyhedron from any given one by removing or adding, according to the
case, faces, edges, and vertices. This formula is known as the Euler-Poincaré theorem.

(b) Using the result of question (a), prove (2.2).

(c) Show that in a regular polyhedron, v = 4p
6−p , e = 6p

6−p , if the number of edges per vertex is
q = 3.

Answers: (b) Let 〈Z〉 = 〈 f 〉 be the mean number of faces on any Voronoi cell. We have 〈Z〉〈p〉 =
2〈e〉 and q〈v〉 = 2〈e〉. Hence, using the result of question (a), 〈Z〉 = 2 + 〈p〉〈Z〉

2 (1 − (2/q)); i.e.,

〈Z〉 = 4q
2q−q〈p〉+2〈p〉 ; q = 3 yields (2.2).

Problem 2.4. Retrieve the geometry of the buckyball given in the text by employing the above Euler-
Poincaré theorem.
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Problem 2.5. Show that the diffracted spots intensity of the 1D quasicrystal of Fig. 2.9 reads as

Iq ∼= Aq A∗
q =

(
2

q⊥d
sin

q⊥d

2

)2
,

where q⊥ is the component in perpendicular space of q = q‖ + q⊥ and d is the width of the strip.

Answers: We calculate the diffracted amplitude Aq = ∑
N exp iq‖ RN‖, where RN‖ are the

1D coordinates in physical space of the vertices RN belonging to the 2D hyper lattice. Now, the
Bragg spots of the quasilattice are the projections of the Bragg spots of the 2D reciprocal lat-
tice. Hence, q RN = q‖ RN‖ + q⊥ RN⊥ = 0(mod 2π); thereby, the amplitude can be written as
Aq = ∑

N exp −iq⊥ RN⊥, where the RN‖ are the components of the projections of the vertices
RN belonging to the stripe (Fig. 2.9). The vertices RN fill the perpendicular space densely and
homogeneously, by reason of the irrationality of the projection. Therefore, the sum can be replaced
by an integral through the width d of the stripe:

Aq =
∑
N

exp −iq⊥ RN⊥ ∼
∫ d

0
exp −iq⊥ydy,

from which the expression of Iq is easily deduced. Although the spots are dense in the physical
reciprocal space only, a few of them are intense enough to be visible, because Iq oscillates between
null values and maxima q⊥ ≈ n/d, q‖ ≈ m/d, n and m integers, and decreases very fast with q⊥.
Of course, the same types of results apply, mutatis mutandis, for realistic quasicrystals [d‖ = 2(D =
4);d‖ = 3(D = 6)].
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C H A P T E R 3

The Order Parameter:
Amplitude and Phase

The concept of an order parameter has appeared with the attempt to describe the order-
disorder transition of alloys, specifically, to define a degree of disorder (see Section 3.1.6).
First elaborated by Gorsky and Bragg and Williams to describe order-disorder transitions
in alloys,1 it has been developed in its modern form by Landau for the purpose of a phe-
nomenological description of phase transitions. More specifically, it addresses the question
of the description of the long-range order of the structural (crystallographic) or thermo-
dynamic (magnetic, dielectric, etc) properties, which repeat uniformly in a given system.
Related quantities are intensive thermodynamic variables. The opposite notion of short-
range order refers to spatial thermodynamic fluctuations; these are particularly important
near a second-order phase transition A ↔ B (see Chapter 4). Fluctuations that develop in,
say, the high temperature phase A, announce the order properties of B. An important related
quantity is the spatial extent ξ of these fluctuations, the coherence length. The same term
of coherence length (or correlation length) is also used to conote the range of distortions
induced in the order parameter of phase B by a local perturbation (Chapter 5, section 5.6),
e.g., the extent of the central region of a defect, where the order parameter is “broken”
(singular), the core of the defect.

It is possible to get an intuitive view of the order parameter through a series of very
simple examples: Hence, the nematic phase is more ordered than is the isotropic phase
into which it turns above some “clearing” temperature Tc. The choice of the measurable
physical parameter that describes best the change of order and whose amplitude relates to
the “degree of order” is in any case an important and delicate issue.

In addition to its amplitude, the order parameter possesses another characteristic, a
phase (also called a degeneracy parameter), which is less often discussed. For reasons to
appear later, we are as much interested in the degeneracy parameter as in the amplitude.
The following examples will make the distinction clear.

1W. Gorsky, Z. Phys. 50, 64 (1928); W.L. Bragg and E.J. Williams, Proc. Roy. Soc. London, A 145, 699
(1934).
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3.1. The Order Parameter Space

3.1.1. Superfluid Helium

The order parameter is the wave function

ψ = |ψo | exp iφ. (3.1)

The amplitude |ψo(T, P) | measures the concentration of the constituent 4He, which has
“condensed”—these atoms are bosons—to a superfluid state. |ψo(T, P) | depends on tem-
perature and pressure and vanishes at the temperature of superfluid-normal fluid transition
and above, in the normal state. The graph of Fig. 3.1 represents the Landau “condensation
energy” Fcond(|ψo |), whose minimum takes the value of a thermodynamic potential at the
equilibrium value of |ψo(T, P) |. It is well known from standard quantum mechanics that
any spatial variation of the phase φ creates a current of matter j ∝ i(ψ∇ψ∗ − ψ∗∇ψ).
Therefore, at equilibrium, the phase φ must be constant throughout the whole sample, but
the thermodynamic potentials do not depend on φ: Two samples of superfluid 4He with dif-
ferent φ’s, taken at the same temperature and pressure, both assumed perfect, would have
the same thermodynamic potentials. In other words, each value of the phase corresponds
to another realization of the equilibrium. Thus, φ is a degeneracy parameter.

Because φ(r) is defined modulo 2π , it is an “angle” and its domain of variation can
be represented by a circle S1 of radius |ψo(T, P) | (Fig. 3.1). Any point belonging to S1

Figure 3.1. The circle S1 is the order parameter space of the superfluid 4He. It corresponds to the
circular bottom of the condensation free energy plotted as the function of the order parameter ψ =
|ψo | exp iφ. The states along the circle correspond to the same equilibrium value of the amplitude
|ψo(T, P) | and have the same energy, but differ in the phase φ.
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represents a perfect state defined by the phase φ. S1 is called the “order parameter space”
(OP space) of the superfluid 4He. The OP space is also called the “degeneracy space.”

To conform to the terminology that will often be met in this textbook, a superfluid
with spatial variations ∇φ of the degeneracy parameter φ(r) will be said to be in a “de-
formed” state. As long as these deformations are “weak,” i.e., vary significantly only on
spatial scales much larger than the coherence length ξ , it is possible to consider the ampli-
tude |ψo(T, P) | as spatially constant, because ξ is precisely the minimum scale on which
thermodynamic intensive quantities are to be defined. The variations of the amplitude,
∼ ∇|ψo | that relax on small scales of the order of ξ cannot be included in any “macro-
scopic” description of a weakly deformed medium. Consequently, the function φ(r) maps
any continuous path in a weakly deformed medium into some continuous path in S1.

The case of superfluid 4He provides us with the simplest example of a nontrivial OP
space, but offers some difficulty in grasping the notion of “deformation” as it is included
in the concept of phase. The examples that follow should shed some light on this question.

3.1.2. Heisenberg Ferromagnets

The order parameter is an intensive variable M(T, r), the magnetization per unit volume.
In the Heisenberg model,2 the magnetization is caused by pair interactions of spins ar-
ranged on a regular periodic lattice. The interactions align the spins parallel to each other.
When the temperature is raised, the correlation between the spins becomes weaker and
the amplitude M(T ) of M(T, r) gradually decreases. At and above the so-called Curie
temperature, the entropy effects overcome the ordering interactions and the ferromagnetic
phase transforms into the paramagnetic one, where the spins are not correlated and M = 0
(Fig. 3.2).

M

TTc

ferro para

Figure 3.2. The magnetization amplitude M as a function of temperature T ; Tc is the temperature of
the second-order phase transition between the ferromagnetic and the paramagnetic states.

2W. Heisenberg, Z. Physik 49, 619 (1928).



3.1 The Order Parameter Space 79

S 2

S 2

Figure 3.3. The Heisenberg isotropic ferromagnet: Different directions of the magnetization vector
correspond to different points on the order parameter space S2.

If there is no external field and no orientational coupling between the spins and the
lattice, the direction of M in a ferromagnet is not fixed: Two uniform ferromagnets with the
same M but different directions of M have the same thermodynamical potentials. Thus, the
direction of M is the degeneracy parameter of a ferromagnet. Various possible orientations
of M can be represented one-to-one by the points on a sphere of radius M(T ), which
we denote as S2. Thus, two states with a different orientation of M would map on two
different points in S2 (Fig. 3.3). When the magnetic state is “deformed,” so that M changes
continuously from point to point along any path γ in the sample, while M remains constant,
the mapping of γ on S2 is no longer a unique point but a smooth path �. The sphere S2 is
the OP space of the Heisenberg ferromagnet.

3.1.3. X-Y Ferromagnets

Consider a 2D-lattice in which each site carries a spin. In the ground state, all spins are
parallel and confined to the (x, y) plane. The resulting order parameter is the 2D magneti-
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(a)

S 1

(b) (c)

S 1

Γ

γγ

Figure 3.4. XY model: (a) paramagnetic, (b) uniform ferromagnetic, and (c) nonuniform ferromag-
netic states. The path γ in the ferromagnet is mapped into a single point in the order parameter
space S1, when the state is uniform and into a path � when the state is nonuniform.

zation density, i.e., a 2D vector or, equivalently, a complex number. The amplitude of the
order parameter depends on temperature; its phase φ(x, y) mod 2π is the degeneracy pa-
rameter and corresponds one-to-one to different orientations of the magnetization vector.
The OP space is thus a circle S1, as in the case of superfluid 4He (Fig. 3.4).

3.1.4. Uniaxial Nematics

The amplitude of the order parameter will be defined at some length later in this chapter.
At this stage, it is enough to accept that this amplitude is a temperature-dependent scalar
s(T ) that vanishes in the isotropic phase, T > Tc (Fig. 3.5) and is equal to unity when
all molecules point rigidly in the same direction; the latter never happens at nonzero tem-
peratures. In reality, s(Tc) < s < 1 because of the effect of thermal fluctuations on the
order.

The degeneracy parameter is the director n(r), i.e., the direction of the molecules aver-
aged in some macroscopic volume at least of the order of ξ3 (coherence volume) about r,
small enough to consider that n(r) does not vary in this region (compare with our discus-
sion of the 4He superfluid phase). Hence, the order parameter could be written as sn(r), in
a form analogous to that of a ferromagnet. However, the difference is considerable: Two
perfect ferromagnets magnetized in opposite directions are two different realizations of the
ground state, M �= −M, whereas sn and −sn represent the same realization of a perfect
nematic phase.
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TTc

nematic isotropic

s

Figure 3.5. Behavior of the scalar order parameter in the nematic phase at the first-order N-I transi-
tion.

Start from the sphere S2 of radius s(T ). Because n ≡ −n, two diametrically opposite
points on this sphere represent the same perfect nematic, and we have to identify them to
obtain the true OP space of the uniaxial nematic phase (Fig. 3.6a). All pairs of identified
points represent the nematic phase one-to-one.

A way of visualizing this process is as follows (Fig. 3.6): Cut S2 along any of its great
circles, and conserve only one half-sphere. Except on its boundary, each point of the hemi-
sphere is a one-to-one representative of a perfect nematic; on the boundary, we have still
to identify opposite points, such as shown in Fig. 3.6b. This abstract process can be made

(a) (b) (c)

R P
2S

2 / Z 2

Figure 3.6. Order parameter space for the uniaxial nematic phase: (a) the S2 sphere is twice too large,
because each realization of the perfect N phase is represented by two opposite points; the sphere with
pairs of antipodal points identified is noted S2/Z2, where Z2 is the Abelian group with two elements;
(b) half-sphere and opposite points identified; (c) half-sphere flattened to a full disk, without a change
of topological properties.
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more visual if one forgets the metric properties of the “manifold” that we are constructing
and stresses only its “topological” properties, i.e., we take the liberty to deform the half-
sphere by any process that does not introduce a cut or a tearing. The important result is
that the mapping between the various realizations of the director field and the OP space
follows these smooth deformations in a unique manner. We shall see indeed that the only
interesting properties of the OP space are its topological properties.

We can transform in this way the half-sphere into a full disk, with the opposite points
identified, and then bring those points one on the other, by pairs (Fig. 3.6c). The resulting
closed manifold is called the Boyd surface; its embedding in 3D Euclidean space shows
self-intersections,3 but we can forget them when using its topological properties. In fact,
had we done the foregoing operations in a 4D space, these self-intersections would not
exist. The manifold we have obtained is called the projective plane, and it is noted R P2.
Notice, in Fig. 3.6c, that the dashed line is a closed line on R P2. This remark will have
far-reaching consequences later on.

3.1.5. Crystalline Solids

The order parameter space is the density ρ(r) that is a triply periodic scalar quantity in a
perfect crystal:

ρ(r) =
∑

k

ρk exp ik · r, (3.2)

where the sum is done on the vectors k of the reciprocal space. The amplitude of the OP is
given by the set of all ρk’s. The degeneracy parameter can be understood as follows.

A B

C D
A B
C D

S
1
¥ S

1

Figure 3.7. Torus T 2 = S1 × S1 is the order parameter space of a 2D crystal.

3See D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea Publishing Cy, New York, 1964,
for a pictorial representation of Boyd’s surface.
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Displace a reference crystal by a constant quantity u. The new crystal thus obtained
is a different realization of the same system at equilibrium, and it differs from the first by
this translation only. The OP space is therefore the Bravais cell with identification of the
boundaries points separated by a repeat vector ai . In the 2D case, which is illustrated in
Fig. 3.7, the identification yields a manifold that is a 2D torus T 2 = S1 × S1. This OP
space describes various realizations of the crystal that differ by translations; we shall not
discuss the symmetries of rotation, which make the complete OP space fairly complicated
but bring no new physical insight in the question of OP space. A generalization to 3D is
straightforward: The OP space limited to translations is the 3D torus T 3.

3.1.6. Order-Disorder Transitions in Alloys

At high temperatures, the Cu50Zn50 alloy (brass) has a BCC lattice with sites occupied
by Cu and Zn with equal probabilities ηCu = ηZn = 1/2 (Fig. 3.8a). In the most ordered
situation, at 0◦ K, the symmetry of the lattice is simple cubic: the Cu atoms occupy one
sublattice and the Zn atoms occupy the other, Fig. 3.8b.

Let us define the OP as the quantity η = | ηCu − ηZn |. At a particular site, at 0 K,
the probability of occupation by a Cu atom is either ηCu = 1 or ηCu = 0; hence, η = 1.
Above 0 K and below the phase transition temperature Tc, η varies between 1 and 0. In the
high temperature phase, η ≡ 0. Note that the phase change, although it occurs in a contin-
uous fashion, brings a brutal change of symmetry at T = Tc. Furthermore, the symmetry
group of the low temperature phase is a subgroup of the high temperature phase. These are
characteristics of second-order phase transitions, the same as the normal-superfluid and the
paramagnetic-ferromagnetic transitions we have already met.

Consider now a BCC lattice of sites occupied by Cu and Zn atoms in their most ordered
state. There are two ways of filling the sites, yielding two kinds of domains, both with
η = 1 but with different ηCu: ηCu = 1 or ηCu = 0. The two types of domains within the
same sample would be separated by wall defects (antiphase boundaries) (Fig. 3.8c). The
OP space (restricted to the consideration of a fixed lattice of sites) is made of two points.

3.2. The Specific Order Parameter of Liquid Crystals:
The Director

3.2.1. Microscopic Definition

Intuitively, the director n(r) of a uniaxial nematic can be imagined as the result of averag-
ing over the axes a carried by individual molecules. Both directions +a and −a have to be
taken with the same microscopic probability, because the nematic phase does not recognize
different extremities of the molecules, on the average. This averaging is taken in a volume:
(i) large compared with the molecular dimensions but (ii) small enough compared with the
typical deformation lengths of the nematic phase, in order to assign a continuous value to



Chapter 3 The Order Parameter: Amplitude and Phase84

(a) (b)

(c)

CuZn

Figure 3.8. (a) Disordered and (b) ordered structures of Cu50Zn50 alloy; (c) two-dimensional cut of
an antiphase boundary separating two domains in the ordered state.

the function n(r) when r varies. Conditions of the same type are always met in the descrip-
tion of macroscopic systems in quasi-equilibrium: The first condition makes precise what
we mean by macroscopic, and the second one makes possible the consideration of a local
thermodynamic equilibrium.

The intuitive picture above is useful, but not well-based, because the axis a does not
have an unambiguous definition, except perhaps in the case in which the molecules are en-
tirely rigid and have an axis of rotational symmetry, as in TMV. Besides, the central sym-
metry of the nematic phase requires the order parameter to be constructed from quantities
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that are even in a. The proper nematic order parameter is thus defined by the second-rank

symmetric traceless tensor Q (see Section 3.2.2). The director n specifies the direction

of the principal axis of Q (in the uniaxial nematic phase, Q has a cylindrical symmetry).
The director is a perfectly observable macroscopic variable, the optical axis of the uniaxial
nematic.

The notion of director makes sense for other liquid crystalline phases. This is obvious
in the cases of a smectic A and a cholesteric, which is nothing but a deformed, twisted
nematic. The case of the SmC and SmC∗ phase (Figs. 2.24 and 2.25) is more delicate, as
already discussed in Section 2.2.3.2.

This remark being made, let us come back to the uniaxial nematic phase. The director
n bears no information about the degree of orientational order. We chose the axis Z along
n and define spatial directions by a polar angle θ and an azimuthal angle ϕ. Let f (θ, ϕ) d�
be the probability of finding the molecular axis a within a solid angle d� = sin θ dθ dϕ
about the direction (θ, ϕ). Because the directions +a and −a are equivalent in the nematic
bulk, f (θ, ϕ) ≡ f (π − θ, ϕ). Obviously, f (θ, ϕ)would be the same whatever the azimuth
ϕ is; thus, ∂ f (θ, ϕ)/∂ϕ = 0. Because the molecule is certainly oriented in the interval
0 ≤ θ < π , the function f (θ, ϕ) = f (θ) is normalized:

∫∫
© f (θ, ϕ) d� = 2π

∫ π

0
f (θ) sin θ dθ = 1. (3.3)

The distribution function f (θ) is flat above the nematic - isotropic transition, in the
isotropic phase, and peaked for θ = 0 below the transition. The degree of orientational
order can be measured by the quantity s, first introduced by Tsvetkov:4

s = 1

2
〈3 cos2 θ − 1〉 = 2π

∫ π

0
P2(cos θ) f (θ) sin θ dθ, (3.4)

where P2(cos θ) = 1
2 (3 cos2 θ−1) is the Legendre polynomial of the second order and 〈. . .〉

means an average over all molecular orientations. In the isotropic phase, all orientations in
space have equal probabilities; hence, f (θ, ϕ) = 1

4π from (3.3), and (3.4) results in s = 0.
For the most ordered state, the only molecular orientation is θ = 0; hence, f (θ) = 1

4π δ(θ),
where δ(. . .) is the Dirac function and s = 1. The scalar s can be taken as the modulus of
the order parameter; it is often referred to as the scalar order parameter.

Note that if f (θ) is peaked at random in a direction perpendicular to n, i.e., θ =
π/2, one gets s = −1/2 from (3.4); therefore, s varies between s = 1 and s = −1/2.
But the physical picture is different for s < 0; e.g., s = −1/2 corresponds to a layer
of elongated molecules arranged randomly on a flat surface (e.g., a bounding plate) and
remaining parallel to this surface (Fig. 3.9).

4V.N. Tsvetkov, Acta Physicochim. USSR 16, 132 (1942).
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Figure 3.9. Molecular distribution for the state with scalar order parameter s = −1/2.

Experimentally, for a typical thermotropic nematic material, s varies as indicated
schematically in Fig. 3.5. s can be directly measured by a nuclear magnetic resonance
(NMR) technique from analysis of spectra reflecting motion of nuclei (usually hydrogen
or deuterium) that is averaged both on molecular (around the axis a) and macroscopic
(around the director n) levels. Many other methods to measure s take advantage of the re-
lations between the macroscopic properties of the nematic phase and the order parameter.

3.2.2. Macroscopic Properties

Macroscopic properties such as electric and magnetic susceptibilities of the nematic phase
measured in different directions depend on both the director n and the scalar order param-
eter s. We consider a uniaxial nematic and use SI units,5 keeping notations close to that of
Jackson’s (1998) textbook.

3.2.2.1. Dielectric Case

An electric field E applied to a dielectric medium creates local dipole moments and, thus,
induces an electric polarization P. The functional form of P(E) depends on material prop-
erties and is generally unknown. One can expand P in terms of E

P = P0 +
(
∂P
∂E

)∣∣∣∣
E=0

· E + · · · , (3.5)

where P0 is the vector of spontaneous polarization. In an orientationally ordered medium,
P0 might be nonzero due to different mechanisms, such as the flexoelectric effect [polar-
ization induced by orientational deformations, n = n(r)], order-electricity [polarization in-
duced by spatial changes of the order parameter s = s(r)], or surface polarization (caused

5The SI units are meter, kilogram, second, and Ampere for electric current; thus, it is the MKSA system.
The system defines the magnetic permeability of free space (magnetic constant) as µ0 = 4π × 10−7 Henry/m
and the permittivity of free space (electric constant) as ε0 = 8.8541878 . . . × 10−12 Farada/m from the relation
1/(ε0µ0) = c2, where c = 2.99792458 . . .× 108 m/s is the speed of light in vacuum.
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by broken polar symmetry at the bounding surface, n �= −n). We assume P0 = 0. For
weak fields, the expansion (3.5) can be cut at the linear term:

Pi = ε0αi j E j , (3.6)

where αi j are the components of the dielectric susceptibility tensor α and ε0 is the electric
constant, the permittivity of free space (see Footnote 5). Note that the vectors P and E
have generally different orientations. If the medium is isotropic, then all directions are
equivalent, and P is parallel to E. Recalling that the displacement is a vector sum of the
electric field and the induced polarization, D = ε0E + P, one obtains

Di = ε0 Ei + ε0αi j E j = ε0(δi j + αi j )E j = ε0εi j E j , (3.7)

where εi j are the components of the relative electric permittivity tensor ε and δi j is the
Kronecker delta.

The tensor ε is symmetric; it is diagonal in the Cartesian coordinates with the axis Z
along n. The two eigenvalues of the diagonalized tensor relative to the directions perpen-
dicular to n are degenerate, because of the cylindrical symmetry of the uniaxial nematic.
Thus, in this coordinates system:

ε =

ε⊥ 0 0

0 ε⊥ 0
0 0 ε||


 . (3.8)

In an arbitrary coordinate system, one can write εi j = ε⊥δi j + εani n j , where εa =
ε|| − ε⊥ is the dielectric anisotropy of the liquid crystal. The dielectric constants ε|| and
ε⊥ are frequency dependent. At optical frequencies, ε|| and ε⊥ are directly related to the
indices of refraction of the medium (Section 3.3.2). At low frequences, ε|| and ε⊥ are of the
order (1-10) and the dielectric anisotropy εa can be either positive or negative, depending
on the molecular structure. For example, εa ≈ 13 for 5CB (Fig. 2.12), whereas εa ≈ −0.7
for MBBA at 25◦C; there are materials in which εa changes sign with the temperature; see
the book by Blinov and Chigrinov.

3.2.2.2. Magnetic Case

An external magnetic field of induction B applied to a liquid crystal induces a magneti-
zation M = µ−1

0 B − H, where µ0 is the permeability of vacuum, H is the analog of the
electric displacement D, called the magnetic field or the magnetic field strength; B is often
called the magnetic flux density. If the field is small, the magnetization can be assumed
linearly dependent on the field, Mi = χi j H j . The magnetization can be written through
the components Bi of B:

Mi = µ−1
0 χi jB j , (3.9)
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where i, j = x, y, z, χi j = χ j i are the components of the symmetric magnetic suscep-
tibility tensor χ (calculated per unit volume). The last expression neglects the local field
effects, which is justified by the smallness of χi j (≈ 10−5 in SI units; in CGS units, the
values of χi j are 4π times smaller).

As in the electric case, two eigenvalues of χ are degenerate, due to the cylindrical sym-
metry. Hence, in the frame of its eigenvectors along n and along two arbitrary directions
perpendicular to n, χ writes:

χ =

χ⊥ 0 0

0 χ⊥ 0
0 0 χ||


 . (3.10)

In an arbitrary coordinate system, χi j = χ⊥δi j + χani n j , where χa = χ|| − χ⊥ is the
anisotropy of the magnetic susceptibility. In the usual nematics such as 5CB or MBBA,
χ|| < 0 and χ⊥ < 0: The materials are diamagnetic; i.e., the field-induced magnetization
is opposite to the applied field. Paramagnetic liquid crystals may be prepared by synthe-
sizing molecules with metal atoms. No single-component ferromagnetic mesophases have
been reported so far; however, a ferromagnetic mesophase can be obtained when the liquid
crystal is doped with small ferromagnetic particles. In what follows, we restrict the con-
sideration to the diamagnetic materials. As a rule, the diamagnetic anisotropy is positive,
χa > 0, and n orients along the field. The reason is that the circular electric currents in the
aromatic rings of molecules, such as 5CB (Fig. 2.12) and MBBA (Fig. 2.14), create a large
negative component of the diamagnetic susceptibility in the direction perpendicular to the
plane of the rings (and to the long axis of the molecule); i.e., |χ⊥ | > |χ|| |.

The anisotropies of macroscopic properties are caused by the orientational order of liq-
uid crystals. Measuring these anisotropies allows one to establish the degree of the orienta-
tional order s. The magnetic measurements are especially convenient compared with their
electric counterparts, because in the magnetic case, the local field acting on the molecules
differs very little from the external field. It can be seen by recalling that the magnetic
susceptibilities (≈ 10−5) are much smaller than 1 and by writing

Bi = µ0(δi j + χi j )Hj = µ0(1 + χ⊥)Hi + µ0χani n j Hj . (3.11)

The relation between s and anisotropic magnetic properties can be established by in-

troducing an effective magnetic susceptibility tensor κ ′ for each individual molecule. Be-
cause magnetic interactions between molecules are small, the macroscopic susceptibility
can be obtained from the sum of molecular susceptibilities with appropriate averaging over
the distribution function f (θ)(the procedure of summation is less obvious for the dielec-
tric case because the molecular polarizabilities are strongly influenced by the surrounding
dipoles). One finds (Problem 3.2):

χa = N (κ ′|| − κ ′⊥)s, (3.12)
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where N is the number of molecules per unit volume; κ ′|| and κ ′⊥ are the molecular sus-
ceptibilities calculated along the molecular axis and the (degenerate at zero frequency)
directions normal to it, respectively.

Thus, the amount of order in the nematic system can be defined in terms of a macro-
scopic property. In the isotropic phase, χa = 0 and s = 0. Let Trχ = χxx + χyy + χzz ;
one can construct a traceless symmetric tensor

Qi j = Q
(
χi j − 1

3δi j T rχ
)
. (3.13)

One easily checks that Tr Q = Qxx + Qyy + Qzz = 0. Each component vanishes in the
isotropic phase, and it is proportional to s in the uniaxial nematic phase:

Q = Q


−χa/3 0 0

0 −χa/3 0
0 0 2χa/3


 . (3.14)

The value of the constant Q is not important, and we can choose Q = N−1(κ ′||−κ ′⊥)−1

for convenience. With χi j = χ⊥δi j + χani n j , one obtains

Qi j = s(T )
(

ni n j − 1
3δi j

)
. (3.15)

The tensor order parameter allows us to describe the biaxial nematic phase as well:

Qi j = s
(

ni n j − 1
3δi j

)
+ p(li l j − mi m j ), (3.16)

where (n, l,m = [nl]) are three orthogonal unit directors and p is the “biaxiality parame-
ter”: p = 0 in the uniaxial phase.

Anisotropy of liquid crystals and the possibility to orient the director by an applied
electric or magnetic field leads to numerous practical applications. Any actual liquid crys-
tal cell is confined; say, by a pair of parallel glass plates. Orienting action of the substrates
might prevent director reorientation if the external field is weak. However, if the field is
higher than some threshold value, it eventually overcomes both the “anchoring” at the sur-
faces and the elasticity of the nematic bulk and reorients the director. This is the Frederiks
effect, first discovered for the magnetic case;6 see also Section 5.4.3 and 13.2.3. When the
field is removed, the surface anchoring restores the original director structure. Thus, one
can use the external field and surface anchoring to switch the liquid crystal orientation back
and forth. The Frederiks effect, mainly its dielectric version, is used in many electrooptic

6V. Frederiks and V. Tsvetkov, Sov. Phys. 6, 490 (1934); V. Freedericksz and V. Zolina, Trans. Faraday Soc.
29, 919 (1933).
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devices (displays, optical shutters, etc.). The liquid crystal is usually sandwiched between
two transparent electroconductive plates (for example, glass covered with indium tin oxide)
coated with a suitable alignment layer (for example, a buffed polymer film). The voltage
across the cell controls the director configuration and, thus, the optical properties of the
cell. Note that a number of factors, such as nonlocal character of the electric field distribu-
tion in the distorted liquid crystal, finite electroconductivity, flexoelectricity (Section 5.3),
surface polarization (Section 13.2.3), and so on, make the electric effects in nematics much
more complicated than their magnetic counterparts.

3.3. Light Propagation in Anisotropic Media;
Application to Director Fields

Probing anisotropic media such as crystals and liquid crystals with light historically greatly
contributed to our understanding of the structure and properties of condensed matter. O.
Lehmann’s popular studies of microscopic textures7 and determination of mesomorphic
phases and structures by G. Friedel8 were based on such observations. Thin (microns) liq-
uid crystal samples are easy to prepare between glass plates; large birefringence of these
materials results in good contrast of regions with different orientation of the optical axis
(which coincides with the director in uniaxial nematic and smectic A phases). Most liquid
crystal structures can be recognized readily by the observation of textures and defects be-
tween crossed polarizers. Furthermore, by applying an external field to a liquid crystal cell,
one changes the director configuration and, consequently, the related optical properties, as
just indicated above. It is therefore of great importance to gain some background on the
basic principles of light propagation in anisotropic media.

3.3.1. Fresnel Equation
The propagation of light in a homogeneous medium is described by Maxwell’s equations,
which in the absence of currents and charges write in SI units as

∇ × E = −∂B/∂t, (3.17)

∇ × H = ∂D/∂t, (3.18)

∇ · B = 0, (3.19)

∇ · D = 0. (3.20)

These equations should be supplemented by the relations that describe how the ma-
terial responds to the electromagnetic field of the propagating wave. Because we are in-

7O. Lehmann, Flüssige Kristalle; W. Engelmann, Leipzig, 1904; Flüssige Kristalle und die Theorie des
Lebens; J. Ambr. Barth, 1908.

8G. Friedel, Les états mésomorphes de la matière, Ann. de Phys. 18, 273 (1922).
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terested in the linear effects only, for which the polarization produced by the field is pro-
portional to that field, then (3.7) and (3.11) can serve as these constitutive equations. Note
that the problem of light propagation corresponds to electromagnetic fields of high fre-
quences ∼ 1015 Hz. The dielectric permittivities are frequency dependent, and their val-
ues at optical frequencies (of the order of unity) are often substantially smaller than the
static or low frequency (� ∼ 103 Hz) values, especially when the material is composed
of polar molecules. The orientation of the permanent dipole moments of polar molecules
contributes significantly to the permittivity at low frequencies; however, it is small at opti-
cal frequencies (e. g., in water, the static permittivity is ε ≈ 78, but at optical frequencies,
ε = 1.78). Besides, in nonabsorbing media, all components εi j are real. Furthermore, the
magnetization effects can be neglected, so that M = 0 and (3.11) simplifies to B = µ0H.

Consider a plane monochromatic wave E(r, t) = E0 exp(ik · r − i� t), H(r, t) = · · ·,
and so on. Here, r is the radius vector directed from the source of the wave to the point
of observation, � is the frequency, and k is the wavevector, which is real, k = 2π/λ =
�/ν, because the dielectric media are nonconductive, i.e., transparent; finally, λ is the
wavelength and ν is the phase velocity of the wave. The Maxwell’s equations simplify to

k × E = �B, (3.21)

−k × H = �D, (3.22)

k · H = 0, (3.23)

k · D = 0. (3.24)

The last set of equations implies that the vectors k, D, and H are mutually perpendic-
ular. Besides, H⊥E. Because H is normal to three vectors k, D, and E, these three form a
plane. The energy transfer vector is defined by the Poynting vector S = [E × H]. There-
fore, S and k generally have different directions in an anisotropic medium (Fig. 3.10). The
phase of the waves moves in the direction k; the energy is transferred in the direction S.
These two directions coincide in isotropic media.

Eliminating H from (3.21) and (3.22), one obtains

� 2µ0D = k2E − k(Ek). (3.25)

This expression must be compatible with the constitutive equation (3.7), D = εE; hence,

(N 2δi j − Ni N j − εi j )E j = 0, (3.26)

where we introduce a “refractive index” vector N = k 1
�

√
ε0µ0

oriented along k. The ab-

solute value N is called the refractive index of a given wave in a given medium. N is
inversely proportional to the phase velocity ν of the propagating wave in the medium.
Because k = �/ν and 1/

√
ε0µ0 is the speed c of light in vacuum, then N = c/ν.
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D

E

k

H , B

S

Figure 3.10. Orientation of vectors that characterize a plane monochromatic wave in an anisotropic
dielectric where the electric field E and the dielectric displacement D have different directions. The
dashed plane contains the vectors E,D, S, and k; the vectors H||B are normal to this plane. The
direction k along which the wave phase moves is different from the direction S = [E × H] of the
energy transfer; S⊥E and k⊥D.

The three homogeneous equations (3.26) have a nontrivial solution in N only if their
discriminant vanishes. This requirement results in the famous Fresnel equation, which
reads as

Det (k, ω) = N 2(εx N 2
x + εy N 2

y + εz N 2
z )− [εx N 2

x (εy + εz)+ εy N 2
y (εx + εz)

+ εz N 2
z (εx + εy)] + εxεyεz = 0 (3.27)

in the coordinate system with diagonalized ε. In a uniaxial medium, where ε contains only
two independent entries, ε|| and ε⊥,

Det (k, ω) ≡ (N 2 − ε⊥)(ε||N 2
z + ε⊥(N 2

x + N 2
y )− ε||ε⊥) = 0. (3.28)

3.3.2. Ordinary and Extraordinary Waves

Equation (3.28) shows that in a uniaxial medium, the surface of refractive indices
∑

(also
called the surface of wavevectors), of degree four in the space of refractive indices, splits



3.3 Light Propagation in Anisotropic Media; Application to Director Fields 93

into a sphere of radius N 2 = ε⊥ and an ellipsoid of revolution
N2

z
ε⊥ + N2

x +N2
y

ε|| = 1. There are
two points where the two surfaces touch each other; the axis that connects these two points
is the optic axis of the uniaxial nematic. There are two waves propagating in an uniaxial
medium. For one of them, the so-called ordinary wave (o-wave), the medium behaves as
an isotropic medium with the index of refraction no = √

ε⊥. The second wave is extraordi-
nary (e-wave) with an index of refraction N that depends on the direction of propagation.
Introducing an angle θ between the optic axis and the wavevector k, N 2

z = N 2 cos2 θ ,
N 2

x + N 2
y = N 2 sin2 θ , one gets the effective refractive index for the extraordinary wave as

the function of the ray direction θ :

1

N 2(θ)
= cos2 θ

n2
o

+ sin2 θ

n2
e
, or N (θ) = none√

n2
e cos2 θ + n2

o sin2 θ

, (3.29)

where ne = √
ε|| is the extraordinary refractive index.

If ne < no, the sphere is outside of the ellipsoid (an optically negative nematic, com-
posed usually of disk-like molecules); if ne > no, the sphere is inside the ellipsoid (an
optically positive nematic composed usually of elongated molecules) (Fig. 3.11). If prop-
agation is along the optic axis, then both ordinary and extraordinary waves have the same

Optically negative crystal

Y
Z

X

nz = ε⊥

ε| |

nx = ny = ε| |

Z

X

Ynz = ε⊥

nx = ny = ε| |

Optically positive crystal

(a) (b)

ε| |

Figure 3.11. Surfaces of refractive indices for (a) an optically negative and (b) an optically positive
uniaxial crystal.
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Figure 3.12. Surfaces of refractive indices for an optically negative uniaxial crystal with indicated
directions of wavevectors k, ray vectors S, electric fields E, and displacement vectors D for ordinary
(circle) and extraordinary (ellipse) components.

velocity and are indistinguishable. The refractive indices no and ne are inversely propor-
tional to the phase velocity v of the propagating wave in the medium. Because k = �/ν,
then no = c/νo and ne = c/νe. A typical birefringence (ne −no) of a thermotropic nematic
material is ≈ (0.1 ÷ 0.2); it can be somewhat smaller in lyotropic systems.

Using Eqs.(3.26), one can find the polarizations of the ordinary and extraordinary
waves (Fig. 3.12). Without loss of generality, we assume that the X Z coordinate plane
contains the parallel vectors k and N; i.e., Ny = 0. Then, the two solutions of (3.26) have
the following polarizations:

1. The o-wave is linearly polarized along the axis Y , which is normal to both the optic axis
n and the wavevector k:

E (o)x = 0, E (o)y �= 0, E (o)z = 0. (3.30)

Because Dx = ε⊥E (o)x = 0, Dy = ε⊥E (o)y �= 0, and Dz = ε||E (o)z = 0, then D||E
and S||k in the o-wave. Both ray and phase velocities are equal to c/

√
ε⊥ = c/no and

do not depend on the direction of propagation.



3.3 Light Propagation in Anisotropic Media; Application to Director Fields 95

2. The e-wave has the components

E (e)x �= 0, E (e)y = 0, E (e)z �= 0, (3.31)

where

E (e)z

E (e)x

= N 2
z − ε⊥
Nx Nz

= −ε⊥
ε||

Nx

Nz
. (3.32)

Equation (3.32) shows that the E-vector in the e-wave is tangential to the refractive
index ellipsoid

N2
z
ε⊥ + N2

x
ε|| = 1. We recall that the equation of the tangent line to a curve

specified by an implicit equation ϕ(Nx , Nz) = 0 is tanα = − ∂ϕ/∂Nx
∂ϕ/∂Nz

= − ε⊥
ε||

Nx
Nz

, where α
is the angle between the tangent line and the axis X . The direction of S is easily found as

S(e)x

S(e)z

= ε⊥
ε||

Nx

Nz
, (3.33)

because S is normal to E.

3.3.3. Observations in Polarized Light. Microscopy

Note that the plane of polarization of the e-wave always contains the director n, whereas
the o-wave is always polarized normally to n. This rule is of use in observations with
polarized light.

3.3.3.1. Transmitted Intensity; the Schlieren Texture

Consider a nematic slab sandwiched between two glass plates and placed between two
crossed polarizers. The director n is in plane of the slab (Fig. 3.13) and depends on the
in-plane coordinates (x, y). We assume that it does not depend on the vertical coordinate
z. The light beam impinges normally on the cell, along the axis z. A polarizer placed be-
tween the source of light and the sample makes the impinging light linearly polarized. In
the nematic, the linearly polarized wave of amplitude A and intensity I0 = A2 splits into
the ordinary and extraordinary waves with mutually perpendicular polarizations and ampli-
tudes A sin β and A cosβ, respectively; β(x, y) is the angle between the local n(x, y) and
the polarization of incident light. The vibration of the electric vectors at the point of entry
are in phase. However, the two waves take different times, nod/c and ned/c, respectively,
to pass through the slab. At the exit point, the electric vibrations A sin β cos

(
ωt − 2π

λ0
nod

)
and A cosβ cos

(
ωt − 2π

λ0
ned

)
gain a phase shift�ϕ = 2πd

λ0
(ne −no), where λ0 is the wave-
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Figure 3.13. Propagation of light through a polarizer, uniaxial slab, and analyzer.

length in vacuum. The projections of these two vibrations onto the polarization direction
of the analyzer behind the sample are

a = A sin β cosβ cos

(
ωt − 2π

λ0
no d

)
,

b = −A sin β cosβ cos

(
ωt − 2π

λ0
ne d

)
. (3.34)

When two harmonic vibrations A1 cos(ωt +ϕ1) and A2 cos(ωt +ϕ2) of the same frequency
occur along the same directions, then the resulting vibration A cos(ωt+ϕ) has an amplitude

defined from A
2 = A2

1 + A2
2 + 2A1 A2 cos(ϕ1 − ϕ2). The analyzer, thus, transforms the

pattern of (x, y)-dependent phase difference into the pattern of transmitted light intensity

I (x, y) = A
2
. The intensity of light passed through the crossed polarizers and the nematic

slab between them follows from (3.34) as

I = I0 sin2 2β sin2
[
πd

λ0
(ne − no)

]
. (3.35a)

The last formula refers to the case when n is perpendicular to the axis z. If n makes a
constant angle θ with the axis z, then (3.35a) becomes [see (3.29)]
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I = I0 sin2 2β sin2


πd

λ0


 none√

n2
e cos2 θ + n2

o sin2 θ

− no





 . (3.35b)

Of course, the treatment can be further extended to describe the optical properties of com-
plex director configurations in nontrivial geometries (e.g., inside liquid crystalline droplets)
or in field-driven cells; we refer interested readers to numerous reviews; see, e.g., Blinov
and Chigrinov (1994).

Equations (3.35) are fundamental for understanding liquid crystal textures. First, note
that the phase shift and, thus, I depend on λ0. As a result, when the sample is illuminated
with a white light, it would show a colorful texture (Fig. 3.14). The interference colors are
especially pronounced when (ne − no) d ≈ (1 ÷ 3)λ0. With typical (ne − no) ≈ 0.2, λ0 ≈
500 nm, the “colorful” range of thicknesses is d ≈ (1 ÷ 10)µm. Second, the director tilt θ
greatly changes the phase shift. When n||z (the so-called homeotropic orientation, θ = 0),
the sample looks dark: Only the ordinary wave propagates and according to (3.35b), I = 0.
Third, if θ > 0 but β = 0,±π/2, . . . , one might still observe dark textures, I = 0, even in
nonmonochromatic light. In a sample with in-plane director distortions n(x, y), wherever
n (or its horizontal projection) is parallel or perpendicular to the polarizer, the propagating

Figure 3.14. Schlieren texture of a thin (≈ 1µm) film of the nematic 5CB on a glycerin substrate.
Note the interference colors; dark brushes mark the regions in which the director is parallel to either
the polarizer or the analyzer. Nodes in which four brushes meet are cores of topological point defects.



Chapter 3 The Order Parameter: Amplitude and Phase98

mode is either pure extraordinary or pure ordinary and the corresponding region of the
texture appears dark. Figure 3.14 is an example of such a texture with dark “brushes of
extinction.” Points at which the brushes converge are centers of topological defects. The
texture with defects and dark brushes is called the Schlieren texture.

In principle, rotating the crossed polarizers, one can reconstruct the whole in-plane
director pattern of the Schlieren texture. However, there is an ambiguity: because I ∼
sin2 2β, the reconstruction produces two director patterns, β(x, y), and β(x, y)+ π/2. To
map the in-plane director configuration unambiguously, one can use optical compensators,
or quartz wedges.

Compensators are plates with a known phase shift. For example, Red Plate- I gives a
phase shift equal to 575 nm. The plate has two well-defined directions, with a minimum
refractive index nmin (called “the fast direction”) and nmax (called “the slow direction”).
The compensator is inserted into the slot between the sample and the analyzer, at 45◦ to the
polarizer and analyzer directions. The black brushes of the texture become red, because the
sample’s phase retardation in these regions is zero and the total phase retardation is defined
entirely by the compensator. The region where the director is parallel to the fast direction
and the region where the director is parallel to the slow direction would acquire different
interference colors and, thus, can be distinguished. Without the compensator, these regions
would be equally bright because for both of them, I ∝ sin2 2β = sin2 π

2 = 1 in (3.35).

3.3.3.2. Fermat Principle and the Path of the Extraordinary Light

The extraordinary light, when observed separately, fluctuates in intensity due to the ther-
mal vibrations of the director field, which cause variation of N (k) in time (flickering); no
flickering is associated with the ordinary light.

Fermat’s principle tells us that the integral

F =
∫ B

A
N(k, r) · dr (3.36)

is minimized along the path actually followed by the energy (i.e., the envelope of the Poynt-
ing vector S) with respect to any neighboring path; here, dr is a vector tangent to the path.
We now develop some considerations on its use to calculating the path of the extraordinary
ray, restricting to a uniaxial medium.

According to (3.36), the ordinary ray, for which N (k) = no, propagates along a
straight line in a slightly deformed nematic or smectic, slightly meaning that the gradi-
ent of the director is small compared with the inverse wavelength of light, with the result
that the conditions of geometrical optics are satisfied. The wavevector k, the Poynting vec-
tor S, and the tangent to the path dr are colinear. On the other hand, the extraordinary ray
propagates in a more complex way, because S and dr are no longer aligned with k, and the
use of (3.36) is more involved. In fact, the situation simplifies immediately if one notices
that Fermat’s principle has a straightforward interpretation in terms of velocities: Fermat’s
integral F is indeed proportional to the duration of the path between A and B (for an ordi-
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nary ray, n0 = c/v0; see below), and Fermat’s principle tells, indeed, that this duration is
minimized. Therefore, Fermat’s principle can also be expressed as the minimization of

F =
∫ B

A

1

s
d�, (3.37)

where s = s(t, r) is the ratio of the (scalar) group velocity to the velocity of light (i.e., is
proportional to the Poynting vector) and t = dr/d� is the unit vector tangent to the path.
Let us introduce the ray vector s with the direction parallel to the Poynting vector S and the
absolute value defined from the condition s · N = 1. We can easily show that | s | = s. This
relation s ·N = 1 stresses the conjugated character of the two quantities. S is perpendicular
to the surface of indices (Fig. 3.12):

N 2
z

ε⊥
+ N 2

x + N 2
y

ε||
= 1. (3.38)

Therefore, sx = Nx/ε||, sy = Ny/ε||, sz = Nz/ε⊥, which satisfies the relation s · N = 1.
By substitution into (3.38), one gets

ε⊥s2
z + ε||(s2

x + s2
y) = 1, (3.39)

from which the conjugate of (3.29) can be written as

1

s2
= n2

o cos2 φ + n2
e sin2 φ. (3.40)

Here, φ is the angle of the Poynting vector with the optic axis. Note that s, k, and the optic
axis are in the same plane.

The expression of s given in (3.40) is written in the principal axes of the surface of
indices; in a situation in which the liquid crystal is deformed, it has to be written in the
laboratory frame, and expressed in the form s = s(t, r). The equation of the path is then
obtained by integrating the Euler-Lagrange equations, which minimize Fermat’s integral:

∂(s−1)

∂xi
− d

d�

∂(s−1)

∂ti
= 0, i = 1, 2, 3, (3.41)

with the appropriate boundary conditions (see Problem 3.3).

3.3.3.3. Miscellaneous

The observations in polarized light discussed above are greatly affected by twist deforma-
tions. We consider briefly the so-called cholesteric planar texture: The director is uniform
in the plane (x, y), but twists along the normal axis z (Fig. 2.22). A simple “wave-guide”
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regime, called the Mauguin regime,9 occurs when the pitch of this helicoidal structure is
much larger than the wavelength of light, p � λ0/(ne − no). When the incident light is
polarized along the director (at the entry) or perpendicular to it, the transmitted light is still
linearly polarized, but the direction of polarization is rotated by an angle γ ; γ is the angular
difference in the director orientations at the opposite plates. If the cholesteric pitch is of the
order of λ0, p = λ0/n (n is some average value of the refractive index), then one observes
Bragg reflection; the cholesteric sample appears colored in the reflected light. Finally, for
shorter pitches, the cholesteric behaves as an optically active medium with a huge rotatory
power. All of these effects are intensively used in numerous optical applications of twisted
nematics and cholesterics; for example, the electrically controlled Mauguin regime is at
the heart of the so-called “twisted” nematic displays.

Interaction of light and soft matter structures is not limited by a passive modification
of the properties of light by the medium, as briefly illustrated above. There are optical
effects of nonlinear nature, in which the propagating light causes changes in the medium.
The well-known examples are self-focusing and self-diffraction of light beams propagating
in the nonlinear medium, harmonic generation and other wave mixing effects, and soon.
These effects can be observed both in isotropic and anisotropic media. There are also non-
linear optical effects intimately related to the orientational order. We list only few, referring
the readers to reviews by Khoo (1995) and Simoni (1997).

1. Optical Frederiks effect, i.e., director reorientation in the electric field of the propagating
light beam.10

UV

thermal

trans cis

Figure 3.15. Trans isomer and cis isomer of the mesogenic molecule diheptylazobenzene. Trans-to-
cis isomerization can be triggered by short-wavelength (ultraviolet) irradiation. Thermal relaxation
or long-wavelength irradiation restores the trans configuration.

9C. Mauguin, Bull. Soc. fr. Minér. Cristallogr. 34, 3 (1911).
10A. Saupe, Deformation of a nematic liquid crystal by polarized light, subm. to Phys. Rev. Lett. on July 17,

1969; published in “Dynamics and Defects in Liquid Crystals,” edited by P.E. Cladis and P. Palffy-Muhoray,
Gordon and Breach Science Publishers, Amsterdam, p. 441 (1998); B. Ya. Zel’dovich, N.F. Pilipetskii, A.V.
Sukhov, N.V. Tabiryan, JETP Lett. 31, 263 (1980); A.S. Zolot’ko, V.F. Kitaeva, N. Kroo, N.I. Sobolev, L. Csillag,
ibid. 32, 158 (1980); I.C. Khoo and S.L. Zhuang, Appl. Phys. Lett. 37, 3 (1980).
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2. Thermal effects of light propagation. Their importance is enhanced by a relatively nar-
row temperature range of stability of the liquid crystalline phases; small temperature
variations cause drastic changes in the refractive indices or even trigger phase transi-
tions.

3. Light-induced conformational changes of the molecules, such as trans-cis isomerization
(Fig. 3.15), which might lead to drastic changes in the phase diagram of the material.
For example, rod-like trans isomers of the diheptylazobenzene shown in Fig. 3.15 are
capable of forming the liquid crystal phase, whereas their cis-counterparts are not.

4. Light-induced polymerization and photoinduced orientational order in polymers irradi-
ated with polarized light.

5. “Guest-host” effect: anisometric foreign molecules or particles can be aligned by the
liquid crystal. When the guest is dye, the effect can be used in electro-optical devices.
A fluorescent dye allows one to image 3D director structures (so-called fluorescence
confocal polarizing microscopy11), Fig. 11.17.

Problem 3.1.

(a) Find the order parameter space for a SmC.

(b) Compare the order parameter space of SmC and 2D nematic with molecules parallel to the
boundary.

(c) How does the order parameter space of a ferromagnet change in the strong magnetic field?

Problem 3.2. Prove the relationship χa = χ|| − χ⊥ = N (κ ′|| − κ ′⊥)s, Equation (3.12).

Answers: Suppose the molecules are rigid cylinders with axis a oriented along the axis Z ′ of
some coordinate system (X ′, Y ′, Z ′). In this system, the components κ ′

i j of the molecular tensor

read simply as κ ′
x ′x ′ = κ ′

y′y′ = κ ′⊥, κ ′
z′z′ = κ ′||. In the laboratory system (X, Y, Z) with the

axis Z oriented along n, the components of the molecular susceptibility tensor are found from
the transformation law καβ = cos(α, α′) cos(β, β′)κ ′

α′β ′ , where cos(α, α′) are direction cosines
of angles between the coordinate axes of the two systems. Macroscopic magnetic susceptibilities
χαβ = N

∫ 2π
0 dϕ

∫ π
0 καβ(θ, ϕ) f (θ, ϕ) sin θ dθ of N molecules will be defined by the molecular sus-

ceptibilities averaged over the distribution function f (θ, ϕ). Using (3.4), one finds χa = χ|| −χ⊥ =
N (κ ′|| − κ ′⊥)s.

Problem 3.3. Calculate the paths of the extraodinary rays about a radial disclination line of strength
k = 1. The plane of incidence and direction of light polarization are perpendicular to the line
(Fig. 3.16) (adapted from Grandjean12).

Answers: The solution is translation invariant along the disclination. Let r = f (ω) be the equation
of the path in a plane perpendicular to the line, in polar coordinates, the origin of the coordinates

11I.I. Smalyukh, S.V. Shiyanovskii, and O.D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
12F. Grandjean, Bull. Soc. Franç. Minéralogie, 42, 42 (1919).
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Figure 3.16. Deviation of the extraordinary rays around a radial disclination line (perpendicular to
the plane of the drawing). We assume that the director in (r,�) is along the r-direction (disclination
k = 1, see Section 11.1).

being taken on the line. We have d�2 = dr2 + r2 dω2 and cosφ d� = dr ; φ is the angle of the
Poynting vector with the optical axis. Hence, putting r ′ = dr

dω , one gets F = ∫
(n2

or ′2+n2
er2)1/2 dω.

The associated Euler-Lagrange equation is n2
er2 + n2

o(2r ′2 − r r ′′) = 0, whose solutions can be
written, with two arbitrary constants of integration a and b, as

r =
(

a cos
ne

no
ω + b sin

ne

no
ω

)−1
.

Consider all solutions that correspond to rays coming from a point A at infinity, angle ω = 0
(Fig. 3.16). This condition yields a ≡ 0, and the set of paths can then be written as r = 1/b sin ne

no
ω.

Therefore, all paths have another asymptotic direction parallel to the directions O L1 or O L2, ac-
cording to the position of the incoming ray with respect to the dividing line AO. We have angles
AO L1 = AO L2 = π

no
ne

. Figure 3.16 assumes that the nematic is uniaxial positive; the region
between O L1 or O L2 does not receive any ray.

Problem 3.4. Optical properties of biaxial media, in which all three principal dielectric constants
are different, e.g., εx < εy < εz can be deduced from (3.27). Observe that for the wave propagating
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Figure 3.17. Surface of refractive indices for a biaxial medium. Dashed line shows the direction of
the optical axis.

in the XY plane, Nz = 0, (3.27) becomes (N 2 −εz)(εx N 2
x +εy N 2

y −εx εy) = 0 with two solutions, a

circle N 2 = εz , and an ellipse N2
x
εy

+ N2
y
εx

= 1. Because εx < εy < εz , the ellipse is located inside the

circle. In a similar way, one finds solutions for the X Z and Y Z planes. In the Y Z plane, the ellipse
is outside of the circle, and in the X Z plane, the ellipse and the circle intersect. The surface of wave
vectors has four intersections in the plane X Z (one in each quadrant). In these points, there is only
one value of the refractive index; the corresponding directions are called the optical axes of biaxial
crystal (Fig. 3.17). Find the angle χ between the two optical axes and the axis Z.

Answers: tanχ = ±
√
εz(εy−εx )

εx (εz−εy )
.

Problem 3.5. Find the intensity of light transmitted through a pair of parallel polarizers and a ne-
matic slab with n in the plane of the slab.

Answers: I = Io{1 − sin2 2β sin2[πd
λ0
(ne − no)]}; the notations are the same as in (3.35).

Problem 3.6. Calculate the components εi j of the dielectric permittivity tensor for the chiral ne-
matic liquid crystal with the director field n = {cos qz, sin qz, 0}, where q = 2π/P and P is the
pitch of the director helicoid with an axis along the z-axis.
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Answers: With εi j = ε⊥δi j + εani n j , one finds εxx = ε⊥ + εa cos2 qz = ε(1 + δ cos 2qz);

εyy = ε⊥ + εa sin2 qz = ε(1 − δ cos 2qz); εzz = ε⊥; εxy = εyx = εa sin qz cos qz = εδ sin 2qz,
and εxz = εzx = εyz = εzy = 0; here, ε = (ε|| + ε⊥)/2 and δ = (ε|| − ε⊥)/(ε|| + ε⊥); ε|| and ε⊥
are the permittivities parallel and perpendicular to the director, respectively. For chiral smectic C∗,
similar calculations have been performed by Berreman.13

Further Reading

L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Springer series on
partially ordered systems, New York, 1994.

P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University
Press, 1995.

D. Demus and L. Richter, Textures of Liquid Crystals, Verlag Chemie, Weinheim, New York, 1978.

P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford Science Publication, Clarendon
Press, Oxford, 1993.

J.D. Jackson, Classical Electrodynamics, 3rd Edition, John Wiley & Sons, Inc., New York, 1998.

N.H. Hartshorne and A. Stuart, Crystals and the Polarising Microscope, 2nd edition, Edward Arnold
& Co., London, 1950, 476 pp.

I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Phenomena, John Wiley & Sons, Inc.,
New York, 1995, 298 pp.

L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, New York,
1960.

L.D. Landau and E.M. Lifshitz, Statistical Physics, Addison-Wesley, Reading, MA, 1969.

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals,
World Scientific, Singapore, 1997, 260 pp.

R.E. Stoiber and S.A. Morse, Microscopic Identification of Crystals, Ronald, 1972.

The Optics of Thermotropic Liquid Crystals, Edited by S. Elston and R. Sambles, Taylor & Francis
Ltd., London, 1998.

13D.W. Berreman, Mol. Cryst. Liq. Cryst. 22, 175 (1973).
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Phase Transitions

Physical matter might exist in different forms, or phases, that differ by the type of order,
mass density, and so on. Transitions between the phases are described by the behavior of
thermodynamic potentials, such as the Gibbs G or the Helmholz F free energies, and by
the derivatives of these potentials. The phase transition is called first order if the first deriva-
tives of the potentials (such as entropy, order parameter) exhibit a discontinuity, a jump at
the transition point. These transitions involve nonzero latent heat. If the first derivatives are
continuous but the second derivatives (such as heat capacities) diverge at the transition, it
is a second-order phase transition. It is customary to lump into the second category of con-
tinuous phase transitions all transitions with no latent heat. Although the thermodynamic
potentials in the second-order transitions change gradually, the symmetry of the system
changes discontinuously.

There are three types of theories to describe the appearance of orientational and par-
tial translational order in soft matter systems during phase transitions. Phenomenological
theories employ the idea of Landau that the free energy in the vicinity of the transition can
be expanded in power expansion as a function of a small amplitude order parameter. These
theories rely on symmetry considerations; it is often hard to assign a physical meaning to
the coefficients of the expansion, i.e., to connect them to parameters of molecular interac-
tions. The theories of the second category are molecular-statistical in nature and start with
an appropriate model of molecular interactions. For example, Onsager’s model of hard rods
emphasizes repulsive interactions and the associated effects of the orientational-dependent
excluded volume. The model of Maier and Saupe, in contrast, is based on anisotropic van
der Waals forces of attraction. Finally, the techniques of the renormalization group allows a
conceptual extension of the theories of phase transitions with a full treatment of precritical
fluctuations (for some indications on this type of approach, see Chapter 7). As indicated in
Chapter 3, such fluctuations also relate to the question of short range order.

105
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4.1. Landau–de Gennes Model of the Uniaxial
Nematic-Isotropic Phase Transition

The phenomenological Landau theory has three essential steps: (1) finding a proper order
parameter; (2) expanding the free energy in the vicinity of the transition with respect to the
(small) order parameter; and (3) finding the minima of the free energy at each temperature,
pressure, and so on, as functions of the order parameter.

The tensor Q has all of the symmetries of the order parameter that are required to de-
scribe the nematic-to-isotropic phase transition N ⇔ I. It has been employed by de Gennes
to build the Landau expansion of the (Gibbs) free energy density in the vicinity of the
transition:

g(T ) = g0 + 1
2 A(T )QαβQβα − 1

3 B(T )QαβQβγ Qγα

+ 1
4 C(T )QαβQαβQγ δQγ δ + · · · , (4.1)

where g0 is the free energy density of the isotropic phase and summation over repeated
indices is implied. Note that we use lowercase, e.g., g(T ), to conote an energy density, and
uppercase, e.g., G = ∫

g dV , to conote an energy. An important note about the thermo-
dynamic meaning of G that would be relevant to many other situations discussed in this
book is in order here. Very often, dealing with N ⇔ I transition or other phenomena in soft
matter, one connects the density g to either the Gibbs G or the Helmholtz F free energies,
or just to an abstract “free energy,” without distinguishing the two. We recall that if the
system is maintained at a constant temperature T and pressure p, the quantity that evolves
to its minimum is G. If T and volume V are kept constant, then the quantity to minimize
is F = G − pV . Real experiments are usually done under the constraints p = const and
T = const, whereas computer modeling is easier for V = const and T = const. If the
changes in the density (volume) of the experimental system are small, the difference in
the theoretical results based on G or F minimization would be small as well. The N ⇔
I transition falls into this category because the transition-induced jump of the density at
atmospheric pressure is small, about 0.3%; thus, there is no density-dependent terms in the
expansion (4.1) and g might be treated as the density of either G or F .

Each term of the expansion (4.1) is invariant not only under the operations of symmetry
of the nematic phase, but also under any operation that changes the “phase” of the order
parameter (in the sense of Section 3.1), such as a global rotation in space. A remarkable
feature of this expansion is the presence of the cubic term, which is odd in the scalar order
parameter s and, thus, not invariant under the transformation Qαβ → −Qαβ ; i.e., s → −s.
As discussed above, the nematic states described by s and by - s are not degenerate, and
therefore, the transformation s → −s is not allowed. Consequently, according to Landau’s
theorem, the N ⇔ I transition is of the first order, as confirmed by numerous experiments.
This is in contrast with the Heisenberg ferromagnet, where the states | M | and −| M | are
degenerate; hence, the cubic term is forbidden in the Landau expansion of the ferromagnet.
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Landau’s theorem states that a necessary (but not sufficient) condition for the transition to
be second order is that the terms of the third order in the order parameter free energy
expansion vanish identically; i.e., B ≡ 0. In fact, as it is well known, the Curie point is a
second-order phase transition.

The coefficients A, B, and C in the Landau–de Gennes expansion (4.1) are temperature
dependent. Apparently, A should be positive in the high-temperature region in the isotropic
phase and negative in the low-temperature ordered nematic phase: A > 0 would allow us
to obtain the energy minimum at s = 0, and A < 0 would allow us to obtain the minimum
at s �= 0. The simplest possible form of A(T ) is a linear one: A(T ) = a(T − T ∗). If the
transition were of the second order, its temperature would be precisely T ∗. In the present
case of a first-order transition, the meaning of T ∗ is slightly different: It marks the limit of
metastability of the isotropic phase upon cooling, as we shall see below. Simplifying the
model further, we assume that a, B, and C are temperature-independent positive constants.

Substitution of (3.15) into expansion (4.1) yields

g = g0 + 1
3 a(T − T ∗)s2 − 2

27 Bs3 + 1
9 Cs4, (4.2)

which should be minimized with respect to s. Equation ∂g/∂s = 0 may be written as

a(T − T ∗)s − 1
3 Bs2 + 2

3 Cs3 = 0, (4.3)

and it has three solutions, two of which are

siso = 0 (the isotropic phase), (4.4a)

snem = B

4C

[
1 +

√
1 − 24a(T − T ∗)C

B2

]
> 0 (the nematic phase). (4.4b)

The third solution

s3 = B

4C

[
1 −

√
1 − 24a(T − T ∗)C

B2

]

should be disregarded. It corresponds either to an energy maximum or, at temperatures
T < T ∗ (s3 < 0), to a relative minimum (Fig. 4.1). Because at T < T ∗ the solution
snem > 0 provides the absolute free energy minimum, the state s3 < 0 is not achieved in
equilibrium.

The transition temperature Tc and the corresponding value sc > 0 of the order parame-
ter are defined from the condition that the free energy densities of the two phases are equal,
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Figure 4.1. Free energy density vs scalar order parameter: (4.2) in the dimensionless form (g − g0)×
104 = 1.32( T −T ∗

Tc
)s2 − 0.0181 × s3 + 0.0282 × s4 with Tc = 319.0 K, T ∗ = 318.3 K, and

T ∗∗ = 319.1 K (see Problem 4.1).

g(s �= 0) = g0, and the condition of stability ∂g/∂s = 0:

Tc = T ∗ + B2

27aC
, (4.5)

sc = B/3C. (4.6)

There is another temperature T ∗∗ of importance that marks the absolute limit of overheat-
ing of the nematic phase. It is achieved when the solution snem > 0 ceases to provide a
minimum of the free energy density, i.e., when the expression under the square root in
(4.4b) vanishes:

T ∗∗ = Tc + B2

216aC
. (4.7)

Likewise, the temperature T ∗ is the limit of metastability of the isotropic phase upon cool-
ing; note that Tc = T ∗ = T ∗∗ when B = 0 (a second-order phase transition).

At T > T ∗∗, the isotropic state is absolutely stable. At Tc < T < T ∗∗, a relative
minimum at snem > 0 appears. If the system is initially in the isotropic phase, it will
remain isotropic. If the system is initially in the nematic state, it can be superheated above
Tc.
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At T ∗ < T < Tc, the situation is reversed: It is the isotropic state that is metastable,
and the nematic state that is stable. If the system is cooled down from the isotropic phase,
in the region T ∗ < T < Tc, one would observe nucleation and growth of nematic droplets.

A careful reader might raise an objection about the very applicability of the expansion
(4.1) in terms of the order parameter to the first-order transition. Landau expansions are
well suited for the second-order phase transitions, in which the order parameter changes
continuously from 0 to a small value in the ordered phase. Partial justification of the ex-
pansion (4.1) comes from the fact that the N ⇔ I transition is of the weak first order, close
to the second-order phase transition. Experimentally, the weakness of the transition mani-
fests in a small latent heat (less than kB T per molecule) and in strong pretransitional effects
(e.g., in light scattering) over a relatively wide temperature range. Theoretically, the weak-
ness of the transition is related to the smallness of the coefficient B, a feature that makes
the expansion (4.1) meaningful. The relative smallness of B is illustrated using dimension-
less energy units. For the volume densities of energy [g] = [J/m3], the normalizing factor
is [RTρ] = [(J · mol−1 · K −1) · K · (mol/m3)] ≡ [J/m3], where R is the molar gas con-
stant and ρ is the number of moles per unit volume. Usually, experimental systems such
as magnets fit the theory with dimensionless Landau coefficients of the order of unity. In
liquid crystals, experiments yield B,C ≈ 0.1 or less (see Problem 4.1). As a result, the
short-range effects are important above Tc, because the transition is nearly second order
(B is small), and the coherence length is large. This yields macroscopically visible effects,
like magnetic– and electric field–induced birefringence (Kerr effect).1 The physical origin
of the smallness of the coefficients B and C remains a puzzle.2

4.2. Nematic Order and Statistical Theory
of Rigid Rod-Like Particles

The approximate theory is due to Onsager3 and marks a keystone in the study of solutions.
It deals with rigid, elongated particles and applies to rigid polymer solutions (polybenzyl-
glutamate in dioxane) or anisotropic viruses (tobacco mosaic virus). The phase transition
is described as a result of steric repulsion (effect of the excluded volume).

4.2.1. Free Energy of a Solution of Spherical Particles

This simpler case will familiarize us with the statistical treatment of excluded volume
effects. Let us consider a solution, total volume V . There are n noninteracting hard spheres
floating in a solvent that is composed of N particles (atoms or molecules), N � n. The
pure solvent has a total Helmholtz free energy Fsolv(T ). The solute adds to this free energy
the following contributions:

1P.G. de Gennes, Mol. Cryst. Liq. Cryst., 12, 193 (1971).
2See review by P.H. Mukherjee, J. Phys.: Condens. Matter 10, 9191 (1998).
3L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).
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• A term of entropy of disorder kB T ln n! ≈ nkB T ln n
e .

• A term of chemical potential nµ(T ) due to the added spheres; this term is proportional
to n.

• A perturbation of the entropy due to the fact that a given particle of the solute may
occupy only that part of the whole volume V that is left free by the other particles.
This perturbation implies steric interactions between two particles, three particles, and
so on, and should take the form of an expansion with terms ∝ n2, ∝ n3, and so on. The
largest term of this expansion can be written as n2kB T v/2, where v has the dimension
of a volume and is related to the excluded volume, as we shall see below.

4.2.1.1. The Excluded Volume

Let vs be the volume of one particle of solvent, and vp = 4π
3 r3 be the volume of one

particle of solute. The total volume is V = Nvs + nvp. We shall introduce the particles of
solute one after the other, assuming nvp 	 Nvs , so that the total volume in which they are
introduced is equal to V at each step.

The introduction of the first particle of solute can be done in η1 different ways with

η1 = AV . (4.8)

The introduction of the second particle is made in a partially occupied volume, V − u,
where u is the volume excluded by the first particle; viz., u = 4π

3 (2r)3 (Fig. 4.2). Hence,

η2 = A(V − u), (4.9)

2r

Figure 4.2. Excluded volume for spherical particles of radius r : The separation between the centers
of the two hard spheres cannot be smaller than 2r .
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and subsequently,

η3 = A(V − 2u), . . . , ηi = A(V − (i − 1)u). (4.10)

The total number of ways to introduce n particles is, therefore,

W = 1

n!
n∏

k=1

ηk = An V n

n!
n−1∏
i=1

(
1 − iu

V

)
, (4.11)

where n! is the number of arrangements of n identical and indistinguishable particles.
The corresponding entropy of mixing is given by

Smix/kB = ln W = n ln A + n ln V − u

V

n−1∑
i=1

i − ln n!, (4.12)

where we have replaced ln
(
1 − iu

V

)
by

(− iu
V

)
. For n � 1, (4.12) simplifies to

Smix(n, V ) = kB

[
n ln AV − u

2V
n2 − n ln

n

e

]
. (4.13)

We want to consider only the variation 	Smix(n, V ) = Smix(n, V ) − Smix(0, V ) −
Smix(n, nvp) of the entropy between the final state (n, V ) and the sum of the initial states
(0, V ) and (n, nvp). The state (n, nvp) mostly has the effect of removing the n ln n

e term.
One obtains, after an easy calculation,

	Smix(n, V ) = kB

[
n ln

V

nvp
+ u

2vp
n − u

2V
n2

]
. (4.14)

For the case of an ideal solution, there is no heat of mixing. We assume that the more dilute
the solution is, the smaller the energy of interaction is between the individual particles of
the solute and the solvent. The free energy per particle of solute is

F1 = F01(T )− T 	Smix

n
= F01(T )+ kB T

(
ln vpc + 1

2
uc + const

)
, (4.15)

where c = n/V is the particle concentration. The last equation allows us to illustrate
further the idea of osmotic pressure introduced in Chapter 1.

4.2.1.2. The Osmotic Pressure

In a typical osmotic pressure experiment, a solution with concentration c is separated from
the pure solvent by a hemipermeable membrane that is permeable to the solvent but not
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Figure 4.3. Hemipermeable membrane transparent for the solvent molecules but not for the solute
molecules.

to the particles of the solute (Fig. 4.3). Assume that the membrane is shifted so that the
volume of the solution varies by a quantity dV . The variation of the free energy Ftot =
nF1 = cV F1 can be written as

d Ftot = −pos dV, (4.16)

where pos is of evidence given by the expression

pos = −
(
∂Ftot

∂V

)
T,n
. (4.17)

The obvious interpretation of (4.17) is that pos is a pressure acting on the semipermeable
membrane; pos is the osmotic pressure. Note that it is not counterbalanced by any pressure
in the pure solution behind the membrane (Fig. 4.3), because Fbehind ≡ 0 according to the
origin of energies we have chosen in (4.17). We obtain an expected expression

pos = kB T
(

c + 1
2 uc2

)
, (4.18)

with v = 1
2 u = 4vp being the excluded volume calculated per one particle, as introduced

by (1.5) and (1.6).
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Remark: Physicochemists are used to expressing the thermodynamical mixing functions in
terms of partial quantities ( ∂G

∂ni
)n j,T , where G is any thermodynamic function. The chem-

ical potentials are such partial quantities: They are given by µsolvent = µ0,solvent(T ) −
T ∂ 	Smix

∂N ; µsolute = µ0,solute(T )− T ∂ 	Smix
∂n . It is easy to verify that the free energy nF1 is

the sum of these partial quantities

n[F1 − F01(T )] = −T

(
∂ 	Smix

∂N
N + ∂ 	Smix

∂n
n

)
. (4.19)

4.2.2. Free Energy of a Solution of Rigid Rods

Equation (4.13) for the entropy of a system of hard spheres shows that the excluded volume
∼ u is entropically unfavorable. However, when the particles are elongated, the excluded
volume effects become orientation dependent (Fig. 4.4). Obviously, the excluded volume
of parallel rods is smaller than that of perpendicular rods. As a result, the entropy effect
of the excluded volume would drive the system to the orientationally ordered state. This is
the basic physical idea behind the Onsager’s theory of nematic ordering.

Consider cylindrical rigid rods of length L and diameter D, such that L � D. Such
a solution, when subjected solely to repulsion forces, would present a N ⇔ I transition
when φL/D ≥ 4, where φ = cπL D2/4 is the volume fraction of the solute. As above,
c = n/V .

γ=0

(a) (b)

D

γ=π/2

L

L

Figure 4.4. The excluded volume in a system of two hard rods depends on the angle γ between
their axes: The volume is minimum for parallel alignment, γ = 0, and maximum for perpendicular
alignment, γ = π/2.
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We specify the angular distribution of the rods by the density

f (θ, ϕ) d = fa sin θ dϕ dθ,

which expresses the probability for a given rod to point along the direction a with polar
coordinates (θ, ϕ) within a small solid angle d = sin θ dϕ dθ . By definition,

∫ 2π

0

∫ π

0
f (θ, ϕ) sin θ dϕ dθ = 1. (4.20)

A natural generalization of (4.15) is

F1 = F01(T )+ kB T

[∫
fa ln(4πvpc fa) d+ 1

2
c
∫ ∫

fa fa′β(a, a′) d d′
]
.

(4.21)

The first integral stands for the generalization of ln c; c fa is indeed the concentration of
rods in the direction a, and the factor 4π gives the correct limiting value ln c of the integral
when fa is equally distributed along all directions (in the isotropic phase). The second
integral generalizes the excluded volume effects; β(a, a′) is the volume excluded by a rod
of direction a to a rod of direction a′. In the limit L � D, one finds

β(a, a′) = 2L2 D| sin γ |, (4.22)

where γ = arc cos(a, a′). Note that β(a, a′) = β(a′, a), as expected.
The normalization condition (4.20) for fa can be directly introduced in (4.21) under

the form of a Lagrange condition, by adding the null term

λ

(∫
fa d− 1

)
, (4.23)

where λ is a Lagrange multiplier. Let us now minimize the sum of (4.21) and (4.23) with
respect to fa, which is an unknown function; one finds

ln(4πvcp fa) = −λ− 1 − c

2

∫
β(a, a′) fa′ d′, (4.24)

where the physical quantities L , c, D appear in a dimensionless form in the product

cβ(a, a′) = 2cL2 D| sin γ | = 8

π
φ

L

D
| sin γ |. (4.25)
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Equation (4.24) has an obvious solution, viz. fa = 1
4π , which is satisfied for λ taking

some constant value. This solution describes the isotropic phase. Other solutions are more
difficult to determine, and no exact solution is known. Onsager has employed a variational
method that starts from the trial function fa = α

4π sinhα cosh(α cos θ) that satisfies the nor-
malization condition (4.20). Here, θ is the angle between a and the nematic axis, and α
is the variational parameter; α vanishes in the isotropic phase and is large in the nematic
phase; αnem ∼= 18.84 at coexistence. One will notice that larger α makes the trial function
more peaked at θ = 0 and π . The nematic and isotropic phases have, respectively, the vol-
ume fractions φnem = 4.5D/L and φi = 3.3D/L at coexistence; these values demonstrate
that the transition occurs for rather large aspect ratios L/D. Furthermore, estimates show
that with L/D ≤ 10, one should take into account higher order terms such as ∝ c2 in
the virial expansion. Therefore, the Onsager model cannot claim an accurate description
of a low-molecular weight thermotropic nematic phases, where normally L/D < 10. The
Onsager system is athermal: φnem, φi do not depend on temperature.

Onsager’s theory has been refined by Flory for the description of semirigid molecules:
They are placed on a lattice, whose parameter is equal to the persistence length, and they
are allowed to take zigzag shapes. Flory’s theory is more successful than is Onsager’s for
concentrated solutions, and it yields coexistence values φnem

L
D ≈ 12.5, φi

L
D ≈ 8 that are

larger than those of the Onsager’s theory.
Experiments conducted on poly-benzyl-glutamate (PBG) in dioxane confirm that the

phase transition I → N happens for a critical volume fraction φc, which depends only on
the aspect ratio L/D; i.e., φc L/D = const. However, the numerical coefficients do not
compare well with the theory. The discrepancies come mostly from the fact that the theory
neglects attractive interactions (e.g., van der Waals forces) and effects of polydispersity.

4.3. Maier–Saupe Mean Field Theory of the
Isotropic-Nematic Transition

The Maier–Saupe theory for nematics is the analog of the Weiss molecular field theory
for ferromagnets. It is assumed that molecular interactions are of van der Waals type.
The repulsive forces and excluded volume effects are not taken into consideration. The
pairwise potential for two molecules located at r and r′, is given by a product Urr ′ =
− B

| r−r′ |6 P2(cos γ ), where γ is the angle between the two molecular axes a and a′. The po-
tential favors parallel alignment. Instead of calculating all pairwise interactions of a given
molecule, the Maier–Saupe theory supposes that each molecule is submitted to some mean
potential that is averaged over the positions and orientations of all other molecules. Averag-
ing over the positions produces a constant b = ∑

i 〈B/| r − ri |6〉∣∣ri
, whereas orientational

averaging over the distribution function f (θ, ϕ) leads to 〈P2(cos γ )〉∣∣
i

= s P2(cos θ),
where (θ, ϕ) are the polar angles of a in the coordinate system with the axis Z along the



Chapter 4 Phase Transitions116

director, and s is the scalar order parameter as usual. The effective potential, thus, writes
as

U = −bs P2(cos θ). (4.26)

With the known field acting on the molecule, the probability distribution function is

f (θ, ϕ) = C exp[−U(θ, s)/kB T ], (4.27)

where

C−1 = 2π
∫ π

0
exp[−U(θ, s)/kB T ] sin θ dθ.

Using (4.27), we are now in the position to find all values of s that yield a minimum of
the free energy F1(s �= 0)− F01(s = 0) = E − T S per molecule. E is the internal energy
calculated by averaging the effective potential (4.26) over f (θ, ϕ):

E = − 1
2 bs2, (4.28)

where the coefficient 1/2 compensates for counting each interaction twice. The orienta-
tional entropy per molecule is

S = −kB

∫
f (θ, ϕ) ln[4π f (θ, ϕ)] d = −bs2/T − kB ln 4πC, (4.29)

so that

	F = F1 − F01 = 1
2 bs2 + kB T ln 4πC. (4.30)

The condition of an extremum of 	F , ∂ 	F/∂s = 0, yields

s = 2πC
∫ π

0
P2(cos θ) exp[−U(θ, s)/kB T ] sin θ dθ, (4.31)

and it coincides with the definition (3.4) of s, which demonstrates the self-consistency of
the theory: The distribution function, expressed through s, should produce the same value
of the order parameter when inserted in (3.4). The stability condition for the minimum,
∂2	F/∂s2 > 0, reduces to

∂

∂s

{
2πC

∫ π

0
P2(cos θ) exp[−U/kB T ] sin θ dθ

}
< 1. (4.32)
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Figure 4.5. Free energy	F/kB T per molecule as a function of the scalar order parameter for differ-
ent ratios b/kB T = 4.4, 4.5, 4.5415, 4.6, 5.4 (from the top curve to the bottom one).

The equilibrium values of s can be found from (4.31) and (4.32). One can draw plots
of the function Y1(s) ≡ 2πC

∫ π
0 P2(cos θ) exp[−U/kB T ] sin θ dθ versus s for different

b/kB T and find the intersections of these curves Y1(s) with the straight line Y2(s) ≡ s,
which makes an angle 45◦ with the s-axis [see (4.31)]. The intersection points, in which
Y1(s) is tilted less than 45◦ from the s-axis, correspond to the equilibrium state, in accor-
dance with (4.32). Another way to clarify the predictions of the theory is to draw directly
the dependencies 	F(s) for different temperatures, as in Fig. 4.5.

The temperature, at which the two energy minima at s = 0 and s �= 0 are of equal
depth, is TN I ≈ b/(4.5415kB); the corresponding scalar order parameter sN I ≈ 0.429 is
similar to many experimental values reported in the literature.

4.4. The Smectic A–Nematic Transition

4.4.1. Order Parameter

As already stated, the order parameter of the SmA phase has two different components:

• A nematic component, with amplitude s and phase n.

• A component relating to the modulation of matter density along the z-axis

ρ =
∑
ρk exp(−ik · z), (4.33)
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where k = m 2π
d0

�, m is an integer, � is a unit vector along the normal to the layers, and

d0 is the smectic layer spacing. We shall define q0 = 2π
d0

as the corresponding elementary
wave vector.

Consider a slightly deformed smectic. The deformation is described by a displacement
field u = uz such that the material that was at r′ before deformation is now at r, with
r′ = r − u. Hence, the density at r can be written as

ρ(r) = ∑
k ρk exp[−ik(r − u)] = ρ0 + ρ1 exp[−iq0(r − u)] + · · ·

= ρ0 + ρ1 exp(iϕ) exp(−iq0 · r)+ · · · , (4.34)

where we have introduced the phase ϕ = q0 · u. This phase is a degeneracy parameter;
when varying in a range [0, 2π ], it describes all possible positions of the smectic phase with
respect to a reference smectic ϕ = 0. Therefore, the smectic order parameter (restricted to
the layers) is a complex number:

ψ = ψ0 exp iϕ. (4.35)

4.4.2. Ginzburg–Landau Expansion

The formation of smectic clusters in the nematic phase, whose size diverges when T → Tc,
leads to drastic changes of certain material parameters, such as divergence of the elas-
tic coefficients for twist and bend deformations of the director field, or divergence of the
cholesteric pitch if the nematic is chiral. We now build a phenomenological Ginzburg–
Landau picture of the transition.

Let us first consider the smectic-order parameter alone; it enters the Ginzburg–Landau
expansion of the free energy density

fSmA = α |ψ |2 + β

2

∣∣∣ψ4
∣∣∣ + 1

2M||

∣∣∣∣ ∂ψ∂z

∣∣∣∣
2

+ 1

2M⊥
|∇⊥ψ |2 + · · · , (4.36)

where α = a(T − Tc); the positive coefficients a, β, M||, and M⊥ are temperature inde-
pendent; ∇⊥ = ( ∂

∂x ,
∂
∂y , 0), | ∇⊥ψ |2 = | ∂ψ

∂x |2 + | ∂ψ
∂y |2. There are no odd terms in (4.36),

so that the transition can be second order. The most notable feature of the expansion (4.36)
is the presence of the gradient terms, which reflects a possibility of spatial variations of ψ .
The coefficients 1/M|| and 1/M⊥ describe the (anisotropic) rigidity of the smectic phase
for deformations along the normal and in the layers. The fluctuative deformations we con-
sider have a small amplitude and a long wavelength, so that the amplitude ψ0 of the order
parameter is assumed not to vary. Hence,

1

2M||

∣∣∣∣ ∂ψ∂z

∣∣∣∣
2

≡ 1

2M||
∂ψ

∂z

∂ψ∗

∂z
= 1

2M||
q2

0ψ
2
0

(
∂u

∂z

)2

, (4.37)
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which is the compressibility term, written usually as 1
2 B( ∂u

∂z )
2 in the classic free energy

density of the smectic phase (see Section 5.2.3), with the Young modulus

B = 1

M||
ψ2

0 q2
0 . (4.38)

We shall now see that the 1
2M⊥ term is modified when the nematic order parameter is

introduced in (4.36).
In the nematic phase, s reaches its maximum value precisely at the transition to the

smectic phase, because the smectic phase usually appears at lower temperatures. We can
safely assume that the nematic phase is well ordered just above Tc and that s is of the
order of 1. Therefore, s is practically temperature independent in the smectic phase im-
mediately below Tc. In contrast, the director n0 = (0, 0, 1) may suffer fluctuations δn =
(δnx , δny, 0), n = n0 + δn, which analogously to fluctuations of ψ have to be taken into
consideration, as follows.

The Ginzburg–Landau free energy of the smectic phase must be invariant with respect
to simultaneous rotations of the director n and the normal � to the layers:

n = (δnx , δny, 1), � =
(

−∂u

∂x
,−∂u

∂y
, 1

)
; (4.39)

these variables are taken here as independent. Under the rotation by a small angle θ 	 1,
the director tilt δnx is equivalent to the displacement of layers u = θx = −x δnx along
the z-axis. In a fixed coordinate frame, this displacement is equivalent to a phase change
ϕ → ϕ − q0x δnx , so that ψ → ψ0 exp(iϕ)× exp(−iq0x δnx ) and

∂

∂x
ψ →

(
∂

∂x
− iq0 δnx

)
ψ. (4.40)

The Ginzburg–Landau free energy with the correct gradient term is, thus,

fSmA = α |ψ |2 + β

2
|ψ |4 + 1

2M||

∣∣∣∣ ∂ψ∂z

∣∣∣∣
2

+ 1

2M⊥
| (∇⊥ − iq0 δn)ψ |2 . (4.41)

Note that the angle between n and �, which is small, can be measured by the components
of the vector product

� × n =
(

−∂u

∂y
− δny,

∂u

∂x
+ δnx , 0

)
.
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Let us apply the operator � × n to iq0ψ :

� × niq0ψ =
(

− ∂

∂y
− iq0 δny,

∂

∂x
+ iq0 δnx , 0

)
ψ.

The quantity | (∇⊥ − iq0 δn)ψ |2 is, thus, nothing else than the value of the angle between
n and �, squared, times q2

0 .
The total free energy density is obtained by adding to fSmA the free energy of defor-

mation of the nematic director, i.e., the Frank–Oseen energy:

fFO = 1
2 K1(div n)2 + 1

2 K2(n · curl n)2 + 1
2 K3(n × curl n)2, (4.42)

where K1, K2, and K3 are the elastic constants of splay, twist, and bend deformations, re-
spectively (see Section 5.1.1). For small director distortions in the vicinity of the transition,
the total energy density ftot = fSmA + fFO is

ftot = α|ψ |2 + β

2
|ψ |4 + 1

2M||

∣∣∣∣ ∂ψ∂z

∣∣∣∣
2

+ 1

2M⊥
| (∇⊥ − iq0 δn)ψ |2

+ 1

2
K1(div δn)2 + 1

2
K2(n · curl δn)2 + 1

2
K3

(
∂

∂z
δn

)2

. (4.43)

4.4.3. Analogy with Superconductors

As pointed out by de Gennes,4 the sum ftot = fSmA + fFO (4.43) is most remarkably
analogous to the Ginzburg–Landau functional describing a superconductor-normal metal
phase transition:

fsuper = fnormal + α|ψ |2 + β

2
|ψ |4 + h̄2

4m

∣∣∣∣
(

−i∇ − 2e
A
h̄c

)
ψ

∣∣∣∣
2

+ (curl A)2

8π
− H0 · curl A

4π
. (4.44)

We use the cgs (centimeter, gram, second) units and present the functional fsuper as the
Gibbs free energy density, which facilitates comparison with ftot. In (4.44), the supercon-
ductor’s order parameter ψ is the wavefunction of the coherent ensemble of Cooper pairs,
A is the magnetic vector potential, H0 is the external magnetic field, different from the
local value of the magnetic field (magnetic induction) B = curl A at a given point of the
superconductor, m and e are the electron mass and the electron charge, and c is the speed

4P.G. de Gennes, Solid State Comm. 10, 753 (1972).
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of light. Under the assumption M = M|| = M⊥, the identification is

h̄2/(2m)↔ 1/M, 2e/h̄c ↔ q0, A ↔ δn; (4.45)

the term (curl A)2/(8π) corresponds to the twist and bend terms in the Frank–Oseen elastic
energy, 1/(4π) ↔ K2, K3. Of course, the analogy is incomplete. For example, fsuper has
no terms reflecting the elastic anisotropy K2 �= K3 and no term corresponding to the
divergence term (div δn)2. On the other hand, ftot, as expressed in (4.43), has no term
analogous to the external field term H0 · curl A; therefore, the smectic-nematic transition is
similar to the superconductor–normal metal transition in a zero magnetic field H0 = 0.

An immediate analogy that comes to mind while comparing (4.43) and (4.44) is that
there is a smectic analog of the Meissner–Ochsenfeld effect, according to which the mag-
netic induction is zero in the superconductor; i.e., B = curl A = 0. In a similar way, the
smectic phase does not allow twist and bend deformations that are both associated with
curln. The reason is simple: Twist and bend violate equidistance of the smectic layers (and
splay does not). A thick stack of paper sheets is a good working model of the effect.

To determine the smectic order parameter and the director fluctuations, the free en-
ergy (4.43) should be minimized with respect to two functions: ψ(r) and δn(r). The two
corresponding equations (called the Ginzburg–Landau equations in the case of supercon-
ductors) for bulk equilibrium allow one to specify two types of characteristic lengths: the
coherence lengths universally denoted ξ and the penetration lengths universally denoted λ.
As in superconductors, the predictions of the Ginzburg–Landau model for smectics depend
strongly on the relative values of these characteristic lengths.

4.4.4. Characteristic Lengths

4.4.4.1. Coherence Lengths

The gradient terms of the type | ∇ψ |2 in (4.43) and (4.44) prevent the order parameter
amplitude from changing too quickly in space. Let us minimize

∫
( fSmA + fFO) dV with

respect to ψ∗(r), the complex conjugate of ψ(r). The variational problem yields the fol-
lowing equation for the bulk equilibrium (Problem 4.6):

αψ + β|ψ |2ψ − 1

2M||

(
∂ψ

∂z

)2

− 1

2M⊥
(∇⊥ − iq0 δn)2ψ = 0. (4.46)

The coherence lengths suggested by the last equation are

ξ|| = 1√
2|α |M||

and ξ⊥ = 1√
2|α |M⊥

. (4.47)



Chapter 4 Phase Transitions122

For T > Tc, these lengths are the sizes of the smectic clusters in the nematic bulk, ξ||
is measured along the normal to the layers, and ξ⊥ is the transverse length. At T < Tc,
these lengths are those along which a strong perturbation of the amplitude of the order
parameter relaxes; for example, the coherence lengths characterize the size of the core of
smectic dislocations, which are considered later in this section. As T → Tc, the coherence
lengths diverge.

4.4.4.2. Penetration Lengths

We assume now that at constant ψ0, the director field suffers a perturbation, either a splay,
twist, or bend deformation. Director splay is compatible with the smectic layering. Twist
and bend involve curl n �= 0 and are not compatible with smectic layering. The length
on which the twist or bend penetrate the smectic phase is called the penetration length
(Fig. 4.6).

The equation that minimizes
∫
( fSmA + fFO) dV with respect to δn can be signifi-

cantly simplified if one assumes that M|| = M⊥ and writes the Frank–Oseen free energy
density in the reduced form fFO = 1

2 K (curl n)2, which reflects our interest in twist and
bend only. The variation of

∫
V [ 1

2M (∇⊥ − iq0 δn)ψ + 1
2 K (curl δn)2] dV with respect to δn

produces the second equation of bulk equilibrium for the director fluctuations δn (Prob-
lem 4.6):

j = − iq0

2M
(ψ∗∇ψ − ψ∇ψ∗)− q2

0

M
δn|ψ |2. (4.48)

l

Figure 4.6. Bend penetration depth λ in the smectic A phase. The layers are parallel to the bounding
plate. A weak bend deformation imposed at the surface penetrates into the smectic bulk over the
distance λ.
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Here, the vector

j = K curl(curl δn) (4.49)

is an analog of the current density in the superconductor: j is parallel to the director in the
absence of coupling with the smectic order parameter.

Equation (4.48) suggests the characteristic length

1

q0

√
M K

|ψ |2 = 1

q0

√
M Kβ

|α | ,

where the amplitude |ψ | of the order parameter is replaced by its value
√|α |/β in the

undeformed smectic. In fact, there are four penetration lengths, accounting for different
combinations of M||, M⊥, K2, and K3,

λ
||,⊥
2,3 = 1

q0

√
M||,⊥K2,3β

|α | . (4.50)

The fifth important penetration length is the one that measures the relative importance of
the splay term versus the compressibility term; i.e.,

λ = 1

q0

√
M||K1

|ψ |2 =
√

K1

B
. (4.51)

4.4.5. Anomalies of K2 and K3 Coefficients

As already stated, director splay within the smectic clusters appearing in the nematic bulk
at T > Tc does not break the equidistance and parallelism of the layers. Consider now twist
(K2) and bend (K3) deformations of some amplitude | δθ |, where δθ is the angle between
the normals to the layers at the two ends of the cluster (Fig. 4.7). A nonzero | δθ | causes
streching/compressing of the layers. Therefore, the energy cost of the distortions within the
cluster can be estimated either as the compressibility term, B(δθ)2ξ3 ∼ M−1

|| ψ2
0 q2

0 (δθ)
2ξ3,

or, equivalently, as the curvature elasticity term, δK [curl (δθ)]2ξ3 ∼ δK (δθ)2ξ , where δK
is the increase of the Frank elastic constant K caused by the presence of smectic layers.

Comparing the two estimates, one concludes that δK ∼ Bξ2 ∼ q2
0

M||ψ
2
0 ξ

2. To find ψ2
0 , we

notice that the fluctuative appearance of a smectic cluster of volume ξ3 requires an energy
cost |α ||ψ |2ξ3 ∼ kB T , i.e. |ψ |2 ∼ ξ−3kB T/|α| ∝ ξ−1 [see (4.47)]. Therefore, δK ∼
q2

0
M||ψ

2
0 ξ

2 ∝ ξ . More careful calculations that take into account the difference between ξ||
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δθ

ξ

Figure 4.7. A smectic cluster in a nematic matrix that imposes bend deformation of the director.

and ξ⊥ show the following renormalization of K2 and K3:

K2,3 → K bare
2,3 + δK2,3; δK2 ∝ ξ2⊥/ξ||, δK3 ∝ ξ||. (4.52)

The model, thus, predicts an indefinite growth of the twist and bend constants when the
nematic phase approaches the smectic phase; in contrast, the splay elastic constant K1 is
not renormalized by the appearance of the smectic clusters.

4.4.6. Abrikosov Phases with Dislocations

Let us return to the Meissner–Ochsenfeld effect. The magnetic induction remains zero in
the superconductor bulk, B = curl A = 0, even in the presence of a weak external field
H0. However, if the field is high enough, it penetrates the superconductor. It may hap-
pen in two different ways. In type-I materials, the strong field penetrates the whole bulk,
destroying superconductivity above the so-called thermodynamic critical field. In type II
superconductors, before the material becomes normally conducting, the field penetrates
partially, through line-like regions, called the vortex lines (Fig. 4.8). The lattice of vor-
tices is thermodynamically stable and forms a special phase, called either the mixed state
or the Abrikosov phase. The mixed state shows second-order transitions to the low-field
superconducting phase and to the high-field normal phase.
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(a)

(b)

H 0

z

r

ψ 2

l

�

z

B=curlA

Figure 4.8. A vortex line in a type II superconductor, λ/ξ > 1/
√

2. (a) The vortex is parallel to
the external magnetic field H0; the field penetrates the bulk of the superconductor in the core of the
defect, along the axis z; circular lines show the particle currents circulating around the cylindrical
core. (b) Wave function amplitude |ψ |2 and magnetic field B = curl A changes in the core region of
the defect, over two characteristic distances ξ(T ) and λ(T ), respectively.
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The “core” of the vortex is in a normal conducting state. Away from the core, the
magnetic field quickly decreases and the material regains its superconductivity. The total
magnetic flux that is crossing the interior � of any closed loop γ surrounding the singular
region (and containing it entirely) of the vortex is quantized:

∫
�

B · d� ≡
∮
γ

A · dl = N
2π h̄c

2e
, (4.53)

where the first identity stems from Stokes theorem, which transforms surface integrals into
line integrals. The flux quantum is 2π h̄c

2e , and M is an integer.
The phase diagrams of the type I and type II superconductors in the (H0, T ) plane are,

thus, very different. The parameter that determines the type of the superconductor is the
temperature-independent ratio κ = λ/ξ :

• κ < 1/
√

2; type I superconductors; no intermediate (mixed) phase.

• κ > 1/
√

2; type II superconductors; magnetic field above the so-called lower critical
field causes the mixed state in which the normal metal in the core of the vortices
coexists with the superconducting matrix; above the upper critical field, the Abrikosov
phase transforms into a normal metal.

The analogs of vortex lines in smectics are screw and edge dislocations. The dislo-
cations introduce bend and twist into the system of smectic layers. For example, the ele-
mentary edge dislocation shown in Fig. 4.9 is associated with a bent director field. In the
presence of dislocations, the phase ϕ ceases to be a single-valued function of coordinates.

2�

Figure 4.9. An edge dislocation in a SmA phase; a coherence length ξ is the distance over which a
local perturbation affects the amplitude of ψ .
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In going once around an elementary dislocation, ϕ changes by 2π , as in the case of the
vortex. The equivalent of the flux quantization in a superconductor is the condition

∮
γ

δn dl = d0, (4.54a)

d0 being the smectic layer spacing. More generally,

∮
γ

δn dl = N d0, (4.54b)

where N is the number (with sign) of elementary dislocations crossing the area �. Simi-
larly, the cores of the dislocations are regions where curl n �= 0; the “normal” core of the
dislocation is in the state with |ψ | = 0.

We come now to an intriguing question: With all superconductor-smectic similarities
between the order parameters ψ’s and defects (vortices versus dislocations), is there a liq-
uid crystal analog of the Abrikosov phase, in which bend or twist can coexist with smectic
layering? To answer the question, one needs to first find a liquid crystal analog of the ex-
ternal magnetic field H0 in superconductors (there is no Abrikosov phase at H0 = 0). As
already discussed, the free energy density (4.42) of a nematic liquid crystal has no term
corresponding to H0 · curl A in (4.44). The missing link should be proportional to curl n
[rather than to (curl n)2]. An elegant and effective way to create an intrinsic source of de-
formation curl n �= 0 is to transform the nematic into a cholesteric liquid crystal, by simply
adding chiral molecules.

If the nematic liquid crystal is chiral (chiral mesogenic molecules or chiral dopant), the
equilibrium director structure is usually a helicoid with a pitch P and an axis, say, along
the z-axis:

n = (sin 2π z/P, cos 2π z/P, 0). (4.55)

Chirality leads to an additional term in the Frank–Oseen free energy density of the
cholesteric:

fCh = fF O − K2k0(n · curl n), (4.56)

where fFO is given by (4.42), and k0 = 2π/P at equilibrium (see Section 5.1). Thus,
the cholesteric phase is an analog of the normal metal in an external magnetic field, with
the correspondence h ≡ K2k0 ↔ H0 and K2k0(n · curl n) ↔ H0·curl A

4π . The chirality h
is a “field” conjugate to twist (n · curl n). The Ginzburg–Landau parameter of interest is
the ratio of the twist penetration length to the smectic coherence length: κ = λtwist/ξ =
M
q0

√
2K2β. When κ < 1/

√
2 (type I smectics), the mean-field theory based on the free
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Cholesteric

TGB=
SmA+dislocations
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Smectic A

h c

Smectic A
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hc 2
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�>1/,2
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�<1/,2

Figure 4.10. Phase diagram of (a) the SmA phase of type I, κ < 1/
√

2, and (b) the SmA phase of
second type II, κ > 1/

√
2. Redrawn from Chaikin and Lubensky (1995).

energy density fSmA + fCh = fSmA + fFO − K2k0(n · curl n) [see (4.41), (4.42), and
(4.56)] predicts a first-order smectic–cholesteric transition, at the thermodynamic critical
field hc = √

K2α2/β (Problem 4.7). The twist is either completely expelled from the
system or the system is phase separated into smectic and cholesteric regions. If κ > 1/

√
2,

the new phase intervenes between the smectic and the cholesteric states on the (h, T ) plane
(Fig. 4.10). The new phase has been called the twist-grain boundary (TGB) phase by Renn
and Lubensky who predicted it theoretically.5

The coexistence of twist and smectic order in the TBG phase is provided by the lattice
of screw dislocations. As seen in Fig. 4.11, a row of parallel screw dislocations with spacing
ld form a TGB. Two smectic blocks on the opposite sides of the boundary are slightly tilted
with respect to each other by an angle 2πγ = 2 arcsin( d0

2ld
) ≈ d0/ ld . The smectic blocks

of width lb (which is the distance between two consecutive grain boundaries) are free of
dislocations. The twist is just concentrated mainly in the region of grain boundaries. The
spatially average twist along the normal to grain boundaries is k̄0 = 2πγ/ lb ≈ d0/(lbld);
the pitch P = 2π/k̄0 of the structure is P = lb/γ . Interestingly, one can classify com-
mensurate and incommensurate TGB phases, depending on whether γ = lb/P is rational
or irrational. Among the commensurate versions of TGB, one might find quasicristalline
symmetries, when the TGB phase is invariant under a rotation (around the twist axis) by
2π/Q, where Q = 5 or Q > 6.

5S.R. Renn and T.C. Lubensky, Phys. Rev. A 38, 2132 (1988).
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twist grain boundaries

screw dislocations

      slab of
  SmA layers

l
b

l
d

d
0

2 πγ

Figure 4.11. TGB phase: Smectic slabs separated by grain boundaries that accommodate the twist
between two adjacent slabs. The twist grain boundaries can be composed of screw dislocations.
Redrawn from Chaikin and Lubensky (1995).

4.5. Kosterlitz–Thouless Model of Phase Transitions

A system with positional or orientational order loses this order during a phase transition
into the isotropic phase. However, the order can be partially spoiled even before the transi-
tions by defects such as dislocations or disclinations. It is tempting to consider the process
of melting as the nucleation and proliferation of defects. Of course, there are limitations to
such an idea. For example, when the number of defects is really large, the very definition
of the “defect” is questionable because the “ordered” background ceases to exist. Never-
theless, if one is interested primarily in the beginning of “melting,” the idea is physically
appealing. Kosterlitz and Thouless6 have developed a 2D model of dislocation melting, a
simplified version of which we discuss below.

Without going into details of dislocation properties (those are considered in Chapters 8
and 9), we observe that in a 2D lattice, a point dislocation causes a strain field ∇u ∝ 1/r
and bears an elastic energy

E = K
∫ R

rcore

dr

r
= K ln

R

rc
+ Ecore, (4.57)

6J.M. Kosterlitz and D.J. Thouless, J. Phys. C 5, L124 (1972); C 6, 1181 (1973).
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where K is some elastic constant; the limits of integration are the radius rcore of the “core”
of the defect and some macroscopic distance R, which is either the size of the system when
the dislocation is isolated or the separation between dislocations; and Ecore is the energy
of the core. If N is the number of defects per unit area of the plane, then R = 1/

√
N .

Now, let us consider an ensemble of defects as a “gas” with the density N per unit
area. There are Nsites = 1/r2

coresites available for these defects. The entropy of the gas of
defects is defined by the number of configurations N defects can create at Nsites sites:

S = kB ln
Nsites!

N !(Nsites − N )! ≈ kB N ln
Nsites

N
(4.58)

(the approximation is valid for Nsites � N , in accordance with Stirling’s formula).
The free energy of the gas of defects is then

F = E − T S = N ln

√
Nsites

N
(K − 2kB T )+ N Ecore. (4.59)

It is easy to see that starting with some critical temperature, T > Tc = K/2kB , the free
energy becomes negative and the crystal melts. Above the melting temperature Tc, there is
a finite equilibrium number of dislocations:

N = 1

r2
c

exp

[ −Ecore

2kB(T − Tc)

]
, (4.60)

while below it there are no equilibrium dislocations at all.

Problem 4.1. Find the Landau coefficients in (4.2) in dimensionless units (see text), T ∗∗ and T ∗
for the nematic material MBBA using Tc = 319.0 K, mass density 1.09 g · cm−3 at Tc, and the
experimental data:7 aTc = 43.1 J cm−3, B = 2.66 J cm−3, and C = 2.76 J cm−3.

Answers: The normalized factor for volume energy density is RTcρc, where ρc is the ratio of the

mass density to the relative molecular weight of MBBA (see Fig. 2.14): ρc ≈ 1.09 g·cm−3

2 67.37 g ·
mol−1 ≈ 4.1 × 103 mol/m3. Thus, in the dimensionless units aTc/3 = 1.32, 2B/27 = 0.0181,
C/9 = 0.0282, T ∗ = 318.3 K, and T ∗∗ = 319.1 K (see Fig. 4.1).

Problem 4.2. The Landau coefficients presented in Problem 4.1 are determined by measuring the
transition temperature, order parameter, latent heat, and so on. On the basis of Landau–de Gennes
theory, find (a) snem versus T ∗∗ − T ; (b) specific heat cP versus T ∗∗ − T in the nematic phase and
its jump at the transition; (c) entropy discontinuity; and (d) the latent heat of the transition.

7Y. Poggi, J.C. Filippini, and R. Aleonard, Phys. Lett. 57A, 53 (1976).



4.5 Kosterlitz–Thouless Model of Phase Transitions 131

Answers:

(a) snem = B
4C +

√
3a(T ∗∗−T )

2C .

(b) cP = −T

(
∂2g
∂T 2

)
p

= a2T
2C

[
1 + B

2
√

6aC
(T ∗∗ − T )−1/2

]
and 2a2Tc/C .

(c) Siso − Snem = − ∂(g0−g)
∂T

∣∣∣
T =Tc

= aB2

27C2 .

(d) Hiso − Hnem = Tc(Siso − Snem) = aB2Tc
27C2 ; for more results, see Anisimov (1991).

Problem 4.3. Find the scalar order parameter in Onsager’s model as the function of the parameter α.

Answers: s = 1 − 3 cothα
α + 1

α2 ; s = 0.85 at α = 18.84.

Problem 4.4. (a) Find the latent heat of phase transition in the Maier–Saupe theory. (b) Assuming
that the order parameter is small, find the Landau–de Gennes coefficients A, B, and C in terms of
the Maier–Saupe parameter b (see Stephen and Straley8).

Answers:

(a) bs2
c /2 ≈ 0.42kB Tc per molecule.

(b) A = 3b
2T

(
T − b

5kB

)
, B = 9b3

70(kB T )2
, and C = 9b4

700(kB T )3
.

Problem 4.5. Usually, a racemic mixture with equal number of L and D enantiomers shows no
macroscopic chirality. However, if the interaction between molecules of the same chirality substan-
tially differs from that between molecules of opposite chirality, one might expect a phase separation
and formation of large chirality-pure domains. Andelman and de Gennes9 considered a model of pair
clustering in chiral monolayers.

Consider a chiral molecule with four different groups attached to a central carbon atom in a
tetrahedral fashion. One of the groups is an aliphatic chain that sticks out of the water; three other
groups, A, B, and C (for example, A,B,C = NH2, CH3, Cl, F, CN, etc.) are in contact with water
(Fig. 4.12a).

Two molecules interact through two pairs of groups that face each other as shown by dashed lines
in Fig. 4.12b,c. If the pair interaction energies wAB , wAA , wAC , and so on, between the groups are
known, then the tendency of the system to form a heterochiral (L,D) or homochiral (L,L) dimers can
be found by comparing the corresponding pair partition functions ZL D and ZL L .

(a) Using notation fi j = exp(−wi j/kB T ), find the two partition functions for (L,L) and (L,D)
pairs.

8M.J. Stephen and J.P. Straley, Rev. of Mod. Phys. 46, 617 (1974).
9D. Andelman and P.G. de Gennes, C.R. Acad. Sci. 307, Sér. II, 23 (1988).
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Figure 4.12. Chiral surfactant molecules [L-enantiomer is shown in (a)] at the surface of water might
form either (b) homochiral or (c) heterochiral pairs, depending on the type of interactions among
three different water-contacting atomic groups A, B, and C.

(b) Suppose that the groups B and C have acquired opposite electric charges, so that fB B =
fCC = 0, fBC � 1, and that the particle A is indifferent to both charged groups, f AB =
f AC = v. Find the preferable type of dimers.

(c)–(g) Find the type of dimers when (c) identical groups prefer not to interact with each other,
fi i = 0; (d) group A is indifferent; i.e., f A j = f = const; (e) groups A, B, and C bear
nonzero charges a, b, and c, respectively; a+b+c = 0; (f) all interactions are of London type
with potential wi j = −Uαiα j , where U is a positive constant such that Uαiα j/kB T 	 1;
(g) temperature is very high, kB T � wi j .

Answers:

(a) ZL L = f 2
BC + f 2

AC + f 2
AB+2 fAB fCC +2 fAA fBC +2 fAC fB B , ZL D = fB B fCC + f AA fB B+

f AA fCC + 2 f AC fBC + 2 f AB fBC + 2 f AB f AC .

(b) Denoting f AA = u, one finds 	Z = ZL L − ZL D = f 2
BC + 2 fBC (u − 2v), and the dimers will

be homochiral (	Z > 0) for any fBC > 2(2v − u). If, on the other hand, attraction forces occur
only between alike groups, so that fi j = 0 for i �= j , then 	Z = − fB B fCC − f AA fB B −
f AA fCC < 0 and heterochiral dimers are formed.

(c) The heterochiral region is inside a cone of revolution that is tangent to the planes f AB = 0,
fBC = 0, f AC = 0.

(d) homochiral if fBC � fB B , fCC .

(e) homochiral.

(f) 	Z = −
( | U |

kB T

)3 (αA−αB )
2(αB−αC )

2(αC−αA)
2

2

[
1 + | U |

3kB T (αA + αB + αC )
2 + · · ·

]
< 0, hete-

rochiral dimers.

(g) 	Z → 0: Fast, thermally activated rotations of the molecules make them effectively nonchiral.
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Problem 4.6. Derive (4.46) and (4.48).

Answers: Variation of
∫
( fSmA + fFO) dV with respect to ψ∗(r) first produces an expression

∫
V

dV

[
αψ δψ∗ + β|ψ |2ψ δψ∗ + 1

2M||

(
∂ψ

∂z

)(
∂ δψ∗
∂z

)

+ 1

2M⊥
(∇⊥ − iq0 δn)ψ(∇⊥ + iq0 δn) δψ

∗
]

= 0.

To modify terms of the type ∇ δψ∗, we introduce η = (∇⊥ − iq0 δn)ψ and use the identity
∇(η δψ∗) = η∇ δψ∗ + δψ∗∇η. Then,∫

v
η∇ δψ∗ dV =

∫
v

∇(η δψ∗) dV −
∫
v
δψ∗∇η dV

=
∮

S
η δψ∗ d S −

∫
v
δψ∗∇η dV ,

and the variation is
∫

V

[
αψ + β|ψ |2ψ + 1

2M||

(
∂ψ

∂z

)2
+ 1

2M⊥
(∇⊥ − iq0 δn)

2ψ

]
δψ∗ dV

+
∮

S

[
1

2M||

(
∂ψ

∂z

)
+ 1

2M⊥
(∇⊥ − iq0 δn)ψ

]
δψ∗ d S = 0.

The requirement of zero variation results in (4.46) for the bulk and in the boundary condition
[ 1

2M|| (
∂ψ
∂z )+ 1

2M⊥ (∇⊥ − iq0 δn)ψ] · t = 0, where t is the unit vector normal to the smectic sur-

face.
A similar procedure applied to a simplified version of the free energy

∫
V

[
1

2M
(∇ − iq0 δn)ψ + 1

2
K (curl δn)2

]
dV

results in (4.48); to simplify an intermediate expression K curl curl δ(δn), one might use the identity
b curl a − a curl b = div [a × b], where a = δ(δn) and b = curl δn.

Problem 4.7. Find the thermodynamic critical field for the first-order smectic A - nematic transition
in type I materials with κ < 1/

√
2.

Answers: hc =
√

K2α
2/β. For calculations of the lower and upper critical fields in type II smectics,

see Chaikin and Lubensky (1995).

Further Reading

M.A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals, Gordon and Breach, Philadel-
phia, 1991.
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Press, Oxford, 1993.
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C H A P T E R 5

Elasticity of Mesomorphic Phases

5.1. Uniaxial Nematics and Cholesterics

5.1.1. The Free Energy Density

We describe the state of deformation of a nematic or a cholesteric phase, at a fixed tempera-
ture T , by the director field n(r). The free energy associated with the deformation depends
necessarily on the gradient of the director, ∇n, whose components ∂ni

∂x j
will be noted ni, j .

We assume that the distortions are small,

| ni, j | � 1

a
, (5.1)

where a is a typical molecular length. This assumption has some advantages, as follows:

• There is a well-defined “tangent” perfect (liquid) crystal at each point r, with orien-
tation n(r), whose spatial extention is large enough to make a continuous description
possible.

• Therefore, the order parameter is a locally well-defined constant s[T (r)], which de-
pends on temperature uniquely.

• At any point r, the symmetry properties of the tangent liquid crystal should reflect in
its free energy density f (r), which however depends not only on n(r), but also on its
derivatives ∇n. It is stated that f must be invariant under any change of the orientation
of n and of the values of its derivatives ∇n, which are allowed by the symmetries. This
invariance is by no means trivial, and it should be considered as a principle, to which
one could attach the name of Noll (principle of material invariance); it goes much
farther than does the invariance of the Landau expansion, which does not depend on
the derivative.

Therefore, the free energy density of a nematic or a cholesteric specimen must be
invariant by any operation that preserves the local orientation of n:

135
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1. Invariance under the operation n → −n, an operation that is common to both nematic
and cholesteric phases. Note that this operation of symmetry is not a space transfor-
mation that transports matter, nor a central inversion; it is an operation in the order
parameter space that does not affect the physical molecules.

In addition, in the case of nematics, there is:

2. Central inversion about any point.

3. Invariance under any rotation about n.
And in the case of cholesterics, there is

2* No central inversion. Such an operation would transform a cholesteric from its right-
handed form, say, into a left-handed one.

3* Invariance under rotations by π about the director n, the axis of helicity �, and the
transverse axis � = � × n.

Note that the only symmetry among the above that subsists in a double-twisted blue
phase is the operation n → −n.

In both nematic and cholesteric cases, it will be enough to restrict the free energy
density expansion to terms quadratic in ∇n, because ni, j is so small.

The only scalar invariants linear in ni, j and invariant under any rotation are div n =
ni,i and n ·curl n = εi jknk, j ni . Here, εi jk form a completely antisymmetric unit tensor (the
Levi–Civita tensor) with ε123 = ε231 = ε312 = 1, ε132 = ε213 = ε321 = −1; εi jk is zero
when any two indices are alike. In index notations, the components of a vector product are
[a×b]i = εi jka j bk ; hence, curli n = [∇×n]i = εi jknk, j . Because div n is odd in n, it must
be excluded from the free energy density expansion. On the other hand, (div n)2 is allowed
for both nematics and cholesterics. Furthermore, n · curl n changes its sign under inversion
(x → −x, y → −y, z → −z); so it can appear only in the cholesteric free energy density,
but not in the nematic one. Finally, the quadratic scalar invariant (curl n)2 appears in both
phases.

Because in the identity (curl n)2 = (n ·curl n)2 +(n×curl n)2, both terms on the right-
hand side are symmetry invariant, the free energy density limited to first-order derivatives
writes in the nematic case as

fFO = 1

2
K1(div n)2 + 1

2
K2(n · curl n)2 + 1

2
K3(n × curl n)2. (5.2)

The free-energy density (5.2) is referred to as the Frank–Oseen energy density with Frank
elastic constants K1, K2, and K3 (all three are necessarily positive). We already used it
in the analysis of the N ↔ SmA transition (Section 4.4.2). In the cholesteric phase, the
presence of the term n · curl n leads to

fFO = 1

2
K1(div n)2 + 1

2
K2(n · curl n + q0)

2 + 1

2
K3(n × curl n)2 (5.3)



5.1 Uniaxial Nematics and Cholesterics 137

where q0 = 2π
p , and p is the cholesteric pitch, as we shall see below; in our notations, q0 is

positive for a right-handed cholesteric, and negative for a left-handed cholesteric, provided
the frame of coordinates is right handed.

The expressions (5.2) and (5.3) are complete at the level of the expansion we assumed,
but only if one neglects the so-called divergence terms:1

f13 + f24 = K13 div (ndiv n)− K24 div (ndiv n + n × curl n). (5.4)

The K24 term can be reexpressed as a quadratic form of the first derivatives (see (5.7)
below), whereas the K13 term is proportional to the second derivatives ni, jk and thus might
in principle be comparable to fFO ∝ ni, j nk,l . The divergence nature of these terms allows
one to represent the volume integral

∫
( f13 + f24) dV as a surface integral by virtue of the

Gauss theorem:

∫
K13 div g13 dV −

∫
K24 div g24 dV = K13

∫∫
©
A

� · g13 d A

− K24

∫∫
©
A

� · g24 d A, (5.5)

where g13 = ndiv n, g24 = ndiv n + n × curl n, and � is the unit vector of the outer normal
to the surface A. However, the divergence terms (5.4) must not be neglected on the grounds
of transformation (5.5). The energy integrals (5.5) scale in general linearly with the size
of the deformed system, as do the integrals

∫
fFO dV . Note also that the transformation

(5.5) is valid only when K13 and K24 are constants. The basic difference between fFO and
( f13+ f24) shows up when one seeks for equilibrium director configurations by minimizing
the total free energy functional

∫
( fFO + f13 + f24) dV : the K13 and K24 terms do not

enter the Euler–Lagrange variational derivative for the bulk. However, they can contribute
to the energy and influence the equilibrium director through boundary conditions at the
surface A.

5.1.2. Geometrical Interpretations of Director Deformations

5.1.2.1. Bulk Terms

K1 is called the splay elastic modulus. The splay deformation div n is nonvanishing in the
two geometries depicted in Fig. 5.1a and b: div n = 1

r for 2D splay (nx = cosϕ, ny =
sin ϕ, nz = 0), we employ cylindrical coordinates (r, ϕ, z) (Fig. 5.1a) and div n = 2

r for

3D splay (nx = x
r , ny = y

r , nz = z
r ), r = √

x2 + y2 + z2, (Fig. 5.1b). The K2 and K3
terms both vanish because curl n ≡ 0.

1J. Nehring and A. Saupe, J. Chem. Phys. 54, 337 (1971); 56, 5527 (1972).
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(a) (b)

(c)

(d)

z

z

z

Figure 5.1. (a) Deformation of splay in 2D geometry, (b) in 3D geometry, (c) twist, (d) bend.
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n × curl n

n' × curln '
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Figure 5.2. Geometrical meaning of n × curl n.

K2 is called the twist elastic modulus: n · curl n is the only nonvanishing deformation
in the geometry of Fig. 5.1c that illustrates a right-handed rotation of the director (nx =
cos qz, ny = sin qz, nz = 0). Here, q = α

d = 2π
p > 0, α is the angle of twist through

the slab, d is the thickness of the slab, and p is the pitch. Note that n · curl n + q = 0;
q = −n · curl n is the wavenumber attached to the pitch; hence, the interpretation of q0 in
the cholesteric free energy density (5.3), which vanishes for n · curl n ≡ −q0 in a perfect
cholesteric phase.

This is the place to make an important comment about the geometrical meaning of
the equation n · curl n ≡ 0. This equation is a necessary and sufficient condition for the
envelopes of the director to be perpendicular to a family of surfaces. The “sufficient” part
is easy: Assume that n is such that one can write

n = ±∇φ/| ∇φ |, (5.6)

i.e., n is perpendicular to the set of surfaces φ(x, y, z) = const, letting the constant vary;
1/| ∇φ | is a renormalizing factor, introduced to satisfy the condition n2 = 1. Equation
(5.6) immediately yields n · curl n ≡ 0: Twist vanishes. Consequently, twist is absent in
lamellar phases, even when they are distorted.

K3 is called the bend elastic modulus: n × curl n is the only nonvanishing deformation
in the geometry of Fig. 5.1d (nx = sinϕ, ny = cosϕ, nz = 0) and | n × curl n | = 1

r . The
bend term has a precise geometrical meaning in any distorted configuration: n × curl n is a
vector along the principal normal to the line that envelops the directors at the point M. The
length of this vector is the curvature 1

r at M (Fig. 5.2). If n × curl n ≡ 0, the envelopes are
straight lines.

5.1.2.2. Divergence Terms

The divergence terms are of much more complex geometrical (and physical) meaning.
K24 is called the saddle-splay elastic modulus for the reason that will become clear

when a similar modulus is discussed for lamellar phases. If n depends only on one Carte-
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sian coordinate, the K24 term vanishes identically. Saddle-splay is absent in 2D splay,
(Fig. 5.1a), but not in the 3D splay: div (ndiv n + n × curl n) = 2

r2 in Fig. 5.1.b. It is im-
portant to realize that another saddle-splay is hidden in the density fFO (5.2), as clear from
the identity

(div n)2 + (curl n)2 = ni, j ni, j + div (ndiv n + n × curl n). (5.7)

K13 is often called a mixed splay-bend elastic modulus. Its geometrical meaning can
be further clarified by considering the surface densities of the divergence terms:

s13 + s24 = K13(� · n)div n − K24� · (ndiv n + n × curl n). (5.8)

The surface density of the K24 term contains only derivatives along directions tangent to
the surface A, whereas the K13 term, besides the tangential derivatives, necessarily contains
a derivative along the normal to A.2

The scalar div n has no simple meaning for a generic distortion of a nematic or
cholesteric phase, but it has a geometrical interpretation in lamellar phases.

5.1.3. Material Elastic Constants

5.1.3.1. Small Molecules Liquid Crystals (SMLC)

The coefficients K1, K2, K3, K13, and K24 have the dimension of a force; henceforth, they
can be expressed as ratios of an energy U to a length a. The only typical energies in an or-
dered medium are the interaction energies between atoms or molecules, the most represen-
tative being the interactions between nearest neighbors. Obviously, such energies cannot be
much larger than kB Tc, where Tc is the “clearing” temperature at which the nematic phase
melts. In the case of nematics of small molecules, Tc is in the room temperature range or
slightly above, say, 400 K, and a reasonable guess is U ≈ 5 × 10−21 J (5 × 10−14 erg). The
only typical lengths are molecular or atomic lengths. Taking a ∼ 1 nm and U as above, one
gets Ki ≈ U

a ≈ 0.5 × 10−11 N (0.5 × 10−6 dyn). This magnitude is most often measured
(e.g., by the Frederiks transition method, Section 5.4.3) for K1, K2, K3 in thermotropic
nematics. For example, for 5CB,3

K1 = 0.64 × 10−11 N; K2 = 0.3 × 10−11 N; K3 = 1 × 10−11 N.

In most cases, K2 is the smallest coefficient. Consequently, twist shows up often in
deformed nematic samples, such as droplets that demonstrates twisted structures (see Sec-
tion 11.1.6).

2V.M. Pergamenshchik, Phys. Rev. E48, 1254 (1993); E49, 934 (E) (1994).
3For a review of the most recent values, see L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid

Crystal Materials, Springer series on partially ordered systems, New York, 1994.
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Very little is known about K24, see Crawford,4 and practically nothing is known for
sure about K13. As shown by Ericksen,5 the requirement n = const in a nematic with
q = 0 and K13 = 0 leads to the restriction 0 < K24 < K1 or 0 < K24 < K2 (whichever is
smaller).

5.1.3.2. Liquid Crystal Polymers (LCP)

One does not find in this case the simplicity of SMLCs, but on the other hand, one expects
that the coefficients would relate in an interesting way to molecular conformations; this
field of research is still open to investigation. Usually, K2 keeps smaller than K1 and K3.
This result is intuitive, because the molecular length L does not play a priori a large role in
a pure twist deformation. On the other hand, K1 and K3 are strongly modified. There are,
however, few exact theoretical and not enough experimental results on the issue of K1, K2,
K3 in different polymers. Two cases should be distinguished (for details, see the review
papers6).

Rigid polymers in solution. As already stated, this is the case of numerous polymers of
biological origin in solution, or viruses like TMV in water; polyamids in sulphuric acid
have a nematic phase whose elements are used as fibers for fabrics. In these cases, the
transition to the nematic phase fits the Onsager model. In the Onsager model of the rigid
rods, K1 and K2 are affected little when the solution is dilute, because the rods do not in-
terfere much with each other under splay and twist. The bend deformation, on the contrary,
is expected (see Lee and Meyer footnote) to show strong interference effects. Measure-
ments of Ki/χa by the Frederiks technique (χa is a diamagnetic or dielectric anisotropy)
and Ki/η by inelastic Rayleigh scattering (η is a viscosity) show that K1 and K3 increase
with the molecular weight Mw ∝ L

d and the volume fraction 	 = π
4 d2Ln (L and d

are the length and the diameter of the molecule; n is the number of molecules per unit
volume). An analytical solution,7 obtained in the limit of a high scalar order parameter
s → 1, K1 = 7

8π
kB T

d 	
L
d ≈ 3K2, K3 = 4

3π2
kB T

d 	
3( L

d )
3, shows that K3 increases much

faster than does K1 with the volume fraction.
Numerical results obtained within the framework of a Flory–Onsager model, modified

in order to take into account the variation of excluded volume with deformation, are shown
in Table 5.1.

Semiflexible polymers. Two features, characteristic of both lyotropic and thermotropic
LCPs, appear when the molecular weight increases, as follows

4G.P. Crawford, in Physical Properties of Liquid Crystals: Nematics, Edited by D.A. Dunmur, A. Fukuda, and
G.R. Luckhurst, INSPEC, The Institution of Electrical Engineers, London, U.K. (2001), p. 230.

5J.L. Ericksen, Inequalities in liquid crystal theory, Phys. Fluids 9, 1205 (1966).
6S.D. Lee and R.B. Meyer, in “Liquid Crystallinity in Polymers,” Edited by A. Ciferri, p. 343, VCH Pub.

1991; Liq. Cryst. 7, 15 (1990).
7T. Odjik, Liq. Cryst. 1, 553 (1986).
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Table 5.1. Numerical values of the Frank coefficients in the Flory–Onsager model∗ (in units of
10−11N or 10−6 dynes).

s = 0.7 s = 0.8 s = 0.9

K1 1.8 2.1 3.3
K2 0.6 0.69 1.1
K3 8.0 14.0 43.0
K1/K2 3 3 3
K3/K2 13 21 39

∗G. Strajer, S. Fraden, and R.B. Meyer, Phys. Rev. A 39, 4828 (1989); R.B. Meyer et al., Faraday Discuss. Chem.
Soc. 79, 125 (1985).

• The density of chain ends decreases with L . This has a direct effect on the splay co-
efficient K1. The chain ends contribute to the total energy by the elastic (solid type)
deformation they carry and by their entropy, which can be estimated assuming that
the chain ends form a perfect gas. The elastic contribution, calculated by de Gennes,8

yields a contribution to K1 proportional to L2. On the other hand, one can speculate on
the possibility of a splay deformation at vanishing mass density variation (no elastic
deformation), as in Fig. 5.3a: The V-shaped void between two rods is healed by in-
serting the end of the third rod. The main effect is then due to the variation of entropy,
which gives rise to a contribution to K1

9 of the order of kB T
d

L
d	 (	 is the volume frac-

tion in the case of a lyotropic LCP and is a constant in the case of a thermotropic LCP).
Another way of relaxing splay deformation is by the appearance of “hairpins,” as in

(a) (b)

Figure 5.3. (a) Effect of chain ends on the splay modulus; (b) hairpins in polymeric chains.

8P.G. de Gennes, Mol. Cryst. Liq. Cryst. Lett. 34, 177 (1977).
9R.B. Meyer, in Polymer Liquid Crystals, Edited by A. Ciferri, W.R. Krigbaum, and R.B. Meyer, Academic

Press, New York, 1982, p. 133.
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Fig. 5.3b. In the limit when the chains become infinite in length, any splay deformation
at constant polymer density is forbidden, and K1 becomes increasingly large.

• The bend deformations, on the contrary, do not require density changes. The cor-
responding bend modulus relates to the persistence length 
p , κ = kB T 
p (see
Section 15.1). Scaling arguments allow one to find expressions for the Frank elastic
constants. The main prediction7 is that K3 ≈ kB T

d 	

p
d becomes independent of the
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Figure 5.4. (a) K3/K1, (b) K1/K2, and (c) K3/K2 as functions of the chemical length L/d of the
polymer chain; PBG in a solvent mixture composed of 18% of dioxane and 82% dichloromethane
(adapted from Lee and Meyer).
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chain length, assuming L � 
p . Figure 5.4 shows experimental data for poly-γ -
benzylglutamate (PBG). The liquid crystalline phases are formed by PBG molecules
in their extended α-helical conformation in different organic solvents, such as m-
cresol, dioxane, benzene, chloroform, and so on. Typically, in these PBG solutions,

p ≈ 103 Å, whereas d ≈ (15 − 25) Å and 	 = 0.1 − 0.2. Note that a maximum in
the dependence K3/K1 in Fig. 5.4a happens at L/d ≈ 50, or L ≈ 103 Å, a value that
is in excellent agreement with the direct measurements of 
p . However, the measured
ratio K2/K1 does not satisfy the theoretical ratio 1/3.

Very few measurements have been carried on thermotropic LCPs. Let us cite Zheng-
Min and Kleman,10 in which it has been shown that in a mainchain polyester, K1 is
very large (by a factor of ≈ 10) compared with SMLCs nematics, whereas K2 and K3
have more conventional values. The cores of defects (disclinations) in this compound dis-
play molecular arrangements that corroborate the large anisotropy of the Frank coeffi-
cients.11

5.2. Lamellar Phases

5.2.1. Free Energy Density
The order parameter of an SmA phase includes a nematic contribution (coming from the
normal n(r) to the layers) and a 1D solid contribution. The free energy density follows
immediately. The nematic “bulk” part (5.2) yields the same free energy as above, viz.

f1 = 1
2 K1(div n)2 + 1

2 K3(n × curl n)2, (5.9)

with no twist term, as already stated. The solid part yields

f2 = 1

2
B

(
d − d0

d0

)2

(5.10)

= 1

2
Bγ 2, (5.11)

where d0 is the equilibrium repeat distance, d is the actual layer thickness measured along
n (in a continuous model, d is a continuous function of r), and B is the Young modulus for
the 1D solid.

Let us comment in more detail on the K2 and K3 terms. Consider a closed loop drawn
in a slightly deformed smectic. The total number of traversed layers is exactly zero and can

10Sun Zheng-Min and M. Kleman, Mol. Cryst. Liq. Cryst, 111, 321 (1984).
11G. Mazelet and M. Kleman, Polymer 27, 714 (1986).
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be expressed as 1
d0

∮
n · d
, if the layers do suffer bend deformation, but no compression

or dilatation. Hence, by virtue of Stokes’s theorem,
∮

n · d
 = ∫
curl n · dS = 0, which

yields curl n = 0; i.e.,

n · curl n ≡ 0 (5.12a)

(no twist of the director field), and

n × curl n ≡ 0 (5.12b)

(no bend of the director field). Identity (5.11a) has already been studied, and it subsists
even if the layers are compressed or dilated. Identity (5.11b) tells us that the envelopes of
the director field (the field of normals to the layers) are straight lines 1

r ≡ 0, and that the
layers are parallel (see Problem 5.1). If they are not, there is some contribution to f2 that
varies from point to point. Let us compare the f2 and K3 contributions. We have

{K3}
{ f2} = K3

B

(n × curl n)2

γ 2
∼= K3

B

1

r2
.

Note K3
B = λ2

3, where λ3 is a material length that must be comparable to the layer separa-

tion. Hence {K3}{ f2}
∼= ( λ3

r )
2, a very small quantity indeed, because r is macroscopic. The K3

contribution, which is a deformation associated with the layers compression, is negligible
compared with the B contribution, which is of the same nature.

The free energy density, (5.9) and (5.10), reduces eventually to

f = 1

2
K1(div n)2 + 1

2
Bγ 2. (5.13)

The ratio of K1 to B defines an important length scale

λ = √
K1/B (5.14)

called “the penetration length”; λ is of the order of the layer separation but diverges when
the system approaches the SmA-nematic transition. One expects that a SMLC SmA would
have K1 of the same order as in a nematic phase stable at higher temperatures. With λ ∼
d0 ≈ (1 ÷ 3) nm, and K1 ≈ 10−11 N, one finds B ≈ 106 ÷ 107 N/m2, a value of the
compressibility modulus that is 103 to 104 times smaller than in a solid.

5.2.2. Splay and Saddle-Splay Deformations

We now discuss another expression of the free energy density,

f = 1

2
K (σ1 + σ2)

2 + Kσ1σ2 + 1

2
Bγ 2, (5.15)
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which with respect to the former one (5.12) is supplemented by the divergence saddle-
splay term K ; the splay constant is noted K instead of K1. The parameters σ1 = 1

R1
and

σ2 = 1
R2

are the principal curvatures of the smectic layer in r and allow one to interpret

the layers deformation in terms of the mean curvature H = 1
2 (σ1 + σ2) and the Gaussian

curvature G = σ1σ2. Expression (5.14) is valid for any large bending of the layers and
small “solid” deformations. To ensure that the free energy density (5.14) is positive definite
for the lamellar phase, K must be within the range −2K < K ≤ 0; K is always positive.

We first show that

div n = ±(σ1 + σ2). (5.16)

A few concepts in the theory of surfaces are in order here. The layers are symbolized
by surfaces, and we consider such a surface� in the neighborhood of a point M (Fig. 5.5).
The orthogonal axes MX1,MX2 are taken in the plane tangent to � at M, and the axis MZ
is along the normal (arbitrarily oriented). The equation of the surface in the vicinity of M
is

z = ax2
1 + 2bx1 x2 + cx2

2 + 0(3), (5.17)

C

C

1

2

C 1

C2

M

M

X2

X1

Z

X2

X1

Z

(a) (b)

Figure 5.5. Element of area in the vicinity of its tangent plane at M: (a) elliptic point; (b) hyperbolic
or saddle point.
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but we can choose the directions X1 and X2 such that the cross-term vanishes:

z = 1

2

(
x2

1

R1
+ x2

2

R2

)
+ 0(3). (5.18)

This choice defines the principal directions at M. Any plane containing MZ intersects �
along a parabola (up to third order) whose apex is in M. The principal planes x2 = 0 and
x1 = 0 yield parabolae whose curvatures in M are 1/R1 and 1/R2, respectively. It is easy
to show that R1 and R2 are extrema of the radii of curvature of all parabolae in M, which
are obtained by letting x2 = µx1 in (5.17), where µ is a variable parameter. We distinguish
two cases, as follows.

• If R1 and R2 have the same sign, the element of surface lies on one side of the tangent
plane, and all centers of curvature lie between C1 and C2, the two principal centers
of curvature in M. The two radii of curvature MC1 = R1 and MC2 = R2 are signed
lengths. The Gaussian curvature G = σ1σ2 is positive. M is called an elliptic point. In
the neighborhood of M, the surface looks like an elliptic paraboloid (Fig. 5.5a).

• If R1 and R2 have opposite signs, the element of surface intersects the tangent plane,
and all centers of curvature lie outside of the segment C1C2. M is called a hyperbolic
point, and the surface looks locally like a saddle (Fig. 5.5b). The Gaussian curvature
G = σ1σ2 is negative.

The director is normal to the surface,

n = ±∇φ/| ∇φ |, where φ = −z + 1

2

(
x2

1

R1
+ x2

2

R2

)
,

and it has the components

n = ±
{

x1

R1
,

x2

R2
, −1

}(
1 − x2

1

2R2
1

− x2
2

2R2
2

)− 1
2

, (5.19)

and at the point M, we have the result we were seeking for:

div n = ±
(

1

R1
+ 1

R2

)
. (5.20)

Note that div n does not depend on the distribution of n outside of �.
A classic result in surface theory is that the Gaussian curvature reads as

G = σ1σ2 = 1

2
div (n · div n + n × curl n). (5.21)
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This expression relates the Gaussian curvature term in smectics to the nematic divergence
terms (5.4). It explains why saddle-splay disappears in the geometry of 2D splay: The
surfaces normal to n have zero Gaussian curvature.

It is usual, in the physics of lamellar media, to note K1 = K and −2K24 = K , as
in (5.14).

Let us now consider a single lamella, or membrane, of thickness d0, and introduce the
bend moduli of this membrane:

κ = K d0, κ̄=K̄ d0. (5.22)

The free energy per unit area can be written as

fc = 1

2
κ(σ1 + σ2)

2 + κ̄σ1σ2, (5.23)

assuming that the membrane is decoupled from other lamellae, so that there are no B-
terms. This expression of the free energy will prove of importance in the study of surfactant
systems in solvents. Equation (5.22) has long been known as the expression of the energy
per unit area in the mechanical theory of shells,12 with the correspondence:

κ ⇔ Eh3

12(1 − ν2)
, κ̄ ⇔ −Eh3

12(1 + ν) , (5.24)

where E is the Young modulus and h is the thickness of the shell. Note that in this theory
κ and κ̄ have the same order of magnitude. This remark holds as well for surfactant mem-
branes, whose material constants can be discussed in terms of mechanical interactions at
the molecular level13 (see Chapter 14). Finally, because σ1σ2 ∼ H 2, the Gaussian curva-
ture term brings to the free energy density f a contribution comparable to that one of the
mean curvature.

5.2.3. Free Energy Density for Small Deformations

Consider now the case in which the layers are but slightly bent, so that their deformation
can be described by a single scalar variable, the component of the displacement v(x, y, z0)

of the layers along the normal of the unperturbed layers, taken as the z-axis. A layer for-
merly at position z0 is in z = z0+v(x, y, z0) after deformation. Hence, z0 = z−v(x, y, z0),
which we rewrite using a new variable u(x, y, z) for displacement:

z0 = z − u(x, y, z). (5.25)

12A.E.H. Love, The Mathematical Theory of Elasticity, Dover, 1944, article 298.
13A.G. Petrov and A. Derzhanski, J. Physique Fr. 3, C3-15 (1976).
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The equation of the deformed layer is φ(x, y, z) = z0, where φ(x, y, z) = z − u(x, y, z),
and the director n = ±∇φ/| ∇φ | writes

n = ±
{

−∂u

∂x

(
1 + ∂u

∂z

)
, −∂u

∂y

(
1 + ∂u

∂z

)
, 1 − 1

2

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]}

(5.26)

to the second order. To the same order (Problem 5.4),

γ = ∂u

∂z
− 1

2
(∇⊥u)2, (5.27)

where the term (∇⊥u)2 ≡ ( ∂u
∂x )

2 + ( ∂u
∂y )

2 accounts for the effective layer compressions
caused by layers’ tilting by small angles ∂u/∂x, ∂u/∂y. The free energy density, restricted
to quadratic terms, is

f = 1

2
K1(�⊥u)2 + 1

2
B

(
∂u

∂z

)2

, (5.28)

where �⊥ = ∂2

∂x2 + ∂2

∂y2 . However, there are many important phenomena, such as field- or
strain-induced layers undulations (see Section 5.5.1) that cannot be properly described by
the harmonic form (5.27) and one has to retain the nonlinear terms originating in (5.26):

f = 1

2
K1(�⊥u)2 + 1

2
B

[
∂u

∂z
− 1

2
(∇⊥u)2

]2

. (5.29)

The saddle-splay term vanishes in most cases of practical interest (including the layer un-
dulations), either because one of the principal curvatures is zero or because the regions
with alternating signs of the Gaussian curvature compensate each other.

5.3. Free Energy of a Nematic Liquid Crystal
in an External Field

Electric field effects are usually studied in the geometry when the liquid crystal is confined
between two glass plates. The inner surfaces of the plates are covered with a transparent
electroconductive material such as indium tin oxide (ITO). Furthermore, the electrodes
are often coated with a special material (a polymer such as polyimide, surfactant layer,
etc.) to align the director along some particular direction called “direction of anchoring” or
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“easy axis.” There are four basic mechanisms of interactions between the applied electric
field and the liquid crystal: (a) dielectric, (b) flexoelectric, (c) through surface polarization
originating from electric double layers of ions or from the symmetry breaking n �= −n at
the boundary, and (d) through the motion of electric carriers—ions. To simplify things, we
neglect the flexoelectric effect (to be considered later) and assume that the liquid crystal
is a perfect insulator, and that there is no surface polarization of type (c) at the bounding
plates.

Suppose the cell is connected to an external source that keeps the voltage across the
cell constant. The dielectric coupling implies that the liquid crystal molecules tend to orient
in such a way that the component of the tensor of molecular polarizability along the field
is maximum. To find the equilibrium orientation of the director field in an external electric
field, one has to minimize the elastic energy FFO = ∫

fFO dV supplemented by:

• The energy of the electric field:14

FE =
∫

fE dV = 1

2

∫
E · D dV, (5.30a)

whose variation in a small reorientation of the molecules can be written as:

δFE = 1

2

∫
E · δD dV . (5.30b)

• The free energy associated with the change of the charge at the electrodes when n re-
orients. To keep the voltage across the cell constant, there should be indeed a supply of
energy δFG from the electric source. δFG is equal (with the opposite sign) to the work
needed to maintain the fixed voltage when the electric displacement δD changes and
modifies the surface-charge density at the plates by the quantity (−δDz) (the subscript
“z” denotes the component of D along the normal to the plates):

δFG =
∫ ∫

A
ψ δDz d A =

∫
div (ψ δD) dV, (5.31a)

where we have employed the Gauss theorem. Here, ψ is the electric potential, and d A
is the surface element of the electrode. Because div (ψ δD) = ψ div δD + δD · ∇ψ ,
E = −∇ψ , and div δD = 0 (there are no free electric charges), one gets

δFG = −
∫

E · δD dV = −2δFE . (5.31b)

14J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., New York, 3rd edition, 1999, Chapter 4;
V.G. Sugakov and E.M. Verlan, Hydrodynamics of Liquid Crystals, Kiev State University, 1978.
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The minimum of the total bulk free energy is achieved when

δFFO + δFE + δFG = δ(FFO − FE ) = 0. (5.32)

FE can be written in terms of the field strength and the components of the dielectric per-
mittivity tensor ε (Chapter 3). Representing the electric displacement as a sum of its two
components, normal to n and along n, i.e., D = ε0ε⊥E⊥+ε0ε||E|| = ε0ε⊥E+ε0εa(E·n)n,
where εa = ε|| − ε⊥, one finds

E · D = ε0ε⊥E2 + ε0εa(n · E)2. (5.33)

Dropping the orientation-insensitive first term on the right-hand side, one finally arrives at
the expression for the nematic free energy density supplemented by the dielectric term:

f = fFO − fE = fFO − 1

2
ε0εa(n · E)2. (5.34)

In a uniaxial nematic with εa > 0, n orients along E; when εa < 0, n is degenerate in the
plane perpendicular to E.

Similar considerations hold for the magnetic field. Let

M = µ−1
0 χ⊥B + µ−1

0 χa(B · n)n (5.35)

be the magnetization generated by the magnetic field of induction B. The corresponding
Zeeman energy density is the integral − ∫ B

0 M ·dB. The free energy density in the presence
of the magnetic field becomes

f = fFO − 1

2
µ−1

0 χa(n · B)2. (5.36)

Here again, the n-independent term is omitted. The susceptibility anisotropy χa is positive
in the calamitic nematic phases, but it is negative in discotic nematics, so that the director
is degenerate in the plane perpendicular to B.

As already indicated, the effects of the electric field are complicated by mechanisms
different from the dielectric coupling: flexoelectricity, surface polarization, and free ions.

Flexoelectricity15 in liquid crystals is an analog of piezoelectricity in solid crystals: Di-
rector curvature causes electric polarization of the medium. The effect can be qualitatively
illustrated by deformations in a nematic medium composed of anisometric (pear-like or
banana-like, Fig. 5.6) molecules that have permanent dipole moments. For example, splay
of pear-like molecules with a permanent dipole along the long axis leads to macroscopic

15R.B. Meyer, Phys. Rev. Lett. 22, 918 (1969).
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(a)

(c)

(b)

(d)

P flex = 0

P flex

P flex
P flex = 0

Figure 5.6. Molecular models for flexoelectric effects (see text).



5.4 Standard Applications of the Elasticity of Nematics 153

electric polarization P1 = e1n(div n). Bend of banana-like molecules, whose permanent
dipole is perpendicular to the director, causes polarization P3 = e3(curl n × n), where
the vector curl n × n is along the radius of curvature of the envelopes of the director. The
coefficients e1 and e3 have dimension µ/a2, where µ is a dipole moment. One expects
ei ≈ 10−11C/m (≈ 10−4 CGS units). Flexoelectric polarization P f couples to the external
field; the contribution to the free energy density is linear in E (as opposed to the dielectric
term quadratic in E):

fflex = −P f · E = −[e1n div n − e3(n × curl n)] · E. (5.37)

A similar effect is that of order electricity,16 in which the source of polarization is
the gradient of the scalar part of the order parameter. Another linear electric effect occurs
when the “heads” and “tails” of molecules have different affinity with the bounding plates.
If these molecules have longitudinal dipole moments, the broken surface symmetry results
in a surface polarization17 Ps and a contribution (−Ps · E) to the free energy density.
Surface polarization of a different type results from the electric double layers formed by
selective ion adsorption at interfaces. Ions are always present in liquid crystals, either as the
residuals of the chemical synthesis or because of the injection from the electrodes under
applied voltage. A variety of electrohydrodynamic effects occurs when the current of ions
drags the liquid crystal into motion.

5.4. Standard Applications of the Elasticity of Nematics

5.4.1. Minimization of the Free Energy in the Generic Case

Determination of the equilibrium director by minimizing the free energy functional be-
longs to the classic field of variational analysis.18 We first give a general scheme and then
illustrate it by examples.

5.4.1.1. General Scheme

Let F = ∫
V f dV be the total free energy of a nematic or a cholesteric phase in a volume

V . In the sequel, f is given by (5.2), with a possible addition of the field terms (5.33),
(5.35), or other terms. The minimization problem consists in looking for a distribution
of the director n(r), which minimizes F under physical constraints such as the surface
orientation of the director, shape of the sample, and so on.

16G. Barbero, I. Dozov, I. Palierne, and G. Durand, Phys. Rev. Lett. 56, 2056 (1986).
17P. Guyot-Sionnest, H. Hsiung, and Y.R. Shen, Phys. Rev. Lett. 57, 2963 (1986).
18Calculus of variations: see, e.g., G. Arfken, “Mathematical Methods for Physicists,” Academic Press, Inc.,

San Diego, 1985, Chapter 17.
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Consider an arbitrary variation δn(r) that is such that n′ = n(r)+δn(r) yields a higher
total free energy F ′. The method consists, therefore, in calculating δF = F ′ − F :

δF =
∫

V

[
∂ f

∂ni
− ∂

∂x j

∂ f

∂ni, j

]
δni dV +

∫
�

∂ f

∂ni, j
δni d A j , (5.38)

and writing that δF = 0 for any choice δn(r). Equation (5.37) obtains after integration by
parts, which has the advantage of letting the δni field appear, and not its derivatives; but
this is done at the expense of the appearance of a surface term.

Furthermore, in the present case, one has to introduce a supplementary term in the
variation of F , viz:

δFL = −
∫
λni δni dV, (5.39)

which originates in the condition of normalization of n

−1

2
λ(n2 − 1) ≡ 0, (5.40)

where the so-called Lagrange multiplier λ is an unknown function of coordinates (that has
nothing in common with the penetration length in lamellar phases).

The volume and the surface terms in (5.37) have to be treated on different footings.

In the bulk. Because δn(r) can be chosen at will (but still obeying the normalization
condition n′2 = 1, which reads to the first order n · δn = 0), let us consider a field δn that
vanishes everywhere on the boundary and in the bulk, except in an infinitesimally small
volume dV located in a particular point r, where δn is chosen constant. Therefore, one
gets

hi ≡ − ∂ f

∂ni
+ ∂

∂x j

∂ f

∂ni, j
= λni . (5.41)

These equations must be true at any point r of the sample, and they provide us with the
so-called Euler–Lagrange minimization differential equations. The vector h is called the
molecular field. Equations (5.40) have to be supplemented by the normalization condition
(5.39) and the boundary conditions, which we discuss now.

On the boundaries. Conditions on the boundaries can be defined either by data related
to n on the surface or by data related to the external torques and forces that are applied
on the surface. The most frequent experimental case is the first one, with n fixed on the
boundary by physicochemical conditions. One necessarily has then δn� ≡ 0, and the
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surface terms of (5.37) vanish identically; they play no role in the mathematical expression
of the boundary conditions. Consider now the case of external torques C applied on the
surface director, per unit area, so that a torque Cd A acts on a surface element. The work
done by this torque when the director rotates by an angle δ� is C · δ� d A. But | δ� | is the
angle between n and n′

� = n + δn� ; i.e.,

δn� = � × n�. (5.42)

Hence, the free energy is increased by the quantity

δFext =
∫
�

ω j C j d A. (5.43)

Writing d A j = ν j d A, where � is a unit vector along the outward normal to the surface,
and introducing (5.41) in the surface terms of (5.37), we get

ωp

{
C p + ∂ f

∂ni, j
εi pq nqν j

}
= 0, (5.44)

which is true for any value of ωp , which is a virtual rotation. Hence,

C p = − ∂ f

∂ni, j
ν jεi pq nq , (5.45)

which expresses the fact that the total torque acting on the director at the surface vanishes at
equilibrium. Such equations, which describe the director elastic relaxation on the surface,
can take into account the K13 and K24 divergence terms if they are introduced in the free
energy density f (the Euler–Lagrange equations for the bulk are not altered by these terms).
Incorporation of the K13 term is not simple because this term contains derivatives along
the normal to the surface: The procedure should take into account that the liquid crystal
properties such as scalar order parameter and density change over some nonzero distance
near the surface.19 In the rest of this chapter, we assume K13 = 0.

5.4.1.2. Special Cases and Simplifying Assumptions

Equation (5.40) has been solved under some special assumptions, such as that of (1) iso-
tropic elasticity with equal Frank constants K1 = K2 = K3 = K , or (2) planar geometry
of distortions (n staying parallel to a fixed plane). These two assumptions are often made
simultaneously. Although they are far from reality, they make easier a qualitative under-

19V.M. Pergamenshchik, Phys. Rev. E58, R16 (1998); Phys. Lett. A243, 167 (1998); V.M. Pergamenshchik
and S. Zumer, Phys. Rev. E59, R531 (1999).
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standing of the specific aspects of the present curvature elasticity, as well as some proper-
ties of defects. Note that the assumption (1) is better obeyed in SMLCs than in the LCPs:
Very often, K1 ≈ K3 indeed, except in the vicinity of the N-SmA phase transition, where
K3 diverges. Also, K2 is generally smaller than are K1 and K3. Hence, twist deformations
are favored;20 because these deformations define locally an axis of helicity, the assumption
(2) is also somewhat obeyed on macroscopic lengths. The situation (2) is considered in
Problem 5.2. Below, we briefly discuss the isotropic elasticity approach.

The free energy density in the presence of the magnetic field writes for K1 = K2 =
K3 = K as

f = 1

2
K [(div n)2 + (curl n)2] − 1

2
µ−1

0 χa(B · n)2, (5.46)

or still,

f = 1

2
K

{
nq,pnq,p + (n pnq,q ),p − (n pnq,p),q

} − 1

2
µ−1

0 χaBi niB j n j , (5.47)

where we use the notation B = | B |. There are two divergence terms in (5.46):

(n pnq,q ),p = div (n · div n), −(n pnq,p),q = div (n × curl n)

[see also (5.4)], which play no role in the minimization of F = ∫
f dV in the bulk, be-

cause, as repeatedly stated, they can be transformed into surface terms by virtue of the
Gauss theorem. Hence, as long as we are not interested in surface terms, we can write

f = 1

2
K nq,pnq,p − 1

2
µ−1

0 χa(B · n)2 = 1

2
K (∇n · ∇nT )− 1

2
µ−1

0 χa(B · n)2, (5.48)

and the Euler–Lagrange equation takes a simple form

K �n + µ−1
0 χa(B · n) · B = λn. (5.49)

5.4.1.3. Director Parameterization

A practical way to take into account the constraint n2 = 1 in the minimization problem is
to parameterize the director through the polar θ and azimuthal ϕ angles

n = (sin θ cosϕ, sin θ sinϕ, cos θ), (5.50)

20C. Mauguin, Bull. Soc. Franç. Minér. Crist. 34, 71 (1911).



5.4 Standard Applications of the Elasticity of Nematics 157

instead of employing the Lagrange multiplier. Generally, both θ and ϕ depend on all three
Cartesian coordinates, but the condition n2 = 1 is always satisfied. In the next section, we
use the angular parametrization to find the equilibrium n(r) for a so-called hybrid-aligned
nematic film.

5.4.2. Hybrid-Aligned Nematic Film

5.4.2.1. Fixed Boundary Conditions

A nematic slab (Fig. 5.7a) is confined between two flat plates z = 0 and z = d, at which
the director orientation is strongly fixed by physicochemical conditions:

θ(z = 0) = θ̄0, θ(z = d) = θ̄d . (5.51)

The director is assumed to lie in the vertical XZ plane, ϕ = 0:

n = [sin θ(z), 0, cos θ(z)]. (5.52)

Because (5.51) implies no twist, the assumption of isotropic elasticity, in this case reduced
to K1 = K3 = K , is not far from reality, and we employ it here.

With θ depending only on z, the Frank–Oseen elastic energy per unit area is

FFO =
∫ z=d

z=0
fFO[θ, θ ′, z] dz, (5.53)

θd

θ0 θ
0

θ
d

0

z

d

(a) (b)

Figure 5.7. Hybrid aligned film: (a) fixed boundary conditions; (b) soft boundary conditions with
director distortions relaxed at the expense of director deviations from the anchoring directions (5.50)
at the boundaries.
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where θ ′ = ∂θ
∂z . With K1 = K3 = K , it simplifies to

FFO = 1

2
K

∫ z=d

z=0
(θ ′)2 dz. (5.54)

Because the integrand in (5.53) does not depend on θ explicitly, the Euler–Lagrange equa-
tion for bulk equilibrium (see Appendix A),

∂ fFO

∂θ
− d

dz

∂ fFO

∂θ ′ = 0, (5.55)

reduces to θ ′′ = 0, with the solution θ(z) = c1z + c2. The two constants c1 and c2 are
defined from the boundary conditions (5.50) so that the equilibrium director configuration
is found as

θ(z) = (θd − θ0)
z

d
+ θ0. (5.56)

The elastic energy per unit area of a nematic film with director configuration (5.55),

FFO = 1

2
K
(θ0 − θd)

2

d
, (5.57)

depends on the difference | θ̄0 − θ̄d | in director orientation at the boundaries.

5.4.2.2. Soft Boundary Conditions

Deriving (5.55), we assumed that the surface interactions were infinitely strong and kept
the director surface orientation fixed and independent of the elastic distortions in the bulk
[see (5.50)]. In reality, molecular interactions at the plates are of finite strength. To reduce
the total energy, strong elastic distortions in the bulk can be relaxed by deviating the di-
rector from the surface axes θ̄0 and θ̄d . The energy carried by these surface deviations is
described by an “anchoring potential” fs that is a function of the magnitude of deviations;
e.g., fs0(θ0 − θ̄0). The free energy per unit area of the hybrid cell becomes

F =
∫ d

0
fFO[θ, θ ′] dz + fs0(θ0 − θ̄0)+ fsd(θd − θ̄d). (5.58)

The find the equilibrium θ(z) that minimizes the functional (5.57), one still starts with
the Euler–Lagrange equation (5.54), which is again of the form θ ′′ = 0. Its solution can be
conveniently written as [compare to (5.55)]

θ(z) = (θd − θ0)
z

d
+ θ0. (5.59)
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The two constants of integration θ0 and θd are the actual polar angles of the director at
the two substrates, different from θ̄0 and θ̄d , as these angles are defined by the balance of
elastic and anchoring forces through the new boundary conditions (see Appendix A):

[
−∂ fFO

∂θ ′ + d fs0

dθ

]
z=0

= 0 and

[
∂ fFO

∂θ ′ + d fsd

dθ

]
z=d

= 0. (5.60)

Suppose that deviations from the anchoring directions θ̄0 and θ̄d are small so that only
the first term can be preserved in the series expansion of the anchoring potentials:

fsi = 1

2
Wi (θi − θi )2, i = 0, d. (5.61)

Here, W is the so-called anchoring coefficient characteristic of a given liquid crystal–
substrate pair (Section 13.2.2). The approximation (5.60) works well when the cell is thick,
d � K/Wi . The boundary conditions (5.59) then reduce to

K (θ0 − θd)+ W0d(θ0 − θ̄0) = 0 and K (θd − θ0)+ Wd d(θd − θ̄d) = 0 (5.62)

and yield

θ0 = θ0 − L0

d + L0 + Ld
(θ0 − θd) and θd = θd + Ld

d + L0 + Ld
(θ0 − θd).

(5.63)

Here, L0 = K/W0 and Ld = K/Wd have the dimension of a length and are known as the
anchoring extrapolation lengths. As easy to see, the finite anchoring allows the director
distortions to relax so that the total energy

F = 1

2
K
(θ0 − θd)

2

d + L0 + Ld
(5.64)

is reduced compared with that of (5.56).
Equation (5.63) interprets the effect of anchoring as an effective increase of the film

thickness, d → (d + L0 + Ld). Hence, the weakening of distortions,

| θ ′ | = | θd − θ0 |/d < | θ̄d − θ̄0 |/d

(Fig. 5.7b), and the decrease of the total energy. Geometrical interpretation of extrapolation
lengths L0 and Ld and their effect on director configuration is shown in Fig. 5.8.
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θ (z)

θ0

θ
0

θd

L0 Ld

0 d z

θd

Figure 5.8. Geometrical interpretation of the anchoring extrapolation lengths.

As an order of magnitude, take W ∼ US N
a2 , where USN is the orientational part of the

energy of interaction of a molecule with the substrate and a is a molecular length. Then,

L = K

W
∼ a

U

USN
. (5.65)

The situation when L is of the order of a few molecular lengths will be referred to as
strong anchoring: W ∼ (10−3 − 10−2) J/m2 = (1 − 10) erg/cm2. Weak anchoring refers
to L in the “optical range”: 0.1–1 µm. Experimental situations are in the range W ∼
(10−6 − 10−3) J/m2.

5.4.2.3. Balance of Torques

Coming back to the surface equations (5.59), we wish to interpret them in terms of balance
of torques. For the sake of simplicity, we again use K1 = K3 = K , and start, as above,
from the expression of δF = δFvol + δFsurf:

δFvol = −K
∫
∂2θ

∂z2
δθ dz; (5.66)

δFsurf = −K

(
∂θ

∂z

)
0
δθ0 + K

(
∂θ

∂z

)
d
δθd

+ W0(θ0 − θ̄0) δθ0 + Wd (θd − θ̄d) δθd , (5.67)

where δθ = αη(z) is the virtual director rotation, as before. We recognize in δFsurf the
products of surface torques by angles of rotation; for example, W0(θ0 − θ̄0) is the external
torque exerted by the bottom substrate on the nematic. Because W0(θ0 − θ̄0)− K ( ∂θ

∂z )0 =
0, then K ( ∂θ

∂z )0 must be interpreted as the torque exerted by the internal stresses on the
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director at z = 0. This quantity is exactly Cy = ∂ f
∂nx,z

nz − ∂ f
∂nz,z

nx of (5.44) with � =
(0, 0,−1). Similarly, −K ( ∂θ

∂z )d is the torque exerted by the internal stresses on the director
at z = d , where � = (0, 0, 1). Note that these two elastic torques are exactly opposite.
Consider a slice of material between z and z + δz. Clearly, the total variation of the energy
of this slice δF |z+dz

z is

δF
z+dz|

z
= −K

(
∂θ

∂z

)
z
δθz + K

(
∂θ

∂z

)
z+δz

δ(θz+δz). (5.68)

Because ∂2θ

∂z2 = 0 by minimizing δFvol, ∂θ∂z is a constant. Hence, the torque exerted by the
internal stresses generated in the region below z on the surface director � = (0, 0,−1) is
K ( ∂θ

∂z ). Similarly, the torque exerted by the internal stresses generated in the region below

z + δz on the surface director above z + δz, � = (0, 0,−1), is still K ( ∂θ
∂z ): Nematics

transmit torques. We shall come back to this concept of “stress,” which has been alluded
to here.

5.4.3. External Field Effects: Characteristic Lengths
and Frederiks Transitions

In the geometry of Fig. 5.9, depicting a semi-infinite nematic volume, we assume that the
anchoring is infinitely strong at the bounding plane z = 0 so that n = (1, 0, 0) is the
boundary condition for z = 0. The magnetic field B = (0,B, 0) tends to twist the director.
The Euler–Lagrange equation is

K2
∂2θ

∂z2
+ µ−1

0 χaB2 sin θ cos θ = 0 (5.69)

(see Problem 5.2). The same equation follows from the balance of torques exerted on a
slice of material z, z + dz. The total torque exerted by the internal stresses on the material
is

(
0, 0, K2

∂2θ

∂z2

)
. (5.70)

Similarly, the total torque exerted by the magnetic field is

(M × H) =
(

0, 0, µ−1
0 χaB2 sin θ cos θ

)
, (5.71)

directed along the z-axis, hence (5.68).
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x

z

ξ(B)

B

Figure 5.9. Competition between strong planar anchoring and an applied magnetic field.

A characteristic length ξ , called the magnetic coherence length, appears in (5.68):

ξ = 1

B

√
K2

µ−1
0 χa

. (5.72)

Integrating (5.68) once, one gets

ξ
∂θ

∂z
= ± cos θ, (5.73)

where the constant of integration has been chosen to obey θ = ±π
2 , ∂θ

∂z = 0 for z → ∞.
Let us now look for the solution of (5.72), which satisfies θ = 0 for z = 0. One gets two
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solutions:

z = +∞ θ = π

2
tan

(
θ

2
+ π

4

)
= exp

z

ξ
(5.74a)

z = −∞ θ = −π
2

tan

(
θ

2
+ π

4

)
= exp

−z

ξ
, (5.74b)

which differ only by the sign of the twist. The director rotates helically from θ = 0 to
θ = ±π

2 (these two boundary conditions are physically the same) either along a right-
handed helix or a left handed one. Note the typical values: For K2 = 10−11 N, χa = 10−6

(SI units), and B = 1T, one obtains ξ ≈ 3µm, i.e., a macroscopic length. The effect of

(a)

(b)

(c)

n

n

n

B

B

B

Figure 5.10. Frederiks transitions involving K1, K2, and K3, respectively.
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the strong anchoring on z = 0 adverse to the magnetic field is cured on a macroscopic,
observable length.

One expects, more generally, that any perturbation of the director by the magnetic

field has a typical range ξ ∼= 1
B
√

Ki

µ−1
0 χa

, where Ki is the relevant Frank coefficient or a

combination of Frank coefficients.
An important application is the Frederiks transition (see Fig. 5.10 and Problem 5.8a). A

nematic slab is located between two parallel slides at a distance d and is strongly anchored
(W → ∞), so that n is oriented unidirectionally in the plane of the cell. The magnetic
field is applied normally to the plates to disturb this uniform orientation (χa > 0). When
the magnetic field reaches a value Bc such that ξ(Bc) = d

π
, the nematic shows a transition

toward a nonuniform state. This transition is reminiscent of a second-order Landau phase
transition, with B playing the role of temperature; the order parameter is the angular devia-
tion of the director from the uniform unperturbed orientation, measured at some z different
from 0 and d , in the middle of the sample (say, at z = d/2).

The three sample geometries of Fig. 5.10 allow for the measurement of K1, K2, and
K3 respectively, according to the formula:

Bci = π

d

√
Ki

µ−1
0 χa

, (5.75)

where Bci is the critical field above which the order parameter differs from zero. The for-
mula is derived in the approximation of infinitely strong surface anchoring; finite anchoring
decreases Bci (Section 13.2.3).

5.5. Standard Applications of the Elasticity of Smectics

5.5.1. Smectic Phase with Small Deformations

We consider in this section a smectic phase that is only but slightly deformed with respect to
the planar ground state. The distortions are described by a displacement function u(x, y, z),
and the free energy density is given by (5.27). The relating Euler–Lagrange differential
equation for the function u(x, y, z) can be written as

K1�
2⊥u − B

∂2u

∂z2
= 0, (5.76)

where �2⊥ = ( ∂
2

∂x2 + ∂2

∂y2 )
2. We notice that the two terms of (5.75) differ in the follow-

ing: The curvature elasticity term contains partial derivatives of the fourth order; on the
other hand, the position elasticity term contains only second order derivatives, as in classic
elasticity. The presence of this curvature term yields a remarkable elasticity.
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5.5.1.1. Long-Range Effect of Layers Fluctuations

Consider a semi-infinite smectic, limited by a plane at z = 0, occupying the z < 0 half-
space, whose boundary displays a static deformation u(x, y, 0) that we Fourier analyze
as

u(x, y, 0) =
∫

uq exp iq · rd2q, q = (qx , qy, 0). (5.77)

Because (5.75) is linear in u(x, y, z), the Fourier components are independent. Consider,
therefore, only one qx component that we note u = uq cos qx , and look for a solution of
(5.75) of the type

u = uq cos qx exp z/L , (5.78)

which obeys the boundary conditions u(x = 0) = uq cos qx and u(z → −∞) = 0. We
easily find

L =
√

B

K1
q−2 = 1

λq2
. (5.79)

Let � ∼= q−1 be a typical length of the deformation of the boundary. Equation (5.78) tells
one that the long-range effect of the perturbation is much larger than is � (L ∼= ��

λ
): λ

is a microscopic length; thus, L � �. This is at variance with what happens in an usual
solid, where a surface perturbation of typical size � is felt over a distance L ∼= � inside
the material, i.e., over a volume ≈ �3; it is at once clear that this difference takes its
origin in the order of the Euler differential equation. The result L ∼= � for solids was long
known as a “principle” of elasticity theory, the principle of Saint-Venant. Layered media
with curvature elasticity do not obey the principle of Saint-Venant.

5.5.1.2. Undulation Instability of Dilatation

Consider a macroscopic smectic specimen inserted between two strictly parallel rigid
plates. The layers are parallel to the plates, and the anchoring is taken infinite for conve-
nience. The system is assumed to be devoid of stresses when the gap between the plates is
D. Increase now the gap by a small quantity� such that D → D +�, without increasing
the number of layers. In a pure elastic process, the defomation is a uniform dilatation of
layers described by a displacement function u(z) = αz, α = �

D . The layers store (po-

sitional) elastic energy 1
2 Bα2 D = 1

2 B�
2

D per unit area of plate. However, above some
critical value �c of �, a nonuniform curvature deformation would have less energy than
would uniform dilatation. We want to calculate �c and the wavelength of the curvature
deformation, assuming, again for convenience, that it is a 1D deformation (Fig. 5.11a,b).
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hδ

(a) (b)

(c) (d)

Figure 5.11. Relaxation of a (a) dilated smectic sample by (b) undulation of layers; further dilation
can cause (c) nucleation of dislocations and, eventually, (d) focal conic domains.

The total deformation corresponding to periodic undulation of layers can be written
as:

u = αz + u0 cos qx sin kz, (5.80)

where u0 is small. In order to calculate the amplitude of undulations, it appears that we have
to introduce the nonlinear terms in the free energy density [see Problem 5.4 and (5.28)] as

f = 1

2
K1

(
∂2u

∂x2

)2

+ 1

2
B

[(
∂u

∂z

)
− 1

2

(
∂u

∂x

)2
]2

. (5.81)

Calculating the total energy per unit length in the x-direction, i.e., F = q
2π

∫ 2π/q
0 f dx∫ D

0 dz, with D = π
k , one gets an expression in u0 and α that has to be minimized with

respect to u0. Note that the minimization of F with respect to α is meaningless because
the expression of F does not show the external action that displaces the plates, one with
respect to the other. Considering only the leading term F ∝ u2

0, one gets

4

D

∂F

∂u0
= (K1q4 + Bk2 − Bαq2)u0, (5.82)
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which yields two solutions when ∂F
∂u0

= 0. The solution u0 = 0 (pure dilatation) is stable

as long as ∂2 F
∂u2

0
is positive; i.e., α < k2

q2 + λ2q2, where λ =
√

K1
B . The solution α =

k2

q2 + λ2q2 yields ∂
2 F
∂u2

0
= 0, but any relative displacement � of the plates such that α > αc

yields ∂
2 F
∂u2

0
< 0. In other words, the layers planar geometry is unstable against curvature

distortions when α > αc. One gets αc by minimizing the expression α = k2

q2 + λ2q2 with
respect to q (k = π

D is fixed):

αc = 2kλ = 2π
λ

D
. (5.83)

The critical displacement �c at α = αc is

�c = Dαc = 2πλ, (5.84)

which is independent of the sample thickness and λ is of the order of a molecular length.
For D = 100µm, a typical value is αc = 6 × 10−5, which yields a stress σc = Bαc ≈
6 × 102 N/m2. Thus, the mechanical instability appears for weak applied stresses.

When � < �c, we have u0 = 0. The calculation of u0 above the threshold requires a
higher order term ∝ u4

0 in the expansion of F(u0) [see (5.80)] and yields

u0 = 8

3
λ

(
α − αc

αc

)1/2

, (5.85)

a slow increase of u0 with � > �c. But as soon as u0 reaches a value of the order of
the layers thickness, a second mechanism of relaxation might appear, which is the nucle-
ation of edge dislocations in the areas where the dilatation is maximum (Fig. 5.11c) (see
Helfrich21). At still higher stresses, the dislocations transform into parabolic focal conic
domains, which are described in Chapter 11.

The dilatation instability has been studied experimentally by elastic light scattering; it
allows for a direct measurement of λ = k/q2

c . For details, see Delaye et al.22

5.5.2. Smectic Phase with Large Deformations
and Topological Deformations

The two examples studied above put on equal footings curvature elasticity fc =
1
2 K1(div n)2 and “position” elasticity f p = 1

2 Bγ 2: One will easily check that they con-

21W. Helfrich, Appl. Phys. Lett. 17, 531 (1970); J.P. Hurault, J. Chem. Phys. 59, 2086 (1973).
22M. Delaye, R. Ribotta, and G. Durand, Phys. Lett. A44, 139 (1973); N.A. Clark and R.B. Meyer, Appl. Phys.

Lett. 30, 3 (1973).
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tribute by equal amounts to the total deformation in the first example, and in the second
example, above the instability threshold.

Scaling arguments show that this parity is not generic. Let L be a typical length of
the deformation, and let one assume that the same typical length shows up in the three
directions of space. The corresponding energies are

Fc ∼= K1L and Fp ∼= BL3; (5.86)

i.e., Fc/Fp ∼= (λ/L)2. Hence, it appears that the energy of curvatures is the larger the
smaller L is, the contrary being true for position elasticity. One can therefore infer, a con-
trario, that in real situations, curvature distortions are predominant at large scales (L � λ),
position distortions are predominant at small scales (L < λ), and they both contribute at
microscopic scales (L ∼= λ). This also points to the importance of instability processes at
all scales, because, in the two limits indicated:

• At large scales, one expects γ ≡ 0, i.e., the layers being all of equal thickness and
therefore parallel one to the other. Generally, the boundary conditions can be satis-
fied only by the appearance of large scale defects, which in this case are focal conic
domains.

• At small scales, one expects σ1 + σ2 ≡ 0, i.e., the layers are curved in the shape
of minimal surfaces. This constraint also yields specific instabilities, such as screw
dislocations, as we shall see later.

This analysis does not take into account the K13 and K24 terms. As already men-
tioned, in lamellar phases, n × curl n is quasi zero; thus, the K13 and K24 terms of the
form div (ndiv n) cannot be separated from each other. One expects that the corresponding
modulus K , which governs the Gaussian curvature term in (5.14) and should vary in the
range −2K < K ≤ 0 in the lamellar phase, might be of a reasonable value ∼ (−K ). The
energy contribution of K is a topological property of the volume under consideration, it
takes a different value each time a strong deformation or a phase transition yield a change
in the topology of the layers. Examples are drawn in Fig. 5.12. For instance, the geometry
of Fig. 5.12a shows layers that are slightly deformed around the strict planar geometry.
Each layer has bumps and hollows that create regions of opposite Gaussian curvatures.
According to the fact that σ1σ2 is a saddle-splay-like term, the total Gaussian curvature
should be vanishing:

F24 ≡ K̄
∫
σ1σ2 d� = 0. (5.87)

In Fig. 5.12b, the fluctuations of the sphere likewise sum up to zero, and the same
integral can now be calculated on a perfect sphere, yielding

F24 (sphere) = 4π K̄ , (5.88)
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(a)

(b)

(c)

(d)

Figure 5.12. To illustrate the Gauss-Bonnet theorem; (a) a fluctuating layer with vanishing Gaussian
curvature on the average, (b) a fluctuating sphere, (c) a fluctuating torus, (d) half-torus extended to
infinity.

whereas, by the same argument, one gets on a full fluctuating torus (Fig. 5.12c):

F24 (torus) = 0, (5.89)

because regions of positive and negative Gaussian curvature compensate on the average.
Note that the fluctuations are not restricted to be small: Any surface “homotopic” to a
sphere, like, say, a very elongated ellipsoid, yields the same Gauss-Bonnet integral as the
sphere. This topological property of the integral is true as well for the torus, or for any
closed surface.

Consider now a half-torus of positive Gaussian curvature. It can be transformed into
a sphere (by gluing two full circles along the lips of the half-torus) without changing the
integral

∫
σ1σ2 d� = 4π .

Therefore, the fluctuating half-torus of negative Gaussian curvature, extended to infin-
ity, Fig. 5.12d, is such that

F24 (neg. half-torus) = −4π K̄ . (5.90)
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Figure 5.13. A torus with two holes, g = 2, χ = −2.

More generally, the Gauss-Bonnet theorem relates to the Gaussian curvature integral
of a closed manifold to the Euler characteristic χ of the manifold:

∮
σ1σ2 d� = 2πχ. (5.91)

This quantity is defined in Problem 5.5. Instead of the Euler characteristic, one also intro-
duces the genus, which is the number of handles of a closed manifold: g = 1 for the torus,
which is also a sphere with one handle, g = 2 for the two-holes torus (a pretzel, or a sphere
with two handles, Fig. 5.13), and so on. We have the relation

χ = 2(1 − g). (5.92)

Coming back to physical considerations, one will notice that the sign of K̄ plays an
excessively important role in layered systems and, in particular, in lyotropics, where the fa-
vored presence of inner micelles or half-toruses of negative Gaussian curvature can lead to
spectacular phase transitions. Important examples are the cubic phase and the sponge phase
L3, which are phases in which the bilayers have everywhere negative Gaussian curvature.
They will be discussed later.

5.6. Thermodynamic Fluctuations

At thermodynamic equilibrium and at T �= 0 K, any system suffers fluctuations of energy
1
2 kB T per degree of freedom. This is the principle of equipartition of energy. The amplitude
of these fluctuations can be calculated easily, starting from an expansion of the free energy
of the system in the Fourier components of the phase of the order parameter. It is indeed
assumed that the amplitude of the order parameter is not affected by these fluctuations,
as long as the system is far from any phase transition. Any uniform change of the phase
component of the order parameter (i.e., at wavevector q = 0) in a perfect system does not
change the free energy. Consequently, one expects that in an elastically deformed system,
long wavelength fluctuation modes of these “breaking-symmetry continuous variables”
would be continuously excited by an energy as small as 1

2 kB T and would continuously
disappear. This is equivalent to say that we study these fluctuations at a frequency of ω = 0.
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More will be said about their slow dynamics under the action of an external field (which
would inject energies � 1

2 kB T per degree of freedom) in the next chapters.

5.6.1. Thermodynamic Fluctuations in Nematics

Nematics are turbid: They scatter light strongly, because of the spontaneous fluctuations
of the director alignment.23 The continuous theory of these fluctuations suffices to explain
the observed effects.24

We assume that the sample is uniformly aligned along the z-axis. We are interested in
the (small) fluctuations δn = (nx (r), ny(r), 0) of the director n ∼= (nx (r), ny(r), 1). We
expand nx (r), ny(r) in Fourier components (see Appendix B) and express the free energy
density (5.2) as a function of these components. One gets, for example:

div n = i V −1
∑

q
exp(iq.r)[qx nx (q)+ qyny(q)] (5.93)

and

(div n)2 = (div n) · (div n)∗

= V −2
∑
q,q′

exp[i(q − q′) · r][qx nx (q)+ qyny(q)][q ′
xnx (q′)+ q ′

yny(q′)]∗,

i.e.,

∫
V
(div n)2dr = V −1

∑
q

∣∣ qx nx (q)+ qyny(q)
∣∣2. (5.94)

One eventually gets, after calculating all terms in the same way,

∫
V

fFOdr = 1

2
V −1

∑
q

{
K1

∣∣ qx nx (q)+ qyny(q)
∣∣2 + K2

∣∣ qx ny(q)− qynx (q)
∣∣2

+ K3q2
z

(
| nx (q) |2 + ∣∣ ny(q)

∣∣2)} .

Let δn2 be the component along q of δn (δn = δn1 + δn2, δn1.δn2 = 0). Clearly,
| qx nx (q)+ qyny(q) |2 = (q2

x + q2
y )δn

2
2 = q2⊥δn2

2. Similarly, qx ny(q) − qynx (q) is the

z-component of the cross product δn × q times q⊥; i.e., | qx ny(q)− qynx (q) |2 = q2⊥δn2
1.

23Orsay Liquid Crystals Group, Phys. Rev. Lett. 22, 1361 (1969).
24P.-G. de Gennes, C.R. Acad. Sci. Paris 266, 15 (1968).
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Therefore,

∫
V

fFOdr = 1

2
V −1

∑
q

{
q2⊥(K1δn2

1 + K2δn2
2)+ q2|| K3(δn2

1 + δn2
2)

}
. (5.95)

This diagonalization of
∫

V fFOdr (cross terms have disappeared) allows for the application
of the theorem of equipartition of energy and yields

〈
δn2

1

〉
= V kB T/(q2⊥K1 + q2|| K3), (5.96a)

〈
δn2

2

〉
= V kB T/(q2⊥K2 + q2|| K3), (5.96b)

where the brackets 〈 〉 denote a thermal average.
These expressions are useful to compute the light intensity scattered by the fluctua-

tions of orientation. The propagation of light is sensitive to the electric field radiated by
the microscopic dipoles, which are induced on the molecules by the electric field of the
incoming light. We shall not repeat here this analysis, which is developed in de Gennes
and Prost textbook.

The equations above are easily extended to take into account the presence of a magnetic
field. They are therefore useful to discuss the range of the correlations 〈ni (r)ni (r′)〉 of the
orientation. With B along the z-direction, one gets

〈
δn2

1

〉
= V kB T /

(
q2⊥K1 + q2|| K3 + µ−1

0 χaB2
)
, (5.97a)

〈
δn2

2

〉
= V kB T /

(
q2⊥K2 + q2|| K3 + µ−1

0 χaB2
)
. (5.97b)

Now, the calculation of the correlation functions

〈ni (r)ni (r′)〉 = V −2
∑
q,q′

〈ni (q)ni (−q′)〉 exp
[
i(q · r − q′ · r′)

]
(5.98)

is made easy by noticing that the Fourier components of the director are uncorrelated for
different values of the wavevector q, corresponding to different degrees of freedom. Hence,

〈
ni (q)ni (−q′)

〉 =
〈
| ni (q) |2

〉
δq+q′,0,

and

〈
ni (r)ni (r′)

〉 = V −2
∑

q

〈
| ni (q) |2

〉
exp

{
iq · (r − r′)

}
. (5.99)



5.6 Thermodynamic Fluctuations 173

The calculation proceeds by substituting the values 〈δn2
1〉 and 〈δn2

2〉 calculated above in
the quantities〈ni (r)ni (r′)〉, and it yields eventually to a correlation of the form (assuming
that the three Frank coefficients are equal):

〈ni (0)ni (R)〉 ∝ kB T

K R
exp

{
− R

ξ

}
, (5.100)

where ξ = 1
B
√

K
µ−1

0 χa
is the magnetic coherence length introduced in (5.71). The correla-

tions decrease slowly with distance at zero field.

5.6.2. Thermodynamic Fluctuations in Smectics

The calculation of the thermal fluctuations of an undeformed smectic proceeds along the
same lines. One gets, starting from (5.27),

〈
| u(q) |2

〉
= kB T

Bq2
z + K q2⊥

(
q2⊥ + ξ−2

) , (5.101)

where a contribution from a magnetic field along the z-direction has been introduced (the
ξ dependent term). The mean square fluctuation can be easily calculated from this expres-
sion:

〈
u2(0)

〉
= kB T

4π
√

B K
ln
ξ

d0
, (5.102)

where d0 is the lower cutoff, taken equal to the repeat distance. As the magnetic field
decreases to zero, the logarithmic term diverges; in fact for a sample of size L , and in zero
field, the last expression is replaced by

〈
u2(0)

〉
= kB T

4π
√

B K
ln

L

d0
. (5.103)

The mean-squared thermal fluctuation of the layers diverges. This is the so-called Peierls-
Landau instability characteristic of systems with 1D positional order. Despite the fact that
the divergence is substantial only for very large systems (with K = 10−11 N, kB T =
4 × 10−21 J =4 × 10−14 erg,

√
K/B ∼ d0 ∼ 1 nm, one obtains

√〈
u2(0)

〉 ∼ d0 only when
L ∼ 10 km), we conclude that smectics do not possess true long-range translational order.

The X-ray structure factor shows up a power-law decay, whereas it is a delta peak in
3D systems. The scattering intensity is the Fourier transform of the Debye–Waller factor25

25A. Caillé, C.R. Acad. Sci. Paris 274B, 891 (1972).
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G(R) = exp

[
−1

2
q2

z

〈
| u(R)− u(0) |2

〉]
, (5.104)

where the displacement correlation function writes:

〈
| u(R)− u(0) |2

〉
= 2

(2π)3

∫
dq

〈
| u(q) |2

〉 [
1 − exp (−iq · R)

]

∼= kB T

4π
√

K B
×

[
ln R||, R⊥ = 0,

ln R2⊥, R|| = 0.
(5.105)

The calculation of the scattered intensity yields

I (q) ∝
[

| qz − q0 |−2+η , q⊥ = 0,

| q⊥ |−4+2η , qz = 0,
(5.106)

with η = kB T q2
0

8π
√

K B
, q0 = 2π/d0.

5.A. Appendix A: One-Dimensional Variational Problem

Minimization of the functional of the type (5.52),

F =
∫ z=d

z=0
f [θ, θ ′, z] dz, (5A.1)

is the simplest standard problem of variational analysis (see Arfken [18]), because the
integrand depends only on one unknown function θ(z), and this function depends only on
one independent variable z. Below we consider both fixed boundary conditions

θ(z = 0) = θ̄0, θ(z = d) = θ̄d (5A.2)

and soft boundary conditions, without restriction on the particular physical content of the
problem.

5.A.1. Fixed Boundary Conditions

All possible functions θ(z) can be represented by paths that connect two points [z = 0, θ =
θ0] and [z = d, θ = θd ] (Fig. 5.14a). Let θeq(z) be the path that minimizes (5A.1). Any
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0 zd

θ z( )

0 zd

θ z( )

(a) (b)

θd θd

θ0

θ0

θd

θ0

δθδθ

Figure 5.14. A hypothetical function (thick line) that minimizes the energy functional (5A.1) for (a)
fixed boundary conditions and the functional (5A.11) for (b) soft boundary conditions. The thin line
shows any other function close to the equilibrium one.

other close path θ(z) can be written as θeq(z) + δθ(z), where δθ(z) is a virtual director
rotation equivalent to the arbitrary variation δni in the general scheme (Section 5.4.1).
The variation δθ(z) is conveniently represented as a product αη(z), where the new arbi-
trary function η(z) describes the deformation of the path and the small scale parameter α
describes the magnitude of variation:

θ(z) = θeq(z)+ αη(z). (5A.3)

The function η(z) must be differentiable and vanish at the fixed endpoints, η(z = 0) =
η(z = d) = 0. The free energy functional for the path θ(z) is

F[θ(z)] =
∫ d

0
f [θeq(z)+ αη(z), θ ′

eq(z)+ αη′(z), z] dz. (5A.4)

The extremum of the last integral, considered as a function of α, obtains when

[
∂F(α)

∂α

]
α=0

= 0. (5A.5)

Differentiation of F(α) with respect to α gives

∂F(α)

∂α
=

∫ d

0

[
∂ f

∂θ

∂θ

∂α
+ ∂ f

∂θ ′
∂θ ′

∂α

]
dz =

∫ d

0

[
∂ f

∂θ
η(z)+ ∂ f

∂θ ′
dη(z)

dz

]
dz.
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Note that the two α-dependent functions θ and θ ′ are treated as independent variables.
Integrating the second term by parts and recalling that η(z = 0) = η(z = d) = 0,

∫ d

0

dη(z)

dz

∂ f

∂θ ′ dz = η(z) ∂ f

∂θ ′
∣∣∣z=d

z=0︸ ︷︷ ︸
=0

−
∫ d

0
η(z)

d

dz

∂ f

∂θ ′ dz, (5A.6)

we obtain

∫ d

0

[
∂ f

∂θ
− d

dz

∂ f

∂θ ′

]
η(z) dz = 0. (5A.7)

Note the correspondence between (5A.5) and the requirement δF = 0 in the general
scheme of Section 5.4.1.1. Multiplying (5A.7) by α, one gets

∫ d

0

[
∂ f

∂θ
− d

dz

∂ f

∂θ ′

]
δθ dz = α

[
∂F(α)

∂α

]
α=0

= δF = 0. (5A.8)

The extremum condition, either in the form (5A.7) or (5A.8), can be satisfied only if

∂ f

∂θ
− d

dz

∂ f

∂θ ′ = 0, (5A.9)

which is the differential Euler–Lagrange equation for our 1D problem. Its solution is a
family of functions θ = θ(z, c1, c2) with two constants of integration determined from the
two boundary conditions (5A.2).

When f does not depend on z explicitly, the first integral of the Euler–Lagrange equa-
tion (5A.9) can be found immediately as

θ ′ ∂ f

∂θ ′ − f = const (5A.10)

(see Problem 5.3).

5.A.2. Soft Boundary Conditions

The energy to minimize contains surface terms:

F =
∫ d

0
f [θ, θ ′, z] dz + fs0(θ0 − θ̄0)+ fsd(θd − θ̄d). (5A.11)

Again, the difference δθ = θ(z) − θeq(z) = αη(z) can be characterized by a new
function η(z) that is not necessarily zero at the boundaries (Fig. 5.14b). Because
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d fs0(θ0)

dα
= d

dα
fs0[θ0,eq + αη(z = 0)] = η(0)d fs0

dθ0
,

then

∂F(α)

∂α
=

∫ d

0

[
∂ f

∂θ

∂θ

∂α
+ ∂ f

∂θ ′
∂θ ′

∂α

]
dz + d fs0

dθ0
η(0)+ d fsd

dθd
η(d). (5A.12)

Integration of the second term in the volume integral by parts yields the extremum condi-
tion in the form

∫ d

0

[
∂ f

∂θ
− d

dz

∂ f

∂θ ′

]
η(z) dz +

[
− ∂ f

∂θ ′ + d fs0

dθ

]
z=0
η(0)

+
[
∂ f

∂θ ′ + d fsd

dθ

]
z=d
η(d) = 0. (5A.13)

Therefore, the Euler–Lagrange equation (5.54) should still be used to find the family
of solutions in the form θ = θ(z, c1, c2), but now the two integration constants c1 and c2
are defined from the boundary conditions in the form

[
− ∂ f

∂θ ′ + d fs0

dθ

]
z=0

= 0 and

[
∂ f

∂θ ′ + d fsd

dθ

]
z=d

= 0. (5A.14)

One can also insert the function θ = θ(z, c1, c2) into F (5A.11), integrate it, and then
minimize the integral with respect to c1 and c2.

5.B. Appendix B: Formulae for Fourier Transforms

Let m(r) be a continuous observable defined in a volume V . Most generally, it is assumed
that this volume is a parallelopiped of edges L1, L2, L3, with periodic boundary condi-
tions. Hence, V = L1L2L3, with

m(x, y, z) = m(x + L1, y, z) = · · · . (5B.1)

The following formulae are of constant use:

m(r) = V −1
∑

q
exp(iq · r)m(q), (5B.2a)

m(q) =
∫

V
dr exp(−iq · r)m(r), (5B.2b)
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∑
q

exp[−iq · (r − r′)] = V δ(r − r′), (5B.2c)

∫
V

dr exp[ir · (q − q′)] = V δqq′ = (2π)3δ(q − q′), (5B.2d)

where

q =
(

2π

L1
n1,

2π

L2
n2,

2π

L3
n3

)

is the set of reciprocal wavevectors such that (5B.1) is satisfied (n1, n2, n3 are integers);
δqq′ is the Kronecker delta, equal to 1 when q = q′ and 0 otherwise; δ(q − q′) is the 3D
Dirac delta function.

In the V → ∞ limit, the sum over q is transformed into an integral:

∑
q

→ V
∫

dq
(2π)3

, (5B.3)

and (5B.2a) and (5B.2c) become

m(r) =
∫

dq
(2π)3

exp(iq · r)m(q), (5B.4)

∫
dq exp[−iq · (r − r′)] = (2π)3δ(r − r′). (5B.5)

All of these expressions are written in dimension 3. The dimensionality appears in the
above as the exponent of 2π . The extension to any dimension is straightforward.

Problem 5.1. Prove that n × curl n is along the principal normal of the envelope of the director and
has modulus 1/r , i.e., equal to the curvature.

Answers: In components notations, n × curl n can be written as (n × curl n)i = εi jkn j εkpq nq,p .
Because εi jkεkpq = δi pδ jq − δiqδ j p , one gets (n × curl n)i = −n j ni, j . Hence, n × curl n =
−n · ∇n = − dn

ds , where s is the curvilinear abscissa along the envelope of the directors oriented

along the direction of n. According to the Frenet formulae, one also has dn
ds = ν

r .

Problem 5.2. Planar Director Distortions. Assume that the nematic cell with the director configura-
tion

n = (nx , ny, 0) = (cos θ, sin θ, 0)
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is subjected to a 2D magnetic field B = (Bx ,By, 0). Here, θ = θ(x, y, z) is the angle between the
x-axis and the director. Write (a) the elastic free energy density and (b) the Euler–Lagrange equation
for the problem, assuming K1 = K3 = K .

Answers:

(a) The elastic part of the free energy density is

fFO = 1

2
(K1 sin2 θ + K3 cos2 θ)

(
∂θ

∂x

)2
+ 1

2
(K1 cos2 θ + K3 sin2 θ)

(
∂θ

∂y

)2

+ 1

2
(K3 − K1) sin 2θ

∂θ

∂x

∂θ

∂y
+ 1

2
K2

(
q0 − ∂θ

∂z

)2
. (5.106)

It takes a simpler form when K1 = K3 = K , so that the total free energy density that includes
the contribution of the 2D magnetic field B = (Bx ,By, 0) becomes

f = 1

2
K

[(
∂θ

∂x

)2
+

(
∂θ

∂y

)2
]

+ 1

2
K2

(
qo − ∂θ

∂z

)2

− 1

2
µ−1

0 χa(Bx cos θ + By sin θ)2. (5.107)

(b) The free energy density (5.107) integrates to a total energy of the form
∫

f

(
θ,
∂θ

∂x
,
∂θ

∂y
,
∂θ

∂z

)
dx dy dz.

Any variation of the orientation θ makes f , not the element of volume, vary. Therefore, the
Euler–Lagrange equation can be written as

∂ f

∂θ
−

[
∂

∂x

∂ f

∂θx
+ ∂

∂y

∂ f

∂θy
+ ∂

∂z

∂ f

∂θz

]
= 0;

i.e.,

µ−1
0 χa

[
(B2

x − B2
y) sin 2θ − 2BxBy cos 2θ

]

− 2

[
K

(
∂2

∂x2
+ ∂2

∂y2

)
+ K2

∂2

∂z2

]
θ = 0. (5.108)

Problem 5.3. Prove that the first integral of the Euler–Lagrange equation for the functional (5.52)
has the form (5A.10) when the integrand does not depend on the coordinate z explicitly.

Answers: Denote G = θ ′ ∂ f
∂θ ′ − f . Then,

dG

dz
= θ ′′ ∂ f

∂θ ′ + θ ′ d

dz

(
∂ f

∂θ ′
)

− d f

dz
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= θ ′′ ∂ f

∂θz
+ θ ′ d

dz

(
∂ f

∂θ ′
)

− ∂ f

∂θ
θ ′ − ∂ f

∂θ ′ θ
′′

= θ ′
{

d

dz

(
∂ f

∂θ ′
)

− ∂ f

∂θ

}

and G = const if the Euler–Lagrange equation holds.

Problem 5.4. Show that in the smectic A phase, the dilatation of a layer can be written to the second
order as

γ = d − d0

d0
=

(
∂u

∂z

)
− 1

2
(∇⊥u)2.

Answers: Let z0 = z − u(x, y, z) be the equation of a deformed layer of coordinate z0 before
deformation. This quantity varies by an amount d0 when one goes from a deformed layer to the next,
along a path of length d (the value of d0 after deformation) along n. Applying Taylor’s expansion
theorem to such a displacement, which brings a point on the z0-layer to the z0 + d0-layer, one gets
z0 + d0 = z0 + dn · ∇z0. Hence,

γ = d − d0

d0
= −1 + 1

| ∇z0 | ≈ −1 + 1

nz − n · ∇u
.

The desired result follows from the expression of

n =
{
−∂u/∂x(1 + ∂u/∂z),−∂u/∂y(1 + ∂u/∂z), 1 − 1

2
(∇⊥u)2

}

written to the second order.

Problem 5.5. Starting from the Euler-Poincaré theorem demonstrated in Problem 2.3, Chapter 2,
prove that for a polyhedron of genus g, one has the following generalization:

χg = v − e + f = 2(1 − g).

Hint: cut the original polyhedron obeying the Euler-Poincaré theorem along two polygons having
no edge in common, and introduce a polygonized handle joining the boundaries of these polygons.
“Polygonize” it in such a manner that the polygons along the cut match along the edges and the
vertices. It is then easy to show that the Euler characteristic χ1 = 0, independently of the way the
polygonization of the handle has been performed.

The identity between this result and (5.91) requires one to delve deeply into the differential ge-
ometry of surfaces.

Problem 5.6. Starting from (5.22) fc = 1
2κ(σ1 +σ2)

2 + κ̄σ1σ2, establish the conditions of stability,
expressed as inequalities imposed on the curvature moduli κ and κ̄ , of the lamellar phase, the micellar
phase, and the sponge phase.
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Answers: Equation (5.22) can be written as the sum of two terms with positive expressions for the
curvatures:

fc = 1

2

[(
κ + 1

2
κ̄

)
(σ1 + σ2)

2 − 1

2
κ̄(σ1 − σ2)

2
]
.

(a) If both coefficients are positive, viz. κ + 1
2 κ̄ > 0, κ̄ < 0, the ground state is when σ1 + σ2 =

0, σ1 − σ2 = 0; i.e., it is the lamellar phase.

(b) If κ + 1
2 κ̄ < 0, κ̄ < 0, there is no ground state and the energy decreases without limit for

| σ1 + σ2 | large, | σ1 − σ2 | = 0. One, therefore, expects some stabilization for G > 0, e.g., the
micellar phase.

(c) If κ + 1
2 κ̄ > 0, κ̄ > 0, there is no ground state and the energy decreases without limit for σ1 +

σ2 = 0, | σ1 − σ2 | large, i.e., when the curvature σ = | σ1 | = | σ2 | increases. The membrane is
then a minimal surface. In reality, one expects some repulsive interactions stabilizing the system
at some finite value of the curvature and nonzero value of G < 0, e.g., the sponge phase, due to
other factors like Helfrich interactions (see Section 14.2.2).

(d) The case κ + 1
2 κ̄ < 0, κ̄ > 0 leads to a contradiction.

Problem 5.7. Show that the contribution of the divergence term to the total energy of the thermal
fluctuations vanishes, employing the method of Fourier components of the text. Why was that result
expected, in the nematic as well as in the smectic cases?

Problem 5.8. Show that the Frederiks transition in an SmA phase with strong planar anchoring,
magnetic field B parallel to the layers, is hardly visible (“ghost” transition).26

Answers: Let us express the free energy density

f = 1

2
K (div n)2 + 1

2
B

(
d − d0

d0

)2
− 1

2
µ−1

0 χa(B · n)2

as a function of the angle θ between the normal to the deformed layer and the unperturbed direction.
We remind one that B and B (or B = | B |) define two very different quantities, the compressibility
modulus and the magnetic induction, respectively. One gets

f = 1

2
K cos2 θ

(
dθ

dx

)2
+ 1

2
B(1 − cos θ)2 − 1

2
µ−1

0 χaB2 sin2 θ.

The x-axis is along the layers, i.e., perpendicular to the boundaries of the cell, and the z-axis is
perpendicular to the unperturbed layers.

(a) assuming that the deviation is small and expanding f to the second order in θ , the free energy
reduces to

f = 1

2
K

(
dθ

dx

)2
− 1

2
µ−1

0 χaB2θ2,

26A. Rapini, J. de Phys. (Paris) 33, 237 (1972).
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which yields the Euler–Lagrange equation

d2θ

dx2
+ 1

ξ2
θ = 0

(ξ = 1
B
√

K
µ−1

0 χa
being a characteristic length), and a solution of the form

θ = θM cos
x

ξ
for B > Bc = π

L

√
K

µ−1
0 χa

.

(Hint: L is the thickness of the cell; at B = Bc, the strong anchoring boundary conditions are
satisfied; θM is the value of θ in the middle plane of the cell). Bc is the critical field for the
Frederiks transition. This solution applies to the nematic phase as well.

(b) We take into account the term of compression in order to estimate θM . The first integral of the
Euler–Lagrange equation that minimizes f is

2K cos2 θ

(
dθ

dx

)2
= 2B(cos θM − cos θ)

+ (µ−1
0 χaB2 + B)(sin2 θM − sin2 θ).

This first integral satisfies dθ
dx

∣∣∣∣
M

= 0. The right-hand member of the first integral is positive,

because the left-hand part is positive. Because 0 < cos θM ≤ cos θ , one eventually gets

cos θM >

(
1 + µ−1

0 χaB2

B

)−1

.

This can also be written as

cos θM >

(
1 + λ2

ξ2

)−1
∼= 1 − λ2

ξ2
,

where λ is a microscopic length (de Gennes penetration length) and ξ is a macroscopic one. The
change in orientation is hardly visible.

Problem 5.9. Find the equilibrium director configuration in a hybrid-aligned film (5.51) with an
infinitely strong anchoring (5.50) when K1 �= K3.

Answers: The free energy writes

f = 1

2
(K11 sin2 θ + K33 cos2 θ)(θ ′)2 = 1

2
K (θ)(θ ′)2

and does not depend on z explicitly. The first integral of the Euler–Lagrange equation is, thus
K (θ)(θ ′)2 = c2, where c is a constant, defined from the boundary conditions (5.50),
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∫ θd

θ0

√
K (χ) dχ =

∫ d

0
c dz.

The equilibrium director tilt across the nematic slab is then

zc =
∫ θ(z)

θ0

√
K (χ) dχ.

Problem 5.10. In the consideration of the hybrid-aligned nematic film with strong anchoring (Sec-
tion 5.4.2 and Problem 5.9), we assumed that the director is confined to the vertical plane and there
are no in-plane distortions (a “homogeneous hybrid film”). Using the one-constant Frank–Oseen
elastic energy, show that in-plane director distortions might reduce the elastic energy of the hybrid
film.

Answers: One of the simplest ways is to compare elastic energies of the films restricted in the hori-
zontal planes by coaxial cylinders with radii R > r . Consider first a homogeneous hybrid film with
2D distortions, (nx , ny, nz) = [sinαz, 0, cosαz], where α is the constant defined by the difference
in the polar angles at the opposite plates and the thickness of the film, say, α = π

2d . The elastic energy

of such a film is Fhomo
FO = π3 K

8d (R
2 − r2). Now take an ansatz (nr , nϕ, nz) = [sinαz, 0, cosαz],

in the cylindrical coordinates (r, ϕ, z), that describes a 3D director field distorted in the plane of the
film. The elastic energy of this distorted film is

Fdist
FO = Fhomo

FO + πK

2

[
−π(R − r)+ dln

R

r

]
;

i.e., Fdist
FO might indeed be smaller than Fhomo

FO of the homogeneous film.
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C H A P T E R 6

Dynamics of Isotropic
and Anisotropic Fluids

Static continuum theory allows one to find the equilibrium configurations of the order
parameter field by minimizing an appropriate free-energy functional. If the system is
slightly disturbed, it usually relaxes back to this equilibrium. Most of the perturbations re-
lax quickly, over a characteristic time of collisions between the molecules (which is of the
order of 10−10–10−14 s for classic fluids). However some variables, called hydrodynamic
variables, relax slowly. A classic example is the mass density: The frequency ω (inverse
time) of the sound waves vanishes when their wavelength becomes infinite, L → ∞, ac-
cording to the dispersion law ω ∼ c/L, where c is the sound velocity. In general, densities
of conserved variables (mass, linear momentum, and energy) are hydrodynamic variables.
In media with continuous broken symmetries, such as nematic liquid crystals, there is a
second class of hydrodynamic variables, namely, the degeneracy parameters (or phases of
the order parameter), which is discussed in Chapter 3.

Imagine, for example, a reorientation wave of the nematic director as a perturbation of
the uniform state n = const. If L → ∞, this perturbation is just another uniform state with
a different orientation n′ = const. It will practically never relax back to the original state
because both have the same energy. If L is finite but still macroscopic, the relaxation time
is finite, but still larger than the molecular collision times. The director, which is the phase
variable of the order parameter of the nematic, is an independent hydrodynamic variable.
In contrast, the amplitude of the order parameter is not a hydrodynamic variable: Even
if the wavelength of perturbation is infinitely long, L → ∞, it has to relax to the local
equilibrium state.

Hydrodynamics studies processes that occur over the space and time intervals much
larger than the characteristic molecular scales: There are many acts of molecular collisions
over the hydrodynamics’ elementary time dt and space dr intervals that equilibrate the
system locally. This allows one to operate with field variables (such as director, velocity,
density, etc.), averaged over many particles to characterize the state of an elementary vol-
ume located at time t at a space point r. The position r can be specified in a fixed laboratory
reference frame through, e.g., Cartesian coordinates (x1, x2, x3). This approach is called

184
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Eulerian. In the alternative Lagrangian approach, one follows a selected particle, moving
the coordinate frame with this selected particle.

A moving one-component isotropic fluid is described by the following five fields: the
three components of local velocity v(r, t) and two thermodynamic variables, generally the
mass density ρ(r, t) and the energy density. Because the processes are slow, one can use
an appropriate thermodynamic equation of state to find any other thermodynamic quantity
from these two. We start our consideration with the hydrodynamics of such a simple one-
component fluid. The rest of the chapter is devoted to hydrodynamics of the nematic phase,
for which there are two additional variables, namely, two director components (the third
one is eliminated by virtue of n2 = 1).

6.1. Velocity Field and Stress Tensor

6.1.1. Material Derivatives and Components of Fluid Motion

6.1.1.1. Material Derivative

Suppose that some scalar parameter a of a moving fluid (for example, density or a com-
ponent of velocity) changes in space and time. The changes in an observable a(r, t) are
different for a stationary observer at the point r and for an observer that moves with a
selected material particle. For the stationary observer, the rate of change ∂a/∂t is caused
exclusively by the local modifications of the observable. For the moving observer, there
are additional changes: During a time interval dt , the element of fluid is carried to a new
position r + dr, where the value of a is generally different from that at r, t :

a(r + dr, t + dt)− a(r, t) = dt

(
∂a

∂t
+ ∂a

∂xi

dxi

dt

)
= dt

(
∂a

∂t
+ vi

∂a

∂xi

)
; (6.1)

vi = dxi/dt are the components of the velocity of the particle present at r at time t . Here
and henceforth, we use the Einstein rule of summation over indices that appear twice in a
term. Dividing both parts of (6.1) by dt , one obtains an important definition of the material
derivative,

da

dt
= ∂a

∂t
+ v · ∇a. (6.2)

The term v · ∇a brings essential nonlinearity to the equations of hydrodynamics: The
fluid property a is transported by the velocity v, which itself is a fluid property.

6.1.1.2. Components of Motion

Local fluid motion can be decomposed into four distinctive components: (1) pure transla-
tion, (2) solid-like rotary flow that involves no deformations, (3) shear deformations, and
(4) extensional deformations or dilation.
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Figure 6.1. Relative motion of two close fluid particles.
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force exerted
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ρg dV

 dFn

Figure 6.2. A body force ρg dV acting on a small volume element and a surface force dF acting on
a small surface element with unit normal �.



6.1 Velocity Field and Stress Tensor 187

Consider two close fluid particles at points M0 and M1. At some instant t , these par-
ticles are separated by a distance dr and move with velocities v and v + dv (Fig. 6.1). The
velocity of M1 relative to M0 is the increment dv j = ∂v j

∂xi
dxi , i, j = 1, 2, 3, that com-

bines the effects (2)–(4) of rotations and deformations; pure translation (1) is given by v.
To separate the solid-like rotations (2) from deformations (3) and (4), the tensor of velocity
gradients ∂v j/∂xi is presented as a sum Ai j + Wi j of symmetric Ai j and antisymmetric
Wi j parts:

Ai j = A ji = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
, (6.3)

Wi j = −W ji = 1

2

(
∂vi

∂x j
− ∂v j

∂xi

)
. (6.4)

Ai j is called the rate-of-deformation (or strain-rate) tensor. The diagonal elements Aii

describe dilation (4): if, for example, the particles M1 and M0 are separated along the axis
x1, then A11 = dv1/dx1 is the extension rate per unit separation distance. The off-diagonal
elements Ai j are proportional to the shearing velocity in the direction i for two particles
M1 and M0 separated in the direction j and thus represent the shear motion (3). Finally,
Wi j describes solid-like rotations (2) of M1 around M0 and is often expressed through the
angular velocity � = 1

2∇ × v as Wi j = −εi jk�k , where εi jk are the components of the
Levi-Civita tensor equal 1 if i jk = 123, 231, 312, (−1) if i jk = 321, 213, 132, or 0 if
any two indices are alike. As already indicated in Chapter 5, the components of a vector
product are [a × b]i = εi jka j bk ; hence, [∇ × a]i = εi jkak, j , with ak, j = ∂ak/∂x j . Note
also a useful formula εi pqεikl = δpk δql − δpl δqk .

6.1.2. Body and Surface Forces. Stress Tensor

A change in the state of fluid motion can be caused by two types of forces, called body (or
volume) forces and surface forces (Fig. 6.2). Some forces (e.g., of electrostatic origin) can
be represented in either form.

6.1.2.1. Body Forces

Body forces penetrate the whole volume of the system and act on all its elements. An obvi-
ous example is gravity. A body force acting on an elementary volume dV is proportional
to this volume and can be written as ρg dV , where g is the force per unit mass.

6.1.2.2. Surface Forces

Surface forces are caused by direct molecular interactions, including interactions between
neighboring regions of the same medium. The surface nature of these forces is caused
by a very small range of molecular interactions compared with characteristic scales of



Chapter 6 Dynamics of Isotropic and Anisotropic Fluids188

x

x1

x

11

31

21

22

12

32

33

23

13

σ

σ

σ
σ

σ
σ

σ

σ

σ

3

1

2

Figure 6.3. A cube with normal and tangenial stresses acting at its faces.

perturbations in a continuum model. The surface forces are conveniently represented by
the components σi j of a stress tensor: σi j is the i-component of an infinitesimal surface
force acting on an infinitesimal surface area d A j perpendicular to the coordinate axis j :

d Fi = σi j d A j = σi jν j d A; (6.5)

ν j is the component of a unit normal � to the surface; � is directed from the part 1 toward
part 2, (Fig. 6.3). The total force acting on a volume V with surface A is then

Fi =
∫∫
©
A

σi jν j d A =
∫ ∫ ∫

V

∂σi j

∂x j
dV, (6.6)

where the surface integral is substituted by the volume integral by virtue of the Gauss
divergence theorem.

The three diagonal elements of σi j are normal stresses, whereas the six off-diagonal
elements are shear stresses. The last concept helps to distinguish fluids from solids in
hydrodynamic description: A medium is fluid if the shear stresses, no matter how small,
cause unlimited large deformations if applied over unlimited time. Fluids do not support
shear stresses while at rest.
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6.2. Isotropic Fluid in Motion

An ultimate problem of fluid dynamics is to find density, three velocity components and
energy density as functions of time and spatial coordinates. Five dynamic equations for
these five unknowns follow from the conservation laws for mass, momentum, and energy.

6.2.1. Conservation of Mass: Continuity Equation

Consider a fluid volume V0 bounded by a surface A0. The subscript “0” means that the
volume is fixed in space. The mass of fluid in this volume at any moment of time is the
volume integral over its density,

∫∫∫
V0
ρ(r, t) dV . The rate of outflow of mass through the

closed surface A0 is
∫∫
©A0ρv · � d A. The rate at which mass is decreasing inside the volume

is − ∂
∂t

∫∫∫
V0
ρ dV . Because mass cannot be created at will,

∂

∂t

∫∫∫

V0

ρ dV +
∫∫
©
A0

ρv · � d A =
∫∫∫

V0

(
∂ρ

∂t
+ divρv

)
dV = 0. (6.7)

The last equation should hold for any fluid volume V0. Therefore,

∂ρ

∂t
= −∇ · ρv, (6.8)

which is the law of conservation of mass, also known as the continuity equation. To cast it
in the Lagrangian form, i.e., while following the fluid particle, one differentiates the second
term in (6.8) and applies the definition of the material derivative (6.2). The result reads as

dρ

dt
= −ρ∇ · v; (6.9)

i.e., the rate dρ/dt of the density change equals the product of density ρ and the volume
expansion rate ∇ · v, taken with an opposite sign. For an incompressible fluid, ρ(r, t) =
const, the continuity equation is simply

∇ · v ≡ ∂vk/∂xk = 0. (6.10)

6.2.2. Linear Momentum Equation

The Lagrangian approach gives a straightforward way to derive the dynamic equations for
momentum and energy. One selects a material volume V bounded by a surface A that
moves with the fluid (so that both V and A might depend on time) and applies the basic
laws of mechanics to this moving volume. The linear momentum equation follows from
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the principle analogous to the Newton’s second law of mechanics: The rate of change of
momentum d

dt

∫∫∫
V ρv dV of a particle equals the net force acting on the particle:

d

dt

∫∫∫

V

ρvi dV =
∫∫∫

V

(
ρgi + ∂σi j

∂x j

)
dV . (6.11)

To obtain the balance of momentum in a differential form, one has to bring the operation
of differentiation in the left-hand side of (6.11) under the integral. This is not a permissible
operation because the volume of integration is time dependent. Observe, however, that
one can replace integration over the volume with integration over the mass, ρ dV = dm.
When this is done, the region of integration (mass of the moving particle) is constant and
switching of the order of operations is permissible:

d

dt

∫∫∫

V

ρv dV = d

dt

∫
v dm =

∫
dv
dt

dm =
∫∫∫

V

ρ
dv
dt

dV . (6.12)

Because V is arbitrary, the Lagrangian form of the momentum equation reads as

ρ
dvi

dt
= ∂σi j

∂x j
+ ρgi . (6.13a)

In the Euclidian form,

∂ρvi

∂t
= − ∂

∂x j
(−σi j + ρviv j )+ ρgi , (6.13b)

where ρvi is the density of momentum and (−σi j +ρviv j ) is the tensorial flux of momentum,
also called the momentum current tensor.

Note first that the source term is the same in both equations of (6.13); this remark
proves to be true for all laws of conservation. Second, there is an analogy between (6.13b)
and the law of conservation of mass (6.8). The right-hand part of (6.13b) contains the
divergence ∂

∂x j
of the flux (−σi j + ρviv j ) and the source of momentum ρgi , which has no

equivalent in (6.8), where for the sake of simplicity, we have not introduced any source of
matter provided by diffusivity. Thus, both (6.13b) and (6.8) can be considered as particular
examples of the “balance equation”

∂(density)

∂t
= −div (flux)+ (sources), (6.14)

that illustrates the universal structure of all laws of conservation. The derivation of the
balance equation can be understood from Fig. 6.4. Let x be the mass density of some
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normal pointing
outward from ‘1’

X

JX

 and
sources of

X

n

Figure 6.4. Amount of quantity X in the volume V0 changes due to the flow of X through the bound-
ing surface A0 and due to the production of X within V0.

quantity X (e.g., total momentum, kinetic energy, etc.) specified in the volume V0 bounded
by the fixed surface A0. The change

∫∫∫
V0

∂(xρ)
∂t dV of X is caused by two factors: By flow∫∫

©A0(−JX ·�) d A = − ∫∫∫
V0
(∇ ·JX ) dV of X through A0 (the flux JX is calculated per unit

area normal to JX and per unit time), and by the production (or destruction) of X within
V0, which is the volume integral of all the “sources.” Equation (6.14) is the differential
form of this balance.

6.2.3. Energy Balance Equation

Consider the total energy of a fluid composed of the kinetic energy of its macroscopic
motion and the specific internal energy of microscopic motions that does not vanish even
for a fluid at rest. In the sequel, we shall note ε the total energy and u the internal energy,

both calculated per unit mass, so that ε = v2

2 + u. The change of the total energy, with the
rate (Problem 6.1)

d

dt

∫∫∫

V

ρε dV =
∫∫∫

V

ρ
d

dt

(
v2

2
+ u

)
dV,

is caused by the work performed on the system and by the flow of heat. The work per unit
time (power) is that of volume and surface forces,

∫∫∫
V ρ(g · v) dV + ∫∫

©A(F · v) d A. The
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heat received per unit time is
∫∫
©A(−Jq · �) d A, where Jq is the heat flux. Hence,

∫∫∫

V

ρ
dε

dt
dV =

∫∫∫

V

ρ(g · v) dV +
∫∫
©
A

(F · v) d A +
∫∫
©
A

(−Jq · �) d A, (6.15)

or in local (Lagrangian) form

ρ
dε

dt
= − ∂

∂x j
(−viσi j + J q

j )+ ρgivi . (6.16a)

Again, the fluxes of energy and the sources can be written in the Eulerian picture [compare
with (6.14)]:

∂

∂t
ρε = − ∂

∂x j
[vi (−σi j + ρε δi j )+ J q

j ] + ρgivi . (6.16b)

It is instructive to separate the kinetic and internal energy changes. Writing the kinetic

energy rate as ρ d
dt (

v2

2 ) = vi (ρ
dvi
dt ), where ρ dvi

dt is expressed through the momentum equa-
tion (6.13a), and extracting this term from (6.16a), one gets an equation for the internal
energy:

ρ
du

dt
= σi j

∂vi

∂x j
− ∂ J q

j

∂x j
. (6.17)

The specific internal energy is then controlled by the work of the surface forces and the
flux of heat; the work of the body forces change only the kinetic energy.

6.2.4. Entropy Production Equation

The fact that the gradients of velocity (the term σi j∂vi/∂x j ) cause internal energy changes
seems natural: Molecular interaction and transport between adjacent fluid domains that
move with different velocities cause intrinsic friction and, thus, dissipate the energy. This
phenomenon is cast in a precise form by the second principle of thermodynamics, on the
one hand, and the Onsager equations, on the other.

6.2.4.1. Second Principle

In an irreversible process, the entropy variation of a system

dS = dS(r) + dS(d) (6.18)
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comes from two contributions, a reversible one dS(r) and an irreversible (dissipative) one
dS(d). If the system is closed (exchanges heat but not matter with the surrounding), then
dS(r) = d Q

T , where d Q is the total heat provided to the system. dS(r) might contain
additional terms if the system is open and exchanges matter as well. In its most general
form,1 the second principle of thermodynamics claims that for all systems, open, closed,
or isolated, the change dS(d) is always positive:

dS(d) > 0. (6.19)

Even when the system is divided into smaller parts, the entropy production in each of these
parts is still positive. This allows one to write the second principle in the local form, as the
balance equation

∂ρs

∂t
+ ∇ · Js = σ ≡ 2R

T
> 0. (6.20)

Here, we introduce the local (coordinate- and time-dependent) quantities: The entropy per
unit mass s = s(r, t), so that S = ∫∫∫

V0
ρs dV and ds = ds(r) + ds(d); ds(d) > 0; and the

entropy flux Js (assumed vectorial), associated with the reversible processes, dS(r)/dt =∫∫
©A0(−Js · �) d A. The entropy source σ (called also entropy production) per unit volume
is often expressed by an equivalent notation 2R/T , where R is the dissipation function.
To find 2R/T explicitly in terms of parameters characterizing viscous friction and, for
example, heat conduction, we calculate ∂ρs

∂t from the first principle of thermodynamics.
The differential of the internal energy ρu per unit volume (which implies dV ≡ 0),

can indeed be written as

d(ρu) = µdρ + T d(ρs), (6.21)

where the temperature and the chemical potential per unit mass are defined in a standard
way as T = (∂u/∂s)ρ and µ = (∂ρu/∂ρ)ρs , respectively. Dividing the last equation by a
time element dt (sufficiently large compared with molecular times, henceforth preserving
the validity of the hydrodynamic approach), we obtain the rate equation for the entropy ρs:

T
d(ρs)

dt
= ρ du

dt
− (µ− u)

dρ

dt
, (6.22a)

where we have substituted d(ρu)/dt = ρdu/dt + udρ/dt . Transforming

d(ρs)/dt = ∂(ρs)/∂t + v · ∇(ρs) = ∂(ρs)/∂t + div (ρsv)− ρs div v

1D. Kondepudi and I. Prigogine, Modern Thermodynamics, John Wiley & Sons, Chichester, 1998.
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with the help of (6.2) and using the continuity equation (6.9), one rewrites (6.22a) as

T
∂(ρs)

∂t
+ T div (ρsv) = ρ du

dt
+ p div v, (6.22b)

where p = −ρu + ρµ + Tρs is the pressure. With the result (6.17) for ρdu/dt , and the
relationship 1

T ∇ · Jq = ∇ · ( Jq

T )− Jq∇( 1
T ), (6.22b) acquires the form

∂(ρs)

∂t
+ ∇ ·

(
ρsv + Jq

T

)
= σi j + p δi j

T

∂vi

∂x j
+ Jq∇

(
1

T

)
. (6.23)

Comparing it with (6.20), one finds the local entropy production

2R

T
= σi j + p δi j

T

∂vi

∂x j
− J q

j

T 2

∂T

∂x j
, (6.24)

caused by viscous friction (the first term) and the irreversible heat flow (the second term).
Other processes, such as chemical reactions or diffusion, can contribute to the entropy
production.

6.2.4.2. Onsager’s Reciprocity Relations

Notice that the terms responsible for entropy production (6.24) have a certain structure:
They are products of some flux Jα (such as momentum flux or heat flux Jq ) characteriz-
ing an irreversible process and some “thermodynamic force” Fα that drives the flow; in
our example (6.24), the “forces” are gradients of velocity and temperature. We can write
phenomenologically

2R

T
=

∑
a

Fa · Ja . (6.25)

In equilibrium, R = 0, both fluxes and forces vanish. If the system is not in equilibrium,
but close to it, so that all processes are of small amplitude, one might assume that the fluxes
Jα are linear functions of the forces Fα:

Jα =
∑
β

LαβFβ. (6.26)

Equations (6.26) are called phenomenological (also kinetic) equations; the well-known
examples are Ohm’s law of electric conduction, Fick’s law of diffusion, and Fourier’s law
of heat conduction.
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Certain restrictions are imposed on the values of the phenomenological coefficients
Lαβ . First, note that (6.26) leads to a quadratic expression 2R/T = ∑

αβ LαβFαFβ for
the entropy production (6.25). Thus, the coefficients Lαβ should be such that the second
principle R > 0 is satisfied for all values of forces Fα; i.e., R is positive definite. For
example, Lαα should be positive. Second,

Lαβ = Lβα. (6.27)

Relations (6.27) are the celebrated Onsager’s reciprocity relations that take origin in the
time-reversal properties of the processes at microscopic scales. If the system is submitted
to a magnetic field, or suffers an angular rotation, then

Lαβ(B) = Lβα(−B), (6.28a)

Lαβ(�) = Lβα(−�). (6.28b)

Heat and stress entropy productions do not couple in (6.24), because the respective
fluxes do not have the same tensorial character. One can write the heat flux in an isotropic
medium as Jq = −κ∇T ; it is caused by the force Fq = ∇( 1

T ). The phenomenon is that of
molecular thermoconductivity, where κ is the thermoconductivity coefficient.

6.2.5. Viscous Stress Tensor

If there is no dissipation due to the fluid motion (inviscid fluid), dS(d)/dt = 0, we must
have, according to (6.24), σi j = −p δi j . In a more general case of a dissipative process,

we represent the stress tensor as the sum of the reversible part σ (r)i j = −p δi j and the

irreversible part σ (d)i j , i.e., σi j = σ (r)i j +σ (d)i j . The irreversible part σ (d)i j is called the viscous
stress tensor. When the viscous stresses are assumed to be linear functions of velocity
gradients (small perturbations from equilibrium), the corresponding dissipation function is

2R = σ (d)i j
∂vi

∂x j
= ηi jkl

∂vi

∂x j

∂vk

∂xl
. (6.29)

There are a priori 54 coefficients ηi jkl . The following considerations reduce this number

to 2 in the case of an isotropic fluid. Note first that σ (d)i j should vanish when there is no
relative motion (and thus no friction) between the fluid elements, i.e., when v = const [this
is automatically achieved in (6.29)], or when the fluid rotates as a rigid body with a constant
angular velocity �. An example of such a rotation about, say, the z-axis is the velocity
field (vx , vy) = (−� y,� x). Obviously, for this flow, ∂vy/∂x = −∂vx/∂y. Therefore,
among the four components of motion considered at the beginning of this chapter, only
dilations (3) and shears (4) characterized by the symmetric tensor Ai j can cause intrinsic
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friction. Accordingly, these are the only combinations of the velocity gradients that should
appear in the Onsager equations, which thus can be written as σ (d)i j = ηi jkl Akl . Because
of the symmetry with respect to the interchanges i ↔ j , k ↔ l, and i j ↔ kl (Onsager’s
relations), an isotropic fluid is characterized by only two independent viscous coefficients:

σ
(d)
i j = ς δi j

∂vk

∂xk
+ η

(
∂v j

∂xi
+ ∂vi

∂x j
− 2

3
δi j
∂vk

∂xk

)

≡ ς δi j Akk + 2η

(
Ai j − 1

3
δi j Akk

)
. (6.30)

The scalars ς and η are, respectively, the dynamic bulk viscosity and the dynamic shear
viscosity. To comply with the second law of thermodynamics, both must be positive, η > 0
and ς > 0.

The bulk viscosity vanishes in two important limiting cases: In an ideal gas and when
the fluid is incompressible, i.e., when the flow causes no dilation (6.10). A fluid can be
considered as incompressible if the velocities are smaller than the velocity of sound (about
1.5 km/sec in water at 15◦C).

Fluids that obey the linear relationship (6.30) are called Newtonian, after the Newton’s
law of viscosity, deduced for a simple 1D shear flow. For the velocity field [0, vy(z), 0],
this law reads as

σ (d)yz = ηdvy

dz
. (6.31)

In a Newtonian fluid, such as water and air in a broad range of velocity gradients, the
viscosity does not depend on the fluid shear stress. Fluids of long elongated molecules
(polymers) and emulsions (e.g., blood), are usually non-Newtonian: The relationship be-
tween the shear stresses and the velocity gradients is not linear.

6.2.6. Navier–Stokes Equations. Reynolds Number. Laminar and
Turbulent Flow

Substituting (6.30) in the momentum equations (6.13), one recovers the celebrated Navier–
Stokes equations

∂v
∂t

+ (v · ∇)v = g − 1

ρ
∇ p + η

ρ
∇2v, (6.32)

which are valid when the fluid is incompressible, ς = 0, and the dynamical viscosity
η does not vary in space (despite possible temperature and pressure gradients). Equation
(6.32) should be supplemented by the continuity equation (6.10) and appropriate boundary
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conditions to get a complete set of equations with one unique solution. The appropriate
boundary condition is the so-called no-slip condition, which expresses the experimental
fact that the fluid velocity at a solid boundary is equal to the velocity of the boundary.

Despite all of the simplifications mentioned above, the Navier–Stokes equations are
markedly nonlinear because of the term (v · ∇)v and, thus, are extremely hard to solve.
For every concrete problem, the useful first step is to analyze the relative importance of the
terms entering (6.32). In most cases, one can identify the largest speed U in the system and
some characteristic length L. The quantities U and L together with the kinematic viscosity
η/ρ form a dimensionless combination, referred to as the Reynolds number,

Re = ρU L

η
, (6.33)

which indicates the relative importance of the inertia term (v · ∇)v and the viscous term
(η/ρ)∇2v in (6.32). If these terms are estimated as (v · ∇)v ∼ U2/L and (η/ρ)∇2v ∼
(η/ρ)U/L2, respectively, then their ratio is Re. Flows at low and high Re are different and
often referred to as the laminar and turbulent regimes, respectively.

If the Reynolds number is small (because of large viscosity, slow flow or small length
scales), the term (v · ∇)v is negligible compared with the viscous term. If, in addition, one
considers the steady (time-independent) solutions, then ∂v/∂t = 0 and the whole inertia
term ∼ dv/dt can be dropped out. The Navier–Stokes equations become (in the absence
of body forces) much simpler,

η∇2v = ∇ p, (6.34)

which allows for a number of analytical solutions. One of them is the Stokes formula for
the drag force Fdrag exerted by a laminar flow with a constant velocity U, on a sphere of a
radius a: Fdrag = 6πηaU. The derivation is not short, and it can be found elsewhere; see,
e.g., books by Landau and Lifshitz and by Batchelor.

Steady flow at low Re is usually able to sustain small perturbations. If such perturba-
tions occur, viscous damping brings the system back to the original state. However, as Re
increases, the viscous damping might become unable to overcome the perturbations ampli-
fied by the nonlinear terms. The fluid motion becomes turbulent with numerous eddy-like
regions.

Transition from the laminar to turbulent regime and fluid behavior when the turbulence
is well-developed form two topics of formidable difficulty (just because of the nonlinear
character of the Navier–Stokes equations). Turbulence has long been referred to as the only
remaining great problem of classic physics. Attempts to understand this phenomenon lead
to the formulation of basic principles of nonlinear science that emerged during the past few
decades.
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6.3. Nematodynamics in Ericksen–Leslie Model

Let us look back at the general scheme of deriving the hydrodynamic equations for the
isotropic fluid. We defined five conserved quantities (mass, energy, momentum) and wrote
five conservation laws for their densities. We then considered thermodynamics of the fluid
slightly perturbed from its equilibrium state and calculated the entropy production as a sum
of terms, each of which was a product of a “flux” and a “thermodynamic force” that causes
this flux. Then, we assumed that the fluxes are linear functions of the forces, the propor-
tionality coefficients being the viscosities or the thermoconductivity coefficient. Symmetry
consideration established which viscosities were independent parameters.

A similar scheme can be applied to the hydrodynamic theory of any system, including
the nematic liquid crystals. An important difference is that the nematic fluid has broken
orientational symmetry, and thus, the director n appears as a new hydrodynamic variable
(two independent components). Historically, the hydrodynamics of a nematic fluid has
been formulated using two different approaches.

1. The macroscopic Ericksen–Leslie (EL) hydrodynamic theory2 is based on classic me-
chanics. The director dynamic equation is derived from the angular momentum conser-
vation. The approach has served as a guideline for many experiments and is used in most
textbooks. However, it is not clear how the EL model can be transfered to other ordered
systems, for example, SmA, where the broken-symmetry variable is the displacement
of the layers rather than the director rotations.

2. The Harvard (H) model3 is based on the general idea that the equations describing
the macroscopic dynamics should result from averaging the microscopic (molecular)
interactions of the system. The hydrodynamic equations are rigorously derived by iden-
tifying first the hydrodynamic variables, both those conserved and those related to the
type of broken symmetry. Each hydrodynamic vartiable satisfies the “balance equation”
(6.14), which represents either the conservation law (for densities of mass, energy, mo-
mentum) or the dynamic equation for broken-symmetry variables. The thermodynamic
potentials depend on all hydrodynamic variables. For example, the director distortions
relate to the Frank–Oseen elastic energy terms. The entropy production equation now
contains the director-dependent terms and the number of independent viscosity and
thermoconductivity coefficients increases.

The two theories are not exactly equivalent. For example, there is a subtle issue of
the number and nature of independent viscosities; see Pleiner and Brand4 for a detailed
discussion. Here, we treat both, starting with the EL model.

2J.L. Ericksen, Trans. Soc. Rheol, 5, 22 (1961); F.M. Leslie, Arch. Ration. Mech. Analysis 28, 265 (1968) and
Continuum Mech. Thermodyn. 4, 167 (1992).

3D. Forster, T.C. Lubensky, P.C. Martin, J. Swift, and P.S. Pershan, Phys. Rev. Lett. 26, 1016 (1971).
4H. Pleiner and H.R. Brand, in Pattern Formation in Liquid Crystals, Edited by A. Buka and L. Kramer,

Springer, New York (1995), p. 15.



6.3 Nematodynamics in Ericksen–Leslie Model 199

6.3.1. Angular Momentum Equation

The new variable is the director n (two independent components; the scalar order parameter
takes its static value s(T ) = const). The two director dynamics equations are derived from
the conservation of the angular momentum. As for the remaining variables, the continuity
equation for mass remains the same as (6.9) for an isotropic fluid; the linear momentum
equation is the same as (6.13), but the stress tensor should now account for orientational
order; the orientational order also brings new terms to the energy equation (6.16).

The angular momentum of an element of volume dV in a nematic is considered as a
sum of a macroscopic “external” contribution dMext = r×(ρv) dV , where r is the distance
of the element from some origin, and a microscopic “intrinsic” contribution related to the
director rotations, which when averaged over a large ensemble of molecules, gives a net
angular momentum at the continuum level, dMint = I � dV . Here, I is the moment of
inertia per unit volume and � = [n × dn

dt ] is the local angular velocity of the director.
In order of magnitude, the moment of inertia of a single molecule is m1a2, where m1 is
a molecular mass and a is a molecular size. If N molecules are aligned perfectly parallel
to each other, then their total moment of inertia is Nm1a2. Thus, the moment of inertia
per unit volume is small, I ∼ ρa2 (Problem 6.4). The inertia terms can be neglected for
low-frequency motions, but they are kept in the equations for the sake of completeness.

The law of conservation of the angular momentum M states that the rate of change
dM/dt is equal to the sum of body and surface torques. Body torques are due to the field
of gravity and external fields capable to reorient the director. For an element dV , the grav-
ity field yields a torque [r × ρg] dV ; we shall dispose of it by placing the origin at the
center of gravity of the system. The remaining contribution is [n × G] dV , where the force
G is capable to reorient the director due to the material anisotropy. Here, we will restrict
ourselves to the diamagnetic effect only, Gk = µ−1

0 χan jB jBk , where Bi ’s are the com-
ponents of the induction B of the applied magnetic field and χa is the anisotropy of the
magnetic susceptibility. Inclusion of the electric field is a more subtle issue because of
flexoelectricity, ions, and so on.4

There are two types of surface torques. First, there is the usual torque [r × dF] due
to the stresses σkp acting on an element of area � d A, with components [r × dF]i =
ρεi jk x jσkpνp d A. Such a torque would not vanish even in the isotropic phase. The second
type of surface torque is exclusively due to orientational interactions. It is related to the
surface reorientation of the director and can be written either through the “momentum
stress tensor” li j as dli = li jν j d A, or through a “surface director stress” tensor τkp as
[n × dt]i = εi jkn jτkpνp d A. We will use the second presentation because it explicitly
includes the director. The relation between τkp and director distortions will be clarified
later on.

Thus, the angular momentum law in the integral form is

d

dt

∫∫∫

V

{[r × ρv] + I [n × ṅ]} dV =
∫∫∫

V

[n × G] dV +
∫∫
©
A

{[r × dF] + [n × dt]}, (6.35)
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(the dot is another notation for a material derivative, ṅ = dn/dt) and in the differential
form

ρεi jk x j v̇k + Iεi jkn j n̈k = εi jkn j Gk + εi jk
∂

∂x p
(x jσkp + n jτkp). (6.36)

Differentiating the last term and noticing that the combination (ρv̇k − ∂σkp/∂x p) must
vanish by virtue of the conservation of linear momentum (6.13), one gets an equation for
the internal angular momentum, also called the director dynamics equation,

Iεi jkn j n̈k = εi jkn j Gk − εi jkσ jk + εi jk
∂

∂x p
(n jτkp). (6.37)

6.3.2. Energy Balance Equation

Energy balance equation for a nematic fluid is obtained from the “isotropic” (6.16a) by
adding terms related to the orientational order:

ρ
d

dt

(
v2

2
+ u

)
+ 1

2

d

dt
(I�2) = ρgivi + Gi ṅi + ∂

∂x j
(viσi j + ṅiτi j − J q

j ), (6.38)

where 1
2 I�2 is the rotational energy density. The internal energy density u should now

contain contribution from the nematic energy density (5.35), f = fFO − 1
2µ

−1
0 χa(B ·

n)2, where fFO is the elastic Frank–Oseen term specified by (5.2). The right-hand side in
(6.38) is supplemented by the power of orienting forces (second term) and that one of the
surface director tensor. Finally, in an anisotropic medium, the temperature gradient can
cause heat flow in a direction that is different from the direction of the gradient, J q

j =
−κ js∂T/∂xs , and the thermoconductivity coefficient κ js becomes a tensor of the second
rank. In a uniaxial nematic, κ js has two independent components κ|| and κ⊥, so that κ js =
κ||n j ns+κ⊥ δ⊥js , where δ⊥js = δ js−n j ns is the transverse Kronecker delta. At the beginning
of the next section, we temporarily drop the thermoconductivity term, as the goal is to
clarify the structure of σi j and τi j .

6.3.3. Entropy Production Equation

At this moment, we have no information about the possible structure of the tensors σi j and
τi j . To find it, we consider the entropy production equation, as it was done for the isotropic
fluid.

We again single out the internal energy contribution in (6.38). Multiplying the linear
momentum equation (6.13) by vi and the internal angular momentum equation (6.37) by
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�i , one obtains two equations that, when added, produce

ρ
d

dt

v2

2
+ I

d

dt

�2

2
= ρgivi + Gi ṅi + ∂

∂x j
(viσi j + ṅiτi j )

− σi j
∂vi

∂x j
−� jkσ jk − n jτkp

∂� jk

∂x p
, (6.39)

where� jk = εi jk�i is the antisymmetric tensor of rotation. Substituting (6.39) into (6.38),
one gets

ρ
du

dt
= σi j

∂vi

∂x j
+� jkσ jk + n jτkp

∂� jk

∂x p
. (6.40)

On the other hand, ρdu/dt can be found from thermodynamic considerations simi-
lar to those for an isotropic fluid. An important difference is that the internal energy per
unit volume should also include the Frank–Oseen internal energy density f (whose Frank
moduli are at constant volume and entropy) because the director might be distorted. Hence,
d(ρu) = µdρ+T d(ρs)+d f and the rate of energy change ρdu/dt = d(ρu)/dt −udρ/dt
is

ρ
du

dt
= (µ− u)

dρ

dt
+ T

d

dt
(ρs)+ d f

dt
, (6.41)

where µ = (∂ρu/∂ρ)ρs,n is the chemical potential per unit mass and T = (∂u/∂s)ρ,n.
Transforming d(ρs)/dt through the definition of the material derivative (6.2) and employ-
ing the continuity equation (6.9), one obtains the dissipation function

2R = ρ du

dt
+ p div v − d f

dt
. (6.42)

The rate of change of the nematic energy density f is

d f

dt
= ∂ f

∂ni

dni

dt
+ ∂ f

∂(∂ni/∂x j )

d

dt

∂ni

∂x j
≡ φi

dni

dt
+ πi j

d

dt

∂ni

∂x j
, (6.43)

where we introduce two new notations, φi = ∂ f
∂ni

= ∂ fFO
∂ni

− µ−1
0 χa(n jB j )B j and πi j =

∂ f
∂(∂ni/∂x j )

. It is useful to represent d f/dt in terms of�i j and its derivatives, by transforming
d
dt
∂ni
∂x j

with the help of (6.2) into ∂
∂x j

dni
dt − ∂vp

∂x j

∂ni
∂x p

and by using dni/dt = −�iknk ,

d f

dt
= −φi�i j n j − πi j

∂

∂x j
(�iknk)− πi j

∂vp

∂x j

∂ni

∂x p
. (6.44)
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Substituting (6.40) and (6.44) in (6.42), the dissipation function can be written as

2R = ∂v j

∂xk

(
σ jk + p δ jk + πpk

∂n p

∂x j

)
+� jk

(
σ jk + φ j nk + π j p

∂nk

∂x p

)

+ ∂� jk

∂x p
(n jτkp − n jπkp). (6.45)

In the presence of temperature gradients, a term

(
− Jq

j
T

)
∂T
∂x j

contributes to the right-hand

side of (6.45), with J q
j = −κ js∂T/∂xs , as discussed in Section 6.3.2.

6.3.4. Nondissipative Dynamics

Let us first analyze (6.45) for a nondissipative process. All three expressions in brackets
must vanish, in order to guarantee that R = 0 for any ∂v j/∂xk , � jk , and ∂� jk/∂x p:

σ
(r)
jk = −p δ jk − πpk

∂n p

∂x j
, (6.46a)

εi jkσ
(r)
jk = −εi jkφ j nk − εi jkπ j p

∂nk

∂x p
, (6.46b)

εi jkn jτkp = εi jkn jπkp. (6.46c)

We use the Levi-Civita tensor to stress that the relevant information from the second and the
third terms in (6.45) is only about the antisymmetric parts of the expressions in brackets:
Because � jk is an antisymmetric tensor, any symmetric part within the brackets vanishes
when multiplied by � jk .

6.3.5. Dissipative Dynamics

In (6.46c) and in the sequel, we assume that the surface director is fixed (strong anchoring)
so that the irreversible part of the “surface director stress” tensor τkp is zero, τ (r)kp ≡ τkp.

Equation (6.46a) invites us to define the Ericksen stress tensor

σ
(r)
jk = −p δ jk − πpk

∂n p

∂x j
, (6.47)

composed of two contributions: the stress of an inviscid liquid and the stress due to director
distortions (no diamagnetic contribution). The Ericksen stress is independent of dissipative
effects and is usually smaller than the viscous stresses.
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Substituting (6.46) in (6.45), the dissipation function can be written as

2R = Ai jσ
(s)
i j + (�i j + Wi j )σ

(a)
i j = Ai jσ

(s)
i j +�i jσ

(a)
i j . (6.48)

Here, we represent the velocity gradients as ∂vi/∂x j ≡ Ai j + Wi j and introduce the stress

tensor σ i j = σi j − σ (r)i j = σ (s)i j + σ (a)i j with a symmetric part σ (s)i j = σ (s)j i and an antisym-

metric part σ (a)i j = −σ (a)j i . Finally, we denote �i j = �i j + Wi j .

The stress tensor σ i j includes dissipative effects. The first term Ai jσ
(s)
i j in (6.48) is

the dissipation due to the shear flow. In the second term, the antisymmetric tensor Wi j

specifies a solid-like angular rotation of system as a whole. If � = 1
2∇ × v is the angular

velocity of such rotation, then Wi j = −εki j�k . Thus, the second term in (6.48) equals

εki j (�k −�k)σ
(a)
i j and is the dissipation caused by the relative director rotation.

The phenomenological equations (6.26) take the form

σ
(s)
i j = η11

i jkl Akl + η12
i jkl�kl , σ

(a)
i j = η21

i jkl Akl + η22
i jkl�kl . (6.49)

The viscosities ηi jkl ’s can depend on the director components. Because the nematic is a
centrosymmetric medium, ηi jkl ’s must be invariant under the transformation n = −n. The
coefficients η11

i jkl ’s must be symmetric with respect to the operations i ↔ j and k ↔ l,
whereas η12

i jkl ’s must be symmetric with respect to i ↔ j and antisymmetric with respect

to k ↔ l, and so on, in order to reflect the symmetry of the tensors σ (s)i j , σ (a)i j , Akl , and
�kl . Furthermore, if the nematic is incompressible, then the EL model requires that any
term containing the trace App or the product δkl Ai j in the stress tensor should vanish (see
also Ref. [4] for a critical discussion). The δkl Ai j -terms do not contribute to the entropy
production, because δkl Ai j Akl = Ai j Akk = 0. All of these requirements are satisfied for

the following forms of σ (s)jk and σ (a)jk :

σ
(s)
i j = α1ni n j nknl Akl + α4 δik δ jl Akl + α6 + α5

2
(δiln j nk + δ jlni nk)Akl

+ α3 + α2

2
(δiln j nk − δk j ni nl)�kl ,

σ
(a)
i j = α5 − α6

2
(δli n j nk − δk j ni nl)Akl + α2 − α3

2
(δli n j nk + δk j ni nl)�kl . (6.50)

The six coefficients αi are called the Leslie viscosity coefficients. Their dimension is [kg ·
m−1 ·s−1] in SI and [Poise] in cgs; 1 Poise = 1 g ·cm−1 ·s−1 = 0.1 kg ·m−1 ·s−1. Only five
out of six are independent. According to the Onsager’s reciprocal relation, η12

i jkl = η21
kli j ,

and

α2 + α3 = α6 − α5, (6.51)
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which is known as the Parodi’s equation.5 Finally, the positive definiteness of the entropy
production imposes additional restrictions, such as α3 > α2 (see Problem 6.6). In the EL
model, an incompressible nematic fluid is thus characterized by five independent viscosity
coefficients.

The dissipative stress tensor σ (d)i j and director dynamics are often written in terms of
the vector N describing the relative rotation rate of the director

N = ṅ −� × n or N j = −nk� jk = nk�k j . (6.52)

The stress tensor σ i j expressed through N and Ai j is

σ i j = α1ni n j nknl Akl + α2n j Ni + α3ni N j + α4 Ai j

+ α5n j n p Api + α6ni n p Apj , (6.53)

whereas the director equations (6.37) transform with the help of (6.52) and (6.46) into

I
d

dt
[n × ṅ] = [n × h] + �. (6.54)

Here,

hi = −φi + ∂πi j

∂x j
≡ −∂ fFO

∂ni
+ µ−1

0 χa(n jB j )Bi + ∂

∂x j

(
∂ fFO

∂(∂ni/∂x j )

)
(6.55)

is the molecular field that includes both pure elastic ( fFO) and diamagnetic effects, and

� = (α2 − α3)[n × N] + (α5 − α6)[n × A · n] (6.56)

is the viscous torque. Note that both (6.37) and (6.54) imply that the internal angular mo-
mentum Iεi jkn j n̈k is not conserved. The quantity (−εi jkσ jk) is a source of the internal
angular momentum. Of course, changes in Iεi jkn j n̈k are possible only at the expense of
the external angular momentum ρεi jk x j v̇k : The same term εi jkσ jk but with an opposite
sign enters an equation for ρεi jk x j v̇k [which is found by subtracting (6.37) from (6.36)].
Therefore, the total angular momentum is conserved, as it should be.

At low-frequency excitations, the inertia term can be neglected and (6.54) reduce to

[n × h] + � = 0, or [n × h] − [n × (γ1N + γ2A · n)] = 0, (6.57)

where we introduce two combinations of viscosities, useful for the discussion in the next
sections,

5O. Parodi, J. Phys. (Paris) 31, 581 (1970).
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γ1 = α3 − α2 > 0 and γ2 = α6 − α5 = α2 + α3. (6.58)

In a stationary case, when there are no time derivatives, the director equation (6.57) is
simply the Euler–Lagrange equation [n × h] = 0 for the equilibrium director field n(r).

6.4. Nematodynamics in Harvard Theory

According to the general scheme oulined at the beginning of Section 6.3, we identify seven
independent hydrodynamic variables: density ρ, momentum density ρv, energy density ρε,
and the two components of n. The conservation laws for the first five variables retain the
same form (6.9), (6.13), and (6.16) as for the isotropic fluid. The angular momentum is not
given a special consideration. The conservation of angular momentum is always guaranteed
if the stress tensor σi j is symmetric. In fact, the requirement for σi j is softer than that. In
the conservation law (6.13) for the momentum density, the observable quantity is not the
stress tensor, but its tensorial divergence

∂σi j
∂x j

. The required symmetry can be restored by
adding to a nonsymmetric σi j a term

∂χi j k
∂xk

, where χi jk is any tensor that is antisymmetric
with respect to its two last indices j and k; i.e., χi jk = −χik j . The new symmetric stress

tensor σ̃i j = σi j + ∂χi j k
∂xk

yields
∂σ̃i j
∂x j

= ∂σi j
∂x j

, so that both the linear momentum and the
angular momentum are conserved.6

6.4.1. Director Dynamics and Dissipative Stress Tensor

The lacking “balance equation” for the director should relate the time derivative ṅ to the
velocity gradients Ai j , Wi j and to the molecular field hi specified by (6.55). The derivation
of the director dynamics equations is helped by observing that the normalization n2 = 1
leads to nṅ = 0.

First, recall that the molecular field aligns n parallel to itself in the equilibrium. There-
fore, the quantity of interest in the molecular field (6.55) is the vector m = h − n(nh)
perpendicular to n, nm = 0. The components of m can be written with the help of the
transverse Kroneker delta as mi = δ⊥i j h j . The dependence of ṅi on h j in the dynamic

equation is thus described by the term ( 1
γ1
δ⊥i j h j ), where the scalar γ1 has the dimension of

the viscosity.
Second, the relationship between ṅi and the velocity gradients ∂v j

∂xk
should be through a

third-rank tensor λi jk , namely, ṅi = λi jk
∂v j
∂xk

. Because ni ṅi = 0, there should be only two
independent components of λi jk . We separate λi jk into the symmetric and antisymmetric

parts, so that ṅi = λ
(s)
i jk A jk + λ(a)i jk W jk . Because rotations of the nematic as a whole with

the angular velocity � = 1
2 curl v reorient the whole director field (with no energy dis-

sipation), the antisymmetric contribution λ(a)i jk W jk should be simply εi jk� j nk ≡ Wiknk .

6P.C. Martin, O. Parodi, and P.S. Pershan, Phys. Rev. A6, 2401 (1972).
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The symmetric part can be written with the coefficient λ(s)i jk = λ δ⊥i j nk , where λ is some
dimensionless parameter.

Summarizing, the director dynamics equations are

dni

dt
= Wiknk + λ δ⊥i j A jknk + 1

γ1
δ⊥i j h j . (6.59)

Comparison with (6.56) and (6.57) justifies the notations introduced earlier in (6.58). As
in (6.57), the diamagnetic effect is included in the molecular field h. There is no ∇T terms
on the right-hand side of (6.59) because of the symmetry n = −n.

The entropy production is calculated in a way similar to that in the previous sections.
It equals (see Problem 6.5)

2R = σ (d,s)i j Ai j + Ni hi , (6.60)

i.e., coincides with (6.48) when the inertia term is ignored (and it should be ignored in
the hydrodynamic limit). As already mentioned, the stress tensor can be made symmet-
ric without altering the linear momentum conservation law (and guaranteeing the angular
momentum conservation).6

The quantities N = ṅ−�×n and σ (d,s)i j in (6.60) are considered fluxes, whereas hi and
Ai j are forces. As usual, we suppose that the fluxes are linear functions of the forces. Then
we can write N = 1

γ1
h, i.e., there is only one scalar dissipative coefficient γ1 associated

with the relative director rotations N. For the dissipative stress tensor, σ (d,s)i j = ηi jkl Akl , the
viscosity coefficients form a tensor ηi jkl that depends on the director components ni and

δi j . Considering the symmetries of the tensors σ (d,s)i j and Akl and the Onsager’s symmetry
ηi jkl = ηkli j , one finds five independent combinations of ni and δi j : δi j δkl , δik δ jl +δ jk δil ,
ni n j δkl + nknl δi j , ni nk δ jl + n j nk δil + ni nl δ jk + n j nl δik , and ni n j nknl . As the result,

σ
(d,s)
i j = 2η2 Ai j + 2(η3 − η2)(ni nk A jk + nkn j Aik)+ (η4 − η2) δi j Akk

+ 2(η1 + η2 − 2η3)ni n j nknl Akl + (η5 − η4 + η2)(ni n j Akk

+ nknl δi j Akl). (6.61)

The restrictions on the values of η’s are listed in Problem 6.6.
Note that so far we did not use the incompressibility condition. For an incompress-

ible nematic, Akk = 0, one obtains η4 = η2 and η5 = 0,3 and there remain only three
viscosities.
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6.4.2. Summary of Nematodynamics

For convenience, below we summarize all of the relevant equations used by the EL and H
models to describe a nematic in motion. The bulk forces include the diamagnetic effect in
the molecular molecular field h, but not the gravity.

There are seven unknown variables: (1) mass density ρ(r, t), (2) three components of
the velocity field v(r, t) or the momentum density ρv(r, t), (3) energy density, and (4) two
components of the director field n(r, t). These variables are found from seven equations

(1) conservation of mass (6.10):

∂ρ

∂t
= −∂ρvi

∂xi
(6.62)

(2) three equations for the conserved components of the linear momentum:

∂ρvi

∂t
= − ∂

∂x j
(−σi j + ρviv j ). (6.63)

The EL model presents the reversible part of the stress tensor as the elastic Ericksen stress
tensor σ (r)i j , (6.47), and the dissipative part through (6.50) or (6.53); in the H-model, the

dissipative part σ (d,s)i j is given by (6.61).
(3) entropy balance equation:

∂ρs

∂t
+ ∂

∂xi

(
ρsvi + J q

i

T

)
= 2R

T
, (6.64a)

where the entropy increase is either zero for reversible process or positive,

2R = σ (d,s)i j Ai j + Ni hi − J q
i

T

∂T

∂xi
> 0, (6.64b)

for irreversible ones; the heat flux is J q
i = −(κ||ni ns + κ⊥ δ⊥is)∂T/∂xs .

(4) director dynamics equations, either in the form of (6.57) or (6.59):

[n × h] − [n × (γ1N + γ2A · n)] = 0, (6.65a)

N = λ[A · n − n(n · A · n)] + 1

γ1
[h − n(h · n)]. (6.65b)

The notations imply [A · n − n(n · A · n)]i = Ai j n j − ni n j A jknk and N = ṅ − � × n.

If one compares the dissipative tensors σ i j in (6.53) and σ (d,s)i j in (6.61), the Leslie
viscosities are related to the Harvard viscosities of the incompressible nematic in the fol-
lowing way:
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α1 = 2(η1 + η2 − 2η3)− γ1λ
2, α2 = −γ1(1 + λ)/2,

α3 = γ1(1 − λ)/2, α4 = 2η2, α5 = 2(η3 − η2)+ γ1λ(λ+ 1)/2,

α6 = 2(η3 − η2)+ γ1λ(λ− 1)/2. (6.66)

The Parodi relationship (6.51) is satisfied, α6 − α5 = α3 + α2 = γ2. The dimensionless
parameter λ in (6.65b) of the H-model does not contribute to the entropy production (6.60)
and is thus nondissipative, despite the fact that it is the ratio of two dissipative quantities
in the EL model:

λ = −γ2

γ1
≡ α2 + α3

α2 − α3
. (6.67)

It is possible to show that the number of viscosities in EL model reduces to three as
well, when the director distortions are small.

When the director distortions are small, we can omit the term φi in the definition
(6.55) of the molecular field and write hi = ∂πi j/∂x j . The tensor σ i j that appears in the
EL model in (6.53) rewrites

σ i j = α1ni n j nknl Akl + α4 Ai j + α3α5 − α2α6

γ1
(n j n p Api + ni n p Apj )

+ α2

γ1
n j
∂πik

∂xk
+ α3

γ1
ni
∂π jk

∂xk
, (6.68)

if one eliminates Ni = dni
dt − Wiknk using (6.59) and the notations (6.58). The tensor σ i j ,

thus, splits into a truly dissipative part

σ
(d)
i j = α1ni n j nknl Akl + α4 Ai j + α3α5 − α2α6

γ1
(n j n p Api + ni n p Apj ), (6.69)

with three independent viscosities and a nondissipative part

σ
(r)
i j = −λ

2

(
n j
∂πik

∂xk
+ ni

∂π jk

∂xk

)
− 1

2
n j
∂πik

∂xk
+ 1

2
ni
∂π jk

∂xk
. (6.70)

The dissipative part is symmetric, while the non-dissipative part is not symmetric. How-
ever, as already indicated, σ (r)i j can be transformed into a symmetric tensor, for example,
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in the form

σ
(r,s)
i j = −λ

2

(
n j
∂πik

∂xk
+ ni

∂π jk

∂xk

)
− 1

2
nk
∂

∂xk
(πi j + π j i )

+ 1

2
ni
∂

∂xk
(πk j + π jk) (6.71)

that do not change the physically important quantity
∂σ
(r,s)
i j
∂x j

= ∂σ
(r)
i j

∂x j
in the conservation law

for the linear momentum. The advantage is that the symmetric form of the stress tensor
makes the angular momentum automatically conserved.

Therefore, in the limit of small distortions, both models give similar results, although
exact correspondence is still lacking. For example, comparing (6.69) to the H-model of the
incompressible nematic, (6.61), one finds α1 = 2(η1 + η2 − 2η3), whereas according to
(6.66), α1 = 2(η1 + η2 − 2η3) − γ1λ

2. As argued by Pleiner and Brand [4], the discrep-
ancies in the definitions of the viscous coefficients in the two models can be caused by the
incompleteness of the stress tensor in the EL model. In the next section, we will partially
use the language of Leslie coefficients [referring only to the relationships (6.66)], because
it simplifies the notations in the balance of torques.

We conclude the summary with the problems that are common for both hydrodynamic
models.

If the frequences are high, then the whole theory should be modified to include the
dynamics of the scalar part of the order parameters (see the review by Beris and Edwards7).
The relative importance is set by the Deborah number

De = γ̇ τ, (6.72)

where γ̇ is the characteristic shear rate and τ is the characteristic molecular relaxation time.
In small-molecular weight liquid crystals, De � 1. For polymeric liquid crystals, τ might
be large, and De might become of the order of unity; in this regime, the flow changes the
scalar order parameter. This chapter deals with De � 1.

Both the EL and H-theories are limited to flows without any topological defects, such
as hedgehogs, disclinations, and so on. If such defects are present, the director distortions
span the whole degeneracy space (see Chapter 12), i.e., averaging the director field over
distances larger than the distances between defects gives a zero result; the director is not
a hydrodynamic variable any more. Motion with topological defects can be considered
using the formalism of Poisson “hydrodynamic” brackets as suggested by Dzyaloshinskii
and Volovik.8 However, simple cases can be studied with a less sophisticated formalism,

7A.N. Beris and B.J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, Oxford
University Press, New York, 1994.

8I.E. Dzyaloshinskii and G.E. Volovik, Ann. Phys. (N.Y.) 125, 67 (1980); G.E.Volovik and E.I. Kats, Sov.
Phys. JETP 54, 122 (1981).
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inspired by the treatment of the mobility of defects in solids (see Chapter 11). Finally, note
that the H-model of nematodynamics is just one example of the unified hydrodynamic
theory of systems with broken symmetry.6 Kats and Lebedev (1994) have reviewed its ap-
plications to smectic and columnar phases, freely suspended films, Langmuir monolayers,
and membranes.

6.5. Applications of Nematodynamics

6.5.1. Nematic Viscosimetry
The anisotropy of the viscous properties of a nematic fluid can be illustrated by measuring
effective viscosities for different director orientations with respect to the flow direction.
Consider a plane Couette flow of a nematic confined between two plates z = 0 and z = d
(Fig. 6.5). The top plate moves with a constant velocity U along the y-axis, and the bottom

(a) (b) (c)
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y

=
α3 + α 4 + α6
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=
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ϕ

H
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fixed plate
shear stress on 
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− σyz

ηbηa = α4
2

ηc

Figure 6.5. Plane Couette flow of a nematic fluid with the director fixed by a strong magnetic field.
Miezowicz geometries: (a) n parallel to the vorticity direction, (b) n parallel to the flow, (c) n parallel
to the velocity gradient.



6.5 Applications of Nematodynamics 211

plate is fixed; the shear flow is specified as [0, vy(z), 0]. Fluids adhere to solid substrates so
that vy

∣∣
z=d = U and vy

∣∣
z=0 = 0. Suppose that the director is fixed in space and time by a

strong magnetic field, n(r, t) = const (Fig. 6.5), and that the nematic satisfies the Newton’s
law of viscosity (6.31), σ (d)yz = η

dvy
dz , where σ (d)yz is a constant shear stress transmitted

through the nematic fluid, and η is a (constant) effective viscosity coefficient. Integrating
the last equation and employing the boundary conditions, one finds that the velocity is a
linear function of the coordinate z: vy = γ̇ z, where γ̇ = U/d is the constant shear rate with
the dimension 1/s. Let us express η as functions of the Leslie coefficients αi ’s and Harvard
viscosities ηi ’s for the following three most practical geometries of director orientation
versus shear flow, known as Miezowicz geometries.

1. n perpendicular to the flow direction and to the velocity gradient, n = (1, 0, 0). Then,
ni Ai j = 0, Ni = nk Wki = 0, and the stress tensor reduces to σ yz = α4 Ayz = α4γ̇ /2;
i.e., ηa = α4/2 = η2. The viscous torque (6.56) vanishes, � = 0; i.e., the nematic
behaves as an isotropic fluid with an effective viscosity α4/2 = η2.

2. n parallel to the flow, n = (0, 1, 0). The components of ni Ai j and Ni = n j W ji are
(0, 0, γ̇ /2); σ yz = α3 Nz + (α4 + α6)Ayz . Therefore, ηb = (α3 + α4 + α6)/2 =
η3 + γ1(1 − λ)2/4.

3. n parallel to the velocity gradient n = (0, 0, 1). The components of ni Ai j and Ni =
n j W ji are (0, γ̇ /2, 0) and (0,−γ̇ /2, 0), respectively. Thus, σ yz = α2 Ny+(α4+α5)Ayz

and ηc = (−α2 + α4 + α5)/2 = η3 + γ1(1 + λ)2/4.

Thus, experiments with shear flows in a strong magnetic field allow for a determination
of some combinations of the viscosities. In conjunction with other techniques, such as light
scattering, dynamics of Frederiks transitions, rotating and oscillating fields, ultrasound at-
tenuation, and so on, one can find all viscous coefficients. So far, experiments have been
performed mainly for small-molecular weight nematics composed of elongated molecules,
such as 5CB (see Table 6.1 and Fig. 6.6). The table data for 5CB or MBBA show that the
ratio ηb/ηc is small, ≈ 0.18, which is a reasonable result if friction correlates with the
cross section of the molecules seen by the flow. For polymeric lyotropic liquid crystals
such as poly-γ -benzyl-glutamate (PBG) dissolved in a mixture of methylene chloride and
dioxane,9 this ratio is even smaller, ηb/ηc ≈ 0.005. Little is known about discotic materi-
als. The basic difference between them and the usual calamitic materials is in value of λ;
λ ∼ −1 for disk-like molecules and λ ∼ 1 for rod-like molecules.10 Suppose that the di-
rector in equilibrium is aligned along the z-axis. Then, in a calamitic nematic, reorientation
of the rod-like molecules along n is caused primarily by the velocity gradients ∂vx/∂z and
∂vy/∂z. Alternatively, reorientation of discs perpendicular to n is caused by ∂vz/∂x and
∂vz/∂y. The data for the calamitic nematics confirm that λ ∼ 1, being normally slightly
larger than 1 (see Table 6.1 and Fig. 6.6).

9G. Srayer, S. Fraden, and R.B. Meyer, Phys. Rev. A 39, 4828 (1989).
10G.E. Volovik, Pis’ma Zh. Eksper. Teor. Fiz. 31, 297 (1980)/JETP Lett. 31, 273 (1980).
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Table 6.1. Typical viscosities for pentylcyanobiphenyl (5CB) (from L.M. Blinov and V.G.
Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Springer, New York, 1996, 464 p);
MBBA at 25◦C (from W.H. de Jeu, Physical Properties of Liquid Crystalline Materials, Gordon and
Breach Science, New York, 1980), and PBG, from Ref. [9].

Viscosities,
10−3 kg · m−1· s−1

(or 10−2 Poise) 5CB MBBA PBG

α1 −11 −18 ± 6 −3660
α2 −83 −109 ± 2 −6920
α3 −2 −1 ± 0.2 18
α4 75 83 ± 2 348
α5 102 80 ± 15 6610
α6 −27 −34 ± 2 −292

Figure 6.6. Temperature dependencies of the Miezowicz coefficients ηa , ηb, and ηc (units: 10−3 kg ·
m−1 · s−1) for 5CB (M. Cui and J. Kelly, Kent State University; see Mol. Cryst. Liq. Cryst. 331, 49
(1999) for more data and discussion).
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6.5.2. Flow-Aligning and Tumbling Nematics with Director in the
Shear Plane

The considerations above apply to a uniform director orientation fixed by an external field.
If the field is absent, the flow of a confined nematic is determined by a balance of the
elastic torque ∼ K/L2 and the viscous torque ∼ ηγ̇ ∼ ηU/L. Here, L is a typical scale of
deformation, for example, the distance between the cell plates. The relative importance of
these torques is expressed by the dimensionless Ericksen number

Er = ηγ̇ L2

K
= ηLU

K
. (6.73)

With the estimates η ∼ 10−2 kg · m−1 · s−1, K ∼ 10−11 N, L ∼ 10µm and γ̇ ∼ 10 s−1,
the Ericksen number is around 103. The viscous stresses dominate the elastic stresses, at
least at high shear rates and until the flow produces spatial director gradients at very small
scales L. One might expect strong gradients in the vicinity of the boundary layers.

6.5.2.1. High Shear Rates (Er  1)

To analyze the coupling between the velocity and the orientation at Er  1, we can neglect
the elastic torques. Because the EL model gives a more intuitive insight into the balance of
torques, we will use the Leslie notations for the viscosities. However, we will also use the
parameter λ whenever necessary to stress the nondissipative character of phenomena such
as flow alignment.

We are interested in finding an orientation (if it exists) for which the viscous torque
vanishes. This orientation is stable if any small deviation causes a viscous torque that drives
n back into the original state.

For n = (sin θ cosϕ, sin θ sinϕ, cos θ) and U = (0, γ̇ z, 0), γ̇ > 0 (Fig. 6.5), the
director equations (6.65) reduce to

γ1
dθ

dt
+ γ̇ (α2 cos2 θ − α3 sin2 θ) sinϕ = 0, (6.74a)

γ1
dϕ

dt
sin θ + α2γ̇ cos θ cosϕ = 0, (6.74b)

when there is no external field and the elastic terms are neglected. From now on, we make
a distinction between flows where the director is in the shear plane (this section) and per-
pendicular to the shear plane (next section).

As seen from (6.74), a steady state may occur when the director is in the shear plane,
ϕ = π/2. The nonvanishing viscous torque (6.56) is around the x-axis,�x ∼ γ̇ (α2 cos2 θ−
α3 sin2 θ) (Fig. 6.7). For the two limiting geometries (b) and (c) of Fig. 6.7, �b

x ∼ −α3γ̇ ∼
γ̇ γ1(λ − 1) and �c

x ∼ α2γ̇ ∼ −γ̇ γ1(λ + 1). If α2 and α3 are of the same sign (λ2 > 1),
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Figure 6.7. Viscous torques acting on the director field in the three Miezowicz geometries. See text.

then the steady state occurs for two angles θ0 specified by11

tan θ0 = ±
√
α2

α3
= ±

√
λ+ 1

λ− 1
. (6.75)

Usually, for nematics such as MBBA and 5CB with rod-like molecules α2 < 0, 1.01 <
λ < 1.1 (see Table 6.1), and the direction of reorientation in the geometry (c) is the one
shown in Fig. 6.7c, which seems to be a reasonable result for elongated molecules placed
vertically in a plane Couette flow. The situation is more tricky with α3, because it can
change sign from negative to positive; i.e., λ changes from λ > 1 to λ < 1. Such a behavior
has been reported close to the N-SmA or N-solid crystal transition. For example,12 λ =
0.27 for the nematic 8CB at 34◦C. Different signs of the product α2α3 lead to very different
flow behavior.

1. Flow alignment: λ2 > 1, α2α3 > 0.

If λ > 1, the stable steady solution is that with a “+” sign in (6.75): A director fluctua-
tion δθ will cause a torque �x ∼ (−2γ̇ α3

√
α2/α3) δθ ∼ γ̇ γ1

√
λ2 − 1 δθ , restoring the

angle θ0 as illustrated in Fig. 6.8. This regime is called the “flow aligning” regime. The
director should be closer to the y-axis than to the z-axis, π/4 < θ0 < π/2, because the
requirement of positive entropy production sets α3 −α2 > 0 (see Problem 6.6). Indeed,
for 5CB and MBBA, the deviations from “perfect” alignment θ0 = π/2 along the flow
are small, about 10–100.

Alternatively, for discotic molecules α3 > α2 > 0, λ < −1, the stable steady
solution is the one with a “−” sign in (6.75) (Fig. 6.8); −π/4 < θ0 < 0, and the discs
are not expected to deviate much from the xy plane.

11F.M. Leslie, Mol. Cryst. Liq. Cryst. 63, 111 (1981).
12H. Kneppe, F. Schneider, and N.K. Sharma, Ber. Bunsenges. Phys. Chem. 85, 784 (1981).
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Figure 6.8. Likely angular dependencies of the viscous torque �x = γ̇ (α2 cos2 θ − α3 sin2 θ) for
flow-aligning calamitic (solid line) and discotic (dashed line) nematics; γ̇ = 10 s−1; the coefficients
of viscosity are indicated at the plot. Open circles mark stable, steady director orientations, and closed
circles mark unstable orientations.

2. Tumbling: λ2 < 1, α2α3 < 0.

Equation (6.75) has no real solutions: n rotates in the shear plane, which is called the
tumbling regime. The period of time needed for the director to rotate by an angle π is
calculated by integrating (6.74a): T = 2π

γ̇
√

1−λ2
, i.e., inversely proportional to the shear

rate. Tumbling easily produces disclination lines.

Tumbling is especially important for LCPs, because these materials generally show
α2α3 < 0. Flow of LCPs shows distinctive features compared with the flow of isotropic
polymers. The most striking is the effect of a negative first normal stress difference N1 =
σyy − σzz , where σyy is the normal stress in the direction of the velocity and σzz that in
the shear gradient direction. When the flow of a non-Newtonian fluid occurs in a cone-
and-plate rheometer, there is a thrust along the axis of rotation. Usually, for an isotropic
polymer, this thrust tends to separate the plate and the cone, which means N1 > 0. Kiss
and Porter13 found that for some shear rates, N1 < 0 in LCP PBG. The mechanism is
intimately related to the liquid-crystalline character of PBG and tumbling. In an ordinary
isotropic polymer fluid, shear increases the orientational order s of molecules along the
flow direction. The elastic response of the fluid is to restore the random ordering, s = 0,
and thus to push apart the cone and the plate along the z-axis. In the LCP, s is nonzero
in the nonperturbed state. Shear might create tumbling and, thus, decrease s. The elastic

13G. Kiss and R.S. Porter, J. Polym. Sci., Polym. Symp. 65, 193 (1978).
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response would tend to restore a higher value of s and thus to pull the cone and the plate
closer together.14

6.5.2.2. Low Shear Rates (Er � 1)

Consider now the steady regime at low Ericksen numbers, when the elastic torques resist
director reorientations.15 If the director is in the shear plane and the flow is along the y-axis,
the torque equation (6.57) is

(K1 sin2 θ + K3 cos2 θ)
∂2θ

∂z2
+ (K3 − K1) sin θ cos θ

(
∂θ

∂z

)2

− ∂vy

∂z
(α3 sin2 θ − α2 cos2 θ) = 0, (6.76)

and the linear momentum equation is

∂

∂z

[
η̃(θ)

∂vy

∂z

]
= 0, (6.77)

where −L/2 ≤ z ≤ L/2 and

η̃(θ) = α1 sin2 θ cos2 θ + ηb sin2 θ + ηc cos2 θ. (6.78)

The momentum equation integrates to

η̃(θ)
∂vy

∂z
= σ̃ = const. (6.79)

The equations (6.76) and (6.79) can be linearized when the shear is small. Suppose
also that the surface anchoring at the boundaries sets a “planar” director orientation
n = (0, 1, 0), θ = π/2. The linearized momentum equation (6.79)

ηb ∂vy

∂z
= σ̃ (6.80)

yields vy = γ̇ z with γ̇ = σ̃ /ηb, whereas the linearized torque equation (6.76)

K1
∂2θ

∂z2
= α3γ̇ (6.81)

14G. Marrucci and P.L. Maffettone, Mocromolecules 22, 4076 (1989); R.G. Larson, Ibid. 23, 3983 (1990).
15E. Dubois-Violette and P. Manneville, in Pattern Formation in Liquid Crystals, Edited by A. Buka and L.

Kramer, Springer-Verlag, New York, 1995, Chapter 4.
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results in the following profile of the polar angle θ across the cell:

θ = π

2
− α3γ̇ L2

8K1

[
1 −

(
2z

L

)2
]
. (6.82)

Comparison of the results for low and high Ericksen numbers shows an apparent non-
Newtonian behavior of the nematic fluids. For a planar nematic cell, the apparent viscosity
changes from η1 to η̃(θ0) as the shear rate increases. Although locally the relationship
between the stresses and strains is taken to be linear, the flow-induced reorientation makes
the effective viscosity dependent on the strength of the stress. Not only the flow can cause
director distortions, but also the director changes can induce flow. These “backflow effects”
have significant implications in nematic display devices.

6.5.3. Instabilities with the Director Field Perpendicular
to the Shear Plane

An obvious steady solution of the system (6.74) is θ = π/2 and ϕ = 0, which corre-
sponds to the geometry (a), i.e., with the director normal to the shear plane (Fig. 6.7a). The
viscous torque vanishes when n = (1, 0, 0); i.e., the nematic behaves as an isotropic fluid
with an effective viscosity α4/2 as established above. However, when α2 and α3 are of
the same sign, the initial orientation n = (1, 0, 0) is unstable against director fluctuations
(Fig. 6.9).16 Qualitatively, a small deviation δnz > 0 leads to a viscous torque �z =

(a) (b)

z

y

x

Γz = -α2 γδnz

z

y

x

δny

α3 < 0
˙

Γy = -α3 γδny˙

α3 < 0

α3 > 0 α3 > 0δnzδnz

Figure 6.9. Pieranski–Guyon instability of the director initially normal to the shear plane. Redrawn
from Ref. [16].

16P. Pieranski and E. Guyon, Solid State Comm. 13, 435 (1973).
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−α2γ̇ δnz > 0 (Fig. 6.9a). When α2 < 0, this torque rotates the director around the
z-axis and produces a component δny > 0. With a nonzero δny , there is another torque,
�y = α3γ̇ δny (Fig. 6.9b). If α3 < 0, this torque amplifies the original deviation δnz > 0
and the director turns toward the yz-plane. Of course, if the surface anchoring keeps n =
(1, 0, 0) at the boundaries, the instability occurs only when the shear rate exceeds some
threshold, determined by the balance of the viscous and elastic torques (see Problems 6.7
and 6.8).

6.6. Hydrodynamic Modes

The study of the linearized versions of the equations of hydrodynamics provide insight into
the nature of the small movements, for small frequencies (ω → 0) and long wavelengths
(| q | → 0). The number of balance equations (k = 5 for an isotropic liquid, k = 7
for a nematic) is equal to the number of independent variables. Expanding the fluxes in
the balance equations, one expects a similar number of linearized differential equations
ω = ω(q), of first order in d/dt . Replacing d/dt → −iω, one arrives at the determinant
equation

∑k
n=0 Cn(q)ωn = 0, where Cn(q) are polynomials of order n in q. The roots of

this equation, or the “modes,” separate into dissipative modes (noted D) implying entropy
production, and nondissipative modes, also called propagative (noted P).

The same analytical approach allows one to find the response functions (real and imag-
inary parts of the susceptibilities) and correlation functions. These quantities are directly
accessible to experimentation. Ultrasound experiments yield the real susceptibilities, mea-
surements of transport coefficients such as viscosities and diffusivities yield the imaginary
parts, and light and neutron scattering yield the correlation functions.

In isotropic liquids, where the number of variables is five (the density ρ, the three com-
ponents of the velocity v, and the temperature T ), the longitudinal (along v) and transversal
(perpendicular to v) modes are decoupled. One finds the following five modes:

two P modes:

ω = ±cq − iγq2, where the damping term, often neglected, originates in the coupling
with shear and thermal diffusion. P modes always exist by pairs, in reason of the in-
variance under time reversal of the corresponding hydrodynamic equations.

three D modes:

ω = −iκthq2 thermal diffusion; the dependence in iq2 is characteristic of a conserved
variable that obeys an equation of the diffusion type.

ω = −i η
ρ

q2 two shear transverse modes, corresponding to two different polarizations.

In nematics, there are two supplementary D modes, due to the “symmetry-breaking”
continuous variables associated with the director, viz.,
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two D modes:

ω = −i K
η

q2, where K is a relevant Frank coefficient and η is a rotational viscosity.

It is important to notice that the diffusivity associated to the rotation of the director
Drot = K

η
and the diffusivity associated with the shear of matter Dsh = η

ρ
are not at all

of the same order of magnitude: typically, Drot
Dsh

= Kρ
η2 ≈ 10−4 in thermotropic nematics.

The relaxation of vorticity (shear) is a rapid process compared with the relaxation of the
director orientation. Light scattering experiments have given a wealth of data on these slow,
orientational modes (viscosities, Frank constants).

Problem 6.1. Show that d
dt

∫∫∫
V aρ dV = ∫∫∫

V ρ
da
dt dV , where a is a time- and coordinate-

dependent characteristic of a fluid.

Answers: Observe that ρ dV is the constant mass of the element of fluid.

Problem 6.2. Reexpress the angular momentum equation for a nematic fluid in the Eulerian form
when there are no body forces.

Answers: ∂
∂t (I�i )+ ∂

∂x p
(I�ivp−εi jkn j τkp) = −εi jkσ jk for the internal part and εi jk

∂
∂t (ρx jvk)+

εi jk
∂
∂x p
(ρx jvkvp − x jσkp) = εi jkσ jk for the external part; neither part is conserved by itself be-

cause of the “source” terms on the right-hand sides; however, the sources cancel each other when the
equations are added, so that the total angular momentum is conserved.

Problem 6.3. Consider the angular momentum conservation law for an isotropic fluid, and show
that it leads to the symmetry of the stress tensor σi j = σ j i .

Answers: The rate of change of the angular momentum of any material element is equal to the sum
of the torques created by the body and surface forces: ρ d

dt (εi jk x jvk) = ρεi jk x j gk + ∂
∂x p
(εi jkσkp),

where x j is the coordinate of the position of the element with respect to origin; vector products
such as [r × v] are expressed through their components [r × v]i = εi jk x jvk . Because ∂x j/∂x p =
δ j p , then ∂

∂x p
(x jσkp) = σk j + x j

∂σkp
∂x p

and the angular momentum equation can be rearranged as

εi jk x j [ρ dvk
dt − ρgk − ∂σkp

∂x p
] = εi jkσk j . The linear momentum law implies that the term in the

brackets vanishes; thus, εi jkσk j = 0, i.e., σkp = σpk .

Problem 6.4. Calculate the angular momentum of a unit volume of a liquid crystal as the function
of the scalar order parameter s ≤ 1.

Answers:17 The microscopic density µ of the angular momentum is the sum of angular momenta

µk = Iωk of individual molecules located at points rk(t): µ(r, t) = ∑
k Iωk δ(r − rk); I = ma2

17V.I. Sugakov and E.M. Verlan, Hydrodynamics of Liquid Crystals, Kiev State University Publ., Kiev, 1978.
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is the moment of inertia of a molecule of mass m and characteristic size a. Let ek be a unit vector
along the molecular axis. Then, the angular velocity has components (ωk)i = [ek × dek

dt ]i = [ek ×
ωk × ek ]i = (ωk) j [δi j − (ek)i (ek) j ], and thus, µi (r, t) = ∑

k I (ωk) j [δi j − (ek)i (ek) j ] δ(r − rk).

Averaging over a small volume gives µi (r, t) = ρ(r,t)
mk

∑
k Ii j (r, t)� j (r, t), where � j (r, t) = [n ×

dn
dt ] j is the angular velocity of the director, and

Ii j = I

〈∑
k

[δi j − (ek)i (ek) j ] δ(r − rk)

〉

= ρ

mk
I

{
2

3
δi j − s(r, t)

[
ni n j − 1

3
δi j

]}

is the local moment of inertia; 〈. . .〉 denotes an average over a molecular ensemble. Because � and
n are perpendicular to each other, ni n j� j = 0, and, neglecting the dependence of s on space and

time coordinates, one arrives at µi = ρ I
m (

2
3 + 1

3 s)�i ; the moment of inertia per unit volume is

∼ ρa2( 2
3 + 1

3 s).

Problem 6.5. Reexpress (6.48) 2R = A jkσ
(s)
jk + (� jk + W jk)σ

(a)
jk in terms of the vector N of the

relative director rotation rate (6.52) and the molecular field (6.55).

Answers: Write (� jk + W jk)σ
(a)
jk = εi jk(�i − �i )(σ jk − σ (r)jk ), and then use (6.46b) to find

εi jkσ
(r)
jk and the director equation in the form Iεi jkn j n̈k = εi jkn j Gk −εi jkσ jk +εi jk

∂
∂x p
(n j τkp) =

0, valid when the inertia terms are neglected. The result is 2R = A jkσ
(s)
jk + N j h j [see also (6.60)].

Problem 6.6. From the requirement that the entropy production is positive-definite, which corre-
sponds to the fact that energy is dissipated, find restrictions on the viscosity coefficients in EL and
H-models.
Hint. Simplify (6.48) and (6.60) by directing one of the coordinate axis along n.

Answers: Let us choose the x-axis of the Cartesian coordinate frame along the director n. Then,
from (6.48), (6.50), and (6.51), one finds the entropy production

2R = (α1 + α4 + α5 + α6)A
2
xx + α4 Ai j Ai j

+
[
(2α4 + α5 + α6)Axi Axi + 2(α6 − α5)Axi�xi + (α3 − α2)�xi�xi

]
,

where i and j take values y and z; there is no summation over the index x . The requirement 2R > 0
implies that α1 + α4 + α5 + α6 > 0; α4 > 0; 2α4 + α5 + α6 > 0; α3 − α2 > 0; and (2α4 + α5 +
α6)(α3 − α2)− (α6 − α5)

2 > 0. In a similar way, for the Harvard model, η2 ≥ 0, η3 ≥ 0, η4 ≥ 0,
η4(2η1 + η2) ≥ (η5 − η4)

2, and 2(η1 + η5)− η4 + η2 ≥ 0.
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Problem 6.7. Consider a nematic fluid in a planar cell of thickness L in a regime of a plane Couette
flow. Find the critical shear rate above which orientation n = (1, 0, 0) = const becomes unstable.
Suppose that (1) α2 and α3 are of the same sign; (2) the surface anchoring is infinitely strong; (3) the
flow is of the form [0, γ̇ z, 0], where γ̇ > 0 is the shear rate.

Answers:18 For small fluctuations ny and nz , the angular momentum balance equations become

(α3 − α2)
∂nz

∂t
− K1

∂2nz

∂z2
+ α3γ̇ ny = 0;

(α2 − α3)
∂ny

∂t
+ K2

∂2ny

∂z2
− α2γ̇ nz = 0.

Seeking the solutions in the form of ny = ny0 exp(iqz) and nz = nz0 exp(iqz), where q = π/L,

one has α3γ̇ ny0 + K1q2nz0 = 0 and K2q2ny0 + α2γ̇ nz0 = 0. From the condition of compatibility

of this algebraic linear system of two equations one gets γ̇crit = 2
γ1

√
K1 K2
λ2−1

(πL )
2. The instability

condition can be written Er > π2, where Er = γ1U L
2

√
λ2−1
K1 K2

is the Ericksen number of the problem.

Problem 6.8. Consider the same geometry and conditions as in Problem 6.7, but with an additional
magnetic field B = (B, 0, 0) stabilizing the initial director orientation n = (1, 0, 0) = const. Find
the critical shear rate above which the director becomes unstable.

Answers: Addition of the magnetic stabilizing torques �mag = µ−1
0 χa(n × B)n · B results in the

condition of compatibility

α2α3γ̇
2
c =

(
K1π

2/L2 + µ−1
0 χ2

a B2
) (

K2π
2/L2 + µ−1

0 χ2
a B2

)
,

similar to that of Problem 6.7. If the field is weak, a homogeneous distortion of the director appears

above γ̇crit = 2
γ1

√
K1 K2
λ2−1

(πL )
2. Under a strong magnetic field, the threshold is γ̇crit = 2

γ1

µ−1
0 χ2

a B2√
λ2−1

.

Above the threshold, a pattern of rolls occurs with the roll axes along the direction of flow (see
Dubois-Violette and Manneville15 and Pieranski and Guyon18).
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C H A P T E R 7

Fractals and Growth Phenomena

Euclidian geometry describes the world as a pattern of simple shapes: spheres, triangles,
lines, and so on, with an intuitively clear concept of dimension: 0 for a point, 1 for a line,
2 for a plane, and so on. However, this classic picture is not a complete image of Nature,
for “Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark
is not smooth, nor does lightning travel in a straight line.”1 B. Mandelbrot, who developed
the new family of shapes and coined the term fractal, gives one of the possible definitions:
“A fractal is a shape made of parts similar to the whole in some way.”2

In mathematics, the concepts of fractals or “fractal dimension(s)” apply to structures
that have a never-ending self-similarity, deterministic or statistical, at all scales of magni-
fication. The fractal dimension serves as an exponent in the power law of the type

M(λr) = λD M(r), (7.1)

which shows how the “property” M of the fractal (for example, its mass) changes when
the characteristic size in the embedding space is rescaled by a factor λ, r → λr . Note that
the exponent is independent of r , which stresses the self-similarity at all scales. Regular
homogeneous (called also compact) objects satisfy (7.1) with D being the “usual” integer
dimension 1, 2, 3, and so on. The most interesting feature of (7.1) is that there are indeed
objects—fractals—fitting (7.1) with D “fractional.” Simplified to the limit, interpreting r
as a unit length, and λ = L as its measure, the scaling of the “property” of fractal with its
size L reads as

M ∝ L D, (7.2)

where, for example, D = 1.42 or D = ln 3/ ln 2 = 1.58496 . . . , indicating that the fractal
under consideration is not a line and not a surface. Note that here the symbol “∝” indicates
proportionality.

1B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, New York, 1983, p. 1 (first
edition: 1977).

2B. Mandelbrot, 1987, cited in: J. Feder. Fractals, Plenum Press, New York and London, 1988, p. 11.

223



Chapter 7 Fractals and Growth Phenomena224

In physics, the idea of infinite self-similarity is obviously limited because interactions
among particles are different at different scales, say, subatomic and superatomic. Neverthe-
less, many physical systems do exhibit self-similarity, although of course within some finite
range of scales. The list includes colloidal aggregates, polymers (see also Chapter 15), gels,
crumpled membranes of surfactants, porous media, Brownian motion, turbulent flows, fo-
cal conic domain patterns in smectic liquid crystals (Chapter 10 and Section 13.2.6.), and
even bacterial colonies. The geometry of these systems, often based on random processes
such as Brownian motion, is complicated; the concept of fractal dimension(s) helps to
express, model, and comprehend both the geometrical complexity and its physical con-
sequences. Furthermore, fractal concepts and power laws such as (7.1) establish similar-
ities between growth phenomena (pattern formation) in a variety of equilibrium (such as
percolation) and far-from-equilibrium (such as diffusion-limited aggregation and viscous
fingering) processes. This connection is of heuristic significance, because presently there
is no first-principle theory to describe, for example, diffusion-limited aggregation, which
is a markedly far-from-equilibrium and nonlocal process.

We start our consideration with classic fractals (e.g., Koch curve) or “thought-to-be-
fractals” (e.g., coastlines) and then consider a number of physical phenomena: percolation,
random walks, diffusion-limited aggregation, and viscous fingering in Hele–Shaw cells.
In some of the listed cases, the fractals do not necessarily form: Viscous fingering is not
always of fractal structure. There is another unifying theme that puts fractal-like aggregates
and viscous fingering in one chapter: In both cases, one deals with instabilities of the
growth front, when small perturbations of the front (interface) start to grow much faster
than do the neighboring regions. The physical description of front instabilities is based on
the Laplace equation with appropriate boundary conditions.

7.1. Basic Fractal Concepts

Many natural objects can be approximated by simple Euclidean figures, such as 0D points,
1D straight lines, 2D planes, or 3D spheres. Some objects do not fit this scheme. Their
dimension D is different from the Euclidean dimension of the space in which they are
embedded and is different from what might be called a “topological dimension.” Take a
curved line on a plane. The minimum Euclidean dimension DE of the embedding space
is 2. The topological dimension Dt is 1. However, neither DE nor Dt tell us what is the
length L of the line. How do we measure L?

7.1.1. Length of a Line

To measure L, one might divide the line into N smaller parts (using, e.g., a set of dividers)
and then approximate each part by a straight segment of length r (opening length of the
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Figure 7.1. Measuring the length of a curved line by different opening lengths of a set of dividers.

dividers). If the line is curved, the measured length depends on r :

L(r) = r N (r). (7.3)

If we deal with a straight line of length L0, the dependence N (r) is clearly

N (r) = L0r−1, (7.4)

where the exponent “−1” is obviously related to the topological dimension Dt = 1. How-
ever, if the line is curved, then reduction of the opening length of the dividers would most
probably result in the increase of the length L(r) (Fig. 7.1). The number N (r) would grow
faster than r−1 when r decreases, for example, N can follow the power law with D larger
than the topological dimension Dt = 1:

N (r) ∝ r−D, (7.5)

at least, within some range of r . However, even if the line is curved, but smooth and dif-
ferentiable, in the limit r → 0, one would still recover D = Dt = 1. Mathematically,
such a line is not a fractal, and one should think of more sophisticated examples for which
D > Dt = 1 even when r → 0. One of them is the triadic Koch curve.

7.1.2. Koch Curve

To construct the Koch curve, one starts with an initiator, a straight line of, say, length L0.
The middle third of the initiator is replaced by the upright sides of an equilateral triangle
(Fig. 7.2). The result is the so-called generator, composed of N = 4 line segments each
of length r1 = L0/3, so that the total length is L1 = 4r1. In the next step, each one of
the four segments is considered as a base and replaced by a generator scaled down by a
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k=1

k=2

k=3

k=4

Figure 7.2. Stages of the Koch curve construction that starts with a straight line of length 1. At stage
k + 1, one replaces each segment of stage k by a generator scaled down by the factor (1/3)k .

factor of 1/3. The total length becomes L2 = 16r2, where r2 = L0/9 is the length of the
new straight segment; it can also be considered as an adjustable opening of dividers. The
process is carried out ad infinitum.

At the step k, the length of each straight segment is rk = L0/3k , and the total length is
Lk = 4krk = L0(4/3)k . Substituting k = (ln L0 − ln rk)/ ln 3, one finds

L(r) = L D
0 r1−D, (7.6)
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(a)

(b)

Figure 7.3. Koch curves with (a) base angle 0.157 rad and D ≈ 1.0045; (b) 1.5 rad and D ≈ 1.8205.

and recovers N (r) ∝ r−D , i.e., (7.5), now valid for all r’s. The exponent

D = lim
r→0

ln N (r)

ln(1/r)
(7.7)

is a constant, D = ln 4
ln 3 ≈ 1.26186, larger than the topological dimension Dt = 1. This

fractal dimension D of the Koch curve is “fractional,” hence, the term “fractal.”
If the iterations interrupt at some finite step k, the resulting structure is sometimes

called “prefractal.” In this sense, physical fractals are prefractals. Some curved line of
the type considered in Section 7.1.1 might not be fractal in the strict mathematical sense;
however, if such a line is of physical interest (a trajectory, for example) and follows the
scaling law of the type (7.5) or (7.6) over decades of lengths, then one might suspect a
certain physical reason for such behavior and, thus, employ the fractal description to get a
better insight into the problem.

The value of D indicates how far the Koch line is meandering away from a straight
line and how effectively it fills the plane. To illustrate this point, one can modify the rules
of construction, namely, change the angle at the base of the triangle. Figure 7.3 shows two
curves (at k = 5) with D ≈ 1.0045 and D ≈ 1.8205. The closer D is to 1, the closer
the Koch curve in appearance to a straight line, and the closer D is to 2, the more dense it
becomes in a 2D plane (see Problem 7.1).

7.1.3. Self-Similarity
The fractal nature of the Koch curve is related to its self-similarity. At each step k + 1 in
Fig. 7.2, one replaces the curve of step k with its N = 4 exact copies, each downscaled by
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a factor of λ = 1/3. We can also use even smaller copies, those obtained at the step k + n,
where n > 1. Then, to reconstruct the k-step configuration, one would need N = 4n small
copies, each downscaled by λ = (1/3)n . The scale factor can thus be written as

λ = (1/N)1/D, (7.8)

where the exponent D

D = − ln N/ lnλ(N ) (7.9)

is the “similarity dimension,” in our case, equal to the fractal dimension. In the same way,
a straight line is self-similar with the “similarity dimension” D = 1, because it can be
reconstructed from N self-similar parts each scaled by the factor λ = (1/N)1/1 = 1/N .

7.1.4. Estimating Fractal Dimensions

Structures with fractal properties often occur as a result of aggregation. Aggregation is
a process of forming macroscopic structures, aggregates, from smaller parts, that might
be aggregates themselves or elementary particles driven by attractive forces. When the
process is irreversible, i.e., the particles cannot part once in contact, the resulting aggregate
is different from a compact “Euclidian” structure of, say, a crystalline body that forms in
equilibrium conditions. Namely, the aggregates are full of large voids that become less
and less accessible for the new particles as the aggregate grows: It is more likely that the
particle will be captured by a peripheric branch than that it will avoid any contact to make
all of its way through to fill the void. The effect is called “self-screening.” As the aggregate
grows, the self-screening allows larger and larger voids to form; voids at all scales make
the aggregate fractal.

Although natural aggregation proceeds through random processes, it is instructive to
start with a deterministic aggregation that leads to a so-called Sierpinski gasket, another
classic fractal object in mathematics; we will return to physical examples later in this chap-
ter.

Let the elementary particle of the aggregation process (an “atom”) be a black triangle
of unit edge length (L = 1) and unit mass M = 1. Following the rules of growth suggested
by Stanley,3 the three triangles are assembled together into a new equilateral triangle of the
edge length L = 2 and mass M = 3. At k + 1-step, three exact copies of the aggregate
of the previous step k are assembled into a larger aggregate of linear size 2k+1 and mass
M = 3k+1 (Fig. 7.4). The mass and the length are related by the power law

M(L) ∝ L D (7.10)

3H.E. Stanley, in Fractals and Disordered Systems, Edited by A. Bunde and S. Havlin, Springer-Verlag, Berlin,
2nd edition, 1996.
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k = 1 k = 3k = 2 k = 4

Figure 7.4. Aggregation of small triangles into the Sierpinski gasket.
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Figure 7.5. Double logarithmic dependence of the mass M(L) on the linear size for a 1D line (thin
line), 2D disk (thick line), and an aggregate in the form of the Sierpinski gasket.
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with the exponent D = ln 3/ ln 2 ≈ 1.585. This exponent is again neither one nor two, but
it clearly resembles integer mass dimensions of Euclidean figures. If the growth law was
chosen differently, D would change. For example, if the triangles are allowed to contact
only by their base vertices along a straight line, then D = 1; if the triangles are glued
along their sides and the vertices are matched, D = 2. If M(L) for the Sierpinski gasket is
plotted with a double-logarithmic scale, it produces a straight line with a slope D ≈ 1.585
intermediate between 1 and 2 (Fig. 7.5). Interestingly and importantly, (7.10) implies that
the density ρ of the fractal decreases with its size. If one draws a sphere of radius r around
any point of the fractal, then the average density in this sphere scales as

ρ(r) ∝ r D−DE . (7.11)

Self-similarity of the Sierpinski gasket shows up as the presence of holes (white areas
in Fig. 7.4) of every length scale. It is exactly the self-similar and hollow structure of
fractals that leads to the power law with fractal dimension in (7.10) and (7.11).

7.1.5. Deterministic and Stochastic Fractals

Fractal Koch lines and Sierpinski gasket considered so far are deterministic: One has well-
defined rules to construct the objects, and all points of the fractal can be specified un-
ambiguously. The self-similarity of deterministic fractals can be checked directly and ex-
pressed through D. Natural objects are self-similar only in a statistical sense.

A statistical analog of the deterministic fractal Koch curve is a coastline. According
to actual measurements, the length of some coastlines satisfies (7.6) over a large range
of scales. Applying (7.6) for the scales of “yardstick” between a few and thousands of
kilometers, one finds D = 1.3 for the west coast of Britain and D = 1.52 for the southern
coast of Norway, as documented in the classic books on fractals by Mandelbrot and Feder.
As long as D = const, the irregularities of the coastline look statistically self-similar at
different degrees of magnification. It means that it is impossible to sort out differently
magnified pictures of the coastline (of coarse, no vacationing tourists are allowed in the
pictures because those have nonfractal shapes).

The fractal dimensions that characterize properties of stochastic fractals such as mass,
number of particles, volume, area, and so on, can be determined by the box counting tech-
nique. The DE -dimensional Euclidean space in which the fractal is embedded is divided
into a grid of boxes of linear size ε. One counts the number of boxes that are nonempty
and then repeats the procedure for different values of ε, different orientations, and different
origins of the boxes. Each nonempty box has a volume εDE and a mass M(ε) = ρεDE ,
where ρ is a constant characterizing the material from which the object is made. Within
the distance r from any nonempty box, one finds N = (r/ε)D boxes covering the object.
Their total mass (volume) is M(r) = N M(ε) or

M(r) = (r/ε)D M(ε). (7.12)
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If we scale the length r by a factor λ, the mass of the object within the sphere of radius
λr < L0 is

M(λr) = λD M(r). (7.13)

If D > Dt (and usually, D < DE ; see Problem 7.2), the object is fractal with the fractal
dimension D defined in (7.7). Equation (7.13) tells us that the mass of the fractal within the
sphere of radius L scales as M(L) ∝ L D , as in (7.10). Returning to the example with the
Sierpinski gasket, one can consider N (ε) = 3k in (7.7) as the number of triangles of linear
size ε = (1/2)k needed to cover the gasket at iteration level k; the result is D = ln 3/ ln 2
as already found.

Fractals in Fig. 7.6 clearly illustrate the difference and similarities of deterministic
(a) and stochastic (b) fractals that might form during aggregation processes. According to
the construction scheme, one divides an original square into nine equal, smaller squares
and then throws away four of them. These four can be selected in a deterministic way
(Fig. 7.6a) or randomly (Fig. 7.6b). Despite the difference in appearance, both have the
same fractal dimension D = ln 5/ ln 3 ≈ 1.465, because one needs the same number of
squares to cover two objects of the same Euclidean area.

(a)

(b)

Figure 7.6. (a) Deterministic and (b) stochastic clusters (adapted from T. Vicsek, Fractal Growth
Phenomena, 2nd edition, World Scientific, Singapore, 1992).
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7.1.6. Brownian Motion and Random Walks

The Brownian motion of a small (micron-size) particle suspended in an isotropic solvent
is one of the simplest examples of stochastic fractals. The Brownian particle is in unin-
terrupted and irregular motion with a zigzag trajectory (Fig. 7.7) due to the fluctuative
movement of the solvent molecules and their collisions with the particle. Because the par-
ticle jumps in apparently random directions and because each jump has some characteristic
mean length a = √〈r2

n 〉, the Brownian motion is often called random walk. Let us show
that the relationship between the number of jumps N and the mean distance R traveled by
the Brownian particle is fractal.

The displacement accumulated over N jumps is the sum RN = ∑N
n=1 rn . The mean

total displacement R =
√

〈R2
N 〉 grows linearly with the number of jumps, because any two

different jumps are uncorrelated:

R2 =
N∑

n,m
〈rnrm〉 = Na2 + 2

N∑
n>m

〈rnrm〉 = Na2, or R = a
√

N . (7.14)

The number (“mass”)-radius relation, thus, writes as

N = (R/a)2, (7.15)

which means that the Brownian motion has the fractal dimension D = 2. This conclusion
is obviously valid for any dimension of the embedding space, as soon as DE ≥ 2.

The model of random walk can be used as a very idealized model of a linear polymer in
good solvent. This model would consider each step in the random walk as the monomer of

RN

Figure 7.7. Trajectory of a Brownian particle in a 2D plane.
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the polymer chain and would assume that any two neighboring links can point in arbitrary
directions; moreover, the polymer is allowed to intersect, as the Brownian trajectory does.
A more realistic model of a polymer is that of a self-avoiding random walk that prohibits
self-intersections. Obviously, if the self-avoiding random walk is fractal, then its fractal
dimension should be smaller than D = 2 calculated above. Indeed, the mean field calcu-
lations yield the Flory’s formula D = DE +2

3 , i.e. D = 4/3 for DE = 2 and D = 5/3 for
DE = 3; for more details, see Gouyet (1996) and Chapter 15.

To conclude this section, note that the concept of random walks can be expanded to
objects with Dt = 2 that describe other soft-matter systems, namely, membranes. Ther-
mal fluctuations tend to crumple the membrane, and the latter adopts geometry of a “self-
avoiding” random surface. For isolated membranes in DE = 3, one finds D ≈ 2.5.

7.1.7. Pair Correlation Function

One can apply (7.13) to an experimentally observed fractal structure if there is a good
(micro)photograph of a fractal. However, in many cases, such photographs are not easy to
get; besides, the resolution is obviously limited. Statistical self-similarity of natural fractals
can be directly verified in coherent scattering experiments that use probes such as light, X-
ray, and neutrons. These experiments provide an insight into the structural properties over
many decades of the length scales, from 1 Å to 1 µm, and allow one to verify the scaling
symmetry. The measured quantities are directly related to the so-called pair correlation
function.

The pair correlation function written for a cluster (an aggregate) of N identical par-
ticles

C(r) = 1

N

∑
i

ρ(r + ri )ρ(ri ) = 〈ρ(r + r′)ρ(r′)〉
〈ρ(r′)〉 (7.16)

is the probability that the point a distance r away from the occupied site r′ belongs to the
same cluster. Here, ρ is the local normalized density; e.g., ρ(r) = 1 if the position r is
occupied and ρ(r) = 0 otherwise. For correlations that depend only on the distance and
not on the direction, one can replace r → r . The total mass M or the number of particles N
are integrals over the correlation function, M(r) ∝ ∫ r

0 C(x) d DE x . If the object is fractal,
M(r) ∝ r D , then the correlation function should be of the form

C(r) ∝ r−α, (7.17)

where α is a noninteger positive number smaller than DE :

α = DE − D; (7.18)

compare this to (7.11) for density.
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The power dependence (7.17) implies that the correlation function is invariant (up to
some constant) to a change of length scale by an arbitrary factor λ:

C(λr) = λ−αC(r). (7.19)

In other words, there is no characteristic length scale. This is in striking contrast with the
correlation function of a disordered medium with short range order, e.g., a polycrystal made
of small disoriented microcrystallites, or an amorphous solid, which show up “correlation”
bumps for the values of r corresponding to the distances between nearest or next nearest
neighbors, say.

In scattering experiments, one probes the sample with a collimated monochromatic
beam and detects scattering caused by variations in properties such as refractive indices
(light scattering) or electron densities (X-ray) or nuclei densities (neutrons). For X-ray and
neutron scattering, the scales of interest are much larger than is the wavelength of the probe,
and one is thus interested in small-angle scattering. If the scattering is elastic, the intensity
of radiation scattered by some small angle θ is determined by the momentum transfer
vector (the difference between the incoming and the outgoing wave vectors) q = 4π

λ0
sin θ2 ,

where λ0 is the wavelength. The size of the particles a is usually small enough, compared
with λ0, to influence the scattering pattern. To take this effect into account, one assumes
that the particles are identical spheres and represents I (q) as a product of a form factor
P(q) that describes the scattering from uncorrelated scatterers-spheres and the structure
factor S(q) that describes correlations of the spheres.

The form factor is practically constant when qa 	 1 and follows the Porod law
P(q) ∝ q−4 in the limit qa 
 1. The structure factor is the Fourier transform of the
pair correlation function:

S(q) = 4π

∞∫

0

C(r)
sin qr

qr
r2 dr. (7.20)

To calculate S(q) properly, one has to recall again that physically, the scaling (7.17) is valid
only in the range a 	 r 	 R, limited from above by the size of the cluster R. To account
for this cutoff, one renormalizes the correlation function, C(r) ∝ r−α f (r/R), by a factor
chosen often as an exponent, f (x) = e−x , to satisfy the conditions f (x) → 0 for x 
 1
and f (x)→ 1 for x 	 1. For the range of interest, 1/R 	 q 	 1/a, the structure and the
intensity follow the power law (Problem 7.3)

I (q) ∝ S(q) �
∫

C(r)
sin qr

qr
r2 dr ∝ q−D . (7.21)

Therefore, the scattering experiment can directly measure the fractal dimension D, from
the slope of the dependence I (q) plotted in log-log coordinates (Fig. 7.8). Note that the
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Figure 7.8. Schematic scattering plot revealing fractal behavior for 1/R 	 q 	 1/a and finite size
effects at large and small scales.

same expression (7.21) would yield Dirac peaks (in reciprocal space) if the object under
consideration is a crystal, or scattering rings in the case of a crystal powder or of an amor-
phous solid.

7.1.8. Inner and Outer Cutoffs

Fractals formed by aggregated particles have a natural lower bound of scaling proper-
ties, which is the size a of a single particle. It might be, for example, a molecular size of
monomers in a polymer network. The upper limit is the size of the cluster. In some cases,
however, the identification of the inner and outer cutoff limits is not that obvious.

As discussed in Section 10.8, the bases of focal conic domains in smectic polygonal
textures form fractal-like patterns similar to those in Apollonian packings of circles. The
hierarchy of domains has the scaling properties of the corresponding asymptotic Apollo-
nian fractal gasket, but only within a finite range of scales r∗ < r < L0, where L0 is the
outer cutoff (e.g., the overall thickness of the smectic sample) and r∗ ∼ K/W is the inner
cutoff defined by the ratio of the elastic constant to the anisotropy of surface anchoring
energy. This lower limit is generally much larger than is the characteristic molecular size.

7.2. Percolation

7.2.1. Geometrical Percolation

Consider a square grid. The cells of the grid are occupied with a probability p (empty with
the probability 1 − p). Neighboring occupied sites (black in Fig. 7.9) with a common edge
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Figure 7.9. Percolation networks for different occupation probabilities p.

form a connected cluster. If p 	 1, the clusters are small and isolated, (Fig. 7.9a). When
p increases from 0 to 1, so does the mass of the largest clusters (Fig.7.9b). There is a value
of 0 < p < 1, at which a unique cluster appears that connects opposite sides of the grid
(Fig. 7.9c). When the size of the grid L0 → ∞, this percolating cluster is infinite; pc, at
which the infinite cluster appears, is called the percolation threshold or critical probability.
Numerical calculations (performed, of course, on finite grids) allow one to conclude that
pc ≈ 0.59275 for clusters formed by neighboring sites on a 2D square lattice as in Fig. 7.9;
they also show that the clusters are fractal distributions of occupied cells.

The model depicted in Fig. 7.9 is only one of numerous variations of geometrical
percolation (that differ in grid types or algorithms to identify connected clusters). One also
distinguishes percolation of sites, as above, and percolation of bonds between sites. The
first prototye of the (bond) percolation theory was the theory of polymerization, developed
in the 1940’s by Flory.
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The percolation models allow one to get insight into the physics of many phenomena,
such as insulator-conductor and sol-gel transitions, polymerization, spread of epidemic,
behavior of diluted magnetic and porous systems, and so on. For example, one can imag-
ine the empty sites in Fig. 7.9 as an isolating “matrix” and the occupied (black) sites as
conducting grains in that matrix. For small concentration of grains, p < pc, the system
is an insulator, whereas for p ≥ pc, the system is a conductor. Thus, pc is the position
of the phase transition. Examples closer to the domain of soft-matter physics are the sol-
gel transition (gelation) and the polymerization process. A sol is a system of individual
particles dispersed in some liquid medium. If the particles keep apart, the whole system
behaves as a liquid. Gelation consists in formation of bonds (chemical, electrostatic, van
der Waals, or of other origin) between these particles. When the connected network of
bonds is large enough to percolate the whole dispersion medium, the system transforms
into a gel and shows some elasticity. The boiling of an egg, and the vulcanization of rubber
are the illustrations.

The examples above show that to analyze the percolation-type phenomena, it is impor-
tant to know the linear size of the finite clusters. The finite clusters exist at p < pc and
at p > pc, occupying holes left by the infinite percolating cluster. Two parameters (one
can introduce more) serve the purpose: the radius of gyration Rs and the connectedness
length ξ .

Rs is the root mean square radius of the cluster composed of s sites, measured from
the center of mass r0 of this cluster. If ri is the position of site i , then r0 = 1

s

∑s
i=1 ri and

R2
s = 1

s

s∑
i=1

(ri − r0)
2 = 1

2s2

s∑
i, j=1

(ri − r j )
2. (7.22)

The second part of (7.22) expresses Rs through the distances between any two cluster sites
(Problem 7.4). The quantity 2R2

s is the averaged squared distance between two cluster
sites. The connectedness ξ (or the correlation length) is also the root mean square distance
between the pairs of sites that belong to the same cluster, averaged over all finite clusters
of size s:

ξ2 =
2
∑
s

R2
s s2ns

∑
s

s2ns
, (7.23)

where ns is the number of clusters of size s calculated per lattice site. In other words, ns is
the number of clusters of size s on the lattice L0 × L0, divided by L2

0. Equation (7.23) takes
into account that any randomly selected site of the lattice has probability w(s) = sns to
belong to a cluster of size s, because there are s different ways for the site to be incorporated
within the cluster.
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Figure 7.10. (a) Order parameter and (b) correlation length in the vicinity of the percolation threshold.
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As p approaches pc, the finite clusters increase in size; ξ , being the radius of clusters
that contribute most to this increase, diverges to infinity at pc. When ξ diverges, there is
no characteristic length to scale the length-dependent physical properties of the system.
As fractal structures in Section 7.1, the system looks the same at different magnifications.
The properties of the system become nonsensitive to many local details, such as small
changes in interactions of particles, lattice structure, and so on, which do not influence the
large-scale behavior. This feature results in the universality of the critical exponents that
describe diverging parameters near pc. These universal exponents depend on the model
under consideration and the dimensionality of the system but not on the details of the local
structure.

7.2.2. Percolation and Second-Order Phase Transitions

The discussion above shows that the percolation model has features that unite it with both
the fractals and the thermal phase transitions.

Near the transition point p = pc, geometrical percolation can be described in the same
terms as the thermal second-order phase transition, say, a transition from a paramagnetic
state at high temperatures and a ferromagnetic state at low temperatures. The analog of
temperature T is the occupation probability p of one site; the analog of the order parameter,
say, the magnetization M(T ), is the probability P∞(p) that a randomly chosen site belongs
to an infinite cluster:

p − pc ↔ Tc − T, (7.24)

P∞(p)↔ M(T ). (7.25)

In magnetic materials, the magnetization vanishes at the critical temperature Tc, ac-
cording to the power law M(T ) ∝ (Tc − T )β with the critical exponent β. Immediately
above the percolation threshold, 0 < p − pc 	 1, the order parameter P∞(p) behaves in
a similar way (Fig. 7.10a):

P∞(p) ∝ (p − pc)
β. (7.26)

Of course, P∞(p < pc) = 0, because only finite clusters exist at p < pc.
The values of the critical exponent β are different for magnets and percolation. For

example, mean-field theories predict that in 2D, β = 1/8 for magnets, whereas β = 5/36
for percolation; β is also different for 2D and 3D systems. Nevertheless, once the system
(magnets versus percolation; 2D versus 3D) is chosen, the critical exponent β is a more
universal quantity than is the percolation threshold pc (see Table 7.1). For example, β
remains constant if one switches from site to bond percolation or changes the local structure
of the network, say, from triangular to square. In contrast, pc is different for all of the cases
listed above (see Table 7.1). Although pc and β can always be estimated in computer
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Table 7.1. Percolation thresholds and critical exponents for the order parameter P∞ (β) and the
correlation length ξ (ν) for some common percolation networks; astericks mark exact results.
Compiled from Bunde and Havlin.†

Type Structure DE pc β ν

site triangular 2 1/2∗ 5/36∗ 4/3∗
site square 2 0.592760 5/36∗ 4/3∗
site honeycomb 2 0.6962 5/36∗ 4/3∗
site simple cubic 3 0.31161 0.417 0.875
site body centered cubic 3 0.245 0.417 0.875
site face centered cubic 3 0.198 0.417 0.875
bond triangular 2 2 sin(π/18)∗ 5/36∗ 4/3∗
bond square 2 1/2∗ 5/36∗ 4/3∗
bond honeycomb 2 1 − 2 sin(π/18)∗ 5/36∗ 4/3∗
bond simple cubic 3 0.248814 0.417 0.875
bond body centered cubic 3 0.1803 0.417 0.875
bond face centered cubic 3 0.119 0.417 0.875

†A. Bunde and S. Havlin, in Fractals and Disordered Systems, Edited by A. Bunde and S. Havlin, 2nd edition,
Springer-Verlag, Berlin, 1996.

simulations, analytical results are available only for a few special cases. One of these cases
is the Bethe lattice, or the Cayley tree, which was used by Flory to develop the theory of
gelification in polymers; we consider this model in Section 7.2.5.

The correlation length ξ also diverges when p approaches pc (both from below and
from above) (Fig. 7.10b), with a new critical exponent ν,

ξ ∝ | p − pc |−ν . (7.27)

The behavior (7.27) resembles divergence of the correlation length near critical points
for thermal phase transitions. Both critical exponents β and ν are universal, because they
depend on the dimensions of the system but not on the local details. The aim of the theory
is to calculate these exponents from the first principles and to find relationships among
them. In the next section, we illustrate relationships between the critical exponents and the
fractal characteristics of the percolation networks; the techniques of calculating the values
of critical exponents are discussed later.

7.2.3. Finite Clusters at the Percolation Threshold

Let us consider the fractal properties of finite clusters by determining how the mass Ms(L)
of an s-cluster depends on the linear size L on which it is considered. The only charac-
teristic length scale of the finite cluster is the radius of gyration Rs . Let us first assume
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L 
 2Rs ; the mass is then equal to s, Ms(L) ∝ s, and does not depend on L. On a length
smaller than its size, L 	 Rs the cluster appears as a self-similar object, Ms(L) ∝ L D ,
as in (7.10). Because Rs is the only length characterizing the cluster, one might expect
that Ms depends on L only through the dimensionless ratio L/Rs and write for both cases
above a scaling relationship

Ms(L) ∝ RD
s m(L/Rs), (7.28)

where the crossover function m(x) is a constant when x 
 1 and scales as m(x) ∝ x D

when x 	 1. Because s ∝ M when L 
 2Rs , then the number of sites and the linear size
of the finite cluster yield typical fractal relationships

s ∝ RD
s or Rs ∝ s1/D, (7.29)

which has been confirmed by many computer simulations.
The probability w(s) that a randomly selected site belongs to a cluster of size s also

has the form of a power law. Consider a L0 × L0 grid at the percolation threshold, and
scale it down by a factor b to a grid (L0/b) × (L0/b). The gyration radius of a cluster is
reduced from Rs(s) to Rs(s′) = Rs(s)/b, where s′ is the number of sites of the “new”
cluster. According to (7.29), s′ = s/bD. The probability w(s) for the original grid can be
expressed through its counterpart w(s′) of the scaled grid as

w(s) = b−2w(s′) = b−2w(s/bD). (7.30)

The factor b−2, where the exponent 2 is the Euclidean dimension of the grid, DE = 2, is
caused by the fact that each site on the grid (L0/b)× (L0/b) corresponds to b2 sites on the
original grid L0 × L0. To satisfy (7.30), w(s) and s should be related by a power law

w(s) = sns ∝ s1−τ , (7.31)

where the critical exponent is determined entirely by the dimensions D and DE :

τ = DE/D + 1. (7.32)

We replaced the exponent 2 by DE because the result holds for grids with DE < 6. For di-
mensions DE ≥ 6, the situation is special and surprisingly simple: All percolation models
yield the same critical exponents that can be found exactly by the mean-field theory of the
Bethe lattice (see Section 7.2.5). Through τ , the dimensions D and DE determine all other
exponents at p = pc.

Let us now calculate the average size S of the finite clusters that can be expressed as
the sum S = ∑smax

s≥1 sw(s), where smax is the maximum size of the cluster and w(s) is the
probability that an occupied site belongs to the cluster of s sites. Apparently, at p ≈ pc,
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the cluster maximum size on a finite lattice L0 × L0 is smax ∝ L D
0 . Because any site is

occupied with the probability p ≈ pc, we can relatew(s) tow(s) = sns considered above:
pcw ≈ w. Hence,

S ∼= 1

pc

smax∑
s=1

sws . (7.33)

Replacing summation by integration, and employing (7.31), one finds

S ∝
smax∫

1

s2−τds � s3−τ
max ∝ L2D−DE

0 (7.34)

(notice that 3 − τ > 0, because D cannot be smaller than 1 for 2D percolation pattern).
The result is different from the scaling law for the largest cluster, smax ∝ L D

0 .

7.2.4. Fractal Dimension of the Percolation Cluster

At percolation threshold pc, the infinite percolating cluster contains holes of all possible
sizes because the correlation length ξ diverges (7.27). Above pc, the length ξ is finite
(Fig. 7.10b) and corresponds to the linear size of the largest “holes” left by the percolating
cluster. It means that at p > pc, the percolating cluster is self-similar only on length scales
L < ξ and homogeneous at larger scales L > ξ . An example of such a structure is shown
in Fig. 7.11. At L < ξ and L > ξ , the mass of the infinite cluster scales differently:

M(L) ∝ L D; L < ξ, (7.35a)

M(L) ∝ P∞L DE , L > ξ. (7.35b)

At L = ξ , the two last expressions should recover the same mass: P∞L DE �
(p − pc)

βξDE = ξD . But according to (7.27), ξ ∝ | p − pc |−ν ; hence,

D = DE − β

ν
, (7.36)

which relates the fractal dimension of the percolation cluster to the exponents β and ν. The
exponents β and ν are universal constants in the sense discussed above; therefore, D is
universal as well. With β = 5/36 and ν = 4/3, one gets D = 91/48 ≈ 1.8958.

The last two sections show that the critical exponents are related, but do not tell how the
numerical values of these exponents can be obtained. In the next two sections, we consider
two theoretical approaches that allow one to obtain analytical results; for more details, see
Stauffer and Aharony (1992) and Gouyet (1996).
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ξ

Figure 7.11. Periodic lattice formed by Sierpinski gasket units of size ∼ ξ (adapted from A. Bunde
and S. Havlin, in Fractals and Disordered Systems, Edited by A. Bunde and S. Havlin, 2nd edition,
Springer-Verlag, Berlin, 1996).

7.2.5. Percolation on Bethe Lattice

As already indicated, percolation threshold pc and the critical exponent β can be calculated
exactly when percolation takes place at the Bethe lattice, also called the Cayley tree. To
build the Cayley tree, one starts with a site and attaches to it z bonds of equal length. The
end of each bond is a new site to which new z-bonds are attached, and so on (Fig. 7.12).
Any two sites are connected by only one path composed by bonds. The Cayley tree looks
like a real tree in the sense that the branches do not form loops and, thus, remain statistically
independent; it is exactly this property that allows one to conduct exact calculations.

Consider the Cayley tree as a percolation network: Each site is occupied with proba-
bility p. Let us find the probability of finding an (infinite) path of occupied sites that would
lead from some “origin” site to the periphery (Fig. 7.12). Of course, all sites are equivalent
in the Cayley tree, except those at the very periphery; we exclude these peripheral sites
from the consideration. When one walks along the branches of the tree, at a given site,
there are always (z − 1) bonds leading to (z − 1) neighboring sites (zth bond is the one
that has led to the site). Because the sites are occupied with probability p, the probability
to form a connected path is (z − 1)p. Each step multiplies the total probability of finding
an infinite path by a factor of (z − 1)p. If (z − 1)p < 1, there will be no chance to find an
infinite path. Therefore, the percolation threshold for the Bethe lattice is defined from the
condition (z − 1)pc = 1 as

pc = 1/(z − 1). (7.37)
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Figure 7.12. Bethe lattice with z = 3 at each site (except the surface sites). Each new generation
of neighbors is shown on the same shell; the chosen center of the concentric shells does not have
a special physical significance because all sites in the interior of the lattice are equivalent. Empty
sites are open circles; occupied sites are filled. Arrows show one of the possible paths connecting
occupied sites.

For the Cayley tree with z = 3, as in Fig. 7.12, pc = 1/2; the same value characterizes site
percolation on a triangular lattice.

Let us now calculate the exponent β describing the critical behavior of P∞(p), that is
the probability of a site to belong to an infinite cluster of connected occupied sites (7.26).
One employs a mean-field approach, considering the probabilities of different states in
which a chosen site and its neighborhood can find themselves. Consider some site, empty
or occupied, with z emanating bonds that lead to neighboring sites. Denote by Q the prob-
ability that a chosen bond does not connect to an infinite cluster; 0 ≤ Q ≤ 1. The original
site does not belong to the infinite cluster (probability 1 − P∞) when (a) this site is empty
(probability 1 − p), or (b) this site is occupied (probability p), but all of its z-bonds fail
to lead to the infinite cluster (probability pQz ; because there are no loops, the bonds are
statistically independent and the probabilities Q multiply each other). Therefore,

1 − P∞ = (1 − p)+ pQz . (7.38)

One can find another expression for Q, considering what happens at the neighboring sites.
The bond would not be incorporated into the infinite cluster (probability Q) when either
of two things happen. First, the neighboring site (the end of the chosen bond) is empty;
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the probability of this is (1 − p). Second, even when the neighboring site is occupied
(probability p), the other (z−1) bonds emanating from the neighbor might be disconnected
from the infinite cluster (probability Qz−1). The probability of the second event is pQz−1.
All together, Q writes as the sum

Q = (1 − p)+ pQz−1. (7.39)

If z = 3, the solution for p < pc = 1/2 is Q = 1 and P∞ = 0; for p > pc = 1/2, it is
Q = (1 − p)/p and

P∞ = p − (1 − p)3

p2
. (7.40)

Using Taylor expansion near the threshold pc = 1/2 in powers of (p − 1/2), one gets

P∞ = 6(p − pc); (7.41)

i.e.,

β = 1. (7.42)

It turns out that neither β = 1 nor the other critical exponents depend on the number of
nearest neighbors z in the Cayley tree, hence, the universality of the critical exponents. In
contrast, the percolation threshold (7.37) is markedly z-dependent.

Can the results obtained for the model Cayley tree be extrapolated to regular percola-
tions networks? An essential simplifying element in the calculation above was the absence
of loops. Effectively, the Cayley tree is of infinite dimension (to see this, calculate the ratio
of the surface sites to the interior sites in the Cayley tree of large size). In low-dimensional
embedding space, the loops in percolation networks are frequent because there is not much
“free space” for different branches to avoid each other. However, if the dimension DE in-
creases, the probability of loop formation decreases and even becomes zero at some critical
dimension DE,c. For DE,c ≥ 6, the exact mean field results on the Bethe lattice can thus be
assigned to any percolation model. Although the number 6 might seem to be too high to be
of any practical interest, some theoretical conclusions can be made by expansion around
DE,c = 6.

7.2.6. Percolation and the Renormalization Group

The Bethe lattice is one of very few models producing exact results on the critical expo-
nents. In many other cases, a powerful tool to estimate the critical exponents and some-
times even to get exact results is the renormalization group technique. It was developed
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to treat critical phenomena in thermal phase transitions4 but can be applied to percola-
tion phenomena as well, because the renormalization concept is based on self-similarity
and scaling relationships such as (7.28). Below, we estimate the critical exponent ν of the
connectedness ξ (7.27), for percolation at a triangular lattice (Fig.7.13).

The percolation threshold for the triangular lattice is known to be exactly pc = 1/2
(Table 7.1). Let us renormalize the lattice by replacing each three neighboring sites (form-
ing a triangle) by a single supersite (Fig. 7.13). The supersite is considered to be occupied
if it replaces a triangle that is “connected,” i.e., if all three or at least two original sites are
occupied. The probability that all three vertices are occupied is p3. The probability that a
given two out of three vortices are occupied is p2(1 − p). Taking into account that there
are three such pairs, one finds that the probability p′ for the supersite to be occupied is

p′ = p3 + 3p2(1 − p). (7.43)

The renormalization can be repeated, each time increasing the length unit by the same
factor b (in our example, b = √

3). The maximum value of b is limited by the requirement
that the renormalized lattice unit length should be much smaller than ξ if one wishes to
use self-silimarity and scaling arguments. Recall that ξ sets the upper length limit for self-
similarity of the percolation clusters (Fig.7.11).

Figure 7.13. Real space renormalization of a triangular lattice. The large circles are supersites that
replace three original sites. The supersites are occupied if at least two original sites are occupied.

4K.G. Wilson and J.B. Kogut, Phys. Rep. 12C, 75 (1974). For a review of scaling and universality in statistical
physics, see L.P. Kadanoff, Physica A163, 1 (1990).
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Generally, p′ for the renormalized lattice does not have to coincide with p of the
original lattice. It is only at the threshold where one should definitely have p′ = p = pc.
The transformation (7.43) preserves only three values of p, which are called fixed points:
p∗ = 0, 1/2, 1, as seen by requiring p′ = p in (7.43). The limiting values 0 and 1 are
trivial, but the value p∗ = 1/2 is not, because it coincides with the exact value of pc =
1/2 for the triangular lattice. In principle, one should not expect an exact result from the
model, because the transformation (7.43) is not exact: Renormalization sometimes changes
the connectivity of clusters, connecting originally disconnected clusters or breaking the
original single-connected cluster.

Let us now turn to the correlation length ξ . If the self-similarity of both the initial and
renormalized structures is preserved, then

bξ(p′) = ξ(p), (7.44)

which can be also rewritten by using (7.27) as

b(p′ − pc)
−ν = (p − pc)

−ν. (7.45)

Equation (7.44) is satisfied when ξ vanishes (which is the case at p∗ = 0, 1) or ξ → ∞
(which is the case at p∗ = 1/2). In the vicinity of pc, we can linearize (7.43), p′ =
p∗ + A(p − p∗)+ · · ·, where A = dp′/dp is calculated from (7.43). Furthermore, taking
the logarithm of both sides of (7.45), one can express the critical exponent ν near pc as

1

ν
= ln A

ln b
. (7.46)

With A = 6p − 6p2 = 3/2 and b = √
3, one gets ν = 1

2 ln 3/(ln 3 − ln 2) = 1.355, very
close to the exact value ν = 4/3.

7.3. Aggregation

Aggregation of particles produces different results depending on whether it occurs in equi-
librium or far from equilibrium, as discussed in Section 7.1.4. If the particles added to the
growing aggregate can readjust their position and find the most suitable site to minimize the
surface energy, the result would be a compact, nonfractal object. When the added particles
stick irreversibly at that location where they first hit the surface of the growing aggregate,
then the aggregate might develop a highly irregular shape with numerous voids. The ag-
gregation is also a nonlocal process, unlike the percolation. Because of the self-screening
effect, the probability of finding a particle at some point r depends not only on the position
r, but also on the structure of the aggregate as a whole, i.e., on the situation away from r.
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Presently, there is no general scheme to describe nonlocal and far-from-equilibrium pro-
cesses such as aggregation. Available analytical methods can get some insights into the
physics of growth but usually cannot capture the whole picture, for example, the values of
the fractal dimension. Instead, a growth process can be described by an algorithm, a set of
rules. These rules specify:

1. The type of objects added to the growing aggregate; the object might be a (1a) single
particle (particle-cluster aggregation) or (1b) another aggregate, usually of a comparable
size (cluster-cluster aggregation).

2. The way the objects approach each other. The trajectory of objects might be (2a) Brow-
nian or (2b) linear (ballistic); in addition, the object might rotate in space.

3. Once the two objects encounter each other, there are three more possibilities: (3a)
they stick together immediately and forever; there is no repulsion forces to prevent
the bond. The rate of aggregation is limited by the time needed for the two objects
to find each other; usually, this time is determined by diffusion and the aggregation is
called diffusion-limited; (3b) small repulsive forces hinder immediate aggregation, and
it takes more than one contact before a permanent bond is formed; the aggregation is
called reaction-limited; (3c) the bond is not permanent, and there is a finite probability
of disassociation (reversible aggregation).

Combinations of the rules above result in a variety of structures (see Table 7.2).

Table 7.2. Experimental realization and fractal dimension D of different types of aggregation;
compiled from Gouyet (1996).

Particle-Cluster (1a) Cluster-Cluster (1b)

Diffusion-limited Electrodeposition, dielectric Colloids and aerosols
2a + 3a breakdown, growth of (screened)

bacterial colonies 1.44 (DE = 2)
1.72 (DE = 2) 1.75 (DE = 3)
2.50 (DE = 3)

Reaction-limited Epidemics, tumors, Colloids and aerosols
2a + 3b forest fires (partially screened)

2.00 (DE = 2) 1.59 (DE = 2)
3.00 (DE = 3) 2.11 (DE = 3)

Ballistic Sedimentation, deposition Aerosols in vacuum
2b + 3b 2.00 (DE = 2) 1.55 (DE = 2)

3.00 (DE = 3) 1.91 (DE = 3)
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7.3.1. Cluster-Cluster Aggregation

Experimental realization of cluster-cluster aggregation can be found in colloidal suspen-
sions of tiny (nanometers and microns) particles suspended in a liquid, say, water. The
colloidal particles are subject to two types of forces: van der Waals attraction (Chapter 1)
and electrostatic repulsion (Chapter 14). The surface of particles usually carries electric
charges, caused by ionized chemical groups or by adsorbed ions. For example, silica par-
ticles formed by SiO2 monomers carry negatively charged OH− and SiO2− surface groups.
A cloud of mobile positive ions (counterions) in the solution screens the surface charges,
thus, forming an electric double layer (Chapter 14). Repulsion between the electric double
layers prevents a close contact of particles. However, the potential barrier can be reduced,
for example, by decreasing the surface charge or by adding a salt to the solution. When the
potential barrier is smaller than kB T , the van der Waals forces draw the particles together
and they promptly aggregate by forming strong Si–O–Si bonds. First, doublets will form,
then quadruplets, and so on. The process is classified as the diffusion-limited cluster-cluster
aggregation (DLCA). If the screening is not complete and the potential barrier remains
larger than kB T , the aggregation is of the slow reaction-limited (RLCA) type. Both DLCA
and RLCA can be realized in the same system, depending on the degree of screening.5 The
RLCA clusters are more compact (higher fractal dimension) than are the DLCA clusters.

The cluster-cluster model is more appropriate than is the particle-cluster model to de-
scribe aggregation of colloids or their close counterparts, aerosols (particles in a gaseous
medium). However, there are many other processes, not necessarily involving attachment
of particles, that are described by the particle-cluster model. The well-known particle-
cluster algorithm is that of diffusion-limited aggregation (DLA), suggested by Witten and
Sander.6

7.3.2. The Witten–Sander Model of Diffusion-Limited Aggregation

The model prescribes the following rules of growth. One starts with a single occupied site.
A second particle is released far away from this site and then allowed to exercise a random
(Brownian) walk until it either lands on the seed particle or wanders so far away from the
seed particle that it can be considered as lost forever. Once the particle hits the seed site,
it is immobilized. Emission of random walkers is repeated until the aggregate reaches a
desired size.

This simple algorithm results in surprisingly complex and well-organized aggregates;
one of them is shown in Fig. 7.14. Statistically, a self-similar and open structure of the
aggregates is caused by the self-screening effect: The sites that are farther away from the
center have a higher probability of catching new particles. To visualize this feature, par-
ticles that arrive at different stages can be marked by different colors or shades of gray, as

5M.Y. Lin, H.M. Lindsay, D.A. Weitz, R.C. Ball, R. Klein and P. Meakin, Proc. Roy. Soc. A 423, 71 (1989).
6T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981).
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Figure 7.14. Computer-simulated DLA aggregate of 1500 particles. The total number of released
particles was 12421. Algorithm used: Gaylord and Wellin (1995).

in Fig. 7.14. Particles released at later stages are seldom seen penetrating the interior of the
cluster.

The fractal dimension of the computer-generated DLA clusters can be determined from
the correlation function, or from the dependence of the radius of gyration versus the number
of particles. Simulations usually reveal that both functions scale according to the power
law, C(r) ∝ r−α , Rs ∝ s1/D [see (7.15) and (7.29), respectively]. For planar clusters,
α = DE − D ≈ 0.3, and thus, D ≈ 1.7; in 3D space, D ≈ 2.5 (see Table 7.2). Extensive
simulations on very large scales, however, demonstrate that the exponents in the power laws
are not exactly constant and become functions of the ratio r/Rs ; i.e., C(r) ∝ r−α(r/Rs ).
Physically, it can be understood as a narrowing of the zone of growth compared with the
whole size of the cluster when the cluster becomes larger and larger.

7.3.3. Continuum Laplacian Model

Branched patterns, reminiscent of DLA clusters, form in dendritic and snowflake growth,
crystallization of thin films, electrodeposition and dielectric breakdown, and even in the
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growth of bacterial colonies and neuron structures. Many, if not most, of these patterns do
not satisfy the definition of fractals over a reasonable scale of lengths.

As already stated, there is no general theoretical scheme to describe far-from-
equilibrium growth processes such as DLA and to derive, say, an analytical expression
for the fractal dimension from first principles. In some models, the fractal dimension
can be given an analytical expression, but these models imply certain simplifications.
For example, one can treat the growing tip as a cone7 and relate D to the angle of the
cone. Nevertheless, even when the analytical solution is not available, the behavior of the
system can still be understood and predicted if one knows the algorithm of growth. The
Witten–Sander model above is one such algorithm. A closer look at it reveals that this
algorithm can be approximated by a continuous model, namely, by the Laplace equation
with an appropriate set of boundary conditions describing the moving boundary of the
growing aggregate. What is even more interesting is that many other growth phenomena
are variations of the same unifying theme: a Laplace equation with (different) boundary
conditions. Consider the DLA model.8

Let p(r, t) be a probability that a randomly walking particle is at the position r at
time t . This probability depends on the probability p(r + a, t − 1) of finding the particle at
the neighboring sites r + a at the previous time step t − 1, averaged over all neighboring z
sites (z = 4 in a 2D lattice):

p(r, t) = 1

z

∑
a

p(r + a, t − 1). (7.47)

When the particles are released steadily, there should be no time dependence: p(r, t − 1) =
p(r, t). Hence,

p(r) = 1

z

∑
a

p(r + a), (7.48a)

which can be wrritten, say, for a 2D case, as

p(i, j) = 1
4 [p(i − 1, j)+ p(i + 1, j)+ p(i, j − 1)+ p(i, j + 1)] . (7.48b)

Equations (7.48) are the discretized forms of the Laplace equation (Problem 7.5):

∇2 p(r) = 0 (7.49a)

7L.A. Turkevich and H. Scher, Phys. Rev. A33, 786 (1986).
8T.A. Witten and L.M. Sander, Phys. Rev. B27, 5686 (1983).
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or, in 2D,

∂2 p

∂x2
+ ∂2 p

∂y2
= 0. (7.49b)

In a similar manner, one can consider the boundary conditions. The growth velocity
v⊥(r) at the unoccupied site r at the surface A of the cluster is proportional to the proba-
bility of getting the random walker at that point:

v⊥(r) ∝ 1

z

∑
a

p(r + a) (7.50)

(the subscript indicates that we are interested in the component of v perpendicular to the
surface A). At all sites that belong to the aggregate, p = 0: The particles are adsorbed
when they reach the aggregate and cannot penetrate inside. On the other hand, far away
from the aggregate, p(r) is some constant, p(r → ∞) = const, provided the flux of newly
released particles is kept constant. Therefore, the right-hand-side of (7.50) is proportional
to the gradient of p(r) and (7.50) can be considered as a discrete approximation of the
equation describing the movement of a smooth continuous boundary

v⊥ = −D�∇ p
∣∣A, (7.51)

where D is the diffusion constant and � is the normal to A.
The fact that the DLA can be approximated by the Laplace equation (7.49) with the

boundary condition (7.51) has an important heuristic value, because many growth phe-
nomena can be described by this unifying model. The difference would be in the type of
boundary conditions. In the next section, we consider 2D viscous fingering in the Hele–
Shaw cell.

7.4. Viscous Fingering in the Hele–Shaw Cell

The Hele–Shaw cell is composed of two horizontal transparent plates of linear size w lo-
cated at z = −b/2 and z = b/2. The cell is very thin, b 	 w, so that the Reinolds number
is small (see Section 6.2). It is filled with a viscous liquid, such as oil or glycerin. Through
the opening in the cell, a low-viscosity fluid (air) is injected to replace the high-viscosity
fluid. The flow can be considered as 2D laminar flow (or potential flow, with velocity that
satisfies the condition ∇ × V = 0). Numerous experiments, the most celebrated of which
have been performed by Saffman and Taylor,9 show that the moving interface between the

9P.G. Saffman and G.I. Taylor, Proc. Roy. Soc. A 245, 312 (1958).
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Figure 7.15. Viscous fingering in the Hele–Shaw cell of (a) rectangular and (b) circular shape.

two fluids is unstable. Small fluctuations of the interface (bumps) grow into stable fingers
(Fig. 7.15). The width of the fingers changes with the velocity; at high velocities, the finger
might branch and split.

The patterns formed in the Hele–Shaw cell vary, depending on a number of factors.
Among these factors are intuitively “obvious,” such as injection rate, surface tension, vis-
cosity, or shape of the Hele–Shaw cell (e.g., rectangular versus circular). One of the most
interesting experimental discoveries10 is that the patterns strongly depend on the bound-
ary conditions at the interface between the two fluids. Namely, if the Hele–Shaw cell is
filled with a porous medium (e.g., randomly packed spheres), the resulting pattern is frac-
tal, strikingly similar to DLA aggregates. When there is no porous medium, the situation
is less clear: In some cases, the driving fluid adopts a compact geometry, whereas in other
cases, it is fractal, which suggests that there might be all combinations of the two types of
behavior. Again, there is no general analytical solution of the Laplace problem capable of
predicting a fractal structure and a fractal dimension. Thus, numerial and real experiments
remain an indispensible tool for studying the growth forms.

Below, we consider only the very beginning of the viscous fingering instability, as-
suming that the deviations of the interface from a straight line are small. The aim is to
demonstrate the physical mechanism of the growth instability, in which small protrusions
of the interface grow much faster than do the neighboring regions.

10J.D. Chen and D. Wilkinson, Phys. Rev. Lett. 55, 1892 (1985); K.J. Måløy, J. Feder, and T. Jøssang, ibid.,
p. 2688.
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7.4.1. Flow in Thin Cells

At low Reynolds number, for a 2D velocity field [vx(z), vy(z), 0], the Navier-Stokes equa-
tions (6.34) reduce to

η
∂2vi

∂z2
= ∇i p, i = x, y, (7.52)

where η is the shear viscosity; p is the pressure, which should not be confused with the
probability above (although both satisfy the Laplace equation and therefore play a similar
role, as we shall see below); x and y are Cartesian coordinates in the plane of the cell. The
gravity effects are absent because the cell is horizontal. Equations (7.52) can be integrated
using the no-slip boundary conditions vi

∣∣
z=±b/2 = 0:

vi = 1

2η

(
z2 − 1

4 b2
)

∇i p. (7.53)

For further analysis, it is helpful to introduce an average (over the z-axis) velocity U with
components Ui = 1

b

∫ b/2
−b/2 vi (z) dz because U is directly proportional to the local force:

U(x, y) = − b2

12η
∇ p(x, y). (7.54)

(The last equation applies to flows through porous media; in that case, it is often called the
Darcy law.) The condition of incompressibility ∇ · U = 0 then indicates that the pressure
obeys Laplace equation in two dimensions (compare with (7.49b) for probability):

∂2 p

∂x2
+ ∂2 p

∂y2
= 0. (7.55)

7.4.2. Instability of the Interface

We label by the number “1” the less viscous fluid (air) that displaces the more viscous fluid
“2” (Fig. 7.15). When the moving interface remains straight in the horizontal plane, its
position is given by x = Ut . The movement is maintained by the pressure gradients found
from (7.54):

p j = p0 − 12η jU

b2
(x − Ut); j = 1, 2; (7.56)
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p0 is some constant that does not depend on x . Suppose there is a small perturbation,
periodic along the y-axis with a wavenumber q and an amplitude A:

x(y) = Ut + A(t) cos qy. (7.57)

When A �= 0, the pressures p1 and p2 should suffer periodic perturbations ∼ cos qy similar
to that of the interface profile:

p j = p0 − 12η jU

b2
(x − Ut)+ B j (x, t) cos qy. (7.58)

The x-dependence of the amplitudes B j (x, t) should be in the form of either exp(qx) or
exp(−qx), because p1 and p2 with perturbations ∼ exp(−iky) must satisfy the Laplace
equation (7.55). A natural assumption would be that far away from the interface the pres-
sures should remain finite; hence,

B1(x, t) = B1(t) exp(qx); B2(x, t) = B2(t) exp(−qx). (7.59)

The amplitudes B1(x, t) and B2(x, t) can be determined from the conditions at the
interface. First, there is a condition of continuity that requires that the normal components
of the velocity are equal to each other and to the velocity Un of the interface:

Un = − b2

12η1
(∇ p1)n = − b2

12η2
(∇ p2)n. (7.60)

If A(t) in (7.57) is small, then

Un ≈ U + ∂A

∂t
cos qy. (7.61)

From (7.54), (7.58), (7.59), and (7.61), neglecting second-order terms ∼ A2, ∼ AB, one
finds the following approximation to (7.60):

∂A

∂t
= − qb2

12η1
B1(x, t) = qb2

12η2
B2(x, t). (7.62)

Another boundary condition relates the pressure jump p = p1 − p2 across the in-
terface and the mean curvature of the interface (see Chapter 13). Both principal curvatures
might be nonzero: The interface is curved in the vertical plane xz with a radius Rxz ≈ b/2,
and in the horizontal xy-plane, with some radius Rxy that becomes finite when different
parts of the interface advance with different velocity. Assuming that the fluid “2” wets the
plates of the Hele–Shaw cell while the fluid “1” does not, and neglecting any influence the
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motion of interface might have on the geometry of wetting, one writes

p = σ
(

2

b
+ 1

Rxy

)
. (7.63)

Although the first (“vertical”) contribution in (7.63) is often larger than is the second one,
it does not depend on x and y and, thus, does not affect the issue of in-plane instability.
The second term is important, because it tends to flatten the interface. With 1/Rxy ≈
−∂2x(y)/∂y2, where x(y) is specified by (7.57), this term produces

p = σq2 A(t) cos qy. (7.64)

On the other hand, p follows from (7.58) as

p =
[
−12U

b2
(η1 − η2)A(t)+ B1(x, t)− B2(x, t)

]
cos qy. (7.65)

Comparison of (7.64) and (7.65) leads to

B1(x, t)− B2(x, t) = A(t)

[
12U

b2
(η1 − η2)+ σq2

]
. (7.66)

Finally, eliminating B1(x, t) and B2(x, t) from (7.62) and (7.66), one finds

∂A

∂t
= A

12Uq(η2 − η1)− σq3b2

12(η1 + η2)
. (7.67)

When η1 > η2 (a more viscous fluid pushes a less viscous one), the interface is stable
for all q. However, when η2 > η1, any perturbation with a sufficiently large wavelength
λ > λc,

λc = πb
√

σ

3U(η2 − η1)
, (7.68)

will be unstable: The amplitude A of perturbation grows with time. The fastest growing
mode is the one with the wavelength λ f = √

3λc. As many experiments show, the period-
icity of the interfacial instability in Hele–Shaw cells is indeed close to λ f .

When the (small) viscosity of the driving fluid “1” can be neglected, then

λm ≈ πb√
Ncap

, (7.69)



7.4 Viscous Fingering in the Hele–Shaw Cell 257

(a) (b)

1

2

11

2

Figure 7.16. (a) Small perturbation of the interface increases field (pressure) gradients, most signifi-
cantly at the tip of the protrusion; (b) as a result, the interface accelerates.

where Ncap = Uη2/σ is the dimensionless “capillary number.” By increasing Ncap, one can
significantly reduce λm , which is an analog of the characteristic size of particles forming
DLA clusters.

It is instructive to draw a qualitative physical explanation of the viscous fingering from
(7.54) and the geometry of interface (see Fig. 7.16a), where the thin lines represent isobars
generated by a perturbation of the interface. Let the pressure difference p1,inlet − p2,outlet
between the “inlet” and “outlet” be constant. In the low-viscosity fluid “1,” the pres-
sure gradients are small; (7.54); we can assume that the pressure within the domain “1,”
including the tip of the highest finger, is constant. Then the largest pressure gradients
∇ p ∼ (p1,inlet − p2,outlet)/(xoutlet − xtip) in the viscous fluid “2” develop precisely at the
tip of the finger. According to (7.54), the tip should move faster than does the rest of
the interface. Hence, the initial small perturbation develops into a fast-propagating finger
(Fig. 7.16b). The surface tension plays a stabilizing role, tending to reduce the pressure
gradients, see (7.63).

The tendency of protruding perturbations to enhance field gradients is characteristic of
many pattern-forming systems. Instead of the isobars, the thin lines in Fig. 7.16 might rep-
resent isothermal lines in the vicinity of the crystal-melt interface (the Mullins–Sekerka11

instability), probability (DLA), equipotential lines, and so on.
As already mentioned, viscous fingering in Hele–Shaw cells filled with porous

medium produces well-defined fractal structures, whereas “traditional” cells produce
well-developed fractals seldomly. The difference might be in the “random” character of
boundary conditions set by the porous medium. The randomly varying size of the pores is
different from the (constant) characteric wavelength λc set by capillary effects in the tradi-
tional cell. The permeability depends on the pore size: A narrow pore is hard to penetrate
because of the capillary pressure associated with the pore size.

Problem 7.1. Find analytically how the fractal dimension of the Koch curve depends on the base
angle β.

11W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 34, 323 (1963).
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Figure 7.17. See Problem 7.2.

Answers: D = ln 4
ln[2(1+cosβ)] [see G. Baumann (1996)].

Problem 7.2. Can the fractal dimension be larger than the Euclidean dimension of the embedding
space? Give examples.

Answers: Yes. Consider a straight line, and at each iteration step, replace the line segments with,
say, 18 segments, as shown in Fig. 7.17. At the next step, the line starts to cross itself. The similarity
dimension is larger than 2: ln 18/ ln 4 ≈ 2.1.

Problem 7.3. Prove S(q) ∝ q−D for q 
 1/R (7.21).

Answers: S(q) ∝ q−D�(D − 1) sin[π(D − 1)2].

Problem 7.4. Prove the second part of (7.22).

Answers: The result follows from the transformation

s∑
i, j=1

(ri − r j )
2 =

s∑
i, j=1

[(ri − r0)− (r j − r0)]2

= s
s∑

i=1

(ri − r0)
2 + s

s∑
j=1

(r j − r0)
2

− 2
s∑

i=1

(ri − r0)
s∑

j=1

(r j − r0);

the last term is zero due to the definition r0 = 1
s
∑s

i=1 ri of the center of mass.

Problem 7.5. Prove that the Laplace equation (7.49b) can be approximated by the discrete (7.48b)
in 2D.

Hint. Approximate the partial derivatives by finite differences, and use the Taylor expansion up
to the second order.
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k = 1 k = 4k = 3k = 2

Figure 7.18. Construction of the Sierpinski carpet.

Problem 7.6.

(a) Find the fractal dimension of the Sierpinski carpet (Fig. 7.18).

(b) The Menger sponge is a fractal constructed in 3D space by rules similar to the construction of
the Sierpinski carpet. One starts with a cube of linear size 1. Each face of the cube is divided into
nine equal squares. One drills a hole through the central square (from each side). The remaining
20 cubes of linear size 1/3 are drilled again through the similar process. The sides of the original
cube are patterned exactly as the Sierpinski carpet. Calculate the similarity dimension of the
Menger sponge.

Answers: (a) D = ln 8/ ln 3 ≈ 1.9; (b) D = ln 20/ ln 3 ≈ 2.7.

Problem 7.7. Write computer programs to generate (a) deterministic Koch curves and their random
counterparts; (b) percolation patterns; (c) DLA clusters.
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C H A P T E R 8

Dislocations in Solids.
Plastic Relaxation

Dislocations are responsible for the plastic deformation of crystalline materials such as
metals, and play a role in a number of other properties of crystals, such as crystal growth,
electrical properties of semiconductors, radiation damage through their interaction with
point defects, and so on. Their theoretical discovery dates back to the years just before
the second World War, and their visualization by various techniques, essentially electron
microscopy, to the 1950s. They are an essential ingredient of physical metallurgy. They
carry internal stresses and are “topologically” related to the symmetries of the crystal. It
is this double character that makes them act as sources of plastic deformation. Their topo-
logical properties were fully appreciated with the appearance of a general classification of
topological defects in ordered media, which comprehends superfluids, magnetic systems,
and liquid crystals. Although defects and their textures in liquid crystals were observed (by
optical microscopy) long before defects and their textures in solids, it is only in the last 10
years that investigations on the role of structure and texture on the rheological properties
have been developed. A good knowledge of the bases of the physics of defects in solids
cannot but help to progress in the investigation of rheological properties and instabilities
of mesomorphic materials.

8.1. Elasticity of Dislocations

8.1.1. Linear Elasticity; a Summary

Consider a rod of uniform section S, and length �, submitted to a force F = σ Sẑ (ẑ is the
unit vector along the rod axis) applied to one of the rod sections, the other one being kept
fixed. The rod changes length by an algebraic quantity u, proportional to � (Fig. 8.1). Let
e = u/�; in the new equilibrium state after the force is set up, and as long as F = | F | is
small (this will be qualified later on), we have the linear relationship (Hooke’s law):

σ = Ee; (8.1)

261
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Figure 8.1. Deformation of a rod under a force F applied to one of its extremities.

σ is the tensile stress component acting on the terminal section St, and E , the Young
modulus, is a material constant. Hence, u(�) = F�/SE .

Let S+,S− be the lips of an imaginary section S anywhere along the length of the
rod; each piece of the rod is submitted to a total vanishing force. Hence, σ appears as the
force per unit area exerted by the lower part of the rod, on the upper part, this force being
applied on S+. There is transmission of the force, and e(M) = u(M)/� (M), the relative
displacement or strain, has the same value e = u/� at any point M of the rod. The energy
stored in the rod during the reversible elastic displacement from δ� = 0 to δ� = u is

w = S

1∫

0

σ(x) du(x) = S�

2
σe

(here, σ(x) = σ x, du(x) = e� dx, 0 ≤ x ≤ 1), or per unit volume

w/S� = 1
2σe = 1

2 Ee2. (8.2)
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The notions above generalize to a stress tensor σi j and a strain tensor ei j

ei j = 1
2 (ui, j + u j,i ) (8.3)

such that:

1. An infinitesimal surface area dS, with outward pointing normal �, is the place of appli-
cation of an infinitesimal force:

d Fi = σi jν j dS (8.4)

acting on the matter outwards (Fig. 6.2). We have used in (8.4) the usual Einstein con-
vention (summation over repeated indices).

The component of d Fi along the surface element, viz. d Fi (δik − νiνk) is called
the shear stress; the component of d Fi along the normal to the surface element, viz.
(dF · �)νi , is the tensile stress (if the scalar product (dF · �) is positive) or the com-
pressive stress (if the scalar product (dF · �) is negative). The equilibrium conditions
applied to a small volume of matter yield the following equations:

σi j, j = 0, in compact notation: ∇ · σ = 0 (the total force vanishes), (8.5a)

σi j = σ j i , the total torque vanishes. (8.5b)

2. The energy is quadratic in the deformations, as in (8.2); this is a consequence of Hooke’s
law, which states that a linear relationship between the stresses and the strains holds as
long as the forces are small:

σi j = Ci jk�ek�. (8.6a)

Because σi j and ek� are symmetric tensors, we have Ci jk� = C jik� = Ci j�k = C ji�k ,
so that there are only 36 independent elastic coefficients. This number is reduced by
the symmetries of the material, because the elastic energy density 1

2σi j ei j stored in the
material must be invariant in all frames of reference equivalent under the action of these
symmetries (this point will be made more precise later on a specific example). As a
result, there are only two independent elastic coefficients in an isotropic medium, the
two Lamé coefficients λ and µ, so that

σi j = 2µei j + λ δi j div u, (8.6b)

where div u = e11 + e22 + e33 = ui,i ; the Young modulus is E = µ(3λ+2µ)
λ+µ . One also

defines the adimensional Poisson ratio ν = λ
2(λ+µ) whose usual value in solids is ≈ 0.3.
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In these conditions, we find that (8.5a), expressed in terms of the displacements ui ,
takes the form

µ�u + (λ+ µ) grad div u = 0, (8.7)

assuming that there are no other applied forces. In a dynamical regime, we add the inertial
forces:

µ�u + (λ+ µ) grad div u = ρ ∂
2u
∂t2
, (8.8)

where ρ is the mass density.
The approximation of linear elasticity is sufficient to explore the physical properties of

dislocations, and we shall stick to this approximation later on.

8.1.2. Applied Stresses and Internal Stresses

Usually, (8.5) are supplemented by conditions on the boundary Sb of the sample that con-
sist either in given applied forces or in given displacements. These two types of conditions
might apply to different regions of Sb. There is a general theorem that states that the differ-
ential equations in (8.5) have a unique regular solution, as soon as the total applied forces∫

Sb
fapp dSb and the resulting torque vanish. The continuous stresses that result from the

regular solution are applied stresses.
However, singular solutions exist, even if σi jν j ≡ 0 everywhere, if the medium is not

simply connected, i.e., when there are inner boundaries that are not taken into account in
the above boundary conditions. An evident case would be a spherical cavity with internal
pressure acting on its boundary. But this could be treated by a simple extension of the usual
methods, and it is not the case we have in mind. What we have in mind are the Volterra
dislocations, which correspond to a much less trivial case of inner disconnectedness.

8.2. Volterra Dislocations

8.2.1. Definitions

The Volterra process: The elementary types of dislocations are represented in Fig. 8.2.
They are all obtained as follows: Cut the material along a surface 	 (the so-called cut
surface) bound by a line L (a loop, or an infinite line); displace the two lips	′ and	′′ of the
cut surface by a relative rigid displacement that can be analyzed as the sum of a translation
b and a rotation 
. We shall note 
: OM the transform of vector OM under the action of
the rotation matrix
, where O is a fixed origin, invariant in the rotation, and M is a running
point of 	. The displacement d(M) that brings M onto M′ (MM′ = d(M) = b +
:OM),
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Figure 8.2. Elementary types of dislocations. Dislocations of translation: (a) screw dislocation; (b)
and (c) construction of the same edge dislocation. Disclinations: (d) wedge dislocation; (e) twist
dislocation.

is rigid in the sense that it conserves angles and distances. Now introduce matter in its
perfect state (undeformed elastically)—in order to fill the void left by the translation and
the rotation—or remove matter in the regions of double covering; glue back the lips 	′
and 	

′′
of new matter; let the medium relax elastically. Such a process has, of course, no

meaning along L, and one assumes henceforth that a cylindrical region has been removed
along L. This “core” is a region where the above process is not valid.

The Volterra process is compatible with a sample-free boundary, but it undoubtedly
introduces stresses: They are called internal stresses.
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1. The core: Clearly, these stresses and strains increase as one goes closer to the core re-
gion. The size rc of the core is such chosen that the stress and strain fields are physically
in the elastic range outside rc, where Hooke’s law is valid. They become large near rc,
and their analytical extension is singular somewhere inside the “core” region.

2. Weingarten theorem: The (elastic) stresses and strains are nonsingular on 	 (in fact, 	′
and 	′′) as long as d(M) is a rigid displacement. Henceforth, the final result does not
depend on the exact choice of 	.

Figures 8.2a, b, and c represent dislocations of translation: The displacement is re-
duced to a pure translation either in the direction of L (8.2a, screw dislocation), or perpen-
dicular to L (8.2b, 2c, edge dislocations). According to Weingarten theorem, dislocations
8.2b and 8.2c are the same. Figures 8.2d and e represent dislocations of rotation, also called
disclinations. It is clear that the twist disclination (8.2e) raises delicate problems of con-
struction, to which we shall come back later. Mixed cases of dislocations (of translation)
and disclinations exist.

8.2.2. Elastic Observables Related to Volterra Defects

A general remark: Boundary conditions for the equations of elasticity have to be written on
the cut surface	. Let � be a unit normal vector to	 (the choice of � confers an orientation
to the line). The difference between the displacements u+ and u− is given by

�u = u+ − u− = d(M) = b + � × (OM), (8.9)

γM

L

γM

γM

Figure 8.3. Directed circuits γM surrounding a dislocation line L, yielding the same value as the
integral of (8.11).
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where b is called the Burgers vector. We have introduced the rotation vector �, which is
easier to manipulate than is the rotation tensor 
, and which is a valid representation of
a rotation as far as � × (OM) is small. Equation (8.9) can also be written in an integral
form:

∮
γM

du = d(M) (8.10)

on any directed circuit γM surrounding L and intersecting the cut surface in M (Fig. 8.3),
thanks to Weingarten theorem.

We give hereunder some results concerning classic cases (for details, refer to the text-
books cited at the end of this chapter).

8.2.2.1. Screw Dislocations

We use the cylindrical coordinates of Fig. 8.2. The total stress field in a finite sample (cylin-
der of radius R) can be split in the sum of a field σ that vanishes at infinity and is singular
on the line, and a field σ ′ that is regular everywhere and opposes the nonvanishing forces
due to the singular field σ on the boundary r = R; i.e., (σ + σ ′) · � = 0 at any position on
the boundary, � being a unit vector perpendicular to the boundary. Linear elasticity allows
of course for such linear superpositions. Let uscrew = u+u′ be the total displacement field.
Both u and u′ fields obey (8.8), if one assumes isotropic elasticity, and the singular part
obeys, moreover, (8.10), which reduces here to

∮
γ

du = b, (8.11)

where γ is any closed loop encircling the z-axis once. An obvious solution for u is

u = b
2π
θ, eθz = ezθ = b

4πr
, σθz = σzθ = µb

2πr
, (8.12)

all other components vanishing. Note that the deformation field and, consequently, the
stresses vanish at infinity, but not on the boundary r = R. This is why u has to be supple-
mented by a relaxation field u′ that brings opposite surface forces on the boundary and is
regular everywhere in the bulk. We do not discuss this relaxation field here. The (nonre-
laxed) energy of the singular field is, according to the general expression of the elastic free
energy of a deformed medium,

W = 1

2

∫
σi j ei j dV, (8.13)
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equal to 1
2

∫
(σθzeθz + σzθezθ )r dr dθ = µb2

4π ln R
rc

per unit length of line, where the inte-
gration is taken in the range rc ≤ r ≤ R. Adding the relaxation energy that corresponds
to stresses σ ′

zθ = − µbr
πR2 amounts to adding a term of the same order of magnitude, but

necessarily smaller. One gets

Wel = µb2

4π

(
ln

R

rc
− 1

)
. (8.14)

Note (1) the dependence of the energy on b, which implies that real dislocations are ex-
pected to have Burgers vectors as small as possible; we have indeed (2b)2 > 2b2; hence,
any dislocation of Burgers vector 2b tends to split into two dislocations of Burgers vector
b; (2) the weak logarithmic dependence with the size of the domain influenced by the dis-
location; (3) apart of the relaxation terms, expression (8.14) has also to be supplemented
by the energy of the “core” region (r < rc). All of these points will be discussed in detail
later.

8.2.2.2. Edge Dislocation

Assuming that the medium is infinite, hence, forgetting the relaxation effects, we have (see
also Problem 8.1)(Fig. 8.2b):

ux = b

2π

[
θ + sin 2θ

4(1 − ν)
]
, uy = − b

2π

[
1 − 2ν

2(1 − ν)�nr + cos 2θ

4(1 − ν)
]
,

uz = 0,Wel = µb2

4π(1 − ν) ln
R

rc
. (8.15)

8.2.2.3. Mixed Dislocation

Let β be the angle between the line L and the Burgers vector b. The calculation or the
displacement field u proceeds easily from the principle of linear superposition, writing
that b has a screw component b cosβ and an edge component b sinβ. The energies also
add linearly, but this does not follow from the principle of superposition, but from the fact
that the two dislocation components do not interact (see Problem 8.2). We find, when the
surface relaxation at r = R is included,

Wel = µb2

4πK

(
ln

R

rc
− 1

)
with

1

K
= cos2 β + sin2 β

1 − ν . (8.16)

8.2.2.4. Wedge Disclination

The calculation was made by Timoshenko (Fig. 8.2d). For a disclination of (small) angle

 = | � |, (8.10) reduces to ∮

γM

du = � × OM,
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where 
 is along the disclination line, O is an arbitrary origin on the line, M is on the cut
surface, and one gets

σrr = µω

2π(1 − ν)

(
ln

r

R
+ r2

c

r2
ln

rc

R

)
,

σθθ = µω

2π(1 − ν)

(
ln

r

R
+ r2

c

r2
ln

rc

R
+ 1

)
,

σzz = ν(σrr + τθθ ), σrθ = σθz = σzr = 0,

Wel = µω2

16π(1 − ν) (R
2 − r2

c )

(
1 − 4R2r2

c

R2 − r2
c

(
ln

R

rc

)2
)
. (8.17)

This energy is far larger than for a dislocation of translation. Henceforth, disclinations are
not usually met in real solid media, except in the form of pairs of opposite sign. We have
mentioned their existence in the Frank and Kasper phases and their possible existence in
amorphous media; in both cases they form interlinked networks whose stresses compensate
at short distances.

8.3. Simple Topological Characteristics of Dislocations

8.3.1. Equivalent Circuits

It appears evident from the above that a dislocation, which is characterized by its topolog-
ical invariant the Burgers vector b, is a line that must either close on itself, end on another
dislocation or on the boundary of the sample, or go to infinity.

The Burgers circuit γM is a directed circuit that encircles L once and that does not
pass through the core region. In that sense, a sample with cylindrical core regions is a non-
connected medium, because all circuits that can be drawn in the sample are not equivalent
under smooth transformations (smooth deformations of the circuits and smooth displace-
ments). But all circuits γM deducible one from the other by a smooth transformation yield
the same value as in (8.11).

The “node rule” (Fig. 8.4)

∑
i

bi = 0 (8.18)

is a direct consequence of the equivalence of circuits, in the above sense: Note that in (8.18)
all dislocations are oriented toward the node or all start at the node, b changing sign when
the orientation of the line is reversed.
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b1 + b2 + b3 = 0

b1

b2

b3

Figure 8.4. To illustrate (8.18).

8.3.2. Dislocations in Crystals

In crystals, the only relevant dislacements d(M) of the cut surface are those that obey
crystalline symmetries, because then the “gluing” step of the Volterra process is equivalent
to a reconstruction of the atomic or molecular bonds: The lips of the cut surface do not
carry any crystalline singularity if d(M) splits into a lattice translation and a lattice rotation.
Furthermore, Weingarten’s theorem applies, and the cut surface does not carry any elastic
singularity.

Such a dislocation is “perfect.” One refers to an “imperfect” dislocation when Wein-
garten’s condition is still satisfied, but not the condition on the crystalline symmetries. This
is not an unfrequent case.

Figure 8.5 shows the mapping of a deformed crystal (containing a dislocation) onto the
perfect crystal. It is visible that the image of the mapping is an open circuit, whose closure
failure measures the Burgers vector. The usual sign convention (named FS/RH convention)
is as follows: The Burgers circuit γ is traversed clockwise for an observer looking along
the positive orientation of the line (right-hand convention); starting from S and ending at
F ≡ S, the traversal of γ maps on γ ′ starting from S′ and ending at F′. The resulting
Burgers vector is b = F′S′.

Figure 8.6 shows a dislocation of rotation angle
 = −π/2 in a tetragonal crystal. This
characteristic rotation angle
 is measured as follows. Let us consider a (oriented) Burgers
circuit γ on which one chooses an arbitrary origin M, and let us follow an arbitrary but
constant lattice direction n when traversing γ and parallel-transport n to an original O.
The set of extremities traverses an arc γ ′ of circle of angle 
, oriented according to the
construction. We call γ ′ the hodograph of γ . The hodograph of a given crystalline direction
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S'
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S'F'=b S'F'=b

Figure 8.5. Mapping of the Burgers circuit onto a perfect crystal; the FS/RH convention.

Figure 8.6. Dislocation of rotation angle 
 = −π/2 in a tetragonal lattice and construction of the
“hodograph” γ ′ of the rotation circuit γ to measure 
.
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followed along the directed circuit γ yields 
 in magnitude and in sign, independently of
the orientation given to γ and of the choice of n, for any disclination.

8.3.3. Imperfect Dislocations. Stacking Faults and Twins

Dislocations of small energy have a Burgers vector that is a period of the lattice. We
have already indicated that this condition is necessary to have invariance of the distor-
tions with respect to the choice of the cut surface. But there are circumstances in which
some nonperiodic Burgers vectors yield low-energy dislocations, although the cut surface
maintains its individuality and, thus, carries a nonvanishing surface energy. This is well
known in FCC lattices (see Section 2.1), where the correct stacking of (111) planes, i.e,
. . .ABC

...ABCA . . ., can be modified at a small expense of energy, yielding, for example,
. . .ABC | BCAB . . .. The slip b (A → B, along a [11̄0] direction) is obviously not a
periodic translation of the FCC lattice. If such a planar fault is limited to a finite part 	
of the plane of misfit, the boundary between 	 and the rest of the plane is an imperfect
dislocation line of Burgers vector b. A detailed description of the zoology of imperfect
dislocations is out of the scope of this textbook, inasmuch as this notion has not yet found
application in the physics of soft matter.

The lattices . . .ABCABCA . . . and . . .ACBACB . . . are obviously the same, but to a
mirror symmetry. A sequence of stacking faults on parallel adjacent (111) planes brings
one lattice onto the other, yielding for example a twin . . .ABC||BAC . . .. The plane marked
by a double bar in this sequence is the habit plane of the twin. Reciprocally, repeated
twinning on two adjacent planes build a stacking fault.

The notion of stacking fault and its relation with twinning extend to other lattices than
FCC lattices.

8.4. Some Remarks on the Elastic Energy of a Dislocation

8.4.1. Stability

According to Eqs. (8.14)–(8.16), the elastic energy of a dislocation is of the order of µb2,
because the logarithmic term is of the order of a few units, for a broad range of plausible
values of R and rc.

R can be estimated as being the mean distance between dislocations. Indeed, the inter-
nal stresses are believed to fluctuate on the same scale, because neighboring dislocations
in a well annealed material form a network (the Frank network), where dislocations of
opposite signs, i.e., carrying opposite stresses, are approximately at a mean distance 2R.
Typically, R is of the order of a few tens of nanometers in work-hardened materials, or of
the order of a few microns in a well-annealed single crystal metal. We discuss rc later on.

According to (8.14) or (8.15), the quantity µb2 is typical of the elastic energy carried
by a dislocation line per atomic distance along the line. In Al, an FCC metal, one finds
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µb2 ∼ 2.2 eV (µ = 2.7 × 1010 N/m2; b = 1
2 [110], b = 0.29 nm). In olivine, a rhombo-

hedral mixed silicate of Mg and Fe, which is the most frequent mineral in earth crust, one
finds µb2 ∼ 52 eV (µ = 8 × 1010 N/m2, b = 0.48 mm). The core energies, as we shall
see, are of the same order of magnitude. The total energy of a dislocation line, measured
by atomic or molecular length along the line, is therefore considerable, and at least of the
same order of magnitude as the binding energy. A dislocation, except in special cases, is
therefore an out-of-equilibrium object, because the entropic gain due to the disorder of
dislocations is small, except possibly near the melting point.

For a real dislocation, the Burgers vector modulus takes the smallest possible value
compatible with crystalline translations, i.e., b = 1

2 [110] in FCC, b = 1
2 [111] or [100] in

BCC, and so on. As mentioned above, the reason is that a dislocation of Burgers vector 2b
has an energy four times larger than a dislocation of Burgers vector b, and tends to split into
two elementary dislocations, as long as the positive energy of interaction between them
does not exceed twice the energy of an elementary dislocation. Similarly, a dislocation
b = b1 + b2, where b1 and b2 are two (different) elementary Burgers vectors, tends to
split into two dislocations b1 and b2, if the scalar product b1 · b2 is positive, because
b2 = b2

1 + b2
2 + 2b1 · b2: the dislocations b1 and b2repel. If b1 · b2 < 0, they attract.

8.4.2. Image Forces; Peach and Koehler Forces

8.4.2.1. Image Forces

The relaxation terms due to free boundaries, alluded to in the former section, can be de-
scribed as due to image dislocations located outside of the sample. The simplest case is
that of a screw dislocation +b parallel to a planar boundary S (Fig. 8.7).

It is easy to check that the screw dislocation (−b) located symmetrically which respect
to the midplane S carries a displacement field uimage = − bθ

2π which yields stresses �im that

+ b -b

v

S

F

L

Figure 8.7. Image force for a screw dislocation. The dislocation is attracted to the free boundary.
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exactly counterbalance the stresses of the real dislocation on S: (� + �im) ·� = 0, � being
the normal to S. Therefore, u + uim = b

2π (θ − θim) is the displacement field of the screw
dislocation +b, isolated in its half-space. One gets:

W� = µb2

4π
ln

2L

rc
, (8.19)

where L is the distance of the dislocation to S (see Problem 8.3).
Because the core energy obviously does not depend on the position of the line L, one

sees that the energy of the screw dislocation line decreases when it approaches the free
boundary. This effect can be described by a fictitious force F = + ∂Wel

∂L directed along �.
The plus sign indicates that this force, exerted on the line by the outer medium, is such that
the dislocation is attracted toward the free boundary:

F = µb2

4πL
. (8.20)

F can also to be considered as the force due to the presence of the image dislocation
which is of an opposite Burgers vector; both dislocations attract each other, as would two
electric charges of opposite sign; the analogy is evident.

8.4.2.2. Peach and Koehler Force

Let us now calculate the fictitious force exerted on a dislocation located in the stress field
σi j of another dislocation, or in an applied stress field. We call W the total energy of the
system; the spontaneous force to which the dislocation is submitted is F = −∇W , with a
minus sign now (inner force). We have to analyze the variation dW when the dislocation
moves by a quantity dx.

Let us first specialize to an edge dislocation L oriented along the y-axis that moves
in the plane (L,b) by a quantity dx (Fig. 8.8). Take, furthermore, the cut surface as the

b

L

t

dx

y

x

zb
x zσ

0>xF

Figure 8.8. To illustrate the Peach and Koehler force.
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half-plane (L,b) on the right side of L. Moving the dislocation along the x-axis consists in
displacing the lips of the cut surface relative one to the other by a quantity b = b(1, 0, 0).
Consider the force per unit area fi = σi jν j , acting on the moving lips of the cut surface,
and assume that one of the lips is immobile, the mobile one having the oriented normal
� = (0, 0,−1). In order to be consistent with the FS/RH convention, the displacement of
the mobile lip must be −b. The work dW of the outer stresses is given by

dW = −b · f dx = b dxσxz .

Hence, the fictitious force

Fx = ∂x W = bσxz, (8.21)

which drives the line L toward the right if the acting stress σxz is positive (for another
example, see Problem 8.4).

The formula above generalizes to a line of any shape and for any type of displacement,
and it can be written in a compact form as

F = (b · σ)× t, (8.22)

where t is the unit tangent to the line. In this equation, b is acting on the first index of σ ,
i.e. (b · σ) j = biσi j , like in (8.21). This remark has its importance when σi j �= σ j i due to
the presence of body torques. The full expresion with indices is Fk = εkpq biσi ptq , but the
Peach and Koehler force is often used in the very simple form of (8.21), which describes a
shear experiment in the “glide plane” (L,b), σxz being a shear stress acting on this plane.

One will easily deduce from these formulae that two parallel straight dislocations at-
tract if they carry opposite Burgers vectors; they repel if their Burgers vectors are equal.

8.4.2.3. Stability of a Dislocation Near a Surface; Nucleation of Dislocations

Equation (8.20) can be interpreted, using the Peach and Koehler formula, as the product
of the image stress by the Burgers vector. Hence, one has σ = µb

4πL . Therefore, one must
apply stresses of this order to maintain a dislocation inside the material, at a distance L
from the boundary. For L = a, i.e. an interatomic distance, one gets σmax = µb

4πa ≈ µ
4π

(ca. 103 kg per mm2 or 1010 N/m2); reciprocally σmax appears as the stress necessary to
nucleate a dislocation at the boundary of a perfect crystal. In fact, plastic deformation
of a material does start for stresses that are typically 103 times smaller; because plastic
deformation requires the presence of a number of fresh dislocations, it is indispensable to
understand why existing dislocations can multiply under very small stresses: This is the
role of the Frank and Read mechanism (see below).
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Figure 8.9. To illustrate (8.23).

8.4.3. Line Tension

The energy of a straight dislocation line is proportional to its length; the energy of a curved
dislocation line is also proportional to its length, in a first approximation, if the radius of
curvature of the line is larger than R, the typical distance between neighboring lines. A
curve line has, therefore, a tendency to straighten, in order to decrease its length. This
tendency can be described in terms of a line tension τ , which is the ratio of the variation of
elastic energy δW = τ δ� to the variation in length δ�. A reasonable approximation for τ
is to take it equal to the line energy, viz. τ ∼ µb2. This notion will be developed in some
more details in Section 9.1.3. and Problem 9.2.

Let us consider a segment of line anchored in its two extremities, curved under the
action of a fictitious force F (Fig. 8.9). The line takes a curvature ρ−1 that is the result of
the equilibrium between F and the line tension. One finds (Problem 8.5)

F = τ/ρ. (8.23)

8.4.4. Frank and Read Mechanism

Consider a straight segment of dislocation AB of length 2� anchored in A and B (A and
B can be sites of impurities, precipitates, intersections with other dislocation, and so on)
(Fig. 8.10), position (a). The segment moves easily in its glide plane under the action of
a Peach and Koehler force F = σb per unit length of line. The segment takes a radius of
equilibrium ρ = τ

µb ∼ µb
σ

.
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Figure 8.10. Frank and Read mechanism. The arrows show the Burgers vector.

Start with σ small. For σ = 0, we have ρ−1 = 0; the radius of curvature first decreases
when σ increases, up to a value

ρc = �

2
= µb

σc
(8.24)

reached for σc = 2µb/� (Fig. 8.10), position (c). Because of the anchoring, the radius
cannot but increase afterward, which requires σ < σc. Therefore the position σ = σc, ρ =
�/2 is unstable, and the dislocation length increases spontaneously to a new position (d),
where segments of opposite signs (still belonging to the same dislocation) are close to one
other and, consequently attract each other strongly, see position (e). This process yields
the formation of a loop L1 that is disconnected from the segment AB, position (f). The
segment reforms and grows again, pushing away L1 because it carries a dislocation of
the same sign. The mechanism continues, yielding successive loops L1,L2, . . . up to that
point where their stresses add to the critical stress σc and overcome it. Note that σc ∼ σ b

�
is small in a well-annealed material where there are few dislocations and few anchoring
points: Taking � ∼ 10−6 m, b ∼ 10−9 m, one gets σc ∼ 10−3µ. However σc must be larger
than the Peierls stress σp, which measures the force opposing the displacement of the line
and due to friction on the lattice (see analysis of σp below).
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8.4.5. The Dislocation Core

The problem of the atomic or molecular arrangement in the core has considerably bene-
fited from the powerful computational techniques that are available nowadays. Also, high-
resolution electron microscopy techniques have allowed for a direct visualization of the
core of edge dislocations in covalent structures like Ge. What follows is, therefore, obso-
lete in many respects, but it has the advantage of simplicity.

The core energy Wc is certainly between that of the supercooled liquid at the temper-

ature of the solid, often estimated as Ws ≈ µb2

5 and that of the elastic solid uniformly

strained (ec ≈ b
4πrc

, i.e., Wu ≈ µb2

8π ). Hence,

µb2

8π
< Wc <

µb2

5
.

With ec ≈ 0.1, a typical value beyond which the deformation cannot be considered as
elastic any longer, we expect rc ∼ 5b

2π ∼ 0.8b.
One can also put the problem in phenomenological terms. Let fc be the core energy

density. We have

Wtot = µb2

4πK
ln

R

erc
+ πr2

c fc, (8.25)

which is minimized for ∂Wtot
∂rc

= 0 (it is a minimum because ∂
2Wtot
∂r2

c
> 0), i.e., for

r2
c = µb2

8π2K fc
, (8.26)

which gives a core energy per unit length of dislocation

Wc = µb2

8πK
(8.27)

of the same order as the elastic energy outside of the core. Here K = 1 for a screw dislo-
cation, and K = 1 − ν for an edge dislocation. Note that Wc does not depend on fc. With
this model of the core, the total line energy can be written as

Wtot = µb2

4πK

(
ln

R

erc
+ 1

2

)
. (8.28)
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8.5. Mobility of a Dislocation

8.5.1. Elementary Movements of a Dislocation

There are two types of elementary motions, glide and climb.

8.5.1.1. Glide

It occurs on the glide “plane” (this is the current terminology), i.e., on the surface de-
fined by the dislocation line and the Burgers vector. As shown below, glide occurs on the
most compact planes. This movement is conservative, because it does not require anything
else than local displacements of atoms, when the core moves through the medium. We
mentioned glide when discussing the Peach and Koehler force. Glide is observed at low
temperature, in agreement with the fact that it requires a very small activation energy.

8.5.1.2. Climb

Any other movement is called climb. “Pure” climb occurs perpendicularly to the glide
plane. Climb requires diffusion of atoms over large distances, and it is nonconservative.

glide planes

L

L

b

b

L

L

b

b

(a)

(b)

Figure 8.11. (a) An elementary jog; (b) an ensemble of jogs to curve a dislocation out of its glide
plane.
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This possibility for the dislocation to absorb or emit atoms is facilitated by the presence of
“jogs,” which are objects of atomic size (Fig. 8.11).

Jogs increase the length of the line, and they add a certain energy of the order of
µb2 ∼ 0.1 eV per jog in a noble metal. Because they also contribute to the free energy
by an (entropic) term of disorder, they are present at thermodynamic equilibrium with a
concentration
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Figure 8.12. Crossing of two dislocations.
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n = N0 exp − Ec

kB T
, (8.29)

where N0 is the largest possible number of jogs (N0 is of the order of L/b, where L is the
total length of dislocation lines) and Ec is the jog energy.

The jogs can also exist out of equilibrium, either in order to curve a dislocation under
the action of a Peach and Koehler force or because they are created when two dislocations
cross (Fig. 8.12). The sketch of Fig. 8.12 shows how two jogs of length b1 and b2, respec-
tively, appear when two dislocations of Burgers vectors b1 and b2 cross each other. The
reader is urged to figure out how such a process can occur. Hint: Consider the movement
of the cut surfaces of the two dislocations.

8.5.2. Glide and Peierls Stress

A tensile test made at low temperature in a single crystal (Fig. 8.13) reveals glide lines
located in those dense lattice planes that are closest to the planes of maximum shear stress
imposed by the applied tensile force, i.e., close to planes making an angle of 45◦ with the
tensile axis. These dense planes are the planes of glide and multiplication of dislocations,
an effect that is easily understood. But it is not immediately understandable why the direc-
tions of displacement are dense directions in these dense planes. Glide starts for a value
of the shear stress σE called the yield stress. The Peierls model explains three facts: (1) A
dislocation moves more easily on the plane on which its core is “spread”; these planes are
dense planes; (2) The direction of displacement is along a dense direction; (3) the yield
stress is the stress necessary to overpass the energy barriers due to the variation of the core
energy when the dislocation moves through inequivalent positions in the lattice, i.e., the
force of friction.

45o

Figure 8.13. Tensile stress.
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(a) (b) (c)

u

a

b

Figure 8.14. Theoretical Frenkel model of glide.

8.5.2.1. Frenkel Model of Critical Shear Stress

This theoretical model refers to a medium void of dislocations (Fig. 8.14). It assumes that
the shear σ on the lattice planes is effective in a particular plane P, on which the top part
of the crystal, say, glides by a quantity u with respect to the bottom part. When u reaches
the value b of the lattice parameter, a glide line appears at the emerging intersection of P
with the boundary of the sample. More specifically, let us first consider u < b small, then
we can write

σ = µu

a
, (8.30)

according to Hooke’s law. Because σ is periodic with a period b, we expect to approximate
it reasonably well for large u with the expression

σ = µb

2πa
sin

2πu

b
, (8.31)

which is compatible with (8.30) for small u. The theoretical Frenkel stress is the maximum
value of σ , viz. σF = µb

2πa , which gives the order of magnitude of the stress necessary
in this particular glide motion. The value of the yield stress σF so obtained is still 103 to
104 times larger than are the experimental values, but the Frenkel expression has still some
merits: First, it tells one that the smaller the ratio b/a is, the smaller σF is. The distance
a between the atomic planes is maximum when these planes are most densely populated.
Therefore, the high-density planes are the best planes for glide. These guesses are in accord
with experiments. Furthermore, this theoretical model introduces an interesting concept of
surface energy γ (u) such that

σ(u) δu = δγ (8.32)

is the work of the applied stress when the displacement u is incremented by a quantity δu.
Integrating (8.32), one gets
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γ (u) = µb2

4π2a

(
1 − cos

2πu

b

)
, (8.33)

which vanishes for u = 0. If the cut surface of an imperfect dislocation of Burgers vector
β is spread along its glide plane, this cut surface would carry an energy per unit area equal
to γ (β); this is a particular illustration of a stacking fault.

8.5.2.2. Continuous Peierls Model

According to the concept of surface energy, it can be reasonably expected that the Burgers
vector of a dislocation at rest is spread on its glide plane, creating an extended core. Re-
ferring to Fig. 8.15, the analysis of a dislocation whose core is spread can be done in the
following way:

• The core energy Wc is the energy of a stacking fault of the same size, assuming in the
sense of Frenkel that the mismatch is essentially confined to the glide plane. Hence,
Wc = ∫ +∞

−∞ γ (u) dx , where u(±∞) = ∓ b
2 .

• The stress σ(u) at any location x in this plane, in the absence of applied stress, is the
sum of the stresses carried by the infinitesimal dislocations of Burgers vector db(x ′) =
−du(x ′) located in x ′. Each of these edge dislocations produce at x an infinitesimal
shear stress

dσ(x) = µ

2πK

du(x ′)
x − x ′ ,

such that in relation with the above discussion of the Frenkel stress, we have at x

dγ

du
= σ(x) = µ

2πK

∫
du(x ′)
x − x ′ , (8.34)

ab

Figure 8.15. Splitting of a dislocation core in its glide plane.
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where dγ /du takes the value derived from (8.33). The solution of this integrodifferen-
tial equation is well-known:

tan
πu

b
= 2K

a
(x0 − x), (8.35)

where x0 is the center of the dislocation. Equation (8.35), which is the distribution of
the displacement in the glide plane, tells us that the core is spread over a distance of
the order of L ∼ a

K ; this will be soon verified.

Coming now to the total energy, we can see (Problem 8.7) that the core energy diverges;
this drawback will disappear in the next section. We adopt provisionally the expression
Wc = γmaxL, which still gives a large core energy and scales like the core width, as re-

quired. We estimate the elastic energy (outside the core) from (8.16), viz. Wel = µb2

4πK ln R
L ,

smaller than in the standard model ( µb2

4πK ln R
2b ), because the core is so large. Therefore, the

variation of the energy with respect to the standard model is

�W = γmaxL − µb2

4πK
ln

L

2b
= µb2

4π2a
L − µb2

4πK
ln

L

2b
. (8.36)

Minimizing W = Wel + Wc with respect to L, one gets

L = πa

K
, �W = − µb2

4πK
ln
πae

2bK
, (8.37)

which gives a value of L close to the more detailed discrete model below. Note that the
value of �W in (8.37) favors a large value of a and a small value of b, as in the Frenkel
model and as experience shows.

8.5.2.3. Discrete Peierls Model

Apart from the drastic asssumptions already noted, the continuous model does not predict
any dependence of the energy with the position x0 of dislocation, hence, no friction. The
model can be improved by evaluating the (core) surface mismatch energy

∫
γ (a) dx by a

sum
∑
γ (un) on all sites of the stacking fault, assuming that un(x = nb) takes the same

value as in (8.35). This procedure also gives a finite value for this energy, which we write
as W = Wel + Wc +��W . The supplementary energy term��W can be written as

��W = µb2

2πK
cos

2πx0

b
exp −2πa

K b
, (8.38)
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Figure 8.16. Kinks along a dislocation line.

i.e., the Peierls stress is

σp = 1

b

(
∂��W

∂x0

)
max

= µ

K
exp −2πa

K b
. (8.39)

The Peierls stress σp decreases exponentially with the ratio a/b and is clearly much smaller
than is the Frenkel theoretical stress, to which it has to be compared. For example, in an
FCC lattice, a glide on the dense plane {111}, with a

b = ( 2
3 )

1/2, gives σp ∼ 10−3µ for an
edge dislocation (K = 1 − ν) and σp ∼ 10−2µ for a screw dislocation (K = 1).

8.5.2.4. Kinks

A dislocation that is not initially along a potential valley V in which ��W = 0 follows
a sinuous path where it lingers over those directions and crosses the hills H along shorter
paths or kinks as in Fig. 8.16, where individual kinks and double kinks are visible.

These kinks play an important role in the deformation processes in which dislocations
move under an applied stress. Let us define a few quantities of interest in the analysis of
these phenomena. We call microdeformation the kinks displacement along the direction of
the line (Fig. 8.16), and macrodeformation the displacement of the line perpendicular to
it. At low enough temperatures, the Peierls stress for microdeformation σm is smaller than
is the Peierls stress σp for macrodeformation; microdeformation requires the nucleation of

double kinks (energy of nucleation U f
dd ) that, when present, decrease the effective yield

stress. At higher temperatures, it is the displacement of the kinks that limits the velocity
of dislocations. This scheme is valid in FCC metals and covalent materials, but to some
differences depending on the structure and the bonds. Low-temperature glide is difficult
in BCC metals, ionocovalent structures, and on certain glide systems of hexagonal metals.
We shall not develop these concepts in solids.

8.6. Point Defects and Climb

At temperature high enough, typically, T ≥ Tm/2, where Tm is the melting temperature,
the plastic deformation of solids proceeds mostly through nonconservative movements of
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dislocations, which require diffusion of atoms over large distances. This mechanism in-
volves point defects: vacancies and interstitials. Creep, i.e., deformation developing with
time under a constant load, is a typical consequence of easy diffusion at high temperatures.

8.6.1. Vacancies and Interstitials

Figure 2.31 summarizes pictorially how a vacancy and an interstitial are defined in a crys-
tal. Under the condition of the constant total mass, the energy Uv f of formation of a va-
cancy is the energy necessary to bring some atom from inside the crystal to a position of
smaller energy on the crystal boundary; Uv f is of the order of the energy of sublimation
ES , because in both cases, the same number of bonds have to be cut. The electronic and
elastic relaxation around the vacancy contribute to make Uv f somewhat smaller that ES:

Uv f ∼ 1

10
µb3. (8.40)

The energy Ui f of formation of an interstitial is much higher; it is mostly of an elastic
nature (introduction of a sphere of radius b in the matrix):

Ui f ∼ µb3. (8.41)

There is an equilibrium concentration c = n
N of point defects, which results from a balance

between their internal energy U f and their entropy of translation. An easy calculation for
the free energy of an ensemble of N atoms yields

F = N {c(U f − T S f )+ kB T [c ln c + (1 − c) ln(1 − c)]}, (8.42)

where S f is the entropy of formation (changes of the modes of vibration of neighboring
atoms, modification of short range order, etc.) which is generally negligible. By minimizing
F with respect to concentration c, one gets

c = exp
S f

kB
· exp − U f

kB T
, (8.43)

where the contribution of S f is small (exp S f /kB ∼= 1). Putting numbers in (8.43), one
finds that the concentration of vacancies (U f = U f v) is negligible at room temperature
(c ∼ 10−17) but large near the melting point Tm(c ∼ 10−4). The concentration of intersti-
tials is negligible over the whole range of temperatures.

Point defects can be formed out of equilibrium, either by radiation damage (formation
of Frenkel pairs, consisting of one vacancy and one interstitial) or by work hardening at
low temperature. Vacancies created at high temperature in equilibrium can be quenched at
a lower temperature. The vacancies created out of equilibrium subsist, either dispersed or
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clustered (into dislocation loops, for example): Their energy of migration (Uvm ≈ Uv f ) is
not negligible.

On the other hand, interstitials diffuse easily and disappear, either collapsing with va-
cancies or on grain-boundaries or the boundaries of the specimen. In FCC metals, intersti-
tials formed under irradiation tend to gather into small, mobile loops.

The notion of point defect, of the vacancy or interstitial sorts, applies equally to liquid
crystals with predominant positional order, such as SmB’s, where they have been evoked
to explain plastic deformation. Their diffusivity is very large, and out-of-equilibrium point
defects play no role. Hetero-interstitials are frequent in liquid crystals, whose molecular
building blocks are most often thermally unstable or photolysable; it is their diffusivity that
is responsible for the Mullins–Sekerka growth instabilities that appear during directional
growth of an hexagonal columnar, a SmA, or a nematic in their isotropic phases.

Columns ends in columnar phases, polymer chains ends in liquid crystal polymers, and
so on, are point defects characteristic of liquid crystals.

8.6.2. Diffusion of Point Defects and Autodiffusion

8.6.2.1. Diffusion and Random Walks

In a crystal, the diffusion of a vacancy proceeds by jumps from one site to another. In most
cases, one will admit that these jumps are elementary jumps, from one site to a neighboring
site, along a displacement ro that can take z values if there are z-neighbors. We assume that
a2 = r2

o is the same for these z values. Of course, when we allude to the movement of a
vacancy, it is in reality a neighboring atom that shifts to the position of the vacancy, which
is, therefore, transported in the place left free by the atom. Let rn be the position that is
reached by the vacancy after n jumps; we have

rn+1 = rn + ro (8.44)

and, taking mean quadratic values

〈
r2

n+1

〉
=

〈
r2

n

〉
+ 2 〈rn .ro〉 + r2

o. (8.45)

This equation simplifies if the jumps are not correlated; this is the case if the point
defect is at least as symmetrical as the crystal site on which it sits. Therefore, 〈rn .ro〉 ≡ 0
and (8.45) gives by recursion

〈
r2

n

〉
= nr2

o , (8.46)

where n, the number of jumps, is also a measure of the time of diffusion t over which the
vacancy has gone over a distance L = 〈r2

n〉1/2. To the foregoing phenomena is related the
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diffusivity Dv:

Dv = L2

t
, (8.47)

which is a constant according to (8.46):

Dv = L2

t
= a2

τ
. (8.48)

Here, τ is the time characteristic of a unique jump.
Let νD be a typical atomic frequency on the lattice, of the order of the Debye frequency

(νD ∼ 1013 s−1 in a crystal); the number of effective elementary jumps at a given site is
proportional to νD and to z, the number of neighboring available sites. Therefore, their
frequency goes as

νd = BzνD exp −Uvm

kB T
= Dv

a2
, (8.49)

according to (8.48). Here, Uvm is the energy barrier that the vacancy has to overcome, and
B is a numerical coefficient. Therefore a microscopic value for Dv is

Dv = Bza2νD exp −Uvm

kB T
. (8.50)

The coefficient D0v = Bza2νD is of the order of a few units in cgs units (D0v ≡ 1 cm2 ·
s−1). Taking Uvm ∼ 1 eV, one finds Dv ∼ 10−15 cm2 · s−1 in a solid.

8.6.2.2. Einstein Relation for Vacancies

Assume that the point defect is submitted to a force F that helps to overtake the activation
energy Uvm of the jump, by providing an energy 1

2 Fa. In the direction along F, the effective
energy of migration is Uvm − Fa/2; on the other hand, in the opposite direction, it is
Uvm + Fa/2. The number of effective jumps in the direction of F is, therefore, per unit
time:

δν = νd

(
exp

1

2

aF

kB T
− exp −1

2

aF

kB T

)
. (8.51)

This expression takes into account only the forward and backward jumps. Assume
aF � kB T . Expanding the exponentials, one, therefore, gets the drift velocity along F,
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viz.,

v = δνa = νd
a2 F

kB T
, (8.52)

which we write in a condensed form:

mkB T = Dv, (8.53)

where m = v/F is the mobility of the point defect. Equation (8.53) is the celebrated
Einstein’s relation.

8.6.2.3. Autodiffusion of Atoms in the Matrix

Atoms in the matrix move by exchanging sites with vacancies. We introduce the coefficient
of self-diffusion for atoms, which is proportional to the concentration of vacancies cv:

D = cvDv. (8.54)

D is measured by labeling a certain proportion of atoms in the matrix (radiotracers, for
example); their time evolution obeys Fick’s second law:

∂c

∂t
= D∇2c (8.55)

(to be proved further), whose solution c(x, t) can be expressed as a function of the adimen-
sional quantity ξ :

ξ2 = x2

4Dt
. (8.56)

For example, if at t = 0 all labeled atoms are in a plane x = 0 {c(0, 0) = 1, c(x, 0) = 0},
the solution at later times reads as

c(ξ) ∼=
∞∫

ξ

exp −ξ2 dξ = c0 erfc ξ (8.57)

where erfc z = 1 − erf z, erf z being the error function (Fig. 8.17).
In order to establish Fick’s law, we first generalize Einstein’s relation to the case of

autodiffusion. Note first that the labelled atoms practically form an ideal solution with the
non-labelled atoms, if their density is small enough and if they do not interact; the cor-
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x+dx

c(x) + ∂c dx

x

c(x) ∂x

Figure 8.17. Fick’s second law.

responding free energy is predominantly entropic; there are no relevant specific chemical
interactions between isotopes. Hence

F(labeled atoms) = NkB T [c ln c + (1 − c) ln(1 − c)], (8.58)

which yields a chemical potential per atom:

µ = 1

N

∂F

∂c
= kB T ln

c

1 − c
∼ kB T ln c (8.59)

and a spontaneous force acting on labeled atoms:

F = −∇µ = −kB T

c
∇cx̂, (8.60)

where x̂ is an unit vector in the direction of F.
The Einstein’s relation now reads as

v = −Dvcv
∇c

c
= −D

∇c

c
, (8.61)

where v is the velocity of a labeled atom and D is its diffusivity. This is Fick’s first law,
which relates the flux of labeled atoms J = cv to the gradient of concentration.

Fick’s second law immediately follows; consider, for example, the balance of ingoing
and outgoing atoms in a slab of thickness dx at the position x . One has

∂c

∂t
= − ∂

∂x
J, (8.62)

according to (8.61); one recovers a 1D version of Eq. (8.55). This 1D equation easily
generalizes to the full 3D (8.55).

Note that Fick’s laws can be used with any type of atom, defect, or “particle,” as soon as
(8.59) is valid, and using the right coefficient of diffusion. For example, Fick’s laws apply
to vacancies, with D = Dv . Note also that (8.59) does not depend on a precise definition
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of the concentration, which can be atomic, weight, and so on. For example, taking for c the
volume fraction c = n
, where 
 is the volume of a particle and J = vc



= vn is the flux

of particles per unit surface and unit time, one gets

J = − D



∇c, (8.63)

a most useful formula to be used later on.

8.6.3. Creep

At high temperature, a defect can flow under a constant applied stress σ0 > σy , the yield
stress: a typical creep experiment consists in recording the deformation ε as a function of
time (Fig. 8.18).

At low temperatures, creep is logarithmic, and the deformation vanishes on long du-
rations ε − ε0 ∝ t−1; at higher temperatures or high stresses, there are typically three
stages: β creep with slowing down of the deformation; κ creep, linear; tertiary creep with
speeding of the deformation, ending in rupture.

The Herring–Nabarro model of linear creep figures out that the sample is made of
grains (typical size L), without dislocations except maybe in the grain boundaries, and
that the grain boundaries emit or absorb point defects (Fig. 8.19) under the action of an
applied tensile or compressive stress σ : The vacancies migrate from the regions under
compression to the regions under tension. The energy of formation of a vacancy in a region
under compression is increased by a quantity σb3 and decreases by the same quantity in a

σ

l

ε = ∆ l/l

σ

ε

ε0

β

κ
t

rupture

high T

low T

t

(a) (b)

0

Figure 8.18. Creep experiments (a) principle of the test; (b) logarithmic creep at low temperatures
and three stages of creep at high temperatures.



Chapter 8 Dislocations in Solids. Plastic Relaxation292

c-

c+c

Figure 8.19. Herring–Nabarro creep.

region under tension. Hence, the corresponding concentrations c+ and c− in these regions
are

c+ = c0 exp
σb3

kB T
, c− = c0 exp − σb3

kB T
, c0 = exp − Uv f

kB T
. (8.64)

Whence a gradient of concentration

| ∇c | ∼= c+ − c−

L
∼ 2

L
c0
σb3

kB T
, (8.65)

if σb3 � kB T .
Using (8.63), one gets, for the total flux:

J L2 = −β Dv



σb3

kB T
L , (8.66)

where β is a constant of the order of unity.

The variation of length of the grain per unit time being δ L̇ = b3

L2 J L2, one gets

ε̇ = b

dt

δL

L
= J L2

(
b

L

)3

, (8.67)
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or, with 
 = b3,

ε̇ = βc0 Dv
σ


kB T L2
. (8.68)

Equation (8.67) has the shape of a flow equation, with a viscosity η = σ
ε̇

:

η = β ′ L2

Dv

kB T (8.69)

(where β ′ = 1
c0β

) of the order of 1013 poises for L ∼ 10µm, T = 750◦K, D = 10−10 cm2 ·
s−1, and 
 = 10−23 cm2. This is an order of magnitude that is met at the glass transition,
for example. Under high stresses, or at high temperatures, the solid behaves like a liquid.

Note, furthermore, that a liquid would correspond to L3 ≡ 
, i.e. η ∼ kB T
Dva , an ex-

pression that yields a correct order of magnitude, with the same value of D as above. We
recall also that the viscosity of the movement of a spherical particle of radius a in a liquid
of diffusivity Dv is given by the Stokes–Einstein formula (which is exact in the framework
of the Navier–Stokes equations) :

ηSE = kB T

6πDva
, (8.70)

whose analogy with the formula above is clear.

8.7. Ensembles of Dislocations

8.7.1. Frank Network

In a well-annealed single crystal, the density of dislocations can be greatly reduced by
various processes of movement of dislocations under their mutual stresses and thermal
stresses; dislocation loops may shrink to zero, and dislocations of opposite signs annihilate.
A typical density is 104 to 106 dislocations per cm2, to be compared with 1010 to 1012/cm2,
the density of dislocations in a work-hardened material.

The Frank network of well-annealed crystals is a low-energy configuration made of
dislocation segments that merge at nodes where the Kirchhoff condition

∑
i bi = 0 is

automatically satisfied (Fig. 8.20). There are at least three dislocations of different Burgers
vectors at a node. Equilibrium of line tensions �i at the node, if it is satisfied, brings a
supplementary condition:

∑
i
�i = 0, (8.71)
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τ1 + τ 2 + τ 3 = 0

τ1

τ2

τ3

Figure 8.20. Triple node of dislocations and equilibrium of line tensions.

where �i = τi ti is a vector directed along the outer tangent ti to the dislocation line Li at
the point of merger and τi is the line tension.

Dislocations in excess produced by plastic deformation, for example by Frank–Read
mills induced on segments of the Frank network by external stresses, are all of the same
sign and cannot gather in a Frank network. They build a “polygonized” structure of sub-
boundaries (dislocations walls), located along the walls of the Frank network. These sub-
grains boundaries are at the origin of a slight misorientation θ of the order of θ ∼ b

�
, where

� is the distance between equal dislocations.
The Frank network and the polygonized structure yield in X-ray diffraction patterns

of single crystals a widening of the Laue spots from which this misorientation can be
measured (typically, 1 to 30 minutes of arc for blocks of the order of 10−3 cm): this block
structure is also known as the mosaic structure.

8.7.2. Sub-Boundaries

The misorientation angle due to a wall of dislocations can be calculated as follows. Con-
sider (Fig. 8.21) a closed loop � encircling a segment δL of wall, though which passes a
set of dislocations whose total Burgers vectors sum to δb. Let us map the Burgers loop �
into the perfect crystal, � → γ . The image γ is generally an open circuit whose closure
failure equals δb. But this closure failure is proportional to the length δL = | δL |, if the
same dislocation configuration repeats along the wall. Hence one can write δb = � × δL,
where � is a rotation vector orthogonal to δb, which measures the misorientation when
traversing any loop encircling a segment of wall parallel to δL.
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(b)

B A

C

B A

C

(a)

Figure 8.21. Burgers circuit for a sub-boundary.

Two simple examples of sub-boundaries are as follows:

1. The tilt sub-boundary, whose misorientation � is parallel to the plane of the boundary.
This can be achieved by a set of parallel edge dislocations, whose Burgers vectors are
perpendicular to the boundary. Such tilt boundaries are met in the Grandjean–Cano ge-
ometry of Fig. 8.22, either in cholesterics or in smectics. In both cases, the anchoring
conditions bring the layering parallel to the boundaries of the sample, these boundaries
forming a wedge of angle θ , of the order of 10−4rad in most experiments. This misori-
entation is relaxed by a tilt subgrain boundary in the midplane of the sample. Hence,
the distance � between dislocations of Burgers vector b is � ∼ b

θ
.

In a solid crystal, a tilt boundary is obtained by the merging of two lattices, limited
by a plane at a small angle ±θ/2 to a common glide plane, otherwise perfect, joined to-
gether along this plane, and allowed to relax. One therefore expects that the long-range
stresses of the dislocations vanish at long distance, as it has been proved rigourously.

θ

Figure 8.22. Dislocation model of a tilt sub-boundary in a smectic wedge.
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The stress remains confined to a region parallel to the boundary whose extent is of the
order of the distance between the dislocations, and further decreases exponentially. The
energy associated with the dislocations can then be computed as the sum of the individ-
ual energies of the dislocations stored in individual cylinders of radius �/2. The energy
per unit area of the wall is, thus,

E(θ) = µb

4π(1 − ν)θ ln
b

2rcθ
. (8.72)

This expression of E(θ) shows a maximum at θ = b/2erc. This seems to be well
verified experimentally.

2. The twist sub-boundary, whose misorientation θ is perpendicular to the plane of the
boundary. This can be achieved by one or more sets of parallel screw dislocations of
different Burgers vectors. In smectics, whose repeat parameters are in only one direc-
tion, such twist boundaries are made of a unique set of parallel dislocations. We recall
that according to a well-established model, the TGB phases are made of parallel twist
boundaries (see Fig. 4.11). One expects three sets of screw dislocations in hexagonal
columnar phases in twist boundaries perpendicular to the columns.

In a solid crystal, a twist boundary without long range stresses must contain two sets
of screw dislocations with nonparallel Burgers vectors (Frank).

Note that three sub-boundaries with energy per unit area Ei merging along a line must
be such that E1 + E2 + E3 = 0, where Ei = Ei �i , �i being a unit vector in the plane of
sub-boundary i , perpendicular to the line of merger. This equilibrium of “surface tensions”
is true as long as the crystal is well annealed.

8.7.3. Large Misorientations, Twin and Epitaxy Dislocations,
Martensitic Transformations

One expects that splitting of a misorientation boundary into dislocations has a physical
reality as long as the distance � between dislocations is larger than the core diameter (of
the order of 2b). Equation (8.72) is then valid for θ ≤ 25◦, approximately. Above this
value, the wall energy is practically constant, because of atomic rearrangements that take
place in a strip of atomic size and do not depend much on the misorientation. However, the
wall energy drops drastically for some special values of the misorientation and special wall
orientations, corresponding to twinning between the two lattices (cf. Section 8.3.3). It is
noticeable that the wall energy increases very sharply for small deviations to the twinning
conditions: This is due to the appearance on the wall of twin dislocations, which carry long-
range stresses (incoherent twin), and whose density and nature depend on the deviation.
These dislocations are akin to imperfect dislocations (cf. Friedel’s textbook and the current
literature for more details).
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Epitaxy is the generic name to conote the easy matching of two different crystal species
along a plane for which they have equal (perfect epitaxy) or nearly equal 2D lattice param-
eters. Coherent twinning is a special case of perfect epitaxy when there is only one crystal
species and the two lattices conserve common symmetry elements of the crystal. Any de-
viation to perfect epitaxy is usually relaxed by the appearance of epitaxial dislocations on
the boundary.

Eventually it is worth mentioning that in a phase change inside a crystal with pro-
duction of nuclei of the second phase by local rearrangements of the atoms, the walls
between the two phases can often be analyzed in terms of dislocations, whose movement
is important to understand the growth of the second phase. This is called a martensitic
transformation.

Problem 8.1. Check (8.15), and calculate the strain and stress fields of an edge dislocation; check
that they scale as ∼ 1/r . Calculate the dilatation and show that it vanishes on the average.

Answers:

σrr = σθθ = − µb

2π(1 − ν)
sin θ

r
, σrθ = µb

2π(1 − ν)
cos θ

r
, σzz = − µνb

π(1 − ν)
sin θ

r
,

σrr + σθθ + σzz = −µb

π

sin θ

r

1 + ν
1 − ν ,

dilatation δ = σi i /λ+ 2µ = − b

2π

1 − 2ν

1 − ν
sin θ

r
,

err = eθθ = σrr − λ δ
2µ

= − b(1 − 2ν)

4π(1 − ν)
sin θ

r
, ezz = 0,

erθ = b

π(1 − ν)
cos θ

r
.

Problem 8.2. Calculate the energy of interaction of an edge and a screw dislocations which are
parallel.

Answers: Let σ (1)i j , σ
(2)
i j be the stresses due separately to two dislocation lines L1,L2, inde-

pendently of the presence of the other. When together, the total stresses are the sum of the in-

dividual stresses, due to Hooke’s law: σi j = σ
(1)
i j + σ

(2)
i j . The total energy [see (8.13)] W =

1
2

∫
(σ
(1)
i j + σ (2)i j )(e

(1)
i j + e(2)i j ) dV can then be split into three parts: the proper energies of the 2

lines W1 = 1
2

∫
σ
(1)
i j e(1)i j dV and W2 = 1

2

∫
σ
(2)
i j e(2)i j dV and the energy of interaction Wint =

1
2

∫
(σ
(2)
i j e(1)i j + σ(1)i j e(2)i j ) dV ≡ ∫

σ
(1)
i j e(2)i j dV .

The stress-fields of two parallel screw and edge lines are orthogonal (no common components),
according to (8.12) and (8.15); furthermore, the dilatation carried by a screw dislocation is vanishing.
Therefore, their energy of interaction is vanishing.
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Problem 8.3. Prove the equivalence of the two expressions of the energy of interactions between

two dislocations of cut surfaces
∑

1 and
∑

2, stresses σ (1)i j and σ(2)i j , Wint = ∫
σ
(1)
i j e(2)i j dV and

Wint = − ∮
	2

b2,iσ
(1)
i j dS j .

Answers: σ(1)i j and e(2)i j are both symmetric tensors; the contracted product of a symmetric tensor by

an antisymmetric tensor is zero. One can therefore replace e(2)i j = 1
2 (u

(2)
i, j + u(2)j,i ) by e(2)i j + ω(2)i j =

u(2)i, j (where ω(2)i j = 1
2 (u

(2)
i, j − u(2)j,i ) is antisymmetric) in the product σ(1)i j e(2)i j . The next step is to

replace the volume integral by a surface integral (on the two lips of the cut surface
∑

2, which are

separated by a constant vector b2). We have indeed σ (1)i j
∂u(2)i
∂x j

= (u(2)i σ
(1)
i j ), j − u(2)i σ

(1)
i j, j , where

the second term in the right-hand member vanishes identically (8.5a). The rest of the demonstration
proceeds by the use of Gauss theorem. For details, in particular the appearance of the minus sign, see
Nabarro.

Problem 8.4. An edge dislocation line whose Burgers vector b is in the z-direction lies along the
y-direction, and it is submitted to an applied longitudinal compression along the z-axis; what is the
fictitious force acting on the dislocation, and in which direction does it move?

Answers: An applied longitudinal compression along the z-axis can be represented by a stress tensor
with a unique component σzz < 0. Applying the Peach–Koehler formula, one gets F = b(σzz , 0, 0).
The dislocation moves to the right if b > 0. Indeed, such an edge dislocation carries an extra half-
layer in the xy-plane (x > 0) if the above data satisfy the FS/RH convention.

Problem 8.5. Demonstrate (8.23).

Answers: Let dθ be the angle under which the arc ds is seen from the center of curvature. The radius
of curvature ρ = ds/dθ is supposed to be large compared with the arc ds. Then, the line tensions
at both ends of the arc of line project along the mid-radius of the arc, having a total component
2τ sin dθ/2 ≈ τ dθ , which opposes the Peach–Koehler force F ds, hence, (8.23).

Problem 8.6. Calculate the core radius rc of a hollow dislocation. Show that the condition rc > a
implies that b � a.

Answers: The core energy of a hollow dislocation scales in a first approximation as the area of its

boundary, say, Wc = 2πrcγ , where γ ∼ µa. Minimizing Wel +Wc yields rc = µb2

8π2 Kγ
∼ 1

8π2 K
b2

a ,

which length defines a true hollow core if rc > a; i.e., b > 2π
√

2K a.
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Problem 8.7. Show that the core energy Wc = ∫ +∞
−∞ γ (u) dx diverges in the continuous Peierls

model of the core.

Answers: The core energy can be written as

Wc =
∫ −b/2

+b/2

µb2

4π2a

(
1 − cos

2πu

b

)
dx

du
du,

where dx
du = − πa

2K b (1 + tan2 πu
b ) can be obtained from (8.35). Letting t = tan πu

b , one gets Wc ∝∫ −∞
+∞ t2

1+t2 dt , which obviously diverges.

Further Reading

L. Landau and I. Lifshitz, Theory of Elasticity, Pergamon, New York, 1995.

J. Friedel, Dislocations, Pergamon, New York, 1964.

J.P. Hirth and J. Lothe, Theory of Dislocations, Second Edition, John Wiley, New York (1982).

F.R.N. Nabarro, Theory of Crystal Dislocations, Oxford University Press, 1967.

Report on the Conference on “Defects in Crystalline Solids” held at the H. H. Wills Laboratory,
University of Bristol, The Physical Society, London, 1955.

Dislocations in solids, volumes 1–8, Edited by F.R.N. Nabarro, North-Holland., Amsterdam, 1975.



C H A P T E R 9

Dislocations in Smectic
and Columnar Phases

Because of their translational symmetries, 1D (smectic) and 2D (columnar) positionally
ordered liquid crystals show dislocations of translation of various characteristics. Their
elastic and plastic properties, which depend strongly on the Burgers vector, their relation-
ship with disclinations, and so on, make them original with respect to their counterparts
in 3D solid crystals. These dislocations are also worth studying in some detail because of
their role in complex phases with thermodynamical defects, such as TGB phases (smectics
with periodic twist sub-boundaries), which we have already alluded to, or Moiré phases
(columnar phases with periodic twist sub-boundaries), whose existence has been recently
predicted.

We shall limit ourselves to the simplest cases of 1D or 2D liquid crystals, namely, SmA
and columnar phases of hexagonal symmetry. In SmA, the notion of layer is not compli-
cated by supplementary order, as in SmB or SmC, for instance, and the order parameter is
restricted to a nematic component (the director n is identical to the layer normal �) and to a
1D mass density component, figuring the periodic variation of the mass along Oz. Elemen-
tary defects are, therefore, disclinations (singularities of the director field) and dislocations
of Burgers vectors b = n do� (singularities of the 1D solid) and defects involving both.
Here, d0 is the repeat distance of the smectic phase, and n is an integer. For 2D columnar
phases with hexagonal symmetry, the free-energy density, written to the second order, has
cylindrical symmetry, and is therefore relatively easy to handle.

9.1. Static Dislocations in Smectics

9.1.1. Edge Dislocation of Small and Large Burgers Vectors

9.1.1.1. Small Burgers Vectors

Let us consider a dislocation along the y-axis. If the Burgers vector is small (n = 1, 2, . . .),
the elastic field can be treated in the small deformation approximation, in terms of the

300
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displacement field u(x, z), which is odd in z.1 Take the cut surface along the half-plane
z = 0, x > 0, and consider the half-space z > 0. The boundary conditions are

z = 0; u(x < 0) ≡ 0; u(x > 0) ≡ b

2
. (9.1)

We look for a solution of the Euler–Lagrange differential equation K1�
2⊥u = B ∂

2u
∂z2 , which

corresponds to the elastic energy functional in its linear form (5.27). The boundary condi-
tions can be expressed as a Fourier series:

u(x, 0) = b

4
+ b

4π

+∞∫

−∞

dq

iq
exp iqx, (9.2)

where we have used the fact that the integral of the delta function δ(x) is the step function
H(x) = 1

2π

∫ +∞
−∞

dq
iq exp iqx , taken such that H(x < 0) = − 1

2 , H(x > 0) = + 1
2 .

We can, therefore, write the general solution u(x, z) as

u(x, z) = b

4
+ b

4π

+∞∫

−∞

dq

iq
gq(z) exp iqx, (9.3)

Using the Euler–Lagrange equation, one finds gq(z) = exp(−λq2z), where λ = √
K1/B,

so that

u(x, z) = b

4
+ b

4π

+∞∫

−∞
exp(iqx − λq2z)

dq

iq
≡ b

4
√
π

x/
√
λz∫

−∞
exp(−t2/4) dt; (9.4)

hence, the angle θ(x) between �, the layers normal, and the z-axis can be written:

θ(x) = ∂u

∂x
= b

4
√
πλz

exp − x2

4λz
. (9.5)

This quantity decreases slowly with z (on a typical distance x2

4λ ), decreases rapidly with x
inside the parabola x2 = ±4zλ, and takes a value quickly close to zero outside of these
parabolae (Fig. 9.1). Let ξ be the length over which the core extends along the x-axis; the

associated perturbation along the z direction extends over a distance ξ
2

4λ , according to (9.5).

1P.G. de Gennes, Comptes Rendus Acad. Sci. (Paris) 275B, 939 (1972).
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Z

X

(a)

(b)

Figure 9.1. Distortions induced by an edge dislocation: (a) displacement field u(x, z) (9.4) and (b) the
tilt θ(x, z) (9.5).
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The line energy can be calculated from the expression for u(x, z). The curvature contri-
bution, for instance, involves the following sequence of expressions, along the calculation:

∂2u

∂x2
= ib

4π

∫
q dq exp iqx exp(−zλq2);

1

2
K1(div n)2 = 1

2
K1
∂2u

∂x2

∂2u∗

∂x2
, (9.6a)

where ∂
2u∗
∂x2 is the complex conjugate of ∂

2u
∂x2 ;

1

2

∫
K1(div n)2 dx dz = K1b2

16π

∫
q2 dq exp −2zλq2 dz

= K1b2

32πλ

∫
dq = K1b2

8λξ
, (9.6b)

where we have taken qmax = ± 2π
ξ
. The above expression is the result of an integration

in the upper half-plane, and it must be multiplied by 2. The compression contribution
1
2 B( ∂u

∂z )
2 is equal to the curvature contribution for each mode q, and the energies per mode

add up linearly. Hence, eventually,

We = K1b2

2λξ
+ Wc ≡ B

2
b2 λ

ξ
+ Wc, (9.7)

where Wc is the core energy, at the moment unspecified. We recognize in the last expression
a B

2 b2 term that is akin to what is found in 3D solids and that suggests that small Burgers
vectors are favored.

So far, we have supposed that the nonlinear term (∂u/∂x)2 in the elastic energy den-

sity (5.28) is small; (∂u/∂x)2

| ∂u/∂z | � 1. However, the ratio (∂u/∂x)2

| ∂u/∂z | is of the order of b/λ and

independent of z inside the parabola x2 = ±4zλ (Fig. 9.1). Therefore, the linear theory is
justified only for b � λ, whereas in a general case b ∼ λ, one has to take the nonlinear
term into account. Fortunately, the problem of finding the dislocation profile from the en-
ergy density (5.28) with the nonlinear term (∂u/∂x)2 preserved is solvable analytically2

(Problem 9.1):

u(x, z) = 2λ ln

[
1 + exp(b/4λ)− 1

2
√
π

∫ x/
√
λz

−∞
exp(−t2/4) dt

]
. (9.8)

2E.A. Brener and V.I. Marchenko, Phys. Rev. E 59, R4752 (1999).
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Figure 9.2. (a) Dislocation in a fingerprint texture of a cholesteric liquid crystal with a pitch p = 15µ;
dislocation profile fitted by nonlinear theory, (9.8), with λ = 2.65µm as a fitting parameter. The
dashed line marks inflection points. (See T. Ishikawa and O.D. Lavrentovich, Phys. Rev. E 60, R5038
(1999).)
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b

Figure 9.3. Free-standing smectic film with an edge dislocation.

The most notable departure from the linear model could be observed when λ < b. The
condition λ < b is naturally obeyed for cholesterics, even for elementary dislocations: In
the de Gennes-Lubensky coarse-grained model, λ = √

K/B = p
2π

√
3K3/8K2 is normally

smaller than the pitch p. A dislocation b = p in the cholesteric fingerprint texture is
shown in Fig. 9.2: The displacement of layers is closely fitted by (9.8), which results in
experimental determination of λ. Qualitatively, the difference in the linear and nonlinear
dislocation profile is manifested by the position of the inflection points ∂2u/∂x2 = 0: In a
linear model, the inflection points are located at the axis x = 0, whereas in the nonlinear
model, they locate at x < 0.

Edge dislocations of small Burgers vectors are observed in thin SmA slabs, e.g., in thin
free-standing films and in homeotropic wedges. A free-standing film sustained in a hole is
in contact with the edge of the hole through a meniscus of matter that acts as a reservoir.3

The curvature of this meniscus is at the origin of a Laplace pressure drop �p = γ
R (γ

is the surface tension) between the liquid crystalline matter and the outside, which drains
matter from the film toward the reservoir. This draining occurs through the movement of
edge dislocation loops that nucleate in the film (Fig. 9.3) more easily at higher temperature
because it is an activation barrier, until the film is only a few layers thick.

Homeotropic wedges have been described in Section 8.7.2. The dislocations have
Burgers vector unity (n = 1) as long as their distance to the dihedron wedge is smaller
than some value r∗, and then there is a transition to a larger Burgers, which increases
with r . Consequently, the distance between neighboring dislocations increases with r (see
Fig. 9.4 and Nallet and Prost4).

9.1.1.2. Large Burgers Vectors

Dislocations with macroscopic Burgers vectors, large enough to be estimated by light po-
larizing microscopy, are found in thermotropic as well as in lyotropic systems. The expla-
nation is in a specific model of the core that is split into two disclinations of opposite signs

3P. Pieranski et al., Physica A 194, 364 (1993).
4F. Nallet and J. Prost, Europhys. Lett. 4, 307 (1987).
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Figure 9.4. Dislocations observed in a homeotropic wedge of lyotropic Lα phase. Courtesy of C.
Blanc.

(Fig. 9.5a). The model yields ξ ∼ b
2 . Hence, the elastic energy (9.7) outside of the core

scales essentially as b and not as b2. The stability of the dislocation would be practically
independent of the magnitude of the Burgers vector, were this off-core energy the main
contribution to the total energy.

It is precisely the core contribution that makes the difference; according to the discli-
nation model of Fig. 9.5a, the contribution of curvature elasticity is increased in the total

(a) (b)

b b

Figure 9.5. (a) Splitting of the core of a large Burgers vector dislocation into two disclinations; (b) a
model of an edge dislocation with vanishing solid elasticity; note the appearance of a singular wall.
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balance, because now the core energy can be written as:

Wc = πK1

2
ln

b

2d0
+ τc. (9.9)

The core energy τc of the two disclinations L1 and L2 is of the order of K1 and does not
depend on b. Note that

Wc(2b)− 2Wc(b) = πK1

2
ln

4d0

b
(9.10)

is negative for b > 4d0; hence, the energy difference (9.10) decreases logarithmically when
b increases. The large Burgers vectors are favored.

Because the above calculation of the elastic energy outside of the core is done in the
small perturbation approximation, our conclusions should be qualified when b is large,
b ≥ λ. And indeed, as we have already argued in Section 5.4.2., as soon as the characteris-
tic length (here, b) is larger than λ (i.e., in practice for any Burgers vector larger than d0),
we expect that the contribution of curvature elasticity prevails over compression elastic-
ity. The complete disappearance of compression elasticity requires that the layers become
parallel, which is achieved in Fig. 9.5b, at the expense of a wall singularity. The model in
Fig. 9.5b is an extreme case of a nonlinear dislocation profile discussed above for elemen-
tary dislocations with b ≥ λ, with the wall defect being an analog of the locus of inflection
points in Fig. 9.2b.

The disclination model of the core, which is justified here by energetical considera-
tions, also has a value in cholesterics (Figs. 9.2a and 11.17) and lyotropics, where it allows
for a complete separation between the solvent and the bilayers (Fig. 9.6). In that case, it is
valid even for small Burgers vectors.

Figure 9.6. Edge dislocation in a lyotropic Lα phase.
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The most frequent manifestation of edge dislocations with large Burgers vectors are
oily streaks, frequently present in cholesterics (Sections 10.7.1 and 11.2.5.3) and in thick,
homeotropic smectic samples. According to G. Friedel’s model, oily streaks are made of
pairs of dislocations of (large) opposite Burgers vectors. Each element of the pair is proba-
bly due to the coalescence of small Burgers vector dislocations of the same sign (as stated
above, a large Burgers vector dislocation b = nd0 can be favored with respect to small
Burgers vectors dislocations ni d0,

∑
ni = n), produced when the sample is formed. Oily

streaks are typical defects of lyotropic phases; the special core topology of edge disloca-
tions in these phases makes the collapse of dislocations of opposite signs difficult, even
for small n’s, hence, the preferred formations of large n, n′ dislocations. Another feature of
oily streaks is the frequent occurrence of a longitudinal instability, which sometimes even
splits the streak into a series of focal conic domains, to be studied in Chapter 10.

9.1.2. Screw Dislocation

The Euler–Lagrange equation

K �2⊥u = B
∂2u

∂z2
(9.11)

has for solution

u(r, θ) = bθ

2π
, (9.12)

i.e., a screw dislocation with the same configuration as in a crystalline solid. One can
easily show as an exercise that the elastic energy of the line vanishes, when calculated to
the second order; a core energy Wc subsists. Screw dislocations have, therefore, a small
energy Ws = Wc; they have been observed in various water-surfactant systems by electron
microscopy of freeze-fractured specimens, which cleave easily along the interfaces of the
paraffinic chains. Screw dislocations pierce the cleavage surfaces and carry, in the wake
along the direction of cleavage, steps that gather in rivers as in usual crystals (Fig. 9.7).
They have also been observed by polarizing light microscopy in homeotropic samples of
thermotropic SmA, near the SmC transition,5 where they pin the edge dislocations. Finally,
dislocation lines at a small angle to the Burgers vector direction are most probably made
of long segments of a pure screw character linked by small edge segments, as a result of
the large line tension of screw dislocations (see Section 9.1.3).

In fact, (9.12) is the exact minimization solution for the elastic energy density (5.12),
f = 1

2 K1(divn)2 + 1
2 Bγ 2, composed of both curvature and dilation terms.6 It is a solution

5R.B. Meyer, B. Stebler, and S.T. Lagerwall, Phys. Rev. Lett. 41, 1393 (1978).
6M. Kleman, Phil. Mag. 34, 79 (1976).
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(a)

(b)

Figure 9.7. (a) Screw dislocations, steps, and rivers on the cleavage surface of a lyotropic phase
of C12EO6; Courtesy of M. Allain; (b) the cleavage pattern of a lamellar sample, where the screw
dislocation emerges, and a step begins and runs as the fracture propagates.
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for which div n = 0, i.e., a minimal surface. The displacement u is no longer the relevant
variable, and (9.12) takes the form

ϕ = −bθ/2π + z, (9.13)

which describes an isolated screw dislocation as a ruled helicoid; here, ϕ = ϕ(θ) is a
phase variable, constant on each layer, z is the coordinate along the dislocation, and θ is
a polar angle. Taking ϕ = const, one immediately sees that this helicoid is generated by
a half straight line perpendicular to the z-axis, leaning on it, and rotating helically with a
constant angular velocity and a pitch b (Fig. 9.8).

The (out-of-core) free energy of a dislocation, which is vanishing in the quadratic
approximation, takes the following value:

Ws = Bb4

128

(
1

r2
c

− 1

R2

)
+ Wc, (9.14)

when calculated to next order; here, R is the external radius of the sample. This result is
valid in the limit λ = √

K1/B > b, i.e., when the predominant energy contribution comes

Figure 9.8. A ruled helicoid.
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from position elasticity (Section 5.5.2). The inequality λ > b also implies that the Burgers
vectors under consideration are small, b = d0, typically. The condition λ > d0 is well
satisfied near a smectic-to-nematic transition, because B = 0 in the nematic phase.

The above analysis is valid when the Burgers vector is small enough. As already em-
phasized (see also Section 5.5.2), as soon as any characteristic length in the sample ge-
ometry, such as b, becomes larger than λ, the contribution of curvature elasticity becomes
predominant, and the layers prefer to stack parallel to each other. Thus, the condition that
the derivative in the displacement along the normal of the layers vanishes, ∂u/∂n = 0, is
nearly satisfied, while the condition div n = 0 is not. As we shall see in the next chapter,
the condition ∂u/∂n ≡ 0 yields a precise geometry of defects, the focal conic domains,
but it can be approximately satisfied in other geometries, and the giant screw dislocation,
as opposed to the screw dislocation with a small Burgers vector discussed above, is such a
geometry, Figs. 9.9 and 9.10.7

Start from a ruled helicoid H0 whose pitch p = b = n d0. This surface figures out
one of the layers of the screw dislocation. The other ones Hn are stacked along surfaces,
parallel to H0, in such a way that ∂u

∂n ≡ 0. The Hn surfaces are no longer minimal surfaces,
but they are close to minimal surfaces, because H0 is minimal. In other words, the term of

Figure 9.9. Model for the stacking of layers in a giant screw dislocation.

7C.E. Williams, Philos. Mag. 32, 313 (1975).
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compressibility in the free energy density vanishes identically, and the term of curvature
keeps small.

This stacking can be pursued as long as the layers do not physically meet. More
precisely, because the layers Hn are parallel, their normals (i.e., the director field) are
straight lines, and they envelop a focal surface F made of two sheets. This geometrical
problem is in fact formally analogous to the problem met in optical geometry: the nor-
mals being light rays, and the layers being surfaces of equal phase. The two sheets are the
geometrical locus of the two centers of curvature of the parallel surfaces Hn (all of the
intersections of parallel Hn’s with the same normal share the same center of curvature). F
constitutes the natural boundary of the Hn stacking. In fact, there is one helical cuspidal
edge on each sheet of F, say, L1 and L2, and these cuspidal edges generate two physical
line defects, about which the layers fold beyond F, in the shape of two disclination lines of
strength k = ± 1

2 (Fig. 9.10). This remarkable mode of splitting of a screw dislocation of
large Burgers vector is indeed observed in a thermotropic SmA (Fig. 9.9), where the two
helical lines L1 and L2 are conspicuous. Even more remarkably, such lines can be guessed
in the textures of a condensed chromosome of a prokaryotic microscopic alga, where the
DNA is cholesteric.8 The layers are now the cholesteric layers of repeat distance p/2; the
chromosome is limited by a double helical crease, and the layers do not continue outside
of this region, but the DNA filaments fold about the k = 1

2 lines.9

Figure 9.10. Giant screw dislocation in a thermotropic smectic. Courtesy of C. Blanc.

8F. Livolant and Y. Bouligand, Chromosoma 80, 97 (1980).
9M. Kleman, Physica Scripta T19, 565 (1987).
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9.1.3. Line Tension of a Screw Dislocation

Let, as in Section 8.1, τ be the line tension of a dislocation; when taking into account the
variation of the line energy W (α) with the orientation α, τ can be written (Problem 9.2) as

τ =
(

W + ∂2W

∂α2

)

α=0

. (9.15)

In most solids, even very anisotropic, the ∂2W
∂α2 contribution is small compared with W .

This is not the case here for the screw dislocation. One can show that the displacement
field carried by a line tilted from the z-axis, by a small angle α, can be written as

u(x, y, z) = b

2π
tan−1 y − αz

x
. (9.16)

The energy per unit length of line is

W (α) = Bb2

8π
α2 ln

R

rc
; (9.17)

hence,

τ = Bb2

4π
ln

R

rc
. (9.18)

The line tension is large; therefore a screw dislocation remains straight along the z-
axis when no configurational force Fconf is applied on the line. Otherwise, it curves with a
radius

ρ = τ

Fconf
(9.19)

between the pinning points. Here, Fconf is a force per unit length of line.

9.1.4. Stresses in a SmA and Peach and Koehler Forces

In order to define a stress field in a smectic phase, we proceed as in the solid case. We
restrict to small deformations of the layers; the total free energy F then reads as

F =
∫

f dV =
∫ [

1

2
K1(�⊥u)2 + 1

2
B

(
∂u

∂z

)2
]

dV . (9.20)
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Starting from a state of deformation u(r) that obeys the Euler–Lagrange equations and the
boundary conditions, let us introduce a small displacement field δu that increases F : F →
F + δF , where

δF =
∫ (

K1�
2⊥u − B

∂2u

∂z2

)
δu dV

+
∫ {

B
∂u

∂z
dS3 − K1

∂

∂x
(�⊥u) dS1 − K1

∂

∂y
(�⊥u) dS2

}
δu (9.21)

−
∫

K1�
2⊥u

(
δ

(
δu

δx

)
dS1 + δ

(
δu

δy

)
dS2

)
.

This expression contains

• bulk terms, which vanish because of the Euler–Lagrange equations, and

• surface terms of two types, surface forces and surface torques.

9.1.4.1. Surface Forces

The first surface integral in (9.21) represents the work done by the external forces when
the boundary is displaced by δu. Because the displacement field δu can be chosen at will,
assume that it vanishes in some arbitrary subvolume of the system; in such a case, the
external forces are the components of the stress tensor acting on the boundary of the com-
plementary subvolume. Hence, at any point in the bulk, one has

σzx = −K1
∂

∂x
(�⊥u); σzy = −K1

∂

∂y
(�⊥u); σzz = B

∂u

∂z
. (9.22)

All other components of σ vanish; σ is not symmetric, and its asymmetric part must be
interpreted in terms of torques, which appear in the second type of surface terms.

Note that our definition of stresses is such that the forces per unit area exerted on a
surface of external normal νi can be written as f j = σ j iνi . The Euler–Lagrange equation
can be written in terms of stresses as

σzx,x + σzy,y + σzz,z = 0. (9.23)

9.1.4.2. Surface Torques

Because n = (− ∂u
∂x ,− ∂u

∂x , 1), we can write the last integral of (9.21) as

∫
K1�

2⊥u
(
δnx dS1 + δny dS2

)
. (9.24)



9.2 Dislocations in Columnar Phases 315

With δ� = δn × n, we have

δnx δS1 + δny δS2 = δn · δS = (n × dS) · δ�. (9.25)

Hence, the surface torques per unit area applied on the surface at a point of external normal
� are

C = K1�
2⊥un × �. (9.26)

The stress field being defined, the Peach and Koehler force follows:

FP K = (b · σ)× t, (9.27)

where some care should be taken when calculating b · σ : b saturates the first index of the
components of the stress tensor; t is the unit tangent to the line, as in (8.22).

9.2. Dislocations in Columnar Phases

Columnar hexagonal liquid crystals are 2D solids in the planes perpendicular to the
columns and possible Burgers vectors belong to this 2D hexagonal lattice. The elastic
free-energy density can be written as

f = 2µ
(

u2
xy − ux,x uy,y

)
+ 1

2 B⊥
(
ux,x + uy,y

)2 + 1
2 K3

(
u2

x,zz + u2
y,zz

)
, (9.28)

where u = (ux , uy) is the displacement vector in the hexagonal plane, uxy = 1
2 (ux,y +

uy,x); µ is the shear modulus; B⊥ = λ+ 2µ is the modulus of compressibility; and K3 is
the Frank bend modulus. We assume that columns relax like 1D liquids; hence, there is no
contribution of the displacement uz to the free-energy density. We also assume that ∇u is
small, which yields n = (−ux,z,−uy,z, 1) for the director along the column.

9.2.1. Longitudinal Edge Dislocations in Columnar Hexagonal
Liquid Crystals

Line dislocations parallel to the columns do not involve any bend deformation; therefore,
we are left with a free energy density similar to that one of a 2D solid; (8.15) can be applied,
and the line energy (surface relaxation and core included) can be written as

Wlong = µb2

4π(1 − ν)
(

ln
R

erc
+ 1

2

)
, (9.29)
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where ν is the Poisson ratio. Assuming that the penetration length ( K3
µ
)1/2 is of the order

of the lattice parameter a, we expect µ ∼= K3
a2 , i.e., Wlong ∼ K3(

b
a )

2. For b = a, this is
of the same order as the energy of a disclination, typically, 0.01 eV per molecular length
� measured along the line (� ∼ 0.2 nm, a ∼ 3 nm in a thermotropic phase). This is
comparable to kB T at room temperature, so that one expects important entropy effects, in
contrast with usual crystals, and eventually a total energy

Wlong ∼= K3 − kB T

a
, (9.30)

which becomes negative when T is large enough: The phase would melt, by a process akin
to the melting of solids, due to a multiplication of defects (see Section 4.5).

The above discussion is of course very crude. It does not take into account the other
types of dislocations (screw dislocations, transverse edge dislocations) that are of a very
different nature. The line energy of a generic dislocation in a columnar phase varies con-
siderably with the line direction and involves bend deformation, i.e., depends directly (not
through µ) on the Frank modulus K3. If µ is small enough compared with λ, one expects
that the longitudinal dislocations have the smaller line energy, and the above arguments
might be true; if µ and λ are comparable, the screw dislocations win.

Edge longitudinal dislocations are very much akin to edge dislocations in solids. The
situation is more original for edge transversal dislocations and screw dislocations.

9.2.2. Edge Transversal Dislocations

For an edge dislocation running along the x-axis, of Burgers vector b, the only relevant
displacement is uy and ∂/∂x = 0. The free energy density reads as

f = 1
2 (λ+ 2µ)(uy,y)

2 + 1
2 K3(uy,zz)

2, (9.31)

and
∫

f dV is minimized for

(λ+ 2µ)
∂2u

∂y2
= K3

∂4uy

∂z4
. (9.32)

This equation is akin to to the equation of an edge dislocation in a smectic. Following the
treatment used in this case (Section 9.1.1), and noticing the symmetry y → −y, we write
for, say, y > 0:

uy(y, z) = b

4
+ b

4π

∫
dq

iq
g(y, q) exp iqz (9.33)
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(a)

b

L L

(b)

b

Figure 9.11. Transverse edge dislocation.

with Burgers vector (0, b, 0) and g(0, q) = 1,

g(y, q) = exp −q2 y�3, (9.34)

where �3 = √
K3/(λ+ 2µ) is the penetration length attached to bend deformation (com-

pare with λ1 = √
K1/B in smectics). The angular deformation θ(z) = uy,z of the columns

outside the dislocation core (Fig. 9.11) can be written as

θ(z) = b

4π(�3y)1/2
exp − z2

4�3 y
. (9.35)

Note that in this calculation, we have neglected the splay contribution in the free energy
density

fsplay = 1

2
K1

(
∂2uy

∂y∂z

)2

. (9.36)

This is all the more justified now that the columns keep nearly parallel and present no free
ends: One expects K1 � K3 in columnar phases and, therefore, a vanishing div n. This is
certainly not the case in the core region. Let us introduce fsplay in the free energy: Instead
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of (9.34), one gets

g(y, q) = exp
[
−q2 y�3(1 + q2�2

1)
−1/2

]
, (9.37)

where �1 = √
K1/(λ+ 2µ) is another penetration length (�1 � �3). It is obvious at

first sight that outside a region | q |−1 > �1, the divergence contribution is small and the
expression (9.35) is valid. Contrarywise, for | q |−1 � �1, one gets

g(y, q) ∼= exp − qy
�3

�1
; (9.38)

hence,

uy = b

4
+ b

2π
tan−1 z

y

�3

�1
. (9.39)

The core region, where the columns show free ends, is therefore expected to be large, of
the order of �1.

In analogy with the smectic case, one expects

Wtrans = λ+ 2µ

2
b2�3

ξ⊥
+ Wcore, (9.40)

where ξ⊥ is the actual core size in the z-direction.

9.2.3. Screw Dislocations

We consider a screw dislocation aligned along the x-direction. The relevant displacements
are ux and uy ; ∂/∂x = 0. The free energy density reads as

f = 1
2 (λ+ 2µ)(uy,y)

2 + 1
2µ(ux,y)

2 + 1
2 K1

(
∂2uy

∂y∂z

)2

+ 1
2 K2

(
∂2ux

∂z∂y

)2

+ 1
2 K3



(
∂2ux

∂z2

)2

+
(
∂2uy

∂z2

)2

 (9.41)

One notices at once that ux and uy are decoupled. Consider the ux term. One gets,
after minimization,

µ
∂2ux

∂y2
= K2

∂4ux

∂z2∂y2
+ K3

∂4ux

∂z4
. (9.42)
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L b

Figure 9.12. Screw dislocation in a columnar phase. No physical singularity on the columns.

Note that one can take uy ≡ 0, because the Burgers vector is in the x-direction: There is
no splay deformation, but there is a twist. The calculation goes as above and yields

g(y, q) = exp

{
−q2 y�′

3

(
1 + q2�

′2
2

)1/2
}
, (9.43)

where �′
2 = √

K2/µ and �′
3 = √

K3/µ. It is reasonable to assume that in columnar
systems K2 � K3, because a twist deformation does not allow the columns to keep parallel
and equidistant. A discussion of (9.43) as above for (9.37) tells us, therefore, that the core
region is a region where twist is concentrated (Fig. 9.12). As will be shown in Chapter 11,
a periodic lattice of screw dislocations is a possible model of a twisted hexagonal phase10

(Fig. 11.14).
A remarkable feature of this core is that there is no necessity to introduce any physical

singularity on the columns. Notice also that a jog of elementary length on a screw dislo-
cation introduces one cut column; the appearance of an adequate density of such jogs on
screw dislocations can be in practice a way of relaxing plastically applied stresses.

The line energy is of the form

Wscrew = 1

2
µb2�

′
3

ξ⊥
+ Wcore, (9.44)

where ξ⊥ is the core size in the z-direction.

10R.D. Kamien and D.R. Nelson, Phys. Rev. Lett. 74, 2499 (1995).
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9.2.4. Free Fluctuations of Longitudinal Dislocations

A fluctuation of the line is akin to the formation of a double kink. We, therefore, discuss
this possibility in the terms of Chapter 8 (Section 8.5.2) for thermally activated glide. Be-
cause the dislocations of different types in a columnar phase show up very anisotropic
properties, the comparison of U f

dd , the energy of nucleation of a double kink, and Um
d ,

the energy of displacement of the kinks, is mostly dependent on this anisotropy. As an ex-
ample, if µ is small enough, i.e., �3 = (K3/µ)

1/2 � a, where a is a molecular length,
we expect Wscrew > Wlong, which most probably yields a large energy U f

dd (kinks are
screw dislocations segments) compared with Um

d . Therefore, the yield stress for glide of
longitudinal dislocations is of the “low temperature” type, in terms of the classic anal-
ysis for metals. However, the nucleation of double kinks is a thermally activated pro-
cess, and we expect that they appear in number, due to the coherent thermal molecular
motion, and effectively reduce the Peierls–Nabarro friction. The calculation goes as fol-
lows.

Consider a double kink of length 2� nucleating under an applied stress σ < σp

(Fig. 9.13). The energy required is the difference of energy between the double kink (whose
nucleation requires to extend the cut surface by an area of the order of b�) and a straight
dislocation, i.e.,

U(σ ) ≈ 2Wscrew
b2

�σ
, (9.45)

where �σ = √
Wscrew/(σp − σ).

In these equations σp is expected to have an expression similar to that one in a standard
solid (8.39), because Wlong is standard. Putting order of magnitudes, one gets for σ = 0:

bpotential’s tops

potential’s bottoms

2l

potential energy 
vs.  position

b

Figure 9.13. Thermally activated glide against a Peierls–Nabarro force.



9.3 Hydrodynamics of a Smectic Phase 321

�2
σ=0 ≈ b2

8π

(
�3

b

)1/4

exp
2π

1 − ν
a

b
,

U(0) ≈ 2µb2
(
�3

b

)1/4

exp − πa

(1 − ν)b ; (9.46)

i.e., typically �σ=0 ≈ 100 nm for b ≈ 3 nm and�3 ≈ b, and U(0) of the order of kB T for
µ ≤ 107N/m2 (108 dyne/cm2). Therefore, free fluctuations of longitudinal dislocations
are to be expected in most thermotropic columnar hexagonal liquid crystals.

9.3. Hydrodynamics of a Smectic Phase

The hydrodynamics of a slightly deformed perfect smectic phase (i.e., in the approxima-
tion of weak perturbations) is developed in this section. Section 9.4 describes briefly the
(small amplitude) lamellar dynamic modes, which it summarizes without entering into de-
tails. The hydrodynamical theory is then applied to the movement of edge dislocations of
small Burgers vectors, for which the precise model of the core is unessential (Section 9.5).
A priori, climb, which is the displacement of the dislocation in the plane of the layers, per-
pendicularly to the Burgers vector, is easier than glide, contrarily to the case of solids. This
is due to the fact that glide necessitates layer breaking (particularly difficult in lyotropic
smectics), whereas climb does not. Finally, Section 9.6 reports on the behavior of macro-
scopic samples under simple shear or compression; the few experiments that have been
performed reveal interesting collective motions of defects, multiplication of dislocations,
and instabilities toward the formation of defects of another nature (see Chapter 10).

The theory of the movement of dislocations can be cast either in a language borrowed
from metallurgy, and using henceforth concepts developed in solid materials science (such
as diffusion for the case of climb of edge dislocations), in the language of hydrodynamics,
or in both. It is indeed one of the nice features of the defects dynamics in lamellar phases
that they mix concepts borrowed from both theories.

Hydrodynamical properties of layered materials are remarkable. One can distinguish
between correlated (Fig. 9.14a, b) and uncorrelated (Fig. 9.14c; 9.15) motions of molecules
and layers. In the first group, the layers follow the movement of the molecules, which can
be treated as forming an ordinary (anisotropic) fluid. One would therefore expect three dif-
ferent viscosities η⊥, η, and η||. Let v = (vx , vy, vz) be the components of the fluid velocity
(we assume that the fluid is but slightly perturbed with respect to the perfect smectic; the
z-direction is along the unperturbed director), and let Aγ δ = 1

2 (vγ,δ + vδ,γ ) be the com-
ponents of the shear rate tensor. The three independent viscosity coefficients appear in the
expressions of the viscous stress tensor components:

σ ′′
xx = 2η⊥ Axx , σ ′′

yy = 2η⊥ Ayy, σ ′′
xy = 2η⊥ Axy,

σ ′′
zx = 2ηAxz, σ ′′

zy = 2ηAzy, σ ′′
zz = 2η|| Azz .

(9.47)
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V = 0

(a)
y

V
z

(c)(b)

vz(z+ δz)

vx ,vy

vz(z)

Figure 9.14. Various types of shear in a lamellar phase, (a) velocity field parallel to the layers, vis-
cosity η⊥; (b) velocity field with vz(x, y) component perpendicular to the layers, η; (c) velocity field
perpendicular to the layers, η||.

Generally speaking, one should consider five viscosity coefficients. This number is
reduced to three if one assumes (reasonably) that the smectic fluid is incompressible.

Fig. 9.14 represents two types of “correlated” shears. In Fig. 9.14a, the velocity field
(vx , vy) is parallel to the layers, and the layered media flow much like ordinary liquids. The
layers keep globally fixed in space and slide easily past each other; the corresponding vis-
cosity η⊥ is expected to be small. In Fig. 9.14b, the layers configuration is supposed to be
dragged with the motion, which is governed by η. The case of the viscosity η|| (Fig. 9.14c)
is somewhat more complex: It shows up if ∂vz/∂z �= 0; but because of the incompress-
ibility condition div v = 0, it is coupled with vx , vy �= 0, i.e., with the other viscosities.
Generically, such a flow would considerably modify the layers thickness, if the layers and
the molecules move in company. However, a large change of the layers thickness is en-
ergetically unfavorable. Therefore, one expects that this type of motion is coupled with a
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flow of matter through the layers (or, equivalently, a motion of the layers through the fluid)
(Fig. 9.14c), which is reminiscent of (thermally activated) vacancy or interstitial diffusion
in crystals.

The motion of fluid through the layers is called permeation.11 Generally, η|| is expected
to be large compared with η and η⊥.

A very simple “uncorrelated” motion of the molecules and the layers is as follows. As-
sume that the layers are fixed in space and a pressure gradient ∂p

∂z is applied perpendicularly
to them. A weak flow develops across the layers, with velocity:

vz = −λp
∂p

∂z
, (9.48)

where λp is the so-called permeation constant. Dimensionally, λp ∼ a2η−1
p , where ηp

should be a (large) viscosity for molecular motion perpendicular to the layers and a is a
length comparable to the square root of the cross-section of the molecules with the bilayer
surface. In fact, permeation is a slow process, as we shall argue later, and any motion
considered on a time τq < 1

λp Bq2 , where q−1 is a characteristic length of the motion, is

not of this type (Problem 9.3). In any real motion, correlated and uncorrelated processes
should exist, according to the scales and the durations under study.

Let us develop these notions. There are two relevant velocities, as follows:

1. The velocity v of the molecules, which satisfies the conservation law:

div v = 0 (9.49)

in the absence of dilatation.
The fundamental equation that expresses the conservation of momentum has been

derived by Martin et al.12; it can be written as

ρ
dv
dt

= −∇ p + div σ ′ + divσ ′′, (9.50)

where:

(a) σ ′ is the elastic stress tensor carried by the deformed layers (9.22). The quantity
divσ ′, which is the restoring force per unit volume acting on the layers, vanishes at
rest

div σ ′ =
(

0, 0, B
∂2u

∂z2
− K∇4⊥u

)
. (9.51)

11W. Helfrich, Phys. Rev. Lett. 23, 372 (1969).
12P. Martin, O. Parodi, and P. Pershan, Phys. Rev. A6, 2401 (1972).
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We shall note

B
∂2u

∂z2
− K∇4⊥u = g.

(b) σ ′′ is the viscous stress tensor, which can be taken as symmetrical, because the
torques are already present in σ ′. The vectorial quantity divσ ′′ is the friction force
per unit volume.

(c) p is the pressure.

2. The velocity of the layers (0, 0, u̇), directed along the normal to the unperturbed layers,
in the small perturbation picture, which is adopted here. The relative velocity u̇ − vz is
conjugate to g; hence, the entropy source can be written as

Tσirr = σ ′′ · A + g(u̇ − vz), (9.52)

where for the sake of simplicity, we have omitted transport terms like heat on electric
current. One gets

σ ′′
αβ = �αβγ δ Aγ δ, u̇ − vz = λpg. (9.53)

The �αβγ δ reduce to three independent viscosity coefficients (9.47). The second equa-
tion in (9.53) easily yields (9.48) if the layers are kept fixed, the flow stationary, and
the viscous stresses neglected. Equation (9.48) is analogous to Darcy’s law for porous
media, which states that the velocity of a fluid is proportional to the pressure drop (see
Section 7.4.1): In our case, the smectic phase appears as its own filter.

From a microscopic point of view, the coefficient of permeation is related to the acti-
vated passage of the molecules from one layer to the next. Let us apply Einstein law (8.53)
to this process. The force acting on a molecule is gωm , where ωm = a2 d0 is a molecular
volume. Hence,

u̇ − vz = D||
kB T

gωm = λpg (9.54)

and

λp = D||ωm

kT
, (9.55)

where D|| is the diffusivity of the molecules through the layers. The coefficient of perme-
ation can be measured in relation with the mobility of edge dislocations (see below). The
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1/ κ

p +
∆ p
∆ z

dz

p

dz

Figure 9.15. Gedanke experiment to measure λp .

following gedanke experiment, where the layers are strongly anchored perpendicular to the
walls of a cylindrical capillary of radius L, and submitted to a constant pressure gradient
p′ = ∂p

∂z , should in principle also measure the coefficient of permeation (Fig. 9.15). The
flow is assumed stationary and the layers fixed; hence, u̇ = 0. The Navier–Stokes (9.50)
can be written, using (9.54), as

− vz

λp
− p′ + η∂

2vz

∂x2
= 0. (9.56)

This equation is nothing else than a generalization of (9.48) to the case when the layers do
not keep planar. We look for a solution independent of the z-coordinate [hence, the term
η||∂2vz/∂z2 does not appear in (9.56)]. The solution is

vz = −p′λp

(
1 − cosh κx

cosh κL

)
, (9.57)

where κ−2 = λpη. Note that κ−1 appears here as the thickness of a boundary layer (see
Fig. 9.15 and Clark13).

13N.A. Clark, Phys. Rev. Lett. 40, 1663 (1978).
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9.4. Dynamic Modes in Smectics

There are six modes, i.e., one mode more than in an isotropic liquid. This mode is the phase
of the layers. Large rotations of the director are excluded in this model, which employs
the small perturbation approximation for the free energy (see the de Gennes and Prost
textbook):

• Four P modes

ω = ±c1q first sound, related to the variation of the density ρ; phase velocity c1 =√
A
ρ

,

ω = ±c2q second sound, related to the variation of the layers thickness, at con-

stant density ρ; c2 =
√

B
ρ

sinφ cosφ, where φ is the angle of q =
(q cosφ, q sinφ) with the layer. A and B are elastic moduli.

• Two D modes:

ω = −iκthq2 thermal diffusion,

ω = −iνq2 transverse shear mode.

The two situations in which q is either parallel or perpendicular to the layers are spe-
cial, because the two anisotropic propagative modes vanish for those values of φ. The six
modes are now replaced by the following modes:

1. q perpendicular to the director (parallel to the layers):

(a) Two P modes:

ω = ±c1q⊥ first sound.

(b) Four D modes:

ω = −i K
η

q2⊥ undulation mode of the layers, reminiscent of the slow mode in
nematics, (Problem 9.4)

ω = −iκthq2⊥ thermal diffusion, coupled to the sound mode,

ω = −iνq2⊥ transverse shear mode,

ω = −iν ′q2⊥ longitudinal shear mode coupled to the sound mode ν, ν′ ∝ η
ρ

.
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2. q parallel to the director:

(a) Two P modes:

ω = − ± c1q|| first sound; c1 = √
A/ρ.

(b) Four D modes:

ω = −i Bλpq2|| mode of permeation (Problem 9.3),

ω = −i Kλthq2|| thermal diffusion, coupled to sound mode,

ω = −iνq2|| transverse shear mode,

ω = −iν′q2|| longitudinal shear mode coupled to the sound mode.

9.5. Movement of Isolated Dislocations in an SmA Phase

9.5.1. Edge Dislocation

9.5.1.1. Climb

Let σ = σ ′ + σ ′′ be the total stress to which an edge dislocation is submitted (ex-
cluding its proper stress field). The Peach and Koehler force (9.27) that acts on it is
F P K = b(σzytz − σzzty, σzz tx − σzx tz, σzx ty − σzytx ). We shall assume that the disloca-
tion lies along the y-axis (tx = 0, ty = 1, tz = 0).

Consider, therefore, the following simple model14 (Fig. 9.16), in which the dislocation
is symbolized by a semi-infinite rigid plate of vanishing thickness, moving with velocity
−V in a smectic sample at rest at infinity or, equivalently, a plate at rest in a smectic sam-
ple moving with velocity +V at infinity. A boundary layer of thickness δ(x) forms along
the plate, and we shall furthermore assume that δ(+∞) = b

2 . The three equations of the
problem are Darcy’s law, the Navier–Stokes equation, and the equation of continuity. The
layers are supposed fixed, and the molecules permeate through them (u̇ = 0). Therefore,

δ2(x)=x/κ

x

V

Figure 9.16. Model for the movement of an edge dislocation under climb.

14Orsay Group on Liquid Crystals, J. de Physique 36, C1-305 (1975).
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one expects

vz ∼= λp
p

δ
,

p

x
∼= η V

δ2
, vz x ∼= V δ, (9.58)

where we restrict ourselves to the orders of magnitude of the various observables. These
equations yield δ2(x) ∼ κ−1x ; i.e., 4xmax = κb2. The total friction experienced by the
plate on each side is

1

2
f =

∫
σ ′′

xz dx ∼ η
xmax∫

0

V

δ(x)
dx = ηκbV . (9.59)

This force is balanced by the Peach and Koehler force bσzz ; i.e., one finds that the mobility

of the dislocation m = V
σzz

= κ−1

2η reads as

m ∼ λpκ ∼ (λpη
−1)1/2 ∼ D||ωm

kB T

1

d0
. (9.60)

This expression of the mobility has been used to measure the coefficient of permeation
(Problem 9.6), from homeotropic samples in Grandjean–Cano wedges, either measuring
the time of annealing of the sample from the most disordered state to the state with a
unique grain boundary15 or measuring the relaxation time τc of the grain boundary moving
under an applied stress σ ′

zz (see (9.66) below). A typical value is λp ∼ 10−13 cm2/poise
in a thermotropic SmA, in which η ∼ 1 poise; this value is in agreement with the value of
D|| measured from NMR or neutron quasielastic scattering.16

The above expression of the mobility is independent of the Burgers vector b. Note that
Darcy’s law [the first relation in (9.58)] is obtained from the z-component of the Navier–
Stokes equations under the assumption that the contribution of the viscous stresses is small
compared with the contribution of the pressure gradient ∂p

∂z . A little algrebra shows that this
assumption is equivalent to the inequality δ < x ; i.e., x > κ−1. Therefore, this calculation
is not valid near the core of the dislocation. But this region is precisely where the diffusion
of molecules away from the dislocation takes place, and this is the largest effect to be
considered in a metallurgical model of the mobility of the defect. Let vm be the velocity of
the molecules diffusing from one layer to the next. According to Einstein’s relation (8.53),
vm can be written as

vm = D|| fm

kB T
, (9.61)

15W.K. Chan and W.W. Webb, J. de Physique 42, 1007 (1981).
16G.T. Krüger, Phys. Rep. 8, 231 (1982).
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where fm is the force exerted on the molecules due to the acting stress σzz . We have fm ∼
σzza2. Since the velocity V of the dislocation is related to vm by the relation of conservation
V b = vma, one gets:

m = V

σzz

∼= a

b

D||a2

kB T
= a

b

D||
kB T

ωm

d0
. (9.62)

This expression is akin to (9.60), except for the presence of the factor a
b , which takes

into account the Burgers vector. The difference is unphysical for small Burgers’s vectors,
but the effect of the core could be considerable for large b’s.

9.5.1.2. Glide

As already stated, glide is more difficult than is climb. Elementary edge dislocations in-
volve a change in the nature of the core, from the configuration of Fig. 9.17a to that of
Fig. 9.17b, one of them being energetically more favorable. Glide needs breaking of lay-
ers, whereas climb requires diffusion or permeation, two processes that are easy in a liquid.
The energy involved in the breaking of a layer in a lamellar phase can be estimated in a
thermotropic phase by an argument similar to Frenkel’s (see Chapter 8, and J. Friedel,

(a)

(b)

(c)

Figure 9.17. (a), (c) Dislocation in a well of potential; (b) intermediary state.
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“Dislocations” Chapter 5) for the calculation of the theoretical shear stress in solids. This
leads to σF ∼ K d0

a3 and to a Peierls–Nabarro activation energy of the order of K
d2

0
a2 per unit

length of line. The condition for “fast” glide, i.e., without any thermal activation, would
require, therefore, a Peach and Koehler force acting on the dislocation that should be at
least of the order of Fc, with Fc = K d0

a2 ≈ Bd0.
The foregoing considerations assume that the line is moving entirely parallel to itself.

But glide of dislocations of small Burgers vector can also proceed by activated jumps be-
tween equivalent configurations of lower energy, along finite segments of the dislocation
line (kinks of screw character). Edge dislocations with large Burgers vectors, whose core
is split into two disclinations, should not be mobile, except under relatively high stresses:
Their motion would indeed involve the motion of disclinations, which cannot proceed with-
out the creation and annihilation of elementary edge dislocations, i.e., in the present case,
with the exchange of such edge dislocations between the two disclinations. Finally, in ly-
otropics, glide could be the result of complex interactions between membranes, involving
the formation of passages under stress.

9.5.2. Screw Dislocation

The velocity field and the layer structure of a screw dislocation oriented along the z-axis,
say, and moving with constant velocity perpendicular to the screw axis have been cal-
culated by solving the hydrodynamic equations.17 According to Pleiner, such a motion
does not involve diffusion of molecules, as long as the dislocation does not oscillate. Fur-
thermore, permeation is negligible: The molecules flow inside the layers, taking a small
z-component velocity due to the screw geometry. The motion is opposed by (a) a drag
force Fdr

x of frictional origin, similar to the force exerted on a solid cylinder of radius rc

(the core radius) in a simple fluid, given by Oseen formula below, and (b) a friction force
Fsc

x specific to the screw layer structure:

Fdr
x = 4πη⊥V

1
2 − γ − ln Re

4

, (9.63a)

Fsc
x = 1

4π2
ηV

b2

r2
c
, (9.63b)

where γ = 0.577 . . . is the Euler’s constant and Re = ρ rcV
η⊥ is the Reynolds number of

the flow. The Oseen formula (and the whole theory of the motion of a screw dislocation) is
valid for small Reynolds number, i.e., for rather small velocities V <

η⊥rc
ρ

. The hydrody-
namic core value rc is believed to be larger than the core radius at rest.

A screw dislocation in a shear flow σ ′′
zy = ηγ̇ , with the shear rate γ̇ , experiences a

Peach and Koehler force FP K = (bσ ′′
zy, 0, 0) = (bηγ̇ , 0, 0), which is perpendicular to

17H. Pleiner, Phil. Mag. A 54, 421 (1986).
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the shear plane 0yz. It, therefore, acquires in the direction x a velocity V obtained by
balancing F P K

x and Fx = Fsc
x + Fdr

x . This velocity is small compared with any velocity
vy ∼ γ̇ d related to shear, where d is a characteristic size of the sample. In effect, the
dislocation is also dragged along by the shear, while keeping anchored by its extremities
to the boundaries of the sample.

9.6. Collective Behavior of Dislocations and Instabilities

9.6.1. General Remarks

A few experiments, some of them detailed below, have put into evidence climb of edge
dislocations in SmA’s and the role of screw dislocations. Phenomena remain simple as long
as (a) one starts from well-oriented samples, and (b) stresses are not too large (compared
with B d0

L , say, where L is a characteristic macroscopic size of the sample). At higher fast
stresses, instabilities are often observed. For example, the linear undulations studied in
Section 5.5.1 transform into edge dislocations, whose motion by climb relaxes the applied
stresses.18 And at larger stresses, focal conics domains appear, sometimes in the shape of
regular patterns, most frequently forming irregular arrangements; they will be discussed in
the next chapter.

Collective glide of edge dislocations has been observed in a few cases, in which it
yields large instabilities and the formation of focal conic domains (see next chapter).

SmB’s are 3D-ordered solids, characterized by a weak coupling between layers and
henceforth by a strong anisotropy of the viscoelastic constants. Their plasticity properties
can be discussed to a large extent in terms of a pure metallurgical concept, at least in what
concerns simple geometries. For example, activated vacancies diffusion has been invoked
to explain creep under compressive stresses σzz in the SmB phase of butyloxybenzilidene
aniline (also called 40.8). Under a constant shear-stress σ applied parallel to the layers, the
same SmB also displays stationary creep19

γ̇ = γ̇o exp − U

kB T
· exp

σ�

kB T
, (9.64)

which has been interpreted as due to the activated glide of the basal dislocation lines (par-
allel to the layers, and whose Burgers vectors δo belong to the 2D hexagonal lattice of
the layers—δo is the lattice parameter within the SmB layers), crossing the “forest” of the
dislocation lines, which are perpendicular to the layers and whose Burgers vector major
component is along the normal to the layers. U is the activation energy necessary to cut a
“tree,” and σ� is the work of the stress in one elementary jump of the basal dislocations

18R. Bartolino and G. Durand, Phys. Rev. Lett 39, 1346 (1977).
19P. Oswald, J. Physique 46, 1255 (1985).
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from one tree to the next. The activation volume � is large (∼ 105 molecular volumes). It
is equal to � = L δ0 d0, where L is the average distance between two neighboring trees).
However, because stacking faults are frequently observed in SmB’s, it may be reasonable
to assume that the basal dislocations are split into partials, separated by a distance �0. All
of those considerations are typical of a (2D) solid. Furthermore, the whole topic of plastic
deformation in “ordered” smectics is still in its infancy, and we shall not insist on these
considerations.

9.6.2. Collective Climb of Dislocations in SmA20

We consider a Grandjean–Cano wedge of angle α (Section 8.5) with homeotropic boundary
conditions. A tilt boundary sits in the midplane of the wedge made of edge dislocations
parallel to the wedge, separated by a distance � = b

α
. We shall assume that the dislocations

are elementary (b = d0) and that the wedge is perfect in the sense that no other defects
are present. Under the action of a compressive stress σ0 = σ33, the dislocations climb
cooperatively to relax the stress, rightward or leftward, according to the direction along
which the layers are removed or added. Let x be the displacement of a dislocation. One has

σ = σ0 − B

L
αx . (9.65)

Here, L is the thickness of the sample. Because α is so small (typically, 10−3 rad), one can
neglect the thickness variation of the sample. Let v = mσ be the velocity of the dislocation:
v = dx

dt . Hence,

σ(t) = σ0 exp − t/τc, τc = L/m Bα. (9.66)

These equations are valid as long as the stresses are small enough and the dislocations
move parallel one to another. The experiments yield B(= L

d0
σ0) and m; i.e., either the

coefficient of self-diffusivity or the coefficient of permeation. The temperature dependence
of m ∼ exp − U/kB T yields the activation energy for the self-diffusivity.

At high enough stresses, above some yield stress σc
21, typically, of the order of 10−5 B,

i.e. small, the sample shows an exponentially increasing deformation rate ε̇ = ε̇0 exp t
τ

,
where τ is no longer equal to τc but shows a complex behavior (see Section 9.6.3). The
simplest interpretation of the exponential increase of ε̇ with time is that the dislocation
density, which is initially ρ0 = α/b, increases with time. One expects indeed, on simple
geometrical grounds (Problem 9.7), that the deformation rate ε̇ varies as

ε̇ = ρbv. (9.67)

20P. Oswald and M. Kleman, J. Physique Lett. 45, L319 (1984).
21First put into evidence by R. Bartolino and G. Durand, Mol. Cryst. Liq. Cryst. 40, 117 (1977).
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This expression, which relates the strain rate to the density of moving dislocations and to
their velocity, is known as an Orowan relation. Because v = mσ and b is constant, it is
only the increase of ρ that can explain the exponential behavior.

There have been no systematic studies of σc until now; it can be due to the nucleation
of defects along the free boundaries.

9.6.3. Multiplication of Edge Dislocations

Experimentally, the relaxation time τ(ε̇ = ε̇0 exp t/τ) reported in the previous paragraph
varies by successive jumps when the applied stress is increased. Let us call p the serial
number of the jump. The jumps can be characterized by two quantities:

1. The number of layers Np = pN1 that are involved at jump p, Np is proportional to p.

2. The relaxation time 1
τ

= 1
τc

+ 1
τp

, where τp ∼ p−1.

These results have been explained on the basis of an instability of the screw dislocation
lines, which take a helical shape under the action of a compressive (or dilative) strain
γ = δL

L (Fig. 9.18). The helical shape corresponds to the removal (in compression) or
addition (in dilation) of an extra layer in the area πr2 bound by the cylinder on which is
inscribed the helical line of equation z = 1

2π
L
p θ . The pitch is L/p, and there are p 2π-turns

through the thickness L of the sample. The chirality of the helix depends on the signs of
the strain γ and of the Burgers vector b. This instability has been analyzed in the static
limit.22

(b)(a)

γ

Figure 9.18. Helical instability of a screw dislocation line under stress.

22P. Oswald and M. Kleman, J. Physique Lett. 45, L-319 (1984); L. Bourdon, M. Kleman, L. Lejcek, and
D. Taupin, J. Physique 42, 261 (1981).
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Problem 9.1. Using the energy density (5.28) with the nonlinear term (∂u/∂x)2 preserved, show
that (9.8) describes the profile u(x, z) of an edge dislocation of the Burgers vector b.

Answers: (Ref.2): Variation of the free energy

1

2

∫ {
B

[
∂u/∂z − (∂u/∂x)2/2

]2 + K
(
∂2u/∂x2

)2
}

leads to the Euler–Lagrange equation λ∂4
x u − ∂2

z u + 2(∂u
x )∂z∂x u + (∂2

x u)∂zu − 3
2 (∂

u
x )

2∂2
x u = 0.

Expressing all lengths in units of λ = √
K/B and assuming that the displacement field u(x, z)

depends only on one variable v = x/
√

z, one arrives at the differential equation for the strain field
ϕ = du/dv:

ϕ′′′ = v2

4
ϕ′ + 3v

4
ϕ + ϕ2 + 3v

2
ϕϕ′ + 3

2
ϕ2ϕ′. (9.P1)

Noticing that (9.P1) is satisfied when ϕ′ = − 1
2 (vϕ + ϕ2); one finds the general solution

ϕ = 2 exp(−v2/4)∫ v
−∞ exp(−t2/4) dt + C

,

with the constant of integration C determined from the constraint u(x → ∞) − u(x → −∞) =∫ ∞
−∞ ϕdv = b/2. Restoring the original variables, one recovers (9.8).

Problem 9.2. Prove (9.15).

Answers: Consider a segment of screw dislocation line of length �, of energy �W (α)α=0, oriented
along the z-axis. A fluctuation of this element brings it to a length �+δ� and an energy

∫ z=�
z=0 W (α) ds,

where ds ≈ dz(1 + 1
2α

2) i.e., δ� = 1
2

∫
α2 dz. The mean value of the fluctuation is 〈α〉 = 0 i.e.,∫

α dz = 0. By definition, the line tension is τ δ� = ∫ z=�
z=0 W (α)ds − �W (0). It suffices to expand

W (α) in a Taylor series about α = 0; the result

τ = (W (α)+ d2W (α)

dα2
)α=0

follows.

Problem 9.3. In a regime of pure permeation (i.e., vz = 0), and assuming that the displacement
u(r, t) of the layers is 1D ( ∂u

∂x = ∂u
∂y = 0), show that u(n, t) obeys a simple diffusion law, with diffu-

sivity Dper = Bλp. What is the typical relaxation time attached to the permeation of a fluctuation of
wavelength q−1?

Answers: We have u̇ = λpg according to (9.53), and g = B ∂
2u
∂z2 . Hence, u̇ = λp B ∂

2u
∂z2 . This

expression has the form of an equation of diffusion for the layers displacement, with Dper = Bλp.

The characteristic time attached to permeation is D−1
perq−2 = 1

λp Bq2 .
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Problem 9.4. Prove that the undulation mode of the layers, reminiscent of the slow mode in nemat-
ics, relaxes with a frequency of ω = −i K

η q2⊥.

Answers: Consider a mode u = u0 exp i(qx − ωt). Equations (9.53) and (9.50) can be written as
g = −K q4u = λ−1

p (u̇ − vz) and ρv̇z = −ηq2vz + g. Neglecting the inertial term (small Reynolds
number) and the higher powers of q (wavelengths large compared with microscopic scales), one gets,
after elimination of vz : ηu̇ + K q2u = 0.

Problem 9.5. Prove (9.66) (relaxation time).

Problem 9.6. Show that the mobility for climb of an edge dislocation of small Burgers vector is
controlled by permeation.

Answers: We start from the model of dislocation mobility of Section 9.5.1. According to the result
of Problem 9.3, the relaxation frequency for permeation is ωper(x) ∼ λp B κx , taking q||(x) ∼ 1

δ(x) .
Now, the matter brought by permeation along the central layer (here symbolized by the plate of van-
ishing thickness) diffuses along this layer with a relaxation frequency ωdiff(x) ∼ η

ρx2 . This equation

is obtained from the expression of the transverse shear mode (see Section 9.4), with q⊥(x) ∝ 1
x . It

is easy to see that employing reasonable experimental values of the constants (e.g., η ≈ 0.1 poise,
κ−1 ≈ 5 × 10−7 cm, B ≈ 107 dyne/cm2), one gets ωdiff/ωper � 1.

Problem 9.7. Prove the Orowan relation23 (9.67), for glide and for climb.

Answers: Consider a parallelopipedic element of matter submitted to (a) a simple shear deformation
ε̇xz = Vx/L in the xy-plane (Fig. 9.19a) and (b) a compression (or dilation) along the z-direction
ε̇z = Vz/D (Fig. 9.19b), and reacting to these actions by the movement of dislocations only (plastic
deformation),

by glide (dislocations of Burgers vector b = (b, 0, 0) along the y-direction, say). Each time a
dislocation moves by a quantity �x , the mean shear deformation of the element of matter changes

(a)

xb

V

(b)

z

D

Figure 9.19. See Problem 9.7.

23E. Orowan, Nature 149, 643 (1942).
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by a quantity �εtot = ρb�x . If N = ρDL, such dislocations (of density ρ) have moved by the
same distance during the same time, the mean total shear deformation is �εtot = ρb�x , and the
associated shear rate is ε̇xz = d�εtot/dt . The Orowan formula is obtained in the case when the
density of defects varies slowly.

by climb (dislocations of Burgers vector b = (b, 0, 0) along the y-direction, say, moving in the
yz-plane). The displacement of the dislocations in the xy-plane requires the diffusion of molecules
toward or away from the dislocations; these molecules are provided (or caught) either at long dis-
tances (e.g., at the boundaries) or by the opposite climb of another dislocation. The second case is
certainly met in 3D solids, whereas it is the first case that is at work in the examples considered in
lamellar phases. In both cases, the total quantity of matter is constant and the total dilation vanishes,
as it should be in a pure shear deformation (ε̇x + ε̇y + ε̇z = 0). One gets eventually ε̇z = ρbv if the
dislocations do not multiply.

Further Reading

J. Friedel, Dislocations, Pergamon, New York, 1954; J. de Physique C3-40, 45 (1979).

P. S. Pershan, J. Appl. Phys. 45, 1590 (1974).

R. Holyst and P. Oswald, Int. J. Mod. Phys. B9, 1515 (1995).

J.-P. Poirier, Plasticité à haute température des solides cristallins, Eyrolles, Paris, 1976.



C H A P T E R 1 0

Curvature Defects in Smectics
and Columnar Phases

Both smectic A and columnar liquid crystals possess quantized symmetry translations (one
such translation in SmAs, two in columnar phases). This is the reason why dislocations, the
defects that break translational symmetries, are found in these phases. Defects involving
other kinds of symmetry breaking might exist, such as disclinations or topological singular
points, which break rotations.

Dislocations carry long-range strain fields, whose description (see the two preceding
chapters) depends on the exact knowledge of the elastic constants and, thus, differs from
one material to the other. However, there are cases for which the long-range distortions are
practically material independent, for example when dislocations of the same sign gather
into walls; this is well-known in 3D crystals (see Chapter 8), or in situations that imply
only curvature. This latter case is all the more important in smectics and columnar phases
as these phases are liquid-like (either in two dimensions or in one dimension). The layers
of a SmA phase can take any shape at constant density and thickness, at a low cost in
energy. Similarly, the columns of, say, a discotic hexagonal phase can bend at constant
density. In both cases, we are interested in textures where the local structure is conserved;
i.e., the layers or the columns preserve equispacing while curved or bent. Set as such, the
problem acquires a pure geometrical nature and has solutions with 0D (points), 1D (lines),
or 2D (walls) singularities. The solution for smectics has been known for more than 80
years now and consists in the so-called cofocal domains, whose 1D singularity set is a pair
of conjugate conics.1 Columnar phases have been investigated more recently: The (1D)
singularity of the so-called developable domains is the cuspidal edge of a developable
surface.

1G. Friedel, Annales de Physique Fr. 18, 273 (1922).
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10.1. Curvature in Solid Crystals

Curvature, as a typical mode of deformation, was first introduced for solid crystals.2 This
concept implies geometry, mostly. The Bravais lattice of a 3D crystal is built on a local tri-
hedron of vectors a,b, c that are deformable in two ways: by changing the angles between
the directions a,b, c, and by allowing their lengths | a |, | b |, | c | to vary. This descrip-
tion of the deformation can be cast into a strain tensor ei j . Let us assume for the sake of
simplicity that the local trihedron is rectangular, and then the components of ei j in this tri-
hedron are such that the diagonal components eaa, . . ., correspond to the relative variations
in length of the vector a, . . ., and the off-diagonal components eab, . . ., correspond to their
angular variations. Such a description of the deformation is local; it also imposes, however,
a small rotation from one trihedron to the next. Let us write this rotation as

dωi = K ji dx j . (10.1)

In this expression, K ji , the so-called tensor of contortion, can be easily obtained from
the antisymmetric part of the deformation tensor β j i = ∂ui/∂x j . This antisymmetric part
writes indeed ω1 = 1

2 (∂u2/∂x3 − ∂u3/∂x2), and so on; i.e.,

� = 1
2 curlu; ωi = 1

2εi jkuk, j , (10.2)

an expression that is akin to the vorticity of a fluid in motion (cf. Chapter 6). One has,
therefore (Problem 10.1),

K ji = ∂ωi/∂x j = 1
2εik�β j�,k = εik�e�j,k . (10.3)

We consider now a generalization of the contortion tensor, which can be easily under-
stood in the following 2D example, where a family of parallel atomic layers is deformed
in a process called single glide (Fig. 10.1). The result appears, at large scales, as a cur-
vature of the layers. But at small scales, the rigidity of the lattice and the requirement of
small elastic energy yield an array of edge dislocations, whose number (per unit area), is
equal to 1/bR, where R is the radius of curvature, and b is the Burgers vector modulus.
In the limit b → 0 for Burgers vector, this number becomes infinite and the strain ei j is
vanishing. The quantity α = 1/R is called a dislocation density; it is also the only relevant
component K = K33 = 1/R of the contortion tensor for this process. It is noteworthy
that the dislocations are all of the same sign; again, let us stress that the global effect is
geometrical and does not imply any knowledge of the material constants. Also, notice that
K = 1/R becomes infinite on the focal surface F of the set of parallel layers. This central
region features a disclination, because the normals to the atomic layers rotate about F. The
whole geometry can also be thought of as an extended grain boundary.

2J.F. Nye, Acta Met. 1, 153 (1953).
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M
L

F

Figure 10.1. The layers (or lattice planes) L are those that suffer curvature; the M layers keep straight
but are bounded by dislocations with Burgers vectors parallel to the L layers. F is the singular focal
surface.

This 2D analysis can be extended to 3D.3 The generalized contortion tensor in the
presence of a dislocation density reads as

K ji = εik�e�j,k − αi j + 1
2 (α11 + α22 + α33)δi j , (10.4)

where αi j is the density of dislocations parallel to the i direction, whose Burgers vector
is along the j direction. Two sources of lattice curvature appear clearly in (10.4). One
is of elastic origin and does not interest us. The second one is a geometric effect due to
dislocations and can be called Nye’s curvature (Problem 10.2).

10.2. Curvature in Liquid Crystals: Some General Remarks

This discussion of curvature in solids can be extended to liquid crystals. It is useful to
distinguish two types of Burgers vectors in a liquid crystal: finite Burgers vectors relating to
discrete translational symmetries and infinitesimal Burgers vectors relating to continuous
translations.

3B.A. Bilby, L.R.T. Gardner, and E. Smith, Acta Met. 6, L9 (1958). E. Kröner, Kontinuums Theorie der
Versetzungen und Eigenspannungen, Springer, New York (1958).
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As we already know, finite dislocations exist in smectics and columnar phases. There-
fore, as in solid crystals, one expects that 3D densities of dislocations of finite strength are
unstable with respect to polygonization, i.e., with respect to the formation of tilt (or twist,
or mixed) boundaries in which dislocations of the same sign gather and through which the
layers rotate abruptly by an angle proportional to the dislocation content of the wall (see
Chapter 8 and Section 10.8).

Dislocations of vanishingly small Burgers vectors are proper to liquid crystals. It has
been shown4 that the distortions of the director field in a nematic can be described in terms
of a pure contortion tensor K ji , with el j ≡ 0 (the latter condition ensures constant mass
density, and no elastic energy attached to the dislocation densities themselves), i.e., with
the language of infinitesimal dislocations. Although the recourse to this language is not of
absolute necessity, it has the advantage of establishing a link between the distortion field of
an anisotropic directional liquid and the curvature field in a solid. We shall come back to
the case of nematics (and of cholesterics) in the next chapter, in which we shall discuss the
relation between infinitesimal dislocations densities and disclinations. In what concerns
smectics and columnar phases, the dislocations in question have Burgers vectors along the
layers (smectics), or along the rods (columnar phases). Therefore, they are representative
of the bending of layers or of rods. Note that fluid relaxation, which results in changes
of curvature of the director field at constant mass density, can be described by a variation
in the contortion field, i.e., as a movement of infinitesimal dislocations. Pure contortion
(el j ≡ 0), which is precisely the subject of this chapter, does not exist in 3D solids.

10.3. Curvature in Smectics

10.3.1. Historical Remarks

At the beginning of this century, Georges Friedel inferred from optical microscope ob-
servations of the since-called Smectic-A (SmA) phases that these phases were lamellar.
Diffraction methods were not yet invented, and the discovery of the lamellarity was at that
time based only on the visible geometrical properties of SmA line singularities. The sin-
gularities appear as pairs of conics, an ellipse E and a branch of hyperbola H, situated in
two orthogonal planes in such a way that the apices of any one of them is at the foci of
the other.5 G. Friedel’s conclusion rested on the remarkable guess that the observed conics
were focal lines, i.e., that they constituted the geometrical locus of the centers of curvature
of a family of parallel surfaces disposed along the physical layers. The (limited) region of
space where the bending lamellae are ascribed to the presence of the pair of conics is called
a “cofocal domain” (also called a focal conic domain, in short, FCD).

The subject of FCDs, which is still attracting a lot of interest, especially in lyotropic
phases, is probably the oldest subject in the physics of defects. Let us remark that one of

4M. Kléman, Phil. Mag. 27, 1057 (1973), J. de Phys. 34, 931 (1973).
5G. Friedel and F. Grandjean, Bull. Soc. Franc. Minér. 33, 192, 409 (1910).
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the main characteristics of the theory of defects, namely, that the full knowledge of the
defects belonging to an ordered medium is enough to understand the nature (scalar, vecto-
rial, etc.) of its “order parameter,” was already visible to its founders; but the importance
of this discovery was not really appreciated before the topological theory of defects (see
Chapter 12). SmA is certainly not the only medium where the knowledge of FCDs is of
great use. Similar geometries occur in other smectic phases, such as SmC, SmC∗6 or even
ordered smectics, and in vesicles.7

Our subject has been treated a number of times in excellent review articles; apart from
the historical and still fundamental article of G. Friedel, it is worth mentioning the Bragg’s8

paper and the paper of Bouligand,9 who revisited the subject and contributed to its renewal.
Since then, there have been a number of experimental and theoretical works; this outburst
of a subject of such an old seating, 80 years after their discovery, is not without some
special gusto.

Paragraph 10.3.2 is a direct introduction to Section 10.4, which is focused on FCDs.
Section 10.3 embraces general properties of bundles of normals, not only the case of nor-
mals to families of parallel physical surfaces, which occur in FCDs.

10.3.2. Congruences of Straight Normals and Focal Conic Domains

The normals to a set of parallel surfaces are straight lines and form a “congruence” of
straight normals; i.e., the normals bundle depends on two parameters, for example, the
two coordinates of a point on a fixed, but arbitrarily chosen surface of the set. The only
gradient of the director n (along the normals) that is different from zero is div n. As it
is well known, the same situation occurs in geometrical optics: The straight normals are
akin to the light rays in a medium of constant refraction index, and the surfaces are akin
to the wavefronts—this congruence envelops two focal surfaces F1 and F2 on which the
layer’s curvature becomes infinite, and consequently, the associated energy density f =
1
2 K (σ1 + σ2)

2+Kσ1σ2 becomes infinite. Here, K and K are the splay and the saddle-splay
elastic constants, respectively. The energy is certainly decreased if F1 and F2 degenerate
into lines. Now it results from Dupin theorem (see Darboux, 1954) that in such a case, one
of the focal lines (F1, say) is an ellipse and the other one is an hyperbola whose foci are the
apices of F1, and that is located in a plane perpendicular to F1. Conversely, the foci of F1
are the apices of F2. The layers are curved into Dupin cyclides, i.e., surfaces whose lines of
curvature are circles. The conjugate ellipse and hyperbola are easily observed in polarizing
light microscopy (Fig. 10.2), and the domain (the FCD) they carry can be made visible by
confocal microscopy.

Experimentally, the eccentricity of the ellipse takes a broad range of values 0 ≤ e < 1,
depending on material parameters, boundary conditions, and the geometry of the system.

6L. Bourdon, M. Kleman and J. Sommeria, J. de Phys. 43, 77 (1982).
7See for example B. Fourcade, M. Mutz, and D. Bensimon, Phys. Rev. Lett. 68, 2551 (1992).
8W. Bragg, Trans. Faraday Soc. 29, 1056 (1933).
9Y. Bouligand, J. Physique 33, 525 (1972).
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Figure 10.2. Textures of cofocal ellipses and hyperbolae in thermotropic smectic samples observed
(a) in the plane of ellipses; (b) in a tilted plane; (c) in the plane of hyperbolas.

A particular case corresponding to an ellipse of zero eccentricity, e = 0, is a pair of a
circle and a straight line. This domain is called a toric FCD, or TFCD. The focal conics
may also form around a pair of parabolae;10 however, the parabolic FCD (PFCD) is not the
limiting case e = 1 of an ellipse-hyperbola FCD, and it has different elastic features (see
Section 10.4.3).

One might wonder why the most usually observed focal domains are not those in which
the singularities are still further reduced, i.e., to one point (in such a case, the layers are
concentric spheres). These “spherulites,” as a special type of focal domain, are indeed
observed when the saddle-splay coefficient K is of favorable value (see (10.34)).

10C.S. Rosenblatt, R. Pindak, N.A. Clark and R.B. Meyer, J. Physique 38, 1105 (1977).
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The purpose of this chapter is to give a complete review of the analytical basis of the
subject, supported by the description of a number of physical situations that have been
recently studied. However, we shall not prove Dupin’s theorem nor the cyclide theorem;
the interested reader is referred to standard books of geometry (Darboux, Hilbert and Cohn
Vossen).

10.3.3. Congruences of Normals, Variations of Perfect
Focal Conic Domains

Small variations of perfect cofocal domains, made of a congruence of straight normals, can
be analyzed using the concepts of congruence of normals and of congruence of straight
lines. In a congruence of normals, the molecules no longer align along straight lines and
the layers are no longer parallel; i.e., n × curln �= 0,n · curln = 0. In a congruence of
straight lines, the notion of layers disappear; i.e., n · curln �= 0, n × curln = 0. In both
cases, energetical considerations would favor F1 and F2 still being lines, but there is no
geometrical obstruction for them being surfaces. Mixed situations can prevail.

A congruence of normals is elastically distorted, but this distortion can be relaxed
by the appearance of a number of quantized edge dislocations (all of the same sign,
Fig. 10.3a). This situation occurs in cholesterics,11 where it is observed that dislocations
frequently polygonize. The variation in shape of F1 and F2 with respect to perfect conics
allows for an easier space filling than with perfect FCDs (see below).

(a) (b )

layers

screw
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edge
dislocations

M’

C’’

M’’

C’
C’’
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M’’

Figure 10.3. (a) Edge dislocations in a focal domain; C1 and C2 are elements of focal lines. (b) A
typical situation that must show screw dislocations.

11Y. Bouligand, J. Physique 38, 1011 (1973).
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It is possible to reintroduce the physical notion of layers in a congruence of straight
lines: The quantity n · curln can be analyzed as a density of quantized screw dislocations
imposed on a set of layers, all of the same sign (Fig. 10.3b). If they polygonize, one gets
a situation akin to a twist grain boundary. However, they do not necessarily polygonize,
because the layers in their close vicinity are, satisfactorily, curved into minimal surfaces
(hence, the curvature energy vanishes) and because their elastic energy is so small.

The giant screw dislocations observed in thermotropic SmAs12 are a remarkable ex-
ample of a topology where the layers keep at constant distances one from the other but the
focal sets are surfaces. However, the visible singularities are still lines, made of a pair of
helices that are the cuspidal edges of the evolutes of a helicoid generated by a straight line
(the concept of “virtual surface” is introduced for that purpose; see Chapter 9). All layers
are parallel to this helicoid, whose pitch is equal to the Burgers vector of the dislocation
(Fig. 9.9). The physical part of the focal sheets is reduced to a line, the rest being “virtual.”
The phenomenon originates in the fact that some regions of space are multicovered by the
surfaces 	M parallel to the helicoid and thus, a choice has to be made to eliminate some
parts of the 	M’s that are close to their evolutes. Other focal domains with virtual focal
sheets have been imagined more13 recently, in relation with oblique boundary conditions
met in some special cases; the same problem of the boundary conditions could also lead to
focal domains with “canal” surfaces14 (when only one of the focal surfaces is degenerate
to a line, and the other one is partly virtual or not virtual).

Darboux theorem is common to congruence of straight lines and congruence of straight
normals, but it does not apply to congruence of normals. It states that given a congruence
of straight lines D, two planes tangent to the focal surfaces F1 and F2 along any line D are
orthogonal. G. Friedel noticed that in SmAs, the focal lines pertaining to the same cofocal
domain and observed by optical microscopy always cut in projection at right angles and
concluded that the molecular alignments obey Darboux theorem. This situation is not well
observed in cholesterics, where the perfect geometry of FCDs is considerably distorted.

We have been describing above the (small) variations to cofocal conics in terms of
(quantized) dislocation densities (in the sense of Nye). Similarly, one could use (unquan-
tized) dislocation densities in order to describe the curvature in a perfect cofocal domain,
by introducing a suitable contortion tensor Ki j . However, this procedure is not straight-
forward here because the curvatures are large, and the above theory is valid only for small
curvatures. For an extension of the contortion tensor to large curvatures, see Bilby.15 Let us
remark that our “empirical” description of defects paves the way toward the understanding
of more abstract gauge theories, in which dislocation densities are given the status of gauge
field densities.16

12C. Williams, Phil. Mag. 32, 313 (1975).
13J.B. Fournier, Phys. Rev. Lett. 70, 1445 (1993).
14J. Sethna and M. Kleman, Phys. Rev. A26, 3037 (1982).
15B.A. Bilby, Progr. Solid Mech., 1, 329 (1960).
16L. Dzyaloshinski and G. Volovik, J. Physique 39, 493 (1978). B. Julia and G. Toulouse, J. Physique Lett. 40,

L-395 (1979).
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10.4. Focal Conic Domains

10.4.1. The Analytical Approach: Basic Formulae

In an FCD, the layers are folded around two conjugated lines, viz., an ellipse E and
one branch H of a hyperbola, in such a way that they are everywhere perpendicular to
the straight lines joining any point M′ on the ellipse to any point M′′ on the hyperbola
(Fig. 10.4). Any point M on the line M′M′′ is the orthogonal intersection with this line of
a uniquely defined surface (a “layer”)	M, perpendicular everywhere to the two-parameter
family (the congruence) of lines M′M′′. All parallel surfaces	M orthogonal to M′M′′ have
the same centers of curvature, M′ and M′′. The curvatures | σ ′ | = 1/M′′M or | σ ′′ | =
1/M′′M become infinitely large when M approaches either M′ or M′′. Correspondingly,
the 	M’s are singular on M′ and M′′, where the energy density grows without limit. We
shall prove that each layer is the (common) envelope of a set of spheres centered on E or H,
and it is characterized by a scalar parameter r .

Let E and H be a set of mutually cofocal ellipse and hyperbola, located in two perpen-
dicular planes, and let the equation of the ellipse be, in standard notations,

z = 0,
x2

a2
+ y2

b2
= 1 (10.5a)

M

M’

M’’

ellipse

hyperbola

Figure 10.4. General geometrical aspect of an FCD. The line M′M′′ is the direction perpendicular to
the layer at point M.
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(the semiminor axis-length b should not be confused with a Burgers vector). The equation
of its cofocal hyperbola H then reads as

y = 0,
x2

a2 − b2
− z2

b2
= 1. (10.5b)

Let M′(x ′, y′, 0) be a point on E and M′′(x ′′, 0, z′′) be a point on H, and let us parameterize
the conics in the usual way:

M′
{

x ′ = a cos u,
y′ = b sin u,

0 ≤ u < 2π,

M′′
{

x ′′ = ±c cosh v,
z′′ = b sinh v,

−∞ ≤ v ≤ ∞,

where c2 = a2 − b2. The ± signs refer to one or the other branch of the hyperbola. In the
sequel, we adopt the + sign. The length M′M′′ is

M′M′′ = � = | a cosh v − c cos u | = | ex ′ − e−1x ′′ |, (10.6)

where e = c/a is the eccentricity of the ellipse.
Let us now consider a point M on the line M′M′′ and introduce the signed lengths

r ′ = MM′, r ′′ = MM′′. For the sake of clarity, we shall always orient the line from M′ to
M′′, i.e. from E to H, so that

� = r ′′ − r ′.

Now, we introduce the parameter r , defined for M′M′′ oriented as above, as

r ′ = ex ′ − r; r ′′ = e−1x ′′ − r. (10.7)

To each value of r is attached a surface 	(r), and it is easy to show that M′M′′ is perpen-
dicular to 	(r) at M. Let indeed

Sr (M
′) ≡ (X − x ′)2 + (Y − y′)2 + Z2 − r ′2 = 0 (10.8a)

be the equation of a sphere centered in M′ and passing through M, and similarly,

Sr (M
′′) ≡ (X − x ′′)2 + Y 2 + (Z − z′′)2 − r ′′2 = 0 (10.8b)
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be the equation of a sphere centered in M′′ and passing through M. The set of spheres
Sr (M′) envelop a surface that is precisely 	(r). Indeed, the point of contact of Sr (M′)
with its envelope belongs at the same time to Sr (M′) and to the derived surface:

dSr (M′)
dM′ ≡ dSr

dx ′ = ∂Sr

∂x ′ + ∂y′

∂x ′
∂Sr

∂y′ = y′X + (e2 − 1)x ′Y − ey′r = 0, (10.9)

and it is a matter of simple algebra to show that M belongs to the intersection of Sr (M′) and
dSr (M′)

dM′ . M obviously also belongs to the intersection of Sr (M′′) and dSr (M′′)
dM′′ . Therefore,

	(r) is the locus of the common envelope to Sr (M′) and Sr (M′′), and M′ and M′′ are
its centers of curvature at M. 	(r) is a surface that is everywhere perpendicular to the
line joining any point M′ on E to any point M′′ on H: It is therefore the surface we are
looking for. Also, 	(r) is a cyclide (i.e., its lines of curvature are circles), because the
complete contact of each Sr (M′) [respectively, Sr (M′′)] with 	(r) is the circle Cr (M′)
[respectively, Cr (M′′)] along which Sr (M′) [respectively Sr (M′′)] and d Sr (M′)

dx ′ [respectively
d Sr (M′′)

dx ′′ ] intersect.
Note also that M′ is the vertex of a cone of revolution whose basis is Cr (M′) and that

lies on H; reciprocally, M′′ is the vertex of a cone of revolution whose basis is Cr (M′′) and
that lies on E.

10.4.2. Different Species of Focal Conic Domains

Fig. 10.4 illustrated the case when the physical layer intersects the line M′M′′ between M′
and M′′. According to the theory of congruences of straight lines, the centers of curvature
of the cyclide in M are M′ and M′′, which are on the focal lines. In this illustration, the
curvatures σ ′ and σ ′′ are of opposite signs, and the cyclide is therefore hyperbolic in M
(saddle point), see Fig. 5.5b. Depending on the location of the point M and on the Gaussian
curvature of layers, one can distinguish different types of FCDs (Fig. 10.5).

10.4.2.1. Focal Conic Domain of the First Species (FCD-I)

If the physical part of the layer is located between M′ and M′′, one gets a focal conic
domain of the first species (FCD-I) (Fig. 10.5a). This geometry yields σ ′σ ′′ < 0. Dupin
cyclides in a FCD-I show features varying with the position of M on the segment M′M′′;
either 	M ends on the ellipse on two point singularities (layer marked 1 in Fig. 10.5a),
	M is free of singularities and looks like a deformed half-torus (layer 2), or it ends on the
hyperbola and has the form of a spheroid limited to its σ ′σ ′′ < 0 part, with two conical
indentations along the hyperbola (layer 3). One sees that in an FCD-I, the ellipse and the
branch of hyperbola are both line defects and thus both visible.

Different projections of an FCD-I observed in polarizing microscopy obey Darboux
theorem, which states that the orthogonal projections on any plane of a pair of conjugate
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Figure 10.5. FCDs of (a) the first species (FCD-I); (b) second species (FCD-II); (c) third species
(FCD-III).
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(a) (b) (c)

Figure 10.6. Darboux’ theorem: projections of FCD-I observed in polarizing microscope: (a) in the
plane of the ellipse; (b) in any plane; (c) in the plane of the hyperbola.

ellipse and hyperbola are at right angles; compare Figs. 10.2 and 10.6. The experimental
observations of FCDs fit remarkably well with this property and bring, thus, a further proof
to the Friedel’s geometrical model.

Analytically, for FCD-I, r ′ < 0 and r ′′ > 0. Hence, r obeys the inequality

c cos u < r < a cosh v. (10.10)

The whole set of r-values for the complete FCD-I (appearing in Fig. 10.5a) is in the range
[−c,+∞[. Special values of r correspond to the following situations:

r = −c; the Dupin cyclide is reduced to a point that is the apex of the ellipse opposite
to the physical branch of the hyperbola.

−c < r < +c; the Dupin cyclide has two singular points on the ellipse (obtained for
r ′ = 0) and none on the hyperbola, layer 1 in Fig. 10.5a.

c < r < a; the Dupin cyclide has no singular points; the complete cyclide, i.e., made
of the σ ′σ ′′ < 0 and σ ′σ ′′ > 0 parts, is homotopic to a torus, layer 2 in Fig. 10.5a. The
mean Dupin cyclide r2

0 = ac is very special: According to a conjecture due to Willmore,
the complete cyclide r0 (a toroidal surface) is an absolute minimum of the curvature energy
1
2κ

∫
(σ ′ + σ ′′)2 d	.

r > a; singular points on the hyperbola only, layer 3 in Fig. 10.5a.

10.4.2.2. Focal Conic Domain of the Second Species (FCD-II)

FCD-IIs are of positive Gaussian curvature, r ′r ′′ > 0. A FCD-II is obtained when the phys-
ical part of the normal to 	M is located along the half-line with origin in M′ (Fig. 10.5b).
In that case, the cyclides look like rugby balls, with two conical cusps located on the hy-
perbola. The ellipse is now virtual, and only the hyperbola is visible under the microscope.
The stacking of the cyclides can fill the entire space.

Analytically, we have r ′ < 0 and r ′′ < 0, because the point M is located outside
of M′M′′ and the directions of MM′ and MM′′ are opposite to the direction of M′M′′.
Therefore, along a given normal (u, v), the following inequality holds:

r > a cosh v, (10.11)
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and the whole set of r-values for the complete FCD-II domain is in the range [a,+∞]. For
r = a, the Dupin cyclide is reduced to the apex F of the branch of H, which is physical.

10.4.2.3. Focal Conic Domain of the Third Species (FCD-III)

FCD-IIIs are formed by cyclides with both positive and negative Gaussian curvature
(Fig. 10.5c).

10.4.2.4. Useful Formulae

In all three cases, the following formulae for principal curvatures defined through the re-
ciprocal radii of curvature are useful:

σ ′ = 1

r ′ = 1

c cos u − r
; σ ′′ = 1

r ′′ = 1

a cosh v − r
. (10.12)

FCD- I FCD-II

δv M

δu M

Figure 10.7. Infinitesimal elements of surface d	 of a Dupin cyclide in the case of FCD-I and FCD-II.
d	 = | δv || δu |.
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Note also that the infinitesimal element of surface d	(r) = AB du dv of the 	(r)
cyclide can be expressed as the function of the principal curvatures (Fig. 10.7). Consider an
infinitesimal variation δu of u along the line of principal curvature labeled by a constant v.
M is displaced from M to M + δuM, and M′ from M′ to M′ + δuM′; r ′ is modified, but M′′
and r ′′ stay fixed. We have

A du = | δuM | =
∣∣∣∣ δu

(
r ′

�
M′M

)∣∣∣∣ = ± bσ ′′

σ − σ ′′ du, B dv = ± bσ ′

σ ′ − σ ′′ dv.

Hence,

d 	(r) = b2| σ ′σ ′′ |
(σ ′ − σ ′′)2

du dv. (10.13)

10.5. Curvature Energy of FCDs

The curvature energy of an FCD is defined as the integral over the FCDs volume of the
energy density f associated with the mean and Gaussian curvatures of layers:

f = 1
2 K (σ ′ + σ ′′)2 + Kσ ′σ ′′. (10.14)

It is convenient to split the integral into two parts:

W =
∫

f d	 dr = W1 + W2, (10.15)

W1 = ∓ 1
2 K b2

∫
σ ′σ ′′ du dv dr

= ∓ 1
2 K (1 − e2)a

∫
du dv dρ

(e cos u − ρ)(cosh v − ρ) , (10.16a)

W2 = ∓(K + 2K )b2
∫
σ ′2σ ′′2 du dv dr

(σ ′ − σ ′′)2

= ∓�(1 − e2)a
∫

du dv dρ

(cosh v − e cos u)2
, (10.16b)

where � = K + 2K , ρ = r/a, e is the eccentricity, and a is the semimajor axis of the
ellipse; the upper signs correspond to FCD-I, and the lower signs correspond to FCD-II.
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Note that the K - and the K -term both contribute to the “topology,” because they appear in
W2, which is an integral of the Gauss–Bonnet type.

10.5.1. FCD-I: Negative Gaussian Curvature

The W2 term can be easily integrated in the range c cos u < r < a cosh v, 0 ≤ u <

2π,−∞ ≤ v ≤ ∞ and be given an exact form:

W2 = −4π�a(1 − e2)K(e2), (10.17)

where K(x) = ∫ 1
0

dt√
(1−t2)(1−xt2)

is the complete elliptic integral of the first kind. W2 is

negative when � is positive, a fact that is always ensured if K > −2K . Note that for the
free energy density (10.14) to be positive-definite for the lamellar phase, K must be within
the range −2K ≤ K < 0, which also means 0 < � ≤ 2K (K is always positive).

The W1 term is singular near the ellipse and hyperbola, where r → c cos u and
r → a cosh u. The phenomenological elastic theory should not be applied in these re-
gions, and one has to restrict the region of integration by a cutoff length, called the core
radius. Assume that the core radius does not depend on the layer (i.e., does not depend on
r):

rcutoff = a cosh v − rc near the hyperbola,

rcutoff = c cos u + rc near the ellipse.

This assumption is obviously greatly oversimplifying the situation. For example, it does
not take into account that the layers that intersect the hyperbola far from the ellipse show
practically no singularity. Furthermore, near the defect cores, the layers might suffer dila-
tion; for a critical discussion, see Fournier.17

Integration over ρ splits W1 into the singular W1-sing and nonsingular W1-non sing parts:

W1-sing = 4πK a(1 − e2)K(e2) ln
a

rc
, (10.18a)

W1-non sing = 4πK a(1 − e2)K(e2) ln
(

2
√

1 − e2
)
, (10.18b)

where rc is typically of the order of the repeat distance of the layers. A specific core energy,
which cannot be calculated with (10.14) at hands, should be added: W1-sing → W1-sing +
Wcore, where Wcore is proportional to the length of the defect. We omit Wcore. In some
cases, this omission can be justified by the fact that the parameter rc can be renormalized
to adsorb Wcore into W1-sing.

17J.B. Fournier, Phys. Rev. E 50, 2868 (1993).
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The total FCD-I curvature energy W = W1-non sing + W1-sing + W2, expressed as the
function of the semimajor axis a and the eccentricity 0 ≤ e < 1, adopts a compact form:18

W = 4πa(1 − e2)K(e2)

[
K ln

2a
√

1 − e2

rc
−�

]
; (10.19)

notice that a
√

1 − e2 = b, where b is the semiminor axis; � = 2K + K .
The dependence W (K ) is clear: The larger K is, the smaller the energy is; the reason

is simply the negative sign of the Gaussian curvature of Dupin cyclides in an FCD-I. A
further remark concerns the sum of the two nonsingular terms W1-nonsing+W2 at a = const.
When � increases, the coordinate of the minimum of the sum shifts from e → 1 to e → 0
(Fig. 10.8). The tendency of W1-nonsing + W2 to reach a minimum at small eccentricity
e → 0 is, of course, in competition with the increase of W1-sing at e → 0. Thus, the
minimum of curvature energy can be achieved at e substantially different from 1 only
when the domains are extremely small, a/rc ∼ 10, and when the saddle-splay constant
is close to its upper limit K = 0 set by the requirement of a positive-definite value of
f in (10.14). Generally, for a reasonably large domain, a/rc > 10, the curvature energy
becomes minimum only at e → 1. However, it would be a mistake to conclude that an
FCD-I tends to increase its eccentricity as much as possible on the grounds of (10.19). In
real samples, the FCDs are rarely isolated; their elastic energy is only a part of the total
energy that includes the energy of surface anchoring, dislocations, layers compressions,
and so on, as discussed below.

First, note that the plots in Fig. 10.8 correspond to a = const. The volumes of FCD-Is
with identical a’s but different e’s are obviously different; an increase of e means a de-
crease of the semiminor axis b. Thus, the curvature energies of two FCDs with different
e’s should be compared under additional geometrical constrains. These constrains in con-
crete experimental situations involve the finite size of the system and, thus, require one to
consider surface anchoring energies that are usually large in smectic phases.

The second reason that limits e relates to the fact that any FCD-I should match the lay-
ers in the adjacent regions. Because of their peculiar shape, FCD-Is cannot fill a bounded
piece of space as isolated objects. They have to be embedded in the surrounding matrix
of smectic layers, which might be flat or curved. As understood from Fig. 10.5a, when an
FCD-I of small eccentricity is embedded into a system of flat layers, the tilt of smectic lay-
ers inside the FCD-I (with respect to the horizontal plane) requires a matching dislocation
set outside of the FCD-I. The total Burgers vector of this set equals 2ae. Thus, although
the trend e → 1 is favored by the curvature of layers inside the FCD-I, an opposite trend
e → 0 is favored by the line tension ∼ √

B K ae of dislocations outside of the FCD-I.
The interplay between FCDs and dislocations plays an important role in the structure of
FCDs arrays, such as oily streaks and tilt grain boundaries, discussed later in this chapter.
Overall, the problem of finding an equilibrium e requires consideration of dislocations,
compressibility, and anchoring terms in addition to the curvature energy.

18M. Kleman and O.D. Lavrentovich, Phys. Rev. E61, 1574 (2000).
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Figure 10.8. Energies of FCD-Is vs eccentricity e for different values of the elastic parameter �/K
(indicated by numbers above the curves); normalized units with K = 1 and a = 1. (a) Nonsingular
terms Wnon sing = W1-non sing + W2 vs. e. (b) Total energy W = W1−sing + W1-non sing + W2 vs. e
for FCD-Is of a large (a/rc = 1000, thick lines) and a small size (a/rc = 10, thin lines).

10.5.2. Toric FCD with Negative Gaussian Curvature

The curvature energy (10.19) takes a very simple form for the toric FCD-I, or TFCD, in
which the ellipse degenerates into a circle and the hyperbola is a straight line, e = 0:

W = 2π2a

(
K ln

a

rc
+ K ln 2 −�

)
. (10.20)
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Notice that for �/K = ln 2 ≈ 0.693, the energy is reduced to its singular term. The core
radius is invariant along the circle. For�/K > 1 + ln 2, it is easy to see that W takes some
minimum value for a particular solution of ∂W

∂a = 0:

a ∼ rc exp

(
�

K
− ln 2 − 1

)
. (10.21)

For �/K < 1 + ln 2, the energy W (a) does not have a physical minimum—because ln a
rc

cannot be negative—and the TFCDs are unstable defects, little mobile because of the lattice
friction. This is probably the most general case, whereas the case �/K > 1 + ln 2 should
probably be indicative of a precritical or critical regime, near a phase transition.

10.5.3. Parabolic FCD with Negative Gaussian Curvature

This case has to be treated apart, because it does not follow analytically from the general
case. We summarize the results.

Let P and Q be two running points on two cofocal parabolae (Fig. 10.9):

P




x = 2 f α,
y = 0,

z = − f

2
+ f α2,

Q




x = 0,
y = 2 fβ,

z = f

2
− fβ2.

(10.22)

Here, f is the semiparameter of the parabola; we hope there is no confusion with the same
notation f for the curvature energy density. The distance PQ reads as

PQ = f (1 + α2 + β2), (10.23)

and the radii of curvature (measured along the line oriented from P to Q) are

Rα = PM = 1

σα
= f α2 + f

2
− r,

Rβ = −MQ = 1

σβ
= − fβ2 − f

2
− r,

(10.24)

where −(β2+ 1
2 ) <

r
f < α

2+ 1
2 for the PFCD of the first species (PFCD-I) with σασβ < 0.

Equalities are forbidden because they yield an infinite curvature; the excluded regions near
P and Q are core regions.

Rosenblatt et al.,10 who first observed PFCD-Is, have shown in a series of pictograms
that an PFCD-I extends over all space: The layers are practically planar and perpendicular
to the common axis of the parabolae, at long distance from the foci (| r/ f | � 1). When
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Figure 10.9. PFCD of negative Gaussian curvature (PFCD-I). (a) A part of a nonsingular symmetric
layer (r = 0) wrapped around two parabolae. Lines PQ are normals to the layer. Line 1 crosses
the layer once, whereas line 3 crosses the very same layer three times. (b) Four equidistant layers,
including the symmetric layer labeled by “0.”
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| r/ f | > 1/2, 	(r) cuts one of the parabolae in two points, where the curvature increases
without limit. The layers with | r/ f | < 1/2 have no point singularity: They do not cut the
parabolae, but rather envelop them, forming handles; the Dupin cyclide r = 0 is symmetric
with respect to the plane z = 0, with a twist of π2 when passing from the region z > 0 to the
region z < 0. Using the definition of the cyclides as envelopes of spheres (see (10.8) and
(10.9) above for the general case), we find that the cyclides can be expressed analytically
by the parametric equations:




x = α(p + r − z),
y = β(p − r + z),
z = αx − βy − r.

(10.25)

The element of area d	(r, α, β) reads as

d	 = 4

| σασβ |
dα dβ

(1 + α2 + β2)2
, (10.26)

and the energy of an PFCD-I is of the form:

W = −4�
∫

dα dβ dr

(1 + α2 + β2)2
+ 2K

∫
dα dβp2| σασβ | dr . (10.27)

The full expression of W will not be developed here. It suffices at this point to remark
that:

• The topological term sums up to −4π�p in the continuous limit (p � d) for the layers
| r/ f | < 1/2: Each layer has a topological contribution ∝ (−4π). For | r/ f | ≥ 1/2,
the topological contribution diverges logarithmically with the size 2L of the PFCD-I
measured along the z-axis, which scales (for L larger than f ) like the maximum value
of r . We eventually have

Wtopol ≈ −4π� f

(
1 + 2 ln

2L

f

)
. (10.28)

• The K term yields a nonsingular, finite, contribution for | r/ f | < 1/2, viz.:

WK−non sing = 2π3K f, (10.29)

and a singular contribution for | r/ f | ≥ 1/2. Because the effects of curvature decrease
when r increases, the curvature of those surfaces is certainly not of a large order of
magnitude in the region outside of the core rc. Taking rc constant on segments of
parabolae of the order of f , assuming that the singularities are negligible outside of
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these segments, one expects

WK -non sing ≈ K ln2 f L

r2
c
. (10.30)

Again, the sum of the contributions in (10.28), (10.29), and (10.30) does not take into
account the core energy. A more complete discussion of all those energies is still wanting.

10.5.4. FCD-II: Positive Gaussian Curvature

Let us choose the range of variation r > a cosh v, and introduce also a lower cutoff rc,
related to the maximal value of v on each 	(r) by the relation r = a cosh vmax + rc and
an upper cutoff rmax = +R. This latter condition means that the FCD-II is bounded by
the cyclide parameterized by r = R. Because the layers have positive Gaussian curvature,
this closed surface is of genus zero, with two singular points at opposite points on the
hyperbola. Outside of the FCD-II, the layers adapt to the boundary conditions in various
possible ways (see Problem 10.3).

Let us first calculate the energy of the layer parameterized by r . The ranges of variation
for v and u

1 < cosh v < r/a; 0 < u < 2π. (10.31)

The elastic energy of the layer is split similarly to (10.15):

wr =
∫

f d	 = w1,r +w2,r , (10.32)

with

w1,r = 2πκa2(1 − e2)√
r2 − e2a2

√
r2 − a2

arctanh

{√
r + a

r − a
tanh

[
1

2
arccosh

(
r − rc

a

)]}

w2,r = 4π(2κ + κ)
√

r2 − a2

r2 − e2a2
. (10.33)

In these equations, κ = K d0, κ = K d0, and d0 is the repeat distance of the layers. Expres-
sions in (10.33) have to be integrated in the range rc < r < R, where rc depends on r ; but
the total energy

∫ R
a dr(w1,r +w2,r ) can be suitably evaluated by taking rc = const. The

special simpler case e = 0 is proposed in Problem 10.3. The main result, easy to prove
directly, is that the elastic energy stored in a spherulite (also called an onion) of radius R is

W = 4π�R ≡ 4π(2K + K̄ )R. (10.34)
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10.6. Curvature Defects in Columnar Phases

10.6.1. General Considerations

Call t(r) the unit vector along the physical rod, r being the position. We assume that rods
in the distorted state do not break. This implies, by virtue of the conservation of rod flux,

div t = 0. (10.35)

Because we are considering a situation of pure curvature, the rods are parallel in the
distorted state. We can visualize this property of parallelism on the surfaces 	’s generated
by a one-parameter subset of rods. Such surfaces can be safely defined in the continuous
limit, because the distance a between rods is small compared with their length. On any of
those surfaces, the orthogonal trajectories of a rod are geodesic lines, because these trajec-
tories cut orthogonally a set of parallel rods (this result refers to the property of frontality
of geodesic lines; for a simple and illustrative review of this geometrical concept as well
as of others appearing here and elsewhere in this chapter, see Hilbert and Cohn-Vossen).

Two different surfaces 	i and 	 j intersect along a rod and make a constant angle on
this intersection; this angle is equal to the angle in the undistorted state, as required in a
situation of pure curvature. Here, we use the following:

Joachimstahl theorem, stating that if two surfaces cut at a constant angle along
their intersection, then the intersection is either a line of curvature on both surfaces
or is on none.

If the intersection is not a line of curvature, it is not possible to avoid a certain quantity
of twist q = −t · curl t, which is necessarily attended by elastic distortions, as a detailed
analysis can show. But this is precisely what one wants to avoid. Therefore, the only solu-
tion is when the rod is along a line of curvature on any 	; this implies that the orthogonal
trajectories of the rods are at the same time geodesic lines and lines of curvature. Therefore,
they are planar curves, because being lines of curvature means that their geodesic torsion
must vanish, and being geodesic lines means that their geodesic torsion is equal to their
natural torsion.19 Hence, the rods are perpendicular to a family of planes 	 in a situation
of pure curvature, which also means that each surface 	 is generated by a planar curve
invariable in shape (the geodesic line), moving in such a way that the velocities of all its
points are normal to the planes �, which contains this planar curve. 	 surfaces deserve
to be called Monge’s surfaces, by the name of the famous geometer who studied them in
detail for the first time.20

Figure 10.10 represents two infinitesimally close � planes; D is their straight line of
intersection, which envelops a space curve L when the plane � moves. The infinitesimal

19See Darboux or Hilbert and Cohen-Vossen.
20G. Monge, Applications de l’analyse à la géométrie, Paris, 1807.
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LD

dϕ

ψ

ψ+ dψ

Figure 10.10. Disposition of rods between two infinitesimally close� planes; on each plane, there is
a perfect hexagonal lattice. See text for other details.

L

D

Figure 10.11. Scheme of a developable surface generated by the tangents to a space curve L, the
so-called cuspidal edge of the developable.
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motion of � can be divided in a motion of pure rotation about D, viz. dφ, and a motion
about a normal to� passing through the point of contact of D with L, viz. dψ .

Consider now any column:21 Its center of curvature is on D, and its osculating plane
perpendicular to D. Its curvature is 1

R = | t · curlt | = |dφ/ds |, where s is the curvilinear
abscissa along the column. In what concerns dψ , it is related to the curvature of L at its
point M of contact with D; i.e. 1/ρ = |dψ/dσ |, where σ is the curvilinear abscissa along
L. The osculating plane of L in M is �. Properties of reciprocity exist between L and any
column, viz.

ρ

τ
= −T

R
, (10.36)

where T and τ are, respectively, the torsions of the rod and of L, oriented by the motion
of the � planes. The curvature 1/R of a rod becomes infinite on D, whose locus is, con-
sequently, the curvature defect of the system. This locus is a developable surface that is
the boundary of the domain of existence of rods (Fig. 10.11). We call it a developable
domain.21

10.6.2. Developable Domains

First, let us consider the case when the developable is a circular cylinder of radius a; the
curve L is reduced to a point at infinity in the direction of the generatrices of the cylinder.
Consider a circular section of this cylinder; the planes� cut this section along the tangents
to the circle of radius a, and the rods are evolutes of this circle (Fig. 10.12). Clearly, such
a configuration is that one of a disclination line of strength k = +1, of core radius rc

necessarily larger than a so that we expect an empty core, or at least a core in which the
rods take an orientation entirely different from the orientation outside, for example, parallel
to the generatrix of the cylinder. Such objects are observed in very thin samples of discotic
phases in which rods orient parallel to the surface (Fig. 10.13). The k = 1/2 lines are more
numerous than the k = 1 lines, and it can be shown experimentally that their geometry
is that of a half-core. There is an example of a k = +1 line in Fig. 10.13, but the core is
extended (Problem 10.4); for a more detailed analysis, see Oswald and Kleman.22

Among the other simple developable domains, let us quote that one in which the cus-
pidal edge L is a point at finite distance and the developable is a cone of revolution. It
is possible to show that the columns are spherical curves (the spheres centered on L are
Monge’s surfaces of the problem), which are orthogonal trajectories of a set of great cir-
cles (which are here the geodesic lines of the problem) drawn on the sphere and bitangent
to the intersection of the cone with the sphere (Fig. 10.14). The columns are easily ob-
tained by equispacing, and symmetry about the axis of the core. Notice that the solution

21For a detailed analytical treatment, see M. Kleman, J. de Phys. 41, 737 (1980).
22P. Oswald and M. Kleman, J. Phys. 42, 1461 (1981).
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rc a

θc

Figure 10.12. Cross section of a developable domain equivalent to a disclination of strength unity. a
is the radius of the developable, and rc is the radius of the core. The rods are evolutes of the circle.

Figure 10.13. A thin droplet of a discotic hexagonal phase (C5 hexaalkoxy derivative of triphenylene)
spread on a glass plate shows the appearance of numerous disclination lines of strength of half unity,
which have the geometry of half-developable domains (the columns are partly along evolutes, partly
straight).
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Figure 10.14. A singular point as a developable domain. Columns are along spherical curves joining
one point on a circle of intersection of the sphere with a fixed cone to another point on the other
circle of intersection. Other rods on the same sphere are obtained by axisymmetry. Then, concentric
spheres are to be considered.

can be either right-handed (as in Fig.10.14) or left-handed, which means that it is possible
to define a chirality for a set of columns without twist.

10.6.3. Classification of Developable Domains

By definition, a developable surface D can be developed on the plane P by pure bending
without stretching. In such a mapping, the cuspidal edge becomes a line L in the plane and
the straight lines D (see Fig. 10.11) map on one or the other of the half-infinite segments
D1 and D2 of D bounded by the point of contact M on L.

Lengths and angles are preserved, which implies that the curvatures of L and of L are
the same at corresponding points. Hence, L and L differ only by a torsion function τ(σ ),
which can be chosen at will.

Because any torsion τ(σ ) can be chosen to build L, it is clear that another way of
mapping the developable domain on the plane P is to untwist it (rather than unbend it),
i.e., decrease τ(σ ) in a continuous manner without changing the curvature ρ(σ) until τ(σ )
vanishes. Any intermediary situation in the course of such a process is a developable do-
main that possesses the same representation in the plane P. In particular, the final state in
P is a developable domain in which all planes tangent to S are in P. This also means that
the hexagonal pattern of rods of any plane � maps on the same pattern in P (Fig. 10.15),
whereas each physical rod becomes a straight line perpendicular to P.
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D

D

D

L

Figure 10.15. Representation of a developable domain on P. L is the image of L; each plane � maps
on P. Hexagonal patterns carried by planes � map on a unique hexagonal pattern on P independent
of the choice of�.

Figure 10.16. The convex arc Li , and its forward and reverse end tangents divide the exterior part in
various sectors. Sector 1 is spanned by the forward half-tangents and lifts to one sheet of S; similarly,
for sector 2 (reverse half-tangents), which lifts to another sheet of S.
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Notice that the reality of the analytical process of untwisting does not mean that it is
possible to decrease continuously to zero the energy of a developable domain by a physical
process of that sort, because untwisting is not a conservative process.

Figure 10.15 is drawn for a convex closed curve L. The lifting to the two sheets of the
corresponding developable in space is easy to imagine. The situation is a bit more involved
if L contains asymptotes, points of inflexion, termini. Then, it is necessary to divide L in
simple convex arcs Li and lift each of them. This is represented in Fig. 10.16.

10.7. FCDs in Lyotropic Lamellar Phases: Oily Streaks
and Spherulites

Lyotropic lamellar phases and thermotropic SmAs show different textures of defects, based
in both cases on arrangements of FCDs. Because most of the examples that can be found in
the literature are devoted to thermotropic SmAs, we specialize this section to some special
textures of FCDs more frequently met in lyotropic systems than in thermotropic ones.

10.7.1. Oily Streaks

Oily streaks are the most usual structural defects in lamellar phases, especially of a ly-
otropic type (Fig. 10.17). They appear as long bands with a complex inner structure and

Figure 10.17. Oily streak that contains FCD-Is. The oily streak is a chain of FCD-Is. The gap between
two domains is filled with edge dislocations. CpCl/hexanol/Brine = 14.8/15.2/70. Sample thickness
130 µm. Courtesy P. Boltenhagen.23

23P. Boltenhagen, O.D. Lavrentovich, and M. Kleman, J. Phys. II France 1, 1233 (1991).
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subdivide homogeneous regions with flat layers parallel to the boundaries of the prepara-
tion (so-called homeotropic alignment in case of SmA).

These oily streaks, first described by G. Friedel, are edge dislocations of large Burgers
vectors, comparable to the thickness of the sample. Dislocations of small Burgers vector
appear in the sample as a result of the capillary process of introduction of the chemical
between the glass plates, and gather together after a few hours, to form large Burgers
vector dislocations. As already discussed in Section 9.1.1, the current model assumes that
the oily streak consists of two dislocations with large (sometimes of the order of the sample
thickness) Burgers vectors of opposite signs, see Figs. 11.18 and 11.19. In lyotropic phases,
a large activation energy of a topological nature (two fluid media) prevents the opposite
dislocations from collapse.

The elastic energy stored by the oily streaks is often relaxed by the splitting of the
streak into a series of FCDs; see Colliex et al.24 and Rault25 for other modes of instabili-
ties of oily streaks. The ellipses are in the plane of the observations, with their long axes
transverse to the oily streaks. The topological relations between FCDs and dislocations,
which allow for the splitting in question, will not be discussed at length in this book. We
shall content ourselves with the remark that the singularities in FCDs are of the disclina-
tion type and, as such, are susceptible to interact topologically with dislocations, according
to the rules that are discussed in Chapters 9 and 12. The interested reader may consult
Bourdon26 for a detailed treatment of this question.

The intervals between the FCDs are filled either with the segments of dislocations
(Fig. 10.17) or with FCDs of smaller size. The largest FCDs have geometrical features
that are directly related to the Burgers vector β (here, β = n d0 is a multiple of the Lα
phase repeat distance, not to be confused with the parameter β in PFCDs; most generally,
β = b1 − b2, meaning that the dislocation is the sum of two dislocations of opposite signs
b1,−b2, whose Burgers vectors scale with the size of the sample). The largest FCDs have
a major axis a = (b1 + b2)/2, (i.e., scan the whole dislocation inner region), a minor axis√

b1b2, and an eccentricity e = (b1 + b2)/| b1 − b2 |.
Figure 10.18 illustrates these characters. The plane that contains the ellipse is always

parallel to the layers belonging to the homeotropic region. By refocusing the microscope, it
is possible to follow a line singularity, which lies in the vertical plane containing the major
axis of the ellipse and passes through the focus of the ellipse. This line is one branch of
hyperbola. Between crossed polarizers, the focus of the ellipse is the center of dark brushes
(Fig. 10.17). The domains are FCDs of the first species.

The stability of the FCD splitting of the edge dislocation has been theoretically studied
in Boltenhagen et al.23 There are two major elastic contributions to this stability: (1) For-
mation of FCD-Is decreases the elastic energy because layers’ compression is reduced, and
(2) FCD-Is contain layers with negative Gaussian curvature, which decreases the energy if

24C. Colliex, M. Kleman, and M. Veyssié, Eighth Int. Congress on Electron Microscopy, Camberra, 1, 718
(1974).

25J. Rault, Comptes Rendus Acad. Sci. (Paris) B280, 417 (1975).
26L. Bourdon, M. Kleman, and J. Sommeria, J. de Phys. 43, 77 (1982).
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b1 b2

Figure 10.18. General structure of an oily streak formed by a chain of FCD-Is joined by edge dislo-
cations.

� = 2K + K is positive. An important element in this stability can be in the case illus-
trated in Fig. 10.17 the proximity of the sponge phase, the only region of the phase diagram
where FCD-Is are visible. Surface anchoring (Chapter 13) also influences the stability, as
large FCD-Is require large tilt of layers at the boundaries, see Fig. 10.18.

10.7.2. Spherulites

This is the case when the lamellar phase formed, for example, by CpCl/brine/hexanol
mixture, is near the micellar phase, which is made of globular or rod-shaped micelles.
Observations with the polarizing microscope show textures that differ drastically from typ-
ical textures ever reported for smectic-like phases. One observes birefringent, elongated
domains, located at different levels of the surounding matrix, which is also birefringent
(Fig. 10.19). The meridian cut of the boundary of each of those domains, has the shape of
the intersection of two circles with the same radius R. In these domains the optical axis
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Figure 10.19. FCDs of the second species CpCl/hexanol/Brine = 12.5/7.5/80. Courtesy P.
Boltenhagen (See P. Boltenhagen, O.D. Lavrentovich, and M. Kleman, Phys. Rev. A 46, R1743
(1992).)

is perpendicular to the domain boundary. These observations lead to the conclusion that
these domains are FCDs of the second species (Fig. 10.5b), in which the layers are folded
around two conjugated lines, viz., a circle and a straight line. The circle is virtual, and in
this case, only the straight line is visible under a microscope.

These domains are not stable, and as time elapses, they relax into spherical ones. Dur-
ing this process, the virtual circle is reduced to a point and the number of layers constituting
the domain is conserved.

Contrary to the case of FCD-I, layers in the FCD-IIs have positive Gaussian curvature;
this is probably related to a negative value of K , which has been estimated by several meth-
ods. But it has also been argued (see below) that this is related to the method of preparation
of the sample, which always involves shearing: FCD-IIs being the result of an hydrody-
namic instability. These two origins are not contradictory: In SmAs, shear instabilities
yield PFCD-Is (see Section 10.8).

10.8. Grain Boundaries and Space Filling with FCDs

FCDs have a nontrivial shape that does not tile space. Because they are observed (light
microscopy) to assemble in large scale clusters, the question occurs which rules they obey
when doing so, and how the layers are organized in-between, i.e., at smaller scales. Here,
we consider examples with usual FCD-Is and FCD-IIs.27 The case of TFCD-Is is simple

27M. Kleman, J. de Phys. 38, 1151 (1977).
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Figure 10.20. FCD with a circular base continuously embedded into a set of horizontal flat layers.

because a 2D periodic network of equal TFCDs can fill the space with gaps where the layers
are strictly parallel and planar, which match smoothly with the negative Gaussian curvature
parts of the tori (Fig. 10.20). The case of PFCD-Is has been considered experimentally and
theoretically;10 each PFCD-I fills all space, and the layers are pratically flat (see above) at
some distance of the axis of the parabolae; there is therefore a practically smooth matching
from one PFCD-I to another, as soon as the axes are parallel.

10.8.1. Focal Conic Domains of the First Species

10.8.1.1. Friedel Laws of Association

Usually in a polarizing microscope, one observes not isolated FCDs, but entire ensembles
of domains in contact. These ensembles have been described in great detail by G. Friedel,
who has established the geometrical laws that they obey:1

A domain is said to be complete if all of the layers with negative Gaussian curvature at-
tached to a pair of conjugated conics have physical existence. A complete FCD is bounded
by two semi-infinite cylinders of revolution that have the ellipse as a common basis, and
whose generatrices are parallel to the asymptotes of the hyperbola. Fig. 10.5a shows only
those parts of Dupin cyclides that are within these cylinders. Incomplete domains can be
either closed or fragmented. A closed domain is bounded by two cones of revolution that
have the ellipse as a common basis, and whose vertices are on the physical branch of the
hyperbola, one on each side of the plane of the ellipse usually (e.g., point M′′ in Fig. 10.5a
might be one of the vertices). The largest possible closed domain is obtained by taking the
vertices to infinity on the asymptotes; i.e., it is a complete domain. A domain will be called
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fragmented if the ellipse is not entirely physical. It is then bounded by two sheets of cone
of revolution whose vertices are on the ellipse.

The laws of association that follow have a simple geometric content. As one will real-
ize, they correspond physically to the tendency to fill space by ensuring the continuity of
the layers from one domain to the other, and by preserving a constant thickness of layers.
Of course, these requirements cannot be fulfilled everywhere, and numerous discrepan-
cies are observed. For example, as already stated, PFCD-Is do not stack according to these
laws. But on the whole, they allow for a correct analysis of the stacking of the layers at
large scales, particularly in thermotropic specimens.

The most frequent experimental situation in thermotropic systems is that two FCDs are
tangent to each other along two generatrices, and that the conics carried by these domains
touch each other in pairs; i.e., the pairs of conics either interrupt each other or are tangent
to each other. This observation due to Friedel means that the contact between two FCDs
obeys the “law of corresponding cones,” described below. Alternatively, if two FCDs are
tangent along only one generatrix, it means that the conics they carry do not touch each
other in pairs. Friedel summarizes his findings as follows.

Law of Impenetrability: Two FCDs cannot penetrate each other; if they are in tan-
gential contact at a point M, they are tangent to each other along at least one
generatrix common to two of the bounding cones.

This “law” of impenetrability is of an experimental nature; physically, its meaning is
that the interactions between FCDs are of a steric nature.

Law of Corresponding Cones (LCC): When two conics C1 and C2 belonging to
two different FCDs (FCD1 and FCD2) are in contact at a point M, the two cones of
revolution with common vertex M, which rest on the two other conics C′

1 and C′
2

of the two FCDs, coincide. Therefore, C′
1 and C′

2 have two points of intersection P
and Q on the common cone, and the straight lines PM and QM are two generatrices
along which the two FCDs are in contact.

This law says infinitely more than the former one; it has a physical content, discussed
in the next section, and a geometrical content, which we emphasize now. If two FCDs are
in contact at two points like M and P (to simplify matters, the reader may visualize C1
and C2 as two ellipses, and C′

1 and C′
2 as two hyperbolae (see also Fig. 10.21), but the

result does not depend on such a specialization), then indeed the cones of revolution with
common vertex M and resting, respectively, on C′

1 and C′
2 are identical, because they have

the same axis (the tangent to C1 and C2 at M), and a point in common, point P. Because
they coincide, C′

1 and C′
2, being on the same cone, have two intersections, P and Q. In other

words, two FCDs that have one common generatrix and two contacts on their generating
conics, obey LCC.

LCC leads to the geometrical construction of Fig. 10.21. If two conics are coplanar,
the triples F1, M, F′

2, and F′
1,M,F2, are aligned; F1,F2,F′

1,F
′
2, are the foci of C1 and C2
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Figure 10.21. Law of corresponding cones: (a) 2D view in the plane of the ellipses and a (b) 3D view.

(Problem 10.5). Point A in Fig. 10.21a is the common projection of the two intersections
P and Q of C′

1 and C′
2.

10.8.1.2. Grain Boundaries; Apollonian Packing

If Friedel’s laws are obeyed, and because the layers are everywhere perpendicular to the
generators, they cross the lines of contact between FCDs without singularities. A particu-
lar simple type of grouping of FCDs occurs in grain boundaries (Figs. 10.22 and 23c,d):
Instead of dislocations, as in Fig. 10.23b, the boundary is filled with ellipses of equal ec-
centricities and parallel long axes. The hyperbolae have consequently parallel asymptotes.
The angle between the asymptotes measures the disorientation between the two grains, be-
cause the layers are perpendicular to the asymptotic directions. The “common apex” is at
infinity on both sides, and the domains are complete (Fig. 10.22 and 23c,d).

But many questions subsist. How are the ellipses distributed in size? It is clear that
in order to reduce the area of the boundary that is not occupied by the ellipses, i.e., which
does not belong to any FCD and, consequently, whose energy is not curvature only, one has
to introduce smaller ellipses between the larger ones, in contact with them. This “iterative
filling” has to yield a minimum of the energy of the grain boundary, which requires that the
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Figure 10.22. A grain boundary split into FCDs; hyperbolae are in the plane of the figure and ellipses
are perpendicular to it (Courtesy: Claire Meyer).
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ω
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Π0

Πω
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G

Gωθ / 2

(d)

Figure 10.23. Tilt grain boundaries: (a) curvature wall; (b) dislocations wall; (c) a grain boundary
split into FCDs obeying Friedel’s laws of association; (d) its construction; θ = π − ω.
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local contacts obey Friedel’s laws; the typical size of the non-FCD remaining interstices is
also fixed by the global energy minimization.

This question is discussed in Bidaux et al.28 for a particular simple case of grain bound-
ary: a boundary of vanishing disorientation. The hyperbolae are degenerate to straight lines,
the ellipses are degenerate to circles, and the FCDs are toric. TFCDs built on coplanar tan-
gent circles trivially obey Friedel’s laws. The problem is then reduced to the two following
steps: iteration of a compact packing of circles in a plane (known in mathematics as Apol-
lonius’s problem; at each step of the iteration, the radius of the newly introduced circles,
tangent to the circles that are already present, decreases), calculation of the size of the re-
maining gaps such that the global energy is minimized. The unknowns are: (a) the number
of circles of radius R > b, when the iteration reaches circles of radius b: Let g(b) be this
number; (b) the total perimeter of these circles, P(b); (c) the residual uncovered surface
area, 	(b). Let L be the size of the largest circles; one expects that all relevant quantities
scale algebraically with the dimensionless quantity L/b. We can write:

g(b) = const.

(
L

b

)n

; P(b) = const. b

(
L

b

)n

; 	(b) = const. b2
(

L

b

)n

.

(10.37)

Numerical calculations29 indicate that the exponent n is approximately 1.306. The energy
of the grain boundary can be estimated as follows.

The energy of a TFCD of radius b scales as K b; hence the contribution to the to-
tal energy of the circles of radius R > b scales as Wline ∼ K P(b) = const. K b(L/b)n .
The residual regions are elastically deformed over a distance from the plane of the bound-
ary of order λ = √

K/B, the penetration length; hence, we have Wresid ∼ Bλ	(b) =
const. Bb2λ(L/b)n; B is the compression modulus. After minimization of Wline + Wresid
with respect to b, the value of b at the final iteration is b∗ ∼ √

K/B = λ. The energy
per unit area of the grain boundary is σFCD ∼ L−2(L/b∗)n Bλ2b∗. We leave as an exercise
to the reader to compare this energy with the energy of a curvature wall and the energy
of a wall made of dislocations. We now discuss the applicability of this result to a grain
boundary of nonvanishing disorientation.30

Consider the set of complete FCDs carried by the Apollonius tiling. Its boundary is
made of a set of parallel cylinders of revolution C tangent along common generatrices
G, Fig. 10.23d. Cut this set by a plane �ω at an angle ω/2 with the plane �0 of the
Apollonius tiling. It is easy to show that the set of ellipses Eω of eccentricity eω = sinω/2
at the intersection of �0 and �ω is a valid set of LCC conics. In effect, any cone of
revolution lying on an ellipse has its vertex on the conjugate hyperbola; a cylinder C lying
on a circle belonging to �0 is such a cone; therefore, the asymptotic directions are along

28R. Bidaux, N. Boccara, G. Sarma, L. de Sèze, P.G. de Gennes, and O. Parodi, J. Physique 34, 661 (1973).
29P.B. Thomas and D. Dhar, J. Phys. A: Math. Gen. 27, 2257 (1994).
30M. Kleman and O.D. Lavrentovich, Eur. Phys. J. E 2, 47 (2000).
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G and the direction Gω symmetric to G with respect to �ω taken as a mirror plane. The
half-cylinders of revolution with generatrices G and Gω and resting on the ellipses Eω
are tangent along the same generatrices G as the set of complete FCDs carried by the
Apollonius tiling for the upper half-cylinders and the mirror generatrices Gω for the lower
half-cylinders. Therefore, each complete FCD of the ω-tilt grain boundary is in contact
along two generatrices with its neighboring complete FCDs (Fig. 10.23c) and is in one-to-
one relationship with a complete toric domain belonging to the Apollonius filling.

Equations (10.37) are modified as follows:

g(b) = const.

(
L

b

)n

; P(b) = const.E(e2)(1 − e2)−1/2b

(
L

b

)n

;

	(b) = const.(1 − e2)−1/2b2
(

L

b

)n

, (10.38)

where b is the half-length of the minor axis (the radius of a circle becomes a minor axis in
the mapping); E(x) = ∫ 1

0 (1 − t2)−1/2(1 − xt2)1/2 dt is the complete elliptic integral of
the second kind; the perimeter of the ellipse is 4aE(e2) = 4bE(e2)/ cos ω2 ; e2 = sin2 ω

2 ;

and the ratio of the areas in the mapping is
√

1 − e2 = cos ω2 .
To calculate the wall energy, one needs the expression (10.19) for the curvature energy

W of an isolated FCD-I and an estimate of the core energies. Assume that the core radius
is constant (rc ≈ λ = √

K/B) along the ellipse and that the core energy is equal to K per
unit of line along the ellipse, whereas the total core energy is twice the ellipse core energy;
then the core energy of one confocal pair is roughly 8aK E(e2). Therefore, the wall energy
comprises the following three terms:

Wbulk = −
L∫

x=b

dg(x)W (x)

∼ αb K (1 − e2)1/2

L∫

b

n

(
L

x

)n

dxK(e2)
[
ln 2

x

λ
− 2

]
, (10.39a)

Wcore = −
L∫

x=b

dg(x)wcore(x)

∼ αc K (1 − e2)−1/2E(e2)

L∫

b

n

(
L

x

)n

dx, (10.39b)
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W disl
resid ∼ eBλ	(b) = Bb2λe(1 − e2)−1/2

(
L

b

)n

, (10.39c)

where αb and αc are numerical constants.
Although the establishing of (10.39a,b) is straightforward, (10.39c) needs some com-

ment. The residual regions are pieces of grain boundaries and henceforth must adopt either
a model of a curvature wall (Fig. 10.23a) (when the disorientations ω are large) or of a
dislocation wall (Fig. 10.23b) (when the disorientations are small). Below, we consider
only one scenario, when the energy is relaxed by edge dislocations; the second scenario is
discussed in Problem 10.6.

The very possibility of relaxation by dislocations results from the fact that the singular
lines in a FCD are indeed bent (not straight) disclinations, which according to a general
analysis31 are terminations of dislocations. As shown in Boltenhagen et al.,23 the disloca-
tions that are attached to the ellipse of an isolated FCD characterized by the quantities a and
e have a total Burgers vector 2ae. Assume now that the core of each segment of dislocation
of Burgers vector 2ae is extended over a region of similar size rc = 2a. Such an assumption
is all the more true as the Burgers vector is large, and has the advantage to yield a (small)
dislocation line tensionw that scales as the Burgers vector,32 not as the square of the Burg-
ers vector; i.e., w ∼ Bλae = Bλbe/

√
1 − e2. We have to calculate the total length of such

dislocations, which we do as follows. The area of each connected residual element, at stage
“b” of the iterative filling, between FCDs, scales as ∼ ab. One can convince oneself of this
scaling relation by the consideration of four equal (a, e) ellipses in symmetrical contact
two by two; they enclose a “residual” area equal to (4 − π)ab. Therefore, the number of
connected residual elements scales as ∼ 	(b)/ab = (1 − e2)−1/2b2(L/b)n/ab = (L/b)n.
The length of a segment of dislocation in a connected element scales as ∼ b, hence, a
total residual energy as in (10.39c). Note that this expression yields a vanishing Wresid for
ω = 0, as expected in a realistic model.

Now, minimizing the total energy W = Wbulk + Wcore + W disl
resid with respect to b, one

gets for the minimal b:

b∗
disl

λ
∼ 1

e

n

2 − n

{
αb(1 − e2)K(e2)

[
ln

2b∗
disl

λ
− 2

]
+ αcE(e2)

}
, (10.40)

and for the energy per unit area of wall (with dislocation-relaxed residual areas),

σ disl
FCD(e) ∼ 1

(n − 1)L2

(
L

λ

)n

Bλ3
(
λ

b∗
disl

)n−1

× (1 − e2)−1/2
[

e
b∗

disl

λ
+ αb

n

n − 1
(1 − e2)K(e2)

]
, (10.41)

31J. Friedel and M. Kleman, J. de Phys. 30, C4:43 (1969).
32M. Kleman, Points, lines and walls, John Wiley & Sons, Chichester, 1982.
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Figure 10.24. Elastic energy W (arb. units) of a grain boundary formed by FCD-Is vs. e and log10 y
for αb = 4π , αc = 8, L = 50µm, and λ = 2 nm; y = b/λ.

which obtains from the integration of (10.39a,b), and the insertion of (10.40) in the sum
Wbulk + Wcore + W disl

resid. The value of b∗ for ω = 0 is infinite, and the energy vanishes, as
expected.

Figure 10.24 shows the total energy W for αb = 4π , αc = 8, as a function of the
eccentricity e and the dimensionless variable y = b/λ. It is visible that for each value
of e, i.e., of the disorientation ω, there are two solutions in b/λ that make the derivative
to vanish. The solution with the smaller, microscopic b/λ is a maximum, whereas the
other one is a minimum. This is the valid solution; it varies quickly with e (or ω). The
residual area is large for small disorientations ω, and the energy is small; at ω = 0, the
“residual” area invades the whole boundary. It is only for very large disorientations that the
residual area becomes microscopic, as in the Apollonian model. We leave it as an exercise
to compare the energy of the grain boundary formed by FCD-Is to the energy of dislocation
grain boundary (at small ω) and curvature grain boundary (at large ω) (Problem 10.6).

The FCD model above explains the well-known experimental feature that the residual
areas in smectic grain boundaries are of micron sizes, i.e., macroscopic. The same feature
of large residual areas is met in other types of packing, e.g., at interfaces between a smectic
phase and another phase33 (which might be the isotropic phase of the same smectic com-

33O.D. Lavrentovich, Sov. Phys. JETP 64, 984 (1986); Mol. Cryst. Liq. Cryst. 151, 417 (1987).
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pound34). These interfaces are often observed to be tiled with conics, because of anchoring
properties of the interface. We leave the discussion to Section 13.2.6, where the concept of
surface anchoring is discussed.

10.8.2. Focal Conic Domains of the Second Species

Dense packings of “onions” have been observed in lyotropic Lα phases under shear.35

They subsist after shear ceasing; the size of the onions depends critically on the shear rate.
Consequently, this is not an iterative filling.

Although it is not clear whether iterative space filling of a smectic phase with
spherulites has been observed—various electron microscopy studies of the lyotropic phases
have revealed the presence of packings with spherulites that have different sizes ranging
from macroscopic (a few micrometers) to microscopic (tens and hundreds Angström); e.g.,
in the vicinity of the Lα − L1 phase transition36 or after shaking of a very dilute Lα phase,
it appears interesting to consider such a possibility.

There are some important differences in packing of space with FCD-Is and FCD-IIs.
First of all, an FCD-I with conical shape has volume L × a2 and extends through the
whole sample (length L). A FCD-I often has its base located at the sample surface. This
is why the anisotropy of the surface energy is so important for the scenario with FCD-Is
(Section 13.2.6). In contrast, the FCD-II has a closed shape with characteristic volume a3,
where a might be much smaller than L. Thus, the physical limit for the iteration process is
defined solely by the bulk properties of the lamellar phase.

The largest spherulites have a macroscopic size R � λ (defined, e.g., by the sample
size or by the shear rate) and distort the lamellar matrix. The energy WB of the layer
compressibility outside the spherulites of radius R scales like BλR2 if a mean separation
is larger than R2/λ and like B R3 if the separation is smaller than R (in the latter case,
the dilatation ε of the layers is of the order of unity). These distortions can be relaxed by
smaller FCD-IIs lying in between the large FCD-IIs because the geometry of the FCD-II
implies only curvature deformations and energy ∼ �a. The iteration process will interrupt
at scales a∗ that do no provide a sufficient energy gain when substituting curvature by
dilation. To define a∗, let us introduce the number g of spheres of radius R ≥ a packed
in a volume L3, g ∼ (L/a)γ . The residual volume (that is not occupied by FCD-IIs) is
V (a) ∼ Lγ a3−γ . Then, the total free energy scales as

W (ρ) ∼ �Lγ a1−γ + BLγ a3−γ . (10.42)

Here, γ , contrarily to the Appolonius exponent that is met in the problem of 2D circles
filling, is not a universal constant. But, in some experimental cases (concrete), a relevant

34J.B. Fournier and G. Durand, J. Phys. II France 1, 845 (1991).
35P. Sierro and D. Roux, Phys. Rev. Lett. 78, 1496 (1997).
36P. Boltenhagen, M. Kleman, and O. Lavrentovich, J. de Physique II (France) 4, 1439 (1994).
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Figure 10.25. Fusion of the FCD-IIs centered at points A’s via the FCD-Is ABOC, ACOD, ABOD.

value37 of γ is approximately 2.8. This value yields indeed a minimum of F(ρ) when
� > 0 and a physical limit of iterations:

a∗ ∼ √
(γ − 1)�/(3 − γ )B. (10.43)

Thus, the iterations go down to a very small scale ∼ λ as in the Bidaux et al. model
for FCD-Is filling. It is difficult to imagine some other cutoffs of the iteration because in
balance of the curvature and dilatation elastic terms, the only characteristic length is that
defined by λ.

The space-filling spherulitic state is a (meta)stable one if� = 2K + K is negative and
large enough. The fusion of two neighboring spherulites is hindered by the necessity of
creating an energetically unfavorable “passage” with negative Gaussian curvature between
them (Fig. 10.25).

10.9. Rheophysics of FCDs

Rheological properties are related to the microstructure only when the sample is perfect,
i.e., remains in its ground state of orientational order when put in motion. For example,
if the velocity gradient is perpendicular to the layers (the velocity being in the plane of
the layers), a sheared specimen sees the microstructural viscosity related to the interlayer

37R. Omnès, J. Physique France 46, 139 (1985).
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friction. But even such a simple flow can present instabilities even at very low shear rates.
The nonlinear behavior that then occurs can be related to defects of the related structure,
like dislocations and FCDs. The theory of the onset of these instabilities and of their growth
is a developing field.38,39 Therefore, this section will be mostly devoted to experimental
results. Lyotropic and thermotropic systems show similar behaviors from that point of view
at low frequencies (or low shear rates), but display different textures of defects at high shear
rates.

10.9.1. Global Viscoelastic Behavior and Alignment Under Shear

It is well known that in a linear viscoelastic fluid, the measurement of the low-frequency
dependence of the complex modulus G∗ = G ′ + iG ′′, yields G ′ ≈ ητω2,G ′′ ≈ ηω, where
τ is the longest relaxation time of the material and is related to the molecular relaxation
processes. Such a behavior is, for example, documented in high temperature copolymers,
when the typical relaxation frequencies τ−1 are of the order of a few reciprocal seconds or
more, comparable to frequencies feasible with rheometers. This behavior disappears when
the material is cooled into a macroscopic ordered phase: The relaxation times now depend
on collective modes, and there is no longest relaxation time. G ′(ω),G ′′(ω) plots should
then be related to the structure of the ordered phase.

As shown by Larson et al.,40 this is so for a number of lamellar phases of very different
molecular structures, like that of blockcopolymers PS-PI and thermotropic 8CB. In both
cases, G ′(ω) and G ′′(ω) follow the same way the effect of temperature changes, shear
variations, or duration of shear application. This is interpreted as meaning that different
lamellar samples anneal in similar ways, under a temperature increase or under a long-
continued shear. In other words, whatever the type of specimen, the density of defects is
the leading factor in the viscoelastic properties.

Another global effect of the changes of temperature and shear-rate or shear duration
is the orientation of the sample. According to most authors,41 the lamellar phases align
with the director perpendicular to both the flow and shear-gradient directions (alignment
“a”), at sufficiently low continued shear rates (or low frequencies) and sufficiently high
temperatures. After an intermediary range of shear rates, at which the director is in the
direction of the shear gradient (alignment “c”; the layers are then parallel to the plates), at
higher shear rates, there is again a transition to the “a” orientation. These effects have been
related to the nonlinear interaction of shear with fluctuations.42,43

38S.I. Ben-Abraham and P. Oswald, Mol. Cryst. Liq. Cryst. 94, 383 (1983).
39R. Ribotta and G. Durand, J. Physique 38, 179 (1977).
40R.G. Larson, K.I. Winey, S.S. Patel, H. Watanabe and R. Bruinsma, Rheol Acta 32, 245 (1993).
41see for example K.A. Koppi et al., J. Phys. II (France) 2, 1941 (1992); C.R. Safinya et al. Science 261, 588

(1993); P. Panizza et al., J. Phys. II, France 5, 303 (1995).
42R.F. Bruinsma and C.R. Safinya, Phys. Rev. Lett. A43, 5377 (1991).
43M. Goulian and S.T. Milner, Phys. Rev. Lett. 74, 775 (1995).
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10.9.2. Textures

Textures of lyotropic and thermotropic lamellar phases show relatively different aspects
under shear, even if the principles at the origin of the coupling between shear and fluc-
tuations are the same. This is because, as repeatedly stated, the defects, although of the
same topological nature, have different types of physical realizations. Also, the anchoring
conditions can be of a different nature and oppose strongly or not the bulk effects.

10.9.2.1. Thermotropic Specimens

An homeotropic SmA under shear develops instabilities that transform into a set of PFCD-
Is. For short times of shearing, the texture is disordered, but it eventually aligns in the
direction of shear, forming a regular square lattice, whose period � increases with the sam-
ple thickness. Defect textures can be characterized by the intensity I of light transmitted
through the sample between crossed polarizers; I = 0 for the homogeneous state (direc-
tor is along the wave vector). Figure 10.26 reproduces experimental results44 in 8CB: In
the steady state, the relation between stress and shear rate is linear and of the so-called
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Figure 10.26. Shear-stress plotted against shear rate for various intensities of transmitted light (indi-
cated by numbers, arbitrary units). Quasi-homogeneous sample I = 0; I = 6.5 corresponds to about
80% of the sample containing a disordered texture of PFCDs; curve “max” is the maximum shear
stress measured in function of the applied shear rate. For clarity, most of the actual experimental data
are shown by lines.

44R. Horn and M. Kleman, Ann. Physique 3, 229 (1978).
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Figure 10.27. Model for the flow in a specimen where a network of PFCD-Is has developed under
shear in the central region.

Bingham type; i.e., with a yield stress σY ,

σ = σY + Aγ̇ , (10.44)

where γ̇ is the shear rate and A is a viscosity-like coefficient.
The yield stress σY can be written tentatively, on dimensional grounds, as K/�2. This

expression provides the right order of magnitude, which indicates that σY measures the
resistance of the PFCDs lattice to the flow. In fact, it has been shown by the observation of
dust particles in the flow that the central region of the sample, which is the region where
the layers are most disturbed by the PFCDs, is practically immobile: Most of the flow takes
place near the boundaries45 (Fig. 10.27).

A few experiments carried on parallel anchored samples46 also show that the defects
nucleate at small shear rates or shear frequencies. The essential effect is the nucleation of
two Grandjean-Cano walls of opposite signs, parallel to the boundaries of the sample, and
that relax the disorientation introduced by the shear (Fig. 10.28). These walls are split into
FCDs of the same eccentricity. The continuous shear is presumably matched by a relative
glide of the two sets of FCDs along common generatrices.

10.9.2.2. Lyotropic Specimens

The most spectacular difference between lyotropic and thermotropic textures under shear
is the appearance of spherulites (onions) in the former. Nucleation of these FCD-IIs has
been observed in dilute samples.47 They form dense, regular packings, whose characteristic
length (size R of the onions) is related to the shear rate R ∝ 1/

√
γ̇ . The fact that some

dilute lyotropic materials prefer FCD-IIs (onions) rather than PFCD-Is above the onset of
the shear instability, which is probably the same in both cases, is not well understood.

45P. Oswald et al., Philos. Mag. A46, 899 (1982).
46C.E. Williams and M. Kleman, J. Physique 36, C1-315 (1975). J. Marignan, G. Malet, and O. Parodi, Ann.

Physique 3, 221 (1978).
47O. Diat and D. Roux, Langmuir 11, 1392 (1995).
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Figure 10.28. Under shear, a planar sample shows three regions of different orientations [after J.
Marignan et al., Ann. Phys. France 3, 221 (1978)].

Problem 10.1. Prove (10.3).

Answers: Because εikl is antisymmetric with respect to any pair of indices, a contracted product of
the form εikl akl ≡ 0, if akl is symmetric (akl = alk ). Hence, εikl u j,lk ≡ 0. One can therefore write
1
2εiklβl j,k = 1

2εikl (βl j,k + β jl,k) and identify 1
2 (βl j + β jl ) with el j .

Problem 10.2. Prove the relation between the contortion tensor and the density of dislocations
(10.4).

rn

r1

R

a
θ

Figure 10.29. FCD-II, case e = 0. The meridian cut of the domain is the intersection of two circles
with radius R; θ is the angle between the normal to the layer and the plane containing the circle.
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Answers: The demonstration is due to Nye2; see also F.R.N. Nabarro, Theory of Crystal Disloca-
tions, Oxford, 1967, p. 45.

Problem 10.3. Section 10.5.4. is a set of results that require the reader to take a careful look, because
most of the formulae are given with only a few hints for the demonstrations. We propose here an
exercise that completes the list of (observed) cases studied in this section:

Consider a FCD-II of rotational symmetry (e = 0, a = b, a < r < R) (Fig. 10.29).

(a) Show that the principal curvatures and the infinitesimal element of surface can be written as
σ ′ = 1

r , σ ′′ = cos θ
r cos θ−a , d	 = 2πr(r cos θ − a) dθ . Deduce the nonsingular curvature energy

w2,r of the r -layer and the corresponding nonsingular contribution to the total energy of the
FCD-II. Evaluate the core energy in the model of Fig. 10.30. Show that the core energy vanishes
when a → 0. Calculate the total energy of the FCD-II (an “onion”) when a → 0.

(b) Estimate the energy of deformation of the matrix, corresponding to the introduction of the FCD-II
in the homeotropic region (Fig.10.31).

Answers:

(a) The nonsingular part elastic energy of the r -layer is obtained from (10.33) by setting e = 0 as

w2,r = 4π(2κ + κ)
√

1 − a2

r2 , where r = a/| cos θmax | (Fig. 10.29); integration over r yields

W2 =
R∫

a

w2,r

d0
dr = 4π�R




√
1 − a2

R2
− a

R
arccos

a

R


 .

The total energy of the FCD-II reads as W = ∫ R
a
w1,r +w2,r

d0
dr + Wc. By analogy with a nematic

phase with splay, the energy density of the core is of the order of K sin2 ω, where ω is the angle
between the normal to the layer and the defect line. The core energy of the line defect reads as

ω

Figure 10.30. FCD-II core model. In the cone with angle ω, the deformation is of a pure divergence
type.
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Rt

Rl
x

z

Figure 10.31. Deformation of the homeotropic region due to the introduction of a rotationally sym-
metric FCD-II.

Wc ≈ K
∫ R

a+d0/2

a2

r2
dr = K a2 R − a − d0/2

R(a + d0/2)
.

When a → 0, W → 4π�R. This is by far the most often experimentally observed case.

(b) The energy density of this deformation is of the form wB = 1
2 B( ∂u

∂z )
2, where u is the perpen-

dicular displacement (in the z direction) of the layers from their initial position corresponding
to the flat layers. In a very simplified model, u can be taken as u = Rt cos qx cos hy exp(− z

L ),

with q = π
2Rl

and h = π
2Rt

. One finds 1/L = λ(q2 + h2), where λ = √
K/B.

The integration of the energy density relating to the deformation of the matrix over the ranges
−Rl < x < Rl ; −Rt < y < Rt ; −∞ < z <∞ has the form

WB = π2

8
BλR2

t

(
Rt

Rl
+ Rl

Rt

)
.

WB has a minimum when Rl = Rt , i.e, for a spherical domain (onion).

Problem 10.4.

(a) Calculate the energy of a disclination of strength k = 1 in the columnar hexagonal phase, in the
three following cases: (1) hollow core, (2) isotropic core, (3) full core. Hint: the only relevant
bulk energy term is the term of curvature of the columns. The notations below are those of
Fig. 10.12.

(b) Calculate the energy of a disclination of strength k = 1/2 assuming a full core.

(c) Discuss the stability of the k = 1 line relative to its splitting into two k = 1/2 lines (see Oswald
and Kleman22).
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Answers:

(a) k = 1. Let γhc be the surface energy density for a hollow core. One finds

(1) Whc = πK3

2
ln

R2 − a2

r2
c − a2

+ 2πγhcrc,

which must be minimized with respect to rc and a, and must satisfy rc > a.

(2) Whc = πK3

2
ln

R2 − a2

r2
c − a2

+ 2πγi rc + wc,

with wc ≈ �H�T
Tc

, where �H is the enthalpy of transition, Tc is the temperature of transition
to the isotropic liquid, and �T = Tc − T . One gets

a = 0, rc = 1

2wc

(√
γ 2

i + 2wc K3 − γi

)
.

(3) γ = γ0 +�γ sin2 θc; there are two solutions: a = 0, rc = K3
2γ0

and

rc = K3

4(γ0 +�γ) , a = rc

√
γ0 + 2�γ

�γ
.

(b) k = 1/2. There are 2 solutions:

a = 0, rc = K3

γ0(1 + 2/π)+ 2�γ/π

and

rc = K3

8[γ0(1/2 + 2/π)+�γ/2] , a = rc

√
γ0(1/2 + 2/π)+�γ(1 − 1/π)

�γ (1/2 − 1/π)
.

Problem 10.5. (a) Prove the assertion of Section 10.8.1.1 related to the case when the conics C1
and C2 are coplanar; (b) Prove that if two FCDs have only one common generatrix, they are not in
contact along two conics.

Answers: (a) M is the vertex of the common cone of revolution resting on the conics C′
1 and C′

2,
Fig. 10.21. But C′

1 (respectively, C′
2), being conjugate to C1 (respectively, C2), pass through the foci

of C1 (respectively, C2). Therefore, F1MF1
2 and F1

1MF2 are generatrices of the common cone. Note:
The tangent common to C1 and C2 at M is the axis of this cone.

Problem 10.6. Compare the energy of the grain boundary formed by FCD-Is to the energy of (a)
dislocation grain boundary (small ω) and (b) curvature grain boundary (large ω) (Fig. 10.23).
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Answers:

(a) At small disorientation, the dislocation model, which is observed in Grandjean-Cano wedges,
has an energy per unit area of the order of σdisl ≈ Bλe, practically independent of the Burgers
vector (assumed small) of the dislocations. Comparing to

σ disl
FCD ≈ Bλ3

L2
(

L

λ
)n(

λ

b∗ )
n−1,

where λ
b∗ ∼ e, see (10.40), one gets

σdisl

σ disl
FCD

∼
(

Le

λ

)2−n
.

Except for very large samples, the dislocation model is favored at small e.

(b) At large disorientations ω (or small θ = π − ω), the residual regions are filled with curvature
walls. The corresponding contribution is calculated the same way as W disl

resid in (10.39c); it reads
as

W curv
resid ∼ 2Bb2λ

[
1 − eArc cos e√

1 − e2

](
L

b

)n
.

Here, we have used the following exact expression of the curvature wall energy,48 valid for all
angles:

σcurv = 2Bλ

(
tan
θ

2
− θ

2

)
cos

θ

2
,

where θ = π − ω. Minimizing the total energy W = Wbulk + Wcore + W curv
resid with respect to b,

one gets the minimal b

b∗
curv
λ

∼ 1

2
(√

1 − e2 − eArc cos e
) n

2 − n

×
{
αb(1 − e2)K(e2)

[
ln

2b∗
curv
λ

− 2

]
+ αcE(e2)

}
,

and the energy per unit area of the FCD-split wall in which the residual areas are relaxed by the
layers’ curvatures:

σ curv
FCD(e) ∼ 1

(n − 1)L2

(
L

λ

)n
Bλ3

(
λ

b∗
curv

)n−1
[

2b∗
curv
λ

(
1 − e Arc cos e√

1 − e2

)

+ αb
n

n − 1

√
1 − e2K(e2)

]
.

48C. Blanc and M. Kleman, Eur. Phys. Journ. B10, 53 (1999).
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The dependence W on the eccentricity and the ratio b/λ reveals that the residual areas are of
macroscopic size. The dislocation and curvature models of the residual areas in the FCD-split
grain boundary are complementary, the first being favorable at smaller e and the second at larger
e. Finaly, one can compare the energy of the pure curvature wall σcurv ≈ Bλθ3 ≈ Bλ(1−e2)3/2

to the energy of the FCD-split boundary

σ curv
FCD ≈ Bλ3

L2
(

L

λ
)n(

λ

b∗ )
n−1 1

θ
,

with

b∗
λ

→ 12αcn

(2 − n)θ3
,

to see that

σcurv

σ curv
FCD

∼
(

L

λ

)2−n
θ7−3n;

i.e., except for very large samples, the curvature model is favored at large e.

Further Reading

G. Darboux, Théorie Générale des Surfaces, Chelsea Publishing, New York, 1954.

J. D. Ferry, Viscoelastic Properties of Polymers, 3rd edition, John Wiley & Sons, New York, 1980.

G. Friedel, Annales de Physique (Paris) 18, 273 (1922).

D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea Publishing, New York, 1952.

M. Kléman, Points, Lines and Walls, John Wiley & Sons, Chichester, 1983.



C H A P T E R 1 1

Disclinations and Topological Point
Defects. Fluid Relaxation.

Dislocations in crystalline solids are rather simple examples of topological singularities:
The symmetry of translation is broken along a line, and the Burgers vectors of merging
dislocations add up linearly; on the other hand, they are complex physical objects, whose
most important properties relate to irreversible phenomena that attend plastic deformation.

Liquid crystals, which are endowed with continuous symmetries and physical preva-
lence of correlations of orientation over correlations of position, show an amazingly greater
and more complex variety of topological singularities. As in the case of dislocations, the
role of these defects in irreversible phenomena is of physical importance; however, flow
deformation (rheology) is far less understood than is plastic deformation. Note furthermore
that singularities in liquid crystals and, more generally, anisotropic liquids, magnetic sys-
tems, and spin glasses are defects of various dimensionalities, not only line defects, but
also points, walls, and “configurations” (walls, topological solitons).

Dislocations of rotation, more usually called disclinations, are line defects along which
a symmetry of rotation is broken. These defects are most common in uniaxial nematics
(Fig. 11.1) and in all fluid media with directors (like cholesterics, biaxial nematics, etc.).
Other topological defects in uniaxial nematics are point defects. Unlike their namesakes in
solid crystals (which are not topological defects), they distort order in the whole volume
of the system. Disclinations can in principle be classified by the elements of rotational
symmetry of the ordered medium. Keeping with the definition and construction of defects
inspired by the Volterra process for dislocations (Chapter 8), it is easy to figure out the
type of distortion they carry when the rotation vector � (the analog of the Burgers vec-
tor; � = ��; �2 = 1) is along the line.1 These lines are wedge disclinations in nematics
(Section 11.1.1). In contrast, the construction of disclinations whose lines are not parallel
to � (e.g., twist disclinations in nematics; Section 11.1.3) does not result from a “bare”
Volterra process. Excellent drawings of the Volterra process for wedge and twist disclina-
tions in solids that can be found in the literature2 illustrate this difficulty. A discussion of

1F.C. Frank, Disc. Faraday Soc. 25, 19 (1958).
2W.F. Harris, Disclinations, Scientific American 237, 130 (1977).
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Figure 11.1. Thin and thick disclination lines and singular point (white arrow) as seen in the bulk of
a nematic slab under the polarizing microscope.

this question can be skipped in the first reading, and we delay it to Section 11.3. The notion
of continuous dislocation density, introduced in Chapter 10, sheds here some light. Other
methods, of a very unifying topological nature, are required for a thorough understand-
ing of disclinations with a nonsingular core (Sections 11.1.2 and 11.2.3) and for singular
points; these methods encompass defects of all dimensionalities and are applicable to all
ordered media. They will be studied in detail in Chapter 12.

11.1. Lines and Points in Uniaxial Nematics:
Static Properties

11.1.1. Wedge Disclinations in Nematics

A wedge disclination in a solid can be constructed with the help of the Volterra process,
wedge meaning here that the axis of rotation is along the disclination line (Fig. 11.2).
Although such an object is conceptually possible, there is little chance to find an isolated
wedge disclination experimentally because of the considerable elastic energy that it would
carry.

Twist disclinations, whose axis of rotation is perpendicular to the line, are even more
difficult to construct, even conceptually, as already mentioned. Henceforth, disclinations
in solids exist only in the form of pairs of opposite sign interacting at short distances.
We have mentioned the existence of such pairs in the Frank and Kasper phases and their
possible existence in amorphous media. In both cases, the disclinations of opposite signs
form interlinked networks.
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Figure 11.2. A π-wedge disclination in a solid.

(a) (b )

(c)
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Figure 11.3. Volterra process and Burgers circuit for a wedge disclination k = −1/2 in a nematic:
(a) cut surface � at a line L, (b) opening of the lips of � by an angle π and introduction of extra
matter, (c) elastic relaxation, (d) the Burgers circuit γ and its hodograph �.
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In liquid crystals, disclinations are standard objects. Figure 11.3 illustrates the Volterra
construction of a wedge line of angle π in a nematic. One recognizes the cut surface�, the
angle π between its opened lips, the introduction of perfect matter in the dihedral angle,
and eventually the final elastic relaxation. The strength k of a wedge disclination line is the
ratio k = α/2π , where α is the angle by which the director rotates after the traversal of the
Burgers circuit surrounding the line (Fig. 11.3d). It is also, with sign, the angle by which the
lips of� have been opened. The sign of α is determined by the comparison of the traveling
directions along the Burgers circuit and the hodograph � of the directors (Fig. 11.3d). Let
us consider a (oriented) Burgers circuit γ on which one chooses an arbitrary origin M; each
director n that is met when traversing γ is now parallel-transported to an origin O. The set
of extremities traverses a circular arc of angle α, oriented according to the construction.
This is the hodograph � (see also Section 8.3 and Fig. 8.6). In the example of Fig. 11.3,
� and γ are oriented in opposite directions, hence, the minus sign attached to the strength
k: Although the orientation of the Burgers circuit γ is arbitrary, the sign of k is not. Thus,
Fig.11.3 shows construction of a disclination of strength k = − 1

2 . The same result holds if
one takes opposite vectors in Fig. 11.3d. Notice that a wedge of matter has been introduced
during the Volterra process. Contrarywise, the line k = + 1

2 is built by removing a wedge
of matter.

Examples of wedge disclinations are pictured in Fig. 11.4; all strengths are a multi-
ple of ± 1

2 . The reader will convince oneself as an exercise that the strengths of all these
lines can be obtained by the construction of the hodographs of the directors. Notice also
addition rules: two parallel lines k = + 1

2 and k = − 1
2 add, at a distance, to k = 0 (use

the hodograph method). The hodograph method always provides a way of measuring the
strength k of wedge lines whatever it may be, whereas the Volterra process does not have
a clear meaning for lines of high strength | k | ≥ 1.

The defect configurations in Fig. 11.4 are 2D (n is confined to planes perpendicular to
the disclination axis) and twistless. This planar model has been used by Frank1 to calculate
the elastic energies of disclinations, under the assumption K1 = K3 = K . The director
components write

nx = cosϕ, ny = sin ϕ, nz = 0, (11.1)

where ϕ is a function of the Cartesian coordinates x, y, or the polar coordinates r, θ .
The Euler–Lagrange equation coincides with the 2D Laplace’s equation of electro-

statics:

	ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= 0, (11.2a)

which writes in polar coordinates (r, θ) as

1

r

∂

∂r

(
r
∂ϕ

∂r

)
+ 1

r2

∂2ϕ

∂θ2
= 0. (11.2b)
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k=1/2, c=π/4 k=1/2, c=0 k=3/2, c=0

k=1, c=0 k=1, c=π/4 k=1, c=π/2

k=−1, c=π/2 k=2, c=π/4 k=−2, c=π/4

Figure 11.4. Director configurations nx = cos(kθ + c), ny = sin(kθ + c) for wedge disclinations of
different strength k and constant c; θ = arctan(y/x).

We look for its singular solutions, which are of two types:

ϕ = Aθ + B(r, θ), ϕ = C ln r + D(r, θ), (11.3)

where B and D are harmonic functions; A and C are constants. We are interested in the first
type of solution, which yields dislocations of rotation. Note that the second one describes a
rotation of the director infinitely repeated when traversing a direction θ = const. We must
have, by virtue of the hodograph rule,

∮
dϕ = 2πk, (11.4)
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where the integral is taken along any circuit surrounding the origin. Hence,

A ≡ k, (11.5)

where k is an odd or even multiple of ± 1
2 . The reader will easily check that the solution

ϕ = kθ + B(θ, r) (11.6)

fulfills all of the topological requirements for a disclination at the origin; it is also required
that B(θ, r) is a harmonic regular function at the origin. The energy per unit length of line
1
2 K

∫
(∇ϕ)2 dx dy is

W = πK k2 ln
R

rc
+ Wc, (11.7)

where rc and Wc are the radius and the energy of the disclination “core.” This expression
is totally similar to the expression for the energy of a screw dislocation in solids, and it
calls for the same comments. The 2D anisotropic case (K1 �= K3) should yield a similar
expression, with K = K (K1, K3) being a function of K1 and K3. Note that the K24 and
K13 energies (5.4) of the planar lines are identically zero. The k2 coefficient indicates that
the out-of-the-core energy of a k = ±1 line is twice as large as the sum of the energies of
two k = ± 1

2 lines; therefore, a k = ±1 line in the Frank model is expected to split into a
pair of k = ± 1

2 lines.
The core contribution cannot be studied within the Frank–Oseen elastic approach, as

the director gradients are too large. In the simplest model, one can assume that the core
preserves uniaxial order and that the amplitude s of the order parameter decreases to 0
over a correlation length ξ ∼ rc. A complete calculation of the variation of s is possible, in
the framework of the Ginzburg–Landau theory, for instance. The limitation of such types
of calculation is that the Ginzburg–Landau model is valid essentially when the typical
gradients ∇s < s/ξ . In the case of stronger gradients, ab initio calculations are preferable.

In the model of an isotropic core, s(r → 0) → 0, the radius rc can be roughly esti-
mated as follows. We take kB(TN I − T ) as an energy estimate per degree of freedom, TN I

being the clearing point. Because the number of degrees of freedom is proportional to the
number of molecules, Wc scales as r2

c : Wc ∼ kB(TN I − T )πr2
c ρNA/M, where ρ is the

mass density of the nematic, M is the molecular mass, and NA is the Avogadro’s number.
Minimization of the total energy (11.7) yields

rc ∼ k

√
M K

ρNAkB(TN I − T )
,Wc ∼ πk2K . (11.8)
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Figure 11.5. Biaxial core structure of the core of a disclination k = 1/2. Redrawn from Lyuksyutov.3

Therefore, rc is typically of the order of ξ , i.e., a few molecular lengths in the nematic
phase; when T → TN I , rc diverges.

The second model of the disclination core lifts the restriction on uniaxiality and allows
for a biaxial order. The order parameter of the nematic liquid crystal, as discussed in Chap-

ter 3, is a symmetric traceless second-order tensor Q. Uniaxial order corresponds to the

case when the two eigenvalues of Q are degenerate. Generally, all three are different and

Qi j = s
(

ni n j − 1
3δi j

)
+ p(li l j − mi m j ), (11.9)

where n, l,m = n × l is the set of orthogonal unit directors and p is the “biaxiality param-
eter”: p = 0 in the uniaxial phase; see (3.3). Strong distortions at the core may relax by
varying both s and p instead of keeping s = 0 and p = 0. The biaxial core model is shown
in Fig. 11.5. Far away from the core, the nematic is uniaxial, s �= 0, p = 0. The order is
also uniaxial right at the center, with the local optical axis along the line. The two uniaxial
regions are separated by a biaxial ring.3

11.1.2. Nonsingular Disclinations

The result above according to which k = ± 1
2 lines are less energetic than are any other

lines, and the k2 behavior of the elastic energy, suggests that “half-integer” disclination

3I.F. Lyuksyutov, Zh. Eksp. Teor. Fiz. 75, 358 (1978)/Sov. Phys. JETP 48, 178 (1978); N. Schopol and T.J.
Sluckin, J. Phys. (Fr.) 49, 1097 (1988).
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lines should be frequent and k = ±1 should be rare in uniaxial nematics. The experimental
situation is more subtle, as follows from the observation of the Schlieren textures. We first
discuss the case of SMLCs.

The Schlieren textures are formed when the nematic slab is sandwiched between two
flat glass plates and the director is tangential or slightly tilted at the surfaces. In-plane direc-
tor distortions lead to extinction brushes (see Chapter 3). In tangentially anchored samples,
one observes defects as centers from which two or four brushes emerge. One might sug-
gest that the centers represent the ends of planar disclinations seen from above. Recalling
that an extinction brush marks the region where n is either parallel or perpendicular to the
polarization of the incident light, Section 3.3.3, one easily finds a relationship between | k |
and the number N of brushes pinned at the center:

| k | = N/4. (11.10)

Thus, centers with four brushes can be identified as k = ±1 defects and with two brushes
as k = ± 1

2 disclinations.
The first unexpected feature is that slabs with tangential boundary conditions show

comparable numbers of defects k = ±1 and k = ± 1
2 . Moreover, when the director at the

bounding plates becomes slightly tilted (as a result of temperature-induced “anchoring”
transition), the k = ± 1

2 lines cease to exist as isolated objects and bring about wall defects
(Fig. 11.6b,c). In contrast, the k = ±1 defects survive. The difference stems from the
fact that for tilted surface alignment, the director projection | ns | < 1 onto the surface
does not have the property ns = −ns anymore. Across the wall, ns reorients into −ns ,
through | ns | = 1 at the center of the wall (dotted area in Fig. 11.6c). For k = ±1, the fact
ns �= −ns does not mean much, since ns → ns when going once around the defect.

The second striking difference between k = ±1 and k = ± 1
2 lines, which is also not

foreseen by the planar Frank model, is revealed when one of the plates is gently shifted
(Fig. 11.7). Upon separation in the plane of observation, a pair of centers with N = 2
is always seen as connected by a thin thread (the disclinations core) that strongly scatters
light. In contrast, pairs with N = 4 brushes separate without leaving any visible singularity
between them: The distortions along the imaginary line joining the two centers are fuzzy
and extended in the bulk. The only singularities seem to be two surface point defects.
The shear experiment helps to understand the nature of lines in Fig. 11.1: The “thins” are
k = ± 1

2 (N = 2) lines, whereas the “thicks” are k = ±1 (N = 4) lines. We shall see now
that the thick k = ±1 lines do not fit the planar model at all, as the director configuration
is not planar, at least in SMLC uniaxial nematics.

The wedge disclination k = 1 with a radial n (Fig. 11.8a) can lose its core singularity
by an “escape in the third dimension”:4 At the central axis, n is parallel to the disclination
line, but preserves its radial orientation at the periphery (Fig. 11.8b). This geometry can be
easily observed in a capillary, where perpendicular (= radial) anchoring ensures the pres-

4P.E. Cladis and M. Kleman, J. Physique 33, 591 (1972); R. Meyer, Phil. Mag. 27, 405 (1973).
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Figure 11.6. Nematic Schlieren texture with k = −1 and k = 1/2 defects. Crossed polarizers.
Director surface orientation is tangential in (a) and slightly tilted in (b). Note the wall defect attached
to the k = 1/2 line, marked by an arrow. Scheme (c) shows surface director field for texture (b);
small arrows indicate tilted director. Photos courtesy Yu. A. Nastyshyn.

ence of a k = 1 disclination; the central line is diffuse, and often shows point singularities,
corresponding to transition regions from an escape up to an escape down (Fig. 11.8c).

The escape of the director along the disclination line can remove singularity from the
core of any line with an integer k. In Fig. 11.8, the escape replaces (a) pure splay with
(b) splay-bend. If a disclination were of a circular type (k = 1, c = π/2 in Fig. 11.4),
it could escape by replacing pure bend with twist-bend. In contrast, half-integer lines are
necessarily singular. This result will be made clearer in Chapter 12.
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Figure 11.7. Shear of the Schlieren texture reveals that the centers with two brushes (black arrows)
are the ends of singular thin disclinations, whereas centers with four brushes (white arrows) are just
singular points with no singularity in the bulk.

L
(a) (b) (c)

Figure 11.8. Meridional cuts of a cylinder with a singular (a) and nonsingular escaped k = 1 discli-
nation (b); opposite directions of escape produce singular points, a hyperbolic and radial hedgehogs.
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The elastic energy per unit length of an integer line with an escaped core varies as
K | k |, and it does not depend on the lateral size R of the system (Problem 11.1):

W = 3πK ′| k |, (11.11)

where K ′ is some function of K1, K2, and K3. It is clear that the escape phenomenon is
generally favored (compare 11.11 and 11.7), but might be prevented if the elastic constants
differ too much. In SMLCs, where K1, K2, and K3 are of the same order of magnitude,
the escape is favored, except if R is not much larger than rc (multiplication of lines with
isotropic core near the clearing point).

In LCPs, however, K1, K2, and K3 can be much different, and the nature of the distor-
sion (i.e., the predominance of splay, twist, or bend) plays a major role. When K3 > K1,
which is true for some LCPs, especially lyotropic solutions of hard rod particles,5 and
many SMLCs, the energy of the radial escaped configuration writes (Problem 11.1) as

W = πK1

(
2 + arcsinβ

β
√

1 − β2

)
, β = √

1 − K1/K3, (11.12)

and is smaller than the energy of the radial singular line W = πK1 ln(R/rc) + Wc for
reasonably large R/rc and not very large K3/K1 (Fig. 11.9). But in the nematic phase of
rigid polymers, if K3/K1 � 1, a singular integer line can be favored over an escaped one.

5 10 15 20 25

15

20

25

30
W K1

singular

escaped

K3 K1

/

/

Figure 11.9. Line tensions of a radial k = 1 disclinations vs. K3/K1 for the singular planar configu-
ration, W/K1 = π ln(R/rc) (straight line, R/rc = 103) and for the escaped configuration (11.12).

5S.D. Lee and R.B. Meyer, J. Chem. Phys. 84, 3443 (1986).
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Because singular k = ±1 lines are unstable against splitting into k = ± 1
2 disclinations,

one expects to observe most frequently those later, which is verified.

11.1.3. Twist Disclinations

Twist disclinations occur when following the director about a Burgers circuit enclosing the
line, n is viewed as continuously rotating about a direction � perpendicular to the line. In
principle, this definition restricts twist geometries to configurations in which the director
remains in a plane orthogonal to the rotation direction (Fig. 11.10) or at a constant angle
to its normal. Clearly, twist disclinations are favored when the twist modulus K2 is smaller
than K1 and K3 (Problem 11.2). Since this is often the case in SMLCs, the consideration
of twist disclinations is of some physical importance.

However, there is no clearcut distinction in topological status between a twist line and
a wedge line, and it is possible to pass continuously from one to the other (Fig. 12.15). This
points already to the insufficiencies of the hodograph method in measuring the strength of
a line when it is not a planar configuration. A generalization is as follows (Bouligand):
Attach to each point of the circuit the director that meets it at that point, and consider
the ribbon formed by the circuit and those attached directors. This is a Möbius ribbon
(which has only one side) when |k| = 1/2; i.e., when the total rotation is ±π . Note that
because the mirror image of a Möbius ribbon is not equal to the original, the chirality of
the ribbon reflects a nonscalar property of the disclination (Fig. 11.10). More will be said
in Chapter 12 about these topics.

Figure 11.10. Disclination line with a π-twist of the director. Invariance of the Möbius strip k = 1/2
with the position of the strip.
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11.1.4. Defect Lines in LCPs

The differences between disclination lines in LCPs and in SMLCs alluded to above extend
to the core structure. Clear experimental data for the core structure of twist | k | = 1

2 lines
and wedge k = − 1

2 lines have been obtained for colloidal solutions of tobacco mosaic
virus (TMV) by freeze-fracture microscopy. The twist disclination core is small, of the
order of a virus length, and the virus particles reorient abruptly by π/2 at the core. On the
other hand, core of the wedge line is large (several virus lengths), the rod-like particles are
seen oriented along the disclination line,6 and they twist out to a direction perpendicular to
the core alignment, in such a way that the overall configuration has a well-defined three-
fold symmetry, as expected from the standard model of a k = − 1

2 . Similar conclusions
follow from optical microscopy observations7 of a main-chain polyester nematic phase:
The k = − 1

2 wedge lines show, even at that scale, a three-fold symmetry, and a mobility
lower than that of the k = + 1

2 wedge lines, whose optical contrast is different. It was
concluded in that investigation that the k = − 1

2 wedge lines obey the same model as for the
TMV case, whereas the molecules in the core of the k = + 1

2 wedge lines are perpendicular
to the core direction. Because one expects the rotational diffusivity Drot ∼ K/η to be much
smaller than the translational diffusivity Dtrans ∼ η/ρ (η being a viscosity and ρ a mass
density), this could also explain the difference in mobility. Monte-Carlo simulations of
k = − 1

2 wedge lines in polymers clearly show a biaxial ring at the disclination core8 and a
three-fold symmetry; the details depend strongly on the ratio of the elastic constants, which
is determined by the length-to-diameter ratio of the rod-like molecules.

11.1.5. Singular Points

Singular points form either in the bulk (Figs. 11.1 and 11.8c) or at the surfaces (Fig. 11.7).
Point defects in the bulk are called “hedgehogs,” whereas point defects at the surface are
called “boojums”; the reason for this terminology will become clear in Chapter 13. A
practical way to observe bulk and surface point defects is to disperse nematic droplets
in an isotropic fluid (such as glycerol or water) (Fig.11.13). As will be discussed in
Sect. 13.2.5, point defects occur in the equilibrium state of these droplets due to boundary
conditions and topological constraints. Point defects can spread into disclination loops
(Fig. 11.11).

The energy of singular points scales as K ′′ R, where R is a macroscopic length (for
example, the distance between successive singular points along a disclination line) and
K ′′ is some combination of the Frank coefficients depending on the geometry. The Frank

6J.A.N. Zasadzinski, M.J. Sammon, R.B. Meyer, M. Cahoon, and D.L.D. Caspar, Mol. Cryst. Liq. Cryst. 138,
211 (1986).

7G. Mazelet and M. Kleman, Polymer 27 (1986) 714–720.
8S.D. Hudson and R.G. Larson, Phys. Rev. Lett. 70, 2916 (1993).
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(a ) (b)

Figure 11.11. (a) A point defect-radial hedgehog in a uniaxial nematic spreads into (b) a disclination
loop.

energy density, which scales like K ′′
r2 , does not diverge on the core:

∫ R

rc

K ′′

r2
r2 dr ∼ K ′′(R − rc). (11.13)

However, the core exists physically, because topologically there is now way to escape the
singularity and preserve uniaxial order. Assume indeed that the core is a sphere of radius
rc (at least of the order of a molecular length) with a constant energy density ε > 0 (either
isotropic or biaxial9). Minimizing the total energy, one gets r2

c ∼ K ′′/4πε, and a total
energy for the singular point Wp = K ′′(R − 2rc

3 ), i.e., smaller than K ′′R.
So far, all calculations neglected the divergence elastic terms (see Chapter 5). These

terms become important when the deformations are not planar. This is the case of in-
teger disclinations with an escaped core, and this is the case of point defects. For ex-
ample, the elastic energy of a “radial” n = (x, y, z)/

√
x2 + y2 + z2 and a “hyperbolic”

n = (−x,−y, z)/
√

x2 + y2 + z2 hedgehogs reads as, respectively,

Wr = 8πR(K1 − K24) and Wh = 8πR

(
K1

5
+ 2K3

15
+ K24

3

)
; (11.14)

K13 is assumed to be zero. Note the difference in the sign of the K24 term. Difference in the
elastic constants might be an important factor in the stability of hedgehogs vs disclination
loops.10

9E. Penzenstadler and H.-R. Trebin, J. Phys. France 50, 1027 (1989).
10H. Mori and H. Nakanishi, J. Phys. Soc. Japan 57, 1281 (1988); O.D. Lavrentovich, T. Ishikawa, and E.M.

Terentjev, Mol. Cryst. Liq. Cryst. 299, 301 (1997).
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11.1.6. Confinement-Induced Twists

In the next section, we will discuss cholesteric phase, which is, loosely speaking, a twisted
version of the nematic phase. It is of interest to discuss twist deformations that occur in
the confined nematic samples, even when there is no chemical chirality of the molecules.
A pure twist can be produced by placing a nonchiral nematic liquid crystal between two
parallel rubbed solid surfaces and then rotating one plate in its own plane. Such a structure
is optically active; The twist is maintained by the surface “azimuthal” anchoring.

One would expect that when n is allowed to rotate in the plane of one of the plates (no
azimuthal anchoring), the twist and optical activity would disappear. Surprisingly, this is
not what one can observe by placing a nematic droplet on a rubbed plate and letting the
upper nematic surface free: The sessile droplets demonstrate significant optical activity.11

The phenomenon can be explained if one takes into account that the free surface of a
sessile drop is usually curved. Thickness gradients produce an in-plane aligning torque,
even when the sample is bounded by isotropic media which is called the “geometrical
anchoring” effect.12 For example, the wedge profile shown in Fig. 11.12b forces n to align
normally to the thickness gradient (say, along y-axis in Fig. 11.12b) in order to reduce the
elastic energy of splay. When one of the plates is rubbed along any direction different from
y, competition between the geometrical and physicochemical easy axes can result in twist.

To show this, let us calculate the energy per unit area of the wedge, neglecting director
distortions in the plane of the cell. We parameterize the director through the polar angle θ
and the azimuthal angle ϕ as (nx , ny, nz) = [sin θ(z) cosϕ(z), sin θ(z) sinϕ(z), cos θ(z)].
At the bottom plate, θ(z = 0) = π/2 and ϕ(z = 0) = 0. The director is tangential to the
upper surface. If the two bounding surfaces were parallel, then in equilibrium θ(z) = π/2
and ϕ(z) = 0 (Fig. 11.12a). Suppose now that the upper surface is tilted around the y-
axis by an angle γ (Fig. 11.12b). The polar angle θ(z = d) now depends on γ and on the
azimuthal parameter ϕ0, which is the angle between n and a fixed axis x ′ in the inclined
upper plane: θ(z = d) = arccos(sin γ cosϕ0). Small deviations from the uniform state,
θ(z)→ π/2+θ1(z) and ϕ(z)→ 0+ϕ1(z), lead to the free energy density f = 1

2 K1θ
2
1,z +

1
2 K2ϕ

2
1,z . The bulk equilibrium equations, θ1,zz = 0 and ϕ1,zz = 0, together with the

boundary conditions above, lead to the energy per unit area12

F = K1

2d
[arcsin(sin γ cosϕ0)]2 + K2

2d

[
arctan

(
tanϕ0

cos γ

)]2

.

According to the last equation, the equilibrium azimuthal angle at the upper surface can
be nonzero (Fig. 11.12c). It implies twist and hence optical activity of the sessile droplet.
The twist angle increases as the ratio K2/K1 decreases so that the effect may be strongly

11D. Meyerhofer, A. Sussman, and R. Williams, J. Appl. Phys. 43, 3685 (1972).
12O.D. Lavrentovich, Phys. Rev. A 46, R722 (1992).
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Figure 11.12. (a) Tangentially aligned nematic liquid crystal confined between two plates; the bottom
plate is rubbed; the top plate is isotropic. (b) The tilt γ of the upper plate tends to reorient the director
normally to the plane of the figure and results in twist; (c) Elastic energy vs azimuthal angle at the
top surface for different γ and K2/K1.

pronounced for nematic polymers such as PBG, where the ratio K2/K1 can be as small as
0.1 or even smaller.

Twist relaxation of splay and bend is a general phenomenon in materials with small
K2. The well-known example is the periodic pattern of stripes that occur in the geometry of
splay Frederiks transition in polymer nematics with a small (less than 0.33) ratio K2/K1.
A field applied normally to the planar nematic cell causes stripe structures13 composed
mostly of twist rather than of a uniform splay response observed in regular materials.

Especially clear demonstration of twist relaxation is given by tangentially anchored
spherical nematic droplets suspended in an isotropic matrix (glycerin) (Fig. 11.13). The

13F. Lonberg and R.B. Meyer, Phys. Rev. Lett. 55, 718 (1985).
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Figure 11.13. Double-twisted nematic droplets suspended in an isotropic matrix. (a) The central part
of the largest droplet is bright when the axis is along one of the crossed polarizers (white bars)
and (b) dark when the polarizer and analyzer are not crossed at right angle. The droplet is thus
optically active due to the director twist. The insert shows the director configuration at the droplet’s
surface. Nematic n-butoxyphenyl ester of nonylhydrobenzoic acid dispersed in glycerin. Volovik and
Lavrentovich, Zh. Eksp. Teor. Fiz. 85, 1997 (1983) [Sov. Phys. JETP 58, 1159 (1983)].

director lines join two point defects, boojums, at the poles of the droplet. However, instead
of a naive picture of pure splay and bend, with lines being meridians that lie in the planes of
constant azimuth, one observes a twisted structure. The director lines are tilted with respect
to the meridional planes. This tilt decreases as one approaches the axis of the droplet. Each
droplet is thus twisted and optically active despite the nonchiral nature of the molecules of
both the nematic and the matrix. Of course, there is an equal number of “left”-handed and
“right”-handed droplets in the dispersion.

The droplets in Fig. 11.13 present in fact a double-twist rather than a simple unidi-
rectional twist. Double-twist is discussed in Section 11.2.2 in relation to the saddle-splay
modulus K24.
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11.2. Cholesterics

The director field in the ground state of chiral phases is nonuniform because molecular in-
teractions lack inversion symmetry. The cholesteric phase in which the director n is twisted
into a helix is the simplest in the broad variety of spatially distorted chiral structures. Spa-
tial scale of background deformations, e.g., the pitch p of the helix, is normally much larger
(p ≥ 0.1µm) than is the molecular size because the interactions that break the inversion
symmetry are weak. The twisted ground state of chiral liquid crystals willingly accepts
additional deformations imposed by external fields, by surface interactions, or by a ten-
dency of molecules to form smectic layers, hexagonal order, or double-twist arrangements.
Very often, such additional deformations result in topological defects. In this chapter, we
discuss basic properties of defects such as disclinations and dislocations in pure cholester-
ics. More can be learned from Chapter 12 on topological properties. Even at the simplest
level, the subject of defects in cholesterics is more complicated than in uniaxial nematics,
as the properties of defects and deformations at scales smaller than p and larger than p are
different.

11.2.1. Elastic Theory at Different Scales

There are two complementary approaches to describe distortions in the cholesteric phase,
depending on the ratio L/p, where L is the characteristic scale of the deformations or the
size of the liquid crystal sample. We distinguish weakly twisted cholesterics (L/p 	 1)
and strongly twisted (L/p � 1) cholesterics. The elasticity of weakly twisted cholesterics
is described by (5.3). Any weak deformation | ∇n | 	 qo should show the same charac-
ters as in a nematic. In other words, there is little difference between a slightly twisted
nematic and a cholesteric observed on a scale smaller than the pitch. And indeed optical
observations of large pitch cholesterics in samples of size L < p reveal thick and thin
disclinations, as in nematics, Fig. 11.1.

The cholesteric characteristics prevail at larger scales L � p. These characteristics
fall into two categories: the layered structure (of periodicity p/2), which entails properties
analog to those of smectics; and the existence of a local trihedron of directors as in biaxial
nematics. One therefore might expect at the same time dislocations, focal conic domains
(see Chapter 10), and three types of disclinations. This happens to be true, but the actual
situation is somewhat more subtle, as we will see in Section 11.2.3.

At L � p, the elastic properties of the cholesteric layered structure have been tenta-
tively described within the framework used for the lamellar phases (Chapter 5). Here again,
two different situations are possible. First, the cholesteric “layers” might be only slightly
bent and preserve the topology of flat surfaces. The free energy density describing layers
dilatation and small tilts writes in terms of the displacement field u(x, y, z)

f = 1

2
K

(
∂2u

∂x2
+ ∂2u

∂y2

)2

+ 1

2
B

[(
∂u

∂z

)
− 1

2

(
∂u

∂x

)2

− 1

2

(
∂u

∂y

)2
]2

, (11.15)
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where one introduces renormalized constants B = K2q2
0 and K = 3

8 K3; this coarse-grain
model is called the de Gennes–Lubensky model.

When deviations from the flat geometry are substantial, it is more appropriate to use
the principal curvatures σ1 and σ2 of the layers:

f = 1
2 K (σ1 + σ2)

2 + 1
2 Bγ 2, (11.16)

where γ = | p − p0 |/p0 is a relative dilatation. In the coarse-grained picture, the curvature
energy scales as Fc ∼ K L, whereas the dilatation energy scales as Fp ∼ BL3; hence,
Fp/Fc ∼ (L/p)2 � 1. In other words, at L/p � 1, the theory treats the cholesteric
medium as a system of equidistant (and thus parallel) layers with predominantly curvature
distortions. Generally, the boundary conditions can be satisfied only by the appearance of
large-scale defects, such as FCDs and oily streaks.

11.2.2. Weak Twist Deformations: Double Twist

One may inquire about the meaning of the K24 term in a weakly twisted cholesteric; the so-
lution is in the double-twist tendency of cholesterics.14 Let n0 be some director, e.g., along
the axis Z (see Fig. 2.28). In the local state of the smallest energy, the chiral molecules in
the vicinity of n0 tend to rotate helically along all of the directions perpendicular to n0.
This double-twist is energetically preferable than is the one-dimensional twist, at least for
some chiral materials.

In cylindrical coordinates, the elementary double-twist configuration writes as

nr = 0, nθ = − sinψ(r), nz = cosψ(r), (11.17)

with ψ(0) = 0. The free energy is

f = 1

2
K2

(
qo − ∂ψ

∂r
− 1

r
sinψ cosψ

)2

+ 1

2
K3

sin4 ψ

r2
− K24

r

d

dr
(sin2 ψ). (11.18)

There is no K13 term, because div n ≡ 0. Integrating f , we see that K24 term contributes
to the energy of a cylinder of matter of radius R by the quantity

F24 = −K24

R∫

0

2π
d

dr
(sin2 ψ) dr = −2πK24 sin2 ψ(R), (11.19)

which is negative for any value of ψ(R) �= πn, when K24 is positive. Nucleation of a
double-twisted cholesteric geometry is favored in such a case, in particular when K1 is

14M. Kleman, J. Phys. (Paris) 46, 1193 (1985); J. Phys. Lett. 46, L-723 (1985).
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large compared with K3. Double-twist can be found in nonsingular disclinations of strength
k = 2 in cholesteric spherulites (often observed in biopolymers) that are discussed later.

Another example with double twist is met in the chromosome of a microscopic al-
gae, Prorocentrum Micans (dinoflagellate chromosomes).15 As proposed in Kleman,16 the
structure contains two k = 1

2 disclinations that rotate helically about the chromosome axis.
The double-twist geometry has a limited size, beyond which double twist decreases and
frustrations in the system become too large. The layers have a negative Gaussian curva-
ture. This geometry is favored over the spherulitic geometry, probably when K1 is smaller
than K3, because the k = 1

2 lines cause splay.
At last, if K24 is positive and very large, the cylindrical geometry can become stable

versus the cholesteric phase: This is the origin of the blue phases (BPs). In Fig. 2.28, as
the distance from the z-axis increases, the cholesteric cylindrical shells become flatter and
the double twist smoothly disappears. The director far-field distribution becomes closer
to the one-dimensional twist of the usual cholesteric phase; the energy gain is reduced.
Thus, the double twist cannot be extended over the whole 3D space. A typical radius
of the energy-gaining cylindrical region about the n0 axis is the half-pitch p/2. (This is
the reason why we discuss the double twist as a weakly twisted structure; the situation
should not be confused with the fact that the BPs usually occur in materials with a short
submicron pitch). Now, these cylinders of finite radius cannot tile space continuously. Ac-
cording to the current models of BPs, this frustration is relieved by disclinations, either
regularly distributed or in disorder. Figure 2.28 illustrates how three cylinders of double
twist generate a singularity in the region where they merge. A word of caution should be
said about the interpretations of planar disclination lines as a source of saddle splay. There
is no K24 nor K13 contribution to the elastic energy of a straight planar disclination, as al-
ready indicated in Section 11.1.1. Both terms vanish when the energy density is integrated
over the azimuthal angle around the disclination core. A nonvanishing saddle-splay energy
may come from the regions where the disclinations cross or from point defects if such are
present.

The blue phases of types BPI and BPII are modeled as regular networks of disclinations
with periodicity of the order of p. Indeed, the 3D periodic structure of these phases is
revealed in their nonzero shear moduli, ability to grow well-faceted monocrystals, and
Bragg reflection in the visible part of the spectrum (which is natural because p is of the
order of a few tenths of a micron). The third identified phase, BPIII, that normally occurs
between the isotropic melt and BPII, is less understood. It might be a melted array of
disclinations. Note that although most blue phases have been observed in thermotropic
systems, double-twist geometries are relatively frequently met in textures of biological
polymers, like DNA.

DNA, polypeptides (such as PBG mentioned above) and polysaccharides (such as xan-
than), and many other biological and nonbiological polymers have a definite handedness
due to the chiral centers. Rod-like long molecules of these materials in water solutions

15F. Livolant and Y. Bouligand, Chromosoma 80, 97 (1980).
16M. Kleman, Physica Scripta T19, 565 (1987).
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Figure 11.14. Coexistence of twist and close hexagonal packing in a system of chiral rods that form
a twist grain boundary phase with lattices of screw dislocations; unidirectional twist perpendicular
to the plane of the figure.

often crystallize into a hexagonal columnar phase so that the cross section normal to the
rods reveals a triangular lattice. Because the polymers are chiral, close hexagonal pack-
ing competes with the tendency to twist. Macroscopic twist can proliferate by introducing
screw dislocations into the system, in a way akin to twist grain boundary phases of chiral
smectics. Two types of defect-stabilized phases that combine close packing and twist are
possible.17 One is a polymer tilt grain boundary phase, a direct analog of the twist-grain
boundary phase and a usual cholesteric with a unidirectional twist (Fig. 11.14). Another is
a Moiré grain boundary phase, similar to the blue phases with double twist. In the center
of a cylindrical element, there is a polymer rod; the neighboring polymers twist around
it, preserving the hexagonal close packing; the cylinders are packed together thanks to the
honeycomb lattice of screw dislocations.

11.2.3. Disclinations λ τ , and χ

At large scales, the cholesteric order is specified by three mutually perpendicular directors:
� along the local direction defined by the molecules, � along the helix axis, and � = �×�.
One can immediately envision that there would be three classes, which we denote Cλ, Cτ ,
and Cχ , of half-integer disclinations, that correspond to π rotations of two out of three
directors around the disclination’s core. For example, Cλ or λ lines relate to rotations of �
and �, whereas � remains nonsingular and oriented along the disclination line (Fig. 11.15).
Furthermore, there should be a class, call it C0, of integer-strength disclinations with 2 π-
rotations. Unlike their uniaxial nematic counterparts, these lines cannot escape into the
third dimension. Really, if one of the three directors is escaped, as in Fig. 11.8b, two others
still remain singular. It is only when the disclinations carries 4π rotation, i.e., | k | = 2,

17R.D. Kamien and D.R. Nelson, Phys. Rev. E53, 650 (1996).
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(a) (b)

(c) (d)

λ(−1/2)

λ(1)τ(−1/2)

λ(−1/2)λ(1/2)

Figure 11.15. Disclinations λ and τ in the cholesteric phase.

it becomes topologically unstable and can be continuously transformed into a uniform
cholesteric. We denote this class C0.

The striking difference between 2π (stable) and 4π (unstable) lines will become clear
in Chapter 12, when we discuss disclinations in the biaxial nematics: Both phases have
the same topological classification of defects. The difference between 2π and π (both
stable) lines can be illustrated using χ-lines (no singularity in the �-field) as an example.
Suppose the χ-disclination is perpendicular to equidistant cholesteric layers. When one
approaches the core, the elastic energy ∼ K (∇n)2 increases, until at distances ∼ p, it
becomes comparable to the energy difference ∼ K/p2 between the cholesteric and the
nematic states. At scales smaller than ∼ p, one deals with the nematic order. Therefore, the
2π-lines with integer k should have a thick core of typical diameter ∼ p that is nonsingular
from the nematic point of view: The director is uniform (escaped in third dimension) inside
the cylinder of diameter ∼ p. In contrast, χ-lines with half-integer k are singular both for
the uniaxial nematic and cholesteric order parameters.

The energy of π-disclinations strongly depends on how the trihedron �,�, � is dis-
torted. The three directors bear different physical meaning and different distortion energy.
Only � is a real director, whereas � the � are “immaterial” directors; singularities Cτ and
Cχ would be generally more costly than would Cλ. The core size of λ-disclinations is
of a radius p (“thick” lines) (Fig. 11.15a,b,d), whereas the core of τ -disclinations (“thin”
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lines) is of molecular size (or somehow larger, as discussed above) (Fig. 11.15c). The line
tensions thus differ by an amount ∼ K ln p

a , where a is of the order of (1-10) molecular
sizes.

Disclinations λ and τ are often observed in the fingerprint textures, in which the �-axis
is in the plane of the sample. On the ground of energy estimate above, one would expect
that λ defects are more frequent. However, this analysis might be altered if the cholesteric
phase is biaxial: Then all three directors might have the same energy weight. Cholesteric
textures of biological polymers DNA, PBG, and xanthan show that the λ lines are frequent
indeed.18 On the other hand, the τ lines often appear in pairs with λ lines to replace the χ
disclinations of semiinteger k.

11.2.4. Dislocations

The symmetry of rotations nπ around the �-axis in cholesterics is equivalent to the sym-
metry of translations n(p/2)�. Therefore, the χ disclinations can be equivalently treated
as dislocations,19 with Burgers vector

b = −kp. (11.20)

The values of the Burgers vector are included in Table 11.1, which summarizes the clas-
sification of all line defects in cholesterics. Figure 11.16a pictures a χ(1/2) wedge discli-
nation (� is continuous). It can be constructed by a Volterra process performed along the
line, by opening the cut surface by an angle π : Each cholesteric layer yields a 2D k = 1

2
configuration that rotates helically along the line with a pitch p.

The equivalence demonstrated for screw dislocations vs wedge χ disclinations in
Fig. 11.16a can be extended to edge dislocations (Fig.11.17) vs twist χ disclinations and,
even further, to mixed dislocations and disclinations, for the simple reason that the two
corresponding Volterra processes are the same.

Table 11.1. Volterra classification of defect lines in cholesterics; n is integer.

C0 C0 Cλ Cτ Cχ

b = −2np b = −(2n + 1)p b = −(n + 1
2 )p

λ(2n) λ(2n + 1) λ(n + 1
2 )

τ (2n) τ (2n + 1) τ (n + 1
2 )

χ(2n) χ(2n + 1) χ(n + 1
2 )

18F. Livolant, J. Phys. 47, 1605 (1986).
19Y. Bouligand and M. Kléman, J. Phys. (Fr.) 31, 1041 (1970).
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(a)

(b)

(c)

normal
cross-section

b

b

χ

λ(−1/2) τ(1/2)

Figure 11.16. Equivalence in presentation of χ lines: (a) wedge χ(1/2)-disclination = screw dislo-
cation; (b) χ-twist disclination = edge dislocation; (c) splitting of the core of a dislocation into a pair
of disclinations.

An important property of χ dislocations is their ability to split into combinations of
λ and τ disclinations. For example, a χ line from the class Cχ can split into a pair of
λ and τ lines (classes Cλ and Cτ , respectively). An example is shown in Fig. 11.16b, c:
The core splits into a λ(−1/2) and a τ(1/2) separated by a distance p/4; the Burgers
vector is b = p/2, i.e., twice the distance of pairing. In SMLC cholesterics a b = p/2
line usually splits into a τ(−1/2)λ(1/2) pair. Figure 11.17 shows a split dislocation with
b = p, composed of a λ(−1/2)λ(1/2) pair.

11.2.5. Other Effects of the Layer Structure

11.2.5.1. Focal Conic Domains and Polygonal Textures

The SMLC cholesterics most frequently present domains analog to the FCDs of the first
species in smectics (Chapter 10). The layers have then a negative Gaussian curvature, but
their thickness varies (contrarily to smectics), at the moderate expense of some twist energy
K2. These so-called polygonal textures are less frequent in biopolymers in solution (DNA,
polypeptides, etc), because this twist adds a considerable bend contribution K3, due to
rigidity of the long molecules, and some (not too large) splay K1 (see below).
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Figure 11.17. Confocal-microscope image of a dislocation b = p in the fingerprint cholesteric texture
(� axis in the plane of the sample). Confocal microscope technique allows one to obtain the image
of the director pattern not only in the plane of the sample (top), but also in the vertical cross section
(1, 2, 3) as well (Photos courtesy: D. Voloschenko).

11.2.5.2. Robinson Spherulites

The most rigid cholesteric biopolymers have other types of layer textures, the so-called
Robinson spherulites: The layers are approximatively along concentric spheres (positive
Gaussian curvature). The molecular orientation is necessarily singular, because it is im-
possible to outline a continuous field of directors on a sphere. This statement can be eas-
ily visualized by considering the field of parallels or the field of meridians: Both have a
k = 1 singularity at each pole, and the total strength of these singularities is k = 2 (see
Fig. 11.13 and Section 13.2.5.1). It can be shown that the same total strength character-
izes any field outlined on a sphere. Coming back to the spherulites, note that the surface
singularities must necessarily continue in the bulk, and indeed the observations tell us that
either two radial lines k = 1 or one radial line k = 2 connect the surface to the center of
the sphere.
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Figure 11.18. Cholesteric planar texture with a network of oily streaks. Most of the oily streaks are of
zero total Burgers vector and divide regions of the same color; if the color of two adjacent domains
is different, b �= 0.

11.2.5.3. Oily Streaks

Oily streaks and liquid crystals were discovered simultaneously. In 1888, F. Reinitzer stud-
ied cholesteryl benzoate and noticed elongated “fluid” inclusions in the cholesteric sam-
ple.20 Oily streaks, as FCDs, are common for many lamellar liquid crystals. In a flat cell
with layers paralel to the bounding plates, oily streaks appear as long bands that divide
ideal domains of flat layers (Fig. 11.18). Their inner structure is complicated. According
to G. Friedel’s model,21 oily streaks are made of pairs of edge dislocations of (large) op-
posite Burgers vectors nd, n′d, making a total Burgers vector b = (n − n′) d; here d is
the characteristic interlamellae distance, such as the thickness of a smectic A layer or the
half-pitch in cholesterics. A large Burgers vector dislocation b = n d can further split into
two disclinations of opposite signs, as explained in Chapter 9. The simplest variety of an
oily streak is shown in Fig. 11.19: two parallel k = 1/2 disclinations with a wall between
them. The total Burgers vector is zero. There is no transversal striation so that the Gaussian
curvature is zero everywhere except at the end region (where it is negative). Normally, the
oily streaks do not show free ends and terminate at nodes as in Fig. 11.18; the semicircular
ends might be observed when the oily streaks grow, e.g., under an applied field.

11.3. Beyond the Classic Volterra Process, First Step

The above presentation of defects in nematics and cholesterics starts with the application
of the Volterra process for solids to nematics, but soon forgets it for a more intuitive pre-

20F. Reinitzer, Monatsh. Chem. 9, 421 (1888).
21G. Friedel, Ann. Phys. (Paris) 18, 237 (1922).
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Figure 11.19. An oily streak of zero Burgers vector composed of two disclinations.

sentation, just keeping in mind the Volterra classification by the elements of the symmetry
group. This choice results from a number of drawbacks relating to the application of the
Volterra process to media with continuous symmetries.

We have illustrated Fig. 11.3 the Volterra process for wedge disclinations | k | = 1/2,
but it is difficult to understand how it can be extended to angles equal to or larger than 2π .
Second, twist disclinations cannot be constructed with a Volterra process, except locally.
This later point is well illustrated in the figures of Harris.2 Third, the “escape in the third
dimension” obviously does not come out of the Volterra analysis.

The question therefore arises of whether disclinations are really classified by the ro-
tation vectors of the group of symmetry—this classification is classically related to the
Volterra process—and if they are, how should the Volterra process be modified. The an-
swer is twofold.

1. Keeping in the frame of the Volterra classification, the Volterra process has to be modi-
fied, and the key ingredients to do so are the concepts of continuous dislocation densities
(see Section 10.2) and continuous disclination densities. Such considerations explain
the mobility and flexibility of disclinations as a result of the viscous relaxation of these
densities (J. Friedel), and they are the object of the sections that follow.

2. The Volterra classification of defects has to be revisited, if one wants for instance to in-
clude in a general picture the possible escape of the core, the existence of point defects,
and so on. This extended analysis requires topological considerations, Chapter 12.

11.3.1. Dislocations and Disclinations Densities
in Relation with Disclinations

The following approach was first introduced in Friedel and Kleman.22

22J. Friedel and M. Kleman, J. Phys. Paris, Colloq. 30, C4, 43 (1969); NBS Special Publication 317, 607–636
(1970).
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Figure 11.20. Densities of infinitesimal dislocations. (a) Displacement of a wedge disclination paral-
lel to itself (this sketch assumes for the sake of simplicity that � is small; (b) densities of dislocations
attached to a curved disclination; M is a running point on the cut surface; (c) dislocations and discli-
nations densities.

11.3.1.1. Dislocations Densities

Consider first a straight disclination line L in a nematic, of wedge type, and displace it par-
allel to itself by a distance � (Fig. 11.20a). Assume also that the rotation vector � = ��
does not move during this displacement. In terms of the Volterra process, this is equivalent
to displacing the lips of the cut surface with respect to each other by a supplementary quan-
tity 2 sin �2 (� × �), i.e., introducing a dislocation of Burgers vector b = 2 sin �2 (� × �)
perpendicular to the disclination. In a solid, such a process would require a large energy,
and it is then forbidden. In a nematic, the viscous dispersion of the dislocation into infinites-
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imal defects db relaxes the elastic energy, and it is in fact the process by which � follows
the line to its new position. The movement of a disclination in a liquid is accompanied by
a generic process of emission (absorption) of dislocations.

Consider now a curved disclination line (Fig. 11.20b). Curved lines exist in nematics at
rest, and one also observes lines moving while changing shape. We show that the flexibility
of a nematic disclination is compatible with a � varying in position (but not in direction)
from point to point along L. Consider two points P and Q = P + t ds infinitesimally close
on L. The infinitesimal dislocation introduced by the variation of position of � from P to
Q is, by reasoning on the cut surface as above, equal to

dQ(M)− dP(M) = 2 sin
�

2
(� × QM)− 2 sin

�

2
(� × PM)

= −2 sin
�

2
(� × t) ds, (11.21)

where M is any point on the cut surface. This dislocation can be thought of as attached to
the line. Compared with the result of the usual Volterra process, the new shape of the discli-
nation line is obtained through viscous relaxation of densities of infinitesimal dislocations
db = dQ(M) − dP(M), which are allowed by the symmetry of the nematic phase. This
relaxation optimizes the energy carried by the disclination. The Volterra process defined
in Chapter 8 is not relevant to the present geometry, because it can be performed only if
the rotation vector � is fixed in space. The modified Volterra process, which respects the
variation in position of � along the line, consists in a relative rotation � of the director
from one lip to the other at each point of the cut surface, without a relative displacement of
the two lips.

The same possibilities do not exist for all lines in a cholesteric. It is easy to show
that disclination lines of the λ or τ type must belong to a cholesteric plane and must be
rectilinear, either parallel or perpendicular to the director, as in Fig. 11.15. On the other
hand, χ disclinations can take any shape, due to the existence of continuous translations in
the cholesteric plane and, consequently, of infinitesimal dislocations that can curve χ lines.

Note that the whole set of dislocations densities attached to the curved disclination line
has the same status as the dislocations densities alluded to in Section 10.2. Their knowl-
edge is equivalent to the knowledge of the distortion (contortion) of the director field,
which is not unique and depends on boundary conditions, material constants, and so on.
Dislocations densities can indeed take any shape away from their attachment points on L
(Fig. 11.20b).

11.3.1.2. Disclinations Densities

Assume (Fig. 11.20c) that �P �= �Q(��P �= ��Q). �P and �Q are nearly equal for
two infinitesimally close points P and Q, and one can write | �P × �Q | = sin(dα) ≈ dα.
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The director of a nematic is an axis of infinitesimal rotational symmetry d� = d�n;
the helical axis of a cholesteric is an axis of infinitesimal translation-rotation symmetry
db, d� = −2π

p db. There are no other continuous rotational symmetries in these phases.
We generalize (11.21) to the case when � = π , i.e., for disclinations of minimal strength
in nematics and cholesterics. The product of two π rotations about two different axes is the
sum of a translation [already taken into account in (11.21)] and of a rotation by an angle
2dα about an axis that is perpendicular to �P and �Q and intersects the axes of these
rotations. After some calculation, one obtains d� = 2

π2 �P × �Q (we have defined � =
π�). To leading order, the axis of d� passes through P or Q. Eventually, the difference of
displacement of the cut surface in P and Q can be written as

dQ(M)− dP(M) =
[

d� × PM − 2 sin
�

2
� × t ds

]
, (11.22)

i.e., as the sum of an infinitesimal dislocation db = −2 sin �2 (� × t) ds (as above) and an
infinitesimal disclination d�. Again, in these expressions, � = π .

Let L be a curved line in a nematic, and � everywhere be tangent to L. Because d�
must be along n, the director in the undeformed nematic is perpendicular to the line, which
is therefore locally of a wedge type (Fig. 11.21). Note that the director rotates by an angle∫

dα = 2π when traversing a loop around L (for example, the loop γ in Fig. 11.21).
Therefore, one expects that the surface bounded by the loop L is pierced by a | k | = 1 line,
which in the case of Fig. 11.21 is “escaped.”

Infinitesimal disclinations in cholesterics allowed by symmetry are defects related to
continuous rotations along the �-axis, coupled to continuous translations along the same
direction. These defects, if interacting with a χ disclination line, may transform it by vis-
cous relaxation into a dislocation (Section 11.2.4).

L

γ

Figure 11.21. Closed wedge line in a nematic.
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Figure 11.22. Splitting of a dislocation into two disclinations of opposite signs. The wavy lines stand
for defect densities.

11.3.2. Extension to Finite Dislocations

A λ or τ disclination of strength | k | = 1
2 has to be straight, but a pair of λ or τ discli-

nations of opposite signs � and −� coupled at a short distance d in the same cholesteric
plane and parallel one to the other can take more general shapes, at the expense, however,
of some densities of defects, attached to the lines and extending in the strip region between
the disclinations. These densities are not valid densities from the point of view of the sym-
metries, but they are present only in a limited core region between the lines. The detailed
analysis22 shows that helical shapes are favored. Sections patterns of such pairs are already
illustrated in Fig. 11.16. The general case is schematized in Fig. 11.22. With �×d constant,
the pair is equivalent to a unique dislocation with a Burgers vector

b = 2� × d. (11.23)

Because b is quantified, so is the distance d between the disclinations.
Splitting of χ disclination lines have been observed in Grandjean–Cano wedges (see

Fig. 8.22): One of the disclinations is always a λ; i.e. it does not carry any material sin-
gularity. The first dislocations near the center of the wedge have a small Burgers vector
(b = p/2), whereas b increases for dislocations far from the center.

11.3.3. Core Structure and Physical Properties

Dislocations in solids are impeded in their movement by a (generally anisotropic) lattice
friction, so that under small or even vanishing applied stresses, a dislocation does not stabi-
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lize along a shape of minimal energy. This lattice friction originates from the core structure
(Section 8.5.2). The movement of a disclination is of a different nature. It is related to the
emission-absorption of dislocations, and how this mechanism relates to the core struc-
ture of a mobile disclination. Very little is known on this question. Measurements23 of the
velocity U0 of a nematic twist disclination line under the action of a magnetic field and ob-
servations of the core show that the core reaches a large size of the order of 0.04d, d being
the sample thickness (the line is parallel to the sample boundaries). Such a huge mobile
core implies a considerable reorganization of the director. The large core radius seems to be
in agreement with a model that states that the viscous dissipation, caused by local rotation
of the director, takes place only in the bulk of the material, outside the core region. Other
models, which take into account other dissipation processes (backflow, isothermal relax-
ation of the OP in the core, etc.), yield even larger cores.24 In fact, experiments on moving
disclinations display a number of characteristic lengths attached to the core.25 A simple
dimensionality argument tells us that the length over which any flow vorticity created by
the line movement vanishes is of the order of rv = 2ν/U0, where ν is the kinematic viscos-
ity for fluid motion. We can visualize this production of vorticity as due to the change of
configuration in the core related to the emission-absorption of the density of dislocations,
with rate db/dt ≈ U0. The region of size rv extends in the wake of the disclination, like
a vortex sheet of effective thickness ≈ (νr/U0)

1/2, where 0 < r < rv , if the concept of
emitted-absorbed dislocations is valid. The core of a moving disclination should therefore
be very different from the static core. Furthermore, as suggested by Friedel,26 the core
may show a longitudinal instability. The ratio rv/Rc, where Rc ≈ K/γU0 is the length
above which the director reorientation and the dissipation vanish (Section 11.4.1), is large;
hence, the dislocation mechanism affects a large region. We leave aside the discussion of
other characteristic lengths.

In cholesterics, the emitted-absorbed dislocations may be finite χ dislocations, as no-
ticed by Frank (see Friedel and Kleman [22]). This process is then akin to what would
occur in solids, were the disclinations present in them.

11.4. Dynamical Properties: General Features, Instabilities

How do topological defects such as disclinations and point singularities get into the liq-
uid crystals samples? The causes can be of two categories. First, the defects might exist
as a feature of the equilibrium state of the system, as illustrated by point defects in the
freely suspended nematic droplets, Fig. 11.13. Equilibrium defects can also be generated
by mechanical impurities, air bubbles, etc. For example, a spherical air bubble with per-

23J.A. Geurst, A.M. Spruijt and G.J. Gerritsma, J. Phys. (Paris) 36, 653 (1975).
24O. Parodi, G. Durand, G. Malet, and J.J. Marignan, J. Physique lett. 43, L727 (1982).
25M. Kleman, The relation between core structure and physical properties. In Dislocations 1984, P. Vayssière

& al. eds. Editions du CNRS 1984,1.
26J. Friedel, J. Physique Coll., 40, C3, 45 (1979).
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pendicular director orientation acts as a radial point defect. To keep the total topological
invariants unchanged (see Chapter 12), such a defect should be accompanied by yet another
defect, for example, a hyperbolic defect (a radial-hyperbolic pair is shown in Fig. 11.8c).
To induce the equilibrium topological defects, the liquid crystal droplet (or the mechanical
particle inside the liquid crystal) should be sufficiently large, of the size > K/w, where
w is a characteristic anchoring strength at the surface of the droplet or the particle (see
Chapter 13). Second, the defects can be caused by far-from-equilibrium processes, such as
thermal or pressure quenching of an isotropic fluid into the liquid crystalline state or by
flow of the liquid crystal in the regimes of high Ericksen numbers. These types of defect
production are little understood. Besides obvious fundamental interest, the question is of
practical importance, e.g., for processing of high-strength LCPs that should be well ori-
ented and defect-free. In what follows, we consider flow processes relevant to the problem
of topological defects.

11.4.1. General Features

The Ericksen–Leslie and Harvard models of nematodynamics (Chapter 6) assume that
there are no defects (disclination lines or points) of the order parameter. The models are
therefore well fitted to the description of stationary instabilities close to the thresholds,
when the OP amplitude is not perturbed by the flow, i.e., as long as the Deborah number
De = γ̇ τr 	 1 (6.73). Here, γ̇ is a typical value of the shear rate acting on the sample
and τr is a molecular relaxation time. Stationary instabilities of the director orientation are
observable under the polarizing microscope and have thus been studied in thin samples
steadily sheared between two parallel plates. This is the only geometry that will be alluded
to in this chapter.

Most generally, the behavior of these instabilities is nonlinear above the threshold,
which is often made visible by the appearance of disclinations. As a matter of fact, the
order parameter is broken, in phase and amplitude, along these disclination lines, but this
new situation can be treated theoretically, at least in principle, by the methods developed
for disclinations at rest, extended to dynamical problems; i.e., the hydrodynamics equations
summarized in Section 6.4.2 are still valid outside of the disclinations cores, as long as De
is small enough.

Above De ≈ 0.1, say, whatever the nature of the appearing topological defects, the
Leslie–Ericksen equations are no longer valid, and the amplitude of the OP couples to the
deformation and rotation rates of the director. This regime is reached in LCPs, for which
τr is large, at moderate values of the shear rate. For example, in a poly benzyl (right)
glutamate (PBDG) 13% wt. solution with molecular weight M = 298 000, one finds27

τr ≈ 0.1s; hence, a shear rate as small as γ̇ ≈ 1s−1 suffices to invalidate the Leslie–
Ericksen equations. They are replaced by the Doi molecular theory for polymers.28

27R.G. Larson and D.W. Mead, Liq. Cryst. 15, 151 (1993) and 20, 265 (1996).
28M. Doi and S.F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1986.
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Although it is usual to describe large De situations in function of the value of De,
other nondimensional quantities are in order when the Leslie–Ericksen equations are valid:
The Reynolds number Re = ρUd

η
and the Ericksen number Er = ηUd

K (6.73). Here U is
a characteristic velocity, for example, the velocity of the upper plate with respect to the
lower one, and d is a characteristic length such as the thickness of a sample; K and η are
combinations of Frank moduli and Leslie viscosities. Because γ̇ = U/d is the relevant
shear rate, i.e., the relevant frequency, it is interesting to rewrite Re as Re = τlinγ̇ , and Er
as Er = τangγ̇ , where τlin = ρ

η
d2 is the characteristic time for the propagation of linear

momentum, and τang = η
K d2 is the characteristic time for the propagation of angular mo-

mentum. Note that Re 	 1 for the thin samples under consideration. Because furthermore
the ratio

Re

Er
= τlin

τang
= ρK

η2

is extremely small, it is the director orientation that rules the dynamical processes, and Er
is the relevant number. Remark also that (1) the Ericksen number Er is simultaneously the
ratio of the viscous torque to the elastic Frank torque; (2) in the Doi regime, there is no
Frank elasticity and the Deborah number does not depend on d, hence, no dependence on
the sample thickness in the Doi regime.

In SMLCs, τr ≈ 10−8s, and the Doi dynamical range is not reachable with usual
shear rates. Contrarywise, the Doi dynamical range and the Leslie–Ericksen range are both
visible in LCPs.

11.4.2. Instabilities of Initially Defect-Free Samples

Flows of nematic fluid practically always result in complex 3D director configurations that
ultimately may produce topological defects, regardless of the initial geometry: The director
may be uniformly aligned in the shear plane, or be perpendicular to it (Figs. 6.7 and 6.9
in Chapter 6). The crucial question is how exactly the defects nucleate and develop. There
is no clear answer to this question. Theoretical models give an insight only into the initial
stages of instabilities; most of the new results come from experiments. Below we give a
brief account of data, restricting ourselves to the case when the unperturbed director is in
the shear plane, formed by the velocity and the gradient of velocity. For this geometry, one
distinguishes “flow-aligning” nematics and “tumbling” nematics, according to the value of
the nondissipative coefficient λ, or the sign of the product α2α3 of two Leslie coefficients
(Sections 6.4.2 and 6.5.2).

11.4.2.1. Flow-Aligning Regime, λ2 > 1, α2α3 > 0

The director adopts steady zero-viscous orientation within the shearing plane, which is
close to the flow direction (for rod-like molecules). This is the case of most SMLCs, such
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as 5CB. Flow aligns n along the axis

θ0 = + arctan
√
(λ+ 1)/(λ− 1)

[Fig. 11.23 and (6.75)]. When the nematic is confined between two plates with strong
anchoring the director configuration is determined by the balance of elastic, surface an-
choring and viscous forces, as sketched in Fig. 11.23b. At high Er, the viscous torques are
predominant, and the director adopts constant orientation θ0 almost everywhere, except in

z

n

y

θ0

(a)

(b)

U = 0 U >0

θ0

U >> 0

(c)

vy(z)

Er>103

Figure 11.23. (a) Homogeneous alignment in the shear plane of a flow-aligning nematic along the
direction θ0 = + arctan

√
(λ+ 1)/(λ− 1); (b) director configurations in confined geometry with

strong anchoring (at some easy axis θs) and increasing Ericksen number (increasing velocity of the
upper plate); (c) a possible mechanism of disclination nucleation at surface inhomogeneities.
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(a) (b)

Figure 11.24. A disclination k = 1/2 emits a disclination loop. Redrawn from Y. Bouligand, Physics
of Defects, eds. R. Balian, M. Kleman, J.-P. Poirier, North-Holland, Amsterdam, 1981, p. 665.

the thin boundary layers. Because for many flow-aligning nematics, θ0 is close to π/2,
there is a chance that in the surface region the director would wind around and form a
disclination k = ± 1

2 ; the process can be facilitated by irregularities of the bounding plate
that deviate the local easy axis from the vertical axis z (Fig. 11.23c). Experiments29 indeed
show that thin disclinations in the form of closed loops nucleate at bounding plates, start-
ing with shear rates γ̇ ≈ 1s−1. Interestingly, one can also observe thick lines forming in
the bulk of the sample.30 Once a disclination nucleates, it can emit other disclination loops
(Fig. 11.24). The loops elongate in the flow and tumble; at γ̇ ≈ 10s−1, the entire field of
view is covered with a mesh-like network of interacting lines. When the shear ceases, the
network relaxes by shortening and by collapsing into point defects.

11.4.2.2. Tumbling Regime, λ2 < 1, α2α3 < 0

This is the case of some nematic SMLCs at temperatures close to the smectic phase (such
as 8CB; Section 6.5.2), and this is the case of all LCPs, in accordance with Doi theory. If
the director is in the shear plane, it has to rotate with the rate proportional to the sheart rate
γ̇ [see (6.74a)]:

dθ/dt = γ̇ (α3 sin2 θ − α2 cos2 θ)/γ1, (11.24)

29D.J. Graziano and M.R. Mackley, Mol. Cryst. Liq. Cryst. 106, 103 (1984).
30P.T. Mather, D.S. Pearson, and R.G. Larson, Liq. Cryst. 20, 527 (1996).
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Er~10 Er >10U <UcEr~1

θm

U >Uc U >>Uc

θm

Figure 11.25. Initial stages of instability in a tumbling nematic; see text.

thus, no stationary state in the absence of elastic distortions. Of course, the idea that n re-
mains in the shear plane is only an assumption. Its validity depends on elastic (especially,
K2) and viscous parameters. Direct comparison of flow-aligning 5CB and tumbling ne-
matic 8CB shows that at a given Ericksen number, the steady-state density of disclinations
is about an order of magnitude higher in 8CB.31

Qualitatively, development of director distortions under increasing velocity U of the
upper plate (equivalently, the Ericksen number) is illustrated in Fig. 11.25. First, at Er ∼ 1,
the elastic torques are capable of stabilizing the director in a steady regime with some
maximum tilt angle θm < π/2 in the midplane; θm increases with U . In the flow-aligning
nematic, θm would reach a stationary value θ0 < π/2. In the tumbling nematic, when
the viscous torques overcome the stabilizing elastic torques, there is no stable stationary
value of θm . When U passes some critical velocity Uc, θm abruptly becomes larger than
π/2. The transition occurs at Er ∼ 10 and is reminiscent of the first-order phase transition
(Fig. 11.26). Further increase of the velocity results in out-of-plane director reorientation32

(Fig. 11.25), and the director can become nearly parallel to the vorticity axis. The evolution
of patterns does not end here, as at Er > 103, one observes roll-cell instabilities33 involving
director modulations along the vorticity axis; the rolls eventually produce disclinations
through seemingly a bulk-nucleation process (see Mather et al. [30]). The flow becomes
irregular in time; the regime is called director turbulence.34

The evolution of textures has been observed in many LCPs, such as PBG solutions
in metacresol. High viscosities of LCPs make the Ericksen number large even at low

31P.T. Mather, D.S. Pearson, and R.G. Larson, Liq. Cryst. 20, 539 (1996).
32P. Pieranski, E. Guyon, and S. Pikin, J. Phys. Paris, Colloq. 37, C1, 3 (1976).
33P. Pieranski and E. Guyon, Phys. Rev. Lett. 32, 924 (1974); P. Manneville and E. Dubois-Violette, J. Phys.

(Paris) 37, 285 (1976).
34P.E. Cladis and W. van Saarloos, in Solitons in Liquid Crystals, Edited by L. Lam and J. Prost, Springer

Press, New York, 1992; G. Marrucci and F. Greco, Adv. in Chem. Phys. 86, 331 (1993); M. Srinivasarao, in
Liquid Crystals in the Nineties and Beyond, Edited by S. Kumar, World Scientific, Singapore, 1995.
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U

θm

Uc

π /2

0
0

Figure 11.26. Director tilt angle vs velocity for a tumbling nematic. After T. Carlsson, Mol. Cryst.
Liq. Cryst. 104, 307 (1984).

shear rates. As a result, disclinations are observed in abundance, both in lyotropic and
thermotropic35 LCPs. Formation of disclinations is normally heralded by development of
nonsingular quasi-1D textures, “stripes” and “bands” (Table 11.2). The stripes are oriented
along the flow direction, whereas the bands are perpendicular.

The evolution of defect textures, with at least a few initial defects at rest, has been
observed in copolyesters and in solutions of biopolymers. It is not yet clear whether these
observations are in the Doi range of shears that, as indicated above, is reached with mod-
erate shear rates in high molecular weight polymers. After a stage at very low shear where
the defects elongate in the direction of shear and do not interact (which is certainly the
Leslie–Ericksen range), one first observes a so-called “worm texture,” a kind of disordered
polydomain texture at the scale of a few µm, with multiplication of the defects; in this

Table 11.2. Patterns in sheared PBG solutions (R.G. Larson, in Spatio-Temporal Patterns in
Nonequilibrium Complex Systems, Eds. P.E. Cladis and P. Palffy-Muhoray, Addison-Wesley, MA,
p. 219 (1995)).

Ericksen No. Deborah No.
Er De Pattern Flow condition

102 − 103 	 1 stripes steady-state shear
> 102 	 1 bands transient, during shear
> 103 ≤ 1 bands transient, after shear
� 103 ≈ 2 stripes steady-state shear

35T. DeNève, P. Navard, and M. Kleman, J. Rheol. 37, 515 (1993).
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regime, the first normal stress difference N1 is negative (Section 6.5.2.1); a negative N1
might be indicative of the Doi regime. At higher shears, N1 increases again sharply and
reaches positive values; the corresponding so-called “ordered texture” is birefringent and
becomes uniform for the highest shear rates. It is probable that the “worm texture” is akin
to director turbulence.

11.5. Dynamics of Defects

11.5.1. Isolated Disclination, Drag Force

The first step in analyzing dynamics of an isolated disclination can be made by simplifying
both dynamics and elasticity. Namely, one assumes that (1) the defect velocity is too low
to cause flow of the nematic fluid; (2) the disclination is of the planar type (11.1), and all
elastic constants are equal K . Assumption (1) simplifies the director equations (6.65) to

− ∂ f

∂ni
+ ∂

∂x j

[
∂ f

∂(∂ni/∂x j )

]
= γ1

∂ni

∂t
, (11.25a)

and (6.20), (6.25), (6.64b) for dissipation rate per unit volume to

Tσ = γ1

∑
i

(
∂ni

∂t

)2

. (11.26a)

Here, f is the Frank–Oseen elastic energy density, γ1 = α3 − α2 is the twist viscosity, T
is the absolute temperature, and σ is the entropy production per unit volume. According to
(11.25a), the rate of change in the elastic free energy is exactly compensated by the viscous
dissipation. Assumption (2) simplifies things even further:36

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= γ1

K

∂ϕ

∂t
, (11.25b)

Tσ = γ1

(
∂ϕ

∂t

)2

. (11.26b)

If the disclination moves slowly in the direction x with the velocity u = const, the solution
of (11.25b) is approximately

ϕ ≈ k arctan
y

x − ut
; (11.27)

36H. Imura and K. Okano, Phys. Lett. 42A, 403 (1973); P.G. de Gennes, in Molecular Fluids, Proc. Les Houches
Summer School, Edited by R. Balian and G. Weill, Gordon and Breach, London, 1976.
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i.e., the line preserves the static geometry described by (11.6), in which θ = arctan y
x . The

dissipation per unit length is the integral

� = γ1

∫ (
∂ϕ

∂t

)2

dx dy ≈ πγ1k2u2 ln
R

rc
, (11.28)

so that the friction coefficient η = �/u2, and the drag force fdrag = �/u experienced by
the disclination,

η = πγ1k2 ln
R

rc
, fdrag = πγ1k2u ln

R

rc
, (11.29)

are logarithmically diverging with the system’s size R. At first sight, the logarithmic diver-
gence is a natural feature of the problem: The same logarithmic term occurs in the static
elastic energy of the disclination (11.7). However, more careful analysis37 shows that the
drag force does not diverge with R, because at large distances, R > Rc ≈ 3.6K

γ1u , the director
reorientations and dissipation of energy practically vanish, so that

fdrag = πγ1k2u ln
3.6

Er
; (11.30)

here, Er = γ1urc/K is the Ericksen number of the problem. Similar correction has been re-
ported38 for the line tension W of a moving disclination W ≈ πK k2 ln 1.1

Er . In essence, the
result (11.29) corresponds to Er = 0. Note that both (11.29) and (11.30) neglect dissipation
at the core; thus, they are valid when R � rc and Er 	 1.

11.5.2. Interaction and Annihilation of Line and Point Defects

11.5.2.1. Lines

The model above can be immediately applied to the dynamics of annihilation of two discli-
nations with strengths of opposite signs. The potential of interaction (per unit length) of
two planar disclinations of strengths k1 and k2, separated by a distance L in a system of
lateral size R, is (Problem 11.4):

W12 = πK (k1 + k2)
2 ln

R

rc
− 2πK k1k2 ln

L

2rc
. (11.31)

Two disclinations of opposite strength k1 = −k2 = k attract each other with the force
f12 = −∂W/∂L

37G. Ryskin and M. Kremenetsky, Phys. Rev. Lett. 67, 1574 (1991).
38C. Denniston, Phys. Rev. B54, 6272 (1996).
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f12 = −2πK k2/L . (11.32)

Balancing it with the drag force fdrag = 2πγ1k2u ln 3.6
Er (11.30), one concludes that the

two lines will approach each other according to the rule

L2 ≈ const × K

γ1
(t0 − t) (11.33)

until annihilation at t = t0.
The analogy between (11.32) and the Peach and Koehler force in solids has been dis-

cussed by Eshelby.39 Although the Peach and Koehler force is a fictitious configurational
force, f12 is a real force and, in equilibrium, must be balanced by an external force applied
to the disclination.

11.5.2.2. Points

The result (11.32) also applies to point defects in 2D, but not to point defects in 3D. Di-
mensional analysis40 suggests that point defects (with elastic energy ∼ K R when isolated)
should interact via a linear potential W12 ∼ K L (as quarks). More careful analysis shows
that two point defects are connected by a soliton “string” of nearly constant width; outside
of the string, the director is practically uniform. For large separations, L � rc, the energy
of the pair of defects is determined by the elastic energy W ∼ L stored in the string. Thus,
in first approximation, the attraction force between two elementary point defects in 3D
bulk does not depend on L:41

f12 = −4πK (11.34)

(note that the dimension of f12 is that of a true force). The drag force fdrag depends on the
geometry of the region in which the director is distorted and the energy dissipates. Because
the director configuration is strongly influenced by factors such as boundary effects, the
situation is not clear; the result may be different, for example, when L � R and when
L ∼ R; here, R is the lateral size, such as the radius of a cylindrical capillary.

11.5.2.3. Experiments

The dynamics of planar line defects, observed in nematic MBBA cells under a strong elec-
tric field (that ensures the planar director configuration everywhere in the bulk),42 obey

39J. Eshelby, Phil. Mag. A42, 359 (1980).
40W.F. Brinkman and P.E. Cladis, Phys. Today 35, 48 (1982).
41S. Ostlund, Phys. Rev. B 24, 485 (1981).
42H. Orihara, T. Nagaya, and Y. Ishibashi, in Formation, Dynamics and Statistics of Patterns, Edited by K.

Kawasaki and M. Suzuki, World Scientific, Singapore, vol. 2, 1993.
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(11.33). The situation is more subtle with point defects, as most studies have been per-
formed in capillary tubes, i.e., under the influence of the bounding walls. When L ∼ R,
dynamics follow the rule L ∝ (t − t0)1/2; when L � R, there are indications of a linear
dependence.43

The distinctive features of linear potential W12 ∼ K L, namely, the linear rule
L ∝ (t − t0), is observed for pairs of surface point defects, boojums, connected by
2π “strings,” in ∼ (1 − 10)µm-thick hybrid-aligned films placed between two isotropic
media44 (Fig. 11.27). The strings in the experiment are of an approximately constant width
D; thus, the dissipation should take place only within the region of a characteristic size
D: fdrag ∼ Dγ1u. With f12 ∼ K , the string should shrink without acceleration:

L ≈ const × K

Dγ1
(t0 − t). (11.35)

as observed experimentally, at least for L > D. The constant width of the string might be
explained by the effect of geometrical anchoring, Ref. [12] and p. 402, associated with the
gradients of the film thickness.45

Figure 11.27. Strings connecting pairs of point defects, boojums, in a hybrid-aligned nematic film of
5CB placed onto a glycerin substrate [44].

43A. Pargellis, N. Turok, and B. Yurke, Phys. Rev. Lett. 67, 1570 (1991).
44O.D. Lavrentovich and S.S. Rozhkov, Pis’ma Zh. Eksp. Teor. Fiz. 47, 210 (1988) [Sov. Phys. JETP Lett. 47,

254 (1988)].
45D.R. Link, M. Nakata, Y. Takanishi, K. Ishikawa, and H. Takezoe, Phys. Rev. Lett. 87, 195507 (2001).
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11.5.3. Coarsening of Disclination Networks

Dynamics of an isolated disclination allows one to consider, at least qualitatively, the coars-
ening dynamics of defects. As already indicated, dense networks of disclinations can be
formed by strong flow or by sudden quench of the isotropic fluid into the nematic state.
What would be the time dependence of the disclination density?

Let us first consider a much simpler problem of an isolated shrinking disclination loop.
The time dependence of the radius R of the loop can be roughly estimated by equating the
viscous drag force η d R/dt to the elastic energy W/R,W = πk2K ln R

rc
per unit length of

the curved disclination

W

R
= −ηd R

dt
. (11.36)

Integration shows that the loop shrinks according to the law46

R =
√

2W

η
(t0 − t) (11.37)

(t0 > t is the time at which the loop disappear), which seems to hold in experiments.47

In a similar fashion, one can consider48 a mesh of disclinations in 3D with a character-
istic segment length ξ . The disclination density per unit area is ρ ∼ ξ−2. The rate of loss
of energy per unit volume is Wuρ/ξ = W 2ρ2/η. Equating this to the time derivative of
the line tension per unit volume Wρ results in

dρ

dt
= −const × W

η
ρ2, (11.38)

or, after integration,

ρ = η

const × W
t−ν, (11.39)

with the exponent ν = 1. The last result seems to describe the experimental situation,
at least for the networks of extended singular disclinations formed during the quenching
of the isotropic phase into the nematic state.48 Also, it is the exact analogue of Friedel’s
result for the analysis of the growth of the mosaic structure of dislocations in crystals.49

For a general theory of coarse-graining phenomena during phase transitions, see the review
article by Bray.

46G.J. Gerritsma, A. Geurst, and A.M. Spruijt, J. Phys. Lett. A43, 356 (1973).
47W. Wang, T. Shiwaku, and T. Hashimoto, J. Chem. Phys. 108, 1618 (1998).
48I. Chuang, R. Durrer, N. Turok, and B. Yurke, Science 251, 1336 (1991).
49J. Friedel, Dislocations, Pergamon Press, Oxford, 1964, p. 239.
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Problem 11.1. Consider a uniaxial nematic liquid crystal in a circular capillary (Fig. 11.8b). The
walls are treated to keep the director normal to the cylindrical boundary. The director lines are al-
lowed to escape along the z-axis, so that the director can be parameterized in cylindrical coordinates
as nr = cosχ(r), nϕ = 0, nz = sinχ(r), where χ is the angle between the director and the (r, ϕ)
plane; the boundary conditions write χ(r = R) = 0 and χ(r = 0) = π/2. Using (5.2) for the free
energy density, find the equilibrium director distribution and the energy per unit length of the config-
uration when (a) K1 = K3 = K and (b) K1 �= K3 [P.E. Cladis and M. Kleman, J. Physique 33, 591
(1972); R. Meyer, Phil. Mag. 27, 405 (1973)].

Answers:

(a) With

div n = 1

r

d(rnr )

dr
= − sinχ

dχ

dr
+ cosχ

r

and

curlϕn = −d(nz)

dr
= − cosχ

dχ

dr
,

the elastic energy per unit length is

W = 1

2
K

∫ R

0

[(
dχ

dr

)2
+ cos2 χ

r2
− 1

r
sin 2χ

dχ

dr

]
r dr

∫ 2π

0
dϕ.

In problems with cylindrical symmetry, it is often useful to replace r with a new variable ξ : r =
eξ . The energy integral transforms into

W = πK
∫ ln R

−∞

[
(χ ′)2 + cos2 χ − χ ′ sin 2χ

]
dξ,

where χ ′ = dχ/dξ .
The Euler–Lagrange equation is then χ ′′ = − cosχ sinχ . The first integration results in

(χ ′)2 = cos2 χ + const. (11.40)

According to the boundary condition, ξ → −∞ at the center of the capillary. It is possible when
χ ′ = 0 at χ → π/2; therefore, the constant of integration is zero. Specifying one of the two
possible directions of the escape, e.g., χ ′ = − cosχ , one finds the equilibrium solution from

R∫

r

1

r
dr = −

0∫

χ

dp

cos p
, (11.41)

as

R

r
= 1 + tan(χ/2)

1 − tan(χ/2)
or χ = 2 arctan

(
R − r

R + r

)
. (11.42)



Chapter 11 Disclinations and Topological Point Defects. Fluid Relaxation.432

The solution satisfies both boundary conditions and describes smooth reorientations of the direc-
tor by π/2 between the axis and the wall of the cylinder. The energy per unit length is

W = 3πK . (11.43)

(b) The analog of the first integral (11.40) is

(χ ′)2 = K1 cos2 χ

K1 sin2 χ + K3 cos2 χ
+ const, (11.44)

which results in the solution

R∫

r

1

r
dr = −

0∫

χ

√
sin2 p + (K3/K1) cos2 p

cos p
dp. (11.45)

If K3 > K1, the solution writes

ln
R

r
= β√

1 − β2
arcsin(β sinχ)− 1

2 ln

√
1 − β2 sin2 χ −

√
1 − β2 sinχ√

1 − β2 sin2 χ +
√

1 − β2 sinχ
,

(11.46)

where β = √
1 − K1/K3. The energy per unit lenth is then

W = πK1

(
2 + arcsinβ

β
√

1 − β2

)
. (11.47)

Note that the last formula with a replacement K1 → K2 and under a (reasonable) assumption
K3 > K2, describes a circular disclination k = 1, c = π/2 (Fig. 11.4), that escapes via twist. Fi-
nally, the calculations above neglect the saddle-splay K24 contribution (5.4) that become nonzero
for escaped disclinations. Inclusion of this term allows one to estimate K24 [D.W. Allender, G.P.
Crawford, and J.W. Doane, Phys. Rev. Lett. 67, 1442 (1991) and R.D. Polak, G.P. Crawford,
B.C. Costival, J.W. Doane, and S. Zumer, Phys. Rev. E49, R978 (1994)]. Note also that (11.43)
and (11.11) carry contributions from divergence term hidden in the bulk density (5.7).

Problem 11.2. Nucleation of disclination loops can relax the twist imposed onto a nematic slab
between suitably oriented walls. Consider a loop L in a nematic slab located between two parallel
plates with strong unidirectional surface anchoring in the plane of the plates. Let d be the thickness of
the slab and α = qd the angle between the two anchoring directions; it is assumed that the elasticity
is isotropic (K = K1 = K2 = K3) and that the deformation takes place in a plane parallel to the
anchoring directions. Show that:

(a) The angle of rotation of the director can be written as ϕ(r) = k
2�(r)+ qz + cst , where �(r) is

the solid angle under which the loop is seen from point r.

(b) The energy of the loop is Floop = K (πk
4 L − πq�), where L is the self-inductance of the loop

L considered as an electric circuit and � is the projected area of L on the plane of rotation.



Further Reading 433

Answers: J. Friedel and P.-G. de Gennes, C. R. Acad. Sci. Paris B268, 257 (1969). Let us first de-
velop the electromagnetic analogy for the equation K	ϕ(r) = 2πkδ(L). Because the angle ϕ(r)
obeys the harmonic equation 	ϕ(r) = 0, except on the line L, we introduce a divergenceless
magnetic field vector H = −K∇ϕ(r). The solution of the harmonic equation is singular on L:
ϕ(r) = j

4π �(r)+ ψ(r), such that
∫∫

curl H · d� = ∫ −∇ϕ.dL = −2πk. Hence, j = 2πk.

Problem 11.3. Is it possible to estimate the polar anchoring coefficient Wa from Fig. 11.6b if it is
known that the cell is filled with 5CB and its thickness h is about 5µm?

Answers: Yes. Let δ0 	 1 be the equilibrium angle between the director and substrate; at the center
of the wall, δ0 = 0. For small tilt, the surface anchoring potential is Wa(δ − δ0)2/2. If the director
distortions occur in the plane normal to the wall, as Fig. 11.6c suggests, then the elastic energy per
unit length of the wall is 2K h δ2

0/d (d is the walls’ width) and the anchoring energy is Wa δ
2
0 d/3.

Minimizing the total energy, one finds Wa = 6K h
d2 . Estimating d ∼ 10µm from the photograph, one

gets Wa ∼ 10−6 J/m2.

Problem 11.4. Show that the energy of two planar disclinations is given by (11.31), W12 =
πK (k1 + k2)

2 ln R
rc

− 2πK k1k2 ln L
2rc

.
Hint. Use the superposition of solutions

ϕ = k arctan
y

x
+ const: ϕ =

∑
i

ki arctan
y − yi

x − xi
+ const.

See C.F. Dafermos, Quart. J. Mech. Appl. Math. 23, 549 (1970).
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C H A P T E R 1 2

Topological Theory of Defects

In Chapter 3, we have considered the notion of order parameter, its amplitude and phase.
The order parameter is a continuous field (scalar, vector, tensor, etc.) describing the state
of the system at each point. Generally, it is a function of coordinates, ψ(r). Distortions of
ψ(r) can be of two types: those containing singularities and those without singularities.
At singularities, ψ is not defined. For a 3D medium, the singular regions might be either
zero-dimensional (points), one-dimensional (lines), or two-dimensional (walls). These are
the defects. Whenever a nonhomogeneous state cannot be eliminated by continuous varia-
tions of the order parameter (i.e., one cannot arrive at the homogeneous state), it is called
topologically stable, or simply, a topological defect. If the inhomogeneous state does not
contain singularities, but nevertheless is not deformable continuously into a homogeneous
state, one says that the system contains a topological configuration (or soliton).

Very often the problems involving defects are too complex for analytical treatment
within the framework of an elastic theory. The difficulties arise either from the complexity
of the free energy functional (biaxial nematic, smectic C, anisotropic phases of superfluid
3He, etc.) or from the complexity of the defect configuration (e.g., crossing of disclina-
tions). Even when the solutions are possible, they rely on certain assumptions and, thus,
might be strongly model dependent.

An adequate description of defects in ordered condensed media requires introducing
a new mathematical apparatus, viz. the theory of homotopy, which is part of algebraic
topology. It is precisely in the language of topology that it is possible to associate the
character of ordering of a medium and the types of defects arising in it, to find the laws of
decay, merger and crossing of defects, to trace out their behavior during phase transitions,
and so on. The key point is occupied by the concept of topological invariant, often also
called a topological charge, which is inherent in every defect. The stability of the defect is
guaranteed by the conservation of its topological invariant. The following simple example
of twisted ribbon strips gives a flavor of the concept of topological invariant.

434
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12.1. Basic Concepts of Topological Classification

12.1.1. Topological Charges Illustrated with Möbius Strips

Consider a set of elastic strips closed into rings. Each strip is characterized by a number k
that counts how many times the ends of the strip are twisted by 2π before they are glued
together to produce a ring (Fig. 12.1). The ring with k = 1/2 (Fig. 12.1.b) is the well-
known Möbius strip. The deformation energy stored in any twisted strip is larger than the
pure bend energy of the k = 0 ring. However, to transform a twisted strip into a state k = 0,
one needs to cut the strip. There is no continuous deformation that transforms one strip into
another if the two have different k. The energy needed to cut the ribbon, Fcut ∼ U S/a2,
is much higher than the stored twist energy Ftwist ∼ k2 K S/L; here, L is the length of the
strip, S is its cross-section area, and K ∼ U/a is some elastic constant of the order of
the intermolecular energy; a is the molecular scale. The transitions between the states with
different k’s are prohibited by high-energy barriers.

The quantity k does not change under any continuous transformation and is a useful
invariant to label topologically different states. Left and right twists can be distinguished
by the sign of k. Obviously, one can create a pair of left and right twists without cutting the
strip, what matters is the total sum of k’s that should be preserved. Therefore, topological
charges k’s obey a conservation law.

π
π

(a)
π

(b)

(c) (d)+ π − π

Figure 12.1. Topologically different rings of elastic strips: (a) nontwisted ring, k = 0; (b) Möbius
strip, k = 1/2; (c) twisted strip with two identical edges, k = 1; (d) twisted strip with two distinctive
edges, k = 1.
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The allowed values of k are defined by the inner symmetry of the strip. For example, if
the edges of the strip are different, e.g., marked by red and blue colors (Fig. 12.1.d), then
only integer k’s (2π-twists) are allowed.

Topological stability of twisted strips is similar to that of topological solitons; the issue
of a singular core is not involved. Furthermore, one can draw a parallel between the twisted
strips and singular defects. Imagine a circle around a π-disclination in a uniaxial nematic
liquid crystal (Fig. 11.10). The set of molecules centered at this circle form a Möbius strip
with k = 1/2. After going once around the circle, the director n flips into −n, which is
possible, because the nematic bulk is centrosymmetric, n ≡ −n. The number k would
remain equal 1/2 if the radius of the circle is taken larger or smaller (Fig. 11.10). Thus,
the overall director configuration can be characterized by k = 1/2. At the disclination
core, one faces the singularity: When the circle shrinks into a point, there is an infinity of
director orientations at this point. If a disclination were created in a ferromagnet, a Möbius
strip k = 1/2 around it would be impossible because the magnetization vector does not
have the head-to-tail symmetry of the director.

To summarize, the examples above show that the topologically stable defects and con-
figurations (“topological twists”) obey the following general rules:

1. Defects types are related to the type of ordering of the system.

2. Defects are characterized by quantized invariants (topological charges) k.

3. The operations of merger and decay of the defects are described as certain operations
(e.g., additions) applied to their charges k; conservation laws of topological charges
control the results of merger and decay.

The topological invariants k’s form groups. Because the concept of group is important
for the homotopy classification of defects, we briefly consider it in the next sections. Before
doing so, we briefly comment on, perhaps, the most intriguing twisted strips—the DNA
molecules.

12.1.2. DNA and Twisted Strips, a Digression

Twisted strips with different k’s are of relevance to the problem of configuration and repli-
cation of double-stranded DNA molecules. Two strands are arranged in a helicoid fashion
in which a 2π-twist occurs per every 10.5 base pairs (Fig. 1.21). In many organisms rang-
ing from viruses and prokaryotes to some eukaryotes, DNA molecules form closed loops.
Topologically, these loops remind of a twisted strip with two distinctive edges and an inte-
ger Lk that is referred to as the linking number of the two strands (Fig. 12.2). Lk is preserved
in any conformational change of DNA molecule that does not break the strands. If Lk is
close to Lk0 = l/p (l is the total DNA length, and p ≈ 3.4 is the helix pitch; Fig. 1.21),
the DNA ring is relaxed and can lie flat on a planar surface without contortions. Often
Lk �= Lk0: The ends of the relaxed linear DNA duplex may be additionally twisted (or
untwisted) by some number of rotations ±2π before forming the ring. There are two ways
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Lk (C,C')=1(a)

(b)

(c) Lk (C,C')=5

Lk (C,C')=0

Figure 12.2. Linking numbers for pairs of oriented curves.

to deal with the induced strain. First, the number of base pairs per pitch can be changed;
the ring remains planar, and the linking number is equal to the number of turns of one
strand around another. In that case, Lk = k, the topological twist defined above. Second,
the duplex axis can twist upon itself, leaving the number of pairs per pitch unaffected.
Such a supertwisted DNA is no longer planar and coils in three dimensions, like a buckled
twisted ribbon. Whatever the case, although k and Lk stay unaffected, and are still equal
integral numbers of a topological nature, the global geometry (and consequently, the en-
ergy of the “twisted” ribbon and the way it relaxes) depends on the elasticity properties of
the molecule and is better described by introducing two geometrical parameters: the twist
Tw and the writhe Wr. The twist can be written as

Tw = 1

2π

∮
�(s) ds, (12.1)

where�(s) is the rate of wrapping of either strand about the duplex axis. This quantity can
be defined equally for an open strip; Tw can take any value, and we can refer to it as the
geometrical twist. However, if the duplex axis is planar, one gets Lk = Tw = k. The writhe
Wr of a curve C is a much more subtle quantity. Introduced by Fuller, it is the number
of averaged self-crossings (with sign) of the planar orthogonal projections of C (closed or
not); in the DNA context, it describes the buckling of the duplex axis, so to speak. Like Tw,
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Wr can take any value. We have the important relation:

Lk = Tw + Wr, (12.2)

with Lk (for two oriented curves C and C′) and Wr (for an oriented curve C) given by
double integrals:

Lk = 1

4π

∫∫
©

C,C ′
r(s)− r(s′)

| r(s)− r(s′) |3 · [ds × ds′];

Wr = 1

4π

∫∫
©

C,C

r(s)− r(s∗)
| r(s)− r(s∗) |3 · [ds × ds∗]. (12.3)

Here, C is the duplex axis, say, and C′ is anyone of the strands. Wr vanishes when C is
planar. Note that for the example in Fig. 12.2 (b), Lk(C,C′) = 0, because the two curves
can be disentangled by crossing of a ∞-shaped line with itself; such crossings are not
reflected in the integral Lk above.

To separate the DNA strands during replication, one needs to change the number Lk
(see Problem 12.1). It can be done directly by topoisomerases that cut one or both strands.
In other cases, the replication occurs through local binding of the DNA molecule to proteins
that creates zones of negative and positive supertwisting.

12.1.3. Groups: Basic Definitions

Consider a set (finite or infinite, discrete or continuous) G of elements a, b, c, . . . , for
which there is an operation ⊗ that combines the elements in a prescribed way. The set G
is a group if and only if the following requirements are satisfied:

1. Any two elements a, b in the set G can be combined by the operation ⊗ to produce a
third element a ⊗ b in the set.

2. The operation is associative: (a ⊗ b)⊗ c = a ⊗ (b ⊗ c).

3. There is an identity element I of G, such that for any element a, a ⊗ I = I ⊗ a = a.

4. Every element a has an inverse element denoted a−1, such that a ⊗a−1 = a−1 ⊗a = I .

A simple example of a group is a set Z of all integers with the operation of addition
(⊗ → +). Indeed, the axiom (2) is fulfilled when one adds integers; the identity element
is 0; and the inverse to a is −a.

Groups are either commutative (also called Abelian) or noncommutative (or non-
Abelian). For the Abelian groups, a ⊗b = b ⊗a for any pair of elements. For non-Abelian
groups, a ⊗ b �= b ⊗ a. The group of integers is Abelian. Groups can contain a finite
number of elements or infinitely many elements. Finite or denumerably infinite groups are
called discrete groups. The additive group Z of integers is discrete.
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A subgroup H of a group G is a subset of elements of G that is also a group. If hi

are the elements of the subgroup H and g is any element of G, then the set of elements-
products g ⊗ hi is called a left coset of H and the set hi ⊗ g is called a right coset of
H . It is easily proven that the cosets g1 ⊗ hi and g2 ⊗ hi , formed by two elements g1
and g2 of G, are either identical or have no common elements whatever. In other words, a
given subgroup H divides the group G into disjoint cosets that form a coset space or orbit
denoted as G/H . The coset space is not necessarily a group. However, if the subgroup H
is normal (also called invariant), meaning that the left and right cosets contain the same
elements for each g of G, then the coset space G/H has a group structure and is called a
factor group.

Two types of groups are important in the topological classification of defects of a given
ordered medium, both related to the order parameter:

1. The (generally) continuous group G whose elements are in correspondence with all
the permissible transformations of the order parameter. The group of symmetry H is a
subgroup of this continuous group.

2. The discrete homotopy groups that are related to the topological structure of the order
parameter space.

This will be detailed below. We first schematize how these groups are involved in the
topological classification of defects.

12.1.4. General Scheme of the Topological Classification of Defects

Homotopy classification of defects in ordered media includes the following three steps:
First, one defines the order parameter (OP) ψ of the system. In a nonuniform state, the

OP is a function of coordinates, ψ(r).
Second, one determines the OP (or degeneracy) space R, i.e., the manifold of all pos-

sible values of the OP that do not alter the thermodynamical potentials of the system. The
function ψ(r) maps the points of real space occupied by the medium, into R.

The mappings of interest are those of i-dimensional spheres enclosing defects in real
space. A point defect in a 2D system or a line defect in 3D can be enclosed by a linear
contour, i = 1; a point defect in a 3D system can be enclosed by a sphere, i = 2; a wall
defect can be “enclosed” by two points, i = 0, located at opposite sides of the wall.

Third, one defines the homotopy groups πi (R). The elements of these groups are map-
pings of i-dimensional spheres enclosing the defect in real space into the OP space. To
classify the defects of dimensionality t ′ in a t-dimensional medium, one has to know the
homotopy group πi (R) with i = t − t ′ − 1.

On the one hand, each element of the homotopy group corresponds to a class of topo-
logically stable defects; all of these defects are equivalent to one another under continuous
deformations. On the other hand, the elements of homotopy groups are topological in-
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variants, or topological charges of the defects. The defect-free state (e.g., ψ(r) = const)
corresponds to a unit element of the homotopy group and to zero topological charge.

12.1.5. Order Parameter Space. Groups That Describe
Transformations of the Order Parameter

The Heisenberg isotropic ferromagnetic phase with a unit magnetization vector d as the
order parameter is an example of a medium for which the OP space is easily found by a
qualitative consideration. This phase is isotropic in the sense that the coupling between
d and the crystallographic axes is neglected. Any rotation about a fixed d transforms the
system into itself. The ends of vectors d with different orientations in space describe a
sphere S2. Thus it is obvious that the OP space is the sphere S2. For many other media,
the situation is not that clear. Below, we illustrate a general way to find the OP space that
sheds some light on the relationship between the symmetry of the ordered medium and the
OP space.

Consider a continuous group of 3D rotations. This group is the part of the full Euclidian
group of translations and rotations, which leaves the thermodynamic state of the system
invariant. A 3D rotation can be specified by a vector k that is parallel to the axis of rotation
and has an absolute value equal to the angle of rotation ϕ. Rotations around all possible
axes having one common point form a group called the group of proper rotations in 3D
Euclidian space. This group is represented by a solid 3D sphere of radius π denoted SO(3)
and composed of points ϕk/| k |, where −π ≤ ϕ ≤ π . Two diametrically opposite points
at the surface of such a sphere are identical: π-rotations around axes directed in opposite
directions give the same result.

In principle, SO(3) can serve as the OP space of the Heisenberg ferromagnet. How-
ever, there are sets of points in SO(3) that correspond to indistinguishable stable states
of the ferromagnet. Because any rotation around d transforms the system into itself, all
points ϕd along any fixed radius of the solid sphere SO(3) describe indistinguishable
states. Because of this symmetry, the solid sphere SO(3) is “reduced” to the sphere S2

by rotations that leave the order parameter d unchanged. The process is called a factor-
ization of the group SO(3) by the group SO(2) of 2D rotations around the fixed axis d
(Fig. 12.3). SO(2) is a subgroup of SO(3). The OP space of the ferromagnet is repre-
sented as S2 = SO(3)/SO(2), where SO(3)/SO(2) is the notation for the coset space of
SO(2) in SO(3). Note that S2 is an example of a manifold. General definitions are given
below.

If the medium is a uniaxial nematic, then the directions d and −d are identical and
there is an additional factorization of S2 by a set of two diametrically opposite points on
S2. The OP space of the uniaxial nematic is thus R = SO(3)/SO(2) × Z2 = S2/Z2,
also called the projective plane R P2 (see Chapter 3). Z2 is the group of two numbers 0
and 1: 0 + 0 = 1, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0. The symbol × denotes a direct
product of two groups SO(2) and Z2. The direct product of two groups, say, G and T , is
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SO
2( )SO 3( )

S 2

Figure 12.3. Factorization of the group SO(3) of proper rotations by the group of rotations SO(2)
results in the sphere S2.

the set G × T of pairs (g, t) that is a group under the combination law (g1, t1)⊗ (g2, t2) =
(g1 ⊗ g2, t1 ⊗ t2).

Examples above lead to the following generalization of the group-theoretical descrip-
tion of the OP space.

The order parameter of a continuous perfectly ordered medium can be associated with
a “thermodynamic” group G (which is usually the Euclidian group) with elements g that
transform a given value ψ0 of the order parameter into another value gψ0 for which the
thermodynamical potentials of the system remain the same. Rotations of a perfect ferro-
magnet as a whole are transformations of this kind. Among the elements g, there might be
transformations that preserve not only the energy, but also the value of the order parameter,
gHψ0 = ψ0. These elements form a subgroup H of G called the isotropy group of ψ0 or
the little group of ψ0. The OP space is then the coset space R, noted G/H :

R = G/H. (12.4)

Note that generally R is not a group. Furthermore, there is a certain arbitrariness in the
choice of the group G (but not in R!). The group G can be taken “larger” or “smaller,” but
the corresponding isotropy subgroup H must finally result in the same R = G/H . If G is
the full Euclidian group, then H is the group of symmetry of the ordered medium.

12.1.6. Homotopy Groups

Homotopy groups describe the topology of the OP space. Here, we briefly consider some
abstract OP space R and the group of oriented contours (loops) in it that form the so-called
fundamental, or first homotopy group.

Suppose that R is a connected surface: Any two points on R can be connected by a
curve. Take an arbitrary point M that belongs to the surface and draw oriented continuous
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R

Γ1

Γ
2

Γ
3

Γ5

Γ6

4Γ

M

Figure 12.4. Oriented contours based at point M in the order parameter space R. See text.

contours that start and end in M (Fig. 12.4). The contour is “oriented” when the direction
of traversing is specified. Among the contours, there are some that can be continuously
transformed into each other, such as contours �1 and �2 or �3 and �4 in Fig. 12.4. These
contours are said to be homotopic or representing the same homotopy class. If R is con-
nected (i.e., made of one piece only) and simply connected (no holes), then any contour
can be contracted to a point M; thus, all the contours belong to the same homotopy class. If
R is not simply connected (one example is a circle S1, another is given by Fig. 12.4), then
there are distinct classes of homotopic contours. For example, �3 and �5 in Fig. 12.4 that
encircle different “holes,” or �4 and �6 that encircle the same hole but a different num-
ber of times, belong to different homotopy classes. There is no continuous transformation
between the contours from different homotopy classes.

One can introduce a product of two contours �n and �k as a contour �nk obtained
by first traversing �n and then �k : �nk = �n ⊗ �k . Figure 12.5 shows two homotopic
representations of �nk . Similarly to the product of individual contours, one can consider a
product of homotopy classes as a set of products of representatives of these classes. This
concept allows one to impose a group structure on the set of contours with the product of
homotopy classes being the group operation. The elements of the group are the homotopic
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Γn

Γ
m R

Γnm = Γn ⊗Γm

M M

Figure 12.5. Two homotopic representations of �nk , the contour product of the two contours �n and
�k traversed in this order.

classes. The class of contours that are homotopic to zero (contractible to a single point) is
the identity of the group. Each class has its inverse element that is the same set of contours
but with opposite orientation. The product of classes satisfies the associative law. Thus, the
set of homotopy classes of contours form a group called the fundamental group of R at
the base point M and denoted π1(R,M) or simply the fundamental group of R, π1(R).
This simplification in omitting the base point is possible when R is connected. If instead
of M one chooses any other point M1 in the connected space R as the base point, the
resulting group π1(R,M1) is an isomorphic copy of π1(R,M). The group isomorphism is
a one-to-one mapping of one group onto another that preserves the group operation. Thus,
a connected OP space R can be characterized by a single abstract group π1(R). π1(R) is
also called the first homotopy group to distinguish it from the nth homotopy groups πn(R)
that are discussed later.

The fundamental group π1(R) can be Abelian or non-Abelian, depending on the OP
space R. If R is a 2D plane with one punched hole (homeomorphic to a circle S1), then
π1(R) is Abelian (Fig. 12.5). If R is a 2D plane with two punched holes (homeomorphic to
the figure “8”), then the fundamental group is non-Abelian, �k ⊗�n �= �n ⊗�k . As shown
in Fig. 12.6, there is no way to pass continuously from �3 = �1 ⊗ �2 to �∗

3 = �2 ⊗ �1
with A a fixed point on �3 and �∗

3 .
This concludes the discussion of the OP space and homotopy groups needed to under-

stand the general scheme of classification of topological defects. To illustrate the scheme,
we first consider point defects in 2D nematic, smectic, and crystalline phases classified by
the fundamental group. These examples require simple topological considerations. In the
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Γ3 = Γ1 Γ2

Γ1
Γ2

(a)

(b)

R

R

Γ3
* = Γ2 ⊗Γ1

(c)

R

M

M

M

⊗

Figure 12.6. Contours in the order parameter space R (a plane with two punched holes). Base point
M. �3(= �1 ⊗ �2) �= �∗

3 (= �2 ⊗ �1) yield a non-Abelian fundamental group π1(R).

general case, more sophisticated group-theoretical methods are required to calculate the
homotopy groups from the structure of G/H .

12.1.7. Point Defects in a Two-Dimensional Nematic Phase

In our model of a 2D nematic, the centers of gravity of molecules lie in one plane, while
the director n makes the angle 0 ≤ |ψ0 | ≤ π/2 with the normal � to the plane. The order
parameter can be chosen either as a unit vector � = n − �(n · �) (which is a projection of
n on the plane) or as the wave function ψ = |ψ0 | exp(iϕ), where |ψ0 | is the polar and ϕ
is the azimuthal angle of the tilt of the molecules, respectively. The free energy density of
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the uniform state does not depend on ϕ and can be represented as a certain function of the
modulus |ψ0 |; e.g.,

Fcond = A|ψ |2 + B|ψ |4 (12.5)

(cf. the description of superfluid helium; Section 3.1.1). The OP space R depends on the
modulus |ψ0 |.
1. If 0 < |ψ0 | < π/2, then R = S1. The phase ϕ can vary from 0 to 2π , and each point

of S1 corresponds to a certain value of ϕ. Fig. 12.7b shows the circle S1 as the bottom
of the free-energy density Fcond (see also Fig. 3.1).

2. If |ψ0 | = π/2, then R = S1/Z2. Any two diametrically opposite points of the circle
become identical, owing to the nonpolarity n ≡ −n of the nematic. Topologically, S1

and S1/Z2 are identical. However, there is an important physical difference between
the defects at 0 < |ψ0 | < π/2 and |ψ0 | = π/2, as we shall see below.

3. If |ψ0 | = 0, R is a single point.

Nonuniformity in the azimuthal orientation of molecules gives rise to an additional
gradient energy term:

Fcond = A|ψ |2 + B|ψ |4 + 1
2 K | ∇ψ |2, (12.6)

where K is the elastic constant of the in-plane splay and bend deformations. The energy
density (12.6) determines a length scale that is called the coherence length ξ = √

K/A.
If the characteristic scale of distortions is much larger than ξ , the tilt angle is close to its
equilibrium value |ψ0,eq | = √−A/2B and the inhomogeneity involves only the variations
of the azimuthal angle ϕ(x, y). This function ϕ(x, y), or, equivalently, the function τ(x, y),
maps the real 2D space (x, y) into R. The study of mappings of closed contours around
point defects in a 2D system enables one to determine whether the defects are stable.

As an example, let us elucidate the stability of three different points P0, P1, and P2 in
the � field for the case when 0 < |ψ0 | < π/2, and thus, R = S1 (Fig. 12.7).

Let us surround the “suspicious” point by an oriented loop, such as γ0 around point P0.
The mapping �(x, y) draws a corresponding oriented loop on S1, such as �0 in Fig. 12.7b.
�0 can be continuously contracted (without leaving the circle S1) into a single point
(Fig. 12.7d); accordingly, smooth rearrangement of the vector field �(x, y) in the real space
results in a uniform state �(x, y) = const (Fig. 12.7c). The defect P0 under test proved to
be removable, or topologically unstable.

The situation differs for the radial-like configuration of �(x, y) (Fig. 12.7e). The loop
�1 runs around the entire circle S1 and cannot be continuously contracted. To eliminate
the defect in Fig. 12.7e, one has to destroy the condensed state along the entire line start-
ing at P1 (to cut �1) or to allow appreciable deviation of the tilt angle from |ψ0,eq | (to
separate �1 from the circle S1). Both cases require overcoming a considerable energy bar-
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Figure 12.7. Point defects with different topological charges k in a polar 2D nematic with tilt angle
0 < |ψ0 | < π/2; the arrows depict the projections of director on the plane: (a), (c) k = 0, defect-
free state; (e) k = 1; g) k = 2; (b), (d), (f), (h) corresponding contours in the order parameter space
S1. (b’) and (f’) show S1 as the circle of degenerate minima of the free energy potential; see text.

rier that greatly exceeds the energy of the in-plane distortions. In other words, the defect
in Fig. 12.7e is topologically stable. The defect P2 (Fig. 12.7g), whose contour �2 runs
twice around S1, is also stable: It cannot be transformed into the uniform state nor into the
radial-like defect.

The scheme above sets a correspondence between topologically stable defects and
contours �k that encircle S1 k times in a given direction. All point singularities are divided
into classes, each of which corresponds to its own class of homotopic contours �k . The
set of classes �k forms the fundamental group π1(S1). The definition of group is satisfied:
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γ
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S 1
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/Z2

1/2
Γ

Figure 12.8. Defect k = −1/2 in a 2D, nonpolar nematic.

Any two contours �k and �n can be combined to give a third contour �kn = �k�n (we
simplify the notations for product by dropping the symbol ⊗ from this point onward). The
operation is associative; there is a special contour �0 equivalent to a point, which is the
identity element; contours �k and �−k that run around S1 in opposite directions are the
inverses of each other, �k�−k = �0. Finally, π1(S1) is Abelian.

Each element of π1(S1) can be labeled by an integer k; thus, π1(S1) is isomorphic to
the group Z of integers. The number k is the topological charge of the defect. It cannot be
changed by continuous deformations. Analytically, for point defects under consideration,

k = 1

2π

∮

γ

∇ϕ dl = 0,±1,±2, . . . . (12.7)

When |ψ0 | = π/2, the degeneracy space is R = S1/Z2, i.e., topologically identical
to R = S1/Z2. Thus, there are as many (infinitely many) defects in the case |ψ0 | = π/2
as in the case 0 < |ψ0 | < π/2. However, physically, the two sets of defects are different:
With |ψ0 | = π/2, defects with an odd number of π-rotations are allowed and thus k can be
integer or half -integer (Fig. 12.8a). In Fig. 12.8b, the contour �1/2 that connects antipodal
points of the circle is closed and cannot be contracted into a point; compare to Fig. 11.3d.

Finally, for |ψ0 | = 0, there are no defects at all, and the fundamental group is trivial,
π1(0) = 0.

12.1.8. Point Dislocations in a Two-Dimensional Crystal

As was established in Chapter 3, the OP space of a 2D crystal is the direct product of
two circles, i.e., the torus, R = S1 × S1 (we neglect the symmetries of rotation) (Fig. 3.7
and Fig. 12.9). Any in-plane displacement of a 2D crystal lattice as a whole leads just to
another presentation of the crystal but does not change its thermodynamic potentials. If the
displacement vector coincides with the primitive lattice vector, the transformation leads
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(a) (b)

(c) (d)

(e) (f)

(0,1)

(1,0)

S
1 × S

1

Figure 12.9. Point dislocations in a 2D crystal with the order parameter space R = S1 × S1.

to the identical state. The torus as the degeneracy space results from identification of the
boundaries of a 2D Bravais cell.

The following basic types of loops cannot be contracted into a point on the torus:
Those that run around the “small” circle (Fig. 12.9d), those that run around the “large”
circle, (Fig. 12.9f), and their combinations. These loops correspond to point dislocations.
Each dislocation is characterized by a pair of topological invariants (kx , ky) that shows
how many times the loop runs about the “small” and the “large” circle, respectively:

π1(S
1 × S1) = π1(S

1)× π1(S
1) = Z × Z = (kx , ky). (12.8)
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λ

λ/2

Figure 12.10. Molecular structure of the bilayers with λ- and λ/2-order in the Pβ′ phase, shown in
cross section by a plane normal to the bilayers. Arrows indicate the period of structures.

The numbers (kx , ky) in (12.8) are nothing else but the x and y-components of the
Burgers vector b expressed in the units of the lattice repeat vectors (ax , ay): b = kx ax +
kyay .

A 2D smectic can be represented by a 2D medium with a 1D density wave. A close
experimental model is the “rippled” lamellar lyotropic Pβ′ phase composed of stacked
lecithin bilayers with additional translational order along one of the two within-membrane
directions. In-plane ordering makes the rippled membranes rigid; in principle, one can
dilute the Pβ′ phase and observe a behavior of a single bilayer in isolation. The bilayers
of the Pβ′ phase manifest two types of in-plane corrugated supermolecular structures—
the λ-phase and the λ/2-phase (Fig. 12.10). The ridges and troughs of the membrane are
equidistant and can be considered as a 2D smectic phase. The difference between the two
is that the “layers” of the λ-phase are of equal width d, whereas in the λ/2-phase, the
alternating odd and even “layers” are of different width; this asymmetric profile is observed
for chiral surfactants.

To find the degeneracy space of the symmetric λ-phase, one has to consider both trans-
lation and rotation symmetries. A translation t by a multiple of d along the normal to the
layers and a rotation r by an angle multiple of π bring the system into itself. The OP
space is thus a rectangle {(t, r), 0 ≤ t ≤ d, 0 ≤ r ≤ π} (Fig. 12.11a). A point (t, r) within
the rectangle corresponds to a different representation of the 2D smectic; all of these rep-
resentations have the same energy. The sides of the rectangle are identified by the rules
(0, r) → (d, r) and (t, 0) → (d − t, π), as illustrated by the arrows in Fig. 12.11a. Note
that after a rotation by π , a translation t transforms into d − t . This subtle point makes the
resulting degeneracy space a Klein bottle (Fig. 12.11) rather than a torus. The fundamental
group of the Klein bottle is non-Abelian and is isomorphic to a semidirect product of the
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Figure 12.11. Equivalent presentations of the order parameter space of a 2D smectic: (a) a rectangle
{(t, r), 0 ≤ t ≤ d, 0 ≤ r ≤ π} with edges identified; (d) the same rectangle transformed into a Klein
bottle through steps (b) and (c).

group Ztr describing translations by the group Zrot describing rotations, which are both
isomorphic to Z :

π1(Rλ) = Ztr ∧ Zrot. (12.9)

Consequently, every point defect in the λ-phase corresponds to a pair of numbers (n,m).
Elements (n, 0) correspond to point dislocations with Burgers vector b = nd, and elements
(0,m) correspond to point disclinations of integer (even m’s) and half-integer strength (odd
m’s). Here, the values of m are taken twice as large as those of the usual k’s in order to better
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represent the combinations of defects. The combination law for the semidirect product is
different from that of a direct product. If n1 and n2 are two translations, and m1 and m2 are
two rotations, then the combination law is (n1,m1)(n2,m2) = (n1 + m1n2,m1 + m2).

Noncommutativity of the fundamental group π1(Rλ) results in subtle physical effects.
For example, the result of merger of two defects in the presence of a third defect is ambigu-
ous and depends on the path of merger. In a non-Abelian medium, a point defect no longer
corresponds to one element of the fundamental group, but to an entire class of conjugated
elements. By definition, two elements a and b of a group G are said to be conjugate to
one another if there is an element q of G such that b = q−1aq. Figure 12.12 shows that a
(1, 0) dislocation after passing around a (0, 1) disclination should be characterized by the
pair (−1, 0). In other words, the same defect is described by different elements (1, 0) and
(−1, 0) that belong to the same conjugacy class. In the OP space, the contour �(1,0) trans-
forms into the contour �(−1,0) = �−1

(0,1)�(1,0)�(0,1) after the corresponding defect (1, 0)
goes around the (0, 1) disclination. In an Abelian medium, �(1,0) and �(0,1) commute, and
thus �(1,0) and �(−1,0) would be homotopic; however, in the noncommutative case, �(1,0)
and �(−1,0) are not homotopic.

Because the same defect can correspond to different elements of the conjugacy class
in a non-Abelian π1, the coalescence of two defects is not uniquely defined. For ex-
ample, a (1, 0) dislocation and a (−1, 0) “antidislocation” upon merging either annihilate
(Fig. 12.13b) or form a double dislocation (2, 0), if the point (−1, 0) passed around the
(0, 1/2) disclination on the path to the merger site (Fig. 12.13c). The result is determined
not by multiplication of individual elements of the homotopy group, as for Abelian media,
but by all results of multiplication of classes of conjugated elements. Thus, to predict the
result of merging, one has to know the global configuration of the order parameter; local
topology around the defects is not enough.

(1,0 )

(-1,0)

Figure 12.12. Conversion of a dislocation (1, 0) into an antidislocation (−1, 0) after circumnavigat-
ing around a disclination in the 2D smectic λ-phase.
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(a)

(b)

(c)

(1,0) ( -1,0)

(2,0)

(0,0 )

Figure 12.13. The result of merging of (1, 0) and (−1, 0) dislocations in the 2D smectic λ-phase
depends on the path of merger around the disclination: (b) uniform state (0, 0); (c) double dislocation
(2, 0).

The other variety of the Pβ′ phase, the λ/2 structure, seemingly hardly differs from the
λ structure (Fig. 12.10): Only the twofold symmetry axis C2 has disappeared. However,
now the order parameter space is a 2D torus T 2, and thus,

π1(Rλ/2) = Ztr × Zrot (12.10)

is a direct product of groups, and is commutative: The result of the merger of two defects
is always unambiguous. Moreover, in contrast to the λ-phase, the λ/2-phase lacks isolated
disclinations with an odd m.

Simple examples of λ- and λ/2-phases also reveal some restrictions of the homotopy
theory for classifying defects in media with broken translational symmetry. According to
the homotopy theory, (12.9) and (12.10), there might be disclinations with any integer m
in a layered system. In reality, disclinations with m not equal to 1 or 2 (k �= 1/2, 1) break
the equidistance of layers and thus are energetically unfavorable.

12.2. The Fundamental Group of the Order Parameter
Space. Line Defects

The fundamental group classifies topologically stable point defects in 2D-ordered media
and topologically stable line defects in 3D.
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12.2.1. Unstable Disclinations in a Three-Dimensional
Isotropic Ferromagnetic

The OP space of the Heisenberg isotropic ferromagnet is a sphere S2. Consider a disclina-
tion in the magnetization vector field. An oriented loop surrounding the disclination core
in real space is mapped by the vector field into the OP space and, thus, produces a contour
on S2. Obviously, any contour drawn on a sphere can be contracted into a point. Thus,
π1(S2) = 0: Any disclination in the 3D isotropic ferromagnet can be continuously trans-
formed into a uniform state (Fig. 12.14).

The topological simplicity of the OP space should not let one believe that the ques-
tion of defects in ferromagnets is trivial. There are interesting similarities between defects
(points and lines) in nematics and ferromagnets, because the order parameters look very
much alike, a vector in the case of a ferromagnet, a director in a nematic. But again the
knowledge of nematic defects does not cover the knowledge of magnetic defects. The phys-
ical differences are indeed considerable. The subject of defects in ferromagnets will not be

(a)

(b)

(c)

S2

Figure 12.14. Continuous transformation of a disclination k = 1 (a) into a uniform state k = 0 (c) in
a 3D ferromagnetic phase (left); corresponding contraction of a loop in the order parameter space
(right).
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pursued further. The interested reader might appreciate the specificity and the richness of
this subject in the texts cited in “Further Reading.”

12.2.2. Stable Disclinations in a Three-Dimensional
Uniaxial Nematic Phase

In a 3D nonpolar uniaxial nematic phase, n ≡ −n, and the OP space is the sphere S2/Z2
or the projective plane R P2.

There are two types of contours in S2/Z2: This is visible at once in the 2D representa-
tion of the projective plane (Fig. 3.6), where one notices contours that are actually closed
(e.g., circles) and contours that are terminating at two diametrically opposite points. The
first ones can shrink into a point; they correspond to disclinations of integer strength k that
are topologically unstable. The second class of contours is not contractible to a point: un-
der any continuous deformations, the ends of the contours remain fixed at the diametrically
opposite points. These contours correspond to disclinations of half-integer k.

It is easy to see that all contours corresponding to half-integer k’s can be transformed
one into another (Fig. 12.15). Therefore, there is just one class of topologically stable

1 2    

Γ1/2 -1/2Γ

2

3

4

γ
1/2 γ

-1/2

 543

Figure 12.15. Continuous transformation of a disclination k = 1/2 into a disclination k = −1/2 in
real space (director configurations above) and the corresponding transformation of contours in the
OP space R P2.
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disclinations in the uniaxial nematic phase:

π1(S
2/Z2) = Z2. (12.11)

The laws of conservation are simply 1/2 + 0 = 1/2 and 1/2 + 1/2 = 0, if expressed in
terms of k’s.

12.2.3. Disclinations in Biaxial Nematic and Cholesteric Phases

Biaxial nematic order is specified by a tripod of mutually perpendicular directors l ≡ −l,
n ≡ −n, and [nl] ≡ −[nl]. The OP space is the group G = SO(3) of rotations of the triad
l,n, [nl], factorized by the four-element point group D2 of π-rotations about the directions
l, n, and [nl]:

Rbx = SO(3)/D2. (12.12)

Any two diametrically opposite points at the surface of SO(3) are identical: π-rotations
about axes oriented in opposite directions yield the same result, as discussed in Sec-
tion 12.1.5. Thus, SO(3) can be equivalently represented as the projective space R P3 =
S3/Z2 or as a 3D sphere in 4D space at which the antipodal points are identified, SO(3) =
S3/Z2 (compare with the uniaxial nematic with OP space R P2 = S2/Z2).

This is the place for some comments of general interest, which will be useful relat-
ing to media whose OP is a local triad (biaxial nematics, cholesterics). A standard method
to calculate homotopy groups in the context of ordered media is to lift the topological
space G to a simply connected space G (called the universal cover of space G), i.e., such
that π1(G) = 0. In this process, any point g ∈ G is lifted to a set of n (n independent
of g) points gi . Reciprocally, the projection on G of any gi ∈ G and of a neighbor-
hood Vi of gi maps gi and Vi on g and a neighborhood V of g. A path γi j on G from
gi to g j maps on a closed loop �i j in G, i.e., is in correspondence with one element of
π1(G, g); i.e., n is the index of the fundamental group, or one of its subgroups (Massey).
Note also that a subgroup H ⊂ G lifts to a subgroup H ⊂ G, with relations of the type
gi h j = f p; gi , h j , f p ∈ G if gh = f ; g, h, f ∈ G. A simple ilustration of the proper-
ties above is with G = S1, the 1D circle; its universal cover is a helix (n = ∞), which
for simplicity, the reader can figure out as having the same radius as the circle, and stay-
ing “above” to visualize the projection process, although one must keep in mind that this
“metrical” representation has no relation whatsoever with the topological properties that
are considered here. Eventually, let us consider a subgroup H ⊂ G that is the lift of a sub-
group H ⊂ G. The fundamental group π1(G/H) = π1(G/H), because the coset spaces
are the same, R = G/H = G/H . Now, consider the manifold obtained by identifying

any point g in G with all points h
−1

gh; h ∈ H belonging to the subgroup conjugated
to g ∈ G. Clearly, this manifold represents R. Furthermore, π1(G/H) = H , because G
is simply connected; a complete demonstration requires more sophisticated methods than
those possible in the frame of this textbook.
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The universal cover of the projective plane is the sphere S2; similarly, the universal
cover of SO(3) is S3. In both cases, n = 2. Consider G = S3; the symmetry group of the
triad of directors is D2, an Abelian subgroup of SO(3) with four elements, which we shall
denote I , i , j , and p, with the relations i2 = I, i j = j i = p, where I is the identity and
each other element is a π rotation about one of three different perpendicular axes. The lift
of D2 into S3 is a group with eight elements. We call these elements, as the above, I , i , j ,
and p, adding the supplementary elements J , −i , − j , and −p, whose notations mean that
they are, one by one, on the same “fibers” lifted over SO(3) (therefore, their geometrical in-
terpretation is the same). This is enough to obtain the new group relations, remembering the
remark of the latter paragraph (viz. gi h j = f p; gi , h j , f p ∈ G if gh = f ; g, h, f ∈ G).
This eight-element group, noted Q, is non-Abelian and obeys the multiplication rules:

i j = − j i = p, j p = −pj = i, pi = −i p = j,

J J = I, i i = j j = pp = J, i j p = J. (12.13)

It is the group of quaternion units. Eventually, one finds

π1(S
3/D2) = Q (12.14)

The elements of the quaternion group form five conjugacy classes C0 = {I }, C0 = {J },
Cx = {i,−i}, Cy = { j,− j}, and Cz = {p,−p}.

Disclinations in biaxial nematics differ sharply from disclinations in uniaxial nematics.
Among them, one should distinguish five, rather than one, classes of topologically stable
lines, which correlate with the five classes of conjugated elements of the group Q. Corre-
spondingly, the topological charge can acquire the values I , J , (i,−i), ( j,− j), (p,−p),
with the multiplication rules (12.13). Different disclinations are shown in Fig. 12.16. The
strength k can be half-integer (π rotation of a director around the core, classes Cx , Cy , and

(a) (b)

Figure 12.16. Director fields n (long rods) and l (short rods) for topologically stable disclinations in
a biaxial nematic: (a) k = 1/2, class Cz ; (b) k = 1, class C0. Cross sections in a plane perpendicular
to the axes of the disclinations are shown.
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(a) (b) (c)

Γ1 Γ2 Γ2

SO 3( )

Figure 12.17. Closed contours �1 (a) and �2 (b), (c) corresponding to | k | = 1 and | k | = 2 disclina-
tions in the OP space of the biaxial nematic. Both contours connect diametrically opposite and equiv-
alent points at the surface of SO(3). �1 cannot continuously shrink into a point. �2 runs between the
two antipodal points twice (b) and can smoothly leave these points and shrink into a point (c).

Cz) or integer (2π-rotation, class C0). The singular core of the 2π disclination cannot be
eliminated by the “escape in third dimension” as in the uniaxial nematic (Figs. 12.16 and
12.17). In contrast, 4π-disclinations, class C0, | k | = 2, are topologically unstable. The
striking difference between a 2π- and a 4π-lines is illustrated in Fig. 12.17.

The merger and decay of disclinations in the biaxial nematic obey the multiplication
rules that are specific to the classes of elements, rather than the elements themselves. The
results are given in Table 12.1.

If two disclinations belonging to two different classes merge, then a disclination is
formed that belongs to the class of the product of the first two. The result of merger of
disclinations of the same class from the set Cx ,Cy,Cz is ambiguous: Either a nonsingular
trivial configuration (class C0) or a disclination from class C0 can be formed, depending
on the path of merger with respect to other defect lines in the system.

The cited features of the disclinations merger stem from the noncommutativity of the
group Q. Another spectacular consequence shows up in the entanglement of disclinations
in biaxial nematics.

Table 12.1. Multiplication rules of five classes of elements of the quaternion group that control the
merger and decay of disclinations in a biaxial nematic.

C0 C0 Cx Cy Cz

C0 C0 C0 Cx Cy Cz

C0 C0 C0 Cx Cy Cz

Cx Cx Cx C0 or C0 Cz Cy

Cy Cy Cy Cz C0 or C0 Cx

Cz Cz Cz Cy Cx C0 or C0
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Figure 12.18. (a) Entanglement of disclinations in a biaxial nematic; (b) topologically trivial; (c) non-
trivial.

Figure 12.18a shows two entangled disclinations. The question is whether they can
be transformed by continuous variations of the directors into an unlinked configuration
(Fig. 12.18b), if we require that the ends of the disclinations remain fixed.

To find the answer, let us draw three contours γ1, γ2, and γ3 from a point M of real
space: γ1 and γ2 encircle the defect lines, and γ3 encircles the entangled region (Fig. 12.18).
Their images in OP space will be some contours �1, �2, and �3. Evidently, the defects
can be unlinked only when �3 is homotopic to zero. If this is not so, then separation of
the disclinations will leave a topologically nontrivial trace in space, a third disclination
(Fig. 12.18c). The result depends on the nature of the linked disclinations. One can show
(Fig. 12.19) that the contour �3 is homotopic to the product �1�2�

−1
1 �−1

2 ; an element of
this form is called a commutator in the fundamental homotopy group. For Abelian groups,
the commutator is the identity element, because �1�2 = �2�1. This is not true for non-
Abelian groups; in particular, for the group Q, the contour �3 can belong either to the class
C0(�1�2�

−1
1 �−1

2 = 1) or to the class C0(�1�2�
−1
1 �−1

2 = −1). The latter situation occurs
when the two entangled disclinations belong to different classes from the set Cx ,Cy,Cz .
Therefore, after drawing two different disclinations | k | = 1/2 through one another, they
prove to be connected by a disclination | k | = 1 belonging to C0.

The topological classification of defects in biaxial nematics can be applied to cholester-
ics, when the cholesteric pitch is much smaller than is the characteristic scale of deforma-
tions, as discussed in Chapter 11, where for convenience, we used the same notations for
the classes of disclinations. However, the topological classification considered above does
not apply, in its full generality, to the coarse-grained picture of cholesterics that takes into
account the high energy cost of changing the cholesteric pitch.
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(a) (b) (c)

(d) (e)

1

3

–1
1

2

2
–1

γ

γ

γ γ
γ

Figure 12.19. Continuous deformations of the contour γ3 from Fig. 12.18 into the product con-
tour γ1γ2γ

−1
1 γ−1

2 , demonstrating that the image �3 of γ3 in OP space is homotopic to the product

�1�2�
−1
1 �−1

2 . At the step (d), one pinches together four points marked by circles.

12.3. The Second Homotopy Group of the Order Parameter
Space and Point Defects

Point defects in 3D ordered phases are classified by the elements of the second homotopy
group.
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12.3.1. Point Defects in a Three-Dimensional Ferromagnet

In a 3D isotropic ferromagnet, the magnetization field m(r) may contain singular points at
which the direction of m is not specified. To elucidate the topological stability of such a
point, one encloses it with a closed surface σ (Fig. 12.20).

The radius of the sphere should be much larger than the core size of the point de-
fect. The function m(r) produces a mapping of the surface σ into some surface in the
OP space R = S2 (Fig. 12.20). If the resulting surface � can be contracted to a single
point (Fig. 12.20a), the point defect is topologically unstable. If � is wrapped N �= 0
times around the sphere S2, the point singularity is a stable defect with topological charge

(a)

(b)

Σ
0

Σ
1

S
2

S
2

S
2

σ

Figure 12.20. Topological stability of a point defect in a ferromagnet, core region (black ball) sur-
rounded by a closed surface σ . (a) Unstable point defect; (b) topologically stable point defect.
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(a) (b) (c) (d)
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Σ 2
21

Σ
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Figure 12.21. Multiplication of classes of surfaces, e.g., �1 and �2, is a commutative operation:
�1�2 = �2�1. The arrow in (c) shows deformation of rotation. Redrawn from Mineev.

N �= 0. For example, Fig. 12.20b illustrates a “hedgehog” radial defect, m(r) = r/| r |, for
which� covers the entire sphere S2 once, N = 1. The classes of all images�’s (including
the surfaces homotopic to a single point) form the second homotopy group π2(S2), which
in the case of the ferromagnet is isomorphic to the group of integers Z . The topological
charge N of a point defect is also called the degree of mapping of σ on S2. N shows how
many times the vector m runs over the sphere S2 in moving over the closed surface σ . In
the example above, m(r) = r/| r |, and N = 1; if one reverses the orientation of m, i.e.,
m(r) = −r/| r |, then the degree of mapping also changes the sign: N = −1. When the
point defects coalesce, the charges N add up.

In contrast to π1(R), groups π2(R) are always Abelian; i.e., the multiplication of
classes of surfaces � is commutative. Figure 12.21 shows a continuous deformation that
establishes �1�2 = �2�1.

12.3.2. Topological Charges of Point Defects

Analytically, the topological charge of a point defect in a 3D unit vector field m is defined
as an integral1 over the sphere σ :

N (3) = 1

4π

∫

σ

m ·
[
∂m
∂u1

× ∂m
∂u2

]
du1 du2. (12.15a)

The integrand contains the Jacobian of the transformation from the coordinates u1 and
u2 on the sphere σ to the vector components m parameterizing the surface � that cov-
ers the OP S2-sphere N times. If the vector field is parameterized as {nx ; ny; nz} =
{sin θ cosϕ; sin θ sinϕ; cos θ}, with both angles θ and ϕ being the functions of the two

1M. Kleman, Phil. Mag. 27, 1057 (1973); N.D. Mermin and T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976).
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N=1

N=-1

N=2

N=1

N=-1

Figure 12.22. Point defects in a 3D vector field.

angular spherical coordinates u1 and u2, then

N (3) = 1

4π

∫ 2π

0
du2

∫ π

0

(
∂θ

∂u1

∂ϕ

∂u2
− ∂θ

∂u2

∂ϕ

∂u1

)
sin θ du1. (12.15b)

For a radial hedgehog, N (3) = 1, as expected. Different 3D point defects are shown in
Fig. 12.22.

In a similar way, one can define the topological charge of a 2D unit vector field � with
components τ 1(l) and τ 2(l) as the integral over the coordinate l on a contour around the
defect [compare with (11.4)]:

N (2) = 1

2π

∮ (
τ 1 dτ 2

dl
− τ 2 dτ 1

dl

)
dl (= 0,±1,±2, . . . .) (12.16)
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Note that the two 2D radial configurations: “sink” (� directed toward the core) and “source”
(� directed outward from the core), have the same invariant N (2) = 1, in contrast to the 3D
radial configurations, in which a reversal in the direction of m changes the sign of N (3).

12.3.3. Point Defects in a Three-Dimensional Nematic Phase

Classification of point defects in a 3D uniaxial nematic, R = S2/Z2, is similar to that
in a ferromagnet: π2(S2/Z2) = Z . However, because n ≡ −n, each point can be equally
assigned a charge N and a charge −N (12.15). This ambiguity in the sign of the topological
charge is the consequence of nontriviality of the fundamental group π1(S2/Z2) and its
action on the group π2(S2/Z2).

Assume that the nematic volume contains a point defect and a π-disclination line. The
director field provides a mapping of degree N of the sphere σ enclosing the point defect
and part of the line defect, on S2/Z2. A point r0 of real space is mapped into an image
point n(r0) of OP space. If one moves the point r0 over a closed contour γ around the
disclination line, then the point n(r0) goes over a contour �1/2 into an antipodal point
−n(r0) and N reverses sign (Fig. 12.23). The contour �1/2 connecting n(r0) and −n(r0)

is a nontrivial element of the group π1(S2/Z2) = Z2. If the contour �1/2 were the identity
element, the degree of mapping would preserve the sign.

Thus, when π1(R) is nontrivial, each point singularity corresponds to a few elements
(such as N and −N above) of π2(R), rather than to a single element of π2(R) (such as
N or −N ). These elements are tranformed one into another by moving the image points
along contours that are nontrivial elements of π1(R). The coalescence of two point defects
N1 and N2 in the presence of disclination can result in a defect with a charge | N1 + N2 |

γ
Γ 1 / 2

− n r0( )
n r0( )

r0

σ

S
2

/ Z 2

Figure 12.23. Action of the fundamental group π1 on the second homotopy group π2 in a uniaxial
nematic: Moving point r0 of real space around a π-disclination transforms the image point n(r0)

into an antipodal point −n(r0).
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or | N1 − N2 |, depending on the path of coalescence. Owing to this feature, all hedgehogs
in a nematic system with a π-disclination can be annihilated, or at least all but one with
N = 1 (if the total charge is odd).

12.4. Solitons

12.4.1. Planar Solitons

Let us study a uniaxial nematic placed in a plane capillary, both surfaces of which impose
planar achoring in one direction h. The director in the bulk is set to be oriented along
h: n = ±h. In other words, the interaction with the walls contracts the OP space of the
nematic to a single point. Let a vertical disclination k = ±1/2 exist in the specimen. When
the disclination is present, it is impossible to conserve a uniform configuration n = ±h:
at a certain surface supported by the disclination, the director will undergo a π-rotation
(Fig. 12.24a). The width of the wall is fixed by the balance of elastic and surface anchoring

(a)

n = ± h

(c)

m = h m = − h

(b) (d)

n = ± h m = h

m = − h

Γ
m

Γ
n

S
2
/ Z

2 S
2

γ
m

γ
n

Figure 12.24. (a), (b) Topologically stable planar soliton in a uniaxial nematic; (c), (d) Bloch domain
wall in an anisotropic ferromagnetic with an “easy magnetization” axis.
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energies. If we write the energy of the wall as

F = K d

ρ
+wρ, (12.17)

then its equilibrium width ρ0 is

ρ0 =
(

K d

w

)1/2

. (12.18)

Here, d is the thickness of the capillary, K is a nematic elastic constant, and w (dimension
J/m2) is the anchoring coefficient, calculated as the energy per unit surface area needed
to deviate the director from the “easy axis” n = ±h by the angle π/2. Such walls with a
nonsingular director configuration are called planar solitons of topological type.

Not only does the soliton under consideration preserve a constant width, but it also
possesses a nontrivial topological charge. Indeed, let us study the mapping of the line γn

threaded through the soliton into the OP space (Fig. 12.24a). The ends of the line are
mapped into antipodal identical points n = ±h, whereas the line γn is mapped onto the
closed contour �n , linking these points on S2/Z2 (Fig. 12.24). This contour cannot be
contracted to a point by any continuous transformations, which determines the topological
stability of the planar soliton.

In the general case, the classes of homotopic mappings of the line γ threaded through
a planar soliton form the relative homotopy group π1(R,R), where R is the region of pos-
sible values of the order parameter far from the core of the soliton, narrowed in comparison
to R by additional interaction (external field, boundary conditions, etc.). If R consists of
a single point, as in the case being studied, the group π1(R,R) coincides with the funda-
mental group π1(R). Therefore, soliton walls in nematics exist in a mutually one-to-one
correspondence with the disclinations that have produced them and are described by the
same group π1(S2/Z2) = Z2. If R is not a point, then to find π1(R,R), one first finds
π1(R) and then excludes from π1(R) the elements that correspond to π1(R). In other
words, one must find the factor group of π1(R) by its subgroup, which is the image of the
homomorphism π(R)→ π(R):

π1(R,R) = π1(R)/Im
[
π1(R)→ π1(R)

]
. (12.19)

There are other examples of walls, different from the planar solitons above, that oc-
cur in media with disconnected R (Fig. 12.24c). For example, consider a ferromagnet in
which additional interaction between the magnetization vector and the crystal lattice is
anisotropic. In equilibrium, the vector m orients along a particular crystallographic axis,
say, m = ±h. The states m = h and m = −h are distinguishable, unlike in the nematic
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phase. Thus, R is reduced from the sphere S2 into a set of two disconnected points m = ±h
(Fig. 12.24d). The set of disconnected pieces of OP space R is denoted π0(R). In our case,
π0(m = ±h) = Z2 and any two domain walls can be merged to produce a uniform state.
Alternatively, one can use the relative fundamental group π1(R,R) = π1(S2,m = ±h);
however, with a disconnected R, π1(R,R) is no longer a group. Domain walls of the
type of the Bloch and Néel walls that provide a connection between different pieces of the
disconnected OP space can be called “classical domain walls” to distinguish them from
soliton walls ending at linear defects. This terminological distinction has a physical basis:
To remove a wall associated with a linear singularity, it suffices to create a ring of discli-
nations in the plane of the wall. The latter, in expanding, “eats up” the wall; at the same
time, to remove a classic wall requires overcoming a considerably larger energy barrier
and transformation of the order parameter over the entire half-space on one side of the
wall.

12.4.2. Linear Solitons

Just as a disclination in an external field can give rise to a planar soliton, a point defect
can give rise to a linear soliton (Fig. 12.25). Linear solitons are described by the classes
of mapping of the surface σ crossing the soliton into the OP spaces R and R, i.e., by the
elements of the relative group π2(R,R). If a uniaxial nematic is oriented by a magnetic
field B along the axis h||B, then RN reduces to one point, and π2(RN ,RN ) = π2(RN ) =
π2(S2/Z2) = Z ; i.e., the classification of linear solitons coincides with the classification
of hedgehogs.

n = – h

mapping into

S
2
/Z2

mapping into

n =– h

σ
B

γ

Figure 12.25. Linear soliton terminating at a point defect (a radial hedgehog in a nematic liquid
crystal). The magnetic field B is along the axis ±h. See text.
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12.4.3. Particle-Like Solitons

The distribution of the order parameter in particle-like solitons depends on all three coor-
dinates. They are described by the group π3(R,R) of homotopy classes of the mappings
of the 3D spherical volume D3 containing the soliton into the space R. Here, the boundary
of the spherical volume, the sphere σ , is mapped into the narrowed space R. If R consists
of one point, then the particle-like soliton is described by the group π3(R). The spherical
volume D3 with all point of its surface σ being equivalent, is homotopic to a 3D sphere S3

in a 4D space. Thus, the elements of π3(R) are mappings S3 → R. Special cases S3 → S2

and S3 → S2/Z2 are called Hopf mappings and correspond to π3(S2) = π3(S2/Z2) = Z
(Fig. 12.26).

In a uniaxial nematic, the particle-like soliton amounts to a director configuration dis-
torted in a region of finite size, outside of which the director field is uniform. As a rule,
such solitons are unstable with respect to decrease in size and subsequent disappearance on
scales smaller than the coherence length ξ . The decrease in size L → µL(µ < 1) entails
an increase in the elastic-energy density by a factor of 1/µ2 and a decrease in the soliton’s
volume by a factor of µ3, so that the total elastic energy decreases: F → Fµ. Stabiliza-
tion of particle-like solitons can be facilitated by an additional interaction, in particular,
by helical twisting of the structure. In a weakly twisted cholesteric mixture, Bouligand ob-
served two linked disclination rings k1 = k2 = 1, each of which by itself is topologically

Figure 12.26. A nontrivial Hopf texture in a 3D vector field, as seen in the vertical cross section.
The vector field is directed north everywhere outside of the sphere and at the origin. The vertical
axis is the rotational symmetry axis. When going along any radius from the center to the surface
of the sphere, the vector rotates by an angle 2πr/R around this radius. The length of the arrows is
proportional to the length of vector projection in the XY plane.
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unstable, whereby all points of the cores of the disclination are mapped into a single point
of the degeneracy space S2/Z2. In going from one ring to the other, the director undergoes
a 180◦ rotation, and one can represent the rings as inverse images of two diametrically
opposite points on the sphere S2. Evidently, one cannot convert the configuration into a
homogeneous state because the rings are linked: Upon trying to unlink the rings, they must
intersect one another and singularities would arise in the configuration. The degree of link-
ing of the rings, equal in this case to unity, coincides with the Hopf invariant, which is
an element of the group π3(S2/Z2) = Z . The stability of the configuration as a whole is
guaranteed by the conservation of the Hopf invariant.

Problem 12.1. Prepare a paper strip with a 2π-twist. Mark the edges of the strip in different colors.
Imagine that the strip models a simple loop of a duplex DNA molecule. The DNA must be duplicated
every time a cell divides. The two strands of the initial DNA must separate, and then each should
synthesize its new partner to form a double-stranded DNA. Try to prepare the paper strip for a “repli-
cation” by cutting it along the central line; in a real DNA, it would correspond to the cutting of the
hydrogen bonds between the base pairs. Repeat the cutting along the central line two times. Describe
the topology of the result at each step. Compare the behavior of 2π-, π-, and untwisted strips.

Hint. The exercise should demonstrate the need in topoisomerases invented by Nature to change
topology of the duplex DNA by cutting one or two of its strands.

Problem 12.2. The linking number Lk of two curves is an integer (12.3) that does not change when
the curves are deformed without crossing each other. Calculate the linking number for the pair of
circles x2 + y2 = 1 and (y − 1)2 + z2 = 1.

Answers: Lk = 1. Parameterize the circle x2 + y2 = 1 as

rc′(s′) = (cos s′, sin s′, 0), 0 ≤ s′ ≤ 2π;
enlarge the circle (y − 1)2 + z2 = 1 (without crossing the first circle) so that it can be parameterized
as rc(s) = (0, 0, s),−∞ < s <∞. According to (12.3),

Lk = 1

4π

∞∫

−∞

2π∫

0

dsds′
(1 + s2)3/2

= 1

2

∞∫

−∞

ds

(1 + s2)3/2
= 1.

Problem 12.3. Let G be a group of transformations g that transform a given value of the order
parameter ψ into another value gψ for which the thermodynamical potentials of the system remain
the same. Let H be a set of all transformations gH that leave the order parameter unchanged, gHψ =
ψ . Prove that H is a subgroup of G.

Answers: If gH1 and gH2 leave the OP unchanged, so does gH1 g−1
H2

.

Problem 12.4. Find the OP spaces and fundamental groups of the 3D smectic A and smectic C [M.
Kleman and L. Michel, J. Phys. Lett. 39, L-29 (1978)].
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Answers: In view of the complexity of the OP spaces of SmA and SmC phases, the direct algebraic
approach to calculations is difficult. One can use an intuitive graphic scheme.

The density function of SmA and SmC is modulated along the normal to the layers with a period
d0 of the order of the molecular length (or larger, as in some diluted lyotropic lamellar phases). Within
the layers, the density is constant, and the molecules are either normal to the layers (SmA) or tilted
(SmC). The orientational order of both SmA and SmC, just like a nematic phase, is described by the
director n. Taking into account also the translational order, the OP space for the SmA phase can be
written as a filled torus RA = (S2/Z2)×S1. The vertical cross sections of the torus in the form of two
circles amount to hemispheres S2/Z2 stretched into disks whose points characterize the orientation
of n. The points along the large circles of the torus correspond to points along the segment [0, d0]
closed into a circle S1. At (S2/Z2)× S1, there are two types of elementary contours not homotopic
to zero: the ones that join diametrically opposite points of the disks S2/Z2 (describing disclinations)
and the ones that run around the hole of the torus (describing dislocations). The fundamental group
π1(RA) = π1(S

1)×π1(S
2/Z2) = Z × Z2 is composed of elements (b, k), where b is an integer and

k is either 0 or 1/2. Combinations of dislocations and disclinations with both b and k being nontrivial
are called disgyrations.

For the SmC phase, the order parameter can be easily represented by using the relationship
RA = RC/S1, which implies that each point of RA corresponds in RC to an entire family S1

of points that specify the orientation of the tilted molecules in the plane of the SmC layers. Direct
calculations show that π1(RC ) = Z ∧ Z4, where Z4 = (I, a, a2, a3) is the group of subtractions
modulo 4 with the unit element I .

Problem 12.5. A nonbounded biaxial nematic contains a π-disclination Cx and a 2π-disclination
C0. Find the way to eliminate the disclination C0.

Hint. Split the C0-disclination into two (which ones?) and bring them together (along which
paths?).

Problem 12.6. Find the relative homotopy group π1(R,R)when R is a torus S1 × S1 and R = S1.

Answers: Im [π1(R)→ π1(R)] = π(R) = Z , π1(R,R) = Z × Z/Z = Z [V.P. Mineyev and
G.E. Volovik, Phys. Rev. B 18, 3197 (1978)].

Problem 12.7. Calculate the topological charge of the following vector fields in 2D:

(a) (x,−y)/
√

x2 + y2;

(b) (−x,−y)/
√

x2 + y2;

(c) (x2 − y2, 2xy)/(x2 + y2);

(d) (x2 − y2,−2xy)/(x2 + y2);

(e) (x3 − 3xy2,−y3 + 3x2 y)/(x2 + y2)3/2.

Hints. Parameterize the vector field using the coordinate 0 ≤ l ≤ 2π at the circle (cos l, sin l).
For example, the field (e) adopts the form (cos 3l, sin 3l).

Answers: (a) −1; (b) 1; (c) 2; (d) −2; (e) 3.
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Problem 12.8. Calculate the topological charges and the elastic energy of the following two hedge-
hogs in the nematic bulk of radius R:

n1 = (x, y, z)/
√

x2 + y2 + z2 and n2 = (−x,−y, z)/
√

x2 + y2 + z2.

Use the Frank–Oseen free energy density with elastic constants

K1 �= K2 �= K3 �= K24, K13 = 0.

Answer: See (11.14) in Chapter 11.
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Surface Phenomena

Real samples of condensed matter phases are necessarily bounded. The most obvious effect
of the confinement is local: Molecular interactions in the bulk and at the boundaries are
different. These differences lead to local changes that normally occur over length scales
of a few atomic radii. Because the volume-to-surface ratio grows with the system size, the
local surface effects are often neglected when a large system is considered. However, there
can also be global consequences of surface interactions. For example, bounded volumes of
liquid crystals in equilibrium contain topologically stable defects that are stable exclusively
because of the surface conditions, as in Fig. 11.13. In this chapter, we consider surface
effects both for isotropic and for anisotropic media. Monolayers and bilayers of surfactants
are reviewed in Chapter 14.

13.1. Surface Phenomena in Isotropic Media

13.1.1. Surface Tension and Thermodynamics of Flat Interfaces

The surface tension is most easily illustrated for a liquid-gas interface. In the bulk of the
fluid, the net force acting on a molecule averages to zero over time scales larger than
the relaxation time of the molecular neighborhood. At the surface, the net force does not
vanish (Fig. 13.1). To increase the surface area, one needs to perform work to transfer the
molecules from the bulk toward the surface. The work needed to increase the surface area
by a small quantity d A is proportional to d A: dW = σ d A. The positive-definite coefficient
σ is called the surface tension.

In the thermodynamic description of interfaces, one often uses the Gibbs’s concept of a
“dividing surface” to eliminate the microscopic details. Most often, the dividing surface is
considered as a mathematical plane of zero thickness located somewhere in the interfacial
region (Fig. 13.1). The two bulk phases in contact, e.g., 1 and 2, are assumed to be homo-
geneous right up to the dividing surface. Because the actual properties of the two phases
change across the interface, the actual value of an extensive thermodynamic quantity �
(such as the internal energy or the entropy) of the system is not necessarily equal to the

472
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Figure 13.1. (a) Liquid-gas interface and (b) changes in the concentration of particles across the
interface (b). Molecular forces in the bulk and at the interface are different. The position of the Gibbs
dividing surface (dashed line) can be fixed by the convention that the dashed areas in (b) are equal;
i.e., there are only particles of type 1 and type 2, but no surface particles.

sum of the bulk quantities�1 +�2 of the two homogeneous phases. An exception is made
for the total volume,

V = V1 + V2, (13.1)

if the dividing surface is assumed to be of zero thickness. To make up the difference, one
introduces a surface “excess” quantity ςsurf:

� = φ1V1 + φ2V2 + ςsurf A, (13.2)

where φ1 and φ2 are calculated per unit volume and A is the area of contact. Note that V1,
V2, and thus ςsurf, depend on the actual position of the dividing surface. This ambiguity is
of no importance for many practical purposes and can be avoided if one sets, beside the
surface excess volume, some other excess quantity to be zero. For example, if the surface
excess number of particles Nsurf is zero, then V1 and V2 are uniquely defined from (13.1)
and from the equation for the total number of particles:

N = c1V1 + c2V2. (13.3)

Here, c1 and c2 are the volume densities (usually called the concentrations) of the number
of particles calculated for infinitely large phases 1 and 2, respectively.
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Let us find the surface excesses of thermodynamic parameters for a one-component,
two-phase system in contact with a reservoir at fixed temperature T and chemical potential
µ. According to the first law of thermodynamics, the differential of the internal energy E
of the system is

d E = −p dV + T dS + µ d N + σ d A, (13.4)

where p is the pressure and S is the entropy. In (13.4), there are no terms explicitly assigned
to the phase 1 or 2, because in equilibrium,

T1 = T2 = T0; p1 = p2 = p0; µ1 = µ2 = µ0 (13.5)

(the subscript “0” implies that the conditions are written for a flat interface of zero curva-
ture; see below). Subtracting from both sides of (13.4) the term d(T S + µN), we obtain
the grand potential� = E −T S −µN , with V , T , µ, and correlatively A being the natural
parameters:

d� = −p dV − S dT − N dµ+ σ d A, (13.6)

� = −pV + σ A; (13.7)

the last equation is obtained after differentiating the internal energy E = −pV + T S +
µN +σ A. For the homogeneous phases 1 and 2,�1 = −pV1 and�2 = −pV2. Therefore,
the surface excess �surf = �−�1 −�2 of the grand potential is

�surf = σ A, (13.8)

regardless of the position of the dividing surface.
The rest of the surface excesses can be found through standard thermodynamic rela-

tions, such as between the Helmholtz free energy F and�: F = �+ Nµ. For the entropy,

S = − (
∂�
∂T

)
µ,A, the surface excess Ssurf = −

(
∂�surf
∂T

)
µ,A

is

Ssurf = −A

(
∂σ

∂T

)
µ

. (13.9)

If Nsurf =
(
∂�surf
∂µ

)
T

= 0, then

Ssurf = −A
dσ

dT
,

because
(
∂σ
∂µ

)
T

= 0 and dσ
dT = (

∂σ
∂T

)
µ

in this case.
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One can qualitatively connect the temperature dependence of σ to the structure of
the liquid-gas interface. Because the separation between the particles near the surface in-
creases, the interactions between them become weaker and one might expect a positive
surface excess of entropy, Ssurf > 0. Thus, σ decreases with T , which is observed for
many systems, including organic and metallic (e.g., Sn) liquids. However, in some cases
the very presence of the interface induces an additional order, such as density oscilla-
tions along the normal to the interface, enhancement of orientational order of anisometric
molecules, or polar arrangement of molecular dipoles. Then, Ssurf < 0 and σ increases
with T . At sufficiently high T , close to the critical point, at which the boundary between
the liquid and the gas disappears (σ = 0), spatial delocalization effects should take over
and σ(T ) is expected to decrease again. Inversions of the slope dσ/dT are often observed
near phase transitions in liquid crystals. If the experiments exclude the possible role of
elastic deformations, these data indicate that the surface region is more ordered than is the
bulk.

13.1.2. Adsorption

The equilibrium distribution of chemical species becomes spatially nonuniform in the pres-
ence of surfaces. Foreign molecules can be expelled from the bulk to the interface to lower
the surface tension. This phenomenon, called adsorption, plays an important role in col-
loidal systems.

Consider a two-phase system with k components. It might be, for example, a water
solution of ethanol and glycerol in equilibrium with its gaseous phase. Equation (13.6)
generalizes to

d� = −p dV − S dT −
k∑

i=1

Ni dµi + σ d A. (13.10)

Differentiating (13.7) and subtracting the result from (13.10), one obtains the Gibbs-
Duhem equation

S dT − V dp +
k∑

i=1

Ni dµi + A dσ = 0. (13.11)

Similar equations for the bulk 1 and the bulk 2 are

S1 dT − V1 dp +
k∑

i=1

Ni,1 dµi = 0, S2 dT − V2 dp +
k∑

i=1

Ni,2 dµi = 0.

(13.12)
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Subtracting both equations (13.12) from (13.11), and employing the definitions Ssurf =
S − S1 − S2, Ni,surf = Ni − Ni,1 − Ni,2, V − V1 − V2 = 0, one arrives at the Gibbs
adsorption equation:

dσ = − Ssurf

A
dT −

k∑
i=1

�i,surf dµi , (13.13)

where �i,surf = Ni,surf/A is the excess number of the i-species per unit area.
For a two-component solution at constant temperature, the Gibbs absorption equation

reduces to

dσ = −� dµ− �′ dµ′, (13.14)

where � and µ refer to the solute, whereas �′ and µ′ refer to the solvent. The relationship
(13.14) between σ and � is ambiguous because both � and �′ are unknown. However, it
easily can be seen that the relative adsorption (Problem 13.2)

�relative = � − �′ c1 − c2

c′
1 − c′

2
(13.15)

is expressed exclusively in experimentally measurable quantities such as V , A, the concen-
tration c′ of the solvent, and the concentration c of the solute in the bulk of phases 1 and
2. If one places the dividing surface so that the surface excess mass of the solvent is zero,
then the Gibbs adsorption equation is simply

dσ = −� dµ (13.16)

(the bar refers to the choice �′ = 0). In equilibrium, the chemical potential µ of the solute
should be uniform throughout the system. This circumstance can be used to express µ
through the concentration of the solute in one of the phases, say, in the liquid, by employing
the general thermodynamic relationship

dµ = v dp, (13.17)

valid at constant temperature. Here, v is the volume per one solute particle, equal to v1 =
1/c1 in phase 1. If the solution is very dilute and behaves as an ideal one, then dµ =
kB T d ln c1 [see (1.4) in Chapter 1], and

� = − c1

kB T

dσ

dc1
. (13.18)
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Figure 13.2. Adsorption at the liquid-gas interface. (a) Surface-active solute particles (dark spheres)
accumulate in the interfacial region(redrawn from D.H. Everett. (b) Schematic concentration profile
of the solute. (c) The film of the adsorbed solute pushes the floating barrier toward the pure solvent.

According to (13.18), one can distinguish two types of solutes: (a) surface-active
agents (or surfactants) that decrease the surface tension, dσ/dc1 < 0, and accumulate at the
interface (positive adsorption, � > 0) (Fig. 13.2); (b) surface-inactive agents that increase
the surface tension, dσ/dc1 > 0, and are expelled from the interface (negative adsorption
or desorption � < 0). In water, surface-active agents are alcohols (e.g., ethanol), proteins,
and especially amphiphilic molecules with polar and nonpolar parts, such as molecules of
soaps and detergents. Strongly polar electrolyte materials (such as NaCl) that dissociate
into ions are surface-inactive at the water-gas interface.

If the surface tension does not change significantly with the concentration (weak ad-
sorption), then one can expand the function σ(c1) ≈ σ0 + σ1c1 for small c1 (σ0 is the
surface tension of the pure solvent; σ1 is a constant), and (13.18) describes the adsorbed
solute as a 2D ideal gas,
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π = �kB T, (13.19)

with a 2D “pressure”

π = σ0 − σ. (13.20)

A hemipermeable barrier floating at the surface of the solvent and separating the area of
pure solvent from the area of adsorbed solute would experience a force tending to expand
the area of the adsorbed solute (Fig. 13.2c). Experiments with floating barriers confirm
the validity of (13.19) for low concentrations; for higher concentrations, (13.19) can be
modified into a 2D analog of the van der Waals equation.

The experimental setup shown in Fig. 13.2c and known as the Langmuir trough is
extensively used in modern technologies of molecular self-assemblies based on nonco-
valent association of molecules into aggregates at the nanometer scales. A monolayer of
adsorbed surfactant (the Langmuir monolayer) can be compressed from a gaseous state
into different condensed phases by shifting the barrier and reducing the area of the film.
By dipping and removing a smooth plate, one can transfer the monolayer on the plate.
The procedure can be repeated to assemble a stack of monolayers. The films transferred
from the trough onto the solid substrate are called Langmuir-Blodgett films. These films
may be polar (the axes connecting heads to tails of the surfactant molecules belonging to
neighboring monolayers point in the same directions) or nonpolar. An interesting and sim-
ple variation of this technique is the so-called layer-by-layer electrostatic deposition.1,2 A
plate with an electrically charged (say, negatively) surface is dipped directly into a solution
of a charged material such as a polyelectrolyte. A polyelectrolyte is a polymer composed of
zwitterionic structural units. For example, a positively charged group is covalently bound
to the macromolecule, whereas a negatively charged group dissociates when the polyelec-
trolyte is dissolved in water. Electrostatic interactions of such a polymer with the negatively
charged substrate lock the adsorbed layer. Then the excess of the polymer and counterions
are washed out. The procedure is repeated by dipping the plate into a solution of a second
polyelectrolyte with the electric polarity opposite to that of the first polymer. The technique
allows one to assemble dyes, proteins, SiO2 nanoparticles, and so on.

13.1.3. Curved Interfaces

13.1.3.1. Laplace–Young Equation

Suppose a liquid drop 1 is surrounded by a gas 2. The system is closed and kept at constant
temperature and total volume. What is the equilibrium shape of the liquid drop? The answer

1R.K. Iler, J. Colloid Interface Sci. 21, 569 (1966).
2G. Decher, J.D. Hong, and J. Schmitt, Thin Solid Films, 210/211, 831 (1992).
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follows immediately if one represents a thermodynamic potential in the spirit of the Gibbs
approach as the sum of the bulk and surface parts. The equilibrium is achieved when the
surface part σ A is minimum (no evaporation). At fixed temperature, σ in an isotropic
system (liquid/gas) is constant, and thus, the equilibrium requires minimum interfacial
area A. The minimum area of a body with a fixed volume is that of a sphere.

Mechanical equilibrium of the interface poses certain conditions on the pressure of
the coexisting phases. If the interface is flat, then p1 = p2. However, if the interface is
curved, then a shift of the interface changes its surface area. The surface energy change
is σ d A, or, if the volume 1 is a sphere of radius r , 8πσr dr . The equilibrium condition
−p1 dV1 − p2 dV2 + σ d A = 0, where dV1 = − dV2 = 4πr2 dr , leads to the Laplace–
Young equation

p1 − p2 = 2σ

r
. (13.21)

For an interface of arbitrary shape, characterized by two principal curvatures r−1
max and r−1

min,
the local excess pressure depends on the mean curvature (1/rmax + 1/rmin),

p1 − p2 = σ
(

1

rmax
+ 1

rmin

)
= σ div �, (13.22)

where � is the unit normal to the interface. Here and henceforth, the convention is that �
points from phase 1 toward phase 2, and that a radius of curvature is positive when the
center of curvature is in the phase 1.

The Laplace–Young equation manifests itself in numerous phenomena such as a cap-
illary rise of fluids and shaping of soap films spanning wire frames (Fig. 13.3).

13.1.3.2. Capillary Rise and Capillary Length

Consider a cylindrical capillary of a small inner radius r immersed in a dish of a large radius
R � r (Fig. 13.3a). The dish is filled with a fluid that wets the wall of the capillary. The
fluid surface will thus be concave. The pressure jump across this surface, 	p = p1 − p2,
also called the capillary pressure, is given by the Laplace–Young equation (13.21). The
height h of the fluid rise in the capillary above the level of the (flat) fluid surface in the
dish is such that 	p equals the hydrostatic pressure drop, 	p = 	ρgh. Here, g is the
acceleration due to gravity and 	ρ is the density difference between the fluid and the air.
In addition, the equation 2σ/r = 	ρgh defines a characteristic capillary length:

λc =
√

2σ

	ρg
. (13.23)
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Figure 13.3. Illustrations of the Laplace–Young equation: (a) capillary rise; (b) a soap film between
two coaxial rings adopts the shape of a catenoid with a zero mean curvature.

At length scales x � λc, gravity effects can be neglected as if the system were in the
weightless state; at scales x � λc, gravity dominates.

13.1.3.3. Soap Films and Minimal Surfaces

If the soap film spanning a wire frame is not closed, there should be no pressure difference
across the film. This is possible only when the mean curvature of the film is zero at every
point (13.22); i.e., the film is a minimal surface. A trivial example is a flat surface 1/rmax =
1/rmin = 0. If the film is drawn between two slightly separated coaxial rings, it forms a
catenoid, 1/rmax = −1/rmin �= 0 (Fig. 13.3b).

13.1.3.4. Kelvin Equation

Let us return to the problem of two coexisting phases, e.g., a liquid drop 1 in a gas 2,
kept at a constant temperature. Mechanical equilibrium is specified by (13.21), whereas
the condition of chemical equilibrium is

µ1(p1) = µ2(p2). (13.24a)

Note that the two chemical potentials refer to two different pressures. The conditions
(13.21) and (13.24a) allow one to derive the Kelvin equation that describes how the equi-
librium pressure over a curved interface changes with curvature.
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First, we rewrite (13.24a) as

µ1(p1)− µ0(p0) = µ2(p2)− µ0(p0) (13.24b)

(the subscript “0” refers to the flat interface), or, using (13.17), as

p1∫

p0

v1 dp =
p2∫

p0

v2 dp. (13.25)

In liquid 1, v1 depends minimally on the pressure, and one can integrate the left-hand side
of (13.25) with v1 = const:

p1∫

p0

v1 dp = v1(p1 − p0). (13.26)

The right-hand side of (13.25) is simplified when gas 2 is an ideal gas, see (1.4):

p2∫

p0

v2 dp =
p2∫

p0

kB T

p
dp = kB T ln

p2

p0
. (13.27)

Employing now the equivalent form of the Laplace–Young equation,

p1 − p0 = p2 − p0 + 2σ

r
, (13.28)

and noticing that at not very high temperatures, v1 � v2 and thus p1 − p0 � p2 − p0, as
(13.25) suggests, we eventually arrive at

kB T ln
p2

p0
= 2σv1

r
, (13.29)

which is the Kelvin equation. More generally, the coefficient 2/r of spherical curva-
ture in (13.29) should be replaced by the mean curvature of the interface, 2/r →
(1/rmax + 1/rmin).

The Kelvin equation (13.29) predicts that the gas pressure over the liquid drop is larger
than that over the flat interface (Fig. 13.4a). Conversely, for a gas bubble in a liquid, or for
a gas over a liquid condensed in a capillary tube, as shown in Fig. 13.4b,c, the pressure
is lowered. The pressure changes become noticeable for submicron scales. A droplet of
water (σ ≈ 0.07 J/m2 and v1 ≈ 3×10−29 m3, at room temperature) with radius r = 1µm
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Figure 13.4. The gas pressure over the liquid surface depends on the curvature of the interface:
(a) p2 > p0 over a liquid droplet; (b) p2 < p0 for a gas bubble inside the liquid; (c) p2 < p0 over
the liquid condensed in a capillary.

changes the gas pressure by only 0.1%, whereas for r = 0.01µm, one finds p2/p0 ≈ 1.1.
Of course, at smaller scales, the validity of many assumptions (such as the independence
of σ on r) becomes questionable.

13.1.4. Surface Tension and Nucleation of the New Phase

The concept of surface tension between two phases helps us to understand the phenomena
of supercooling and overheating and the mechanism of nucleation during first-order phase
transitions. Consider, as an example, condensation of a liquid 1 from its gas 2 in the range
of temperatures T and pressures p below the critical point.

Figure 13.5 shows schematically how the chemical potentials of gas and liquid vary
with p at constant T in the vicinity of the coexistence point (p0, µ0). The comparative
phase stability is defined by the relative magnitudes of µ1 and µ2: The lower chemical
potential corresponds to the more stable phase. At pressures p < p0, the gas is stable. Het-
erophase fluctuations3 appear as small liquid droplets (embryos); however, these droplets

3The term is used to distinguish the liquid embryos in vapor from regular fluctuations of the vapour density;
see J. Frenkel, Kinetic Theory of Liquids, Dover Publications, Inc., New York, 1955, p. 375. When the embryos
occur in the bulk of a pure system, the nucleation is called homogeneous, in contrast to heterogeneous nucleation
at foreign inclusions or bounding walls.
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Figure 13.5. Chemical potentials of (nonideal) liquid 1 and gas 2 vs. pressure at constant temperature.
p0 and µ0: coexistence across a flat interface. Circles: equilibrium of a liquid drop and of its gas.

decay because µ1(p) > µ2(p) at low pressure. If the pressure is raised above p0, the gas
becomes metastable, µ2(p) > µ1(p). In principle, the gas should transform into the sta-
ble liquid by allowing the liquid embryos to grow. However, because the liquid embryos
appear inside the gas, there is surface area and surface energy associated with the embryo.
The phase transformation is hindered by this surface energy.

Consider the work needed to create a spherical embryo as a function of its radius r .
This work is defined by three terms that refer to (a) creation of the interface, (b) compen-
sation of the pressure difference, and (c) compensation of the difference in the chemical
potentials of the two phases:

W (r) = 4πr2σ − 4

3
πr3(p1 − p2)+ 4

3v1
πr3 [µ1(p1)− µ2(p2)] , (13.30)

where 4πr3/3v1 is the number of particles in the phase 1. Equation (13.30) simplifies if
the chemical potentials are brought to the same pressure p2 of the phase 2. The Taylor
expansion µ1(p1) ≈ µ2(p2)+ v1(p1 − p2) leads to

W (r) = 4πr2σ + 4

3v1
πr3 [µ1(p2)− µ2(p2)] . (13.31)

The behavior of the embryo depends on the balance between the surface term ∼ r2 and
the bulk term ∼ r3 (Fig. 13.6). The surface term is positive definite. Thus when µ1(p) >
µ2(p), any embryo should decay. The bulk term becomes negative whenµ2(p2) > µ1(p2)
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Figure 13.6. Work needed to create a liquid embryo from gas, as a function of the radius r of the
embryo. Stable gas: The embryos decay. Metastable gas: The growth of the liquid phase is possible
when the fluctuations are capable of creating an embryo of radius r > r∗.

and dominates the surface energy but only for the embryos larger than

r∗ = 2σv1

µ2(p2)− µ1(p2)
. (13.32)

The large embryos, r > r∗, expand until the whole system is transformed into the liquid.
The amplitude of the potential barrier is 1/3 of the embryo’s surface energy:

Wmax = 4

3
πσr∗2, (13.33)

and it can be considered as the free energy of activation of the thermally activated nuclei.
The probability of a fluctuative appearance of an embryo of size r∗ is proportional to
exp(−Wmax/kB T ). The rate at which the nuclei appear per unit time in a unit volume is
J = cb exp(−Wmax/kB T ), where b is a kinetic factor that is difficult to calculate. Its value
is estimated for many liquids as b ∼ 1010 s−1. The time expected to form a new growing
nucleus in volume V is τ = 1/J V . For realistic values of the variables V ∼ 1 cm3, τ ∼ 1 s,
and c ∼ 1021 cm−3, one finds that the gas loses its metastability when Wmax ≤ 71kB T .
One needs to apply a kinetic theory4 rather than equilibrium thermodynamics in order to
trace the growth of the nuclei beyond their critical size r∗.

4E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, Pergamon, New York, 1979, Chapter 12.
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Figure 13.7. Three phases system in the regime of (a, b) partial and (c, d) complete wetting; the
substrate is either (a, c) fluid or (b, d) solid.

13.1.5. Wetting

13.1.5.1. Neumann Triangle and Young Law

The geometrical manifestations of surface tension become much richer when the system
contains three, rather than two phases. The three interfaces intersect along the so-called
triple or contact line (Fig. 13.7a). Mechanical equilibrium of the triple line requires that
the vector sum of the three interfacial tensions vanishes:

σ12 + σ23 + σ31 = 0, (13.34)

which is called the Neumann triangle construction. If one of the phases is solid (Fig. 13.7b),
then (13.34) simplifies. The vertical component of the vector sum is compensated by the
elastic forces caused by the deformation of the solid; in most cases, these deformations are
very small (a few Ångströms), and thus one can consider only the horizontal component
of (13.34), known as the Young law:

σs2 − σs1 = σ12 cos θe. (13.35)

Here, θe is the equilibrium contact angle, measured as shown in Fig. 13.7b.
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The Young equation (13.35) predicts two distinct situations: (a) partial wetting, with a
finite contact angle 0 < θe < π , defined from (13.34) or (13.35); the liquid 1 in Fig. 13.7a,b
preserves a droplet appearance with a shape dictated by capillary and gravity forces; and
(b) complete wetting, θe = 0, when the drop spreads out (Fig. 13.7c,d). An important
quantity that distinguishes the two scenarios is the spreading parameter Sspr, defined as the
free energy difference between the bare substrate (’s’ or 3), directly in contact with phase
2, and a substrate covered by a flat, thick (strictly speaking, infinitely thick, see below)
layer of the fluid 1:

Sspr = σs2 − (σs1 + σ12), or Sspr = σ23 − (σ31 + σ12). (13.36)

Sspr > 0 corresponds to the total wetting, Sspr < 0 leads to a partial wetting with cos θe =
1 + Sspr/σ12. The sign of Sspr may be reversed by temperature changes, in which case a
so-called wetting transition is observed.

A few remarks about (15.34) and (15.35) are in order. First, both formulae describe
a small region near the triple line and are not affected by bulk forces such as gravity.
Gravity influences the central part of a sessile droplet, when the characteristic size of the
droplet is comparable or larger than the capillary length λc (Problem 13.5). The equi-
librium shape of partially wetting droplets smaller than λc is that of spherical caps: The
hydrodynamic pressure inside the droplet is equilibrated; thus, the curvature is constant to
satisfy the Laplace–Young law (13.22). Lens-like fluid droplets floating at the surface of
another fluid are bounded by two truncated spheres. The second remark is that the classic
equations above are not applicable near the very “core” of the triple line, comparable to the
molecular size. The “microscopic” contact angle may be different from the “macroscopic”
one predicted by (13.36) or (13.35). Third, one should also bear in mind that the equilib-
rium contact angle is difficult to measure experimentally, especially at solid substrates. The
observed contact angle θ usually corresponds to a metastable state, stabilized by surface
roughness, chemical imputities, and so on. As a result, θ depends on the history of the
sample: One distinguishes the advancing contact angle θA > θe achieved by advancing the
liquid droplet edge and receding contact angle θR < θe obtained when the droplet retracts.

13.1.5.2. Disjoining Pressure

When the fluid film is thin, in the submicron and nanometer range, the energy of the system
becomes thickness dependent, due to the long-range forces originating in van der Waals
interactions (Chapter 1) and electric double layers (Chapter 14) as well as due to short-
range (steric) molecular forces. For example, the excess of the Gibbs free energy G (related
to the Helmholtz free energy as G = F + PV ) can be represented as

Gsurf(h)

A
= Gsurf(h → ∞)

A
+

∞∫

h

�(z) dz = σs1 + σ12 +
∞∫

h

�(z) dz, (13.37)
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where A and h are the area and the thickness of the film. The quantity accesible to experi-
mental measurements is the disjoining pressure, introduced by Derjaguin5 as

�(h) = − 1

A

(
∂G

∂h

)
T,P,Ni

. (13.38)

�(h) is the pressure that must be applied to prevent the tendency of the film 1 to thicken,
i.e., to separate (“disjoin”) the two adjacent phases 2 and 3. A positive �(h) tends to
thicken the film 1, whereas a negative�(h) tends to thin the film;�(h)→ 0 when h → ∞
and �(h) → Sspr when h → 0. For example, the nonretarded long-range van der Waals
forces contribute to the disjoining pressure as

�vdW (h) = − AH

6πh3
, (13.39)

where AH is the Hamaker constant controlled by the dielectric permittivities of all three
phases; AH ∝ (εs − ε1)(ε2 − ε1) in the first approximation (see Section 1.4). At molecular
scales, short-range steric forces may cause oscillatory �(h). A nonmonotonic �(h) also
can be observed at mesoscales, due to the balance of electrostatic and van der Waals forces.
The concept of disjoining pressure can be applied to ordered fluids as well, in which case,
there are additional sources of long-range interactions (Section 13.2.4).

The disjoining pressure is of crucial importance in the regime of complete wetting.
In practice, the total volume of the spreading liquid is finite, and the wetting film adopts
a “pancake” shape. Neglecting edge effects and gravity, the thickness of the film can be
determined from the balance of the spreading parameter Sspr and �(h) > 0. The excess
energy of a pancake of thickness h and area A, calculated with reference to the solid-
vapor interface, equals A(−S + ∫ ∞

h �(z) dz). Minimizing this energy with the constraint
of constant volume Ah = V = const, one obtains an equation that determines the thick-
ness:

S = hc�(hc)+
∞∫

hc

�(z) dz. (13.40)

For example, when the disjoining pressure is determined by nonretarded van der Waals
forces (13.39), then (13.40) yields

5See, e.g., B.V. Derjaguin, Theory of Stability of Colloids and Thin Films, Consultants Bureau, New York,
1989, 258 pp.
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hc = 1

2

√
−AH

πSspr
(13.41)

(the Hamaker constant AH should be negative for the two phases 2 and 3 to repel each
other). This minimum thickness hc may be significantly larger than the molecular size,
despite the fact that Sspr > 0 (complete wetting).

We shall not discuss the dynamics of wetting. One of the most interesting things here
is that for Sspr > 0, the spreading film develops a microscopic part of thickness hc that
advances in front of the macroscopic edge; this microscopic “tongue” is called a precursor
film. We refer the reader to the reviews by de Gennes and Léger and Joanny for detailed
analysis of both static and dynamics aspects of wetting.

13.2. Surface Phenomena in Anisotropic Media

For anisotropic media, σ depends on the orientation of the interface with respect to the
symmetry axes, such as the crystallographic axes in a solid crystal or the director in a
nematic liquid crystal. Furthermore, the creation of a new interface in liquid crystals and
solid crystals implies distortions of the order parameter both at the surface and in the bulk.
Quantities such as the Helmholtz free energy density f become functions of the order pa-
rameter deformations. Thus, the equilibrium shape and internal configuration of the order
parameter of a bounded anisotropic system are determined by the minimum of the sum of
the surface and bulk terms:

F = Fs + Fv =
∮
σ d A +

∫
f dV, (13.42)

where f is the bulk free energy density.
For isotropic liquid droplets, σ = const and the minimization of the surface area yields

spherical shapes. One can also imagine a solid crystal shaped as a sphere with atomic ar-
rangements at the interface that correspond to a possible minimum σ . This configuration
would inevitably be distorted in the bulk. The strain energy grows with the crystal size
faster than does the surface energy, and a spherical crystal would become energetically
too costly. Thus, the equilibrium shape of a solid crystal is considered under the assump-
tion that there are no strains in the bulk, f = 0 in (13.42): The shape is defined by the
dependence of σ on crystallographic directions. Liquid crystals present the most difficult
case because both the surface and the bulk energies depend on molecular order (unlike in
isotropic fluids, where there is no elasticity in the bulk), and unlike in solids, the assump-
tion f = 0 does not apply because the spatially integrated energy of bulk deformations
∼= K R is smaller than the integrated surface energy ∼= σ R2 for sufficiently large size R of
the system; thus, generally both integrals in (13.42) should be considered.
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13.2.1. Equilibrium Shape (Wulff Shape) of Solid Crystals

Consider first the shape of solid crystals. Let z = z(x, y) be the surface of a solid crystal
in the Cartesian coordinates (x, y, z). The unit normal to this surface is

� = −zx i − zyj + k√
z2

x + z2
y + 1

, (13.43)

and the element of the surface area is d A =
√

z2
x + z2

y + 1 dx dy; here, zx = ∂z/∂x and

zy = ∂z/∂y. The equilibrium is achieved when the surface energy integral

Fs =
∫∫

σ(�)
√

z2
x + z2

y + 1 dx dy (13.44)

is extremal under the condition that the crystal volume is constant

V =
∫∫

z dx dy = const, (13.45)

or, in other words, when there is an unconditional extremum of the integral

Fs − 2λV =
∫∫ [

σ(�)
√

z2
x + z2

y + 1 − 2zλ
]

dx dy; (13.46)

λ is the Lagrangian multiplier. The Euler–Lagrange equation is

2λ+ ∂

∂x

∂(σ
√

z2
x + z2

y + 1)

∂zx
+ ∂

∂y

∂(σ
√

z2
x + z2

y + 1)

∂zy
= 0. (13.47)

It can be verified that one of the solutions is

σ(�)
√

z2
x + z2

y + 1 = λ(z − zx x − zy y). (13.48)

Noticing that

� · r = z − zx x − zy y√
z2

x + z2
y + 1

,
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where r = (x i + yj + zk) is the radius-vector drawn to the origin of the normal � (13.43)
at the crystal surface, (13.48) can be rewritten as

σ(�)

λ
= � · r. (13.49)

Equation (13.49) explains how to construct the equilibrium shape of a crystal if the
polar plot σ(�) (Wulff plot, Fig. 13.8) is known. First, connect the origin O and any point
M on the curve σ(�), obtained as follows: The direction of OM is �; the length is propor-
tional to σ(�), say, | OM | = σ(�)/λ. Through the point M, draw a plane perpendicular to
OM. The operation is repeated for all points of the Wulff plot σ(�). The envelope of the
resulting family of planes is the equilibrium shape of the crystal: (13.49) is satisfied for any
radius-vector r drawn from the origin to the crystal surface, � · r = | r | cosα = | OM |,
where α is the angle between r and OM (Fig. 13.8).

The equilibrium crystal shape exhibits extended planar regions, called “facets.” The
facets are caused by “cusps,” or pointed minima of σ(�). These pointed minima of σ(�)

M

O

r

plane tangent to
the crystal surface

σ ( )
Wulff polar plot

facet α

ν

ν

Figure 13.8. Construction of the 3D equilibrium crystal shape from the Wulff polar plot (the line with
cusps).
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0 TR T
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(d)

Figure 13.9. Steps at the crystal surface (a) at T = 0 and (b) at T > 0. (c) Evolution of the equilibrium
crystal shape and (d) the cross-sections of the Wulff polar plot with temperature. The cusps and facets
disappear at the roughening transition point TR [redrawn from C. Rottman and M. Wortis].

occur along directions of symmetry. The surface tension of an interface slightly tilted away
from the direction of symmetry (a vicinal surface) is increased by the formation of steps,
separated by flat terraces (Fig. 13.9a). If the tilt angle θ is small, the steps are well separated
and their interactions can be neglected. Thus, the surface tension in the vicinity of the cusp
behaves as

σ(�) ≈ σ0 + ε

a
| θ |, (13.50)
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where σ0 is the surface tension of the flat reference surface, ε is the energy per unit length
of the step, and a is the height of the step. The Wulff construction transforms the cusps
of σ(�) into the flat facets of the crystal shape. Note that there are parts of the plot σ(�)
that do not contribute to the crystal shape. The corresponding crystallographic orientations
are forbidden at the crystal surface, and the surface tension for these orientations cannot be
measured.

Faceting of crystals progressively disappears as the temperature increases. The reason
is that thermal fluctuations disorder the edges (Fig. 13.9b). The entropy contribution de-
creases the free energy of the steps. The cusps become shallower, and the planar facets
shrink. At some temperature, called the roughening transition temperature (different for
different crystallographic orientations), the entropy of surface fluctuations wins over the
increase of surface tension, the facet disappears, and the corresponding region of the crys-
tal becomes smoothly rounded (Fig. 13.9c,d). The theoretical approach to the roughening
transition6 is much akin to the 2D Kosterlitz-Thouless transition (see Section 4.5). It hap-
pens at a temperature TR = 2σa2/π , where σ is the (temperature dependent) surface
tension, and a is the height of the steps, i.e., the periodicity of the lattice perpendicularly
to the facet. The roughening transition is also of practical importance in understanding the
process of crystal growth.

This section has concerned the equilibrium shapes, including fluctuations at T > 0.
For these shapes, the growth theory discussed above should work, and it yields very large
supersaturations. In fact, small supersaturations are the rule rather than the exception, ex-
perimentally. This is due to the presence of defects that pierce the surface; in particular,
dislocations with a screw component perpendicular to the surface carry a (growth) step
that is a region of easy growth, because the atoms along the step are even less bound to
the crystal than are those that are elsewhere on the surface. These steps serve as centers of
nucleation. For more details, see Burton et al.7

13.2.2. Surface Anchoring in Nematic Liquid Crystals

Anisotropic interactions between the molecules of liquid crystal and ambient media cause
two basic effects: (1) modification of the liquid crystal structure in the vicinity of the inter-
face and (2) lifting the degeneracy of the director orientation in the bulk. Examples of type
(1) structural rearrangements are: (a) periodic modulations of density, which in some cases
is smectic-like (similar modulations of density have been found also for ordinary liquids)
(Fig. 13.10a); (b) polar ordering of molecular dipoles that eliminates degeneracy n = −n
near the interface (Fig. 13.10b); and (c) modification of the scalar order parameter (that
may be either higher or lower than that in the bulk).

Phenomena of type (2) are commonly called anchoring phenomena and stem from
the fact that the surface tension, defined as the surface excess of the grand thermodynamic

6S.T. Chui and J.D. Weeks, Phys. Rev. B14, 4978 (1976).
7W.K. Burton, N. Cabrera, and F.C. Frank, Phil. Trans. Roy. Soc. A243, 299 (1951).
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(a) (b)

Ps

Figure 13.10. Surface modifications of the liquid crystalline order: (a) periodic modulation of the
molecular density with a simultaneous increase of the scalar order parameter; (b) polar ordering of
molecular dipoles that gives rise to the surface electric polarization Ps . Spatial variation of the scalar
order parameter (a) also leads to ‘ordoelectric’ polarization.

potential, depends on the director orientation.8 For nonflat geometries of confinement, spe-
cific anchoring directions can be produced by the bulk elasticity of liquid crystal. Imagine,
for example, a nematic slab between two flat plates that favor tangential director orienta-
tion. When the plates are parallel to each other, any director orientation parallel to the plates
is an equilibrium orientation. However, when the plates are tilted with respect to each other,
the equilibrium state is achieved only when the director is perpendicular to the thickness
gradient (Section 11.1.6). This “geometrical anchoring” might contribute to the distortion
of director patterns in samples with curved surfaces (freely suspended films, films at fluid
or solid substrates). Another factor, important when the liquid crystal is aligned by a buffed
polymer film, is a direct van der Waals interaction between the molecules of liquid crystal
and those of the polymer.

Surface orientation of the director is characterized by a polar angle θ and an azimuthal
angle ϕ. The particular direction (θ0, ϕ0) that minimizes the function σ(θ, ϕ) is called the
“easy axis.” Thus, σ(θ, ϕ) can be presented as a sum of the surface tension σ(θ0, ϕ0) at
equilibrium orientation and the (generally unknown) anchoring energy function w(θ, ϕ)
that depends on the details of molecular interactions at the interface

σ(θ, ϕ) = σ0(θ0, ϕ0)+w(θ − θ0, ϕ − ϕ0). (13.51)

When the liquid crystal is in contact with an isotropic fluid, w depends only on the
polar angle θ . At the nematic-isotropic interface, there is no reason to expect any “cusps”
in w(θ), because the nematic phase has no long-range translational order (Fig. 13.11).

8For a review of the Gibbs thermodynamics of a nematic interface, see H. Yokoyama, in Handbook of Liquid
Crystal Research, Edited by P.J. Collings and J.S. Patel, Oxford University Press, New York, 1997.
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Figure 13.11. Possible dependencies of the anchoring energy on the polar angle θ between the di-
rector and the normal to the interface. Solid line: tangential anchoring, θ0 = π/2; dashed line:
perpendicular anchoring, θ0=0.

The strength of anchoring in the vicinity of the equilibrium orientation (θ0, ϕ0) is often
characterized by the so-called polar (wθ) and azimuthal (wϕ) anchoring coefficients, which
measure the work (per unit area) needed to deviate the director from the easy axis (θ0, ϕ0):

w = 1
2wθ(θ − θ0)2 or w = 1

2wϕ(ϕ − ϕ0)
2. (13.52)

The latter expansions can be justified for small deviations from the easy axis. Very of-
ten, especially for the polar part of the anchoring, it is postulated that the surface anchoring
energy follows a specific functional form, for example,

w = 1
2wθ sin2(θ − θ0). (13.53)

The latter form is called the Rapini-Papoular anchoring potential. To describe some ef-
fects, such as consecutive alignment treatments or dependence of the anchoring potential
on the in-plane coordinates, it is more convenient to operate with a traceless coordinate-
dependent symmetric tensor9 wαβ(r):

w = −1

2

∑
α,β

wαβ(r)nαnβ. (13.54)

9S.V. Shiyanovski, A. Glushchenko, Yu. Reznikov, O.D. Lavrentovich, and J.L. West, Phys. Rev. E 62, R1477
(2000).
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In the nematic phase, the surface anchoring coefficients are usually much smaller
than is the energy (per unit area) needed to extend the area of the surface preserving
the equilibrium director orientation. A typical surface tension coefficient for the liquid
crystal cyanobiphenyls-glycerin surface is σ0 ∼ (10−3 − 10−2) J/m2, whereas the polar
anchoring coefficient for the same interface is wθ ∼ (10−5 − 10−6) J/m2. At the nematic-
isotropic interface of 5CB, θ0 = 640, σ0 ≈ 2×10−5 J/m2, whereaswθ ≈ 5×10−7 J/m2.10

Both surface tension and anchoring coefficients are temperature dependent. The anchoring
coefficients decrease when the temperature T increases, because the nematic scalar order
parameter decreases. The temperature behavior of σ0 may be more complex. In isotropic
fluids, σ0 usually monotonously decreases with T . In liquid crystals, σ0(T ) may be non-
monotonous, especially in the vicinity of phase transitions.

It is usual to distinguish three types of polar orientation at the isotropic fluid-nematic
interface: (1) perpendicular, θ0 = 0; perpendicular anchoring is also called “homeotropic”
when the interface is flat; (2) tilted conical, 0 < θ0 < π/2; and (3) tangential, θ0 = π/2.
The in-plane easy axes occur when the substrate is anisotropic, e.g., crystalline. Below, we
discuss the role of surface anchoring in two field-induced effects, namely, the Frederiks
transition and the combined flexoelectric-surface polarization effect.

13.2.3. Field Effects Under Finite Anchoring

13.2.3.1. Frederiks Transition

In Section 5.4.3, we mentioned field-induced reorientation of the director in the bulk of
the nematic cell, known as the Frederiks transition. The Frederiks transition has a well-
defined threshold when the director n is initially in the planar or homeotropic orientation
and when the field B is either perpendicular to n or parallel to n. The instability occurs
in B||n geometry when the diamagnetic (dielectric) anisotropy is negative, χa < 0, and
in B⊥n geometry when χa > 0. The threshold (5.74) was calculated by assuming that
the director is strongly anchored at the bounding plates z = 0 and z = h, where h is
the thickness of the cell. Consider now how the finite anchoring would modify the result
(5.74), for a particular geometry of n = (0, 0, 1) and B = (B, 0, 0); χa > 0.

We parameterize the director as n = [sin θ(z), 0, sin θ(z)]. Near the threshold, distor-
tions are weak, θ � 1, and the free energy (per unit area) writes in a simplified form:

F = 1

2

h∫

0

[
K3

(
dθ

dz

)2

− µ−1
0 χaB2θ2

]
dz + 1

2
wθθ

2
∣∣
z=0 + 1

2
wθθ

2
∣∣
z=h . (13.55)

The Euler–Lagrange equation

10S. Faetti, Mol. Cryst. Liq. Cryst. 179, 217 (1990).
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ξ2 d2θ

dz2
+ θ = 0,

where ξ = 1
B
√

K3

µ−1
0 χa

is the magnetic coherence length, has the solution

θ(z) = C1 cos
z

ξ
+ C2 sin

z

ξ
, (13.56)

where the constants of integration C1 and C2 are determined from the torque boundary
conditions




−K3
dθ

dz

∣∣∣
z=0

+wθθ |z=0 = 0,

K3
dθ

dz

∣∣∣
z=h

+wθθ |z=h = 0.

(13.57)

The system (13.57) yields nonzero C1 and C2 when

cot
h

2ξ
= K3

wθξ
. (13.58a)

Using the notation B∞ for the field threshold (5.74) in a cell with infinitely strong anchor-
ing, one may rewrite the last result as

cot
πBw
2B∞

= πK3Bw
hwθB∞

, (13.58b)

where Bw is the threshold for a finite wθ . Series expansion of (13.58a) in terms of a small
parameter (1 − Bw/B∞) yields an expression transparent for interpretation:

Bw
B∞

≈ 1 − 2K3

hwθ
= 1 − 2Lw

h
, (13.58c)

where Lw = K3/wθ is the characteristic anchoring length we already met in Chapter 5.
The polar anchoring coefficient wθ can be measured by comparing the threshold of the
Frederiks transition in thick and thin cells.11 For an MBBA oriented homeotropically by
a surfactant layer, wθ decreases from 6 × 10−5 to 1 × 10−5 J/m2 when the temperature

11C. Rosenblatt, J. Phys. (France) 45, 1087 (1985).
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approaches the nematic-to-isotropic transition point. Experiments also indicate that the
scalar order parameter near the homeotropic alignment layer is somehow higher than in
the bulk; the surface region might be smectic-like.12

13.2.3.2. Flexoelectric and Surface Polarization Effects

The Frederiks transition is bulk effect: The maximum director deviations for a symmetric
cell occur in the midplane of the cell, at z = h/2. The diamagnetic effect considered above
has a dielectric analog; the threshold electric field can be estimated by making use of the
replacement µ−1

0 χaB2 → ε0εa E2 (more careful calculations should take into account that
the electric field in the cell with distorted director is nonuniform). Electric field causes not
only dielectric, but also other types of effects, such as polar (i.e., depending on the polarity
of the applied field) flexoelectric, and surface-polarization instabilities. These two are of
especial interest for surface phenomena because the maximum director distortions develop
at the bounding plates13 z = 0; h.

We refer to the same homeotropic cell as in the previous section: n = (0, 0, 1). The
electric field E = (0, 0, 1) is applied along the director. If the material is dielectrically pos-
itive, εa > 0, one would expect no response, because E||n. However, a simple experiment
would show that a low DC voltage of about 1V, applied to a homeotropic cell of, say, 5CB,
causes director distortions near one of the electrodes (Fig. 13.12). The possible mechanism
is flexoelectric fflex = −P f · E = −[e1n div n − e3(n × curl n)] · E and surface polar-
ization (−Ps · E) contributions to the free energy density. Both contributions are linear in
E and average to zero when the applied field is of a high frequency. However, when the
field is DC or a low-frequency AC, both flexoelectric and surface polarization can cause
an instability of the homeotropic cell, namely, an increase in the surface polar angle from
0 to some value θs . For example, if the surface polarization is directed toward the bound-
ing plates, a DC field (EDC, 0, 0) acting along the z-axis will cause director deviation at
the plate z = 0 and enhance the homeotropic alignment at the plate z = h (Fig. 13.12).
The experimental verification of this polar effect is not simple because it can be masked
by other field phenomena, such as injection of ions from the electrodes of the cell and a
consequent motion of the nematic fluid, i.e., an electrohydrodynamic instability.

To test the origin of the electrooptical effects in the homeotropic cell, one can use
a simultaneous action of the AC (EAC) and DC (EDC) fields.14 The combined torque of
the flexoelectric and surface polarization can be estimated as (−e∗EDC)θs , where e∗ =
e1 + e3 + | Ps |. The positive sign of | Ps | refers to the case when the surface polarization
favors director deviations at the anode. The destabilizing torque (−e∗EDC)θs is opposed
by (a) surface anchoring torque wθθs = Kθs/Lw and (b) dielectric torques: Kθs/ξDC of
the DC field and K θs/ξAC of the AC field. Here,

12C. Rosenblatt, Phys. Rev. Lett. 53, 791 (1984).
13W. Helfrich, Appl. Phys. Lett. 24, 451 (1974).
14O.D. Lavrentovich, V.G. Nazarenko, V.V. Sergan, and G. Durand, Phys. Rev. A 45, R6969 (1992).
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Figure 13.12. Polar surface instability in a homeotropic nematic cell with εa > 0: (a) mechanism
of flexoelectric (double arrow) and surface polarizations (single arrows) coupling to the applied field
EDC; (b) texture of a homeotropic layer of 5CB above the threshold of the polar instability.

ξDC =
√

K

ε0εa E2
DC

and ξAC =
√

K

ε0εa E2
AC

are the corresponding coherence lengths. There is also an elastic torque that can be omitted
when the cell is thick, h � ξAC, ξDC. The surface torque equation is

(
K

ξAC
+ K

ξDC
+ K

Lw
− e∗EDC

)
θs = 0,

and it yields the threshold of the surface polar instability:

EDC,th = 1

e∗ − √
ε0εa K

[√
Kε0εa | EAC | + wθ

]
. (13.59)
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An important feature is that the threshold of polar instability EDC,th increases with | EAC |;
for electrohydrodynamic effects, the threshold should not increase with | EAC |. Experi-
ments indeed confirm the existence of the polar surface effect with EDC,th ∼= | EAC |. An-
other important consequence of (13.59) is the possibility of measuring the anchoring length
and e∗. To do this, one needs to compare the threshold E0

DC,th when there is no applied AC
field, with the threshold EDC,th, measured when the cell is subject to the stabilizing AC
field:

Lw
ξAC

= EDC,th

E0
DC,th

− 1; e∗ = √
ε0εa K ′

(
1 + EAC

EDC,th − E0
DC,th

)
. (13.60)

Experiments14 yield Lw ∼ 1µm and e∗ ∼ 5 × 10−3 (cgs units) for 5CB at a sili-
cone elastomer homeotropic layer. The total flexoelectric and surface polarization e∗ =
e1 + e3 + | Ps | is somewhat different from the pure flexoelectric quantity (e1 + e3). Thus,
the surface-polarization contribution can be significant. For further analysis and review of
electric field effects, see the book by Pikin.15

13.2.4. Thin Liquid Crystal Films; Casimir Interactions

As already mentioned in Section 13.1.5, long-range interactions such as van der Waals
forces play an important role in the behavior of systems with a mesoscopic characteristic
lengths between 1 µm and a few nanometers. If the film is ordered, in the nematic phase,
say, there are additional long-range interactions contributing to the disjoining pressure.
The most obvious effect is caused by the balance of the anchoring and elastic forces. For
example, if a nematic film has different easy axes at the two opposite surfaces, director
distortions in the bulk tend to thicken such a hybrid-aligned film contributing to the dis-
joining pressure a positive term�elastic(h) ∼ K/h2 (Problem 13.6). In a similar way, two
spherical particles in the nematic solvent may be prevented from close contact by spatial
distortions of the director. Furthermore, even if the director is spatially uniform, there is
yet another universal source of long-range interactions, of the Casimir type (Section 1.4.4).

The Casimir interactions originate in the entropy-costly restrictions that the geometry
of the system imposes on the thermal fluctuations of the order parameter. Consider, for ex-
ample, a flat nematic slab with an infinitely strong anchoring that keeps the director normal
to the plates, n = (0, 0, 1) = const. There is no elastic energy stored in the slab. On the
other hand, the surface anchoring suppresses a number of fluctuating director modes in the
bulk. The system tends to decrease the volume in which these restrictions occur. The plates
attract each other. The potential of this attraction should be proportional to kB T as the ef-
fect is caused by thermal fluctuations. Furthermore, the interaction should be extensive in
the area A of the plates. To yield the correct dimension, one concludes that the potential is

15S.A. Pikin, Structural Transformations in Liquid Crystals, Gordon and Breach Science Publishers, New York,
1991, 424 pp.
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roughly (−kB T )A/h2; i.e., it scales with the separating distance as ∼ 1/h2. The estimate
turns out to be qualitatively correct, if one uses a one-constant approximation to the ne-
matic elasticity. Generally, the elastic constants describing fluctuations with wave vectors
perpendicular and parallel to the plates are not equal, and the amplitude of the Casimir
interactions should be multiplied by a factor (K3/K1 + K2/K1). Careful calculations16

show that the attraction potential is

−ςR(3)

16π

kB T A

h2

(
K3

K1
+ K2

K1

)
.

Here, ςR is the Riemann’s zeta function, ςR(3) ≈ 1.202 . . .. Using the definition (13.38),
one finds the Casimir contribution to the disjoining pressure of the homeotropic nematic
film:

�C,N (h) = −ςR(3)

8π

kB T

h3

(
K3

K1
+ K2

K1

)
, (13.61)

which is obviously negative (hybrid alignment of the nematic film may cause a positive sign
of the Casimir term). In a similarly oriented smectic A, with layers parallel to the plates,
the dependence on separation distance is predicted to be different, because the smectic A
elastic energy density (5.27) introduces the elastic length scale λ = √

K1/B. As follows
from calculations by Ajdari et al.,16

�C,SmA(h) = −ςR(2)

8π

kB T

λh2
. (13.62)

A rigorous experimental verification of Casimir interactions in liquid crystals (or other
ordered media) is presently lacking.

13.2.5. Topological Defects in Large Liquid Crystal Droplets

The equilibrium of a bounded liquid crystal is defined by the minimum of the total energy
that includes bulk elastic and surface (both surface “isotropic” and anchoring) terms. Be-
cause the general solution of the minimization problem is not known, one often uses differ-
ent approximations based on a qualitative comparison of the different terms. For a nematic
sample of a characteristic size R (say, a droplet confined in some matrix), representative es-
timates are K , σ0 R2, and wθ R2; usually, wθ � σ0. The bulk elastic energy scales linearly
with R, which leads again to the anchoring scale Lw = K/wθ as an important parameter.
Nematic droplets of any reasonable supramolecular size, suspended in various fluids (wa-
ter, glycerin), are practically spherical. The inner drop structure is different for R � Lw

16A. Ajdari, B. Duplantier, D. Hone, L. Peliti, and J. Prost, J. Phys. II France 2, 487 (1992).
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Figure 13.13. Large and small nematic droplets with perpendicular surface anchoring.

and R � Lw. Compare two extreme states of a drop with perpendicular anchoring n||�:
(a) a spatially uniform director, n = const, which violates the boundary conditions; and
(b) a hedgehog structure, n||� (Fig. 13.13). The energy of the uniform structure is that
of the anchoring, 8

3πwθ R2 [in the Rapini-Papoular approximation (13.53)], whereas the
hedgehog energy (11.14) 8πK R is pure elastic. Thus, a small-size droplet R � Lw would
prefer to be uniform, n ≈ const, whereas a large-size droplet R � Lw would contain a
hedgehog. Stable topological defects are a common feature of liquid crystal droplets as
discussed in the next section.

13.2.5.1. Topological Conservation Laws

When the nematic drop is large, R � K/wθ , the director at the surface is fixed
at the equilibrium polar angle θ0. With a typical polar anchoring coefficient wθ ∼
(10−5 − 10−6) J/m2 and K ≈ 10−11N, the supramicron droplets are “large.” Even without
solving the minimization problem, one can establish certain general topological properties
of structures as long as θ0 is fixed. This possibility stems from two theorems of differen-
tial geometry, namely, the Gauss–Bonnet theorem and the Euler-Poincaré theorem. These
theorems allow one to connect the total charge of the point defects in the vector field to the
Euler characteristic of the bounding surface, as we discuss below.17

There may be two types of topological defects in a bounded nematic: those in the bulk
and those at the surface. Point defects in the bulk are hedgehogs (Chapters 11 and 12). Line
defects in the bulk that are closed loops can be considered as hedgehogs with an extended
core. At the surface, there may be another type of point defects: the so called “boojums”
(Figs. 13.14 and 13.15). A boojum can be characterized by a “2D” topological charge k,
defined as the index of the surface projection field � = n − �(n · �), see (12.4). However,
boojums also cause distortions in the interior. For example, the defect shown in Fig. 13.14a
is reminiscent of one-half of a radial hedgehog. One can assign to it a “bulk” characteristic
C = 1/2. This characteristic is not, strictly speaking, a topological charge: It appears only

17G.E. Volovik and O.D. Lavrentovich, Zh. Eksper. Teor. Fiz. 85, 1997 (1983) [Sov. Phys. JETP 58, 1159
(1983)].
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Figure 13.14. Point defects - boojums with C = cos2(θ0/2), k = 1, and N = 1 for different easy
anchoring angles: (a) θ0 = π/2, (b) 0 < θ0 < π/2, and (c) θ0 = 0. Top parts (a): the projection field
� with k = 1 on the nematic surface. Middle parts: the vector field n in the nematic interior. Bottom
parts: an element of surface on the order parameter sphere S2 whose area equals C in (13.63). Sketch
by G.E. Volovik.
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2
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Figure 13.15. Point defects - boojums with C = − sin2(θ0/2), k = 1, and N = 0 for the same easy
angles as in Fig. 13.14: (a) θ0 = π/2, (b) 0 < θ0 < π/2, and (c) θ0 = 0. Sketch by G.E. Volovik.
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for anchoring conditions strong enough to confine the singular core, where the anchoring
conditions cannot be satisfied, to a small region. To avoid the ambiguity with signs, let us
regard n as a vector and leave disclinations out of the picture. When θ0 varies from π/2 to 0,
the boojum gradually transforms into a hedgehog C = N = 1 (Fig. 13.14). The opposite
scenario, i.e., gradual disappearance, C → 0, is shown in Fig. 13.15. In principle, any
boojum can be characterized by a “bulk” charge N , in addition to the surface charge k. To
determine N , it suffices to surround a boojum by a half-sphere from the nematic interior
and to calculate the integral (12.15) in Chapter 1218 over this half-sphere. The resultant
quantity C connects N , k and the surface “easy angle” (n · � = cos θ0):

C = 1

4π

∫
du2

∫
n
[
∂n
∂u1

× ∂n
∂u2

]
du1 = k

2
(n · � − 1)+ N . (13.63)

From (13.63), one finds the topological charge N of the boojum because k is defined
independently as the index of the projection field � = n − �(n · �). Note that the boo-
jums with a noninteger C can never leave the surface and go off into the nematic bulk (in
contrast, the hedgehogs can locate themselves in any place, including the surface).

Using continuously defined characteristics C’s, one can find conservation laws for the
charges k and N . Assume that there are p point defects on the surface of the drop and q
hedgehogs in its interior. Surround all the defects in the bulk by a surface γ1 and the entire
nematic surface, together with the boojums, by a surface γ2, as in Fig. 13.16. The total
topological charge of the hedgehogs enclosed by γ1 is

∑
i Ni . The total charge enclosed

γ

γ

1

2

Figure 13.16. A bounded system with hedgehogs (solid circles) and boojums (half-circles).

18M. Kleman, Phil. Mag. 27, 1057 (1973).
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by γ2 is equal to the sum of the boojums characteristics
∑

j C j and the characteristic of
Cs of the droplet surface, which differs from zero because of the curvature of the surface.
Taking the integral (12.15) over the surface of the drop with the boojums avoided, one finds

Cs = −n · �. (13.64)

Cs is equal to the integral, multiplied by −n·�/4π , of the Gaussian curvature of the surface,
which is equal to 4π in the case of a sphere of a unit radius. Now, because there are no
defects in between γ1 and γ2, the two total topological charges

∑p+q
a=p+1 Na and

∑p
b=1 Cb+

Cs (taken with opposite signs) are equal to each other,

p+q∑
a=p+1

Na = −
p∑

b=1

Cb − Cs . (13.65)

The definitions of C’s and Cs above lead to the equality

p∑
b=1

Cb + Cs +
p+q∑

a=p+1

Na = 1

2

(
p∑

b=1

kb − 2

)
(n · � − 1)+

p+q∑
a=1

Na − 1 = 0.

(13.66)

The last equation imposes restrictions on the surface 2D charges k’s and the bulk 3D
charges N ’s:

p∑
b=1

kb = 2 (13.67)

(which is valid for any θ0 �= 0) and

p+q∑
a=1

Na = 1. (13.68)

Equation (13.67) is none other than the Euler-Poincaré theorem: The sum of the indices
of a smooth (except a finite number of isolated singular points) vector field � on the closed
surface is equal to the Euler characteristic χ of this surface:

p∑
b=1

kb = χ. (13.69)

As already discussed at the end of Chapter 5, χ of a spherical surface is equal to 2.



13.2 Surface Phenomena in Anisotropic Media 505

Equation (13.68) is a consequence of the Gauss–Bonnet theorem. Indeed, the total
“bulk” charge does not depend on the “easy angle” and thus should be equal to the inte-
gral (13.63) taken over the bounding surface of the system with n = � everywhere. The
integrand is then the Gaussian curvature of the bounding surface, which makes the integral
equal to half the Euler characteristic by virtue of the Gauss–Bonnet theorem (5.81); i.e.,

p+q∑
a=1

Na = χ/2. (13.70)

According to (13.67)–(13.70), large nematic droplets must contain topological defects
in equilibrium. Trivial examples include a droplet with perpendicular anchoring that con-
tains a hedgehog N = 1 and a tangentially anchored droplet with a pair of boojums
k1 = k2 = 1 at the poles (Fig. 11.13). Intermediate surface orientations might induce
disclinations as well.

13.2.5.2. Elastic Interactions

Topological constraints (13.67)–(13.70) and orientational elasticity of liquid crystals re-
sult in a specific type of colloidal interactions that arise when solid or liquid particles are
dispersed in a liquid crystalline matrix.19 If the dispersed particles are sufficiently large,
R � K/wθ , they play a role of “seed” topological defects embedded in the nematic ma-
trix. For example, each dispersed particle with radial anchoring is equivalent to a radial
hedgehog N = 1 in the nematic matrix. Such a particle may be an air bubble or a water
droplet with a dissolved surfactant that helps to orient n normally to the nematic-water in-
terface. Suppose that there are many radially anchored particles dispersed in one very large
nematic volume (a spherical drop). Because the global topological charge of the whole ne-
matic should be equal to 1, each particle beyond the first that is added to the interior of the
nematic drop must create an orientational defect in the matrix. One of the simplest ways
to satisfy this global constraint is to create a hyperbolic hedgehog accompanying each par-
ticle in the nematic host (Fig. 13.17). These host defects prevent the dispersed droplets
from approaching each other too closely and thus provide a repulsive barrier against coag-
ulation.20

13.2.5.3. Growth of the Nematic Phase

The conservation laws given by (13.67)–(13.70) may influence the late stages of the
first-order isotropic-to-nematic phase transition that occurs through nucleation of nematic
droplets. The droplets grow by adding molecules from the surrounding isotropic matrix
and by coalescence. At early stages, the droplets are small and thus practically uniform.
However, the directors in different droplets are not correlated. When a few such domains

19P. Pieranski, P. Cladis, and M. Kleman, C.R. Acad. Sci. 273, 275 (1971).
20P. Poulin, H. Stark, T.C. Lubensky, and D.A. Weitz, Science 275 1770 (1997).
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Figure 13.17. Normally anchored spheres (open circles) create companion hyperbolic hedgehogs
(cores shown by closed circles) in the director field of the nematic host to preserve the total topolog-
ical charge.

meet, there is a chance that their mutual disorientation is sufficient to form a defect at
the point of merger (Fig. 13.18). This mechanism is valid for both the first- and second-
order transitions. (Although the new phase appears approximately simultaneously in the
second-order transition, different parts may have no time to communicate and to establish
a globally uniform state). It has been proposed as a cosmological model for the structure
of the universe.

Another mechanism takes place when the droplets grow beyond the size ∼ K/wθ . The
topological defects appear in each droplet because of surface anchoring and the topological

(a) (b)

Figure 13.18. A possible (Kibble21) mechanism of defect formation: (a) differently oriented mon-
odomains of an ordered phase can form (b) a topological defect upon merging.

21T.W.B. Kibble, J. Phys. A Gen. Phys. 9, 1387 (1976).
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Figure 13.19. Biphasic region at the nematic-to isotropic phase transition. Nematic mixture E7 in a
200-micrometer thick glass container. White and black arrows point toward point and line defects,
respectively.

constraints considered above. This is illustrated Fig. 13.19a,b, where one sees nematic
droplets of supramicron size containing stable topological defects, because of the surface
anchoring that favors a tilted conical director orientation. Most defects, except those with
ends trapped at opposite walls (Fig. 13.19c), disappear when the droplets become large
enough to fill the entire space between the glass bounding walls.

13.2.5.4. Monopoles: Hedgehogs with Attached Disclinations

Especially interesting consequences of the topological theorems (13.67)–(13.70) occur
when the order parameter is characterized by more than one vector field. Consider, for ex-
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(a) (b) (c)

(d)

n

k=2

l

N=1

k=2

Figure 13.20. Defects in a droplet of a biaxial nematic: (a) monopole made of a hedgehog N = 1 in
the field l and a disclination k = 2 (wavy line) in the field n; (b) the line shrinks into a (c) boojum;
(d) shows n around the k = 2 singularity at the spherical surface.

ample, a hypothetical uniaxial-biaxial nematic phase transition in a spherical droplet. Let
l be the director that characterizes both phases and n the director that appears only in the
biaxial phase; l⊥n. Suppose that the matrix sets the normal orientation of l at the surface
so that a point defect N = 1 exists somewhere in the bulk, in accordance with (13.68). The
position of the hedgehog is determined by the elastic constants. If the splay elastic constant
is relatively small, the hedgehog will stay in the center (Fig. 13.20a). The director n in the
biaxial phase is tangential to the spherical surface. Therefore, the n-field should obey the
Euler-Poincaré theorem (13.67) and, accordingly, must sustain either two singularities with
k = 1 or one with k = 2 (Fig. 13.20d). The radial hedgehog with an attached defect line is
reminiscent of a Dirac magnetic monopole,22 in which the radial “hedgehog” of magnetic
induction is accompanied with a string (disclination) in the vector potential (the two vector
fields are perpendicular to each other). There is a way to reduce the energy of the system by
moving the l-hedgehog toward the surface and thus reducing the length of the linear discli-
nations (Fig. 13.20b). The resulting surface singularity (Fig. 13.20c) is simultaneously a
hedgehog in the l-field and a boojum with k = 2 in the n-field. The topological possibility
that a line defect shrinks into a surface point singularity was first recognized by Mermin,
who considered droplets of superfluid anisotropic A-phase of 3He with an order parameter

22P.A.M. Dirac, Proc. Roy. Soc. (London) A 133, 60 (1931).
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Figure 13.21. Cholesteric monopole in a droplet (Robinson spherulite) with a disclination k = 2 in
the director field. Droplet radius about 30µm.

similar to that of the biaxial nematic. Mermin called the singularity “boojum”23 (a Lewis
Carroll character in “The Hunting of the Snark”).

A hedgehog with attached disclinations can be stable as against a boojum if there
is some mechanism that prevents the disclinations from shrinking. Liquid crystals with
layered structures (e.g., short pitch cholesterics and smectics C, SmC) offer such a sta-
bilizing mechanism. Imagine, for example, a cholesteric droplet with concentric spheri-
cal packing of layers (Fig. 13.21). The normal l to the layers forms a radial hedgehog.
Then the director field tangent to the layers should contain one disclination k = 2 or two
disclinations k1 = k2 = 1. Any attempt to shorten these lines violates the layers equidis-
tance.

13.2.6. Smectic A Droplets

A well-known feature of sessile (i.e., “sitting,” as opposed to “pendant” or hanging drops)
SmA droplets is that their free surface is faceted. The layers are parallel to the horizontal
surface, and the curved shape of the droplet is accomodated by steps known as Grandjean
terraces. As in solid crystals, the presence of facets indicates a cusp in the dependence
σ(n · �) at θ0 = 0: w(θ) ≈ wθ | θ | for 0 < | θ | � 1. The anchoring coefficient is
large, because the tilted layers cannot fill space without creating dislocations or steps:
wθ ∼ B d (or wθ ∼ σ0), where B is the SmA compressibility modulus and d is the
layers spacing. Generally, σ(n · �) in the SmA phase is expected to be nonmonotonic with
two minima, at θ = 0 and θ = π/2, and a large maximum wmax ∼ B d in between.

23N.D. Mermin, Boojums all the way through, Cambridge Univ. Press, 1990.
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For many materials, the equilibrium surface orientation at the SmA–isotropic interface is
tangential, θ0 = π/2. The tangential anchoring on a closed surface is clearly incompatible
with a uniform structure in the bulk. As we shall see below, one can again distinguish two
limiting cases: “large” droplets, R > K/	σ , and “small” droplets, R < K/	σ , where
	σ = σ⊥(θ = π/2) − σ||(θ = 0) is the surface energy anisotropy (smaller than wmax).
Small droplets have a uniform structure and a Wulff shape. Large droplets contain focal
conic domains (FCDs) that satisfy the surface orientation at the expense of low-cost bulk
distortions (Figs. 13.22 and 13.23).

Imagine a large SmA droplet with spherical packing of layers and drill out from it a
circular cone with its vertex at the center of the sphere (Fig. 13.22a). Now fill the hole
with a circular cone belonging to an FCD (Fig. 13.22b, c). The base of the FCD turns the
normal surface orientation into a tangential one, and thus reduces the surface energy by ∼
πa2(σ⊥ − σ||). The smectic layers cross the conical surface between the spherically packed
region and the FCD smoothly, because the normals to the layers are common normals for
both the FCD and spherical layers. The FCD elastic energy, of order of K a, is the only
energy cost for relaxing the boundary conditions.

How many cones are to be removed from the sphere and replaced by the FCDs? One
can start with the few largest possible domains, of radius amax < R, then fill the gaps
between them with smaller domains, and so on (Fig. 13.24). The resulting surface pattern
is Apollonian packing of a sphere with circles. If the tangential anchoring is infinitely
strong, the iterations should continue until the smallest domain’s base is of molecular scale
λ = √

K/B (see Chapters 5 and 10). However, if (σ⊥ − σ||) is finite, the limit of iterations,
as determined by the balance of the surface ∼ a2(σ⊥ − σ||) and curvature ∼ K a energies
of the smallest FCD, is24

a∗ ∼ K/(σ⊥ − σ||), (13.71)

which can be much larger than λ. Gaps of size smaller than a∗ are filled with layers of
spherical curvature.

The maximum size amax of the FCDs in the iteration pattern is also restricted. The
reason is that angular deviations ∼ a/2R from strictly tangential orientation at the base of
FCDs increase as the size a of the domain increases. The largest domain base in Fig. 13.23
is visibly restructured to avoid these mismatches. The mismatching tends to decrease the
size of the largest domains,25 amax � R.

Smectic patterns in flat samples with tangentially anchored plates are often similar to
patterns in spherical droplets. Of course, the absolute minimum of the free energy in flat
cells corresponds to the uniform structure with layers perpendicular to the plates. How-
ever, the history of the sample (phase transitions, flows) can result in metastable FCD
textures, often called polygonal textures. For example, when the SmA phase appears di-

24O.D. Lavrentovich, Sov. Phys. JETP 64, 984 (1986).
25J.B. Fournier and G. Durand, J. Phys. II France 1, 845 (1991).
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(a)

(b)

(c)

Figure 13.22. Filling a sphere with a focal conic domain. (a) The conical hole in the spherical packing
of smectic layers is filled with (b) the focal conic domain (c) smoothly.
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Figure 13.23. Smectic A droplet with tangential boundary conditions suspended in glycerin
(diameter ≈ 90µm). The droplet is filled with FCDs in geometry of Fig. 13.22. There are no domains
with a base radius smaller than a∗ ∼ 10µm.

Figure 13.24. Apollonian filling of a surface with a set of focal conic domains. The bases of the
domains (black) substitute unfavorable normal anchoring (white zones) with favorable tangential
anchoring.
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Figure 13.25. Polygonal texture in a SmA cell with degenerate tangential boundary conditions. El-
liptical bases of the iterative sets of FCD’s fill the polygons. The temperature decrease from (a) 40◦C
to (b) 21◦C results in a decrease of the characteristic cutoff a∗ ∼ K/	σ : Small FCDs disappear.
Material: CHF2O(C6H4)CH = N(C6H4)C4H9.

rectly from the isotropic melt, the seed FCDs are introduced through “bâtonnets” (SmA
nuclei emerging from an isotropic melt) and then are trapped by the plates. The model of
spherical droplet above is only the first step to understanding the features of FCD filling of
the bâtonnets, first described by Friedel and Grandjean.26 The reason is that the bâtonnets
are not spherical due to the smallness of the surface tension at the smectic A-isotropic melt
interface.

Figure 13.25 shows the typical SmA polygonal textures. By focusing a microscope
on the upper and lower plate, one can distinguish two polygonal networks of defect lines.
The sizes of the polygons are close to the sample thickness. Each polygon is the base of a
pyramid whose apex lies on the opposite plate. The apices of the pyramids whose bases lie

26G. Friedel and F. Grandjean, Bull. Soc. Fr. Mineral. 33, 409 (1910).
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on the lower plane coincide with the apices of polygons lying on the upper plane, and vice
versa.

To clarify the geometry of the filling, let us choose pyramids with quadrilateral bases
for simplicity. The whole space can be divided into two sets of pyramids [of the type
H(ABCD) and A(EFGH) in Fig. 13.26], with apices on opposite surfaces of the sample, and
into a complementary family of tetrahedra of the types ABGH and ADEH (Fig. 13.26) that
fill the gaps between the pyramids. Bold lines in Fig. 13.26a show defect lines that may be
visible under the microscope. (Thin lines are not connected to singularities in n and serve
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Figure 13.26. General scheme of space filling by FCDs; see text. Director orientation at the bounding
plate (area FGHE) is tangential at the FCDs bases and normal (or slightly tilted) in the gaps between
the bases.
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only for the clarification of the structure). Visible defect lines are ellipses and hyperbolas
inside pyramids, as well as edges of polygons. The edges of polygons are formed by the
upper and lower edges of tetrahedra. These edges are parts of large hyperbola-ellipse pairs:
Each tetrahedron is a part of one large FCD (Fig. 13.26b).

From the above account, it follows that the problem of space filling in a polygonal
texture reduces to the problem of filling of pyramids. This filling takes place analogously
to the filling of droplets considered above. The ellipses of an iterative family of FCDs are
inscribed in the polygons. Inside the ellipses, the orientation is tangential (Fig. 13.26c, d).
The hyperbolas of all of these FCDs converge at the apex of a pyramid (points A and H,
Fig. 13.26a, c). The remaining gaps inside the pyramid are occupied by layers of spher-
ical curvature with a center at the apex of the pyramid (Fig. 13.26c). At the sample sur-
face, the gaps between the FCDs have normal (or slightly tilted) orientation of molecules
(Fig. 13.26c). The iterative filling is truncated at some a∗ defined as in (13.71), with mod-
ified numerical constants. Figure 13.25 shows that a∗ might be a function of temperature.
As the temperature decreases, the smallest FCDs disappear, presumably because of the
increase of the splay elastic constant K .

Note that the SmA layers cross smoothly from pyramid to pyramid through tetrahedra:
In the plane of crossing (ABH in Fig. 13.26d), the layers of both the pyramid H(ABCD)
and the tetrahedron ABGH have a common center of curvature (point H). Thus, the curved
smectic layers fill the entire space preserving their equidistance and satisfying boundary
conditions at the expense of defect structures with dimensionality less than 2.

Problem 13.1. Find the surface excess of (a) the Helmholtz free energy and (b) the internal energy
for a one-component system with two coexisting phases 1 and 2.

Answers: (a) Fsurf = σ A + µNsurf; if the position of the dividing surface is fixed by choosing
Nsurf = 0, then the surface tension is equal the surface excess of the Helmholtz free energy per unit
area σ = Fsurf

A . (b) Esurf = σ A + T Ssurf + µNsurf.

Problem 13.2. Express the relative adsorption (13.15) in experimentally measurable quantities such
as V , A, the concentration c′ of the solvent, and the concentration c of the solute in the bulk of the
phases 1 and 2.

Answers: See, e.g., Problems in Thermodynamics and Statistical Physics, Edited by P.T. Landsberg,
PION, London, 1971.

Using N = N1 + N2 + A�, one first obtains � = (N − V1c1 − V2c2)/A and then, excluding
V1 and V2,

�relative = 1

A

[
N − V c1 − (

N ′ − V c′
1
) c1 − c2

c′
1 − c′

2

]
.

Problem 13.3. Find the pressures p1, p2 and chemical potentials µ1 and µ2 of two phases in equi-
librium when the phase 1 is a sphere of a large radius r .
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Answers: For large radii of curvature, the parameters of system should be close to p0 and µ0.
Expanding µ1 and µ2 in the vicinity of µ0 (e.g., µ1 = µ0 + (p1 − p0)v1 + · · ·), and using the
Laplace–Young equation, one gets

p1 = p0 + 2σ

r

v2

v2 − v1
, p2 = p0 + 2σ

r

v1

v2 − v1
,

and

µ1 = µ2 = µ0 + 2σ

r

v1v2

v − v1
.

Problem 13.4. Some parameters (which ones?) defining the critical radius of nucleation r∗ in
(13.32) are hard to measure experimentally. Reexpress r∗ through the values that are readily mea-
sured: p0, p2, v1, and v2, assuming that the chemical potentials and pressures of the two phases do
not differ much from µ0 and p0.

Answers: From the previous problem, it follows that

r∗ = 2σ

p2 − p0

v1

v2 − v1
.

Problem 13.5. A large droplet is placed on a solid surface in vacuum. Gravity flattens the droplet
in the central part, making it pancake-like. Balancing capillary and gravitation forces, estimate the
thickness of the central part of the droplet as a function of the capillary length and the contact angle.

Answers: Combining the equation of equilibrium between capillary and gravitation forces, Sspr +
1
2ρgh2 = 0, where Sspr < 0 is given by (13.36) and the Young law (13.35), one obtains h =√

2λc sin(θe/2), where λc is specified by (13.23).

Problem 13.6. Consider a hybrid-aligned nematic film with the director distorted in the plane nor-
mal to the film, due to the difference in polar anchoring directions θ̄0 and θ̄d at the two bounding
surfaces z = (0, h) (see Section 5.4.2). Assuming that all Frank elastic constants are equal K and that
the anchoring potentials are of the form fsi = 1

2wi (θi − θi )2, i = 0, h, find the disjoining pressure
caused by director distortions in a film of thickness h � K/wi .

Answers:

�(h) = 1

2
K

(
θ0 − θh

h + K/w0 + K/wh

)2

> 0.

The result may be different for films of small thickness h < K/wi , as thin films undergo a variety of
structural transitions [see the review by O.D. Lavrentovich and V.M. Pergamenshchik, Int. J. Mod.
Phys. B9, 251 (1995)].
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Problem 13.7. A semi-infinite nematic volume is bound by a surface with a sinusoidal profile z =
u sin(qx), u � q−1. Molecular interactions align the director parallel to the substrate. Calculate the
elastic energy of distortions for director configurations (a) n = (nx , 0, nz) and (b) n = (0, 1, 0) in
one-constant approximation.

Answers: D.W. Berreman, Phys. Rev. Lett. 28, 1683 (1972). (a) Let ψ be the small angle between
the director and the x-axis. The free energy density

K

2

[(
∂ψ

∂x

)2
+

(
∂ψ

∂z

)2
]

results in the Euler–Lagrange equation

∂2ψ

∂x2
+ ∂2ψ

∂z2
= 0

with a solution ψ = uq exp(−zq) cos(qx). The energy per unit area is F(a) = K u2q3/4; (b) F(b) =
0. If the vertical plane containing the director is turned by an angle ϕ away from the y-axis, the
energy becomes F = K u2q3 cos2 ψ/4.

Problem 13.8. Using (12.4) and (13.63), find the topological charges k, N and characteristics C for
the boojums in Figs. 13.14 and 13.15.

Answers: k = 1 for all configurations, except those shown in parts (c) of the figures. To find N ,
parameterize the director field as

n = [sin θ(u) cosϕ; sin θ(u) sinϕ; cos θ(u)].
For the boojum in Fig. 13.14, θ(u) = 2(π − θ0)u/π + 2θ0 − π , for the boojum in Fig. 13.15,
θ(u) = 2θ0u/π − 2θ0. Integration over 0 ≤ v < 2π and π/2 ≤ u < π results in C = cos2(θ0/2),
C = − sin2(θ0/2), N = 1, N = 0, respectively.
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Stability of Colloidal Systems

The microscopic stability of soft materials systems (liquid crystals, colloids, polymers) is
a problem with many facets.

In the case of thermotropic liquid crystals, the nature of the interactions is relatively
well known (repulsive steric forces, attractive van der Waals forces, dipolar interactions),
although little has been worked out in detail. It is worth mentioning that, thanks to the
power of modern computers, detailed Monte-Carlo calculations of thermodynamic func-
tions and phase transitions—employing the Lebwohl-Lasher or Gay–Berne potentials al-
luded to in Section 1.3.5, as well as simulations of the liquid crystalline molecular struc-
tures of hard ellipsoids with steric repulsions—have already brought interesting results (for
a review, see Pelcovits1).

Colloidal systems, a name that designates a wealth of different dispersed systems, are
such that one of the components—the solute—is made of particles of a size r small enough,
so that the surface effects (∝ r2) dominate over the bulk effects (∝ r3). The stability of
colloidal suspensions depends, therefore, crucially on quantities such as surface tension,
electrostatic interactions involving surface charges of the solute and the electrolyte content
of the solvent, and van der Waals interactions. One should also add Brownian motion,
because usually the particles are small enough to diffuse thermally.

The name of colloidal systems is also given to systems whose elements of the solute
have only two small dimensions (e.g., PBLG rods, semiflexible polymers, glass fibers) or
one small dimension (e.g., films of surfactants, clay platelets, mica platelets). For a cer-
tain range of concentrations, the elements of the solute may be self-assembled into various
ordered phases, often called lyotropic liquid crystals, as opposed to thermotropic liquid
crystals that do not need a solvent to show a mesomorphic state within an appropriate tem-
perature region. For example, aggregates of surfactant molecules can form nematic (when
the aggregates are ellipsoidal micelles), columnar (when the aggregates are cylindrical mi-
celles), lamellar (when the aggregates are continuous bilayers), and other phases.

Colloidal systems per se are not given a detailed treatment here (Chapter 13 discusses
some concepts relevant to colloids and of general use), and we shall focus more on ly-
otropic systems in the present chapter. There, the situation is richer theoretically (but no

1R.A. Pelcovits Theory and Computation, in Handbook of Liquid Crystals Research, Edited by R.J. Collins
and J.S. Patel, Oxford University Press, New York, 1997.
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significant computations yet) than in thermotropic systems. The intermolecular and inter-
aggregate forces are of various origins: electrostatic, dipolar, van der Waals, entropic due
to the presence of large fluctuations of the membranes (an effect not present in particu-
late colloidal solutions), and repulsive solvent-mediated complex forces, called solvation
forces (or hydration forces when water is the solvent).

This chapter will present a short introduction to the question of electrostatic forces
between rigid charged surfaces like plates and spheres (the Poisson–Boltzmann equation)
and their competition with van der Waals forces (DLVO theory). The subject has long been
a favorite of the colloid community, and a large, relevant literature exists. The question
of nonrigid, fluctuating surfaces has been addressed more recently; here, two limit situa-
tions arise, which will be discussed in turn: a- In the presence of a weak electrolyte, the
electrostatic forces extend over long distances and weaken the fluctuations to some ex-
tent, thus, contributing to the values of κ and κ; b- in the presence of a strong electrolyte,
the charges are screened, and large amplitude fluctuations develop that contribute to the
repulsive forces between neighboring membranes; the Helfrich theory has been a key de-
velopment in this perspective and has been met with a large experimental success.

Because of the broad scope of the subject, and the difficulties inherent in some ap-
proaches, we have skipped the full demonstration of some important formulae.

Finally, this chapter will also discuss, although to a smaller extent, systems made of
zero-D building blocks—particles—some of them being colloidal crystals. This question
is treated in fairly large detail in many excellent textbooks. Systems made of 1D building
blocks (nematic packing of polymers, hexagonal phases, isotropic solutions of viruses like
TMV, etc.) are briefly presented in the next chapter.

14.1. Interactions Between Rigid Surfaces

The models that are discussed below present a certain number of simplifications. They
assume that apart from the electrostatic interactions, there are no molecular interactions
between the charged species. Also, the discrete nature and finite size of the ions are not
taken into account. These assumptions are well suited for small concentrations of charges.
Therefore, one will adopt a continuous description of the medium, where the charges are
smeared out through all space.

14.1.1. The Poisson–Boltzmann Equation

We start with the geometry of a rigid body (a sphere, a semi-infinite medium bounded
by a plane, etc.) whose surface carries fixed charges, and that is in the presence of an
electrolyte solvent whose dissociation rate is known. Typically, the solvent is water. When
pure, it contains H+ and OH− ions in equal molar concentrations 10−7 M (M is the notation
for moles/dm3 units) far from the charged surface, i.e., the ions concentrations (number
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densities) n+ = n− = 10−7 NAv per dm3 (NAv = Avogadro number) at room temperature.
These are small concentrations compared to the usual concentration of counterions in water
opposing the surface charges, or to the electrolytes concentrations (see Problem 14.1). In
the sequel, n+

i and n−
j will designate the concentration of positive (negative) ions of type

i( j) in the presence of the charged surface (surface density of charges σ ), z+
i will be the

(positive) valencies of cations, and z−
j will be the (negative) valencies of anions. The total

density of charges at some point M in the solution is, therefore,

ρ(M) = e
∑
i, j

(z+
i n+

i + z−
j n−

j ), (14.1)

where e, the charge of the electron, is taken positive. The total charge of the sample van-
ishes; hence,

∫

V

ρ(M) dV +
∫

�

σ d� = 0, (14.2)

where σ/e is the concentration of surface ions per unit area.
As we shall see below, and as it is expected, ions of sign opposite to those carried

by the surface gather in higher density near this surface, hence the name of double layer
given to this situation. The theory goes as follows: The presence of the charges induces an
electric field E = −∇ϕ (ϕ is the electric potential) that obeys the Poisson equation:

−div E ≡ ∇2ϕ = −1

εε0
ρ(M), (14.3)

where ε is the dielectric constant of the solvent (water 78.5; cyclodecane 2.0) and ε0 =
8.854 × 10−12 C2 J−1 m−1 is the dielectric constant of vacuum. We shall use SI units; to
return to electrostatic cgs units, replace ε0 wherever it appears by 1/4π .

Now, the distribution ρ(M) is fixed by the electric potential: The chemical potential of
a charged particle of valence z can be written as

µ = µ0 + ezϕ, (14.4)

whereµ0 is the chemical potential in the absence of electric potential. In most real systems,
the concentration of the charged species is small, so that they form a dilute ideal solution
for which the chemical potential can be written as

µ0 = kB T ln n. (14.5)
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In a system in equilibrium, the chemical potential µ per particle is a constant, and one
obtains the Boltzmann equation:

ni = ni,0 exp −eziϕ

kB T
, (14.6)

where ni,0 is the particle concentration at points where ϕ = 0, conveniently taken at infinity
(the “reservoir”) in the case of a unique rigid boundary.

The Poisson–Boltzmann (PB) equation is obtained by substituting (14.6) into (14.3),
viz.

∇2ϕ = − e

εε0

∑
i

zi ni,0 exp −eziϕ

kB T
. (14.7)

This differential equation must be supplemented by the charge conservation law (14.2)
and by the boundary conditions, which are usually of one of the following types:

1. Fixed potential: ϕ = constant (e.g., at infinity, ϕ = 0).

2. Fixed charges: −Es .n ≡ ∂ϕ
∂n = σ

εε0
. In this equation, the normal n to the surface is taken

outward to the solvent.

The PB equation is generally difficult to solve, except in a few special cases, when the
valencies of the charged particles are all equal, and the charged boundaries have a simple
geometry (spheres, or an isolated plane, or two planes separated by the solvent and no
added electrolyte). Simple solutions put into evidence two fundamental lengths, the Gouy–
Chapman length b and the Debye–Hückel length λD , whose physical interpretation is of
importance and makes easier a qualitative discussion of any system.2

14.1.2. Fundamental Lengths in the Poisson–Boltzmann Problem

14.1.2.1. The Gouy–Chapman Length for Weak Eectrolytes

Consider a planar, infinite, charged surface (e.g., the charged side of a rigid membrane,
considered as the boundary of a nonconductive medium), in contact with a solvent with no
electrolyte added, so that the only species of ions (apart H+ and OH−) present in the solvent
are the counterions of the ionic species on the surface. We shall assume σ negative (because
in most systems of practical interest, the fixed ionic species are negatively charged), and
all the valencies equal to unity. The x-axis is perpendicular to the boundary. Then the PB
equation can be written as

d2ϕ

dx2
= −en0

εε0
exp − eϕ

kB T
,

2P. Pincus, J.-F. Joanny, and D. Andelman, Europhysics Lett. 11, 763 (1990).
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where n0 is a reference concentration of the counterions (for which the potential is taken
equal to zero), whose volume density reads as n(x) = n0 exp(−eϕ/kB T ). One can check
that the solution is

ϕ(x) = 2kB T

e
ln

(
x + b

ξ

)
. (14.8)

Because ∂ϕ
∂x

∣∣
x=0 = − σ

εε0
(boundary conditions for fixed charges), we have

b = −2εε0

σ

kB T

e
, (14.9)

and ξ is an arbitrary length that has no other effect than to add a constant to the potential.
It must be chosen in agreement with the choice of the reference concentration. The calcu-
lation shows indeed that the product n0ξ

2 = −σb/e. This expression can also be written
as

n0ξ
2 = 1

2π�
; with � = e2

4πε0εkB T
, (14.10)

where �, the so-called Bjerrum length, is the distance beyond which the bare electrostatic
interaction between two unit charges begin to be somewhat blurred by their Brownian
movement: The charges cannot be considered as immobile, and entropy effects have to be
taken into account; � is of the order of 7 Å in water.

The Gouy–Chapman length b is the thickness of a solvent layer adjacent to the bound-
ary and containing half the total amount of counterions. A typical value in water, for
σ equal to one elementary charge per 0.16 nm2 (i.e., 1 C.m−2in SI units) and kB T

e =
25.69 mV at room temperature (298K), is b = 4 × 10−2nm, a pretty small region in the
near vicinity of the plate. The density of counterions is parabolic:

n(x) = 1

2π�(x + b)2
(14.11)

(Problem 14.1). The logarithmic divergence (14.8) has little physical significance; it would
disappear for a finite sample.

14.1.2.2. The Debye–Hückel Screening Length for Strong Electrolytes

The opposite situation is when the boundary is in the presence of a strong electrolyte,
say, 1M NaCl in water. Let n0 = n+(∞) = n−(∞) be the density of ions of each sign
introduced in the solvent. The calculation goes easily if these ions and the counterions have
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the same valency; we take it equal to unity. Therefore we have to solve the following PB
equation:

∇2ϕ = 2en0

ε0ε
sinh

eϕ(r)
kB T

, (14.12)

where now n0 is the electrolyte concentration in the reservoir. When the linearization is
possible (Debye–Hückel approximation), i.e., when ϕ < kB T /e (≈ 25 mV at room tem-
perature, ≈ 0.9 × 10−4 in cgs units), one gets

∇2ϕ = 2e2n0

εε0kB T
ϕ(r) = k2

Dϕ(r) with kD = λ−1
D =

(
2e2n0

εε0kB T

)1/2

, (14.13)

i.e. an exponential decrease ϕ(x) = ϕs exp(−x/λD) with a characteristic length λD; ϕs is
the potential at the charged boundary. Note that k2

D = 8π�n0. The Debye–Hückel length
λD (also called the Debye length) is the length beyond which the electrostatic effects due
to the charged wall are screened; in the general case, it can be expressed as

λD =
(

e2 ∑
ni,0z2

i

εε0kB T

)−1/2

. (14.14)

A typical value of λD for a strong electrolyte (1M NaCl) is 1 nm at room temperature. A
more detailed discussion of (14.12) is given below in Section 14.1.5.

14.1.3. Free Energy and Maxwell Stress Tensor

14.1.3.1. Free Energy and “Disjoining” Pressure

The free energy density (per unit area of boundary) of the electric double layer has the
following expression:

Fel =
σ∫

0

dσ ′ϕs(σ
′), (14.15)

integrated over all the (rigid) charged surfaces. The quantity dσ ′ϕs(σ
′) is indeed the work

necessary to bring a charge dσ ′ from a potential V = 0 to a potential V = ϕs(σ
′). This

quantity is also obtained when the free energy is written as the sum of the excess electro-
static bulk energy over the homogeneous system

Fbulk = 1

2
εε0

∫
E2 dV = 1

2
εε0

∫
(∇ϕ)2 dV , (14.16)
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and of the excess configurational entropy of the ions in the solvent over the ions in the
reservoir, which in the case of two species of distinguishible ions and coions of same
valency reads as

Fentropy = kB T
∫ [∑

i=±
ni ln

ni

n0
−

∑
i=±

ni + 2n0

]
dV . (14.17)

The total energy is Fel ≡ Fbulk + Fentropy (see Goldstein et al.3 for a demonstration).
If the solvent is confined between two identical charged plates, the overall forces of

electostatic and osmotic origin are such that the two plates repel. Considering that one
plate is kept fixed, the force exerted on the other reads as

pd = −∂Fel

∂d

∣∣
T,ni
,

where d is the separation distance between the plates. Let n(x = 0) be the total density
of particles in the midplane x = 0. It can be shown4 that the general expresion for the
“disjoining” pressure pd reads as

pd = kB T

(
n(x = 0)−

∑
i

ni,0

)
. (14.18)

This quantity can be interpreted as the excess of the osmotic pressure of the ions in the
midplane over the reservoir osmotic pressure p0 = kB T n0 = kB T

∑
i ni,0, as it is made

visible by its form reminiscent of the vant’Hoff equation for osmotic pressure. Note that
because of the electrostatic potential, pd is not equal to the pressure in the reservoir.

In the case when there is no electrolyte in the solvent, n(x = 0) reduces to the den-
sity of counterions, and

∑
i ni,0 = 0. One can then also express pd as a function of the

counterions density ns = n(x = 0)+ 1
2εε0kB T σ

2 (Problem 14.2):

pd = kB T n(x = 0) = kB T

(
ns − 1

2εε0kB T
σ 2

)
.

14.1.3.2. The Maxwell Stress Tensor; Longitudinal and Transversal Pressures

The total “osmotic” pressure pd in (14.18) above contains two terms, one of a pure osmotic
origin, and the other due to the electrostatic charges. The existence of these two types of

3R.E. Goldstein, A.I. Pesci, and V. Romero-Rochin, Phys. Rev. A41, 5504 (1990).
4J.Israelachvili, Intermolecular and Surface Forces, 2nd edition, Academic Press, New York, 1992.
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terms can be made clearer by introducing the electrostatic forces acting on the ions in the
solvent. These forces can be represented in the continuous limit by a stress tensor:

σM
i j (r) = εε0

(
Ei (r)E j(r)− 1

2 E2(r)δi j

)
− p(r)δi j (14.19)

whose working out is rather delicate. This tensor originates in the forces per unit volume
exerted by the electric field: (1) On the free charges ρ(r), a force ρ(r)E = εε0E div E [also
noted εε0E∇ · E, i.e. (εε0 Ek∂i Ei )], (2) On the charges of polarization ρp(r) = −∇ · P,
a force P · ∇E, i.e. (Pi∂i Ek), and (3) Due to the local excess osmotic pressure p(r) that
would exist in the medium in the absence of an electric field, for the given concentration
of ions in r. The interested reader should consult Ref. [5] for details.

Longitudinal Stress: The local excess osmotic pressure p(r) is such that p(x) =
kB T (n(x)− n0), where n0 = ∑

i ni,0. The σM
xx component reads −p(x) + 1

2εε0E2; this
quantity is equal to −pd for x = 0; it is easy to see that σM

xx does not depend on x , because
it is a first integral of the (general) PB equation. The longitudinal stress is nothing else than
the disjoining pressure, changed sign.

Transversal Stress: Another force that will prove of interest in the sequel is the trans-
verse force pt (x), i.e., with minus signs, the σM

yy and σM
zz components. Still considering

planar charged plates, one gets

pt (x) = p(x)+ 1
2εε0 E2, (14.20)

which also reads as

pt (x) = pd + εε0 E2 (14.21)

and is not independent of x .

14.1.4. Weak Electrolyte Solutions

We shall discuss in turn the case of weak electrolytes, when the screening effect of the fixed
charges is small (large Debye length) and the (opposite) case of strong electrolytes. One
can find a detailed treatment of the different types of solutions of the Poisson–Boltzman

5L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, Oxford, 1960. W.B. Rus-
sel, D.A. Saville, and W.R. Scholwalter, Colloidal Dispersions, Cambridge Monographs on Mechanics and Ap-
plied Mathematics, 1991.
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equation in function of the nondimensioned lengths ξ1 = λD
d and ξ2 = b

d (where d is
the distance between two plates) in Andelman’s review article.6 We are interested in the
variation of ξ1, mostly. For large values of ξ1, the fixed charges are screened little, and
one expects that the electric potential decays algebraically with distance; in the opposite
situation, one expects an exponential behavior.

In order to illustrate these general qualitative considerations, consider two parallel
equally charged membranes, at a distance d, with no electrolyte in the solvent. The rel-
evant PB equation and boundary conditions can be written as

d2ϕ

dx2
= − e

εε0
n0 exp −eϕ(x)

kB T
,

dϕ

dx

∣∣∣
x=d/2

= σ

εε0
, (14.22)

where n0 is the concentration of counterions at x = 0, in the midplane. Because of the
symmetry of the problem, we take ϕ(0) = 0. It is easy to check that the solution is

ϕ = kB T

e
ln cos2 kL x, (14.23)

where k2
L = 2πn0� and n0 = −kL

σ
e cot(kLd/2) is the counterions concentration in the

midplane. The general expression for the disjoining pressure is p(d) = kB T n0. We also
get [from the boundary condition and the definition of b, (14.9)] kL d tan(kLd/2) = d/b.
Notice that when kL d � 1, i.e., for large membrane separation, this relation yields k−1

L ⇒
b; for the opposite case kL d 	 1, one gets k−1

L ⇒ √
db/2. We consider these two extreme

cases:

1. Gouy–Chapman regime: kL d � 1 or, equivalently, d/b � 1 with b small, i.e., a
large charge surface density on the membranes. For a completely ionized membrane, a
typical value of σ could be 1 unit charge per 9 Å2, i.e., ≈ 1.78 C m−2; this yields b <
1 Å. Henceforth, most membranes in non electrolyte solvents are in this regime. The
“disjoining pressure” is pd = kB T π

2�d2 ; the repulsive potential Vel = −∫ d
∞dx ′ p(x ′)

scales as d−1.

2. Ideal-gas regime: kL d 	 1 or, equivalently d/b � 1; the surface charge density is
small, and the counterions are uniformly distributed with a concentration n ≈ σ

d . The
force that keeps the membranes apart is pd ≈ kB T 1

πbd� , and the repulsive potential
shows a logarithmic dependence on d; the electrostatic potential decays algebraically
ϕ ≈ −kB T k2

L x2/2e.

All of these results are relatively easy to establish.

6D. Andelman, Electrostatic Theories of Membranes: the Poisson-Boltzmann theory, Handbook of Biological
Systems 1, 577 (1994).
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14.1.5. Strong Electrolyte Solutions

We consider an isolated plate in an infinite electrolyte solution of monovalent ions. This is
the first step to approach the double layer theory in the presence of van der Waals forces.
At the time being, we assume that these forces are absent. Equation (14.7) takes the form
(14.12); i.e.,

d2ϕ

dx2
= 2en0

ε0ε
sinh

eϕ(x)

kB T
. (14.24)

This equation has a first integral

dϕ

dx
= −

(
8n0kB T

ε0ε

)1/2

sinh
eϕ(x)

2kB T
;

the complete solution is illustrated in Fig. 14.1. The exact solution

tanh
eϕ(x)

4kB T
= tanh

eϕs

4kB T
exp(−kDx), (14.25)

where ϕs is the potential at x = 0, shows the expected exponential behavior when using the
Debye–Hückel linear approximation. The double layer is the region close to the charged
surface, where there is a depletion of coions and accumulation of counterions, in a thick-
ness of the order of λD . The concentrations of counterions n+(x) and of coions n−(x)

(a) (b)

x

n+

n-

n

n
0

x

ϕ

λD

1.0

1/e

Figure 14.1. Electric potential and ions concentrations. Note the accumulation of counterions and the
depletion of coions near the charged surface.
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approach the electrolyte concentration n0 at a distance from the plate. The plate charge
density is easily obtained from the boundary condition on the gradient of the potential:

σ = 2(2εε0kB T n0)
1/2 sinh

(
eϕ

2kB T

)
. (14.26)

The total local charge is given by the Poisson relation:

e[n+(x)− n−(x)] = −εε0d2ϕ/dx2. (14.27)

The concentrations of counterions and coions can be calculated if ϕ(x) is known. One
can also relate the total concentration of ions at the plate to the concentration of fixed
charges (Grahame relation). We have, indeed,

dn+(x)
dx

= −n0
e

kB T

(
dϕ

dx

)
exp

(
− eϕ

kB T

)
,

dn−(x)
dx

= +n0
e

kB T

(
dϕ

dx

)
exp

(
+ eϕ

kB T

)
, (14.28)

i.e., adding these two derivatives, putting n = n+ + n−, and using (14.24),

dn(x)

dx
= εε0

2kB T

d

dx

(
dϕ

dx

)2

. (14.29)

Equation(14.29) integrates easily, and yields for x = 0,

ns = n0 + σ 2

2εε0kT
. (14.30)

Equation (14.30) relates the concentration in the vicinity of the plate to the concentration
in the reservoir. It has the same shape as that one obtained for a nonelectrolyte solvent
between two plates (see Problem 14.2), but with a different meaning of n0.

Let us now discuss some approximations from (14.25), which can also be written as

eϕ

2kB T
= ln


1 + exp(−kDx) tanh

(
eϕs

4kB T

)

1 − exp(−kDx) tanh
(

eϕs
4kB T

)

 . (14.31)

1. The linear DH regime is obtained for eϕs
4kB T 	 1.

2. For eϕs
4kB T � 1, the potential can be written eϕ

2kB T ≈ ln( 1+exp(−kD x)
1−exp(−kD x) ), i.e. it is indepen-

dent of the surface potential.
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3. For x � k−1
D , one gets eϕ

kB T = 4 tanh( eϕs
4kB T ) exp(−kDx); i.e., the decay is always expo-

nential far from the boundary. Note that, if furthermore eϕs
4kB T � 1, the surface potential

ϕs,eff seen from a distance is a constant independent of the charge, eϕs,eff
4kB T = 1.

14.1.6. The DLVO (Derjaguin–Landau–Verwey–Overbeek)7,8

Theory: van der Waals vs Electrostatic Interactions

The double layer interaction between two plates is globally repulsive. The van der Waals
forces provide long-range attractive forces that counterbalance the electrostatic forces.

Figure 14.2 indicates the main characteristics of the DLVO potential VDLVO = Velec +
Vv dW as a function of the distance d between two plates. The van der Waals interaction
is fairly independent of the electrostatic fixed charges and of the electrolyte strength. An
n = 6 van der Waals interaction yields an attractive potential energy density (per unit area

V

0

V

Vpmin

Vsmin

d

DLVO

Figure 14.2. Total potential in the DLVO theory.

7B.V. Derjaguin and L. Landau, Acta PhysicoChemica USSR, 14, 633 (1941)
8E.J.W. Vervey and J.Th.G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, New York,

1948.
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of plate) between two parallel plates of thickness δ, of molecular density ρ, which is of the
form

Vv dW = −πCδ2ρ2

2d4

(A = π2Cρ2 is the Hamaker constant) if δ 	 d, and of the form

Vv dW = −πCρ2

2d2

if δ > d, see Table 1.5.
The key features of Fig. 14.2 are the presence of two minima, with a very deep primary

minimum at very small distances (< λD), not infinitely deep, actually, because of short-
range repulsive hydration or solvation forces, and an intermediary maximum that sets a
repulsive barrier of energy.

For d � λD , i.e., very strong electrolytes, the electrostatic forces are negligible, and
the colloidal objects (plate-like in these examples, but also spherical or cylindrical par-
ticles) should coalesce, except for the presence of a secondary minimum (Fig. 14.2). An-
other case, to be discussed in Section 14.2, is when the charged surfaces are flexible (not
plates, but membranes), so that repulsive forces of entropic origin take over.

For d 	 λD , i.e., weak electrolytes, surfaces repel strongly, and one can expect a
strong energy barrier between the charged particles. The deepest primary minimum is then
not necessarily reached, and the system keeps in a state of kinetic stability, at the position
of the more shallow minimum.

All intermediary situations exist. From this discussion, it appears that one of the most
interesting features of the DLVO theory is the transition between a state of kinetic stability,
when the barrier is high enough (> kB T ) to a state of aggregation, when, e.g., the concen-
tration in electrolyte is increased. This transition has been the subject of numerous studies
in the case of spherical charged particles (see Section 14.3), where the aggregates can form
flocs, whose size is related to the range of the actual attractive forces between the particles.
Contrarily, these effects of aggregation are not major effects in the case of membranes,
because of short-range repulsive forces of another nature, provided by the entropic forces
relating to the fluctuations of the membranes, and whose associated “Helfrich” potential
VHel also varies steeply for small distances (VHel = β(kB T )2/κ d2) and can counterbalance
Vv dW in this region (the Hamaker constant and (kB T )2/κ are comparable in magnitude).

14.2. Interactions in Lamellar Flexible Systems

As was already indicated in Chapters 1, 2, and 13, amphiphilic materials (Figs. 1.3, 1.5,
and 2.17) readily adsorb at the interface between two media, e.g., water and oil or water
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CM =1 /σ0 > 0 CM =1 /σ 0 < 0

C

C
M

M

Figure 14.3. Conventions usually adopted for the sign of σ0.

and air. Depending on the surface concentration of the molecules or, equivalently, the area
available per molecule, these materials can form monolayers (Fig. 14.3) with different
types of ordering, ranging from a 2D gaseous state to closely packed solid-like structures.
The states differ by the average distance between the polar heads and by the conformations
of the hydrocarbon tails. If the amphiphile is dissolved in a single-component solvent, a
preferable type of assembling would be a bilayer formed by a pair of oppositely oriented
monolayers (Fig. 14.4). When the amphiphile concentration is high enough, the bilayers
can serve as building units of the lamellar (Fig. 2.23) and sponge (Fig. 2.29) phases. At
low concentrations, the bilayers can be prepared in the form of closed vesicles of spherical,
toroidal, or even higher genus9 topology. Moreover, one can find different geometries of the
vesicles within the same topology class. A well-known example is the biconcave discoidal
shape of the bounding membrane of erythrocytes; it changes into ellipsoidal when the
erythrocyte travels through the blood vessels or when the cell becomes abnormal. It appears

Σ

Σ−

Σ+

+ δ /2

+ δ /2

Figure 14.4. Partition of the bilayer to getting (14.34).

9B. Fourcade, M. Mutz, and D. Bensimon, Phys. Rev. Lett. 68, 2551 (1992).
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that the prime factor determining the shape of bilayers is their elasticity. The basic elements
of this elasticity are discussed below. We consider only fluid membranes (monolayers,
bilayers) that have no in-plane orientational order of the hydrocarbon tails (no cooperative
tilt) and have vanishing in-plane shear modulus. The only deformations of interest are
tangential compressions and expansions that change the area per molecule and curvatures
of the membrane.

14.2.1. Elasticity of Neutral Membranes

14.2.1.1. Phenomenological Description

In this section, we discuss microscopic models that allow one to estimate material constants
of a free membrane. The curvature free energy density per unit area of a monolayer has
been proposed by Helfrich10 as the function of the mean and the Gaussian curvatures:

f = 1
2κm(σ1 + σ2 − σ0)

2 + κmσ1σ2 (14.32)

(the subsript stands for “monolayer”). The last expression is similar to those already in-
troduced in Chapter 5, except for the presence of a spontaneous curvature σ0, which takes
into account the dissymmetry of the monolayer. If, by convention, the monolayer is ori-
ented from the nonpolar aliphatic chains to the polar heads, σ0 is taken to be positive when
the “outer” side of the curved monolayer is the side of the polar heads (Fig. 14.3). Dimen-
sionally, the moduli κm and κm are of the form κm = K d0, κm = K d0, where K , K are
the elastic Frank moduli and d0 is a length of the order of the monolayer’s thickness.

Note that the curvature taken by a free membrane is not σ0, but a value σeq = σ1 = σ2
such that f is minimized, that is:

σeq = σ0
κm

2κm + κm
, (14.33)

to which has to be added the condition of stability ∂2 f /∂σ 2
eq > 0, i.e. 2κm + κm > 0,

because κm > 0.
A bilayer made of two chemically identical monolayers has evidently a vanishing spon-

taneous membrane curvature. The relationship between the materials constants κ, κ for the
bilayer and κm, κm can be written as

κ = 2κm, κ = 2(κm − δσ0κm), (14.34)

where δ is an effective thickness of the bilayer represented in Fig. 14.4 with the other
ingredients of the demonstration of (14.34) now detailed.

10W. Helfrich, Z. Naturforsch. 28, 693 (1973).
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We assume that the bilayer can be partitioned in a series of parallel physical surfaces,
the midsurface being the continuous surface� that envelops the chains ends, and the outer
surfaces being the surfaces �+ and �− that envelop the polar heads. The curvatures of
the bilayer will be by convention those of �. Let δ/2 be the (positive) distance measured
from � at which (14.32) apply for each of the monolayers. We assume that there are no
further interactions between the monolayers than those just defined by the geometry of
steric hindrance. We have

f± = 1
2κm(σ±,1 + σ±,2 − σ0)

2 + κmσ±,1σ±,2, (14.35)

where the + sign refers to the “upper” monolayer, and the − sign to the “lower” one. Note
that we have chosen the same signed spontaneous curvature, which implies that we have
oriented the two monolayers in opposite directions. Now it can be shown (Problem 14.3)
that

d�′ = d�(1 + 2Hλ+ Gλ2), (14.36a)

H ′ = H(1 − 2Hλ)+ Gλ, (14.36b)

G ′ = G(1 − 2Hλ), (14.36c)

where 2H = σ1 + σ2, G = σ1σ2, and the primed quantities refer to the same variables for
a surface that has been displaced by a signed length λ along the normal. Therefore,

f+ = 1

2
κm

(
σ1 + σ2 − (σ1 + σ2)

2 δ

2
+ σ1σ2δ − σ0

)2

+ κmσ1σ2

(
1 − (σ1 + σ2)

δ

2

)
,

f− = 1

2
κm

(
−σ1 − σ2 − (σ1 + σ2)

2 δ

2
+ σ1σ2δ − σ0

)2

+ κmσ1σ2

(
1 + (σ1 + σ2)

δ

2

)
, (14.37)

and

f d� = f+d�+ + f− d�−. (14.38)

We keep the first-order terms in δ only and obtain

f = 1
2κ(σ1 + σ2)

2 + κσ1σ2, (14.39)
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with

κ = 2κm, κ = 2(κm − κmσ0δ). (14.40)

Consider the correction to the saddle-splay modulus; κm can be very small, as it has
often been assumed in the Lα phase close to the L3 sponge phase. In that case, the cor-
rection is dominant over the bare κm contribution; it yields a positive κ if the spontaneous
curvature is negative, a situation that favours the appearance of the sponge phase.11

14.2.1.2. Microscopic Models; the Petrov–Derzhanski–Mitov Model

Various models have been built to relate the material constants of fluid membranes to mi-
croscopic parameters. We give the basic elements of the Petrov–Derzhanski–Mitov (PDM)
model. This model and others like the Israelachvili–Mitchel–Ninham (IMN) model12 are
reviewed in some detail in Petrov.13

In the mechanical approach of the Bulgarian school, one starts from the free energy
per molecule in a monolayer

fm = kH

2

(
AH

H
− 1

)2

+ kC

2

(
AC

C
− 1

)2

, (14.41)

where kH (respectively kC ) are elastic constants characterizing the interaction between
heads (resp. chains), AH (respectively AC ) are the cross-section areas, and H (respec-
tively C) are the cross-section areas of the molecules when free of interactions. The aim is
to relate the elastic constants and the spontaneous curvature of the monolayer to the micro-
scopic parameters, and particularly to their anisotropy. The result depends on the detailed
model of the molecule that is used.

Consider first a single monolayer of a thickness δ/2. We measure the head cross sec-
tions at the distance δ/2 from the surface � formed by the ends of the chains and the chain
cross sections at the distance δ/4 from �. The relations between the curvatures (measured
at �) and the cross-sectional areas are, according to (14.36a),

AH = A

[
1 +

(
δ

2

)
(σ1 + σ2)+

(
δ

2

)2

σ1σ2

]
,

AC = A

[
1 +

(
δ

4

)
(σ1 + σ2)+

(
δ

4

)2

σ1σ2

]
, (14.42)

where A is the mean area per molecule measured at �.

11G. Porte, J. Appell, P. Bassereau, and J. Marignan, J. Physique France 50, 285 (1989).
12J. Israelachvili, D.J. Mitchel and B.W. Ninham, J. Chem. Soc. Faraday Trans. II 72, 1525 (1976).
13A.G. Petrov, The Lyotropic State of Matter, Gordon and Breach, 1999.
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For a monolayer constrained to be flat (AH = AC = A), the equilibrium area mini-
mizing fm is

A0 ≈ kH H−1 + kCC−1

kH H−2 + kCC−2
. (14.43)

This is not the mean area for a monolayer. A monolayer, because of asymmetry between its
two sides, gets a spontaneous curvature σ0. Nevertheless, the result (14.43) can be directly
used to consider a bilayer formed by two monolayers whose chains end at the same surface
�. Equation (14.42) is applicable to both monolayers of a bilayer. The energy per unit
area of a bilayer stretched isotropically by a quantity ε = (A − A0)/A0 can be written to
second order fbl,s = 2� fm/A0 = κsε

2/2. The stretching constant κs is easily obtained by
using � fm = fm(A)− fm(A0). The corresponding tension is τ = ∂ fbl,s/∂ε = κsε, and

κs = 2

(
kH

H
+ kC

C

)
. (14.44)

Now, we have to substitute (14.42) in (14.41) if the bilayer is bent. In the sequel, we
assume that there is no stretching, because the bilayers are liquid like. This condition can
be written as τ = τ+ + τ− = 0. Here, τ i = ∂ f i

m/∂ε
i is the tension that develops in the

i = +,− monolayer. We also assume that the two monolayers can exchange molecules
(flip-flop); consequently, the chemical potential is the same in the two monolayers; i.e.,
µ(τ i , σ i

1, σ
i
2) = f +

m − τ+ A+ = f −
m − τ− A−. Identifying the variation of

∑
i=+,− f i

m/Ai

with the expression of the free energy of a bilayer (14.39), one gets14

κ = δ2 A0

8

kH kC

H 2C2

1

kH H−2 + kC C−2
≡ δ2

16
κs
(H − A0)(A0 − C)

(H − C)2
;

κ = −3δ2 A

8

kH kC

H 2C2

1

kH H−1 + kCC−1
(H − C) ≡ −3δ2

16
κs
(H − A0)(A0 − C)

A0(H − C)
.

(14.45)

It is interesting to notice that, although κ is always positive (which implies that A0 is
in the interval [H,C]), the sign of κ depends on the sign of the asymmetry of the molecule
(H–C). Note also that the knowledge of κ, κ , and κs and of the shape and sizes of the
molecule (i.e., H and C) permits one to evaluate the local elastic constants.

Another quantity that can be expressed as a function of the microscopic elastic con-
stants is the membrane edge energy for a pore of radius R (Fig. 14.5). One starts from the
equality of the chemical potentials in the flat part of the layer and the bent part, which reads

14M.D. Mitov, PhD thesis, Bulgarian Acad. Sci, Sofia, 1980; A.G. Petrov and I. Bivas, Progress Surf. Sci.,
Edited by S. Davison, 16, 389 (1984).
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R
r
θ

δ / 2

Figure 14.5. Model for the edge of a pore; the calculation is done for r → 0.

formally as

µ(τ/2, 0, 0) = µ(τ+, σ1, σ2), σ1 = cos θ

R + r(1 − cos θ)
, σ2 = 1

r
, (14.46)

i.e., yields τ+ as a function of the applied stress τ , which tends to open the pore. The force
per unit length of line exerted on the edge is given by the integral:

γ (τ, R) =
r→0

r

+π/2∫

−π/2
τ+(τ, R, r, θ) dθ, (14.47)

whose calculation yields an expansion of γ in powers of δ/R, the coefficients τi , γi de-
pending on the microscopic elastic constants:

γ = γ0

(
1 + τ

τ0

)
− γ1

(
1 + τ

τ1

)
δ

R
+ γ2

(
1 + τ

τ2

)(
δ

R

)2

+ · · · . (14.48)

14.2.1.3. Microscopic Models; the Helfrich Model

The Helfrich model15 (extended by Szleifer et al.16) relates the values of κm, κm , and σ0 to
the distribution of stresses in the monolayer:

15W. Helfrich, Amphiphilic mesophases made of defects, in Physics of defects, Edited by R. Balian, M. Kle-
man, and J.P. Poirier, Les Houches, North-Holland, Amsterdam, 1980, 714.

16I. Szleifer, D. Kramer, A. Ben Shaul, W.H. Gelbart, and S.A. Safran, J. Chem. Phys., 92, 6800 (1990).
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κmσ0 =
∫

xpt (x) dx, κm = −
∫

x2 pt (x) dx,

κm = − 1
2

∫
x dx

∂pt (x)

∂H

∣∣∣∣∣
H→0

. (14.49)

The first and second formulae are valid for a planar layer; the third one applies to a
bent surface with mean curvature H . The integrand must include all forces, in particu-
lar, those calculated in Section 14.1.3. The principle of the calculation is as follows (see
also Safran17): The free energy variation of an isotropic compressible liquid changing vol-
ume from V0 to V is �F = − ∫

p(V ′)dV ′, where p(V ′) is the pressure in the state
V0 ≤ V ′ ≤ V ; this expression generalizes for an anisotropic liquid (and for a solid) to the
form�F = ∫

V ′σ ′
i j de′

i j (note that dV ′ = V ′de′
i i ; the e′

i j are the components of the elastic
distorsion tensor). In the case of a 2D isotropic membrane, as already indicated, the rele-
vant components of the stress tensor σ ′

i j are expressed as functions of the longitudinal and
the transversal “pressures” pl and pt . The longitudinal pressure opposes the work done by
forces acting along the normal to the membrane, when the membrane changes thickness,
and the transversal pressure opposes forces that bend the membrane and change the lo-
cal area. The calculation assumes, furthermore, that the total volume is unchanged. Under
such conditions, the quantity �F calculated for a unit membrane area is of the form of
(14.39), with the moduli as in (14.49). The longitudinal pressure does not appear, because
we expect it to vanish for an isolated membrane.

These formulae have been used successfully to calculate the contribution of elec-
trolytes in solvent and charged layers on the elastic moduli for isolated membranes18 and
for lamellar systems15 by taking for the transversal stress pt (x) the values given by (14.21).
According to (14.49), these contributions to the moduli scale as the product of a pressure
difference times a characteristic length cubed. For example,15 in the case of an added elec-
trolyte, one expects that the characteristic length is the Debye length λD , the pressure dif-
ference scales as kB T /b2� in the weak charge limit, and the moduli as kB Tλ3

D/b
2�. The

last quantity can be fairly negligible compared with other contributions, to be discussed
later on (note that the repeat distance plays no role). On the other hand, in the case of no
added electrolyte and strong surface charge, the pressure scales as kB T /d2�, the charac-
teristic distance is the repeat distance, and the moduli scale as kB T d/�.

14.2.1.4. Experimental Values

κs : The stretching elastic constant that relates the 2D isotropic stress component τ (usu-
ally called a tension: It is a 2D pressure changed sign) to the relative variation of area
ε, τ = κsε, has been measured in giant bilayer lecithin vesicles. The method consists in
inflating the vesicle under a controlled overpressure, at constant molecular content of the

17S.A. Safran, Adv. in Phys. 48, 395 (1999).
18H.N.W. Lekkerkerker, Physica A159, 319 (1989); Physica A167, 384 (1990).
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vesicle.19 Typical values for κs are 140 mN/m in lecithin, but 450 mN/m for the red blood
cell membrane. For more details on the micromechanical (and also thermoelastic) proper-
ties of lecithin and biomembranes, see, e.g., Evans and Skalak20 and Parsegian et al.21

κ: The bending modulus has been measured from the shape fluctuations of tubular and
spherical vesicles. One typically gets 10kB T for long, double-chain lipids,14 and 0.1kB T
for short chains and mixtures. These low values of κ mean that thermal energy suffices
to excite extensive shape fluctuations of amphiphilic films.22,23 For a recent review see
Safran.17

κ: The PDM model predicts that the sign of the saddle-splay modulus κ depends on
the shape anisotropy (H − C)/C . If the head cross section is larger than the chain cross
section, one expects κ < 0 for the bilayer. Note that this situation favors a positive sponta-
neous curvature for the monolayer. This is indeed what has been observed. This conclusion
is also in agreement with (14.40), which predicts that the bilayer saddle-spay constant is
smaller than twice the monolayer saddle-splay constant when σ0 > 0. Reciprocally, one
expects κ > 0 when the spontaneous curvature is negative, viz. when the head cross sec-
tion is smaller than the chain cross section. This is typically what happens in some swollen
colloidal solutions of surfactants, namely, cetylpyridinium chloride plus hexanol as a cosur-
factant, where it is believed that the chains are interdigitated (large C), whereas the heads
show increasing area condensation when the concentration of alcohol increases. This pro-
cess drives a transition between a lamellar Lα phase, at lower alcohol content, and a sponge
L3 phase, at higher alcohol content.24 In this system, the value of κ controls the stability of
large Burgers vectors dislocations (oily streaks) vs their splitting into focal conic domains:
The topology of the core of the defect is not the same according to the case, which implies a
role of κ.25 The value of κm can be obtained in oil-brine surfactant mixtures forming dilute
droplet microemulsions (with a radius of a few nm), from the knowledge of the interfacial
tension, the bending modulus, and the radius of the droplets (AOT–brine–oil system26).

Numerous lyotropic systems have been studied,27 either with dominant electrostatic
forces (SDS–water–pentanol, SDS-water-hexanol), or dominant undulation forces (SDS–
brine –dodecane or pentanol). The experimental scattering profiles allow for a clear-cut
distinction between these two categories of lamellar systems. Intermediate cases between
undulation and electrostatic forces have been investigated.

The Caillé exponents (see Section 5.6.2), which appear in the shape of the diffraction
peaks of a lamellar phase, permit a direct measurement of the quantity

√
K B. On the

19R. Kwok and E.A. Evans, Biophys. J. 35, 637 (1981).
20E.A. Evans and R. Skalak, Crit. Rev. Bioeng., 3 and 4, 181 (1979).
21V.A. Parsegian, N. Fuller and R.P. Rand, Proc. Nat. Acad. Sci. USA 76, 2750 (1979).
22R.M. Servuss, W. Harbich, and W. Helfrich, Biochimica et Biophysica Acta 436, 900 (1976).
23F. Brochard and J.F. Lennon, J. Physique (Paris) 36, 1035 (1975).
24G. Porte, J. Appel, P. Bassereau, and J. Marignan, J. Phys. France 50, 1335 (1989).
25P. Boltenhagen, O. Lavrentovich and M. Kleman. J. Phys. II, France 1, 1233 (1991).
26H. Kellay, J. Meunier, and B.P. Binks, Phys. Rev. Lett. 70, 1485 (1993).
27D. Roux, C.R. Safinya, and F. Nallet, Lyotropic lamellar Lα phases’, in Micelles, Membranes, Microemul-

sions, and Monolayers, Edited by W.M. Gelbart, A. Ben-Shaul, and D. Roux, Springer-Verlag, New York, 1994.
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other hand, in the case of Lα phases, the measurement of the periodicity in function of
the dilution yield the value of κ ≈ K d0 [see (14.60)]. Therefore, K can be measured by
two independent methods. Furthermore, the Caillé exponent exhibits in theory a different
variation with d0 whether the repulsive forces in the membranes are predominantly of
electrostatic or of entropic (see below) origin.27

The following list of constants for lecithin is extracted from Mitov’s thesis and
Petrov and Derzhanski,28 and has been collated by these authors from various mea-
surements16,20,29 (κ = 0.26 × 10−19 J, κs = 0.14 ± 0.2 J/m2, γ0 = 0.23 × 10−11N)

kH = 19.1 × 10−21 J, kC = 32.3 × 10−21 J,

H = 90.2 × 10−20 m2, C = 66.2 × 10−20 m2.

The value of κ can be deduced from these values of the microscopic constants, following
(14.45): κ ≈ 0.25×10−19 J. A value of the same order of magnitude has also been inferred
from light microscopy observation of saddle-splay instabilities30 and passages.31

14.2.2. Flexible Layers and Excluded Volume

The stability of the L1 (micellar), Lα , and L3 (bilayer) phases can be discussed at a phe-
nomenological level starting from the free energy surface density of an isolated membrane
[see (14.39)]. The Lα lamellar phase is stable in the range of values 2κ + κ > 0, κ < 0.
We do not discuss the stability of the L3 sponge and micellar phases. How do fluctuations
enter in this picture?

Equation (14.39) is the same as the classic free energy surface density of an inexten-
sional solid shell, with the following correspondence:

κ ⇔ Eh3

12(1 − ν2)
, κ ⇔ −Eh3

12(1 + ν) , (14.50)

where h is the thickness of the shell, E is the Young modulus, and ν is the Poisson ratio.32

The main differences between the two cases are as follows:

1. The inextensionality of the solid shell reduces its possible deformations to those that
conserve lengths and angles, i.e., that conserve the Gaussian curvature G = σ1σ2. The
condition is less strict in a membrane; inextensionality is replaced by conservation of
area div u⊥ = 0, and Gaussian curvature can be modified by diffusion.

28A.G. Petrov and A. Derzhanski, Mendeleiev J. All Union Chem. Soc. (Moscow, in Russian) 28, 197 (1983).
29W. Harbich and W. Helfrich, Z. Naturforsch. 34a, 1063 (1979).
30A.G. Petrov, M.D. Mitov, and A. Derzhanski, Phys. Lett. 65A, 374, (1978).
31W. Harbich, R.M. Servuss, and W. Helfrich, Z. Naturforsch. 33a 1013 (1978).
32A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, 1944, article 298.
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2. The fact that the bilayer suffers considerable thermal fluctuations (e.g. in systems in
which electrostatic interactions are strongly screened by a strong electrolyte solution, κ
is not much more than of the order of kB T ), which have to be averaged out in this large-
scale description. Consequently, the bending modulus κ and the saddle-splay modulus
κ are moduli renormalized over thermal fluctuations.33 The integration

∫
f d Ap for

the total energy is to be carried over a mean surface Ap averaged over the thermal
fluctuations.

14.2.2.1. The de Gennes Coherence Length

We first consider the case of an isolated, flat membrane, of area A = L2, but crumpled by
thermal fluctuations, without interaction with other membranes. de Gennes and Taupin34

have shown that such a free membrane has a finite persistence length

ξκ = a exp
4πκ

αkB T
, (14.51)

i.e., that it makes sense to speak of a flat membrane as long as its size L ≤ ξκ . In this
expression, α is a coefficient of the order of unity, and a is the transversal size of a molecule
of surfactant in the membrane. The demonstration goes as follows.

Let us assume, for the sake of simplicity of the calculations, that the amplitudes of the
fluctuations are small. We can therefore use the small displacement approximation of the
free energy density; that is, fbend = 1

2κ(uxx + uyy)
2; in the same approximation the inte-

gration can be carried over the projected, flat, mean area, and not the true membrane area.
There is no necessity to introduce the saddle-splay contribution, because the fluctuations
do not change the topology of the surface. Let us now write the total energy in terms of the
Fourier components of the displacement u(r) = A−1 ∑

q uq exp(iq · r) (with u−q = u∗
q).

One gets

∫
fbendd2r = 1

2
κ

∫
(uxx + uyy)

2d2r

= A−1

2
κ
∑

q
q4uqu−q = A−1

2
κ
∑

q
q4| uq |2. (14.52)

By the equipartition theorem, we have

kB T = A−1κq4| uq |2, (14.53)

33For a review see e.g., Statistical Mechanics of Membranes and Surfaces, Edited by D. Nelson et al., World
Scientific, Singapore, (1989). The main results of the renormalization group approach in the calculation of κ and
κ have recently been challenged by Helfrich, Eur. Phys. J. B1, 481 (1998).

34P.G. de Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).
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and by a simple integration over all the modes,

〈u(r)2〉 = 1

A

∫
u(r)2d3r = 1

A2

∑
q

| u(q) |2 = 1

A

kB T

κ

∑
q

1

q4
. (14.54)

These formulae of general use being established, let us calculate the director–director
correlation function

gn(r) =
〈
(n(r + ρ)− n(ρ))2

〉
= 2

(〈
| n(r) |2

〉
− 〈n(r + ρ)n(ρ)〉

)
. (14.55)

Note that the correlation function measures the angle ψ between two normals at a
distance r . Indeed, gn(r) = 2(1 − 〈cosψ(r)〉) ≈ 〈ψ2(r)〉. Because, further, n =
{−∂u/∂x,−∂u/∂y, 1}, we have

gn(r) = 2

A2

∑
q

q2
〈
| uq |2

〉
(1 − cos q · r) ≈ α kB T

4πκ
ln

r

a
. (14.56)

The first relation in (14.56) is relatively easy to establish. The second one requires
some care in the summation, which is replaced, as usual, by an integration. We have,
straightforwardly, 2A−2�q2〈| uq |2〉 ≈ (kT /πκ) ln qmax/qmin. Writing

∫
cos q · r dθ =∫

cos(qr cos θ) dθ = 2π J0(qr), the second part of the integral reads as −(kT /πκ) ·∫
dq J0(qr)/q, where the integration is performed between qminr = 2πr/L and qmaxr =

2πr/a. J0(qr) is the Bessel function of zeroth order. The upper limit is large, whereas
the first one is smaller than 2π . Therefore, we integrate between qminr = 2πr/L and ∞.
We get −(kT/πκ)

∫
dq J0(qr)/q = (kT t/πκ) ln(qminr/2)+ terms that are negligible as

long as qminr = 2πr/L is smaller than unity. All together we get the expression as in
(14.56), with α being some coefficient of order unity or more. The important result is that
the leading term in the correlation function does not depend on the size of the system. If
we fix r = ξκ such that gn(r) ≈ 〈ψ2(r)〉 is of the order of unity, i.e., the angle is large,
it follows that the normals can be considered as decorrelated. This is the origin of the de
Gennes–Taupin persistence length. The free bilayer is “rigid” at short scales (L < ξκ ) and
strongly wrinkled at larger scales (L > ξκ ); of course, this does not preclude the existence
of (small) thermal fluctuations at smaller scales.

The coefficient α varies according to the authors (Helfrich35: α = 1; de Gennes and
Taupin: α = 2; calculations resulting from renormalization methods yield α = 3—for a
review, see David36).

35W. Helfrich, Z. Naturforsch. 33A, 305 (1978).
36F. David, in ‘Statistical Mechanics of Membranes and Surfaces’, edited by D. Nelson & al., World Scientific,

Singapore, (1989) 157.
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14.2.2.2. The Excess Area in a Fluctuating Membrane

Let Ap be the averaged area,37 A the true area, and �A = A − Ap be the excess area
of a membrane of typical size L(A = L2), Fig. 14.6. The (local) relative excess area is
�A(r)
A(r) = n · z − 1 ≈ − 1

2 [( ∂u
∂x )

2 + ( ∂u
∂y )

2], where z is a unit vector perpendicular to the
membrane. The total relative excess area can therefore be written

�A

A
= − A−2

2

∑
q

q2| uq |2;

i.e.,

�A

A
= kB T

4πκ
ln

qmin

qmax
. (14.57)

Note that this expression is valid for a free membrane as long as Ap is smaller than
A∗

p = ξ2
κ , because patches of sizes A∗

p are independent. The larger Ap is still smaller if

the membrane is not free, for example, if it belongs to a Lα phase. Let us note A∗
p = ξ2⊥.

According to (14.54), the mean squared displacement u2
m in the direction perpendicular to

the membrane is of the order of u2
m ∼ (kB T /κ)L2. Taking um ∼ d, one gets38 for L = ξ⊥:

ξ⊥ = c

√
κ

kB T
d, (14.58)

where c is a coefficient whose exact value is author-dependent. In Golubovic and Luben-
sky,39 c = (32/3π)1/2 ≈ 1.84.

Note ϕs the volume concentration of the membranes (the surfactant) in the lamellar
phase, and δ the thickness of the bilayer. One has

ϕs = δA

d Ap
, (14.59)

AP

A

Figure 14.6. Averaged Ap and chemical A areas to represent a membrane.

37Also called the projected area, because this theoretical approach is valid for quasi-planar surfaces.
38W. Helfrich and R.M. Servuss, Il Nuovo Cimento 3D, 137 (1984).
39L. Golubovic and T.C. Lubensky, Phys. Rev. B 39, 12110 (1989).
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where one has to make A = A∗
p. Using (14.57), with qmax = 2π/a, qmin = 2π/ξ⊥, one

gets

d = δ

ϕ

(
1 + kB T

4πκ
ln

(
c
δ

a

√
κ

kB T

1

ϕ

))
≈ δ

ϕ

(
1 + kB T

4πκ
ln

(
c

d

a

√
κ

kB T

))
.

(14.60)

This logarithmic correction to the linear dilution law has been successfully used to
measure the bending modulus.40

According to David,41 the fluctuations renormalize the elastic moduli as follows:

κ(L) = κ
(

1 − 3kB T

4πκ
ln

L

a

)
, κ(L) = κ

(
1 + 5kB T

6πκ
ln

L

a

)
. (14.61)

Here, κ is the so-called bare elastic bending modulus, and it is related to the elastic
properties at molecular scale.

14.2.2.3. An Interpretation as an Ideal Gas of Patches;
the Helfrich Entropy Repulsion

In a free membrane, patches of area A∗
p = ξ2

κ are assumed to form a 2D ideal gas. In
terms of energy density per unit area, this can be interpreted as yielding a surface tension
γ = kB T /ξ2

κ .
In the case of a lamellar phase, the surface density of patches is ξ−2

⊥ . Let us adopt
a mean field point of view: Consider that the fluctuations of a given membrane of the
phase bump the two neighhboring membranes, supposedly immobile. The volume density
of patches in the interval of width 2d is

n(d) = 1

2 dξ2⊥
= c−2

2 d3

kB T

κ
.

According to the Boyle–Mariotte law, the corresponding pressure is

p(d) = n(d)kB T = c−2

2

(kB T )2

κ d3
,

40D. Roux, F. Nallet, E. Freyssingeas, G. Porte, P. Bassereau, M. Skouri, and J. Marignan, Europhys. Lett. 17,
575 (1992).

41F. David, in ‘Statistical Mechanics of Membranes and Surfaces’, D. Nelson & al. eds, World Scientific,
Singapore, (1989) 157.
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and the energy of interaction of these fluctuations with either of the two neighboring mem-
branes is

−
∫ d

∞
p(d ′) dd ′ = 1

4c2

(kB T )2

κ d2
;

i.e. membranes at a separation d suffer a repulsive potential

Vrep = 1

4c2

(kB T )2

κ d3

(see Helfrich42). Another way to obtain this result is to notice that each patch has a thermal
energy kB T (there are two degrees of freedom per patch; the patches are constrained on
a 2D manifold), which is equally shared with the two neighboring surfaces, i.e., for each
neighbor, an energy 1

2 kB T n(d) d.
Assuming for a while that we regard the potential Vrep as a function of the distance

� = d + u between the membranes, where d is the equilibrium distance and u is a small
displacement,

Vrep = 1

4c2

(kB T )2

κ�3
.

By the definition of the modulus of compressibility, we have

1

4c2

(kB T )2

κ�3
= 1

2
B

(u

d

)2
.

Hence,

B = d2 d2Vrep

d�2

∣∣∣
�=d

= 3

c2

(kB T )2

κd3
. (14.62)

Many authors take for the coefficient 3/c2 the Helfrich value 9π2/64.
Another way of estimating the form of B is as follows. The penetration length perpen-

dicular to the layers, which is of the order of ξ2⊥/λ (because deformation extends laterally
over a size ξ⊥), should not be larger than the repeat distance d. On the other hand, it makes
no sense to make it smaller. Let us therefore write, on the model of Chapter 5, ξ2⊥/λ = d,
where λ = √

K/B = √
κ/d B. This equation yields

B ≈ c−4 (kB T )2

κd3
.

42W. Helfrich, Z. Naturforsh. 33a, 305 (1977).
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The full statistical–theoretical method for the question just discussed is given in ref.
41 and 42.

14.2.3. The Lamellar, Sponge, and Cubic Phases; Microemulsions

The respective stability of the different phases of bilayers has been alluded to in Prob-
lem 5.6. We recall the results, which are expressed in function of the signs of the curvature
moduli κ and κ , i.e. in function of macroscopic material parameters. There are three do-
mains of stability:

1. for κ + 1
2κ > 0, κ < 0, the Gaussian curvature vanishes, and the lamellar phase is

stable.

2. for κ+ 1
2κ < 0, κ < 0, the Gaussian curvature has to be positive, and the micellar phase

is stable.

3. for κ + 1
2κ > 0, κ > 0 and the Gaussian curvature has to be negative; at the same time,

one can make the mean curvature to vanish. The bilayer takes the shape of a minimal
surface.

Case (1) also covers the case of a phase made of cylindrical bilayers, like the hexagonal
phase. Such a phase is usually a phase of monolayers, like indeed the micellar phase [case
(b)]. In both cases, one expects that κm < 0. Note that κ is certainly also negative if the
spontaneous monolayer curvature is positive; see (14.40).

The case in which the Gaussian curvature has to be negative is more interesting. It
yields two subcases, cubic and sponge phases, which both are observed experimentally:

Cubic Phases: These phases, which appear in the classification of mesomorphic phases
(Chapter 2), are known for moderately swollen surfactants.43 It has been proven44 that a
periodic surface can be periodic in 3D space, without intersections. Experimentally, one
encounters three cubic phases, called, respectively, G (space group Ia3d), D (space group
Pn3m), and P (space group Im3m), but there are many more possibilities. The reader is
referred to the literature for illustrations.45 The stability is clearly related to the topological
gain in energy due to the passages and the vanishing curvature energy (minimal surface
σ1 + σ2 = 0). It has been proposed that the lamellar to cubic phase transition can be
studied in the frame of a Landau theory.46

43Strontium soaps, Ia3d structure: V. Luzzati and P.A. Spegt, Nature 215, 701 (1967); lipid-water systems, Ia3d
structure: V. Luzzati, A. Tardieu, T. Gulik-Krzywicki, E. Rivas and F. Reiss-Husson, Nature 220, 485 (1968).

44A.H. Schoen, NASA report TN D - 5541 (1970).
45See for example the special issue of the Journal de Physique on Geometry and Interfaces, colloquium C7 51,

(1990).
46D.M. Anderson, S.M. Gruner and S. Leibler, Proc. Natl. Acad. Sci. USA 8, 5364 (1988). W. Helfrich and H.

Rennschuh, J. de Phys. 51, C7-189 (1990).
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Sponge Phase: The L3 phase is documented in swollen surfactants, for which the cur-
vature energy is known to be very small, as indicated above (κ ≈ kB T ). The model of the
sponge phase that is used is that of a bicontinuous random phase of solvent (two domains
of solvent) separated by a random bilayer, similar to the model for microemulsions. Being
random, it can be shown on mathematical grounds that the midsurface of the bilayer can
be but only approximately minimal. The stability is ensured by the translational entropy of
the configurations of passages, and the curvature energy is small.47

Finally, microemulsions are thermodynamically stable phases with at least three com-
ponents: oil, water, and surfactant (most generally with a short alcohol acting as cosur-
factant). The surfactant–cosurfactant form a monolayer that separates oil from water. One
distinguishes globular (mostly spherical) microemulsions, whose existence is fairly well
documented, and Winsor phases, whose model is that one of a random bicontinuous sys-
tem, first advanced by Scriven48 and Talmon and Prager.49 The microemulsions can thus
feature either a positive Gaussian curvature (microdroplets) or a negative Gaussian cur-
vature (structurally similar to sponge phases). It is believed50 that a discriminating factor
between globular and random bicontinuous microemulsions is the spontaneous curvature
σ0, which is large in globular systems, and smaller and associated with a small bending
modulus κm in random continuous systems. A number of theoretical models have been
elaborated on to explain the stability of microemulsions. They are set out in great details
in ref. 51

14.3. Solutions of Colloidal Particles; Stability Properties

The former sections have been devoted essentially to membranes and, by extension, to sur-
faces whose mean curvature is small compared with the inverse of the distance between
two colloidal objects in solution. The core of the results is the DLVO theory for the com-
petition between attractive dispersion forces (van der Waals forces, suitably modified for
retardation effects at large distances, if necessary; see Chapter 1 and Problem 1.6) and
repulsive electrostatic forces. At first sight, these results can be applied to moderately con-
centrated solutions of particles. But the two situations display important differences. The
finite objects we now have in mind do not have the same topology as the infinite mem-
branes of swollen surfactants. Because particles are of finite, small size (typically in the
range 50 nm to 1µm), Brownian motion is an important factor in their stability and kinetic
properties. Also, because the question of colloidal solutions has long been of such an in-

47M.E. Cates, D. Roux, D. Andelman, S.T. Milner, and S.A. Safran, Europhys. Lett. 5, 733 (1988).
48L.E. Scriven, Nature 63, 123 (1976)
49Y. Talmon and S. Prager, J. Chem. Phys. 69, 2984 (1978)
50L. Auvray, The structure of microemulsions: experiments’ in Micelles, in Membranes, Microemulsions, and

Monolayers, Edited by W.M. Gelbart, A. Ben-Shaul, and D. Roux, Springer-Verlag, New York, 1994.
51Membranes, Microemulsions, and Monolayers, Edited by W.M. Gelbart, A. Ben-Shaul, and D. Roux,

Springer-Verlag, New York, 1994.
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dustrial importance (milk, inks, paints, etc., are colloidal solutions of particles), a wealth
of experimental results are known, and significant theoretical efforts were already numer-
ous in the beginning of the twentieth century, e.g., due to Smoluchowski and Einstein. The
subject has therefore been treated in length in many excellent treatises and textbooks, and
we shall therefore content ourselves with a somewhat simplified discussion, in which we
shall put the accent on the question of the stability of the solutions of colloidal particles.

Colloidal solutions are of several types, according to the nature of the repulsive inter-
actions between particles:

1. Hard sphere interactions, of great theoretical interest, can be experimentally modeled
by silica spheres, dispersed in a nonpolar solvent whose refractive index matches the
refractive index of silica (hence, no van der Waals nor electrostatic interactions), coated
with a thin organophilic layer.52 Brownian movement has to counterbalance sedimen-
tation; hence, the particles must be small enough (a4�ρg/kB T < 1; radius a ≤ 1µm;
difference of mass density between the solvent and the particles �ρ).

2. Repulsive electrostatic interactions (charged particles, e.g., polymeric, calibrated
charged spheres in an electrolyte, often referred to as latex solutions, the word la-
tex previously connoting the hevea sap from which rubber was manufactured). We
recall that the DLVO potential (Fig. 14.2) displays a deep primary minimum, when the
distance between the objects is very small, separated from a secondary minimum by a
maximum that decreases when the concentration of electrolyte increases. The distance
of approach of two membranes is in principle at the secondary minimum Vsmin, either
because when the electrostatic repulsive interactions are strong, the activation barrier
opposed by the maximum is extremely high, or when the barrier is abolished by an
electrolyte, the repulsive Helfrich fluctuations take over. On the other hand, in the case
of particles, the primary minimum Vpmin is easier to maintain, if the activation barrier
Vmax has been passed, because the contact has to be effective in one point only. This
aggregated state is irreversible if | Vpmin |/kB T is large enough, the time of escape
being of the order of a2 D−1 exp(| Vpmin |/kB T ) (where D is the diffusivity).

3. Polymer-coated particles. Repulsive interactions set in between polymer coatings of the
particles (see Chapter 15).

For high enough concentrations, or in the presence of an agent that decreases the repul-
sive interactions (e.g., electrolyte, or polymer added to the solvent—see Section 14.3.2) the
particles can form a crystal, a glass, or a solid-like gel phase. To summarize, the physics of
colloidal particles is a physics of aggregation vs solubilization, and of order vs disorder.
These are the topics that we discuss, briefly, in the sequel.

52C.G. de Kruif et al., in Complex and Supramolecular Fluids, Edited by S.A. Safran and N.A. Clark,Wiley-
Interscience, New York, 1987, p. 673.
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A problem in colloidal structure physics of a similar nature, besides the effects of
anisotropy, is when the objects are rigid rods (like TMV viruses), or semiflexible polymers,
like DNA, biopolymers, and so on. This situation will be briefly discussed in the next
chapter.

14.3.1. Brownian Flocculation

Flocculation is a generic term often used to conote the various phenomena that yield the
formation of loose, porous aggregates, or flocs. This happens, for example when the con-
tacts between particles are provided by Brownian motion, and the primary minimum is
deep enough compared with kB T , so that the attractive force is large, and most of the
contacts irreversible.

Rapid Brownian flocculation: It happens when at the same time the maximum of the
pair potential Vmax is negligible compared with kB T . The only limiting process is diffu-
sion. Consider one particle, supposed immobile, and count the number of contacts C it
experiences per unit of time. This can be estimated by using Fick’s first law of diffusion
(see Chapter 8). The other particles move isotropically around the test particle, so that we
have

C = 4πr2
c D

dn

dr
, (14.63)

where rc ≈ 2a is the distance at which the other particles (of the same radius a) touch
the test particle, and D is the diffusivity. The gradient of concentration that is effective is
dn
dr ≈ n

a , where n is the density of particles. Therefore, the kinetic equation for the decrease
of individual particles is

dn

dt
= −16πaDn2. (14.64)

The density of particles decreases to half its value in a time t∗ ≈ (8πDan0)
−1, which for

D = kB T /(6πηa) (Stokes’ law) is of the order of at most a few seconds, taking the initial
concentration n0 ≈ 1012 cm−3. The kinetics of aggregation is very rapid.

Stability ratio: In most cases, such large rates of aggregation are not reached. This is
due in part to the fact that the diffusion coefficient does not obey the Stokes law at short
distances of separation (where the flow of solvent is more difficult), and, above all, to the
repulsive forces at short distances. In order to describe quantitatively this latter effect, one
introduces the stability ratio W = J0/J , where J0 = 16πaDn2

0 is the (Brownian) rate of
aggregation of individual particles, and J is the true rate, which is related to the details of
the pair potential of interaction. Let V (r) be the pair potential of interaction between two
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particles, m = (6πaη)−1 the mobility, D = mkB T is the diffusivity according to Einstein
relation. Equation (14.63) becomes

C = 4πr2
c

(
D

dn

dr
+ mn

dV

dr

)
. (14.65)

Assuming a steady state of aggregation (C constant), this equation can be integrated to

n(r) = n0 exp(−V (r)/kB T )

+ C
exp(−V (r)/kB T )

4πD

∫ r

∞
exp(−V (r ′)/kB T )

dr ′

r ′2 , (14.66)

where n0 is the concentration far from the particle at the origin, and the boundary condition
is n(2a) = 0. From (14.66), it is possible to deduce an expression for W = J0/J . An
approximate formula used in the case of electrostatic repulsion,

W = (2akD)
−1 exp(Vmax/kB T ), (14.67)

yields values as high as W ∼ 105 if Vmax/kB T ∼ 15, with kD ∼ 108 m−1. Such values are
experimentally observed.

Shape of the flocs: It is often fractal.53 We refer the reader to the discussion of the
structural properties of DLA (diffusion limited aggregation) in Chapter 7.

14.3.2. Depletion Flocculation

Two colloidal particles in a solution containing smaller particles suffer an attractive force,
whose origin has first been recognized by Asakura and Oosawa54, for the case when the
subparticles are macromolecules. This phenomenon, called depletion flocculation, can be
qualitatively understood as follows. Let n be the number density of subparticles, and con-
sider (Fig. 14.7) a region of size h, area A, from which the subparticles are excluded,
because h is smaller than or of the same order as the size of the subparticles. The Gibbs
adsorption equation (13.13) applies to this case, with 2�A = −nh A, where � is the excess
number (here negative) of subparticles per unit area in the gap

dσ

dµ
= −�(h). (14.68)

The force exerted by one particle on the other is f = −2 dσ
dh . Assuming that the solution

of subparticles is ideal, i.e., µ = kB T ln c + const, µ being the chemical potential of the

53See e.g., S. Dimon et al. Phys. Rev. Lett. 57, 595 (1986).
54S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).
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h

Figure 14.7. Mechanism for depletion flocculation. Redrawn from D.H. Everett, Basic Principles of
Colloid Science, The Royal Society of Chemistry, 244 pp, 1988.

subparticle, we have

f = −ckB T A. (14.69)

The colloidal particles appear therefore as being submitted to an osmotic pressure posm =
ckB T . The gaps between them act as regions forbidden to the particles, as if they were
separated from the bulk of the solution by hemipermeable membranes.

These considerations extend to polymers that do not adsorb on the surface of the par-
ticles, with some modification in the values of the coefficients in the formulae above. It
will be seen in the next chapter that an isolated, flexible, polymer chain takes the shape
of a random coil, as a result from the competition between entropy and excluded volume
interactions. The region in space occupied by the random coil has a typical radius RG ,
say. If two particles are separated by a gap smaller than ∼ 2RG , the nonabsorbing macro-
molecules present in this region are squeezed, at the expense of some loss in entropy. They
regain entropy by escaping from this region. This contribution of the internal degrees of
freedom of the subparticle adds to the depletion effect described above for undeformable
subparticles, and is taken into account in Joanny et al.55

14.3.3. Stability Under Shear; Rheological Properties

At low shear rates and low volume fraction φ, the effective viscosity η of a stabilized
solution obeys Einstein relation56

55J.-F. Joanny, L. Leibler, and P.G. de Gennes, J. Poly. Sci.: Poly. Phys. Ed. 17, 1073 (1979).
56A. Einstein, Ann. der Physik, 19, 289 (1906); English translation in Investigations on the Theory of the

Brownian Movement, Dover, 1956.
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η

ηs
= 1 + 2.5φ + O(φ2), (14.70)

where ηs is the viscosity of the solvent. This increase in viscosity originates in the extra
dissipation due to the distorsion of the flow field γ̇ = const. in the vicinity of the particles,
along which the no-slip condition applies. Terms of higher order in (14.70) become im-
portant for higher concentrations: They are due to interactions involving pairs (φ2), three
particles (φ3), and so on. The stability under shear and viscoelastic behavior of colloidal
suspensions depends crucially on the nature of the interactions between particles and on
their concentration (see Russel et al. and Larson textbooks for details). The coefficients of
the φ2, φ3, and so on, terms in (14.70) depend on the nature of these interactions.

1. In the case of hard spheres, the effect of pair interactions at low-volume fraction φ has
been calculated57

η

ηs
= 1 + 2.5φ + 6.2φ2 + O(φ3) (14.71)

and is experimentally well documented. For all volume fractions, dimensional analy-
sis anticipates the existence of a relation between the dimensionless ratio η/ηs and the
dimensionless Péclet number Pe = a2γ̇ /D (which is the ratio of a time a2/D char-
acteristic of the Brownian motion over a time characteristic of the applied shear), at
constant volume fraction, because there are no other interactions than those due to the
excluded volume.58 Indeed it has been shown experimentally that the variation of η/ηs

can be represented along a unique master curve in function of the dimensionless quan-
tity ηa3γ̇ /kB T , which is equivalent to Pe (Fig. 14.8). One observes that the effective
viscosity at constant volume fraction decreases (shear thinning) as the shear rate is in-
creased. This dependence is experimentally visible for φ ≥ 0.3. Shear-thinning is due to
the disappearance of the Brownian motion contribution at high shear stress (computer
simulations59), and to the formation of strings of particles parallel to the flow (light
scattering experiments60). However, these strings become unstable at still larger shear
rates (or shear stresses), and shear thickening can take place.

2. In the presence of other interactions (soft spheres), the analysis of the results is more
involved.

The effect of shear on the stability of the solution has received some attention on the
theoretical side, but the comparisons with experimental results are scarce or elusive. At
relatively small shear rates, i.e., Pe 	 1, the number of collisions between particles due to

57G.K. Batchelor, J. Fluid Mech. 83, 97 (1977).
58I.M. Krieger, Adv. Colloid Interface Sci. 3,111 (1972).
59J.F. Brady, Curr. Opin. Collloid Interface Sci. 1, 472 (1996).
60B.J. Ackerson and P.N. Pusey, Phys. Rev. Lett. 61, 1033 (1988).
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Figure 14.8. Variation of the relative viscosity η/ηs in function of the dimensionless number
ηa3γ̇ /kB T at constant volume fraction φ. Shear thinning. Adapted from Krieger58; φ = 0.40.

Brownian motion exceeds the number of collisions due to the shear flow: The shear affects
the results of the static case (Section 14.3.1) by a correction term to the stability ratio W ,
which is slightly reduced with respect to the static case (see Russel et al. textbook for
elements of the theory). The increase in the number of pairs should result in an increase of
the viscosity. At large shear rates, i.e., Pe � 1, larger aggregates can form, whose stability
is related to the secondary minimum of the DLVO potential (smaller shear rates) or the
primary minimum (larger shear rates).

In the case of stabilized solutions of charged particles, the theory61 for small φ predicts
that the viscosity can be described as in the hard sphere case, but with an effective particle
diameter deff that is representative of the repulsive forces (see Larson textbook for details).
One gets

η

ηs
= 1 + 2.5φ +

[
2.5 + 3

40

(
deff

a

)5
]
φ2 + O(φ3). (14.72)

At low ionic strength, the theory predicts deff � 2a. The exponent 5 therefore yields a
rapid increase of the effective viscosity with the volume fraction, due to the electrostatic
interactions. This has indeed been observed. At large volume fractions (φ > 0.1, say)
and high shear rates, the hydrodynamic interactions become more important than do the

61W.B. Russel, J. Fluid Mech. 85, 209 (1978).
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electrostatic ones, deff decreases, and one gets a viscosity close to the viscosity anticipated
for a system of hard spheres.

14.3.4. Order vs Disorder

Colloids offer remarkable examples of phase transitions that are of a fundamental interest.
Contrarily to the case of solids, it is relatively easy to tune the interactions in the same
system in order to cover a rich variety of bulk phases, from gas to 3D crystalline orga-
nizations.62 The model systems that have been thoroughly studied are particles of gold,
of silica, polystyrene in water, of polymethylmetacrylate (PMMA) in oil, binary colloidal
mixtures like PMMA particles in polystyrene, and so on. In all of these cases, the size of the
particles is small enough so that the Brownian motion is effective to prevent sedimentation.
We discuss briefly only the effect of repulsive interactions on the stability of colloidal crys-
tals. Recent experiments63 have suggested the existence and role of attractive interactions
between like charges in confined colloidal media, possibly yielding crystallization. That is
to say that the subject of colloidal solutions and colloidal crystals is in full renewing.

14.3.4.1. Repulsive Forces; Hard Spheres

An essential element to understand the competition beween order and disorder is entropy.
In a purely repulsive medium like a system of hard spheres, the reason for crystallization
(the so-called Kirkwood–Alder transition) would be that the entropy of vibration of the
particles in their cages, when ordered, can be larger than the entropy of translation of the
liquid state. This is to be compared with the Onsager’s model of liquid-nematic transitions
in hard rods systems (Chapter 4), which also emphasizes repulsive interactions and the
associated effects of the orientational-dependent excluded volume. The Kirkwood–Alder
transition has been computed in molecular dynamics simulations64 and observed65 in a
suspension of polystyrene spheres in a fluid so chosen that the van der Waals attractions
were suppressed. At the transition, the volume fractions are for the liquid φliq = 0.494 and
for the crystal φcr = 0.545. The structure is FCC, although this trasition takes place far
below the densest packing φcr = 0.74. However, densest packing can be reached contin-
uously by increasing pressure. A glass transition66 has been documented at φg = 0.58.
We refer the reader to the textbook of W.B. Russel et al. for details on the statistical
theory.

62A.P. Gast and W.B. Russel, Physics Today, December 1998, p. 24.
63J.C. Crocker and D.G. Grier, MRS Bulletin 10, 24 (1998).
64B.J. Alder, W.G. Hoover and D.A. Young, J. Chem. Phys. 49, 3688 (1968).
65S. Hachisu and Y. Kobayashi, J. Colloid Interface Sci. 46, 470 (1974).
66P.N. Pusey and W. van Megen, in Complex and Supramolecular Fluids, Edited by S.A. Safran and N.A.

Clark, Wiley-Interscience, New York, 1987, p. 673.
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14.3.4.2. Repulsive Forces; Soft Spheres

The repulsive interactions can be turned long range by permanent electric charges on
the particles—the double-layer thickness is a distance of closest approach between two
particles—or by grafting polymer chains on the particles—the two brushes do not inter-
penetrate (see Chapter 15). The transitions are still driven by entropy, the essential differ-
ence, compared with hard spheres, being that the polymer-grafted particles or the charged
particles have a larger effective radius, so that the Kirkwood–Alder transition occurs at
smaller volume fractions.

The case of charged particles was mentioned above (Section 14.3.3). The effective vol-
ume fraction is φeff = φ(deff/2a)3, which can be much larger than φ for weak electrolytes.
So charged polystyrene latices at very low ionic strength form BCC iridescent phases at
φ ≤ 0.01, whereas FCC phases form at higher φ. Similarly, proteins can crystallize at very
small volume fractions.

Being crystalline, colloidal crystals have a yield stress and plastic properties that are
related to the movement of dislocations.67 But the crystals so obtained are very soft and
melt easily under shear.68

14.4. Measurements of Interactions in Colloidal Systems

The forces under which colloidal particles are acting are fairly small; for example, the force
between two spheres of radius a ≈ 10−5 m, with one elementary charge per 0.16 nm2 (i.e.,
q ≈ 1 C.m−2 in SI units), kB T

e = 25.69 mV, kD ≈ 10−9 m−1, and h ≈ 10a, which is given
by the expression69

−2πεε0(kB T /ze)2aq2 ln(1 − exp −hkD),

is of the order of one femtoN (10−15N). In complement is the difficulty to manipulate
such small objects. Considerable achievements have been made in these directions (e.g.,
atomic force microscope to measure forces, optical tweezers to manipulate particles or
biopolymers). By all means, specific ways of making accurate measurements have been
developed in colloid science. We review briefly some that have acquired a great importance
in the last twenty years. We have already mentioned the pipette aspiration technique to
measure mechanical properties of unilamellar vesicles.

Osmotic Stress (OS). The sample under study is embedded in a solution of dextrane,
polyethylene glycol, and so on, in any case, a large molecule that cannot penetrate the sam-

67M. Jorand, F. Rothen, and P. Pieranski, J. Physique, 46, C3-245 (1985).
68A.J. Ackerson and N.A. Clark, Phys. Rev. Lett. 46, 123 (1981).
69See Russel et al. textbook, p. 559.
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ple. The solvent is the same and circulates freely in the two media. The osmotic pressure of
the surrounding medium is then transmitted mechanically to the sample under study. This
method, which for example measures the forces acting between the lamellae in a lamellar
phase in function of the repeat distance, has provided the direct measurement of the DLVO
potential between surfactant bilayers.70 The integrated pressure over the distances between
layers yields the potential.

Surface Force Apparatus (SFA). OS permits one to investigate the repulsive part of the
potential only. On the other hand, the surface force apparatus (see Israelachvili textbook,
p. 41) allows for the study of the whole interaction potential curve. The sample is intro-
duced between a pair of atomically smooth mica cylinders, crossed at right angles. The
apparatus measures the ratio of the force between the mica cylinders over their radius. This
ratio depends on the smallest distance between the cylinders and has to be interpreted in
function of the number of layers, if the sample is lamellar, say. SFA has also been used
to study structural forces in micellar systems.71 The accuracy is of the order of 10 picoN,
comparable to the OS accuracy. For a comparison of SFA and OS, see Tao et al.70 SFA is
specially designed to measure attractive forces (e.g., the Hamaker constant72), but the fluc-
tuations of the bilayers are strongly damped by confinement and anchoring. On the other
hand, at very small separations, SFA can detect the molecular structure of the solvent and
the breakdown at small distance of the standard models; the sponge-lamellar confinement-
induced transition has been studied73 in this way.

Atomic Force Microscopy (AFM). This method permits at the same time imaging of a
nonconducting surface at the atomic level—by scanning over the surface a non-conducting
tip mounted on a cantilever with a resolution of a few Ångström—and measurements of
the force between the tip and the explored atom or molecule of the surface, in the picoN
(10−12N) range.74

Optical Tweezers.75 Microscopic particles can be trapped inside an electromagnetic po-
tential well created by laser light and manipulated in 3D. This technique has permitted
one to follow the interaction between two independently trapped particles, or to follow the
motion of particles. This second method yields the trajectories of particles, from which it
is possible to measure the pair-correlation function

70Y.-H. Tao, D.F. Evans, R.P. Rand, and V.A. Parsegian, Langmuir 9, 223 (1993).
71P. Richetti and P. Kékicheff, Phys. Rev. Lett. 68, 1951 (1992).
72J.N. Israelachvili and P.M. McGuiggan, Science 241, 795 (1988).
73D.A. Antelmi, P. Kékicheff, and P. Richetti, J. Phys. II France 5, 103 (1995).
74D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces, Oxford

University Press, 1991.
75A. Ashkin, J.M. Diedzic, J.E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
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g(r) ∼ 1

τ

∫ τ

0
dtρ−2

∫
dr′ρ(r′ − r, t)ρ(r′, t)

(where ρ(r, t) = ∑N
i=1 δ(r − ri (t)) is the trajectory function of the N particles which

are followed). From the pair-correlation function one gets, employing the relation g(r) =
exp[−V (r)/kB T ], the pair-interaction potential V (theory of stochastic processes for liq-
uids76). This method of measurement of the potential was first used to put into evidence
an attractive potential between polystyrene spheres of micron size confined between two
plates, just by videomicroscopy observations.77 The optical tweezer technique has per-
mitted to follow the interaction of isolated pairs of particles,78 and to obtain consistency
with the DLVO theory, provided some parameters like the fixed charge of the spheres are
adjusted.63

Problem 14.0.

(a) Calculate n0ξ
2 (14.10) by using the charge conservation condition (14.2).

(b) Establish to which extent the presence of free H+ and OH− ions in water can be neglected in the
calculation that yields (14.11).

Answers: (b) The concentration of counterions is large close to the charged plate and decreases
with the distance x to the plate. The counterions concentration is of the order of the H+ and OH−
ions concentration (i.e., 10−7 NAV/dm3) for x ≈ (10−7 NAV × 1000/2π�)1/2 (in SI units) ≈ 2 ×
10−6m = 2µm.

Problem 14.1. Express the counterions density at the boundary as a function of the counterions
density at the midplane between two equally charged plates, when the solvent contains no electrolyte.

Answers: The PB equation ϕ′′ = −(en0/εε0) exp(−eϕ/kB T ), which can be written as ϕ′′ =
−en(x)/εε0 (where n(x) is the density of counterions), transforms easily to d(ϕ′)2/dx = 2kB T

εε0
·

dn(x)/dx after multiplying both sides by ϕ′. Let the origin of coordinates be at the midplane. By
symmetry, ϕ′(x = 0) = 0, and n(x) = n(0) + (εε0/2kB T )(ϕ′)2. Employing the boundary condi-
tions on the charged plates, one eventually gets ns = n(0)+ (εε0/2kB T )σ 2. Consequently, one can
also express p(d) as follows:

p(d) = kB T n(x = 0) = kB T (ns − (εε0/2kB T )σ 2).

Problem 14.2. Solve the PB equation for a charged sphere of radius a in the Debye-Hückel approx-
imation. Calculate the relation between the surface charge density σ and the potential ϕ(a) = ϕs on
the surface.

Answers: We assume an electrolyte with ions of valencies zi and particle concentrations ni,0. In the
DH approximation, the nonlinear PB equation

76J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids, 2nd edition, Academic Press, New York, 1986.
77G.M. Kepler and S. Fraden, Phys. Rev. Lett. 73, 356 (1994).
78J.C. Crocker and D.G. Grier, Phys. Rev. Lett. 73, 352 (1994).
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1

r

d

dr
r2 dϕ

dr
= − e

εε0

∑
i

ni,0zi exp

(
−eziϕ

kB T

)

reduces to the simple form:

1

r

d

dr
r2 dϕ

dr
= k2

Dϕ(r),

where kD is the reciprocal Debye length (14.14). We have used the neutrality condition
∑

i ni,0zi = 0.
The most general solution of the DH equation is rϕ(r) = A exp(−kDr) + B exp(+kDr), with

the condition that the potential vanishes at infinity and takes a given value on the surface of the
sphere. One gets:

ϕ(r) = ϕs
a

r
exp[−kD(r − a)].

The boundary condition for the charges can be written σ = −εε0 dϕ
dr

∣∣∣
r=a

; hence, σ =
εε0

ϕs
a (1 + kDa). The total charge q = 4πa2σ on the particle opposes the total charge in the

solvent −q = ∫ ∞
a 4πρr2 dr . Eventually, one gets

ϕs = q

4πεε0a
+ −q

4πεε0(a + λD)
.

Problem 14.3. Prove (14.36)

Answers: When the area d� = dx1 dx2 is transported by an infinitesimal quantity λ, σi → σ ′
i ≈

σi /(1 + λσi ) and dxi → dx ′
i ≈ dxi (1 + λσi ). These expressions are signed expressions.

Problem 14.4. Consider two membranes cohering along some element of area, according to the
scheme of Fig. 14.9. They separate along some line L (perpendicular to the figure), and form an
angle 2ϑ0 at asymptotic distance from the line L. Let γcoh be the energy per unit area gained when
the contact between the two membranes is achieved, and γ the surface tension of each membrane.

(a) Show that the set of the two cohering membranes is submitted to a surface tension τ = 2γ−γcoh.
We shall assume that this quantity is positive.

2θ0

Figure 14.9. See Problem 14.4.
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(b) Express ϑ0 in function of γ and γcoh.

(c) Justify the following expression of the free energy per unit area of the membrane away from the
region of contact:

fs = (1/2)κ d2ϑ/ds2 + γ (cosϑ − cosϑ0),

where s is the abscissa measured along the free membrane in a plane perpendicular to L. Find the
first integral of the Euler–Lagrange equation of this energy density, and show that the membrane
tends exponentially to its asymptotic direction ϑ0 on a length of the order of s0 = (κ/γ )1/2.

Answers: (b) 2γ (1 − cosϑ0) = γcoh; (c) note that

γ (cosϑ − cosϑ0) = γ�Ap/A,

where �Ap is the opposite of the variation of the projected area of the membrane onto the direction
ϑ = 0; this expression, which is the 2D equivalent of the classical 3D expression −p dV /V , assumes
that ϑ and ϑ0 are small; (1/2)κ(dϑ/ds)2 + γ (cosϑ0 − cosϑ) = 0; for details, see W. Helfrich and
R.-M. Servuss, Il Nuovo Cimento, 3D, 137 (1984).
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Polymers: Structural Properties

Polymers are met under a large variety of chemical achievements, from biopolymers
like DNA, xanthan, cellulose, proteins, and actin filaments, to synthetized polymers
like polyethylene (PE), polybutadiene (PB), polystyrene (PS), polymethylmetacrylate
(PMMA), and so on, all of great industrial interest. They are employed under numerous
forms, in solutions, as gels, rubbers, synthetic fabrics, moulded pieces, and so on.

The first part of this chapter is inspired by the classic presentation of the subject elabo-
rated by de Gennes. We believe indeed that the simplest way to introduce the fundamentals
of the behavior of a polymer in solution or a molten polymer is through the presentation
of the scaling properties, which are the main characteristics of chains with a large degree
of polymerization (DP) N . Although the mathematics is easy, the physics is deep: It is not
possible to get realistic scaling laws without a thorough analysis of the physical proper-
ties; One does not have even the usual help one can get from the free energy density, often
used as a black box from which the results pop up as by magic. On the other hand, the
nonlinear effects or the renormalization phenomena that are calculated at such painstaking
efforts in the usual theories, appear there in their true light. This is not to underrate the
usual presentations, which are absolutely necessary in order to take the material constants
into account. In this first part, we limit our interest to the remarkable physical properties
of flexible polymers, which are akin to critical phenomena arising at phase transitions. The
physical properties are described in terms of conformation of flexible chains in function of
the polymer molecular mass (often expressed as a number of monomers N per chain), of
the volume concentration c = n/V of monomers (n monomers in a volume V ), possibly
of temperature, and so on. In the phase transition picture, the analog of the temperature is
1/N ; we shall also find analogs of critical exponents, some of which can be interpreted as
fractal dimensions.

Chains in melts are close to ideal chains, defined in the first part, and their physics can
be approached in the frame of mean field theory. We therefore present the classic Flory–
Huggins picture of melts and blends, and in particular the phenomena of blends phase
separation, which are typical of polymers. This is the place where we come back to the
structural point of view, which is one of the essential topics of this book, with a description
of the ordered phases of diblock copolymers.

560
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Finally, this chapter discusses, in the same vein, rigid and semiflexible polymers, which
include all biopolymers, certain anisotropic viruses, and synthetic polymers used as textiles
or building elements in high-strength materials used at room temperature, whose mechan-
ical properties result from their trend to form liquid crystalline phases at high temperature
or to align under shear.

We refer the reader to the rich available literature for a detailed description of the
microscopic dynamical properties (relaxation times, diffusivities, etc.) of polymers (e.g.,
M. Doi and S.F. Edwards, 1988). The macroscopic rheological properties of polymers,
either in solution or in the form of ordered or disordered melts, constitute such a vast
body of research that it has seemed preferable to leave them completely aside. One will
find an up-to-date presentation of these topics in Larson’s book (1999). Neither have we
touched on the question of crystallization in this book. This topic is covered in Chapter 4
of Strobl’s book (1996). The stimulating review paper of Keller on chain-folding is also
recommended.

15.1. Ideal and Flory Chains
We shall limit ourselves to main chain flexible polymers, whose prototype is polyethylene
[–CH2–]n. Other standard examples are

Figure 15.1. Configuration parameters along a chain of ethylene groups.
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polyoxyethylene
[
–O–CH2–CH2–

]
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, (� = phenyl ring), and so on.

Each of these polymers can be symbolized by a sequence of bonds linking successive
elementary monomers; in the simple case of polyethylene, to which it will be referred as the
model case, the angular variation between neighboring carbons is defined as �θn = θn −
θn−1 = 0,�ϕn = 0,±120◦ (Fig. 15.1). �ϕn = 0 is called a trans configuration; �ϕn =
±120 is a gauche configuration. They do not have the same energy. Such a geometrical
picture can be extended to any homopolymer, mutatis mutandis.

Taking the successive values of �ϕn at random, the chain appears, when observed at
some scale much larger than a, the elementary length of a bond, as a statistical coil. The
following ingredients are of interest:

1. The Persistence Length �p. Let �ε = εg − εt > 0 be the difference in energy between
the gauche configuration and the trans configuration. Then,

�p = a exp

(
�ε

kB T

)
(15.1)

is the length on which the chain has the appearance of a rigid segment, because the
segments are colinear for a succession of trans configurations. Hence, L = Na, the
chemical length of the chain, has to be large compared with �p, for the chain to be
considered as a statistical coil. This condition can be written as

x = �p

L
∼ N−1 exp

�ε

kB T
� 1. (15.2)

Phenomenologically, the persistence length can also be presented as a characteristic
length of the thermal fluctuations carried by an elastic rigid rod. Let us assume, for the
sake of simplicity, that the cross-section of the rod is isotropic. Then, the free energy
per unit length of the rod reads as

F = 1
2κr−2

c ,

where rc is the radius of curvature.1 We have r−1
c = ±| ∂2u/∂s2 | = ∂ω/∂s, where u is

the (small) displacement of the rod with respect to the unstrained straight rod, s is the

1L. Landau and L. Lifshitz, Statistical Physics, Pergamon, Oxford, 1986.
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length measured along the rod, and ω is the angle of deflection of the rod. It is easy to
show, by the Fourier transforming the free energy F = 1

2

∫ L
0 κr2

c ds of a rod of length L,
then applying the theorem of equipartition of energy, and summing over all modes, that

〈ω2〉 = 2
kB T

κ
L . (15.3)

Taking 〈cosω〉 ≈ 1 − LkB T /κ equal to zero, which is the condition at which the
elements of the rod at s = 0 and s = L are decorrelated (see Landau and Lifshitz1),
one gets �p = κ

kB T . Eventually, the free energy density can be written as

F = 1
2 kB T �pr−2

c . (15.4)

Of course, this expression of the free energy is valid for L < �p. For lengths L > �p ,
the chain is flexible, and its free energy is described in a completely different way (see
below).

2. The Persistence Time τp, i.e., a time characteristic of a change of conformation. Let�E
be the activation energy necessary for the trans-to-gauche isomerization. We have

τp = τ0 exp
�E

kB T
. (15.5)

The chain appears as flexible in any observation on a duration time τ > τp. The charac-
teristic time τ0 is related to the thermal vibrations of the chain, and it is of the order of
10−12s.

15.1.1. Single-Chain Conformations

There are three rotational isomeric states per bond: t , g+, and g−. There are therefore 3N

different configurations for a polyethylene chain with DP equal to N . Among those, some
are special, as follows.

1. Helix Configurations: These are configurations of the chain in which all monomeric
units repeat along a direction of elongation of the chain (most often, this repeat pat-
tern has a helical shape, hence, the denomination). Helical configurations have minimal
internal energy and are met in crystals of polymers. For PE, this is the all-trans state:
The chain shows a zigzag structure along its elongation, rather than a true 3D helical
structure. For polytetrafluoroethylene (PTFE), it is a true helix, not far from the all-trans
state, but differing from it by a superimposed twist along the elongation, caused by the
repulsive interactions between neighboring fluorines. For polyoxymethylene (POM),
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there are several minimal helical energy states, obtained by twisting the all-gauche con-
figurations in slightly different ways.

2. Coil Configurations: We shall be interested in the sequel only in molecules that are
dynamically flexible, i.e., whose chemical length aN is large compared with �p, and
whose observation is made on durations much larger than τp. These molecules run
through the 3N configurational states. In such a case, a number of properties are not
dependent on the local scales, and the chemical features can be ignored. On the other
hand, all “mesoscopic” properties depend on N according to scaling laws, of the type

RG ∝ aN ν, (15.6)

where, in this instance, RG is the so-called gyration radius (to be defined rigourously
later on), i.e., the typical half-size of the statistical coil in which the polymeric chain is
folded, when isolated in some solvent. The next paragraphs are devoted to the calcula-
tion of the exponent ν in various theoretical cases.

15.1.2. The Ideal (or Gaussian) Chain

15.1.2.1. The Average Size of an Ideal Chain

Assume that the N elementary segments (sometimes loosely called bonds in the sequel)
do not interact and are independent one from the other. Such a chain is called ideal. The
vector that joins the origin of the chain to its end can be written as

r =
N∑

i=1

ai . (15.7)

Squaring r, and taking averages on all possible configurations, one gets

〈r2〉 =
∑

i

a2
i + 2

∑
i �= j

〈ai .a j 〉 = Na2, (15.8)

because two segments i and j are independent. Hence, the average separation of the ends,
which can be also called the average size of the ideal chain, is

R0 = 〈r2〉1/2 = aN 1/2, (15.9)

and ν = 1/2 for the ideal chain. Note that this exponent does not depend on the dimen-
sionality of the embedding space. The scaling law (15.9) is unchanged if one introduces
interactions between different bonds along the same chain (called short-range interactions,
in contrast to long-range interactions, between bonds belonging to different chains).
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One can show, as a consequence of the central limit theorem (see Appendix 15.A), that
the probability PN (r) for the N -link chain to terminate at r, has the Gaussian distribution:

PN (r) =
(

3

2πR2
0

)3/2

exp −3

2

r2

R2
0

. (15.10)

Another demonstration is proposed as an exercise (Problem 15.1). PN (r) is the ratio be-
tween the number of configurationsN (r) susceptible to bring the chain from a fixed origin
0 to a point r, over the total number of configurations N = ∑

r N (r). The entropy S of
the ideal chain being S = kB lnN (r), we have

S(r) = kB ln PN + kB lnN , (15.11)

from which expression we get, but to an additive constant,

S(r) = −3

2
kB

r2

R2
0

, (15.12)

which depends only on r = | r |. The entropy is maximum when r = 0, from which we
conclude that an ideal chain is a compact object with many crossings.

15.1.2.2. Free Energy

The free energy of the chain is entirely of entropic origin and can be written as

F(r) = F0 + 3

2
kB T

r2

R2
0

. (15.13)

Assume that an isolated chain is submitted to the action of an applied external force f. If
the applied force is zero, the elongation r vanishes and the entropy is maximal. If not, a
decrease in entropy creates an inner force − ∂F

∂r that opposes the applied force

f − ∂F

∂r
= 0; (15.14)

i.e., the elongation r is along f and takes the value

r = f
R2

0

3kB T
. (15.15)

This is the elongation of a spring of spring constant 3kB T/R2
0.
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de Gennes has shown that (15.15) can be derived directly from a scaling law reasoning,
as follows. The elongation depends only on f , kB T , and R0. Assume that the dependence
obeys a scaling law, i.e., that there is some exponent m such that

r ∼= R0

(
f R0

kB T

)m

. (15.16)

A reasonable physical assumption is that r is proportional to the number of bonds N .
According to (15.9), this implies m = 1. Hence, the result, but to a constant factor that
cannot be deduced from this type of approach.

15.1.2.3. Rubber Elasticity, the Rouse Model

Equation (15.13) is the simplest model of energy used to explain the elastic properties
of rubbers2 made of cross-linked polymer chains. We just give the result3: The stress (ex-
pressed by a symmetric tensor σ ) carried by a deformation E can be written as σ = GET.E,
where the elastic modulus G = NclkB T (Ncl is the volume density of cross links or, equiv-
alently of strands). By definition, Ei j = ∂x j/∂x ′

i , where x j (respectively, x ′
i ) is the position

of a material point after (respectively, before) the deformation. This expression of the de-
formation E is valid for large deformations; B = ET.E, the so-called Finger tensor, reduces
to the usual strain tensor for small deformations. The Finger tensor takes a simple form in
the case of a pure extensional deformation (Bi j = λ2

i δi j ), where the λi ’s are the elon-
gations in three orthogonal directions, with λ1λ2λ3 = 1 because of the conservation of
volume.

A few comments about dynamic regimes. It is illuminating to compare (15.13) with
(15.4), which refers to the elasticity at a scale smaller than the persistence length, or which
applies to a rodlike polymer (Section 15.4).

In the rigid rod case, the dynamical equation of the macromolecule can be written as
η∂u/∂t + kB T �p∂

4u/∂s4 = 0, which yield relaxation frequencies ω(q) ≈ kB T �pq4/η,
where 2πq−1 > �p. This equation expresses that the sum of the elastic force opposes a
force of friction proportional to the velocity. A typical value of the frequency is 108 Hz.

In the case of an ideal isolated chain, the (Rouse) dynamical equation is

η∂r/∂t − (3kB T/R0)∂
2r/∂s2 = 0.

Again, this equation expresses that the elastic force (3kB T/R2
0)∂

2r/∂s2 opposes a force of
friction m−1∂r/∂t , where m ≈ 1/ηR0 is the mobility of a sphere of size R0 and η is the
viscosity of the solvent. The characteristic frequencies scale as ω(qn) ≈ kB T q2

n/R0η, with
qn = n/(R0N 1/2), n = 1, 2, . . . N . The smallest frequencies, of the order of 10−7 Hz (for

2L. Treloar, The Physics of Rubber Elasticity, Clarendon Press, Oxford, 1975.
3R. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworths, New York, 1988.
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R0 = 10 nm and N = 100), describe the motion of the chain as a whole. This is the limit
where the Rouse model is more or less obeyed, provided the solution is dilute. The Rouse
model has been improved by taking into account the hydrodynamic interactions, i.e., the
effect of the motion of an element of the chain on the others. It no longer describes the
physical reality if the polymer chains are entangled.

15.1.3. Pair Correlation Function and Radius of Gyration

An important quantity relating to a polymeric chain is the pair correlation function g(
r)
that measures the density of bonds in r, assuming one monomer at the origin. The pair
correlation function is obviously normalized:

N =
∫

g(r) ddr. (15.17)

There are on the average n(r) ∝ r2/a2 bonds in a sphere of radius r , for the ideal chain,
according to (15.9). Hence,

g(r) = g(r) ∼ 1

4πr2

dn

dr
∼ 1

a2r
(15.18)

in 3D; in d dimensions, the volume of a spherical shell is proportional to rd−1, so that

g(r) ∼ 1

a2rd−2
. (15.19)

The above estimates are valid as long as r ≤ R0. For larger values of r , one expects an
exponential decrease of g(r).

The Fourier transform S(q) of g(r) can be measured by X-ray or (more accurately) by
neutron scattering at incident wave vector k = q + k′, where k′ is the final scattered wave
(| k′ | = | k |):

S(q) ∼
∫

g(r) exp iq · r ddr ∼ 1

qd−1a2
, (15.20)

which is valid as long as q R0 � 1. Note that the limit q = 0 is known from (15.17):

S(q → 0)→ N . (15.21)

To be more precise, consider a chain of N segments, a particular segment n at rn . The
density of bonds gn(r) at rn + r is gn(r) = ∑

m(�=n) 〈δ(rn + r − rm)〉, where 〈X〉 is the
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thermal average of X . Also, g(r) = 1
N

∑
n gn(r). One eventually gets

g(r) = 1

N

∑∑
n �=m

〈δ(r + rn − rm)〉 , (15.22a)

S(q) = 1

N

a3

V

∑∑
n �=m

〈exp[iq · (rn − rm)]〉 . (15.22b)

This last expression can be expanded for small | q · (rn − rm) |. One has 〈rn − rm〉 = 0.
Define

R2
G = 1

2N 2

∑
n

∑
m

〈
(rn − rm)

2
〉
, (15.23)

one gets

S(q) = S(0)
(

1 − 1
3 q2 R2

G + · · ·
)

(15.24)

in dimension d = 3. It can be shown that the radius of gyration RG can also be expressed
as follows:

R2
G = 1

N

N∑
n=1

〈
(rn − rcm)

2
〉
, (15.25)

where rcm = N−1 ∑
n rn is the center of mass.

Equations (15.22)–(15.24) are fairly general. Let us specialize them to the ideal
chain. For | n − m | large enough, one has 〈(rn − rm)

2〉 = | n − m |a2, i.e. R2
G =

1
2N2

∑
m,n | n − m |a2. Replacing the sum by an integral, one gets

R2
G = 1

6 Na2. (15.26)

15.1.4. The Flory Chain

The above model does not take into account the simplest possible, athermal interactions,
due to the excluded volume. Different segments of an ideal chain can occupy the same
location in space, and in fact they do, in this model, because the entropy is maximum
for r = 0. Radii of gyration have been measured in dilute solutions of polymers (dilute
enough such that individual coils are independent) by light scattering, viscosimetry, or
diffusivity measurement, and simulated numerically. All of these measurements yield a
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Table 15.1. Critical exponents for RF and F

d 4 3 2 1

γ − 1 0 ∼ 1/6 ∼ 1/3 0

ν 1/2 ∼ 3/5 ∼ 3/4 1

critical exponent ν close to 0.6, and not 0.5. An actual isolated polymeric chain is more
swollen than is an ideal chain, as expected. In d = 2, numerical simulations yield ν ≈ 0.75.
The Flory theory,4 which accounts for the excluded volume, enables us to find results very
close to those experimental values.

More precisely, numerical simulations of lattice models give critical exponents for RF

(the Flory radius of the swollen chain) and F (see Table 15.1):

RF ∝ aN ν, F ∝ N γ−1, (15.27)

-0.2
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xg

x

(−xδ)

Figure 15.2. The probability function xg exp(−xδ) for a swollen chain, calculated for typical expo-
nents g and δ shown in Table 15.1 for d = 3.

4P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1971.
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where γ is the analog of a susceptibility exponent in the phases transitions theory of poly-
mer chains (see de Gennes, 1979).

Another useful exponent is δ, which describes precisely the excluded volume effect
that moves the chain end away from the origin, as well as the “cage” effect, which traps
the chain end inside the coil. Let the probability PN (r) that a Flory chain of fixed origin
terminates at r takes now the form:

PN (r) ∼= 1

Rd
F

f (x) exp −xδ, (15.28)

where x = r/RF . The probability must vanish for r = 0 and decrease exponentially for x
large; hence, f (x) ∼= xg. These exponents are simply related to ν and γ , Fig. 15.2,

δ = 1

1 − ν , g = γ − 1

ν
. (15.29)

Equation (15.28) is nothing else than an extension of (15.10), for which g = 0 (which
expresses the fact that the ideal chain returns to the origin with a large probability) and
δ = 2.

1. Flory Theory of the Scaling Law Exponent: Let c ∼= N R−d be the mean volume con-
centration of bonds in a coil occupying a spherical volume of radius R. The free energy
density of the coil contains two contributions:

(a) an excluded volume term:

fex ∼= 1
2 kB T 〈c2〉v, (15.30)

where v is the d-dimensional volume of a monomer. The 〈c2〉 term can be under-
stood as measuring the number of pair interactions between bonds. More precisely,
let kB T v δ(ri − r j ) be the energy of (steric) interaction between bonds i and j . The
total free energy is U = 1

2 kB T v
∑

i, j δ(ri − r j ). We introduce the local bond den-

sity c(r) = ∑
j δ(r − r j ) and write δ(ri − r j ) = ∫

δ(ri − r) δ(r − r j )ddr. This
yields

U = 1
2 kB T v

∫
c2(r) ddr.

We take c2(r) constant (c = N/Rd ) and equal to its mean value in (15.30). This
assumption neglects the effect of correlations and overestimates the interaction en-
ergy.
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(b) an elastic term of entropic origin, for which we assume that the chain is ideal:

fel ∼= Fel/Rd ∼= kT
R2−d

Na2
. (15.31)

Again, this assumption neglects correlations between bonds and overestimates the total
energy.

Minimizing the total energy of the coil F = Fex + Fel ≈ Rd fex + Fel , one gets

ν = 3

d + 2
; (15.32)

i.e., ν3 = 3
5 , ν2 = 3

4 . These values are extremely close to the experimental values.
More recent theories fully justify the use of scaling laws. de Gennes’s “n = 0”

theorem5 establishes that the problem of the conformation of a chain with excluded
volume (the self-avoiding walk or SAW problem) is formally similar to the problem of
the correlations of n-dimensional spins in a ferromagnet, when n = 0! This remarkable
analogy yields formal relationships between the SAW exponents and the critical expo-
nents of the ferromagnetic case. The analog of the reduced temperature (T − Tc)/Tc

is N−1. The analog of the correlation length is the radius of gyration R ∝ aN ν . Nu-
merical estimations made in the framework of the renormalization group theory have
made possible the estimation of ν in various dimensions. The results are close to Flory’s
results, albeit a little smaller.

2. The Concept of Blob: Coming back to (15.28), and calculating the entropy contribution
in the free energy of a coil, one gets

F = kB T

(
r

RF

)δ
+ F0; (15.33)

i.e., an elongation

r ∼= RF

(
f RF

kB T

) 1
δ−1

(15.34)

under the applied force f . As above, we assume that the elongation is proportional to
N , which yields

δ = 1

1 − ν . (15.35)

This expression gives δ = 2 for an ideal chain, as expected.

5P.G. de Gennes, Phys. Lett. A38, 339 (1972).
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ξ

f-f

Figure 15.3. Splitting of a swollen chain into blobs under an applied force.

Note that (15.34) provides us with a new length, ξ = kB T / f , such that

r ∼= N

n
ξ, (15.36)

where

ξ ∼= anν. (15.37)

n is therefore the typical number of bonds belonging to a blob of size ξ . Equation
(15.36) tells us that the elongation is the number of blobs N/n, times the typical size of
a blob (Fig. 15.3).

3. The d ≥ 4 Case (Mean Field): Flory’s results predict mean field values (ideal chain) for
the exponents (ν = 1/2) in dimension 4. The same results apply for the whole range
d ≥ 4 in the n = 0 theory. Note that, from (15.30) and (15.31), one gets

Fex

Fel

∼= v

ad
N 2−d/2, (15.38)

if Fex is given its mean field value. This ratio vanishes when d > 4: The excluded
volume terms become negligible, a feature typical of an ideal chain.

15.2. Chains in Interaction

Let us distinguish from the start two limit cases. In a very dilute solution, each chain has an
individual behavior independent of the other chains. If the chain is “swollen,” one refers to
the solvent as a good solvent; the radius of gyration of the chain scales as the Flory radius
(RG ∝ N 3/5). In the absence of solvent, on the other hand, each monomer of a “molten”
polymer is submitted to attractive van der Waals interactions (due to the bonds of other
neighbouring chains) and to repulsive interactions (due to the bonds of the same chain)
otherwise responsible of the swelling behavior. These interactions compensate exactly at
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the scale of a few monomers, because the density fluctuations of the melt are so small.
Therefore, each chain is expected to behave in a melt as an ideal chain (RG ∝ N 1/2), a fact
that has been experimentally checked.

The object of this Chapter is to introduce a few methods relevant to interacting chains
in cases different from the above limit cases. One shall first review the Flory–Huggins
“mean field” approach and afterward the scaling laws approach.

15.2.1. The Mean Field Approach

15.2.1.1. The Flory–Huggins4,6 Free Energy

Let us imagine that the monomers of the polymer chains are located on the sites of a
lattice (edge length = a) and assume that each link occupies a volume a3. Let φ be the
fraction of sites occupied by the monomers, and let (1 −φ) be the fraction occupied by the
solvent. We assume that each molecule of solvent also has volume a3. The volume density
of monomers is c = φa−3. According to Flory–Huggins, the entropy of mixing Smix can
be written as

Smix = −kB Ntot

[
φ

N
lnφ + (1 − φ) ln(1 − φ)

]
, (15.39)

where Ntot is the total number of sites and N is the number of monomers per chain.

1. Establishing (15.39): The above expression is justified as follows. Assume that the two
chemical species behave like ideal gases, whose thermodynamical potentials add lin-
early. The chemical potential of species i is

µi = −kB T ln
eVi

Ni
+ fi (T ), (15.40)

where Vi is the total volume occupied by species i ; and Ni is the number of i-molecules.
Note that one retrieves the Boyle–Mariotte law from (15.40): The free energy is indeed
Fi = µi Ni , and the partial pressure of species i is pi = −∂Fi/∂Vi = kB T (Ni/Vi ).
Now the partial entropy of species i is Si = −∂Fi/∂T ; i.e.,

Si = kB Ni ln
eVi

Ni
− Ni f ′

i (T ). (15.41)

When two species mix, they both occupy the total volume V = V1 + V2. Hence, the
total entropy is

S = kB

[
N1 ln

eV

N1
+ N2 ln

eV

N2

]
+ s(T ),

6P.M. Huggins, J. Phys. Chem. 46, 1712 (1942).
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s(T ) being some additive function proportional to
∑

Ni . The entropy of mixing is
Smix = S − S1 − S2, where Si , i = 1, 2 are given by (15.41); i.e.,

Smix = −kB

∑
j

N j ln v j , (15.42)

where vi = Vi/V is the volume fraction of species i . Equation (15.39) follows directly
from (15.42) with substitutions N1 = φ

N Ntot and N2 = (1 − φ)Ntot. The entropy of
mixing per site is

Smix/site = −kB

[
φ

N
lnφ + (1 − φ) ln(1 − φ)

]
. (15.43)

2. The Terms of Interaction: To the entropy term (15.43), one adds a term of pair interac-
tions, including monomer-monomer pairs, monomer-solvent pairs, and solvent-solvent
pairs, viz:

U/site = 1
2 kB T

[
χMMφ

2 + 2χMSφ(1 − φ)+ χSS(1 − φ)2
]
. (15.44)

Note the similarity of (15.44) with (15.30). The χi j coefficients are adimensional. The
energy of mixing is U/site − φU/site(φ = 1)− (1 − φ)U/site(φ = 0); i.e.,

Umix/site = kB Tχφ(1 − φ), (15.45)

where χ = χMS − 1
2 (χSS + χMM) is called the Flory interaction parameter. The pair

interactions χi j are mostly due to van der Waals attractions and are proportional to
the polarizabilities; i.e., χMM ∝ −α2

M, χMS ∝ −αMαS, χSS ∝ −α2
S. Therefore, χ is

generally positive. Adding (15.43) and (15.45), one gets

Fmix/site

kB T
= φ

N
lnφ + (1 − φ) ln(1 − φ)+ χφ(1 − φ). (15.46)

3. Good Solvent and Poor Solvent: When the attractive interactions are small, i.e., χ → 0,
one has the so-called regime of good solvent. Strong atttractive interactions correspond
to a regime of poor solvent. This conclusion can be made more precise by looking at
the small φ behavior of (15.46) (note that linear terms in φ have been dropped from
(15.47), because they have no physical meaning):

Fmix/site

kB T
= φ

N
lnφ + 1

2
φ2(1 − 2χ)+ 1

6
φ3 + · · · , (15.47)
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which can be compared with the expression of the free energy one obtained in the
discussion of the excluded volume, (Chapter 4). Let indeed c = φa−3; then (15.47) can
be written as

fmix/site

kB T
= c

N
ln c + 1

2
vc2 + · · · , (15.48)

where fmix/site = Fmix/site/a3 is now a free energy density and v = (1 − 2χ)a3 appears
as an excluded volume. The regime of good solvent is satisfied when v > 0, χ < 1/2.
The regime of poor solvent occurs for χ > 1/2.

4. �-Temperature: The temperature at which 1 − 2χ = 0 is called the � (theta)-
temperature. It can be estimated from the expression of χ . Indeed, we expect that
the van der Waals interactions depend little on temperature, so that

χ ∝ (αM − αS)
2

kB T
and � ∝ (αM − αS)

2

kB
.

One expects that because the interactions vanish, the chain is ideal at the�-temperature.
This result can be understood by employing the Doi approach, which is the subject
of Problem 15.2 (in this problem, in order to obtain the ideality of the chain at the
�-temperature, introduce, instead of the volume v = a3, the Flory–Huggins volume
v = (1 − 2χ)a3, which vanishes at the �-temperature). For T < �, the system is a
poor solvent system, and the size of the polymer chain is smaller than the ideal chain
radius of gyration. The polymer chain condenses upon itself, forming a dense globule.
The transition from the regime of good solvent to the regime of poor solvent, across the
�-temperature (i.e., decreasing T ), is abrupt. It is called the coil-globule transition.

5. The Athermal Regime:χ = 0 yields the largest possible value of v, i.e., v = a3, and
corresponds to a case in which the solvent and the monomers are chemically similar.

15.2.1.2. Osmotic Pressure

The osmotic pressure due to the polymer is

posm = −
(
∂Ftot

∂V

)
Nmono

, (15.49)

where Nmono = Vφa−3. The differentiation in (15.49) is done under the condition
d Nmono/Nmono ≡ dV /V + dφ/φ = 0; also, Ftot = Fmix/siteV/a3 = fmix/siteV . Hence

posm = φ2 ∂

∂φ

{
fmix/site

φ

}
, (15.50)
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a3

kB T
posm = φ

N
+ ln

1

1 − φ − φ − χφ2. (15.51)

(a) Dilute Regime, φ → 0, φ � 2N−1. A series expansion yields

posm ≈ kB T

(
c

N
+ vc2

2

)
. (15.52)

The osmotic pressure depends on the molecular weight (and is proportional to the
number of coils, which act as an ideal gas of coils). The excluded volume term is
negligible as long as 2N−1 > φ, i.e., for small coils or very small concentrations.
Now, it is of interest to consider the case of what is called the semi-dilute regime.

(b) Semi-dilute Regime, 2N−1 < φ � 1. Equation (15.51) now reduces to

posm ≈ kB T

2
vc2; (15.53)

i.e., for large N , the osmotic pressure becomes independent of the DP. The prediction
of a cross-over between two regimes of small concentrations (dilute vs semi-dilute)
will be confirmed by scaling arguments. In fact, it does not happen at φ ∼ N−1, as the
above argument would let one think.

(c) Dense Limit, φ ∼ 1. The relevant variable is now the site fraction φs = 1−φ occupied
by the solvent. Let us introduce the osmotic pressure of the solvent ps , a concept that
is unsatisfactory from a physical point of view, but will be useful anyway:

ps = −
(
∂Ftot

∂V

)
Nsolv

= kB T

a3

{
φs + φ2

s

(
1

2N
− χ

)
+ · · ·

}
. (15.54)

The excluded volume term vanishes for the infinitely long polymer case, when the solvent
is athermal. As already indicated above, the athermal solvent molecules are similar to the
monomers of the polymeric chains. Therefore, a3/(2N), which appears in (15.54) as the
excluded volume of the solvent, is also the excluded volume of the monomers. One can
therefore expect that in the limit φ → 1, which is the polymer melt, the excluded volume
interactions vanish, and one recovers the ideal chain behavior, as explained in the intro-
duction of this section. We therefore expect that the Flory–Huggins model is valid for high
concentrations of polymers of high DP. In effect, the Flory–Huggins model is mostly used
with some success to describe dense polymer mixtures (with little or no solvent), their seg-
regation or compatibility characters, stable or metastable states and the spinodal curve, and
so on.
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15.2.1.3. Compressibility; Measurement of the Excluded Volume

An important theorem in statistical physics relates the Fourier transform of the correlation
function of the density, i.e., the scattering function, to the isothermal compressibility

χT = − 1

V

∂V

∂posm

∣∣
T,N1

.

See Appendix 15.B for more details and the establishing of (15.55a). We have

a3c2kB TχT = S(q = 0), (15.55a)

where S(q) = a3
∫

dr exp(iq · r)〈c(0)c(r)− c2〉 is the scattering function and c is the vol-
ume density of particles. Equation (15.55a) can also be written under the very convenient
form as

S(q = 0) =
(
∂2 Fmix/site

kB T ∂φ2

)−1

, (15.55b)

where the free energy per particle is expressed in function of the volume fraction (15.46).
Here, we specialize the formulae to the case of a dilute solution (φ = ca3 → 0). Employ-
ing (15.52) for the osmotic pressure, which we write in a standard form as 1

kB T posm =
c
N + A2c2 + · · ·, one gets

S(q = 0) = 1

a3c

1

N−1 + 2cA2
, (15.56)

which provides an experimental method to measure A2, the second coefficient of the virial
expansion, when N is large, i.e., the excluded volume.

15.2.2. Scaling Laws for Athermal Solutions

The Flory–Huggins approach treats the polymer species and the solvent as ideal gases
to calculate their entropy. It does not take into account the excluded volume effect. This
section discusses the case of athermal solutions (χ = 0) from another perspective, the
scaling laws. The athermal case is important because it is, experimentally, a case with no
other interactions but the excluded volume, a “pure” case. Therefore, the Flory–Huggins
approach should be particularly bad. We shall compare the two approaches.

15.2.2.1. Critical Concentration for the Semidilute Solution

We shall say that a solution is dilute when the polymeric coils are not in contact. Let
c∗ ∼ N/Rd

F be the mean concentration of monomers (segments) in the coil. We take for
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the radius of the coil the Flory radius, because χ = 0 means that the polymer is in a good
solvent. It is clear that the coils are in contact when c > c∗. Let us estimate the volume
fraction for c∗. We have

c∗ ∼= N 1−dν

ad
; i.e., φ∗ ∼= N 1−dν. (15.57)

In dimension d = 3, with N = 104, and ν = 3/5, one gets φ∗ ∼ 10−3. The coils are in
contact in a good solvent for small concentrations.

c > c∗, the solution is qualified semidilute. Notice the difference with the definition
of a semidilute regime we were led to state in the frame of the Flory–Huggins theory; i.e.,
φ∗ ∼= N−1. The Flory–Huggins definition of the crossover between dilute and semidilute
coincides with the present definition for dν = 2, i.e, precisely for the dimension d = 4
(where ν = 1/2, see Table 15.1), for which mean field theory applies. de Gennes has
noticed that, because in a semidilute solution the chains are interpenetrating, there is no
way to tell to which coil belongs a monomer chosen at random. Therefore, the properties
of conformation should not depend on N in this universal regime. Let us consider the
consequences of this new situation on the osmotic pressure.

1. c < c∗. One might expect to improve the expression (15.52) of the osmotic pressure by
adding a term of excluded volume proportional to Rd

F , viz.:

1

kB T
posm = c

N
+ A2c2 + · · · , (15.58)

where A2 ∝ N 1−dν . This scaling law has been verified with great accuracy.

2. c > c∗. The osmotic pressure should not depend on N , on the one hand (following de
Gennes’s argument), and tends toward c/N when c → c∗, on the other hand. Let us
then write

1

kB T
posm ∝ c

N

( c

c∗
)x
, (15.59)

where x is obtained from the condition of independence on N . Using (15.57), one gets

x = 1

dν − 1
and

1

kB T
posm ∝ a−dφ

dν
dν−1 . (15.60)

Again, the Flory–Huggins mean-field prediction posm ∝ φ2 is recovered for d = 4.
For d = 3, the exponent y = dν

dν−1 = 9/4 is well confirmed by the experiments; it is
different from the mean field exponent 2, and the effect is very conspicuous if φ is very
small.
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15.2.2.2. Internal Energy for Semidilute Solutions

Let us consider a bond of the lattice model on which sits a monomer, with a probability
φ. The conditional probability for a neighboring bond to be occupied is not φ, but φy−1.
This conditional probability comes from a straightforward interpretation of (15.60): The
osmotic pressure is due to a gas with pair interactions, yielding an exponent equal to 2
only in mean field theory (the φ2 term; each element of the pair plays a mirror role with
respect to the other). In d �= 4 dimensions, the number of effective pairs of monomers is
not ∼ φ2, but ∼ φy . Consequently, the effective number of monomer-solvent molecule
pairs is φ(1 − φy−1), and the internal energy can be written as

Umix/site = kB Tχφ(1 − φy−1). (15.61)

This expression is valid in the regime of good solvent.

15.2.2.3. Correlation Length in Semidilute Solutions

The fluctuations of density have a characteristic length ξ equal to the Flory radius RF when
c = c∗. Employing the same method as above, i.e., finding an exponent m

ξ ∼= RF

(
φ∗

φ

)m

, (15.62)

that makes ξ independent of N , we obtain from (15.27), (15.57), and (15.62),

m = ν

dν − 1
, ξ ∼= aφ−m . (15.63)

The osmotic pressure can easily be expressed as a function of the correlation length:
posm ∼= kB T ξ−d , which suggests that the “blobs” of size ξ behave as independent objects.
Let us for a while assume that all monomers of a blob belong to the same chain. This
assumption is reasonable because, according to (15.63), the size ξ of a blob is smaller
than is the Flory radius. The number of monomers per “blob” can then be estimated as
g ∼ (ξ/a)1/ν , which is also equal to cξd . Therefore, the density of monomers in a blob is
equal to the density in the solution, and one can think of the blobs as objects tiling space
densely. One can then consider blobs belonging to the same chain as “suprasegments” of
a molten polymer, in which the “suprachains” (i.e., the chains with their conformation of
blobs) behave ideally. Hence, the radius of the suprachain scales as

R ∼= ξ
(

N

g

)1/2

= aN 1/2φ(ν−1/2)/(dν−1), (15.64)

which is smaller than is the Flory radius, as expected.
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Because the fluctuations of density are of size ξ , one expects that the semidilute poly-
mer acts as a sieve of mesh ξ for particles that cross it through. This property has been
employed to measure ξ and the scaling exponents, with good success. See also Daoud
et al.7 for neutron scattering experiments (measurements of the radius of gyration, of the
range of the correlations, and of osmotic compressibility), a fundamental paper.

15.3. Phase Separation in Polymer Solutions
and Polymer Blends

15.3.1. Liquid Equilibrium States vs. Nonequilibrium States

Polymers in poor solvents and polymer blends tend to phase separate. Consider a mixture
of two types of polymers A and B, DP’s NA and NB . In the Flory–Huggins approach, the
free energy (15.46) can be generalized to

fm ≡ Fmix/site

kB T
= φA

NA
lnφA + φB

NB
lnφB + χφAφB , (15.65)

where fm is the dimensionless energy density and φA + φB = 1. If χ is positive and large
enough, one expects that the energy decreases when φA (or φB ) is small and φB (or φA)
is large. This would happen in the case of a polymer in a poor solvent (NB = 1, χ large).
Alternatively, unless χ is extremely small, it is practically impossible to obtain a homoge-
neous mixture of two polymers present in comparable volume fractions. As we shall see,
the incompatibility of two polymers can be used to yield structural features similar to those
of surfactants in water (lyotropic phases), i.e., phase separation at a microscopic scale.

These phase separations are first order. First-order phase transitions display strong dis-
continuities of the state variables, latent heat, and hysteresis phenomena, like supercooling
(retarded solidification) and overheating (retarded melting). In particular, it is well known
that if supercooling is large, i.e., if the system keeps the disorder that is typical of the
molten state down to very low temperatures, the viscosity can increase to such large values
(η > 1013P) that the system cannot crystallize over macroscopic times. One gets a glass or
an amorphous system.

Such hysteretic, nonlinear, phenomena are all the more present in polymeric systems
when the kinetics of phase transitions is controlled by slow processes of diffusion (all
characteristic times are enlarged compared with atomic alloys and increase more quickly
than linearly with the increase of the molecular weight M; diffusivity, for example, scales
approximately as M3.4). Polymers display further complications due to the actual poly-

7M. Daoud, J.P. Cotton, B. Farnoux, G. Jannink, G. Sarma, H. Benoit, R. Duplessix, C. Picot, and P.G. de
Gennes, Macromolecules 8, 804 (1975).
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dispersity of the chains. We shall not discuss these out-of-equilibrium effects or transport
properties in the sequel. In particular, we shall not discuss the complex kinetic and struc-
tural phenomena related to polymer crystallization, nor the formation of gels, i.e., networks
of flexible chains, whose frozen liquid-like structures are due to chain reticulation (either
irreversible—chemical reticulation, like in rubber, or reversible—physical reticulation);
see Problem 15.6 for an illustration.
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Figure 15.4. Rheology of entangled polymer melts: (a) storage modulus as a function of frequency
for nearly monodisperse polysterenes with molecular weight in the range from 580,000 to 47,000.
Replotted from data obtained by S. Onogi, T. Masuda, K. Kitawaga, Macromolecules 3, 109 (1970);
(b) entanglements in the plateau region.



Chapter 15 Polymers: Structural Properties582

As a matter of fact, the dynamics of melts and concentrated solutions display three
regions in function of the characteristic time of observation. These regions are schemati-
cally visualized Fig. 15.4a, which is a plot of the storage modulus G ′ (G ′(ω) = ReG∗(ω),
G∗(ω) = σ/e, σ = σ0 exp iωt the shear stress, e = e0 exp i(ωt − ϕ) the shear strain) in
function of frequency. A distinctive feature of this plot is the presence of a plateau. The
plateau modulus G ′

0 ∼ ρekB T can be related to the density of entanglements ρe or ef-
fective cross-links, i. e., Fig. 15.4b, the density of obstacles that each chain meets in its
movement, due to the other chains. In the range of frequency of the plateau, the viscoelas-
tic properties are those that are typical of a rubber. For higher frequencies, one observes a
polymeric glass behavior, related to the relaxation of internal motions of the chains (trans
↔ gauche transitions, etc.). Finally, at low frequencies, the polymer melt behaves like a
liquid, G ′ ∼ ω2.

The reader can refer to Larson’s book for a recent treatment of the large-scale (rhe-
ological) properties of polymers, and to Doi, Edwards, and de Gennes’s books for the
dynamical theory. We shall restrict ourselves here to the case of blends that are liquid-like
under experimental conditions. Therefore, the states that we discuss are equilibrium states.
They are particularly interesting from a conceptual point of view: They can be treated in
the frame of the Flory–Huggins mean-field theory, even near critical points. We first need
a short reminder of the elements of the theory of first-order phase transitions.

15.3.2. First-Order Phase Transitions, an Overview

15.3.2.1. Conserved and Nonconserved Order Parameter

It is useful to distinguish two types of order parameters, those that do not obey a conserva-
tion law, like the nematic order parameter (OP) that can take only one value at equilibrium
at a given temperature (except at the phase transition temperature if it is a first-order transi-
tion), and those that obey a law of conservation, like the density at the liquid-gas transition,
or the density of particles of each species A or B in a binary system. In such cases, the OP
can take two values, and the system presents two phases in coexistence, at any temperature.
Each phase takes the volume required by the condition of conservation of the total number
of particles. For example (binary system),

φA,1(T )V1 + φA,2(T )V2 = φAV, V1 + V2 = V, (15.66)

i.e., two equations for two unknowns V1 and V2. The transition is necessarily first order,
except at some critical temperature where φA,1 = φA,2.

15.3.2.2. Free Energy of a Binary Mixture

We discuss the case of a binary mixture, and we assume that the components A and B form
ideal mixtures in each phase p1 and p2. In the absence of interaction, the free energy per
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particle is restricted to the entropic part, which can be written as

F = kB T

[
φA

NA
lnφA + (1 − φA)

NB
ln(1 − φA)

]
. (15.67)

The minimum of this expression is unique and equal to

φA/(1 − φA) = exp(N−1
B − N−1

A )

at any temperature. One expects that the existence of this solution is favored at high temper-
atures, when the entropy contributions are predominant. At lower temperatures, the term
of interaction may deform the curve F = F(φA) from a purely convex shape (Fig. 15.5a)
to a shape with two minima (Fig. 15.5b).

15.3.2.3. Phase Separation

Let us now bring our atttention to the compositions φ1 and φ2, whose representative points
are the contacts of the bitangent to the free energy curve. These two compositions can co-
exist, because the chemical potentialsµ(φ, T ) = ∂F/∂φ are equal in p1 and p2. Fig. 15.5c
represents the chemical potential as a function of φ. Note that at a given temperature, it is
not F = F(φ), but G(φ) = F(φ)− µ(T )φ that is minimized; here, µ(T ) is the chemical
potential at the coexistence. Figure 15.5c is a plot of the slope µ(φ) of the energy F(φ)
in function of the volume fraction φ at a given constant temperature, i.e., of the chemical
potential of all compositions at temperature T . The chemical potential µ(T ) at the coexis-
tence is represented by a horizontal line that cuts the µ = µ(φ) plot into two equal areas
(Problem 15.4).

A solution whose global composition φ is between φ1 and φ2 will split into the phases
p1 and p2, in a ratio x such that φ = xφ1 + (1 − x)φ2, F = x F1 + (1 − x)F2. It is easy
to show that the minimization of F under the condition that the chemical potentials are
equal for the splitting compositions φ1 and φ2 yield G(φ1) = G(φ2), i.e., precisely the
condition of the Maxwell plateau, independent of x . The representative point of the set of
coexisting phases is in p (Fig. 15.5b). One observes that this point is below the point on the
free energy curve at the same global composition: The phase separation is favored. On the
other hand, a solution whose composition φ′ is outside the φ1 − φ2 interval does not split
into two different phases.

Plotting all together the pairs of coexisting phases at all temperatures, one gets a phase
diagram. A typical shape of the coexistence curve is represented in Fig. 15.5d, with critical
temperature Tc and critical composition φc. We also plot the locus of the points of inflexion
p*1 and p*2 of the free energy, the so-called spinodal curve.
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nucleation and 
growth

spinodal
decomposition

Figure 15.6. Structural evolution in phase-separating binary mixture of “black” and “white” species
in the nucleation and growth (top) and spinodal decomposition (bottom) scenarios. The shades of
gray roughly correspond to concentration of species. Coarsening at the later stages is driven by
positive interfacial energy.

15.3.2.4. Spinodal Decomposition vs. Nucleation and Growth

The transition from a high-temperature homogeneous mixture φ, Th to a low-temperature
two-phase system φ1, φ2, Tl occurs differently, according to the position p of the mean
composition φ0 with respect to the spinodal curve, at least during the first stage of the phase
separation process (Fig. 15.6). If p is inside the spinodal curve, where ∂2 F/∂φ2

∣∣
φ=φ0

< 0,
the system is unstable and phase-separate according to the so-called spinodal decomposi-
tion process; if p is between the spinodal and the curve of coexistence, ∂2 F/∂φ2

∣∣
φ=φ0

> 0,
the system is metastable and it does not phase-separate before the appearance of a nucleus
of concentration φ1 or φ2. The related process of nucleation and growth has been dis-
cussed in Section 13.1.4 in some detail. The next paragraph presents a simplified theory of
the spinodal decomposition.8

Let us expand the free energy in the vicinity of φ0:

F = F(φ0)+ (φ − φ0)F1 + (φ − φ0)
2 F2 + · · · . (15.68)

The chemical potential can be written as

µ = F1 + 2(φ − φ0)F2 + · · · . (15.69)

8J.W. Cahn, J. Chem. Phys. 42, 93 (1965).
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Consider the effect of fluctuations of the composition: The particles move under the ef-
fect of the chemical gradient f = −∂µ/∂x = −2F2∂φ/∂x . Now, according to Einstein
relation, the velocity of the particles can be written as

u = f D

kB T
= 2F2

D

kB T

∂φ

∂x
, (15.70)

where D is the diffusivity. On the other hand, the law of conservation of the number of
particles can be written as

∂φ

∂t
= −∂(φu)

∂x
. (15.71)

Therefore, we have

∂φ

∂t
= −2

φ0 F2 D

kB T

∂2φ

∂x2
, (15.72)

i.e., with φ = φ0 + δφ0 exp i(ωt − qx),

iω = −2
φ0 F2 D

kB T
q2. (15.73)

Hence, if F2 < 0 (inside the spinodal curve), any infinitesimal fluctuation exponentially
increases with time. The fluctuations of smaller wavelengths grow quicker. The opposite is
true in the “metastable” region, where the fluctuations decay with time. In this later case,
only nuclei larger than a critical size can grow, as explained in Section 13.1.4. Conse-
quently, their growth requires one to pass an energy barrier (nucleation energy).

The intensity and wavevector of fluctuations in the spinodal region can be directly
probed by scattering experiments; it is observed that the peak position moves in the course
of time to smaller scattering angles, i.e., larger wavelengths, as expected.

Many direct observations of the two types of growth process have been reported in
polymers. In the growth and nucleation case, one observes the formation of spherical
droplets, located at random in the matrix, of the composition “opposite” to that one in
the matrix. In the spinodal case, a typical pattern would consist of interpenetrating contin-
uous domains. As the decomposition proceeds, the domains enlarge and their boundaries
become stiffer. For observations and a description of the spinodal decomposition in poly-
mers, see Strobl’s book.

15.3.3. Polymers Blends

The coexistence and spinodal curves obtain, respectively, for ∂ fm/∂φ = 0 and ∂2 fm/∂φ
2

= 0. The critical point also obeys ∂3 fm/∂φ
3 = 0. Let us first, for the sake of simplicity,
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consider the case in which the two polymers in the blend have the same DP N = NA = NB .
The temperature is included in the Flory interaction parameter: χ ∝ T −1 if the van der
Waals interactions are predominant. One gets, starting from (15.65), for the coexistence
curve,

∂ fm/∂φ ≡ 1

N
ln

(
φ

1 − φ
)

+ (1 − 2φ)χ = 0, (15.74a)

for the spinodal curve,

∂3 fm/∂φ
3 ≡ 1

N

(
1

φ
+ 1

1 − φ
)

− 2χ = 0, (15.74b)

for the critical point,

φc = 1/2, χc = 2/N . (15.74c)

The solutions of (15.74b) are real if Nχ > 2. This is also the condition of existence of
a spinodal curve. Phase separation occurs for χ > χc, a condition that is physically easily
achieved, because χc is so small when N is large. It is difficult to get χ very small, and
segregation is unavoidable in practice.

The general case NA �= NB easily yields

φA,c = N 1/2
B

N 1/2
A + N 1/2

B

, 2χc = (N 1/2
A + N 1/2

B )2

NA NB
, (15.75)

which indicates that if NA �= NB are very different, χc can be large enough, and segrega-
tion avoided (e.g., for NA small, NB large, χc∼ 1/NA).

The critical fluctuations can be treated in the so-called random phase approximation
(RPA), a method that was first developed for nearly free electrons in metals,9 and then
extended to (nearly ideal) polymer chains in melts.10 The principle is given in Appendix
15.B: The Fourier transform of the pair correlations of the fluctuations of density, which
is proportional to the response function, is the Fourier transform of the scattered intensity.
One gets

1

S(q)
= 1

φAg(NA, q)
+ 1

φB g(NB, q)
− 2χ, (15.76)

where g(NA, q) (respectively, g(NA, q)) is the pair correlation Fourier transform for an
isolated A (respectively, B) chain. Equation (15.76) is the generalization of (15B.22) to a

9D. Pines, Elemementary Excitations in Solids, W.A. Benjamin, New York, 1963.
10P.G. de Gennes, Rep. Progr. Phys. 32, 187 (1969).



Chapter 15 Polymers: Structural Properties588

binary system. Because g(NA, 0) = NA, g(NB, 0) = NB , one gets

1

S(0)
= 1

NAφA
+ 1

NBφB
− 2χ = ∂2 fm

∂φ2
. (15.77)

Therefore, the small angle scattering intensity diverges when q → 0, not only at the critical
point, but on the whole spinodal curve.

15.3.4. Microscopic Phase Separation into Block Copolymers

A way to force incompatible polymer chains to live together is to join them chemically
end to end. These are the so-called block copolymers. Phase segregation is limited to the
microscopic scale, and the resulting macroscopic phase shows structural similarity with
surfactants in presence of a solvent (Fig. 15.7). The microphase separation from the melt
is a fluctuation-induced, first-order phase transition.11

The morphology is dependent on the ratio NA/NB . One expects that the resulting phase
is lamellar if NA/NB ≈ 1 (assuming for the sake of simplicity equal monomeric volumes
vA = vB for the two polymers), and micellar (spheres of A in a continuous matrix of B,
say) if NB � NA. Body-centered cubic micellar phases have indeed been observed, as well
as columnar hexagonal and lamellar phases (see Fig. 15.7).12 This sequence of phases in
the range 0 ≤ φA ≤ 0.5 correlates to a decrease of the constant mean curvature of the so-
called intermaterial dividing surface (IMDS) between the A and B chains (σ1+σ2 ∼= 2R−1

A

for the micellar phase, σ1 + σ2 ∼= R−1
A for the columnar phase, σ1 + σ2 = 0 for the

lamellar phase).13 Here, RA stands for the radius of gyration of the ideal chain A (e.g.,
RA = aN 1/2

A ), but the true repeat distances present in the phases depend on a balance
between the IMDS surface energy and the elastic energy of the chains, which is of the
rubber type (see Problem 15.7). One has also observed cubic bicontinuous phases between
the lamellar and the columnar phases, with double diamond symmetry of the rods of A
chains tetracoordinated at points of junction (ordered bicontinuous double diamond, or
OBDD).14 It is expected that the mean curvatures of those cubic phases stand between
those of the lamellar and columnar phases. But their stability necessarily involves, apart
from the balance alluded to above, contributions from κ and κ curvature terms.

There is a wealth of other phases associated with more complex block (triblock,
etc. . . .) or side-grafted copolymers. For a review of the theoretical and experimental work
on phases of block copolymers, see Bates and Fredrickson.15

11G.H. Fredrickson and K. Binder, J. Chem. Phys. 91, 7265 (1989).
12G.E. Molau, in Block Polymers, Edited by S.L. Aggarwal, Plenum Press, New York, 1970, p. 79.
13E.L. Thomas, D.M. Anderson, C.S. Henkee, and D. Hoffman, Nature 334, 598 (1988).
14E.L. Thomas, D.B. Alward, D.J. Kinning, D.C. Martin, D.L. Handlin, and L.J. Fetters, Macromolecules 19,

2197 (1986).
15F.S. Bates and G.H. Fredrickson, Ann. Rev. Phys. Chem. 41, 525 (1990).
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Figure 15.7. Various morphologies of polystyrene (PS) -polyisoprene (PI) diblock copolymers in
function of the volume fraction φP S of PS (pictured in black). Data taken from Ref. [15].

A number of studies, experimental (mostly transmission electron microscope observa-
tions accompanied with simulations of the contrast) and theoretical, have been devoted to
grain boundaries in lamellar block copolymers (polystyrene-polybutadiene16; polystyrene-
poly ethylene, propylene17). Gido et al. [16] recognize two types of twist grain boundaries
and a number of symmetric and asymmetric tilt boundaries. In the twist boundaries, the
IMDS is continuous through the wall region and tends to take the shape of a minimal sur-
face; the two morphologies approximate either the Scherk doubly periodic surface (over the
whole twist range, from 0◦ to 90◦) or a section of a right helicoid (in the small angle range).
The chevron tilt boundary is the equivalent of the symmetric curvature wall—low angle tilt
boundary— described in Chapter 10. In the omega symmetric tilt boundary, which occurs

16(a) S.P. Gido, J. Gunther, E.L. Thomas and D. Hoffman, Macromolecules, 26, 4506 (1993); (b) S.P. Gido and
E.L. Thomas, Macromolecules 27, 849 (1994); (c) S.P. Gido and E.L. Thomas, Macromolecules 27, 6137 (1994);
(d) B.L. Carvalho, R.L. Lescanec and E.L. Thomas, Macromol. Symp.,98, 1131 (1995).

17Y. Nishikawa, H. Kawada, H. Hasegawa, and T. Hashimoto, Acta Polymer. 44, 192 (1993).
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(a) (b) (c)

Figure 15.8. Tilt walls in the diblock copolymers lamellar phase. (a) chevron or curvature wall;
(b) omega wall; (c) T-wall (adapted from Gido and Thomas [16c])

for larger angles, the wall distortions are relaxed by periodic protrusions of the IMDS; the
simplest type of asymmetric wall is the T-wall. The tilt walls are illustrated in Fig. 15.8.

15.4. Rigid and Semiflexible Polymers

We are now considering a family of main chain polymers that differ considerably from the
former ones by the ratio �p/d, where d is now the diameter of the cross section of the
molecule. For flexible polymers, �p/d ≈ 3 to 5, and the persistence length is comparable
to a monomer length. On the other hand, viruses with helical symmetry,18 polypeptides,
DNA, cellulose esters, or aromatic polyesters have �p/d ≈ 20 to 200. Actin filaments
constitute an extreme case, but of considerable importance, because their presence is ubiq-
uitous in cells of all living bodies. Actin is a globular protein (≈ 42 000 Da) that assembles
in broad (d ≈ 7 nm) and long (chemical length up to L = 50µm) semiflexible filaments
(�p/d is as large as 1500 to 3000). As a crude classification, we shall differentiate stiff rod
polymers, for which L < �p, and semiflexible polymers, L > �p .

15.4.1. Rigid Rods

Rigid, rod-like polymers differ from semiflexible polymers by a number of features, as
follows:

• The radius of gyration scales linearly with the molecular weight.

• Dynamical microscopic properties are characterized by a longer relaxation time and a
smaller diffusivity.

• The high molecular anisotropy allows for an easier alignment of the isotropic phase
under shear, magnetic, or electric fields.

18D.L.D. Caspar and A. Klug, Cold Spring Harbor Symp. Quant. Biol. 27, 1 (1962).
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• As the concentration increases, the interactions between rods become more and more
important. Eventually, a transition to a liquid crystalline phase can occur, whose fea-
tures are generally dominated by excluded volume effects (entropic forces), as already
discussed in Chapter 4. Historically, the first observed phase transition of this type is
by Bernal and Fankuchen in solutions of plant viruses.19 The study of phase diagrams
of viruses is still a very promising area of research (e.g., TMV,20,21 fd, pf1;22 even
mixtures of TMV and spherical colloids23).

Dilute, semidilute, and concentrated solutions of rigid, rod-like polymers have been
the subject of a number of theoretical and experimental studies (structural and dynamical
properties), which are reviewed in Doi and Edwards’s book and article.24

15.4.2. Semiflexible Polymers

With semiflexible polymers, a new characteristic length noted �e, comes into play; �e is
the deflection length, which is the distance between contacts of a chain with neighboring
chains25,26 (Fig. 15.9).

lm

le

lp

δe

Figure 15.9. Characteristic lengths in a semidilute solution of semiflexible polymers (tube model).
Surrounding polymer chains (shown as crosses) confine the given chain to a tube-like region.

19J.D. Bernal and I. Fankuchen, J. Gen. Physiol. 25, 111 (1941).
20A. Klug, Fed. Proceed. 31, 30 (1972).
21R.B. Meyer, in Dynamics and Patterns in Complex Fluids, Edited by A. Onuki and K. Kawasaki, Springer

Proceed. Phys. 52, 62 (1990).
22S. Fraden, in Observation, Prediction, and Simulation of Phase Transitions in Complex Fluids, Edited by M.

Baus, L.F. Rull,and J.P. Ryckaert, NATO-ASI- Course CXXIX, Kluwer Acad. Pub., 113 (1995).
23M. Adams, Z. Dogic, S.L. Keller, and S. Fraden, Nature 393, 349 (1998).
24M. Doi and S.F. Edwards, J.Chem. Soc., Faraday Trans. 74, 1802, 1818 (1978).
25T. Odijk, Macromolecules 19, 2313 (1986).
26A.N. Semenov, J. Chem. Soc., Faraday Trans. 82, 317 (1986).
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Let cs = nL
V be the concentration of chains in a medium of volume V with nL chains of

length L. Let us also introduce the concentration of “monomers”’ which here would be the
concentration of segments of length �p, viz. c = nL

V
L
�p

, in accord with the notations used
until now. The volume density of chain length is ρ = cs L = c�p, and the mean distance
between chains is �m = ρ−1/2. But this is not the transversal size of the “tubes” in which
the chain fluctuates.

Consider a segment of chain of length �. The average angular span of the segment and
the average transversal span are (see Section 15.1)

θ(�) ≈ 2

(
�

�p

)1/2

, δ(�) ∼ �θ(�) ∼ �3/2�
−1/2
p . (15.78)

The number of chains that pierce a tube of length � and width δ(�) is Ns = δ(�)× �× ρ.
Making Ns = 1, one can estimate the length of a free segment as

�e ∼ �p(ρ�
2
p)

−2/5, (15.79)

and the tube size as

δe ∼ �p(ρ�
2
p)

−3/5. (15.80)

Our discussion assumes implicitly that the deflection length and the tube size are smaller
than is the persistence length, �e < �p , δe � �p . This implies ρ�2

p > 1; i.e., 1/(L�2
p) �

cs . The last condition on the concentration has to be verified in the semidilute regime
(cs > 1/R3

G , i.e. L�2
p < R3

G), in order to get interactions between chains. The notion of
deflection length extends to polymers the notion of Helfrich patches characteristic length
(Section 14.2.2), which was developed for membranes.

The dynamical properties of this semidilute regime have been studied recently for actin
filaments, experimentally27,28 as well as theoretically.29,30 But on the whole, this subject
is far from being explored in detail.

At higher concentrations, a transition to a liquid crystalline phase is possible due to the
excluded volume interactions. We have met such a transition for rigid rods (Chapter 4). In
the case of semiflexible polymers, the first-order isotropic-nematic transition is obtained31

for ρnem ≈ 6.7/(�pd) (to be compared with Onsager’s result: ρnem ≈ 4.3/(Ld)).

27A. Ott, M. Magnasco, A. Simon, and A. Libchaber, Phys. Rev. E48, R1642 (1993).
28B. Schnurr, F. Gittes, F.C. MacKintosh, and C.F. Schmidt, Macromolecules 30, 7781 (1997).
29H. Isambert and A.C. Maggs, Macromolecules 29, 1036 (1996).
30D.C. Morse, Macromolecules 31, 7030 (1998).
31A.R. Khokhlov and A.N. Semenov, Physica 108A, 546 (1981); Sov. Phys. Uspekhi 31, 988 (1988).
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15.4.3. Chirality

Many semiflexible polymers—biopolymers—are chiral and get from that circumstance a
number of interesting structural properties. Among those must be cited their hierarchichal
structure and the nature of the long-range order. We shall content ourselves with a few
remarks and citations, on a subject that has progressed, since Biot’s discovery of rotary
power, “with reckless abandon.”32

Hierarchical order has been recognized in the conformation of protein macromolecules
(Section 1.5), and in fibrous biological tissues33 like collagen,34 α-keratin,35 and cellulose.
The fibrillar organization yields outstanding mechanical properties to these structures, and
it is of utmost importance to understand the nature of these arrangement, altogether for
practical biological purposes and for the possible design of similar synthetic materials.
Clearly, these structures depend on the chemical nature of the macromolecules, but the
frequency of hexagonal fibrillar assemblies in biological tissues indicate the importance
of the contribution of steric interactions. As indicated in Kleman,36 the close packing of
helically shaped molecules raises interesting questions of frustration, bearing similarities
with the double-twist conformation discussed in Section 11.2. It may play a role at the
origin of the hierarchy of the fibrous structures.

The same arguments of frustration are to be taken into account in a full description of
the long-range order observed in phases of solutions of biopolymers,37,38 like DNA, xan-
than, PBLG, and so on. Finally, recent experimental studies of hexagonal phases of DNA
under pressure, which revealed its hexatic structure, and theoretical analyses of hexagonal
phases of polymers,39 have pointed out the importance of the contribution of chirality.40

15.A. Appendix A: The Central Limit Theorem

This theorem states that the sum of N random independent variables xi (i = 1, . . . , N ) is a
Gaussian random variable, when N goes to infinity, if the moments 〈xn

i 〉 exist. A Gaussian

32T.C. Lubensky, R.D. Kamien, and H. Stark, preprint, University of Pennsylvania, 1995.
33D.A. D. Parry and P.M. Steinert, Intermediate Filament Structure, Springer-Verlag, New York, 1995.
34L.J. Gathercole and A. Keller, in Structure of Fibrous biopolymers, Edited by E.D.T. Atkins and A. Keller,

Butterworth, London, 1975; in The Periodontal Ligament in Health and Disease, Edited by B.K.B. Berkovitz,
Pergamon, Oxford, 1982.

35F. Briki, B. Busson, and J. Doucet, Biochim. Biophys. Acta 1429, 57 (1998).
36M. Kleman, J. Phys. Lett. 46, L723 (1985), Physica Scripta T19, 565 (1987).
37F. Livolant, J. Physique 48, 1051 (1987).
38F. Livolant and Y. Bouligand, J. Physique 47, 1813 (1987).
39R. Podgornik, H.H. Strey, K. Gawrish, D.C. Rau, A. Rupprecht, and V.A. Parsegian, Proc. Nat. Acad. Sci.

U.S.A. 93, 4261 (1996).
40R.D. Kamien and D.R. Nelson, Phys. Rev. E53, 650 (1996).
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random variable ξ is a variable that follows a probability law of the exponential type of
(15A.7). We have σ 2 = ∫

ξ2 p(ξ)dξ ; σ is called the variance.
Let X = ∑N

1 xi . The mean square value of X is 〈X2〉 = 〈∑i, j xi x j 〉. Because the
variables are independent, one has 〈xi x j 〉i �= j = 0. We assume now that all mean square
values 〈x2

i 〉 = σ 2. Define ξ = N−1/2 X . We get

〈ξ2〉 = σ 2, (15A.1)

which does not depend on N .
We call characteristic function ϕξ (k) of a random variable ξ the Fourier transform of

its distribution function, i.e.,

ϕξ (k) = 〈exp(ikξ)〉 ≡
∫

exp(ikξ)p(ξ) dξ. (15A.2)

Reciprocally,

p(ξ) = 1

2π

∫
exp(−ikξ)ϕξ (k) dk. (15A.3)

With the above expression of ξ , one gets

ϕξ (k) =
〈
exp

(
ik N−1/2

∑
xi

)〉
=

[
ϕ
(

k N−1/2
)]N

, (15A.4)

because all the xi have the same probability distribution.
Let N go to infinity, and one can expand the characteristic function ϕ(k N−1/2):

ϕ(k N−1/2) = 1 − k2

2N
〈x2

i 〉 + · · · = 1 − k2

2N
σ 2 + O(k3 N−3/2); (15A.5)

hence,

ϕξ (k) = lim
N→∞

[
1 − k2

2N
σ 2

]N

= exp −k2σ 2

2
, (15A.6)

whose Fourier transform is

p(ξ) = 1

(2πσ 2)1/2
exp − ξ2

2σ 2
. (15A.7)
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15.B. Appendix B: Isothermal Compressibility and Density
Fluctuations; Static Linear Response

1. The isothermal compressibility is defined as

χT = − 1

V

(
∂V

∂p

)
N ,T

. (15B.1)

We prove that

1

cχT

= N

(
∂µ

∂N

)
V,T
, (15B.2)

where µ is the chemical potential and c = N/V is the number density of objects
(particles, bonds, etc.). The interest of the expression (15B.2) of the compressibility
will appear below.

We first use the Helmholtz free energy F = F(T, V, N ). We have

p = −(∂F/∂V )T,N , µ = (∂F/∂N)T,V .

Hence, by the equality of the second derivatives,

(
∂µ

∂V

)
T,N

= −
(
∂p

∂N

)
T,V
. (15B.3)

The Gibbs–Duhem relation, written at constant temperature, is V dp = N dµ, i.e.,

V

(
∂p

∂N

)
T,V

= N

(
∂µ

∂N

)
T,V
. (15B.4)

Now, using the Gibbs free energy G = G(T, p, N ) = Nµ, we have

N (∂µ/∂V )T,N = (∂G/∂V )T,N ≡ (∂G/∂p)T,N (∂p/∂V )T,N

= V (∂p/∂V )T,N ,

which yields

N

(
∂µ

∂V

)
T,N

= − 1

χT
. (15B.5)

Reporting in (15B.3) and (15B.4), one gets (15B.2).
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2. In this section, we use the grand canonical partition function and (15B.2) to prove the
following:

〈N 2〉 − 〈N 〉2

〈N 〉 = ckB TχT . (15B.6)

The fluctuations of the number of particles appear in the grand canonical partition
function, which is defined as

� =
∞∑

N=0

aN
c

N ! Z N (V, T ), (15B.7)

where ac = λ−3
d B exp(βµ) is the activity (λd B = (2πβh̄2/m)1/2 is the de Broglie wave-

length, β = 1/kB T ) and Z N (V, T ) is the configuration integral (proportional to the
canonical partition function,

Z N (HN , T ) =
∫

exp(−βHN (r1 . . . , rN ,p1 . . . ,pN )) drN dpN ).

The grand canonical ensemble thermal average of any state variable

A(r1, r2, . . . , rN ; p1,p2, . . . ,pN )

(noted A(rN ; pN )) can be written as

〈A〉 = 1

�

∞∑
N=0

aN
c

N !
∫

A(rN ; pN ) exp(−βHN ) drN dpN

=
∑∞

N=0 Tr (A exp(−βHN + βµN ))∑∞
N=0 Tr (exp(−βHN + βµN))

. (15B.8)

The grand canonical partition function is related to the grand potential�(T, V, µ) =
−pV by the relation � = exp(−β�). One gets the important relation:

〈N 2〉 − 〈N 〉2

〈N 〉 = kB T

〈N 〉
∂〈N 〉
∂µ

. (15B.9)

In the thermodynamic limit, for an infinite system, we have N = 〈N 〉, hence,
(15B.6).
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3. A general relation for response functions.41,42 We want to characterize the variations of
a set of state variables A•(• = m, n, . . .) when the system is submitted to small applied
fields F• conjugate to A•. The perturbed Hamiltonian reads as H = HN + ∑

A•F•.
We prove the following:

χmn = β〈(Am − 〈Am〉)(An − 〈An〉)〉 ≡ 〈Am An〉 − 〈Am〉〈An〉, (15B.10)

where χmn = −∂Am/∂Fn
∣∣
F•=0 is a susceptiblity characterizing the effect of the field,

A• is a thermal average under the perturbed Hamiltonian, and 〈A•〉 is a thermal av-
erage under the unperturbed Hamiltonian. The susceptibility does not depend on the
perturbing field.

By definition, we have

A• = Tr (A• exp(−βH))

Tr(exp(−βH))
;

hence,

χmn = −∂Am/∂Fn

∣∣∣
F•=0

= β
{

Tr Am An exp(−βHN )

Tr exp(−βHN )
− 〈Am〉〈An〉

}
. (15B.11)

As an application of this process, let the total number of particles N be considered as a
state variable, A = N . We have AF = −Nµ. One gets

χN N = ∂〈N 〉/∂µ = β
(
〈N 2〉 − 〈N 〉2

)
, (15B.12)

from which expression one recovers (15B.9) and (15B.6).

4. Density-density correlation functions. The state variable pair correlation can be replaced
by a density pair correlation. By definition, the density a• attached to the state variable
A• is such that A• = ∫

a•dr. We also have 〈a•〉 = A•/V . Consequently, one can write
(15B.10) as follows:

χmn = β
∫

〈(am(r)− 〈am〉)(an(r′)− 〈an〉)〉 dr dr′

= βV
∫

〈δam(r) δan(0)〉 dr, (15B.13)

41H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, Oxford,
1971.

42L.E. Reichl, A Modern Course in Statistical Physics, Arnold, London, 1991.
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where δa•(r) = a•(r) − 〈a•〉. The above simplification of the double integral into a
simple integral results from the fact that in a homogneneous system, the pair correlations
between two state variables valued at r and r′ depend only on r − r′. We, therefore,
introduce the correlation function

Sab(r) = 〈δaa(r) δab(0)〉 ≡ 〈aa(r)ab(0)〉 − 〈aa〉〈ab〉 (15B.14)

and its Fourier transform

Sab(q) =
∫

exp(−iq · r)Sab(r) dr. (15B.15)

We can, therefore, write the susceptibility as

lim
χab

V
= βSab(q = 0). (15B.16)

5. Let us now specialize to density fluctuations. The quantity

c(r) =
N∑

m=1

δ(r − rm)

is the number density at some location r of a set of N identical particles (or bonds,
when applying the present development to a polymer chain) in positions rm occupying
a volume V . The thermal average of the density is c = 〈∑N

m=1 δ(r − rm)〉 = N/V . We
are interested (15B.14) in the correlation function

S(r) = 〈δc(0) δc(r)〉 ≡ 〈c(0)c(r)〉 − c2, (15B.17)

where δc(r) = c(r)− c. We define the Fourier transform as

S(q) = a3
∫

exp(−iq · r)S(r) dr, (15B.18)

where the coefficient a3 (the volume of a particle) has been introduced to make S(q)
dimensionless. Equation (15B.16), applied to density fluctuations, reads [see (15.55)] as

kB T ca3χT = c−1S(q = 0). (15B.19)

Let us introduce the Fourier transform of the density:

c(q) =
∫

c(r) exp(−iq · r)dr =
∑

m
exp(−iq · rm).
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The scattered intensity in reciprocal space (the structure factor of the sample) can be
written as a correlation function of this quantity:

I (q) =
∫

exp[−iq · (rα − rβ)]〈c(rα)c(rβ)〉 drα drβ

= 〈c(q)c(−q)〉 = V (a−3S(q)+ (2π)3c2 δ(q)). (15B.20)

We can safely ignore the delta function term, which corresponds to scattering in the for-
ward direction and is not experimentally relevant.43 Therefore, scattering experiments
reveal the effects of the long-range fluctuations (at q = 0) and in particular the com-
pressibility.

The pair correlation function introduced in Section 15.1.3

g(r) = 1

N

∑∑
m �=n

〈δ(r + rn − rm)〉 (15B.21)

is related to S(r). We start from the following relationship (where r = rα − rβ):

∑
m

∑
n

〈δ(rα − rm) δ(rβ − rn)〉 =
∑∑

m �=n

〈δ(rβ + r − rm) δ(rβ − rn)〉

+
∑

m

〈δ(rα − rm) δ(rβ − rm)〉

and transform the right-hand part. The first term in the right-hand part can be written as

1

V

∫
drβ

∑∑
m �=n

〈δ(rβ + r − rm) δ(rβ − rn)〉 = 1

V

∑∑
m �=n

〈δ(rn + r − rm)〉,

and the second one as c2 (see Section 15.1.4 for a demonstration of the last equality).
Eventually, one gets the useful expressions:

cg(r) = S(r) and φg(q) = S(q), (15B.22)

where φ ≡ ca3 is the volume fraction.

Problem 15.1. Show that the probability PN (r) of an ideal chain of N bonds, fixed at the origin and
whose extremity is at r, obeys the differential equation

43J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids, 2nd edition, Academic Press, New York, 1991,
p. 99.
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∂PN

∂N
(r) = a2

6
∇2 PN (r),

assuming N large. Use a lattice model of the polymer chain.

Answers: Assume that the polymer bonds ai (i = 1, 2, . . . , z) are along the edges of a regular lattice
with coordination z. Obviously,

P(r, N) = 1

z

z∑
i

P(r − ai , N − 1),

whose expansion with respect to the ai ’s, which are small compared with r, can be written as

P(r − bi , N − 1) = P(r, N )− ∂P

∂N
− ∂P

∂rα
aiα + 1

2

∂2 P

∂rα∂rβ
aiαaiβ .

Also, because
∑

i aiα = 0, and 1
z
∑z

i aiαaiβ = a2 δαβ
3 , z disappears from the sum, and one gets the

desired result (adapted from Doi, Introduction to Polymer Physics).

Problem 15.2.

(a) Show that in a lattice model with coordination number z, the number of configurations of an
ideal chain of N segments with one extremity fixed at the origin and the other between | r | and
| r + dr | is Wid dr , with Wid = zN 4πr2 PN (r).

(b) If the probability of nonoverlapping of two segments of volume v = a3 is 1 − a3/R3 for a
chain of radius of gyration R, show that the probability of nonoverlapping two by two for the N

segments of a (nonideal) chain (N large) is p(R) = exp(− N2a3

2R3 ).

(c) Deduce that the maximum value of the number of configurations of an nonideal chain of N
segments is obtained for a value of r = R ∝ Nν(ν ≈ 3/5) (adapted from Doi, Introduction to
Polymer Physics).

Answers: (b) p(R) = (1 − a3/R3)N(N−1)/2 ≈ exp(−N2a3/2R3); (c) the quantity that has to

be maximized is W = p(r)Wid . One gets (R/Rid )
5 − (R/Rid )

3 = 9
√

6
16 N1/2, where Rid =

(2Na2/3)1/2.

Problem 15.3. Calculate the three exponents of the Flory radius RF = vµaρNν within the frame
of the Flory theory of the scaling law exponent. In the same spirit, calculate the overlap concentration
c∗ and the correlation length ξ in the semidilute regime.

Answers: Start from the expressions (15.30) and (15.31) of the energy of a coil. The minimization
with respect to R yields

µ = 1

d + 2 ;
ρ = 2

d + 2 ;
ν = 3

d + 2 .

Also, c∗ = N1−νda2d/(d+2)v−d/(d+2), i.e., φ∗ = N1−νd (a/v)d/(d+2), and so on.
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Problem 15.4. Show that the line µ∗ = (∂F/∂φ)φ=φ1 = (∂F/∂φ)φ=φ2 (the so-called Maxwell
plateau) determines two equal areas with the curve µ = µ(φ) (see Fig. 15.5c).

Answers: The total signed area between the curve µ = µ(φ) and the line µ = µ∗ is given by the

integral
∫ φ2
φ1

[µ(φ)− µ∗]dφ = F(φ2)− F(φ1)−µ∗(φ2 − φ1). This quantity vanishes because it is
an equation satisfied by the points belonging to the bitangent to the curve F = F(φ).

Problem 15.5. Consider (see Fig. 15.10) a binary system with volume fraction φ0 for one of the
components, positioned at temperature T in the region of metastability. The first nucleus φ1 to appear
has the same chemical potential µ0 as φ0. Define the thickness and energy of the region of transition
between the matrix and the nucleus, assuming that the wall is planar.

Answers: The free energy in the inhomogeneous region between the matrix and the bulk must con-
tain a gradient term. We write the new energy to be minimized as E(φ,∇φ) = F(φ) − µ0φ +
1
2 K (∇φ)2, whose variational derivative can be written as K∇2φ = d

dφ [F(φ)− µ0φ].
In the planar case, corresponding physically to nuclei whose radius of curvature is large com-

pared with the thickness of the wall, there is a first integral

1

2
K

(
dφ

dx

)2
= F(φ)− µ0φ + const = h(φ). (15P.1)

The derivative must vanish for x = ±∞. Hence, in addition to the condition µ0 = µ(φ0) = µ(φ1),
we also have

F(φ0)− µ0φ0 = F(φ1)− µ0φ1, (15P.2)

10 φ0 φ1

∆F m

F

Figure 15.10. See Problem 15.5.
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which means that if the wall is planar, the system is on the curve of coexistence, and µ0 = µ(T );
(15P.2) is the condition for the Maxwell plateau. Integration of (15P.1) yields x = ∫

dφ
√

K/2h(φ).

The energy per unit area is γ = ∫ +∞
−∞ dx E(φ,∇φ) = ∫ +∞

−∞ dx K (∇φ)2 = 2
∫ φ2
φ1

dφ
√

2K h(φ).
These two quantities can be estimated by taking for h(φ) its value at the maximum of the free

energy between the compositions φ0 and φ1, noted �hm = �Fm − µ0φm ,

ξ ≈ (φ1 − φ0)
√

K/�hm , γ ≈ ξ �hm . (15P.3)

Problem 15.6. Let a gel be prepared by reticulation of a semidilute solution of polymers in a good
solvent. N is the mean number of monomers between nodes. No entanglements. One immerses the
gel in a good solvent in excess, with a Flory interaction parameter χ . Show that the free energy per
site per kB T reads as

f = (1 − φ) ln(1 − φ)+ χφ(1 − φ)+ 3

2

φ

N

R2

R2
0

,

φ being the volume fraction of the monomers in the gel, R2
0 = Na2.

At swelling equilibrium, the gel is characterized by close-packed noninterpenetrating coils. Ex-
press f in function of the only variable φ. Calculate φeq and the size Req of the coils at swelling
equilibrium. Note that φeq < 1, and introduce the excluded volume parameter v = a3(1 − 2χ).
Show that the result corresponds to the crossover concentration c∗ in a solution in a good solvent.

How is the free energy modified if the solvent is a polymer melt with DP = P monomeres, of the
same chemical nature as the coils of the gel?

Let P be small compared with N . Express φeq and Req in function of N and P . Show that for P
of the order of N1/2 the coils of the gel are ideal. What about the situation when P ∼ N?

Problem 15.7. Calculate the repeat distance d of a lamellar phase of diblock copolymers, assuming
N = NA = NB , v = vA = vB . The surface energy γ at the IMDS is supposed to be known.

Relate the surface energy γ to the Flory–Huggins parameter χ and the thickness δ of the region
of transition between the A and the B chains.

Answers: Elastic energy per unit volume fel ≈ kB T d2/(N2a2v), using (15.31); surface energy
per unit volume: fsurf ≈ 2γ /d. The sum is minimized for d ≈ [γ N2a2v/(kB T )]1/3. The surface
energy is proportional to the number of contacts between monomers of different species in the region
of transition; i.e., γ ≈ χkB T δ/v. Order of magnitude: Take δ of the order of a few monomer lengths.
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Table of Constants
Conversion SI vs. cgs units

Avogadro
Number: NA = 6.022 × 1023/mole

Boltzmann
Constant: kB = 1.381 × 10−23 J/K = 1.381 × 10−16 erg/deg

Modulus of the
Electron Charge: e = 1.602 × 10−19 C = 4.803 × 10−10 esu

Planck Constant: h = 6.626 × 10−34 J × s = 6.626 × 10−27 erg × s

Permittivity in Vacuum: ε0 = 8.854 × 10−12 C2/J × m = 1 cgs

1eV = 1.602 × 10−12erg = 1.602 × 10−19 J

1kB T = 4.12 × 10−14erg = 4.12 × 10−21J ≈ 1
40 eV atT = 298 K

1cal = 4.184 J

1eV/molecule = 23.057kcal/mole = 96.472kJ/mole

1 J = 107erg = 0.239cal = 6.242 × 1018 eV

electric charge:
1esu = 3.336 × 10−10 C

1dyne = 10−5 N

1dyne/cm = 1erg/cm2 = 1mN/m = 1mJ/m2

Electric Polarization: D = debye
1 D = 10−18esu × cm = 3,336 × 10−20C × cm

Pressure, Stress: Pa = pascal
1 Pa = 1N/m2 = 10dynes/cm2

Dynamical Viscosity: Pl = poiseuille = Pa × s; P = poise = dyne × s/cm2

1 Pa × s = 10P

Note on relation symbols.
We use the following relation symbols:

∼ “the same order of magnitude,” numerical or algebraic dimensioned
∼= dimensioned scaling laws
∝ “proportional to,” non-dimensioned scaling laws
≈ “approximately equal” in numerical or algebraic evaluations; group

isomorphism
≡ “identical”
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Léger, L., 488, 518
Lehmann, O., 90
Leibler, L., 551
Leibler, S., 546
Lejcek, L., 333
Lekkerkerker, H.N.W., 538
Lennard, 18, 19, 39, 47
Lescanec, R.L., 589
Leslie, F.M., 198, 203, 204, 207–209, 213,

214, 220, 222, 421
Levi-Civita, 136, 187, 202
Lewis, J., 38, 41
Liang, S., 259
Libchaber, A., XVII, 592
Liebert, L., 65
Lifshitz (Lifshits), E.M., 27, 28, 104, 134,

197, 221, 299, 484, 518, 526, 562
Lin, M.Y., 249
Lindsay, H.M., 249
Link, D.R., 429



Name Index 611

Livolant, F., 312, 407, 410, 593
Lonberg, F., 403
London, F., 4, 11–14, 17, 22, 27, 28, 132
Love, A.E.H., 148, 540
Lubensky, T.C., 104, 128, 129, 133, 134,

198, 305, 406, 505, 543, 593
Luckhurst, G.R., 141
Luzzati, V., 546
Lydon, J., 59
Lyuksyutov, I.F., 394

M

MacIntosh, F.C., 592
Mackley, M.R., 423
Madelung, 6
Madhusudana, N.V., 56
Maffettone, P.L., 216
Maggs, A.C., 592
Magnasco, M., 592
Mahanty, J, 23–26, 40, 41
Maier, 105, 115, 131
Malet, G., 381, 382, 419
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5CB, p-pentyl-p’-cyanobiphenyl C18H19N,
12, 55, 57, 61, 87, 88, 140, 211, 212,
214, 422, 424, 429, 495

8CB, p-octyl-p’-cyanobiphenyl, C21H25N,
55, 57, 214, 379, 423, 424

2D smectic phase, see Pβ′

A

α-helix, 34, 35, 144
α-keratin, 34, 593
Abrikosov phase, 124, 126, 127
Absorption, 28
Actin filaments, 560, 590
Activation

energy, 366, 548, 563, 586
volume, 332

Adenine, 36, 37
Adhesion, 28, 59
Adsorption, 475–477

Gibbs adsorption equation, 476, 550
negative, 477
positive, 477
relative, 476, 515

Aerosols, 248, 249
Aggregate, 59, 61, 224, 228, 229, 233,

247–250, 252, 519
Aggregation, 28, 224, 228, 247–252, 531,

548–550
cluster-cluster, 248, 249
diffusion-limited (DLA), 224, 248–251,

259, 550
diffusion-limited cluster-cluster (DLCA),

249
particle-cluster, 248, 249
self-screening effect, 228, 247, 249

Air, 531
Aliphatic chain, 58, 59
Alkali halides, 7
Alkanes CH3(CH2)nCH3, 19
Amino group NH2, 31
Aminoacids, 8, 9, 29, 31–34

alanine, 8, 31–33
chiral enantiomers of, 32

aspartic acid, 31
cysteine, 31
glycine, 8, 33
hydrophobic and hydrophilic, 31,

34
leucine, 8
lysine, 31
serine, 31
valine, 8, 31

Amorphous media, systems, 45, 269, 389,
580

Amorphous solid, 234
Amphiphilic molecules, 57, 59, 477, 531
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Amphiphilic molecules (continued)
hydrophilic head, 59
hydrophobic tail, 59

Analyzer, 96, 98
Anchoring, 89, 164, 420, 433, 492, 499, 503,

507
coefficient, 159, 433, 494
direction(s), 140, 149, 159
extrapolation length, 159, 160, 496, 499
geometrical, 402, 493
strength, 420, 494
(infinitely) strong, 182, 202, 220
potential, 158, 159, 433, 516
Rapini-Papoular anchoring potential, 494,

501
transition, 395

Angular momentum, 199, 219, 221, 421
Anions, 521
Anisotropic liquids, 388
Antibiotics, 59
Antiphase boundaries, 83
Antisymmetric tensor of rotation �i j , 201
Apollonian packing, 235, 512. See also grain

boundary
Athermal interactions, regime, solutions,

568, 575–577
Atomic force microscopy AFM, 556
Attractive

forces, 13, 21, 28, 531, 547
interactions, 11, 27, 574

Avogadro number, 6, 393, 521

B

Backflow effects, 217, 419
Balance equation, 190, 193, 198, 200, 205,

218
for entropy, 207

Balance of torques, 160, 161
Benzene C6H6, 10
Bernal’s holes, 45
β-sheet, 34, 35
Bethe lattice, 240, 241, 243–245
Bicontinuous random phase, 547

Bilayer, 8, 64, 67, 70, 532, 533
curvature constants κ , κ, 520, 533, 535,

546
effective thickness, 533
random, 547
stability, 546

Binary mixture, system, 582, 601
Biopolymers, 31, 407, 411, 425, 549, 561,

593
Birefringence, 94
Bjerrum length, 523
Blob, 571, 572, 579
Bloch

theorem, 49
wall, 72, 73, 466

Block copolymers, 379, 588
Blue phase(s), 68, 69, 72, 136, 407
Boltzmann equation, 522
Bond, 4, 5

covalent, 5, 7, 8, 19, 29
formed by fluctuating dipoles, 4
hydrogen, 5, 14, 19
ionic, 5, 6, 7
ionocovalent, 6
metallic, 4, 5
van der Waals, 19

Bond-orientational order, 66
Boojum, see point defects
Born–von Karman boundary condition,

49
Boyd surface, 82
Boyle temperature, 39
Boyle–Mariotte law, 39, 544, 573
Bragg reflection, 68, 100
Brass (Cu50Zn50 alloy), 83
Bravais cell, 83
Brownian flocculation, 549
Brownian motion, 224, 232, 519, 523, 547,

548, 554
Brushes of extinction, 98
Buckyball, 73
Burgers

circuit, 269–271
vector, 267–270, 272–276, 279, 281, 283,

296, 411, 413
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infinitesimal, in liquid crystals, 339,
340
large, in smectics, 300, 305–308, 311
small, in smectics, 300, 305, 307, 308,
311

C

C5 hexaalkoxy derivative of triphenylene,
362

Caillé exponents, 539, 540
Calamitic

molecules, 54
nematic, 62, 211, 215

Calaverite, 49
Canal surfaces, 344
Cano geometry, see Grandjean–Cano wedge
Capillary length, 479, 480

gravity effects, 480
Capillary number, 257
Capillary pressure, 479
Carboxy group COOH, 31
Casimir interactions, 28, 499, 500
Casimir-Polder effect, 27
Cations, 521
Cayley tree, 240, 243–245
CCl4, 13
Cellulose, cellulose esters, 560, 590, 593
Central carbon atom Cα , 31, 33
Central limit theorem, 565, 593
Cetyl pyridinium chloride, hexanol, water,

365, 367, 539
Characteristic function, 594
Charge conservation law, 522
Charges

free, 526
polarization charges, 526

Chemical potential, 110, 113, 201, 474, 476,
480, 482, 483, 515, 516, 521, 583, 584,
585

Chevron wall, 589, 590
CHF2(C6H6)CH=N(C6H6)C4H9, 513
Chiral enantiomers (L and D), 32, 33, 131
Chiral molecules, 65, 68, 127, 132

Chirality, 66, 363, 402, 407, 593
Cholesteric, 405–413

de Gennes-Lubensky coarse grained
energy, 305, 405, 406

finger print textures, 304, 409, 412
fundamental group, 456
phase (liquid crystal), 61, 63, 85, 127
planar textures, 99, 413
pitch, 63, 100, 137, 405, 410, 417
polygonal textures, 411

Chromonic liquid crystals, 59
Chromosome

Prorocentrum Micans, prokaryotic alga,
312, 407

Cis-isomers, 100, 101
Clay platelets, 519
Clearing temperature, 74, 140
Cleavage, 309
Close-packings, 4, 42, 593

2D close packed solid, 532
helically shaped molecules, 593

Coagulation, 21
Coexistence, Coexistence curve, 582, 583,

584, 585, 586
Coherence length, 76, 78, 109, 121, 122,

126, 127
magnetic, 162, 173, 496

Coil, 564, 577
coil-globule transition, 575

Coions, 525, 527, 529
Collagen, 593
Colloidal crystals, 520

BCC, 555
FCC, 554, 555

Colloidal solutions, 70, 547, 548
Colloids, 248, 249, 519–549
Columnar phase, 56, 59, 67, 210, 300, 315,

337, 359, 384, 588, 589
lyotropic hexagonal, 67
thermotropic hexagonal, 67, 321
See also Curvature defects, dislocations,

penetration length
Commensurate modulation, 50
Complex modulus, 379
Components of (fluid) motion, 185
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Compressibility, 577
Concrete, 377
Configurations, see solitons
Confocal microscopy, 101, 412
Congruences

of lines, 341
of normals, 343, 345
of straight lines, 343, 344, 347

Constitutive equations, 91
Continuity equation (law of conservation of

mass), 189, 194, 207
Contortion, 338–340, 382, 416
Cooper pairs, 120
Coordination number, 48, 49
Copolymers, 29, 425
Copper, 73
Core of the defect, see defect, dislocation,

disclination, point defect
Correlation length, 76, 240

of connectedness, 237, 238
Couette flow, 210, 214, 220
Coulomb, 5

force, 6, 12
potential, 5, 15

Counterions, 249, 523, 525, 527, 529,
557

Creep, 286, 291, 331
Herring-Nabarro model, 291, 292

Critical micellar concentration (CMC), 7,
59

Critical phenomena, 560
exponents, 239–243, 564, 569
universality, 239, 240, 242

Cubic phase, 59, 67, 546
bicontinuous, 588

Cuboctahedron, 43, 44
Curie temperature (Curie point), 78, 106
Curvature

in solid crystals, 338
Nye’s curvature, 339

in columnar phases, see curvature defects
in smectic phases, see curvature defects
lines of principal curvatures, 406
principal curvatures, 67, 146, 255, 341,

350, 351, 383, 406

spontaneous curvature, 406, 533, 534,
536, 539, 547

Curvature defects, 337–387
in columnar phases, 337, 359–365

developable domains, 360–364
cuspidal edge, 360
evolutes, 362

in smectics, 337, 340–359
curvature free-energy, 351
See also focal conics domain

Curvature wall, 372, 385, 387, 589
Curved crystal, 48, 49
Cusps, 490, 491, 493
Cytosine, 36, 37

D

D2, 455
Darboux

theorem, 344, 347, 349
Darcy law, 255, 324, 328
de Gennes–Taupin persistence length,

541–544
de Gennes–Lubensky coarse-grained model,

305, 405
Deborah number De, 209, 420, 421, 425
Debye

Debye-Hückel length, 522, 523, 524, 558
interaction, 11, 12
frequency, 288
linear approximation, 524, 528, 529, 557

Defect, 72
core, 72, 76

Defect (topological), 49. See also topological
Deflection length, 591, 592
Deformation

bend, 122–124, 127, 136–139, 143, 396,
411

double twist, 404, 406, 407
saddle-splay, 140, 145, 148, 149, 404,

407, 432
splay, 122, 123, 136–138, 142, 143, 145
twist, 122–124, 127–129, 136–138, 319,

361, 396, 411



Subject Index 621

confinement induced, 402
relaxation, 403, 432

Deformed state, 78
Degeneracy parameter, 76, 82, 118, 184
Degeneracy space, See order parameter

space
Delaunay condition, 51
Deltahedron, 45, 48
Dendritic growth, 250
Dense random packings (DRP), 45–47
Density fluctuations, 580, 598

density-density correlation functions,
597

static linear response, 595
Depletion flocculation, 550, 551
Desorption, 477
Desoxyribose, 36
Developable domains, 337, 360–364
Diamagnetic, 88
Diamond, 7
Dichroism, 70
Dielectric anisotropy εa = ε|| − ε⊥ of the

liquid crystal, 87
Dielectric breakdown, 250
Dielectric constant

vacuum, 521
water, 521

Dielectric permittivity, 6, 27, 91, 103
Dielectric susceptibility tensor α, 87
Diffusion, 287, 540
Diffusivity Dν , 288, 549, 550, 561, 568,

580, 590
Diffusivity in a smectic, 324, 332
Diheptylazobenzene, 100, 101
Dilatation, 165, 167, 180
Dilute regime

Flory–Huggins, 576
scaling, 577

Dimension, 224
critical, 245
Euclidian, 224, 241, 258
fractal, 223, 227, 230, 232, 242, 248, 250,

257, 258
similarity, 228
topological, 224, 225

Dimyristoyl phosphatidylcholine (DMPC),
8, 9

Dipolar ion, 8
Dipole, 11, 12, 15, 16, 27, 88

free, 11
fluctuating, 12
induced, 11
permanent, 15, 16, 27

Dipole moment, 8, 10, 12, 57, 91, 151, 153
Dirac magnetic monopole, 508
Director, 61, 64, 64, 65, 83, 98, 120, 391,

401, 417, 422, 431, 444, 454, 463, 465,
501, 503

in biaxial nematic, 456
Director dynamics equation, 200, 204, 205,

207, 213
Director field, 71

fluctuations, 71, 122, 499
Director turbulence, 424, 426
Director-director correlation function, 542
Disclination, 48–50, 68, 73, 101, 215, 265,

300, 384
annihilation, 427
densities, 416, 430
emission-absorption of dislocations, 419
in biaxial nematics, 456–459
in cholesterics

core, 409
half integer, 408
integer, 408
ring, 467
strength, 408, 412, 414
λ lines, 409–411
τ lines, 409–411
χ lines, 409–411, 416, 418

splitting into λ and τ , 411
in nematics

disclination network, 430
dissipation processes, 419
half integer, 396, 398, 454
integer, 396, 498
strength, 391–397, 399–400, 427, 450,
454, 457, 508
thins, 389, 395, 397, 405, 409, 423
thicks, 389, 395, 405, 409, 423
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Disclination (continued)
in nematics (continued)

twist, 399, 400, 419
wedge, 388–398, 400, 414, 417

planar model, 391, 393–395, 426,
428

core, 307, 393–394, 400, 418–419,
427

nonsingular core, 389
in solids

wedge, 268, 269, 388, 399
core, 143

interaction, 427, 433
loop, 401, 423, 430
nucleation, 422–424
relation with dislocations, 414, 416, 418

Discotic
columnar, 362
nematic, 57, 62, 215
molecules, 55, 56

Disgyrations, 469
Disjoining pressure, 486, 487, 499, 500, 516,

524, 525, 527
Dislocation, 122, 128–130, 270, 273–277,

300, 337, 555
climb, 279, 285, 321, 327, 336
core, 127, 130, 272
crossing of dislocations, 280
densities, 338, 344, 382, 388, 414–416
Frank and Read mechanism, 275–277
glide, 279, 321, 335

Frenkel model, 282, 284
glide plane, 275, 283, 295
image, 273, 274
in crystals, 270

imperfect, 270, 272, 283
of rotation, 270, 271
perfect, 270

in cholesterics
edge, 413
equivalence with χ lines, 410, 411

in columnar phases, 315–319
glide, 320
edge, longitudinal, 315

free fluctuations, 320

edge, transversal, 316
screw, 318, 408

in relation with disclinations, 300
in smectics, 126–129, 167, 300

edge, 126–128, 129, 168, 300–308, 375
core energy, 303
core splitting, disclination model,

306, 307
non-linear theory, 303
climb, 327, 331, 332, 335, 336
glide, 329, 335
mobility, 328, 329, 335
multiplication, 333

screw, 122, 128, 129, 168, 296,
308–313, 330

core of, 122, 127, 300, 306
giant, 311, 312, 344
helical instability, 333
line tension, 313
steps, rivers, 309

in solids, 72, 73, 261, 264
core, 265, 266, 268, 274, 278, 283,
284
edge, 265, 266, 268, 278, 283, 297
epitaxial, 297
line energy, 278
mixed, 266, 268
of rotation, 266
of translation, 265, 266, 269
screw, 265–267, 273, 274, 278,
297
twin, 296
twist, 265
wedge, 265

infinitesimal, 283, 414
jog, 280, 281
kink, 285
Kirchhoff condition, 293
line energy, 278
line tension, 276, 313, 334
loop, 293
mosaic texture, 430
nucleation, 275
Peach and Koehler forces, 273–276, 298,

313, 315, 328, 330
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Peierls model, 281, 283, 284
Peierls stress, 277, 281, 285, 320
sign convention (FS/RH convention), 270,

271, 275, 298
viscous relaxation, 414, 416
Volterra process, 264, 301

Dispersion, 12
Dispersion forces, 4
Display, 66, 70
Dissipation function R, 193, 195, 201–203
Divergence (elastic) terms, 137, 139, 148,

155, 156, 401
Dividing surface, 472–474, 476, 515
DLVO (Derjaguin–Landau–Verwey–

Overbeek) theory, 520, 530, 531, 547,
548, 553, 557

DNA, 36, 37, 59, 312, 407, 410, 411, 436,
468, 549, 560, 590, 593

hexagonal phases, 593
replication, 438, 468

Doi molecular theory, 420, 421
Double chain lipids, 539
Double layer, see electric double layer,

530
Double layer interaction, 530
Double twist (deformation), 68, 69, 404,

406, 407, 593
Drag force, 197, 426–428, 430
Droplets

in biopolymers, 407
in biaxial nematics, 508
in binary mixtures, 586
isotropic, 488
nematic droplets, 109, 403, 404, 419,

500–507
onions, 358, 365, 377, 381, 384
Robinson spherulites, 412, 509
smectic droplets, 509–512

Drugs, 59
Dupin

cyclides, 341, 347, 349, 350, 357,
369

theorem, 341, 343
Duplex axis, 437, 438
Dye, 59, 70, 101, 478

E

E7 (nematic mixture), 507
Easy axis (direction of anchoring), 149, 150,

493, 495
Eigenmodes, 71
Einstein law for mobility, 324, 550,

586
Einstein relation for vacancies, 288–290
Elastic (compressibility/dilation)

constants/moduli
in cholesterics, 405, 406
in columnar phases, 315, 316, 318
in smectic, lamellar phases, 301, 303, 308,

310, 311, 314, 323, 324, 326, 327, 331,
332, 334, 335, 373, 375, 377, 378, 384,
386, 387, 509, 539, 545

in solids, 263
See also Lame coefficients, Poisson ratio,

Young modulus
Elastic (curvature) constants/moduli, 120,

123, 140–143, 164
bend K3, 120, 123, 124, 136, 139–145,

163, 533
bend κ , 520, 534–536, 539, 540, 541–544,

546, 547, 588
bend κm , 533–535
mixed splay-bend K13, 137, 140, 141,

155, 168, 401
saddle-splay K24, 137, 139–141, 155,

168, 401, 406, 432
saddle-splay K , 146, 168–170, 342, 351,

352, 533
saddle-splay κ , 520, 533–535, 539, 546
saddle-splay κm , 533–535, 539, 541, 546,

588
stretch κs , 536, 538
splay K1, 120, 124, 136–137, 140–145,

163, 168
twist K2, 120, 123, 124, 136, 139–144,

163
Elastic energy in solids, 263, 267, 284
Electric dipoles, 8

fluctuating, 4
permanent, 8
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Electric double layers, 153, 249, 486, 521,
528, 555

free energy density, 524
Electric polarization, 65, 66
Electrodeposition, 250
Electrolyte, 519, 520, 522, 527, 548

non electrolyte solvent, 529
strong, 523, 526, 528, 531
weak, 522, 526, 531, 555

Electron microscopy, 261, 278
Electronegative atoms, 19
Electrooptical effects, 497
Electrostatic interactions, 520, 526

potential, 525, 527, 528, 547
Ellipse, hyperbola, conjugate, 341, 345
Elliptic point on a surface, 146, 147
Embryo, see nuclei
Enantiomers

L and D chiral, 22, 32, 131, 132
Energies of atomic interactions, 4

London energies, 4
van der Waals energies, 4

Entanglements, 581, 582
of disclinations, 457, 458

Entropy, 1, 2, 42, 551, 554
binary mixture, 583, 584
of disorder, 72, 110
of mixing, 111, 573
orientational, 116
translational, 547

Entropy forces, 531
Entropy production σ , 192–195, 198, 200,

203, 206, 220, 426
Enzymes, 36
Epitaxy, 296, 297
Equipartition theorem, 541, 563
Ericksen number Er, 213, 216, 217, 221,

421, 424, 425, 427
Ericksen stress tensor σ (r)iy , 202
Ericksen-Leslie model, 198–205, 220, 420
Erythrocyte, 532
Escape in the third dimension, 395–398,

409, 414, 417, 431, 432, 457
Ethanol, 477
Euler characteristic χ , 170, 504, 505

Euler–Lagrange equations, 99, 101,
154–156, 158, 161, 176, 177, 179, 182,
204, 301, 308, 314, 334, 391, 431

Euler–Poincaré relation, 46, 73, 180, 504
Excess area, 542
Excluded volume, 3, 109, 110, 112, 113,

540, 551, 568, 570, 572, 574, 576, 577,
591, 592

Extraordinary (light) waves, 92–94, 98

F

Faceting, 492, 509
Fastest growing mode, 256
FCD (Focal conic domains), see focal conic

domains
Fermat’s, 98, 99

integral, 98, 99
principle, 98, 99

Fermi level, 52
Ferromagnet, 72, 73, 78, 79, 88, 106, 239

of Heisenberg type, 78, 79, 106
of XY type, 79

Ferromagnetic, 88
Ferromagnetic phase, 78, 79
Fibroin, 34
Fick’s law, 289

first, 290
second, 289, 290

Finger tensor, 566
Fingerprint textures, 304, 305, 410, 412
First coordination shell, 43
First ionization potential, 13
First normal stress difference, 215
Five-fold symmetry, 48
Fixed points, 247
Flexible layers, 540
Flexible polymers, main chains, 561, 581
Flexoelectric effect, 86, 90, 150–153, 495,

497–499
Flocculation, 21, 28

Brownian, 549
depletion flocculation, 550

Flocs, 531, 549, 550



Subject Index 625

Flory model
chain, 561, 569, 570
entropy, 570
excluded volume, 569, 570
free energy, 571, 572
interaction parameter, 574, 587
mean field d = 4, 572
radius, 569, 571, 578, 579, 600

Flory–Huggins model, 560, 573, 576, 577,
578, 580

energy of mixing, 574
entropy of mixing, 573
Flory interaction parameter, 574, 587, 602
free energy, 573, 574, 580
osmotic pressure, 575, 576

Flow alignment, 213, 214
flow-aligning nematics, 421, 422, 423

Fluid relaxation, 340
Fluorescence confocal polarizing

microscopy, 101
Focal

lines, 340, 341
surfaces, 312, 341

virtual, 344
Focal conics domains (focal conics, FCD),

72, 166–168, 224, 331, 337, 341,
343–345, 365–369, 371, 372, 375, 376,
381, 382, 405, 510, 512–515

complete, 349, 369, 378
eccentricity, 346, 351–353, 358, 374, 375,

386
FCD-I (First species), 347, 348, 353, 368,

378, 385
FCD-II (Second species), 348, 349, 358,

368, 378, 382
core model, 383

FCD-III (Third species), 348, 350
in cholesterics, 406
incomplete, 369
in lyotropic phases, 365
laws of association, 331, 369, 370, 510,

512, 515
PFCD (parabolic), 167, 355–357, 368,

369, 380, 381
space filling, 514, 515

TFCD (toric), 342, 354, 368, 369
relation with dislocations, 353
rheophysics, 378–381
See also oily streaks

Fractal, 223, 224, 227, 251, 257, 560
deterministic, 230, 231
floc, 500
stochastic, 230, 231

Frank (elastic) coefficients (constants,
moduli), 142, 155, 173, 201, 421

See also elastic (curvature) constants
Frank network, 272, 293, 294
Frank-Kasper, 49

deltahedra, 50
phase, 49, 52, 68, 72, 269, 389

Frank-Oseen (elastic) energy, 120–122, 127,
157, 183, 198, 201, 426

diamagnetic term, 151
dielectric term, 151

Frederiks effect (field-induced transition),
89, 140, 161–164, 403, 495–497

in smectic A, 181
Free energy

curve, 583
density, 334

in columnar phase, 560, 574
in polymers mixtures, 583, 584
in smectic, 315

Free standing films, 305
Frenkel model (of glide), 282–284
Fresnel equation, 90, 92
Friction, 427
Frustration, 47, 48, 68, 593
Fullerenes (Fullers “buckyballs”), 55

G

Gas, 1
2D gaseous state, 532

Gas constant, 2
Gauge theories, 344
Gauss theorem, 137, 150, 156, 188, 298
Gauss-Bonnet theorem, 169, 170, 352, 501,

505
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Gaussian curvature, 146–149, 168–170, 351,
504, 505, 534, 540, 546

negative, 347, 350, 352–356, 366, 369,
378, 407, 546

positive, 349, 350, 358, 368, 412, 546
Gay–Berne potential, 19, 519
Gel, 31, 224, 237, 548, 581, 602
Gel point, 31
Genus, 170, 532
Geodesic lines, 359
Geometrical frustration, 47, 48
Gibbs adsorption equation, 476, 550
Gibbs free energy G, 105, 106, 120, 595
Gibbs–Duhem relation, 475, 595
Ginzburg–Landau expansion, 118
Ginzburg–Landau model, 121, 393
Ginzburg–Landau parameter, 127
Glass, 31, 45, 548, 580, 582

fibers, 519
transition, 554

Globule, 575
Glycerin, 402, 429, 495, 512
Gouy–Chapman length, 522, 523, 527
Grahame relation, 529
Grain boundary, 72, 128, 334, 338

in block copymers, 589, 590
in chiral rods systems, 408
in columnar phases, 408
in solid crystals, 340
in smectics, 328, 368, 371–377, 385

Apollonian packing, 371, 373, 374,
376, 510, 512
curvature wall, 372, 385, 387
dislocation grain boundary, 372, 375,
386
tilt grain boundary, 372, 374

Moiré grain boundary phase, 408
Grand potential, 596
Grandjean–Cano wedge, 295, 332, 386
Group, 438, 446

conjugacy class, 451
commutative, 438, 451, 461
commutator, 458
coset space, 439
direct product, 440

euclidean, 441
factor group, 439
isotropy group, 441
little group, 441
non-commutative, 438, 451
quaternion, 456, 457
semidirect product, 449, 451
See also homotopy

Group theory, 438
Growth, 484, 505, 585
Growth phenomena, 223, 224, 585
Guanine, 36, 37
Guest-host effect, 101

H

Half integer lines, see disclinations
Hamaker constant, 21, 22, 28, 40, 487, 531,

556
Handedness, see chirality
Hard spheres, 18, 109, 552

entropy, 113
interaction, potential of interaction, 18,

548, 554
Harvard model of hydrodynamics, 198,

206–209, 220, 420
HCl, 13
He, 13
Hedgehog, see point defects
Hele-Shaw cell, 252, 253, 255–257
Helfrich models for membranes, 592

entropic model for membranes, 14, 530,
531, 544

elastic model for membranes, 537–538
fluctuations, 548

Helfrich potential, 14, 531
Helicoid, 310, 344, 589
Helix configurations, Helical molecules,

563, 593
Helmholtz free energy F , 105, 106, 109,

474, 488, 515, 595
Hemipermeable membrane, 112, 478
Hexa-heptyloxybenzoate of benzene,

C90H114O12, 56
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Hexa-n-hexyloxybenzoate-triphenylene,
C102H120O18, 57

Hexatic order in
DNA, 593
smectic B, F, and I, 66

Hierarchy of structures, 593
Hodograph, 270, 271, 390, 392
Homeotropic anchoring, see perpendicular

anchoring
Homopolymers, 29

linear, 29
Homotopy

class, 442
defects classification, 434, 439, 443
first homotopy group, fundamental group,

441, 443, 446, 447, 448, 449, 450, 452,
455, 458, 461, 463, 466

relative homotopy group, 465, 466
second homotopy group, 459, 461, 463
third homotopy group, 467

Homotopy group, 441
Hook’s law, 261, 266, 282
Hopf invariant, 468
Hopf mapping, 467
Hybrid aligned nematic film, 157, 182, 183,

499, 516
Hydrated ion, 10

cation, 10
Hydrocarbon tails, 532
Hydrodynamic variables, 184, 198, 205
Hydrogen bond, 17, 19, 20, 21, 34, 36, 37
Hydrophobic effect, 21, 34
Hyperbolic point on a surface, 146, 147,

347

I

Icosahedral order, 47, 48, 52
Icosahedron, 47–49, 52
Ideal chain, 564, 570, 572, 573, 599

dynamical (Rouse) model, 566, 567
elongation, 565, 566
entropy, 565
free energy, 565

radius of gyration, 568, 575
theta temperature, 575

Ideal solution, 111, 521
Ideal-gas regime, 527
Incommensurate modulation (phase), 49–51
Incompressible fluid, 189, 196, 322
Indium tin oxide (ITO), 90, 149
Inks, 548
Instability of dilatation (undulations), 165
Integer lines, see disclinations
Interactions, atomic and molecular, 7

Casimir, 28
dipolar, 7
dipole-dipole, 11, 15, 16
dipole-neutral molecule (or Debye), 12,

16
dispersive, 29
free dipole-free dipole (or Keesom), 11,

16
hydrogen bond, 17, 34
induced dipole-induced dipole (London),

17
induced dipole-induced dipole (retarded;

Casimir and Polder), 17
ion-dipole, 10, 15, 16
ion-ion, 15
ion-neutral molecule, 12
of two macroscopic bodies, 21
repulsion, 17
screened ionic, 7
van der Waals, 7, 21, 28, 34, 36, 40, 486,

554, 574
Interference colors, 97
Intermaterial dividing surface IMDS, 588,

602
Internal energy, 472
Interstitials, 72, 286
Inversion symmetry, 64, 65
Ions, 520, 522, 523, 525
Isomerization

Trans-cis, 101
Trans-gauche, 563

Isotropic elasticity (one constant
approximation), 155–157, 426, 432,
500
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Isotropic ferromagnet, 453
Isotropic phase, 68, 69, 70, 106–109, 114,

115
Israelachvili-Mitchell-Ninham (IMN)

model, 535

J

Joachimstahl theorem, 359

K

Keesom forces and interactions, 11–13
Kelvin equation, 480, 481
Kerr effect (electric-field induced

birefringence), 109
Kevlar, 29
Kibble mechanism, 506
Kink, 285, 312
Klein bottle, 449, 450
Koch curve, 225–227, 230, 257, 259
Kosterlitz-Thouless model, 129, 492
Kronecker delta δi j , 87

L

Lagrange condition, 114
Lagrange multiplier, 114, 154, 157
Lagrangian vs. Eulerian approach, 185, 190
Lame coefficients, 263
Lamellar phase, 180, 181, 532, 535, 539,

540, 546, 588, 589
2D ideal gas of patches, 544, 592
fluctuations, 544
penetration length, 545
repulsive potential, 545

Laminar flow, 252
Landau

expansion, 105, 109, 135
theorem, 107

Landau–de Gennes model (theory), 105, 130
Langevin model of paramagnetism, 11

Langmuir
Langmuir-Blodgett film, 478
monolayer, 210, 478
trough, 478

Laplace pressure, 305, 480, 482
Laplace equation, 224, 251, 252, 254, 255,

258
Laplace-Young equation, 478, 479, 480, 481,

482, 486, 487
Latex solutions, 548
Lattices, 4

body-centered cubic (BCC), 4, 46, 83,
240, 273, 285

Bravais, 42
faced-centered cubic (FCC), 4, 7, 42, 43,

45, 47, 73, 240, 272, 285, 287
hexagonal close-packing (HCP), 4, 42, 43,

45, 47, 73
triangular, 42, 43, 240

Lebwohl–Lasher potential, 19, 519
Lecithin, 58, 449, 540
Lennard–Jones potential, 18
Leslie viscosities, 421
Leslie-Ericksen

equations, 420
range of validity, 421, 425

Levi-Chivia tensor, 187
Lifshitz theory, 27, 28
Light scattering, 568
Light-induced polymerization, 101
Linear momentum equation, 207
Linking number, 436, 437, 468
Lipid bilayer, 35, 36
Liquid crystal polymers, LCP, 141–143
Liquid crystal, Liquid crystalline phases, 28,

53, 55, 85
Liquid crystalline structures, 36
Local order, 45
London (or dispersion) interactions and

energy, 11–14, 27, 28
in a medium, 27
retarded, 22

London dispersion energy, 12
London’s model, 27
Long-range order, 76, 593
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Lyotropic mesophase, lyotropic liquid
crystals, 57, 59, 61

L1, see micellar phase
L3, see sponge phase
Lα , see lamellar phase

M

Macromolecule, 29
Madelung constant, 6
Magnetic permeability of free space

(magnetic constant) µ0, 86, 87
Magnetic susceptibility tensor χ , 88, 101,

199
Magnetic systems, 388
Magnetic vector potential A, 120
Magnetization, 78–80, 87, 239
Maier–Saupe model (mean field theory),

105, 115, 131
Martensic transformation, 296, 297
Material derivative, 185, 200
Mauguin regime, 100
Maxwell plateau, 583, 584, 601
Maxwell stress tensor, 524, 525, 526

longitudinal stress, 526
transversal stress, 526

Maxwell’s equations, 90, 91
MBBA, N-(p-methoxybenzylidene)-p’-

butylaniline, C18H21NO, 12, 56, 57,
87, 88, 211, 212, 214, 428, 496

Mean curvature, 146, 148, 255, 534, 547,
588

Mean field theory, 572, 573, 582
Meissner–Ochsenfeld effect, 121, 124
Membrane proteins, 36
Membrane, isolated, free, 533, 541, 543, 544

2D ideal gas, 544
cohering of membranes, 558
de Gennes-Taupin persistence length,

541–544
edge energy, 536
excess area, 543
free energy density, 534, 541
microscopic elastic constants, 535–540

Menger sponge, 259
Meniscus, 305
Mesophase, Mesomorphic phases, 53. See

also liquid crystalline phase
Methane CO4, 14
Mica platelets, 519
Micellar phase, 180, 181, 540, 588
Micelle 7, 8, 59, 60, 69

inverted, 60
Microemulsions, 546, 547

globular, 547
random bicontinuous, 547

Microphase separation, 588
Microscopy (optical), 95–98, 101, 261, 308,

340, 341, 344, 369
Microtubule, 38, 39
Miezowicz geometries, 210, 211, 214
Milk, 548
Minimal surface, 67, 311, 480, 546

catenoid, 480
helicoid, 310

Mirror reflection, 64, 65
Möbius strip, 399, 435, 436
Moiré grain boundary phase, 300,

408
Molar gas constant R, 109
Molecular dynamics simulations, 554
Molecular field h, 154, 204–206
Molten polymers, 572, 580
Moment of inertia, 199
Monge’s surfaces, 359, 361
Monolayer, 532

curvature constants, 533, 535
Monomers, 29
Monopole, 507, 509
Monte-Carlo calculations, 519
Mullins–Sekerka instability, 257, 287

N

n = 0 theorem, 571
Nanoparticles, 478
Navier–Stokes equations, 196, 197, 254,

293, 328
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n-butoxyphenylester of nonylhedrobenzoic
acid, 404

Néel wall, 466
Nematic phase, 59, 61, 71, 106–109

2D, 444
biaxial, 61, 62, 89, 388, 405, 455–458

order parameter space, 455
fundamental group, 456

calamitic, 62
discotic, 57, 62
fundamental group, 455
lyotropic, 62
one constant elasticity, 426, 432
order parameter space, 454
twisted, 63
uniaxial, 61, 71, 80–83, 85, 89, 90
LCP, 398, 400, 403, 420
SMLC, 398, 399, 423

Neumann triangle construction, 485
Newton’s law of viscosity, 196, 211
Newtonian fluid, 196
Node rule, 269
Noll principle of material invariance, 135
Non-Newtonian fluid, 196, 215
Normal orientation, anchoring, see

perpendicular
Normal stress difference, 426
No-slip boundary condition, 197, 254,

552
Nucleation, 10, 109, 167, 422, 482, 483,

585
energy, 586

Nuclei, 482, 483, 484

O

Octahedral sites, 45, 73
Octahedron, 45
Oil, 531
Oily streaks, 308, 365, 366, 367, 406, 413,

539
Olivine, 273
Omega wall, 589, 590
Onions, 358, 381, 384. See also droplets

Onsager’s
model (theory), 105, 109, 113, 131, 141,

554
reciprocity relations, 194–196, 203

Optic (optical) axis, 64, 71, 93, 103
Optical activity, 33, 402, 404
Optical compensators, 98
Optical Frederiks effect, 100
Optical tweezers, 556
Optically active medium, 100
Order parameter, 76–80, 106, 107, 238, 300,

439
amplitude, 76, 80, 117, 123, 170, 184
conserved, not conserved, 582
of smectic A, 118
phase, 76, 80, 106, 117, 170, 184
scalar order parameter in LC, 81, 85, 88,

106, 107, 116, 117, 131, 155, 199
space (see degeneracy space), 77–83, 101,

434, 439, 440, 445, 446, 448, 449, 450,
453, 455, 460, 463, 465, 466, 467, 468

tensor order parameter in LC, 85, 89
Order-disorder

transition, 76
order vs. disorder, 548, 554

Ordered bicontinuous double diamond
OBDD, 588, 589

Ordered texture, 426
Order-electricity (ordoelectricity), 86, 153,

493
Ordinary (light) waves, 92–94, 98
Orientational order, 29, 36, 53, 54, 55, 101

photoinduced, 101
Oriented contours, 441
Orowan relation, 332, 335
Osmotic pressure, 2, 111, 112, 525, 526,

551, 575
scaling, 578

Osmotic stress technique, 555
Overheating, 482, 580

P

Packing fraction, 43, 73
Paints, 548
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Pair correlation function, 233, 556, 557, 567,
587

Fourier transform S(q), 567
Pairwise summation of molecular forces,

21
Parabola semiparameter, 355, 357
Parallel anchoring, 508, 509, 510, 512, 514
Paramagnetic phase, 78, 88, 239
Parodi’s equation, 204
Partial pressure, 2
Passages, 540
Pauli exclusion principle, 13
PBG (see poly benzyl glutamate)
Peach and Koehler force, 273–276, 279,

281
in nematics, 428
in smectics, 313, 315, 328, 330
See also dislocations

Péclet number Pe, 552, 553
Peierls

instability, 51
model, 281, 283, 284

Peierls–Landau instability, 173
Peierls–Nabarro friction, 320
Penetration length, 122, 123, 127, 145,

316–318, 545
columnar phases, 317–320
smectic, lamellar phases, 304, 305, 307,

310, 334, 373, 375, 376, 378, 384, 386,
387, 510

Penrose pattern, tiling, 52, 53
Peptide bond, 32–34
Peptides, 29, 31, 32, 34
Percolation, 224, 235–242, 246, 259

threshold (critical probability), 236,
238–243, 246

Permeation, 323, 324, 325, 327, 328, 330,
334, 335

Permittivity of free space (electric constant)
ε0, 6, 86, 87

Perpendicular anchoring, 305, 328, 332, 366,
368, 431, 495–502, 506, 510, 512

Persistence length, 562, 590–592
Persistence time, 562
Perturbations, 72–73

Petrov–Derzhanski–Mitov (PDM) model,
535

elastic constants, 538–539, 540
pH of the solution, 9
Phase diagram, 128, 583
Phase segregation, 588
Phase separation, 560, 583, 587, 588. See

also phase transitions, first order
Phase transitions, 78, 101, 109, 129, 237,

560
coarse-graining phenomena, 430
first order, 81, 106, 107, 131, 560, 580,

582–586
coexistence, 582, 583, 584
critical point, temperature, 582, 584,
587
spinodal, 583, 584, 586, 587

in colloids, 554
lamellar-cubic, 546
Kirkwood–Alder transition, 554, 555
Landau–de Gennes model, 106
Maier–Saupe model, 105, 115
nematic-isotropic, 85, 106, 505

cosmological model, 506
Onsager’s model, 105, 109, 113, 141, 554,

592
rod isotropic-nematic, 591
second order, Landau, 71, 78, 105, 108,

109, 124, 164, 239, 240, 546
semiflexible polymer isotropic-nematic,

592
smectic A-cholesteric, 128
smectic A-nematic, 117, 131, 145, 214
weak first order, 109

Phase velocity, 91, 94
Phosphatidylcholine (lecithin), 58
Phosphatidylethanolamine, 58
Phosphatidylserine, 58
Phospholipids, 8, 57, 58
Pieranski–Guyon instability, 217
Pipette aspiration technique, 538
Pitch, see cholesterics
Planck constant, 13, 17
Plane monochromatic wave, 91, 92
Plastic crystals, 53, 54
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Plastic deformations, 261, 275, 332, 388,
555

Plateau for entangled polymers, 581
Point defects, 388, 396–401, 446, 447,

459–464, 508
in 3D ferromagnet, 460
in nematics, 72, 419, 463, 500

core, 401
hedgehog, 397, 400, 401, 461, 462,
464, 470, 501, 503, 505–509
boojum, 400, 429, 501–505, 508,
509

in solids, 72, 73, 285–287, 289
Poisson equation, 521, 529
Poisson ratio, 263, 540
Poisson-Boltzmann equation, 520, 522, 526,

527, 557
Polar electrolyte, 477
Polar head, 532
Polarizability, 11, 12, 13, 21, 88

excess, 27
Polarization of light, 94, 95
Polarizer, 90, 95, 96, 98, 103
Polyamids, 141
Poly-γ -benzyl (L or D) glutamate,

PB(L or D)G, 59, 109, 143, 144, 211,
212, 215, 403, 407, 410, 420, 424, 425,
519, 593

Polybutadiene PB, 560
Polydimethylsiloxane PDMS, 562
Polydispersity, 581
Polyelectrolyte, 478
Polyesters, 143, 590
Polyethylene PE, 560, 562
Polymer

blends, 580, 586
melts, 580, 581

entanglements, 581, 582
storage modulus, 581, 582

Polymer-dispersed liquid crystals, 70
Polymer-grafted, 555
Polymerization, 31, 237

degree of, DP, 560
Polymers, 28, 29, 30

addition, 29

biopolymers, 31, 407, 411, 425, 549, 593.
See also blockcopolymers

branched, 30, 31
coatings, 548
condensation, 29
cross-linked, 29, 30, 31
crystal, crystallization, 563, 581

See also flexible polymers, Flory,
Flory–Huggins, ideal chain

lattice model, 600
linear, 29, 30, 31
liquid crystalline, 29

See also rigid polymers, semiflexible
polymers

synthetic, 29, 561
Polymers configurations

all-gauche, 564
all-trans, 563
helix, 563
coil, 564
gauche, 562
trans, 562

Polymer-stabilized liquid crystals, 70
Polymethylmetacrylate PMMA, 554, 560
Polyoxymethylene PMO, 563
Polypeptide, 34, 35, 38, 590
Polystyrene PS, 554, 556, 562
Polytetrafluoroethylene PTFE, 563
Porod law, 234
Positional order, 54
Potential of interaction, 15–17

Coulomb, 5
Gay–Berne, 19, 40, 519
hard-core, 39
Lebwohl–Lasher, 19, 40, 519
Lennard–Jones, 18, 19, 39, 47
repulsion, 13, 14
square-well, 39
van der Waals, 21, 22, 23–26, 40

Power law, 223–225, 250
Poynting vector, 91, 99, 101
Precursor film, 488
Prefractal, 227
Primary minimum, 531, 548, 553
Primary structure of biopolymers, 8
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Principal curvatures, see curvature
Principle of linear superposition, 268
Projective plane R P2, 82
Proteins, 28, 29, 31–35, 38, 477, 478, 560

globule, 34–35, 37, 39, 590
primary structure, 34
quaternary structure, 34
secondary structure, 34
synthesis, 33
tertiary structure, 34

Pβ′ , 449–452

Q

Quarks, 428
Quasicrystal, 49, 52, 53, 74
Quaternion group, 457

R

Racemic mixture, 131
Radial distribution function, 45
Radii of curvature, 147
Radius of gyration, 237, 241, 250, 564, 567,

568, 571, 575, 590
Random bicontinuous phase, 547
Random coil, statistical coil, 551, 562
Random phase approximation, 587
Random variable, 594
Random walk, 232, 233, 249
Rate of deformation (or strain-rate) tensor

Ai j , 187
Refractive index, 91, 93, 94, 98, 101
Relative electric permittivity tensor ε, 87
Relative rotation rate of director N, 203,

220
Relaxation

molecular, 420, 561, 590
of the core order parameter, 419
trans-gauche transitions, 582

Renormalization group theory, 105, 245,
560, 571

Repulsive (Helfrich) potential, 14, 545

Repulsive forces, interactions, 13, 21, 113,
520, 548, 553

electrostatic, 540, 548
entropic, 540, 545
short-range, 531

Retardation effect, 22, 27
Reticulation, chemical, physical, 581
Reynolds number Re, 197, 252, 254, 330,

421
Rheological properties

Bingham behavior, 381
of FCDs, 378–381
of polymers, 561

Rheology, 388
Ribose; Ribosomes; RNA, 36
Rigid polymers, rigid rod, 561, 590

dynamical equation, 566
free energy, 562, 563
radius of curvature, 562

Robinson spherulites, see droplets
Rod-like molecules, 421
Rotary power, 593
Rotation vector, 388
Roughening transition, 492
Rouse model, 566, 567
R P2, 440, 454, 456. See also projective

space
R P3, 455
Rubber, 548, 566, 581, 582

S

S.D.S.-water-hexanol, 539
S2, 440, 453, 456, 463, 466, 467
S3, 456, 467
Saddle splay (deformation), 404, 407, 432
Saddle-splay instabilities, 540
Saint-Venant principle, 165
Salts, 7
Scaling, 560, 564, 576
Scattering, 577
Scherk doubly periodic surface, 589
Schlieren texture, 395, 397
Schoenflies-Fedorov groups, 42
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Second principle of thermodynamics, 192,
193

Secondary minimum, 531, 548, 553
Segregation, 70
Self avoiding walk SAW, 571
Self-similarity, 223, 224, 227, 241, 246,

249
Semicrystalline order, 31
Semidilute regime, 591, 592

internal energy, 579
Flory–Huggins, 576
scaling, 578

Semiflexible polymers, 519, 549, 561, 590,
591

Shear, 552
in SmA, 379
shear instability, 368
shear-thickening, 552
shear-thinning, 552, 553
stability under, 552

Shear plane, 213, 215, 217
Shear rate, 211
Shell, inextensible, solid, 540
Sherk doubly periodic surface, 589
Short-range order, 76
Side-grafted polymers, 588
Sierpinski

carpet, 259
gasket, 228, 229, 243

Silica, 249, 548, 554
Silk, 33
Simply connected, 441
Single glide, 338
Singularity, 72, 73
SiO2, 478
Smectic A (SmA) phase, 64, 85, 90, 300,

337, 468, 469
dynamic modes, 326
fundamental group, 469
lyotropic, 64
polygonal textures, 513
thermotropic, 64
type I, type II, 127, 133

See also diffusivity, dislocations,
penetration length, permeation

Smectic B (SmB)
plasticity properties, 331

Smectic C (SmC), 64, 65, 104, 300, 341,
468, 469

fundamental group, 469
Smectic C* (SmC*), 65, 341
Smectic clusters, 123, 124
Smectic phases, 59, 63, 210, 515

bâtonnets, 513
See also penetration length

SMLC (Small Molecules Liquid Crystals),
140, 144

Snowflake, 250
SO(2), 440
SO(3), 440, 455, 456
Soap, 57, 477
Sodium Chloride (NaCl), 5
Sodium dodecyl sulphate, 59
Sodium dodecyl

sulphate-brine-dodecane/pentanol, 539
Sodium dodecyl

sulphate-water-hexanol/pentanol, 59,
539

Sodium stearate NaC18H35O2, 7
Soft matter, XV, 7, 106
Soft mode, 49, 71
Soft spheres, 552, 555
Sol, 237
Soliton, 428, 434, 464–468
Solubilization, 548
Solute, 1, 476, 519
Solution, 1

ideal, 3
Solvation of ions, 10

forces, 520
Solvent, 2, 3, 70, 476, 519

good, 3, 70, 232, 574, 575
poor, 3, 70, 574, 575, 580

Speed of light in vacuum, 86, 91, 120
Spherulites, 342, 358, 365, 367, 377, 381.

See also droplets
Spin, 78
Spin glasses, 388
Spinodal decoposition, curve, 576, 583, 585,

586, 587
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Splay (deformation), 411
Sponge phase, 69, 70, 180, 181, 532, 535,

539, 546, 547
Spontaneous curvature, see curvature
Stability

in colloidal systems, 519–559
in thermotropic liquid crystals, 519
ratio, 549, 553

Stacking faults, 272, 283
States of matter, 1
Steric interactions, 13, 14, 109, 534, 570,

593
Stokes formula, 197
Stokes law, 549
Stokes–Einstein formula, 293
Storage modulus, 581, 582
Strain, 262
Stress, 188

compressive, 263
normal, 188
shear, 188, 211, 263
tensile, 263, 281

Stress tensor σi j , 188, 199, 203–205, 219
in SmA, 313
irreversible part, 195
reversible part, 195

Stretching elastic constant, 538
Subboundary, 294–296, 300
Superconductors, 124

type I, 126
type II, 124–126

Supercooling, 482, 580
Superfluids, 261

3He, 72, 508
4He, 77, 80

Surface director stress tensor τi j , 199, 202
Surface excess, 473, 515

of entropy, 474
of grand potential, 474
of the Helmholtz free energy, 515

Surface force apparatus SFA, 556
Surface forces

in a smectic, 314
Surface of refractive indices (surface of

wavevectors), 92, 94

Surface polarization, 86, 90, 150, 153, 495,
497–499

Surface tension, 28, 253, 257, 296, 305, 472,
474, 477, 482, 483, 485, 488, 491, 492,
495, 510, 515, 519

Surface torques
in a nematic, 155, 161
in a smectic, 314

Surface-stabilized ferroelectric, 66
Surfactant, 7, 9, 14, 39, 64, 132

ionic, 7
nonionic, 14

Susceptibility exponent, 570
Swollen surfactants, 546, 547
Symmetry

continuous rotational, 416
continuous translational, 388, 414
rotation, 388
translation, 388

T

Tangential anchoring, see parallel anchoring
Temperature, 39, 474, 476, 560

critical, 582, 587
theta, 3, 575

Tetrahedral coordination, 19, 20
Tetrahedral network, 19
Tetrahedral sites, 44, 45, 73
Tetrahedron, 45, 47, 49
Texture, 73, 90, 95, 97, 98, 99, 261, 342, 380

planar cholesteric, 99
polygonal, 411, 510, 513, 515
Schlieren, 95, 98, 396, 397
See also fingerprint texture, worm texture

Thermal fluctuations, 71
of membranes, 539, 542
of polymers, 562
renormalisation of elastic constants by,

544
Thermoconductivity coefficient κ (tensor),

195, 198, 200
Thermotropic mesophase, thermotropic

liquid crystals, 57, 59, 61, 519
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Theta-conditions, theta temperature, 3, 575
Thiourea SC(NH2)2, 49
Thymine, 36, 37
Tobacco mosaic virus (TMV), 36, 59, 84,

109, 141, 400, 520, 549, 591
Topoisomerase, 438, 468
Topological

classification, 458
configuration, 434
defects, 98, 209, 434, 439, 500, 506, 507
charge, 434, 446, 461, 462, 465, 501, 505,

516
invariant, 434, 448
monopole, 507
stability, 434, 436, 446, 464, 472
twist, 436, 437
See also point defects, dislocations,

solitons, homotopy
Torus, 448
Trans-cis isomerization, 101
Trans-gauche isomerization, 563, 582
Trans-isomers, 100, 101
Translational order, 53
Triblock copolymers, 588
Tubuline, 38
Tumbling regime, 215

tumbling nematics, 421, 423–425
Turbulence, 197
T-wall, 589, 590
Twins, 272, 296
Twist (deformation), 61, 396, 411

confinement-induced, 402
relaxation, 403, 432
Tw, 437, 438

Twist boundary, 128, 129, 296, 344, 589
Twisted nematic, 100, 402
Twist-grain boundary (TGB) phase, 128,

129, 296, 300

U

Undulation of layers, 149, 166, 331
Universal cover, 455, 456
Uracil, 36

V

Vacancies, 72, 286, 288
Valency, 57, 524
van der Waals, 4, 11, 22, 27

attraction, 249
equation, 39
forces, 4, 11, 22, 27, 105, 487, 520, 528,

530, 547
interactions, 27, 487, 519, 530, 572

vant’Hoff equation, 525
Vesicle, 532, 539
Virial Coefficient, 3

second, 3, 39
Virial expansion, 2
Virus, 36, 59, 561, 591
Viscosimetry, 568
Viscosity coefficients, 196, 206, 220

dynamic bulk, 196
dynamic shear, 196
Einstein relation, 551, 552
in Harvard model, 197
kinematic, 207–208, 211
Leslie, 203, 207–208, 211
Miezowicz, 212
nematic, 424

twist viscosity, 426
relative viscosity, 552, 553
smectic, 322

Viscous fingering, 224, 252, 257
Viscous stress tensor, 195

smectic, 321, 322
Volterra, 414

defects, 266
process in crystals, 270
process in liquid crystals, 388, 413, 414,

416
in nematics, 390
in cholesterics, 410

process in solids
for dislocations, 49, 264
for disclinations, 389, 390

Vortex line, 72, 124–126
Vulcanization, 29, 237
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W

Water, 19, 520, 531
dielectric constant, 521

Weingarten theorem, 266, 267, 270
Weiss molecular field theory, 115
Wetting, 256, 485, 488

wetting transition, 486
Wigner-Seitz cells, 45
Wilmore conjecture, 349
Winsor phase, 547
Witten-Sander model, 251
Worm texture, 425
Writhe, 437
Wulff

shape, 489, 510
construction, 490, 491

X

Xanthane, 59, 407, 410, 560, 593

Y

Young law, 485, 486
Young modulus B, E , 119, 148, 262, 263,

509, 540. See also elastic (compression/
dilation) constants/ moduli

Z

Z2, 454, 455, 463, 466, 467
Zeeman energy, 151
Zincblende structure, 7
Zwitterion, 8, 9
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