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atoms with consciousness . . .
matter with curiosity.
Stands at the sea . . .
wonders at wondering . . .
I . . . a universe of atoms . . .
an atom in the universe.

—Richard P. Feynman
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Preface

Approximately 10 years have passed since the publication of And Yet
It Moves: Strange Systems and Subtle Questions in Physics.1 During
this time, the book has done very well, being received favorably by both
readers and reviewers. The exhaustion of the last printing has given
me the opportunity to make revisions. The present volume, updated
and expanded by three new chapters containing a total of 17 additional
essays on a wide range of questions that I have explored in quantum
mechanics, nuclear physics, thermodynamics, general relativity, and
astrophysics, has been given a new title to reflect the broad thematic
coverage and a new publisher (Springer-Verlag).

The Introduction (The Fire Within) that follows, based on the preface
to the original edition, explains fully the purpose and content of this
book. I wish to note briefly here, however, that time and the advance
of physics have not dulled the scientific relevance of any of the essays.
This book, like its predecessor, is not intended to be a popularization,
a textbook, or a monograph of any field of physics. Rather, it is a per-
sonal account of the scientific underpinnings, motivations, lessons, and
ramifications of some of the many fundamental physical problems that
have engaged me throughout my career to the present. These are
essays that anyone with an interest in contemporary physics can read,
although it is certainly the case that the more serious the interest, the
more meaningful will be the essays.

In the years following And Yet It Moves, I have written, besides the
present book, three others, principally for physicists, teachers, and 
students, more specifically focused on those parts of my researches 
concerned with quantum interference phenomena,2 classical optics 
and electromagnetism,3 and quantum electrodynamics and atomic
physics,4 respectively. As was the case with my previous books, there
is again in this one an underlying concern with physics education. By
that I mean not merely the transmission of facts and formulas, but a
communication of the delight of scientific exploration, the ultimate
exercise of human curiosity and ingenuity, without which any science,



especially physics, becomes lifeless and dull, however competently its
technical details are taught.

In matters of science and education it is to my wife, Dr. Susan 
Brachwitz, and to my son, Chris, and daughter, Jennifer, that I owe
the greatest debt of gratitude. Besides the full-time occupations of uni-
versity teaching and research, I have had, together with my wife, the
serious responsibility and privilege of instructing our children from
infancy onward in our own home-based school. [“Home,” however, has
ranged over the globe from New Zealand to Finland with many points
in between.] It was I, however, who received the most instruction, for
what I have come to understand about the nature of learning and the
stimulation of interest in science, I have learned with Susan’s help
from seeing our son and daughter evolve into young adults in an
atmosphere supportive of their natural instincts to explore, discover,
and create.

I would also like to thank Chris, an artist and computer scientist,
for the lovely design of the cover of this book, and to express my grat-
itude as well to my editor and long-time friend, Dr. Thomas von 
Foerster, and my production editor, Terry Kornak, for guiding this book
safely through all the shoals of production, and to Professor Michael
Berry (Bristol) for his enthusiastic reception of And Yet It Moves and
helpful comments for the new edition.

Mark P. Silverman
Tall Pines Institute

July 2001

Notes

1. M. P. Silverman, And Yet It Moves: Strange Systems and Subtle Questions
in Physics (Cambridge University Press, Cambridge, 1993).

2. M. P. Silverman, More Than One Mystery: Explorations in Quantum Physics
(Springer-Verlag, New York, 1995).

3. M. P. Silverman, Waves and Grains: Reflections on Light and Learning
(Princeton University Press, Princeton, 1998).

4. M. P. Silverman, Probing the Atom: Interactions of Coupled States, Fast
Beams, and Loose Electrons (Princeton University Press, Princeton, 2000).
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Introduction: The Fire Within1

As a child, for as far back as I can recall, I always wanted to be a physi-
cist—a nuclear astrophysicist or cosmologist, in fact. I am not exactly
sure why, for I knew no one like that within my family or circle of
acquaintances. I suspect that aspiration was owed largely to Edding-
ton, Hoyle, Jeans, and especially Gamow, whose popular books I read
avidly. Only rarely have the students whom I have taught over the
past thirty five years heard of these people or of their books. Some-
times, out of sheer perversity, or perhaps genuine curiosity, I would
remark to a class, “What? You mean you never read One, Two, Three
. . . Infinity or Mr. Tompkins in Wonderland?” But the students would
only look at one another with wry smiles, as if to confirm their suspi-
cions that physicists are strange people and that they, unfortunately,
got stuck with an especially peculiar one. Wonderland, indeed!

As a graduate student, I never studied astrophysics or cosmology,
although, in recent years, my research and publications address key
issues in these areas. Perhaps those same books that fired my imagi-
nation with the marvels of the physical world may have also led me
to believe that the most fundamental mysteries of physics were largely
exhausted.

I began my scientific odyssey in the field of medicine as part of a
group researching malfunctions of the immune system. Finding experi-
mentation on animals personally distasteful, however, and myself
little inclined to constant preoccupation with disease, I changed to bio-
chemistry with the heady, through misguided, notion of answering the
question posed by Schrödinger’s influential book, What Is Life? It was
a profound disappointment, therefore, to end up on a project to analyze
the nitrite content of corn.

I took up organic chemistry next. Predicting the outcome of complex
chemical reactions by flipping electrons around pentagonal and hexag-
onal rings had a certain aesthetic appeal to me—at least on paper. In
reality, however, “Molecules do what they damn please,” as one pro-
fessor told my wife when she was a graduate student at Harvard some



years later. Having passed unscathed through more syntheses with
toxic and explosive precursors than I now care to remember, I decided
one day to push my luck no longer. Disaffected with a field that seemed
to lack fundamental principles and in which I, quite literally, saw no
future for myself, I turned to physical chemistry.

I enjoyed physical chemistry for a while, investigating molecules
with electron and nuclear magnetic resonance, until I realized what it
was about the subject that interested me most. It was physics. So I
switched one last time and returned to the passion of my youth. I have
remained a physicist ever since and have no regrets at all for the cir-
cuitous path that finally brought me back—or almost back—to the
career I decided upon as a child. If anything, the diversity of experi-
ences has made me a better scientist.

Even during the years of “wandering” before I rediscovered what it
was I wanted to do with my life, I never actually abandoned the study
of physics. I took physics courses at the university, although I have
little recollection of anything noteworthy about them. It was not that
those courses were necessarily ill-taught. At best, they conveyed well
enough the mathematical or mechanical skills required for solving
physics problems. But something essential was missing. No instructor
ever addressed the question of why physics problems were worth
solving or what made physics sufficiently interesting so that one would
want to study it at all, let alone devote a lifetime to it. Not once prior
to graduate school—and even then only rarely—can I recall a profes-
sor expressing personal interest in the abstractions on the classroom
blackboard or the apparatus used for demonstrations. Sometimes I
wonder how many potential physicists may have perished in lecture
halls of universities and colleges for want of a larger vision of what
physics was all about.

Fortunately for me, I did not need to rely on formal instruction for
motivation. I loved to learn, although I did not particularly care to be
taught—at least not in the traditional manner of lecturing and testing
that deprived a person of the pleasure of discovery. I already knew
from childhood many reasons why physics was interesting. I needed
only to know that there were still wonderful things to learn and to do,
and this I gradually discovered in the same way as before, by reading
widely.

My vision of physics took shape under the tutelage of Galileo,
Newton, Fresnel, Maxwell, Einstein, Bohr, Heisenberg, Schrödinger,
Fermi, Dirac, and a score of others whose writings I struggled through.
It was perhaps not the most efficient way to learn, for there was much
I did not understand until much later; at times, I understood nothing
at all. But what I did absorb was priceless: a sense that in those
written words and mathematical relations were ideas of fundamental
importance—deep ideas that with further effort I would one day be

2 Introduction: The Fire Within



able to comprehend. The pages spoke as if the authors, themselves,
were present. In this way, my passion for physics survived tiresome
and seemingly pointless classroom analyses of falling projectiles,
rolling cylinders, and swinging pendula that many a hapless student
bore somnolently to the end of his final exam—and then promptly
forgot.

* * *

What kind of physicist did I finally become? In an age when science
is infinitely fragmented, its practitioners highly specialized, and experi-
mentalists and theoreticians likely to find themselves on different
floors, if not altogether in separate buildings, I hope it will appear
neither coy nor audacious to give the reply I. I. Rabi gave when asked
to classify himself: “I am just a physicist.”2 The German chemist
Wilhelm Ostwald, who was much interested in the subject of scientific
creativity, divided scientists into classicists, who systematically bring
to perfection one or a few discoveries, and romanticists, who pursue a
multitude of ideas, albeit incompletely. I rather like the colorful and
sympathetic distinction drawn between these two dispositions by edu-
cator Gilbert Highet in his book The Immortal Profession3:

Will you decide (as Swift put it) to resemble a spider, spinning out endless
webs from its own vitals, or a bee, visiting flower after flower and extracting
a different sweetness from each of them? Will you be like those individualists
one sees out west in Colorado and Wyoming, who dig their own little vertical
mine shafts into the earth, and spend the rest of their days extracting ore from
the same small vein? Or will you be a wandering prospector, trying first this
mountain range and then that, never working out a single lode but always
adventuring farther forward?

One has but to scan the employment notices in science periodicals
to realize in an instant what type of scientist is sought the most today
by academia, industry, or government. Nevertheless, for what it is
worth, I confess unabashedly to being a romanticist who has spent
years happily adventuring in whatever “mountain range” I found
interesting. Unbound to any one field or to any one machine, I am
attracted by problems, whether of an experimental or theoretical
nature, that are conceptually intriguing, even if at the time I may be
alone in thinking so.

The essays in this book are based on some of the research with which
I have instructed and entertained myself over the past few decades.
Touching on topics drawn from quantum mechanics, atomic and
nuclear physics, electromagnetism and optics, gravity, thermodynam-
ics, and the mechanics of fluids, these essays are about different 
physical systems whose behavior has stimulated my curiosity, 
provoked in me surprise, and challenged my imagination. There are

Introduction: The Fire Within 3



strange processes for which no visualizable mechanism can be given;
processes that seem to violate fundamental physical laws, but which,
in reality, do not; processes that are superficially well understood, yet
turn out to be subtly devious. The essays address specific questions 
or controversies from whose resolution emerge lessons of general 
significance.

For example, does an atomic electron move? How would one know?
Would an “antiatom” fall upward? Is the vacuum really empty? Can
an atom be larger than a blood cell? If it were, would it behave like a
miniature planetary system? Can a particle be influenced by an elec-
tric or magnetic field that is not there—that is, through which it does
not pass? How is it possible for randomly emitted particles to arrive
preferentially in pairs at a detector—or, conversely, to avoid one
another altogether? What constitutes a random process anyway?
Could watching decaying atoms emit light in London have an effect on
the corresponding radiative decay in New York? Does a “right-handed”
light beam interact differently with matter than a “left-handed” light
beam? How can light get brighter by rebounding from a surface
(without violating the conservation of energy)? Is a basketball changed
for having been turned 360°? Perhaps not, but what about an electron?
Could one tell the difference between an electron that has jumped out
of a quantum state and then back again and an electron that has never
jumped at all? Is there really such a thing as a “Maxwell demon”?
No?—then how is one to account for a simple hollow tube that 
blows hot air out one end and cold air out the other? And one of the
grandest mysteries of all: Where or what is the 95% of the mass of 
the Universe that is “missing”?

Broadly regarded, there is a common theme that runs through the
various chapters: the mystery and fascination of motion—whether it
be the movement of an electron, the flow of air, or the propagation of
a light wave. It is the strange behavior of what are often enough more-
or-less familiar systems—at least to physicists—that brings to my
mind the famous words of Galileo (“Eppure si muove”) adopted as the
title of the first edition of this book—words that signified to me not a
mutter of defiance, but rather an expression of wonder and awe.

Although no mathematics beyond elementary calculus is used here,
this book is not intended to be a popularization of any aspect of con-
temporary physics. Neither is it designed to be a textbook or mono-
graph. I hope, of course, that the reader may find the collection of
essays instructive, but my objective is not so much to teach physics as
to communicate, through discussion of personally meaningful investi-
gations, that the study of physics can be intensely interesting and 
satisfying even when one is not addressing such ultimate questions 
as the origin and fate of the universe. What follows, then, is essen-
tially one scientist’s personal odyssey in physics.
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Admittedly, it may seem somewhat presumptuous to believe that
one’s own work would necessarily interest and instruct others, and 
for the encouragement to think thus, I have friends and colleagues
throughout the world to thank. Indeed, one of the strongest impres-
sions that a life in science has made upon me is the transcendence of
common scientific interests over national, ethnic, racial, and religious
differences that somehow seem to pose such barriers to social inter-
course in other walks of life. I am often reminded of Sir Humphry
Davy’s and Michael Faraday’s peregrination through France in the
early 19th century, visiting French laboratories and factories and
meeting with French scientists, at a time when France was convulsed
with war. “It is almost impossible for an inhabitant of the twentieth
century to believe,” wrote Faraday’s biographer L. Pearce Williams,4

“that a party of English citizens could go about their ordinary affairs
in the middle of an empire locked in a struggle to the death with
England without the slightest inconvenience.”

But I believe it. Under circumstances less dramatic perhaps, but
nonetheless evocative of the experiences of Davy and Faraday, I have
myself gone to my mailbox more than once to find—for example, from
the (former) Soviet Union and Eastern European nations during the
“cold war” or from Iran during the “hostage crisis”—a friendly letter
opening up a scientific dialogue or extending an invitation to visit and
lecture. Where else, but in science, I have often thought, would it be
so natural and proper for total strangers half a world apart to
exchange letters telling of their deepest interests. More than one 
scientific adventure began, in fact, with my opening or writing such 
a letter.

To someone like me, who has been for most of his professional life
simultaneously a physicist and a teacher, the pursuit of physics is an
activity intimately coupled with education. One conducts scientific
research ideally to learn new things, and that inquiry is somehow
incomplete until shared. Teaching science to others is, in effect,
sharing the fruits of discovery made, not by oneself alone, but by some
of the most creative people who have ever lived. It is not simply occu-
pational parochialism that fosters my belief that science, in general
and physics, in particular, are much more than merely the source of
better technology and higher lifestyles, but rather a precious intellec-
tual legacy to pass on to future generations. And yet, as anyone knows
who keeps abreast of the current state of education in America,
Britain, and elsewhere, science is one of the subjects least understood
or favored by the general public. The enormous divergence between
the public perception of science and the profoundly interesting 
and important heritage that scientists know it to be, should be a
matter of great concern. I have chosen to end this book, therefore, 
with an essay not on physics, but on the teaching of physics—or, more
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generally, on why science is worth knowing and how it might best be
learned.

Finally, it is a pleasure to acknowledge many delightful, far-ranging
conversations and shared experiences with the following colleagues,
some of whom are coauthors on papers issuing from the projects 
herein described: Professor Jacques Badoz of the Ecole Supérieure 
de Physique et Chimie Industrielles (Paris), Professor Ronald Mallett
of the University of Connecticut (Storrs), Professor Geoffrey Stedman
of the University of Canterbury (Christchurch), Mr. Wayne Strange of
Trinity College (Hartford), Dr. Akira Tonomura and Dr. Hiroshi
Motoda of the Hitachi Advanced Research Laboratory (originally in
Tokyo, but subsequently relocated to Hatoyama), and my son, Chris 
R. B. Silverman, who, at the time I am writing this, is a student at
Trinity College. It is not only those kinds of motion prescribed by 
physical laws that elicit wonder, but also, in a metaphorical sense, the
extraordinary exchange of ideas and people that characterise the 
scientific enterprise itself.

Mark P. Silverman
Tall Pines Institute

July 2001

Notes

1. Based on the Preface to And Yet It Moves: Strange Systems and Subtle Ques-
tions in Physics, Cambridge University Press, New York, 1993.

2. J. S. Rigden, Rabi, Basic Books, New York, 1987, p. 8.
3. G. Highet, The Immortal Profession, Weybright and Talley, New York, 1976,

pp. 62–63.
4. L. Pearce Williams, Michael Faraday, Simon and Schuster, New York, 1971,

p. 36.
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CHAPTER 1

The Wirbelrohr’s Roar

With all due respect to Robert Boyle, there is a “spring” to the air that
the venerable Irish physicist never dreamed of some three centuries
ago when he introduced his fellow natural philosophers to the effects
of pressure.1 Air is not merely compressible; it can course and caper
through appropriate devices in such ways as to please the ear and 
titillate, if not confound, the intellect. I learned that first hand from
playing.

Most people I have encountered, for whom physics is anything but
relaxation, could hardly imagine “physics” and “play” in the same sen-
tence—except, perhaps, one denying their equivalence. Yet, the same
laws that govern the erudite matters to which physicists give their
attention also apply to recreation. Indeed, sometimes nature’s subtlest
wiles may be invested in the simplest child’s toy. One of my favorite
science photographs2 shows Wolfgang Pauli and Niels Bohr hunched
over the ground observing the behavior of a Tippetop, a curious little
object that, shortly after being spun on its wide bottom, flips 180° and
spins on its narrow handle. As far as I know, there may still be no con-
sensus as to how it works.

When I think about the topic of physics “toys,” I find it striking 
how often the phenomena that puzzle and amuse us involve the
element of spinning. As a child, I was ever entranced by a small 
gyroscope precariously perched at the end of my finger or horizontally
suspended by a loop of string around the rotation axis in apparent 
defiance of the laws of gravity. The gyroscope still fascinates me even
though, as a physicist, I understand how it works. My own children,
when they were young, were intrigued by a “one-way” spinner, also
known as a celt, which I frequently borrowed from them for use in 
lectures on chiral asymmetry. It is a 4-in. piece of plastic (bearing 
the words “Turn on to Science”) shaped like the hull of a clipper ship
with just the slightest inequivalence between port and starboard sides.
Spin it counterclockwise and it turns freely; spin it clockwise and 
it soon wobbles vehemently, stops, and rotates in the opposite sense!



A celt is startling to behold and by no means trivial to explain. 
In fact, a partially satisfactory explanation was provided by the 
cosmologist Hermann Bondi only some hundred years after this re-
markable behavior was first reported.3 Bondi’s paper is not bedtime
reading.

I have myself often fashioned a “two-way” spinner from a wooden
pencil by carving a row of notches along its length and affixing a pro-
peller (a popsicle stick works well) to the eraser with a pin. Stroke the
notches with another pencil, and the propeller spins either clock-
wise or counterclockwise depending on a subtle manipulation by the
stroker. How does ostensibly linear motion rotate the propeller? In
some way, of course, the strokes must generate elliptical vibrations in
the pencil, but the details are hardly obvious.

If the motion of solids, with relatively few degrees of freedom, can
be puzzling, one can only begin to imagine the paradoxical possibili-
ties that arise when fluids are admitted. Consider, for example, the
simple radiometer found in many a museum gift shop. Illuminated by
bright sunlight, the four vanes (black on one side, white on the other)
spin wildly about a vertical shaft inside a highly evacuated bulb.
James Clerk Maxwell, I have been told, was ready to discard his elec-
tromagnetic theory of light upon learning that the vane spun the
“wrong” way—the wrong way, that is, if one assumes the vanes are
driven by light pressure. It is not light, however, but residual gas that
lies at the heart of the matter, although exactly how is still, more than
a hundred years later, a question for discussion.4

Some years ago, while living in Japan, my family and I encountered
near a train station in the town of Hakone the eerie strains of a most
unearthly symphony. There, about twenty meters in front of us, a
dozen or so Japanese children, whose number was quickly augmented
by my own, were feverishly grabbing long flexible colored plastic tubes
from the stand of a streetside vendor and twirling them furiously
above their heads like lariats. The burst of tones that emerged from
each musical pipe, designated “The Voice of the Dragon” by a sign in
English, soared and dropped with rotational speed over what seemed
like a good portion of the range of a flute. I have never forgotten 
this loud, wavering, rich-toned chorus of “dragon voices.” Despite the
outward simplicity of the toy, the details of its sound production are
by no means trivial, and the efforts to understand it provided both 
my students and me worthwhile lessons in physics as well as much
entertainment.5

However, when it comes to gases, nowhere are the intriguing effects
of rotational motion as counterintuitive, I think, as in the case of the
“Wirbelrohr.”

* * *
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I am not an avid reader of science fiction, and, in fact, except for the
“classics” by such writers as Jules Verne and H. G. Wells, generally
avoid this genre of literature altogether. My late father-in-law Fred,
however, who for many years was a machinist at the AT&T Bell Lab-
oratories, was a science fiction enthusiast with subscriptions to a
number of such magazines spanning at least four decades. I recall in
particular one visit to his home when, in the course of a chess game,
we began discussing some of the strange devices he had constructed
for engineers during his employment at Bell.

Perhaps the strangest device that he had ever made, however, he
made for himself, he told me. I asked him what it looked like, and he
replied that it was extremely simple: a hollow tube shaped like a T
with no moving parts of any kind. Upon my inquiring as to what it
did, Fred cocked his head, and I could see—or at least imagine I saw—
a gleam in his eyes and the faint trace of a sardonic smile beneath his
bushy white beard. It was a Wirbelrohr, he explained; you blew into
the stem, and out one end of the cross-tube flowed hot air while cold
air flowed out the other. I laughed; I was certain he was teasing me.
Although I had never head of a Wirbelrohr, I recognized a Maxwell
demon when it was described.6 I asked my father-in-law whether he
invented the device, to which Fred replied that he first read about it
in one of his science fiction magazines. “Yes indeed!,” I thought to
myself, and the look on my face undoubtedly conveyed my incredulity
as if my thoughts were audible. He insisted that it worked, and when
it worked really well, the cold air could freeze water and the hot air
could fry an egg!

I saw from Fred’s expression that he was not teasing me. My father-
in-law was from Switzerland; he was no physicist, but his skill in
making things was exceptional. I had often thought to myself that he
could make anything—although I meant, of course, anything real.
Maxwell demons were, as far as I knew, imaginary. My curiosity was
thoroughly aroused, all the more because I happened to be teaching a
course in thermodynamics that same semester.

To my great disappointment, Fred had kept no record of the device
he made, nor was he able to recall exactly when or from what maga-
zine he obtained construction drawings. After all, he built the device
some thirty years earlier. Nevertheless, having never discarded a
single volume of his science fiction library, Fred promised that, as 
time permitted, he would search for the intriguing story. At the end 
of the visit, I returned home excited, but by no means convinced 
that the Second Law of Thermodynamics should be omitted from my 
lectures.

Two weeks later, a copy of the desired article arrived in the mail.7

There, sandwiched between the last page of 38,000 Achnoid alien
carbon people without brain chords and the first page of encephalo-

The Wirbelrohr’s Roar 9



graphic analysts led by a powerful mental mutant during the dying
days of the First Galactic Empire (two undoubtedly gripping tales that
vividly reminded me once again why I rarely read science fiction) were
the anatomical details of a Maxwell demon.

My father-in-law had certainly told the truth (as I said, he was
Swiss). He, in fact, did more than that; he machined in his basement
workshop a working model, which I received from him shortly after-
ward. The exterior was more or less just as he had described it: two
identical long thin-walled tubes (the crossbar of the T) were connected
by cylindrical collars screwed into each end of a short section of pipe
that formed the central chamber; a gas inlet nozzle (the stem of the
T), shorter than the other two tubes but otherwise of identical con-
struction, joined the midsection tangentially (Figure 1.1). Externally,
except for a throttling valve at the far end of one output tube to control
air flow, the entire device manifested bilateral symmetry with respect
to a plane through the nozzle perpendicular to the cross-tubes.

Only someone with the lung capacity of Hercules could actually blow
into the stem. Instead, the nozzle was meant to be attached to a source
of compressed air. Taking the Wirbelrohr to my laboratory, I looked
skeptically for a moment at its symmetrical shape before opening the
valve by my work table that started the flow of room-temperature com-
pressed air. Then, with frost forming on the outside surface of one tube,
I yelped with pain and astonishment when, touching the other tube, I
burned my fingers!
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Figure 1.1. Schematic diagram of a Wirbelrohr or vortex tube. Room-
temperature compressed air enters the inlet tube, spirals around the central
chamber, and exits through the “hot” pipe with unconstrained cross section or
through the “cold” pipe, whose aperture is covered by a diaphragm.



* * *

Thermodynamics is different from any other dynamics in physics; 
in fact, the very word “thermodynamics” is a misnomer. Whereas the
term dynamics ordinarily embraces the idea of a system evolving in
time under the action of specific forces (e.g., electrodynamics, hydro-
dynamics, aerodynamics, and chromodynamics8), the classical theory
of thermodynamics is a study of systems in thermal equilibrium—
systems, that is, whose macroscopic thermal properties are temporally
unchanging. How some physical system has come to be in a state of
equilibrium, or how much time is required for the system to go 
from one equilibrium state to another when external conditions are
changed, is outside the principal concern of thermodynamics; for a
problem in this area, contact your local specialist in kinetics.

To those unfamiliar with the subject, it may seem that, by exclud-
ing from its domain the intricate details of specific interactions, ther-
modynamics must necessarily be a weak and ineffective science
compared with the other dynamical siblings in the family of physics.
This, however, is not the case at all. In autobiographical notes that he
merrily designated his “obituary,” Albert Einstein, a man who spent a
lifetime developing physical theories, wrote9

A theory is the more impressive the greater the simplicity of its premises is,
the more different kinds of things it relates, and the more extended is its area
of applicability. Therefore the deep impression which classical thermodynam-
ics made upon me. It is the only physical theory of universal content con-
cerning which I am convinced that, within the framework of the applicability
of its basic concepts, it will never be overthrown. . . .

The strength of thermodynamics, as emphasized by Einstein, lies in
its close and simple ties to experiment and observation. Let the whole
edifice of chromodynamics—and therefore the theory of matter itself—
collapse because quarks turn out to be nonexistent; the conclusions of
thermodynamics will remain as sound as ever.

The vast latticework of thermodynamic interrelations rests princi-
pally upon two major laws, the First and the Second. The First Law
is a generalized statement of energy conservation and is to be found
in one form or another in all dynamical theories of physics. In short,
energy can be transformed—from mechanical to electrical, or from
electrical to heat, for example—but it cannot be created from “nothing”
or destroyed. The Second Law, however, which can be expressed in a
variety of seemingly inequivalent ways, is unique to thermodynamics.
In its sum and substance, the Second Law affirms the essential irre-
versibility of natural or spontaneous processes.

The more tangible versions of the Second Law, attributable in 
one form to Lord Kelvin and Max Planck and in another to Rudolph
Clausius, reveal the historical roots of thermodynamics in the 
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practical problems of machine-making. According to Kelvin and Planck
there can be no process the sole result of which is to absorb heat and
convert it into work. “But what about the steam engine?” someone is
bound to ask. True, it operates by heating water to steam which, upon
expansion, does work, but that is not the sole result; heat is also dis-
carded to the environment. Neither the steam engine nor any other
engine converts 100% of the absorbed heat into work without in some
way changing the state of the rest of the world (including, possibly,
itself ). According to the different perspective of Clausius, there can be
no process the sole result of which is to transfer heat from a cooler to
a hotter body. Now, before one is tempted to assert that a refrigerator
does exactly that, let him recall again the restricting condition. A
refrigerator does take heat from a cool body and pumps it to a hotter
body, usually the ambient air, but only upon the input of work in the
form of electrical energy. The foregoing two statements of the Second
Law are completely equivalent; it is not difficult to show that violation
of one implies violation of the other.

Whether it is a tribute to the indomitable spirit, or simply the per-
versity, of human nature, the interdictions posed by the Second Law
have been a red flag before the eyes of many a bullish inventor. Energy
is something most people, rightly or wrongly, believe they understand
at least to some degree—and the thought of building a device that gen-
erates more energy than is employed to run it is probably not seriously
entertained except by those entirely ignorant of all science. The
content of the Second Law, however, which embodies highly abstract
notions for what is otherwise so concrete a science, rests less easily 
on the mind. It stands as a challenge to the ingenious as well as the
ingenuous.

The frustrating thing about the Second Law is that it forbids
processes for which energy remains conserved and which one might
naïvely hope can be made to work—somehow. But they cannot. A coin
dropped from a height above a tabletop falls down and heats up a little
upon impact. No one, I suspect, has ever witnessed a coin sponta-
neously rise up against the force of gravity at the expense of its own
internal thermal energy thereby suffering a drop in temperature. In
either case, mechanical and thermal energy can be made to balance,
but the process occurs in one direction only. In a similar way, the
outcome of setting a hot coin on top of a cold one is a final state of two
lukewarm coins. One could wait, as they say, “until Hell freezes over”
before the time-reversed process, whereby the lower coin becomes per-
ceptibly colder by spontaneously transferring heat to the upper coin,
ever occurs, even though the total energy of the two-coin system is
again unchanged. The foregoing hyperbolic remark actually serves a
purpose: It emphasizes an essential part of the unique quality of the
Second Law vis-à-vis all other physical laws: its statistical validity.
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Consider, for example, the First Law: the conservation of energy. 
Is it conceivable that although energy appears to be conserved in
processes involving macroscopic amounts of matter, violations never-
theless occur from time to time on an atomic level? In the early 1920s,
as physicists struggled to make sense of the structure of atoms and
the nature of light, Niels Bohr, Hendrik Kramers, and John Slater pub-
lished a paper (the notorious B-K-S paper) rejecting Einstein’s light-
quantum hypothesis and holding to the view that the principles of
energy and momentum conservation cannot be strictly applied to indi-
vidual interactions.10 Highly controversial, the B-K-S paper elicited
much discussion within the physics community. Einstein and Pauli
scathingly criticized it; Schrödinger, by contrast, was fascinated by it.
In the end, however, the B-K-S theory was decisively refuted by exper-
imental studies of the Compton effect, the scattering of light by free
electrons. If the conservation of energy and momentum applied only
to bulk matter averaged over time, and not to individual quantum
processes, then there would be a non-negligible probability than 
an illuminated electron could recoil in any direction whatever. Within
the limits of experimental precision, constrained ever more tightly 
by new methods and increasing advances in technology, every reli-
able measurement consistently revealed that individual interacting 
pairs of electrons and photons strictly conserved both energy and
momentum.11

That was probably the last time leading physicists seriously enter-
tained the thought that the basic conservation principles of dynamics
were only statistically valid. When in the 1930s the weak decay of ele-
mentary particles seemed to reveal violations of energy and momen-
tum conservation, Pauli knew to look for an alternative explanation
and predicted the existence of an elusive new particle, the neutrino.

Before the underlying statistical basis of thermal phenomena 
was clearly understood, some—Clausius, for example—regarded the
Second Law to be rigorously valid in all domains of experience. The
proscription that no process can, as a sole result, convert heat to work
with perfect efficiency was interpreted strictly to mean no process ever.
Perception of the Second Law as a manifestation of a law of large
numbers was probably first recognized by James Clerk Maxwell,
whose pioneering statistical studies of the distribution of particle
velocities and associated colligative phenomena would have marked
him as a master theoretical physicist even if he had never formulated
the laws of electromagnetism.

Although the connection may not be obvious, the previous two for-
mulations of the Second Law are equivalent to yet another formu-
lation, more fundamental, in my view, as it is readily amenable to
interpretation within the framework of the atomic theory of matter.
This third version is expressible in terms of the abstract concept of
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entropy, which, in addition to energy, is one of the basic properties (or
state variables) of an equilibrium thermodynamic state.12

From the macroscopic perspective of thermodynamics, the change in
entropy (which is what one actually measures) associated with the
transformation of a system from one equilibrium state to another is
related to the heat absorbed or released. From an atomic perspective,
however, heat is the energy exchange between physical systems as a
result of random molecular motion. In fact, the temperature of a
sample of matter in thermal equilibrium with its environment is lin-
early proportional to, and therefore a measure of, the average molec-
ular kinetic energy. Correspondingly, the entropy of the sample is a
measure of the disorder of molecular motion—that is, the number of
distinctly different ways in which the particles can be distributed over
allowed quantum states and yet still give rise to the specific macro-
scopic properties (e.g., pressure, temperature, volume) exhibited by the
sample. The higher the entropy, the greater the disorder.

Looked at statistically, then, the entropy change for a transforma-
tion between equilibrium states is a measure of the relative probabil-
ity of finding the molecules of the system in the microscopic (quantum)
states compatible with the final macroscopic equilibrium state of the
sample compared with finding them in the microscopic states compat-
ible with the initial equilibrium state. With this in mind, one can
express the third version of the Second Law as follows: In any spon-
taneously occurring process, the entropy always increases, unless the
process is reversible, in which case the entropy change is zero.

Imagine a box divided into two sealed compartments of equal
volume—one containing a gas, the other vacuum. Between the two
compartments is a removable partition. When, by some external
means, the partition is removed, the gas spreads into all of the avail-
able volume until the gas pressure is uniform throughout the box. Wait
as long as you please, the gas will never return to the original com-
partment. What, never? Well, hardly ever! For all the molecules to
move in such a way as to recreate a vacuum in the second compart-
ment would require a highly improbable configuration of molecular
velocities. Suppose, as symmetry would suggest, the probability of
finding a gas molecule in one side or the other of the original partition
is 1–2 ; then the probability that all N molecules spontaneously and inde-
pendently diffuse to the same side is (1–2)N. At room temperature (20°C)
and 1atm pressure, a sample of gas initially confined to 1cm3 contains
about 2.5 ¥ 1019 molecules.13 Therefore, compared with finding the gas
uniformly spread throughout the entire available volume, the proba-
bility that all N molecules retreat to the initial compartment is roughly

P N( )�
1

101019 .
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The denominator of this fraction is the number 1 followed by 10 billion
billion zeros. Technically, the probability is not exactly zero, but it is
certainly indistinguishable from zero for all practical purposes.

I do not know the equation of state for Hell, but if one considers the
latter “frozen over” when, statistically speaking, not a proton remains
in the observable universe,14 I can illustrate how small the above
number is or, conversely, how large the reciprocal number is. Con-
temporary theories of the elementary particles predict that baryon
number is not rigorously conserved, and therefore protons should
decay to positrons, among other things. Experiment currently places
the proton lifetime in excess of 1033 years. Assuming that there is any
validity at all to the expectation of a finite proton lifetime, let us be
generous and set it as 1040 years (or about 3 ¥ 1047 s). Having on occa-
sion seen the number of protons in the observable universe set at about
1080, I shall again be lavish and estimate the proton count at 10100

(after all, what are a few zillion protons more or less?). If at some
moment there are N0 protons, the number N(t) remaining at a time t
later is given by the exponential decay law [to be discussed further in
Chapters 4 and 8; see Eq. (4.2b)]. On average, there will be one proton
left after a time interval

(1.1a)

where T is the mean proton lifetime. Wait another 1040 years, or a total
time still on the order of 1050 s, and there is a fair chance that even
that last proton will have decayed. Hell is now completely disinte-
grated, let alone frozen.

How long must one wait for the gas molecules to evacuate the second
compartment? Let us assume—because it is simplest to do so and
because other models will hardly make any difference in the final
results—that the molecules can be treated as spherical balls of some
specified radius and mass. To be concrete, let the mass be that of the
proton (1.67 ¥ 10-24 g) and the radius be on the order of the Bohr radius
(1 ¥ 10-8 cm). It follows from the kinetic theory of gases that under the
equilibrium conditions of room temperature (20°C), 1atm pressure,
and a volume of 1cm3, the molecules in the gas move at a mean speed
of about 105 cm/s and undergo roughly 1028 collisions per second.15 A
complete rearrangement of the approximately 1019 molecular veloci-
ties should therefore occur about once every 10-9 s. However, only one
in 101019

rearrangements is likely to yield the desired configuration.
Thus, the time interval for the molecules to return to the first com-
partment would be

10-9 s ¥ 101019 � 101019
s. (1.1b)

Note that 1019 - 9 in the exponent is still about 1019. The number
1/P(N) is so large that the timescale for complete molecular rearrange-

t T N1 0
5010= ( )ln � s,
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ment obtained from any reasonable model of molecular collisions
remains insignificant in comparison.

The time expressed in relation (1.1b) exceeds the putative lifetime
of all matter in the universe [estimated in relation (1.1a)] to such an
extent that the gas molecules in the container will have long since
crumbled to photons and neutrinos before totally evacuating the
second compartment. Actually, the container, itself, would no longer
exist.16

By contrast, if the box originally contained only one molecule, the
likelihood of “all” of the gas being found in the original compartment
is clearly 50%, and one could expect this configuration to recur over
the time interval required for the molecule to traverse the length of
the container, namely in about 1cm/(105 cm/s) or about 10ms.

Looked at from the perspective of probability, the Second Law rep-
resents, not an absolute interdiction, but rather a continuum of pos-
sibilities. When few particles are involved, the behavior of the system
is invariant under time reversal—that is, processes can occur in either
direction—in keeping with the fundamental equations of motion (such
as Newton’s second law or the equations of Schrödinger and Dirac) that
do not distinguish an “arrow” of time. When, however, the numbers of
particles involved are unimaginably huge, the spontaneous transfor-
mation of a system proceeds in that direction for which the resulting
molecular configuration is overwhelmingly probable, the direction in
which entropy increases.

Having understood the statistical nature—and wishing to illustrate
the limitations—of the Second Law, Maxwell, noted for his incisive
intellect and playful spirit, proposed a mechanism that has since
become an integral part of thermodynamic lore17:

[The Second Law] . . . is undoubtedly true as long as we can deal with bodies
only in mass, and have no power of perceiving or handling the separate mol-
ecules of which they are made up. But if we conceive a being whose faculties
are so sharpened that he can follow every molecule in its course, such a being
. . . would be able to do what is at present impossible to us.

And so was born the famous (or perhaps infamous) Maxwell demon.
What could such a demon do?

Now let us suppose that . . . a vessel is divided into two portions, A and B, by
a division in which there is a small hole, and that a being, who can see the
individual molecules, opens and closes this hole, so as to allow only the swifter
molecules to pass from A to B, and only the slower ones to pass from B to A.
He will thus, without expenditure of work raise the temperature of B and lower
that of A, in contradiction to the second law of thermodynamics.

At the time of its enunciation in the early 1870s (at the end of an
elementary textbook on heat), Maxwell’s little “being” elicited little
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interest in several of the major thermodynamicists then alive. 
Clausius responded that the Second Law did not concern what heat
could do with the aid of demons, but rather what it could do by itself.
Ludwig Boltzmann, who contended with Clausius for priority in deriv-
ing the Second Law from mechanics, also side-stepped the problem by
arguing that in the absence of all temperature differences character-
istic of thermal equilibrium, no intelligent beings could form. However,
to discard Maxwell’s demon as merely frivolous is to miss an essential
point seized upon by later physicists; namely whether or not an intel-
ligent intervention (not necessarily a demon’s) can exploit in some way
the naturally occurring thermodynamic fluctuations within a system
to circumvent the Second Law.

By about 1914, it was already quite clear that no inanimate 
mechanisms could do this. Although phenomena such as Brownian
motion and critical opalescence showed clearly that substantial 
fluctuations in the thermodynamic properties of bulk matter in
thermal equilibrium can be made to occur,18 such fluctuations would
also affect any mechanism devised to operate Maxwell’s “trap door” in
a way that admitted or rejected molecules selectively. Moreover, the
smaller the mechanism, the stronger would thermal fluctuations act
upon it, and, correspondingly, the more uncontrollable would be the
outcome.

The final loophole, however, that of a device operated by intelligent
beings, was eliminated by the nuclear physicist Leo Szilard, whose
broad interests also embraced major contemporary issues in the life
sciences. In what is now regarded as a classic paper19 relating the con-
cepts of physical entropy and information, Szilard argued that any
intelligent being, even a demon, would have to make a measurement
of some kind in order to exploit naturally occurring fluctuations; the
very act of measuring would result in an entropy production sufficient
to prevent violation of the Second Law. The idea was carried further
some twenty years later when Leon Brillouin20 demonstrated more
concretely that a Maxwellian demon, working in an isolated system in
thermal equilibrium, could not see the molecules. Bathed in a sur-
rounding sea of isotropic blackbody radiation, the demon could never
distinguish one molecule from another without recourse to his own
source of illumination—and this additional light would generate an
increase in entropy.

All of this, of course, has not ended the discussion of Maxwell’s
demon. Nevertheless, from the time of Maxwell’s proposal around 1871
to the present, no one has ever found or constructed a functioning
demon, and it is probably accurate to state, as did Nobel laureate ther-
modynamicist Percy Bridgman, “that the entire invention of the demon
is most obviously a paper and pencil affair.”21

So, what about the Wirbelrohr?
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* * *

I withdrew my fingers quickly, shut off the air supply, and stared
anew at my father-in-law’s present. When frost at the cold end melted
and the temperature of the hot end dropped, I dismantled the device,
half expecting to see some diabolical little creature inside smiling at
me. Actually, it was clear at the outset that the Wirbelrohr could never
have functioned as a Maxwell demon (i.e., in violation of the Second
Law). The mere fact that the Wirbelrohr had to be fed compressed air
signified that initial work was done on the gas. Nevertheless, how the
Wirbelrohr converted work into such a striking difference in temper-
ature was a mystery to me.

With the few parts of the Wirbelrohr laid out on my table, I under-
stood better the significance of the German name “Wirbelrohr,” or
vortex tube. The heart of the device is the central chamber with a
spiral cavity and offset nozzle. Compressed gas entering this chamber
streams around the walls of the cavity in a high-speed vortex. But
what gives rise to spatially separated air currents at different tem-
peratures? Regarding the pieces closely, I recognized immediately
what had hitherto escaped my attention when I had only the story
from the science fiction magazine (which scarcely made an impression
on me as long as I thought it could be a hoax). Although there were
indeed no moving parts of any kind, the internal geometry of the device
belied the outward bilateral symmetry. The symmetry was broken by
the placement in one cross-tube of a small-aperture diaphragm that
effectively blocked the efflux of gas along the walls of the tube, thereby
forcing this part of the airflow to exit through the other arm whose
cross section was unconstrained.

The glimmer of a potential mechanism dawned on me. Had the
incoming air conserved angular momentum, the rotational frequency
of air molecules nearest the axis of the central chamber would be
higher—as would also be the corresponding rotational kinetic energy—
than peripheral layers of air. However, internal friction between 
gas layers comprising the vortex would tend to establish a constant
angular velocity throughout the cross section of the chamber. In other
words, each layer of gas within the vortex would exert a tangential
force upon the next outer layer, thereby doing work upon it at the
expense of its internal energy, at the same time receiving kinetic
energy from the preceding inner layer. Energy would consequently flow
from the center radially outward to the walls generating a system with
a low-pressure, cooled axial region and a high-pressure, heated cir-
cumferential region. Because of the diaphragm, the cooler axial air had
to exit one tube (the cold side), whereas a mixture of axial and periph-
eral air exited the other (the hot side).
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The presence of the throttling valve on the hot side now made sense.
If the low pressure of the air nearest the axis of the tube fell below
atmospheric pressure, the cold air would not exit at all; instead,
ambient air would be sucked into the cold end—which is what I found
to be the case when the valve was fully open. By throttling the flow,
pressure within the central chamber was increased sufficiently so that
air could exit both tubes. Thus, this simple, yet ingenious, device trans-
ferred energy within its working fluid (air) by means of a mechanism
incorporating no moving parts except for the fluid itself.

However, even if no demon was at work, did the Wirbelrohr violate—
or come close to violating—the Second Law? Because it involved a
complex, turbulent fluid flow, the operation of an actual vortex tube
could not be described strictly by thermodynamics alone. Nevertheless,
with some simplifying assumptions, I was able to calculate the entropy
change incurred by passage through the Wirbelrohr of a fixed quan-
tity of gas of known initial temperature and pressure. Under what is
termed adiabatic conditions (i.e., with no heat exchange with the envi-
ronment), the Second Law requires that the entropy change of the gas,
alone, be greater than or equal to zero. The resulting mathematical
expression, augmented by the equation of state of an ideal diatomic
gas and the conservation of energy (First Law of thermodynamics),
yields an inequality

(1.2)

relating the temperature (Tc) of the cold air flow to the initial tem-
perature (Ti) and pressure ( pi) of the compressed air, the fraction ( f )
of a gas directed through the cold side, and the final pressure ( pf) of
the ambient gas (taken to be 1atm). From the First Law, the temper-
ature (Th) of the hot air flow can be expressed in terms of Tc and Ti.

By setting the expression for the entropy change equal to zero, I
could calculate the lowest temperature that the cold tube should be
able to reach if the gas flow were an ideal reversible process. The result
was astonishing. With an input pressure of 10atm and the throttling
valve set for a fraction f = 0.3, compressed air at room temperature
(20°C) could, in principle, be cooled to about -258°C, a mere 15°C above
the absolute zero of temperature! The corresponding temperature of
the hot side would have been 80°C. Clearly, the actual performance 
of the vortex tube, whose operation was by no means a reversible
process, was far from any limitation posed by the Second Law. That
did not make it any the less fascinating.

Intrigued to know more about the tube, I returned to the obvi-
ously nonfiction science fiction article that Fred sent me and tracked
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down the couple of references provided therein. The first experimen-
tal demonstration of a vortex tube seems to have been reported in 1933
by a French engineer, Georges Ranque.22 Because at the time the
device was the subject of a patent application, Ranque provided no
drawings or quantitative analysis. Nevertheless, I was pleased to find
from the general principles he enunciated that I had arrived at a broad
explanation largely coincident with his own.

Little more was apparently heard of this device until about thir-
teen years later when, after the Second World War, detailed experi-
mental investigations of German physicist Rudolph Hilsch came to 
the attention of an American chemist, R. M. Milton of Johns Hopkins
University, who had Hilsch’s work published in English.23 In Hilsch’s
hands, proper selection of the air fraction f (approximately 1–3) and an
input pressure of a few atmospheres gave rise to an amazing output
of 200°C at the hot end and -50°C at the cold end. Hilsch, who was
the one (not my father-in-law) to coin the term “Wirbelrohr,” used the
tube in place of an ammonia precooling apparatus in a machine to
liquefy air.

What alerted the author of the science fiction article to the existence
of Hilsch’s work was an initially brief report in the news section of 
an American chemical engineering journal24 in 1946. The information
was apparently furnished by Milton, who had visited Hilsch’s labora-
tory and brought back (or perhaps constructed later) a small model 
of the vortex tube. Milton, according to the journal report, was not 
satisfied with the interpretation of Hilsch and Ranque that frictional
loss of kinetic energy produced the radial temperature distribution.
Upon requesting journal readers to submit their own interpretations,
the reporter soon found himself inundated by a flood of letters 
from all over the world, a few excerpts of which appeared in a second
report, also in 1946. Then, signing off cheerily with the hope that 
the information might provide a solid basis for further investigation,
the reporter ceased all mention, as far as I knew, of the vortex tube.

Left with a farrago of explanations and a slim collection of old ref-
erences, I looked wistfully at my Wirbelrohr. Did anyone really know
how it worked?

* * *

Faced with other more pressing matters, I put the tube aside, except
for occasional classroom demonstrations. Some time afterward, when
the Wirbelrohr was all but forgotten, I experienced one of those
serendipitous twists of fate that make life interesting. Standing in a
corridor of a convention center and biding my time between sessions
that interested me at a physics conference, I scanned a pile of papers
strewn over a nearby table. Suddenly, one of the papers, an abstract
of a talk to be given (or quite possibly already given) at a different sci-
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entific society than the one then convening, caught my eye; in its title
I saw the words “Ranque–Hilsch Effect.” Upon returning home, I wrote
to the first author of the abstract, who kindly sent me a copy of his
papers.25 What was proposed therein, supported by experiment, was 
a mechanism far different from anything that I had seen proposed
before.

According to a story often told in connection with Wolfgang Pauli,
an eccentric genius whose acerbic criticism could be devastating
(Ehrenfest called him “Die Rache Gottes”—the wrath of God), Pauli
presented a new theory of elementary particles before an audience
including Niels Bohr. Bohr, by contrast known for his gentle qualities,
could nevertheless rise to the occasion when critical remarks were
required. “We are all agreed that your theory is crazy,” he allegedly
replied. “The question which divides us is whether it is crazy enough
to have a chance of being correct. My own feeling is that it is not crazy
enough.”26 Although the paper that I read was certainly not crazy, 
it seemed to me sufficiently strange and original to have a chance of
being correct.

With a loud roar, air rushes turbulently through the Wirbelrohr, just
as it does through a jet engine or a vacuum cleaner. Buried within that
roar, however, is a pure tone, a “vortex whistle” as it has been called,
that emerges from the selective amplification of background noise.
Although high-pitch whistles are often associated with the swirling
flow of gas in turbomachinery with rotating shafts and blades, the
vortex whistle can be produced as well by the tangential introduction
and swirling of gas in a stationary tube. It is this pure tone or 
whistle, whose frequency increases with the velocity of swirling—and
hence with the pressure of the compressed air—that is purportedly
responsible for the spectacular separation of temperature in a vortex
tube.

The Ranque–Hilsch effect is a steady-state phenomenon (i.e., 
an effect that survives averaging over time). How can a high-pitch
whistle—a sound that, depending on air velocity and cavity geometry,
can be on the order of a few kilohertz—influence the steady (or, in elec-
tric terms, the dc) component of flow? The answer, so the authors con-
tended, was by “acoustic streaming.” As a result of a small nonlinear
convection term in the fluid equation of motion, an acoustic wave can
act back upon the steady flow and modify its properties substantially.
In the absence of unsteady disturbances, the air flows in a “free” vortex
around the axis of the tube; the speed of the air is close to zero at the
center (like the eye of a hurricane), increases to a maximum at around
mid-radius, and drops to a small value near the walls of the tube.
Acoustic streaming, however, deforms the free vortex into a “forced”
vortex within which the air speed increases linearly from the cen-
ter to the periphery. Acoustic streaming and the production of a 
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forced vortex, rather than mere static centrifugation, engender the
Ranque–Hilsch effect.

The experimental test of this hypothesis could not have been any
more direct. Remove the whistle—and only the whistle—and see
whether the radial temperature distribution remains. To do this, the
authors first monitored the entire roar with a microphone and sent the
resulting electrical signal to a signal analyzer that decomposed it into
composite frequencies, of which the discrete component of lowest fre-
quency and largest amplitude was identified as the vortex whistle.
Next, they enclosed the central cavity of the Wirbelrohr inside a
tunable acoustic suppressor: a cylindrical section of Teflon with radi-
ally drilled holes serving as acoustic cavities distributed uniformly
around the circumference. Inside each hole was a small tuning rod that
could be inserted fully (i.e., until it touched the outer shell of the
Wirbelrohr) to close off the cavity or could be withdrawn incremen-
tally to make the cavity resonant at the specified frequency to be 
suppressed.

To simplify their experimental test, the authors sealed off one output
of the vortex tube and monitored with thermocouples the tempera-
ture difference between the center and periphery of the cavity (which
was effectively equivalent to monitoring the temperature difference
between the two output tubes). In the absence of the suppressor, an
increase in the pressure of the compressed air produced, as I had
noticed when experimenting with my own vortex tube, a louder roar
and greater temperature difference. When, however, the acoustic
cavity was adjusted to suppress only the frequency of the vortex
whistle (leaving unaffected the rest of the turbulent roar), the tem-
perature difference plunged precipitously at the instant the corre-
sponding input air pressure was reached (Figure 1.2). In one such 
trial, the centerline temperature jumped a total of 33°C from -50°C to
-17°C. With further increase in air pressure, the frequency of the
whistle rose and, as it exceeded the narrow band of the acoustic sup-
pressor, the temperature difference began to increase again. Additional
evidence came from a striking transformation in the nature of the flow,
itself, discernible with a touch of the hand. Before the frequency of the
vortex whistle was suppressed—and while, therefore, a significant
radial temperature separation was produced in the tube—the exhaust
air swirled rapidly near and outside the tube periphery in the manner
expected for a forced vortex. Upon suppression of the whistle, however,
the forced vortex was also abruptly suppressed; now quiescent at the
periphery, the air rushed out close to the centerline.

So the “demon” in the Wirbelrohr did not merely roar—it whistled,
blowing hot and cold air simultaneously out different sides of its
mouth. Thermodynamic analysis has shown that the Ranque–Hilsch
effect is not particularly efficient at producing cold air. I have esti-
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mated the coefficient of performance, defined as the amount of heat
removed from a mole of gas divided by the amount of work done 
on the gas, to be ideally just under unity (e.g., about 0.9), whereas 
the corresponding performance of a reversible machine (a Carnot 
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Figure 1.2. Relation of the vortex whistle to the Ranque–Hilsch effect.
Increasing the pressure of the compressed air raises the frequency ( f ) of the
vortex whistle [graph (c)]. When the frequency of the whistle corresponds to
the tuned frequency ( ft) of the acoustic suppressor, the contribution of the
whistle (and its first harmonic at 2f ) to the acoustic noise is greatly dimin-
ished [graph (b)], the temperature at the centerline of the central chamber
jumps upward, and the temperature difference between what is effectively the
“hot” and “cold” pipes falls precipitously [graph (a)]. The temperature differ-
ence grows again as f is made greater than ft. (From M. Kurosaka et al.,
AIAA/ASME 3rd Joint Thermophysics Conference, 1982, Paper AIAA-82-
0952.)



heat pump) operating under the same conditions is about 5. The 
actual performance of Hilsch’s tubes ran at or below 0.2. But, who
could be so crass as to talk about the efficiency of a remarkable 
phenomenon?

For all I know, the case of the mysterious Wirbelrohr is largely
closed, although, science being what it is, future versions of that device
may yet hold some surprises in store. I have sometimes wondered, for
example, what would result from supplying a vortex tube, not with
room-temperature air but with a quantum fluid, like liquid helium,
free of viscosity and friction.

The exorcism of the demon in the Wirbelrohr will not, I suspect,
dampen one bit the ardor of those whose passion is to challenge the
Second Law. Despite the time and effort that has been frittered away
in the past, others will undoubtedly try again. On the whole, such
schemes are bound to fail, but every so often, as in the case of
Maxwell’s own whimsical creation, this failure has its positive side:
when, from the clash between human ingenuity and the laws of nature,
there emerge sounder knowledge and deeper understanding.

1.1. Wirbelrohr Follow-up

In the years following publication of And Yet It Moves, I had again put
the vortex tube aside and concerned myself with other matters. Always
curious, however, I could not help wondering, in the midst of prepar-
ing this edition, whether acoustic streaming as an explanation of the
hot and cold air flows has stood the test of time, or whether other mech-
anisms may have been proposed and tested. Having now at my dis-
posal a remarkable information resource—the Internet—which was
not available to me when I first began to write And Yet It Moves, I
typed into my search engine a few keywords and sat back in antici-
pation of what I would find.

I did not have long to wait—0.05s to be exact. The very first item
on the relatively short list of returns bore a somewhat cryptic URL27

with truncated, tantalizing excerpts of text promising an interesting
result. I clicked the hypertext title and up popped an official-looking
memorandum directed to a scientific news group concerned with
fusion. Fusion? What could possibly connect the vortex tube to nuclear
fusion? I looked further and was even more surprised. The memoran-
dum originated from no less a bulwark of national security than the
Naval Undersea Warfare Center (NUWC) of the United States Navy.
“Eureka,” I thought, “the U.S. Navy plans to power its nuclear sub-
marines with vortex tubes!” I ran my eyes rapidly down the page to
see the details of this exciting (and thoroughly unworkable) under-
taking and, from the haunting familiarity of the text, realized imme-
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diately that my speculation was conceived too hastily. There, on the
screen before me, was the text of my own book, five laser-printed pages
full of material from this very chapter, complete with diagrams!

Apart from the thought, natural to an author, that the dissemina-
tion of his book over the Internet without permission must constitute
some sort of copyright infringement, I stared in amazement at the
screen, wondering why the U.S. Navy was citing my discussion of the
Wirbelrohr. In answer to my silent query, I read further:28 “The fol-
lowing may be relevant to the Potapov device. It contains excerpts from
‘And yet it moves . . . strange systems & subtle questions in physics,’
by Mark P. Silverman, . . . .”

I never heard of “the Potapov device,” but it did not take more than
a few mouse clicks to learn all that I needed to know about it. Ac-
cording to one source,29 it was a water-heating device developed in 
Moldavia by Dr. Yu. S. Potapov “reported to produce a heat output up
to 3 times greater than the energy required to drive it.” But why stop
at a mere 300% efficiency? Another more exuberant source30 pro-
claimed that “Potapov’s devices input several kilowatts of electricity
into a centrifugal water pump . . . and gets [sic] out reportedly 400%
to 1000% excess power in hot water!” Moreover, the device is available
commercially and “hundreds upon hundreds of satisfied customers
have ratified the technology in the marketplace!” I presume that
meant that many Moldavians bought the device, but there is no
mention of what they thought after trying it. Based on experiments
reported in the first source, however, I can readily guess. “The Potapov
device,” the experimenters reported ruefully, “did not show any 
evidence of over-unity performance in our tests. We can find no expla-
nation for the failure of this Potapov device to perform as reported
(300% over-unity).”

I can suggest an explanation: The device does not work, has never
worked, and will never work, and the report of “over-unity perfor-
mance”—pseudoscience jargon for getting out more energy than one
puts in—is either a deliberate fabrication or inept self-delusion. No
device (like an engine or a pump) operating cyclically (i.e., returning
to its original state after an operating cycle) produces more energy
than it receives; to do so would violate the First Law of Ther-
modynamics. Moreover, the Second Law is even more restrictive; it
prescribes what fraction of input energy can at best for given 
circumstances be converted into useful work—and this fraction is
always less than 1. The only way a device could release more energy
than it receives would be by tapping into the chemical or nuclear
potential energy of its working material (a noncyclic process), which,
in the case of the Potapov device, is water.

Water (H2O) contains hydrogen atoms and the fusion of hydrogen
atoms into helium (the process that powers the Sun) releases an enor-
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mous quantity of energy. For example, the fusion of deuterium (2H)
and tritium (3H), two isotopic forms of hydrogen, to form helium (4He)
generates a neutron and 17.6MeV (million electron volts) of energy.31

[By contrast, the chemical combination of two hydrogen atoms to form
a hydrogen molecule (H2) releases only about 27eV (i.e., a million times
less energy).] It is indeed wonderful to contemplate the production of
vast quantities of energy by hydrogen fusion, except that the Potapov
device, operating (as I understand it) off room-temperature water,
could never do this. For hydrogen atoms to get close enough to fuse,
they must overcome the repulsive electrical force or Coulomb barrier
between them, and this requires a mean kinetic energy per particle of
about 10keV (thousand electron volts), or a temperature of about 100
million degrees Centigrade.32

There are many out there in “cyberspace,” I have found, who do 
not like the laws of thermodynamics, or other physical laws for that
matter. They regard them not as limitations imposed by an indif-
ferent Nature, but as barriers constructed by an arrogant scientific
priesthood for the purpose of thwarting their wishes. Their diversity
embraces all kinds of irrational belief—the denial of biological evolu-
tion, the denial of an ancient Earth, or the espousal of countless invalid
schemes for generating energy out of nothing. Among the latter is a
large subculture devoted to the exploitation of “cold fusion,” the gen-
eration of nuclear fusion at temperatures close to room temperature,
usually (although not exclusively) by various kinds of electrochemical
reactions. All attempts by creditable laboratories to reproduce such
claims have, to my knowledge, failed.

There is a certain irony to the ending of this chapter. I began, in
effect, with my father-in-law’s search through his science fiction col-
lection for an article he once read concerning the vortex tube, and, as
a consequence of my own internet search for the vortex tube, I have
found the NUWC message with extensive excerpts from this chapter
embedded in websites touting “new energy,” “new science,” and so
forth. The only difference between science fiction and “new science” is
that the authors of the former know they are writing fantasy. The
authors of the latter, I suspect, do not want to know. As one such site
proclaims,33 it “is a big nasty nest of ‘true believers’ . . . and skeptics
may as well leave in disgust.”

Driving out skeptics, however, will not change the reality of the
physical world. Neither the Potapov device nor any other room-
temperature water pump is going to generate more energy than it
receives, or perform work with an efficiency greater than that per-
mitted by the Second Law. If you do not believe me, just ask one of
those 38,000 Achnoid mutants without brain stems . . . or was it one 
of those encephalographic carbon aliens without adenoids . . . or . . .
whatever.
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CHAPTER 2

Musical Bottles, Flying Balloons,
and Hot Stoves: The Uncommon

Physics of Common Things

2.1. The Good Sound of CokeTM: 
Physical Modeling by Analogy

In the lighthearted, madcap African satire, The Gods Must Be Crazy, a
Coke bottle, nonchalantly tossed from the cockpit of an airplane, landed
in the midst of an isolated Bushman family never before exposed to the
familiar commodities of “civilization.” Of the many uses the family
found for this mysterious “heaven-sent” gift, among the most pleasing
was that of a musical instrument. (As the story unfolded, however,
there were other less pleasing attributes—and the resourceful
Bushman went to great lengths to return the gift and recover his peace
of mind.) By teaching courses based on what I have called “self-directed
learning”1 —the radical proposition that students learn science better
when striving to answer questions that arise out of their own curios-
ity—I have often been led to explore imaginative avenues of physics
that would not likely have occurred to me had it not been for the curios-
ity of some student. In this way, I, together with a student colleague (E.
R. Worthy), likewise came to realize that a Coke bottle—or, more pre-
cisely, about ten bottles containing different volumes of water—does
indeed make a splendid instrument. Yet, surprisingly, for so superfi-
cially simple a structure, the tones of the bottle are by no means easily
accounted for. For my student and me, as for the Bushman, the Coke
bottle has not been drained of all its mystery.

To exploit the musical properties of the Coke bottle (or any other
bottle) as an acoustic resonator, one must determine the relationship
between the fundamental frequency f and the length of the air column
�. Despite the overall cylindrical symmetry of the bottle, the problem
is a challenging one—and within the elementary physics literature
that my student and I surveyed, we encountered no discussion of 
the issues involved beyond the standard geometric depiction of 
axial standing waves in tubes of constant cross section.2 As shown in
Figure 2.1 for the case of a tube sealed at one end (like the Coke bottle),



each longitudinal mode has a displacement node at the closed end and
(to good approximation) a displacement antinode at the open end. The
lowest-frequency mode, therefore, has a wavelength l = 1–4�, from which
it readily follows that the fundamental frequency is

(2.1)

where vs is the speed of sound, which is about 344m/s at 1atm and
20°C. 

From the shape of a Coke bottle, illustrated in Figure 2.2a, one
might think that the “organ pipe” of Figure 2.1 would serve as a useful
model for predicting the fundamental frequency. This, however, is far
from the case. Nevertheless, a relatively simple approach that avoids
solving the differential equations of wave theory can be made by
analogy between an acoustic resonator and the ordinarily more famil-
iar elements of ac circuit analysis. A comprehensive wave analysis of
acoustic systems leads to equations of the same form as those of ac
circuit theory when the lengths of individual components are small
compared with a wavelength of sound. Justification of this assertion
is by no means trivial, but is demonstrated in advanced books on 
theoretical acoustics.3 From such a comparison, we find the following:
(1) the gauge pressure (the difference between actual and equilibrium
air pressures) in the acoustic system corresponds to the voltage at a
point in the circuit; (2) the air flow (volume/time) through an orifice
corresponds to the electric current; (3) a short narrow tube (a con-
striction) of length �c and cross section Sc is equivalent to an induc-
tance (termed the analogous inductance)
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Figure 2.1. Fundamental mode of a single open-ended organ pipe.



in which r is the mass density of air (�1.2kg/m3 at 1atm and 20°C);
(4) a broad tube (a tank) of length �t and cross section St is equivalent
to the analogous capacitance
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Figure 2.2. (a) Scale drawing of a Coke bottle; the three sets of numerals des-
ignate (left to right) the inside air column length (in cm), the water volume of
cylindrical segment (in cm3), and the bottle diameter (in cm). (b) Generation
of a Coke bottle from a hyperbolic tangent curve. (c) Variation with length
along the bottle of the generatrix and its first and second derivatives.



(5) radiation of sound (of angular frequency w) from a constriction
opening into free space constitutes an analogous terminal resistance

(2.2c)

One further refinement is necessary to make the model correspond
more closely to reality. Because the antinode of a standing wave in a
tube actually lies a little above the open end, we should replace �c in
Eq. (2.2a) by an effective length 

(2.3)

that depends on the size of the opening. The correction, which is not
necessary for the (much larger) tank, shows that even a flat aperture
(�c = 0) contributes an analogous inductance.

With the preceding relations, a wide variety of acoustic systems
(bottles, horns, reed instruments, strings, loudspeakers, etc.) can be
modeled in terms of their electrical counterparts. Now, let us examine
the Coke bottle.

To an approximation sufficient for the purposes of this discussion,
the Coke bottle (8 fluid ounces) of Figure 2.2a comprises a short neck
inserted into a longer tank, a structure known as a Helmholtz res-
onator. Blowing across the mouth of the bottle excites the air inside to
vibrate, but only those vibrations at the resonant frequencies of the
bottle are amplified. Unless the bottle is “overblown,” it is principally
the fundamental tone that one hears, and it is this tone alone that we
want to predict. If we neglect energy dissipation at the open end and
at the walls, the bottle can be modeled by the ac circuit of Figure 
2.3 containing a capacitor (of capacitance C) and inductor (of induc-
tance L) in series. A series LC circuit exhibits a complex impedance4

Z = i(XC - XL) in which 

(2.4a)

is the capacitive reactance and

XL = wL (2.4b)

is the inductive reactance for an applied harmonic signal of angu-
lar frequency w. If the capacitive and inductance reactances are 
equal, then the impedance of the circuit vanishes. From Eqs. (2.4a)
and (2.4b), it follows that this resonance condition occurs at the 
frequency
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Substitution of relations (2.2a) and (2.2b) and effective length (2.3)
into Eq. (2.5) leads to the following expression for the fundamental fre-
quency of a cylindrical bottle:

(2.6)

with a and b the radii of the mouth and the base of the bottle, respec-
tively. Because a, b, and �c are fixed parameters for a particular bottle,
Eq. (2.6) expresses the fundamental frequency as a function of the vari-
able tank length �t = � - �c, where � is the full length of the air column.
Thus, in marked contrast to Eq. (2.1) for the constant-diameter organ
pipe in which f µ �-1, the fundamental of the bottle should vary as 
(� - �c)-1/2.

Now, the Coke bottle, whose radius varies smoothly from mouth 
(a � 1.4cm) to base (b � 3cm), is not, strictly speaking, a Helmholtz
resonator, which, technically, comprises two joined tubes each of con-
stant radius. How, then, is one to decide where the constriction ends and
the tank begins? A good rule, supported by examination of the equations
characterizing wave propagation in the bottle, is as follows: Take �c to
be the distance from the mouth to the point where the second deriva-
tive of the bottle shape is maximum. Briefly, the wave equation for sound
produced by the bottle differs from the comparable equation for an organ
pipe only by a term containing this second derivative. Although small
in magnitude and effectively applicable only over a small segment of the
bottle length, this term is responsible for the marked difference in
acoustic behavior between the bottle and the organ pipe. 

As an illustration, look at Figure 2.2b, which depicts a mathemati-
cal simulation of the Coke bottle obtained by rotating the curve (with
radius y and length z in cm)
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Figure 2.3. Diagram of the series LC circuit to which the Coke bottle,
modeled as a Helmholtz resonator, corresponds.



(2.7)

about the symmetry axis. Apart from the acoustically unimportant
shallow indentation near the base in Figure 2.2a, the generatrix (2.7)
provides an accurate representation of the size and shape of the Coke
bottle. Equation (2.7) was obtained by trial and error, guided by the
“principle of simplicity” to select the simplest curve that makes a
smooth transition between the mouth and base. The desired sigmoid
shape almost cried out for a hyperbolic tangent; the third power of the
argument best reproduced the curvature of the bottle in the critical
region where the constriction joins the tank. Figure 2.2c shows the
variation with length of the generatrix (curve A) and its first (curve B)
and second (curve C) derivatives. The location of the positive maxi-
mum value of curve C establishes that �c � 3.5cm.

Upon substituting into Eq. (2.6) the preceding Coke-bottle para-
meters and the speed of sound in air at room temperature, there
emerges the final relation

(2.8)

for fundamental frequency f (Hz) as a function of air column � (in cm).

* * *

So, what is the “sound” of Coke? To test the predictive accuracy of
our model, Eqs. (2.6)–(2.8), my student and I measured the frequency
of the tones obtained by blowing across the mouth of a Coke bottle
filled to different levels of water. In keeping with the spirit of a home-
based project to be performed with apparatus more or less readily
available outside the physics laboratory, the resonant frequencies of
the bottle were measured by means of a guitar tuner calibrated against
a well-tuned piano. Water levels were sought for which the tuner 
registered standard notes, which were then converted to the corre-
sponding frequencies. Heights were measured to within 0.1cm, and
the experimental uncertainty in frequency is estimated from the inter-
vals of the guitar tuner to be less than 21/48 - 1 times the frequency of
middle C, or approximately 4Hz.

Figure 2.4, which gives results for both the Coke bottle and a right-
circular cylinder closed at one end, summarizes the outcome of these
experiments. One readily sees that the observed frequencies of the
Coke bottle bear out very well the ac circuit resonator model and that
a model of the bottle as an organ pipe is in thorough disagreement
with experiment even though the curvature of the Coke bottle is 
relatively small (as shown in Figure 2.2c). 
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For the reader interested in the musicality of the bottle, the follow-
ing table records the water levels (in cm) required to produce notes
needed for various popular tunes5:

C4 1.5cm C5 10.2cm
D4 3.4 D5 11.1
E4 5.4 E5 12.1
F4 6.4 F5 12.4
G4 8.3 G5 13.1

Although a general discussion of environmental effects on the tones
of the Coke bottle would take us too far afield, temperature (T) is suf-
ficiently important to consider briefly. All other parameters remaining
unchanged, the increase in sound velocity vs with T would raise the
pitch of the bottle, as shown explicitly in Eqs. (2.1) and (2.6). However,
raising T causes both the glass container and water contents to
expand, thereby changing the length of the air column. Because the
volume coefficient of expansion of water (2.1 ¥ 10-4 per °C) is greater
than that of glass (�1.1 ¥ 10-5 per °C for Pyrex), an increase in 
temperature should lead to a shorter air column and, therefore, to a
higher pitch. In our experiments, we measured the variation in 
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Figure 2.4. Theoretical and experimental variation of air-column length with
frequency for both a Coke bottle and a right-circular cylinder closed at one
end. At the scale shown, the uncertainties in length and frequency are smaller
than the plotting symbols.



frequency as a function of temperature and found, overall, an increase
of 22Hz (approximately the interval of one note) over the range 
of 85°C—a change corresponding to a net rise in water level of about
1cm.

Because a Coke bottle is not of uniform diameter, the change in
water level (and therefore the length of the air column) engendered by
a given volume expansion will have greater consequence where the
bottle is narrow than where it is wide. Thus, temperature variations
will affect more severely those pitches in the higher octaves than in
the lower ones.

* * *

Although much of the physics that excites a student’s imagination
may often pertain to exotic realms far from daily reality (like black
holes, time travel, and the fate of the universe), there is also a certain
satisfaction that comes from being able to understand the behavior of
familiar objects. Learning physics, I believe, is greatly facilitated when
teachers can convey an appreciation for the power of general physical
principles to account for what students frequently experience, yet
rarely understand.

It may turn out as well—and such is the case with the Coke bottle—
that, for all its familiarity, a superficially simple object hardly worth
noting may pose a daunting challenge. In such instances, the use of
analogy provides a powerful strategy. If science, as Nobelist Peter
Medawar has written, is the “Art of the Soluble,”6 then the art of that
art is modeling, the capacity to exploit threads of commonality between
outwardly dissimilar systems to arrive at a partial understanding of
a complex and puzzling phenomenon. Moreover, in this art of model-
ing, what best serves as a model system can be surprising, at least to
the uninitiated. Without prior experience, very few students—even
physics graduate students—would look at a Coke bottle and see a 
resonant LC circuit rather than the structurally closer counterpart of
an organ pipe.

However, analogy is not identity—and what a model omits from first
consideration may yet prove decisive to deeper inquiry. The study of
the humble Coke bottle is by no means a closed book. For example, if
the bottle were of soft plastic, then a gentle deformation by squeezing
would damp out the fundamental tone. Why? Is this the ineluctable
consequence of broken cylindrical symmetry? No, for hard-glass bottles
of highly elliptical cross section render strong fundamental tones. (Try
blowing across an empty maple syrup bottle.) The simple resonator
model does not explain this.

On the other hand, one might ask why the LC circuit model works
as well as it does. In a puzzling reversal of expectations, I was initially
astonished to discover that supposedly more sophisticated mathe-
matical models of acoustic resonators that treated the bottle as a 
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continuous transmission line with no arbitrary division between neck
and tank predicted fundamental tones less accurate than those of the
cruder resonator model with lumped-circuit elements. How can this
be? It must suffice to say here only that to understand variable-
diameter resonators like a Coke bottle in all their complexity constitutes
a study of three-dimensional waves, including both radial and longi-
tudinal modes of air vibration as well as the elastic properties of 
the vessel walls. The investigation is a fascinating one, but not 
recommended for the mathematically fainthearted.

From the perspective of experiment, however, the ready availability
of personal computers with microphones and sound-analyzing soft-
ware makes it possible to explore the acoustic properties of bottles and
other simple resonators in great detail. It is an excellent way to learn
about waves and vibrations in familiar systems with mysteries yet to
be explored.

2.2. Comedy of Errors: What Every 
Aeronaut Needs to Know

As a physics teacher, I have often pointed out—to motivate a captive
audience that would not likely have been sitting before me had not
medical school or other professional school requirements loomed over
them—that there is survival value to learning physics. To go unarmed
into a technologically complex world without the slightest under-
standing of the universal laws and fundamental principles that make
such a world possible is to be as naked and helpless as our paleolithic
ancestors must have been before lightning and thunder. That, at least,
was how the rhetoric went—and I cannot say with conviction that 
the majority of students found it convincing. However, here at last, 
is an indisputable example—drawn from no less a bastion of jour-
nalistic integrity than the newsletter of the American Physical
Society—that awareness of physics could convey a degree of protection
against self-destructive acts of ignorance.7

The case at hand is that of the unfortunate Californian who longed
to float leisurely some 10m above his back yard, eating sandwiches
and drinking beer, until such time as he chose to descend. To realize
his dream, he purchased 45 weather balloons, which he inflated with
helium and attached to his lawnchair, secured by a tether to the
bumper of his jeep. Then, having provisioned his lawnchair with the
necessary snacks and a pellet gun with which to pop the balloons to
effect his descent, the enterprising aeronaut released the tether—
whereupon (according to the news report) he streaked like a rocket
into the sky, reaching equilibrium, not at 30 feet as intended, but at
11,000 feet!
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There, he drifted cold and frightened for 14 hours until he was
noticed by the pilot of a passing jetliner. (Now, the plight of the hapless
man is, in reality, no laughing matter, but can you imagine what must
have gone through the mind of the air traffic controller to whom the
pilot reported having passed someone with a pellet gun in a lawnchair
at 11,000 feet?) Eventually rescued by the crew of a helicopter, the
physics-deficient flier was arrested for having flown his lawnchair into
the air-approach corridor of Los Angeles International Airport. 

The APS NEWS report of this adventure reached me at a most pro-
pitious moment, my physics class having just completed its study of
fluids and begun to examine the properties of ideal gases. There was
a lesson—indeed several—to be learned from this adventure and, not
being one to waste an opportunity, I promptly made it the focus of the
following day’s lecture. With the data provided in the news article—
plus a modicum of creative modeling—a physics-savvy person can
predict with adequate accuracy the height at which his or her lawn-
chair would settle (and would therefore know enough at least to throw
in a down jacket and thermos of hot tea along with the sandwiches
and beer). There is survival value to the study of physics!

Let us examine this vital issue.8

* * *

The Barometer Story: Model One

I designate by m the mass of the balloons and load and by V the volume
of displaced air of density r. By Archimedes’ principle, it follows that
the balloons come to rest at an altitude h such that the total weight
of the suspended objects is balanced by the buoyant force B, where

B = rVg = mg. (2.9a)

Thus, the density of the air at h must equal the mean density (total
mass/total volume) of the objects:

(2.9b)

Although the news report did not give the mass and volume explic-
itly, enough information is furnished to allow a not-unreasonable esti-
mate. First, the total mass. Taking account of all pertinent items, 
I would assign masses as follows:

Aeronaut 85kg
Lawnchair 20kg
45 Balloons 10kg
Six-pack of beer + pellet gun + sandwiches 5kg

r =
m
V

.
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for a total m = 120kg. The aeronaut may seem a bit portly, but then 
I inferred from the news report that he drank a lot of beer. I have also
assumed that the lawnchair is of the sturdy wooden variety and not a
flimsy aluminum one.9

Regarding the displaced volume, the report specifies only that, when
fully inflated, the radius of a balloon exceeded two feet. Based on a
weather balloon I cherished as a child and the fact that the lawnchair
ascended precipitously, I estimate the maximum radius to be closer to
three feet. This leads to a total volume V = 144m3. In arriving at this
value, I have assumed that, once filled to capacity at ground level, the
balloons do not inflate further upon rising (for, to proceed otherwise, 
I would need information about the elastic properties of the balloon
material, and the problem would become virtually intractable at the
elementary level). 

From Eq. (2.9b) and the preceding assumptions, the question then
becomes: At what height above ground is the air density r =
120kg/144m3 = 0.83kg/m3? Recall that at ground level, where the pres-
sure is P0 = 1atm � 105 N/m2, the corresponding density of the air (at
room temperature T � 293K) is, to good approximation, r0 = 1.2kg/m3.
Thus, r/r0 � 0.69.

The simplest (albeit approximate) method of attack is to apply what
I call the “Barometer-Story formula,” named for a delightful essay that
I habitually read to my class whenever we study fluids.10 Written by
a physics teacher (who I am quite willing to believe may have actually
had the experience related in the essay—but this I do not know), the
story describes the response of a bright student asked on an exami-
nation to “Show how it is possible to determine the height of a tall
building with the aid of a barometer.”

Wearied by college instructors trying to tell him what to think, the
student came up with numerous methods—all sound but impractical
and altogether intentionally irrelevant to the particular point the
teacher wanted to test—with the consequence, of course, that he
received a zero for that question. For example, tie a barometer to the end
of a cord, swing it as a pendulum, and determine the value of g at ground
level and at the top of the building. “From the difference between the
two values of g,” said the student, “the height of the building can, in prin-
ciple, be calculated.” You get the picture. The essay is short, hilarious,
and satisfying (at least to me and my class), for in the end the student
triumphs. I highly recommend it to physics teachers; one of my own stu-
dents confided afterward that he will now go to his grave knowing the
barometer formula, whereas had he encountered it merely as an end-of-
chapter exercise, he would have already forgotten it.

From the familiar form of the ideal gas equation of state

PV = nRT (2.10a)
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(with temperature T expressed in Kelvin), the number of moles per
volume(n/V) can be readily eliminated in favor of the gas density to yield

(2.10b)

in which M is the formula or molar mass (traditionally termed the 
molecular “weight,” although this is a misnomer.) For air, with an ap-
proximate composition (accurate enough for our purposes) of 75% N2

and 25% O2, the gram molecular weight is M � 29g. R, the universal
gas constant, is 8.2J/molK. 

If we assume for the present that the temperature of the atmosphere
is constant (i.e., independent of height), it follows from Eq. (2.10b) that
the density is linearly proportional to pressure and, therefore,

(2.11)

The difference in air pressure between ground level and height h is
simply the weight of a column of air of length h and unit cross-
sectional area, or

(2.12)

if, as an additional approximation, I now take the air to be 
incompressible. [Equation (2.12) is the pressure–height relation 
that the physics teacher sought from the recalcitrant student in the
Barometer Story.]

Strictly speaking, Eqs. (2.11) and (2.12) are inconsistent with one
another, for the density of the gas cannot both change and be constant
in the same problem. However, because the variation in density is
already accounted for in Eq. (2.11), it is not too crude an approxi-
mation over a sufficiently small change in altitude to assume constant
density for the evaluation of P(h). How small is sufficiently small? With
insertion of Eq. (2.12) into Eq. (2.11), the resulting expression itself
suggests an answer:

(2.13)

The approximation should be valid for altitudes low compared with the
characteristic height

(2.14)

I mention, in anticipation of what is to follow, that Eq. (2.13) is, in fact,
a series expansion to first order in h/h0 of the exact expression for the
density variation of an isothermal atmosphere.

Substitution of Eq. (2.13) into Eq. (2.10b) leads to
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(2.15)

as the equilibrium height of the lawnchair. This is somewhat lower
than the reported height, but then we did not have to work too hard
to get the answer—and, in any event, the outcome is orders of 
magnitude beyond what the aeronaut thought his elevation would be
based on no quantitative reasoning at all.

However, we can work a little harder and do a little better.

The Isothermal Atmosphere: Model Two

Under the previous assumption that the temperature of the air
remains constant (let us say at room temperature T = 293K), it is not
difficult to derive the exact variation of density r with altitude z.
Figure 2.5 shows the pertinent dynamical details. A cylindrical plug of
gas of cross section A and height Dz remains in static equilibrium if
the upward force of the air, P(z)A, on the bottom of the plug balances
the sum of the downward force of air, P(z + Dz)A, on the top of the plug
and the downward force of gravity, rgDz, at the center of mass of the
plug, leading to the well-known barometric equation
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Figure 2.5. Diagram of forces on a cylindrical section of air within an isother-
mal atmosphere in static equilibrium.



Replacing pressure P in Eq. (2.16) by expression (2.10b) for density r
leads to 

(2.17a)

or, equivalently,

(2.17b)

which is readily integrated between z = 0 and z = h to yield the ex-
ponential solution

(2.18)

Note that the characteristic height h0 = RT/Mg in Eq. (2.17a) is pre-
cisely the same quantity as the h0 in Eq. (2.14); this readily follows
from use of Eq. (2.10b).

The exponential function, as discussed in the previous chapter,
arises in two different, but equivalent, ways: (1) as the solution to a
differential equation whenever the variation in a quantity is propor-
tional to the remaining quantity [e.g., dr µ r in Eq. (2.17a)], and (2)
as the limit 

(2.19)

of a sequence of terms as the index n approaches infinity. Substitut-
ing into Eq. (2.18) the approximation ex � 1 + x, obtained by termi-
nating the sequence (2.19) at n = 1, generates the result, Eq. (2.15), of
Model One.

From the exact solution (2.18), the equilibrium altitude reached by
the aeronaut is found to be

(2.20)

which lies quite close to the 11,000-ft altitude reported in the news
article.

However, with yet more effort, we can obtain an even more reliable
answer. And it is worth the effort, for we are about to encounter some-
thing unexpected and counterintuitive.

The Adiabatic Atmosphere: Model Three

Although the prediction of Eq. (2.20) is good, the assumption that the
temperature of the Earth’s atmosphere remains the same at all heights
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is not valid. I can recall a number of transoceanic flights in which the
cruising altitude of the aircraft and the outside temperature were
simultaneously displayed over the cabin entrance. At roughly five
miles high, the air temperature had fallen to approximately -20°C. 
If the temperature varied linearly with altitude and the ground was
close to +20°C (room temperature), the preceding observation would
imply a rate dT/dh of about -8°C/mile or -5°C/km. This is actually very
close to the linear variation of -6.5°C/km recorded by atmospheric sci-
entists over the approximate 12–16-km extent of the troposphere, the
lowest layer of Earth’s envelope of air.11

Since the height of the troposphere greatly exceeds the reported
equilibrium altitude of the aeronaut, let us adopt the constant rate
dT/dh = -6.5°C/km and explore the consequences of a model with
linear variation in temperature. (The reason for designating this an
“adiabatic atmosphere” will be made clear shortly.) Because it is often
useful to work with dimensionless ratios when solving a problem, 
I will introduce a second characteristic height z0 defined by the 
temperature–altitude relation

(2.21)

with T0, the temperature (293K) at ground level. From the require-
ment that dT/dh = -T0/z0 = -6.5°C/km, it follows that z0 � 45,000m.

Substitution of Eq. (2.21) into the barometric equation (2.16) leads
to a differential equation

(2.22)

which, at first glance, may seem complicated, but in reality is quite
straightforward to integrate, for it involves the exact differential of a
natural logarithm on both sides. Note, too, that if we let z0 increase
without bound, the atmosphere again becomes isothermal [see Eq.
(2.21)] and the right-hand side of Eq. (2.22) reduces to the defining
relation, Eq. (2.17b), of Model Two. For finite z0, however, integration
of Eq. (2.22) from z = 0 to z = h yields a power-law expression

(2.23)

Although the mathematical forms of solutions (2.23) and (2.18) are
outwardly quite dissimilar, their kinship becomes apparent when the
representation of an exponential as a limiting process [Eq. (2.19)] is
again recalled. If the parenthetical expression on the right-hand side
of Eq. (2.23) were recast as [1 - (h0/z0)(h/h0)](z0/h0)-1, then it would have
the approximate value of e-h/h0 if z0/h0 were sufficiently large so that 
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-1 in the exponent could be neglected. For the parameters pertinent
to our problem, the actual value of this ratio is 

(2.24)

and is independent of the choice of ground-level temperature T0. 
As our final estimate of the aeronaut’s altitude h, the inversion of

Eq. (2.23) leads to

(2.25)

which also accords well with the reported facts (and is probably closer
to the true altitude if our assumptions regarding m and V are 
accurate). 

For purposes of comparison, Figure 2.6 illustrates the variation 
in air density with altitude for both the isothermal and adiabatic
atmospheres.

However, something does not seem quite right here. Look at the
numerical outcome in the preceding equation. It is larger than the esti-
mate derived from Eq. (2.20) for an isothermal atmosphere. Yet, the
air temperature is now falling with altitude. Should we not expect the
density of colder air to be greater than that of warmer air—and there-
fore the aeronaut to level off at a lower altitude than if the atmosphere
remained at room temperature all the way up? This curious feature is
brought out strikingly in Figure 2.6. At any fixed value of the relative
air density r/r0, the linear-temperature curve lies to the right of the
constant-temperature curve (i.e., at greater altitude) over the entire
extent of the troposphere (�0–15km). 

There is no calculational error. A cursory examination of the baro-
metric equation of motion shows the resulting behavior to be indeed
possible. Because P µ rT, the derivative dP/dz in the barometric equa-
tion (2.16) leads to two terms: one, deriving from dr/dz, reduces the
air density with increasing altitude, but the other term, arising from
dT/dz, carries the opposite sign and thereby causes the density to fall
off at a slower rate than that of the isothermal atmosphere. It is these
two opposing actions that lead to the coefficient 1/h0 - 1/z0 in Eq. (2.22).
How can that be? What went awry?

Nothing went awry. Rather, we have rediscovered a seminal prop-
erty of air—indeed of any fluid—heated from below: It rises (and some-
times in startling ways). A graphic example of this behavior, first
explained by Lord Rayleigh12 and today still a subject of intensive
investigation, is the Rayleigh–Bénard effect, the self-organization of
convection cells within a short column of fluid confined between two
planar barriers, the lower maintained at the greater temperature.
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Earth’s atmosphere provides another example, less startling perhaps
than the phenomenon studied by Bénard and Rayleigh, but no less
interesting—and certainly far more significant in its overall impact on
all of us. It is this convective flow in the atmosphere that bathes us in
sea breezes by day and land breezes by night and rattles us unnerv-
ingly with atmospheric turbulence during our air flights.

Were the atmosphere left unperturbed for a sufficiently long time,
it would eventually assume the quiescent state of thermal equilibrium,
the density of each gas component falling exponentially with height.
But such is not the case. Incessantly agitated under a negative tem-
perature gradient, air is continually transferred from one part of the
atmosphere to another. However—and this is the crucial feature—
because the conduction of heat in gases is very slow, the atmosphere
is never permitted to assume the equilibrium distribution we have 
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Figure 2.6. Variation of air density with altitude for the isothermal and adi-
abatic atmospheres. The horizontal dashed line marks the relative air density
(m/V )/r0 � 0.69 at the height at which the aeronaut settles. The two vertical
dashed lines denote the corresponding altitudes. Note that the aeronaut levels
off at a greater altitude in the adiabatic atmosphere than in the isothermal
atmosphere.



discussed in Model Two. Instead, before an element of gas newly
arrived at some location can adjust its temperature to that of its sur-
roundings, it is again moved away. The distribution of the atmosphere,
therefore, is determined by the condition that an element of gas, on
being moved from one place to another, takes up the requisite pres-
sure and volume in its new position without there being any loss or
gain of heat by conduction.13

The foregoing process by which a quantity of gas undergoes a change
in pressure, volume, and temperature without exchanging heat with
the environment is termed “adiabatic” from the Greek word for
“impassable.” An ideal gas undergoing an adiabatic process satisfies
the constitutive relations

PV g = constant, (2.26a)

Trg -1 = constant, (2.26b)

in which g = cP/cV is the ratio of the molar specific heat at cons-
tant pressure to the molar specific heat at constant volume. For 
a diatomic gas (or mixture of diatomic gases like air), g is expected 
on the basis of the equipartition theorem of classical physics to be 
7–5 = 1.4.14

Had we known to begin with the adiabatic relations (together with
the ideal gas equation of state and the barometric equation), we could
have deduced the linear dependence of temperature on altitude rather
than adopt it as an empirical fact. By casting the resulting expressions
into forms comparable to Eqs. (2.21) and (2.23), we could then relate
the heat-capacity ratio g to our ratio of characteristic heights z0/h0 and
thereby predict the rate of temperature fall through the chain of con-
nections:

(2.27a)

(2.27b)

Insertion of the classical value g = 1.4 into Eq. (2.27a) gives dT/dz =
-10°C/km, which is not too far from the actual rate of -6.5°C/km.15 The
discrepancy may be attributable to the fact that, in reality, Earth’s
atmosphere is an extremely complex system, affected in no small way
by the irregularities of the planet’s surface and the reflectivity of the
clouds.

It is precisely such complexity, however, that makes the physical
world so interesting and therefore the physicist’s capacity to interpret
it in terms of a few basic laws and simple models so remarkable. The
predicament of our aeronaut aside, perhaps it is not so much the 
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survival value of physics that is worth emphasizing after all, but the
intrinsic pleasure and satisfaction that comes with understanding.

2.3. Cool in the Kitchen: Radiation, Conduction,
and Newton’s “Hot Block” Experiment

The rate at which an object cools down gives valuable information
about the mechanisms of heat loss and the thermal properties of the
material. In general, heat loss occurs by one or more of the following
four processes: (1) conduction, (2) convection, (3) evaporation, and (4)
radiation. 

In conduction, heat is transferred through a medium by the colli-
sional encounters of thermally excited molecules vibrating about their
equilibrium positions or, in the case of metals, by mobile, unbound elec-
trons; only energy, not bulk matter itself, moves through the material.
Convection, by contrast, refers to the transfer of heat through the
action of a moving fluid; in free or natural convection, the motion is
principally the result of gravity acting on density differences resulting
from fluid expansion. Evaporation entails the loss of heat as a conse-
quence of loss of mass, the faster-than-average molecules escaping
from the free surface of a hot object, thereby removing kinetic energy
from the system. Last, radiation involves the conversion of the kinetic
and potential energy of oscillating charged particles (principally
atomic electrons) into electromagnetic waves, ordinarily in the
infrared portion of the spectrum. From the perspective of classical
physics, charged particles moving periodically about their equilibrium
positions (or indeed undergoing any kind of acceleration) radiate elec-
tromagnetic energy.

Although the physical principles behind the four mechanisms lead
to different mathematical expressions, it is widely held that if the tem-
perature of a hot object is not too high, then the decrease in tempera-
ture in time follows a simple exponential law, an empirical result
historically bearing Newton’s name. But how good an approximation
to reality is Newton’s law—and what in any event determines whether
the temperature of the hot object is too high? Furthermore, although
Newton’s name is readily associated with his laws of motion, law of
gravity, and various optical phenomena (e.g., Newton’s rings, Newton’s
lens equation), it does not usually appear in discussions of thermal
phenomena. Indeed, apart from this one instance, a search through a
score or more of history of science books and thermal physics books at
various levels of instruction produced but one other circumstance for
noting Newton’s name and that was his failure to recognize the adia-
batic nature of sound propagation in air.16 This historical footnote
accentuates, however, the circumstance that Newton pursued his
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interests at a time long before the concept of heat was understood. He
died in 1727, but the beginning of a coherent system of thermal physics
might arbitrarily be set at nearly a hundred years later when Sadi
Carnot published (1824) his fundamental studies on “the motive power
of fire” (La puissance motrice du feu). 

What, then, prompted Newton to study the rate at which hot objects
cool, how did he go about it, and where did he record his work? 

Let us look at the historical questions first. In stark contrast to
Newton’s other eponymous achievements, for which anyone desirous
of knowing their origins could turn to such ageless sources as Prin-
cipia or Opticks,17 the paper recording the law of cooling is decidedly
obscure. After much searching, I discovered a reprinting of this elusive
work in an old and dusty physics sourcebook.18 According to the author,
William Francis Magie, the paper, “A Scale of the Degrees of Heat,”
was published anonymously in the Philosophical Transactions in 1701,
although Newton was known to have written it. 

Despite its obscurity, this is, like much of Newton’s work, a fasci-
nating paper. In contrast to what I expected, Newton’s principal
concern was not to nail down the precise formulation of another 
physical law, but rather to establish a practical scale for measuring
temperature. By 1701, Newton, then about 60 years old, had long since
completed the fundamental studies of his youth—motion, gravity, the
calculus, spectral decomposition of light, diffraction of light, and much
else—to take up the position of a British functionary. In 1695, he had
been appointed Warden of the Mint and moved from Cambridge to
London. It seems reasonable to speculate that Newton’s concern with
temperature and the melting points of metals was motivated by his
responsibility for overseeing the purity of the national coinage.

All the same, the experiment was vintage Newton: clever use of the
simplest materials at hand to carry out a measurement of broad 
significance.19 Having selected linseed oil, which has a relatively high
boiling point (289°C) for an organic material, as his thermometric sub-
stance, Newton presumed that the expansion of the oil was linearly
proportional to the change in temperature. With this thermometer and
a chunk of iron heated by the “coals in a little kitchen fire,” Newton
proceeded to establish what quite possibly was the first temperature
scale by which useful measurements were made. He set 0 on his scale
to be “the heat of air in winter at which water begins to freeze” and
defined 12 to be “the greatest heat which a thermometer takes up when
in contact with the human body.” On this fixed two-point scale, the
“heat of iron . . . which is shining as much as it can” registered the
value 192.

Having established the above points, as well as other intermediate
values (e.g., 17: “The greatest heat of a bath which one can endure for
some time when the hand is dipped in it and is kept still”20), Newton
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sought an independent procedure for confirming their validity. To do
this,

. . . I heated a large enough block of iron until it was glowing, and taking it
from the fire with a forceps . . . I placed it at once in a cold place . . . and placing
on it little pieces of various metals and other liquefiable bodies, I noted the
times of cooling until all these bodies lost their fluidity and hardened, and
until the heat of the iron became equal to the heat of the human body. Then
by assuming that the excess of the heat of the iron and of the hardening bodies
above the heat of the atmosphere, found by the thermometer, were in geo-
metrical progression when the times were in arithmetical progression, all the
heats were determined. . . . The heats so found had the same ratio to one
another as those found by the thermometer.

Thus Newton’s law of cooling first saw light of day. 
In fact, that small section above is all that Newton had to say about

“Newton’s law.” Note that not once in the entire paper does Newton
mention the word “temperature.” At this time, the concepts of heat and
temperature were poorly understood and confounded; Newton refers
to both as “heat” (calor in Latin). Note, too, that nowhere does Newton
mention the word “exponential” or give the equation of exponential
form

(2.28a)

(with rate constant k, ambient temperature T0, and maximum tem-
perature Tm) that explicitly shows the temporal variation synonymous
with Newton’s law. However, in verifying the points on his scale,
Newton asserted that “the heat which the hot iron communicates in a
given time to cold boldies . . . is proportional to the whole heat of the
iron,” or, as we would express mathematically in current symbolism,

(2.28b)

Equation (2.28a) is the solution to Eq. (2.28b), and from Eq. (2.28a),
the reader will readily confirm that

(2.28c)

where the temperatures T1, T2, T3, . . . are all measured at equal inter-
vals of time (t1 = Dt, t2 = 2Dt, t3 = 3Dt, . . .). This is the “geometrical 
progression” of temperatures (above the ambient temperature) when
the times are in “arithmetical progression,” which Newton assumed.

The law is simple and useful. But is it true? This question came to
mind at a time when I was teaching my son Chris physics and calcu-
lus during his senior year of high school, and so we investigated the
matter together.
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* * *

“It is certain,” wrote Benjamin Thompson (Count Rumford) at the
opening of his own seminal paper on the flow of heat,21 “that there is
nothing more dangerous in philosophical investigations than to take
any thing for granted, however unquestionable it may appear, till it
has been proved by direct and decisive experiment.” Thus inspired,
Chris and I retired to our kitchen to test, as best we could, the law
governing the cooling of a hot block of iron. 

As a substitute for the block of iron and Newton’s open kitchen fire
(which surely would have invalidated our home insurance contract),
we used, instead, an electric range and turned the right rear burner
on HI so that it “was shining as much as it can.” The ambient tem-
perature was measured to be 25.5°C with a mercury-in-glass ther-
mometer, which we also used to calibrate a digital thermocouple
thermometer22 placed in contact with the burner. The glowing burner
registered 456°C, which would appear to be somewhat cooler than
Newton’s kitchen fire.23 All the same, it was hot enough to test
Newton’s law.

Turning the range off, we simultaneously activated a stopwatch and
recorded the temperature of the burner at intervals of 1min for a total
of 35min, at which time it approached ambient temperature closely
enough to terminate the experiment. The temperatures, measured to
a precision of 1°C for T ≥ 200°C and 0.1°C for T < 200°C, are plotted
with circles in Figure 2.7. It is convenient and instructive to plot the
data as dimensionless quantities. The vertical axis gives the ratio of
the instantaneous temperature to the ambient temperature (all tem-
peratures in Kelvin). The horizontal axis registers the time in units of
a characteristic “radiation time” tr, which in this experiment was found
to be 25min. The dashed line in the figure is the exponential curve
(i.e., Newton’s law) obtained as a least-squares fit to the data. The
fitting procedure, performed with statistical software on a Macintosh
computer, minimized the the sum of the squares of the deviations of a
straight line from the natural logarithm of T - T0, which, according to
Eq. (2.28a), should be a linear function with slope -k and intercept
loge(T - Tm). 

It is clear that Newton’s law does not represent the mechanism of
heat loss very well. If not Newton’s, then what law governs the physics
at work here? 

Under the conditions of this experiment—initially glowing solid iron
in (for the most part) stationary air—the principal mode of heat loss
is radiation until the reduced temperature (T/T0) has fallen to about
1.2. The net rate (dQ/dt) at which a hot body immersed in an ambient
medium of temperature T0 loses energy by radiation is given by
Stefan’s law24
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(2.29)

in which e is the emissivity of the material, s = 5.67 ¥ 10-8 W/m2 K4 is
a universal constant, A is the effective radiating area, and T is the
absolute temperature. The first term on the right-hand side is the
radiant power lost to the environment; the second term is the radiant
power received from the environment. A general thermodynamic argu-
ment can be given (although not here) that the material parameter e
must be the same for both radiant emission and absorption. Note that
the rate of energy loss is proportional to the fourth power of T, whereas
in Newton’s law [Eq. (2.28b)], it is proportional to the first power of T.
[Under the present circumstances, Eq. (2.28b) corresponds to net
cooling by conduction, as will be seen shortly.]

When an object radiates an amount of energy dQ, the drop in 
temperature dT depends linearly on the mass m and specific heat
capacity c of the material:

dQ = mcdT. (2.30)

dQ
dt
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Figure 2.7. Variation of reduced temperature with reduced time for the
cooling of an electric burner. Circles mark experimental points; the solid line
represents Stefan’s law (heat loss by radiation); the dashed line is an expo-
nential fit (Newton’s law). Radiation time tr = 25min.



(There should be no confusion of c with the vacuum speed of light,
which does not appear in this chapter.) Upon substitution of Eq. (2.30)
into Eq. (2.29) and division of both sides of the equation by T0, 
Eq. (2.29) takes the dimensionless form

(2.31)

with reduced temperature T ∫ T/T0 and reduced time t ∫ t/tr, the char-
acteristic radiation time referred to earlier being defined by

(2.32)

Equation (2.31) no longer explicitly contains material properties or
physical constants and can be solved readily by separating variables,
decomposing the right-hand side into a sum of rational terms

and applying the elementary integration formulas for the natural 
logarithm and inverse tangent. This leads to the implicit relation for
T:

(2.33)

with Tm = Tm/T0.
With a little additional effort, it is not difficult to reduce Eq. (2.33)

to an approximate explicit relation for T(t). Combine the two phase
terms into a single phase by using the trigonometric identity25

make the small-argument (x < 1) approximations arctan x � x and 
ex � 1 + x, and carry through the algebraic manipulations to isolate
T(t), obtaining

(2.34)

Applied to Eq. (2.33), the small-argument approximation implies that
(Tm - T)/(T2

m + 1) << 1, which is best fulfilled when T is close to its
maximum value. In other words, we would expect the relation (2.34)
to describe radiative heat loss well and to become progressively poorer
as the temperature approaches ambient temperature (in which case,
radiation becomes secondary to conduction). By contrast, it is to be
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noted that when T is close to the ambient temperature (T � 1), the
radiative cooling law takes the form of Newton’s law, for Eq. (2.31)
becomes approximately 

(2.35)

Looking again at Figure 2.7, one sees that this expectation is indeed
borne out. The solid curve, which closely matches the experimental
points, is calculated from Eq. (2.34), with the radiation time 
tr � 25min the only adjustable parameter. Figure 2.8, in which 
loge(T - 1) is plotted against t, shows the experimental results from
another perspective. Clearly, the locus of experimental points (circles)
is not linear. (Actually, the log of the log of T makes a nearly straight
line.) The solid line, Eq. (2.34), follows the experimental points up to
about 0.8tr units of time, after which conduction sets in and pure 
radiation theory is no longer adequate. Note, however, that the log
function greatly exaggerates what are actually small discrepancies
between theory and experiment since (for any base a) loga(x) Æ -• as
x Æ 0. The dashed line is the least-squares linear fit leading to the
exponential curve in Figure 2.7.
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Figure 2.8. Representation of Figure 2.7 on a logarithmic scale.



From Eq. (2.32) and the empirical radiation time, we can estimate
the emissivity of the burner. Employing the physical quantities m =
0.263kg, A = 0.056m2, T0 = 299K, c = 448J/kgK, and tr = 25min in 
Eq. (2.32), we obtain e � 0.91, which is quite reasonable for an object
with a blackened, oxidized surface. By comparison, the emissivity of
soot is 0.95 and that of flat black paint is 0.94.26

How is it possible that Newton, who started out with an even higher
temperature than we did, obtained “Newton’s law” (i.e., an exponen-
tial decrease in temperature)? Actually, who can say with certainty
that he did? His short paper contains no experimental record at all of
the variation in temperature of the hot iron with time. He states, but
does not demonstrate, that “the heat which the iron loses in a given
time is proportional to the whole heat of the iron.” Moreover, no infor-
mation is given as to how Newton measured intervals of time—no
mean task in an age when an inexpensive digital wristwatch (our own
chronometer) did not exist.

Last and conceivably most significant, Newton did something with
his hot block that we did not do with our burner: He removed it from
the fire and “placed it . . . where the wind was constantly blowing.”
Newton did this specifically so that “equal parts of the air are warmed
in equal times and carry away a heat proportional to the heat of the
iron.” Forced convection, which played no role in our own experiments,
would have provided an additional cooling mechanism.

In any event, having satisfied ourselves that our own hot block
experiment could be accounted for satisfactorily by Stefan’s law rather
than by Newton’s law, we inquired next into the consequences of both
conductive and radiative energy-loss occurring together. It is of par-
ticular interest to ascertain whether the effects of radiation are per-
ceptible over a temperature range sufficiently low that heat loss is
dominated by conduction and to determine whether, in fact, Newton’s
law provides a good model under these circumstances.

The rate at which a hot object initially at maximum temperature Tm

loses heat by conduction across a region of thickness d bounded by a
surface of area A is described adequately by the relation

(2.36)

where kT is the coefficient of thermal conductivity of the material. Use
of Eq. (2.30) in Eq. (2.36) to relate again dQ and dT results in the
dimensionless equation

(2.37)

where now (and for the rest of this chapter) we define the reduced time
t ∫ t/tc in terms of the characteristic “conduction time”
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(2.38)

The form of Eq. (2.37) is precisely that of Newton’s law, and the 
solution is

(2.39)

or, equivalently (in terms of original variables), Eq. (2.28a) with rate
constant k identified with tc

-1.
To test relations (2.37)–(2.39) on a system for which conduction

ought ideally to be the only significant cooling mechanism, we cut a
small rectangular block of white styrofoam and covered it with a thin
wrap of aluminum foil for which the emissivity is very low (e � 0.02).
Highly reflective surfaces by definition do not absorb radiation, 
and poor absorbers make poor emitters, a fact that often seems 
paradoxical to those encountering it for the first time. We inserted 
the digital thermometer probe down the long axis of the block and set
the block (fastened vertically to a chemical stand) into a pot of water.
When the water was boiling vigorously and the display of the 
thermometer registered 100°C, we removed the block from the water,
set the stand on the kitchen counter (in the absence of wind!), and
recorded the temperature with resolution of 0.1°C in intervals of 1min,
as before. The experimental points are plotted with circles (upper
dataset) in Figure 2.9. The solid line through the circles is the expo-
nential curve calculated from Eq. (2.39) and leads to a conduction time
tc = 5.3min. 

That the value obtained for tc is reaonable may be seen by substi-
tuting into Eq. (2.38) the appropriate parameters for our styrofoam
block: m = 0.02kg, c = 1226J/kgK, d = 0.006m, A = 0.0132m2, kT =
0.029W/mK. The theoretical result is 6.4min.

In the second part of the experiment, designed to enhance the 
effects of radiation without changing any other property of the 
system, we simply painted the foil surface black, using flat lamp-
black paint which, to a large extent, is an oil emulsion of soot. That
the blackening of the surface markedly affected the cooling rate is
shown by the locus of diamond plotting symbols (lower dataset) in
Figure 2.9. 

It is important to note (although the graph does not show it) that
an exponential fit to the “black” data is as poor as before. The dashed
line in Figure 2.9 is an exponential curve parametrically adjusted (not
fit) to match visibly well the overall pattern of data points. That even
this attempt is poor can be seen in the logarithmic plots of Figure 2.10.
Newton’s law does not work particularly well here. How, then, can we
account for these results? If not Newton’s nor Stefan’s, then what or
whose law applies? 
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By combining the radiation law (2.29) and the conduction law (2.36)
together with the temperature–heat relation (2.30), one obtains the
dimensionless cooling law

(2.40)

in which the parameter g is the ratio of the conduction and radiation
times:

(2.41)

Although Eq. (2.40) may look more or less tractable, it cannot be inte-
grated analytically to yield an exact closed-form expression. Never-
theless, it can be integrated numerically, and Figure 2.11 shows a
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Figure 2.9. Variation of reduced temperature with reduced time for cooling
of a block of styrofoam. Circles mark experimental points of white styrofoam
covered with reflective foil; diamonds mark experimental points of the same
object painted black. The upper solid line is derived from Eq. (2.39) with con-
duction time tc = 5.3min; the lower solid line is derived from Eq. (2.42) with
radiation parameter is g = tc /tr = 0.21; the dashed line is derived from Eq. (2.39)
with conduction time tc = 3.6min.
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Figure 2.10. Representation of Figure 2.9 on a logarithmic scale.

Figure 2.11. Numerically calculated cooling curves for a system with both
conductive and radiative energy loss. The one adjustable parameter is g
which equals (a) 0 [no radiation], (b) 0.1, (c) 0.25, (d) 0.5, (e) 0.75, (f ) 1.0.



sequence of cooling curves, solutions of Eq. (2.40) obtained with the
symbolic computation software Maple, showing the transition from
pure conduction with g = 0 (i.e., Newton’s law) to strong radiation 
g = 1. A discussion of the numerical procedure, which is one of the
Runge–Kutta methods, would take us too far afield but can be sought
in appropriate reference books.27

It is also possible to derive an approximate solution to Eq. (2.40),
which works quite well in the low-temperature regime (i.e., when Tm

is not much in excess of 1). In that case, we treat the radiative part 
of Eq. (2.40) (i.e., the terms containing g) by the approximation in 
Eq. (2.35) to obtain an exponential solution of the form of Eq. (2.28a),
but now with rate constant k = 1 + 4g. This approximation is then sub-
stituted back into Eq. (2.40) to obtain, after some patient effort, the
interesting expression

(2.42)

with a = 4g [1 + 3–2 (Tm - 1)]. Note that Eq. (2.42) involves the exponen-
tial of an exponential, a law ostensibly quite different from Newton’s
or Stefan’s law.

The solid line through the “black” data in Figures 2.9 and 2.10 is the
theoretical curve calculated from Eq. (2.42) using the same value of tc

as obtained for the “silvery” data, since the rate of heat conduction is
determined by the conductivity of the styrofoam and should not be sig-
nificantly affected by a thin layer of surface paint. Theory and exper-
iment are in excellent accord when g, the only adjustable parameter,
takes the value 0.21. Then, from Eq. (2.41), with T0 = 301.1K, we find
the emissivity of the block to be about e = 0.7. 

* * *

The investigations described in this section, as I have already noted,
were initially undertaken as part of a high school physics course
emphasizing the inclusion of meaningful research opportunities (in
lieu of “cookbook” laboratory exercises) in accord with my philosophy
of self-directed learning. By collaborating as partners in an endeavor
of mutual interest, both student and teacher acquired some useful
lessons in the workings of science and the intricacies of history. 

Puzzled by frequent reference in math and physics textbooks to a
law of Newton’s of whose origin we knew nothing and by the apparent
unquestioning credence with which the law was reported to hold
widely, we tracked down Newton’s paper. To our surprise we found
that, far from demonstrating a physical law, the investigation of
cooling, whose corroborative details Newton did not even bother to
report, was to Newton solely an auxiliary procedure in the more impor-
tant task of creating a practical temperature scale. A procedure, more-
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over, that, for all one can tell from the written account, was based on
a mathematical relation that Newton merely assumed to be true. 

As to the validity of Newton’s law, however, our own kitchen exper-
iments indicate that, where energy loss by radiation contributes 
significantly—even when the temperatures involved are relatively
low—an exponential variation does not make a particularly good
model. Exceptions to Newton’s law are not hard to find. The cooling of
a hot burner on an electric range is very well accounted for by Stefan’s
law. The cooling of a piece of black styrofoam—an object with high
emissivity and low thermal conductivity—is accounted for by “the 
Silvermen’s law” [if I may so call Eqs. (2.40) and (2.42)]. 

And therein lies perhaps the most important lesson of all: Abide
Rumford’s advice, and you cannot go too far astray for too long.
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CHAPTER 3

The Unimaginably Strange
Behavior of Free Electrons

3.1. Variations on “The Only Mystery”

Strangeness is a relative thing. With varying degrees of sophistication,
I have been thinking about physics for more than forty years now, and
this has no doubt both strongly and subtly influenced how the world
presents itself to my eyes. There are laws and principles as familiar
to me as the names of my children; most people are unaware of them
and would not believe them even if informed.

As I leave my office, I ball up one last piece of scrap paper and toss
it into the recycling box. The paper follows a smooth parabolic arc as
it lands. Were I to toss a rubber ball or a steel ball bearing in exactly
the same way, I know that (barring air resistance) it would follow the
same path in the same time. All objects, irrespective of mass, chemi-
cal composition, or any other physical property, fall at the same accel-
eration at the same location on the surface of the Earth. Galileo
allegedly demonstrated this some four centuries ago. Yet, surveys of
science “literacy” show that much of the American and British public
readily subscribe to the Aristotelian notion that heavy objects intrin-
sically fall faster than light ones.

It is dark out when I reach my car to start for home. The Moon lies
suspended above one of the campus sports fields like an enormous
orange. I know, however, that it is falling toward the Earth with an
acceleration roughly 1/3600 that of the wadded paper I tossed some
moments earlier. I have no fear of being crushed for, although it is
falling, the Moon will never reach the Earth—not in my lifetime at
least, if at all. An inward radial attraction, in fact, is what makes the
Moon go around the Earth in a circular orbit. Again, most people would
find that thought strange. Like René Descartes, they imagine some
force pushing the Moon tangentially around its orbit.

Upon reaching home, I apply the brakes and my car stops. If I did
not apply the brakes, the car would eventually stop anyway (although
not in a convenient location) because of friction. Excluding friction (and



eventual obstacles), however, I know that the car would continue to
move forward at a constant speed forever. “Move forward by itself
forever?,” I can hear one of my nonphysicist friends protest; “Impossi-
ble! You have to push or pull an object to keep it moving.” Yet, even
now, the Voyager probes, long since detached from the rockets that
launched them, continue to penetrate unimpeded the void of inter-
stellar space.

The various consequences of the laws of gravity and motion
addressed above are in some ways strange, but not unimaginably so.
They are features of the macroscopic world to which physicists have
reconciled themselves and which they can understand in terms visu-
alizable to the mind’s eye. Newton, for example, illustrated some three
centuries ago in the Principia how a sequence of increasingly wide par-
abolic arcs of a free-falling projectile leads naturally to the circular tra-
jectory of an orbiting satellite. Much later, during the second decade
of the 20th century, the mass independence of the law of free fall found
its explanation in Einstein’s general theory of relativity, which created
the imagery of a conjoined space and time (space–time) warped by the
presence of matter. The resulting contours of this incorporeal four-
dimensional terrain constrain all matter to move along the shortest
(actually, the extremal) paths or geodesics.

There is a qualitative difference between the tangible realm of clas-
sical physics, to which Newton’s and Einstein’s laws of motion and
gravity belong, and the submicroscopic domain of the elementary par-
ticles and their composite structures. The principles governing the
latter give rise to strange consequences that, at least to my satisfac-
tion, have never been—and most likely can never be—adequately
interpreted in terms of objects or processes drawn from the world of
macroscale experiences. The behavior of such systems is unimaginably
strange.

“A great physical theory . . . when it is confirmed, takes on its own
impersonal existence in the course of time, becomes completely
detached from its originator, and is finally received as self-evident.”1

So wrote the editor of a collection of Erwin Schrödinger’s personal cor-
respondence on wave mechanics. Having spent much of my profes-
sional life thinking about the intricacies of quantum physics, I am
dubious that the theory will ever become self-evident (if, indeed, one
can even characterize classical physics that way2). Certainly, quantum
mechanics is no longer the novelty that it was when its foundations
were being laid in the 1920s, and a seemingly endless supply of basic
textbooks makes the subject common knowledge throughout the
physics community. Nevertheless, familiarity with the fundamentals
of quantum mechanics has not, by any means, exhausted the surprises
to which these principles still give rise.

The attribute of the quantum world that is responsible in large
measure for its strangeness is that the denizens of this world, the ele-
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mentary particles for example, propagate from one point to another as
if they were waves, yet are always detected as discrete lumps of matter.
There is no counterpart to this behavior in the world we experience
directly with our senses.

Imagine pouring a container of sand onto a flat plate with a small
centrally located hole. A few centimeters below the bottom of the plate
is a tiny movable detector that counts the number of sand particles
arriving per unit of time. It would show, in accord with our expecta-
tions, that the greatest number of sand grains is registered directly
under the hole, and that this number diminishes as the detector is
moved transversely (i.e., parallel to the plate) away from the hole.
Puncture another hole in the plate near the first one, and the sand
pours through both in such a way that the total number of grains
reaching the detector at any location is the sum of the number of grains
reaching that point from each hole independently. In other words,
opening up more holes can only increase, and never decrease, the total
amount of sand reaching the detector per unit time at any location.

However, what if the experiment were performed with electrons
rather than with sand? Quantum mechanics predicts that if the 
aperture size and separation are comparable in magnitude to the
wavelength of the electron (or, depending on the experimental config-
uration, some other characteristic length parameter), the scattered
electrons, like light waves, should give rise beyond the perforations to
an undulatory interference pattern (Figure 3.1). For a plate with two
identical rectangular apertures, the electron intensity, or number of
electrons striking a unit area of the detector surface per unit of time,
might be described mathematically by the expression

(3.1a)

Here, the deviation of the electrons from the forward direction is mea-
sured by the angle q; I0 is the contribution to the electron intensity
from either aperture alone. The last factor in Eq. (3.1a) represents the
interference between the components of the electron wave issuing from
each aperture. The phase angle a on which the interference pattern
depends is given by

(3.1b)

where a designates the distance between the centers of the apertures
and l is the electron wavelength. The first factor in parentheses in Eq.
(3.1a) describes the diffraction of the electron wave through a single
aperture, let us say of width b. For the sake of simplicity, the aperture
length is assumed to be much longer than the electron wavelength, in
which case it will not significantly affect the passage of the electrons.

a
p
l

q= Ê
Ë

ˆ
¯

a
sin ,

I Iq
b

b
a( ) = Ê

ËÁ
ˆ
¯̃ +( )2 1 20

2

2

sin
cos .

Variations on “The Only Mystery” 65



The phase angle b of the diffraction pattern (which envelops the inter-
ference pattern) is expressible as

(3.1c)

Expressions (3.1a)–(3.1c), which characterize the diffraction and
interference of ideally monoenergetic electrons (or monochromatic
light) by a particular configuration of slits, are provided only as an
example. Nevertheless, they serve to highlight important differences
between doing the experiment with sand grains or with objects that
behave like waves. At the central maximum of the particle distribution
(i.e., in the forward direction q = 0), the electron intensity can be four
times—not two times—the intensity from a single aperture. More gen-
erally, for a configuration of N slits, this intensity enhancement
increases as N2. At the locations of the interference minima, where 2a
is an odd-integer multiple of p, no electrons are detected. Thus, opening
up a second aperture has resulted in fewer electrons arriving at certain
locations than with only one aperture open. When the aperture width
and separation are sufficiently larger than the wavelengths, however,
one sees from the expressions for a and b that outside of the forward
direction, the amplitude of the diffraction pattern becomes very small
and the fringes of the interference pattern become extremely narrow,
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Figure 3.1. Two-slit electron interference experiment. An electron propagates
like a wave from source S through the two slits to the detector D, but always
registers as a discrete particle. The particle distribution I(x) about the forward
direction shows the oscillatory behavior of wave interference. The broken line
which envelops the interference fringes is the single-slit electron diffraction
pattern.



eventually beyond the spatial resolution of the detector. The electrons,
distributed nearly exclusively in the forward direction with a mean
intensity of 2I0, would then seem to pass through the holes of the plate
in much the same way as do grains of sand.

It is to be stressed that no electrons can be created or destroyed 
in this experiment; hence, the total number of electrons received 
by the detector at all locations must be equal to the total number 
that has passed through all apertures. Somehow, scaling the pro-
perties of the particles and the width of the apertures from the 
macroscopic size of a sand grain down to the ultrasmall size of an 
electron has radically altered the way in which the particles are 
distributed.

Richard Feynman, who had the good fortune to create his own
version of quantum mechanics some twenty years after Schrödinger
and Heisenberg developed theirs, characterized the wavelike interfer-
ence of particles as

. . . a phenomenon which is impossible, absolutely impossible, to explain in any
classical way, and which has in it the heart of quantum mechanics. In reality,
it contains the only mystery.3

The fact that electrons, which always register at a detector like hard
little balls of sharply defined mass and charge, give rise in large
numbers to an interference pattern may be surprising, but this is not
the core of the mystery to which Feynman referred. The real enigma
unresolvable by any mechanism of classical physics becomes apparent
only when the electron flux (another word for intensity or number of
particles “flowing” through a unit area per unit of time) is reduced to
such an extent that no more than one electron at a time passes through
the apparatus. It is then that one must really come to grips with the
implications of an electron wave.

The electron wave is not to be thought of as a water wave, sound
wave, or any other wave in a medium which represents an actual phy-
sical displacement of matter; nor is it like a classical light wave 
composed of oscillating electric and magnetic fields which, though
immaterial, is an expression of the classical electric and magnetic
forces such a wave would exert on a unit electric charge. From the per-
spective of quantum mechanics, classical waves are composed of enor-
mous numbers of elementary quantum excitations. For example, 1
watt of pure red light of wavelength 650 nanometers (nm) represents
an emission of about 3 ¥ 1018 quanta of light (or photons) per second.
The wave characterizing the electrons is a probability wave; it allows
one to calculate the probability of finding an electron within a given
spatial region at a specified time.

Quantum mechanics does not, however, permit one to determine in
which direction a particular electron (or any other elementary parti-
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cle) that has been diffracted by some obstacle or aperture will even-
tually go. The arrivals of single electrons at the detector are random.
Yet, according to theory, the random arrival of individual electrons in
a sufficiently large number should build up in time the same inter-
ference pattern that would be engendered quickly by a large electron
flux.

In the course of my research, I frequently investigated the quantum
behavior of electrons theoretically. Although there is beauty and a
measure of personal satisfaction in equations that reveal to the mind’s
eye striking new phenomena, the full implications of particle interfer-
ence are so startling that they must be seen firsthand to be adequately
appreciated.

In the mid-1980s, at a time when Japanese research laboratories
were opening up to Western scientists, I had the pleasure of being
invited to the Hitachi Advanced Research Laboratory (ARL) at
Kokubunji, a part of the Tokyo prefecture. Created only a short time
earlier in the midst of the already flourishing Central Research Lab-
oratory (CRL) devoted principally to applied research, the ARL was to
be a sort of hybrid Japanese-style Bell Labs and Princeton Advanced
Institute concerned with fundamental studies. I was there in part to
help the electron holography group under the direction of Dr. Akira
Tonomura find novel ways to employ its craft.

The manufacture of electron microscopes is a specialty of the Hitachi
Company, and central to the operations of the electron holography lab-
oratory was a majestic state-of-the-art 150-kV field-emission electron
microscope. The source of electrons is a sharp tungsten-cathode fila-
ment 10nm wide (about the width of 100 atoms) from which electrons
are drawn off by an electrostatic potential of a few thousand volts. One
characteristic feature of the electron source deriving from the small
tip size is the high degree of coherence of the electrons. “Coherence”
is a much used word in physics, and even within the narrowed scope
of electron microscopy, it has several connotations. It is effectively a
measure of the extent to which electron interference can occur. For the
present, let it suffice to say that the electrons produced by field emis-
sion can give rise under appropriate circumstances to several thou-
sand interference fringes—an order-of magnitude improvement over
other electron sources.

Shortly after my arrival at the ARL, it occurred to me that, by
employing a sufficiently attenuated beam, the electron holography
group could make a video showing, in real (or accelerated) time, 
the evolution of the electron self-interference pattern, one electron 
at a time. Such a film, I suggested, would be of much use to physics
teachers. Unfortunately, the project would not be possible, I was told,
because the Hitachi chief management was still skittish over funding
a purely basic research laboratory and looked particularly askance at
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experiments for “classroom films.” Somewhere along the line, however,
the management had a change of mind, for the experiment I proposed
was eventually done, and a five-minute black-and-white video cassette
was prepared which captured one of nature’s most amazing phenom-
ena.4 (The promotional advantage of “classroom films” as an aid to
sales and recruitment did not go unnoticed for long. When I returned
as visiting Chief Researcher to the ARL a few years later, Hitachi was
in the midst of replacing the cassette with a full-length color and sound
film on electron interference.)

According to the de Broglie relation expressing one facet of the 
dual wave–particle behavior of matter, the wavelength l associated
with electrons moving with linear momentum of magnitude p is given
by

(3.2a)

where h is Planck’s constant (�6.6 ¥ 10-27 erg s). The second facet of
the wave–particle duality is the Einstein relation

E = h�, (3.2b)

relating particle energy E and wave frequency �. In the Hitachi experi-
ment, the wavelength of electrons emitted from the field-emission 
tip and accelerated through a potential difference of 50kV was 5.4 ¥
10-3 nm (about one-tenth the Bohr radius of an unexcited hydrogen
atom, and five orders of magnitude smaller than the wavelength of
visible green light). With a kinetic energy of about 50keV, the elec-
trons moved relative to a stationary laboratory observer at a speed
approximately one-half the speed of light (c = 3 ¥ 1010 cm/s). Although
fast by terrestrial standards, this speed v is still sufficiently below c
that the Newtonian expression for momentum (p = mv) and kinetic
energy (K = 1–2 mv2) lead to a value of l reasonably close to that obtained
from the exact relativistic expression.

As an electron wave propagated through the barrel of the microscope
(Figure 3.2), it was focused by electromagnetic lenses5 and split by an
electron biprism, a fine wire filament at a potential of about 10V
placed between two parallel plates at ground potential. The biprism
served in place of the two apertures. At the lower end of the micro-
scope, single electrons impinged on a fluorescent film which emitted
about 500 photons for each electron into a fiber plate that channeled
the photons through to an underlying photocathode. Electrons ejected
from the photocathode by the incident light were accelerated to 3keV
and entered a multichannel plate, a sort of honeycomb detector and
electron multiplier, by means of which the coordinates of the electron
point image were determined with a position-sensing device. The
arrival of an electron at a given channel was stored in an image proces-

l =
h
p
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sor, and the accumulating electron image could be viewed in real time
on a TV monitor.

Initially, there is no interference pattern; the detector simply regis-
ters, as expected, the random arrival of one electron at a time, each of
which showed up on the monitor as a white dot. With the passage of
time, these random arrivals build up the classical two-slit interference
pattern of fringes (Figure 3.3). The element of periodicity is barely dis-
cernible after the arrival of a few hundred electrons. It is definitely
present, although not distinct, after a few thousand (squinting helps).
After several tens of thousands of electrons, the fringes stand out
boldly; except for the wavelength scale, they are indistinguishable
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Figure 3.2. Schematic diagram of an electron interference experiment with
a field-emission (FE) electron microscope. An electron beam drawn by a high
potential from the FE tip and accelerated through various focusing devices is
split by the biprism and recombined in the image plane. The classically inex-
plicable outcome is that interference fringes are formed even when only one
electron at a time passes through the microscope. (Courtesy of A. Tonomura,
Hitachi Advanced Research Laboratory.)



Figure 3.3. Development of an electron interference pattern in time. Elec-
trons arrive at the detector at the rate of approximately 1000 per second with
an average spatial separation of 150km; the distance between source and
detector is only about 1.5m. The approximate number of recorded electrons in
frames (a) to (e) are respectively 10, 100, 3000, 20,000, and 70,000. (Courtesy
of A. Tonomura, Hitachi Advanced Research Laboratory.)
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from the fringes produced by laser light under comparable experi-
mental conditions. No one with a sense of curiosity could view this film
and, knowing the circumstances, not be profoundly puzzled by the
behavior of matter on a subatomic scale.

How do the electrons “know” where to go? Can there be some sort
of cooperative effect between electrons emitted at different times that
somehow leads to their preferential arrival at some locations and
avoidance of others? This is highly unlikely, for the conditions were
such that from a classical perspective, one must regard the emissions
as random, widely separated events. Let us consider a few relevant
details.

Monochromatic waves, like frictionless surfaces and massless
springs, are idealizations in physics; they cannot be produced by real
sources that have been in operation for a finite length of time. The
wavelike nature of the field-emission electrons is better represented
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Figure 3.3. Continued.



by a wave packet. The length of the wave packet, designated the tem-
poral coherence length �c, is a rough measure of the spatial extent
(along the direction of propagation) within which one is likely to find
the electron. The electron is not emitted from the cathode tip at a pre-
cisely known instant in time; rather, there is an uncertainty (the coher-
ence time tc) in the duration of the emission. The coherence length is
then

�c = vtc, (3.3a)

in which v is the mean electron speed. As a consequence of this 
temporal uncertainty, the energy of the electrons is also unsharp to 
an extent DE, where, according to one form of the uncertainty 
principle,

(3.3b)

The constant (pronounced “h-bar”), ubiquitous throughout quan-
tum physics, is defined as = h/2p. From the de Broglie relation (3.2a)
and (nonrelativistic) expressions for the electron energy and linear
momentum, one can derive the following formula for the coherence
length:

(3.3c)

In the Hitachi experiment, the uncertainty in electron energy was
about 0.5eV. Estimated from relation (3.3c), the coherence length of
the electron was then on the order of a micron, which, although small,
is considerably greater than the electron wavelength and comparable
in size to the diameter of the biprism filament. (One micron, or 1mm,
is 10-6 m, about the size of some bacteria.) The wave packet comprised
�c/l = 2 ¥ 105 electron wavelengths and, therefore, represented a highly,
although not perfectly, monochromatic electron beam.

How could one be sure that effectively only one electron at a time
contributed to the interference pattern? By adjustment of the focal
length of one of the lenses, the electron current reaching the detector
was set to approximately 1000 electrons/s. Thus, one electron followed
another at time intervals of about a millisecond. Moving at half the
speed of light, the electrons were then separated from one another by
about 150,000m, or a distance on the order of 100,000 times the length
of the electron microscope! Under these circumstances, an individual
electron propagated from the source to the detector long before a suc-
ceeding electron was “born.”

So the question remains: How can a coherent macroscopic pattern
be systematically created by randomly arriving noninteracting parti-
cles? It may be of interest to note that biologists face an analogous
problem in accounting for patterns of animal coloration. How, for
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example, do the cells along the thin strip at the growing edge of a
mollusk shell create intricate shell designs that are millions of times
larger than the cells themselves?6 The answer must lie in cell inter-
action—perhaps through diffusion of pigment-activating chemicals. No
such interaction can adequately explain electron interference.

The Hitachi experiment was not the first of its kind (although it was
the first that I was involved in personally), but rather one of the last
and most conclusive in a line of analogous experiments dating back to
just a few years after Einstein proposed the existence of photons. In
1909, in an experiment remarkable for its technological simplicity, the
British physicist G. I. Taylor7 photographed the shadow of a needle illu-
minated by a light source so weak that, on average, only a few photons
at a time impinged on the needle. After an exposure time of about 2000
hours the interference fringes of the diffraction pattern stood out as
sharply as if a strong light source and much shorter exposure time had
been employed. By contrast, the exposure time of the Hitachi experi-
ment was about one hour.

The inadequacy of any explanation of interference phenomena based
on the mutual interaction of electrons (or, as the case may be, photons)
was noted by P. A. M. Dirac in his Principles of Quantum Mechanics,
the bible of quantum mechanics for several generations of physicists.8

According to Dirac (p. 9)

On the assumption that the intensity of a beam is connected with the proba-
ble number of photons in it, we should have half the total number of photons
going into each component. If the two components are now made to interfere,
we should require a photon in one component to be able to interfere with one
in the other. Sometimes these two photons would have to annihilate one
another and other times they would have to produce four photons. This would
contradict the conservation of energy.

One might add that for electrons, this would contradict the conserva-
tion of electric charge as well.

If there can be no cooperative effect between electrons, and if the
presence of an electron wave packet in some spatial domain corre-
spondingly implies the probability of finding an electron there, it would
seem that a given electron has to pass around both sides of the biprism
wire simultaneously. Yet how can this be? The detector always regis-
ters an electron as an entire massive particle; one would need to
explain how an electron could fragment and recombine. The Hitachi
team did not attempt to determine which path individual electrons
took; had they done so, they would have found that an electron always
passed to one side or the other, never to both simultaneously. This act
of looking, however, would have destroyed the interference pattern.
The electron distribution would then no longer have been oscillatory,
but rather the same as that of the grains of sand.
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One cannot (as Feynman says) “make the mystery go away by
‘explaining’ how it works.” Nevertheless, there is a sort of explanation
that stands as the central dogma of quantum mechanics; Dirac again
expresses this clearly and succinctly in his Principles (p. 9).

The new theory [i.e., quantum mechanics] which connects the wave function
with probabilities for one photon, gets over the difficulty by making each
photon go partly into each of the two components. Each photon then interferes
only with itself. Interference between two different photons never occurs. [Italics
added by the author.]

Dirac addressed himself to the interference of photons, but the prin-
ciple applies without qualification to electrons as well.

The italicized phrase above is very important, indeed essential, 
to the standard interpretation of quantum mechanics. The self-
interference of an electron, by which is meant the interference of the
split electron wave packet, can occur only if the two components of 
the wave packet can overlap. Thus, qualitatively speaking, the differ-
ence in the “optical path length” traversed by both components of the
wave packet to a given point on the detector must not be much in
excess of the coherence length �c if self-interference is to occur.

Quantum theory furnishes the means to calculate the properties of
the interference pattern produced by a beam of electrons, but it pro-
vides no means to envision the actual path of an electron. The very
idea of a path or trajectory in a case where single-electron interference
occurs is largely rendered useless by the uncertainty principle.9 The
mechanism, if one can even employ the word, of how an electron inter-
feres with itself is indeed a mystery. However, Feynman notwith-
standing, this is not the only mystery. It is just the beginning.10

The self-interference of electrons is one manifestation of what is
termed the wave–particle duality: the fact that “particles” like elec-
trons evince wavelike properties, and “waves” like light evince parti-
clelike properties. Examination of a diffraction or interference pattern
does not reveal whether it has been made by electrons or by light
(photons). This point is ordinarily deemed so obvious, once one accepts
the wave–particle duality, that physics textbooks do not usually pursue
it further. Nevertheless, electrons and photons are quite different.
Electrons have mass, me = 9.11 ¥ 10-28 g; photons, as far as is known,
do not. (Examination of the torque on a toroid Cavendish balance due
to the galactic magnetic field provides a conservative upper limit of
the photon mass of about 3.6 ¥ 10-49 g.11) Electrons are electrically
charged; photons are neutral. All photons carry one unit (in terms of
) of intrinsic angular momentum. The intrinsic angular momentum,

or spin, of the electron is 1–2 . This seemingly small difference in intrin-
sic angular momentum is the basis for major qualitative differences in
physical behavior. Photons are bosons (i.e., any number of them can
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be accommodated in a given quantum state); this, in essence, is the
reason (from the standpoint of quantum mechanics) for the existence
of classical light waves. Electrons are fermions, which signifies that at
most only one electron can occupy a given quantum state; electrons
cannot form classical waves.

Should not at least some of these properties—mass, charge, spin,
statistics—affect the wave function and thereby distinguish electron
from photon interference? They do—and at this point, the behavior of
electrons becomes stranger still.

3.2. Electron Interference in a Space with Holes

The development of classical physics documents in many ways the
triumph of the field concept, Faraday’s insightful vision of the trans-
mission of forces between matter by means of an invisible, yet perva-
sive, medium. Of the various fields discerned by physicists, those of
gravity and electromagnetism are the most familiar and best under-
stood. Gravity dominates the macroscale world of neutral matter, but
it is many orders of magnitude intrinsically weaker than electromag-
netism. Two electrons an arbitrary distance apart repel one another
with an electrostatic force some 1042 times stronger than their mutual
gravitational attraction. Ordinarily (although not always, as we shall
see later), gravity does not have a significant impact on the quantum
behavior of the elementary particles apart from those in highly col-
lapsed, exotic systems like neutron stars and black holes. Let us con-
centrate here on electromagnetism and examine a quantum interference
phenomenon arising from the existence of electric charge. Since light is
electrically neutral, it is not expected to give rise to this effect.

All of the phenomena of classical electromagnetism follow from two
sets of laws. On the one hand, there are Maxwell’s equations, which
describe the production of electric and magnetic fields from material
sources of charge and electric current and from the spatio-temporal
variation of the fields, themselves. Reciprocally, there is the Lorentz
force law, which describes how the electromagnetic fields influence
charged matter. Whether the Lorentz force is truly independent of
Maxwell’s equations is an interesting question, the answer to which
depends essentially on what other assumptions one adopts about the
properties of the fields. The point stressed here, however, is simply
that (neglecting gravity) electrically charged particles interact with
electric and magnetic fields; in the absence of such fields, classical
physics provides no means by which the state of motion of charged par-
ticles can be perturbed. No E&M fields Æ no E&M force!

This remark is important because within the framework of
Maxwell’s theory, one customarily introduces, as a mathematical aid
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to the solution of problems, two auxiliary fields: the electromagnetic
scalar and vector potentials, f and A respectively. The electric and
magnetic fields, designated E and B, can be expressed in terms of the
spatial and temporal derivatives of the potentials as follows12:

(3.4a)

B = curl A (3.4b)

One could, therefore, represent the Lorentz force law, which takes the
form

(3.4c)

for a single particle of charge e moving with velocity v, in terms of
these derivatives.

Nevertheless—and this again is essential to bear in mind—were it
possible to envisage a region of space permeated only by the potentials
yet devoid of all electric and magnetic fields, one would have to con-
clude from classical physics that a charged particle would experience
no electromagnetic interaction in that region. For one thing, the elec-
tromagnetic potentials of a specified configuration of electromagnetic
fields are not unique; they can be changed in certain prescribed ways
by a mathematical procedure known as a gauge transformation13

without in any way altering the electromagnetic fields, Maxwell’s
equations, and the Lorentz force law—and thus without changing the
physical properties of the system. (A theory exhibiting this type of sym-
metry is said to be gauge invariant.) By contrast, real physical forces
must be specified uniquely if classical physics is to lead to meaningful
predictions.

The field configuration proposed above is not entirely a fanciful one.
A very long current-carrying wire wrapped tightly to form a cylindri-
cal coil (or solenoid) of finite radius produces an axial magnetic field
in the interior region with a vanishingly small (as the length grows
without bound) return magnetic field in the exterior region (Figure
3.4). Nevertheless, the exterior region is permeated by a vector poten-
tial field with equipotential surfaces that form concentric cylinders
about the solenoid. The sense of circulation of the vector potential and
the direction of the interior magnetic field depend on the sense of
current flow through the windings. Although nature does not provide
physicists with infinite solenoids (any more than with frictionless bear-
ings), a real solenoid, to the extent that it is much longer than it is
wide, can produce a magnetic field closely resembling the field of the
ideal one. In any event, other geometrical configurations can be real-
ized, and we will take up the practical details later.
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What effect, if any, would such a solenoid have on charged particles
if, to take a concrete example, it were placed midway between the two
slits of the opaque partition employed in an idealized electron inter-
ference experiment (Figure 3.5)? The axis of the solenoid is oriented
parallel to the plane of the partition (i.e., perpendicular to the page).
It is to be understood that the solenoid is of sufficiently small diame-
ter that it does not block the apertures and that one should neglect
the diffraction that would occur at the cylindrical surface irrespective
of the presence of the electric current and associated internal magnetic
field. It is further assumed that the space accessible to the electrons
is limited to the solenoid exterior where the magnetic field is null and
only the vector potential exists.

Clearly, in view of what was said above about classical electromag-
netism, no influence on the electron interference pattern would be
expected. In the quantum world, however, the concept of force is not
as fundamental as the concept of potential. Potentials can influence
the phase of an electron wave function to produce phenomena for
which there are no classical analogs. Spatially varying potentials
usually give rise to some kind of force, even when that force plays no
direct role in the interpretation of a physical effect. For example, the
gravitational potential of the Earth influences the wave function of a
particle moving horizontally (near the Earth’s surface) rather than
falling vertically in response to the gravitational force. This leads to a
physically observable quantum interference effect (to be discussed
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Figure 3.4. Static fields of an ideally infinitely long solenoid bearing a
uniform current that circulates in the sense shown by the wide arrow. An axial
magnetic field B fills the solenoid interior. A vector potential field A with cylin-
drical equipotential surfaces centered about the solenoid axis fills the space
outside the solenoid (where the magnetic field is null).



later) that depends on the acceleration of gravity, but is not a direct
consequence of the gravitational force, because the latter acts verti-
cally downward only. In the present case, however, there is no electric
or magnetic force at all in the region accessible to the electrons, and
the ensuing effect is strange and thought-provoking even by the stan-
dards of quantum mechanics.

The first enunciation of what was eventually to become a major con-
ceptual issue in the foundations of quantum mechanics was reported
in 1949 by W. Ehrenberg and R. E. Siday14 as something of an after-
thought at the end of a long paper devoted to the correct determina-
tion of the refractive index in electron optics. The problem the authors
addressed was of practical significance to the burgeoning field of elec-
tron microscopy, where one needed to be able to determine electron
trajectories through focusing devices. (The concept of an electron tra-
jectory is meaningful when the wavelike nature of the electron is not
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Figure 3.5. Schematic diagram of two-slit electron interference in the pres-
ence of a force-free vector potential field. The magnetic field inside the sole-
noid is directed perpendicularly into the page; the external vector potential
field has a clockwise sense about the solenoid axis. Although the diffraction
envelope remains undeviated from the forward direction, the interference
fringes are displaced by a relative phase shift between the components of the
electron wave issuing from slits 1 and 2. This phase shift is proportional to
the magnetic field within the solenoid, the region from which the electrons are
excluded.



involved; electron propagation can then be described in what is effec-
tively a geometrical optics limit.)

Realizing that the refractive index of an electron moving through
the various focusing fields of an electron microscope “contains the
vector potential and not the magnetic field strength,” Ehrenberg and
Siday concluded: “One might therefore expect wave-optical phenom-
ena to arise which are due to the presence of a magnetic field but not
due to the magnetic field itself, i.e. which arise whilst the rays are in
field-free regions only.” To emphasize their point, the authors even
described a hypothetical two-slit electron interference experiment not
unlike that proposed above—but with the source of the magnetic field
(e.g., a solenoid) left unspecified; they correspondingly deduced that,
for each increment of 3.9 ¥ 10-7 gauss-cm2 in magnetic flux between
the two slits, the electron interference pattern would shift by one
fringe.15

The physical quantity “magnetic flux,” which shall be represented
here by F, should bring to mind the image of magnetic field lines
“flowing” through a surface. For a cylindrical region with constant
axial magnetic field, such as the interior of the infinite solenoid, the
flux is simply the product of the magnetic field strength B and the
cross-sectional area (pR2 for a solenoid of radius R). More generally,
the magnetic flux of an arbitrary magnetic field through an arbitrary
surface S is the surface integral

(3.5a)

where the dot or scalar product indicates that only the component of
field perpendicular to the surface contributes.

As is well known from classical electromagnetism, the magnetic flux
can also be deduced from the auxiliary vector potential field by means
of a corresponding expression involving a contour or line integral

(3.5b)

completely around the magnetic field lines (like a string around a
bundle of straw). The entire closed contour C may well lie in a region,
such as the external region of the solenoid, where the magnetic field,
but not the vector potential field, is null. In a prescient remark 
concluding their paper, Ehrenberg and Siday commented: “It is very
curious that [there results] a phenomenon observable at least in prin-
ciple with a flux; one expects a change in flux, but not steady flux, to
have observable effects.” The “change in flux” to which the authors
referred recalls Faraday’s law of induction and Maxwell’s modification
of Ampère’s law, whereby a time-varying magnetic or electric flux
engenders, respectively, electric or magnetic forces. These are pro-
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cesses well within the purview of classical physics. Thus, Ehrenberg
and Siday’s discovery was indeed “curious.” Unfortunately, as so 
often occurs in science, the novelty of a discovery is unrecognized by
one’s contemporaries and lies fallow until rediscovered under more
propitious circumstances.

The rediscovery took place independently ten years later. In a
paper16 regarded as a classic of quantum physics, Y. Aharonov and D.
Bohm discussed in all its puzzling detail the strange phenomenon that
bears their names. The Aharonov–Bohm (or AB) effect has been con-
troversial in one way or another for over four decades—an extraordi-
nary situation for a science like physics. Within the community of
physicists interested in such matters, there are those (the majority)
who believe that the effect is an essential consequence of quantum
mechanics and that its observation has provided a fundamental con-
firmation of the theory. There are others who believe that the effect
does not exist at all. And there are still others who, while admitting
of the theoretical existence of the effect, are unconvinced that anyone
has yet seen it. How can there possibly be such persistent divergence
of opinion about the occurrence of a physical phenomenon?

At the core of the AB effect is the following characteristic of the elec-
tron wave function recognized by Dirac not long after the development
of quantum mechanics. If y0(x, t) is the wave function of an electron
at some point x and time t in a space free of electromagnetic poten-
tials (and consequently electromagnetic fields), then the wave function
y (x, t) of the electron in the presence of a time-independent vector
potential field at the same space–time location can be expressed in the
form

(3.6a)

The line integral in the phase of the wave function is taken along a
path P, largely arbitrary, that connects the point of origin of the elec-
tron motion x0 to the field point x. Because both the path and the math-
ematical form of the vector potential are arbitrary, the phase of 
the wave function is not uniquely prescribed. Nevertheless, the wave
function y of relation (3.6a) satisfies the quantum equation of motion
(e.g., the Schrödinger equation for nonrelativistic electrons or the more
general Dirac equation for relativistic electrons) when the vector
potential is present, if y0 is a solution when the vector potential is
absent. The demonstration is quite straightforward, and, as far as I
know, the above relation in itself scarcely raised any eyebrows before
the AB paper pointed out unexpected physical consequences.

Note first of all that the indeterminate phase has no effect on 
measurements performed on an undivided electron beam, since the
probability of finding an electron within some specified region, as well
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as the mean value of any physically observable property of the 
beam, depends on the expression |y|2 = y * ¥ y from which the phase
vanishes.

Consider, however, the two-slit interference experiment with the
infinite solenoid. The electron wave function divides at the slits, with
the component issuing from slit 1 propagating around one side of the
solenoid and the component issuing from slit 2 propagating around the
other side of the solenoid. After passage through the two slits and
around the solenoid, therefore, the electron wave function comprises
two terms

(3.6b)

in which y1 and y2 are the wave functions that would issue from slits
1 and 2 in the absence of the vector potential field and S1 and S2 are
the indeterminate phases of the form given in relation (3.6a). S1 and
S2, however, are distinguished only the “path” taken by the electron.
Actually, one can never know the path taken by the electron; all that
really matters is that path P1, to which phase S1 is associated, lies on
one side of the solenoid, and path P2, to which phase S2 is associated,
lies on the other.

It is not difficult to show that the phase difference between the two
components of the wave function is then

(3.6c)

where C is a closed contour about the solenoid. The integral therefore
represents the magnetic flux F through the solenoid interior. The
phase difference, in contrast to the phase of each component, is not
indeterminate, but an experimentally accessible quantity. From rela-
tions (3.6b) and (3.6c), it follows that the electron intensity at a dis-
tance x (from the forward direction) along the axis perpendicular to
both the solenoid and the incident electron beams takes the form (for
two identical slits)

(3.6d)

Here, V and a(x) characterize the visibility (or contrast) and phase 
of the “ordinary” two-slit interference pattern in the absence of the
current-carrying solenoid. (The single-slit diffraction factor is not
included in the above expression since it is not relevant to the discus-
sion at the moment.) The supplementary contribution to the phase
that depends on magnetic flux is the AB effect. The flux-dependent
term can be written as 2p (F/F0), in which the constant F0 = hc/e =
3.9 ¥ 10-7 gauss-cm2 is one “fluxon,” a fundamental unit of flux. If this
expression really represents the outcome of the proposed experiment,

I x I a x
e

hc
( ) = ( ) + ( ) +Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇

0 1
2

V cos
p F

.

S S
e
c

d
e

cC
2 1- = ◊Ú

h h
A l = ,

F

y y yx x x, , , ,t t iS t iS( ) = ( ) ( ) + ( ) ( )1 1 2 2exp exp

82 3. The Unimaginably Strange Behavior of Free Electrons



then, as Ehrenberg and Siday first predicted, a change in flux by one
fluxon should shift the pattern by one fringe.

Within two years of publication of the AB paper, several laborato-
ries reported experimental confirmations of the effect. Nevertheless,
the AB effect was puzzling in almost every way; neither the theoreti-
cal existence nor the experimental verification nor the authors’ inter-
pretation of the effect was readily accepted. In the words of Aharonov
and Bohm17:

Although [our] point of view concerning potentials seems to be called for in
the quantum theory of the electromagnetic field, it must be admitted that it
is rather unfamiliar. Various of its aspects are often, therefore, not very clearly
understood, and as a result, a great many objections have been raised against
it. . . .

The point of view of the authors, embodied in the title of their seminal
first paper, is that the presumed auxiliary electromagnetic potentials,
even though they are indeterminate, are, in fact, more fundamental
than the electromagnetic fields. At least initially, before the deep sig-
nificance of gauge invariance to field theory was widely recognized,
this view rested largely on the notion of causality. To be consistent 
with commonly understood ideas of cause and effect implicit, for ex-
ample, in the principle of special relativity, interactions in physics
must be local (i.e., a particle can interact only with the fields in its im-
mediate vicinity). This perspective is expressed in the very formulation
of physical laws as differential equations. In the AB effect, however,
the only field at the site of an electron is the vector potential field (or,
in variations of the effect, the scalar potential)—and this field is 
indeterminate.

To many, however, the interpretation that electromagnetic potentials
are more basic than electromagnetic fields was (and perhaps still is)
difficult to accept. After all, although the electrons may be subject to
the laws of quantum mechanics, the fields are still the classical fields
of Maxwell’s electrodynamics. There is nothing in the AB effect that
requires a quantum theory of electrodynamics, and classical elec-
trodynamics can be formulated starting with either the fields or the
potentials.

On the other hand, the alternative viewpoint, that the fields take
precedence over (or are at least as fundamental as) the potentials,
seemingly requires one to accept a most peculiar interpretation.
Because the magnetic field is confined in a region of space inacces-
sible to the electrons, the particle–field interaction must occur nonlo-
cally (i.e., by means of action at a distance). How can a magnetic field
influence an electron that never passes through it?

One answer, maintained by a small minority, is that the whole issue
is a tempest in a teapot: The AB effect does not exist except on paper.
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The argument to support this view is linked to the nonuniqueness of
the vector and scalar potentials. It is possible to find a gauge trans-
formation for which the new (i.e., transformed) vector potential field
vanishes identically in the region outside of the solenoid (or other
current configuration). If this were indeed the case, the electrons could
be made, by means of a purely mathematical manipulation, to pass
through a region with neither a vector potential nor a magnetic field.
Clearly, one would not expect any influence on an electron in that case;
hence, the effect predicted for a nonvanishing vector potential must be
fictitious.

This reasoning, however, is not sound. The type of gauge transfor-
mation at issue not only removes the external vector potential but
effectively the internal magnetic field as well. It changes completely
the physical system, and this is not permitted. Although there is wide
latitude in the execution of gauge transformations, not every con-
ceivable gauge transformation is an admissible one. A gauge trans-
formation is a little like a change of coordinates; the selection of one
coordinate system over another may afford more analytical conve-
nience, but it must not change the physical system itself.

Ironically, the above point was already recognized in the 1949 paper
of Ehrenberg and Siday, who posed the question: “One may ask if the
anisotropy outside the [magnetic] field could not be avoided by an
alternative value for A which also reproduces the field given. . . .” By
“anisotropy,” the authors meant the presence of the vector potential in
the theoretical expression for the electron refractive index. A short
demonstration showed that this was not possible and the authors con-
cluded: “It is readily seen that no vector potential which satisfies
Stokes’ theorem will remove the anisotropy of the whole space outside
the [magnetic] field. . . .’ Stokes’ theorem—the key to resolving the
gauge transformation “paradox”—is the equality of relations (3.5a) and
(3.5b). Expressed in words, the presence of a magnetic flux through 
a surface requires a nonvanishing vector potential field along some
closed path bounding the surface. Any vector potential that does not
satisfy Stokes’ theorem for a specified magnetic field configuration is
not acceptable. Apparently, the Ehrenberg and Siday paper was not
widely read.

The AB effect, however, is a subtle one even for those who accept its
existence. Indeed, what many physicists once thought (and perhaps
still believe) the phenomenon to be is incorrect and violates basic phys-
ical principles! As depicted in the papers of both Ehrenberg and Siday
and of Aharonov and Bohm, the phase shift engendered by the mag-
netic flux of the confined magnetic field redistributes the electron
intensity out of the forward direction. So far, so good. Confusion arises,
however, upon consideration of the actual manner of redistribution. 
In the words of Aharonov and Bohr, for example, the presence of the
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vector potential field of the solenoid has the following consequence: “A
corresponding shift will take place in the directions, and therefore the
momentum of the diffracted beam.” (Italics added by the writer.) Is this
in fact what the AB shift implies?

Recall at this point that although the two-slit interference pattern
has, in principle, an indefinite lateral extent, the fringe contrast falls
off rapidly outside the central region of the single-slit diffraction “enve-
lope.” [See relation (3.1a) and Figure 3.1.] For the fringes to be visible,
the transverse coherence of the electron beam must extend at least
over the width of the diffraction pattern (e.g., the region between the
first two diffraction minima). This spatial or transverse coherence
length �s (to be distinguished from the temporal or longitudinal coher-
ence length �c, introduced earlier) is given to good approximation by
the relation

(3.7)

where d is the initial angle of divergence (i.e., angular deviation from
the forward direction) of the beam at its source. As an example, the
field-emission beam employed in the electron self-interference experi-
ment of Section 3.1 had a divergence angle d = 2 ¥ 10-8 radian and a
wavelength l = 5.4 ¥ 10-3 nm; thus, the transverse coherence length
was �s = 0.014cm or 140mm, two orders of magnitude larger than the
temporal coherence length.

A common interpretation of the AB effect, expressed or implied in
the expository literature, is that the shift in “momentum of the dif-
fracted beam” refers to the shift of the diffraction pattern. Indeed,
Feynman himself—one of the creators of quantum electrodynamics,
the branch of physics that treats most comprehensively the interac-
tion of particles and electromagnetic fields—had portrayed the AB
effect as analogous to placing a strip of magnetic material (transpar-
ent to electrons) behind the partition with two slits; he showed that
the resulting Lorentz force displaced the center of the diffraction
pattern (as, in fact, it would).18 This interpretation is not valid,
however, for no such magnetic force is possible in a region ideally free
of electric and magnetic fields. To represent the AB effect in this
manner violates what is known as the Bohr correspondence principle.

Although quantum mechanics is a more comprehensive theory that
classical mechanics, there must be some means of relating both the
quantum and classical descriptions of a system under conditions where
the latter theory is also applicable. This is the correspondence princi-
ple, first enunciated and widely used by Niels Bohr in the years before
a consistent and complete theory of quantum mechanics was formu-
lated. The principle can be implemented in a variety of ways of which
one of the most common is to consider the limiting case of a quantum
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expression as Planck’s constant h approaches zero. As h vanishes, the
laws of the quantum world and the classical world become one; the
electrons stream through the apertures like (charged) grains of sand.

The quantum-theoretic description represents this transition in the
following way. First, the center of the diffraction pattern falls at the
location to which the extant forces displace the corresponding classi-
cal particles in accordance with Newton’s laws. Second, the quantum
interference pattern oscillates infinitely fast, so that no real detector
could reveal the fringes. Thus, in the limit of vanishing h, the AB effect
must vanish and the diffraction pattern of the electron beam must be
undisplaced. What, then, is the physical consequence of the AB effect
in the real world where h is not zero?

Careful analysis of the Aharonov–Bohm effect would show that the
magnetic flux shifts the two-slit interference pattern asymmetrically
within the single-slit diffraction pattern (Figure 3.5). However, the
center of the diffraction pattern, itself, is not displaced in keeping with
the condition that no classical electromagnetic force acts on the elec-
trons.19

The two-slit experimental configuration appears to be symmetric
with respect to both slits. What determines whether the electron beam
is displaced laterally toward slit 1 or toward slit 2? It is the direction
of the magnetic field and, consequently, the sense of circulation of the
vector potential that breaks the symmetry. The field within the sole-
noid can be oriented either “up” or “down”; a change in the field ori-
entation would reverse the direction of fringe shift, even though the
electrons do not directly experience the magnetic field.

There is no mechanistic explanation. The AB effect, since it is 
discernible only in the interference pattern (which vanishes as h
approaches zero) and not in the diffraction pattern (which remains
unchanged from that of a force-free electron beam), is a uniquely
quantum mechanical phenomenon and, as such, beyond the visual
imagery of classical physics.

Theory aside, what does experiment have to say about the matter;
has anyone actually observed the AB phase shift? For a long while,
interpretation of the few electron interference experiments reporting
AB-type phase shifts in the presence of structures designed to simu-
late an ideal solenoid was somewhat ambiguous. One such structure,
for example, was a very fine magnetized iron “whisker” less than 1mm
in diameter. Unfortunately, to ensure that no magnetic field lines per-
meate the region accessible to the electrons—whereupon critics could
argue that changes in the electron interference pattern derive from the
familiar Lorentz magnetic force—was rather difficult.

In a series of experiments extending through the 1980s, my Hitachi
colleagues took up the challenge.20 Through a happy marriage of basic
science and advanced technology, the condition of a confined magnetic
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flux was produced by fabrication—not of solenoids—but of tiny (about
10–20mm in diameter) toroidal (doughnut-shaped) permalloy ferro-
magnets. Unlike a real solenoid, where the currents in the windings
produce an external magnetic field, the toroidal magnetic field lines
form circular loops within the interior of the toroid (around the hole).
Electron microscopy itself could be used as a check for magnetic field
leakage, thereby permitting imperfect toroids to be discarded. To make
doubly sure that electrons would not penetrate the surface of the 20-
nm-thick magnets, the Hitachi toroids were coated with a 300-nm-
thick layer of niobium and a copper layer also on the order of a hundred
nanometers in depth.
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Figure 3.6. Schematic experimental configuration for observing the
Aharonov–Bohm effect by means of electron holography. In the absence of the
toroidal ferromagnet, the electron wave, split by the biprism and recombined in
the image plane, generates straight, uniformly spaced reference fringes. With
the toroid present, the portion of the electron wave diffracted by the toroid super-
poses with the reference wave at the image plane to generate a holographic
image that preserves the phase (relative to the reference) of the electron wave
function. (Courtesy of A. Tonomura, Hitachi Advanced Research Laboratory.)



To produce the AB effect, a shielded toroidal magnet was situated 
in the field-emission electron microscope above the electron biprism
(Figure 3.6). In the imagery of classical physics, an electron in the
beam could pass either around the outside of the toroid or through the
central hole. Although the magnetic field geometry differs from that 
of the ideal solenoid, there is still a net magnetic flux through any sur-
face bounded by these two types of classical trajectory. In the imagery
of classical waves, the portion of the electron wave that propagates
around the outside of the toroid serves as a reference in an experi-
mental configuration analogous to that of optical holography; this 
reference wave is split at the biprism and gives rise to a pattern of
interference fringes upon recombination at the image plane (a photo-
graphic film). The component of the electron wave that diffracts
through the central hole of the toroid, however, should incur an AB
phase shift relative to the reference and thereby produce fringe shifted
with respect to the reference fringes by an amount depending on the
magnetic flux winding through the toroid. Since the electrons cannot
penetrate the shielded toroid, the projection of the toroid onto the film
ought to appear as a solid black annulus (flat doughnut). Were the
toroid not shielded, one would see within the body of the annulus the
continuity of the outside reference fringes and the displaced fringes in
the hole.

The experiment was duly conducted with the results as just
described (Figure 3.7). But alas, the skeptics were unmoved. The
toroids, so it was claimed, were not perfect, or at any rate not close
enough to perfection, and the specter of the Lorentz force was again
raised. Back to the drawing board (literally) went the Hitachi team.

To ensure beyond a reasonable doubt that the magnetic field of the
toroid was adequately confined, the experimenters designed a low-
temperature specimen stage to reduce the temperature of the toroid
until the niobium layer becomes superconducting. A (Type I) super-
conductor displays the Meissner effect: Upon transition to the super-
conducting state, it will suddenly expel a pre-existing magnetic field
from its interior. However, given the geometry of the tiny shielded
toroids, expulsion of the magnetic field from the outer niobium layer
is tantamount to confining it within the inner permalloy magnet.

There was one small potential problem, however: The use of super-
conductivity entailed the discouraging possibility that no fringe shift
might take place at all! A feature of superconductors, not unrelated to
the Meissner effect, is that the magnetic flux penetrating a supercon-
ducting loop is constrained to half-integer values of the fluxon hc/e. In
other words, the AB phase shift in relation (3.6d) would take the form
2p (F/F0) = 2p (n/2) = np, where n can be 0, 1, 2, 3, . . . . (One speaks of
this as quantization of magnetic flux, but this should not be construed
to imply a quantization of the magnetic field; the fields are entirely
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classical.) If, for some reason, the Hitachi toroids all produced even
integer multiples of the fluxon, then the AB phase shift would be an
integer multiple of 360°, and therefore not observable. On the other
hand, if toroids could be produced for which the quantized flux turned
out to be odd-integer multiples of the fluxon, then phase shifts equiv-
alent to 180° would occur, thereby giving rise to complete fringe rever-
sal between the space outside the toroid and the central hole. This
would be clearly observable.

Fortunately, nature was not so perverse as to deny the researchers
the fruit of their hard efforts. Toroids of both types were produced, 
and the expected phase shift was observed under conditions approxi-
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Figure 3.7. (a) Interferogram of an unshielded toroidal magnet showing the
shift in fringes (i.e., lines of constant phase) for components of the electron
wave passing outside the toroid or through the hole. Because the toroid is
unshielded, electrons can also pass through the interior, allowing one to see
the continuity of the fringes. (b) A superconducting layer over the toroidal
magnet shields the outside region from magnetic field leakage and prevents,
as well, electron penetration. The interferogram shows a 180° phase shift
between the two components of the electron wave that diffract around the
toroid or through the hole. (Courtesy of A. Tonomura, Hitachi Advanced
Research Laboratory.)

(a)

(b)



mating more closely than ever before the ideal confinement of the 
magnetic field. The AB effect exists!

Or does it? Can one point again to deviations from ideality that
vitiate the conclusion? More largely construed, the query addresses a
basic aspect of how science works.

The Meissner effect, as is well known, does not exclude a magnetic
field completely from the interior of a superconducting material. An
“evanescent” magnetic field (i.e., a field falling off exponentially with
distance) can penetrate a superconductor to an extent (London pene-
tration depth) that is ordinarily so small as to be negligible for a bulk
substance. The penetration could, however, be significant for a thin
film. The niobium layer covering the toroid is not a bulk material, but
is it sufficiently thick? From the thickness of the layers and the pre-
cision of their technique for measuring fringe shifts, the Hitachi group
estimated that the leakage flux outside a toroid must be far less than
1/200 of a fluxon. According to quantum theory, the ensuing Lorentz
force should be negligible.

Well, what about electron penetration into the magnet? After all,
150-keV electrons are fairly energetic. Taking into account potenti-
ally relevant interactions between the electrons and the copper and
niobium layers, the researchers estimated that about one out of every
million electrons might penetrate the toroid sufficiently to experience
a magnetic field. For a toroid 10mm in diameter and an electron flux
of about 10-5 A/cm2, this amounts to some 50 electrons out of 50 million
per second penetrating the toroid. Does this degree of imperfection
invalidate the conclusion that the AB effect has been observed? 
Certainly not. There is no such thing, in my opinion, as a “definitive”
experiment, an experiment so perfect or complete that it settles an
issue for all time. There will always be deviations from ideal perfor-
mance to which critics can point; there will always be new experiments
that experimenters can make. The key concern, however, is whether
or not the criticisms are valid and the improvements needed.

Within the framework of a mature science—indeed as a hallmark
that a particular discipline is in fact a science—there must be objec-
tive ways for assessing the reliability of a given conclusion. It is insuf-
ficient as a mode of objection simply to list all manner of things that
might conceivably be nonideal. To be taken seriously, a critic is obliged
to demonstrate convincingly some relevant causal connection between
the objection and the experimental outcome. In the present case, the
evidence, both theoretical and experimental, for the existence of the
AB effect is consistent and reproducible. To sustain prior objections at
this point, one would need to explain how so striking a modification 
of the electron interference pattern could be produced by a minuscule
trickle of penetrating electrons, or to demonstrate a flaw in the argu-
ments leading to the presumed low level of penetrating electron flux,
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or to provide some alternative explanation (not involving the Lorentz
force) of the observed phase shifts.21

For most physicists concerned with the issue, the AB effect is theo-
retically real and experimentally confirmed. Many probably already
believed in it, if only on the basis of theoretical self-consistency, well
before the Hitachi experiments. Nevertheless, the skepticism that
motivated these experiments was, I think, beneficial. The ensuing
research not only convincingly demonstrated the AB effect, but led, as
well, to novel instrumentation and new discoveries concerning quan-
tized magnetic flux. Skepticism in science, if not also in the arena of
everyday life, is a healthy attribute to the extent that it reflects an
open-minded willingness to be convinced by new facts. That is how
science advances. What, finally, can one say about the interpretation
of the AB effect regarding the fundamentality of electromagnetic fields
or potentials? In quantum theory, the electromagnetic potentials are
no longer merely secondary fields that facilitate computation; they are
needed at the outset in order for the theory to be invariant under gauge
transformations. Gauge invariance, once regarded as merely a curious
feature of Maxwell’s equations, has since been recognized as a most
important symmetry to be maintained in all field theories. Indeed, 
this symmetry largely determines a priori the form of the interaction
between particles and fields. (I discuss this point more comprehen-
sively in Chapter 9.) Correspondingly, effects analogous to the AB
effect are believed to occur, at least in principle, in areas nominally
unrelated to electromagnetism such as gravity (general relativity
theory) and the strong nuclear interactions (quantum chromodynam-
ics). The interpretations of these effects are not always clear, nor are
the experimental methods by which they might be observed. But that
they are intrinsic to the theory and of fundamental significance is
seemingly beyond doubt.

Recognition of the wider occurrence in physics of AB-like effects has
led to reconsideration recently of the existence of an actual (i.e., elec-
tromagnetic) AB effect on light. Surprisingly, although such effects 
are not expected for completely neutral systems, the photon can 
nevertheless be influenced, at least in principle, by a magnetic flux. In
classical electromagnetism, as a result of the linearity of Maxwell’s
equations, there is no mechanism by which light can interact with
static electromagnetic fields or potentials (or with other light waves)
in the absence of matter. Within the framework of relativistic quantum
electrodynamics, however, a photon can, under appropriate circum-
stances, be transformed into an electron and positron pair whose brief
lifetime is so short that, to within limits posed by the uncertainty prin-
ciple, no physical law is violated. During their ephemeral existence,
these oppositely charged particles (rather than the original photon
directly) can interact with a vector potential field to give rise, after
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their subsequent mutual annihilation back to another photon, to light-
scattering processes that depend on magnetic flux. The probability for
the occurrence of such processes is extremely small, but that these
processes exist at all highlights one of the seminal differences between
classical and quantum electrodynamics.

The AB effect is a subtle one—at both the theoretical and experi-
mental levels—and therein, in part, lies its great interest not only as
a test of quantum mechanics and electrodynamics but also as a stark
reminder that physics is a human activity characterized by intellec-
tual ferment, struggle, and creativity. It is not simply a storehouse 
of equations, facts, and procedures whose straightforward application
instantly produces “right” answers.

The confirmation of the AB effect does not, by any means, signify
that the subject is an exhausted one. There are aspects to this phe-
nomenon, as yet unexplored experimentally, that point to a physical
reality stranger still than that revealed so far. One stands in awe at
how devious and wonderful nature can be.

3.3. The Two-Electron Quantum Interference
Disappearing Act

A long gray wall separates the Hitachi grounds from the rest of
Kokubunji City. The familiar orange Chuo (“Middle Central”) Line
passes close by one side of the wall, taking commuters east to central
Tokyo or west to outlying areas like the venerable city of Hachioji
(“City of Eight Princes”). During my first visit to the Advanced
Research Laboratory, I lived in Hachioji on a high hill overlooking the
city and affording a memorable view of Mt. Fuji in the early morning
hours when the air was clearest. Some years later, I climbed Fuji with
a Hitachi colleague, starting at twilight in a solemn torch-lit proces-
sion of pilgrims, and caught a glimpse of the sunrise through a momen-
tary parting of the thick curtain of mist that surrounded us. It was a
moving experience. By then, I was living in Kokubunji within a short
walk of the Laboratory.

Seen from outside the Hitachi wall, the gray tower of a company
building looming up in the distance suggests just another industrial
works. But inside, this mistaken impression evaporates before the
extraordinary surroundings. Paths descend through wooded terrain to
a large pond teeming with carp and lined with cherry and plum trees.
Swans and ducks skim over the surface. A veritable botanical garden
with a rich variety of trees, bushes, and flowers identified by small
placards surrounds the pond and adjacent smaller pools. Footbridges
connect the mainland to a few small wooded islands upon which 
here and there a stone lantern or Japanese shrine nestles unobtru-
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sively. Beyond the pond is an extensive sports field with an outdoor
amphitheater.

These gardens and woods served me well. In the early afternoon and
evening of most days, I was wont to talk or jog around the pond, my
head filled with thoughts of electrons, solenoids, and quantum
mechanics. The Aharonov–Bohm experiments—as, indeed, all quan-
tum interference experiments to date with free electrons—were per-
formed effectively one electron at a time; that is, even with the
brightest sources available, the observed interference effects were all
manifestations of single-particle self-interference. Dirac’s dictum
aside, the possibility of quantum interference with two or more elec-
trons intrigued me and I kept thinking about what types of effects
could occur.

In the summer, around the time of the o-bon festival—a holiday
somewhat analogous in spirit, but not in celebration, to the European
All-Saints’ Day—the ARL and CRL staff held a huge lawn party on the
playing field in the late afternoon. Then, when the sky had darkened
sufficiently so that the first stars appeared, the crown jewel of the 
day’s activities would begin: the hanabi or “fire flowers,” a spectacular
display of fireworks lasting for almost an hour. I lay on my back in the
soft grass watching burst after burst of brilliant particles and dream-
ily imagined them to be electrons shooting in all directions out of their
source. What, I wondered, would two oppositely flying particles do if
each encountered an AB solenoid at its own end of the sky?

The idea, although initially appealing, struck me after a few
moments as uninteresting. Clearly, each particle would simply con-
tribute to its own interference pattern of AB-shifted fringes. After all,
once separated, the two particles go their merry way uninfluenced by
one another. However, I had not reckoned on what surely must be one
of nature’s strangest attributes, a quantum mystery no less profound
than that of self-interference (Feynman’s “only” mystery). Some days
later, when the inchoate images of celestial solenoids and hanabi elec-
trons shooting through the heavens consolidated more soberly in my
mind, I examined the problem systematically—and the results were
surprising indeed.

To keep matters simple, imagine a compact source that produces
wave packets with two electrons at a time. Like the fiery sparks of the
hanabi, there is no preferred direction for electron emission. One elec-
tron can fly out in any direction whatever, as long as the other elec-
tron emerges simultaneously in the opposite direction. How is one to
create such an electron source? Well, I am not sure; this is, after all,
a Gedankenexperiment. Perhaps one can fabricate a double-tipped
field-emission cathode that emits pairs of coherent electrons, one elec-
tron emerging from each end. Perhaps there are atomic processes
involving the correlated excitation and ionization of two electrons. Or
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perhaps one can resort to the use of “exotic” atoms, atoms containing
elementary particles other than the familiar ones (electron, proton,
and neutron). If two electrons, for example, bind to a positive muon,
there would result a muonic counterpart (m+e-e-) to the negative hydro-
gen ion H-. A proton lasts forever (or at least many times the age of
the universe); a muon, however, decays to other particles that flee
rapidly from the scene of destruction. The decay of the muon in the
m+e-e- ion should leave two mutually repelling electrons. In any event,
let us leave the technical details of a suitable electron source to the
future.

Pick some point far to one side of the source (S) and place there an
AB solenoid (with magnetic flux F1) oriented perpendicular to the line
between the source and the point; at a corresponding point on the oppo-
site side of the source, locate a second AB solenoid (containing flux F2)
with its axis parallel to the first (Figure 3.8a). Let us suppose that the
currents through the windings of the two solenoids circulate in the
opposite sense so that the internal magnetic fields of the solenoids are
antiparallel; it does not really matter—the principal results are not
qualitatively changed.

Now, locate four electron “mirrors,” as shown in the Figure 3.8a. If
an electron—let us call it electron 1—heads in just the right direction
to reflect from mirror M1 into a detector D1, then the companion elec-
tron—electron 2—will reflect from mirror M2¢ into detector D2. Cor-
respondingly, if electron 1 reflects from mirror M1¢ into detector D1,
then electron 2 reflects from mirror M2 into detector D2. The distance
between source and mirror is the same for all four mirrors; likewise,
the four (shortest) mirror–detector separations are all equal. In this
way, there is no phase shift in the electron wave function arising from
a difference in the electron optical path length. The two classically
imagined paths of electrons 1 and 2 form complete loops about the
respective solenoids S1 and S2, and it would seem then that all con-
ditions for an AB interference effect at each detector are met.

It is to be assumed that the two solenoids (S1 and S2) and the two
detectors (D1 and D2) are far apart from one another—indeed, so far
apart that the observers may not even be able to see or communicate
with one another. Perhaps the observer at D1 is not even aware that
there is someone to switch on D2 and observe the other electron. From
the perspective of observer 1, therefore, electrons are simply arriving
regularly and being counted at D1. “Why should it matter if other elec-
trons spewing out elsewhere?,” he might ask. If an electron takes 
the path S–M1–D1, the wave function of the electron incurs the
(nonunique) phase shift a1, where, in accordance with relation (3.6a),
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Figure 3.8. (a) Schematic diagram of an electron interference experiment
with pairs of correlated electrons. For each electron emitted by the source S
in a particular direction, there is a corresponding electron emitted in the oppo-
site direction. One does not know, however, which paths (source Æ mirror Æ
detector) the electrons take through the right and left interferometers. The
count rate observed at the detector of one interferometer depends on the mag-
netic flux in the other interferometer through which the counted electrons
could not possibly have passed.

(a)

Similarly, if the electron takes the path S–M1¢–D1, there results a
phase shift a1¢:

(3.8b)

Corresponding phase shifts a2 and a2¢ involving the vector potential
field A2 of solenoid S2 are incurred by the electron wave that propa-
gates from the source S to D2 via mirrors M2 and M2¢, respectively.
Observer 1 does not concern himself with the effect of vector potential
A2 in his vicinity because the electrons reaching detector D1 do not
make a circuit around solenoid S2.

What does observer 1 predict will be the outcome? To the extent that
he ignores the electrons emitted toward observer 2—and, for all he
knows, may not even be counted—the first observer might reason as
follows. The wave function—or at least the only part of it relevant to
his own experiment—should be the sum of two probability amplitudes,
one for each path the electron could take to detector D1. Thus, to
within a constant factor, the net amplitude for arrival of an electron
at D1 is

(3.9a)

Observer 1 would then deduce that the probability of an electron being
received at D1 is proportional to |y(D1)|2 or
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(3.9b)

which is, in effect, a special case of relation (3.6d). The normalization
factor 1–2 assures that the maximum probability is unity or 100%. We
have also make use of Stokes’ law, discussed earlier, which in the
present case requires that

(3.9c)

(3.9d)

Observer 2, reasoning in a similar way that his experiment is inde-
pendent of that of the distant observer 1, would deduce an analogous
expression involving flux F2. Together, the two observers would infer
the following joint probability for an electron to be received at both D1
and D2:

(3.9e)

The results may seem satisfying, for the probability inferred by each
observer depends only on the magnetic flux of the solenoid in “his” part
of the universe. The only problem is that the predicted outcomes [rela-
tions (3.9b) and (3.9e)] and the whole mode of thinking are incorrect.

The two electrons are not emitted independently since their “paths”
(actually their linear momenta) are correlated; according to quantum
theory, this correlation persists, no matter how far apart the electrons
travel. If the observer at D1 determined the path of arrival of an incom-
ing electron, he would know without having to make a measurement
(if he were aware of the correlated emission) the path taken by the
other electron. Of course, if he did determine the electron path, there
would no longer be any quantum interference. Nevertheless, accord-
ing to the hypothetical conditions of the Gedankenexperiment, an elec-
tron necessarily arrives at D2 if an electron arrives at D1, and one
must determine the joint probability of electron detection at the outset.

The amplitude that one electron arrives at D1 via mirror M1 and
therefore that the other arrives at D2 via mirror M2¢ is proportional
to the product of the phase factors for each route:

(3.10a)

Likewise, the amplitude that one electron arrives at D1 via mirror M1¢
and that, therefore, the other arrives at D2 via mirror M2 is
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The wave function y(D1, D2) of the detected two-electron system is
proportional to the sum of the above two amplitudes, and the joint
probability of electron detection, given by |y (D1, D2)|2 now takes the
form

(3.10c)

From the perspective of classical physics, the above hypothetical
experiment with correlated (as opposed to independent) electrons
poses a curious dilemma in several ways. First, until one gets used 
to it, the idea of the AB effect, itself, where electrons are affected 
by passing around, and not through, a magnetic field is rather 
curious. But in the present configuration, the signal detected by one
observer also depends on the distant magnetic field around which 
“his” detected electrons have not passed. Or, phrased differently, it
depends on the electrons that go to the other observer even though 
the latter can be arbitrarily far away! Suppose, for example, that the
magnetic flux is the same within the two solenoids; irrespective of the
magnitude of the flux, the electrons, according to the correct relation
(3.10c), would arrive at both detectors with 100% probability. By con-
trast, if the flux through S1 had been set to product a phase shift eF/
c of 180°, then observer 1, in the erroneous belief that his experiment
was independent of that of the other observer, would have deduced
from relation (3.9b) that the probability of electron arrival at D1 
is zero.

There is nothing in itself strange about two particles being corre-
lated and flying off in opposite directions; this could occur as well in
classical mechanics if an initially stationary object exploded into two
pieces. However, once the pieces are separated, the motion of one
would not be expected to influence, or be influenced by, subsequent
measurements made on the other. What has happened to the “local-
ness” of physical interactions in quantum mechanics?

Perhaps the reader is thinking that the nonlocality manifested by
the above two-electron AB Gedankenexperiment is an artificial product
of the experimental condition whereby if observer 1 receives an elec-
tron, then he knows for certain that observer 2 has received an elec-
tron. In other words, the experimental configuration is such that one
cannot calculate the signal at one detector without it being a joint
detection probability for both detectors [relation (3.10c)].

Let us modify the experiment, therefore, so that when observer 1
receives an electron, he will not know to which detector the other elec-
tron has gone. At the former location of detectors D1 and D2, put two
beam splitters, BS1 and BS2, that divide the intensity of an incoming
electron beam equally (Figure 3.8b). Thus, an electron incident on BS1
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from mirror M1 or M1¢ has a 50% chance of reflecting from the surface
and a 50% change of being transmitted; likewise for electrons incident
on BS2 from mirrors M2 and M2¢. Now, instead of having only two
detectors as before, let us place four detectors (D1, D1¢, D2, D2¢), one on
each side of each beam splitter. With these modifications not every elec-
tron incident on the mirrors M1 or M1¢ will necessarily go to the detec-
tor D1 of observer 1, nor can observer 1 know if the second electron of
the correlated pair emitted by the source is received at D2 or D2¢.

Alas, the modified two-electron AB experiment does not lead to
results more compatible with our classical conceptions of locality. If
anything, the outcome is stranger than before.

One can readily determine, by extension of the foregoing reasoning
leading to the amplitudes (3.10a) and (3.10b), the probability ampli-
tude for each potential pathway of an electron wave from source to
mirror to beam splitter to detector.22 From these amplitudes follows
the joint probability for receiving two electrons at any two detectors.
For example, the joint probability that one electron arrives at detec-
tor D1 and the other electron at detector D2 is

(3.11a)

whereas the joint probability that one electron arrives at detector D2
and the other electron at detector D2¢ is

(3.11b)

These expressions are similar to relation (3.10c) characterizing the
first thought experiment.
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Figure 3.8. (b) Diagram of correlated electron interference experiment with
addition of beam splitters BS1 and BS2 to the configuration of Figure 3.8(a)
(and corresponding addition of two more detectors). The probability for detect-
ing an electron at a specified detector, irrespective of the fate of the paired
electron, is entirely independent of magnetic flux and, in fact, shows no
quantum interference effect at all. Interference occurs only in the joint detec-
tion of two electrons.



However, suppose observer 1 is not interested in where electron 2
goes. In fact, suppose that detectors D2 and D2¢ are not even turned
on and that nobody knows what has happened to electron 2. Observer
1, nonetheless, sits by detector D1 and assiduously notes down the
electron counts. What signal does he receive?

The probability that an electron goes to D1 irrespective of the detec-
tor to which electron 2 goes is simply

(3.11c)

A constant! The signal that observer 1 receives with his detector alone
is completely independent of the magnetic flux of either solenoid. The
AB effect seems to have completely disappeared.

In fact, all quantum interference has disappeared. Had the geomet-
rical path lengths for the pathways S–M1–D1 and S–M1¢–D1 not been
equal (as initially specified), then—quite apart from the presence or
absence of magnetic flux through any solenoid—there would occur a
relative phase shift between the electron waves taking one or the other
of these pathways. One would then expect the usual two-slit type of
quantum interference to occur. But it does not occur. The phase shift
engendered by an optical path-length difference would appear in the
argument of the interference term (the cosine function) of both rela-
tions (3.11a) and (3.11b). Because these two interference terms have
opposite signs, they would again vanish when summed to give P(D1),
the probability that observer 1 receives an electron.

The joint probabilities, P(D1, D2) and P(D1, D2¢), do show an AB
effect. Thus, when either the observer at D2 or the one at D2¢ corre-
lates his electron count rate with observer 1, the latter becomes aware
of an AB effect. However, if neither the observer at D2 nor the one at
D2¢ bothers to participate in the experiment, then observer 1 detects
no quantum interference effects at all. How can this be? How can
observers at one end of the universe destroy the quantum interference
of electrons at the other end simply by deciding not to observe? Surely
this is most odd.

As with other uniquely quantum phenomena, the above Gedanken-
experiment—which some day will no doubt be performed as a real
experiment—has no explanation within classical physics. We cannot
satisfactorily account for these results through any imaginable behav-
ior of particles and waves such as we find in the macroscale world.

It should be brought out explicitly at this point that—despite the
presence of a vector potential field in the region of space accessible to
the electrons—the AB effect even as originally described (with dif-
fraction of a single-electron wave function around one solenoid) is,
itself, an intrinsically nonlocal phenomenon. The presence of a vector
potential field does not per se make the AB effect an effect (i.e., some-
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thing observable) unless the pathways potentially available to the
charged particle circumscribe the confined magnetic field. In this
sense, the AB effect reflects the topology (global or nonlocal geometri-
cal features) of the multiply connected space through which the par-
ticles propagate.

However, quite apart from anything specific to the AB effect,
quantum mechanics manifests an essential nonlocality deriving 
from the wave description of matter. Once linked together in a single
quantum system, quantum particles remain a single system even after
they have separated sufficiently far that there can be no information
exchange or physical interaction between them capable of affecting an
experimental outcome. These results are strange, even within the
framework of quantum mechanics, because most of our past experi-
ence with quantum interference phenomena concerned, principally,
the self-interference of single particles. The above-described hypo-
thetical system, however, involves inextricably “entangled” quantum
states of two particles (to employ terminology first introduced by
Schrödinger). No matter how far apart the two particles separate, they
constitute a single quantum system manifesting the bizarre effects of
nonlocality.

This may seem absurd from the perspective of the familiar experi-
ences that define for most of us the nature of “physical reality.” If so,
we are in good company, for Einstein himself was sorely plagued by
these strange implications of quantum theory.

In 1935, in a paper23 that has subsequently become a wellspring of
voluminous discussions and experimental tests of quantum mechan-
ics, Einstein and his collaborators Boris Podolsky and Nathan Rosen,
raised the issue know today as the EPR paradox. Does quantum
mechanics provide a complete description of physical reality? EPR
posed the question and answered it negatively. What, after all, is phys-
ical reality? According to EPR,

If, without in any way disturbing a system, we can predict with certainty 
(i.e., with probability equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding to this physical 
quantity.

And, insisted EPR,

. . . every element of the physical reality must have a counterpart in the physi-
cal theory

if a theory is to be regarded as “complete.”
How well does quantum mechanics do when judged by these crite-

ria? Not very well, it seems. EPR provided their own example for dis-
qualifying quantum mechanics as a complete theory, but our first
two-electron AB experiment will amply serve to illustrate the difficul-
ties. As stated before, without in any way disturbing the electron
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emitted to the left, observer 1 can determine which path the electron
takes to detector D2 by determining which path the electron emitted
to the right follows to detector D1. By the EPR criteria, then, these
electron paths are elements of physical reality and must have a coun-
terpart in the physical theory. However, we know that if the ensuing
quantum interference is not to be destroyed, quantum theory does not
permit us to know which path either electron has taken. To know this
information is equivalent to knowing the transverse components of
coordinate and momentum of each electron to a degree of precision
higher than that permitted by the uncertainty principle. In quantum
theory, these various paths available to the electrons are not elements
of an objective physical reality as much as they are elements of a poten-
tial reality.

This does not mean, of course, that quantum mechanics is 
necessarily an incomplete theory. Rather, the EPR definition of 
reality may not be adequate, an objection that they, themselves, 
anticipated:

One could object to [our] conclusion on the grounds that our criterion of reality
is not sufficiently restrictive. Indeed, one would not arrive at our conclusion if
one insisted that two or more physical quantities can be regarded as simulta-
neous elements of reality only when they can be simultaneously measured 
or predicted. . . . This makes the reality of [such quantities] depend upon 
the process of measurement. . . . No reasonable definition of reality could be
expected to permit this.

Einstein, Podolsky, and Rosen’s assertion notwithstanding, physical
reality is what it is: the strange reality depicted by the quantum
theory. Does an alternative description of physical reality exist? 
Einstein believed that such a description would some day be found.
However, physicists have searched for decades, and are searching still;
no alternative theoretical framework has been created, as far as I am
aware, that is an successful as quantum theory.

By the time Einstein advanced the views expressed in the EPR
paper, he was already largely regarded as out of the mainstream of
modern physics. The paper met with a barrage of rebuttals and criti-
cism, although, as Einstein wryly noted, no two critics objected to the
same thing. Einstein died four years before the article by Aharonov
and Bohm appeared, and it is unlikely, I would surmise, that he ever
saw the paper by Ehrenberg and Siday. I have often wondered what
Einstein would have said about the AB effect, which so alters our con-
ception of physical reality not only in the domain of mechanics but in
electromagnetism as well. As one interested in the foundations of elec-
trodynamics throughout his life, would he have considered the primacy
of potentials over electric and magnetic fields a violation of his cher-
ished beliefs, or would he have said—as the young Einstein rashly did
upon hearing of Bohr’s theory of light production in 1913—“The theory
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. . . must be right?”24 Would he, the master geometer of physics, have
been pleasantly surprised or appalled at a quantum phenomenon
dependent on the topology of space? We will never know.

3.4. Heretical Correlations

In addition to electrical charge, the electron is also endowed with an
intrinsic angular momentum, or spin, of 1–2 . Whereas charge is respon-
sible for the interactions leading to the Aharonov–Bohm effect, spin
gives rise, at least indirectly, to different quantum interference effects
that are in some ways even more remote from our classical expecta-
tions. Although the AB effect cannot be accounted for in terms of 
electric or magnetic forces, it is nevertheless a consequence (albeit a
quantum consequence) of classical electromagnetic fields. However,
there are consequences of electron spin that have no classical roots
whatever.

Unlike the (single-electron) AB effect, the electron phenomena to be
considered here have not yet been observed in the laboratory, but they
must exist if our current understanding of the quantum behavior of
matter is correct. These effects are not only impossible to reconcile
with the imagery of classical physics, but appear to challenge, as 
well, the traditional interpretation of particle interference i.e., Dirac’s
dictum: a particle can interfere only with itself.

It has long been a fundamental tenet of wave theory—pertinent as
well to the “wave mechanics” of matter—that wave amplitudes, and
never intensities (i.e., the squares of amplitudes), interfere. One might
well imagine, therefore, that the development of an interferometer, 
in which the superposition of separate light intensities produced an
interference pattern, would be viewed with considerable skepticism.
Indeed, that was exactly the response of many physicists to the inten-
sity interferometer of R. Hanbury Brown and R. Q. Twiss (HBT).25

Developed in the 1950s for the purpose of measuring stellar diame-
ters by a method less sensitive to mechanical vibrations or atmos-
pheric distortions than suspending a Michelson interferometer26 at the
end of an optical telescope, the HBT instrument functioned as follows
(Figure 3.9). Light from a star was received at two spatially separated
photodetectors whose electrical outputs were passed through “low-
pass” filters. The filters suppressed components of the electric current
oscillating at frequencies outside the domain of the radiowave spec-
trum i.e., outside the range of about 1–100MHz (1MHz = 106 oscilla-
tions per second). The two filtered currents were then multiplied
together electronically and averaged over a prescribed time interval.
The resulting number, a measure of what is termed the cross-
correlation of the incident light, produced an oscillatory curve when
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plotted as a function of the separation of the two detectors—a clear
sign that some kind of interference had occurred.

What is most noteworthy here is that the photodetectors are so-
called square-law devices: The electrical output is proportional to the
incident light power flux (i.e., intensity). It is the multiplication or cor-
relation of two intensities (not amplitudes) that has produced an inter-
ference pattern. How can two intensities interfere?
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Figure 3.9. Schematic diagram of the Hanbury Brown–Twiss intensity inter-
ferometer. Light from an extended source is received by two photodetectors
sensitive to the light intensity. The output current of each detector is passed
through a filter that admits only components oscillating at low frequencies
(corresponding to beat frequencies among the incident optical waves). The two
filtered outputs are multiplied electronically, averaged over time, and recorded
by the “correlation meter” as a function of receiver separation. Although light
intensities are not expected to interfere, the resulting oscillatory correlation
curve reveals that some kind of interference has occurred.



Actually, the phenomenon does no violence to any known physical
principle and can be explained quite simply within the framework of
classical wave theory in a way that an electrical engineer would find
satisfying and far from surprising. Briefly, each point on the stellar
surface gives rise to broad wave fronts at the Earth that illuminate
both photodetectors of the interferometer. At the surface of each detec-
tor, therefore, there occurs a superposition of numerous amplitudes
emitted from different locations on the star at different frequencies
and with random time-varying phases. What remains from the filter-
ing of the electrical signals are low frequency “beats” produced by the
interference of waves at neighboring optical frequencies. For each pair
of light-emitting points on the star, the phase associated with a given
beat frequency at a given detector consists of two parts: (1) a well-
defined component determined by the optical path lengths between the
point sources and the particular detector and (2) a random time-
varying component resulting from the difference in initial random
phases of the superposing waves. However—and this is the key point—
at a given instant, the random phase difference associated with a par-
ticular beat frequency is the same for both detectors because (in the
imagery of classical optics) the same broad wave fronts sweep over
both detectors. Thus, multiplication and time averaging of the filtered
signals do not lead to the vanishing of all correlations but—for each
pair of interfering waves—to the correlation function c(d),

(3.12a)

proportional to the mean light intensity (I1, I2) at each detector.
The phase of the correlation function varies with detector separa-

tion d, angular separation (as seen from the Earth) of the point radi-
ators q, and mean wavelength l. Relation (3.12a) must be averaged
over all pairs of points on the stellar surface and over all contributing
optical frequencies in order to obtain the net signal. Surprisingly, 
the result is quite simple; suitably normalized, c(d) is effectively 
the square of the fringe visibility produced by the same light in the
Michelson stellar interferometer with mirror separation d. The visi-
bility, or contrast, of the fringe pattern

(3.12b)

is defined as the difference in intensity between neighboring points
(near the center of the pattern) of maximum and minimum brightness
divided by the sum of these intensities; as a function of mirror sepa-
ration, V(d) can range between values of zero and unity.27

As one may have expected, it is ultimately amplitudes, and not really
the intensities, that interfere in an intensity interferometer. Never-

V d
I I
I I

( ) =
-
+

max min

max min

c d I I
d( ) Ê

Ë
ˆ
¯� 1 2

2
cos

p q
l

,

104 3. The Unimaginably Strange Behavior of Free Electrons



theless, the correlation depends on the product of intensities, rather
than the product of wave amplitudes, in marked contrast to our ar-
chetypal example of two-slit interference discussed previously. Also,
because the highest frequency of the detected beats (�100MHz) is
roughly a million times lower than the frequencies of the optical
“carrier” waves (�1014 Hz), the difference in optical path lengths from
the light source to the two detectors need no longer be restricted to
values comparable to an optical wavelength (�10-5 cm), as is the case
with a Michelson interferometer; light reaching one detector can be
retarded with respect to the other by thousands of wavelengths
without affecting the correlation [provided the delay is small compared
with c/100MHz = 30cm].

Technically, the physical quantity actually measured by HBT was
not the time-averaged product of the light intensities, but the corre-
lation of the fluctuations in intensity at the two detectors. If one rep-
resents the instantaneous light intensity received at detector 1 by I1(t)
and the average intensity by �I1� (which is independent of time for a
stable—or so-called stationary—light source), then the fluctuation in
light intensity at time t is taken to be DI1(t) = I1(t) - �I1�; likewise, the
corresponding instantaneous intensity fluctuation at detector 2 is
DI2(t) = I2(t) - �I2�. HBT measured the time-averaged product of the
fluctuations:

(3.12c)

This relation differs from that which led to Eq. (3.12a) only by the 
last term containing the product of the (time-independent) mean 
intensities.

The fluctuation in the electric current issuing from a photodetector
derives principally from two different origins. The major component is
the classical shot noise associated with the “graininess” of electricity
i.e., the fact that charge is transported by discrete units (electrons)
rather than by a continuous flow of electrical fluid. The shot noise of
one detector is totally independent of the shot noise of the other detec-
tor and, consequently, does not contribute to the correlation function
c(d) when the detector outputs are multiplied and time-averaged. The
smaller noise component, termed wave noise, is associated with the
incoming light and arises from the myriad random emissions of elec-
tromagnetic radiation by the atoms of the hot source. From atom to
atom, these emissions vary in amplitude and relative phase at each
frequency. Moreover, because the atoms are not all moving with the
same velocity relative to the observer, the frequency content of the
emissions can also vary from atom to atom as a result of the Doppler
effect. The light generated by such a chaotic source (and, indeed, that
is the technical term for it: chaotic light) is a superposition of waves

   c d I t I t I t I t I I( ) = ( ) ( ) = ( ) ( ) -D D1 2 1 2 1 2 .
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of different frequency with amplitudes and relative phase that fluctu-
ate randomly in time, thereby producing the current fluctuations or
wave noise at the output of a photodetector. The wave noise at two
detectors illuminated by the same source is correlated and contributes
to c(d).

The preceding heuristic picture of the functioning of the intensity
interferometer is rooted in classical physics at least as far as the light
is concerned (although the detectors function by means of the photo-
electric effect, which is a quantum mechanical process). It did not take
long, however, for physicists to wonder about the quantum implica-
tions of intensity interferometry and to pose to Brown and Twiss 
some thorny questions. As a personal observation, I know of many in-
stances where a phenomenon, puzzling from the standpoint of classi-
cal physics, received a satisfactory treatment within the framework 
of quantum physics. In the present case, ironically, a phenomenon
happily understandable by means of basic physical optics became a
troublesome enigma when examined from the viewpoint of the
quantum theory of light.

Although the theory of the intensity interferometer is, in principle,
valid for electromagnetic radiation of any wavelength, there are impor-
tant practical distinctions in the treatment of radio waves and visible
light. As summarized by Hanbury Brown28:

Radio engineers, before the advent of masers, thought of radio waves as waves
and not as a shower of photons. [Because] the energy of the radio photon is so
small and there are so many photons, the energy comes smoothly and not in
bursts . . . We say that the fluctuations in [the photodetector] output are prin-
cipally due to “wave noise” and not to “photon noise”. By contrast, at optical
wavelengths, the energy of the individual photon is much greater and there
are relatively few photons, so that we can no longer neglect the fact that the
energy comes in bursts. [The] fluctuations . . . are due principally to “photon
noise” and not “wave noise”.

From the standpoint of quantum optics (i.e., the theory of photons),
the correlation of wave noise has a surprising, indeed startling, impli-
cation: The photons received at the two detectors are correlated. One
might think—and many did think—that the random emission of clas-
sical waves translates into a quantum imagery of randomly emitted
photons, and, as logic would seemingly dictate, randomly emitted
photons must arrive randomly at separated detectors. However, this
was not the case.

Imagine an experiment in which linearly polarized photons emitted
from the same source and arriving at two separated detectors are
counted, and the experimenters keep track somehow of the number of
coincident arrivals i.e., the number of times two photons arrive simul-
taneously, one photon at each detector, within some specified short
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time interval. Of course, one expects a certain number of such coinci-
dences to occur accidentally even for completely random arrivals; this
can be calculated on the basis of classical statistics. HBT actually did
this experiment;29 they found that the coincident count rate signifi-
cantly exceeded this background level.

To appreciate just how significant was the observed departure from
randomness, it is helpful to consider a superficially different, but 
conceptually equivalent, experiment and its interpretation. Suppose
that instead of measuring the number of coincident linearly polarized
photons at two detectors, one measures the time interval (or delay)
between consecutive arrivals of photons at one detector. For example,
one photon arrives and starts a clock; a second photon arrives and
stops the clock. The time interval is 8 (in some system of units). The
experiment is repeated and the next time interval is 6. After a suffi-
ciently large number of such cycles have been carried out, the experi-
menter plots the number of recorded events (the consecutive arrivals)
corresponding to a particular delay as a function of delay. Perhaps
there might have been 1000 pairs of photons with a time delay of 5
units, 950 pairs of photons with a time delay of 10 units, and so on.

The result of such an experiment (Figure 3.10) measures what is
termed the conditional probability of receiving a second photon given
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Figure 3.10. The conditional probability of receiving a second thermal photon
of specified polarization after detection of a first is higher for a time interval
short with respect to tc (longitudinal coherence time) than for a comparatively
long time interval. In fact, the probability of detecting two photons simulta-
neously (zero time delay) is twice as high. This behavior is illustrative of
“photon bunching.” Electrons should display “antibunching”; the predicted
probability of simultaneous detection of two spin-polarized electrons is zero.



that a first one was already detected; I will call this simply the condi-
tional probability. The outcome, seemingly difficult to reconcile with
one’s intuitive expectations, appears astonishing. The probability that
two photons of the same polarization arrive at the detector simulta-
neously (zero delay) is twice the probability that they arrive purely ran-
domly. The random arrivals occur for delays significantly greater than
a certain time interval corresponding to the temporal (or longitudinal)
coherence time tc of the light source. As the delay time increases from
zero to infinity, the conditional probability falls smoothly from 2 to 1
with tc as the approximate demarcation between correlation and 
randomness.

To judge from the written recollection of Hanbury Brown, the cor-
relation of photons wreaked havoc on his tranquillity (not to mention
his prospects for external funding). In the words of Brown30:

. . . if one must think of light in terms of photons then . . . one must accept that
the times of arrival of these photons at the two separated detectors are cor-
related—they tend to arrive in pairs. Now to a surprising number of people,
this idea seemed not only heretical but patently absurd and they told us so in
person, by letter, in publications, and by actually doing experiments which
claimed to show that we were wrong. At the most basic level they asked how,
if photons are emitted at random in a thermal source, can they appear in pairs
at two detectors? At a more sophisticated level, the enraged physicist would
brandish some sacred text . . . and point out that . . . our analysis was invali-
dated by the uncertainty relation. . . . [Italics added.]

The disturbing question posed to Brown lies at the heart of yet
another quantum mystery. I will return to this question later, for it
reverberates like an eerie harmony through the phenomena to be dis-
cussed shortly. In the parlance of contemporary quantum optics, the
pair phenomenon observed by HBT (as well as by others) is termed
photon bunching. It should be stressed, however, that the graphic
imagery of photons grouping together as they propagate through space
is misleading. Quantum mechanics does not, in general, permit us to
know the path taken by a particle through space, for any intervention
by the observer to “see” the particle will disturb its motion. The path
of a photon is especially problematical, for, unlike electrons, photons
disappear whenever stopped.

The bunching of light (or—depending on how one wants to regard
the phenomenon—excess wave noise) is, today, an established and non-
controversial fact. The quantum theory of light accommodates with no
difficulty the predictions HBT first made on the basis of classical rea-
soning. Moreover, the experiments that purportedly proved HBT
wrong were eventually recognized as being insufficiently sensitive to
detect the light correlations. But what, one might wonder, ought to
occur in a HBT-type experiment with electrons?

This question occupied my attention during much of my time at the
Hitachi Research Laboratory. For one thing, more than three decades
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after the pioneering studies of Brown and Twiss, no comparable exper-
iments with electrons, as far as I was aware, had been attempted, let
alone successfully performed. Indeed, there seemed to be relatively
little discussion of the matter at all. Was it possible to observe HBT-
type electron correlations with the beam of an electron microscope?
What phenomena would result?

Although analogies with light drawn from the classical domain of
physical optics can often provide insights into the quantum interfer-
ence of electrons, the classical explanation of the optical intensity
interferometer provides no help whatever in understanding the corre-
sponding electron interferometer. Electrons, as a consequence of their
intrinsic spin 1–2 are fermions; no more than one electron can occupy
a specified quantum state. Electrons, therefore, cannot form classical
waves such as light waves, the quantum description of which entails
large numbers of photons with identical quantum properties of energy,
momentum, and helicity (related to the classical attributes of fre-
quency, wave vector, and polarization). To predict the outcome of an
electron HBT-type correlation experiment requires an intrinsically
quantum mechanical analysis.

Let us start with a simplified electron correlation Gedankenexperi-
ment analogous to the actual photon correlation experiment of HBT.
Consider two spatially separated compact sources, S1 and S2, that ran-
domly emit electrons all of which have the same energy and spin com-
ponent, but whose momentum may vary within a narrow range about
the forward direction. Sufficiently far from the sources, so that the
electrons can be characterized by plane waves, are two detectors, D1
and D2 (Figure 3.11). What is the joint probability as a function of
detector separation that D1 and D2 will each simultaneously receive
one particle?

From the standpoint of classical physics, where the particles may be
thought of as distinguishable, one can reason that the desired proba-
bility is the sum of two contributions: (1) the probability that an elec-
tron from source S1 goes to detector D1 and an electron from S2 goes
to D2 and (2) the probability of the alternative arrangement whereby
an electron from S1 goes to D2 and an electron from S2 goes to D1.
(We discount the simultaneous production of two electrons from one
source and none from the other.) The two-electron wave functions
describing the two configurations are

(3.13a)

(3.13b)

For the present discussion, the significant part of each single-electron
wave function, represented as a plane wave, is simply a phase factor
of the form

y y yb 1 2 2 11, D D .S S2( ) = ( ) ( )
y y ya 1 2 1 21, D D ,S S2( ) = ( ) ( )
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(3.13c)

where rSD is the path length between one of the sources S and one of
the detectors D and k = 2p/l is the wave number (or magnitude of the
linear momentum in units of ) of an electron with wavelength l. Cal-
culation of the joint probability

(3.13d)

gives a number independent of the relative separation of the detectors.
In other words, the randomly emitted particles arrive totally uncorre-
lated at the two detectors. The result may seen logically satisfying; the
electrons begin life independently at two sources and end up randomly
at the detectors. Nature, however, does not always favor logical sim-
plicity based on classical reasoning. The conclusion and mode of think-
ing are again wrong.

I have discussed in the previous section the “ghostly” correlations
inherent in the quantum description of the two-electron Aharonov–
Bohm effect with widely separated solenoids. These correlations 
are inexplicable on the basis of classical physics—but at least they
evolved from a special initial condition that could very well be 
understood in classical terms. The electrons in that example, having
been produced in a state of zero total linear momentum, were ever
afterward (in the absence of external forces) constrained by the law of
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Figure 3.11. Schematic experimental configuration to illustrate electron
interference arising for particle indistinguishability. Sources S1 and S2 each
emit a spin-polarized electron; detectors D1 and D2 each receive an electron.
Because it is not possible to know from which source a detected electron has
issued, the amplitudes of the two possible events interfere. The antisymmetry
of the electron wave function under particle exchange leads to a joint detec-
tion probability P(D1, D2) that vanishes with vanishing source separation d
or detector separation y.



momentum conservation to propagate with equal and opposite
momenta.31 This law and the corresponding correlation of momenta
apply with equal validity to electrons or to pieces of brick. In a manner
of speaking, therefore, a correlation was “built in” at the outset by a
particular initial condition characterizable in both quantum and clas-
sical terms. In the present case, however, electrons emerge randomly
from what, to all appearances, are separate sources. What kind of cor-
relation could one possibly expect?

In the quantum mechanical scheme of things, the electrons are
indistinguishable particles, and it is not possible, even in principle, to
designate from which source a particular electron comes. True, one can
always place an electron detector close enough to a source to deter-
mine whether it has emitted an electron, but this, of course, is an inter-
vention that alters the motion of the particle (even if the detector was
somehow transparent to electrons) and therefore the condition of the
originally intended experiment. The arrival of “labeled” electrons at
specified detectors represents outcomes that can never actually be 
distinguished. As is well known in such instances (e.g., in the case of
two-slit interference), one must add the amplitudes, and not the 
probabilities, for each indistinguishable quantum pathway. But in
what way are the amplitudes to be added?

It is precisely at this point that the fermionic nature of the elec-
tron—an attribute distinguishing it from the photon in as fundamen-
tal a way as electrical charge—enters the analysis. The amplitudes for
a given process, such as

and the reverse process

must be superposed with opposite signs. This is one example of what
is usually termed the spin-statistics connection. The exchange of any
two identical particles whose spin is an odd half-integer multiple of 
follows the above rule; the aggregate behavior of such particles is gov-
erned by what is known as Fermi–Dirac statistics. Particles with an
even-integer spin are classified as bosons, for they are governed by
Bose–Einstein statistics; under particle exchange, the boson wave
function incurs no sign change.

Why nature works in this way seems to lie outside the framework
of quantum mechanics proper; a satisfactory explanation can be made
only in terms of the relativistic invariance and microscopic causality
of quantum fields. Once, when asked why spin- 1–2 particles obey
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Fermi–Dirac statistics, Feynman planned to prepare a freshman
lecture on it—but failed. “You know, I couldn’t do it,” he said; 
“I couldn’t reduce it to the freshman level. That means we really don’t
understand it.”32 Perhaps this overstates the case somewhat, but the
principle is nonetheless a deep one.

In the Gedankenexperiment under consideration, the two-electron
wave function representing the above two indistinguishable processes
is therefore

(3.14a)

where the component wave functions are given in relations (3.13a) and
(3.13b). Upon substitution of the single-electron amplitudes (3.13c),
the appropriately normalized joint detection probability takes the form

(3.14b)

in which y is the detector separation, d is the source separation, and
r is the mean distance of the detectors from the sources (approximately
the same for either source to either detector).

The correlation to which the above expression gives rise is very dif-
ferent from that for thermal photons. The joint probability that two
electrons arrive at the same location (zero detector separation) is zero.
This quantum expression of particle avoidance has been termed anti-
bunching. The phenomenon of antibunching, which arises from an
antisymmetric linear superposition of wave functions as in relation
(3.14a), is an example of quantum interference arising, not from
space–time differences in alternative geometrical pathways, but from
the spin-statistics connection (i.e., from the fact that electrons are
fermions).

The joint probability expressed in relation (3.14b) is seen to oscillate
repeatedly, giving rise to an infinite number of detector locations at
which the electron anticorrelation is perfect [P(1, 2) = 0]. This is a 
consequence of representing the individual electron wave-functions 
by infinitely extended plane waves instead of by a more realistic 
wave-packet description. An electron source, such as is found in an
electron microscope, produces a beam of electrons whose quantum
description would include a distribution of particle numbers, energies,
linear momenta, and spin components. Such a source, like a thermal
light source, might also be termed chaotic. Despite the added com-
plexity, the essential feature of antibunching (although not necessar-
ily the oscillations) is predicted to persist in the aggregate electron
behavior.

One dramatic illustration of the anticorrelation of electrons is the
conditional probability of electron arrival at a single detector (Figure
3.10). In contrast to the case of thermal light, the probability of detect-
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ing a second electron a short time (compared with the beam coherence
time tc) after receipt of a first is suppressed below that expected for
totally random particles. For zero time delay, the probability of two
electrons arriving together is predicted to be strictly zero—a quantum
consequence of the “minus sign” in electron exchange.

Yet, spin and statistics and minus signs aside, how can one under-
stand in some more tangible way the origin of antibunching? For the
case of thermal light, the correlations among photons at least have a
classical explanation in terms of fluctuating light waves. However,
now, in the absence of a classical explanation, the question to HBT
comes back even more forcefully in its fermionic version to haunt us:
If spin-polarized electrons are emitted at random in a thermal source,
how can they avoid arriving in pairs at a detector?

Particle indistinguishability and the uncertainty principle help
provide a heuristic answer, but one must be careful not to be trapped
by the paradox-laden terminology of classical physics. As posed, the
question is not physically meaningful, for its premise cannot be sub-
stantiated. Are the particles emitted randomly?33 How would one
demonstrate this—other than by inferences based on particle detec-
tion? Is there any way to determine the exact instant of emission of
each particle without affecting its subsequent motion? Indeed, is there
an “instant” of emission?

As pointed out previously, the particles of a beam with an energy
uncertainty DE do not emerge from their source like mathematical
points, but can be represented by wave packets created over a char-
acteristic time interval tc = /DE, the coherence time. Thus, one could
know nothing about the emission time of a hypothetical electron whose
wave function is a monochromatic plane wave. If the energy of the
beam is not perfectly sharp, but nevertheless defined well enough so
that the particles may be assumed to move with speeds close to the
mean speed v, an emerging electron will likely be found within a 
coherence length �c = vtc.

Two particles whose emission events are separated by a time inter-
val long in comparison to the coherence time are characterized by wave
packets that effectively do not overlap; there would then be no
quantum interference effects engendered by particle exchange and the
spin-statistics connection. These particles arrive, therefore, uncorre-
lated at the two detectors, and one might think of their emissions as
random. However, the wave packets of two particles whose emission
events occur in a time interval short with respect to the coherence time
can overlap, and the subsequent particle motion can manifest, even in
the absence of interactions attributable to forces, the “ghostly” corre-
lations of particle exchange.

The above response to the question demanded of Hanbury Brown
and Twiss must nevertheless be accompanied by cautionary words, for,
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like any visualizable explanation, it is couched in the language 
and imagery of classical physics. Such a description can be grossly 
misleading. To think of the coherence time as providing a definitive
criterion for the overlap or nonoverlap of particle wave packets and,
hence, for the occurrence or nonoccurrence of particle correlations is
not correct. The particles that pass through the intensity interfero-
meter are all part of a single multiparticle system; the correlations, so
to speak, are always there.

For example, the coherence time of a 150-kV field-emission electron
source, a potentially suitable candidate for an electron HBT experi-
ment, is extremely short, about 10-14 s. Suppose one were to attempt
to observe electron antibunching by measuring, as described pre-
viously the conditional probability that a second electron arrives at a
given detector at various delay times after receipt of a first electron.
It is a near certainty that any experimental attempt with current tech-
nology would have to be made with delay times much longer than the
coherence time, perhaps two to five orders of magnitude longer. Yet,
quantum theory shows that, even for delay times orders of magnitude
longer than the coherence time, the sought-for correlations will not
have vanished entirely—they will still be there, albeit weakly, to be
disentangled (by statistical analysis of a sufficiently large number of
counts) from the random background events.

The subtleties of correlated electron states and the potential pitfalls
of adopting too literally the imagery of wave packets show up strik-
ingly in an experimental configuration combining elements of both the
Aharonov–Bohm and Hanbury Brown–Twiss experiments. Consider
again the diffraction of electrons, produced by a single source, through
two narrow apertures between which is placed an AB solenoid with
confined magnetic flux (Figure 3.12). There are now, however, two
detectors whose outputs are correlated so that the joint probability of
detection—in essence, the coincident count rate—can be determined.
Since the count rate at one detector has been previously shown (in
Section 3.2) to vary harmonically with the magnetic flux, one might
well expect that the joint count rate at the two detectors must 
likewise exhibit a flux-dependent quantum interference effect. Yet,
surprisingly, if the electrons are correlated, this expectation is not
borne out.

Suppose the electron source is again spin-polarized and very nearly
monochromatic; the electrons, represented by plane waves of mean
wave number k, have a spread in linear momentum about the forward
direction. Then, in view of what has been said previously concerning
the antisymmetrization of fermion wave functions, the total amplitude
for an electron to pass through each slit and arrive simultaneously at
each detector takes the form
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(3.15a)

Here, sij is the distance from the ith slit (i = 1,2) to the jth detector 
( j = 1,2). Thus, the first product of amplitudes represents the process
for which electrons from slits 1 and 2 respectively arrive at detectors
D1 and D2; the second product of amplitudes represents the exchange
process. The phase shifts a(sij), incurred by propagation through the
vector potential field of the solenoid, are related to the confined 
magnetic flux F by Stokes’ law as follows:

(3.15b)

It is then a straightforward matter to show that the (normalized) joint
probability of electron arrival at D1 and D2, deducible from relations
(3.15a,b), is

a a a a as s s s
e
c11 21 12 22( ) - ( ) = ( ) - ( ) = Ê

Ë
ˆ
¯ ∫

h
F .

y a a
a a

D , D

.

1 2 11 22 11 22

12 21 12 21

( ) ( ) ( ) ( ) + ( )[ ]{ }
- ( ) ( ) ( ) + ( )[ ]{ }

� exp exp exp

exp exp exp

iks iks i s s

iks iks i s s

Heretical Correlations 115

Figure 3.12. Schematic diagram of a hybrid Hanbury Brown–Twiss and
Aharonov–Bohm experiment. Electrons emitted from source S pass through
slits 1 and 2, around the solenoid (with magnetic flux F directed into the page
and vector potential field A circulating clockwise) and are received at detec-
tors D1 and D2. The correlated output of the detectors shows an interference
effect that depends on both the confined magnetic flux and the fermionic
nature of the electron.



(3.15c)

Although quantum interference occurs, there is no trace of the mag-
netic flux! The magnetic phase shifts for the direct and exchange
processes have cancelled.

It appears, at least at first glance, that the two-slit AB effect with
electrons correlated by the spin-statistics connection manifests a
curious phenomenological reversal vis-à-vis the AB effect with momen-
tum-correlated electrons discussed in the previous section. In the
latter case, the magnetic flux dependence occurs only in the joint detec-
tion probability P(D1, D2); the probability of electron arrival at a single
detector e.g., P(D1), manifests no AB effect. By contrast, the experi-
mental configuration of Figure 3.12 gives rise to a joint probability
P(D1, D2) unaffected by the confined magnetic field, although the prob-
ability of electron arrival at each detector individually has been shown
earlier to vary harmonically with magnetic flux in the following way:

(3.16a)

(3.16b)

If this is the case, then it leads to an extraordinarily puzzling con-
sequence. By arranging experimental conditions so that the geometri-
cal phases are

(e.g., symmetrical disposition of D1 and D2 above and below the
forward direction) and adjusting the magnetic flux so that a = p/2, one
deduces that P(D1, D2) = 1, P(D1) = 1, and P(D2) = 0. How can it be
that there is a 100% coincidence count rate if the individual count rate
at one of the detectors is zero!

The origin of the paradox lies in the inconsistent treatment of cor-
related and uncorrelated electron states. The probabilities P(D1) and
P(D2) of Eqs. (3.16a) and (3.16b) were calculated by means of single-
particle wave functions and therefore characterize the case of uncor-
related electron propagation through the two slits. When only one of
the two detectors is registering particles and there is, therefore, no
ostensible exchange process, it may seem reasonable to think of the
electrons as arriving independently at the detector in one-particle
wave packets. This would be incorrect, however. The joint probability
P(D1, D2) for uncorrelated electrons is simply the product P(D1)P(D2),
and this expression, which is flux dependent, differs markedly from
Eq. (3.15c). For correlated electrons pairs, the probability that one elec-
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tron arrives at a particular detector, let us say D1, irrespective of the
fate of the second particle, is obtained by summing (integrating) 
P(D1, D2) of Eq. (3.15c) over all locations of the other detector, D2. The
resulting expression is (as it must be) independent of the magnetic flux
and cannot vanish for nonzero P(D1, D2).

Phenomena such as electron antibunching or the AB–HBT
(non)effect that involve both quantum interference and particle corre-
lation raise several fundamental questions.

First, it is clear that these phenomena are not interpretable in terms
of the self-interference of single particles. Two particles must be
present for interference to occur. What is one to make, therefore, of
Dirac’s dictum that interference between different particles never
occurs? Is Dirac wrong?

I do not think so. The critical point is to recognize that, under the
specified experimental conditions, there is no way, short of an observer
intervention that alters the system and destroys the interference, to
determine whether the particle from slit 1 or slit 2 has propagated to
a particular detector. There is no distinguishable particle 1 or particle
2; there are only two-particle events. The very act of labeling is a
mental construct drawn from classical physics that deceives one into
imagining the separate particle trajectories through the interferome-
ter. In reality, all that one knows with assurance is the number of two-
particle events recorded in a certain period of time.

Dirac’s remark, interpreted more largely, is still valid. When, even
in principle, it is impossible to identify the source from which a parti-
cle has issued without changing the course of the experiment, it is not
possible to say with certainty that the interference is produced by dif-
ferent particles.

Second, to what extent does a particular source produce correlated
or uncorrelated electrons? The answer to this question gives partial
insight into why an electron HBT experiment would be difficult. It is
not the coherence time alone, but rather what is termed the beam
degeneracy that helps gauge the feasibility of observing quantum
mechanical correlations arising from spin and statistics. The degen-
eracy parameter

D = jActc (3.17)

is the product of the particle flux j (number of particles per second
through a unit area normal to the beam), the coherence time tc, and
the coherence area Ac, which is approximately the square of the trans-
verse or lateral coherence length, �s, introduced in Eq. (3.7). Physically,
Ac represents the effective surface (perpendicular to the beam) over
which an interference pattern can be produced.34 The degeneracy is a
dimensionless statistical parameter indicating the mean number of
particles per quantum state. The greater the degeneracy, the greater
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is the contribution of correlated pairs of particles emerging from the
source. For light, there is no limit to the mean number of photons,
which are massless bosons, that can occupy a quantum state. For
example, D is about 10-3 for a mercury arc lamp such as the one
employed by HBT in their photon correlation experiment; gas lasers
can produce beams with D in excess of 1012. Because there can never
be more than one fermion per quantum state, however, the degener-
acy of an electron source never exceeds unity.

Unfortunately, the degeneracy of even the most coherent electron
beams now available is substantially below unity; the degeneracy of
the field-emission source which has been employed in the Hitachi 
electron self-interference and AB effect experiments is about 10-6. No
wonder, then, that even with a flux of some 1013 electrons/cm2 s, such
a beam produces a fringe pattern interpretable entirely as the self-
interference of single-particle wave packets. One might think that the
more intense beam of an electron accelerator might manifest electron
correlations more strongly, but this is not necessarily the case. The
lower coherence area attributable to greater beam divergence yields a
resulting degeneracy below that of the field-emission source.

The situation is still not hopeless. First, new types of electron
sources are being developed with emission tips of nearly atomic size;35

degeneracies on the order of 10-2 have been predicted. Second, with
advancing technology, it should be possible to enhance the ratio of
signal (the fermionic correlations) to noise (the background random
correlations) by use of faster detectors. Other variables being fixed, the
signal-to-noise ratio generally increases as the square root of the total
length of time the particle count is maintained. During the 1950s, HBT
succeeded in observing the correlations of light beams with a degen-
eracy on the order of 10-3 by collecting data for some ten hours.
Although the degeneracy of present electron sources is lower, the use
of detectors with response times closer to the electron coherence time
tc would reduce the total counting time needed to achieve a desired
signal-to-noise level.

Another promising possibility is to use charged particles other 
than electrons. For example, with a gas source that produces an
intense, collimated, nearly monoenergetic beam of helium ions, one
could, in principle, study the correlations of either fermions (such as
the 3He+ ion) or bosons (like the 4He+ ion) simply by changing the 
input gas.

Difficult though they may be, these new types of quantum interfer-
ence experiments will some day be performed, for there are, I believe,
few limitations to human ingenuity beyond the laws of physics them-
selves. And to these rigorous physical laws, I would add another one
of a historical nature—namely the development of new experimental
methods nearly always leads to significant discoveries.
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3.5. HBT Update

In 1986, I first proposed in my lectures “Quantum Optics of Particles:
Distinctive Features of a Hanbury Brown–Twiss Experiment with
Electrons” (given at the Optical Society of America Annual Meeting)
and “New Quantum Effects by Means of Electron Intensity Interfer-
ometry” (given at the 2nd International Symposium on the Founda-
tions of Quantum Mechanics in the Light of New Technology) a series
of experiments to explore novel quantum interference effects attribut-
able to the fermionic nature and electrical charge of electrons.36 In the
years following, I wrote a number of papers (a few of which are cited
in Selected Papers by the Author at the end of this book) investigat-
ing in quantitative detail the phenomena to be manifested by such
experiments.

The ideas interested researchers in diverse fields of physics who sub-
sequently contacted me for advice on proceeding. Indeed, the first
message I ever received after establishing an electronic mail account
upon my return to the United States from Japan was a request for
information regarding the electron HBT effect. Throughout the 1990s,
a number of attempts were made to observe the antibunching of 
electrons in a coherent electron beam. I began experiments of this 
kind myself with colleagues at the NSF Center for High Resolution
Electron Microscopy at Arizona State University. Over fifteen years
have now passed since those two seminal lectures, and, to my knowl-
edge, no experiment employing free-electron beams has yet unam-
biguously demonstrated the fermionic anticorrelations of electrons.

However, shortly after I began the redaction of this present book,
electron antibunching was successfully observed, not in free-electron
beams, but in electron currents constrained to flow in two-dimensional
“mesoscopic” (i.e., very small, but not atomic sized) semiconductor
devices. The decisive feature of these devices is that the relevant elec-
tron states are nearly completely degenerate (i.e., have degeneracy
parameter close to unity).

In one experiment37 performed in Switzerland and shown schemat-
ically in Figure 3.13, a magnetic field confined mobile electrons to a
plane; electrons injected into the device by a voltage source encoun-
tered a quantum point contact that served as a tunable beam 
splitter transmitting a portion of the current (50% in the reported
experiment) into a metallic contact and reflecting the rest into another
contact. The transmitted (It) and reflected (Ir) currents were converted
into voltage signals by two 1-kW resistors and then amplified. The
outputs of the two amplifiers were multiplied electronically, after
which a spectrum analyzer determined the correlation �DItDIr� of the
current fluctuations at a central frequency in the range of 100kHz to
1MHz.
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The variation of the measured spectral densities as a function of the
incident current I is plotted in Figure 3.14. The upper curve, corre-
sponding to the autocorrelation in the transmitted channel, shows a
positive slope as expected for all particles, whether fermions or bosons.
The lower curve, corresponding to the cross-correlation between trans-
mitted and reflected currents, shows a negative slope indicative of
anticorrelated fluctuations.

An analogous experiment38 employing a quantum point contact 
to inject single-mode electrons into a mesoscopic beam splitter at 
the planar interface between two semiconductor materials (GaAs 
and AlGaAs) was performed independently by another group of
researchers. Figure 3.15 shows a schematic diagram of the interfer-
ometer, which is a few hundred nanometers in size; the semiconduc-
tor finger constituting the actual beam splitter is only 40nm wide.
Again, the outputs from the beam splitter revealed a negative cross-
correlation, signifying that electrons arrived individually (and not in
groups) at the beam splitter and were distributed randomly between
the transmitted and reflected currents.
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Figure 3.13. Electron intensity correlation experiment performed on electron
currents confined to a plane by a magnetic field. Regions numbered 1 through
4 are electron reservoirs; a metallic split gate serves as a beam splitter. 
Electrons injected by voltage source V move along the upper edge channel to
the gate where they are either transmitted into contact 2 or reflected into
contact 3. The transmitted and reflected currents are converted by resistors R
to voltage signals that are amplified and then correlated. (Adapted from
http://haithabu.fy.chalmers.se/abstracts/037.pdf.)



Figure 3.14. Measured spectral densities of current fluctuations (at a tem-
perature 2.5K) produced by the interferometer of Figure 3.13 with the beam
splitter adjusted for 50% transmission. The autocorrelation (upper curve) and
cross-correlation (lower curve) vary linearly with input current with positive
and negative slopes, respectively. Quantum theory predicts that �DIrDIt�/|I| =
-2et(1 - t) = -0.25(2e) for transmission coefficient t = 0.5; the experimental result
is -0.26(2e). (Adapted from http://haithabu.fy.chalmers.se/abstracts/037.pdf.)

HBT Update 121

That there exist now experimental methods of performing “intensity
interferometry” with electrons is an exciting development, for it is an
important first step toward realizing in the laboratory an entirely new
class of experiments for probing the collective behavior of quantum
particles. Few (if any) physicists who concern themselves with the fun-
damentals of quantum mechanics would have doubted that electrons
in aggregate show antibunching. However, electrons, in fact, should
exhibit more varied behavior than that. Theoretical studies39 have
brought to light the existence of new classes of collective electron states
that, like thermal photons, give rise to positive cross-correlations or
“bunching” even though they are constructed in accordance with
Fermi–Dirac statistics. Moreover, certain of these multiparticle states
lead to fluctuations in particle number smaller than the fluctuations
encountered in coherent electron beams presently employed in inter-
ferometry. Use of such states, therefore, could greatly increase the sen-
sitivity of an electron interferometer. Such correlated electron states
have yet to be created and explored experimentally—but, as in the



demonstration of electron antibunching, the appropriate technology
will eventually be developed.

* * *

Physicists have had some eighty years to adjust to the discovery of
the wavelike behavior of matter. Time and familiarity often have a way
of dulling astonishment, but neither makes the strange processes of
the quantum world more visually accessible today than they were pre-
viously. What is one to make of a description of nature that forbids
detailed knowledge of motion, manifests force-free interactions be-
tween matter and fields, and gives rise to ghostly correlations between
arbitrarily separated noninteracting particles? Schrödinger, the per-
son perhaps most responsible for the wave mechanics of matter, wrote
in utter frustration

. . . that a space–time description is impossible, I reject a limine. Physics does
not consist only of atomic research, science does not consist only of physics,
and life does not consist only of science. The aim of atomic research is to fit
our empirical knowledge concerning it into our other thinking. All of this other
thinking, so far as it concerns the outer world, is active in space and time. If
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Figure 3.15. Intensity interferometer constructed at the planar interface of
GaAs and AlGaAs semiconductors. Electrons are incident upon the beam split-
ter (40nm wide) from the lower right and are either transmitted or reflected
with equal probability. A negative cross-correlation of the two beams shows
that electrons arrive individually at the beam splitter and not, like thermal
photons, in bunches. (Adapted from http://www.stanford.edu/dept/news/
report/news/april21/antibunch-421.html.)



it cannot be fitted into space and time, then it fails in its whole aim and one
does not know what purpose it really serves.

Like all humans, scientists have a deep-rooted need for descriptive
explanations; mathematical formalism, alone, even if seemingly
correct, is somehow insufficient. However, quantum mechanics fur-
nishes predictions, not explanations. Perhaps there will come a time
when the mysterious wavelike processes inherent in the structure of
quantum theory will be unraveled in a causally explicit way—although
I rather doubt it. But neither do I find that doubt disturbing. If not
purpose, then surely there is at least great satisfaction in a theory of
such broad predictive power that opens up for exploration a world
beyond the senses where even the imagination can scarcely follow.
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CHAPTER 4

Quantum Beats and Giant Atoms

4.1. The Light from Atomic “Pulsars”

When I was at Harvard University many years ago investigating the
structure and interactions of the hydrogen atom, I first learned of a
remarkable optical phenomenon. I might well have observed it in my
own experiments, had it occurred to me to look. But it did not and I
missed seeing at that time a most striking demonstration of the prin-
ciples of quantum mechanics. By the time I realized this, the appara-
tus had been “improved” and the effect would not have been produced
under the changed conditions. Nevertheless, like a haunting melody,
this curious phenomenon known as “quantum beats” has often
returned to my thoughts to form a significant part of my scientific
interests.1 Had I looked carefully enough at my hydrogen atoms 
back in the late 1960s, I would have seen them periodically “winking”
at me like the rotating beacon of a lighthouse—like a little atomic
pulsar.

Since 1913, when Niels Bohr revealed his semiclassical planetary
model of the atom, atomic hydrogen has been a touchstone against
which the success of any theory of atomic structure is measured. With
but a single bound electron, it is the simplest naturally occurring atom
of the periodical table—and even today the only atom for which ana-
lytically exact theoretical treatments can be provided. [If exotic com-
binations of particles are included, then positronium, a bound electron
and antielectron (positron) may be considered the simplest atom, for
it is a purely electrodynamic system (i.e., not subject to the strong
nuclear interactions) containing two apparently structureless parti-
cles.] The main legacy of the Bohr theory, retained and refined in the
complete quantum mechanics which subsequently followed more than
ten years later, is the idea of discrete characteristic states with quan-
tized energies. This means that a bound electron cannot absorb energy
in arbitrary amounts but, in marked contrast to classical theories of
the atom, only in quantities that take it from one energy eigenstate to



another (from the German “eigen” = own or particular). Once the dis-
creteness of atomic states and the quantization of atomic energy were
accepted, it followed as a seemingly irrefutable proposition that a free
atom, unperturbed by external fields, had at all times to be in one of
its eigenstates.

It might be worth noting that there is nothing intrinsically quantum
mechanical about the concept of “quantization”—the very feature that
gave the “new” mechanics its name. Indeed, the attribute of discrete-
ness of allowed values is encountered in other systems of a purely clas-
sical nature, as, for example, the quantized oscillation frequencies of
a vibrating string, membrane, or air column. Quantization is a con-
sequence of the imposition of boundary requirements—and this can
occur in classical or quantum mechanics. Frequency and energy and
closely linked in quantum mechanics by Einstein’s relation, E = h�, in
a way without parallel in classical physics. Nevertheless, if I had to
give a one-word synopsis of what is phenomenologically unique in
quantum mechanics, it would be “interference”, not “quantization”; but
this is a matter of personal opinion. The phenomenon of quantum
beats is the embodiment of interference—the ultimate two-slit (or
more) particle interference experiment packed into the diminutive
volume of a single atom.

One objective of my Harvard experiments was to probe the struc-
ture of the hydrogen atom more thoroughly than had been done pre-
viously. Motivating every “hydrogen watcher” is the hope of finding a
discrepancy with theory, for, although there is satisfaction in confirm-
ing quantum mechanics, it would be far more exciting to disprove it.
Bohr’s prediction of the spectrum of electronic energy levels

(4.1a)

for a particle bound in a Coulomb potential [V(r) = -e2/r] was correct
as far as it went. Here, the Rydberg constant, Ry, defined by

(4.1b)

in which h is Planck’s constant and e and m are the electron charge
and mass, respectively, sets the scale of atomic energies. However, the
energy level structure of a real hydrogen atom is more complex.

For one thing, the intrinsic spin 1–2 (recall = h/2p) of the electron
gives rise to an electron magnetic dipole moment. The magnetic
moment of a classical particle is proportional to the angular momen-
tum of the particle and inversely proportional to the mass. This is also
the case for the quantum mechanical electron, although the propor-
tionality constant is a factor of 2 larger than that deduced from clas-
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sical mechanics. The electron magnetic moment emerges in a natural
way from the Dirac relativistic equation of motion.

From the perspective of an observer at rest in the laboratory, the
proton in a stationary hydrogen atom is practically at rest. Actually,
the electrostatically bound electron and proton orbit in binary-star
fashion about their common center of mass. The location of the center
of mass is almost coincident with the location of the proton, the more
massive particle of the pair by a factor of nearly 1840. As seen from
the electron rest frame, however, the proton is in orbit about the elec-
tron (just as an Earth-bound observer sees the diurnal passage of the
Sun). This picture, of course, is drawn from the imagery of classical
physics, which, when pushed too far, can give misleading, if not totally
erroneous, results; quantum mechanics does not ordinarily allow us 
to imagine electron or proton trajectories within an atom. Still, the
picture can be useful at times.

The orbiting proton (in the electron reference frame) constitutes an
electrical current that produces at the electron site a magnetic field
proportional to the electron orbital angular momentum (in the labo-
ratory reference frame). Depending on whether the electron spin and
orbital angular momenta are parallel or antiparallel to one another
(the only allowed possibilities for a spin- 1–2 particle), the interaction
between the electron magnetic moment and the local magnetic field
can slightly augment or diminish the electrostatic (Coulomb) energy
of an atomic state.

Each Bohr energy level of given principal quantum number n actu-
ally comprises 2n2 degenerate states (i.e., states of the same energy)
distinguished by quantum numbers designating their orbital angular
momentum (L), component of orbital angular momentum along an
arbitrarily chosen quantization axis (ML), and component of spin along
that same axis (MS). Thus, this fine structure or spin–orbit interaction
splits the Coulomb energy of states with nonzero angular momentum
quantum number L into two close-lying levels. The exact amount of
splitting depends on the angular momenta of the states involved, but
to a good approximation, it is smaller than the electrostatic energy 
by the square of the so-called Sommerfeld fine-structure constant, 
afs = e2/ c � 1/137, and the first power of the principal quantum
number, or, more succinctly,

(4.1c)

The hydrogen fine-structure intervals divided by Planck’s constant 
correspond to Bohr frequencies that generally fall in the microwave 
or radio-frequency range of the electromagnetic spectrum.

The proton, like the electron, is also a spin- 1–2 particle with a mag-
netic moment. However, the relation between the proton magnetic
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moment and spin is not as simple as for an electron. The reason 
for this is that the electron, as far as one presently knows, is a true
elementary particle with no internal structure, in contrast to the
proton, which is thought to be a composite of three more elementary
particles known as quarks and has a complex internal structure. The
hyperfine, or spin–spin, interaction between the proton and electron
magnetic dipole moments splits each fine-structure level further. 
This hyperfine splitting again depends on the quantum numbers of
the states in question, but, to good approximation, is smaller than the
fine-structure splitting by the ratio of the electron and proton masses;
thus,

(4.1d)

In addition to the Coulombic, spin–orbit, and spin–spin interactions,
which have analogs in classical electromagnetism, there are processes
that have no direct counterparts in classical physics. These involve the
interaction of the bound electron with the “vacuum”. Classically, a
vacuum is empty space; not so in quantum physics. The quantum elec-
trodynamical vacuum is a roiling sea of ephemeral (or virtual) parti-
cles of matter and light (photons) that can affect the properties of real
particles although their own existence is so short-lived as to preclude
the possibility of direct observation.

One effect of the vacuum on atoms is quite well known, although
perhaps not thought about in this context: the spontaneous emission
of light. The fluctuating virtual electromagnetic fields of the vacuum
stimulate excited atoms to undergo transitions to lower-energy states,
thereby emitting real photons. Thus, the interaction of an atom with
the vacuum results in a finite lifetime of the excited atomic states.
There are also other more exotic processes that affect the atomic 
energies.

A bound electron, for example, can interact with the vacuum to emit
and then immediately reabsorb a photon; this process alters what is
known as the electron self-energy. The electron self-energy, the calcu-
lation of which yields an infinitely large value, is not measurable.
However, the difference in self-energy values between a free electron
and one bound in a hydrogen atom is calculable and measurable.
Another such process, referred to as vacuum polarization, involves the
emission by the atomic nucleus of an electron–positron pair, the imme-
diate mutual annihilation of this pair to produce a photon, and the
absorption of this photon by the bound electron. The net effect of these
(and other) virtual processes is to shift the energy levels of different
states by different amounts. The most notable shift is between the
states designated nS1/2 and nP1/2, which, according to the relativistic
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quantum theory of Dirac, are predicted to have equal energy in the
absence of vacuum processes.2

The atomic beam experiments in which I was engaged3 were under-
taken to explore a wide range of hydrogen fine-structure and 
hyperfine-structure intervals and the shifts induced by vacuum
processes. I liked to think of this research as my “Nobel Prize
Project”—not because the work was destined to win one, but because
each principal experimental ingredient of the project had already
earned someone else a Nobel Prize. For the development of the “mol-
ecular ray method” or beam, Otto Stern receive the Prize in 1943. I. I.
Rabi won it in 1944 for his “resonance method,” the discovery that one
can induce transitions between quantum states of a nucleus by irra-
diation with a magnetic field oscillating at the appropriate Bohr tran-
sition frequency. The procedure, as I employed it, worked just as well
with an oscillating electric field applied to electronic fine-structure
states of the hydrogen atom. Investigation of the hydrogen fine struc-
ture earned Willis Lamb the Prize in 1955; the quantum electrody-
namic displacement of S and P states bears his name (Lamb shift).
Much later (in 1990), Norman Ramsey, a former Rabi student, was to
receive the Prize for a modification of the resonance method whereby
two spatially separated, but coherently oscillating, radiofrequency
fields allowed one to measure nuclear energy level intervals with high
precision. The use of this technique, whose theoretical possibilities I
studied at great length, significantly improved the precision with
which the hydrogen Lamb shift could be determined. In addition, if
the creators of the theoretical underpinnings of the experiments were
also to be acknowledged, then, of course, the list of Nobel Laureates
must include Bohr (1922), for “the investigation of the structure of
atoms, and of the radiation emanating from them,” Heisenberg (1932),
“for the creation of quantum mechanics,” and Schrödinger and Dirac
(1933), “for the discovery of new productive forms of atomic theory.”
Newton once remarked that if he saw farther than most, it was
because he stood on the shoulders of giants (a comment written during
an “unusual fit of modesty” according to one of my historian col-
leagues). In any event, the predecessors upon whose achievements I
relied had no mean stature, either.

Because all hydrogen states, except for the ground state,4 are unsta-
ble and decay radiatively to some lower state(s), one could monitor the
effects of external perturbations on them by the corresponding
increase or decrease in light emission at the appropriate wavelength.
The use of a fast atomic beam—a beam in which the atoms move
through the apparatus at roughly a hundredth the speed of light—
greatly facilitates such spectroscopic measurements. Produced at one
location, the atoms rapidly traverse various chambers containing the
electromagnetic fields (oscillating at radio or microwave frequencies)
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for probing desired energy intervals; the atoms continue past a detec-
tion window through which the fluorescent photons (the spontaneous
decay radiation) can be counted, thereby providing a measure of the
number of atoms remaining in the states of interest. When the fre-
quency of an oscillating field equals the Bohr transition frequency for
a pair of atomic states,5 the probability of a transition into or out of
the states is greatest, and the photon count rate is maximally affected.
(Whether a transition occurs into or out of atomic states coupled by
the oscillating fields depends on the relative populations of these states
and the time of exposure to the fields.) Thus, use of a fast beam allows
for separate regions of creation, spectroscopy, and detection of short-
lived states.

One might wonder, however, how a neutral hydrogen atom can be
brought up to a speed 8000 times that of a passenger jet! After all,
unlike the charged particles in high-energy accelerators, a neutral par-
ticle cannot be accelerated by electric or magnetic fields. The trick is
first to accelerate a beam of protons to the desired speed. The protons
were produced in an ion source—essentially a cylindrical glass tube,
supplied with H2 gas, inserted through the coil of a powerful radio-
frequency oscillator that dissociated the molecular hydrogen into a
plasma that gloriously radiated Harvard’s crimson color (the Balmer
lines of excited H atoms6). Extracted from the plasma and then 
electrostatically accelerated under a potential difference of about
20,000V, the protons impinged on a thin carbon foil a few hundred
atoms thick, capturing electrons as they shot through virtually unaf-
fected in their forward motion. Now, the accelerated proton beam had
become a beam of fast-moving hydrogen atoms distributed over a broad
range of quantum states.

There were many aspects of the experiment that were challenging,
but few more frustrating than these foils which had a tendency to
“burn through” just when the collection of data seemed to be going
well. Replacing them was a time-consuming affair, for the accelerator
had to be shut down and opened to the atmosphere, after which began
the tedious task of separating the ultrathin carbon foils from glass
microscope slides on which they were mounted by the manufacturer,
and of then remounting them (without crumpling or breaking) on a
frame to be suspended in the path of the beam. Useful though they
had been, I was not unhappy to dispense with the whole business of
carbon foils and use an indestructible gas target that accomplished the
same task with less aggravation. I had not realized, unfortunately,
that what was potentially the most interesting part of the experiment
was literally thrown away!

The characteristic feature of the random decay of independent
systems—whether alpha-particle decay of atomic nuclei or radiative
decay of excited atoms—is the exponential variation in time. This is
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the inevitable result of a decay process in which the number of parti-
cles decaying at any moment is proportional to the number of parti-
cles present:

(4.2a)

Here, 1/T is the characteristic decay rate of the particular process; T
is said to be the particle lifetime (for the given mode of decay), but this
is a statistical quantity referring to the whole ensemble of particles,
and not an attribute of an individual particle which may live consid-
erably longer or shorter than an interval T. The differential equation
(4.2a) is readily integrated. After a time interval t, the ratio of the
number, N(t), of remaining states is to the number, N0, of initial states
is

(4.2b)

The lifetime T, therefore, is the time interval after which the relative
population of decaying particles has dropped to e-1 � 0.37.

As I mentioned before, the belief was widespread that an atom un-
affected by external perturbations had to be in one of its allowed
energy eigenstates. Thus, the beam of fast H atoms emerging from the
carbon foil would contain what one could describe as a mixture of
states. A complete description of such a mixture would entail a tabu-
lation of the statistical frequencies or probabilities with which each
hydrogenic state appears; perhaps something like 80% 1S states, 10%
2S states, 5% 2P states, and so forth (if one limits the description to
the orbital states of different electronic manifolds). As the beam leaves
the foil, the excited states decay in time at rates that depend on the
principal and orbital angular momentum quantum numbers. For
example, the lifetime of a 2S state is about 1–7 s (effectively infinite on
the timescale of atomic processes7), whereas that of a 2P state is 1.6
ns (1ns = 1 ¥ 10-9 s). The uniform motion of the beam converts the
decay over a time interval to decay over a space interval.

Suppose one examined the light output from the decaying 4S states
(lifetime �230ns) by placing a filter in front of a photodetector to block
all radiation except for the blue Balmer b light (4S to 2P transition) of
wavelength about 486nm. As a function of distance x from the foil, the
Balmer b light intensity, proportional to the number of decaying atoms
in the 4S state, would be expected to fall off exponentially in accor-
dance with relation (4.2b) as follows:

(4.2c)
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where the left-hand side is the relative light intensity at x, and v is
the beam velocity. To be sure, a photodetector surface is not a mathe-
matical point; the observed signal in an actual experiment comprises
photons from decays spanning a range of locations along the beam and
striking different points of the surface of the detector. If one is princi-
pally interested—as I was at the time—in maximizing the light
received, it is advantageous to use a photodetector with a wide window,
survey a broad segment of the atomic beam, and count photons of all
polarizations. The signal is then given by relation (4.2c) with appro-
priate averages made over beam length and detector surface. Never-
theless, neither I nor my experimental colleagues had any doubt that
the light emitted from a narrow segment of the beam followed the
exponential decay law.

Except that it did not!8 Or, rather, it did if one observed all polar-
izations equally, and it did not, if the light was detected through a
polarizer (e.g., a simple sheet of polaroid film). In the latter case, the
light intensity oscillated with distance from the foil indicating that the
atoms, like miniature beacons, were in some way turning on and off
coherently. As the mean distance between atoms in the beam was far
greater than a characteristic atomic size, and as the production of
atoms by proton impact on carbon apparently took place independently
and randomly, there was no reason to believe that different atoms in
the beam could in any way cooperate with one another. The oscillat-
ing light output reflected, in a profound way, an oscillatory process
intrinsic to each atom—but with all the atoms in synchrony. Like the
build-up of a pattern of interference fringes by single electrons as
described in Chapter 3, the observed intensity oscillations could have
been produced one atom at a time—provided one had the patience to
collect enough photons.

What were those oscillations? Why did they appear only in polarized
light? Why did the standard description of radiative decay not work?
Ordinarily applicable in all instances of incoherent particle prepara-
tion and decay, relations (4.2a) and (4.2b) do not take account of the
uncertainty principle.

A proton moving at roughly 108 cm/s will pass through a 10-6-cm-
thick fixed carbon foil in a time interval of about 10-14 s. At some point
in that short time interval, a hydrogen atom is created. As I pointed
out previously, an uncertainty in the time of production Dt implies an
uncertainty in the energy of the system: DE � /Dt. In the present case,
this energy uncertainty is larger than all of the hydrogen fine-
structure and hyperfine-structure energy splittings! The Bohr fre-
quency for the largest fine-structure splitting (that of 2P states) is about
1010 Hz; the largest hyperfine-structure splitting (that of the 1S states)
is about 1.4 ¥ 109 Hz. However, the energy uncertainty (expressed in
frequency units) of the foil-excited atoms is D� = DE/h = 1/Dt � 1014 Hz.

h
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In effect, the experimenter cannot know to what state any atom has
been excited. Of course, if he were to intervene in some way to measure
the precise energy of each atom in the beam, this energy would turn
out to be one of the energy eigenvalues, but then the quantum beats
would disappear. If the experimenter does not measure the energy of
an atom, then that atom cannot, even in principle, be thought of as
being in a well-defined, albeit unknown, quantum state. The appro-
priate quantum description must entail a linear superposition of all
allowable energy states that give rise to the same final condition—i.e.,
decay to a specified lower state with emission of a photon falling within
the passband of the measuring apparatus. (If the passband were suf-
ficiently narrow that detected photons came from one particular state
of a linear superposition of excited states, then the energy of the atom
would be known and the quantum interference would vanish.)

Let us consider the example of a four-state atom with two close-lying
excited states such as that shown in Figure 4.1a. The excitation is
assumed for the time being to be nearly instantaneous. The atom goes
from the initial state g (assumed here to be the ground state) to some
final state f by quantum pathways g Æ e1 Æ f or g Æ e2 Æ f. Since,
under the circumstances of the experiment, these paths are indistin-
guishable, one must add the probability amplitude for each. Suppose
that the probability amplitude for transition from the ground state to
an excited state ei is ai (i = 1, 2) and the corresponding amplitude for
a transition from the excited state ei to the final state f is bi (i = 1, 2).
Were it possible to “turn off” the interaction of the atom with the
vacuum, then, during the time the atom is excited, it would evolve
freely in the absence of all external forces and potentials. From 
the quantum mechanical equation of motion (Schrödinger or Dirac
equation), one can readily deduce that the probability amplitude for
free evolution in a state of energy E is proportional to the phase factor
exp(-iEt/ ). It is the interaction with the vacuum, however, that
induces the radiative transition to state f that makes detection of the
quantum beat possible. The theoretical effect of the vacuum can be 
calculated rigorously by means of quantum electrodynamics; the end
result—more or less consistent with our intuition—is that, besides the
free-evolution phase factor of magnitude unity (no change in num-
ber of atoms in the state), there is a decay factor exp(-t/2T) represent-
ing a loss of atoms from the excited state (with a characteristic 
lifetime of T).9 Thus, the total probability amplitude for each pathway
in expressible as
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Figure 4.1. (a) Energy level diagram of an atom with ground state g, two
close-lying excited states e1 and e2, and a lower final state f. An impulsive exci-
tation with frequency components corresponding to the Bohr transition fre-
quencies from g to e1 and e2 can drive the atom into a linear superposition of
its excited states from which the excited electron radiatively decays to lower
state f. (b) The spontaneous emission from atoms prepared as shown in (a)
exhibits an oscillatory decay in time with a period t12 inversely proportional
to the Bohr transition frequency between states e1 and e2: t12 = 1/|�2 - �1|. The
spontaneous emission from atoms in an incoherent mixture of the two excited
states would decay exponentially in time, as shown by the broken line.

The probability for the transition of the atom out of g and into f with
emission of one photon at time t is then

(4.3c)

which takes the form

P t A A( ) = Æ Æ( ) + Æ Æ( )g e f g e f ,1 2
2

(a)

(b)



(4.3d)

The phenomenon of quantum beats is, in essence, an interference
effect in time rather than in space; the temporal sequence of transi-
tions between two (or more) sets of internal energy states of the atom
is analogous to the spatial pathways through one or the other of two
slits in the free-electron “Young’s fringes” experiment described earlier.
The transition probability—and, therefore, the photon count rate—
decays in time as a modulated exponential (Figure 4.1b). The “beat”
frequency in the quantum interference term corresponds to the Bohr
frequency of the excited states; it may thus be seen that the mea-
surement of quantum beats can afford useful spectroscopic informa-
tion about the energy level structure of an atom or molecules. About
this aspect I will have more to say later. The relative phase that
appears derives from the phases of the excitation and decay ampli-
tudes, which can be complex numbers.

The system of percussionally excited atoms in a linear superposition
of two quantum states with an oscillating relative phase factor 
exp{-i(E2 - E1)t/ } may be likened to a system of synchronously pre-
cessing electric dipoles. Although this picture is a classical one, it helps
account for some of the features of the quantum beat experiment. The
maximum intensity of the radiation from any one dipole sweeps past
the detector at the angular frequency w = (E2 - E1)/ . However, for an
ensemble of randomly oriented (although synchronously oscillating)
dipoles, the net signal is modulated only when light of a particular
polarization is observed; the precession can alter the distribution of
the radiation, but not the total amount generated (which decreases
exponentially in time). This is reflected as well in the quantum
mechanical expression (4.3d), which characterizes a transition induced
by a particular component of the electric dipole of the atom (a vector-
ial quantity) and, therefore, the emission of a photon of specified polar-
ization. If one adds together comparable expressions for all possible
electric dipole transitions from the given excited states to all substates
(if there are more than one) of the final level f—which is tantamount
to observing light of all polarizations—the quantum beat term van-
ishes, a consequence of the quantum rule known as the Wigner–Eckart
theorem.

The picture of precessing dipoles also helps one visualize what
should transpire as one increases the time interval over which the
excited states are prepared. If the duration of the excitation Te is short
compared to the period of dipole precession 2p/w, the dipoles precess
together and emit radiation in phase. As Te lengthens, however, dif-
ferent dipoles are set precessing at increasingly later times and emit
radiation increasingly out of phase with that emitted by dipoles 
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established earlier. Once Te is comparable with, or longer than, 2p/w,
the precession of the dipoles is no longer synchronized, the radiation
is no longer in phase, and the quantum beats are washed out. As a
quantitative criterion, the range wTe of precession angles spanned by
a system of dipoles created over a period Te must be small compared
with unity (1 radian) if the dipoles are to precess synchronously. Thus,
for the beats to be observable, one would expect the inequality

wTe < 1 (4.4a)

to hold. This criterion also follows readily from the quantum mechan-
ical analysis. With w = (E2 - E1)/ and Te � /DE, one recognizes in
relation (4.4a) a consequence of the uncertainty principle:

(4.4b)

The uncertainty in the energy of the bound electron must be 
greater than the energy interval separating the excited states; other-
wise, the atom would be in a definite excited state and beats would not
occur.

Excitation of atoms by a carbon foil is not the only means by which
quantum beats can be produced. Indeed, in many respects it is advan-
tageous to excite the atoms optically, for example with a pulsed laser.
Whereas electron capture from a carbon foil gives rise to many excited
states simultaneously, excitation with a tunable laser permits one to
select specific excited states of interest. Another commendable feature
about optical excitation is that the excitation amplitudes (the ai) can
be determined precisely; the theory of the interaction of atoms with
light is, if not simple, at least well understood. By contrast, the capture
of electrons by proton impact on a solid target of multielectron atoms
is a more difficult process to treat theoretically.

The theory of quantum beats produced by light pulses predicts 
some unusual optical effects that, as far as I know, have yet to be
demonstrated experimentally. They must exist, however, if our under-
standing of the interaction of atoms with light is correct.

Before the development of powerful pulsed lasers, the light sources
used to excite atoms were weak in the sense that the majority of
exposed atoms remained in their ground state; that is, the probability
of a transition was low and the lifetime of the ground state was long
(in principle, infinitely long in the absence of radiation). An atom that
absorbs a photon from a weak light pulse undergoes effectively one
transition to the excited states and subsequently—after passage of the
pulse—decays by spontaneous emission to lower states, including the
ground state. If the light pulse, like the carbon foil excitation, is short
compared to the dipole precession time (2p/w), then, as one would
expect, the probability of spontaneous emission is negligibly small
throughout passage of the pulse.
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If a light pulse is sufficiently intense, however, it can stimulate
atoms to absorb and emit photons during its passage. Indeed, many
such cycles of excitation by light absorption followed by stimulated
emission to the ground state could occur over the duration of one pulse.
Thus, as a consequence of strong light excitation, the atomic ground
state acquires a finite lifetime Tp inversely proportional to the light
intensity at the transition frequency. Tp is the inverse of the excitation
rate; it is the “pumping” time, the mean time between the successive
absorption and stimulated emission of a photon. When the pulse has
passed, the excited atoms again decay exclusively by spontaneous
emission.

What effect should all of this cycling back and forth between ground
and excited states have on the quantum beats? Very little, one might
imagine. After all, the observed beats occur in the spontaneous
emission from freely precessing atomic dipoles after passage of the
light pulse. This is certainly true if the light pulse is short com-
pared with the precession time. However, a theoretical study of the
effect of increasing the pulse duration produced a most surprising
result.

One might expect, in view of the reasoning behind relation (4.4a),
that the contrast10 of quantum beats should diminish and ultimately
vanish as the duration of the light pulse, Te, exceeds the precession
time characteristic of the excited states. This was indeed the case for
light pulses of weak to moderate intensity. However, when the inten-
sity of a long (Te > 1/w) light pulse was increased sufficiently so that
the ground-state lifetime was short (Tp << 1/w), the quantum beats
reappeared strongly! How was it possible—to refer again to the clas-
sical analogy—for apparently randomly phased dipoles to emit light
synchronously?

The explanation of this baffling phenomenon turned out to be
simple, but subtle. Because of the frequent cycles of excitation and
stimulated emission, the precession of the dipoles is interrupted so
often that their overall dispersion in phase angle remains small. The
system of randomly excited and de-excited atoms resembles somewhat
the “random walk” of a drunkard through the woods: He bumps into
trees, falls down, gets up and starts off again—sometimes in the orig-
inal direction, sometimes in the opposite direction. At the end of a
certain time, he has progressed in a random direction from his point
of origin by a distance that varies as the square root of the number of
steps.

During the passage of the light pulse in a time interval Te, the
number of successive absorption and stimulated emission processes
that occur is approximately N = Te/Tp. Each time an atom is re-excited
from the ground state, the corresponding dipole can precess either in
the original sense or in the opposite sense. Over the time Tp that the
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atom is excited (before another stimulated emission to the ground state
occurs), the corresponding dipole precesses through an angle q � wTp.
The dispersion in phase over the whole system of atoms, like the mean
displacement in a random walk problem, is Dq = N1/2q. The criterion
for the appearance of quantum beats, Dq < 1 radian, is then express-
ible as

(4.4c)

Relation (4.4c) is equivalent to that of relation (4.4a) when the excita-
tion is weak and the ground-state lifetime is long, Tp > Te. However,
even when wTe > 1, a pulse of long duration should still lead to
quantum beats if the pumping time (i.e., ground-state lifetime) is made
short enough by an intense illumination. This would indeed be an
interesting phenomenon to observe.

* * *

By the time my atomic beam experiments were completed, the
results did not show any discrepancy with quantum mechanics, and I
thought I knew all I ever wanted to know about hydrogen—at least
for a while. I soon realized, however, that atoms similar in electronic
structure to hydrogen have an intrinsic interest all their own, espe-
cially when they are so large that one such atom could accommodate
some 50,000,000 “ordinary-sized” atoms in its volume!

Here was a whole new domain of atomic physics to explore—through
a portal opened by pulsed lasers and quantum beats.

4.2. Anomalous Reversals

The atomic hypothesis has been around for some two millennia.
Despite compelling evidence provided by the study of chemistry and
the kinetic properties of gases, acceptance of the actual existence of
atoms was strongly resisted by a number of renowned scientists (e.g.,
Wilhelm Ostwald and Ernst Mach), even as late as the first decade of
the 20th century.

One problem, of course, is that atoms are ordinarily much smaller
than the least object that could be seen through a microscope. Physi-
cal optics teaches us that one cannot resolve objects of a size inferior
to the wavelength of the light used for viewing.11 The characteristic
diameter of an atom is some three orders of magnitude smaller than
the wavelength of visible light. As pointed out previously, the wave-
length of electrons in an electron microscope can be a fraction of an
atomic diameter; with such a microscope, one can (in a manner of
speaking) “see” structures interpretable as an aggregate of atoms.
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However, this is a recent development. No one at the turn of the 20th
century could have conceived of seeing an atom.

The scale of molecular size was already roughly known in the 
19th century by means of chemical experiments or kinetic experiments
to determine Avogadro’s number from macroscopic quantities of
matter. I can recall, as a student, having to estimate the length of 
some kind of oleic molecule from the amount of substance required to
form a monomolecular film of an aqueous substrate. (How the instruc-
tor could be certain that the film was monomolecular was never made
clear to me!) By knowing the molecular formula, I could then estimate
the size of a carbon atom. No theory based on classical physics,
however, was able to predict the characteristic size of an atom or 
molecule. The reason, in short, is that Planck’s constant was not
known.

Bohr’s semiclassical theory of the atom in 1913 was the first to
provide a natural scale of atomic size, the Bohr radius a0,

(4.5a)

in terms of Planck’s constant and the electron charge and mass. The
Bohr theory showed that the characteristic size of the orbit of an
atomic electron in an energy state of principal quantum number n is

rn = n2a0. (4.5b)

Before h entered the physicist’s lexicon of physical constants, the only
natural length scale that could be constructed from known particle
attributes and universal constants was the so-called “classical electron
radius,”

(4.5c)

which was orders of magnitude smaller than the size of atoms inferred
from experiment; it is more characteristic of the size of the atomic
nucleus.

The n2 dependence of atomic size implies, however, that highly
excited atoms are not necessarily small—that, in fact, they are larger
than some of the observable and manipulatable objects still adequately
treated by the laws of classical physics. Were it possible to raise an
electron to the n = 100 level, the orbital radius would be 104 a0, or about
0.5mm (recall: 1mm = 10-4 cm), which is already on the order of the size
of some bacteria. Pulsed lasers indeed make such excitations possible;
for example, under laboratory conditions, barium atoms12 have been
excited to electronic levels in the vicinity of n = 500 with a corre-
sponding Bohr radius of 12.5mm. Atoms in comparable states of 
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excitation also occur naturally in the interstellar medium. Note that
human red blood cells have diameters of 6–8mm, and most other
human cells fall in the range of about 5–20mm.

There is something fascinating about an atom that one should be
able to “see”! Unfortunately, it is not possible to do anything of the
kind. To see the atom requires that one illuminate it and that the atom
scatter the light to a detector. However, a highly excited atom—
generally termed a Rydberg atom—is markedly sensitive to its en-
vironment; the least perturbation will likely de-excite or ionize it. The
interaction of an atom with an electric field, for example, ordinarily
depends on the atomic polarizability, which is a measure of the extent
to which the field can displace electric charge from its equilibrium posi-
tion. Polarizability has the dimension of volume, and one might expect
that the atomic polarizability would scale as the cube of the orbital
radius, or as n6. This is not strictly the case—the scaling goes approx-
imately as n7—but it provides a good indication of the difficulty 
faced by someone wanting to probe, but not destroy, a Rydberg atom.13

The polarizability of a hydrogen atom in the level n = 100 would be
over 1 million million times greater than that of the atom in its ground
state.

What makes highly excited atoms particularly interesting to study
is, among other things, that they are systems at the threshold between
the quantum world and the classical world. This is the “antitwilight
zone,” so to speak, where quantum strangeness is expected to merge
into classical familiarity by means of the correspondence principle.
Since the electrostatic force that binds the electron to the nucleus has
the same inverse-square distance dependence as the gravitational
force that binds the planets to the Sun, one might think of an atom
with the outer valence electron excited into a Rydberg state as a minia-
ture planetary system with the electron orbiting a central core
(nucleus plus unexcited electrons) of unit net positive charge. For such
a system, the characteristics of the quantum states should be reason-
ably well described by Kepler’s laws.

Kepler’s first law, for example, states that the orbit of a planet about
the Sun is an ellipse, with the Sun at one focus. The electron orbits
are also elliptical, although, for simplicity, only circular Bohr orbits
are usually discussed in elementary textbooks. In the “old” quantum
mechanics [i.e., the Bohr theory and its various elaborations (princi-
pally by Arnold Sommerfeld) predating the creation of a consistent
quantum theory in 1925], the atomic orbits were classified as “pene-
trating” or “nonpenetrating.” The penetrating orbits are highly ellip-
tical (like the orbits of comets) and take the electron near or through
the core; the nonpenetrating orbits are more nearly circular (like the
planetary orbits of the solar system) and widely circumnavigate the
core (Figure 4.2).
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To those whose have studied the modern quantum theory of the atom
before (if ever) encountering the old quantum theory of electron orbits,
the correlation between quantum states and Bohr orbits may at first
be a little surprising. For example, the electron probability distribu-
tion in an S state, a quantum state of zero angular momentum, is
spherically symmetric; textbook pictures often represent the S-state
electron distribution as a fuzzy ball. Classically, however, the state
with zero angular momentum is the ultimate penetrating orbit where
the ellipse has degenerated into a straight line right through the core.
The higher the angular momentum, the more nonpenetrating is the
orbit, and the less spherically symmetric is the probability distribu-
tion. There is no contradiction here, for what is being pictured are two
entirely different things. An orbit represents the sequential motion of
the electron in time; a stationary-state probability distribution does
not represent motion and has no causal implications at all. However,
the fact that the S-state probability distribution is nonvanishing at the
nucleus is consistent with the classical linear trajectory. The quantum
wave functions for all other angular momentum states have a node or
zero amplitude at the origin.

One might also be surprised to learn how low the angular momen-
tum of a nonpenetrating orbit can be. Consider the orbits correspond-
ing to the lowest three states of the sodium atom, which, like hydrogen,
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Figure 4.2. The three lowest valence electron orbits according to the classi-
cal model of the sodium atom. The shaded circle represents the core of filled
electronic shells and the atomic nucleus. Orbits are designated penetrating 
or nonpenetrating according to whether or not they pass through the core.
(Adapted from H. E. White, Introduction to Atomic Spectra, McGraw-Hill, New
York, 1934, p. 103.)



has a single outer valence electron (Figure 4.2). Although the 3s and
3p orbits are clearly penetrating, the 3d orbit remains well outside the
core.14 (Nevertheless, beware of classical pictures! I shall return to this
point shortly.)

Kepler’s third law states that the square of the orbital period of a
planet is proportional to the cube of the semimajor axis (i.e., one-half
the long axis) of the ellipse. Thus, it follows for the nearly circular
orbits of high angular momentum that the orbital period Tn varies as
the 3–2 power of the radius or, from relation (4.5b), as the cube of the
principal quantum number:

(4.6a)

According to classical electrodynamics, which should adequately
account for radiation production in the domain to which the corre-
spondence principle applies, an oscillating or rotating charged parti-
cle should emit electromagnetic waves of the same frequency as the
frequency of periodic motion. The Keplerian electron in level n should,
therefore, emit light at a frequency

(4.6b)

that varies as the inverse third power of the principal quantum
number as it continuously spirals inward to a lower energy orbit cor-
responding to level n - 1. The above relation readily follows from the
quantum mechanical formula, expression (4.1a), for the hydrogen atom
energy spectrum; because En varies as n-2, the energy interval between
levels n and n - 1, and, therefore, the radiation frequency, varies as 
n-3 in the limit of large n.

The classical picture of a gentle transition between close-lying non-
penetrating orbits with emission of low-energy radiation is substanti-
ated quantum mechanically by means of the selection rules governing
transitions between angular momentum states. The largest value of
angular momentum (in units of ) that an electron in level n may have
is n - 1, and, as pointed out earlier, the emission of a photon carries
away one unit of angular momentum. Since a state with angular
momentum n - 2 can occur only in the manifold of states of principal
quantum number n - 1, the emitting electron undergoes a transition
from the level n to the level n - 1 in accord with the classical picture.
For electrons with large, but not necessarily maximal, angular momen-
tum, there is a range of lower levels that can be reached from a given
Rydberg level n. Nevertheless, for n large enough, the energy inter-
vals—and therefore the radiation frequencies—still vary essentially 
as n-3.

Classical reasoning also allows us to draw an important conclu-
sion concerning the lifetime of the Rydberg states corresponding to
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nonpenetrating orbits. The total power radiated by a nonrelativistic
accelerated charged particle was first shown by the English physicist
J. J. Larmor to vary as the square of the acceleration a as follows:

(4.7a)

This relation is known as the Larmor formula. By Newton’s second law
of motion, the acceleration of the Rydberg electron is proportional to
the (inverse square) electrostatic force keeping it in orbit. Thus, the
radiated power

Radiated power µ a2 µ r-4 µ n-8 (4.7b)

varies as the inverse eighth power of the principal quantum number.
Because the quantity of energy carried away by each photon varies as
n-3 [from relation (4.6b)], the time spent in level n,

(4.7c)

should vary as the fifth power of n. Higher-angular-momentum
Rydberg states, then, are predicted to be very long-lived. This predic-
tion is not inconsistent with the previous statement that such states
are extremely sensitive to environmental perturbations; Rydberg
states are long-lived when they are left alone.

Unlike the case of a nearly circular orbit, the acceleration of an elec-
tron in a penetrating elliptical orbit depends on the electron location.
The force—and therefore the acceleration and rate of light emission—
are greatest, however, in the vicinity of the pericenter, the point of the
orbit closest to the focus where the core is located. The distance to the
pericenter is largely independent of the energy, and therefore of 
the principal quantum number, of the orbiting particle. Because an
electron emits light significantly only when passing through the 
pericenter, the time spent in orbit is just proportional to the orbital
period. Thus, from relation (4.6b),

tn � Tn µ n3; (4.7d)

the radiative decay lifetime of the low-angular-momentum Rydberg
states should vary as the cube of the principal quantum number. These
states, too, are long-lived.

According to the Larmor formula, an electron in a penetrating orbit
should radiate energy at a greater rate than an electron in a nearly
circular nonpenetrating orbit within the same electronic manifold; 
the acceleration near the pericenter, a distance on the order of a few
Bohr radii from the core, is much greater than acceleration at a dis-
tance of n2a0 from the core. This is again substantiated by quantum
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mechanical selection rules. Low-angular-momentum states are found
in electronic manifolds of both large and low n (provided only that the
angular momentum quantum number L does not exceed n - 1). Since
the probability for an electric dipole transition between two states
varies as the third power of the frequency of emitted radiation,15 other
things being equal, quantum mechanics favors a large “quantum
jump” (i.e., a transition from a state n,L to a lower energy state n¢, 
L - 1 with n¢ << n). Thus, radiative decay of low angular momentum
Rydberg states should lead to photons of higher energy than radiative
decay from high angular momentum states of corresponding principal
quantum number.

The above properties of Rydberg states are reasonably well con-
firmed experimentally, and one might be tempted to suppose that the
simple picture of a distant outer electron orbiting a central nucleus
and inner electron core with little mutual interaction is an adequate
model for a highly excited atom—at least for the classically nonpene-
trating orbits (which exclude the S and P states). It would then follow
that singly excited Rydberg atoms, regardless of the distinguishing
properties of the parent ground-state atoms, should exhibit essentially
hydrogenic behavior. In many ways, this expectation is realized. With
regard to binding energies, polarizabilities, lifetimes—and indeed
every atomic property of which the calculation involves the radial 
coordinate r to a non-negative power—a Rydberg atom increasingly
resembles a hydrogen atom the larger n becomes.

Nevertheless, upon closer scrutiny, this comfortable agreement
crumbles in some rather curious ways, as in the case of the anomalous
fine structure of the sodium atom. Because of the relative simplicity
of its electronic configurations, the ease with which one can work with
it experimentally and the convenient region (that of visible light) 
into which many of its spectral lines fall, the sodium atom makes an
excellent system for the investigation of Rydberg states. With a 
single-valence electron outside an inert gas (neon) core, sodium
Rydberg states may be expected to resemble closely the excited states
of hydrogen. Thus, the observation and interpretation of marked 
nonhydrogenic behavior of some property of sodium would be of 
considerable theoretical interest in atomic physics.

To understand what is anomalous about some sodium fine-structure
levels, let us first reconsider the fine structure of hydrogen, as this 
is the model for normal structure. I explained previously that the 
fine-structure splitting of the Bohr energy levels originates in the
spin–orbit interaction (i.e., the interaction between the electron mag-
netic dipole moment and the local magnetic field produced by the
apparently circulating proton). Since the charge of the electron is neg-
ative, the orientation of the electron magnetic moment (proportional
to the electron charge) is opposite that of the electron spin. One con-
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sequence of this is that the energy of an electron is lowered when the
electron magnetic moment is aligned parallel to the local magnetic
field; this is the state for which the electron spin and orbital angular
momenta are antiparallel. Conversely, the electron energy is raised in
the opposite configuration where the two momenta are parallel. Thus,
the fine structure is considered normal (or hydrogenic) when the state
with electron total angular momentum quantum number J = L + 1–2 lies
higher (less tightly bound) than the state with J = L - 1–2 (Figure 4.3).
The energy interval, derived from the Dirac theory of the hydrogen
atom, is

(4.8)

where afs is the fine-structure constant e2/ c � 1/137.
For the D states of excited sodium, not only is the magnitude of the

fine-structure splitting not accurately given by relation (4.8), but the
ordering of the levels is reversed, the J = 5–2 lying lower than the J = 3–2
states, thereby giving a DE of opposite sign. That the sodium D states
of the ground (n = 3) level are inverted has been known at least since
the 1930s by means of optical spectroscopy with high-quality interfer-
ence gratings. From measurements of the light-absorption spectrum
corresponding to transitions from 3P to 4D and from 3D to 4P states,
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Figure 4.3. Normal (hydrogenic) fine-structure level ordering. In the pres-
ence of the spin–orbit interaction, an energy level En (n > 1) splits into two
levels; the one with electron total angular momentum quantum number 
J = L + 1–2 lies above the other with J = L - 1–2.



experimenters were able to infer the 3D fine-structure splitting. Sub-
sequent measurements of the same kind, and by the more recent
experimental method known as two-photon spectroscopy,16 showed
that the inversion of the sodium fine structure persisted in levels 
n = 4, 5, and 6.

Why is the fine structure in these low-lying levels anomalous? 
The explanation is not a simple one; there may, in fact, still be no 
consensus among theoreticians as to the relative importance of various
proposed mechanisms. Speaking generally, however, the excited
valence electron does not experience a purely central potential 
(V µ 1/r) as a result of the presence of the other ten electrons that
(together with the nucleus) comprise the core. The interaction between
the excited electron and the core is referred to as “core polarization.”
In the classical picture, the orbits of the core electrons are perturbed
by the penetration of the valence electron; this distorts the potential
in which the valence electron finds itself and ultimately changes 
the energies of the two fine-structure states from what they would 
be in hydrogen where there is no subsystem of core electrons. A
classical picture, however, can be misleading. Not all sodium fine-
structure levels are inverted; the P3/2 and P1/2 levels are normally
ordered even though P states correspond to highly penetrating 
classical orbits.

In accordance with the correspondence principle, one might expect
that, beyond some threshold value of the principal quantum number,
the fine-structure ordering must reverse and the energy splitting
become progressively more hydrogenic as n increases. The spectro-
scopic method of quantum beats allows this supposition to be tested
without at the same time perturbing the states by probing.

Because the experimental task in question requires the measure-
ment of small energy intervals, it is a significant advantage that
quantum beat frequencies are insensitive to atomic motion. As is well
known from classical physics, the frequency of a light wave (in fact,
any kind of wave) emitted by a source moving with respect to an
observer is perceived to be shifted, either higher or lower depending
on the direction of relative motion, in comparison with the frequency
emitted by a stationary source. Known as the Doppler effect, this fre-
quency shift has been the nemesis of many a spectroscopic investiga-
tion. Were all atoms to move at the same speed in the same direction,
the simple displacement of a spectral line could be taken into account
easily. The net effect, however, of a large number of atoms moving in
different directions with a wide spread of speeds is to produce Doppler-
broadened spectral lines whose overlap could obscure fine details of
atomic energy-level structure.

Since a quantum beat results from the interference between photons
that could be emitted from any two of a set of superposed states of the
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same atom, these photons are Doppler shifted to the same extent. Con-
sequently, their difference frequency, which is the frequency of the
quantum beat, is largely independent of the dispersion in atomic veloc-
ities.17 It must be said, of course, that when the atomic transition actu-
ally occurs, a single atom emits but one photon and does not produce
a beat in the photodetector output. The observed beat is the product
of many such individual emissions—yet the phenomenon does not orig-
inate in the interference of photons from different emission events (i.e.,
from different atoms). As in the previously discussed case of inter-
ference with free electrons, the capacity for quantum interference 
is intrinsic to each atom. Anyone who finds it hard to visualize just
exactly how this occurs is not alone, for this process is again one of the
central mysteries of quantum mechanics.

The experiments were performed in the early 1970s at the Ecole
Normale Supérieure (ENS) in Paris where I was a guest scientist at
the spectroscopy laboratory founded by Alfred Kastler and Jean
Brossel. To my good fortune, there had just returned to the ENS a
former student, Serge Haroche, who, during a postdoctoral stay at
Stanford University in California, had also become interested in
quantum beats and was in the process of starting up research in this
area at the ENS. We joined forces.

To generate a linear superposition of excited sodium D states directly
from the ground state would have required a tunable pulsed laser in
the ultraviolet; such a light source did not exist. The problem was
solved by exciting the atom in two stages. First, the yellow light from
a pulsed dye laser was used to “pump” sodium atoms from the 3S
ground state to the 3P3/2 state, and then, before the 3P states could
decay, the atoms were irradiated with the blue light from another
pulsed dye laser to bring them into the desired linear superposition of
nD states. Both lasers were tunable; by adjusting the wavelength 
of the second laser, one could select electronic manifolds of different
principal quantum number n.

Since anomalous fine structure had already been observed for 
levels 3–6, we looked for quantum beats in the light issuing from 7D
states. There were no beats! Our first thought was that we might have
discovered straightaway the “cross-over” level in which the D5/2

and D3/2 states are almost degenerate (giving rise to “beats” of zero 
frequency). However, the application of a small magnetic field, which
reduced the energy interval (and Bohr frequency) between certain 
D5/2 and D3/2 states, did generate beats, thereby suggesting that the
beat frequency in the absence of a magnetic field was not zero, but
instead too large to be produced by our pulsed laser or to be measured
by our photodetector. (By the uncertainty principle, the frequency
spread of the second light pulse must be greater than the Bohr fre-
quency associated with the two 7D fine-structure levels if a quantum
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beat is to be produced. Also, the response time of the detector must be 
shorter than the beat period if the beat is to be detected.) We esti-
mated, then, that the 7D fine-structure interval must have exceeded
about 150MHz. This turned out to be the case for 8D states too. Start-
ing with 9D, however, our apparatus began to register field-free
quantum beats.

Despite the theoretical simplicity of the experimental procedure, it
is worth noting that the experiment had not been an easy one. The
two tunable dye lasers, relatively compact and uncomplicated affairs,
were themselves pumped by the ultraviolet (UV) radiation from a third
laser, a huge and powerful apparatus that shot massive electrical dis-
charges through a chamber of nitrogen gas. The subsequent de-
excitation of the nitrogen molecules gave rise to about one million
watts of UV radiation. Not only was the electrical noise from these dis-
charges “deafening” to the rest of the electronic apparatus, but the
switching device (or thyrotron), which triggered the release of the large
amount of electrical energy stored in an extensive bank of capacitors,
often failed to work. Worse still than an electrically noisy laser was a
malfunctioning one that sat unproductively quiet. Many laboratory
hours were spent in tedious searches through the morass of cables
filling the power cabinet of the laser in the (usually vain) hope that
the device could be started up again without intervention of the man-
ufacturer’s repairman (who was generally servicing another laser
somewhere else in Europe).

Nevertheless, with perseverance, the experiment was eventually
brought to the state where fine-structure quantum beats in a succes-
sion of increasingly high Rydberg states could be measured. At that
point, unfortunately, my time was up and I had to leave France to meet
other commitments. Continuation of the work after my departure led
to the surprising result that the quantum beats in levels 9 to 16
showed no tendency at all to become hydrogenic. The energy splittings,
deducible directly from the beat frequencies, continued to depart from
the hydrogenic interval of relation (4.8). And the level ordering
remained inverted.18

The level ordering, it should be noted, is not deducible from the mea-
surement of field-free quantum beats, because the latter provides
information only on the magnitude of the energy interval, not on its
sign. The order can be determined, however, by a judicious application
of the Stark effect, the shifting of atomic energy levels by a static elec-
tric field. In the presence of an electric field, all of the nD states become
more tightly bound, i.e., shift downward on an energy diagram.
However, the D5/2 substates shift downward to a greater extent than
the D3/2 substates. Thus, if the J = 5–2 states lie below the J = 3–2 states
(anomalous ordering), the energy intervals—and, consequently, the
quantum beat frequencies—increase with increasing electric field
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strength. The combined results of previous research and the quantum
beat experiments showed that all measured intervals from n = 3 to 
n = 16 were anomalous!

Now, a principal quantum number of 16 is not exactly close to infin-
ity, which is ideally the limit at which quantum and classical mechan-
ics are assumed to give equivalent descriptions of a physical system.
It is not even close to 500, which represented, more or less, the upper
limit of atomic excitation achieved in a terrestrial laboratory when I
began work on And Yet It Moves. Nevertheless, a sodium atom in the
n = 16 level is a highly excited atom; it is large enough (classically
speaking) to contain over 4000 ground-state hydrogen atoms. More-
over, the energy of the excited electron is about 96% of the energy
required for ionization out of the ground state. It was the pattern of
measurements, however, that was most significant; the quantum beat
frequencies all fell on a smooth empirical curve (Figure 4.4), the
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Figure 4.4. nD fine-structure intervals of the hydrogen and sodium atoms.
Extrapolation of the curves to high n suggests that the sodium fine structure
remains anomalous irrespective of the degree of excitation. [Adapted from C.
Fabre et al., Optics Communications 13 (1975) 393.]



extrapolation of which did not lead to hydrogenic behavior as n
approached infinity.

Why not? Is the correspondence principle violated? Understanding
this puzzling experimental result taught me several lessons. The first
was not to underestimate what can be learned from the classical model
of the atom. Clearly, the anomalous behavior persists because of the
interaction of the outer electron with the core. It had been implicitly
assumed at the outset that the higher the state of excitation, the less
penetrating would be the orbit and the weaker would be the inter-
action with the core. We would have done well to think more carefully
about the theory of classical orbits. The shape of an elliptical orbit can
be quantified by the eccentricity of the ellipse, which is the ratio of the
distance of one focus from the center to the length of the semimajor
axis. For example, for a circle, both foci coincide at the center and the
eccentricity is zero. The eccentricity of the orbit of an electron in a level
n with angular momentum quantum number � subject to an inverse
square force can be shown to be

(4.9)

For a state of maximum angular momentum, � = n - 1, the eccentric-
ity, e = n-1/2, approaches zero as n approaches infinity, as expected for
a circular orbit. However, for the d states (� = 2), the expression for
the eccentricity, , shows that as n increases, the orbit
becomes more elongated, and not necessarily less penetrating. In fact,
as illustrated in Figure 4.5 for a series of d orbits, at the pericenter
the penetration is about the same irrespective of the principal
quantum number. Thus, a 16d state might well be expected to inter-
act with the core as much as would a 3d state.

The second lesson was not to overestimate what can be learned from
the classical model. The classical 3d orbit was considered to be non-
penetrating and should not have interacted significantly with the core.
From the perspective of quantum mechanics, however, the radial
portion of the nd wave function is always penetrating—for any n. The
“loops” of the wave function extend into the core, falling monotonically
to zero within a distance of about five Bohr radii from the center. The
spin–orbit interaction depends on the expectation (or mean) value of
the inverse third power of the electron radial coordinate (r-3); thus, the
behavior of the wave function close to the nucleus and electron core
can be significant even if the mean radial distance, �r� � n2a0, is very
large.

What kinds of interactions specifically occur between the outer elec-
tron and the core to invert the fine-structure order? Many studies have
been undertaken with varying degrees of success to answer that ques-
tion. Regrettably, it would appear that the more quantitatively suc-
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cessful the analysis, the less insightful is its underlying basis in terms
of a visualizable mechanism. One of the earliest proposals is that the
inversion results from “configuration mixing.” The actual state of the
excited sodium atom is not exclusively the state to which the valence
electron has been nominally excited (e.g., the nd states), but is, in fact,
a linear superposition of other states of excitation, or configurations,
brought about by the electrostatic interactions among the electrons.
One such configuration might include the excitation of the valence
electron to the nd state and simultaneous promotion of a core electron
to the 3p state. These “virtual” configurations with two excited elec-
trons cannot be detected directly, but they are believed to influence the
relative ordering of the nD fine-structure levels.

If further experiment and theoretical analysis sustain this picture,
then a highly excited atom is, indeed, a marvelous structure. Nearly
macroscopic in size—from the perspective of what can be resolved by
a light microscope—it has many of the attributes of a miniature plan-
etary system subject to Kepler’s and Newton’s laws, while preserving
in the fine details of its energy-level structure the effects of strange
quantum processes without parallel in the macroscopic world of 
classical physics.
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Figure 4.5. Comparison of classical orbits and corresponding quantum
mechanical radial probability distributions of the nd electron. Although the
mean orbital size increases with principal quantum number n, the orbital
properties near the core are largely insensitive to the degree of excitation.
[Adapted from H. E. White, Introduction to Atomic Spectra, McGraw-Hill, New
York, 1934, p. 113.]



Postscript: Apply the 
Correspondence Principle with Caution!

Atoms with one highly excited electron can differ in significant ways
from the hydrogen atom because, no matter how high the state of exci-
tation, the wave function of that outermost valence electron penetrates
(and is influenced by) the inner electron core. In leading to this
“lesson,” I had pointed out previously how the properties of highly
excited hydrogen are well accounted for by application of the Bohr cor-
respondence principle, which is the assertion that the predictions of
quantum theory must agree with those of classical theory in the appro-
priate classical limit. Although there are several ways in which this
classical limit can be formulated (e.g., by letting Planck’s constant h
approach zero), the operational limit for atoms has long meant high
excitation, i.e., letting the principal quantum number n become large
without bound. This was the manner in which Bohr first applied the
principle in his classic 1913 paper on the hydrogen spectrum.19

Surprisingly, studies published while this redaction was under way
have claimed that the Coulomb potential (which diminishes with 
distance as 1/r) is one of relatively few cases in which Bohr’s original
correspondence principle actually works.20 It is alleged to fail, for
example, in systems subject to long-range potentials that vary as 1/rk

with k greater than 2 (which includes the important case of the van
der Waals interaction with k = 3 and 6). In these cases, contrary to
what physicists might have expected, the use of classical reasoning (as
implemented in so-called semiclassical approximations) gives increas-
ingly poor results for the most highly excited states.

Although a full explanation of this counterintuitive discovery lies in
mathematical details that would be all but opaque to a casual reader,
the following observation is not too wide of the mark. A state with large
quantum numbers is not necessarily more “classical” than a state with
smaller quantum numbers. Rather, the condition for validity of a semi-
classical approximation is that the change in momentum of an elec-
tron (or any quantum particle) over the distance of its de Broglie
wavelength be small in comparison to the momentum itself. This
requires that the potential through which the particle moves not vary
too rapidly.21

For quantum particles subject to long-range interactions, it is pos-
sible for the semiclassical condition of validity to be violated within
the classically allowed region of the potential—that is, within a region
where the total energy of the particle does not exceed the potential
energy. Moreover, the spatial extent of this violation can increase with
higher levels of excitation. When this occurs, the Bohr correspondence
principle breaks down and the quantum world becomes, to physicist
and layman alike, a correspondingly stranger place.
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4.3. Quantum Implications of Traveling in Circles

Looking out over the countryside from the hills of the Hainberg Wald,
I could see the red tile roofs of Göttingen rise above the surrounding
verdant forest like clusters of mushrooms. Although outwardly similar
to other medieval German towns of Lower Saxony, Göttingen was dif-
ferent. At the entrance to the Rathskeller, or Town Hall Cellars, the
old proverb “Extra Gottingam non est vita,” may once have depicted
the world of physics with only mild exaggeration. I went to Göttingen
in the late 1970s as a guest professor at the Physikalisches Institut,
the institute founded in 1921 by Max Born and James Franck.

To walk through this charming former Hanseatic town largely
spared the ravages of time and war is to walk back in history. All
around the town center are the beautiful old Renaissance frame
houses, the Fachwerkhäuser, with white plaster and brown beams,
each succeeding level overhanging the street a little further than the
previous one. I presume, although I could be mistaken, that this con-
struction afforded the ancient tenants the best configuration for jetti-
soning their refuse onto the streets below. However, the Göttingen I
saw was clean and bright.

On Market-place, close by the alte Rathaus, or Old Town Hall, stood
the Gänselieselbrunnen, the Goose-girl Fountain, which was some-
thing of a town symbol. Tradition required that male doctoral candi-
dates of the university, dressed in tailcoat and top hat, climb the
pedestal and kiss the bronze Goose-girl after passing their examina-
tions. Unfortunately, the Gänseliesel had to be removed for repairs, but
that minor inconvenience, I soon discovered, did not cause the innov-
ative Göttinger to break with the past. Walking near the fountain one
day, I encountered a mule-drawn wagon filled with top-hatted jungen
Doktoranden bringing with them their own quite lively “Gänseliesel”
who took her place on the fountain pedestal. Tradition was preserved!

In the 1920s and 1930s, Göttingen was one of the world’s centers of
physics and mathematics. It was said to be the “Mecca of Physics”;
David Hilbert, Max Born, and James Franck were its “prophets,” and
researchers, students, and visitors made the pilgrimage there from all
parts of the globe. Although this golden age had long passed, I was
glad to make my own pilgrimage and draw inspiration from the phys-
ical reminders of a period of scientific creativity that was not likely to
occur again. I missed that age, having been born too late. To assuage
this sense of loss, I often strolled through the quiet Stadtfriedhof
(cemetery) west of town and looked at the inscriptions on the grave-
stones which recalled people and events closely associated with the
physics and mathematics that intensely interested me. There were
Carl Friedrich Gauss, Max Planck, Max von Laue, Max Born, David
Hilbert, Otto Hahn, and others less well known.
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The appointment of Gauss in 1807 as professor of mathematics and
director of the Sternwarte (Observatory) marked the initial point of
ascendancy of Göttingen as a center of scientific excellence. Gauss was
probably the greatest mathematician of his time, but he also employed
his extraordinary talents on physically important problems in astron-
omy, geodesy, and electromagnetism. His studies of spatial curvature
and non-Euclidian geometry led to mathematical advances that would
one day serve Einstein in the creation of general relativity. The tradi-
tion of contributing both to pure mathematics and fundamental
science passed from Gauss to his former student, Bernhard Riemann,
and ultimately to Hermann Minkowski and to David Hilbert, all pro-
fessors of mathematics at Göttingen. Hilbert’s writings on differential
equations and eigenvalue problems provided exactly the mathemati-
cal foundations needed by the Göttingen quantum physicists—who, to
their misfortune, did not pay close enough attention until after
Schrödinger “scooped” them in the discovery of the nonrelativistic
quantum mechanical wave equation.

Recorded on the gravestones of a number of those luminaries buried
in the Stadtfriedhof were words or symbols that distilled from a life-
time of work the core of their goals and achievements. On Hilbert’s
stone, for example, could be read the words, “Wir müssen wissen. Wir
werden wissen” (“We must know; we will know”), epitomizing, I
presume, his struggle to provide a unified logical foundation to all of
mathematics. This dream was effectively shattered by the epoch-
making paper of Kurt Gödel on formally undecidable propositions. Max
Born’s stone bore the basic commutation relation between momentum
and coordinate, pq - qp = (h/2pi)1, that represented a fundamental
distinction between quantum and classical mechanics. He had first
written that expression down when he converted into matrix notation22

a perplexing calculation left with him by his young assistant, Werner
Heisenberg. That calculation marked the genesis of a true quantum
mechanics. On the tombstone of Otto Hahn was displayed the uranium
fission reaction that astounded his contemporaries when they learned
that atomic nuclei could be split in half.

Of greater significance to me personally than even the tangible links
to the past found in the Stadtfriedhof was the intangible, almost spir-
itual, tie of the Hainberg Wald. How often must those woods have
served as the backdrop for intense discussions on quantum physics
between the Göttingen physicists and their visitors—between Born,
Bohr, Einstein, Heisenberg, Pauli, and many others. Heisenberg
recalled of his first meeting with Bohr in the summer of 1922:

. . . Bohr came to me and suggested that we go for a walk together on the 
Hainberg outside Göttingen. Of course, I was very willing. That discussion,
which took us back and forth over Hainberg’s wooden heights, was the first
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thorough discussion I can remember on the fundamental physical and philo-
sophical problems of modern atomic theory, and it has certainly had a decisive
influence on my later career.23

How I would have liked to hear those seminal conversations whose
echoes faded long ago but reverberate still in the writings of the cre-
ators of quantum physics. In an indirect and less momentous way, the
Hainberg was to influence my own research.

My wife and I lived on the periphery of Göttingen right across the
road from the paths that led into the Hainberg woods. In the morn-
ings, I arose before sunrise and worked intensely for hours on a variety
of quantum mechanical problems. I would then stop around noontime
and go for a run through the woods by a long circuitous loop that took
me along tranquil leaf-strewn pathways among the tall trees, past
fields and farmland and the exercise stations of an Erholungsgebiet,
and eventually back home. Ironically, as I made my way around the
Hainberg, I began to think about the curious behavior of quantum
systems that, in a manner of speaking, travel in circles.

The questions that aroused my curiosity at the time concerned the
experimental distinguishability of different ensembles of quantum
systems. The nature of the problem is subtle; there is no direct paral-
lel in classical physics. If one wants to know whether one collection of
macroscopic objects is different from another, he can, in principle, look
at the two collections, count their constituents, probe them, smell
them, taste them, or whatever. The issue, however, is not so clear when
treating a collection of objects whose behavior is quantum mechanical.
According to orthodox quantum theory, specification of the wave func-
tion of a system provides all the information about the system that is
allowable by physical law. If the system comprises a statistical mixture
of subsystems in different quantum states, then the maximum in-
formation is contained in the so-called density matrix, effectively a 
tabulation of the fractional composition of each subset of objects 
characterized by the same wave function. But is it always clear when
two seemingly equivalent wave functions are actually different, or
when two seemingly different wave functions are physically the same?

A wave function y is not itself an experimentally observable quan-
tity but always enters in bilinear combination (i.e., in pairs of y and
the complex conjugate function y *) the mathematical expressions
describing quantities that are observable. Consequently, the wave
function of a quantum system is not unique; for example, the same
quantum state can be represented by an infinite number of wave func-
tions differing only by a phase factor of the form eif. In my investiga-
tion of the information content and experimental implications of
different wave functions, I wondered whether it was truly the case that
such a phase factor has no physical consequences at all.
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One way by which the wave function can incur a phase factor eif is
through a rotational transformation. The rotational properties of wave
functions play an important role in quantum theory; these properties
are determined by the angular momentum of the particles whose
quantum behavior the wave functions are presumed to describe. A par-
ticle like the electron or neutron, which has an intrinsic spin angular
momentum of 1–2 , is characterized by a spinor wave function. A spinor
is a mathematical object with two components—like a matrix with two
rows and one column. In the context of quantum physics, the upper
component gives the “spin-up” contribution to the wave function,
whereas the lower component gives the “spin-down” contribution.
Because the spin attribute of being “up” or “down” is defined with
respect to an arbitrary quantization axis, the spinorial components
will be modified if a new quantization axis is chosen. The new com-
ponents of a spinor are determined from the old components by a 
rotational transformation.

Suppose the new axis is inclined at an angle q to the old axis. The
rotational transformation peculiar to spinors involves the sines and
cosines of q/2. Now, this leads to a curious result, for one can imagine
a new axis inclined at 2p radians or 360° to the original axis, which,
according to our familiar notions of classical reasoning, is no new axis
at all; it is the same axis as the original one. Nevertheless, the alge-
braic prescription governing the rotation of spinors gives rise to the
transformation

that is, each component of the new spinor is the negative of the corre-
sponding component of the old spinor. The negative sign can be
regarded as a phase shift of p radians, since eip = -1 (an expression
that was, itself, at one time rather puzzling24). A rotation by 360° does
not reproduce the same spinor wave function.

In so far as one is discussing abstract mathematical objects and the-
oretical changes of coordinate axes, the above rotational property of
spinors need not be disturbing. Purely mathematical relations do not
have to satisfy criteria imposed by the real world. But physics obvi-
ously must. According to quantum mechanics, the “passive” view of a
rotation as a reorientation of the coordinate axes with the wave func-
tion (e.g., a spinor) held fixed is equivalent to the “active” view that
the wave function itself is rotated with respect to a fixed coordinate
system. If spinors are to be suitable representations of actual fermi-
onic particles, it is then a legitimate question to ask what, if any, are
the observable consequences of physically rotating by 360° a system
characterized by a spinor.

The inferences to be drawn from quantum mechanics texts 
and monographs seemed to indicate that no consequences would

New spinor Old spinor Old spinor;= ( ) = -eip

h
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result. The “holy P. A. M. himself,” as Schrödinger referred to 
Dirac, asserted in his classic work, The Principles of Quantum
Mechanics25:

We thus get the general result, the application of one revolution about any axis
leaves a ket unchanged or changes in sign according to whether it belongs to
eigenvalues. . . which are integral or half odd integral multiples of . A state,
of course, is always unaffected by a change of sign of the ket corresponding to
it. [Italics included in the original text.]

[The idea of bras and kets, it should be noted, was created by Dirac to
represent the state of a quantum system in a totally general way; when
a ket is combined in a specified way with a coordinate bra, the result-
ing bracket (bra-ket) yields the wave function.] Dirac’s general result
has been frequently cited in the pedagogical literature of quantum
mechanics; because the results of all measurements are representable
by expectation values (in effect, integrals) bilinear in the wave func-
tion, two wave functions differing only in overall sign cannot lead to
different physical predictions.

Although the above conclusion is not incorrect, it, nevertheless,
seemed to me that its application to particle rotation required further
thought. For one thing, I discerned a distinction between “mathemat-
ical” rotations (whether viewed passively or actively) that involved the
reorientation of a coordinate system or mathematical function like the
spinor wave function, and a “physical” rotation whereby some force of
interaction was required to cause a real particle such as an electron
to depart from rectilinear motion. The former case, whereby an iso-
lated system (measuring apparatus included) is rotated, has no exper-
imental counterpart, and the global phase factor to which it gives rise
is, as Dirac states, not observable. However, this is not what is ordi-
narily meant by a rotation. It is the latter case, where only a part of
the system is rotated relative to a fixed part that provides a reference
against which the rotation is measured. The 2p phase change of a
spinor-characterized portion with respect to a fixed portion of a larger
encompassing system does have physical implications.

There is an interesting example drawn from classical physical optics
that illustrates in an analogous way the issues underlying the observ-
ability of spinor phase. In the theory of scalar diffraction—which
ignores the electromagnetic nature of light and the corresponding
property of light polarization—the amplitude of diffracted light at
some point P is given by the so-called Helmholtz–Kirchhoff integral.
The precise specification of the light amplitude y(P), which can be
found in almost any optics textbook, is not needed here, but it will be
instructive to note that it takes the form

y P i( ) = - ¥ { }integral over diffracting surface .

h
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Textbooks discuss nearly all aspects of this amplitude that derive from
the surface integral: the dependence on wavelength, the angle of dif-
fraction, the approximations that lead from Fresnel (near-field) to
Fraunhofer (far-field) diffraction, and the application of the integral 
to various obstacles and apertures. Yet, I am aware of no standard 
text that considers the experimental consequences of the factor -i.
Although it corresponds to a phase shift of 90° or p/2 radians [e-ip/2 =
-i] between the incident and the diffracted light, a reader may well be
left with the feeling that it is an artifact of the mathematical approx-
imations underlying the derivation and therefore of no physical sig-
nificance. But this is not so. By superposing, as in holography, a
coherent background of incident light on the radiation diffracted by an
object, one can observe in the resulting interference pattern the effect
of the p/2 phase shift.26

The above parallel with light suggests that the 360° rotation of an
object characterized by a spinor wave function should be observable as
well by means of some type of quantum interference. And this is indeed
the case. Split-beam interference experiments with neutrons,27 in
which the spin of a neutron in one component of the beam was made
to precess in a magnetic field relative to the spins in the field-free com-
ponent, showed that the intensity of the recombined beam oscillated
as a function of the magnetic field with a periodicity indicative of a
spin rotation of 720° (or 4p radians) rather than 360°.

The interpretation of the double-beam interference experiments on
neutrons, however, is not without its difficulties. At the core of the
problem is the Heisenberg uncertainty principle: one can never know
whether a particular neutron followed a path through the magnetic
field or through the field-free region. Although, in principle, the rela-
tive spin rotation of neutrons following two classical paths can be mea-
sured, this measurement would destroy the interference pattern.
Because simultaneous observations of neutron spin rotation and of the
interference pattern are incompatible, the notion of relative rotation
ceases to have a meaning, as it corresponds to nothing that is mea-
surable—at least in the case of fermions.

The problem does not arise, however, for massive bosons28 because
there is always an additional quantum state (the M = 0 state) that is
insensitive to the presence of the magnetic field. (The photon, though
often said to be a spin-1 particle, is excluded, for it has only two spin
components.29) The theoretical expression for the interference pattern
may then be decomposed into an incoherent sum of two terms: one
characterizing the initial quantization axis of the particles, the other
representative of a rotation with respect to that axis. For bosons,
therefore, the concept of relative spin rotation retains a meaning in
the setting of a split-beam interference experiment. However, when a
boson wave function is rotated by 360°, nothing “interesting” happens,
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for it leads to the same wave function. Hence, there is not much point
in studying rotated bosons.30

To avoid ambiguities, either semantic or otherwise, associated with
the question of spinor rotations, I thought about the physical implica-
tions of wave-function transformations in a more general context. The
idea of whether cyclic quantum transitions were detectable first
occurred to me in the form of a mental game as I jogged over the 
Hainberg. I imagined looking at a friend who is sitting in a chair facing
me. I turn my back to him and he can either do nothing or get up,
leave the room, and return to his seat. When I turn around, he is in
the chair facing me as before. Can I tell by looking at him whether or
not he had left his seat?

In the quantum world of atoms, this question has a strange and
interesting counterpart. Is there a physically observable difference, for
example, between an atom that has undergone a transition to a dif-
ferent state and then returned to its original state, and an atom that
has never left its original state at all?

According to quantum mechanics, the properties of an atom ought
to depend only on its current state, not on its past history. If an atom
is in a 3S state, then it manifests all the properties expected of the 3S
state, irrespective of how it happened to get there—i.e., whether it was
produced by radiative decay from a 3P state, decay from a 5F state, 
or absorption from a 2P state. In general, all atoms in a particular
quantum state are indistinguishable. Nevertheless, the idea of a cyclic
transition has experimental implications. One day, while running and
thinking about this question, there occurred to me the possibility of an
experimental demonstration by means of quantum beats.

Let us consider an atom (practically speaking, a collection of many
identical atoms) with three nondegenerate excited states; a pulse of
light drives the atom into a linear superposition of the lower two
(Figure 4.6). Observed as a function of time following the excitation,
the fluorescent light intensity of a specific polarisation will oscillate in
the familiar way at an angular frequency w12 corresponding to the
energy interval of the two superposed states:

(4.10a)

Here, A, B, and f are again constants that depend on the electric dipole
matrix elements for excitation and spontaneous emission. (I ignore, as
inessential in the present discussion, the exponential decay factor.)
Suppose, however, that to this standard quantum beat experiment one
adds a radiofrequency (rf ) electric field that can induce transitions
between the excited atomic states 2 and 3. In general, after exposure
to the rf field, the atom is in a linear superposition of all three excited
states.

I t A B t0 12( ) = + +( )cos w f .
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When the condition of resonance is met, whereby the radiofrequency
exactly matches the Bohr frequency w23, the theoretical description of
the effect of the rf field conveniently simplifies. It resembles precisely,
in fact, the mathematical expression for rotation of a spinor; the rota-
tion angle corresponds to twice the product of the rf transition matrix
element and the time of exposure to the field. Setting the rf field
strength or exposure time so that the associated rotation angle is p
radians results in all the atoms in state 2 being driven into state 3. A
“rotation” of 2p results in all atoms in state 3 being driven back again
to state 2. However, like a 360° spinor rotation, in the process of
leaving and returning to state 2, the quantum mechanical amplitude
incurs a phase shift of p radians; it is the negative of what it was before
the transition.

The occurrence of the minus sign would not ordinarily be observed
in the spontaneous emission from an atomic state since the transition
probability depends on the square of the absolute magnitude of the
amplitude. It is to be recalled, however, that the transitions engen-
dered by the rf field have not, under the conditions of the experiment,

162 4. Quantum Beats and Giant Atoms

Figure 4.6. Energy-level diagram of an atom impulsively excited by a laser
pulse (of mean frequency �0) from its ground state g into a linear superposi-
tion of states e1 and e2 by an external perturbation V. Whether or not the cyclic
transition had occurred can be inferred from the ensuing quantum beat signal
in the spontaneous emission to lower state f.



affected the amplitude for remaining in excited state 1. The amplitude
for excited state 1 is analogous to the coherent background radia-
tion in a holographic demonstration of the -i phase factor. Thus, the
negative sign of the amplitude for state 2 represents not a global 
phase factor, but a 180° phase shift relative to the amplitude of state
1. An experimental consequence of this phase shift shows up as a
reversal in sign of the oscillatory component of the fluorescent light
intensity:

(4.10b)

One can enhance the effect by measuring the difference signal

(4.10c)

and thereby eliminate the constant term. Without the spinorial sign
change, the difference signal would be identically zero.

For an atom in a linear superposition of eigenstates, there can be
an experimentally observable distinction between “doing nothing” and
undergoing a cyclic transition from one of the component states. This
does not contradict Dirac’s assertion regarding the nonobservability of
global phases, but rather serves to emphasize that, whether a phase
is global or not, depends on what one does to, or with, the system. The
-i phase factor, for example, in the diffraction of light is an unimpor-
tant global phase factor if one simply measures the intensity of the
diffracted radiation; it becomes a relative phase, however, in the holo-
graphic recording of this scattered light. The history of a system does
matter.

* * *

The strange nature of cyclic transformations in quantum physics
impressed itself upon me once again not long afterward when I was
studying the interaction of charged particles with inaccessible mag-
netic fields, such as occur in the Aharonov–Bohm (AB) effect. The
various experimental configurations I described in Chapter 3 all
involve the propagation of unbound charged particles, i.e. particles
that leave their source, diffract around a current-carrying solenoid (or
similar structure), and are detected. My focus on atoms made me
wonder about an entirely different type of AB configuration—one like
a giant planetary atom in which an electron orbited, not a nucleus, but
a long solenoid confining a magnetic field. What effect would the mag-
netic field have on the orbital properties of the electron?

Like other problems relating to the AB effect, this one, too, has its
subtleties. The wave function yM(2p) of a particle with well-defined
angular momentum M (in units of ) that has wound once around the
cylinder is simply related to the initial wave function yM(0) by a phase
factor as follows:

h

I t I t B t0 2 122( ) - ( ) = +( )p w fcos

I t A B t2 12p w f( ) = + +( )cos .
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(4.11a)

To determine whether or not the “rotated” wave function is equivalent
to the initial wave function requires that one know the values that the
number M is allowed to take.

In the absence of the inaccessible magnetic field, the problem
reduces to the quantum mechanical two-dimensional, or planar,
rotator, a familiar system whose properties are well understood.31 The
spectrum of angular momentum eigenvalues is the set of all integers,
M = 0, ±1, ±2, and so on, where states with angular momentum
quantum numbers differing only in sign correspond to circulations
about the origin in opposite directions. As in the case of the corre-
sponding classical system, the kinetic energy of rotation is propor-
tional to the square of the angular momentum. Thus, pairs of states
with angular momenta ±|M| are degenerate—as one would infer 
from the symmetry of the system; there is no reason to expect that, in
the absence of external forces, a clockwise rotating particle should
have a different energy than one rotating counterclockwise.

With the confined magnetic field present, however, analysis of the
planar rotator leads to a curious ambiguity, for two entirely different
solutions to the equation of motion (Schrödinger equation) emerge.
According to one solution, the magnetic field has no effect on the
energy of the system, but leads to angular momentum eigenvalues that
depend on the magnetic flux F,

(4.11b)

where M0 is an integer (one of the eigenvalues of the field-free planar
rotator) and F0 is the value of the fluxon,

(4.11c)

According to the other solution, however, the magnetic field has no
effect on the angular momentum eigenvalues, but leads instead to
system energies that depend on the magnetic flux. Which solution,
then, gives the “right” answer?

It should be noted here, because the distinction is now important,
that the angular momentum that enters the phase factor of relation
(4.11a) is the canonical angular momentum. This is the dynamical
variable that determines (through the commutation relations of its
components32) the behavior of a physical system under rotation. It is
not necessarily the same thing as the “quantity of rotational motion,”
which, for the circular trajectory of a point particle, is familiarly given
by (mass) ¥ (speed) ¥ (orbital radius). This latter dynamical variable
is the kinetic angular momentum; it is always an observable quantity,

F0 =
hc
e

.

M M= +0
0

F
F

,

h

y p yp
M Me iM2 02( ) = ( ).

164 4. Quantum Beats and Giant Atoms



whereas the canonical angular momentum need not be. For the field-
free planar rotator, there is no difference between the kinetic and
canonical angular momenta. When the rotator is in the presence of a
vector potential field, however, these two dynamical quantities are no
longer the same.

Careful examination of the origin of the two solutions shows that one
is not “more correct” than the other, but that they refer to physically dif-
ferent systems, and, as in the case of cyclic atomic transitions, the
history of the system plays a significant role. The quantum states of the
second solution, in which the energy is flux dependent, characterize a
particle orbiting a confined magnetic field that was “turned on” at some
indefinite time in the past. By Faraday’s law of induction (one of the
Maxwell equations of classical electromagnetism), an electric field is
produced throughout the time interval that the magnetic field is
growing from its initially null value to the final constant value it will
subsequently maintain. This electric field exerts a torque on the 
particle, thereby doing work and changing the initial kinetic angular
momentum and kinetic energy of the particle to the values that char-
acterize the second solution. By contrast, the solution with energy inde-
pendent of flux represents a system in which the particle orbits a region
containing an already existing uniform magnetic field. Such a field does
no work on a charged particle (even if the particle were immersed in the
field33) and, therefore, cannot alter the particle energy and kinetic
angular momentum. Nevertheless, as we have seen before, a constant
magnetic field can have quantum mechanical consequences with no
counterpart in classical physics. In the present case, the bound-state
AB effect modifies the spectrum of canonical angular momentum eigen-
values, and this has implications for cyclic transformations.

From relations (4.11a)–(4.11c), it is seen that the wave function of a
particle that has undergone N revolutions about an inaccessible con-
stant magnetic field is given by

(4.11d)

Is there any physical distinction between orbiting the magnetic field
once and making multiple passages around the field? If the magnetic
flux is an integral multiple of the fluxon, the cyclical rotations will have
no effect on the particle wave function because any phase factor of the
form e(2p i¥integer) is unity. There is no general reason, however, for the
flux to be quantized, in which case the ratio F/F0 can be arbitrary. If
a value of F is chosen such that the phase in relation (4.11d) is p
radians for one rotation, then the wave function changes sign for an
odd number of rotations, just like a spinor. This is very interesting
because nothing has heretofore been said about the spin of the orbit-
ing particle. It could, in fact, be a spinless particle—a charged boson—
which, as a result of the presence of the magnetic flux, behaves like a

y p yp2 02 0N e iN
M( ) = ( )F F .
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fermion under rotation! For arbitrary values of F/F0, the wave func-
tion characterizes a particle that behaves under rotation neither like
a fermion nor like a boson. Some physicists call it an “anyon.”

How might one demonstrate such strange behavior? One possibility
is to employ, again, a split-beam quantum interference experiment.
Imagine dividing a collimated beam of charged particles coherently
into two components, one of which is made to circulate N times in a
clockwise sense about an AB solenoid bearing flux F1, while the other
circulates an equal number of times in a counterclockwise sense about
a second AB solenoid bearing flux F2 (Figure 4.7). Suppose that the
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Figure 4.7. Schematic diagram of a split-beam electron interference experi-
ment whereby an electron, issuing from source S, makes an integral number
of revolutions about one or the other flux-bearing solenoid. Interference in the
forward intensity of the recombined beam reveals the number of “windings.”
For appropriate settings of the magnetic flux, charged bosons can be made to
behave like fermions under rotation.



magnetic fields within the two solenoids are oppositely directed.
Suppose, too, that the “bending” magnetic fields outside the cylinders
are uniform and equal in magnitude so that the radius of the particle
orbit around each solenoid is the same. With this configuration, there
is no net contribution to the relative rotational phase shift from the
external magnetic fields or from the spin angular momentum of the
particle. Upon recombination of the components at a distant detector,
the forward beam intensity can be shown to vary with the magnetic
flux within the solenoids according to

(4.12)

where I0 is the incident beam intensity.
The magnetic flux dependence of the signal reveals the topological

parameter N, known as the winding number. In a two-dimensional
space, there is a topological distinction between closed paths that make
an unequal number of turns about the symmetry axis. Two such paths
cannot be converted into each other by a continuous deformation
without being cut. In the split-beam AB experiments described in
Chapter 3, the charged particles propagate from source to detector by
two types of topologically different paths: those that pass once to the
left side of the solenoid, and those that pass once to the right. Some
theoretical work suggests that a complete description of the AB effect
should take account of contributions from paths of all possible winding
numbers connecting the source and the detector. Thus, in addition to
the configuration of two standard classical paths, one would need to
include configurations where either the left or the right or both paths
make one or more full loops around the solenoid before extending to
the detector. On the basis of the experiments that have been done so
far, it would seem that such a description may not be needed; the
observed fringe patterns can be adequately accounted for by assuming
that only the two classical paths contribute. The proposed experiment,
were it to confirm the prediction of relation (4.12), would provide
unambiguous evidence of the influence of winding numbers in the
Aharonov–Bohm effect.

* * *

In the years following my stay in Göttingen, quantum systems made
to undergo some kind of cyclic process have become of widespread
interest in physics. Pursuant to the work of M. V. Berry34 in particu-
lar, deep and beautiful connections have been shown between such
seemingly disparate concepts as quantum phase and spatial curva-
ture, and among phenomena as diverse as spinor rotation, optical
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activity (the rotation of the electromagnetic field of linearly polarized
light), the Aharonov–Bohm effect, and superconductivity.

Like all cyclic paths, my own in Göttingen eventually drew toward
a close as the day came for me to return home. Setting out for the train
station very early on a cold, wintry morning, I took one last look at
the countryside from which I derived so much pleasure. It was
snowing, and in the bright moonlight, the Hainberg was radiant with
a thick, soft, white mantle of snow. Tall fir trees, their pinnacles lost
in the blackness of the sky and their heavily laden branches slung low,
lined the path from my front door to the roadway like sentinels before
a magical forest. Elves could have walked out of the woods at that
moment and I would not have been surprised, so vividly did the scene
recall the enchanting landscapes of the old German Märchen. As the
sight of woods gave way to the sight of houses, the sense of ancient
mystery faded and an unforgettable experience came to an end—as
had that marvelous period over seventy-five years ago when quantum
mechanics was created in Göttingen.

4.4. Long-Distance Beats

As I have already explained, quantum beats are produced by the radia-
tive decay of individual atoms (or molecules) excited into a linear
superposition of nondegenerate energy eigenstates. The fact that each
atom may be in a superposition state does not, in itself, guarantee that
the ensemble as a whole will manifest quantum interference effects
because a large dispersion in the relative phases of the wave function
from atom to atom will lead to unsynchronized emissions and, hence,
to no net modulation of the light intensity. In some seemingly para-
doxical cases—e.g., the “restoration” of beats by a sufficiently intense
broad-band laser pulse of long duration—the unsynchronized excita-
tion of atoms need not, in fact, lead to a dispersion in phase large
enough to destroy the beats. Nevertheless, if there is one thing that
might seem certain—for a science whose foundation (metaphorically
speaking) rests on the uncertainty principle—it should be this: An
atom that is not in a linear superposition of its energy eigenstates
cannot give rise to quantum beats. Right?

Well, not exactly . . . even though to believe otherwise may seem
patently absurd and a violation of fundamental quantum mechanical
principles. Indeed, so counterintuitive was the experimental possibil-
ity that presented itself to me one day when I was thinking about the
Einstein–Podolsky–Rosen paper that, despite long acclimatization to
the intricacies of quantum physics, I was myself startled by its strange
implications. I think of this effect, which accentuates the intrinsically
nonlocal features of quantum mechanics, as “long-distance beats.”
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It should be mentioned at the outset that the production of quantum
beats is not restricted to single-atom systems. Indeed, under appro-
priate circumstances, the modulation of atomic fluorescence can also
occur as a result of the linear superposition of states of a multiatom
system. Consider, for example, two identical atoms, each with a single
ground state g and two close-lying excited states e1 and e2. If the atoms
are near enough to one another—i.e., separated by a distance shorter
than an optical wavelength—an incoming photon could be absorbed by
either atom and raise that atom to one or the other of its excited states.
Now, if the excited atom radiatively decays back to its ground state,
the final condition of the system is simply two ground state atoms and
an emitted photon.

This may be summarized in the following way:

Process I

Atom A: g Æ e1 Æ g + photon w1,
Atom B: g Æ g;

Process II

Atom A: g Æ g,
Atom B: g Æ e2 Æ g + photon w2, (4.13a)

where each photon is designated by its angular frequency (a measure
of its energy). The frequency of the emitted photon depends on the
excited state from which emission occurs, but if the detection process
does not discriminate between photons, then there is no way to tell
which atom had been excited. Consequently, Processes I and II are
indistinguishable: To determine the net probability of photon emission,
one must add the amplitudes of the two processes. The result is that
the light intensity, to which photons emitted by one or the other of the
paired atoms contribute, is modulated at the Bohr frequency corre-
sponding to the energy interval of the excited states, w12 = w2 - w1.

It is important to note that the excited atom must decay back to its
ground state if quantum beats are to occur. Were it to decay to some
other low-lying state—call it f, for example—then the above two
processes (with g + photon replaced by f + photon) would be distin-
guishable, because one could, in principle, search out the atom in state
f and thereby determine which atom had been excited. For processes
with distinguishable outcomes, one adds probabilities, not amplitudes;
no quantum interference then occurs.

Because the two atoms of the pair may have different velocities rel-
ative to a stationary observer, the photon emitted from one atom can
be Doppler shifted to an extent different from that of the photon emis-
sible by the other atom. (Remember that only one photon is actually
emitted by a pair of atoms. The beat arises not from the interference
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of two simultaneously present photons, but from the interference of
probability amplitudes describing the two radiative processes that
could potentially occur.) Depending on the distribution of atomic veloc-
ities, the spread in photon frequency can be much greater than the
Bohr frequency, with the result that quantum beats from different
atoms would be out of phase; no net modulation of the atomic fluores-
cence would be observable. As pointed out previously, the quantum
beats produced from single-atom systems are not sensitive to the
Doppler effect.

An interesting alternative to the sequence of events (4.13a) is one
in which either atom is brought into the same excited state, for
example e1. In fact, one could dispense entirely with the need for two
excited states, and quantum beats could still occur. Experimental evi-
dence for just such an effect has been provided by the photodissocia-
tion of diatomic calcium molecules.35 An incoming photon dissociates
the diatomic molecule into two atoms, either of which could be raised
to an excited state and subsequently decay, emitting a photon differ-
ent in frequency from the one that was absorbed. The two interfering
pathways may be outlined as follows:

Process I: Incoming photon + M2 Æ M + M* Æ 2M + photon w0

Process II: Incoming photon + M2 Æ M* + M Æ 2M + photon w0,
(4.13b)

where M2 represents the diatomic molecule, M a ground state atom,
M* an excited atom, and w0 the photon angular frequency in the rest
frame of the emitting atom. If there is no excited-state energy inter-
val, then what determines the beat frequency? Upon dissociation, the
two atoms recoil with equal, but oppositely directed, velocities of mag-
nitude v. Thus, with respect to a stationary observer in the laboratory,
the frequency of the photon emitted in Process I is Doppler shifted in
the opposite direction to that of the photon emitted in Process II. The
quantum amplitudes for emission of the differentially Doppler-shifted
photons interfere, giving rise to beats at the frequency 2(v/c)w 0 cos q,
where q is the inclination of the axis of the dissociating molecule to
the observation direction. The Doppler effect may make the light beats
from processes (4.13a) impossible to observe, but it is essential for the
production of quantum beats by processes (4.13b).

One conceptually important feature of the single-atom quantum
beat phenomenon is that the beat frequencies, according to standard
quantum theory, always correspond to level splittings of the emitting
upper states and never to level splittings in the final lower states.
Indeed, this feature has served as one of the tests distinguishing
quantum electrodynamics from competing theories of radiative phe-
nomena based on semiclassical considerations. The reason that beats
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at the Bohr frequencies of the final states cannot occur is that the
decay pathways to alternative final states are distinguishable and,
therefore, the amplitudes for these processes cannot interfere with one
another.

Interestingly, in a two-atom system the quantum beats can occur 
at frequencies corresponding to final state splittings. Consider, for
example, an ensemble of atoms, each with two nondegenerate ground
states g1 and g2, and one excited state e. Suppose that two atoms, one
in state g1 and the other in state g2, are irradiated with light of 
spectral width greater than the ground-state Bohr frequency. An
incoming photon, then, could excite either one atom or the other to 
the state e, from which the atom subsequently decays by emission 
of a photon. If it is once more required that each atom radiatively 
decays back to its original state, then the following two processes are
indistinguishable

Process I

Atom A: g1 Æ e Æ g1 + photon w1

Atom B: g2 Æ g2;

Process II

Atom A: g1 Æ g1

Atom B: g2 Æ e Æ g2 + photon w2 (4.14)

to the extent that the detector again does not discriminate between
the energy of the emitted photons. Interference between the ampli-
tudes for these indistinguishable processes leads to a quantum beat 
at the frequency |w2 - w1| corresponding to the ground-state Bohr 
frequency.

It is implicit in all of the foregoing discussion that in order for
quantum beats to be observable in either the initial upper or final
lower states of a radiative transition, the two atoms must be within
an optical wavelength of each other. One might think that this limi-
tation on atomic separation is attributable exclusively to the excita-
tion process; that is, if the atoms were further apart than an optical
wavelength, then an incoming photon could not “reach” both atoms
simultaneously, with the result that there would then not be two indis-
tinguishable excitation pathways. This is not strictly the case, for the
spatial extension of a wave packet—which provides a more appropri-
ate description of a photon than does a plane wave—can be much
longer than the mean wavelength (as discussed in Chapter 3 in the
context of the wavelike properties of free electrons). The limitation is
actually connected with the decay process.

A photon is not detected instantly after emission, but only after the
so-called retarded time interval r/c, where r is the distance between
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the de-excited atom and the detector. The amplitude for the emission
and detection of a photon of angular frequency w (wavelength l =
2pc/w) contains the phase factor eiw r/c. Ordinarily, this phase factor 
does not play a significant role, for it vanishes in the calculation of the
corresponding probability. However, when the photon can be emitted
by either of two atoms, A or B, then a phase factor containing the
appropriate atom–detector distance rA or rB appears in the amplitude
for each indistinguishable pathway. The emission probability will 
then vary harmonically (i.e., in an oscillatory way) with the phase 
(2p/l)|rA- rB|. If the separation between the atoms is much larger than
a wavelength, the preceding phase will vary rapidly with the point on
the detecting surface at which the photon is received, and the quantum
beat signal will be effectively averaged away.

Although the foregoing two-atom quantum beat phenomena have
their points of interest, they do not, I think, present conceptual diffi-
culties beyond those already intrinsic to the interpretation of quantum
beats from single-atom systems. Two closely separated atoms may be
regarded more or less as a kind of “bondless” molecule, and, after all,
the quantum interference of molecular states is no more problemati-
cal than the interference of atomic states. To put the matter a little
differently, an experimentalist who has assembled the apparatus nec-
essary for coherently exciting individual atoms would not be too sur-
prised to find that he has also coherently excited pairs of atoms if the
atomic density were high enough (on the order of one atom per cubic
wavelength). All of the atoms are still close together in one small con-
tainer and subjected to the same beam of light.

However, is it conceivable that two atoms—one in London and the
other in New York, for example—can be coherently excited and yet the
local experimentalist making observations in each respective labora-
tory would not even know? Let us return to the problem that intrigued
me.

Imagine a transparent container (a resonance cell) filled with an
atomic vapor excited by pulses of light. Each atom has a ground state
g, nondegenerate excited states e1 and e2, and some lower state f (not
necessarily the ground state) to which the excited states can radia-
tively decay. Disregarding for the moment the precise nature of the
light source, I will simply say that photons arrive regularly at time
intervals longer than the excited-state lifetimes (so that the interac-
tion of an excited atom with an incoming photon and the possibility of
stimulated emission can be ignored) and are distributed randomly over
two possible frequencies. If an arriving photon has frequency w1, an
absorbing atom is raised from the ground state to excited state e1. Sim-
ilarly, the absorption of a photon of frequency w2 raises the atom to
excited state e2. Note, however, that the two kinds of photons are each
sufficiently sharply defined in frequency that no one photon can raise
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an atom into a linear superposition of excited states e1 and e2. This is
important because, although a local observer may not know what kind
of photon is going to arrive, he does know—or at least he thinks he
knows!—that each atom is excited into a well-defined energy state 
and not a superposition of states. The seminal condition (4.4b) for the
occurrence of quantum beats is not met, and, consequently, the fluo-
rescent light emission following each excitation should simply decay
exponentially in time.36

In fact, no measurement—light intensity or otherwise—made only
on the sample of atoms in the cell would cause the observer to think
that the atoms were in some way coherently excited and capable of
exhibiting quantum interference. This is rigorously demonstrable by
examining the quantum mechanical density matrix for the atoms, i.e.,
the mathematical construction that provides, in principle, a complete
theoretical description of the states of the atoms. For example, if the
atoms in the cell were excited into linear superpositions of states y1

and y2 representable by a wave function of the form

y = a1y1 + a2y2, (4.15a)

then the density matrix r would take the form

(4.15b)

where the brackets � � imply an average of the enclosed quantity over
all the atoms of the ensemble. For the conditions of the experiment
described above the density matrix would simply comprise a tabula-
tion of the probabilities of finding an atom in each of its states; that
is, only the diagonal elements containing the absolute magnitude
squared of the various expansion coefficients (such as �|a1|2�) would
appear. The off-diagonal elements (such as �a1a2*�) involving products
of different coefficients designate the extent to which the system of
atoms is coherently excited and, therefore, capable of manifesting
quantum interference effects. And, if the vapor is sufficiently rarefied
so the mean separation between atoms in the cell is much larger than
an optical wavelength, the previously described type of quantum inter-
ference between the states of two (or more) atoms cannot occur either.

Surprisingly, the atoms can still give rise to a strange nonlocal type
of quantum interference. Suppose that the first experiment were in
New York. Imagine an identical experiment, the “mirror-image” of 
the first, set up in London; photons arrive regularly with random dis-
tribution over the same two frequencies at this station, too, and excite
the same types of atoms into one or the other of its excited states. The
London observer measures the fluorescent light intensity following
each pulse and deduces, like the observer in New York, that the atoms
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are incoherently excited. However, if those two separated observers were
to compare their results, they might notice something remarkable.

What links the two separated experiments is that the arriving
photons are produced “back to back” (i.e., with correlated linear
momenta) by the same source which shall be located, let us say,
midway between each station (Figure 4.8). (The location of the labo-
ratories in London and New York is solely for the purpose of drama-
tizing an unusual quantum effect. I am not concerned with problems
attendant to placing a light source somewhere over the Atlantic Ocean,
or with the fact that the surface of the Earth is curved!) Although 
the direction of emission of a photon of either frequency is random,
there is one requirement that must be met: If a photon of frequency
w1 is emitted in a certain direction, then a photon of frequency w2 is
emitted in the opposite direction. Thus, possibly unknown to the two
observers, each excitation of an atom into state e1 in New York is
accompanied by an excitation of an atom into state e2 in London, and
vice versa.

As far as each local observer is concerned, the atoms are incoher-
ently excited into energy eigenstates from which they should decay
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Figure 4.8. Schematic configuration of a “long-distance” quantum beat exper-
iment. Pairs of photons of angular frequency w1 and w2 are emitted “back to
back” by source S and excite widely separated absorbing atoms A and B into
one or the other of two excited states e1, e2. The spontaneous emission from
each atom separately recorded at detectors D1 and D2 manifests the simple
exponential decay in time characteristic of incoherently excited systems. The
joint detection probability, however, oscillates in time at the Bohr transition
frequency for the two excited states.



exponentially in time. Looked at globally, however, there are again two
indistinguishable quantum pathways:

Process I

Atom A: g + photon w1 Æ e1 Æ f + photon wA1

Atom B: g + photon w2 Æ e2 Æ f + photon wB2

Process II

Atom A: g + photon w2 Æ e2 Æ f + photon wA2

Atom B: g + photon w1 Æ e1 Æ f + photon wB1 (4.16)

The emitted photons are labeled by the emitting level and atom since
different atoms can have different velocities relative to the stationary
observers. Note, again, that the final atomic state f does not, as before,
have to be the initial state, since both atoms undergo excitation and
decay.

To realize that these two processes are occurring, however, the two
observers would need to compare, or correlate, the optical signals that
each measures locally. Suppose the New York observer at detector D1
counts a certain number of fluorescent photons emitted within a time
interval Dt1 about the time t1; likewise, the London observer at detec-
tor D2 counts photons in the time interval Dt2 about time t2. By mul-
tiplying these counts together (electronically), averaging over repeated
trials, and varying the detection times, the two observers can construct
the joint probability P(t1, t2) for receipt of two photons separated by
the time interval|t1 - t2|. The theoretical treatment of such an ex-
periment involves not the individual density matrices of the two 
separated ensembles of atoms, but the density matrix for the entire
system of atoms. However far apart the two collections of atoms may
be and however independently they may go about their business after
an excitation, they still constitute a single quantum system. The
density matrix for this total system contains both diagonal elements
(characterizing the populations of the various states) and off-diagonal
elements (signifying coherence terms that can give rise to quantum
interference phenomena).

The amplitudes for the two processes in expressions (4.16) interfere
with the consequence that the jointly detected fluorescence signal,
which takes the general form

(4.17)

manifests a quantum beat at the Bohr frequency w12 as a function of
the delay between photon detections. Here, the term A(t1, t2) contains
the matrix elements for the independent excitation and exponential
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decay of the two atoms to final state f; the factor B(t1, t2) contains the
matrix elements for the correlated excitation and decay of the two
atoms.

The long-distance two-atom beats are insensitive to the motion of
the atoms, as is seen from the fact that the atomic velocities do not
appear in relation (4.17). Why is it that the quantum beats produced
by the local two-atom system are strongly affected by the Doppler
effect, whereas beats issuing from the correlated excitation of two
distant atoms are not? In the first case (local two-atom system), the
beat originates from the interference of photons potentially emissible
by different atoms; the beat frequency is then given by the difference
of two optical frequencies, each of which can independently span the
full Doppler width produced by the distribution of atomic velocities. 
In the second case (nonlocal two-atom system), however, a beat arises
from interference between the atom A amplitudes of Processes I and
II in the sequence of events (4.16); corresponding interference between
the atom B amplitudes also leads to this same beat frequency. Because
the interferences always involve amplitudes for photon emissions 
by the same atom, the resulting quantum beat is largely unaffected by
Doppler shifts.

A significant feature of the oscillatory quantum interference term in
relation (4.17) is that both the time delay, Dt = (t2 - t1), and the differ-
ence in retardation times, Dtr = (rB - rA)/c, are multiplied not by the
optical frequencies of the emitted photons, but by the much smaller
beat frequency w12. For the quantum beat to persist when the signal
is averaged over the finite surfaces of the two separated detectors, the
phase w12Dtr must be small compared with about 1 radian as the optical
path lengths from all A atoms (in New York) to all points of detector
D1, and from all B atoms (in London) to all points of detector D2, vary.
This, however, does not pose a severe experimental restriction at all.
For a beat frequency w12 of about 108 per second, for example, one can
have |rB - rA| < �300cm, which is much greater than a wavelength
(�10-5 cm) and is quite easily attainable in the laboratory. As long as
the distribution of retardation times satisfies the criterion

(4.18)

it is immaterial how far apart the two collections of atoms may be;
because the two atoms of the correlated pair interact with distinctly
different photons, the “size” of the photon is inconsequential.

It will be recognized by now that the phenomenon of long-distance
beats illustrates in the context of bound electron states correlations 
of a nature similar to those manifested by free electrons in the “quan-
tum interference disappearing act” described in Chapter 3. In the 
terminology invented by Schrödinger, the atoms of the two separated
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ensembles are in “entangled” quantum states—multiparticle states that
cannot be expressed as a product of the states of single particles. How
atoms that undergo random excitation and exponential decay when
observed locally can correlate their activity with other atoms engaged
in correspondingly random behavior an arbitrary distance away is not
explicable in terms of any classical mechanism. Entangled states give
rise to quantum phenomena not only unaccountable within the frame-
work of classical physics but that sometimes seem bizarre even by the
expectations of quantum physics when those expectations are based on
the study of single-particle or uncorrelated multiparticle systems.

To Schrödinger, the feature of entanglement was the most charac-
teristic property of the wave mechanics he created, but it was not a
feature which pleased him. “Measurement on separated systems,” he
wrote, “cannot directly influence each other—that would be magic”.37

The mystery of the quantum world, metaphorically speaking, is that
it gives us magic without magic!

Notes

1. I have written in more technical detail of these interests in More Than
One Mystery: Explorations in Quantum Interference (Springer-Verlag, New
York, 1995) and in Probing the Atom: Interactions of Coupled States, Fast
Beams, and Loose Electrons (Princeton University Press, Princeton, NJ,
2000).

2. The fine-structure states of atoms are labeled by (1) the principal quantum
number n specifying the electronic manifold, (2) a letter indicative of the
orbital angular momentum L in units of (S = 0, P = 1, D = 2, F = 3, G =
4, and so on in alphabetic sequence), and (3) a numerical subscript giving
the total (i.e., orbital + spin) electron angular momentum J in units of h.

3. I discuss these experiments and the underlying theory of electric reso-
nance spectroscopy in the book Probing the Atom: Interactions of Coupled
States, Fast Beams, and Loose Electrons (Princeton University Press,
Princeton NJ, 2000).

4. The 1S1/2 ground level actually comprises four states distributed within
two hyperfine components designated by the total (electron orbital + elec-
tron spin + nuclear spin) quantum number F. The energy interval between
the lower, or more tightly bound, F = 0 state (the true ground state) and
the three degenerate F = 1 states (with magnetic quantum numbers MF =
-1, 0, +1) corresponds to a frequency lying in the microwave region of the
spectrum—the 1420-MHz line of great importance in radioastronomy and
astrophysics.

5. The Bohr frequency �12 for a quantum transition between a state with
energy E1 and a state with higher energy E2 is given by h�12 = E2 - E1.

6. The crimson color of excited atomic hydrogen arises from the spontaneous
emission of red photons (656.3nm) in the transition n = 3 Æ n = 2 and
blue photons (486.1nm) in the transition n = 4 Æ n = 2.

h

h

Notes 177



7. Ordinarily, a single photon is emitted when the bound electron undergoes
a transition to a lower energy state. However, an electron in a 2S state
can decay only to a 1S state, a process that involves no change in orbital
angular momentum. Because an emitted photon would have to carry away
one unit of angular momentum, a one-photon 2S Æ 1S transition is for-
bidden by angular momentum conservation. The 2S state can decay by
emission of two photons; this process has a low probability of occurrence,
and the 2S lifetime is correspondingly long.

8. J. Macek, Interference Between Coherent Emissions in the Measurement
of Atomic Lifetimes, Physical Review Letters 23 (1969) 1.

9. The amplitude contains a factor exp(-t/2T) in order that the probability
(proportional to the square of the amplitude) diminish as exp(-t/T).

10. The contrast of the beats is analogous to the visibility of the fringes of 
an interference pattern. In an expression such as Eq. (4.3d), it is the ratio
of the coefficient of the time-dependent quantum interference term to the
sum of the two time-independent terms representing spontaneous emis-
sion from the individual excited states.

11. This is a consequence of light diffraction, the light usually being observed
far (i.e., many wavelengths) from the diffracting object. Less well known,
however, is the fact that structures smaller than a wavelength can be
resolved when observed very close to the diffracting object (under so-called
“near-field” conditions).

12. J. Neukammer et al., Spectroscopy of Rydberg Atoms at n � 500, Physi-
cal Review Letters 59 (1987) 2947.

13. The quantum mechanical expression for the polarisability contains terms
involving the product of two radial matrix elements divided by an energy
interval. Since a radial matrix element increases as the square of n and
the energy interval decreases as the cube of n, the polarizability increases
as the seventh power of n.

14. It is conventional to employ lowercase letters (s, p, d, etc.) for single-
electron orbits and uppercase letters (S, P, D, etc.) for the overall quantum
state of a multielectron atom. (For the hydrogen atom there is no distinc-
tion.) A good discussion of the orbits of the old quantum theory is given
by H. E. White (Introduction to Atomic Spectra, McGraw-Hill, New York,
1934, Chapter 7).

15. The emitted intensity, proportional to the product of the transition prob-
ability and the light frequency, therefore varies as the fourth power of the
light frequency in accord with what one would deduce from the classical
Larmor formula, relation (4.7a), for an orbiting charged particle.

16. Under appropriate conditions, a bound electron can absorb two photons,
each of about one-half the energy required to effect the desired transition.
By angular momentum conservation, the allowed transition is governed
by the selection rule, DL = 0 or 2 (depending on photon polarization). Two-
photon transitions can occur between the sodium 3S and nD states. I
discuss multiphoton transitions quantitatively in my book Probing The
Atom: Interactions of Coupled States, Fast Beams, and Loose Electrons
(Princeton University Press, Princeton, NJ, 2000).

17. The frequency of light emitted by an atom moving at a nonrelativistic speed
v toward a stationary observer is of the form w = w0(1 + v/c), where w 0 is the
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corresponding frequency in the atomic rest frame and c is the speed of light.
The difference in frequency between two waves emitted by the same source
is then Dw = Dw0(1 + v/c). Because the difference frequency is many orders
of magnitude smaller than the optical frequency of either wave, Dw0 << w0,
and since v/c << 1, the dispersion in atomic velocities does not result in any
significant broadening of the quantum beat signal.

18. C. Fabre, M. Gross, and S. Haroche, Determination by Quantum Beat
Spectroscopy of Fine-Structure Intervals in a Series of Highly Excited
Sodium D States, Optics Communications 13 (1975) 393.

19. N. Bohr, On the Constitution of Atoms and Molecules, Philosophical Mag-
azine Series 6 26(151) (1913), 1–73. This paper is reprinted in the 50th
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CHAPTER 5

And Yet It Moves: Exotic Atoms
and the Invariance of Charge

5.1. A Commotion About Motion

If I had to describe in a word what physics is all about, I am tempted
to say “motion”—as construed, of course, in a suitably broad sense to
include not only the movement of particles but also such phenomena
as the flow of fluids, the propagation of waves, the conversion of heat
to work, and the transitions between quantum states. The word
“physics,” according to my unabridged English dictionary, traces its
origin to a Greek term meaning “natural things,” which seems appro-
priate enough, as far as it goes. Actually, in some ways it goes too far,
for one can accommodate all of the life sciences in that definition—
and, in fact, the term “physic” once meant medicine or the art of
healing. The Japanese refer to physics as “butsurigaku,” derived from
“study of transformation.” That also has some good points, but reminds
me too much of chemistry. I will stay with “motion.”

The concept of motion is fundamental in ways that go well beyond
its role in physics. It underlies our very perception of reality. When
Zeno of Elea propounded his paradoxes1 in the 4th century BC, it was
not merely to induce mental paralysis in his fellow mathematicians,
but to spread the doctrine of his mentor, the mystic philosopher 
Parmenides, who stressed that the world of sense is nothing but 
illusion. Thus thought Zeno:

If motion, which pervades everything, can be shown to be self-contradictory,
and hence unreal, then everything else must assume the same unreal quality.
By convincing people of the unreality of motion, I can . . . successfully discredit
the world of the senses.2

Today, the fall of an apple or the movement of a planet, although
probably still a mystery to the majority of laymen, does not ordinarily
provoke deep philosophical discussion, much less a conceptual crisis,
among physicists. Although not necessarily easy to describe mathe-
matically, the motion of a macroscopic object is at least in principle a



decidable proposition. One can tell whether it occurs or not. Look up
at the Moon for a while on a clear night; its position in the sky changes.
It moves around the Earth. Or does the Earth move around the Moon?
In any event, something is moving, and that is a fact, Zeno 
notwithstanding.

Zeno was born some 2500 years too soon, for, if he enjoyed para-
doxes, he would have loved quantum mechanics! Among other things,
quantum mechanics disabuses us of the certainty of motion—of the
perception of motion through our senses. In contrast to the observable
motion of macroscopic-sized objects, one cannot “see” an elementary
particle move. For an object to be seen, it must either emit light or be
illuminated. Whereas the reflection of light from the Moon or the emis-
sion of light from a firefly will scarcely alter the object’s subsequent
motion, the interaction of light with an elementary particle can change
the behavior drastically. One can, of course, illuminate an elementary
particle with “softer” (i.e., less energetic) photons that do not sub-
stantially change its momentum. The energy of a photon, however, is
inversely related to its wavelength, and the illuminated particle
cannot be localized to within a region more sharply defined than the
wavelength of the light used for viewing. The detailed movement of an
elementary particle that has emitted or scattered soft photons would
be lost in an indistinct blur. At the quantum level, motion cannot be
seen directly; it must be inferred from physical theory.

Heisenberg, a seminal contributor to the creation of quantum
mechanics who had given much thought to the nature of physical
theory, was fairly definite about what should not go into one3:

. . . it seems necessary to demand that no concept enter a theory which has not
been experimentally verified at least to the same degree of accuracy as the
experiments to be explained by the theory.

Unfortunately, as Heisenberg himself recognized:

. . . it is quite impossible to fulfill this requirement, since the commonest ideas
and words would often be excluded.

Words like orbit, trajectory, velocity—familiar terms in the Newtonian
lexicon defining the classical conception of motion.

There would be no problem, Heisenberg contended, if physicists
would only remain content, for example, with the images of particle
tracks on photographic plates, such as those made in 1911 by C. T. R.
Wilson,4 and not attempt to “classify and synthesize” the results or to
“establish a relation of cause and effect between them.” Without a
causal description, however, how could one ever know if something was
moving? Each image of an object, like the arrow in one of Zeno’s para-
doxes, would lie suspended and temporally disconnected from the
images that came before and after.
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But surely an elementary particle moves. If not, then what is one
really to make of the Wilson photographs (Figure 5.1)? These pho-
tographs show the explicit tracks of alpha rays (helium nuclei) and
beta rays (energetic electrons) that passed through the supersaturated
water vapor of a cloud chamber. The trails were formed from minute
droplets of water that have condensed about molecules ionized by 
collisions with the energetic charged particles. Is not each track the
trajectory of some particle that has made its way through the
chamber?

Technically no—not a trajectory. The continuity of the tracks pro-
duced by numerous, but discrete, particle collisions and ionizations is
illusory. Furthermore, with each random collision, the subsequent
motion of the particle is changed in an unpredictable way. A definite
location and velocity at each instant of time cannot be assigned to the
ionizing particle. Nevertheless, quantum mechanical analysis does
establish a picture of events at the microscopic level that conforms to
expectations based on classical mechanics to within limits set by the
Heisenberg uncertainty relations. From the wave function of the ioni-
zing particle, the most probable value of the particle location at any
instant can be inferred, and, in the absence of subsequent distur-
bances, this locus of points traces out the classically predicted straight-
line path. Each successive collision with a water molecule, however,
modifies the wave function and increases the uncertainties with which
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Figure 5.1. Tracks of alpha particles formed in a Wilson cloud chamber.
(Adapted from W. Heisenberg, The Physical Principles of the Quantum Theory,
Dover, New York, 1930, p. 5.)



the location and linear momentum of the particle can be known. The
angular deviations of orbital segments between successive collisions
depend on the relative linear momenta of the ionizing particle and the
atomic electrons with which it interacts. For sufficiently energetic and
massive particles, like the alpha particles in Wilson’s experiments, the
ionized molecules will lie effectively on straight lines; the paths of the
much less massive beta particles are irregularly curved.

For all practical purposes, the Wilson tracks furnish an adequate
record of particle motion even if one cannot assign to each point an
instantaneous coordinate and velocity. No harm is done in believing
that somewhere within each track a particle passed by. But what about
the electrons within an atom; can one tell if a bound electron is
moving?

From the semiclassical point of view embodied in the Bohr model of
the hydrogen atom, an electron bound to a nuclear center of charge
+Ze moves about the nucleus in a circular orbit of principal quantum
number n with a speed

(5.1)

The dimensionless combination of constants e2/ c � 1/137 will be rec-
ognized as the Sommerfeld fine-structure constant afs, which sets the
scale for the interaction of charged particles with electromagnetic
fields. Although nonrelativistic (v/c � 0.007), the speed of the electron
in a ground-state hydrogen atom (Z = n = 1) is predicted by the Bohr
model to be some 2 million meters per second, by no means a trivial
quantity when judged by ordinary experience.

In the quantum description of the hydrogen atom, however, the 
situation is not so simple. For one thing, corresponding to the uncer-
tainty relation between coordinate and linear momentum is a rota-
tional counterpart between angular momentum and angular location.
Dynamical quantities such as linear momentum, angular momentum,
energy, and the like, which in classical mechanics can be regarded as
properties of an individual particle, have a twofold significance in
quantum mechanics. On the one hand, they represent mathematical
expressions—or operators—that obey well-defined algebraic relations
independent of any particular physical system. On the other hand,
they refer to the mean values to which these operators lead when
applied to the wave function of specific quantum systems. Whether the
wave function and the associated dynamical variables actually char-
acterize one particle or a large collection (an “ensemble”) of identical
particles ideally prepared all in the same way is a matter of debate
among physicists concerned with the foundations and interpretation
of quantum theory.
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In any event, an uncertainty relation can be established between
any two measurable quantities for which the corresponding quantum
mechanical operators do not commute. For example, the familiar
Heisenberg uncertainty principle relating the uncertanties (techni-
cally, the statistical variances) in coordinate and linear momentum 
is readily derived from the noncommutability of the coordinate and
linear momentum operators (the equation inscribed on Max Born’s
tombstone).5 Strictly speaking, there is no quantum mechanical oper-
ator for angle, as there is for linear coordinate, and the establishment
of a corresponding uncertain relation between angle and angular
momentum has been somewhat problematical. Nevertheless, several
such relations have been proposed,6 all leading to the following con-
sequence: Because the wave function of a hydrogenic electron—in 
contrast to that of a free electron—is characterized by a sharp 
(definite) angular momentum, the electron angular coordinate is
totally delocalized about the nucleus. It would seem, therefore, that
the concept of an orbit or trajectory within the atom is of little, if any,
significance.

A second feature of the quantum mechanical hydrogen atom con-
trasting starkly with the corresponding Bohr planetary model is that
the angular momentum of the 1S ground state is zero. Classically, a
particle with zero angular momentum either passes through the axis
of rotation or has zero velocity. The quantum calculation of the mean
electron orbital radius (for a state with principal quantum number n
and atomic number Z) yields in accord with the Bohr model:

(5.2a)

where

(5.2b)

is the Bohr radius, about 5 ¥ 10-9 cm for an electron of mass m = 9 ¥
10-28 g and charge e = -4.8 ¥ 10-10 esu. Is the electron moving?

The calculation of the electron velocity is in some ways an undefined
problem, for it is not velocity, but momentum, that plays a key role in
the formulation of quantum mechanics. If one utilizes the nonrela-
tivistic relation between velocity and linear momentum of a particle
with mass m,

(5.3a)

the quantum calculation leads to a null velocity. However, in contrast
to classical mechanics, this does not mean that the electron speed is
necessarily zero. Calculation of the kinetic energy
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(5.3b)

of the ground-state electron results in a root-mean-square speed the
same as that of relation (5.1). Matters become yet more confusing when
one employs the relativistic electron theory of Dirac rather than the
nonrelativistic Schrödinger theory. The velocity operator in the Dirac
theory, defined as the time rate of change of the particle coordinate
operator7

(5.3c)

has but two allowable eigenvalues: ±c. This would seem to indicate
that the electron can move only at the speed of light! Yet, the rela-
tivistic calculation of the kinetic energy again leads (in the nonrela-
tivistic limit) to a particle speed effectively equivalent to relation (5.1).
What is to be made of all this?

Following Heisenberg’s warning, one is forced to renounce all 
hope of visualizing the motion of an electron in the energy eigenstates
of an atom. Although such states—referred to as stationary states
because their properties do not vary in time—may have nonvanish-
ing expectation values of kinetic energy, angular momentum, and
other dynamical variables, there is still no sequential connection
between neighboring points in the resulting electron probability 
distribution.

Recognizing this helps to eliminate a number of potentially para-
doxical situations. Except for the 1S ground state, the radial distribu-
tion of the electron in every other hydrogenic stationary state has
nodes; that is, for certain calculable distances from the nuclear center,
the probability of finding the orbiting electron is exactly zero. Since
the probability of finding the electron at all other points is nonvan-
ishing, the probability distribution consists of disconnected regions.
For example, the radial distribution of an electron in the 2S state 
consists of two disconnected regions separated by a spherical surface
of radius 2a0 (twice the Bohr radius) on which the electron probabil-
ity is zero. Given that there is but one bound electron, one might be
tempted to inquire how the electron can move from the inner to the
outer region if it can never be found at a point exactly 2a0 from the
nucleus!

The answer is simply what has been stated before: The properties
of a stationary state do not correspond to a causal description of par-
ticle motion. Because two points, however close, of a stationary-state
probability distribution do not represent points on a particle trajectory
and provide no information at all as to how an electron may have
passed from one point to the other, the presence of nodes leads to no

    
v

x
=

d
dt

,

K mv
p
m

= =
1
2 2

2
2

186 5. And Yet It Moves: Exotic Atoms and the Invariance of Charge



paradoxical behavior. According to an ensemble interpretation, we may
regard the stationary states as representative of the statistical prop-
erties of a large number of similarly prepared atoms. Imagine (never
mind how!) photographing the instantaneous location of the single 1S
electron in one million hydrogen atoms produced by the same source.
The composite radial distribution of the electrons would resemble the
stationary-state radial distribution predicted by quantum mechanics
for the 1S state. Moreover, because the act of photographing the atoms
perturbs the subsequent motion of the electrons, one would not be able
to predict from the photograph of a particular electron where it will
be an instant later.

The statistical interpretation enables us to understand as well 
how the 1S electron can have zero angular momentum and a non-
vanishing mean speed and orbital radius. This is again what one 
might expect of the average angular momentum of a great number 
of atoms with electrons moving in randomly oriented planar orbits,
clockwise or counterclockwise in equal measure. None of these 
properties characterizes the sequential movements of an individual
electron.

In marked contrast to the alpha and beta particles moving through
a Wilson cloud chamber, the bound electrons in an atom leave no tracks
by which to infer movement. Does a bound electron actually move?
Does this even matter?

5.2. The Electric Charge of a Moving Electron

One of the attributes of particles that is in some ways both familiar
and mysterious is that of electric charge. The theory of quantum elec-
trodynamics provides a comprehensive and (as far as experiment has
been able to confirm) correct description of the interaction of charged
matter with electromagnetic fields. Yet, curiously enough, we do not
know exactly what charge is, only what it does. Or, equally signifi-
cantly, what it does not do.

Electric charge does not, on balance, change. The conservation of
electric charge is one of the most strictly observed conservation laws
of physics. To my knowledge, no reproducibly documented violations
have ever been reported. Moreover, it is not simply a question of 
global charge balance, as, for example, in a process by which an 
electron is created at one end of the laboratory and a positron at the
other end. Charge conservation is local; there is to be no violation 
in any space–time region within limits set by quantum mechanical
uncertainties. Conceptually, the conservation of electric charge can be
understood as arising from a special kind of symmetry in the laws 
of electromagnetism—the requirement that the basic equations of

The Electric Charge of a Moving Electron 187



motion be unaffected by a phase transformation of the fundamental
fields.8

There is another, perhaps even more profound, sense in which elec-
tric charge does not change: It is independent of its velocity. Although
often taken for granted, this is a rather remarkable fact of nature, for
many physical properties do depend on velocity. The apparent mass 
or inertia of a particle, for example, increases with particle speed; as
the speed of the particle approaches that of light, an increasingly
greater force is required to effect a given incremental increase in
speed. To accelerate a massive particle to the speed of light would
require an infinitely large force—and so cannot be done. The charge
of a particle, however, does not change at all; it is said to be a Lorentz
invariant.

The significance of the Lorentz transformation, named for the Dutch
physicist H. A. Lorentz who discovered it in the course of developing
a classical theory of the electron, was first recognized by Einstein, who
derived the relations in a much more fundamental way—independent
of any theory of matter—through consideration of measurements of
space and time. The Lorentz transformations enable two observers
moving relative to one another to compare their measurements of
spatial and temporal intervals and, consequently, to relate all other
dynamical quantities (acceleration, force, energy, momentum, etc.)
that are based on, or in some way connected to, space–time measure-
ments. The importance of these relations goes well beyond the domain
of mechanics. To be considered viable, a physical theory must at the
least be compatible with the special theory of relativity and express-
ible in a form that remains invariant under a Lorentz transformation.
The theory is then said to be Lorentz covariant. This means that there
is no preferred reference frame—no special state of motion of an
observer—for which the theory is valid. If the theory is valid, it must
be recognized as such by all observers in uniform motion with respect
to one another.

The space–time properties of the electromagnetic field are largely
determined by the requirement of covariance and the Lorentz invari-
ance of electric charge. The invariance of charge, however, unlike
charge conservation, is not at present known to follow from any deeper
principle, but must be taken at the outset as an experimental fact. It
is conceivable, if certain types of particle decays are allowed, that
charge invariance may be connected with charge conservation. For
example, to maintain exact charge conservation in the disintegration
of a proton into a positron plus neutral particles, the proton and
positron must have equal charges irrespective of their speeds. I know
of no reproducible observation of proton decay. However, relativistic
quantum theory requires that particles and antiparticles have charges
of exactly the same magnitude. Hence, if protons decayed into
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positrons, then the charge of the proton and the charge of the electron
would also have to be equal in magnitude. If they were not, then the
beta decay of a neutron (into a proton, electron, and antineutrino)
would violate the conservation of charge.

Because charge invariance is one of the conceptual pillars of elec-
tromagnetism as we know it, the solidity of the empirical foundation
upon which it rests is no trivial matter. Just how do physicists know
that electric charge is independent of velocity?

One of the strongest arguments advanced for the Lorentz invariance
of charge is the electrical neutrality of atoms and molecules. The
essence of the argument is as follows. Suppose the charges of the elec-
tron and proton at rest to be equal in magnitude. Then, were the
Lorentz invariance of charge not valid, there would be a charge imbal-
ance for the bound system within which these particles are in relative
motion. If motion were to have an effect on the magnitude of charge,
one could not expect exact cancellation of the nuclear and electronic
charge in composite systems as different as the hydrogen atom, the
helium atom, and the hydrogen molecule (H2).

In a stationary hydrogen atom, as discussed above, the speed of the
1S electron relative to the proton is calculated to be v � 0.007c. From
relation (5.1), one would infer that the ground-state (1S) electrons in
a helium atom (Z = 2) should move twice as fast as the electron in
hydrogen. Actually, of even more interest is the speed of a proton in a
helium nucleus composed of two protons and two neutrons. A simple
heuristic argument shows that the protons in helium are moving 
with relativistic speeds within the potential well that binds them 
by means of the strong nuclear interaction. The uncertainty in the
linear momentum of a particle confined to a spatial region of size r is
about h/r (where h is Planck’s constant). The characteristic size r of
the helium nucleus is on the order of 10-13 cm. Taking h/r as an 
estimate of the maximum value of linear momentum of a proton of
mass M = 1.67 ¥ 10-24 g and equating it to the classical relativistic
expression

p = Mvg, (5.4a)

where

(5.4b)

leads to a proton speed of about 0.8c, over 50 times greater than the
electron speed in helium. (If the nonrelativistic expression p = Mv were
used, the calculated speed of the proton would exceed the speed of
light.) The electrons in a ground-state hydrogen molecule are in “mol-
ecular orbitals” formed from the atomic 1S states and have a speed
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comparable to that of the electron in a hydrogen atom. The maximum
speed of the two protons, oscillating about their equilibrium separa-
tion of nearly 0.1nm at a frequency on the order of 1013 Hz, is approxi-
mately 6 ¥ 105 cm/s or 2 ¥ 10-5c—considerably less than that of the 
two protons in the helium nucleus.

In a set of experiments performed over forty years ago, J. G. King9

established that the fractional difference in charge between electrons
and protons in helium atoms and in hydrogen molecules is zero to
within a few parts in 1020 or 100 billion billion! The experimental tech-
nique is as ingenious as it is simple. In brief, the gas whose charge
was to be measured was allowed to escape from an electrically insu-
lated metal container attached to an electrometer; a “deionizer” swept
out of the gas stream any ions or free electrons. If there were a charge
imbalance in the remaining gas molecules, then the outflow of gas
would result in a current flow to the container that would be regis-
tered by the electrometer. To within an experimental uncertainty
leading to the above awe-inspiring limit on electron–proton charge
equality, no such current was found. It would seem that the Lorentz
invariance of charge rests on indisputably firm ground.

But does it really? Although the demonstration of atomic and mole-
cular neutrality are convincing, there is still one conceptually untidy
step in the chain of reasoning to charge invariance. How do we know
that the experiments actually examine the variation in charge with
particle speed? How do we know, that is, that within the atom (or
within the nucleus) the particles are truly moving? Call it a matter of
professional ethics, if you will, but can one in good faith claim that an
electron in a stationary state is moving when he wants to justify the
Lorentz invariance of charge, and then forego a space–time descrip-
tion of this motion in order to avoid quantum mechanical paradoxes?
I wonder what Heisenberg would say.

Although the visualization of motion is by no means necessary or
even relevant to the consistency of quantum mechanics, it does play a
certain important role in special relativity. In the latter, one must be
able to imagine the placement of clocks and meter sticks in different
inertial reference frames for the purpose of performing space–time
measurements. If the Lorentz invariance of charge is to be inferred
from the state of motion of bound elementary particles, then—
although the equation of motion must necessarily be quantum
mechanical—it must still be meaningful to conceive of a Lorentz trans-
formation relating the rest frame of a particle to the rest frame of
another particle or of a stationary observer. However, given that a
bound electron cannot even in principle be located without alteration
of its state of motion, is such a conception meaningful?

The question of electron motion within an atom first started gnawing
at me when I was an undergraduate student a few years after the King
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experiments were performed. I wondered whether there was any phe-
nomenon at all exhibited by a bound electron that could manifest
directly some element of the kinematics of special relativity. It seemed
to me that, despite the fact that one could not picture the motion of a
bound elementary particle, somehow the question ought to be answer-
able in the affirmative. The assertion that a particle is in motion rela-
tive to a stationary observer has an observable physical consequence:
A clock moving with the particle must exhibit the relativistic effect 
of time dilation (also called time dilatation). In the words of the
mnemonic familiar to those who study special relativity: “Moving
clocks run slow.” A time interval determined from a moving clock would
appear shorter than the same interval measured with a system of
clocks relatively at rest.10

If the electron were a classical charged particle orbiting a center of
force, this effect would, in principle, be manifested in the Doppler shift
of radiation emitted from different points in the electron trajectory. As
in a binary-star system, there would occur both a blue and a red shift
for any angle of observation other than at 90° to the plane of orbital
motion. The electron, of course, is not a classical particle—and the
immediate proof of that is the very existence of atoms. If the electron
radiated as described, it would spiral into the nucleus and, as may be
deduced from the Larmor formula (4.7a), the atom would collapse in
about 10-11 seconds! In the quantum mechanical atom, radiation is not
continuous, but occurs only when the electron undergoes a transition
between states; the radiation frequency, unrelated in general to the
calculable orbital frequency, is not Doppler shifted unless the entire
atom is moving.

There is, however, an alternative and peculiarly quantum 
mechanical clock associated with an elementary particle, namely its
natural lifetime. However, the electron, as far as one knows, is a stable
particle; there is no other negatively charged particle of lower mass 
to which it can decay. The electron lifetime should be infinite, and no
effect of motion on it would be observable. But suppose the electron
could decay. Would its lifetime be lengthened if it were bound in an
atom?

5.3. The Exotic Atom

At first acquaintance, a so-called exotic atom may seem like a chimera
of atomic physics—but it is, in fact, quite real. Since an inevitable com-
parison with a planetary system is made whenever atoms are dis-
cussed, imagine, again, looking at the Moon one night and seeing it
vanish in a burst of light. Something similar can happen in an exotic
atom—except that the burst might well be one of electrons and neu-
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trinos (ghostly spin- 1–2 particles with no charge and unknown, if 
any,11 mass that interact extremely weakly with all matter). Or
imagine the Solar System with one of the planets orbiting inside
the Sun. That, too, can happen in an exotic atom. An exotic atom is
formed when one of the electrons of an ordinary atom is replaced by
another more massive (and unstable) negatively charged elementary
particle.

The story is oft repeated that I. I. Rabi, when first apprised of the
existence of the muon in the 1930s, grumbled, “Who ordered that?,” in
displeasure at the increasing complexity of nature.12 The number of
“elementary” particles known today is so large that most can scarcely
be considered elementary, but the muon still is. With a mass of 
about 207 times the electron mass, the muon is described by particle 
physicists as essentially a heavy electron.13 There is one critical dif-
ference, however: the muon has a finite lifetime. In its rest frame, the
muon lasts about 2.2ms before transforming via a weak interaction
(like the b decay of a nucleus) into an electron, an electron antineu-
trino, and a muon neutrino. Like the electron, the negative muon can
bind to a positive atomic nucleus to form an atom—one of the exotic
atoms. (To the positive electron, or positron, there also corresponds a
positive muon.)

A few microseconds may seem like a minuscule amount of time for
a particle, and the atom it forms, to stay around. In comparison 
to initial expectations, however, the muon lifetime was anomalously
long. In 1935, based on analogy with the transmission of the electro-
magnetic force by photons, Hideki Yukawa predicted the existence 
of a carrier of the strong nuclear force. The electromagnetic force 
is known to be of infinite range as a consequence of the zero rest 
mass of the photon. Knowing that the strong force is of short range
(about the size of a nucleon, 10-13 cm), Yukawa was able to predict that
the mass of the sought-for nuclear particle should be about two
hundred times the electron mass. Not long afterward, a particle of that
approximate mass was observed in the cosmic ray showers that
reached the Earth’s surface. However, this particle did not interact
strongly with atomic nuclei; if it had, its existence would have been a
fleeting 10-23 s, and it would never have passed through the Earth’s
atmosphere to be detected at ground level. The discovery was actually
the muon.14

According to relations (5.2a) and (5.2b), the ground-state orbital
radius of a negative muon bound to a positive nucleus of charge +Ze
should be smaller than that of the corresponding electron orbit by the
ratio of the electron and muon masses:
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The orbital speed, however, depends only on particle charge and should
be the same, v/c � Zafs, for both the muon and the electron. Hence, a
bound muon with lifetime t0 can complete about vt0/(2prm) � 3 ¥ 1012Z2

revolutions before undergoing weak decay. In terrestrial terms, this is
the equivalent of over 1000 billion years, many times longer than the
current age of the Earth (or of the Universe for that matter). The
muonic atom would therefore seem to be a reasonably stable system
with a well-defined ground state.

The existence of exotic atoms was inferred by Enrico Fermi and
Edward Teller in 1947 from the different behavior of positive and 
negative muons coming to rest in iron or graphite.15 Positive muons,
repelled by the positive atomic nuclei, were expected to decay natu-
rally at their characteristic rate producing “disintegration electrons”;
negative muons—at a time when the muon and the predicted Yukawa
particle (pion) were not yet recognized as distinctly different parti-
cles—were expected to be captured by the atomic nuclei and not give
rise to electrons. This expectation was fulfilled for iron. In graphite,
however, disintegration electrons emerged equally abundantly from
both positive and negative muon decays in sharp disagreement with
contemporary expectations. To explain this anomaly, Fermi and Teller
assumed that the negative muon was captured into a Bohr orbit from
which it, too, decayed naturally rather than by nuclear capture. They
showed that a negative muon initially captured into a high-lying
atomic state cascaded down into the ground level—generally referred
to as the K shell—in a time interval on the order of 10-12 s for atoms
in condensed matter and 10-9 s for atoms in a gas—i.e., in an interval
short compared with the muon lifetime. Fewer than about 1% of the
muons decay from states other than the ground state.

Once the muon reaches the K shell, it is in an orbit some 200 times
smaller than that of a K-shell electron; largely unaffected by the sur-
rounding shells of atomic electrons, the muon can be treated to good
approximation as if it were the only bound particle. The radius of a
nucleus of atomic number Z and mass number A (number of protons
and neutrons) is usually represented by the formula

(5.6)

where r0 = 1.3 ¥ 10-13 cm is about one-half the so-called classical elec-
tron radius, e2/mc2. From relations (5.5) and (5.6), it is seen that for
muonic silver (Z = 47, A = 108), the muon 1S orbital radius of about 
5 ¥ 10-13 cm lies at the periphery of the nuclear surface. In muonic
uranium (Z = 92, A = 238), the ground-state muon orbit of radius about
3 ¥ 10-13 cm lies well within the uranium nucleus (radius �8 ¥
10-13 cm).

When captured by a nucleus, the negative muon interacts with a
proton to give rise to a neutron and muon neutrino. The probability of

R A r= 1 3
0,
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this process increases with nuclear charge because the degree of
overlap of the muon and nuclear wave functions is correspondingly
greater as the orbital radius is smaller. For Z = 11 (muonic sodium),
the rates of weak decay and nuclear capture are approximately equal;
for heavy nuclei, the mean lifetime of a bound muon is essentially
determined by the nuclear capture process. Nevertheless, because the
end products of the two processes are different, one can experimen-
tally distinguish them and study the natural decay of bound muons by
monitoring the rate of production of decay electrons.

The natural lifetime of the muon constitutes an ideal clock for
testing the time dilation effect of special relativity. Indeed, such a test
was first made over half a century ago in a now classic experiment by
Bruno Rossi and David Hall16 whereby the decay rate of cosmic ray
muons was shown to depend on particle speed in accordance with the
relativistic relation

(5.7)

Here, tm is the observed lifetime (reciprocal of the decay rate) of muons
moving relative to a stationary observer with speed parameter b = v/c,
t0 is the lifetime in the muon rest frame, and g (b) is the dilation factor
given by relation (5.4b).

I recall learning of the time dilation of muons in an educational film17

depicting a modified repetition of the Rossi–Hall experiment some
twenty years later, at about the time the question of electron motion
first occurred to me. In the film, the lifetime of energetic muons
(v/c�0.995) deduced from muon fluxes measured at the top of Mount
Washington in New Hampshire and at sea level in Cambridge, 
Massachusetts was found to be lengthened by nearly a factor of nine.
I wondered: Would the lifetime of a muon in the K shell of a muonic
atom also be lengthened?

A quick estimate of the dilation factor of the bound muon lifetime
can be made simply by substituting the Bohr speed v/c = Zafs into rela-
tion (5.4b). This would suggest, for example, that in muonic uranium,
where v/c � 0.41, the decay rate of a K-shell muon should be only about
0.77 that of a free muon at rest. This is not, however, a rigorous way
to deduce the properties of a quantum system, which should in prin-
ciple, be determined by means of the expectation value of an appro-
priate operator. But what operator would correspond to time dilation?
Since the relativistic expression for the total (mass + kinetic) energy
of a free particle of mass M is

K = Mc2g (5.8a)

and since the Hamiltonian operator H that governs the time evolution
of a quantum system is the sum of K and the potential energy V, it

t tm g b= ( ) 0.
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seemed to me reasonable to define a relativistic time-dilation operator
by

(5.8b)

The expectation value of g for the 1S1/2 ground state of a point Coulomb
potential V = Ze2/r, evaluated by means of the exact relativistic Dirac
wave functions, led to the satisfying result

(5.8c)

in agreement with the semiclassical relativistic theory of the Bohr
atom. For intermediate and heavy muonic atoms in which the muon
orbit lies closer to, or within, the nuclear surface, the potential seen
by the muon can be decidedly different from that of a Coulomb poten-
tial. In fact, a muon orbiting deep inside a nucleus with uniform dis-
tribution of positive charge will experience a potential similar to that
of a harmonic oscillator. Nevertheless, once the potential V is known,
relation (5.8c) can be used to determine the relativistic dilation of a
bound-state lifetime.

Coincidentally, although I was not to realize this until some years
afterward, accurate determinations of the lifetime of a number of 
moderate and heavy muonic atoms18 had been published shortly after
King’s experimental test of electron and proton charge equality. In
experiments performed with the 200-MeV synchrocyclotron at the Uni-
versity of Liverpool, negative muons traveling at a speed of about 0.94c
were brought to rest in various targets and the resulting time distri-
bution of decay electrons was monitored. This distribution is governed
by the familiar exponential decay law (there are no quantum beats
here!)

(5.9)

where N(t)/N0 is the fraction of undecayed muons at time t. Before each
selected target was used, an experimental run was made with a carbon
target that furnished an effective measurement of the muon decay rate
under circumstances comparable to free-muon decay (since Z = 6 leads
to g � 1.00).

So . . . do bound muons move? Summarized in Table 5.1 is the 
experimentally observed ratio R = t0/tm of the bound- and free-muon
decay rates. Also shown is the theoretically expected ratio R = 1/g (Z),
where, for ease of calculation, the point Coulomb potential was
assumed. In the case of heavy muonic atoms, where the time-dilation
effect is greatest, a more appropriate model of the electrostatic 
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potential should, in principle, be employed. Nevertheless, it is clear
that the overall trend shows basic agreement between experiment and
theory.

Let us not reach too hasty a conclusion, however. Actually, to be 
completely above board, it must be noted that the muon decay rate is
influenced not only by relativistic time dilation but also by dynamical
and statistical effects incurred through the binding. The two principal
effects, which modify the decay rate in opposite ways, are termed 
the electron Coulomb field effect and the phase-space effect. In the 
first, the positively charged nucleus attracts the electron emitted in
the muon decay and thereby produces a greater overlap of the muon
and electron wave functions near the nucleus than would otherwise be
the case for a freely propagating electron (described by a plane wave).
The electron Coulomb field effect thereby enhances the muon decay
rate. From the perspective of classical physics, it may seem strange
that the end product (an electron) formed after the decay has occurred
can have an antecedent effect on the rate of occurrence of that very
process. However, the weak decay of a particle with concomitant pro-
duction of new particles is not a classically explicable process. In the
phase-space effect, the volume of phase space—in essence the number
of quantum mechanical states—accessible to the decay products of a
bound muon is restricted by the electrostatic binding force in compar-
ison to that of a free muon. Hence, the phase-space effect reduces the
decay rate.

Detailed calculations19 of the decay rate that take account of all 
contributing processes suggest that at least in the light- and medium-
mass elements there is a fortuitous cancellation between the Coulomb
field and phase-space effects; the observed difference in lifetime
between bound and free muons could then be principally attributed to
the kinematic effects of special relativity. For the heavy elements as
well, the accord between theory and measurement would be impaired
were the effect of time dilation not included. It does seem that bound
muons are in some kind of motion after all.
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Table 5.1. Experimental and Theoretical values of
R(Z)
Element Z R(Z)theo R(Z)expt

V 23 0.99 1.00 ± 0.04
Fe 26 0.98 1.00 ± 0.04
Ni 28 0.98 0.96 ± 0.04
Zn 30 0.98 0.93 ± 0.04
Sn 50 0.93 0.87 ± 0.04
W 74 0.84 0.78 ± 0.04
Pb 82 0.80 0.86 ± 0.04



As for the electron—well, it is just a light muon, and my doubts have
been dispelled. Who can even begin to imagine what strange scenes
an electron encounters in its endless unfathomable trek around, near,
and possibly through the nucleus? Trajectory and velocity has it none,
and yet it moves.

5.4. The Planetary Atom

It is difficult to imagine anyone brought up in the 20th century not
being familiar with the ubiquitous atomic energy symbol, the small
central sunlike disk surrounded by three noncoplanar electron orbits.
The symbol, which calls to mind nuclear power plants and nuclear sub-
marines and has decorated a vast number of technical and nontech-
nical documents of the former U.S. Atomic Energy Commision, has
come to represent the atomic (or, more accurately, nuclear) era. Physi-
cists have long known that such a graphic depiction is a gross ideal-
ization of the structure of the atom. However, although the exact
movement of an electron in an atomic stationary state cannot be pic-
tured, recent developments in the investigation of highly excited atoms
nevertheless suggest an enticing possibility: the creation of a bound
electron wave packet following (in a probabilistic sense) a classical
Keplerian orbit about the nucleus.20 The properties of such a state
differ greatly from those of a completely delocalized stationary state
for which only the mean orbital radius may coincide with the radius
of the corresponding Keplerian (i.e., Bohr) orbit.

Rydberg levels, it should be recalled, are closely separated with the
energy interval between any two adjacent electronic manifolds varying
inversely as the third power of the principal quantum number. Under
appropriate circumstances, it is possible to excite an electron (e.g.,
with a broad-band laser) into a linear superposition of Rydberg states
comprising a wide distribution of principal quantum numbers. 
The resulting wave packet is then localized with respect to its radial
coordinate.

For a superposition of Rydberg states with low angular momentum,
for which the corresponding classical elliptical trajectory is highly
eccentric, the electron probability distribution is delocalized with
respect to the angular coordinates. When close to the inner turning
point of its orbit, where acceleration is greatest, the electron can emit
light most strongly. Far from the nucleus, the electron behaves more
like a free particle and cannot emit radiation. One can, therefore, study
the motion of the delocalized electron wave packet by monitoring the
time dependence of the emitted light. The periodic return of the elec-
tron to the ion core—until the wave packet ultimately decays—would
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be signaled by bursts of light emission at time intervals given by the
classical orbital period.

There is much interest in producing an electron wave packet with a
broad linear superposition of Rydberg states of high values of angular
momentum. Such a wave packet would be localized with respect to
both radial and angular coordinates and should orbit the nucleus very
much like a classically bound particle. The classical trajectory would
be nearly circular, however, and at first glance, it would seem that 
the rate of light emission should no longer depend on the location of
the electron in its orbit. How would the periodic motion be discerned
experimentally?

Although the electron in a hydrogen atom experiences a purely 1/r
Coulomb potential, the electrostatic potential field through which an
alkali atom Rydberg electron moves includes a small 1/r4 contribution
resulting from core polarization and relativistic effects. This deviation
from the Coulomb potential causes the wave packet to precess; that is,
after repeated revolutions of the electron, the orientation of the packet
relative to some fixed direction in the laboratory slowly changes. This
effect is quite similar to the precession of the orbit of Mercury 
about the Sun as a result of an analogous deviation from the 1/r poten-
tial of Newtonian gravity predicted by Einstein’s theory of general 
relativity.

An electron wave packet comprising many states of large principal
and orbital quantum numbers, but with only the highest magnetic
quantum numbers contributing, will have a well-defined alignment
relative to some arbitrary, but fixed, axis. Suppose the Rydberg atoms
were subjected to a pulsed electric field that can ionize the highly
excited electron (i.e., provide enough energy to separate it entirely
from the atom). The rate of ionization would then depend on the ori-
entation of the wave packet relative to the electric field and be great-
est when the packet is aligned along the field. In principle, therefore,
the precession of the wave packet could be inferred from the time
dependence of the ionization signal. Because of the very long timescale
of the precession (order of milliseconds), the effect, as far as I am
aware, has not yet been observed. Its accomplishment, however, is lit-
erally only a matter of time.

Planetary Atom Update

In the period following publication of And Yet It Moves, techniques 
for “sculpting” electron wave packets and producing atoms with 
Keplerian orbits have become well developed with numerous applica-
tions to explore. In contrast to an energy eigenstate in which the elec-
tron density is fully delocalized about the nucleus, a wave packet that
evolves in time in a manner analogous to the classical motion of an
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electrically or gravitationally bound particle must be localized in both
radial and angular coordinates. One way that was found to achieve
this is by a two-step process employing a pulsed electric field of
extremely short duration.21

In the first step, using laser excitation or other excitation methods
from the atomic physicist’s toolbox of interactions, one generates a
Rydberg atom in a so-called circular state of principal quantum
number n. A circular state is a single-electron state of highest angular
momentum allowed within a given electronic manifold, i.e., a state
with angular momentum quantum numbers L = |mL| = n - 1 and a
corresponding electron density distributed uniformly around a circle
of radius n2a0. The second step is to subject this state to a picosecond
(i.e., 10-12 s) electric field pulse that drives transitions to circular states
of neighboring electronic manifolds. The exact shape of the pulse is not
important; the feature of primary interest is its duration—and in this
regard the shorter the better. (The shorter the pulse, the more sym-
metric is the resulting population of circular states about the initial
state.)

The effect of the electric field pulse is to create an electron proba-
bility distribution that in the course of time evolves in shape from
something like a circular caldera to a form strongly peaked about a
point on the Kepler orbit. Elliptical wave packets can be produced as
well by subjecting the Rydberg atom to a weak static electric field that
deforms the circular orbit into an ellipse. Figure 5.2 shows the evolu-
tion of a circular-orbit wave packet (for n � 50) at different times
denoted as a multiple of the period T of the corresponding Kepler orbit.
Thus, after about three Keplerian periods, the circular electron density
evolves into a localized wave packet, which then makes its way around
the orbit in another interval T.

To understand the way in which the pulsed electric field creates a
localized electron wave packet, one must again recall that the electron
probability distribution does not describe the dynamics of a single elec-
tron, but an ensemble of numerous similarly prepared electrons. A
classical analogy would be a collection of electrons distributed uni-
formly around a circular orbit (i.e., the original circular Rydberg state)
all moving with the same angular velocity. Upon mixing in circular
Rydberg states of higher and lower principal quantum numbers, the
pulsed electric field creates a spread in electron energy and momen-
tum values. As time goes on, faster electrons will overtake slower ones,
and at certain intervals of time, most of the electrons will be concen-
trated within a small segment of the circle. These are the intervals of
time that correspond to the peaked probability distributions in Figure
5.2.

The creation of localized electron wave packets in an atom provides
an experimental basis for a number of fascinating investigations of the
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fundamentals of quantum mechanics. One of the most interesting I
have encountered involves the creation of a single-electron wave
packet comprising two initially disjointed subpackets effectively local-
ized on opposite sides of the Keplerian orbit.22 The two subpackets
result from sequential excitation by two phase-coherent laser pulses.
As they evolve in time, the subpackets progressively overlap, giving
rise to a quantum interference effect manifested experimentally—
when probed by a third laser that ionizes the atom—as a series of
fringes analogous to the “Ramsey interference fringes” produced by
irradiating an atom with two phase-coherent radiofrequency fields (as
mentioned in Chapter 4).23 In effect, one has created wave packets that
move in quasiclassical fashion around a ring, yet give rise to a uniquely
quantum interference effect.

There is, of course, no classical analog to this dual-packet electron
configuration, for, after all, there is only one electron in the orbit.

Notes

1. Zeno proposed four famous paradoxes purportedly showing that 
motion cannot occur. In essence, to move from one point to another, an
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Figure 5.2. Progression of a wave packet comprising a distribution of circu-
lar Rydberg states (centered on principal quantum number n = 50) around the
corresponding Kepler orbit with classical period T. Numbers below each figure
signify the time (in units of T) following initial preparation of the circular state
n = 50. [Adapted from Z. Gaeta, et al., Physical Reviews Letters 73 (1994) 636.]
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7. In quantum mechanics, the time derivative of an operator is calculated
from the commutator of that operator with the Hamiltonian, H, which is
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8. As discussed previously in the context of the Aharonov–Bohm effect, the
fundamental fields of quantum electrodynamics are the vector and scalar
potentials and not the electric and magnetic fields. A function known as
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factor of the form eif, where f is a real infinitesimal constant, the conser-
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10. Imagine two stationary clocks A and B placed on the ground a distance d
apart. A third clock C moving at a speed v parallel to the ground passes
over A at which moment the A and C times are recorded. When C passes
over B, the B and C times are likewise instantaneously recorded. Although
the difference in A and B readings shows the passage of a time interval
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11. The neutrino, of which three varieties are known (electron, muon, and
tau), was long thought to be massless. Recent research, motivated in part
by an observed dearth in solar neutrinos reaching the Earth, provided con-
vincing evidence that neutrinos could change from one variety to another
periodically in time. Quantum physics can account for this only if at least
one neutrino variety has mass. At the time that I am writing this, no one
has yet measured the mass of a neutrino, but it is expected to be orders
of magnitude smaller than the mass of the electron (or positron), which is

h

h

Notes 201



the least massive of the elementary particles for which a definite rest mass
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CHAPTER 6

Reflections on Light

6.1. Exorcising a Maxwell Demon

On the outside wall of the University, facing the Rue Vauquelin, is a
small plaque with the words:

EN 1898 DANS UN LABORATOIRE
DE CETTE ECOLE

PIERRE ET MARIE CURIE
ASSISTES DE GUSTAVE BEMONT

ONT DECOUVERT LE RADIUM

The institution is the Ecole Supérieure de Physique et Chimie 
Industrielles (ESPCI) in Paris. The historical laboratory in which the
Curies discovered radius—a drafty wooden shed dismantled long 
ago—stood in the courtyard practically below the window of my office
in what is, today, the Laboratory of Physical Optics, a building of
vintage appearance itself. A small engraved stone marker at the edge
of a parking place is all that indicates the location of the Curies’ shed.
Nevertheless, whenever I looked out my window, I could imagine
watching Marie and Pierre tirelessly processing the tons of pitchblende
ore that arrived periodically from the St. Joachimsthal mines in
Bohemia.

Except for singular occasions like the ESPCI centenary anniversary
in 1982, the thought of the Curies, if it exists at all, is probably a
distant one in the minds of the researchers and students scurrying 
up steps and through corridors of the many buildings that border 
the courtyard. However, history can be fascinating and instructive.
Appointed to the Joliot Chair of Physics at the ESPCI, I was curious
to know more about the distinguished son-in-law Frédéric Joliot, in
whose eponymous suite of rooms furnished by the University I was
living with my wife and young children. Did he and his wife, Irène
Curie, both of whom served as assistants to Marie, return home
covered with radioactive dust? Were Irène’s cookbooks radioactive like



those of her mother? Was my family now breathing in these toxic exha-
lations of a past age of scientific glory? Happily, this was not the case.
To my relief, Joliot was an “ancien élève” and not a professor at the
ESPCI, and he and Irène never lived in the “Apartement Joliot.” There
can be solace in history—at least if one keeps the facts straight!

It was not the discovery of radium, nor for that matter anything 
connected with nuclear physics, that brought me to the ESPCI, but
another event much less well known and celebrated. There, in the
1960s, my French colleague, Professor Jacques Badoz, and his stu-
dents developed the photoelastic modulator (PEM), an ingenious and
versatile optical device for examining the property of light known as
polarization.1 The years may have passed, but, in a tradition seem-
ingly typical of the French “grandes écoles,” members of the original
group were still there, no longer students, of course, but researchers
leading their own groups. A center of expertise for constructing and
using PEMs, the ESPCI Laboratory of Physical Optics was as likely a
place as any to exorcise what Jacques and I had come to regard as our
“Maxwell demon.”

The Scottish physicist James Clerk Maxwell is one of the giants of
19th-century classical physics.2 His theory of electromagnetism unified
under one set of laws the hitherto separate branches of physics con-
stituting electricity, magnetism, and optics. Maxwell’s great synthesis
provided the foundation upon which contemporary quantum physicists
continue to build in their efforts to unify all known physical interac-
tions, a point to which I shall return in Chapter 9. A principal con-
tributor as well to the science of thermal phenomena (thermodynamics
and statistical mechanics), Maxwell, as I have already related in
Chapter 1, once described how the Second Law of Thermodynamics
might be circumvented by means of a molecular-sized sentient being—
the Maxwell demon. In point of fact, such a violation of physical 
law is not possible—but all that is actually irrelevant to this essay. The
issues discussed here have nothing to do with thermodynamics; they
concern, instead, a devilishly difficult experiment with light and the
implications of the experiment for Maxwell’s electromagnetic theory.3

That light behaves like a wave had been demonstrated by means of
diffraction and interference experiments long before the culmination
of Maxwell’s work in the 1860s. However, the early developers of wave
theories of light did not know what was actually “waving.” The pin-
nacle of Maxwell’s achievement in this area was to deduce from his
four basic laws of electricity and magnetism the equation of a wave
whose calculable speed of propagation, whether in vacuum or in a
material medium, was numerically equal to the corresponding speed
of light. This speed was expressed in terms of properties of the
medium—the electric permittivity (or dielectric constant) e and the
magnetic permeability m—that can be determined by electric and mag-
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netic experiments not in any way directly involving the properties of
light. From Maxwell’s theory (applied to an optically isotropic, homo-
geneous medium), it readily followed that the index of refraction n,
which is the ratio of the speed of light in vacuum to the speed of light
in the medium, should be equal to .

Light, then, was shown to be an electromagnetic wave: the propa-
gation (even through materially empty space) of synchronously oscil-
lating electric and magnetic fields. In the absence of matter or in the
presence of an optically isotropic material, the oscillating electric and
magnetic fields of a light wave are perpendicular to each other and to
the direction in which the wave is propagating.

That there could still have been any doubt that Maxwell’s theory
provided a complete and correct description of classical electromag-
netic phenomena came as a surprise to me when I first became aware
of it in the early 1980s. Nevertheless, as my colleague Jacques re-
marked in referring to another surprising revelation, “Il y a donc en-
core des taches blanches sur les cartes du continent scientifique . . .”.
In the case at hand, however, these blank spaces were found not in
some far-flung impenetrable valley of the scientific continent as one
might have expected (e.g., the realm of quantum gravity), but in the
developed urban area of physical optics. At issue were fundamental
principles governing the reflection of light—a subject that one might
well have thought was laid to rest over a century a half ago.

A good controversy in science is ordinarily a noisy affair, at least
within the discipline affected, accompanied by academic teeth-
gnashing and ad hominem aspersions. (The well-informed reader has
but to recall the recent controversies over the extinction of the
dinosaurs and the alleged discovery of “cold fusion.”) However, that
was not the situation here; the controversy passed quietly through the
journal pages without creating any furor at all.

Yet, the issues involved were fundamentally of momentous import.
Within the context of more-or-less routine investigations, there arose
questions with extraordinary implications. Had one found an area 
of classical optics that fell outside the scope of Maxwell’s theory? 
Did Maxwell’s theory lead to violation of the law of energy conserva-
tion? Were the Maxwellian boundary conditions—the mathematical
expressions describing the behavior of electromagnetic waves at 
an interface between different media—wrong? Quiet and unnoticed,
the controversy effectively embraced the restructuring of classical 
electromagnetism.

What theoretical inadequacy or experimental observation could pos-
sibly have led to such far-reaching implications? The problem, in fact,
took its origin in theoretical attempts to answer a deceptively simple
question: How does light reflect from a left- or right-handed material?
The statement of the problem may draw a skeptical raise of the

em
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eyebrow from a reader unfamiliar with chemical structure who recalls
childhood jests about left-handed spanners. However, such chiral, or
handed, materials exist and manifest intriguing phenomena collec-
tively known as optical activity.

My interest in light reflection from chiral media arose as the natural
extension of a series of experiments begun several years earlier
addressing a completely different controversial issue centered on what
outwardly would appear to be an even more provocative question: Can
a greater amount of light be reflected from a surface than is incident
upon it? Although the correctness of Maxwell’s theory of electro-
dynamics was not formally at issue, the experiments nevertheless rig-
orously tested that theory in a domain far removed from common
experience in which prior theoretical and experimental efforts gave
rise to confusing and conflicting results. Although I did not articulate
the solution as such at the time, in a way it was an exorcism of another
Maxwell demon.

My studies of the interaction of light at the surface of different media
did not lead to new or modified laws of electrodynamics. However, I
had learned once again that what seemed to be well known was not
necessarily well understood, and even so venerable a subject as clas-
sical optics still had its surprises.

6.2. Enhanced Reflection: How Light Gets 
Brighter When It Is up Against a Wall

A light beam incident upon a transparent material is partially trans-
mitted through the surface and refracted (i.e., deviated from its orig-
inal direction) and partially reflected from the surface. The exact
division of light energy between these two processes was first worked
out in the early 1820s—that is, long before the electromagnetic theory
of light—by the French physicist and engineer, Augustin Fresnel,
whose name, like that of Maxwell’s, is associated with a variety of
inventions, discoveries, and principles.4 Along with the Englishman
Thomas Young, Fresnel was a major contributor to the perception of
light as a wavelike phenomenon.

Fresnel regarded light waves as a type of elastic wave like that of
sound passing through air or of ripples spreading on the surface 
of water. Since all elastic waves require a medium, Fresnel assumed
that the light propagated through an extremely tenuous hypothetical
medium, the ether, that permeated all space and penetrated all
objects. Not until many years later, after Einstein developed the theory
of special relativity in 1905, were most physicists fully prepared to dis-
pense with the concept of the ether. Nevertheless, Fresnel’s elastic
theory enabled him to predict or account for many aspects of the behav-
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ior of light. In the course of his investigations of light polarization,
Fresnel deduced the amplitudes (relative to an incident light wave 
of unit amplitude) of light specularly reflected and refracted at the
surface of a transparent medium. (Specular reflection is “mirrorlike”
reflection from a smooth surface, in contrast to diffuse reflection 
from a rough surface.) These amplitudes are ordinarily designated 
the Fresnel relations or Fresnel coefficients. The relative intensity 
of the reflected or transmitted light is proportional to the square of 
the corresponding Fresnel coefficient and is termed the reflectance 
or transmittance, respectively. Ironically, although Fresnel pio-
neered the investigation of light polarization, it was precisely this
attribute of light that his elastic theory was incapable of treating 
adequately.

Within the framework of electromagnetic theory, the polarization of
light is defined by the orientation of the oscillating electric and mag-
netic fields. Light waves, for which the electric and magnetic fields
oscillate in planes, are said to be linearly polarized; the direction of
polarization is, by convention, the direction of oscillation of the elec-
tric field. Light waves, for which the electric and magnetic fields rotate
about the direction of propagation, are said to be circularly (or, more
generally, elliptically) polarized; the sense of the rotation, clockwise or
counterclockwise to someone looking toward the light source, defines
the type of circular polarization as right or left, respectively.

Light waves propagating through a vacuum (or any optically iso-
tropic medium) are transverse waves: The electric field, magnetic 
field, and propagation direction are all mutually orthogonal. It was one
of Fresnel’s signal achievements to recognize the transverse nature of
light, but it was this very point that constituted a serious flaw in his
derivation of the Fresnel relations. These equations are correct, but
they would not have been had Fresnel implemented consistently the
boundary conditions that pertain to the passage of an elastic wave
from one medium to another. Correctly applied, the elastic theory of
light gives rise to a refracted wave that is not purely transverse, 
but has a longitudinal component (i.e., corresponds to an oscillation 
of the medium parallel to the direction of wave propagation). There 
is no experimental evidence for the existence of such a longitudinal
wave.

It was Maxwell’s theory of electromagnetism that provided the first
self-consistent derivation of the Fresnel relations (without the extra-
neous longitudinal wave),5 and the experimental verification of these
relations correspondingly constitutes an important confirmation of the
particular dynamics of Maxwell’s theory. Certain kinematical aspects
of reflection and refraction, such as the laws governing the angles at
which light is reflected and refracted, were well known, at least since
the 17th century, and are characteristic of any wave theory. The above
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emphasis on dynamics underscores the fact that the mathematical
form of the Fresnel amplitudes is not characteristic of all wave theo-
ries, but depends sensitively on the specific laws governing the elec-
tric and magnetic fields.

Although reflection and refraction amplitudes can be derived for any
state of light polarization, what is ordinarily designated the Fresnel
relations, refers to two basic types of linear polarization, s and p,
defined with respect to the plane of incidence, i.e., the plane formed
by the incident light ray (the direction along which the incident wave
propagates) and a line normal (perpendicular) to the reflecting sur-
face.6 This plane is always perpendicular to the reflecting surface
(Figure 6.1). For s-polarized waves, the electric field is perpendicular
to the plane of incidence and, therefore, parallel to the reflecting
surface irrespective of the angle of incidence at which the light ray
intersects the reflecting medium. For p-polarized waves, the electric
field oscillates within the plane of incidence; the angle that it makes
with the surface depends on the incident angle of the light, which is
ordinarily measured with respect to the surface normal.
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Figure 6.1. Geometry of waves specularly reflected and refracted at a planar
interface (perpendicular to the page) between two dielectric media. The 
plane of incidence (lying in the page) is defined by the incident light ray and
the normal to the interface. Waves are designated s-polarized or p-polarized,
depending on whether the electric field is perpendicular (Es) or parallel (Ep)
to the plane of incidence. The angles of incidence and reflection (q) are equal;
the angle of refraction (f) is given by Snel’s law.



The exact variation of the Fresnel coefficients with angle of incidence
depends on the relative index of refraction of the two media forming
the interface at which the light is reflected and refracted. Never-
theless, for most familiar dielectric (nonconducting) materials, the 
following general behavior is observed. The intensity of reflected 
s-polarized light at normal incidence is low and increases nonuni-
formly, but continuously, with the angle of incidence until it reaches
100% at exact grazing incidence (i.e., for a light ray skimming the
surface at 90° to the normal direction). The intensity of reflected 
p-polarized light equals that of s-polarized light at normal incidence,
but with increasing angle of incidence, it drops to exactly 0% at a
special angle called the Brewster angle,7 after which, as in the case of
s-polarization, the reflectance continuously grows to 100% at grazing
incidence (Figure 6.2). An incoherent mixture in equal measure of s-
and p-polarized beams generates a beam of unpolarized light.
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Figure 6.2. Variation in reflectance as a function of the angle of incidence 
for light reflected from a medium with refractive index higher than that of 
the medium within which the light originates. The reflected intensity of s-
polarized waves increases smoothly between normal and grazing incidence,
whereas the intensity of p-polarized waves drops to zero at the Brewster angle.
If the refractive index of the reflecting medium is lower than that of the inci-
dent medium, then the reflectance reaches 100% at the critical angle qc and
remains unchanged over the range from qc to 90°.



It is very likely that nearly everyone—whether familiar with the
Fresnel relations or not—has experienced in one way or another the
optical phenomena embraced by these expressions. The dim image one
sees while standing before a clear window pane at night readily cor-
roborates that only a small fraction of normally incident light is
reflected.8 By contrast, the bright glare on a glossy magazine held at
an oblique angle to a light source irritatingly confirms that a large
fraction of light near grazing incidence is reflected.

Polarized light of a well-defined frequency and propagation direction
is one of nature’s “absolutes”; it cannot be reduced to anything simpler.
The light that we ordinarily encounter, such as direct sunlight or light
from incandescent and fluorescent bulbs, is largely unpolarized; the
net electric field of the constituent waves is distributed randomly in
time over all possible orientations perpendicular to the propagation
direction. It is of interest to note, then, that specular reflection of un-
polarized light at the Brewster angle results in a 100% s-polarized
reflected beam! At first glance, this phenomenon may seem extraordi-
nary—the generation of complete order out of disorder in apparent vio-
lation of the Second Law of Thermodynamics. There is no violation,
however, for the light and reflecting surface have different tempera-
tures and constitute an open system not in thermodynamic equilib-
rium. Nevertheless, reflection at the polarizing angle can lead to some
remarkable—and easily observable—optical effects.

I can recall one example in my own kitchen where a crumpled cel-
lophane bread wrapper lying on a smooth table and illuminated from
behind by an open window gave rise to an impressive array of colors
on the table surface. This phenomenon is an example of the “interfer-
ence colors” produced by a birefringent material, i.e., an optically
anisotropic material for which the speed of light—and correspondingly
the index of refraction—depends on the direction of light propagation.
In the usual classroom demonstration of this effect, a birefringent
material is placed between two linear polarizers (sheets of Polaroid
plastic, for example). The first polarizer constrains the electric field of
the transmitted light wave to a well-defined plane. Upon entering the
birefringent material, the light wave is split into two components for
which the electric field is either parallel to or perpendicular to a special
symmetry axis of the material designated the optic axis. The two com-
ponents travel through the material at different speeds and thereby
incur a relative phase shift by the time they emerge and recombine at
the far end of the material. Because the two components are orthogo-
nally polarized—that is, their electric fields are mutually perpendicu-
lar—they cannot interfere and manifest any effect of the relative phase
shift.9 The second polariser, however, projects the electric fields of 
both components onto a common transmission axis whereupon the two
waves linearly superpose and interfere. Depending on the phase shift,
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the two components may reinforce one another and appear brighter,
or interfere destructively and be eliminated. Since the phase shift
varies with the thickness of the material and the wavelength (color)
of the light, the composite effect on an incident white-light beam of the
constructive and destructive interference of waves passing through 
an unevenly thick birefringent material is to produce a bright patch-
work quilt of colors when the material is viewed through the second
polarizer.

In the “kitchen experiment,” the crumpled cellophane constituted a
birefringent material of randomly varying thickness, but where were
the two polarizers, for none had been explicitly employed? The first
polarizer was that of the atmosphere itself. The sunlight streaming
through the open window had been polarized by incoherent molecular
scattering (Rayleigh scattering) by the oxygen and nitrogen molecules
in the air. This effect is greatest for skylight coming from directly over-
head when the Sun itself is near the horizon; the light scattered at 90°
to the incident light can, in principle (though, because of depolarizing
mechanisms, rarely in practice), be polarized 100% with the electric
field normal to the plane determined by the incident and scattered
light rays. The second polarizer was the smooth table surface, it-
self, which reflected the light (passing through the cellophane) at the
Brewster angle.

There is another angle—known as the critical angle—that plays an
important role in light reflection when the reflecting material has an
index of refraction lower than that of the medium within which the
light originates. When light passes, for example, from glass (with 
an index of refraction n1 = 1.5) to water (with an index of refraction n2

= 1.3) the refracted rays in the water bend away from the axis normal
to the glass–water interface in accordance with Snel’s law of refrac-
tion

n1 sinq = n2 sinf, (6.1)

where q is the incident angle and f is the refracted angle (both angles
measured with respect to a line perpendicular to the surface). Start-
ing with a light beam directed normally at the interface (q = 0), for
which the transmitted light beam is undeviated (f = 0), and gradually
increasing the angle of incidence, one eventually reaches the criti-
cal angle qc at which the refracted rays are parallel to the surface 
(f = 90°). It readily follows from relation (6.1) that the critical angle
characterizing a particular interface is determined from

(6.2)

For incident angles greater than qc, relation (6.1) leads to no real 
transmission angle f. Experimentally, no light propagates through 

sinq c
n
n

n n= >( )2

1
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the second medium; all incident light is reflected irrespective of 
polarization.

The effect of total reflection is readily demonstrated by a transpar-
ent container (preferably one with flat rather than rounded sides) filled
with water. Looking up through the bottom of the container, an ob-
server would have no difficulty seeing his finger held just above the
surface of the water. When viewed upward through one of the sides,
however, the surface is no longer transparent, but appears opaque and
reflective like a mirror. The effect can be particularly pronounced to
someone submerged in the transparent water of a swimming pool
gazing obliquely upward toward the surface and seeing, not the sky or
ceiling, but objects at the bottom of the pool.

A fundamental attribute expected of the Fresnel amplitudes is that
they must be compatible with the conservation of energy. The formal
expression of this for a transparent medium is that the reflectance and
transmittance must sum to 100% at any angle of incidence and for any
polarization. No light energy can be lost or created by reflection.

It may seem paradoxical, but it is nevertheless the case, that
although all incident light energy goes into the reflected wave under
conditions of total reflection, the incident wave still penetrates the
surface of the reflecting medium. The transmitted wave is not a trav-
eling wave, i.e., it does not propagate undiminished through the
medium, but dies off exponentially with depth of penetration. This
evanescent wave transports no net energy into the medium. Never-
theless, its effects can be dramatic.

* * *

If I were to single out one of the achievements of theoretical physics
that has had the greatest impact on 20th-century science and tech-
nology, it would be Einstein’s prediction in 1917 of stimulated light
emission.10 Before Einstein’s work, physicists and chemists were famil-
iar—even if they did not understand the mechanism—with the pro-
duction of light by spontaneous emission, the process that gives rise to
the spectral lines of excited atoms and the fluorescence and phospho-
rescence of molecules. Einstein reasoned, however, that in addition 
to spontaneous emission, there had to exist another light-creating
process if a piece of matter were to reach thermodynamic equilibrium
with its environment. Whereas spontaneous emission, like the name
implies, ordinarily occurs without external provocation at a rate char-
acteristic of the quantum states of the emitter,11 stimulated light emis-
sion is driven by the presence of light.

Some thirty-five years passed before Einstein’s prediction was veri-
fied in the operation of the ammonia maser, a device that produced
microwave radiation by stimulated emission. The term “maser” is 
an acronym deriving from microwave amplification by stimulated

212 6. Reflections on Light



emission of radiation. Shortly afterward, in 1960, the stimulated emis-
sion of visible (red) light was first produced in the ruby laser (substi-
tute “light” for “microwave”). Today, there is hardly a branch of 
science, technology, industry, or medicine that does not employ lasers
in one capacity or another. Clearly, the need to amplify light is of great
importance.

In the operation of a laser, energy is pumped—for example by
optical, electrical, or chemical means—into the atoms or molecules of
the lasing material. The material is said to be excited, for its elemen-
tary constituents have been driven into their excited quantum states.
When the number of atoms (or molecules) in an excited state is greater
than that of a lower-energy state to which quantum transitions are
possible, the system is said to have a population inversion. Under
appropriate conditions—in particular, if the wavelength falls within
the emission spectrum of the atoms or molecules—a light wave prop-
agating through the excited material can stimulate the release of this
stored energy. Whereas the original mode of excitation (such as an elec-
trical discharge through the lasing medium) may be, in a manner of
speaking, disordered, the process of stimulate emission is a highly
ordered one. A photon present in the wave stimulates an atom or mol-
ecule to emit a second photon with identical properties. In this way,
upon multiple passages of the light through the material, stimulated
emission can, in principle, turn a weak initial wave into an intense,
collimated, monochromatic, polarized light beam.

I have emphasized the word “through” above to accentuate a most
unusual feature of a mode of light amplification proposed by Russian
researchers in 1972 that differs markedly from the laser.12 The
researchers purported to demonstrate theoretically that a light beam
can be amplified by specular reflection from the surface of an excited
substance under conditions of total reflection—that is, where none of
the incident light propagates through the energetic medium!

The claim stimulated as much contention as light. For one thing, the
mathematical analysis of this novel effect suffered a serious ambigu-
ity. For another, experimental tests yielded degrees of amplification far
different from those predicted. And third, the physical mechanism for
how such an amplification could occur outside the amplifying medium
was not entirely clear.

Let us consider first the theory. To someone not familiar with the
application of mathematics to physics, it may seem surprising that 
a properly conducted analysis can lead to ambiguous results. The
popular (and not undeserved) image of physics as a mathematically
rigorous science would seem to imply that, given the equations of
motion for some system, one could, in principle, always (although not
necessarily easily) solve them—and if the equations are correct, then
the solutions will accurately describe the system. Unfortunately, the
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situation is rarely that simple. The equations that govern a physical
system—and which are ordinarily differential equations relating the
temporal and spatial rate of change of dynamical quantities—usually
give rise to more than one solution, perhaps to an infinite number, dis-
tinguished by the choice of the initial conditions (specifying the state
of the system at some fixed time) or the boundary conditions (specify-
ing the state of the system at some fixed place).

The problem with the Russian investigation of light reflection, based
on the Fresnel relations for a uniformly excited medium, was that the
pertinent equations gave rise to two fundamentally different solutions.
To see how this came about, let us examine the standard Fresnel rela-
tion for the reflection of s-polarized light at the interface of two ordi-
narily unexcited dielectric media with respective indices of refraction
n1 and n2 (where the light originates in the medium characterized by
n1):

(6.3)

For any incident angle q chosen by the experimenter, the angle f at
which the light is refracted in the second medium is governed by Snel’s
law [relation (6.1)]. In fact, it is not just the angle f that appears in
the amplitude rs, but rather n2 cosf, and this may be written explicitly
in terms of the incident angle as follows13:

(6.4)

Because the index of refraction of a transparent medium is the ratio
of the speed of light in vacuum to the speed in the medium, it must,
consequently, be a positive real number. Moreover, if n2 > n1, as in the
case of ordinary reflection (e.g., light originating in air and reflecting
from glass), the left-hand side of Eq. (6.4) must also be a positive real
number, and Eq. (6.4) leads to a unique angle of refraction f for any q
within the allowed range of 0°–90°.

In the case where the refractive index of the second medium is lower
than that of the first (n2 < n1), the right-hand side of Eq. (6.4) is the
square root of a negative number, and therefore a pure imaginary
number, for incident angles beyond the critical angle qc given by rela-
tion (6.2). There are two possible square roots differing by a sign, and
for neither, can f be interpreted as an angle of refraction. Indeed, as
described in the previous section, the light is totally reflected. One of
the roots, which is the appropriate one for this physical system, leads
to the evanescent wave. The other root, however, gives rise to a wave
that grows exponentially with penetration of the medium and, as the
presently considered medium has no latent source of energy with which
to augment the wave, this root must be discarded as unphysical.
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If the second medium is not transparent—if, for example, it absorbs
light—then the situation becomes somewhat more complicated, for
now the refractive index itself is a complex number expressible in the
form

ñ = n + ik. (6.5a)

The real part of n, the ordinary refractive index, characterizes the
phase shift incurred by a wave as a result of its spatial displacement
through the medium; the imaginary part k, the absorption coefficient,
characterizes the diminution in amplitude of the wave as a result of
absorption. Thus, the amplitude of a plane wave of angular frequency
w that has propagated a distance d through an absorbing medium is
proportional to

(6.5b)

If the medium is amplifying rather than absorbing, then the ampli-
tude of a traveling wave grows as it propagates. As inferred from rela-
tion (6.5b), an amplifying medium is one for which the absorption
coefficient k is negative. In any event, when the refractive index of the
second medium is complex, then Eq. (6.4) leads to two complex square
roots (one the negative of the other) and, therefore, to two different
expressions for the Fresnel amplitude rs. However, in this case, it is
not so obvious which root to retain.

Upon substitution of the complex expression for n2 cosf, which has
both real and imaginary parts,

n2 cosf = q¢ + iq≤, (6.6a)

the resulting reflectance can be written in the form

(6.6b)

One of the two roots of Eq. (6.4) generates a positive q¢ and a nega-
tive q≤, in which case it is clear from Eq. (6.6b) that the Fresnel co-
efficient is less than unity for all angles of incidence, except at grazing
incidence (q = 90°), where the light is totally reflected. There is no
amplification. The second root, however, leads to a negative q¢ and 
positive q≤, from which it correspondingly follows that, exclusive 
of 90°, the reflectance (6.6b) is greater than unity for all angles of 
incidence. Thus, if the second root is the correct one, light amplifica-
tion is predicted at all angles, except for total reflection at grazing inci-
dence. Is the light amplified or not? How is one to know which root to
select?

In their analysis of enhanced reflection, the Russian authors made
the following arbitrary selection: Choose the first root (no amplifica-
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tion) for angles of incidence below critical angle and the second root
(amplification) for angles of incidence above critical angle. At the 
critical angle itself, there is a discontinuity in the Fresnel coefficient.
A similar problem and resolution applies to the reflection of p-polarized
light.

An examination of the actual wave forms [similar to that of relation
(6.5b)] corresponding to the two roots leads to the following interpre-
tation. The wave for which q¢ is positive and q≤ is negative represents
an amplified wave propagating away from the interface into the second
(the excited) medium with a population inversion, as in the example
of the laser described previously. The wave for which q¢ is negative and
q≤ is positive represents a decaying wave that originated infinitely
deep within the excited medium and is propagating toward the inter-
face. According to the common perception that light reflection occurs
at the outside surface of the second medium, the existence of such a
wave, especially under conditions of total reflection, is problematical.
From where and how did this wave arise? I will return to this ques-
tion later.

When determined by the foregoing arbitrary selection of roots, the
Fresnel coefficients for a uniformly excited medium lead to a maximum
intensity enhancement of about e2, or less than 10. Does such an ampli-
fication of reflected light actually occur?

At about the same time the theory was published, a different group
of Soviet scientists reported a most interesting experiment.14 Light
from a neodymium laser was directed at normal incidence through a
glass prism in contact with a solution of organic dye (known as 
Rhodamine 6G). The composition of the solution was adjusted so that
its index of refraction was a little less than that of the overlying glass
in order that total reflection could occur at the glass–dye interface.
Upon absorbing the light, the dye molecules became excited, and a 
population inversion was established. The excited dye molecules,
undergoing spontaneous radiative transitions back to the ground level,
isotropically emitted light (fluorescence). A portion of the fluorescence
emerging from one end of the prism was directed by a mirror back onto
the glass–dye interface at a narrow range of angles spanning the 
critical angle. These rays then reflected from the interface and were
received at a distant photographic film. From measurement of the
extent of exposure of the film (by a densitometer) as a function of the
angle of incidence, the researchers concluded that the reflected fluo-
rescence was enhanced by about a factor of 25. In a subsequent exper-
iment, a maximum enhancement in excess of 1000 was reported!

By the time I first learned of the controversy over enhanced reflec-
tion, the waters surrounding it were rather muddied. Theoretical
attempts to account for what the Soviet group may have actually
observed were not satisfactory. Nor did there seem to be experiments
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by other researchers. Assuming the phenomenon of enhanced reflec-
tion actually existed, theorists did not, in the main, agree about some
of its basic attributes. According to some, amplification could be pro-
duced at any angle of incidence; according to others, the phenomenon
occurred only for incident angles beyond the critical angle.

As the controversy bore on conceptually subtle issues of both theo-
retical and practical importance, one of my graduate students and I
decided to examine the problem systematically. We were not interested
in trying to explain an experiment performed under conditions that
we only vaguely understood, and that may not have corresponded at
all to the theoretical analyses worked out by others. Rather, we set out
to devise an experiment in which all conditions and parameters were
clearly ascertainable and to compare our observations with a theoreti-
cal analysis directly applicable to the experiment.

Recognizing that an infinitely deep uniformly excited medium, such
as initially treated, is an idealization that one does not encounter in
an actual experiment, we examined the type of “gain profile”—i.e., the
spatial distribution of excited molecules—one is likely to engender by
pumping a dye solution with a laser. If the intensity of the laser pump
is not too great, so that the effective ground-state lifetime (the recip-
rocal of the pumping rate) is much longer than the lifetime of the
excited states, then the gain profile has the same spatial dependence
as that of the pump beam in the dye solution. (Recall from the dis-
cussion of quantum beats that this is the condition required to avoid
multiple cycles of absorption and stimulated emission during the
passage of the pump light pulse.) It has long been known (and referred
to as Beer’s law) that the intensity of a weak light beam passing
through an absorbing medium diminishes exponentially with depth of
penetration z as follows:

(6.7a)

The characteristic depth of penetration d depends on the number of
absorbing molecules and the effectiveness (or so-called absorption
cross section) with which a molecule can absorb a photon from the
pump beam. Where molecules have been excited, the dielectric con-
stant e (and, correspondingly, the refractive index) incurs a negative
imaginary part which, in consequence of Eq. (6.7a), also follows an
exponential decay law within the medium.

(6.7b)

Here, e (0) is the dielectric constant of the (transparent) medium in
absence of excitation and g, the gain parameter,15 is a measure of the
strength of the pump beam or, equivalently, the extent of population
inversion.

e e g dz i e z( ) = ( ) -( )-0 1 .
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The solutions of Maxwell’s equations for the waves of s and p polari-
zation that propagate through a nonmagnetic (m = 1) medium with
dielectric constant (6.7b) were (with no pun intended) quite illumi-
nating. For one thing, the results tended to vindicate the Russian the-
orists’ arbitrary selection of roots in the case of a uniformly excited
medium. Far from the interface—i.e., for a penetration large in com-
parison to the characteristic depth d—the excited medium is effectively
transparent rather than amplifying (since the amplitude of the pump
beam is too low to effect much of an excitation). In this region, a wave
that had entered the surface at an angle below qc behaved, as expected,
essentially like a plane wave traveling undiminished away from the
interface. For angles of incidence above the critical angle, however, the
character of the wave changed; it became an evanescent wave atten-
uated exponentially with distance of penetration. So far, so good.

It was in the excited layer within a few penetration lengths d of the
interface that the physics became interesting. Examination of the
exact solutions16 (which are complicated mathematical expressions
involving, or resembling, Bessel functions) showed the waves to be
decomposable into a linear superposition of two basic components. One
component, analogous to the amplitude derived from the first root of
Eq. (6.4), represented an amplified wave that travels away from the
interface into the excited medium; the other component—as the reader
may have surmised—characterized a decaying wave traveling toward
the interface, such as derived from the second root of Eq. (6.4).

In the present case, however, no question arises concerning which
component to keep, nor is there any discontinuity in the reflectance at
critical angle. For any light polarization, there is only one physically
acceptable solution—namely the solution that remains finite at the
interface; this solution can contain both components. The two compo-
nents do not necessarily contribute to the total wave form equally, but
depend on the angle of incidence. Nevertheless, their relative magni-
tudes are automatically provided by the theory. In order for enhanced
reflection to occur, the component traveling toward the interface has
to be present in the excited layer. This occurs for angles beyond a
certain threshold angle which ordinarily lies close to the critical angle.
In this way, therefore, the prediction of enhanced reflection from a 
uniformly excited medium can be considered justified.

Calculations of the enhancement expected for various experimental
conditions believed achievable in the laboratory led to peak values of
less than 10 over a very narrow range of angles—a few hundredths to
a few tenths of a degree—in the vicinity of critical angle; outside of
this range, the amplification fell off rapidly. Also, other things being
equal, the enhancement increased as the critical angle approached
grazing incidence. The reason for this will become clearer shortly. Was
such amplification observed?
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Indeed it was, although the stringent requirements posed by theory
on the stability of the experiment made for no mean task. As in the
Soviet experiment, we constructed a dye cell with an organic dye 
(Rhodamine B) as the medium to be excited (Figure 6.3). A thick 
fused quartz window with flat sides overlay the dye. Varying the com-
position of the dye solvents permitted a coarse adjustment of the crit-
ical angle to a value of about 88°; fine adjustment was subsequently
achieved by careful control of the dye cell temperature. To create a pop-
ulation inversion, the dye was excited by light from a pulsed dye laser
directed at normal incidence through the transparent quartz window,
and the highly collimated, monochromatic beam furnished by a sepa-
rate helium-neon laser served as a probe with which to measure the
amplified reflection. After reflection from the quartz–dye interface, 
the probe beam was sent through a monochromater (an instrument
employing a diffraction grating to remove extraneous fluorescence) and
then into a photodetector.

The dye cell was mounted on a rotatable stage so that the reflectance
could be measured over a range of incident angles. Because amplifi-
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Figure 6.3. Schematic diagram of the enhanced reflection experiment. Light
from a pulsed dye laser creates a population inversion in the dye solution. The
probe beam from a helium–neon laser reflects at the interface between the 
dye solution and a quartz window (of slightly higher refractive index), passes
through a monochromater which filters out fluorescent light from the dye, and
is received at a photodetector. Amplification is expected for incident angles in
the vicinity of the critical angle.



cation was predicted for only an extremely narrow range of incident
angles close to critical angle, precise control and measurement of the
angle of the probe beam were critical to the success of the experiment.
This was achieved by employing a second helium–neon laser located
at a screen about 5m from the dye cell. Light from this calibration
laser reflected from the quartz surface, leaving a sharp red spot on the
screen from which the direction of normal incidence could be inferred.
By removing the photodetector and determining the location and size
(�1mm) of the probe beam spot on the screen, one could measure the
angle of incidence to within one-hundredth of a degree—a precision
adequate for testing the theory of enhanced reflection.

The intensity of the reflected probe beam was then measured, first
with the dye unexcited and then while the dye was being pumped, and
the reflectance was determined as a function of incident angle for 
different choices of critical angle qc (in the vicinity of about 88°) and
penetration length d (ranging from about 40 to 100 wavelengths of the
633-nm helium–neon red light). With peak amplifications that reached
200–300%, depending on experimental conditions, we were greatly 
satisfied to find that the results agreed well with the theoretical 
expectations of our model (Figures 6.4a and 6.4b).

Although the amplification of light by reflection is now well estab-
lished, the phenomenon may yet raise some puzzling questions in the
minds of those who have not thought about the matter of light reflec-
tion before. How does amplification actually occur, if, in contrast to 
the laser, light does not propagate through the excited medium? As 
I pointed out earlier, total reflection does not imply that the incident
light is in no contact whatever with the excited molecules. There is the
evanescent wave whose depth of penetration, depending on the angle
of incidence, can be substantial. Heuristically speaking, enhanced
reflection may be attributable to stimulated emission by this evanes-
cent wave.

Considering, again, the simplest case of reflection from a uniformly
excited medium, I note that the component of the plane wave travel-
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Figure 6.4. (a) Reflectance as a function of incident angle for light reflection
from the unexcited dye (of Figure 6.3) at a wavelength for which the dye is
largely transparent. The critical angle is at 88.12°. As expected, there is no
amplification. The solid line denotes the theoretical reflectance of a transpar-
ent medium. The broken line shows the small modification that occurs when
the finite divergence of the probe beam is taken into account. (b) Example of
the reflection curve obtained from a dye solution with population inversion.
With a critical angle of 88.79° and characteristic penetration length of about
58 wavelengths (of 633-nm helium–neon laser light), the intensity of the
reflected beam is amplified nearly twofold. The solid line shows the theoreti-
cally predicted reflectance.
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ing through the medium in a direction normal to the surface has the
simple form

(6.8a)

Making use of Eqs. (6.2) and (6.4), one will see that for angles of inci-
dence beyond the critical angle (where n2 cosf is a complex number),
the expression above reduces to that of an exponentially damped wave:

(6.8b)

where the penetration depth d ¢ for a wave of wavelength l = 2pc/w is

(6.8c)

As the angle of incidence q approaches the critical angle qc, the pene-
tration d ¢ becomes infinitely large. The degree of enhancement
depends on the extent to which the incident wave—even though totally
reflected—penetrates the medium. Hence, greater amplification is
expected for incident angles close to the critical angle. Note, too, that
the incident wave also has a component traveling parallel to the
surface. The closer the critical angle is to grazing incidence, the more
of the excited medium the parallel component traverses—just like 
sunlight passes through more of the Earth’s atmosphere when the Sun
is near the horizon than near the zenith.

Clearly, the above “explanation” is not complete, for one may well
wonder why there is no enhancement for angles below the critical
angle where a transmitted traveling wave could conceivably stimulate
the medium to radiate. The enhancement occurs only when there is
present inside the excited medium that wave component traveling
toward the interface. From where does it come?

The equations describing the process of enhanced reflection from a
laser-pumped medium are complicated, and it must be admitted
frankly that not every feature predictable by the theory is corre-
spondingly amenable to a simple interpretation. Nevertheless, there
is a subtle and significant issue here that bears profoundly on the
nature of light reflection in general, which, when once appreciated,
may help clarify the existence in the reflecting medium of a seemingly
puzzling wave form.

Why, for example, does the reflection of light at the outside surface
of a material depend at all on the optical properties of the interior
region? The answer, by no means trivial to demonstrate, is given by
what is termed the Ewald–Oseen extinction theorem. The basic idea
is that at an atomic level, the reflected and transmitted waves,
although apparently generated at the boundary, actually originate

¢ =
-

d
l p

q q
2 1

2 2

n

csin sin
.

E z e z( ) - ¢� d ,

E z ei c n z( ) ( )( )� w f2 cos .

222 6. Reflections on Light



from within the reflecting medium by the coherent radiation of mole-
cular dipoles that have absorbed (extinguished) the penetrating inci-
dent light. The waves radiated by individual molecules superpose
constructively in the directions for which reflected and transmitted
waves are predicted to exist by macroscopic physical optics. For other
directions, the waves superpose destructively. Thus, the reflected
wave, although existing in medium 1, bears the imprint of the optical
properties of medium 2. In a similar way, the refracted wave, whether
traveling or evanescent, originates ultimately within the interior of the
medium and not exclusively at the interface.

To my knowledge, this microscopic picture of light reflection has
been implemented rigorously only in a few tractable cases such as
reflection at the interface of transparent media. Even then, the analy-
sis is not simple.17 Were a corresponding microscopic treatment of
enhanced reflection to be given, I believe it very likely that a satisfac-
tory molecular explanation of the wave form within the gain region
would emerge. In any event, it is worth emphasizing that the decom-
position of a given wave form into various components is a mathe-
matical stratagem that can usually be effected in different ways for
different purposes. In reality, there is only one wave of specified fre-
quency and polarization within the amplifying region and no proble-
matic wave propagating toward the surface from the infinite depth 
of the material.

* * *

Having satisfied myself that the amplification of linearly polarized
light by reflection from an excited medium was possible and followed
in a self-consistent way from the laws of classical electrodynamics, I
wondered next whether one could selectively amplify circularly polar-
ized light by the same method. There are certain materials that inter-
act asymmetrically with left and right circularly polarized light when
unexcited, and I expected that they would do the same when pumped
to higher quantum states. I also expected that the theoretical analy-
sis of this process would be easily accomplished—at least for the
special case of a uniformly excited medium. All I had to do was start
with the appropriate Fresnel relations for a transparent unexcited
material and then, following the approach taken by the Russian 
theorists, replace the real refractive indices with complex ones with
negative imaginary parts.

I was wrong. Six years would pass before I could return to the
problem of enhanced reflection from a medium that reflects left- 
and right-handed light differently. I was to discover first that the 
simplest case I imagined—a problem that ought to have been solved
during the 19th century—seemed to have no physically acceptable
solution!
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6.3. Left- and Right-Handed Reflection

That light waves could exist in right- and left-handed forms was a bold
hypothesis initially proposed and experimentally confirmed around
1825 by Fresnel as part of his investigation of a curious phenomenon
today referred to as optical rotation. Many naturally occurring sub-
stances, corn syrup for example, have the capacity to rotate the plane
of vibration of a transmitted linearly polarized light beam. Some four-
teen years earlier, the French physicist, Dominique F. J. Arago,18 first
observed this effect—the nature of which he did not understand—in
the passage of linearly polarized sunlight along a particular axis
(called the optic axis) of a quartz crystal. The sunlight had been polar-
ized by reflection from glass at the Brewster angle. By viewing the
light through a plate of Iceland spar (calcite), Arago saw two solar
images in complementary colors. He had seen such colors before when
the light passed through plates of mica or gypsum instead of quartz,
but in those cases, the colors of the images changed when the plate
was rotated in its plane. The orientation of the quartz plate about the
optic axis, however, had no effect on the images.

It was another French “optician,” Jean Baptiste Biot, who recognized
shortly afterward that the effect resulted from the rotation of the
linear polarization of the light in quartz. Biot carried out extensive
investigations of the phenomenon discovered by Arago—his first
written memoir in 1812 read before the Institut de France covered
some 400 pages!—showing that optical rotation occurred not only in
crystals but also in liquids such as turpentine and oils of laurel and
lemon, and in their vapors. On occasion, the demonstrations were
accompanied by spectacular optical effects of an unanticipated nature,
as when Biot set up his gas-phase optical rotation experiment in an
ancient church then serving as the orangery for the house of peers.
Turpentine vapor, issuing from a boiler, was conducted into a 30-m
long iron tube with glass ends. Just when the effect of optical rotation
was beginning to be observable, the boiler exploded, setting fire to the
church! Unfortunately, Biot was not able to measure the extent of the
optical rotation (although I have no doubt that city officials readily
quantified the extent of the damage).

In general, the degree to which the plane of polarization is rotated
is proportional to the quantity of substance through which the light
travels and inversely proportional to the wavelength of the light. For
most natural products, the rotation is usually modest, perhaps a few
degrees or tens of degrees per millimeter of substance, although there
are materials for which the rotation can be much larger.19 (In a special
class of materials known as cholesteric liquid crystals, the rotations
can be enormous, on the order of 100,000° per millimeter.) What is the
explanation of optical rotation?
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The essence of Fresnel’s interpretation, still valid today, is that, 
upon entering the material, linearly polarized light is decomposed into
two coherent beams of opposite circular polarization. The right- and
left-handed waves propagate with different speeds and incur a rela-
tive phase shift. Emerging from the far side of the material, the two
circular polarizations—no longer rotating in synchrony—superpose
again to yield a linearly polarized beam with a rotated plane of polar-
ization (Figure 6.5). For a light beam of wavelength l passing through
a substance of thickness d, the degree of rotation can be expressed as

(6.9)

where nL and nR are the different indices of refraction for left and right
circular polarizations.

One of the most striking demonstrations of optical activity that 
I know—and which would no doubt have greatly pleased Fresnel—
consists of passing the red beam of a helium–neon laser through a 
long vertical transparent glass tube of corn syrup, the bottom of which
(where the light enters) is covered by a rotatable linear polarizer.
Without the linear polarizer, the tube of syrup is more or less uniformly
reddish along its length when regarded from the side. With the polar-
izer, however, the light appears distributed around the axis of the tube,
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Figure 6.5. Optical rotation of a plane-polarized wave in an optically active
medium. The electric field (Ei) of the incident linearly polarized wave is a
superposition of left (EL) and right (ER) circularly polarized components which
advance through the medium at a rate depending on the respective refractive
indices nL and nR. Upon leaving the medium, the superposition of the phase-
shifted fields EL and ER results in a linearly polarised field E0 rotated by angle
q with respect to Ei. The degree of rotation is proportional to the circular bire-
fringence (nL - nR) and the sample length (d).



much like the red spiral of a barber pole. Indeed, by rotating the polar-
izer in one sense or the other, one can make stripes of light wind
upward or downward around the tube axis.

This remarkable effect is a combination of both optical rotation and
molecular light scattering. At the plane of entry through the linear
polarizer, the electric field of the light is oscillating along a well-defined
axis perpendicular to the light beam. As the beam propagates upward
through the syrup, this axis is progressively rotated. From a classical
perspective, the electric field of the light wave, which is oscillating at
some 1014 cycles per second, causes electrons of the sugar molecules in
the syrup to vibrate about their equilibrium positions and, therefore,
to radiate electromagnetic waves at the same frequency as that of the
incident light. By this process of absorption and reradiation, the sugar
molecules redirect or scatter a part of the incident light. The theory of
molecular light scattering—the same theory (Rayleigh scattering) that
accounts for the polarization of skylight—predicts that the light scat-
tering is greatest at right angles to the axis along which the electric
charges are oscillating. Thus, as the syrup continuously turns the 
electric field of the advancing light wave, it turns, as well, the orienta-
tion of the induced electric dipoles in the medium and the direction in
which the incident light is maximally scattered. Hence, the observed
“barber pole” effect.

Optical rotation is one of a complex of phenomena, more generally
termed optical activity, the mechanisms of which entail an asymmetric
interaction with right- and left-handed light. For a substance to inter-
act asymmetrically with the two forms of circularly polarized light, it
must, itself, be built of units that have a handedness or chirality. (A
chiral object like a glove is one that, in general, cannot be superposed
on its mirror image.) This can occur in two basically different ways.

A material may be optically active because its fundamental chemi-
cal unit, or molecule, is chiral. This is the case for the corn syrup,
which is composed of sugar molecules with a characteristic right- or
left-handedness. In most organic compounds, there is at least one
carbon atom whose chemical bonds are directed outward toward the
vertices of a tetrahedron (i.e., with an angle of about 109° between any
two bonds). If a molecule contains one or more “asymmetric” carbon
atoms—a carbon atom bonded to four different substituents—it will
not be superimposable on its mirror image. Optical activity deriving
from intrinsic molecular structure can occur in any state of matter:
solid, liquid, or vapor.

Even if the molecules themselves are not chiral, however, a sub-
stance may still manifest optical activity if—as in a crystal, for
example—the molecules are arranged in a well-defined chiral struc-
ture such as that of a helix. The optical activity of crystalline quartz
comes from the helical winding of achiral silicon dioxide molecules
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about the optic axis. If melted or dissolved in a solvent, such a sub-
stance would lose its optical activity.20 Fused quartz, therefore, is not
optically active.

It is worth noting that free atoms—i.e., atoms not bound in mole-
cules nor subjected to static electromagnetic fields—are spherically
symmetric and should have no preferential handedness. Correspond-
ingly, the laws of electrodynamics (both classical and quantum) strictly
forbid individual atoms from exhibiting optical activity. It turns out
that they do, anyway—but about this I will comment in the next
chapter.

In addition to optical rotation, another common manifestation of
optical activity is that of circular dichroism, in which incident linearly
polarized light is converted to elliptically polarized light by propaga-
tion through a light-absorbing chiral substance. Elliptical polarization
may be thought of as an unequal linear superposition of left and right
circular polarizations. The phenomenon arises from the differential
absorption—rather than phase shift—of the component left and right
circularly polarized waves. An expression for the so-called ellipticity of
the light, which, like optical rotation, is also expressible as an angle,
would resemble Eq. (6.9) except that chirally asymmetric absorption
coefficients (kL, kR) would replace the indices of refraction.

The two phenomena, optical rotation and circular dichroism, are, in
fact, closely related. As illustrated in the previous section [relation
(6.5a)], one can regard the index of refraction as a single complex
number of which the real part characterizes phase shifts and the imag-
inary part characterizes light absorption. Which phenomenon may
occur for a given substance depends on the frequency (or wavelength)
of the light. If the frequency corresponds to a Bohr transition frequency
of the chiral system, the light is absorbed (presuming the transition is
allowed) and circular dichroism results; if the frequency lies outside
the regions of the spectrum where light is absorbed, then the substance
is transparent and optical rotation occurs instead.

Besides modifications of the polarization of transmitted light, there
is yet another process by which a chiral material may manifest optical
activity, namely light reflection and refraction. Although reflection and
refraction may sound like two separate processes, they are basically
dual manifestations of a particular example of light scattering at an
interface. To derive the amplitudes of either the reflected or refracted
waves, one must analyze both processes together. At this point, it is
appropriate to return to Fresnel and to inquire just how he tested his
hypothesis of the existence of circularly polarized light.

There is a subtlety to the nature of circular polarization not encoun-
tered with linear polarization. Polaroid plastic, routinely found in sun-
glasses and commonly available from scientific supply houses, did not
exist in Fresnel’s day. Instead, birefringent materials such as Iceland
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spar were used to create and analyze linearly polarized light. An 
incident unpolarized light beam passing through a calcite crystal is
decomposed into two transmitted beams with orthogonal linear 
polarizations. These two emerging beams would produce spots of equal
brightness on some distant screen. If the incident light is linearly
polarized, however, the resulting spots would be of unequal intensity,
depending on the angle that the electric field of the incident light wave
makes with the optic axis of the crystal. For an incident beam polar-
ized either parallel or perpendicular to the optical axis, only one beam
of corresponding polarization would emerge from the crystal; that is,
there would be only one spot on the screen.

Circularly polarized light passing through Iceland spar also gives
rise to two spots of equal intensity, from which one might have erro-
neously inferred that the incident light was unpolarized. Yet, there is
a world of difference between circularly polarized light, for which the
electric field at any point in the wave rotates uniformly in one sense
or the other about the direction of propagation, and unpolarized light,
in which case the orientation of the electric field fluctuates randomly
and rapidly during the time the polarization is observed. How is one
to tell the difference?

Fresnel rightly understood that circularly polarized light may be
thought of as a superposition of two linearly polarized light waves
oscillating out of phase with one another by 90°. Indeed, he was able
to create circularly polarized light by directing a linearly polarized
light beam into a specially shaped glass prism—today called the
Fresnel rhomb—and causing it to undergo total reflection at two oppos-
ing glass–air interfaces before emerging. With the electric field of the
entering light oriented at 45° to the plane of incidence, the amplitudes
of the reflected s- and p-polarized components incurred a relative
phase shift of 45° for each total internal reflection. To show that 
the beam subsequently emerging into the air was circularly polarized,
rather than unpolarized, Fresnel passed it again through a similar
rhomb. After two additional total internal reflections, the resulting
light (now with a phase shift of 180° between s- and p-polarized com-
ponents) again became linearly polarized. By contrast, unpolarized
light entering a Fresnel rhomb leaves as unpolarized light irrespective
of the number of internal reflections.

Fresnel verified his interpretation of optical rotation—and corre-
spondingly confirmed the existence of circularly polarized light—by
means of adroit application of reflection and refraction within another
of his ingenious prisms. If the refractive indices of right- and left-
handed light are different in an optically active medium, then the two
circular polarizations ought to refract at different angles. Thus, an ini-
tially linearly polarized light beam obliquely penetrating the surface
of an optically active material should split into two beams of opposite
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circular polarization. The expected effect, however, is extremely small.
Yellow light (589nm) from a sodium lamp, for example, propagating
along the optic axis of a quartz crystal experiences a difference in
refractive index, |nL - nR|, of about 7 ¥ 10-5.

With his customary inventiveness, Fresnel circumvented this dif-
ficulty by concatenating segments of left- and right-handed quartz
prisms to make a composite prism. Linearly polarized light entered
one end of the prism. At each interface between optically active quartz
segments of opposite chirality, the deviation between refracting left
and right circularly polarized light waves was enhanced. From the
opposite end of the composite prism, there emerged, as Fresnel pre-
dicted, two circularly polarized light beams sufficiently separated so
as to leave no doubt about the existence of this “new” form of light.

There is something both beautiful and ironic about Fresnel’s
researches on light reflection, polarization, and optical activity. I have
often wondered whether Fresnel ever concerned himself with the
problem of light reflection from an optically active medium. It would,
after all, have been a natural thing for someone to do who derived the
laws of reflection for ordinary (achiral) dielectrics and who employed
the differential refraction of circularly polarized light to elucidate the
nature of optical rotation. Nevertheless, I never found any mention 
of such an investigation in Fresnel’s collected Oeuvres. In retrospect,
this is perhaps not so surprising. Given the contemporary state of 
technology within which he had to work, any sought-for chiral effects 
could well have been impossibly weak to observe—even for Fresnel.
(Indeed, with the photometric methods available through the 1820s, it
was not possible to measure reflectance with sufficient precision to 
test the original Fresnel coefficients for achiral media.) What surprised
me more, however, when I was just beginning to turn my attention 
to the study of optical activity, was to find that over a century and a
half after Fresnel, this fundamental problem was apparently still not
solved.

Although Fresnel’s interpretation of optical rotation was fine as far
as it went, it did not explain the origin of chiral refractive indices. How
do left- and right-handed molecules or crystals specifically affect light
differently? The answer to this question can be rigorously provided by
a quantum mechanical description of the interaction of chiral systems
with light.21 Nevertheless, the following more easily visualizable clas-
sical model provides a heuristic explanation that embodies the seminal
features of the quantum treatment. Imagine a linearly polarized light
wave incident upon an arbitrarily oriented helical molecule in a large
sample of identical molecules (i.e., all the helices have the same hand-
edness). Responding to the oscillating electric field, electrons in the
molecule suffer periodic displacements about their equilibrium loca-
tions and give rise to an oscillating electric dipole moment. In addi-
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tion, the alternating flow of electric charge along the helix engenders
an oscillating magnetic dipole moment.22 Similarly, the oscillating
magnetic field of the light wave produces (by Faraday’s law of induc-
tion) a time-varying electric field at the molecule that also gives rise
to induced electric and magnetic dipole moments.

The key feature to note is that the relative orientation of the induced
electric and magnetic moments depends only on the sense of the helical
winding and not on the orientation of the helical axis. For example,
the moments may be parallel for a right-handed helix and antiparal-
lel for a left-handed helix. Oscillating electric and magnetic dipoles are
themselves sources of electromagnetic radiation. However, the electric
and, correspondingly, the magnetic fields of the waves emitted in a
given direction by these two sources are perpendicular to one another.
Thus, the waves superpose to yield a resulting scattered wave with
electric and magnetic fields that are rotated with respect to the corre-
sponding fields of the incident wave. The extent of rotation of the polar-
ization varies with the orientation of the helix, but the direction of the
rotation depends only on the relative orientation of the induced dipole
moments . . . and this is the same for all the helices in the sample. Con-
sequently, the net forward-scattered wave, produced by the superpo-
sition of waves scattered from all the helices, is rotated clockwise or
counterclockwise depending on the chirality of the helices.

Keeping in mind that the above description is only a model intro-
duced for the purpose of helping make tangible what, in effect, is a
lengthy mathematical analysis—and that it certainly does not account
for all aspects of optical activity—one may still ask how the model
accounts for “circular birefringence” (i.e., for different indices of refrac-
tion for the two forms of circularly polarized light). At no point in the
discussion has a light wave been assumed to move at anything other
than the vacuum speed of light. Why, then, are the refractive indices
for right- and left-handed light different?

The microscopic description of light propagation through a trans-
parent material refers mainly to relative phase: the relative phase of
the induced dipoles, the relative phase of their radiated waves, the rel-
ative phase of the scattered and incident waves. It is only in the macro-
scopic or phenomenological description of optical activity, where light
is presumed to interact with a continuum of matter, that the index of
refraction is introduced as a means of accounting for the net phase
retardation produced in a transmitted wave by all the molecules of the
sample. Microscopically, there are only “atoms (or molecules) and the
void”; light moves at speed c in the interstices of matter only to be
absorbed and reradiated—and therefore apparently slowed—by mole-
cular encounters. The net result is an effective lowering of the speed
by an amount that depends, in the case of a chiral material, on the
handedness of the molecules.
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To recapitulate and generalize the salient points, the origin of optical
activity derives from two distinct processes. The first, termed “spatial
dispersion”, is the variation in the phase of an incident light wave over
the extent of a chiral molecule or molecular aggregate. This is to be
contrasted with the interaction of a light wave with an atom the size
of which (about 10-8 cm) is some three orders of magnitude smaller
than the wavelength of visible light. To an incoming light wave, the
atom is a mere point; the variation in phase of the wave over an atomic
scatterer is usually negligible. The variation in phase of an incident
light wave over a chiral molecule, however, reveals in the scattered
wave the molecular handedness.

The second process is the interference that results from the super-
position of scattered waves issuing from the electric and magnetic
dipole moments induced in the medium by the incident wave. For ele-
mentary constituents that are not chiral, the incident light cannot
induce electric and magnetic dipole moments simultaneously, and
there would be no optical activity.

In the quantum mechanical treatment of optical activity, the role of
symmetry is perhaps more direct and fundamental. The states of a
quantum system with a center of symmetry are characterized by sharp
values of a quantum attribute termed “parity.” If, upon inversion of
the coordinates (x,y,z Æ -x,-y,-z) of all particles in the system, the
wave function is unchanged, the state is said to have “even” parity. If
the wave function changes sign under coordinate inversion, the state
is said to have “odd” parity. An oscillating electric dipole can induce
transitions between two states—and thereby produce light—only if the
two states have opposite parities. By contrast, an oscillating magnetic
dipole can induce transitions only between two states that have the
same parity. Electric and magnetic dipole transitions, therefore, cannot
occur simultaneously between states of sharp parity, and systems
characterized by such states do not manifest optical activity. The
quantum states of chiral systems, however, are superpositions of states
of even and odd parity; an incident wave induces both electric and
magnetic dipole moments as depicted in the classical heuristic model
previously described.

From the phenomenological perspective of physical optics, the 
conceptual problem of describing optical activity can be considered
resolved when the so-called constitutive, or material, relations are
known. Although it suffices to speak simply of the “electric” and “mag-
netic” fields of a light wave in vacuum, the situation is more compli-
cated for light in a medium. The electrons of the molecules, induced
to oscillate by the electric and magnetic fields of the incident wave,
serve as sources of additional internal electromagnetic fields. In all,
there are four types of electromagnetic fields, generally designated 
E (the electric field), B (the magnetic induction), D (the electric dis-
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placement), and H (the magnetic field), whose properties one must
know in order to predict the response of a material to light. The con-
stitutive relations connect the secondary fields D and H (arising from
induced charges and currents within the medium) to the fundamental
fields E and B.

The constitutive relations for the simplest optically active medium—
one that is intrinsically nonmagnetic, isotropic, homogeneous, and
transparent—were derived from quantum mechanics some sixty years
ago.23 I call these the symmetric set of relations because their form
remains invariant under a special type of symmetry transformation
that effectively interchanges E and H, and B and D. However, an alter-
native and simpler set of relations—which I designate the asymmet-
ric set—is the set one would most likely find in optics books that treat
the subject of optical activity.24 The chief feature of the asymmetric set
is that the optical activity of the medium is presumed to derive exclu-
sively from its dielectric properties; there is no magnetic effect of 
the light wave on the medium and, as a result, the magnetic fields B
and H are considered identical. Clearly, then, the above-mentioned
symmetry transformation would not leave the theoretical expressions
unchanged—hence the term “asymmetric.”

Ironically, the two outwardly dissimilar sets of relations have both
successfully accounted for optical rotation and circular dichroism in
the transmission of light through an optically active medium. That is,
when employed in Maxwell’s equations, both sets predict the existence
of circularly polarized waves with different refractive indices of the
form

(6.10a)

(6.10b)

where n0 is the mean refractive index and the parameter f is a measure
of the intrinsic strength of the chiral interaction between the medium
and light. In the absence of evidence to the contrary, the symmetric
and asymmetric sets of constitutive relations have long been consid-
ered physically equivalent. Indeed, this equivalence has been asserted
as a consequence of another fundamental symmetry of the laws of 
classical electromagnetism. It has been argued that the fields D and
H for a particular medium (like the vector potential field A of the
Aharonov–Bohm effect discussed in Chapter 3) are not unique—that
it is always possible to transform a given pair to a new pair of fields
D¢ and H¢ (that also satisfy Maxwell’s equations) by redefining in a
prescribed way the induced electric and magnetic dipoles. By means
of one such family of transformations, the magnetic dipoles can be
made to vanish altogether, in which case the optical properties of 
the medium derive only from the (redefined) electric dipoles. Such

n n fR = -( )0 1 ,

n n fL = +( )0 1 ,
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transformations convert the symmetric set of constitutive relations
into the asymmetric set, apparently demonstrating that the different
mathematical forms superficially mask a fundamental physical 
equivalence.

As already explained, I first became interested in light reflection
from optically active media as a possible means of selectively ampli-
fying circularly polarized light. However, other motivations rapidly
developed as well. Ever since the discovery of natural optical activity,
the principal experimental methods (optical rotation and circular
dichroism) generally involve measurement of polarization changes
incurred by transmitted light. I was interested in exploring what 
new things might be learned by an alternative experimental 
technique. For example, the study of optical activity by light reflection
could confer significant advantages in the investigation of chiral 
thin films that would be too thin to have much of an effect on a trans-
mitted beam or, conversely, in the investigation of opaque chiral
samples through which a transmitted beam would be undetectably
weak.

A more exotic potential application relates to the study of life itself.
Biochemical processes carried out in the laboratory with substances of
nonbiological origin ordinarily lead to equal mixtures of left- and right-
handed molecular forms (called enantiomers) that display no residual
optical activity. By contrast, the capacity to produce and consume opti-
cally active substances (sugars, amino acids, etc.) of a particular chi-
rality is perhaps the most outstanding chemical feature of life on Earth
as we know it. Whether such chiral asymmetry in living things arose
by chance or evolved deterministically from the laws of physics is not
known. The question has far-reaching implications, however. A uni-
versal origin of biological homochirality would suggest that nonter-
restrial life (if there is any) should display the same chiral preferences.
It is conceivable that, some day, the manifestation of optical activity
in the light reflected from planetary or asteroidal surfaces may signify
the existence of living things.

Unaware of potential subtleties in the description of optical activity,
I calculated the theoretical Fresnel coefficients and the resulting
reflectances for incident light of linear and circular polarizations. To
my surprise, the analyses of light reflection based on the two “equiv-
alent” sets of material relations for an optically active medium gave
entirely different results! Indeed, for light striking the surface of the
material perpendicularly, the symmetric set of relations led to no dif-
ference in reflection at all between left and right circularly polarized
light—even though the reflecting medium has an intrinsic handed-
ness. I viewed this result with considerable suspicion and found more
satisfying at first the prediction of the asymmetric set that at normal
incidence occurred the largest difference in reflection of circularly
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polarized light. This satisfaction was short-lived. To my still greater
surprise, the reflectance and transmittance deduced from the asym-
metric set of relations did not sum to unity, even for a transparent
medium. These amplitudes violated the fundamental physical law of
energy conservation!

Clearly, the two descriptions of optical activity were not equivalent
(Figure 6.6). I wondered which set of Fresnel coefficients, if either, was
correct. Was it possible that so basic a problem in the optics of chiral
media could have gone unnoticed and untested since the development
of classical electrodynamics a century and a half ago?

Untested it seemed to be, but not unnoticed. Several others had also
been aware of theoretical inconsistencies in the amplitudes associated
with the asymmetric set of material relations. However, as these rela-
tions were considered well established by previous studies of optical
activity, the origin of the discrepancies was attributed to the structure
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Figure 6.6. Theoretically predicted differential reflectance D = (RL - RR)/
(RL + RR) of left and right circularly polarized light from an isotropic optically
active medium. The curve based on the symmetric constitutive relations shows
a null D at normal incidence where the curve derived from the asymmetric
constitutive relations is maximum. The individual reflection curves for left and
right circular polarizations (dashed line designated RCP) are not distinguish-
able on the scale shown at the right.



of classical electrodynamics itself. Proposals were made to change the
familiar Maxwellian expressions representing the flow and conserva-
tion of energy or the boundary conditions of electromagnetic fields at
surfaces.

It is one of the intriguing features of physics, perhaps of other sci-
ences as well, that what is construed to be understood best turns out
often enough not to be well understood at all. Then, the importance of
experimentation, too often forgotten or ignored as the elements of
physics theory become increasingly abstract and remote from experi-
ence, must be reasserted. Maxwell, himself, expressed this sentiment
eloquently in his 1871 Cambridge lecture celebrating the establish-
ment of the Course of Experimental Physics and the erection of the
Devonshire Laboratory at Cambridge University:

This habit of recognising principles amid the endless variety of their action
can never degrade our sense of the sublimity of nature, or mar our enjoyment
of her beauty. On the contrary, it tends to rescue our scientific ideas from that
vague condition in which we too often leave them, buried among the other
products of a lazy credulity. . . .25

And so I was at the ESPCI in Paris to test with my French colleague
whether a widely accepted description of optical activity or whether
Maxwell’s own electromagnetic theory (in its proper domain of classi-
cal optics) was one of the “products of a lazy credulity.” The objective
of our experiment was to measure the difference in the intensities of
left-handed and right-handed light beams reflected by a naturally 
optically active sample. The difference is ordinarily very small—on the
order of the circular birefringence (|nL - nR| � 10-5 or 10-6) itself—and
can be masked by a variety of instrumental artifacts. This experiment
was to be a difficult one.

One might wonder why a reflection experiment should give rise to
so weak an effect, when a transmission experiment can lead to a
readily measurable optical rotation. The answer lies in part in Eq.
(6.9). In addition to the circular birefringence, the expression also con-
tains the ratio of the sample thickness to the wavelength of light. With
an optical path length through the sample many times larger than 
the wavelength of light, the intrinsically weak circular birefringence
can be effectively amplified. The difference in reflection of left and
right circularly polarized light from the surface of a bulk (ideally 
infinitely thick) optically active medium is insensitive to the thickness
of the medium and does not depend on the wavelength explicitly
(although there is an implicit dependence through the index of refrac-
tion). Thus, it cannot be amplified in this way.

Nevertheless, there are ways of enhancing the difference in reflected
circularly polarized light. One way is by “index matching” or adjust-
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ing the mean refractive index [n2 = 1–2 (nL + nR)] of the optically active
medium to be close to that of the achiral medium (n1) within which 
the light originates. As a rough approximation, the difference in
reflectances is

(6.11)

for a transparent medium with n2 > n1. There comes a point of dimin-
ishing returns, however, for the closer the indices are matched, the
greater is the transmitted light and the weaker is the reflected light—
unless the material is absorbing. In the latter case, the refractive index
is complex [Eq. (6.5a)], and matching the real part to the index of 
the achiral medium does not lead to a vanishingly small reflectance.
A second way employs multiple reflection of light at the optically 
active surface. Under appropriate conditions—involving an absorbing
medium—the difference in reflectances for circularly polarized light
can be made to increase linearly with the number of reflections. Both
of these methods were eventually to play a significant role in our 
experiments.

The instrumental heart of the reflection experiment is the photoe-
lastic modulator (PEM), which makes it possible to determine the 
difference in reflectance of circularly polarized light nearly instanta-
neously in a single-step measurement. Because this difference is small
compared with intensity fluctuations of the light source, it would be a
hopeless endeavor to attempt to measure the reflectance of left and
right circularly polarized light separately and then to subtract them.
Stripped to its bare essentials, the PEM is a bar of fused (and there-
fore optically inactive) quartz made to oscillate at a frequency of about
50kHz along its long axis (Figure 6.7). A light beam, before or after
reflection from the surface of an optically active sample, traverses the
quartz bar in a direction perpendicular to the axis of oscillation. As a
result of the mechanical vibration, the refractive index for light polar-
ized along the axis of the bar also oscillates at 50kHz. Thus, upon
passing through a PEM vibrating at frequency f, the light itself incurs
an oscillatory phase shift of the form

(6.12a)

between the components of the beam polarized parallel to and per-
pendicular to the axis of the quartz element.

The effect that the modulator has on the light depends on the 
modulation amplitude f0 and on the polarization of the incident light.
Suppose the incident light is linearly polarised at 45° to the vibration
axis of the quartz. The parallel and perpendicular components of the
wave (of optical frequency �) can be expressed as

f f p= ( )0 2sin ft
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(6.12b)

(6.12c)

With f0 set equal to p/2 radians, the emergent wave oscillates har-
monically between left and right circular polarizations as the quartz
bar is maximally extended and compressed at the mechanical fre-
quency of 50kHz. At intermediate positions of the end of the bar, the
wave polarization is elliptical (i.e., a linear superposition of left and
right circularly polarized components). Other settings of the modula-
tion amplitude produce emergent waves that evolve in time between
other states of polarization. For example, if f0 is set to p radians, then
the transmitted wave oscillates harmonically between two orthogonal
states of linear polarization. Linearly polarized light, as Fresnel first
showed, is also resolvable into a superposition of circularly polarized
components. In effect, the PEM makes it possible for the chiral reflec-
tor to sample incident left and right circularly polarized light of equal
intensity at least once every period of mechanical oscillation [T =
1/(50kHz) = 0.02ms], a timescale short compared with that of light-
source fluctuations.

Received by a photodetector, the modulated light gives rise to an
electric current in the output containing a dc component (0Hz) as 
well as components oscillating at the fundamental frequency (50kHz)
and higher harmonics (100kHz, 150kHz, etc.). The various compo-
nents can be measured individually by means of an instrument known
as a lock-in amplifier or synchronous detector. A quantitative measure
of the difference in reflection of circularly polarized light can then 

E t^ = ( )cos 2p� .

E t|| = -( )cos 2p f� ,
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Figure 6.7. Schematic diagram of the PEM, a bar of fused silica made to
vibrate at an ultrasonic frequency along its long dimension. Periodic com-
pression and extension of the intrinsically isotropic bar make the bar bire-
fringent with a refractive index oscillating at the same frequency along the
axis of mechanical vibration. The electric field E of a light wave passing trans-
versely through the PEM is a superposition of components (Ex, Ey) linearly
polarized perpendicular and parallel to the vibration axis. The PEM produces
an oscillating relative phase between these two components.



be determined directly from appropriate ratios of these current 
components.

In principle, at least, that is how the experiment was supposed to
work. Were matters actually so simple, the desired data could have
been collected within a week. In reality, however, the experiment, first
begun in the mid-1980s with my students, was pursued over a period
of years as it became necessary to find and eliminate spurious signals
that mimicked the effects of optical activity. One of the last and 
trickiest problems stemmed from the PEM itself. Although reliably
employed since the mid-1960s to measure the circular dichroism of
optically active materials with a sensitivity of 1 part in a hundred
thousand, the PEM now appeared to give rise to a curious false signal
two orders of magnitude larger than ever expected when used to test
the chiral Fresnel coefficients. Nor was this a “local” phenomenon; the
signal persisted for all PEMs tried, whether of commercial origin or
home-made. How was it possible for scores of optical physicists using
similar devices over a period of more than two decades to have missed
so large a systematic error?

It was not possible; this artifact, as Jacques and I were to under-
stand better later, did not show up in experiments employing only one
polarizer. In our experiments, however, there were always at least two
polarizers: the one that prepared the light beam for passage through
the modulator, and the reflecting surface itself (the “hidden” polarizer
of my kitchen experiment years earlier).

The solution to the problem, which was to have an intrinsic utility
of its own, was traced to the existence of a weak static linear bire-
fringence in the quartz bar. This is the type of optical anisotropy found,
for example, in calcite, where linearly polarized waves pass through
the crystal at different speeds depending on their direction of propa-
gation and orientation. Ironically, it had long been known that stresses
induced by the manufacturing process or by pressure from the edges
upon which the bar rested generated a weak linear birefringence in
the quartz. It was also assumed, however, that the axis of static bire-
fringence lay parallel to the axis along which the quartz oscillated. 
In fact, we had expressly designed at the outset an experimental con-
figuration for which this type of birefringence should not affect the
desired signal.

The chiral reflection experiments showed that the axes of static and
oscillating birefringence in the fused quartz were not parallel and that
even minuscule angular deviations—which ordinarily would have been
inconsequential in measurements of circular dichroism—yielded dis-
turbingly large signals in other experimental configurations. How was
one to circumvent a problem that seemed to be an unavoidable conse-
quence of fabricating the most essential part of the experiment! After
all, the PEM still remained the most suitable way (short of counting
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individual photons—a procedure that was not without its own diffi-
culties) of observing weak chiral asymmetries in scattered light.

The reflection experiment was temporarily put aside in order to
examine in minute detail, both theoretically and experimentally, 
the passage of light through an elastic modulator. The comprehensive
theory that finally emerged from this detour happily suggested a
number of ways to circumvent the stress-induced birefringence of the
quartz, if not also to reduce it, at least in the small region through
which the light passes. Everything was back on track.

By taking advantage of index matching and multiple reflection, my
colleague and I were able to observe for the first time the difference
with which a naturally optically active material reflects left- and right-
handed light (Figure 6.8). It is a testament to the extraordinary ex-
perimental ability of Augustin Fresnel that the complementary
phenomenon to the differential circular refraction of light has only 
relatively recently, after more than one hundred and seventy years,
been achievable. As to the theoretical description of optical activity, our
results indicated that neither Maxwell’s electrodynamics nor quantum
theory was likely to be embarrassed. Rather, a number of optics books
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Figure 6.8. Experimentally observed differential reflection of circularly 
polarized light from an optically active liquid (camphorquinone in methanol)
as a function of wave number (reciprocal wavelength, which is proportional 
to photon energy) at an incident angle of 67°. D denotes single reflection and
2D denotes double reflection from the chiral medium. The solid line shows the
theoretically calculated curve.



could well stand some revising. In my own mind, I have no doubt that
the symmetric description of optical activity is the correct one.26

But what about the argument purportedly demonstrating the equiv-
alence of the two sets of chiral material relations? The argument fails.
Although it is indeed true that the prescribed transformation connects
the two phenomenological descriptions of optical activity while leaving
Maxwell’s field equations unchanged, the transformation does not
leave the Maxwellian boundary conditions unchanged. If the symmet-
ric set of relations is correct, then use of the asymmetric set together
with standard electrodynamics constitutes a theoretically inconsistent
calculation. No wonder that the resulting amplitudes violated physi-
cal laws.

The episode reminds me somewhat of the theoretical arguments
against the Aharonov–Bohm effect (Chapter 3) in which case the 
vector potential of the confined magnetic field could allegedly, but not
actually, be transformed away. In that case, the particular gauge trans-
formation was not legitimate. In the present case, the symmetry trans-
formation, while not disallowed, had been applied to only part of the
mathematical framework needed to solve the problem of reflection.

If the amplitudes deriving from the symmetrical material relations
are correct, how is one to understand why an intrinsically chiral mate-
rial reflects left- and right-handed light equally at normal incidence?
Why is the intrinsic chirality of the medium not manifest? A heuristic
explanation of this puzzling behavior may be sought again in the
microscopic model of reflection justified by the Ewald–Oseen extinc-
tion theorem discussed in the previous section.

Consider first the passage of light through a transparent optically
active material, a medium with no distinguishing optical axes. The
sense of optical rotation is determined exclusively with respect to the
direction of propagation. Suppose a linearly polarized wave propagates
10cm from right to left, during which the plane of polarization is
rotated 45° toward the left-hand side of someone looking at the light
source. Let the wave then be reflected and made to propagate 10cm
back again from left to right. The plane of polarization is rotated an
additional 45° toward the left-hand side of an observer looking toward
the light source—but in this case, the light source is the reflecting
mirror and the second observer is facing the direction opposite that of
the first observer. Thus, the plane of polarization is actually brought
back exactly to its original orientation. In other words, the net optical
rotation of a light beam that has made an even number of passages
back and forth through a naturally optically active medium is zero.

With regard to the problem of chiral reflection, an incident light
beam does not interact with the reflecting medium at the surface 
only, but may be thought of as propagating into the medium, being
absorbed, and thereby inducing molecular dipoles to radiate secondary
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waves that superpose coherently to form the reflected wave. At normal
incidence, this interaction is equivalent to a penetration of the wave
into the medium followed by reflection as if from a mirror. Upon reflec-
tion and propagation back to the surface, the net chiral effect vanishes.
At all other angles of incidence, except for grazing incidence (where
the difference in reflection of circularly polarized light is again zero),
the planes of optical rotation of the incident and reflected waves are
no longer parallel and exact cancellation does not occur.

It is worth noting in conclusion that, with a self-consistent theory of
chiral reflection at hand, it was possible to return to the question that
sparked my study of optical activity in the first place: Can circularly
polarized light be selectively amplified by reflection from an optically
active medium with a population inversion? The answer is yes, and
possibly one day this process may provide a new way to probe the
chemical structure and physical interactions of excited molecules or
prove useful in devices to amplify light. Hopefully, the first experiment
will not turn out to be another Maxwell demon.

Update on Chiral Reflection

Since publication of And Yet It Moves, a number of subsequent 
theoretical studies have confirmed that the symmetric constitutive
relations properly describe optical activity and that the asymmetric
relations, without further amendment, lead to theoretical inconsis-
tencies. Although the data shown in Figure 6.8 experimentally support
the theoretical reflectance and transmission formulas I have derived,
it is worth noting that no experiment to my knowledge has yet mea-
sured the reflectance from a naturally optically active medium (exclud-
ing liquid crystals) over the full range of incident angles.

* * *

The curious controversy over light reflection from left- and right-
handed media has raised several profound theoretical issues about the
way in which light interacts with matter and has produced a number
of results of conceptual and practical interest to scientists and engi-
neers concerned with the origin and measurement of small chiral
asymmetries. One theoretical study in particular had emerged in the
course of this research that addressed a most unusual interaction.

Years ago, when I was first introduced to the quantum mechanics 
of atoms and molecules, I often wondered whether there may be an
unsuspected structure to atomic energy levels finer even that the finest
structure described in the textbooks—finer than the structure due to
the magnetic coupling of electrons and protons or to the interactions
of electrons with the vacuum. My interests ranged widely since that
time, but old questions often have a way of returning until they are
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answered. One day I found an answer, and it quite literally lay right
under my feet.
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CHAPTER 7

Two Worlds, Large and Small:
Earth and Atom

As I stood in an unlighted horizontal passageway of the Cashmere
Cavern and looked up at the narrow ventilation shaft receding to a
small circular opening some twenty meters above me, I felt a shiver
of fascination and amusement as I thought of my New Zealand col-
leagues being raised and lowered by a rope harness. Located under 
the Cashmere Hills just outside Christchurch on the South Island, the
cavern was originally excavated shortly after the start of World War
II to serve as a command post in the event of a Japanese invasion.
With the passage of time, it had long since faded from public memory
until rediscovered by accident. A timely rediscovery, too. With its solid
bedrock floor and sheltered environment, the cavern is expected to
provide an ideal workplace thirty meters below ground for the 
University of Canterbury Ring Laser Laboratory. A wide horizontal
adit seventy meters in length now gives easy, if less dramatic, access
for the construction crew and physicists.

During the summer (i.e., Southern Hemisphere winter) of 1990, while
at the University of Canterbury to deliver a series of lectures, I observed
the ongoing construction of the new laboratory and testing of the laser
system with more interest than merely that of a curious visitor. When
completed, this facility may quite possibly be able to confirm a remark-
able optical effect that has long interested me: that unbound atoms
unperturbed by static electric or magnetic fields on the rotating Earth
interact inequivalently with left and right circularly polarized light.

Actually, it has been known for nearly forty years that atoms can be
optically active as a result of the weak nuclear interactions.1 These
interactions are not invariant to reflection in a mirror and, therefore,
can be expected to engender a left–right asymmetry in the quantum
states of atomic electrons. That is, if they did not destroy the integrity
of the atom, for the weak interactions are usually associated with par-
ticle disintegration processes as in the familiar example of beta decay,
the natural transformation of a neutron into a proton, electron, and
antineutrino.



In order for the weak interaction to break the chiral symmetry of
bound-electron states, without at the same time altering the identity
of the atom through some charge-changing process, there must be a
way for electrons and nucleons (the constituents of the atomic nucleus)
to interact by exchange of a massive neutral particle. Just such an
interaction is provided by the so-called “electroweak” theory, a sweep-
ing theoretical synthesis of electrodynamics and the weak interactions
unmatched in scope since Maxwell unified all of electricity, mag-
netism, and optics. Within the framework of this theory, electrons and
nucleons can exchange a Z0 vector boson, a neutral particle with a mass
approximately one hundred times the mass of a proton. The existence
of such an exchange or “weak neutral current” was demonstrated in
1973 by high-energy experiments involving the scattering of neutrinos
by nucleons.

The corresponding existence of atomic optical activity was confirmed
in the early 1980s by low-energy experiments on the vapors of a variety
of heavy atoms such as bismuth, lead, and thallium.2 The effect is
small; 1m of dense vapor can rotate the plane of linear polarization of
a transmitted light beam by about 10-7 radians.

The atomic optical activity that I predicted, however, has nothing
whatever to do with the weak interactions. It arises, instead, from 
the rotation of the Earth and is many times weaker than any which
has heretofore been measured. The very existence of this pheno-
menon, however, captures the imagination. For one thing, the weak
interactions aside, the laws of electrodynamics exhibit perfect 
mirror symmetry from which it follows that optical activity in free
atoms—spherically symmetric systems held together by an electro-
static force—is ordinarily strictly forbidden. Second, apart from the
issue of atomic handedness, the predicted effect represents a poten-
tially observable influence of planetary spin on the internal workings
of an atom.

* * *

It is the essential dichotomy in the application of the laws of physics
to systems large and small that makes the thought of such an
atom–planet interaction so unusual. To predict the orbit of a comet
about the Sun or of the Moon about the Earth, one relies on the laws
of classical mechanics as embodied in Newton’s equations of motion.
Correspondingly, to determine the motion of an electron about a
nucleus—in other words, to understand the structure of the atoms and
molecules out of which the objects of the macroscopic world are built—
one turns instead to the laws of quantum mechanics as embodied 
in entirely different equations, for example those of Schrödinger,
Heisenberg, and Dirac. This recourse to separate and incommensurate
theoretical frameworks for deducing the behavior of large-scale and
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ultra small-scale objects reflects in a profound way the decoupling of
the objects themselves. The motion of a single atom hardly influences
the daily affairs of a planet; likewise, the motion of a planet ordinar-
ily has no perceptible effect on the internal dynamics of an atom. It is
to the extreme smallness of Planck’s constant (h = 6.67 ¥ 10-34 Js) that
one may effectively attribute this decoupling of the large and small. A
fortunate circumstance, too. Were Planck’s constant much larger so
that the fall of an apple could be accounted for only in the counterin-
tuitive terms of quantum physics, one might well wonder whether even
an Isaac Newton could have made sense of the world.3

Nevertheless, the decoupling of the very large and the very small is
not total. For one thing, as may be expected, even the elementary par-
ticles are influenced by the gravitational force of the Earth, for, after
all, bulk matter is made up of protons, neutrons, and electrons. The
manner in which they are affected, however, has given rise to some
surprises. It has been known for centuries that a bulk object of mass
m near the Earth’s surface is attracted toward the center of the Earth
by a force of magnitude mg, where g is the local gravitational acceler-
ation ( g � 9.8m/s2). Although individual neutrons fall freely in this
expected way, experiments to probe the free fall of electrons4 through
an evacuated vertical cylindrical tube of copper showed that the force
of attraction was less than 10% of mg. Are electrons exempt from the
law of gravity? Actually, the result was no violation of Newton’s law of
gravity; on the contrary, it confirmed it in an unusual context.

A metal can be regarded in some ways as a rigid ionic lattice per-
meated by a mobile electron gas. At moderate temperatures and in 
the absence of external perturbations, attractive electrostatic forces
prevent the electrons from escaping from the metal surface, but within
the metal interior, loosely bound (valence) electrons are free to circu-
late. Before the electron free-fall experiment was performed, two the-
orists, Schiff and Barnhill, realized that the mobile electrons within a
metal should also fall vertically in response to the pull of gravity.5 The
descent terminates, however, when the downward pull of gravity is
balanced by the upward electrostatic attraction of the positive ions.
The net downward displacement of the negatively charged electrons
relative to the positively charged metal lattice creates an electric field
directed downward outside the metal surface. This electric field exerts
an upward force on electrons falling freely through the copper tube
and thereby retards their acceleration. Indeed, if the gravitational
acceleration of an electron within the metal is the same as that of a
free-falling electron in empty space, then the magnitude of the elec-
trostatic field outside the metal surface should be about mg/e (where
e is the electron charge). This field would, in principle, counterbalance
the pull of gravity on a free-falling electron, which, if dropped down 
a vertical metal tube, should then not fall at all! With account 
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taken of nonidealities in the metal surface, this is effectively what was
observed.

It is of interest to note that if a positron, the positively charged
antiparticle of an electron, were introduced into the tube, the force 
of gravity and the Schiff–Barnhill force would now both be pulling
downward. Thus, a positron would be expected to fall through the tube
at twice the acceleration of gravity. I am not aware that this experi-
ment has ever been done. However, had such an effect been observed
in ignorance of the Schiff–Barnhill effect, the apparently unsymmet-
rical action of gravity on particles and antiparticles would doubtlessly
have created much excitement within the physics community, for it
would seem to violate Einstein’s equivalence principle, one of the
seminal principles upon which the present understanding of gravity is
based. In fact, anomalies in the interaction of the Earth with normal
matter (rather than with antimatter), reported some fifteen years ago,
appeared to manifest just such a violation.

In effect, one version of the equivalence principle (of which there are
various inequivalent versions) maintains that mass, alone of all the
conceivable attributes of matter, determines the force of gravity that
an object experiences. Actually, there are two conceptually different
types of mass. One is inertial mass, appearing in the definition of
linear momentum (mass ¥ velocity) and, consequently, in Newton’s
second law of motion:

Force = Inertial Mass ¥ Acceleration = mI a. (7.1a)

The other is the gravitational mass introduced in Newton’s law of
gravity, a special case of which is the familiar expression

Force = Gravitational Mass ¥ Free-fall Acceleration = mG g (7.1b)

for the force of gravity near the Earth’s surface. The so-called weak
principle of equivalence affirms as an exact identity the experimen-
tally observed numerical coincidence of the inertial and gravitational
masses. It would then follow from relations (7.1a) and (7.1b) that if mI

and mG are always equal, two lumps of matter should fall freely at the
same acceleration in response to the pull of gravity, irrespective of dif-
ferences in mass, isotopic composition, chemical structure, or physical
state (e.g., solid or liquid). Although a particle and its antiparticle may
differ with respect to such properties as the sign (but not magnitude)
of electrical charge or the relative orientation of spin angular momen-
tum and magnetic moment, they are believed to have exactly the same
mass and, therefore, if the equivalence principle is valid, to behave
identically in a gravitational field.

Galileo is alleged to have been the first to test the equivalence prin-
ciple by dropping different objects from the Leaning Tower of Pisa,
although it is questionable whether he really performed such an
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experiment. Instead, credit for the first precision tests is usually
accorded to Baron Roland von Eötvös of Hungary, whose series of
experiments begun in the late 1880s and completed by 1922 remained
the state of the art until the early 1960s.6 Eötvös constructed a torsion
balance—a device in which two masses of different composition were
suspended at opposite ends of a horizontal bar supported at the center
by a thin fiber about which the bar could turn. Because of the Earth’s
rotation, each mass is subjected not only to the vertical pull of gravity
but also to the centrifugal force, which accelerates the mass outwardly
in a direction perpendicular to the axis of the rotation. Although some-
times designated a fictitious or pseudo force, the centrifugal force gives 
rise to real enough physical consequences as judged by a corotating
observer. Anyone who has felt himself thrown outward as he drove a
motor car around a turn in the road has experienced centrifugal force.
The centrifugal force on an object constrained to rotate with the Earth
is proportional to the inertial mass of the object, the perpendicular dis-
tance of the object from the rotation axis, and the square of the angular
velocity of rotation.

Concerning the Eötvös balance, if the ratio of the inertial to gravi-
tational mass were different for each of the two suspended masses—
that is, if the centrifugal force acted on one object proportionately
greater than did the force of gravity—there would be a torque (i.e., a
twisting effect) on the rod causing it to rotate about, and therefore 
to twist, the fiber. The small angle through which a torsion fiber is
twisted can be measured to high precision, for example by an optical
technique whereby an incident light beam is reflected from a small
mirror affixed to the fiber. The angle of reflection, which is twice the
angle through which the fiber is twisted, may be small, but the linear
deviation of the reflected light beam from the incident direction
increases in proportion to the distance between the detector and the
mirror and can be made measurably large. However, since one cannot
turn off the rotation of the Earth, the equilibrium position of the
balance arm provides no information about the relative influence of
gravity and inertia; one cannot tell what the orientation would have
been if gravity, alone, acted on the masses.

The key point to recognize is that in the event that the equivalence
principle is violated, the equilibrium orientation would depend on
which mass is located on which side of the balance. Suppose the torque
on the fiber for a given configuration of the masses orients the balance
at equilibrium along an east–west-directed line. Exchanging the two
masses or, equivalently, rotating the entire apparatus (including the
frame to which the fiber is mounted) by 180° would then cause the
fiber to twist in the opposite sense, and the balance would no longer
lie along the east–west line. If gravitational and inertial mass were
truly identical, there would be no differential torque and the balance
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would maintain the same orientation irrespective of the side on which
each mass was located. By searching for such a change in equilibrium
orientation, Eötvös was able to establish the equivalence of gravita-
tional and inertial mass for a number of dissimilar materials—readily
recognizable ones like copper, water, and platinum, as well as puzzling
oddities like “snakewood”—to a few parts in a billion. Subsequent tests
by other researchers in which Eötvös’s basic procedure was imple-
mented in a torsion balance that responded to the gravitational force
of the Sun and the centrifugal force of the Earth’s motion around the
Sun established the equivalence of inertial and gravitational mass 
to precisions some three orders of magnitude beyond what Eötvös
obtained.

Ironically, a re-examination in 1986 of Eötvös’s definitive paper of
1922 sparked a lively controversy when the examiners concluded that,
contrary to the long-held interpretation, the data in the paper actu-
ally provided evidence for a composition dependence of the gravita-
tional acceleration.7 The origin of this effect (the establishment of
which is far from certain) has been attributed to an attractive “fifth
force,” a new fundamental interaction complementing gravity, 
electromagnetism, and the strong and weak nuclear interactions, that
depends not just on total mass but on certain properties of the “heavy”
elementary particles (the baryons) of which a mass is composed.
Protons and neutrons are the principal baryons composing ordinary
matter. In the contemporary theory of elementary particles, each
baryon is ascribed quantum numbers with whimsical names like
baryon number, isospin, hypercharge, or strangeness that play an
important role in the various interactions resulting in particle trans-
formations. The origin and significance of these numbers are of no
concern here, but it is relevant to note that the baryon number for
protons and neutrons is +1, the number for the corresponding antipar-
ticles (antiproton and antineutron) is -1, and the net baryon number
of a sample of ordinary matter is just the sum of the protons and 
neutrons.

The examiners of Eötvös’ paper claimed to have found that recorded
differences in the accelerations of two masses—which, ideally, ought
to have been zero, but which, of course like all experimental data,
exhibited uncertainties due to the limitations of measurement—were
not statistically random, but correlated with differences in the baryon
number per unit mass of the sample. Although the baryon number is
the same for all the baryons that make up ordinary matter, the baryon
number per unit of mass is not necessarily the same for dissimilar
materials because the packing of the baryons can be different. One
finds that the baryon density is greater for elements around iron in
the middle of the periodic table than for elements at either end. Thus,
if the fifth force exists, the net interaction between the Earth and a
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certain mass may depend on whether that mass comprises more
protons than neutrons or more neutrons than protons, or even whether
it is made of antiprotons and antineutrons rather than of protons and
neutrons.

That the postulated fifth force may have eluded physicists for so long
can be explained in part by its intermediate range of action estimated
to be a few tens to hundreds of meters—a distance scale enormous in
comparison with that over which nuclear forces prevail (on the order
of 10-13 cm) and negligible in comparison with the supposedly infinite
range of gravity. Numerous studies of particle collisions in high-energy
accelerators have yielded information about the interactions within
and between nuclei. Correspondingly, astronomical observations of
objects within and beyond the Solar System have long probed the
effects of gravity. However, virtually no experiments were designed in
the past to test specifically for the existence of an intermediate-range
interaction between matter. Actually, subtle manifestations of the fifth
force may have already appeared in high-energy experiments with a
peculiar family of particles (the K mesons), as well as in discrepancies
between satellite and terrestrial measurements of the local gravita-
tional acceleration g.

As one can well imagine, the prospect of finding a new force in nature
was bound to stimulate a flurry of new experiments. Unfortunately, in
the aggregate, the results of the efforts to detect the fifth force were
contradictory and inconclusive, with some experiments leading to pos-
itive results and others to null results. Although it is difficult to know
with certainty what lies at the root of the discrepancies, one obvious
possibility, given that all experiments were performed terrestrially, is
the unaccountable influence of nearby masses. Indeed, a number of the
experiments depended on the presence of naturally occurring large
concentrations of mass (like cliffs or mountains) to produce a differ-
ential effect on suspended test masses.

One approach, different from any that has yet been tried, occurred
to me shortly after the controversy first began; it was to search for a
deviation from Newton’s law of gravity by means of a satellite 
experiment. The basic principle exploits a well-known, but nonethe-
less extraordinary, property of any force whose magnitude diminishes
as the inverse square of the distance from its source (in this case, a
point mass). This attribute is shared by both the Coulomb force and
(to the extent that general relativistic effects can be neglected) the
force of gravity. In his Principia, Newton demonstrated mathemati-
cally that a test object outside of a spherical distribution of mass is
gravitationally attracted as if all the matter of the sphere were con-
centrated at the center. Suppose, however, the sphere were hollow—a
shell rather than a solid sphere—and the test mass lay inside. With
what gravitational force would it be attracted to the walls of the shell?
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Clearly, on the basis of symmetry alone, one could see that no force
at all acts on a test mass at the center of the shell. All directions
leading away from the center are equivalent; there can be no preferred
direction of acceleration. What is perhaps less obvious is that the 
net gravitational attraction of the test mass by the shell is null every-
where in the shell interior! Newton understood this, too. The result
holds for an arbitrarily thick shell and for a test mass of arbitrary
shape and size, as long as it is entirely contained within the cavity of
the shell.

The vanishing of the gravitational force within a spherical shell may
be understood heuristically in the following way. Suppose that the test
mass is an ideal mass point (one of the most frequently found items
in the physicist’s stockroom of imaginary objects) and the shell is very
thin. Extend a straight line drawn through the test mass in both direc-
tions until it intersects the shell at two locations. Unless the mass is
at the center of the shell, in which case we already know that it expe-
riences no net gravitational force, one point of intersection is closer 
to the test mass than the other. Move the line (keeping the test mass
fixed) so that each of the two segments generates the shape of a narrow
cone with a circular base traced out on the inside surface of the shell.
Consider the gravitational force exerted on the test mass by just those
two portions of the surrounding shell contained within the circular
bases.

The gravitational force exerted by a minute chunk of mass (let us
call it an atom, although the argument does not depend in any way on
the discreteness of matter) in the closer section is greater than the 
corresponding force exerted by an atom in the farther section. On the
other hand, the surface area of the farther section is larger in propor-
tion to the square of the distance from the test mass and, therefore,
contains more atoms. For the case of an inverse-square force law only,
the stronger attraction by the atoms of the nearer region is exactly
counterbalanced by the greater number of atoms of the more distant
region, with the result that there is no net gravitational force on the
test mass from those two sections of shell.

Because the orientation of the line originally drawn through the test
mass (i.e., the generator of the two cones) is entirely arbitrary, the net
force on the test mass from any two sections of shell so delineated will
cancel. In their entirety, all such mass sections constitute the whole of
the thin spherical shell which, therefore, exerts no net force on the
point mass inside regardless of its location. And since this conclusion
holds for a thin spherical shell of any radius, it must be valid as well
for any number of concentric thin shells or, equivalently, for a single
shell of arbitrary thickness. Furthermore, the net force on a test mass
of finite size contained within the shell must also vanish if each point
mass of which it is composed experiences no force.
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The spatial dependence of the suspected fifth force is not purely
inverse square, but is thought to diminish exponentially with distance.
To express the mathematical form of a fundamental interaction, 
it is often more convenient (and sometimes absolutely necessary) 
to consider energy rather than force. The potential energy of two 
point masses, m1 and m2, separated by a distance r and interacting
through both gravity and the fifth force, may be represented by the
formula

(7.2a)

Newton’s universal constant of gravity G � 6.7 ¥ 10-11 Nm2/kg2 sets the
scale of intrinsic strength of the gravitational interaction, whereas b
is a dimensionless coupling constant that sets the corresponding scale
of strength (relative to gravity) of the fifth force, of which the charac-
teristic range is b. On the basis of both geophysical data and reanaly-
sis of Eötvös’ paper, the coupling and range parameters have been
estimated to be b � -(7.2 ± 3.6) ¥ 10-3 and b � 200 ± 50m. A negative
b implies that the fifth force is repulsive. To determine the actual force
that one mass exerts on the other, one must calculate the negative
derivative of U(r) with respect to r. The resulting expression, which
need not be reproduced here, clearly gives 1/r2 dependence in the
special case when b is zero (no fifth force). One can employ relation
(7.2a) to derive the total potential energy of a test mass inside a spher-
ical shell. As before, the force is then calculable from -dU(r)/dr. Again,
the resulting expression is somewhat cumbersome, but the principal
result is easy to state: When b is not zero, the net force on a test mass
inside the shell does not vanish.

To understand why, consider again the special case of a point mass
in a spherical shell. As a result of the exponential factor exp(-r/b), the
forces exerted by the two patches of shell formed by conical projections
from the test mass no longer cancel. The force of each patch dimin-
ishes with distance to a greater extent than the patch area increases;
the mass patch closest to the test mass therefore exerts a greater force
than does the more distant patch.

An interesting and useful consequence of this, which follows from
relation (7.2a) if the fifth force is repulsive, is that a test mass located
anywhere within the shell (for a shell size small compared with the
range b) will be pushed toward the center with a strength linearly 
proportional to its displacement from the center. This is the type of
restorative force, referred to as Hooke’s law, which gives rise to peri-
odic motion about a point of equilibrium. The frequency f with which
a test object of inertial mass mI and gravitational mass mG would oscil-
late within a spherical shell of inner and outer radii R1 and R2, respec-
tively, and mass density m can be shown to be

U r
Gm m

r
e r b( ) = - +( )-1 2 1 b .
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(7.2b)

Thus, the occurrence of a harmonic oscillation at a frequency propor-
tional to the square root of |b| and inversely proportional to b, where
no Newtonian gravitational force would be expected at all, would be
an experimental signature of the putative new interaction.

The above considerations apply, of course, in the absence of forces
from outside the shell. Here is where a satellite could prove useful.
Orbiting the Earth—or some other parent body—the spherical shell
and all its contents are in a permanent state of free fall. To a first
approximation, therefore, the gravitational influence of the entire
Earth has been eliminated. Like the astronauts in an orbiting space
station, a test mass within such a shell would be weightless, its motion
relative to the shell deriving ideally from those interactions that
deviate from an inverse-square spatial dependence. Moreover, the 
contribution of the fifth force of the planet should be negligibly small
for a satellite located at an orbital radius many times larger than the
range of the force.

If, as in the Eötvös experiment, one employs two objects of different
composition (i.e., differing in the proportion of baryons to inertial
mass), the objects will oscillate about the center at different frequen-
cies. The possible advantage of a satellite experiment may then be seen
in the following. Compared with the fractional difference in accelera-
tion Da/g that these two masses would undergo in a terrestrial 
Eötvös experiment, the fractional difference in oscillation frequency
Df/f (where f is the mean oscillation frequency) can be shown to be

(7.2c)

where R is the radius of the orbited body. In the case of a satellite
orbiting the Earth (R = 6.4 ¥ 106 m) and a force characterized by the
coupling and range parameters specified earlier, the above fractional
difference in oscillation frequency is more than one million times
greater than the fractional change in acceleration.

Testing for the new force by satellite is not without its own prob-
lems, and it is unlikely that such an experiment will ever be under-
taken soon. For one thing, the differential effect of the Earth on the
test mass and shell would be entirely eliminated only if the gravita-
tional field of the Earth were perfectly uniform. As this is not the case,
one must take account of the residual “tidal” force (the same type of
force responsible for the occurrence of ocean tides) resulting from the
variation in the strength of the Earth’s gravity throughout the inte-
rior of the satellite. Second, the incentive to find a fifth force has con-
siderably waned, for further examination of the Eötvös paper by other
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researchers seemed to show that the original discrepancies might well
have had a far more mundane explanation: air currents in Eötvös’s
laboratory!

Nevertheless, one never knows when or where something wholly
new may crop up. I, for one, would still like to know whether an anti-
neutron falls upward.

* * *

Within the framework of quantum mechanics, the Earth’s gravita-
tional field can affect the wave function of an elementary particle in
ways for which no classical interpretation in terms of forces can be
given. One striking example of this is the effect of gravity on neutrons
moving horizontally.8 Imagine a neutron beam incident upon a beam-
splitting device that either transmits a neutron or reflects it vertically
upward with 50% probability (Figure 7.1). The vertically reflected
neutron encounters a perfect mirror that reflects it horizontally so that
it propagates a distance L exactly parallel to, but at a height H above,
the path followed by a transmitted neutron. The transmitted neutron,
after propagating a horizontal distance L, also encounters a perfect
mirror that reflects it vertically upward. The two neutron paths, which
together form a rectangle, meet at another beam-splitting device that
transmits an “upper” neutron and reflects a “lower” neutron with equal
probability (50%) horizontally into a detector. The detected neutrons
are counted—but under the circumstances, the experimenter cannot
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Figure 7.1. Schematic diagram of a neutron Mach–Zehnder interferometer.
Beam splitters BS1 and BS2 transmit and reflect a neutron with 50% proba-
bility. The plane of the interferometer is vertical so that the path segment of
length L between mirror M1 and BS2 is a height H above the corresponding
segment between BS1 and mirror M2. The components of a neutron wave
transmitted and reflected by BS2 are coherently recombined at the detector
D. Only one neutron at a time traverses the apparatus.



know whether a particular neutron has followed the upper or lower
horizontal path. The experimental configuration constitutes the
neutron counterpart to what in optics is called a Mach–Zehnder inter-
ferometer. A classical light wave, however, partitioned at the first beam
splitter, traverses both routes to the second beam splitter. It is worth
emphasizing, therefore, that the neutron flux is ordinarily low enough
that only one neutron at a time passes through the interferometer.

According to standard quantum mechanical procedure, to determine
the probability of receipt of a neutron at the detector—or, equivalently,
the neutron count rate—one must add the probability amplitude for
passage of a neutron along one or the other of the two indistinguish-
able paths. During the time t that it follows the upper horizontal path,
an initially reflected neutron of mass m maintains a gravitational
potential energy higher by mgH than that of an initially transmitted
neutron that has followed the lower horizontal path. Neutrons follow-
ing the upper or lower pathways experience no differential effect of 
the force of gravity because both routes include a vertical segment of
length H over which gravity does work on the particles and a hori-
zontal segment of length L over which no work is done. Nevertheless,
the two spatially separated components of the neutron wave acquire
a relative phase difference f of the form

(7.3a)

where U = mgH is the difference in potential energy and h is Planck’s
constant.

Moving with mean (nonrelativistic) speed v, a neutron has linear
momentum mv and covers the distance L in a time t = L/v. The cor-
responding neutron wave function, representable to a good approxi-
mation by a plane wave, is characterized by the de Broglie wavelength
l in terms of which the speed may be expressed by the relation

(7.3b)

Substitution into Eq. (7.3a) of the expressions for U, t, and v permits
one to write the relative phase in terms of experimentally accessible
quantities

(7.3c)

[where it is actually the product of the inertial and gravitational
masses that enters expression (7.3c) as m2]. The probability amplitude
for arrival of a neutron at the detector by two indistinguishable path-
ways is then of the form
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y � 1 + eif, (7.3d)

from which it follows that the neutron count rate, proportional to the
probability of arrival P(f), must depend on the acceleration of gravity
g and vary harmonically with the height difference H, according to

(7.3e)

(The normalization factor 1–2 restricts the maximum probability to
unity.)

The observation of this neutron interference phenomenon (Figure
7.2) demonstrates convincingly that the Earth’s gravity can affect the
motion of elementary particles under circumstances where it is not the
gravitational force itself but the difference in gravitational potential
energy that has direct physical significance. Interestingly, it illustrates
as well that the equivalence principle may be of questionable validity
in the realm of quantum mechanics. As a consequence of the equality
of inertial and gravitational masses, a classical object moves through
a gravitational field along a mass-independent trajectory. However, the
relative phase shift f depends on mass, and the probability of particle
arrival, therefore, is not the same for all particles.

* * *

P f y f( ) = = +( )2 1
2

1 cos .
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Figure 7.2. Quantum interference of neutrons induced by the gravitational
potential of the Earth. The neutron wavelength is approximately 1.42 ¥
10-8 cm. Rotating the interferometer of Figure 7.1 by an angle q about the inci-
dent beam produces a vertical separation z = Hcosq between path segments
M1–BS2 and BS1–M2. Each experimental point is the result of a total count-
ing time of about seven minutes. [Conceptually inessential differences between
the actual interferometer and the idealized interferometer analyzed in the text
lead to an interference pattern of the form a + bcosf, where, in contrast to Eq.
(7.3e), a and b are unequal.] [J.-L. Staudenmann et al., Physical Review A21
(1980) 1419.]



In addition to the force of gravity, which acts whether the Earth
turns or not, and the centrifugal force, which any object on the rotat-
ing Earth experiences even if stationary relative to the Earth’s surface,
there is yet another interaction, the Coriolis force, that affects objects
in motion on the surface of the rotating Earth. The Coriolis force
deflects a moving object from apparent straight-line motion, as judged
by an observer at rest on the Earth, and, like gravity and the cen-
trifugal force, is independent of all intrinsic chemical and physical
properties of an object except that of mass. The resemblance in this
way of the Coriolis and centrifugal forces to gravity is illustrative
again of Einstein’s equivalence principle, the version which asserts
that gravity and accelerated motion are locally indistinguishable.

The Coriolis force is another example of a pseudo force in the sense
that an observer in an inertial (nonaccelerating) reference frame does
not need to invoke it to explain physical events. Imagine two ball
players on diametrically opposite ends of a large rotating platform like
that of a carrousel. One throws a ball toward the other. From the bird’s-
eye view of a stationary observer above the carrousel, the ball moves
in a straight line across the surface as the two players rotate with the
platform. However, from the perspective of the intended receiver, with
respect to whom the thrower has remained motionless, the ball follows
a curved path away from the center, as if acted upon by some force—
the Coriolis force. Under just the right circumstances, the thrower,
himself, can rotate into position to catch the thrown ball. From his per-
spective, the ball has followed a trajectory outward and back again 
like a yo-yo without a string! In the rotating frame of reference, the
Coriolis force has physical consequences.

The Coriolis force on an object of mass m moving with speed v along
a surface that is rotating about a perpendicular axis with angular fre-
quency w is proportional to mvw. The direction of the force depends on
the direction of motion of the object and on the sense of rotation of the
frame. On the Earth, which spins at an angular rate of 360° in 24
hours, or about 7.3 ¥ 10-5 radians/s, the Coriolis force can markedly
affect the patterns of global airflow, although it is ordinarily too weak
to influence the local motion of relatively small objects over a timescale
short enough that someone would likely have the patience to watch 
it. Nevertheless, it does have perceptible effects on small objects 
over sufficiently long intervals of space or time. In the Northern 
Hemisphere, for example, a directly aimed cannon shot will fall to the
right of the target if deflection by the Coriolis force is not taken into
account in the design of the sighting mechanism. British sailors redis-
covered this fact during a naval engagement with Germany near the
Falkland Islands off the southeastern coast of Argentina early in the
First World War. Their sighting mechanisms had been constructed 
for warfare in the Northern Hemisphere, and, consequently, their 
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projectiles fell to the left of the German ships by some 100m, twice the
Coriolis deflection.

In a more mundane example, countless visitors to science museums
each year are likely to notice a Foucault pendulum. First devised in
the mid-19th century by the French physicist, Jean Léon Foucault, the
pendulum shaft—sometimes extending several stories—is suspended
vertically above the floor on which is depicted a calibrated ring. As 
the bob swings back and forth across the ring, the plane of oscillation
appears to precess slowly relative to the fixed reference marks. To an
inertial observer, it is the floor that rotates under the pendulum at a
rate that depends upon the latitude of the site.

That the rotation of the Earth can also affect the motion of an ele-
mentary particle was demonstrated in a beautiful experiment, again
involving the quantum interference of neutrons.9 As is clear from the
effect of gravity on neutron interference or the effect of a confined mag-
netic field on electron interference (Chapter 3), the concept of energy
retains a physical significance under conditions where it would be
meaningless to speak of a force. This is the case with the “neutron
Sagnac effect.”

The Sagnac effect, which was first demonstrated with light by the
French physicist M. G. Sagnac in 1913, is a phase shift in the inter-
ference of two coherent waves as a consequence of the rotation of the
interferometer. The geometrical configuration of a Sagnac inter-
ferometer resembles that of the Mach–Zehnder interferometer described
previously except for one critical detail. The second beam splitter is
replaced by a mirror so that the waves reflected and transmitted at
the first (and only) beam splitter propagate in opposite directions com-
pletely around the interferometer and overlap again at their place of
entry. If the interferometer were stationary (or moving at a uniform
velocity relative to some other inertial reference frame), the time
required for a light wave to complete one circuit about the interfer-
ometer would be the same for either direction of propagation. When
the interferometer rotates, however, the beam splitter rotates toward
one of the waves and away from the counterpropagating wave.
Suppose that the interferometer is rotating clockwise according to an
inertial observer suspended above it. The wave propagating counter-
clockwise would then complete a circuit in a time interval shorter than
that of the clockwise propagating wave. A relative phase difference
would therefore develop between the two waves given by 2p (Dt/T),
where T is the period (reciprocal of the frequency) of the waves and 
Dt is the difference in time for the two counterpropagating waves to
complete a circuit.

For an interferometer of area A (i.e., the area enclosed by the 
counterpropagating beams) rotating at angular frequency w radians/s
about an axis inclined at an angle q to the direction normal to the plane
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of the interferometer, the time difference Dt is given by the approxi-
mate expression

(7.4a)

in which v is the speed of the wave relative to the nonrotating labo-
ratory. This approximation is good to the extent that one can neglect
the square of the ratio of the speed of rotation to the speed of the wave,
or (wR/v)2, where R is a characteristic size of the interferometer (e.g.,
the radius, if the light beam followed a circular path). For the case of
counterpropagating electromagnetic waves, the speed of propagation
is the universal constant c, and the Sagnac phase shift, fS, expressed
in terms of the wavelength l = cT becomes

(7.4b)

Because neutrons have wavelike properties, the rotation of a
neutron interferometer should also lead to a phase shift between coun-
terpropagating components of a split neutron beam. In this case, the
quantity corresponding to the period of the neutron wave is l/v, where
the speed v is not a universal constant but is related to the wavelength
through relation (7.3b). Substitution of the factors appropriate to a
massive particle leads to a phase shift

(7.4c)

that depends on the (inertial) mass of the particle but is totally 
independent of velocity and wavelength.

In the neutron Sagnac experiment, the Mach–Zehnder type of 
interferometer was employed again, but oriented so that the incoming
neutron beam and the plane of the interferometer were vertical. From
the symmetry of the configuration, it should be clear that turning the
plane of the interferometer about the vertical axis does not alter the
height above ground—and hence the gravitational potential—of any
point of the neutron pathways through the interferometer. Such a rota-
tion, therefore, would not change the gravity-induced phase shift. It
does, however, reorient the plane of the interferometer (specified by its
normal direction) with respect to the rotation axis of the Earth. Thus,
the entire variation in the neutron count rate for different settings of
the angle q should be attributable to the Sagnac effect. This intensity
variation is expressed by a relation analogous to Eq. (7.3e), but 
with the (now constant) gravitational phase shift augmented by fS.
Actually, because an individual neutron, in going from the first to the
second beam splitter (and then to the detector), does not make a com-
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plete circuit around the interferometer, but only one-half a circuit, the
theoretically predicted Sagnac phase shift should be one-half that of
relation (7.4c). The experimental results solidly confirmed this pre-
dicted effect of the Earth’s rotation (Figure 7.3).

* * *

At the time I began to study the problem of light reflection from 
an optically active medium (Chapter 6), I also became interested in
the effects of the Earth’s rotation on quantum mechanical systems.
Though outwardly quite different topics, there is an important point
of contact that relates them. Both phenomena involve chirally asym-
metric interactions.

Consider the rotating Earth. Because the Earth turns toward the
east, the Coriolis force on a person running due east along the equator
(or counterclockwise to someone looking down upon the North Pole) is
directed radially outward away from the center of the Earth. If the
runner changes direction and proceeds due west along the equator
(clockwise to the observer above the North Pole), the direction of the
Coriolis force on him will be radially inward toward the center of 
the Earth. The Coriolis force distinguishes between clockwise and 
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Figure 7.3. Influence of Earth’s rotation on the self-interference of neutrons
(neutron Sagnac effect). The interferometer, positioned so that the incident
beam is along the vertical direction, is turned about the vertical by an angle
b (relative to a reference direction) to vary the angle q between the normal to
the interferometer plane and the rotation axis of Earth. The graph shows the
predicted variation in rotational phase shift fS as a function of b (full line) and
the corresponding experimental points. The angle q in Eq. (7.4c) is related to
b by cosq = cosqL sinb, where qL is the latitude of the experimental site.
[Adapted from J.-L. Staudenmann et al., Physical Review A21 (1980) 1419.]



counterclockwise—between right-handed and left-handed—senses of
motion. To an observer confined to a rotating reference frame like the
Earth, the Coriolis force is a chirally asymmetric force.

It will be recalled that chiral objects or processes are not superpos-
able on their mirror images. The transformation of an east-bound
runner into a west-bound runner is effected by reflection of the Earth
and runner in a mirror. In such a reflection, both the direction of the
runner and the sense of rotation of the Earth are reversed, in which
case the Coriolis force continues to point outward. However, an Earth
that turns toward the west simply does not exist—although presum-
ably there is no physical law forbidding such a historical possibility.
In any event, the original scene and its mirror image are not 
superposable.

Although the neutron is believed to be composed of three basic par-
ticles (quarks), the internal structure of the neutron has, nevertheless,
played no significant role in the self-interference experiments sensi-
tive to the gravity and rotational motion of the Earth. These experi-
ments prompted me to wonder, however, about the quantum effects of
gravity and rotation on the internal dynamics of composite quantum
systems like atoms and molecules. Because the Coriolis force distin-
guishes left- and right-handed senses of motion, could it by any 
chance give rise to optical activity in atoms? Would such an effect be
observable?

Discussions of the physics of atoms almost always take for granted
at the outset that the frame of reference is not accelerating. The laws
of quantum mechanics were initially formulated for inertial frames,
and actual experiments on atoms are ordinarily executed under such
conditions that this assumption would appear adequate. The Earth is
not, of course, a true inertial reference frame. However, the Coriolis
force of the Earth’s rotation on an atomic electron is smaller than the
electrostatic force binding the electron to the nucleus by a factor of
about 100 billion billion (1020). This is very small, indeed! (The cen-
trifugal force of the Earth on a bound electron is at least four orders
of magnitude smaller.) To detect an influence of the Coriolis force of
the Earth in the optical properties of an atom would be tantamount to
observing one of the weakest interactions by far in which an atom has
participated.10 Still, this prospect may not be entirely hopeless.

It is interesting to speculate that, weak though it may be, the effect
of the Earth’s rotation on individual atoms could conceivably be con-
nected with one of the outstanding unsolved problems in the life sci-
ences: the origin of biomolecular chirality. Why living things make and
use molecules of specified handedness such as right-handed sugar mol-
ecules or left-handed amino acids, is not known. Perhaps, over the eons
during which the molecules of life evolved, the chirally asymmetric
effect of the Earth’s rotation may have led to a preferential molecular
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handedness in one hemisphere that, through the random accidents of
history, spread over the entire planet.

Specifically, how can the rotation of the Earth influence the struc-
ture of an atom? Although classical mechanics does not, in general,
serve as an adequate basis for understanding the dynamics of an atom,
there are instances when the imagery of classical physics provides
insight, at least when the quantum mechanical degrees of freedom
involved have classical counterparts. It is worth stressing at the outset
that it is the internal dynamics in which we are interested here (both
classical and quantum mechanical)—i.e., in the motion of the electrons
relative to the nucleus, not the motion of the center of mass of the
atom. The center of mass of a system of particles—which need not cor-
respond to the location of any actual particle—moves in response to
the net external force as if all the mass of the system were concen-
trated at that hypothetical point. The rest frame of the system is the
reference frame in which the center of mass is stationary. For ordinary
atoms (in contrast to exotic atoms) in which all bound particles are
electrons, the center of mass coincides with the location of the nucleus
to good approximation.

Consider, for simplicity, a planetary atom with a single electron in
circular orbit about the nucleus at an angular frequency w0 radians/s
(as determined theoretically for an atom at rest in an inertial frame).
In fact, to take the simplest case possible, locate the atom at the North
Pole so that the axis about which the electron revolves coincides with
the rotation axis of the Earth. To an inertial observer suspended above
the North Pole, the angular frequency of the electron is w0, irrespec-
tive of the sense (clockwise or counterclockwise) of the revolution.
However, to an observer fixed on the Earth, which turns, let us say, at
w radians/s, the angular frequency of the electron is w0 - w if the elec-
tron revolves in the same sense as the Earth rotates and w0 + w if the
electron revolves in the opposite sense. Even though an observer
cannot actually “see” the motion of an electron in an atom, he would,
nevertheless, draw the preceding conclusions by correlating the fre-
quency and circular polarisation of the spontaneously emitted radia-
tion. A circulating charged particle is undergoing periodic acceleration
and, according to classical electrodynamics, emits along the rotation
axis electromagnetic waves with transverse electric fields that rotate
in the same sense and at the same frequency as the orbital motion of
the electron. A real atom, of course, does not continuously radiate, or
it would collapse practically instantaneously. We will see, however,
that quantum mechanics sustains the foregoing picture of chirally
inequivalent orbital motions.

In addition to the characteristic spontaneous emission of radiation,
the optical response of an atom to incident radiation can also be influ-
enced by the rotation of the Earth. The index of refraction of a mate-
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rial, as I discussed in the previous chapter, was shown by Maxwell to
be effectively equal to the square root of the dielectric constant in the
case (relevant to the present discussion) that the material is not intrin-
sically magnetic. The dielectric constant is, itself, a measure of the
extent to which the bound electrons of the sample are displaced from
their equilibrium positions by an external electric field, such as the
electric field of an incident light wave. The greater the displacement,
the greater will be the electric dipole moment of an individual atom
(which is the displacement multiplied by the electric charge), the
greater will be the resulting dielectric constant (which grows with the
number of electric dipoles in the sample), and, hence, the greater will
be the corresponding refractive index of the material.

It is the atomic polarizability a that expresses the proportionality
between the displacement of a bound electron from its equilibrium
position and the strength of the applied electric field. To determine the
polarizability (still within the framework of classical mechanics), one
solves Newton’s equations of motion for the forced motion of the elec-
tron at the frequency of the incident light wave. This is a standard and
relatively elementary problem for an atom in an inertial reference
frame. The electron is subject to the electrostatic binding force, possi-
bly some damping force that takes account of energy loss by sponta-
neous emission, and the driving force of the electric field of the light.
The magnetic field of the light wave can usually be neglected, for it
results in a force weaker than that of the electric field by the ratio 
of the electron speed to the speed of light. Disregarding the effects of
damping and magnetism and assuming an incident light wave of
angular frequency W, one arrives at the following simple expression
for the atomic polarizability:

(7.5a)

where e is the electron charge and m is the electron mass. Note that
the polarizability increases as the frequency W of the light approaches
the resonance frequency w0 of the atom (or molecule). Thus, the index
of refraction of a transparent material like glass, for which the reso-
nance frequencies typically fall in the ultraviolet portion of the spec-
trum (w0/2p � 1015 Hz), is larger for blue light (W/2p � 6.3 ¥ 1014 Hz)
than for red light (W/2p � 4.4 ¥ 1014 Hz); blue light will be refracted to
a correspondingly greater extent than red light as it enters the glass
from air. To a good approximation, the index of refraction (n) of a suf-
ficiently rarefied sample of atoms that behave independently of one
another is related to the atomic polarizability in the following way:

n � 1 + 2pNa, (7.5b)

in which N is the number of atoms per unit of volume.
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Return now to the classical atom at the North Pole of the rotating
Earth (Figure 7.4). As analyzed by an Earth-bound observer, the orbit-
ing electron is subject not only to the forces described above but also
to the Coriolis and centrifugal forces. Also, to repeat, it is not the char-
acteristic motion of the electron that is of concern now, but only the
motion engendered by the electric field of the incident light wave.
Imagine a light wave of frequency W, as measured by the Earth-bound
observer, propagating upward along the common rotation axis of the
Earth and electron. If the wave is left circularly polarized, it drives
the electron about its center of attraction, the atomic nucleus, in the
same sense as the Earth rotates; a right circularly polarized wave
drives the electron in the opposite sense. If the electron revolves in
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Figure 7.4. Heuristic model of the effect of the Earth’s spin on the dynamics
of a classical atom in the simple case where the Earth and bound electron
rotate about a common axis. When driven by the electric field (E) of an 
incident left circularly polarised (LCP) light wave of angular frequency W, the
electron orbits the nucleus in the same sense as the Earth spins; the Coriolis
force (FC) on the electron acts radially outward. When driven by an incident
right circularly polarized (RCP) wave of the same frequency, the electron expe-
riences a Coriolis force radially inward. To an inertial observer above the
Earth, there is no Coriolis force, but the frequencies of the two light beams
are respectively W + w and W - w, where w is the spin angular frequency of
the Earth.



response to a left circularly polarized wave, the Coriolis force acceler-
ates it radially outward (i.e., outward along the radial line from the
nucleus to the electron, not from the center of the Earth to the elec-
tron), thereby increasing the displacement of negative and positive
charges within the atom. This leads to a larger electric dipole moment.
Conversely, the Coriolis force accelerates an electron moving in
response to a right circularly polarized wave radially inward, leading
to a smaller electric dipole moment. The centrifugal force on the 
electron is directed radially outward, irrespective of the sense of 
circulation.

In sum, from the perspective of an Earth-bound observer, the sample
of atoms exhibits a larger index of refraction for left circularly polar-
ized light than for right circularly polarized light. This is exactly what
is required for the atoms to be optically active. The existence of atomic
circular birefringence (difference in chiral refractive indices, nL - nR)
has been inferred for the special orientation of an atom at the North
Pole, but the conclusion holds generally for any location on the Earth
although the strength of the predicted effect varies with the relative
orientation of the light beam and the Earth’s axis.

I have noted previously that the Coriolis force is termed a fictitious
force originating in the acceleration of the reference frame. Does this
mean that the predicted optical activity is, itself, fictitious? Would the
inertial observer suspended above the North Pole agree that the atoms
exhibit a chiral asymmetry? To answer the question let us examine the
expressions derived by the Earth-bound observer for the polarizabil-
ity of a rotating atom. The two expressions for left and right circular
polarizations are similar in form to that of relation (7.5a) derived for
an atom in an inertial reference frame:

(7.6a)

(7.6b)

To the inertial observer, however, the above relations are, in fact, the
same relation as Eq. (7.5a)—only evaluated for different frequencies.
If the frequency of the left circularly polarized light wave propagating
upward along the rotation axis is W relative to the Earth-bound
observer (who is himself rotating in the same sense at the frequency
w of the Earth), then the inertial observer would declare the light fre-
quency to be W + w. Similarly, the right circularly polarized wave, also
of frequency W to the Earth-bound observer, would present a frequency
W - w to the inertial observer.

The inertial observer might therefore say: “Of course the index of
refraction is different for the left and right circularly polarized waves.
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Their frequencies are different, and it is well known that a higher 
frequency leads to a larger refractive index. The atoms, however, are
chirally symmetric.” To this, the Earth-bound observer could in truth
reply: “The frequency of both waves is the same. The Coriolis force 
produces chirally asymmetric atomic polarizabilities.” Both inter-
pretations are correct. Still, it is useful to keep in mind that, as
denizens of a rotating reference frame, physicists ordinarily interpret
the results of their measurements in terms of the apparatus and inter-
actions in their own stationary Earth-bound laboratories and do not
feel constrained to consult inertial colleagues suspended above the
planet.

Since the internal dynamics of actual atoms are not accurately
described in terms of electron trajectories influenced by Newtonian
forces, one might wonder whether the foregoing classical analysis is in
any wave reliable. In brief, the answer is basically affirmative—with
one important caveat. It is understood, of course, that where an objec-
tively real physical quantity like an orbital radius might appear in 
the mathematical expressions of classical mechanics, the analogous
quantum mechanical expressions would contain matrix elements (i.e.,
integrals) of a corresponding operator, providing a measure of the like-
lihood that the atom can undergo certain transitions between its
states. If the matrix elements connecting particular quantum states of
interest vanish, then quantum mechanics does not permit the desig-
nated process to occur even though classical mechanics may have
yielded a seemingly respectable non-null result. I shall give an impor-
tant example of this shortly.

Within the framework of quantum mechanics, the interactions that
affect the internal state of an atom are incorporated in the appropri-
ate equation of motion (e.g., the Schrödinger equation) not as forces
but as contributions to potential energy. For an atom rotating with 
the Earth, the effects on its constituents of both the centrifugal 
and Coriolis forces may be shown classically to derive from an extra
energy term (UR) that involves a coupling of the internal angular
momentum (L) of the atom to the angular frequency (w) of the Earth
as follows:

UR = -wLcosq, (7.7a)

where q is the angle that the atomic angular momentum makes with
the rotation axis of the Earth. Again, by “internal” angular momen-
tum I mean the orbital motion of the electron about the atomic nucleus,
not the movement of the whole atom about the axis of the Earth. 
Classically, the angular momentum of an object of mass m moving
about a center of attraction with speed w in an orbit of radius R has
the magnitude mvR and is oriented perpendicular to the plane of the
orbit in a right-hand sense. That is, if one wraps the fingers of his right
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hand about the orbit so that they point in the direction in which the
object circulates, then the extended thumb gives the direction of the
angular momentum.

In stark contrast to the classical picture of an atom, however, the
details of electron motion within a quantum mechanical atom cannot
be pictured. How, then, is the electron angular momentum to be ori-
ented? In fact, quantum mechanics does not permit one to know this
orientation. One can know only the magnitude of the angular momen-
tum and the projection of the angular momentum along an arbitrary
axis. In the present case, it is convenient to choose this axis to be the
axis of the Earth. For an electron angular momentum of magnitude

, where � is an integer-valued angular momentum
quantum number, the projection Lcosq must then take values M in
which the azimuthal or magnetic quantum number M spans the range
of 2� + 1 integers from -� to � in steps of 1. Projections that differ only
in sign refer to electron states that differ only in the sense of electron
circulation about the quantization axis.

If an atom in an inertial reference frame is not subject to external
perturbations, then all directions of the quantization axis are equiva-
lent, as are also the two senses of rotation about the axis. One would,
therefore, not expect the energy of a quantum state to depend on the
orientation of the quantization axis or on the azimuthal quantum
number. On the spinning Earth, however, matters are different, for
now there is a distinctive sense of motion about a particular direction.

Substitution of the potential energy (7.7a) into the Schrödinger
equation to determine the energy eigenstates of the electron from the
perspective of an Earth-bound observer yields the following interest-
ing result. The state energy E, expressible in the form

E = E0 - M w (7.8)

(where E0 is the corresponding energy on a nonrotating Earth), now
depends on the component of the electron’s orbital angular momentum
along the rotation axis of the Earth. If the electron circulates in the
same sense as the Earth rotates (i.e., M is positive), the energy of the
quantum state is lowered by M w. Conversely, the energy is raised by
|M| w when the electron and the Earth rotate in opposite senses and
M is negative. This result is in complete analogy to the previous clas-
sical treatment leading to orbital frequencies w0 ± w and, again, may
be tested experimentally by examination of spontaneous emission. A
quantum mechanical atom radiates when the bound electron under-
goes a “quantum jump” to a lower-energy state. If an electron in a
quantum state of nonzero angular momentum undergoes an electric
dipole transition to a lower state of zero angular momentum, the
emitted photons will have two possible frequencies: w0 ± w, where w0

is the corresponding frequency in an inertial reference frame.
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The quantum mechanical analysis of a rotating atom interacting
with incident left and right circularly polarized light involves the use
of a mathematical procedure termed perturbation theory which will
not be described here. I note only that the calculation justifies the 
classical picture of the inequivalent action of the Coriolis force on 
countercirculating electron orbits to create chirally asymmetric 
polarizabilities. The end result is the prediction of a very weak circu-
lar birefringence nL - nR that can be on the order of about 10-18 for
light falling in the visible and ultraviolet regions of the spectrum. A
circular birefringence of this magnitude would lead to the minute
optical rotatory power of about 10-11 degrees per meter of material! As
stated before, this optical activity is far smaller than that already
observed in atoms as a consequence of the weak nuclear interactions.

Is so weak an optical effect detectable? The answer, a guarded affir-
mative, brings us back to the Cashmere Cavern and the Canterbury
ring laser. In a ring laser, as in the Sagnac interferometer, two coher-
ently produced light waves traverse the same closed path in opposite
directions (Figure 7.5). What distinguishes the laser from a passive
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Figure 7.5. Schematic diagram of a rotating ring laser interferometer with a
sample that displays circular birefringence (different refractive indices nL and
nR for the two forms of circularly polarized light). RCP and LCP light waves
propagate in opposite senses about the ring and give rise to a beat frequency
produced in part by the interferometer rotation and in part by the circular
birefringence.



(i.e., no gain) interferometer, however, is the presence within the ring
of a medium with a population inversion such as discussed in Chapter
6. Although the laser may emit light over a range of frequencies, only
those oscillations are sustained which satisfy a resonance condition
whereby an integral number of wavelengths span the perimeter of the
ring. Those waves that do not satisfy this requirement are effectively
suppressed by destructive interference. In fact, all waves (light, sound,
water, etc.) in a closed container or cavity are subject to the imposi-
tion of boundary conditions.

When the ring laser is rotating, the effective length of the trip
around the cavity—and hence the resonant wavelength and fre-
quency—is different for the clockwise and counterclockwise modes.
Upon recombination at a detector, the two modes, no longer synchro-
nized, produce a beat frequency similar in principle to the beat heard
when one strikes two neighboring keys on a piano. There is an advan-
tage to measuring a beat frequency in a ring laser compared with a
phase shift in a passive interferometer. For one thing, frequency is an
experimental quantity that can be measured with relative facility and
to very high precision. (As one example, the frequency corresponding
to the hyperfine splitting in ground-state hydrogen can be measured
to better than one part in 1012.) For another, the factor relating the
beat frequency to the optical path-length difference is larger (by the
ratio of the speed of light to the circumference of the ring) than 
the corresponding factor relating the Sagnac phase shift to the optical
path-length difference.

In addition to providing a highly sensitive monitor of rotation, a ring
laser permits one to measure small optical anisotropies, such as the
birefringence of a material. Suppose that the natural modes of the ring
laser are circularly polarized and that the laser could be excited bidi-
rectionally with left and right circularly polarized waves traversing
the ring in opposite directions. The presence of a sample of optically
active matter in the ring would likewise give rise to a frequency dif-
ference, or beat frequency, because the left and right circularly polar-
ized waves are retarded by the sample to different extents. Clearly, the
case of two counterpropagating waves retarded unequally with respect
to a stationary laser is equivalent, in principle, to that of a moving
laser “gaining” on one wave and “receding” from the other. This fre-
quency shift is linearly proportional to the circular birefringence and
the mean operating frequency of the laser.

For the problem at hand, it is the rotation of the Earth—and hence
of the ring laser fixed to the Earth—that generates the optical activity
in the sample. Since (as in the case of the Eötvös experiment) one
cannot stop the Earth from rotating, how will the experimenter know
that a shift in beat frequency has occurred? The solution to the
problem is conceptually the same as that employed by Eötvös: Make
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a comparative measurement. Although the Earth’s rotation should
induce optical activity in all terrestrial matter, the magnitude of this
circular birefringence depends on both the quantum level structure of
the material and the frequency of the light.

Circular birefringence is a nonresonant phenomenon; that is, the
material is essentially transparent to the light employed. Neverthe-
less, the circular birefringence of a material, like the atomic polariz-
ability, ordinarily increases as the frequency of the light approaches,
but never falls within, the region of the spectrum where absorption
occurs. Introduction into the ring, therefore, of a sample material for
which the laser frequency is close to an atomic transition should shift
the beat frequency attributable to rotation alone by a small but sig-
nificant amount. Subsequent reversal of the direction of the counter-
propagating left and right circularly polarized waves—in analogy to
the exchange of masses in Eötvös’s torsion balance—can be shown to
shift the beat frequency in the opposite direction. Unlike the Eötvös
experiment, however, a null result is not expected.

Theoretical analysis of the ideal performance of a ring laser11 sug-
gests that a laser of the type and size (area of 1m2) being developed
at the University of Canterbury should be able to detect a shift in fre-
quency smaller than the operating frequency itself by a factor of about
1019. If this ideal performance is actually realizable, the predicted
atomic circular birefringence would just marginally fall within the res-
olution capacity of the laser.

If the optical activity induced by the Earth’s rotation is far weaker
than the atomic optical activity resulting from nuclear interactions,
how is it to be distinguished from the latter? Actually, the two types
of optical activity differ significantly in their symmetry properties.
Because weak neutral current interactions between the nucleus and
orbiting electrons actually mix close-lying atomic states of opposite
parity (e.g., the S and P sates within a given electronic manifold), the
resulting optical activity is similar in nature, although different in
magnitude, to the molecular optical activity (discussed in Chapter 6)
associated with chirally asymmetric three-dimensional chemical struc-
tures. In this type of optical activity, the sense of chiral asymmetry is
defined with respect to the direction of propagation of the light beam,
there being no other preferred direction in an optically isotropic mate-
rial. One consequence of this, pointed out earlier, is that a plane-
polarized light beam reflected back upon itself to its point of entry in
the optically active medium shows no net optical rotation.

The optical activity generated in atoms by the Earth’s rotation is dif-
ferent—and illustrates by that difference an illuminating connection
between rotation and magnetism. There is a well-known theorem in
classical mechanics known as Larmor’s theorem (derived in 1897 by
J. J. Larmor, who in that same year also derived the Larmor formula
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employed in Chapter 4) which states that the effect of a constant mag-
netic field B on a system of particles of mass m and charge q is to
superimpose on its normal motion (i.e., in the absence of the magnetic
field) a uniform precession. The angular velocity of precession, the
magnitude of which is designated the Larmor frequency, may be shown
to be

(7.9a)

The theorem is not exact, but rather an approximation valid to the
extent that one can neglect terms of order B2 and higher in the equa-
tion of motion. Because of the negative sign in Eq. (7.9a), the orienta-
tion of the angular velocity is opposite the orientation of the magnetic
field if the particles are positively charged. Another way of expressing
this is to say that the precession occurs in the same sense as the
current of negative electrons that generates the magnetic field in the
first place. In any event, the basic idea is that one can sometimes sim-
plify the analysis of a system of particles in a magnetic field by elim-
inating the field and placing oneself in a frame of reference rotating
at the Larmor frequency.

The influence of the rotation of the Earth on atoms can be regarded
in some ways as the converse of Larmor’s theorem. In other words, 
the effect of a uniform global rotation at angular velocity w on a 
system of particles in an environment free of electric and magnetic
fields is equivalent to that of a constant magnetic field (which, for 
consistency, I shall call the Larmor field BL) obtained by rearranging
relation (7.9a):

(7.9b)

Thus, the rotational separation of magnetic substates degenerate in
an inertial frame [relation (7.8)] is the analog of the Zeeman effect, the
splitting of degenerate states by a static magnetic field. In fact, the
potential energy term (7.7a), with w replaced by the equivalent expres-
sion from Eq. (7.9b), has exactly the form of an interaction of a mag-
netic field with a magnetic dipole moment of magnitude qL/2mc. (This
is the magnetic dipole moment one would expect for a current loop 
consisting of a single charged particle in circular orbit with angular
momentum L.) Likewise, the phase shifts produced in the Sagnac
effect by rotation and in the Aharonov–Bohm effect by a magnetic flux
are analogous—the connection being particularly direct when
expressed in terms of the vector potentials from which the corre-
sponding magnetic fields derive. In a similar way, rotational optical
activity has a magnetic analog, the Faraday effect, discovered 
by Michael Faraday in 1845. The plane of polarization of a linearly
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polarized light beam transmitted through an isotropic dielectric in 
a static magnetic field is rotated by an amount linearly proportional
to the magnetic field strength and the path length through the
medium.

From a classical perspective, the Faraday effect is produced by the
inequivalent action of the Lorentz force on oppositely circulating elec-
tron orbits. Replacing the Lorentz force by the Coriolis force or, equiv-
alently, substituting the Larmor field BL for the actual magnetic field
appearing in the calculation of the Faraday rotation, yields the clas-
sical mechanical expression for rotational optical activity. The optical
rotation, however, of the Faraday effect occurs with respect to the fixed
magnetic field, not with respect to the light propagation direction. The
practical consequence of this is that the net optical rotation of a light
beam reflected back upon itself to its point of entry into the sample is
twice that of a single passage—not zero as in the case of structural
optical activity. This same symmetry holds for optical activity engen-
dered by the Earth’s rotation, for which the rotation axis of the Earth
replaces the magnetic field direction and helps serve to distinguish 
the predicted effect from optical manifestations of the weak nuclear
interaction.

The weak nuclear interactions are not only weak, but of extremely
short range. I have mentioned previously that, according to the elec-
troweak theory, the nucleons and bound electrons of an atom are
coupled by the exchange of a Z0 boson, a particle whose mass is about
100 times the proton mass. In quantum mechanics, the range of a force
can often be estimated quickly by means of the uncertainty principle.
The linear momentum of an exchanged (or virtual) particle of mass m
can span a range of values from 0 to about mc. Hence, the uncertainty
in its spatial location is approximately

(7.10)

the so-called Compton wavelength. The Compton wavelength of the Z0

boson is about 10-15 cm, some seven orders of magnitude smaller than
the Bohr radius which sets the scale of atomic size. Consequently,
weak neutral currents can directly influence only those atomic states—
the S states—for which there is significant overlap of electron and
nuclear wave functions. For all states of nonzero orbital angular
momentum, the electron wave function has a node or zero amplitude
at the nucleus (treated in first approximation as a point mass).

In the electronic manifolds of principal quantum number n = 2 and
higher, the weak nuclear interactions mix close-lying S and P states,
thereby giving rise to an atomic optical activity that increases in
strength approximately with the cube of the atomic number. There-
fore, by employing light atoms, using light of such frequency as to
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avoid contributions from electrons in S states, and by taking advan-
tage of the cumulative enhancement of multiple passes through the
sample, one might hope to observe the chiral effects of the Earth’s rota-
tion in the domain of atomic physics.

* * *

Although a heuristic explanation of the interaction between an atom
and the spinning Earth in terms of the classical Coriolis force seems
to have led so far to results in basic accord with those of quantum
mechanics, this need not always be the case. Quantum mechanics
embraces degrees of freedom for which there are no classical counter-
parts. Consider, for example, an unexcited hydrogen atom. Based on
the classically derived potential energy expression (7.7a), the internal
dynamics of an atom in a 1S ground state would be entirely unaffected
by the rotation of the Earth, as a 1S electron has zero orbital angular
momentum. (The center of mass of the hydrogen atom would still, of
course, be subject to the Coriolis force of the Earth’s rotation.) This
expectation is not correct, however.

An elementary particle can have a nonclassical degree of freedom,
spin, which also contributes to its angular momentum. The electron
and the proton, for example, are both spin- 1–2 particles. Although one
can try to picture the spin of an electron as analogous to the diurnal
rotation of the Earth about its axis, this is not really satisfactory. High-
energy scattering experiments probing the internal structure of the
electron indicate (in contrast to the proton and neutron) that the elec-
tron is a “point” particle composed of no more fundamental subunits
to within an experimental limit of about 10-16 cm. If one models the
electron as a spinning charged sphere of radius equal to the so-called
classical electron radius, r0 = e2/mc2 � 10-13 cm—deduced by equating
the electron rest mass energy mc2 to its electrostatic potential energy
e2/r0—the resulting linear velocity of a point on the “equator” of the
electron surface would be12

(7.11)

(with afs the fine-structure constant), which exceeds the velocity of
light by a factor of over 170. If a smaller radius is adopted, then the
violation of relativity is even greater. No classical model of electron
structure, in fact, has proved adequate. It seems, therefore, that spin
must simply be accepted and not structurally interpreted.

With account taken of the nonclassical attribute of spin, a completely
quantum mechanical analysis replaces (7.7a) with the potential energy
expression

UR = -w · F, (7.7b)

v
c
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involving the projection onto the quantization axis of the total inter-
nal angular momentum (F) of the atom comprising a vector sum of the
electron orbital angular momentum (L) and angular momenta con-
tributed by electron spin (S) and nuclear spin (I).

In the hydrogen ground level, the total angular momentum derives
exclusively from the spins of the electron and proton, which may be
oriented either parallel or antiparallel to one another. As a result of
the magnetic coupling of electron and nuclear spins, the n = 1 level of
the hydrogen atom is composed of four hyperfine states. There is a
single ground state of zero total angular momentum which, in the
notation of Chapter 4, can be designated 1S1/2(F = 0; M = 0). In this
state, the electron and proton spins are oppositely directed. Above the
ground state lie the three states 1S1/2(F = 1; M = +1), 1S1/2(F = 1; M =
0), and 1S1/2(F = 1; M = -1) of total angular momentum 1 that result
when the electron and proton spins are parallel. In an inertial refer-
ence frame, these three states of total quantum number F = 1 are
degenerate. If the quantum mechanical treatment leading to relation
(7.7b) is correct, the rotation of the Earth should split the energy of
the two states with azimuthal quantum numbers M = ±1 by an amount

w � 5 ¥ 10-20 eV, in accordance with relation (7.8). The hyperfine level
splitting E0 between the two rotationally unaffected 1S states with 
M = 0 corresponds to a microwave photon of frequency 1420MHz 
and wavelength 21cm. (This radiation is of much interest to radio
astronomers and astrophysicists who search the skies for, among other
things, interstellar clouds of atomic hydrogen gas.)

Despite the fact that, according to relation (7.7b), an atomic 1S state
ought to be affected by the spin of the Earth, it does not follow from
what has been said so far that atoms in the 1S state must necessarily
exhibit optical activity when illuminated with microwave radiation. In
fact, at first thought, it might appear that such optical activity cannot
occur. All the states of the n = 1 ground level have the same (even)
parity, i.e., the same behavior under reflection; symmetry rules strictly
forbid electric dipole transitions between states of the same parity. The
resulting atomic polarizability—and therefore the dielectric constant
of a bulk sample of atoms—would not be differentially affected by left
and right circularly polarized microwaves.

Nevertheless, quantum theory does predict a rotational optical activ-
ity near 1420MHz. This is one of the occasions where the magnetic
field of the incident radiation cannot be neglected. The electron,
although a “point” particle, has not only an electric charge, but also
an intrinsic magnetic moment. According to classical electromagnet-
ism, an orbiting charged particle constitutes a simple current loop 
with a magnetic dipole moment. Although no such loop can be envi-
sioned for a spinning electron with zero orbital angular momentum,
there is still an intrinsic magnetic moment deriving from (and 

h

h
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proportional to) the electron spin angular momentum. To an 
observer on the rotating Earth, the electron magnetic moment 
would appear to precess about the Earth’s rotation axis—a result in
keeping with the previously expressed analogy between rotation and
magnetism.13

The interaction of this precessing magnetic moment with the mag-
netic field component of an electromagnetic wave ultimately gives rise
to a magnetic permeability m that is different for left and right circu-
lar polarizations. Since the index of refraction depends not on the
dielectric constant (e) alone but on the product em, a linearly polarized
microwave beam passing through the sample of unexcited Earth-
bound hydrogen atoms should undergo optical rotation. Surprisingly,
under appropriate circumstances, this optical rotation can be several
orders of magnitude larger than that attributable to the orbital motion
of the electron.

All things being equal—resonance frequency, radiation frequency,
numbers of atoms per unit volume, and so forth—magnetic interac-
tions are ordinarily weaker than comparable electric interactions by
the square of the fine-structure constant, afs

2 � 5 ¥ 10-5. How, then,
can the rotational optical activity associated with electron spin exceed
that associated with electron orbital motion? The answer is that all
things here are not equal; in particular, the frequencies of (virtual)
electric dipole transitions that contribute to rotational optical activity
in the visible and ultraviolet are some five or six orders of magnitude
larger than the 1S hyperfine transition frequency. The significance of
this is as follows.

Recall that as long as the atoms do not absorb the incident light, the
birefringence of a sample increases as the light frequency approaches
a resonance frequency. The frequency at which absorption can occur,
however, is not infinitely sharp. First, the energy levels themselves
have a natural width resulting from their finite lifetime (from spon-
taneous emission). Second, if the atoms are moving about randomly as
a result of thermal motion, the absorbed light will extend over a range
of Doppler-shifted frequencies. And third, if the sample is sufficiently
dense, the atoms will collide with one another, thereby increasing the
energy uncertainty of the states.

At low density, it is the Doppler effect that principally determines
the range of frequencies over which absorption occurs; the extent of
Doppler broadening, it is important to note, is proportional to the res-
onance frequency. It is the potentially very narrow Doppler width of
the hydrogen hyperfine transition that allows one, in principle, to
probe the atom with microwave frequencies lying much closer to a res-
onance than would be possible with visible and ultraviolet radiation.
Unfortunately, the resulting optical activity is still extremely weak,
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and as the technology for state-of-the-art polarimetry is far more
advanced for high-frequency electromagnetic waves than for micro-
waves, the calculated enhancement is unlikely to be of much experi-
mental help at the present.

Any attempt to measure the optical activity of atoms induced by 
the Earth’s rotation will have to overcome some formidable experi-
mental hurdles. One of the most daunting is that of the Earth’s 
own magnetic field, which, with a strength of approximately one-half
gauss, gives rise to a true Faraday rotation larger than the sought-for
effect by some eleven orders of magnitude.14 However, the field of
quantum magnetometry—the measurement of ultrasmall magnetic
fields by means of superconducting quantum devices (SQUIDS)—has
already achieved wonders; fields as weak as 10-11 gauss can be mea-
sured. The question is whether an extant field can be shielded to that
low value.

The pursuit of an interaction between the rotating Earth and an
Earth-bound atom raises another, perhaps more basic and thought-
provoking, question as well. What, in fact, does it mean to say that an
atom rotates? Mathematically, quantum mechanics provides a formal
procedure for expressing any wave function (or operator) in terms of
the coordinates of a rotated reference system; this is termed the
passive view of rotation. The active view, whereby the wave function
itself is rotated with respect to a fixed frame of reference, is con-
sidered—again mathematically—to be entirely equivalent. It was by
application of such transformations that the equations of motion of a
rotating quantum system have been derived and the attendant phe-
nomenon of rotational optical activity inferred.

But does the rotational displacement of an atom—which must neces-
sitate in some way the physical coupling of the atom to its environ-
ment through forces of constraint—actually imply as well that the
bound electrons are so coupled? This is not an idle inquiry arising from
the paradox-laden terminology of classical physics. The issue can be
settled in the laboratory: If the frame of reference rotates, but the 
atom does not, there will be no rotational optical activity. Experiments
to search for chiral asymmetries in the interaction of atomic gases 
or vapors rapidly spun on a laboratory turntable are now under 
development. At the rates of mechanical rotation achievable (about 100
revolutions per second), the expected optical rotary power (or 
companion phenomenon of circular dichroism), if it exists, should be
measurable.

For nearly two centuries, optical activity has been a catalyst in the
progress of science both through the research undertaken to under-
stand it and as an experimental tool to investigate other phenomena.
It does not appear even now to be an exhausted subject.

Two Worlds, Large and Small: Earth and Atom 277



Notes

1. F. C. Michel, Neutral Weak Interaction Currents, Physical Review B138
(1963) 408.

2. M. A. Bouchiat and L. Pottier, Optical Experiments and Weak Interactions,
Science 234 (1986) 1203.

3. An exposition of the exaggerated relativistic and quantum phenomena to
be expected if the speed of light were much smaller, and Planck’s constant
much larger, than their present values may be found in George Gamow’s
delightful Mr. Tompkins books combined in Mr. Tompkins in Paperback
(Cambridge University Press, London, 1971).

4. F. C. Witteborn and W. M. Fairbank, Experimental Comparison of the
Gravitational Force on Freely Falling Electrons and Metallic Electrons,
Physical Review Letters 19 (1967) 1049.

5. L. I. Schiff and M. V. Barnhill, Gravitational-Induced Electric Field Near
a Metal, Physical Review 151 (1966) 1067.

6. R. von Eötvös, D. Pekar, and E. Fekete, Beiträge zum Gesetze der 
Proportionalität von Trägheit und Gravität, Annalen der Physik (Leipzig)
68 (1922) 11.

7. E. Fischbach et al., Reanalysis of the Eötvös Experiment, Physical Review
Letters 56 (1986) 3.

8. R. Colella, A. W. Overhauser, and S. A. Werner, Observation of Gravition-
ally Induced Quantum Interference, Physical Review Letters 34 (1975)
1472.

9. S. A. Werner et al., Effect of the Earth’s Rotation on the Quantum Mechan-
ical Phases of the Neutron, Physical Review Letters 42 (1979) 1103; 
J.-L. Staudenmann et al., Gravity and Inertia in Quantum Mechanics,
Physical Review A21 (1980) 1419.

10. There are, of course, still weaker interactions, as, for example, that of an
atom with gravitational waves, the rippling of the space–time continuum
itself, produced (among other means) by catastrophic collapse of some
massive astrophysical object.

11. G. E. Stedman and H. R. Bilger, Could a Ring Laser Reveal the QED
Anomaly via Vacuum Chirality, Physics Letters A122 (1987) 289.

12. The angular momentum of a sphere of radius r and mass M rotating at
angular frequency w about an axis through the center is 2–5 Mr2w. Replac-
ing r with r0 and setting the angular momentum equal to 1–2 leads to an
equatorial linear velocity v = wr = 5 /4Mr0, which reduces to relation (7.11).

13. The magnetic moment of a current loop in a uniform magnetic field expe-
riences a torque produced by the Lorentz force as a result of which it pre-
cesses like a gyroscope about the field direction. Although not describable
as a current loop, the magnetic moment arising from particle spin under-
goes a similar precession when acted upon by a magnetic field.

14. From Eq. (7.9b), the “Larmor field” corresponding to the Earth’s angular
frequency of rotation (7.3 ¥ 10-5 radians/s) is 8.3 ¥ 10-12 gauss.

h
h

278 7. Two Worlds, Large and Small: Earth and Atom



CHAPTER 8

Computers, Coins, and Quanta:
Unexpected Outcomes of 

Random Events

8.1. The Suggestive Power of Fun

Many years ago, I participated in an international conference devoted
to improving the teaching of science at all levels of instruction.
Although I now recall little of the numerous talks and heated dis-
cussions that the conference engendered, there was one event that I
have not forgotten. In his introductory remarks, an invited speaker,
noted for his compendious study of the life of Isaac Newton, starkly
announced that not once, in all the years that Newton engaged in his
physical researches, had he (Newton) ever had any “fun.” According 
to the speaker, the pursuit of scientific knowledge for Newton was a
solemn and sacred undertaking which the word fun grotesquely 
trivialized. Moreover, the speaker continued somewhat scornfully, 
this is precisely how it should be; science is too serious a matter to be
pursued—or taught—with the idea of fun in mind . . . and the sooner
teachers grasped this point, the sooner they would be able to teach
science more effectively.

I was stunned. I am not a historian, although I have read enough
books about Newton to agree that “fun-loving” is not exactly the adjec-
tive to apply to a reclusive genius with tendencies toward paranoia.
On the other hand, as a scientist—one of very few at the conference
in question—I have also read Newton’s own writings. It is impossible
to read Newton’s Opticks, for example, and not sense the enormous
personal satisfaction and pleasure that its author must have experi-
enced in reflecting upon the deep philosophical problems posed by the
behavior of light and in designing and executing simple, yet incisive,
experiments to help unravel these mysteries of natural philosophy.
Perhaps fun may not be the appropriate word, but any conception 
of science that ignores the intellectual delight of satisfying one’s 
curiosity, overcoming challenges, and making discoveries has missed
a seminal attraction of science both in Newton’s time and our own.
Indeed, it is precisely this sense of exhilaration and fulfillment in the



pursuit of understanding how the world—or a tiny part of it—works
that a teacher must communicate to students if they are to appreciate
science as something more than a collection of facts and formulas.

Newton was fascinated by the physical behavior of much of what he
encountered around him: how objects moved when pushed, how objects
fell when released, how objects cooled when heated, how fluids flowed,
and what happened to light when it passed through or around various
things, to cite but a few of Newton’s preoccupations. In the motions
and transformations of familiar physical objects, Newton found far-
reaching principles waiting to be revealed.

Science has evolved over the past three centuries in ways that
Newton could never have imagined, and the objects familiar to many
a physicist today now comprise those that can be seen only by power-
ful microscopes or with satellite-based telescopes or by means of some
other kind of expensive apparatus usually requiring the financial
support of one government agency or another. In some ways, that is
rather unfortunate, although seemingly necessary if the boundaries of
scientific knowledge are to expand, for it tends to breed an attitude
among at least some scientists and science editors not unlike the 
attitude of the historian above. The remark of one anonymous wag in
the audience of a quantum mechanics conference I spoke at long ago
captured this frame of mind precisely. Paraphrasing physicist John A.
Wheeler’s cryptic assertion that “a phenomenon is not a phenomenon
until it is a measured phenomenon,”1 the wag blurted out, “a phe-
nomenon is not a phenomenon until it is a funded phenomenon!” 
Scientists who have ever tried to publish in a premier research journal
without having a funding agency to acknowledge as evidence that the
submitted work was “serious” science (and not fun) will understand
the import of the wag’s observation.

I have been doing scientific research for over forty years. Much of
this research, as recounted in this book and other volumes noted in
the Preface, is “serious” science, i.e., part of a carefully planned
research agenda. However, a significant fraction of my work was not
part of any research plan at all, but undertaken on a whim, for amuse-
ment, or out of surprise at some unexpected turn of events. These
adventitious projects were often the ones that I enjoyed most and 
from which I always learned something new and interesting. I cannot
believe that a true scientist, including even Newton, does not have fun.

This two-sided nature of scientific motivation—serious and playful—
is aptly expressed in Harvey Lemon’s vignette of the Nobel Prize-
winning American physicist, A. A. Michelson,2 who, like Newton, was
a pioneer in the investigation of light:

When asked by practical men of affairs for reasons which would justify the
investment of large sums of money in researches in pure science, he was quite
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able to grasp their point of view and cite cogent reasons and examples whereby
industry and humanity could be seen to have direct benefits from such work.
But his own motive he expressed time and again to his associates in five short
words, “It is such good fun.”

In this chapter, I discuss a project that started as a computer game,
but evolved—unexpectedly—into tests of what is perhaps the most
fundamental characteristic of the quantum world: the intrinsically
unpredictable occurrence of individual quantum events.

8.2. To Switch or Not to Switch—That Is the
Question

I never heard of the so-called “Monty Hall” problem until a few years
ago when I first saw mention of it in a review3 of a newly published
book of mathematical oddities. Even then, having (by choice) no tele-
vision in my house, the association of the name with the host of a TV
game show (“Let’s Make A Deal”) meant nothing to me. The problem
is easy enough to state, but its solution is counterintuitive in the
extreme. Indeed, I have read that, when first brought to the American
public’s attention by a columnist for a popular magazine,4 it had driven
even professional mathematicians to distraction.5

There are three closed boxes. Inside one of them is a valuable cash
prize and inside each of the others is a banana. The player picks a box,
but before its content is revealed, the game master (who is aware of
what is inside each box) opens one that he knows contains a banana.
Now, the game master offers the player the following option: The
player may keep his or her original choice or (for a small fee in one
version of the game) choose the other unopened box. What should the
player do?

The nearly universal reply—and indeed the reply given by everyone
to whom I personally posed this problem—was that it cannot matter
which of the two options is selected. With but two choices remaining,
there is a 50% chance of winning in either case. (It would, therefore,
be ridiculous to pay to switch, respondents said.) This, however, is not
the case. Players double their chance of winning if they switch. Think
about that a while, before continuing.

How can one possibly double his chance of winning by choosing the
other of only two boxes? The argument is actually quite simple. Assum-
ing that there is an equal likelihood for any one of the three boxes to
contain the prize, a player will have a chance of 1/3 of winning if he
selects a box and keeps it. This means that there is a probability of
2/3 of not getting the prize on the first selection. However, if the 
player switches, then 2/3 becomes the probability of winning, for,
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under the prevailing circumstances, the unopened box to which the
player switches must contain the prize if the originally chosen box 
does not. Thus, the odds of winning are twice as great if the player
switches.

The preceding reasoning (as well as other more formal arguments)
generally elicited a storm of protest from the ordinarily placid stu-
dents, colleagues, neighbors, and friends on whom I tried the problem.
Probability is a measure of present knowledge they all said; once the
game master opens a box, the odds of winning jump from 1/3 to 1/2
whether or not the player switches. The fallacy of thinking this way,
however, lies in ignoring the order in which events transpire, for 
this order defines the conditions which determine the probability of
winning. The probability Pswitch of winning by switching is a product of
two probabilities: (a) the probability P(A) that the player first picks a
box with a banana (event A) and (b) the probability P(B|A) that the
player next picks the box with a prize (event B) given that event A has
occurred6:

(8.1)

Under the rules of the game, the probability of initially selecting a
banana is P(A) = 2/3 and the conditional probability of selecting the
prize after the game master has revealed one of the banana-
containing boxes is P(B|A) = 1/1 (i.e., 100%). Hence, Pswitch = 2/3. If the
game master were to have revealed the content of one of the boxes
before the player made a first choice, then the probability of winning
would have been the same whether the player kept that choice or
switched. Order matters.

However, suppose—as one dissatisfied colleague argued—that the
player simply flipped an unbiased coin to determine the strategy:
heads (H) he keeps, tails (T) he switches. Clearly, in this case there
must be a 50% chance of winning the prize either way. That observa-
tion, in fact, is true, but it does not conflict with the previous conclu-
sion that the player is better off choosing to switch. The “coin-toss”
strategy, which underlies the intuitive but misguided reasoning of
most players, is again compounded of two distinct sets of probabilities.
If Ptoss is the probability of winning when a coin toss determines 
strategy, Pkeep and Pswitch are the original probabilities of winning by
keeping or switching one’s initial choice, and PH and PT are the prob-
abilities (both 50%) of a fair coin landing H or T, then

(8.2)
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From Eq. (8.2), it again follows that Pswitch must be 2/3 and, therefore,
twice Pkeep if the overall probability of winning by the outcome of a
random process is to be 1/2.

To convince both myself and others that, however unexpected,
switching really doubles the odds of winning, I asked my son Chris, a
high-school junior at the time, to program the game on a computer,
using a random-number algorithm to distribute the prize among the
boxes. In the first version of our program, created with the HyperTalk
language for the Macintosh, a player picks a box, and the computer,
again using the random-number generator, opens one of the two
remaining boxes. If the opened box contained the prize, then obviously
the player lost—but this event was not included in the dataset from
which statistics were compiled, for there had been no option of switch-
ing. In a second version of the program, the computer played the entire
game itself, executing many rounds of prize distribution and box 
selection with the opening of a prize-containing box automatically
excluded.

The results of 20,000 games—10,000 each for the strategies of
keeping or switching—are summarized in Figure 8.1. The fraction of
times each box was assigned a prize was very close to 1/3, as was also
the fraction of times each box was selected by the “player.” The 
strategy of keeping the original choice resulted in winning the prize
in 3359/10,000 = 33.59% of the games. By switching, however, the 
fraction of wins jumped to a smashing 6639/10,000 = 66.39%.

What more can I say?

8.3. On the Run: How Random Is Random?

Actually, there is more to say. It was while programming and playing
the game that we noticed that the computer seemed to behave rather
oddly at times. Although, on average, each box was assigned the prize
in one-third of the total trials, in detail the computer occasionally
assigned the prize to the same box three or four or more times in 
succession. Was there a defect in the program? Could it be that the
internal random-number generator was not generating random
numbers? Or were these outcomes to be expected even in the case of
a perfectly random selection process? Thus, began my interest in the
matter of “runs.”

Random events occur without any assignable cause. Emphasis here
is on “assignable,” for random occurrences do not represent a suspen-
sion of the laws of physics; rather, in the absence of sufficient 
knowledge of initial conditions, one cannot predict their outcome indi-
vidually. Consider one of the classic examples of a random process: 
coin tossing. Certainly, the coin is subject to Newton’s laws; however,
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too little, if anything, is known about the precise conditions—for
example, the magnitude, direction, and point of application of the
ejecting force, or the mass and size of the coin, or the pressure and vis-
cosity of the air—under which a coin is launched. Of the two possible
outcomes, we would generally expect an unbiased coin to land with
head-side up (H) or tail-side up (T) with approximately equal fre-
quency. If, therefore, in a series of tosses this is found to be the case,
we are usually satisfied that the flipping was random. However, estab-
lishment of randomness is a much more subtle matter than simply the
occurrence of all possible outcomes with equal frequency.

If you are a teacher (and therefore have a captive audience), try the
following experiment with your class. Divide the class into two groups.
For homework, tell one group to toss a coin 256 times and write down
in sequence the outcome of each toss; tell the other group to write down
what they would imagine a typical sequence of 256 random tosses 
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Figure 8.1. Tabulation of “Keep” and “Switch” outcomes. Figures in each box
show the number of times the prize was randomly placed in the box and the
number of times that the box was randomly chosen by the player (the com-
puter).



to be (but not actually to do the tossing). The students are not to 
indicate on their papers whether the recorded data were obtained
experimentally or “imaginatively.” With a knowledge of the nature 
of randomness—which presumably the students do not possess—the
teacher can determine with approximately 98% accuracy which sets of
data were obtained experimentally. How?

I will tell you shortly. The key to the solution, however, involves the
idea of a “run,” a sequence of binary outcomes of the same kind. 
Figure 8.2a gives an example of what the results of 256 sequential coin
tosses might look like. Each 1 signifies a head and each 0 signifies a
tail. Tosses commence with the uppermost left bit (i.e., binary digit)
and continue from left to right to the lowermost right bit. Scanning
the rows of numbers, one sees, as expected, apparently random fluc-
tuations between short strings of 0s and 1s. But every so often there
occur unexpectedly long strings, such as the runs of seven 0s and seven
1s boxed in the figure, which seem to represent islands of order amid
disorder. The table in Figure 8.2b displays the total number of runs of
0s and 1s of all lengths that occurred in the sequence of 256 coin tosses.
It is essential to recognize that the occurrence of long runs is a natural
outcome of randomness and does not necessarily signify any un-
derlying regularity or assignable cause. Indeed, were there to be a 
deficiency of long runs, the process in question assuredly would not be
random.

Consider, for example, the question of how likely it is to obtain a run
of at least 8H or 8T in 10 tosses. Figure 8.3 illustrates the ways in
which such runs can occur. There are five sequences leading precisely
to a run of 8H, two sequences leading to a run of 9H, and one sequence
leading to a run of 10H. Since these statistics are the same for runs
of 8T, 9T, and 10T, there are in all 16 sequences leading to runs of at
least 8H or 8T. However, with two possible outcomes for each toss,
there are in all 210 = 1024 distinct sequences of 10 tosses. Thus, the
probability of obtaining a run of at least 8H or 8T is 16/1024 = 1.6%.
Is this a low probability? Well, let me put it this way: If you knew that
the planes of a particular airline went down in flames once in every
64 flights (1024/16 = 64), would you fly on this airline? Small is rela-
tive; an unlikely outcome will eventually occur if the number of trials
is sufficiently high.

As the total number of tosses in a sequence increases, the enumera-
tion of all individual configurations leading to runs of a particular
length or greater becomes very cumbersome. Mathematicians have
developed general formulas, but we can deduce the statistics of random
runs to good approximation by a simple argument. I designate n

kH to
be the mean number of times a run of length k heads occurs in n tosses,
and n

kH the mean number of times of a run of at least k heads occursR

r
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Figure 8.2. (a) The experimental outcome of 256 sequential coin tosses (start-
ing from the upper leftmost bit) in which 0 represents T and 1 represents H.
(b) The table displays the number of runs of each kind for all observed lengths.

in n tosses. (The overbar signifies the average result of a series of
experiments, each experiment comprising n tosses.) The correspond-
ing symbols n

kT and n
kT apply to tails, and

n
k = n

kH + n
kT, (8.3a)

n
k = n

kH + n
kT (8.3b)

give the mean numbers for run lengths of H and T taken together.

RRR

rrr

Rr

(a)

(b)



Since n
kH represents the mean number of runs of length k or

greater (i.e., the sum of the numbers of runs of length k, k + 1, k + 2,
etc., up to the largest occurring length), it is clear that the difference
of n

kH and n
(k+1)H gives the mean number of runs of precisely length

k, or

(8.4)

Equation (8.4) provides the simplest way to calculate n
kH once one has

determined the formula for n
kH. The same formula (with T replacing

H) applies to tails.
Suppose that we want the mean number of times a run of at least

5H appears in n = 256 sequential tosses of a fair coin. In effect, we are
asking for the number of times the chain of events (T H H H H H . . .)
appears in the full sequence. The jump from T to H starts the run, and
the dots following the fifth H signify that either T or H can follow.
Because each H or T in a sequence of random tosses occurs indepen-
dently7 with probability 1–2, the overall probability of the foregoing con-
figuration of six tosses is (1–2)6 = 1/64. On average, therefore, we should
expect to find that a run of at least 5H occurs (1/64) ¥ 256 = 4 times
in 256 tosses;8 likewise for a run of 5T. (Thus, there should occur a
total of about 8 runs of length 5 or longer in 256 tosses.)

More generally, for a run of at least kH, where k ≥ 1, we have

R
r

r R Rk k k
n

H
n

H
n

H.= - +( )1

RR

R
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Figure 8.3. Tabulation of all possible outcomes for a run of at least 8H or 8T
in a sample of 10 coin tosses.



(8.5)

Then, from Eq. (8.4),

(8.6)

As an alternative route to Eq. (8.6), one can simply note that the prob-
ability of realizing a run of precisely kH is (1–2)k+2 because the run is ter-
minated on both sides by a T, as in the sequence (T H H H H H T) for
a run of precisely 5H. Multiplying this probability by n leads directly
to Eq. (8.6).

It is also useful to determine the mean count n of all runs of H and
T, irrespective of length (i.e., the sum of runs of length 1 or greater).
This single statistic,

(8.7)

provides a quick assessment of whether or not a process analogous 
to a coin toss is random. Too small a value of n (i.e., too few runs) is
an indication of “clumping”; there is too little change for the process
likely to be random. On the other hand, too large a value of n (i.e.,
too many runs) signifies too much regularity in the reversal of 
outcomes. A single statistic, however, is not as reliable an indicator of
randomness as having a detailed breakdown of the numbers of runs
of each length.

Equations (8.5)–(8.7) are approximate relations, for I have ignored
certain configurations such as the possibility of runs occurring at the
start or closure of a sequence of tosses, in which case the first or last
jump in the chain is absent. For a long sequence, however, the contri-
bution of “end runs” becomes negligible compared to the number of
inside configurations (“home runs”). The exact general relations are
somewhat complicated,9 but they reduce to Eqs. (8.5)–(8.7) for the
special, though widely applicable, case of large n, small ratio k/n, and
equal numbers of heads and tails.

I return now to the homework assignment that I suggested earlier.
On the basis of Eqs. (8.5) and (8.3b) and the assumption of equal
numbers of H and T, the teacher should expect to find approximately
2(256/27) = 4 runs of 6 or more heads or tails in an experimentally pro-
duced sequence of 256 tosses of a fair coin. It is rather unlikely that a
person unfamiliar with the characteristics of random processes would
imagine, in attempting to predict the outcome of 256 tosses, that the
coin should land the same way 6, 7, or more times in succession—and
not just once but about four times. Thus, a quick scan of a student’s
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figures should readily reveal whether the data have been fabricated or
not.

The teacher could also count the total number of runs on a student’s
paper. According to Eq. (8.7), this should be approximately 256/2 = 128.
(This would be considerably more cumbersome and time-consuming,
however, unless the teacher could scan each paper into a computer and
let the computer do the counting.)

In assessing whether a given process is random or not, it is not 
sufficient to know only mean numbers of runs; one must be able to
estimate as well the dispersion about the mean. This is generally true
for the application of statistical reasoning to any problem. For
example, upon tossing a coin 100 times, we would expect to get approx-
imately—but not necessarily exactly—50 heads and 50 tails. If a par-
ticular experiment led to 54H and 46T, should we suspect that the
process was biased toward generating heads?

The usual measure of the dispersion about the mean is the 
root-mean-square or standard deviation, s. If the outcome of a 
random process is some random variable x, which occurs with a mean
value , then the so-called variance of x is the average (also 
called the expectation) of the square of the deviations of x from , or 

.10 The standard deviation is the square root of the 

variance, . In many cases, it is possible to predict on the
basis of a theoretical model of the random process what the mean and
standard deviation should be. Then, if a particular experimental
outcome falls within the theoretically predicted range ±s of the
expected value , there is ordinarily no reason (in the absence of other
information) to assume that the results are biased.

It is not difficult to estimate theoretically both the mean and stan-
dard deviation for coin-tossing. To return to the above example, if N is
the number of tosses, PH is the probability that a toss yields H, and 
PT = 1 - PH is the probability that a toss yields T, then the mean
number of heads expected is (as already illustrated in Note 7) nH =
NPH, and the standard deviation about the mean can be shown
(although not here) to be .11 Thus, for 100 tosses of a fair
coin (PH = PT = 1–2), one can expect the number of heads to fall within a
range of = ±5 of nH = 50. The occurrence of 54H, there-
fore, does not in itself hint of any bias toward heads (although exam-
ination of the corresponding run data may indicate otherwise).

With regard to runs of coin tosses, deriving the standard deviations
about n

kH and n
kH is an arduous mathematical task, far more difficult than

calculating sH about nH. However, if the sequence of bits is sufficiently
large (in principle, n Æ •, but in practice, n > �20), the distribution of 

n
kH converges toward a bell-shaped curve (Gaussian distribution) with a

standard deviation approximately equal to the square root of the mean:
R
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(8.8)

As a consequence of Eq. (8.8) and the definition of variance, it follows
that the standard deviation of n is (again in the limit of large n)

(8.9)

To someone familiar with statistical theory, Eq. (8.8) suggests that
the probability of obtaining n

kH or n
kT for a sequence of n tosses can

be estimated by a Poisson distribution. The Poisson distribution occurs
widely in physics, characterizing phenomena as different as the fall of
raindrops and the disintegration of nuclei. It is the distribution that
ordinarily describes random processes in which the probability of a
desired outcome (e.g., the decay of a nucleus) is very low, but the size
of the sample (e.g., number of nuclei) is enormous. A defining charac-
teristic of the Poisson distribution is that the variance (s2) of the dis-
tributed quantity is equal to the mean (m). The mathematical form of
the Poisson distribution is uniquely determined by the mean alone:

(8.10)

In Eq. (8.10), Pn
m(m) is the probability of the occurrence of m events out

of n tries in which the mean number of occurrences is m.
Figure 8.4 shows the form of the Poisson distribution for a mean

value m = 10. Note that this is a discrete distribution; that is, the
diamond plotting symbols show the mathematically meaningful
points, whereas the continuous curve through the diamonds merely
helps the eye trace out the general shape. The shape is centered about
the mean value 10, but is not perfectly symmetric; it rises more sharply
on the left and trails more slowly on the right. As m becomes larger,
the Poisson distribution becomes more symmetric, approaching a bell-
shaped (or Gaussian) curve.

We now return one last time to the proposed homework assignment.
Substituting the mean m = n

k = 2 n
kH = n/2k into Eq. (8.10) enables us

to estimate the probability of getting m runs of length k or more heads
or tails in n tosses. Note that the probability of getting no runs 
(m = 0) is e-m and, therefore, the probability of getting at least one run
of k bits or longer must be 1 - e-m, or explicitly

(8.11)

In a random sequence of 256 coin tosses, the teacher should expect to
find at least 1 run of 6 heads or 6 tails with a probability P(R6

256 ≥ 1)
= 1 - e-(256/26) = 1 - e-4 = 98.2%. If the sequences imagined by students

P R ek
n n k

≥( ) = - -( )1 1 2 .

RR

P
m

em
n

m

m
m m( ) = -

!
.

RR

s R
n

n( )�
2

.

R

s R R
n

k
n

k
n

kH H .( ) +� �
2 1

290 8. Unexpected Outcomes of Random Events



unfamiliar with the characteristics of randomness do not contain long
runs, the teacher should be able to distinguish them reliably from the
experimentally generated, and presumably truly random, sequences.

If the reader is already surprised at the degrees to which an un-
biased coin toss can lead to long sequences of identical outcomes and
therefore to the semblance of order, there is an alternative way to view
these coin-toss fluctuations that, in the words of one statistician,12 “not
only are unexpected but actually come as a shock to intuition and
common sense.”

Suppose two players (A and B) are gambling by means of the toss of
a fair coin. If the outcome is H, A receives $1 from B, and if the outcome
is T, A pays $1 to B. I have asked people, those with training in physics
as well as those with no particular science or mathematics back-
ground, to predict what the record of accumulated gain of either player
would look like as the number of tosses increased. By accumulated
gain, I mean the sum of a player’s wins and losses. For example, if the
first five tosses yielded H T T H T, then the gain record (in dollars) for
player A would be 1, 0, -1, 0, -1, and therefore at the end of the five
tosses A would have lost a net $1 to B. Most people (if I assume the
replies to me are typical) would guess that the lead in the game fluc-
tuates back and forth frequently between the two players, so that the
accumulated gain of either player never diverges too far from 0 and,
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Figure 8.4. Poisson distribution giving the probability (diamond plotting
symbols) of obtaining m events out of n tries for a mean m = 10. The con-
tinuous curve through the symbols merely traces out the basic shape of the
distribution.



therefore, each player is in the lead roughly 50% of the duration of the
set. After all, the chance of tossing H is exactly the same as the chance
of tossing T.

An actual record of accumulation, however, is likely to be completely
different from this imagined scenario. Indeed, the probability is very
low that each player dominates the game for 50% of the time. Much
greater by far is the probability that one player will either lead (posi-
tive accumulation) or lag (negative accumulation) throughout most of
the game.13 Examples of this seemingly strange behavior are exhibited
in Figure 8.5. The three frames represent the records of three sets of
1000 computer-simulated tosses whereby the outcome of each toss was
determined by a random-number generator. The generator produced
random numbers uniformly distributed over the interval from 0 to 1.
A number falling within the interval from 0 to less than 0.5 consti-
tuted a head; a number within the interval from 0.5 to 1 constituted
a tail. Figure 8.6 shows a sample of the record of binary outputs (H =
+1, T = -1) from the 200th through the 600th coin toss. The full record
for all three sets of games looks very similar.

As one can see, a player’s accumulation rarely returned to zero, the
breakeven point, even though the random-number generator produced
heads and tails that fluctuated randomly (in accordance with the
theory of runs). In the second set, one player has led for close to the
entire 1000 games. In the third set, one player has lagged for over 800
games. How can this possibly be? Does this not violate the condition
that a player’s expected accumulation14 should be 0 if the probabilities
of a coin landing H or T are equal?

In fact, no. The concept of probability is a somewhat slippery one
usually based on the idea of frequency. If in a large number n of trials
a particular event occurs k times, then the probability of this event
should be close to the ratio k/n. The rigorous justification of this intui-
tive reasoning is known as the law of large numbers, but it is common
to read into this law more than it implies. For example, the law of
large numbers implies nothing about the fluctuations between H and
T within a fixed set of games; it asserts only that over many sets of
games, the frequency with which the player winning on H dominates
is ideally the same as that with which the player winning on T 
dominates. The expected accumulation of either player over many 
sets is zero even though within a particular set a player is likely to
accumulate or lose a significant sum.

Expressed in terms of gambling, the tendency of one player (either
one) to lead in nearly all the games of a set appears extraordinarily
peculiar. However, one can regard the entire process from a different
perspective that, at least to a physicist, may seem more reasonable.
The perspective is that of a random walk. Imagine a drunk by a lamp-
post who with each step (of equal length) can move at random either
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Figure 8.5. Record of accumulated gain for three series of 1000 tosses of a
fair coin.

Figure 8.6. Sample of the sequence of binary outputs (H = +1; T = -1) cover-
ing tosses 200 through 600 in the first record of Figure 8.5.
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to the left or right. Let a coin toss decide the direction: H to the right,
T to the left. The analog to accumulated gain is the net displacement
of the drunk from the lamppost. After n steps (i.e., tosses), how far
from the lamppost would the drunk be expected to be? An elementary
analysis of the random walk problem leads to a root-mean-square dis-
placement of steps. In other words, if the drunk took 100 random
steps of some fixed length, he would likely be found at a distance of
approximately 10 steps from the lamppost (either to the right or left
with equal probability), rather than at the point of origin (the
breakeven point in the gambling game).

If the steps were taken uniformly in time, then Figure 8.5 could very
well represent not only the staggering of a drunk but also the (one-
dimensional) diffusion of a molecule. Looked at as a diffusion process,
the once bizarre outcome of the gambling game may now seem plau-
sible even to someone without a background in physics. After opening
a bottle of perfume, most people, I believe, would not expect the pre-
ponderance of released molecules to diffuse back to the mouth of the
bottle.

It is amazing how a simple change of perspective can transform what
was initially a shock to intuition and common sense into a common-
place phenomenon.

8.4. Random Acts of Measurement

Having mastered, or at least acquainted myself, with the theory of
runs, I returned to the question, prompted initially by computer 
simulation of the Monty Hall game, of just how random are the
numbers generated by a random number generator. The numbers
cannot be truly random, of course, since they are the deterministic
output of a mathematical algorithm.

An example of such an algorithm is the iterative relation xi =
Axi-1(mod m), in which A and m are integer constants. The formula
embodies a procedure by which one begins with a seed number x0, mul-
tiplies it by A, and then divides the result by m, discarding the integer
part and keeping only the remainder x1, which is then treated in the
same way to generate the next pseudo-random-number x2, and so on.15

Depending on the form of m, the series of numbers generated will even-
tually repeat. For example, for m = 2a with integer a, the maximum
period before the numbers start repeating is m/4. The fact that a period
may be large does not necessarily imply that a generated sequence 
possesses acceptable random properties.

Table 8.1 summarizes the results of the first experiment, the 
simulation of n = 16,907,972 coin tosses using the random number 

n
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generator of the oldest computer in my laboratory. I have no idea what
algorithm was involved. As in the case of the previous gambling game,
random numbers were generated over the range from 0 to 1; if the
number was less than 0.5, it was designated a tail (T), otherwise it
was designated a head (H).

The data in Table 8.1 pertain to runs of Ts, but the results for Hs
were very similar. In the leftmost column is tabulated the length of
observed runs, which ranged from k = 1 to 23. The frequency with
which runs occurred are listed in the second column from the left. It
may stretch one’s credulity to believe that, in random tossing, 23 tails
can land in succession, but remember that the experiment was per-
formed nearly 17 million times! (In fact, the column ends at k = 24,
because there occurred 1 run of 24H.) The third column from the left
shows the corresponding frequencies predicted by the theory of runs
[i.e., by Eq. (8.6)]. The numbers in columns 2 and 3 seem to agree
rather well. Columns 4 and 5 show mean numbers of runs (i.e., the
experimental and theoretical frequencies, respectively, divided by 
the total number of tosses n); these numbers are characteristic of the
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Table 8.1. Distribution of Runs of Ts in 16,907,972 Coin Tosses Simulated by
a Random-Number Generator
Run Observed Theoretical Mean Number Mean Number
Length Frequency Frequency (Experimental) (Theoretical)

1 2,098,949 2,113,714 1.24E-01 1.25E-01
2 1,053,814 1,056,748 6.23E-02 6.25E-02
3 528,146 528,320 3.12E-02 3.13E-02
4 264,486 264,133 1.56E-02 1.56E-02
5 133,645 132,053 7.90E-03 7.81E-03
6 66,374 66,020 3.93E-03 3.91E-03
7 33,492 33,006 1.98E-03 1.95E-03
8 16,887 16,502 9.99E-04 9.77E-04
9 8,309 8,250 4.91E-04 4.88E-04

10 4,178 4,125 2.47E-04 2.44E-04
11 2,091 2,062 1.24E-04 1.22E-04
12 1,100 1,031 6.51E-05 6.10E-05
13 540 515 3.19E-05 3.05E-05
14 278 258 1.64E-05 1.53E-05
15 154 129 9.11E-06 7.63E-06
16 62 64 3.67E-06 3.81E-06
17 27 32 1.60E-06 1.91E-06
18 17 16 1.01E-06 9.54E-07
19 15 8 8.87E-07 4.77E-07
20 4 4 2.37E-07 2.38E-07
21 0 2 0.00E+00 1.19E-07
22 1 1 5.91E-08 5.96E-08
23 1 1 5.91E-08 2.98E-08
24 0 0 0.00E+00 1.49E-08



particular process and, in principle, independent of the number of
experiments performed (in the limit of large n). The numbers in
columns 4 and 5 match closely for run lengths shorter than 15. It is,
of course, not unreasonable to expect greater fluctuations where the
numbers of occurrences are fewer.

A visual condensation of the data in Table 8.1 is shown in Figure
8.7. Here, both the observed and predicted frequencies are plotted on
the same graph, but, at the scale of the plot, each pair of correspond-
ing points overlaps within the width of a plotting symbol. Surely, one
cannot ask for better agreement than that. To conclude this, however,
would be a grievous error. The agreement between experiment and
theory is actually bad—very bad. In fact, the hypothesis that the sim-
ulated coin tosses are random can be rejected as false with virtually
100% certainty! How can this be?

The answer is evident in Figure 8.8, which plots, as a function of
run length, the difference of the observed and expected frequencies of
runs, together with error bars marking ±1 standard deviation [s(rn

kT)
� ]16 about the difference. If the observed numbers of runs rep-
resented a truly random distribution of Hs and Ts, then the data points
should be distributed about the horizontal axis (the line Experiment
- Theory = 0) within the length of their associated error bars. The
graph shows, however, a significant dearth in runs of length 1 and 2
and an excess of runs of length 5. The distribution of points about the
horizontal axis is not random, but shows a clear pattern strongly sug-
gesting an underlying assignable cause (in statistical parlance). The

3rk
n
T
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Figure 8.7. Plot of runs of tails of a specified length produced in 16,907,972
coin tosses simulated by a random-number generator. At the scale shown, cor-
responding experimental and theoretical points overlap one other within the
width of a plotting symbol.



H runs exhibit the same pattern. Further scrutiny of the data would
show that the total observed number of runs (Rn) of both T and H
differs from the theoretically expected value by nearly 14 standard
deviations [Eq. (8.9)]. Standard statistical tests, such as the chi-square
(c2) test,17 which enable one to estimate how well a set of data is
described by a presumed theory, indicate that the likelihood that the
simulated numbers leading to Table 8.1 or Figure 8.8 are random is
0.00%.

Why the coin-toss simulations were not random, I cannot say. Perhaps
the random-number-generating algorithm had too short a period.
Perhaps it did not generate random numbers uniformly over the 
interval 0 to 1. In any event, there emerged the important lesson that
appearances can be deceiving. One must examine statistical data 
carefully. In subsequent tests with other random-number generators
available in powerful mathematical software designed for modern 
computers, the observed distributions of runs tested reasonably well
against the predictions of the theory of runs. This was also the case, I
should mention, for the computer used to simulate the Monty Hall
game.

At this point, I became curious to know whether physically real—as
opposed to algorithmically simulated—coin tosses led to random 
outcomes. Since the repetitive tossing of a coin is tedious work, 
an alternative experiment was designed to yield more data per trial
than a standard coin toss. I refer to this experiment as a “lottery 
experiment.”
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Figure 8.8. Simulated coin tosses. Plot of the difference between the observed
and predicted [Eq. (8.6)] number of runs of T, rkT

(experiment) - rkT
(theory), as a function

of run length k. The error bars are of length 2s in which the standard devia-
tion can be estimated to be 3rkT

theory( ) .



A collection of 256 pennies, each labeled with a small circular sticker
numbered from 0 to 255, was placed in a bag and thoroughly mixed.
A coin was then selected at random, the sticker number was recorded,
the coin was replaced, and the contents of the bag were again mixed.
In this way, 32 coins were randomly selected leading to a sequence of
32 decimal numbers. The numbers were converted to binary, thereby
producing a string of 8 ¥ 32 = 256 1s and 0s, like the outcomes H and
T of a sequence of 256 coin tosses. Because all possible arrangements
of eight 0s and 1s—beginning with 00000000 and ending with
11111111—appear equally in the selection of a decimal number
between 0 and 255 and because the probability (1/256) of selecting a
coin from the bag is the same as the probability of tossing eight coins
(1/28), the lottery experiment is theoretically equivalent to a coin-
tossing experiment but with a felicitous reduction in sampling by a
factor of 8.

The experiments were repeated 25 times, leading to 256 ¥ 25 = 6400
bits of data, the equivalent of 6400 coin tosses. A full tabulation of the
outcomes, which need not be given here, seemed to be in good accord
with the expectations of run theory. However, appearances, as we have
seen, can be deceiving. For example, one run of 17 1s occurred. Was
this a worrisome sign that the coin selection was not random? No, not
really. From Eq. (8.11), the probability P(R17

6400 ≥ 1) of obtaining at least
one run of length 17 is estimated to be close to 5%—i.e., 1 out of 20
experiments, whereas 25 experiments were performed. An examina-
tion of the differences between experiment and theory over the full
spectrum of runs, shown in Figure 8.9, strongly supports the hypo-
thesis that the “coin tosses” were random. Further confirmation of the
consistency between experiment and theory was provided by a c2 test,
which indicated that the observed agreement between experiment and
theory would be obtained in about 60% of subsequent experiments. In
other words, the string of bits resulting from the experiment was in
accordance with the theory of runs, and, correspondingly, there was no
reason for rejecting the hypothesis that the coin selection process was
random.

Intrigued by the simplicity and sensitivity of my newly acquired 
statistical tool, I looked for other purportedly random processes to
check, such as the roll of dice, the draw of cards, or the digits of tran-
scendental numbers like p and e. It was while I was engrossed in the
randomness of computers, games, and numbers that I realized that I
now had a means to examine the most random process of all—indeed,
the “Mother of All Randomness”—quantum mechanics.
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8.5. Do Radioactive Nuclei Decay Randomly?

There are numerous ways in which the systems and interactions of 
the quantum world differ from those of the classical world with which
we are more familiar and which are adequately accounted for by
Newton’s laws of motion and Maxwell’s theory of electromagnetism.
Some of these distinctions have already been addressed in previous
chapters.18

Classical particles, for example, move in accordance with a deter-
ministic equation of motion. Given knowledge of their initial locations
and velocities, one can, in principle, predict where they will be subse-
quently and how fast they will be moving. Moreover, the precision with
which these properties can be determined is limited only by instru-
mentation. Quantum particles, by contrast, are described by an equa-
tion of motion (e.g., the Schrödinger equation or Dirac equation) that
yields a probability distribution, not unique locations and velocities.
Passing through apertures or around obstacles, quantum particles 
are distributed in wavelike fashion, giving rise to interference and 
diffraction patterns like the electron interferograms recorded in Figure
3.3. Measurements of conjugate quantities like the location and
momentum of a quantum particle are subject to the uncertainty 
principle, a natural limitation prescribed by physical law and not by
technology. Physicists now believe, of course, that the real building
blocks of the world are quantum particles, not classical ones.
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Figure 8.9. Lottery experiment. Plot of r̄kT
(experiment) - r̄kT

(theory) as a function of run
length k. (Runs of length greater than 8 are not shown, since they are indis-
tinguishable from 0 at the scale of the graph.)



The fundamental unpredictability of individual quantum events
greatly disturbed Einstein throughout his lifetime, provoking his 
desperate remark that

I can, if the worst comes to the worst, still realize that God may have created
a world in which there are no natural laws. In short, a chaos. But that there
should be statistical laws with definite solutions, i.e. laws which compel God
to throw the dice in each individual case, I find highly disagreeable.19

Although Einstein never (to my knowledge) reconciled himself to a
universe governed by statistical laws, test after test has decisively 
confirmed the validity of quantum mechanics in accounting for the 
stochastic nature of phenomena at the atomic and subatomic scales.
However now, at the start of a new millennium and some three 
quarters of a century following the formal creation of quantum theory,
how well have physicists actually ascertained that “God does not 
throw dice”?

Immersed in my explorations of random processes, I thought about
that question, and the answer surprised me. Despite countless experi-
ments probing the peculiarities of quantum physics, I knew of very 
few that specifically examined quantum outcomes for randomness. The
occurrence of a particle interference or diffraction pattern, for example,
although inexplicable within the framework of Newtonian mechanics,
does not by itself demonstrate that particles arrive randomly at the
viewing screen. Consider, for example, the single electron interference
experiment (Chapter 3) I proposed at Hitachi, whereby electrons
coursed one at a time through the barrel of an electron microscope to
build up an interference pattern. Captured by a microchannel plate
detector, each detected electron gave rise to a sharp white spot on the
viewing screen. Examining the video recording of the experiment20 at
a stage when no more than a few to a few thousand electrons had been
detected, one could readily believe that the dispersion of white spots
looked random enough. However, appearances can be deceiving; recall
the “islands” of identical outcomes in a long sequence of coin tosses.
Once a sufficiently large number of electrons had been detected, the
spatial distribution of spots on the screen was not at all random; elec-
trons were clearly arriving preferentially where bright fringes were
forming. Who could say that the electrons were arriving randomly in
time? What evidence was there to prove that the emission of one elec-
tron did not in some way influence the time of emission of a later one?
No one examined, then or afterward, the sequential arrival times of
the individual electrons.

The question of whether single quantum events occur unpredictably
is applicable to every kind of quantum transition or transformation.
There are, for example, in addition to the field emission of electrons
from metals exploited in the electron microscope, countless types of
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quantum jumps of bound electrons in atoms and molecules and 
numerous kinds of decays of unstable particles. Of the latter, the 
disintegration of radioactive atomic nuclei provides a particularly
clean and accessible testing ground.

Despite the designation “atom,” deriving from Greek roots meaning
“indivisible,” the transmutability of atoms has been known since the
researches of Henri Becquerel and Pierre and Marie Curie in the late
1890s. It was the Curies who introduced the term “radioactivity” to
characterize the emanation of rays from uranium, which they recog-
nized to be an atomic phenomenon characteristic of the element and
not a feature of its chemical environment or physical state. Indeed,
one of the principal attributes of nuclear decay is how small an influ-
ence, if any, the outside world exerts on the decay rate. There are some
exceptions, but, overall, the atomic nucleus, contained by an energy
barrier of the order of millions of electron volts (MeV), follows its
quantum destiny unperturbed by its thermal, optical, or electronic 
surroundings.

Nuclei can decay in various ways depending on their mass and 
distribution of protons and neutrons. One way is by the emission of 
an alpha (a) particle, or helium nucleus 42He, to produce a new element
with atomic number (Z) diminished by 2 and atomic mass number (A)
diminished by 4.21 In the early days of nuclear physics, before the cre-
ation of quantum mechanics, the alpha decay of nuclei posed a seem-
ingly insurmountable puzzle. The alphas should never have been
emitted. Scattering experiments with alpha particles on uranium
(92

238U), for example, showed that there was no deviation from the elec-
trostatic (Coulomb) potential around a uranium nucleus for incident
alpha-particle energies up to at least about 8.8MeV. Yet, 92

238U emitted
alpha particles with energies of only 4.2MeV. How could these alpha
particles have gotten over a nuclear energy barrier requiring at least
twice as much energy?

Although it is risky to ascribe classical imagery to quantum events,
there is a certain validity to picturing the alpha particle as having a
prior existence within the nucleus where it moves about, repeatedly
striking the spherical “wall” of the potential well within which it is
confined by the strong nuclear force, until it eventually tunnels
through the barrier and escapes as a free particle. In what was essen-
tially the first successful application of quantum mechanics to nuclear
physics (in 1928), George Gamow, and independently R. W. Gurney
and E. U. Condon, applied the model of quantum mechanical tunnel-
ing to derive the transmission probability of an alpha particle.22

Besides answering the question of how an alpha particle can escape
from the nucleus, the theory also accounted, at least approximately,
for the extremely sensitive dependence of the lifetimes of alpha-
radioactive nuclei on alpha-particle energy. A factor of 2 increase in
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energy, for example, could lead to a mean lifetime shorter by 20 orders
of magnitude!23

There is no analog to tunneling in classical mechanics. However, the
process finds a close counterpart in the optical phenomenon of “frus-
trated total reflection.” A beam of light directed onto the boundary
between two media at an angle of incidence greater than the critical
angle will be totally reflected at the surface, and no light energy will
be transmitted through the second medium. If, however, this second
medium, comprising a layer of a few wavelengths, were sandwiched
between thick layers of the first medium, some of the incident light
will tunnel through the thin layer and emerge in the third. The basis
for tunneling is the presence of an exponentially damped evanescent
wave in the “forbidden” medium. (The phenomenon of enhanced reflec-
tion of light, discussed in Chapter 6, is a consequence of an evanes-
cent wave in an amplifying medium.) Frustrated total reflection can
be demonstrated with visible light tunneling through a thin film of air
between two layers of glass. An even more dramatic demonstration can
be devised using microwaves, which permits a gap between incident
and exit layers of the order of centimeters.

Another mechanism for nuclear disintegration is the emission of a
beta (b) particle, or energetic electron, to create a new element of the
same A but with Z increased by 1. Like alpha decay, the phenomenon
of beta decay also posed initially a number of exceedingly difficult prob-
lems. For one thing, the disintegration seemed to violate most of the
major conservation laws. For example, the total energy, linear momen-
tum, and angular momentum of the detectable particles after decay
were less than the corresponding values for the nucleus before decay.
(Electric charge, however, was conserved.) Moreover, in marked 
contrast to the case of alpha decay, the assumption that the beta 
particle had a prior existence within the nucleus led to serious incon-
sistencies. According to the uncertainty principle, confining an elec-
tron to a region of nuclear size (radius �10-12 cm) would result in 
an energy uncertainty much larger than the depth of the nuclear
potential well. An electron, therefore, could not be confined to a
nucleus.24 Furthermore, assuming that a nucleus consisted of protons
and electrons (the only known subatomic particles at the time) could
not account correctly for the nuclear spin angular momentum. With
discovery of the neutron by Chadwick and the hypothesis of the 
neutrino by Pauli, nuclear beta decay could be explained as the 
transmutation of a bound neutron

n Æ p + e + �̄ (8.12)

into a proton with emission of an electron (the beta particle) and a
ghostly third particle, the (anti)neutrino, which carried off the missing
energy and momenta.

302 8. Unexpected Outcomes of Random Events



Although critical details concerning mechanisms of nuclear decay
could not be known until after the creation of quantum mechanics, 
the fundamentally stochastic nature of radioactivity was recognized 
in 1905 by the little-known physicist, E. von Schweidler, well before
quantum mechanics and, indeed, even before the concept of the atomic
nucleus had been formulated by Rutherford (in 1911). Von Schweidler
assumed that the probability p for a particular nucleus to disintegrate
was independent of the past history and present circumstances of the
atom and depended only on the length of time Dt (for short intervals).
In other words, one can express the probability as

p = lDt, (8.13)

in which each radioactive nucleus has a characteristic decay constant
l (not to be mistaken for the symbol for wavelength used elsewhere in
this book). If the assumption leading to relation (8.13) is correct, then
it is not merely a metaphor, but a mathematical truth, to liken nuclear
decay to a coin toss.

If p is the probability that a nucleus decays in time interval Dt, then
q = 1 - p is the probability that the nucleus does not decay during this
interval. Thus, the probability P(t) that the nucleus survives to the end
of n time intervals t = nDt is qn = (1 - p)n = (1 - lt/n)n. If there is one
“toss” per interval Dt and a head represents decay, then we are, in
effect, asking for the probability of tossing n tails in succession.
Nuclear disintegrations, however, occur continuously in time. In the
limit that the duration of an interval becomes vanishingly small and
the number of intervals unboundedly large, the mathematical expres-
sion for the probability of survival,

(8.14a)

approaches an exponential function.25 However, according to the law
of large numbers, the probability P(t) is also representable as the 
ratio of the number N of nuclei surviving at time t and the total
number N0 of nuclei present at the outset. Thus, one arrives by a com-
binatorial argument (rather than solution of a differential equation)
at the well-known exponential expression

(8.14b)

for the size of a population that decays at a constant rate.
The half-life of a radioactive nucleus is the time within which one-

half of a sample decays. It follows from Eq. (8.14b) that the half-life 
is related to the decay rate by the expression T1/2 = (ln2)/l. Note, too,
that half-life is a statistical concept; it pertains to an aggregate of
nuclei, not to a single nucleus (whose lifetime, according to quantum
mechanics, is totally unpredictable).
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The model of a coin toss in fact yields the full statistics of nuclear
decay. From Eq. (8.14a), it follows that the probability that a nucleus
does not survive to time t is Q(t) = 1 - e-lt. Suppose that we require
the probability Pk that precisely k out of N0 nuclei disintegrate within
a certain time interval t. Assuming, again, the independence of decays,
we are, in effect, asking for the probability of producing k heads (and
therefore N0 - k tails) in N0 tosses with a coin for which the probabil-
ity of tossing H (= decay) is now Q(t) = 1 - e-lt and of tossing T (= no
decay) is P(t) = e-lt. The probability of any such sequence of tosses is
necessarily PkQN0-k, but there are

ways of selecting the k decaying nuclei out of the total sample 
of N0. The desired probability is therefore given by the binomial 
distribution26

(8.15)

At the time I began to consider the problem of the randomness of
nuclear decay, I was aware of only one kind of experimental test that
had been applied from time to time over the years. This test was to
interrogate nature for the answer to the question: “How much time
passes between two successive nuclear decays?” No one, of course, can
predict precisely when a nucleus will decay; the answer to the ques-
tion is not an exact number, but a distribution of time intervals. Equiva-
lently, one is asking for the probability that no decay occurs within a
time t—that is, for Eq. (8.15) in the case k = 0. The resulting substi-
tution yields the simple expression

(8.16)

in which R = N0l is the rate of nuclear decay, i.e., the number of counts
per second that the detector should register if it could detect every
decay in the sample. In accordance with one’s intuitive sense, Eq.
(8.16) confirms that a long time interval between decays has a lower
probability of occurring than shorter intervals.

It is significant to note that one does not need to know the exact
number of radioactive nuclei in a sample to apply Eq. (8.16). All that
really matters is the decay rate R, which can be measured. This is, in
fact, the case for any value of k in Eq. (8.15) under the conditions that
ordinarily characterize nuclear counting experiments, namely that the
number N0 of nuclei initially present is many orders of magnitude
larger than the number k that decay in a specified time interval. In
that case, the binomial distribution (8.15) is virtually indistinguish-

P t e t
0 ( ) = -R ,

P t
N
k

Q P
N
k

e ek
k N k t k t N k( ) = Ê

ËÁ
ˆ
¯̃ = Ê

ËÁ
ˆ
¯̃ -( ) ( )- - - -0 00 01 l l .

N
k

N N N k
N

k N k
k

0
0 0 0

0

0
1 1Ê

ËÁ
ˆ
¯̃ = ¥ -( ) ¥ ¥ - +( ) =

-( )L1 2444444 3444444
factors

!
! !

304 8. Unexpected Outcomes of Random Events



able from the Poisson distribution27 discussed earlier [Eq. (8.10)],
which here takes the form

(8.17)

The product Rt is the mean number m of decays in the interval t.
Although measurements of the distribution of zero-decay time inter-

vals led to results in agreement with the predictions of Eq. (8.16), this
did not in itself prove that the disintegration of nuclei occurred ran-
domly. Indeed, it is important to stress the fact that no statistical tests
can actually prove a process to be random, for no matter how many
such statistical tests for randomness the data pass, there may yet be
one more that they fail; hence, the importance of applying diverse tests
sensitive to different properties of the data. For this reason, I was par-
ticularly eager to test nuclear decay against the theory of runs.

Operationally, to determine the distribution of time intervals pre-
dicted by Eq. (8.16), the experimenter arranges for a single decay to
start a clock, which is then stopped by the next decay. This is repeated
numerous times until a statistically significant number of time inter-
vals is collected. The experiments I had in mind worked quite differ-
ently with the advantage that all values of k, not just k = 0, contributed
to the outcome. In the new procedure, one would count the total
number of decays occurring in a fixed time interval and repeat this
over and over again to obtain a long string of digital numbers. To test
a stochastic process for randomness by run theory requires that the
process have a binary outcome, like a coin toss. It is not difficult,
however, to convert a string of digital counts into a sequence of binary
numbers.

One possibility, as illustrated in Figure 8.10, is to exploit the fact
that the counts are necessarily integers (there are no fractional
counts), and all integers are either even or odd. Thus, replace each
digit in the string by 0 if odd and by 1 if even. I refer to this as the
generation of runs with respect to parity. In a long string of random
counts, one would expect to have approximately equal numbers of even
and odd counts, and therefore of 1s and 0s. The ensuing distribution
of runs should agree, to good approximation, with the simple relations
(8.5) and (8.6) for coin tosses with an unbiased coin.

A second possibility, which I refer to as the generation of runs with
respect to a target value, is to compare the digital count in each time
interval, or bin, with a predetermined number. The number, or target
value, need not be an integer; in fact, it is better that the number not
be an integer. Replace the count in each bin with 0 if it is smaller than
the target and with 1 if it is greater. One possibility is to chose the
mean count as the target value. Since the mean is, in general, not an
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integer, all counts will be either below or above it, and the outcome is
binary. Recall, however, that the Poisson distribution is not symmet-
ric about the mean (although it becomes increasingly symmetric the
larger the mean). The choice of mean as the target value leads to an
expected frequency of 0s and 1s that is as close as possible, given the
discrete nature of the Poisson distribution, but not exactly equal. The
results are those of a coin toss with a biased coin. With a target value
different from the mean, the bias (i.e., tendency to favor a head or tail)
is even greater. Nevertheless, so long as the process is random, the
theory of runs applies. One simply needs to know the exact number of
0s and 1s and then apply the formulas in Note 9.

A third possibility, denoted as runs up and down, or difference runs,
is to subtract the count in each bin from the count in the following 
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Figure 8.10. Conversion of a string of digital numbers into binary numbers
to generate (a) runs with respect to a target value (e.g., mean), (b) runs with
respect to parity, (c) runs up and down.



bin. Assign “-” if the difference is negative and “+” if the difference is
positive. This leads to a string of binary symbols (+, -) shorter by one
element than the original digital string. A succession of +’s constitutes
a run up, and a succession of -’s a run down. Actually, if two adjacent
bins have the same count, then the difference is zero, and the ques-
tion arises of how one should treat the null case. The answer, accord-
ing to statistics articles and books available to me at the time, was to
ignore it, because the likelihood of such events was considered com-
paratively unimportant.

As shown in Figure 8.10, the same series of digital counts gives rise
to three different series of binary outcomes. If the original series of
nuclear disintegrations is random, then all of the derived series of
binary outcomes should likewise be random. Thus, the application of
run theory in these various forms poses a stringent, multifaceted test
of the data.

Indeed, the test of the data is perhaps even more comprehensive and
stringent than what the preceding description may at first indicate,
for there is a significant difference in the statistical nature of differ-
ence runs compared with that of parity or target runs. The latter two,
as I have pointed out, characterize random processes that are equiva-
lent to a coin toss. In statistical parlance, repeated independent trials
yielding only two possible outcomes for each trial with fixed probabil-
ities are known as Bernoulli trials. In a coin toss, for example, the
probability of tossing H or T is assumed to remain the same for any
toss. The probabilities need not be equal (i.e., the coin could be biased),
but they must not change from toss to toss if the theory of runs, as
embodied in formulas (8.5) and (8.6) [or, more generally, formulas (8.5¢)
and (8.6¢) of Note 9] is to be applicable. The string of binary symbols
obtained by taking sequential differences do not represent Bernoulli
trials.

Consider, for example, a hypothetical string of nuclear decays [87,
78, 89, 92, 96, 103, 110, 75], obtained by counting the number of 
disintegrations in time intervals of equal length, which form part of 
a much longer series of counts with a mean of 77 counts per bin. 
Taking sequential differences yields a sequence of binary numbers 
[- + + + + + -] containing a run up of length 5. Each +, starting from
the left in this sequence, signifies that a count is larger than the
antecedent count and further from the mean. The elements of the
string are therefore neither independent nor of constant probability,
for the more a count departs from the mean, the less likely it will be
that the succeeding count will depart from the mean even further.
Thus, the run formulas for Bernoulli trials do not apply to differ-
ence runs.

The derivation of the exact expressions for runs up and down will
not be given here, but, as in the case of a coin toss, I can give a simple
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heuristic argument to estimate the mean number of runs up or runs
down of length k or greater in a set of n random numbers;

(8.18)

and for the mean number of runs up or runs down of precisely length
k,

(8.19)

Let us inquire first into the probability that in a long series of
random numbers we will find a run up of length k or greater. This is
equivalent to asking for the probability of a sequence of k + 2 numbers
of which the first number is not the smallest (otherwise the run would
be of length k + 1), as shown below for the case of a run up of length
k = 3 or greater:

Numbers a b c d e k + 2 = 5
Differences - + + + k + 1 = 4

There are (k + 2)! ways to order a set of k + 2 numbers. Of these, the
number of orderings that lead to a run up of length k is k + 1. One can
perhaps see this more clearly by means of the previous concrete ex-
ample. Since only comparative magnitudes, and not the exact values
of the numbers, matter, let us take the set of five numbers [a b c d e]
to be simply [1 2 3 4 5]. Then, there are k + 1 = 4 ways to arrange these
numbers to produce a run up of length k = 3:

2 1 3 4 5
3 1 2 4 5
4 1 2 3 5
5 1 2 3 4

Differences - + + +

Note that the number 1 cannot start a sequence, for then the first dif-
ference would necessarily be +. Thus, there are k + 1 ways to start 
an increasing sequence of k + 2 numbers.

From the foregoing, it follows that the probability of at least k runs
up (and, by symmetry, of runs down) is

(8.20)

and therefore the mean number of runs (up and down) of length k
or greater is n

k = 2nP(≥k) = 2n(k + 1)/(k + 2)!, as given in Eq. (8.18).
The mean number of runs n
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by directly evaluating n
k - n

k+1 and leads to the result in Eq. 
(8.19).

Like the runs in Bernoulli trials, number n
k decreases with run

length k, but the falloff is not exponential. In fact, the probability of
obtaining long difference runs is considerably lower than that of
obtaining equally long runs of Bernoulli trials. For example, we have
already calculated that the probability of obtaining a run of at least
5H in a set of random coin tosses is (1–2)6 = 1/64. Using Eq. (8.20),
however, one finds that the probability of obtaining a run of length 5
or greater in a set of random numbers is 6/7! = 1/840.

In order that the tests of quantum mechanics for randomness—
whatever their outcome—be convincing and general, different kinds of
nuclear disintegration processes were selected for measurement.

One of these was the beta decay of cesium-137:

55
137Cs Æ 56

137Ba + b -

in which the decay of a neutron inside the nucleus transmuted cesium
into barium with the emission of an electron (whose negative charge
is indicated explicitly above). The accompanying antineutrino is not
usually included in the reaction equation since it contributes to neither
the nuclear charge nor the atomic mass number.

In about 94% of the decays, the resulting barium nucleus is in an
excited state, which subsequently returns to the ground state by emis-
sion of a 662-keV gamma ray. Because one gamma ray is emitted for
each transmutation of cesium into barium, it was experimentally con-
venient to determine the number of decaying cesium nuclei in a fixed
time interval (set to be 0.01s in all of the experiments described here)
by counting the gammas and, correspondingly, shielding the detector
from the beta particles.

Gamma rays are quanta of electromagnetic energy of high frequency.
By Einstein’s relation E = h�, the frequency of a 662keV gamma is
about 1.6 ¥ 1020 Hz—an enormous frequency compared with about 
1014 Hz for visible light (with energies in the range 1.5–3eV). Surpris-
ingly, one can count gamma photons by means of an ordinary photo-
multiplier tube for visible light. The trick, which nuclear physicists
have employed for decades, is to place in front of the tube a scintil-
lating material (e.g., a crystal of sodium iodide) that gives off a burst
of visible photons whenever a gamma passes through and is scattered.
By suitable arrangement of the radioactive source and detector so as
not to overload the electronic counting apparatus, a sufficiently large
number of counts—of the order of a million—was obtained in a count-
ing time under 20 hours. Since the half-life of 137Cs is about 30.4 years,
no perceptible change in the activity of the source occurred over the
duration of the experiment.

r

RR
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Another type of nuclear process that was examined was the electron-
capture decay of manganese-54,

54
25Mn + e- Æ 54

24Cr,

which is a sort of inverse of beta decay. Here, the nucleus captures 
one of the bound electrons from the innermost electronic shell (referred
to as the K shell) with the resulting transformation of a proton 
into a neutron.28 Upon decaying, a 54Mn nucleus is transmuted into an
excited chromium nucleus, which returns to the ground state by emis-
sion of a 835-keV gamma ray. As in the case of radioactive cesium, the
manganese decay events were recorded by counting gamma rays. The
half-life of the above process is about 312 days, which is, again, long
compared with the duration of an experiment. Interestingly, electron-
capture decay is one of very few nuclear processes to be affected by
events outside the nucleus. In this case, the chemical environment of
the Mn atom affects the electron wave function at the nucleus and,
therefore, the probability of electron capture.

Both beta decay and electron-capture decay are examples of the weak
nuclear interactions. Alpha decay represents an entirely different kind
of interaction, and as an example of this process, the transmutation of
the transuranic element americium-241 to neptunium-237,

95
241Am Æ 93

237Np + 4
2He,

was examined. Neither element occurs naturally on Earth. 241Am,
which is the radioactive element ordinarily found in commercially
available ionization-detector smoke alarms, has a half-life of about 
432 years, which made it particularly suitable for testing quantum
mechanics.

Counting alpha particles requires a different kind of detector than
counting gamma rays. In place of a photomultiplier tube, the ex-
periment employed a semiconductor device known as a surface-barrier
detector. In such a device, the radioactive sample is deposited on the
active surface through which alpha particles penetrate, creating a
momentary current of electrons and holes.

The fourth and final process examined was a sequential combina-
tion of beta decay and alpha decay. All naturally occurring elements
with atomic number greater than that of bismuth (Z = 83) are radioac-
tive, belonging to chains of successive decays that originate principally
with uranium or thorium. Such processes, in fact, are responsible for
the molten interior of the Earth, for without the continuous regen-
eration of heat through the release of energetic decay particles, the
Earth would have long ago radiated away its internal energy and solid-
ified all the way to its center. Among the links in the chain of transmu-
tations beginning with uranium-238, the most common isotope of
uranium with a half-life of nearly 4.5 billion years, is the formation of
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the element radium-226 with a half-life of about 1620 years. (This is
the element first identified by the Curies in 1902; they began with two
tons of pitchblende ore in order to isolate 0.001g of radium chloride!)
Radium-226 eventually gives rise to bismuth-214, which undergoes
beta decay to form polonium-214, and the latter undergoes alpha decay
to produce lead-210 according to the following reactions:

83
214Bi Æ 84

214Po + b -,

84
214Po Æ 82

210Pb + 4
2He.

The transmutation of bismuth to polonium actually results in posi-
tive polonium ions, rather than neutral atoms, and these ions were
electrostatically precipitated onto a surface-barrier detector for count-
ing the alpha particles. Polonium-214, however, has a very brief half-
life of 1.64 ¥ 10-4 s, much shorter than the 10-2 s dwell time of one 
bin. The experiment, therefore, was not sensitive to the statistics of 
polonium decay. However, detection of polonium alphas served as a
way of determining the number of beta disintegrations of the 
parent bismuth-214 whose half-life is about 20 minutes. A desirable
feature of this experiment, distinguishing it from the previous three,
is that the participating bismuth and polonium nuclei were generated
freshly throughout the period of data collection. Thus, these were
nuclei created expressly for this experiment with no unknown past
history.

What, then, were the results of this expansive effort to see whether
God throws dice or not? When I looked over the results of the first
experiments, target and parity runs of cesium, I could scarcely believe
them. The plots looked very much like Figure 8.8 for runs of coin tosses
simulated by a not very good random-number generator. This time,
however, the data were real, not simulated, and they seemed to signify
that at least one nuclear decay process was not random after all. The
analysis showed far too few runs of length 1 and possibly too many
runs of length 3. To confirm that the experimental procedure was not
at fault, the distribution of time intervals between two successive
decays was measured, and the resulting exponential variation, repro-
duced in Figure 8.11, was in thorough agreement with Eq. (8.16). The
runs analyses tested different aspects of the data than did the time
analysis. Perhaps Einstein was right; God is not a gambler!

Before calling my travel agent to book reservations for Stockholm,
it occurred to me that, although the data were real, the treatment may
have been flawed. In the execution of each experiment, nuclear decays
were counted in 4096 sequences of 256 bins per sequence, and the
mean numbers of 1s, 0s, and their runs of all lengths from 1 to about
20 were then tallied. On average, one would expect—and this was ap-
proximately the case—an equal distribution of 1s and 0s. The experi-
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mental mean numbers of runs of 1s and 0s were then compared at 
each length to the theoretical values predicted by run theory for 256
Bernoulli trials with a fair coin. However, the fact that, on average,
the numbers of 1s and 0s were equal did not mean that they were equal
in each of the 4096 separate sequences—and, where the numbers of
1s and 0s differed, the true theoretical values of kH (for H = 1) and 

kT (for T = 0) could differ significantly from those of a 50–50 distri-
bution. Moreover, given the asymmetry of the Poisson distribution
about its mean, precisely equal numbers of 1s and 0s are theoretically
not possible.

The 4096 time sequences of data were then carefully rejoined, the
exact numbers of 1s and 0s for 1,048,576 bins were counted, and the
precise numbers of runs of all lengths were summed. This time a com-
parison of the experimental and theoretical numbers of runs looked
like Figure 8.12. There was no disagreement with run theory. More-
over, the partition of 1s and 0s was found to be almost precisely that
predicted by a Poisson distribution with a mean value of 59.91 counts
per bin, corresponding to our experimentally observed mean. 
Identical treatment of data from the other decay processes produced
similarly satisfying results. Or perhaps not so satisfying, because 

r
r
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Figure 8.11. Distribution of the number of time intervals between two
sequential decays of 137Cs. The exponential shape is in accord with Eq. (8.16).



it would have been more exciting to find that quantum mechanics
failed.

Having passed tests for randomness by two types of run analyses,
the data were examined next for runs up and down. Once again I was
subjected to a rude shock. The observed and expected distributions of
runs—shown in the upper frame of Figure 8.13 for 137Cs—disagreed
markedly, only in this case there seemed to be too many runs of length
1 and 2 and too few of length 3. Already sensitized to the subtleties of
statistics, I did not even think of Stockholm, but conferred with my
colleagues as to what may have gone awry with either the experiment
or the analysis.
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Figure 8.12. Difference between observed and predicted numbers of target
runs of 137Cs. The target value of 59 counts per bin led to precisely 511,380 
0-bins and 537,196 1-bins or a ratio of 0-bins to 1-bins of 48.77% to 51.23%,
in excellent agreement with a Poisson distribution with mean 59.91 counts per
bin. (Runs of length greater than 10 are not shown since they are indistin-
guishable from 0 at the scale of the graph.)



Having begun as a two-man team, my son and I, our small group by
this time had expanded to four; together, we were three professional
physicists and a high-school junior. Since Chris was busy with school
work and his own special projects, I did not want to disturb him. The
rest of us pondered the problem, trying to imagine every conceivable
instrumental artifact or theoretical inconsistency, but could come up
with no viable solution. Other physicists and mathematicians offered
their advice—or regrets—to no avail; the problem would not go away.
Was it possible, after all, that the data were telling us something pro-
found about the universe?

One evening, I caught Chris at a free moment and narrated in
dreary detail the nature of our problem, more out of a desperate hope
that by repeating the story aloud I would somehow gain new insights
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Figure 8.13. Distribution of runs up and down resulting from neglect of null
differences. (a) Plot of r̄k

(experiment) - r̄k
(theory) obtained from analysis of 137Cs data.

(b) Plot of r̄k
(numerical) - r̄k

(theory) obtained from numerical simulation by computer
of Poisson-distributed random numbers.



than that a high-school student (whose passions were art and com-
puters, rather than physics and mathematics) should have any idea of
how to resolve the discrepancy.

“So what do you think?,” I asked.
“I think the problem is that you are leaving out the zeros,” Chris

replied.
He was referring to the subtraction of the digital count in each bin

from the count in the following bin to arrive at a binary string of +’s
and -’s. “I don’t believe so,” I demurred; “it shows here”—and I tapped
a pile of mathematical articles, including one from a book that many
physicists considered the “Bible” of computer programming techni-
ques—“that the occurrence of adjacent identical numbers in a ran-
dom sample of all possible numbers is negligible.” Chris reiterated his
belief that dropping the zeros changed the statistics, and then 
left.

“Here, try this,” he said, returning later the same evening and
handing me a disk with a computer program he had written in 
HyperTalk. The program generated a string of random numbers and
counted runs up and down, keeping track of the number of null dif-
ferences. The user entered the range N, from which numbers 1 to N
were to be chosen, and the number n of random numbers to be gener-
ated. I typed in N = 10 and had the program generate a string of n =
1000 numbers. My eyes widened when the computer counted 97 null
differences. I keyed in N = 100, and the computer counted 9 null 
differences. Instantly, like a bolt of lightning, the solution that 
had hitherto eluded me, my research associates, and the many col-
leagues whose help we sought finally struck me, a solution that, at
least qualitatively, had been intuitively obvious to our high-school
student!

What is the probability that, having drawn some number x randomly
from a sample of N numbers, another x would be drawn on the next
selection? Without thinking about the question too carefully, one might
be inclined to answer that this probability is (1/N) ¥ (1/N) = 1/N2,
because the chance of drawing any of the N numbers is 1/N. However,
this is not correct. Since there are N possible values of x, the correct
probability is N ¥ (1/N2) = 1/N, which is much higher. Thus, in a sample
of n random drawings, one should expect n/N null differences. This is
exactly what Chris’s program confirmed.

If the range N were infinitely great, then the expected number of
null differences would be infinitesimally small. This was the case for
the applications for which the theory of runs had been originally 
conceived, namely for quality control in the manufacture of objects
whose parameters of interest spanned the set of all real numbers.
Thus, if a ball bearing picked randomly from a box of bearings had 
a diameter of 1.2345cm, it would be exceedingly unlikely that the
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diameter of the next selected ball bearing would have the same diam-
eter. There would almost always be a positive or negative difference.
However, this was decidedly not the case for nuclear decay, where the
random samples—the digital counts per bin—spanned a practically
limited set of positive integers. Although, in principle, any number 
of disintegrations below the total number of nuclei could occur, in
reality the Poisson distribution effectively limited the count per bin to
a range of about ±3 standard deviations (s = ) about the mean m.
For m = 60, the case for 137Cs, for example, counts varied from approx-
imately 40 to 80 per bin, a range of only N = 40 integers. In a string
of 1000 bins, there should occur 25 null differences. (I typed N = 40, n
= 1000 into Chris’s program, and the computer counted precisely 25
nulls.)

To verify that neglect of null differences was indeed the origin of 
the problem, a more sophisticated program was written soon there-
after (by another group member) that counted the numbers of runs up
and down in a numerical simulation of Poisson-distributed random
numbers. The result, shown in the lower frame of Figure 8.13, is vir-
tually identical to the run analysis of the actual cesium data. In 
short, the disturbing disagreement with run theory resulted from
applying the formulas of difference runs to datasets leading to trinary,
not binary, outcomes. The problem was readily remediable, however.
One could consider all run distributions that result from replacing
each null (0) with each binary value (+, -); if all of these distributions
were incompatible with the formulas of run theory, then the hypothe-
sis of randomness had to be rejected. Alternatively, one could assign
binary values (+, -) to each zero randomly (e.g., by using an alter-
native random process or reliable pseudo-random-number generator) 
and analyze the runs of the resulting sequence. Figure 8.14 shows 
the result of applying the second method to the cesium data. The
anomaly in this case, as well as for the other decay processes, 
vanished entirely.

Alas, there will be no trip to Stockholm. God is a gambler, after all.

8.6. Mark off Time with Markov

In the long series of tests of the randomness of different nuclear decay
processes, I have found no reproducible instance for rejecting the
hypothesis that the disintegrations occurred randomly and indepen-
dent of past history. Yet, it must be emphasized—as I have stated pre-
viously in this chapter—that neither these tests nor any others that
may be performed subsequently can definitively prove that the under-
lying cause of nuclear decay is a random process. At best, one can

m
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demonstrate that the disintegration of nuclei occurs nonrandomly by
finding a specific statistical test that the data fail.

Actually, the situation is not quite so simple. If a finite string of data
fails to satisfy a statistical test for randomness, does it necessarily
follow that the process that generated the data is not random? Con-
sider, for example, two series of binary symbols. One is a string of 
100Hs; the other is obtained by tossing a coin 100 times. The first is
obtained from a simple rule: Write the symbol H 100 times. The second
is obtained from what is ostensibly a random process. However, the
first series, which would clearly fail a test based on the theory of runs,
is, like the second series, one of 2100 possible outcomes of tossing a coin
100 times and, therefore, has exactly the same probability of occur-
rence as the second series, namely 2-100. In principle, therefore, one
should be no more surprised to obtain the highly ordered first series
than the stochastically generated second one. We are surprised, of
course, because there are relatively few ways to produce ordered
sequences containing close to 100Hs, whereas there are vastly more
ways to produce sequences that resemble, to a greater or lesser extent,
the disordered sequence. In any event, a random process can give rise
to nonrandom-looking results. That, in fact, was one of the principal
revelations of run theory. What, then, does it mean to say that some-
thing is random?

According to algorithmic complexity theory,29 a relatively recent
approach (compared with classical probability theory) deriving from
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Figure 8.14. Difference of experimental and theoretical values of r̄k for 137Cs
runs up and down with random assignment of a binary value (+, -) in the
occurrence of null differences.



information theory and computer science, the concept of randomness
is related to the idea of “compressibility.” A sequence of numbers is
deemed truly random if the shortest algorithm needed to generate the
sequence is the sequence itself. Such a sequence is not compressible;
there is no simpler way to communicate it than by transmitting every
symbol. By contrast, a sequence that can be generated by a shorter
algorithm, such as the iterative relation illustrating a random-number
generator in Section 8.4, is not regarded as particularly random. The
randomness of a sequence can be quantified by the minimal number
of bits of information required to generate it.

Examined from this point of view, most finite strings of numbers
turn out to be random. For example, of all strings of binary numbers
of length n, only about one string in a thousand can be compressed
into a computer program more than 10 bits shorter than itself; only
about one string in a million can be compressed into a program more
than 20 bits shorter than itself.30 However, to demonstrate by the 
definition of complexity theory that a particular string is random, it is
necessary to prove that no smaller algorithm exists for calculating it.
Unfortunately, one of the far-reaching consequences of Gödel’s incom-
pleteness theorem is that such a proof cannot be found. Thus, although
one may readily produce a long series of random bits, it is impossible
to prove that the series is actually random.

The definition and quantification of randomness provided by com-
plexity theory may be all well and good, but not particularly helpful
to the physicist who is trying to determine whether radioactive nuclei
decay randomly. It is simply not practicable to search for algorithms,
if indeed any exist, by which to compress long strings of data into short
formulas whose information content in bits (i.e., “complexity”) can be
measured. I have found an alternative and, from the standpoint of
physics, more useful way to quantify the randomness of the nuclear
decay processes (and, by extension, any quantum decay process). It is
based on the concept of a Markov chain.

Suppose, for example, that the outcome (H or T) of a coin toss influ-
enced the outcome of the next toss in a prescribed way. If the outcome
is H, then the probability of obtaining H on the next toss is enhanced;
if the outcome is T, then the probability of obtaining T on the next toss
is enhanced. The degree of enhancement can be gauged quantitatively
by an adjustable bias parameter. If the bias parameter is the same 
for both outcomes, then the resulting numbers of Hs and Ts should be
approximately the same. However, the outcomes of such a stochastic
process are clearly history dependent, and the distribution of runs 
of Hs and Ts will, in principle, deviate from that of a sequence of
Bernoulli trials. A chain of events in which each event is influenced at
most only by the event immediately preceding it is known as a Markov
chain.
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In contrast to the theory of runs, where the question at issue was
basically “How many times in succession are the outcomes of a process
the same?,” the essential question dealt with by a Markov chain is this:
Given that a system is initially in a particular state (e.g., outcome H
or T), what is the probability of finding the system n time intervals
later in either the same state (retention probability pii) or in another
state (transition probability pij)? If the retention and transition prob-
abilities differ, then the outcome in the nth time interval will depend
on n. The difference D = pii - pij is therefore a useful measure of the
extent to which the outcome of a stochastic process tends to persist,
rather than change to the opposite outcome.

According to quantum theory (QT), D should be zero; that is, the
probability of nuclear decay within a given time interval should not be
influenced by the decay occurring in any preceding interval. Experi-
mentally, that was precisely what the data showed. Evaluation of the
requisite conditional probabilities from the numbers of counts in bins
removed from any given bin by one unit, two units, three units, and
so forth, led to a value of D that was zero to within approximately one
part in a thousand for sets of data comprising approximately one
million bins. The experiments were performed under two very differ-
ent conditions. In the first, the mean number of counts per bin m was
high (m >> 1), since it was conceivable that a high rate of nuclear 
disintegration in one time interval might lead to a diminished or
enhanced rate in the following interval if QT-violating correlations
were somehow dependent on sample size (i.e., number of decaying par-
ticles). In the second, the mean number of counts per bin was low 
(m << 1), since it was conceivable that a rare occurrence of a disinte-
gration after a long period of nuclear quiescence might modify the
decay probability of a subsequent particle if QT-violating correlations
were somehow sensitive to proximity. In such a case, a violation of
quantum theory would be more noticeable within a counting interval
containing at most one particle than a hundred particles. Experimen-
tally, the zero value of D under both circumstances lent strong support
to the prediction that such correlations did not exist.

The investigations of nuclear decay by means of the theory of runs
and the theory of Markov chains are actually complementary. One can
ask, for example, how small the bias parameter (in the above coin-toss
example) must be such that deviations from run theory are detectable?
The answer, established by computer simulations, is that the longer
the sequence of data, the smaller is the bias parameter. With a string
of the order of one million bits, comparable to the number of bins of
nuclear decay counts, a bias of approximately one part in a thousand—
the same measure provided by the Markov chain analyis—could be 
discerned in the distribution of runs with virtual certainty. To detect
smaller biases, the number of bins must be increased by shortening
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the counting interval or lengthening the total counting time or 
both.

8.7. Exponential Decay, Correlation, and
Randomness: The Quantum Perspective

I have shown in Section 8.5 how von Schweidler’s assumption—made
long before the discovery of the atomic nucleus or creation of quantum
mechanics—that a radioactive atom decays with constant probability
independent of its past history [Eq. (8.13)], inexorably led to the expo-
nential decay law [Eq. (8.14b)] and the statistics of nuclear disinte-
gration [Eq. (8.15)]. No experiment of which I am aware refutes this
assumption, and I have—somewhat carelessly—given the impression
that this is exactly what quantum theory predicts. Strictly speaking,
however, this is not what quantum theory predicts, and in concluding
this chapter, I would like to disentangle several separate strands of
inferences relating to von Schweidler’s assumption—which is really
two assumptions—and the quantum perspective.

First, according to quantum mechanics, the simple proportionality
between probability of decay and the width of a time interval expressed
in Eq. (8.13) is not valid for arbitrarily short time intervals. Rather,
approximate solutions of Schrödinger’s equation (employing Fermi’s
“Golden Rule”) show that the decay “constant” l is zero at the instant
the unstable state is formed and, depending on the energy of the state
and the interactions coupling it to lower states, reaches a constant
value for a time interval beyond some approximate threshold. In the
case of nuclear decay with emission of a gamma ray (as in the case of
137Cs), l is predicted to vary in an oscillatory way, becoming constant
after a time interval of about 10-21 s.31 No experiment to date has the
time resolution to detect such a variation of l.

Because a constant l leads directly to an exponential decay law,
the implication of the preceding paragraph is that unstable quantum

systems—radioactive nuclei, excited atoms and molecules, whatever
—cannot undergo transitions to lower-energy states in accordance
with a strictly exponential decay law over arbitrary lengths of time.
The law, in fact, should not be valid for times very short or very 
long compared with the half-life. There are other circumstances as
well, such as the decay of a quantum system from a coherent linear
superposition of quantum states (discussed in Chapter 4), which lead
to nonexponential decay—in this case to the phenomenon of quantum
beats.

Second, when quantum statistics are taken into account for a col-
lection of unstable particles whose wave functions in some sense
overlap, the conditional probability that a decay occurs after an earlier
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one depends on the time interval between the two events. In other
words, there is a history dependence to quantum decay for time in-
tervals short compared with a calculable correlation time. Consider,
again, the example of the Hanbury Brown–Twiss (HBT) experiment
discussed in Chapter 3. For a chaotic light source, the conditional prob-
ability of detecting a second photon of the same polarization as one
already detected is strikingly higher for time intervals short compared
to the longitudinal coherence time of the source than for longer inter-
vals. The probability that two identical photons arrive at a detector
simultaneously (zero time interval) is twice the probability of the coin-
cidental arrival of two classical particles (Figure 3.10).

The nuclear experiments that I have described in this chapter ex-
amined radioactive processes under conditions in which these known
quantum effects—nonexponential decay and quantum statistical
bunching or antibunching—were not expected to occur. Had any of
these nuclear processes led to correlated decays at variance with the
theory of runs, the results could have been interpreted as incompati-
ble with quantum theory. That would have been exciting to see—but
for better or for worse, it did not happen.

Notes

1. Wheeler’s remark is not so cryptic to a quantum physicist. It refers to the
description of a quantum system by a wave function comprising a linear
superposition of states, each state representing a potentially different
experimental outcome. When a measurement is made, the system is forced
randomly into one of these states, a process often referred to as “collapse”
of the wave function.

2. Harvey B. Lemon, from the foreword to A. A. Michelson, Studies in Optics,
University of Chicago Press, Chicago, 1962, p. xxi.

3. David Good, Maths for Softies, New Scientist (12 April 1997) 42–43. The
reviewed book is Goodbye, Descartes by Keith Devlin (Wiley, New York,
1997).

4. Ask Marilyn®, Parade Magazine (9 September 1990).
5. In the book, My Brain Is Open (Simon & Schuster, New York, 1998), about

mathematician Paul Erdös, a master of probability theory, author Bruce
Schechter reports (p. 109) that the problem perplexed and upset Paul
Erdös for several days.

6. The general result P(A and B) = P(A)P(B|A) = P(B)P(A|B) is known as
Bayes’ theorem.

7. The assumption of independence means that the probabilities for the
various outcomes (H or T in this case) of a given event are uninfluenced
by the outcomes of prior events. Thus, the probability of drawing an ace
(of which there are initially 4) from a deck of 52 randomly mixed cards is
4/52 = 1/13 each time one draws a card, provided that the drawn card is
always returned to the deck. If drawn cards are discarded, then the prob-
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ability of drawing an ace changes from draw to draw, and the outcomes of
two successive draws are in that case not independent.

8. In general, if P is the probability of a particular configuration of tosses,
then the number of times the configuration is expected to occur in n tosses
is nP. For example, the probability of a single H is 1–2, and, therefore, we
would expect, on average, 1–2 ¥ 256 = 128 heads in 256 tosses of a fair coin.

9. For the general case of nH heads and nT tails in a total of n tosses, the
exact expressions giving the statistics of runs are

(8.5¢)

(8.6¢)

(8.7¢)

10. For example, suppose the outcome of three experiments is the set of
numbers x1 = 8, x2 = 10, and x3 = 6. The mean value is = 1–3 (8 + 10 + 6) 

= 8. The standard deviation of the data is 
.

11. A good discussion of elementary statistics and their application to physics
is given by F. Reif in Fundamentals of Statistical and Thermal Physics
(McGraw-Hill, New York, 1965), Chapter 1, in particular pp. 15–16.

12. W. Feller, An Introduction to Probability Theory and its Applications, 2nd
ed., Wiley, New York, 1957, Vol 1, p. 65.

13. The probability that a player has a positive accumulation for k out of 
n tosses is to good approximation given by P(k, n) � 2/ . This
expression is smallest for k = 1–2 n and becomes unboundedly large for k =
0 (player never leads) or k = n (player always leads). The exact formula,
which is too cumbersome to be given here, remains finite for all k.

14. The expected gain at any toss is the value of the gain (+1 or -1) times 
the probability of the corresponding outcome (1–2 in both cases). Thus,

.
15. Supose, for example, that A = 100, m = 16, and x0 = 1. Then (100 ¥ 1)/16

= 6.25 and x1 = 0.25. The second iteration leads to (100 ¥ 0.25)/16 = 1.5625
and x2 = 0.5625.

16. This result can be shown to follow from Eqs. (8.6) and (8.8).
17. In a c2 test, one divides the data into a number (n) of bins and calculates

for each bin k the square of the difference between the observed (Ok) and
theoretically expected (Ek) values, divided by the expected value i.e., 
(Ok - Ek)2/Ek. The sum of these results over all the bins yields the single
statistic, c2. Knowing n (referred to as the number of degrees of freedom)
and c2, one can calculate (or look up in tables) the probability that subse-
quent experiments would yield greater or equal values of chi square.

18. I discuss the strange attributes of quantum mechanics in more detail in
More Than One Mystery: Explorations in Quantum Mechanics (Springer-
Verlag, New York, 1995).
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19. Letter to James Franck cited in Einstein, A Centenary Volume, edited by
A. P. French, Harvard University Press, Cambridge, MA, 1979, p. 6.

20. See M. P. Silverman, Waves and Grains: Reflections on Light and Learn-
ing (Princeton University Press, Princeton, NJ, 1998) for a description 
of the video recording of this experiment, which I frequently show when
lecturing on quantum mechanics.

21. The designation “atomic weight,” by which A is also known, is technically
a misnomer. A represents the number of atomic mass units (amu) in which
1amu has been defined as 1–12 the mass of the carbon-12 nucleus (6

12C). 
The mass of each proton and neutron is very close to 1amu. The energy
equivalence (E = mc2) of 1amu is approximately 931MeV.

22. G. Gamow, Zeitschrift für Physik 51 (1928) 204; R. W. Gurney and E. U.
Condon, Nature 122 (1928) 439.

23. See, for example, H. A. Bethe’s classic, Elementary Nuclear Theory (Wiley,
New York, 1947, p. 6). According to quantum theory, the probability for a
particle of mass M and energy E to tunnel from a radial position a to radial
position b in a spherically symmetric potential U(r) is given by the approx-
imate relation

The frequency with which an alpha particle of speed � bounces back and
forth across the diameter 2R of the nucleus is f = v/2R, and the rate at
which the particle tunnels through the barrier is correspondingly equal to
fP. Equating the de Broglie wavelength h/Mv of the alpha particle inside
the nucleus with the nuclear radius R leads to f = h/2MR2. Thus, the alpha
decay rate of a nucleus should depend on the barrier height, barrier width,
nuclear size, and alpha mass and energy.

24. For an alpha particle whose mass is some three orders of magnitude larger
than the electron mass, the energy uncertainty due to confinement to a
spherical region of radius �10-12 cm is roughly 8MeV, and therefore lower
than the nuclear barrier.

25. Recall from Chapter 2 that the exponential function ex can be defined by
the operation limnÆ•(1 + x/n)n.

26. Expansion of the binomial expression (p + q)n yields the sum

If p + q = 1, so that p is the probability that an event

occurs in a single trial and q is the probability that the event does not
occur, then the term (n

k)pkqn-k represents the probability that the 
event occurs k times out of n trials.

27. The demonstration that the binomial distribution reduces to the Poisson
distribution under conditions of low probability p and large number of
trials n is ordinarily accomplished by the tedious method of applying the
Stirling approximation to the various factorial expressions occurring in
the binomial coefficient. There is a much simpler and more elegant way
to proceed. The expression (q + pz)n, with q = 1 - p, results in a power
series expansion of the variable z with coefficients of zk (0 £ k £ n) given
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by the binomial distribution. One can transform this into the expression
em(z-1) for which the coefficients of the power-series expansion are given 
by the Poisson distribution. Substitute q = 1 - p into (q + pz)n to obtain 
(1 + np(z - 1)/n)n and take the limit as p Æ 0 and n Æ • with np remain-
ing finite (the mean value m). The limit yields the exponential function 
em(z-1). (See Note 25.)

28. The symbol b is reserved for an energetic electron or positron created by
the decay process. A pre-existing orbital electron is designated by the
symbol e.

29. Readable accounts are given in G. J. Chaitin, Randomness and Mathe-
matical Proof, Scientific American (May 1975) 47 and J. Ford, How
Random Is a Coin Toss, Physics Today (April 1983) 40.

30. There are 2k algorithms of length k bits that might generate a series of 
n ≥ k bits. Thus, there are 21 + 22 + . . . + 2n-r-1 = 2n-r - 2 algorithms of length
shorter than n - r. Each algorithm specifies one series of n bits. The frac-
tion of series of length n that can be generated by algorithms of length
less than n - r is then approximately 2n-r/2n = 2-r. For r = 10 and 20, the
fractions are respectively 1/1024 and 1/1,048,576.

31. F. T. Avignone, III, Comment on “Tests of the Exponential Decay Law at
Short and Long Times,” Physical Review Letters 61 (1988) 2624.
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CHAPTER 9

A Universe of Atoms: 
Symmetry, Unity, Gravity, and the

Problem of “Missing Mass”

The paradox is now fully established that the utmost abstractions are the true
weapons with which to control our thoughts of concrete fact.

Alfred North Whitehead

9.1. Keep It Together! Keep It Together! 
Keep It Together!

In the zany film Bowfinger, actor Eddie Murphy, in the role of a neu-
rotic film star whose mental state is becoming increasingly unhinged
by encounters with strange people who keep following him, tries to
regain self-control by frantically repeating over and over again his 
psychiatrist’s mantra: “Keep it together!” Mr. Murphy did not realize
it, of course, but those three words summarize in the tersest way pos-
sible the principal task of theoretical physicists who study either the
smallest building blocks of matter or the largest structures of the
cosmos.

For the first group, the task is to find a single self-consistent math-
ematical framework for understanding the fundamental forces in
nature: gravity, electromagnetism, and the weak and strong nuclear
interactions. For the the second group, the task is to explain what
“missing” matter or energy keeps the contents of galaxies and clusters
of galaxies from flying apart. Surprisingly, the two problems have
much in common. Rather than being boundary points at opposite ends
of a linear spectrum of phenomena, the physics of the ultra small and
the physics of the astronomically large join like the snake in Kekulé’s
dream, grasping its tail to form a circle.1

The origin and destiny of the universe have interested me for as long
as I can remember. As a child, popular writings of Eddington, Jeans,
Hoyle, Gamow, Hubble, Shapley, and other astronomers and cosmolo-
gists opened up grand vistas of the imagination that helped draw me
into physics. Indeed, it may well have been so for most physicists of



my generation, for not many children, I believe, would have been first
attracted to physics by the prospect, however lucrative, of designing
better transistors. Nevertheless, I did not become a cosmologist.
Bearing in mind Lev Landau’s caustic remark that “cosmologists are
often wrong, but never in doubt,” I set about to make my mark in other
areas of physics which rested, I believed, upon more solid ground.

Over the years, however, the experimental foundations of the science
of the universe have become increasingly firmer—and, in the past few
years especially, the capacity to assess accurately cosmological 
quantities (galactic distances, rate of universal expansion, primordial
abundances of light elements, fluctuations in the cosmic microwave
radiation background, etc.) has become truly breathtaking. Hardly a
day passes without a report in a major newspaper of one cosmological
breakthrough or another. (The New York Times is perhaps the de facto
premier periodical for publication of new astrophysics!) Although I am
still not a cosmologist, I became interested again—this time more 
seriously—in its unsolved problems.

Ironically (in light of what I have written in Chapter 1), my atten-
tion to problems of space, time, and the universe was sparked at least
in part by science fiction, a genre of entertainment that ordinarily
interests me very little. However, living with children who for many
years were avid “Star Trek” fans, I had on numerous occasions heard
about the crew of one episode or another zipping back and forth in time
with no more ado than taking a lift between decks of the Enterprise.
Was this sheer nonsense? From the standpoint of physics, is time
travel conceivable?

In case the reader is expecting a definitive answer to that question
in this chapter, I hasten to state that I do not have one. For what it is
worth, however, my professional opinion is that it is not possible. With
certain qualifications, I believe that the past is irretrievable and the
future is unknowable. Yes, I am aware of various well understood
effects of special or general relativity by which motion or gravity can
affect the passage of time. Yes, I know that looking up at the sky at
night is tantamount to looking back in time. Yes, I also realize that
there are solutions to Einstein’s equations of gravity that describe 
universes with so-called “closed time lines.” All the same, as for any
realistic prospect of shuttling back and forth between past and future,
my advice is don’t bet on it.

Nothwithstanding a decidedly negative outlook on one of science
fiction’s most cherished literary devices, the question of time travel
still intrigued me, but I approached the subject from what I believed
to be an original perspective hitherto untried by either screenwriters
or physicists. What, I wondered, would a universe be like in which
there were two independent dimensions of time? In analogy to the
optical phenomenon of birefringence,2 I referred to one dimension,
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along which light propagates at the familiar speed c in vacuum, as
“ordinary” time and the other dimension, along which the speed of
light need not necessarily be c, as “extraordinary” time. This was, 
consequently, a universe with five dimensions—three spatial and two
temporal—in contrast to the four-dimensional space–time upon which
Einstein’s special and general theories of relativity are based.

To those readers to whom the idea of a universe with five dimen-
sions may seem overtly preposterous, I would point out that, by the
standards of contemporary theoretical physics, this is actually a rela-
tively modest stretch of the imagination. Among theoretical attempts
to unify all of the interactions in nature, it is presently common to find
theories comprising eleven or more spatial dimensions with all but the
familiar three wrapped up (“compactified”) into hyperdimensional
cylinders. Such theories, however, still contained a single time 
dimension. In a theory with two time dimensions, it is conceivable—
at least mathematically—to make a kind of rotation from one time 
axis to the other. Perhaps one could rotate from ordinary time into
extraordinary time, move forward in extraordinary time, and then
make another temporal rotation into either the ordinary future or
ordinary past. Would this be possible physically? I strongly doubt it.
Mathematics may admit of many potentialities that nature has chosen
to ignore.

All the same, the idea of mathematically modeling a five-
dimensional universe with two time dimensions in such a way as to
avoid conflicts with presently known physical laws was a conceptually
interesting challenge, and I and a colleague (R. L. Mallett) decided to
work on the problem together. Our primary goal, however, was con-
siderably more sober than carrying out an exercise motivated by
science fiction. We hoped to develop a theory of gravity by appeal to
certain principles of wide applicability in quantum physics. The theory
of space–time that we put together, combining various key ingredients
(field theory, gauge invariance, and spontaneous symmetry breaking)
that have characterized nearly all major advances in theoretical
physics over the past half century—and which will be discussed in the 
sections to follow—was a mathematical model stripped to its bare
essentials and explored for ideas and insights rather than with an
expectation that it would yield a realistic description of the world as
we know it.

The theory, however, led unexpectedly to a bizarre result with strik-
ing implications. It predicted the existence of a particle with a rest
mass lower than that of any known particle except the photon, which
is believed to have a rest mass of precisely zero. Investigating the phys-
ical properties of these particles, I found that in the aggregate they
condensed, like steam to water, into a form of matter that physicists
have been trying to produce ever since Einstein first predicted its 
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existence in 1924. By applying to a material gas, the novel statistics
proposed that same year by Indian physicist S. N. Bose to account for
the Planck blackbody radiation law, Einstein concluded that3

From a certain temperature on, the molecules “condense” without attractive
forces, that is, they accumulate at zero velocity. The theory is pretty, but is
there also some truth to it?

The “truth to it” was not revealed until over seventy years later. In
1995, researchers at the Joint Institutes of Laboratory Astrophysics
(JILA) in Boulder, Colorado managed to achieve the lowest tempera-
tures ever produced in a laboratory (170 billionths of a degree above
absolute zero) and thereby were able to prepare approximately 2000
rubidium atoms in a so-called Bose–Einstein condensate.4 The result
was hailed as an experimental tour de force and has since opened up
new fields of study in atomic physics and optics.5

Although it is rather unlikely that the actual physical universe has
two dimensions of time, my colleague and I immediately realized, upon
examining the various steps in the development of our theory, that the
prediction and properties of the new particle did not depend at all on
the unusual space–time geometry that we hypothesized, but emerged
intact from broader considerations firmly grounded in established
physical principles and the astrophysical data upon which we relied.
Reworking the basic ideas of our first model specifically for the actual
four-dimensional universe in which we live, we were pleased, but 
not surprised, to find that ultra low-mass particles emerged again
together with a set of equations that described their gravitational
interactions. The outcome was no longer merely an amusing diversion,
but a mathematical model with far-reaching astrophysical implica-
tions whose validity could ultimately be decided by experiment and
observation.

Ecstatic over the JILA group’s success in creating a Bose–Einstein
condensate, Carl Wieman, one of the project directors, waxed rhetori-
cally “It really is a new state of matter. It has completely different
properties from any other kind of matter,” to which co-director Eric
Cornell added “This state could never have existed naturally anywhere
in the universe. So the sample in our lab is the only chunk of this stuff
in the universe, unless it is in a lab in some other solar system.”6

I smiled, when I first read those remarks, at the ironical twists of
fate of which nature is capable. For if the strange, but ineluctable, con-
clusion of our theory is sustained, then the “new state of matter” whose
creation took physicists seven decades to accomplish and which even
today can be created on Earth only in relatively small quantities under
conditions of extraordinarily low temperatures, may well be the most
abundant form of matter in the cosmos, filling the voids of inter-
stellar space and keeping galaxies together.
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9.2. Symmetries for the Mind’s Eye

To those who appreciate the beauty of symmetry, nature abounds in
shapes and patterns to delight the eye. Crystals, for example, afford
one of the richest sources of visual symmetry in science. Who could fail
to marvel at comely golden cubes of iron pyrite, vitreous rhombohe-
drons of calcite with their intriguing image-doubling properties,
hexagonal prisms of quartz, or the infinite variety of six-sided den-
dritic crystals of ice that come to us gratuitously as snowflakes on a
cold wintry day?

It is at the atomic or molecular level however—beyond the gross
morphology accessible to our senses—that the symmetries of crystals
reveal fundamental aspects of the interactions that hold matter
together. There, the bewildering variety of natural structures reduce
to manageably small sets of symmetry elements, classifiable into dif-
ferent symmetry groups. Space groups, for example, characterize the
various ways the lattice of an ideal crystal (i.e., one without edges or
defects) can be displaced without altering the original pattern. In
general, a symmetry element is a transformation that leaves a pattern
invariant. To make the abstraction of a space group concrete, take a
look, if at all possible, at some of the marvelous designs of M. C.
Escher—in particular the numbered patterns designated as Symme-
try Works.7

The lesson, if I may construe it so, of translational symmetry in crys-
tallography is that there is no special or preferred point of origin in a
crystal; the full lattice can be reconstructed from knowledge of a
certain minimal neighborhood about any point within the crystal. This
may seem obvious, and perhaps in the case of crystals it is. However,
in addition to those geometric symmetries that please the eye, there
are more abstract mathematical symmetries in nature discernable
only by the “mind’s eye” (to borrow Richard Feynman’s colorful
imagery). The objects of interest are not physical objects like crystals,
but physical laws expressed, for example, as equations of motion. In
these cases, invariance under transformations analogous to transla-
tions or rotations are not trivial, but have profound implications.

Reflecting upon such symmetries in his Nobel lecture, C. N. Yang
wrote:

. . . Nature seems to take advantage of the simple mathematical representa-
tions of the symmetry laws. When one pauses to consider the elegance and the
beautiful perfection of the mathematical reasoning involved and contrast it
with the complex and far-reaching physical consequences, a deep sense of
respect for the power of the symmetry laws never fails to develop.

Among simple symmetry laws displaying “elegance and beautiful per-
fection,” Lorentz invariance and gauge invariance are two of the most
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consequential symmetries in physics. Together, they pose severe con-
straints on any candidate in the physicist’s search for an ultimate
theory of everything.

Undetectability of Uniform Motion: 
The Principle of Relativity

Every symmetry in physics is a statement about something that
cannot be observed. The restriction is not an instrumental one; it is
one of principle. It is a statement that the quantity in question is phys-
ically meaningless. This is a point that has not been fully appreciated
before the creation of relativity theory and quantum mechanics.

Seated on a Boeing 747 cruising seven miles above ground at 
900km/hr, passengers around me either look idly out the windows or
read their books and magazines. Even though I have flown countless
times, I cannot refrain from observing each time the cup of tea on the
tray beside me. What is it doing? In the absence of turbulence, it does
nothing at all! Like Sherlock Holmes’ reference to the dog in the night,8

it is the nonoccurrence of any event that is remarkable. That cup of
tea could just as well have been resting on my kitchen table at 
home. Uniform motion (through field-free space), no matter how fast,
is undetectable.

According to Newton’s second law of motion, the net force on a
system is proportional to its total mass and acceleration:

(9.1)

Once a mathematical expression for the force F is supplied and bound-
ary conditions stipulated, Eq. (9.1) can be solved, at least in principle,
to yield the velocity v and coordinate vector r as a function of time.
Now, supposing that Eq. (9.1) applies to a marble rolling on my kitchen
table, then a transformation (called a “boost”) of that table and 
everything on it to the constant velocity V of the Boeing 747 would
transform the force on the marble as follows:

(9.2)

There is no change. The invariance (termed Galilean invariance) of 
the Newtonian force law under a boost is illustrative of a deep 
principle of physics. There is no single preferred frame of reference (e.g.,
that of the “ether” at rest) in which to express the laws of classical
mechanics.9

In 1905, Einstein extended this observation into a more general
principle of relativity by requiring the laws of physics, and not just
mechanics, to take the same form in all inertial (i.e., nonaccelerating)
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reference frames. In addition, he assumed the speed of light in vacuum
c to be a universal constant, the same for an observer in any inertial
reference frame. As a consequence of these two postulates, there 
followed a set of transformation relations by which observers in dif-
ferent inertial reference frames could compare spatial measurements
and time intervals—and therefore every other physical quantity
(velocity, acceleration, force, field, etc.) that involved space and time.
This set of relations is known as the Lorentz transformation (recall
Section 5.2) because the Dutch physicist H. A. Lorentz had derived it
a year earlier in an attempt to reconcile the null result of the Michel-
son–Morley experiment with the existence of an ether as a medium
through which electromagnetic waves propagate. The true significance
of the Lorentz transformation, however, reflecting the nature of mea-
surement of space and time independent of any specific model of
matter, is due solely to Einstein.

In the simplest case of a reference frame (“primed” frame) moving
at speed V along the +x axis of our own rest frame (the “unprimed”
frame), the Lorentz transformation takes the form

(9.3)

in which g = 1/ is a factor that appears ubiquitously in 
relativistic formulas.10 From Eq. (9.3) follow all the apparently 
counterintuitive effects—length contraction, time dilation, the non-
Euclidian velocity addition law,11 the twin paradox, among others—
associated with special relativity. The word “relativity” reflects the fact
that spatial intervals Dx (the difference between two spatial coordi-
nates) and time intervals Dt (the difference between two time coordi-
nates) are relative, that is, depend on the reference frame of the
observer. For example, I would measure the length of a meter stick
moving past my line of sight at speed V to be shorter than 1m by the
factor g ; only an observer at rest with respect to the meter stick would
measure its length to be exactly 1m. Likewise, I would find a clock
moving past me at a speed V to run more slowly than a clock at rest
beside me again by the factor g. The factor g, however, does not depart
substantially from 1 until the relative velocity V is close to the speed
of light.

Although the theory of relativity has removed from physics long-
standing incorrect suppositions of absolute space and absolute time,
this theory is, for all that, still very much a theory of absolutes, or
invariances, as a physicist would more likely say. I have already dis-
cussed the Lorentz invariance of charge in Chapter 5 and pointed out
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in the preceding paragraphs that Einstein’s derivation of the Lorentz
transformation assumed the invariance of the speed of light in
vacuum. Moreover, the requirement that the laws of physics take the
same form in any inertial reference frame leads to the recognition that
certain ostensibly different physical quantities like space and time,
energy and linear momentum, or electric and magnetic fields are 
actually representable by a single geometrical structure, as, for
example, by a four-dimensional vector or a four-dimensional tensor.
The scalar magnitudes of 4-vectors and 4-tensors provide additional
invariant quantities.

The formalism for expressing special relativity in a manifestly
Lorentz invariant way was developed by one of Einstein’s former math-
ematics teachers, Hermann Minkowski. It is reported that Einstein
did not particularly appreciate at first the geometrization of his theory,
but regarded it as “überflüssige Gelehrsamkeit” or superfluous
learnedness.12 (It might also be added that Minkowski did not think
particularly highly of Einstein as a student.) Subsequently, the tensor
formalism of Minkowski was to be indispensable to Einstein in his 
creation of the general theory of relativity.

The transformation of coordinates expressed in Eq. (9.3) can be
looked upon as the transformation of a single coordinate vector with
four components xm = (x0, x1, x2, x3) ∫ (ct, x, y, z), the Greek superscript
m taking values 0, 1, 2, 3. (Note carefully that the superscript m is an
index or label, and not an exponent or power.) With this modest 
modification of notation and the definition b ∫ V/c standard in special
relativity, the transformation of the coordinate 4-vector takes the
simpler form

(9.4)

displaying the symmetry between temporal (x0) and spatial (x1) coordi-
nates. It is important to emphasize that coordinates have no physi-
cal significance in themselves; only coordinate differences—lengths 
and time intervals—are measurable. In Minkowski’s geometry, the
magnitude of a space–time interval between two events, defined by

(9.5)

in which each component Dxm is a coordinate difference, is a Lorentz
invariant, i.e., it has the same numerical value for any inertial
observer of the same two events. Relation (9.5) resembles somewhat
the Pythagorean theorem, except that the spatial terms are subtracted
from (not added to) the temporal term. This distinction is crucial. In
Euclidian geometry, to which the Pythagorean theorem applies, the
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magnitudes of vectors are invariant under rotations; in Minkowski
geometry, the magnitudes of vectors are invariant under boosts.

A general way of writing geometrical intervals is by means of a 
structure known as a metric (or metric tensor). Thus, in the case of
differentially small coordinate displacements, Eq. (9.5) takes the form

(9.6a)

in which the so-called Minkowski metric hm� is a diagonal 4 ¥ 4 matrix
with elements (1, -1, -1, -1). It may seem like notational overkill to
take a simple sum of four terms like Eq. (9.5) and write it as the double
sum over the components of a matrix and two vectors like Eq. (9.6a),
but the latter form provides a compact way to show explicitly that the
expression is a scalar quantity—i.e., unchanged by a coordinate trans-
formation—even when the metric may not be diagonal and the sum
involves cross-terms. Lorentz invariance is referred to as a “global”
invariance because the elements hm� are the same for all inertial
observers no matter where they are.

To help avoid cumbersome mathematical expressions, physicists
often employ the Einstein convention in which summation symbols are
omitted and repeated indices (one raised, one lowered) are auto-
matically summed. With the Einstein convention, Eq. (9.6a) becomes

(9.6b)

The coordinate vector with the lowered index in Eq. (9.6b) is defined
by the sum dxm = hm�dx�. The lowering of an index is not merely 
idle notation. Although a discussion of the matter would take us
beyond the intended scope of this chapter, it is worth noting here 
that there is, in general, a significant geometrical distinction between
a contravariant vector (raised index) and a covariant vector (lowered
index). For our purposes, however, the notation provides a quick way
to recognize scalar quantities i.e., those of the form Am Am (with sum
over m).

Any set of quantities that transform in the same way [Eq. (9.3) or
(9.4)] as the components of the coordinate 4-vector are also 4-vectors
and, consequently, give rise to an invariant expression like Eq. (9.5).
For example, the energy-momentum 4-vector pm = (p0, p1, p2, p3) ∫ (E/c,
p) of a particle of mass m, energy E, and (3-vector) linear momentum
p leads immediately to the invariance relation pm pm = E2/c2 - |p|2 =
m2c2. The scalar invariant may be readily verified by evaluating pm pm

in the rest frame of the particle in which p = 0 (the particle is obvi-
ously at rest in its rest frame) and E = mc2.

It is of historical interest to point out that Einstein did not create
the special theory of relativity in response to any perceived experi-
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mental violation of Newton’s laws; none was known at the time.
Rather, he sought a description of motion consistent with the laws of
electromagnetism deduced by James Clerk Maxwell in the 1850s. It is
from these laws that another symmetry for the mind’s eye emerges—
one that was to be a critical signpost along the path to uncovering 
the common structure to all (or nearly all) known fundamental 
interactions.

Undetectability of Potential and Phase: 
The Gauge Principle

Formulated in words, the laws of electromagnetism comprise four dis-
connected empirical statements:

(1) The electric force between two point charges is proportional to each charge
and falls off as the square of their separation. [Coulomb’s law]

(2) All magnets have both “north” and “south” ends. [Nonexistence of mag-
netic monopoles]

(3) A change in magnetic flux gives rise to an electrical potential difference
(also called an electromotive force). [Faraday’s law]

(4) Magnetism is generated by electric currents or by a change in electric flux.
[Ampere–Maxwell law]

It is only when these statements are expressed mathematically in
terms of electric (E) and magnetic (B) fields, as first worked out by
James Clerk Maxwell, that they cease to be disconnected and lead 
to a self-consistent theory of all classical electromagnetic and optical
phenomena.

At first thought, the introduction of magnetism may present a dis-
turbing paradox. Consider the passage of a charged particle through
the field of a stationary magnet and recall that the magnetic force on
the particle (termed the Lorentz force) is proportional to the magni-
tude of the charge, the strength of the field, and the speed of the 
particle. A charged particle moving with constant velocity V into a
magnetic field B will be deflected (as long as V is not parallel to B).
Suppose, however, that the particle is at rest in the laboratory and a
magnet moves past it at the constant velocity -V. Although, from the
perspective of relativity, the two situations should be equivalent, the
Lorentz force on the particle is now theoretically null. Would the sta-
tionary particle be deflected by a moving magnet? Can the existence
or nonexistence of a physical force depend on which of two purportedly
equivalent inertial reference frames is chosen to describe the phe-
nomenon? For that matter, is there not a violation of the principle of
relativity when a particle moving at a constant velocity experiences a
force? (Remember the cup of tea in the Boeing 747.)
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Last things first. A charged particle moving through a uniform mag-
netic field may have a constant speed but not a constant velocity; the
magnetic force continuously changes the direction of particle motion
and, therefore, accelerates the particle. The situation is not the same
as that of a Lorentz-boosted cup of tea, which always remains in an
inertial frame. Not only does the Lorentz force not violate the princi-
ple of special relativity, but, using special relativity, one can derive the
Lorentz force from Coulomb’s law.

The resolution of the preceding paradox is that the initially 
stationary charged particle is indeed deflected, but as a result of an
electric force, not a magnetic force. The Lorentz transformation 
that relates the space and time coordinates of two inertial frames 
also relates the electric and magnetic fields in these frames in the 
following way. Components of E and B along the direction of the 
relative velocity V are unchanged. Components of E and B per-
pendicular to the relative velocity are intermixed. For the specific 
Lorentz transformation of Eq. (9.3) or (9.4), in which the boost is along
the x axis, the transformation of electric and magnetic fields takes the
form

(9.7)

V is the velocity of the “primed” frame (the rest frame of the charged
particle in the preceding example) relative to the “unprimed” frame
(the rest frame of the magnet, or laboratory frame). In the case of the
stationary magnet and moving charged particle, B is the only field pre-
sumed present in the laboratory frame. In the rest frame of the parti-
cle, however, there exist both an electric field E¢ = g (V/c) ¥ B and a
magnetic field B¢ = g B. The latter has no effect because the particle is
stationary, but the former exerts an electric force (charge ¥ electric
field) of the same form as that exerted by the magnetic field in the 
laboratory frame.

The laws of electromagnetism—specifically Maxwell’s equations and
the combined electric and magnetic force law—are invariant under the
Lorentz transformations (9.3) and (9.7) of both coordinates and fields.
From the perspective of relativity developed by Minkowski, therefore,
electric and magnetic fields constitute a single geometrical entity, an
electromagnetic field tensor Fm� (with both sets of indices assuming
values 0, 1, 2, 3), whose elements are intermixed under a Lorentz
transformation. The field tensor is antisymmetric, i.e., Fm� = - F�m, with
elements F01 = Ex, F02 = Ey, F03 = Ez, F12 = Bz, F23 = Bx, F13 = -By.13
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Diagonal elements must vanish because the numerical relation Fmm =
-Fmm is satisfied only by zero.

Written in tensor notation, the four laws of electromagnetism reduce
to two independent equations, of which one relates the field tensor to
charges and currents [i.e., combines statements (1) and (4)], and the
other expresses a symmetry relation among field components [i.e.,
combines statements (2) and (3)]. The relativistic formalism provides
not only an economy of expression but also insights into the geomet-
rical and physical meaning of the laws, as well as leads to another
Lorentz invariant, Fm�Fm� = B2 - E2, which, in analogy to Eq. (9.5), is
interpretable as the square of the magnitude of the field tensor.14

Maxwell’s equations, however, incorporate another kind of symme-
try that complements those deriving from special relativity, and this
symmetry, referred to as gauge invariance, has turned out to be of pro-
found importance. The geometrical embodiment of the first statement
(Coulomb’s law) is that electric lines of force diverge radially and
isotropically from each point electric charge. The analytical expression
of this fact takes the form of an equation in which the density of elec-
tric charge (i.e., amount of charge per volume), which is the source of
the electric field, is related to the spatial variation of the field as rep-
resented by a particular sum of derivatives called the “divergence.”15

Since the second statement denies the existence of point magnetic
charges (isolated north or south poles), there can be no corresponding
lines of magnetic force diverging radially and isotropically from any
region of space. Instead, magnetic lines of force form loops about their
current sources. This fact is succinctly expressed by the statement that
the divergence of the magnetic field is zero.

The algebraic consequence of the fact that the divergence of a mag-
netic field vanishes is that every magnetic field, no matter what its
origin or configuration, can be expressed in terms of a vector of spatial
derivatives [the curl—see Eq. (3.4b)] of a function designated the
vector potential A. I have introduced the vector potential in 
Chapter 3 in conjunction with the uniquely quantum mechanical 
phenomenon known as the Aharonov–Bohm effect. In revisiting the
subject at this point, however, my focus of attention is not on electron
interference, but on the symmetries of electromagnetism and their 
consequences.

When the equation B = curl A is substituted into the mathematical
representation of Faraday’s law [statement (3)], there results a general
expression for the electric field E in terms of the time variation of A
and the spatial variation (the gradient) of another function called the
scalar potential f. The exact relation is given by Eq. (3.4a), but the
essential point here is that by replacing the electric and magnetic
fields in Maxwell’s equations by the preceding relations, the laws of
electromagnetism can be reformulated entirely in terms of potentials,
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rather than fields. Because the electric and magnetic forces exerted on
matter are directly proportional to the electric and magnetic fields,
these fields must be (and are) uniquely determined in any well-posed
system of charges and currents—otherwise classical electromagnetism
would lead to inconsistencies and paradoxes. The potentials A and f,
however, are not unique.

As discussed briefly in Chapter 3 (in Note 13), a set of potentials (f,
A) that generate fields E and B can be transformed into another set
of potentials (f¢, A¢) that generate the same electromagnetic fields by
means of a so-called gauge transfomation:

(9.8a)

in which L is, to a large extent, an arbitrary function although it
cannot be a mathematically “pathological” function or one that corre-
sponds to physically unacceptable charge and current sources. Because
Maxwell’s equations and the Lorentz force law are unchanged under
the transformation (9.8a), electromagnetism is said to be gauge 
invariant.

The word “gauge”—or “Eich” in the original German expression of
mathematician Hermann Weyl—conveys the notion of size or scale, as
in the gauge of a railroad track. In a certain sense (although not 
actually the sense in which Weyl meant it), the expression “gauge
invariance” is an apt one, for it signifies the invariance of Maxwell’s
equations under a change in the origin (or zero setting) of the 
scale that records the scalar and vector potentials. That the elec-
tromagnetic field equations remain unchanged under a “shift” of poten-
tials as specified by Eq. (9.8a) should not be surprising; after all, the
scalar potential corresponds to the “voltage” in an electrical circuit,
and only differences in voltage are physically meaningful and 
measurable.

The gauge invariance of electromagnetism appears explicitly when
the theory is again formulated in relativistic notation. The scalar and
vector potentials are then found to constitute the components of a 4-
vector, Am = (f, A) or Am = (f, -A), and the electromagnetic field tensor
(with lowered indices) is simply expressed by the antisymmetric com-
bination of derivatives Fm� = ∂Am /∂x� - ∂A� /∂xm. For spatial indices, the
expression yields precisely the components of the curl of the vector
potential and, therefore, the components of the magnetic field. For
mixed spatial and temporal indices, the expression is the same (to
within a minus sign) as Eq. (3.4a) and generates the components of
the electric field. In relativistic notation, the gauge transformation
(9.8a) is expressible by the single relation
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(9.8b)

which is readily seen to have no effect on the field tensor because the
extra term ∂2L/∂x�∂xm is canceled by the extra term ∂2L/∂xm∂x�. (Partial
derivatives can be taken in any order.)

Were one to consider nothing else but electromagnetism, the gauge
invariance just described might be regarded as little more than an
interesting curiosity. I am not sure whether Maxwell himself paid any
more attention to this feature of his theory than as a mathematical
device for facilitating calculation.16 It is from the perspective of
quantum mechanics, however, that a deeper significance of gauge 
symmetry is revealed.

In contrast to classical mechanics, it is not the particle location r or
velocity v that quantum mechanics provides, but an abstract complex-
valued wave function y(r, t) by aid of which the probability of finding
a particle within a specified region of space can be calculated. The
quantum “wave,” unlike waves of sound or light, does not represent
the undulation of any physical medium, either material like air or
immaterial like an electromagnetic field. Rather, it is a purely math-
ematical function conveying statistical information about particles. As
emphasized in Chapter 3, wavelike phenomena are manifested collec-
tively in the behavior of many quantum particles or in repeated obser-
vations of one or a few particles, but never in the single observation
of a single particle. The strangeness of the quantum world lies in the
observable fact that undulatory behavior like diffraction and interfer-
ence can emerge even when the experiment is performed one particle
at a time and, therefore, in the absence of any cooperative particle
interactions.

The quantum equation of motion of a free particle of mass m and
charge q moving at a speed low compared to the speed of light is the
Schrödinger equation

(9.9)

in which the linear momentum p is a mathematical vector operator
with components px = ( /i)(∂/∂x), etc. The “square,” p2 = p ·p, is pro-
portional to a sum of second derivatives referred to as the Laplacian,
�2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. Since the particle is presumed free (i.e.,
not subject to any external potential), the electric charge q, which
couples the particle to electromagnetic potentials, is entirely absent
from Eq. (9.9). The fact that the state of a quantum particle is 
represented by a wave function rather than by a trajectory leads to a
symmetry requirement on the equation of motion that may, at first
glance, seem useless, but which has extensive ramifications. Like the
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potentials of electromagnetic theory, the wave y is not unique, but can
be multiplied by any phase factor of the form eiL, where L is a constant
signifying a global phase adjustment. Because only relative phase (like
relative voltage) is physically meaningful, both y and eiLy contain, in
their spatial and temporal evolution, the same dynamical information
about a physical system.

The preceding statement is obviously true for constant L, since eiL

can be dropped from both sides of the Schrödinger equation (9.9).
However, if an admissible quantum equation of motion is required to
be invariant under a local phase transformation (the gauge princi-
ple)—that is, a transformation in which the phase L(r, t) can be reset
at each and every point of space and time through which the particle
moves—then a cursory inspection of Eq. (9.9) shows immediately that
the spatially varying function eiL(r, t) does not drop out; the operator p2

gives rise to first and second derivatives of L on the left side with no
compensating terms on the right. The gauge principle cannot be imple-
mented for free particles.

It is at this point that the conceptually separate paths of quantum
physics and classical electrodynamics fruitfully merge. If the electro-
magnetic potentials are inserted into Eq. (9.9) according to the long-
established procedure known as “minimal coupling”

(9.10)

then it is not difficult (albeit a bit tedious) to confirm that the new
Schrödinger equation (9.10) is unchanged in form under a gauge trans-
formation (9.8a) of the potentials and a phase transformation

(9.11)

of the wave function, both transformations being effected by the same
arbitrary function L(r, t). From now on, it is to be understood that the
two transformations together comprise a (local) gauge transformation.
Originally, Weyl believed (incorrectly) that Einstein’s theory of gravity,
which will be discussed shortly, should be invariant under a scale
change eL—hence, his adoption of the word “gauge.” Quantum 
mechanics reveals that the appropriate invariance for a particle
subject to electromagnetic interactions involves phase, not scale.

From Eq. (9.10) follow all the interactions of a single nonrelativistic
charged particle with electric and magnetic fields, including the
Zeeman effect, Stark effect, paramagnetism, diamagnetism, the emis-
sion, absorption, and scattering of radiation, and the Aharonov–Bohm
effect, to cite but some of the most familiar examples. The relativistic
(i.e., Lorentz-invariant) extension of Eq. (9.10) takes different forms,
depending on whether the charged particle in question is a fermion or
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a boson. In the former case, the Dirac equation is the appropriate equa-
tion of motion, and in the latter, the equation of motion is known as
the Klein–Gordon equation. In both cases, the electromagnetic inter-
actions of the charged particle derive from expressions that contain
scalar contractions of the 4-vector pm - (q/c)Am in which pm = i (∂ /∂xm)
is a differential operator.17

In the historical development of electromagnetism, the force
between elementary charges (Coulomb’s law) was first inferred from
experiment and eventually led, in conjunction with other empirically
determined laws, to Maxwell’s equations, the recognition of light as an
electromagnetic wave, and the minimal coupling pm - (q/c)Am in the
equation of motion of a charged particle subjected to electromagnetic
fields (as mediated by the potentials). The imposition of local gauge
invariance and Lorentz invariance is so restrictive, however, that the
chain of reasoning could have preceded in the opposite direction—that
is, by the insertion of “light” (i.e., the gauge potential Am) into the
appropriate quantum equation of motion of a free charged particle to
make the equation gauge invariant, with subsequent deduction of the
electrostatic force law and other Maxwell equations. Exactly how this
program of deriving a fundamental interaction from the “thin air” of
gauge symmetry works involves mathematical considerations that go
beyond the objectives of this chapter. It will be useful for the follow-
ing sections, however, to examine the procedure, at least in broad
outline.

At the outset, the model builder seeking to account for the interac-
tions of particles endowed with a general property of charge (not nec-
essarily electric charge) specifies the internal degrees of freedom of 
the particles and the group of symmetry elements that locally reset
internal variables as the particles move from one space–time point to
another. In electromagnetism, the internal degree of freedom (or inter-
nal quantum number) of the particle is its electrical charge, to which
the corresponding local variable is the phase of the wave function.
However, there are other possibilities. In the first extension of gauge
theory beyond electromagnetism, C. N. Yang and R. L. Mills attempted
to model the strong nuclear interactions by constructing a gauge
theory of the “nucleon” whose internal space had two components
called “isospin.” Isospin is a kind of “up” and “down” directionality (like
the two components of electron spin) whereby the “up” state corre-
sponded to the proton and the “down” state to the neutron. In this case,
gauge invariance was invoked to ensure that the resulting equations
of motion remained unchanged in form under an arbitrary rotation 
of the isospin direction, a transformation with three adjustable 
parameters.

In general, the construction of a gauge theory works more or less in
the following way:

h
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1. Write down in a manifestly Lorentz-invariant form a certain
scalar function, called the Lagrangian, for the free particles. In clas-
sical dynamics, the Lagrangian expresses the difference in kinetic and
potential energies of the particles. The Lagrangian for a single free
particle takes the form of a kinetic energy term (proportional to pmpm

for a boson and g mpm for a fermion, in which g m is a set of constant 
4 ¥ 4 matrices known as Dirac matrices) minus a term proportional to
the particle mass, which is a kind of potential energy.18

2. Require that the Lagrangian be invariant under transformations
of the internal variables by introducing, as needed, an appropriate
number of gauge potentials Am and subsequently replacing each ordi-
nary derivative ∂ /∂xm that comes from the momentum pm with a “gauge-
covariant” derivative D/Dxm constructed from the gauge potentials. [In
electromagnetism, the two derivatives are related by D/Dxm = ∂ /∂xm +
i(q/ c)Am.19]

3. Construct the fields (analogous to E and B) from the gauge poten-
tials via the antisymmetric relation Fm� = DAm/Dx� - DA�/Dxm. In the
case of electromagnetism, the preceding equation gives precisely the
field tensor defined previously, since the terms AmA� and A�Am cancel.
However, in the case of more complex interactions, such as in
Yang–Mills theory, the potentials are noncommutative (i.e., the order
of their appearance in a product matters) and additional terms appear
in Fm� that have no analog in electromagnetism. Add to the Lagrangian
the sum of terms - 1–4Fm�Fm� representing the energy of the gauge fields
Fm�.

4. Finally, deduce from the Lagrangian (by the methods of the cal-
culus of variations) a set of relations known as the Euler–Lagrange
equations that prescribe the interaction of the particles with the poten-
tials and fields, as well as the generation of the fields by particle cur-
rents. From the antisymmetry of the field tensor Fm� follow other
relations among the fields themselves. In the case of electromagnet-
ism, this step leads to the Dirac or Klein–Gordon equation for the par-
ticles and to Maxwell’s equations for the fields.

Although the procedure as just outlined may read like a cookbook
recipe and, in general, is not too difficult for a mathematical physicist
to implement, the resulting equations may be of daunting complexity.
For example, in stark contrast to electromagnetism in which the fields
themselves are uncharged although they are produced by charged par-
ticles, the components of Yang–Mills fields are subject to the same
force as the particles and, therefore, interact with one another. As a
consequence, the principle of superposition—vital to the solution of
many electromagnetic problems—does not apply, except under some
exceptional circumstances. However, complexity aside, the program
itself, following ineluctably from the imposition of Lorentz and gauge

h
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invariance, provides a tractable, self-consistent scheme for deriving
the form of fundamental interactions from the supposition of symme-
try. Prior to this, one would have had to guess equations of motion from
a profusion of experimental data.

9.3. Spontaneous Symmetry Breaking

From the perspective of quantum theory, the interactions between par-
ticles are mediated by the exchange of bosons. In electromagnetism,
for example, the Coulomb repulsion of two electrons results from the
exchange of a photon between them. Experiments strongly support the
belief that photons have zero rest mass, a property that accounts for
the infinitely long range of the electromagnetic interaction. We get a
sense of this long range (compared to atomic or nuclear dimensions)
whenever we move bits of paper about with a statically charged comb
or paper clips with a magnet.

As a rough guide, the range of an interaction mediated by a parti-
cle of nonzero rest mass m is the Compton wavelength of the particle
lC = h/mc, previously introduced in Chapter 7. The gauge theory 
of electromagnetism accounts perfectly for the masslessness of the
photon, for the particles corresponding to gauge potentials introduced
into a Lagrangian in the manner outlined in the foregoing section must
have zero rest mass. If this were not the case, the Lagrangian would
have to contain an additional scalar term quadratic in the potentials—
a term proportional to m2Am Am—which is not invariant under a gauge
transformation.

Were the gauge principle applicable only to electromagnetism, it
would be of rather limited interest. On the contrary, two of the most
significant achievements of the past half-century of physics are the
elucidation of the strong and weak nuclear interactions in terms of
gauge-invariant quantum field theories. This may seem at first glance
paradoxical because the range of the nuclear interactions does not
extend much beyond the size of a nucleon, or approximately 10-15 m,
and the mediators of these interactions might, therefore, be expected
to be massive particles.

The expectation is false in the case of the strong nuclear interac-
tion—the interaction that binds protons and neutrons together in
atomic nuclei. Called quantum chromodynamics (QCD) from the Greek
root for color, the theory describes the interactions of subnuclear
massive fermions, whimsically named quarks (from a fanciful passage
in James Joyce’s novel Finnegan’s Wake), exchanging massless gauge
bosons termed gluons. In contrast to electromagnetism, in which elec-
trons and other fermions, but not photons, are endowed with electri-
cal charge, the quarks and gluons of QCD are both endowed with the
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corresponding quantum property of color. Color, of which there are
three varieties (often designated red, blue, and green) and their anti
versions, have no relation at all to optical color; rather, it is another
whimsical term to characterize the attribute of particles that makes
them subject to the strong nuclear force. The motivation for the term
color is that a mixture of the three primary colors produces the sena-
tion of white (i.e., of no color). Similarly, according to QCD, all strongly
interacting particles must contain colored quarks in an appropriate
linear superposition resulting in a net color attribute of zero.20

Because gluons, as well as quarks, possess color, the theory gives
rise to nonlinear interactions, such as the coupling of gluons to gluons,
for which there are no analogs in electromagnetism. It is from these
nonlinear interactions and the requirement that physically observable
particles display no net color charge that there arises one of the extra-
ordinary features of QCD known as confinement. The effective poten-
tial energy of quarks increases with their separation. (By contrast, the
potential energy of two electrons decreases with the first power of the
distance between the particles.) Ultimately, an infinite amount of
energy would be required to break the two quarks free of one another.
Before this occurs, however, the energy put into the system (e.g.,
through bombardment of a nucleus with externally accelerated parti-
cles) goes into creating other composite physical particles within which
quarks and antiquarks again remain bound. There are, according 
to the predictions of QCD, no free quarks. QCD is an exact gauge
theory; the gluons are presumed to have no rest mass, and the short
range of the interaction derives from dynamics of the gauge fields
leading to quark confinement.

The situation is quite different, however, with the weak nuclear
interactions—those responsible for a variety of nuclear transmutation
processes such as beta decay. Here, the carriers of the weak interaction
are particles about 80–90 times more massive than a proton (i.e., of a
mass comparable to a bromine or rubidium atom). How can one con-
struct a theory that is invariant to gauge transformations, yet at the
same time has massive gauge particles? The answer to this question
was found in an ingenious application to elementary particle physics of
a process long recognized in the physics of condensed matter. It is
referred to as “spontaneous symmetry breaking” because the theory is
gauge invariant at the outset, but gives rise to particle masses in a
natural way by a kind of phase change, without theorists having to
insert these masses by hand into the Lagrangian (which would have
violated gauge invariance). From a mathematical point of view, spon-
taneous symmetry breaking reflects the fact that the equations of
motion of a theory can possess certain symmetries, yet give rise to solu-
tions that are less symmetric. As this process is to play an important
role in the sections to follow, it is worth examining in more detail.
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Consider a thin cylindrical metal rod pressed vertically against a
tabletop by your hand. Assuming that you are pressing straight down,
there is no reason to expect the bar to deform in any special direction;
all directions around the rod are equivalent. Yet, when the pressure
becomes sufficiently great, the bar will buckle in some particular direc-
tion, thereby breaking the cylindrical symmetry. Physically, the bar
has undergone a transformation from a state with cylindrical symme-
try to a lower-energy state with less symmetry as a consequence of 
the pressure reaching some threshold value. Were the experiment to
be repeated numerous times with different, but equivalent, bars, 
buckling would occur with equal probability in any direction—and, in
this sense, the cylindrical symmetry of the physical configuration is
preserved. The deformation of the bar in a given direction, however,
represents one possible solution of an infinity of solutions to the 
cylindrically symmetric equation describing the bar under pressure.

There is another physical example more specifically within the
realms of electromagnetism and quantum physics that brings out the
seemingly magical appearance of mass in what is initially a strictly
massless field. One of the characteristics of superconductivity, men-
tioned briefly in Chapter 3 for its utility in demonstrating the
Aharonov–Bohm effect, is the Meissner effect, the expulsion of a 
magnetic field from the interior of a (Type I) superconductor. Ordinary
electric currents passing through nonmagnetic wires do not expel 
magnetic fields. Thus, the short penetration depth21 of a magnetic field
into a superconductor may be likened to the Compton wavelength of
a massive photon. (Recall that the Compton wavelength of a particle
is a measure of the range of the interaction that it mediates.) How does
an initially massless magnetic field acquire the semblance of a mass?

Although the interaction between the magnetic field and the charge
carriers within the superconductor is still governed by the “minimal
coupling” characteristic of gauge invariance, the charge carriers them-
selves are not individual electrons, but pairs of electrons (Cooper pairs)
that constitute a coherent flow of charge. The entire system of Cooper
pairs is described by a macroscopic wave function with a phase deter-
mined only by the dynamics of the Cooper pairs and independent of
external gauge fields; this wave function therefore breaks the gauge
symmetry of the Schrödinger equation. It is the interaction of the mag-
netic field with a self-coherent field of particles that generates a short-
range interaction without violating the gauge invariance of Maxwell’s
equations. The breaking of gauge symmetry occurs spontaneously with
the “condensation” of the electrons into the Cooper pairs of the super-
conducting phase when some external parameter, in this case tem-
perature, is lowered through a critical value.

The essential ideas outlined above can be expressed more quantita-
tively by a simple phenomenological model based on a model first 
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proposed by Russian physicists Ginzburg and Landau before a fully
quantum theory of superconductivity was developed by Bardeen,
Cooper, and Schrieffer. In the simplified model outlined here, the free
energy per volume of the system V(f) depends on a field f according
to the relation

(9.12)

which is symmetric about the axis f = 0. The parameters a and b are
taken to be real-valued with b positive. [If b were negative, the func-
tion V(f) would have no finite minimum value.] Thermodynamically,
the stable state of the system corresponds to the value of f that 
minimizes the energy V(f). Setting the first derivative dV(f)/df to 
zero, one finds that there are three distinct solutions: f = 0, ±f0, where
f0 = .

The behavior of the system depends on the sign of the parameter a.
If a is positive, then the shape of V(f) is parabolic (see Figure 9.1), and
the minimum is clearly V0 = 0 at f = 0, representing the nondegener-
ate ground state of the normal conductor. If however, as a consequence
of the phase change to the superconducting state, the parameter a
changes sign, then V(f) has the shape of a double well with the
minimum V0 = -a2/4b at each of the two values of the field, f = ±f0.
These two values correspond to two different values of the phase q of
the field, which can be written as f = f0eiq, where q = 0 or p. [Note that
the word “phase” in the preceding sentence refers to the argument of
a mathematical function, not the physical state (solid, liquid, super-
conductive, normally conductive, etc.) of a medium.] As the tempera-

-a b2

V a bf f f( ) = +2 4 ,
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Figure 9.1. Self-interaction potential energy V(f) = af2 + bf4 as a function of
the scalar field f for b > 0 and (a) a > 0 , (b) a = 0, (c) a < 0.



ture is lowered below the critical temperature for the onset of super-
conductivity, the state f = 0 becomes an unstable equilibrium point
(since it is now a local maximum), and the system settles unpredictably
into one of the two minima, thereby spontaneously breaking the orig-
inal reflection symmetry (across the axis f = 0) of the equations of
motion that govern this system.

The preceding heuristic model has all the essential ingredients of
the mechanism—known as the Higgs mechanism—that was proposed
to account for the masses of the gauge particles which carry the weak
interactions. These particles, two of which are electrically charged (W+,
W-) and one of which is neutral (Z0), together with the photon, derive
from the four gauge fields which, when inserted (via the appropriate
covariant derivatives) into the Lagrangian of free fermions (electrons,
muons, neutrinos, and quarks), lead to a theory of “electroweak” inter-
actions that has so far satisfactorily passed all experimental tests. At
the outset, however, all the gauge fields represent massless particles,
for the Lagrangian cannot contain any terms quadratic in the indi-
vidual gauge fields, or it would no longer be gauge invariant.

According to the Higgs mechanism, however, one assumes that, in
addition to the fundamental fermions and gauge bosons, there is a uni-
versally present scalar field—the Higgs field f—which, like the free
energy f of the superconductor, has a self-interaction potential of the
form given by Eq. (9.12). One must then add to the Lagrangian terms
that represent the difference in kinetic energy and potential energies
of the Higgs field. At a sufficiently low temperature, such as is pre-
sumed to have occurred after the earliest moments of the origin of the
universe, the Higgs field condensed into a self-coherent state, thereby
randomly selecting one of an infinite number of possible stable equi-
librium values f0. Mathematically, one accounts for this phase change
by re-expressing the Higgs field in the Lagrangian as an excitation 

relative to this new minimum (f = f0 + ), rather than relative 
to the value f = 0, which, after condensation, became an unstable 
equilibrium state. Subsequent regrouping of terms in the Lagrangian
to sort out the interactions of the physical particles leads to quadratic
products of individual gauge fields with coefficients that are func-
tions of f0. As a consequence of their interaction with the Higgs 
field, the gauge particles carrying the weak interaction, but not the
photon which carries the electromagnetic interaction, thereby acquire
mass.

The masses of the gauge particles, however, are not directly calcu-
lable from f0, as this value is not known. Indeed, at the time of writing
this chapter, experiments have already confirmed the existence of all
the fermions and gauge bosons required by the gauge theories of the
weak, electromagnetic, and strong interactions—with the exception of
the Higgs particle. This particle has not yet been detected, presum-

ff
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ably because the energy equivalent to its rest mass is greater than, or
at the upper limit of, the energy that present particle accelerators,
operating within their designed ranges, can furnish. Researchers using
the Large Electron Positron (LEP) collider at CERN, the European
high-energy physics laboratory in Geneva, Switzerland, believe that
they might have caught a glimpse of the Higgs particle in a final series
of experiments just before the LEP was shut down permanently for
the construction of the higher-energy Large Hadron Collider (LHC), a
project expected to take about 5 years.22

If the Higgs particle is found, it would provide the final element
required for complete confirmation of the so-called Standard Model,
which has given a common gauge-theoretical structure to the electro-
magnetic, weak, and strong interactions. So complex, in particular, are
the equations of motion of the weak and strong interactions that, were
it not for the stringent constraints posed on the Lagrangian by Lorentz
and gauge invariance, it is highly doubtful that physicists would ever
have been able to deduce these equations from empirical results
alone.23

All the same, the hypothesis of a Higgs field and the mechanism of
spontaneous symmetry breaking may strike a reader as the theoreti-
cal equivalent of splitting nuts with a sledgehammer. Why not simply
construct a gauge-invariant Lagrangian and then break the sym-
metry by inserting the masses of gauge particles by hand as needed,
thereby avoiding the extra theoretical baggage of an all pervasive
“ether” of presently undetectable and possibly nonexistent Higgs 
particles? The reason quite simply (to state, not to prove) is that spon-
taneously broken gauge field theories are demonstrably “renormaliz-
able,” a word that refers to their calculability.

Because of an infinite number of virtual interactions that can occur
in a quantum field theory (e.g., the emission and reabsorption of a
photon by a particle, or the creation and immediate annihilation of a
particle–antiparticle pair), the “bare” theoretical parameters like par-
ticle charge or mass that are put into a Lagrangian at the outset do
not correspond to the experimental values of these quantitities. As 
a consequence, calculation (usually by perturbation theory) of the 
transition probabilities or cross sections of various physical processes
frequently result in divergent integrals. In a renormalizable theory,
however, the infinite terms can be collected together as a sum of terms
multiplying a bare charge or bare mass, the resulting divergent
product then being redefined as the experimental charge or mass.
Many physicists regard this procedure as merely sweeping the intrin-
sic difficulties of the theory under the rug, but from the standpoint of
practicality, the infinities are eliminated and the theory can be made
to yield finite calculations. For the Standard Model, these calculations
have so far been in agreement with experiment.24

Spontaneous Symmetry Breaking 347



In addition to the three fundamental interactions—weak, strong,
and electromagnetic—for which the Standard Model provides a unify-
ing group-theoretic framework, there remains gravity, the intrinsically
weakest of the four basic interactions and the one whose most ele-
mentary features have been known the longest. Yet, for all its osten-
sible familiarity, gravity is still an interaction apart. It remains outside
the purview of the Standard Model or any other quantum field theory.
From the perspective of Einstein’s theory of general relativity—the
most successful explanation of gravity to date—the universal attrac-
tion between masses results not from the exchange of gauge bosons
but from the “warping” of space and time.

9.4. What Is the Matter with Gravity?

Looking up at the sky at night, one cannot help but sense a certain
emptiness. Despite the numerous pinpoints of light shimmering in the
blackness, the overall impression of the cosmos as seen by naked eye
from the Earth is nevertheless much more one of space than of matter.
A view of the universe, however, through the lens of the Hubble Space
Telescope gives a very different impression. Like a drop of pond water
teeming with small organisms, a Hubble deep-field image (Figure 
9.2) reveals a cosmos teeming with galaxies in every imaginable 
orientation.

Astronomers estimate that the visible universe contains about 100
billion (1011) galaxies, each with about 100–1000 billion stars. It is hard
to talk about the contents of the Universe without having to say “bil-
lions and billions” (although the late astronomer and media celebrity
Carl Sagan is certain he never said it!25). If an average star has the
mass of the Sun (about 2 ¥ 1030 kg), then it would seem that there is
an immense amount of matter in the Universe—somewhere in the
vicinity of 1052 kg—bound up in stars alone, with perhaps an equal
amount in the form of predominantly hydrogen interstellar gas. But
enormous as this number is, it represents only a small fraction of the
total matter that astronomers believe the Universe must contain.

The discrepancy between what is “out there” somewhere and what
can be seen through telescopes at all electromagnetic wavelengths (not
just visible light) has been called the “missing mass” and may well con-
stitute over 90% of all the mass (or energy equivalent) in the cosmos.
The mass is not missing, however; it is just not luminous. The neces-
sity of the existence of dark matter is inferred through the effects of
its gravity.

Despite the fact that gravity is the weakest of the four basic physi-
cal interactions, it is the force that shapes the cosmos. Electromag-
netism, although stronger, has little influence because most of the
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matter of the Universe is believed to be electrically neutral, and the
strong and weak nuclear interactions have far too short a range. From
the perspective of Newtonian physics, the gravitational force between
any two elementary bits of matter is an instantaneous mutual attrac-
tion proportional to the mass of each bit and the inverse square of their
separation. Expressed quantitatively, Newton’s law for the attractive
force between two point masses M1 and M2 a distance r apart takes
the form

(9.13)

in which G is the universal constant of gravity (6.7 ¥ 10-11 Nm2/kg2).
The law applies not only to elementary point masses, but, more impor-
tantly, as Newton first demonstrated, to the attraction between any
two spherical masses, provided the spheres do not overlap.

Equation (9.13), used in conjunction with Newton’s second law and
a modicum of empirical numbers whose values were determinable even
in Newton’s time, makes it possible to deduce facts about celestial
objects that would otherwise have remained forever inaccessible. For
example, together with the acceleration of free fall (g = 9.8m/s2) and
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Figure 9.2. Hubble Space Telescope deep-field image of galaxies. The arcs of
light are distortions of the images of distant galaxies as a result of gravita-
tional lensing by closer objects.



the radius of the Earth (RE = 6.4 ¥ 106 m), the law of gravity yields the
mass of the Earth (ME = 6.0 ¥ 1024 kg), an object one could never hope
to weigh directly.26

The law of gravity can be used again to weigh the Earth in an
entirely independent way by utilizing the period of the Moon (1 month)
and the center-to-center distance between the Moon and the Earth 
(r � 60RE). Any object in uniform circular motion with speed v about
a central mass M at a distance r experiences a centripetal accelera-
tion v2/r.27 Use of Eq. (9.13) together with Newton’s second law for the
inertial force on the orbiting object leads to the very useful relation

(9.14a)

for determining the total mass around which the object orbits. Since
the satellite covers a total distance of 2pr in one rotational period T,
one can substitute 2pr/T for the velocity in Eq. (9.14a) to obtain the
equivalent expression

(9.14b)

which is a special case of Kepler’s third law of planetary motion. [In
Chapter 4, we applied this law to atomic orbits; see Eq. (4.6a).] This
same mode of reasoning, employing the period of the Earth about the
Sun (1 year) and the distance of the Earth from the Sun (1.5 ¥ 1011 m),
leads to the mass of the Sun (MS = 2.0 ¥ 1030 kg). Indeed, the law of
gravity and second law of motion enable us to weigh any distant star
with an observable orbiting companion, or even the mass of entire
galaxies.

It was in the measurement of the mass of galaxies that astronomers
became acutely aware of a serious problem: There is, in general, insuf-
ficient luminous matter to account for the rotational velocity of the out-
lying galactic matter (in the form of individual stars or hydrogen gas).
One does not have to look too far to encounter this problem; it occurs
close to home in the features of our own galaxy, the Milky Way. The
Sun, a typical star in the outskirts of one of the spiral arms, orbits the
galactic center, some 28,000 light-years28 (ly) distant, at a speed of
about 220km/s. From Eq. (9.14a), it readily follows that for the Sun to
be gravitationally bound with this velocity, it must be attracted by a
total central mass of approximately 1011 solar masses. Astronomers,
however, can actually detect only about one-tenth of the requisite
matter from observations throughout the electromagnetic spectrum.
There is apparently much less luminous matter than gravitational
matter.

Observations of other galaxies show even more graphically the 
seriousness of the dark-matter problem. From Eq. (9.14a), one would
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expect that the velocity of matter rotating in the plane of a spiral
galaxy outside the central bulge in which most of the visible mass M
is concentrated to diminish inversely as the square root of the orbital
distance r according to the relation

(9.15)

Equation (9.15) defines what is called the Keplerian rotation curve (v
plotted against r), because it characterizes the motions of planets
obeying Kepler’s laws. Figure 9.3 shows the rotation curve of the
Andromeda Galaxy (labeled M31 in the Messier catalog), a huge
“island universe” approximately 2.3 ¥ 106 ly from the Milky Way with
a total mass of more than 4 ¥ 1011 solar masses. Within the central
bulge, matter rotates more or less like a solid body, the velocity increas-
ing roughly linearly with radial distance. Beyond the observable galac-
tic edge, however—even more than 100,000ly beyond—the speed of
rotating stars or gaseous hydrogen clouds circulating with the galaxy
does not fall off as predicted by Eq. (9.15), but remains flat. In other
cases, such as the smaller spiral Triangulum Galaxy (M33), which is
approximately 2.4 ¥ 106 ly distant and may be a satellite galaxy of M31,
the rotation curve (not shown here) continues to rise at thousands of
light-years beyond the luminous disk.

The most reasonable interpretation of a flat or rising rotation curve
is that there must be more matter in the galaxy than meets the eye—
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Figure 9.3. Rotation curve of the Andromeda Galaxy (M31), a spiral galaxy
2.3 ¥ 106 lightyears distant, and comparable in size to the Milky Way. Distance
is plotted in kiloparsecs (kpc) and velocity in km/s. (1kpc is approximately
3300ly.) The smooth curve is the theoretical prediction based on Eq. (9.23).



that is, the eye as enhanced by detectors covering the entire electro-
magnetic spectrum. That about 90% of galactic matter cannot be seen
is perhaps worrisome enough, but it is only when a fuller tally of the
matter of the universe is made that the problem takes on a truly
alarming proportion. For one then realizes, if recent measurements of
the cosmic radiation background and of the luminosities of distant
supernovae hold true, that luminous matter may constitute a mere 1%
of whatever it is that holds the universe together—or, as the case may
be, pushes it apart.

Astonomers and astrophysicists frequently address the question of
dark matter in terms of a density parameter omega, W, the ratio of the
actual mean density r of mass in the Universe to the critical density
rc required to slow the expansion of the Universe eventually to zero.
The idea that the Universe is expanding is admittedly rather difficult
to visualize. The evidence for this, first adduced by Edwin Hubble in
the late 1920s, comes from the Doppler shift of spectral lines29 from
distant galaxies. (It is by measurement of Doppler shifts that galactic
rotation curves can be determined.) No matter the direction of obser-
vation, the spectral lines are displaced toward the red end of the spec-
trum (“red shift”), signifying that the radiating matter is receding from
Earth. The extent of red-shifting, represented by the symbol z, is
defined as the ratio of the spectral line displacement (lobserved - lemitted)
to the wavelength emitted by the source in its rest frame (lemitted).

To make sense of an isotropic recession of distant galaxies, one must
conclude that either the Earth is at the center of the Universe, which
is highly implausible (and, in fact, makes no sense within the frame-
work of general relativity), or that the Universe as a whole is expand-
ing. To visualize the expansion of the Universe, one is frequently asked
to imagine blowing up a balloon upon which many small dots (the
“galaxies”) are inked. From the perspective of any one dot on the
expanding surface, all other dots are receding. Moreover, it is straight-
forward to show that the apparent recession velocity of any dot rela-
tive to a given reference dot increases in proportion to its distance from
that reference.30

This picture is adequate up to a point, as long as one keeps in mind
that the analogy is between the two-dimensional surface of the balloon
and the entire Universe; the Universe, in contrast to the balloon inte-
rior, has no center. Also, although the balloon is expanding into space
previously occupied by air, the Universe is not expanding into any-
thing; the expansion itself creates space. And last, it would be better
to think of the dots as small rigid disks affixed to the balloon with a
bit of adhesive, rather than as spots inked directly to the surface. Ink
spots would get larger as a balloon expands, but a galaxy (or even a
cluster of galaxies) in an expanding space is essentially unchanged in
size because of the gravitational binding of its constituents.
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The mass density of the Universe, and hence the parameter W, are
intimately connected to the geometry and fate of the Universe, pro-
vided that the Universe contains more-or-less familiar kinds of matter
and energy, a point to which I will return in the next section. If W > 1,
the Universe has a positive geometric curvature (like that of a sphere)
and is said to be closed. The gravitational attraction between matter
is sufficient to halt the expansion, and the contents of the Universe
will eventually collapse into a singularity (“the big crunch”), a suitably
dramatic conclusion, perhaps, to its formation in a “big bang”. Con-
versely, if W < 1, the Universe has a negative curvature (like that of a
saddle surface) and is said to be open. There is insufficient matter to
halt the expansion which continues indefinitely, resulting in a universe
immeasurably dilute of matter. The threshold condition, W = 1, char-
acterizes a flat universe with zero curvature (like that of a plane). This
condition represents a delicate balance between kinetic and poten-
tial energies in which the universal expansion asymptotically slows 
to zero. However, a universe described by W = 1 is in an unstable 
equilibrium, the slightest perturbation in density rapidly (on an 
astronomical timescale) leading to either a hot, dense collapse or cold,
sparse expansion. Yet, as implausible as it might first appear, both
theory and experiment presently point to “1” as the likely value for the
mass parameter of the Universe.

Although the full significance of an expanding universe can be
understood only with Einstein’s theory of general relativity, Newton’s
laws can be used again to deduce the value of the critical density rc

and provide at least a rudimentary insight into the magnitude and
nature of the dark-matter problem.

For any compact distribution of matter of total mass M, there is a
minimum or threshold speed vesc at which a small object gravitationally
bound to M must be launched in order to escape forever this 
gravitational attraction and just coast to rest at an infinite distance
away. Consider, for example, a baseball on the surface of the Earth.
With what minimum speed must that ball be thrown “up” so that it
never comes “down”? For each unit of its mass, the ball at the instant
of launch has a kinetic energy 1–2v2

esc and a potential energy -GM/R, in
which M and R are respectively the mass and radius of the Earth. If the
ball is to come to rest (kinetic energy = 0) at an infinite distance from
the Earth (potential energy = 0), then its total energy (kinetic + poten-
tial) must be zero. Provided that energy is conserved, the total energy
per unit of mass at the outset (1–2v2

esc - GM/R) must also be zero, in which
case it follows straightforwardly that vesc = . For the mass and
radius of the Earth given previously, the escape velocity of the ball, 
or any other object at the Earth’s surface, would be approximately 
11.2km/s (24,000 miles/hour). The best baseball pitcher (throwing the
ball at a speed under 100 miles/hour) could never even come close.

2GM R
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If the mass M is uniformly distributed with density r within a spher-
ical volume of radius R, then substitution of M = (4p/3)R3r into the
preceding expression leads to an escape velocity ,
which is directly proportional to the radial distance of the ball at its
launch from the center of the Earth.

Now, one of the consequences of an expanding universe discovered
empirically by Hubble through his red-shift measurements is that the
relative velocity of recession of two distant unbound galaxies is pro-
portional to the spatial separation of the galaxies (as in the balloon
analogy). This proportionality constant, which theoretically is not con-
stant but varies with the age of the Universe, is known as the Hubble
parameter H. Because of uncertainties in the determination of 
galactic distances, Hubble’s original plot (�1929) of recession velocity
against distance showed a wide dispersion about the best-fit line (left
frame of Figure 9.4), but recent data (�1996), obtained from red shifts
(z < 1) of distant Type Ia supernovae, show a linear relationship (right
frame of Figure 9.4) to such perfection as one can only marvel at.
Assuming that the Universe “coasts to rest” (i.e., to zero expansion
rate) at spatial infinity, we can apply the expression derived for 
the escape velocity of a baseball from Earth to the expansion of the
Universe by setting the mass density r equal to the critical density 
rc and then equating the factor with the present value 
of the Hubble parameter. The resulting critical mass density of the
Universe is then

(9.16)

The numerical value of the Hubble parameter is perhaps one of the
most contentious issues in astronomy and cosmology and has led to
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Figure 9.4. Hubble plots of galactic recession velocity against distance as
determined originally by Hubble (�1929) (left) and from recent (�1996) mea-
surements of Type Ia supernovae (right).



complex acrimonious debates31 extending over at least six decades
since Hubble first reported a linear relation between recession veloci-
ties and distances. A number that is perhaps not too far from what
various factions are converging upon is H � 60km/s/Mpc (mega-
parsec). The astronomical distance unit of 1pc is effectively the alti-
tude of an isoceles triangle of apex angle of 1 arc-second (1/3600 of a
degree) and base length equal to the distance of the Earth from the
Sun. This amounts to approximately 3.3 ly. Thus, conversion of H into
standard metric units results in H � 2 ¥ 10-18 s-1. The Hubble constant
has the dimension of inverse time, and it is reasonable to interpret the
reciprocal of H (i.e., 5 ¥ 1017 s or 15–16 billion years) as an approxi-
mate measure of the age of the Universe, the amount of time that has
passed since the singular event (“big bang”) giving rise to space, time,
matter, and energy. Adopting this value of H in Eq. (9.16) leads to a
critical mass density rc � 7.1 ¥ 10-27 kg/m3, or about the mass of four
protons per cubic meter of space.

The idea that the Universe began as a singular explosion of parti-
cles and radiation that subsequently evolved over billions of years into
the elements and structures observable today was proposed by George
Gamow in the late 1940s. Derisively termed the “big bang” theory of
cosmology by adherents of an alternative and then prevailing “steady-
state” cosmology, Gamow’s theory (and the more recent variations
incorporating a brief period of exponential expansion referred to as
“inflation”32) successfully accounted for the relative abundances of pri-
mordial light elements—principally hydrogen, deuterium, helium, and
lithium—and predicted the existence of an all pervasive cosmic back-
ground radiation (CBR). The CBR was detected (unknowingly) by 
Bell scientists Arno Penzias and Robert Wilson around 1965 and has
since been measured extraordinarily precisely over a wide range of 
frequencies by balloon-borne and satellite-based instrumentation. The
spectral distribution of the radiation follows nearly perfectly the
Planck blackbody radiation curve33 for a cosmic background tempera-
ture of 2.728 ± 0.004K. At this temperature, the peak radiation inten-
sity, deducible from Wien’s displacement law,34 occurs at a wavelength
of approximately 1mm. Since this peak is squarely in the microwave
portion of the electromagnetic spectrum, the radiation has also been
referred to as the cosmic microwave background (although the high-
frequency tail of the curve extends into the infrared and beyond).

If there is anything in contemporary physics that corresponds to a
universal reference frame, such as embodied in the long-discarded
notion of an “ether,” it is the CBR. The radiation is isotropic,35 bathing
the Earth from all directions in space, and uniform in temperature to
about one part in 105. Remarkable as this uniformity is, it is not
perfect—the angular distribution of the radiation across the sky
reveals minuscule intensity, and therefore temperature, fluctuations—
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and therein lies an experimental fact quite literally of cosmic 
significance.

The CBR, a relic dating back to a mere 300,000 years after the big
bang (a blink of an eye in cosmological history), is the most ancient
signal that has yet been detected and, indeed, the oldest that can be
detected until newly developed gravitational wave detectors are put
into service. Before this time, according to the standard cosmological
model (i.e., the inflationary big-bang cosmology), the temperature of
the Universe was too high to permit the combination of charged par-
ticles into neutral atoms. Instead, ionized matter and radiant energy
coexisted in a hot, dense, opaque plasma. With continued expansion,
the temperature of the plasma fell, neutral atoms formed (at approx-
imately 3000K), and the resulting hot gas became transparent to elec-
tromagnetic radiation. The photons that constitute the CBR decoupled
from matter and have traveled undisturbed ever since, increasing in
wavelength (and decreasing in frequency and energy) as the Universe
expanded. To observe this radiation is to look back in time and see a
part of the cosmos as it was many billions of years ago.

Although the hot gas from which the CBR originated was highly
uniform in density, acoustic waves through the gas produced a spec-
trum of density fluctuations—regions of greater and lesser concentra-
tions of matter—which, in turn, generated fluctuations in the energy
density and temperature of the escaping radiation.36 Given the dis-
tance over which CBR photons have propagated to Earth and knowl-
edge of the wavelengths of the acoustic resonances in the hot gas, the
angular variation of these ripples across the sky is predictable. The
pattern of ripples depends, however, on the geometry of the space
through which the photons have traveled (Figure 9.5)—and this geom-
etry, according to general relativity, in turn depends on the density
parameter W.

Imagine looking at the squares of a chessboard through a large
convex lens (with the lens less than a focal length from your eye). The
curvature of the lens results in a magnification of the squares so that
each square subtends a larger angular width in the observer’s field of
view than if viewed through a parallel-sided slab of window glass. By
contrast, the squares would be minified and subtend a smaller angular
width if examined (at an appropriate distance) through a concave lens.
A universe with W > 1 is like a convex lens; the larger the value of W,
the larger is the angular width of the patches of CBR temperature
variations across the sky. Conversely, a universe with W < 1 is like a
concave lens; the CBR patches appear smaller. A spatially flat universe
is like a lens with no curvature, i.e., a flat windowpane, in which the
rays of light follow the straight lines of Euclidian geometry. The
observed angular size of the principal contribution to CBR fluctua-
tions, independently measured and nearly simultaneously reported in
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1999 by three different teams of researchers,37 has consistently turned
out to be about 1 degree on the sky, or approximately twice the appar-
ent angular size of the full Moon seen from Earth (Figure 9.6). This is
precisely what inflationary cosmology predicts for W = 1. The Universe
seems to be flat.

For the Universe to be flat, it must contain an average mass density
nearly coincident with the critical density rc, provided (as we have
been assuming so far) that gravity is the only relevant long-range
interaction affecting the distribution of matter and the expansion of
the Universe. However, the best estimates of the total mass of all the
matter that can be observed with telescopes yield a density parame-
ter W £ 0.05. In other words, if the chain of reasoning connecting the
geometry of the universe and the matter within it is sound, then over
95% of the mass in the Unverse is not visible. What is this matter and
where is it?

A substantial part of the dark matter, as inferred from galactic rota-
tion curves, must undoubtedly lie in the halos encompassing individ-
ual galaxies. Such halos are expected to contain relatively cold stars,
like white dwarfs, which have ceased to generate energy through
nuclear fusion reactions, or “failed” stars, like brown dwarfs, which
from the outset were not massive enough to initiate or sustain nuclear
fusion. (Brown dwarfs might fuse deuterium, but the supply would not
last very long, astronomically speaking.) These stars would at best
glow in the infrared with a low undetectable luminosity until eventu-
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Figure 9.5. Relation between spatial curvature and the angular size (q) of a
structure of known length (L) and distance (D). Photons reaching the observer
by traveling along the geodesics of an open (closed) space generate an angle
smaller (larger) that the angle generated in a flat space. [In the formulas for
sin(q/2), distances are expressed in units of the radius of curvature and are
therefore dimensionless quantities.]



ally becoming burnt-out stellar cinders. Indeed, why not solve the
dark-matter problem in its entirety simply by assuming the existence
of an immense population of these cold dark objects both bound in
galaxies and wandering alone through the cosmos? Regrettably, the
assumption is untenable for at least two reasons.

First, although dark matter by definition cannot be seen directly
through its own radiant emissions, it can, if concentrated in compact
objects like white and brown dwarf stars, block the light coming from
luminous objects (like galaxies or quasars) behind it that lie in the 
line of sight of a terrestrial telescope. Such luminous objects might,
therefore, be expected to “wink out” as the invisible foreground object
crosses the line of sight. Actually, the effect looked for by astronomers
is even more interesting, for a dark compact object can behave more
like a lens than like a shutter. One remarkable consequence of 
Einstein’s theory of general relativity is that light rays are deflected
by gravity. To use an optical analogy again, imagine holding a convex
lens within a distance of a focal length from your eye and moving the
lens horizontally across your view of a small incandescent light bulb
across the room. The image of the light is momentarily larger and
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Figure 9.6. Fluctuations (spanning a range from -300mK to +300mK) in 
the cosmic background radiation temperature measured in a portion of the 
sky over Antarctica in 1998–1999 by the BOOMERANG project (Balloon
Observation of Millimetric Extragalactic Radiation and Geomagnetics). 
The black circle above the figure shows the angular size (approximately 0.5
degree) of the full Moon subtended at the Earth.



brighter as the lens passes by. Similarly, the light rays from a distant
luminous object, e.g., a quasar, skirting the periphery of a compact
dark foreground object, are gravitationally diffracted toward the
observer, giving rise to a variation in luminosity of the background
object over the course of passage. This variation in luminosity can take
a wide range of forms, from a short-term brightening as a result of
“microlensing” by a dark object of low mass (e.g., 0.1 solar mass) 
to multiple images and rings engendered by a dark foreground object
of galactic size. Numerous gravitational lensing events have been
observed both within and outside the Milky Way (see Figure 9.2), but
not enough to account for the vast preponderance of dark matter. A
small sample of microlensing events suggests at present that less than
20% of the dark matter in the Milky Way may consist of compact halo
objects.

Second, the standard cosmological model puts a rather stringent
limit on the amount of baryonic matter (principally neutrons and
protons) that could be produced in the aftermath of the big bang. In
minutes following the initial fireball (and long before the decoupling
of radiation from matter), while the temperature of the Universe
remained above 1010 K, neutrons and protons in the cosmic plasma
could transmute into one another by means of nuclear weak interac-
tions. Neutrons, however, are slightly more massive than protons by
nearly 1.3MeV/c2. Thus, when the temperature of the expanding uni-
verse cooled to about 7 ¥ 109 K, the available thermal energy per par-
ticle38 was insufficient to make up the neutron–proton mass difference,
and the ratio of protons to neutrons froze out at a value of about 7 to
1. As the Universe expanded and cooled further, all remaining neu-
trons eventually underwent beta decay to protons or combination reac-
tions to form deuterium (2

1H) and isotopes of helium (3
2He, 4

2He). In a
universe with sufficiently high mass density, virtually all the unde-
cayed neutrons would have ended up in 4

2He, which, in fact, makes up
the preponderance (�23% by mass) of primordial matter apart from
hydrogen. However, if the density of the Universe is low enough, the
conversion of 2

1H and 3
2He into 4

2He would be incomplete. The relative
abundances of these elements compared to hydrogen as observed today
depend sensitively on the mass parameter W, and the approximate
value which best reproduces these proportions is WB � 0.1, where B
explicitly denotes baryonic matter.

There is a deep mystery in that simple constraint WB � 0.1, for it
signifies that some 90% of the mass in the universe contains matter
different from that with which we are familiar. It is the ultimate
embodiment of the Copernican principle; not only is the Earth not the
center of the Solar System, nor the Solar System the center of the
Galaxy, nor the Galaxy the center of the Universe, but we are not even
made of the dominant material of the cosmos. The problem of dark
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matter, however, is yet stranger and more subtle than depicted so far,
for, if conclusions drawn from recent observations of Type Ia super-
novae are sustained, then much of the “missing mass” of the Universe
may not even be mass.

A supernova is the cataclysmic death of a star in which, within the
span of less than a second, the luminosity can increase a billionfold 
to rival that of an entire galaxy. The mechanisms and end products of
these spectacular stellar explosions generally fall into two basic cate-
gories. Type II supernovae represent the gravitational collapse of a
star of perhaps 10–100 solar masses (see Figure 9.7), leaving behind
a neutron star, a highly compact stellar remnant containing one or
more solar masses within a diminutive volume only 10km in diame-
ter, or a black hole, a star with gravitational attraction so strong that
not even light can escape. Pulsars, whose train of radio pulses consti-
tute the most precise chronometers in the universe, are known to be
rapidly rotating, highly magnetized neutron stars. In a Type II super-
nova, the source of the explosion is gravitational potential energy. By
contrast, a Type I supernova (see Fig. 9.8) is believed to be a ther-
monuclear explosion of a white dwarf star in a binary star system.
Over time, the dwarf accretes more and more matter from the normal
companion, until its mass reaches a critical value, the Chandrasekhar
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Figure 9.7. Supernova SN1987A is a Type II supernova observed in 1987; it
is about 170,000ly away.



limit (approximately 1.4 solar masses), at which point the star deto-
nates and is totally disrupted. No stellar remnant is left behind.

Because all Type Ia supernovae are believed to detonate at 
approximately the same theshold mass and size, and therefore radiate
energy isotropically at a rate that should be the same for all such
explosions, astronomers can use Type Ia supernovae as a sort of stan-
dard candle for gauging distances to other galaxies, especially those
that have high red shifts and therefore (by Hubble’s relation) are very
far away. The intrinsic luminosity is determined by first examining
nearby Type Ia supernovae whose distances can be measured by other
means. Once the intrinsic luminosity is known, the distance to super-
novae in the far depths of the cosmos can be deduced from measure-
ment of the radiant flux (power per square meter) that reaches the
Earth.39

Actually, the situation is not quite so simple (it never is!), for dif-
ferent Type Ia supernovae are found to have somewhat different
intrinsic luminosities correlated with their light curves, i.e., the vari-
ation in brightness of the event with time. In general, the expanding
fireball reaches peak brightness in a few weeks and then declines over
the course of a few months. However, the duration of larger, brighter
events is longer than that of less energetic, fainter events. From mea-
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Figure 9.8. Supernova SN1994D, the bright star at the lower left of the fig-
ure, is a Type I supernova observed in 1994; it is at a distance of 45,000,000ly,
which, by the Hubble relation, corresponds to a relatively small red shift 
z � 3 ¥ 10-4.



surements of these light curves, astronomers were able to produce a
highly linear calibration curve, such as shown in Figure 9.4 for dis-
tances up to 500Mpc (corresponding to red shifts up to z � 0.1), in
which nearby Type Ia supernovae of the same red shift have the same
distance. In this way, two separate groups40 independently measured
the distances and corresponding red shifts of about 50 supernovae,
including over 30 with high red shifts.

The results for the highest red-shifted supernovae were unexpected
and startling in their implications. From the red-shift data and use of
Hubble’s relation, the distance to each supernova could be estimated
and compared with the distance deduced from the observed radiant
flux. They were not the same, the luminosity-based distances being 
on average about 10–15% larger. Stated differently, the supernovae
appeared to be too faint to be at the distances yielded by Hubble’s rela-
tion if the intrinsic luminosities were actually as large as astronomers
believed them to be. If it is indeed the case that the Type Ia super-
novae are farther than the Hubble relation predicts, then one inter-
pretation is that the rate of expansion of the Universe is greater now
than it had been in the distant past when these stars actually
exploded.41

That the Hubble parameter is different in the present epoch than it
was billions of years ago is not in itself a surprising revelation, because
general relativistic models of an isotropically expanding universe con-
taining (at the largest scales) a homogeneous distribution of matter
predict exactly how the cosmic scale factor should vary in time.
However, a universe containing only gravitationally attracting matter
and radiation should expand more slowly with the passage of time, not
accelerate.

The initial reports of this accelerated cosmic expansion created
something of a sensation. Highlighted in television broadcasts, news-
papers, and scientific journals, the discovery was selected by Science
as the “Top Research Advance” of 1998. Figure 9.9 summarizes the sit-
uation at the time by plotting, as a function of red shift z, the differ-
ence between the observed supernova brightness and the brightness
expected from Hubble’s relation with the present value of the para-
meter H0. If the unexpected faintness of distant Type Ia sypernovae is
interpreted as a cosmological effect, then the ordinate of the plot is a
measure of the variation in the value of the Hubble constant from the
present value. Superposed on the data are theoretical curves for accel-
erating and decelerating cosmic expansions.

Readers can decide for themselves the extent to which the dispersed
data points at the right (i.e., high-z) side of Figure 9.9 discriminate
among the three possibilities: acceleration, deceleration, no change. On
occasions like this, I think of Mark Twain’s perceptive comment in Life
on the Mississippi that
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There is something fascinating about science. One gets such wholesale returns
of conjecture out of such a trifling investment of fact.

(although it must be said that the investment in equipment and time
to observe and analyze Type Ia supernovae is far from trifling).

Other explanations for the faintness of distant supernovae are 
conceivable. For example, the supernovae may have appeared dimmer
than expected because of scattering by interstellar dust or because the
intrinsic luminosity of Type Ia supernovae many billions of years ago
was lower than that of more recent supernovae.

That the cosmological inference may be justified, however, is sup-
ported by a serendipitous rediscovery in 2001 of a Type Ia supernova
(SN1997ff) photographed four years earlier with the exceptionally
high red shift z � 1.7.42 SN1997ff is believed to have detonated over
10 billion years ago at an epoch in the evolution of the Universe when
the high density and, therefore, stronger gravitational attraction of
matter retarded cosmic expansion. Under such circumstances, a super-
nova should appear brighter, not fainter, than it would for the same z
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Figure 9.9. Variation in the expansion rate of the Universe (i.e., the Hubble
parameter) as a function of red shift as determined by observation of the
brightness and red shift of Type Ia supernovae. The horizontal baseline (at
0.0) signifies the present value of the Hubble parameter H0. The higher-lying
solid theoretical curve shows an accelerating cosmic expansion; the lower-lying
dashed theoretical curve shows a decelerating cosmic expansion. Data points
from both the Supernova Cosmology Project and the High-Z Supernova Search
Team represent the difference between observed brightness and brightness
inferred by Hubble’s relation for specified z and constant H0. (Adapted from
http://cfa-www.harvard.edu/cfa/oir/Research/supernova/HighZ.html.)



and uniform expansion. Analysis of the luminosity of SN1997ff over
several spectral regions purportedly confirms this brightening. Pre-
suming that the event has been correctly identified as Type Ia, this
finding is inconsistent with what one would expect from supernova
evolution or from light scattering by dust. At the present time, it would
seem that accelerated cosmic expansion provides a viable explanation
of Type Ia supernova data.

Statistical fits of various cosmological parameters to the supernova
data constrain the mass parameter to WM � 0.3, where now a subscript
M explicitly denotes that this is a measure of the total density of 
mass in the Universe, luminous and dark combined. Moreover, the
data are consistent with a flat universe and, therefore, a total omega
parameter of 1. If the expansion of the universe is indeed accelerat-
ing, there must be something other than matter and radiation to drive
it. Because both CBR and supernova data are presently consistent
with W � 1, the unknown agency is believed to contribute approxi-
mately 0.7 to omega, a contribution denoted by the symbol WL, where
the subscript L refers to a term that Einstein once inserted and sub-
sequently removed from his equations of general relativity. Designated
equivalently as the “cosmological constant” (from the perspective of
general relativity) or the “energy density of the vacuum” (from the per-
spective of quantum field theory), the origin and nature of this bizarre
and dominant component is one of the outstanding problems of con-
temporary astrophysics and cosmology.

9.5. Shedding Light on Dark Matter

If the universe is to be filled with some kind of nonbaryonic matter,
theorists have had little difficulty in coming up with possibilities;
Twain’s observation applies widely in particle physics and cosmology.
The numerous “returns of conjecture” fall roughly into two categories:
hot dark matter (HDM), comprising fast-moving relativistic light par-
ticles principally in the form of neutrinos, or cold dark matter (CDM)
in the form of sluggish nonrelativistic weakly interacting massive par-
ticles (designated generically by the acronym WIMP).

One advantage of HDM models is that neutrinos, neutral spin- 1–2
fermions associated with each of the three leptons (electron, muon, 
and tau particle) and their antiparticles, are known to exist. Although
originally considered to be massless, there is mounting evidence, based
principally on the phenomenon of neutrino oscillations—the periodic
transmutation of one neutrino “flavor” into another—that at least one
(and most likely all) types of neutrinos have a nonzero rest mass. Neu-
trino oscillation experiments do not determine the absolute masses of
the various neutrinos, only differences in mass (actually differences in

364 9. Symmetry, Unity, Gravity, and the Problem of “Missing Mass”



the squares of the masses). Because there are numerous neutrinos in
the universe,43 even a small neutrino mass (e.g., a few eV, as compared
with an electron mass of one-half million eV) could lead collectively to
a substantial contribution to W. The difficulty with neutrinos, however,
is that such high-velocity particles would form structures on scales
larger than those observed and that the time for fragmentation into
galaxy-sized structures would take an appreciable fraction of the age
of the Universe. Thus, in contrast to prevailing evidence, galaxies
would have formed only recently.

In view of these deficiencies, cosmologists turned instead to CDM
models with WIMP masses tens to thousands of times the mass 
of a proton. Cosmological models based on WIMPs have been highly
successful in accounting for galaxy-sized structures, but at smaller
scales, they have led to overly dense galactic cores, dense substruc-
tures in galactic halos, and too many galactic halos within a galactic
cluster.

Another worrisome attribute of CDM models is the inability of
increasingly sensitive experiments to find any WIMPs. If WIMPs exist
as part of a halo of nonluminous matter permeating the Milky Way
and other galaxies, then, from time to time, one of them should collide
with a target nucleus in a suitable detector, leading to either an elastic
recoil or a nuclear excitation. Ongoing nuclear experiments to search
for some manifestation of these interactions have led to intriguing con-
tradictory results. In one series of experiments (DAMA) carried out at
the Gran Sasso laboratory in Italy, an annual modulation was found
in the presumed elastic scattering of WIMPs from the nuclei in a scin-
tillating target material (thallium-activated NaI, the same material
used in the nuclear decay experiments discussed in the previous
chapter). Such an annual variation is precisely what one would expect,
according to the DAMA researchers, if the Earth experiences a WIMP
“wind” as it rotates about the Sun. In June, when the velocity of the
Earth about the Sun is parallel to the velocity of the Solar System
through the Galaxy, the flux of WIMPs should be larger and the
number of elastic scattering events more numerous than in December,
when the two velocities are directed oppositely. The DAMA group claim
to have seen indications of this phenomenon. The claim, however, is
refuted by a second group, the Cryogenic Dark Matter Search (CDMS),
employing an entirely different detector (a large germanium crystal)
at an underground facility on the campus of Stanford University.
According to the CDMS team, events observed by DAMA were most
probably due to stray neutrons produced by cosmic ray collisions in
the atmosphere. Subsequent experiments seem to confirm this inter-
pretation. Further research with more sensitive detectors will even-
tually resolve the issue, but for the present, evidence for the existence
of WIMPs is tenuous at best.
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If neither neutrinos nor WIMPs are the principal constituents of
dark matter, then of what is the preponderance of nonbaryonic dark
matter made? It is at this point that the idea of a Bose–Einstein con-
densate (BEC) of ultra light bosons, with which I began this chapter,
becomes very appealing.

Suppose that nonbaryonic dark matter consisted of extremely low-
mass neutral bosons subject only to gravity. Above a certain transition
temperature, a gas of these particles would behave more or less like a
photon gas (i.e., relativistic hot dark matter), but below the transition
temperature, the particles would drop into the lowest-energy states 
to form a degenerate quantum gas or BEC. Because the particles in
the condensed phase are in a coherent quantum state of fairly sharp
momentum centered about zero, the gas is nonrelativistic and behaves
like cold dark matter. Individual bosons are likely to be found any-
where within a spatial region defined by the coherence length of the
condensate, which, according to the Heisenberg uncertainty principle,
varies inversely with the sharpness of the momentum distribution.44

If it should turn out that the coherence length is of astronomical size,
then a cosmic BEC, despite—in fact, because of—the low mass of its
constituent particles, would not have the undesirable property of col-
lapsing into dense nuggetlike structures at the centers of galaxies. The
coherence length of the condensate, as I shall show shortly, is larger,
the smaller the mass of the boson—and would, indeed, assume an
astronomical size for a particle of sufficiently low mass. Moreover, the
corresponding transition temperature for condensation turns out to be
so high that, except for a brief period following the origin of the Uni-
verse, BEC dark matter would have been present throughout the
important period of galaxy formation and up to the present time.

Because a pervasive condensate of very light neutral bosons consti-
tutes a sort of weakly interacting degenerate ether, I designated the
particles by the acryonym WIDGET. The word “weak” here takes on
its standard English meaning and does not refer specifically to weak
nuclear interactions (although such interactions may be incorporated
into some future model).

The chain of reasoning leading to WIDGETs brings into play all the
basic ingredients of theoretical physics described in the preceding 
sections of this chapter. Let us assume that a scalar field f permeates
all space. Within the framework of modern physics, this is not an un-
reasonable assumption; indeed, similar assumptions involving other
scalar fields underlie the Higgs mechanism for generating the masses
of elementary particles in the Standard Model and the exponential
cosmic expansion in the inflationary big-bang model of the Universe.
It is assumed further that the potential energy of the scalar field is
given by Eq. (9.12), a form widely employed in condensed matter
physics to account phenomenologically for attributes of superconduc-
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tivity and superfluidity. This is not a coincidence. Both types of “super”
phenomena are manifestations of a Bose–Einstein condensation
involving phase changes from a high-temperature incoherent normal
state to a low-temperature coherent quantum state as a result of spon-
taneous symmetry breaking.

Look again at Figure 9.1, which shows the general shape of the
potential energy curve represented by Eq. (9.12). As applied to the
problem of dark matter, the state of minimum energy of the scalar field
in a sufficiently high-temperature universe is f = 0, the minimum of
the parabolic curve that corresponds to the potential parameter a > 0.
As the Universe cools, however, the potential energy curve evolves into
the double-well shape with parameter a < 0, and the state f = 0 is no
longer a global energy minimum, but a local maximum. The system
then undergoes a transition into one of the two states of minimum
energy f = ±f0 (where ), thereby breaking the reflection
symmetry (across the axis f = 0) of the equations of motion.

The equations of motion describing the dynamics of the scalar field
interacting with gravity are obtained by following a procedure very
similar to that outlined at the end of Section 9.2 and in the descrip-
tion of spontaneous symmetry breaking in Section 9.3. One starts by
adding the Lagrangians for the scalar field and for gravity, i.e., for 
Einstein’s general relativity without a cosmological constant.45 The
principle of gauge invariance determines how the (spinless) particles
of this theory must couple to gravity; in other words, it specifies the
form of the covariant derivative in the kinetic energy term. Next, one
accounts for spontaneous symmetry breaking by re-expressing the full
Lagrangian in terms of the excitation defined with respect to the
broken-symmetry field +f0 or -f0. The dynamics of the scalar field
interacting with gravity then follow by calculating, from the
Lagrangian, the Euler–Lagrange equations for the scalar field and
the gravitational fields.

According to general relativity, gravity is a manifestation of the
geometry of a four-dimensional space–time. Like a deformable land-
scape, space–time is warped by the presence of matter and energy, and
these ethereal “hills” and “valleys” define the paths, referred to as geo-
desics, along which matter and radiation travel. A short pneumonic
(due to J. A. Wheeler, I believe) that succinctly expresses this dual
dependence of space–time and mass–energy is this: Matter tells
space–time how to bend; space–time tells matter how to move. Math-
ematically, the geometry of space–time is reflected in a differential line
segment of the form of Eq. (9.6a) or Eq. (9.6b), but in which the con-
stant elements hm� of the Minkowski metric are now replaced by func-
tions gm� that can vary spatially and temporally. The metric elements
gm� (or the elements gm� of the inverse metric tensor) are the gravita-
tional potentials of Einstein’s theory. In Newtonian gravity, there is

f

f

f0 2= -a b
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only one potential, but in general relativity, there are, as a result of
the symmetry gm� = g�m, ten independent metric elements. It is through
insertion of these elements in the kinetic energy term of the
Lagrangian that the scalar field experiences gravity.46

To find the elements gm� that describe space–time in the presence of
a distribution of matter and energy, one must solve Einstein’s field
equations, which take an ostensibly compact form

(9.17)

that belies its formidable complexity as a set of 10 coupled nonlinear
differential equations. The interpretation of Eq. (9.17), however, is
straightforward and elegant. The left-hand side, constructed from the
so-called contracted Riemann tensor Rm� and the Riemann curvature
scalar R (both of which depend nonlinearly on the set of gravitational
potentials gm�), is a measure of the curvature (i.e., geometry) of
space–time. The right-hand side, which is constructed from the stress-
energy tensor Tm� of matter and radiation, is pure physics.47 It has been
remarked by Einstein that the left side is like marble (the firm beau-
tiful rigor of mathematics) and the right side is like wood (the soft
messy details of the physical world).

As a consequence of the spontaneous symmetry breaking of the
scalar field, two important things occur. First, as in the case of the
electroweak interactions discussed in Section 9.2, the quanta of 
the scalar field (i.e., the WIDGETs) acquire a mass m (expressed
through the particle Compton wavelength lC)

(9.18)

that depends on the quadratic parameter a of the scalar-field poten-
tial energy. Second, the Lagrangian for gravity acquires a cosmologi-
cal constant L

(9.19)

dependent on both parameters of the potential energy.
Shortly after formulating general relativity,48 Einstein realized to

his chagrin that the field equations for a universe with matter did 
not lead to a static universe, but to a universe that collapsed, unless
it was expanding. To circumvent this problem, he added a term Lgm�

to the left-hand side of Eq. (9.17), which had the effect of pushing space
outward everywhere. To sustain the Universe from collapse, the cos-
mological constant L need assume only a very small value and would
not have affected the otherwise successful applications of general rel-
ativity to local systems as, for example, the precession of the perihe-
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lion of Mercury about the Sun. However, upon learning of Hubble’s dis-
covery that the Universe was in fact expanding, Einstein removed the
cosmological term, expressing his regret (as recounted by Gamow) for
having made so bad a “blunder.”

Inclusion of the cosmological term, however, is not generally
regarded as a blunder today, for a positive value of L results in an accel-
erating cosmic expansion in keeping with the recent observations of
Type Ia supernovae. However, there is no need to insert a cosmologi-
cal constant into Einstein’s field equations “by hand”; spontaneous
symmetry breaking of the scalar field does this naturally.

The equilibrium size of a cloud of BEC dark matter is the outcome
of two competing forces. On the one hand, the gravitational attraction
among all the particles compresses the gas as much as possible so as
to lower the potential energy. On the other hand, the confinement of
quantum particles to smaller regions raises their kinetic energy.49 A
balance between inward gravitational attraction and outward
quantum pressure is reached when the energy of the condensate is
minimized, i.e., when the derivative of the total energy of the gas with
respect to its radius vanishes. The equilibrium radius of the gas is the
condensate coherence length, which up to an unimportant numerical
factor of order unity takes the form

(9.20)

where m is the mass of the scalar boson (WIDGET) and M and are
respectively the total mass and mean density of the condensate.

A simple heuristic argument can be given for the existence of a scale,
referred to as the Jeans length lJ, separating gravitationally stable
and gravitationally unstable density fluctuations in matter. Perturba-
tions in the density of matter of a size l < lJ are gravitationally stable
and propagate through the matter as acoustic waves. (The term
“acoustic” here refers to longitudinal waves, like sound waves, and
does not imply that the corresponding frequencies are audible to
humans.) By contrast, perturbations of a size l > lJ are gravitation-
ally unstable and can grow or decay exponentially. Exponential growth
results in the condensation of gravitationally bound clouds of matter
such as is believed to have occurred in the formation of galaxies. The
timescale over which a cloud of matter collapses under its own weight
is roughly tg � 1/ .50 Acting against this collapse is the gas pres-
sure within the cloud. The timescale for gas pressure to respond is 
tp � l/v, where l is the wavelength of a density fluctuation and—in
the case of a classical gas—v is the velocity of sound vs. At the thresh-
old size, where gas pressure just counterbalances gravitational col-
lapse, the equality tp = tg leads to the Jeans scale lJ � vs/ .Gr
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In a classical gas, the velocity of sound depends on the compress-
ibility of the gas—that is, on the change in gas pressure with volume.
However, the compressibility (and therefore the classical sound veloc-
ity) of an ideal BEC vanish, because the pressure of the gas depends
only on temperature. One might be tempted to conclude that lJ = 0
and, hence, density perturbations at all wavelength scales would be
gravitationally unstable, but this is not the case. In a BEC, which is
a quantum gas, the pertinent velocity v of wavelike perturbations
through the medium is obtained from the (nonrelativistic) de Broglie
wavelength l = h/mv of the bosons. Identifying l with lJ and substi-
tuting v = h/mlJ into the expression for tp lead to a Jeans length which
corresponds very closely to the coherence length given by Eq. (9.20).
Thus, density perturbations of a size smaller than the coherence
length are gravitationally stable, as inferred previously from an argu-
ment based on the uncertainty principle.

To estimate the mass of a WIDGET in the halo of dark matter about
a galaxy, let us consider again the Andromeda Galaxy (M31), which,
as shown in Figure 9.3, has a luminous core extending about 30kpc
(�98,000ly) from the center. The mean mass density of the galaxy (out
to about 150kpc) is r̄ � 2.0 ¥ 10-24 kg/m3. If the bulk of Andromeda is
made up of dark matter assumed to be in the form of a BEC, then
there follows from Eq. (9.20) a boson mass m of the order of 10-59 kg or
about 10-23 eV/c2. For comparative purposes, recall that the mass of an
electron is 9.11 ¥ 10-31 kg or 5.11 ¥ 105 eV/c2 and that the putative mass
of the lightest neutrinos, inferred from neutrino oscillation experi-
ments, is only a few eV/c2. If they exist—and there is no evidence at
present to rule out the possibility—WIDGETs would constitute by a
wide margin the lightest of all particles with a nonvanishing rest mass.

Presuming that such bosons do exist, how can one be certain that
they form a BEC rather than a relativistic gas like the cosmic back-
ground radiation? The theory of the transition from a hot gas of bosons
(within which particle momenta are distributed broadly according to
the classical Maxwell–Boltzmann distribution) to a BEC (within which
the narrow momentum distribution uniquely reflects the quantum
attrributes of Bose–Einstein statistics) is well understood. From the
quantum expression for the distribution of bosons over energy states,
one can calculate rigorously the transition temperature for formation
of a BEC. However, the same result can be estimated accurately from
a simple heuristic argument.

The classical (i.e., Maxwell–Boltzmann) regime of a gas corresponds
to conditions in which the mean distance between particles is very
large compared with the thermal de Broglie wavelength l of a parti-
cle. Under these circumstances, the particles are essentially nonin-
teracting (except for direct “billiard-ball” collisions); any one particle
is largely unaware of the presence of the others. At the other extreme,
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when the mean distance between particles is small compared with a
de Broglie wavelength, the single-particle wave functions overlap and
the motion of many particles is highly correlated. In the quantum (i.e.,
Bose–Einstein) regime, it is not even physically meaningful to speak
of “different” particles within the system because all particles are iden-
tical and therefore indistinguishable (as I discussed in Chapter 3). The
threshold for the transition to a BEC, which marks the onset of the
quantum regime, is therefore determined by the mean particle density

.
The transition temperature Tc may be defined as the temperature

at which there is, on average, one particle within a volume of a cubic
de Broglie wavelength l3, or l3 = 1. At temperatures close to and
above Tc, the bosons, being of very low mass, move with relativistic
speeds; like photons whose momentum and energy satisfy p = e/c, the
bosons have a de Broglie wavelength l = h/p = hc/e (and not h/mv),
where e = kTc is the mean thermal energy per particle and k is 
Boltzmann’s constant (see Note 13 of Chapter 1). From the preceding
considerations, it then follows that the transition temperature and
particle density are related by

(9.21)

From the mass of a WIDGET and the mean mass density r̄ = m of
the Andromeda halo, one calculates a particle density � 5 ¥ 1034m-3

and, from Eq. (9.21), a transition temperature Tc � 5 ¥ 109 K. Tc cor-
responds to the temperature of primordial nucleosynthesis at about a
few seconds after the big bang and is much higher than the tempera-
ture (�3000K) at which matter and radiation decoupled (thereby
leading to galaxy formation) or the present temperature (�2.7K) of
the cosmic background radiation. If galactic dark matter is composed
of scalar bosons, one can be reasonably sure that these particles are
in a BEC.

9.6. A Galactic Superfluid?

I have deduced so far by heuristic arguments some of the principal
attributes of nonbaryonic BEC dark matter in galactic halos. However,
as with any quantum system, a more complete and rigorous under-
standing can be acquired only by solving the appropriate equations 
of motion, which, for a nonrelativistic self-gravitating gas of neutral
spinless particles, is the Schrödinger equation. However, in contrast
to usual systems of interest in which quantum particles are subjected
to external potentials, the particles of BEC dark matter are subject to
a gravitational interaction that arises from their own collective
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masses.51 Because the gravitational potential energy depends on the
particle density and the particle density is proportional to the square
of the magnitude of the wave function |Y|2, the Schrödinger equation
for Y in the present case turns out to be an intractable nonlinear 
equation.

Symmetry helps somewhat. If, in keeping with astrophysical evi-
dence, it is assumed that dark matter forms essentially spherical
halos, then Y can be expressed as the product of a radial wave func-
tion y(r) and an angular wave function (known as a spherical har-
monic) that depends on the polar and azimuthal angles. There then
results an equation in the radial coordinate only which, upon further
approximation, can be brought to a form known as a cubic Schrödinger
equation. This equation is also nonlinear, but can be solved exactly to
yield an analytical solution

(9.22)

The two constants in the wave function are a multiplicative factor A,
which depends on the number, mass, and energy of the bosons in the
condensate, and a characteristic length rc, which may be interpreted
as the de Broglie wavelength. In the approximation that the density
within a BEC of mass M is uniform, the magnitude of the ground state
energy is G2M2m3/2 2 (the result one would obtain by solving the “grav-
itational Bohr atom”) and the characteristic length reduces to the
coherence length of Eq. (9.20) within a factor of order unity. Note that
the factor A is not a normalization constant arbitrarily imposed to
make y (r) interpretable as a probability amplitude. Because the
Schrödinger equation is nonlinear in y (r), one does not have this
freedom; the equation itself leads to a unique prefactor A.

If y (r) is interpretable as a probability amplitude, then r = M|y|2

(which has the dimension of mass per volume) is the condensate mass
density. To obtain the radial mass distribution M(r) within the halo,
one has only to integrate the amount of matter (4pr2r dr) contributed
by each concentric spherical shell of thickness dr between the center
of the halo and radial distance r. The resulting expression for M(r),
upon substitution into the velocity formula [Eq. (9.15)], yields 
the theoretical prediction

(9.23)

for the rotation curve of luminous matter orbiting the galactic center.
The velocity of matter infinitely far from the center, v•, depends on the
ratio of boson energy to mass. One might expect the velocity to drop
eventually to zero for a halo of finite size, but the solution is derived,

v r v r r
r r

c

c
( ) = - ( )

( )• 1 tanh

h

y r
r r

r
c( ) =

( )A tanh
.

372 9. Symmetry, Unity, Gravity, and the Problem of “Missing Mass”



after all, from an approximate equation, and the wave function (9.22)
is, in fact, not “square-integrable” (i.e., it does not yield a finite value
when |y|2 is integrated over all r). Nevertheless, because the rotation
curves of many galaxies are either flat or rising for as far from the
center as they have been measured, it is of interest to see how well
Eq. (9.23) accounts for these observations.

The smooth curve in Figure 9.3 shows a fit of Eq. (9.23) to the 
rotation curve of the Andromeda Galaxy (M31). The fit, made visually
by means of computer simulation, yielded the expression, vM31 �
249.2 , where v is in km/s and r is in kpc. The
empirical constants rc and v• together with theoretical relations from
the model allow one to deduce the boson mass and energy for a galac-
tic halo of given total mass. The result, m � 10-24 eV/c2, is very close
to the mass deduced previously and independently by assuming a
coherence length of the size of the luminous core. A comparable mass
was also obtained when the model was applied to the Triangulum
Galaxy (M33), whose total mass is tenfold smaller.

Because the scalar bosons constituting BEC dark matter interact
only through gravity, their direct experimental detection would be dif-
ficult and require detection schemes quite different from those
employed to search for highly massive WIMPs. Such light bosons
would not show up in accelerator-based experiments or searches in
ambient particle fluxes for characteristic decays or nuclear excitations.
One intriguing possibility, however, by which the gravitational pres-
ence of degenerate dark matter might be discerned is by its superfluid
vorticity.

Superfluidity, like superconductivity, is a macroscopic quantum phe-
nomenon entailing the dissipationless flow of matter. The first discov-
ered and most widely studied superfluid is that of the helium isotope
4He which condenses to a normal liquid (He I) at 4.2K and becomes a
superfluid (He II) below the so-called lamda point at 2.2K. The term
“lambda” refers to the shape of the plot of specific heat against tem-
perature, which resembles the lowercase Greek letter. In the vicinity
of the lambda temperature, the specific heat of 4He shows a disconti-
nuity that is strikingly similar to the cusp in the theoretical specific-
heat curve that characterizes Bose–Einstein condensation. Indeed,
most of the properties of He II can be understood, at least qualitatively,
as the properties of a BEC of interacting bosons. With two protons and
two neutrons, the 4He nucleus has spin 0 and constitutes a composite
boson.

The behavior of superfluid 4He is utterly unlike that of any ordinary
liquid. It flows freely through the finest capillary tubes that would
obstruct the flow of He I or even of gaseous helium. It runs sponta-
neously up and over the walls of an open container. In a tube packed
with fine powder (e.g., emory powder), submerged in a He II bath, and

1 0 11 0 11- ( )tanh . .r r
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heated at the upper end by the light of a small lamp, superfluid will
flow from the low-temperature end to the high-temperature end (in
contrast to the normal direction of convective flow of matter). If the
upper end of the tube is attached to a capillary extending out of the
bulk liquid, the force of the flow can produce a superfluid jet rising to
heights of 30 or 40cm.

Two of the most extraordinary properties of superfluid 4He, however,
relate to its behavior under rotation. An ordinary liquid in a container
at rest will, shortly after the container is made to rotate (e.g., by being
mounted on the turntable of a record player), acquire a rotational
motion in the same sense and for as long as the container is turning.
If a sample of He I is rotated in the same way at a sufficiently low
angular frequency (i.e., below a certain critical frequency wc), it too will
rotate with the container. However, should the rotating fluid be sub-
sequently cooled below the lambda point, the resulting superfluid will
come to rest in the laboratory (actually with respect to the fixed stars)
even though the container continues to turn.52 This signifies that the
true thermodynamic equilibrium state of superfluid 4He is the nonro-
tating state.

A related, but distinct, effect concerns the behavior of the super-
fluid when the rotating container is brought to rest. Because of fric-
tion with the walls of the container, an ordinary liquid will eventually
come to rest too. In striking contrast, however, He II will continue to
circulate in the container for a seemingly indefinite duration, provided
that the initial angular frequency exceeded wc. This state of fluid 
rotation within a stationary container is not an equilibrium thermo-
dynamic state, but represents, instead, a condition of long-lasting
metastability.

Both effects can be understood if it is assumed that a rotating atom
in the superfluid state, like an electron in an atomic orbit, has an
orbital angular momentum quantized in integral values of . 4He
atoms in the superfluid are not rotating independently of one another,
however, but are part of a BEC in which all atoms are in the same
quantum state, thereby giving rise to a total angular momentum of
macroscopic size. The angular momentum can change only in discrete
units of , but, because all atoms of the superfluid are in the same
quantum state, such a change entails a change in the correlated
motion of an astronomical number of atoms. Thus, the transition of
the condensate from one angular momentum quantum state to another
is impeded by a high energy barrier.

When the angular frequency of the superfluid is below the critical
frequency necessary for each atom in the circulation to have the
minimum unit of angular momentum, the superfluid cannot rotate.
When rotating at a higher angular frequency, the superfluid cannot
come to rest after the container is brought to rest because to do so

h

h
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would require surmounting the energy barrier. Instead, the fluid
rotates in a quantized angular momentum state of such quantum
number that the corresponding angular frequency most closely
matches the rotation frequency of the container. The critical frequency
for the onset of rotation can be estimated roughly from the classical
expression L = mR2w for the angular momentum of a 4He atom of 
mass m at the radius R of the container. The lowest angular frequency
(w = wcr) occurs for the lowest nonvanishing angular momentum 
(L = ), leading to wcr � /mR2.

The manner by which superfluid helium acquires rotational motion
is quite extraordinary and fundamental to understanding its behav-
ior. As the rotational angular frequency of the container is increased
beyond wc, the superfluid becomes threaded by a symmetrical array of
parallel vortices with quantized circulation. Although the superfluid
appears to rotate with uniform angular frequency, the bulk of the
superfluid is actually at rest; only matter within a relatively small
cylindrical region of radial extent a0 (approximately the size of the de
Broglie wavelength of a 4He atom in He II) about a vortex axis is cir-
culating. In fluid dynamics, the term “circulation” has a technical
meaning; it is the integral of velocity over a closed contour about the
rotation axis. Such an integral is zero over any contour within a super-
fluid that does not enclose a vortex and has an integer value of h/m
for each vortex that is enclosed. It can be shown that a system is more
stable with two vortices each of unit circulation than with one vortex
of two units. The quantization of circulation is precisely equivalent to
the quantization of atomic angular momentum.53

Thermodynamically, the condition for equilibrium of a rotating
superfluid is that the energy (technically the Helmholtz free energy)
of the superfluid in the reference frame rotating with the container be
a minimum.54 This means that a vortex will form in the rotating fluid,
provided that the energy is lower than what it would be without the
vortex. Implementation of this condition for a container of radius R
leads to the critical angular frequency

(9.24)

for formation of a single vortex of minimum circulation (one unit of
h/m). Equation (9.24) differs from the rough estimate above only by a
logarithmic factor. The vorticity of a fluid is defined as the total cir-
culation within unit area. Thus, the line density or number of vortices
of circulation h/m per unit area in a superfluid rotating at angular fre-
quency w is55
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and the total number of vortices in a sample of radius R is

(9.26)

Although there is little, if any, doubt that superfluid He II is a BEC,
not all such condensates will necessarily be superfluids. Nevertheless,
recent investigations confirming the formation of superfluid vortices
in rotating BECs of low-density alkali metal vapors56 (such as those of
rubidium and lithium) encourage the belief that a galactic BEC may
likewise manifest superfluidity. If that is the case, then one might
expect the dark-matter halo of a galaxy to be threaded with vortex
lines such as those shown in Figure 9.10 for a spherical condensate of
87Rb atoms. (The atoms were driven into rotation at different angular
frequencies by a laser beam whose position was controlled by an
acoustic-optic modulator.)

The implications of the preceding considerations for the Andromeda
Galaxy (M31) are striking. If a minimal halo radius of 150kpc and 
a coherence length of 30kpc are assumed, then Eq. (9.24) predicts a
critical frequency of approximately 2 ¥ 10-19 radians/s. However, the
observed rotation curve shows that the velocity of matter at 150kpc is
approximately 250km/s, corresponding to a rotation rate of w � 5 ¥
10-17 radians/s. Since w >> wcr, it would seem that it would act-
ually be difficult to keep vortices from forming in a dark-matter super-
fluid comprising the Andromeda halo. The vortex line density esti-
mated for M31 from Eq. (9.25) is about 1 vortex per 208kpc2, which
would indicate that nearly 340 vortices could have formed within the
M31 halo.

If this were the case, how might such vortices be observed? Since
dark matter is, after all, dark and, consequently, does not emit or

N R nv=p 2 .
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Figure 9.10. Vortex formation in a rotating BEC of 87Rb atoms “stirred” 
by a laser beam. The higher the angular frequency, the greater is the 
number of resulting vortices of unit circulation. (Adapted from
http://www.lkb.ens.fr/recherche/atfroids/vortex.html.)



scatter light, rotational motion of BEC vortices would not show up as
red- and blue-shifted subgalactic regions. Nevertheless, according to
general relativity, rotating matter affects the geometry of space–time
differently than stationary matter. The existence of dark matter vor-
tices could be sought in gravitational effects on the imaging or polar-
ization of light from distant background sources transmitted through
the halos of foreground galaxies.

9.7. And So . . .

Some day, the dark matter–dark energy problem will be solved.
Increasingly comprehensive surveys of the Universe by techniques 
of greater scope and greater sensitivity will provide the necessary 
data, and the model presented here, as well as others, will be tested.
When this problem is laid to rest (at least temporarily, because every
“solved” problem in physics usually generates new questions), we will
have a better idea of what comprises the 95% or so of the cosmos
beyond the minuscule fraction now familiar to us. By that time, there
will, I suspect, still remain the fundamental question: “What is
gravity?”

My investigation of the nature of dark matter as a BEC actually
began—as the beginning of this chapter relates—as a study of that
question. To a certain extent, Einstein has told us what gravity is. It
is an apparently attractive interaction between particles, including
massless ones, arising from the curvature of space–time. From a
quantum mechanical perspective, however, all interactions between
particles are mediated by the exchange of bosons, the range of the
interaction varying inversely with the boson mass. Eectromagnetism,
for example, is an infinitely long-range interaction because the
exchanged particle, the photon, has zero rest mass. Gravity is also
believed to be an infinitely long-range interaction, for which the 
mediator, the graviton, is a spin-2 massless boson. This belief rests on
the fact that a quantum field theory of spin-2 particles leads to 
equations of motion that coincide with a linearized approximation to
Einstein’s gravitational field equations. No experiment to my knowl-
edge has ever detected a graviton, nor do I see such a prospect on the
distant horizon.

As discussed previously, all the fundamental interactions except
gravity—i.e., the electromagnetic and the weak and strong nuclear
interactions—are describable by gauge field theories. Among the
attractive features of gauge field theories is that they are renormaliz-
able; in effect, one can calculate with them. Although such theories
have a geometrical structure analogous in some ways to that of general
relativity, it has not yet proven possible to construct a gauge field
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theory of gravity that reproduces Einstein’s field equations in their
entirety and not just in a linearized approximation. The pursuit of
such a theory has long been a sort of holy grail for many theorists.
When I and my colleague initially examined a scalar field in a five-
dimensional universe, it was with that goal in mind—to arrive at a
theory in which the full equations of general relativity (augmented,
perhaps, by additional interactions) emerged naturally as a conse-
quence of imposing gauge invariance upon some free boson field with
specified internal degrees of freedom. However, the procedure yielded
only a part of these equations and it did not seem likely that further
elaboration would yield the rest. Nevertheless, it was an exploration
that produced a novel conception of dark matter.

Interestingly, in the aftermath of this first attempt to uncover
gravity, there is reason to believe that the procedure, which did not
work with bosons, may work with fermions. The critical distinction lies
in the nature of the wave function which represents these fields. As
fields of particles with integer spin, boson wave functions comprise
scalar (spin-0), vector (spin-1), or tensor (spin-2 or higher) functions.
Fermions, by contrast, are particles with odd half-integer spins rep-
resented by spinor wave functions. Spinor fields couple to gravity in a
different way than do scalar, vector, or tensor fields. Although further
discussion would take us too far afield, I will conclude with an intrigu-
ing and thoroughly speculative possibility.

If it should prove true that gravity as we presently understand it
(via general relativity) can be shown to arise through the imposition
of gauge invariance on some spinor field, then what particle corre-
sponds to the associated fermion? Furthermore, since identical fermi-
ons cannot occupy the same quantum state, would the lovely picture
of dark matter as a BEC be all for naught? Not necessarily. Perhaps
these fermions pair up to form composite bosons. We already know of
at least one example: The phenomenon of superconductivity in metals
arises from the Bose–Einstein condensation of Cooper pairs of elec-
trons. Of course, the cosmos is not a superconductor. But, if the devel-
opment of physics over the past century has illustrated anything at
all, it is the enormous explanatory power of a few key unifying ideas
to reveal the nature of phenomena that span unimaginably broad
ranges of size, energy, and area of application.

Notes

1. The chemist, Auguste Kekulé, after having pondered deeply the structure
of the benzene molecule, reportedly realized, upon awakening from a
dream of a snake grasping its tail, that the atoms formed a closed six-
carbon ring.
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2. See Chapter 4. Also, I discuss birefringence comprehensively in Waves and
Grains: Reflections of Light and Learning (Princeton University Press,
Princeton, NJ, 1998).

3. The quote is taken from a letter from Einstein to Ehresfest, cited in A.
Pais, “Subtle is the Lord . . .”: The Science and the Life of Albert Einstein
(Clarendon Press, Oxford, 1982, p. 432).

4. M. H. Anderson, J. Ensher, M. Matthews, C. Wieman, and E. Cornell.
Observations of Bose-Einstein Condensation in a Dilute Atomic Vapor,
Science 269 (14 July 1995) 198–201.

5. The 2001 Nobel Prize in Physics was awarded to three researchers 
(Eric Cornell, Carl Wieman, and Wolfgang Ketterle) for their creation of
Bose–Einstein condensates.

6. Joint news release by The National Institute of Standards and Technol-
ogy and the University of Colorado on 13 July 1995, Physicists Create New
State of Matter at Record Low Temperature, http://jilawww.colarado.edu/
www/press/bose-ein.html.

7. An excellent discussion is given by the author himself in M. C. Escher,
Escher on Escher: Exploring the Infinite (H. N. Abrams, New York, 1986).
Also, all the one- and two-dimensional space-group symmetries have 
been reproduced in lovely Hungarian folk needlework; see I. Hargittal and
G. Lengyel, The Seven One-Dimensional Space-Group Symmetries Illus-
trated by Hungarian Folk Needlework, Journal of Chemical Education 61
(1984) 1033–1034.

8. A. Conan Doyle, The Silver Blaze, in The Complete Sherlock Holmes
(Doubleday, New York, 1930, pp. 383–401). Inspector Gregory: “Is there
any other point to which you would wish to draw my attention?”; Holmes:
“To the curious incident of the dog in the nighttime.”; Gregory: “The dog
did nothing in the nighttime.”; Holmes: “That was the curious incident.”
[p. 397]

9. In anticipation of discussion of the cosmic microwave background radia-
tion (CBR), I note that this thermal radiation (at a temperature of about
2.7K) permeates all space and therefore constitutes a sort of ether with
respect to which one’s motion can be measured by means of the Doppler
effect. Thus, at any point in space, the frame in which the CBR appears
isotropic may be singled out as a preferred frame of reference. This does
not violate the postulate of special relativity, however, which asserts that
all inertial reference frames are equivalent for the description of local
physics phenomena.

10. This is the same factor that led to the time-dilation operator in Chapter
5; see Eqs. (5.4b) and (5.8b).

11. It would seem almost a theorem of geometry, rather than a law of physics,
that the velocity of a marble rolling at speed v¢ down the aisle of a bus
traveling in the same direction with speed V should be v¢ + V to an observer
at rest by the side of the road. This intuitive velocity addition law, however,
is not generally valid because of the different rates at which clocks in the
two frames (bus and curbside) keep time.

12. A. Pais, Note 3, p. 152.
13. If the components of the electric and magnetic fields are designated by

numbers (1, 2, 3) rather than by letters, then the elements of Fm� follow
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the simple pattern: F 0k = Ek and Fij = eijkBk. The completely antisymmet-
ric tensor eijk is equal to +1 if (i, j, k) is an even permutation of (1, 2, 3), 
-1 if (i, j, k) is an odd permutation of (1, 2, 3), and 0 if any two indices 
are equal. I have labeled the components of E and B with letters rather
than numbers, however, because they are not components of a Lorentz 
4-vector.

14. The field tensor with lowered indices is obtained from the original field
tensor by Fm� = hmah�bFab. From the form of the Minkowski metric, one sees
that, in Fm�, the sign of each component of the electric field is opposite that
of Fm�, whereas each component of the magnetic field is unchanged.

15. The divergence of the field is expressed by — · E = ∂Ex/∂x + ∂Ey/∂y + ∂Ez/∂z.
16. In his Treatise on Electricity and Magnetism, Maxwell uses the gauge

transformation of the vector potential [second equation of relations (9.8a)]
to eliminate a certain scalar function. He does not introduce the corre-
sponding transformation for the scalar potential nor comment on the
invariance of the field equations under such a combined transformation.
To my knowledge H. A. Lorentz was the first to recognize gauge invari-
ance as a general principle in electromagnetism in lectures delivered at
Columbia University in 1906. See H. A. Lorentz, The Theory Of Electrons,
Second Edition (Dover Publications, New York, 1952) 239.

17. A scalar contraction of two 4-vectors am and bm is the quantity ambm. The
Dirac equation takes the form

in which pm = i ∂/∂xm and the factors g m constitute a set of sixteen constant
4 ¥ 4 matrices (that make up what is called a Clifford algebra). The
Klein–Gordon equation takes the form

By recalling that pm = (E/c, p) and therefore pm = (E/c, -p), one sees that
the definition pm = i (∂/∂xm) is consistent with the usual quantum mechan-
ical operator representations E = i (∂/∂t) and p = ( /i)—.

18. The Lagrangian for a free electron takes the form (g mpm - mc)y where y
and are Dirac spinors with four components (two each to represent the
spin of the electron and the spin of its antiparticle, the positron). The
Lagrangian for a free spin-0 boson takes the form (pmf)(pmf) - m2c2f2, where
in the simplest case f is a real-valued scalar wave function.

19. From the definitions of the canonical momentum pm = i (∂/∂xm) and the
kinetic momentum

it follows that
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20. The color neutrality of particles can occur two ways. Protons, neutrons,
and other baryons (massive fermions subject to the strong interactions)
comprise three quarks each of a different color, resulting in colorless
quantum states. Pions and other mesons (massive bosons subject to the
strong interactions) comprise pairs of quarks and antiquarks in which the
anticolor of the antiquark neutralizes the color of the quark, much as pos-
itive and negative electric charges cancel each other.

21. The so-called London penetration depth is given by in
which m, q, and N are respectively the mass, charge, and number density
of the charge carrier in a superconductor. The charge carrier is a Cooper
pair with twice the mass and charge of a single electron.

22. P. F. Schewe and B. Stein, An Intriguing Hint of the Higgs Boson, The
American Institute of Physics Bulletin of Physics News, N. 502 (Septem-
ber 14, 2000).

23. It is worth noting that the fundamental equations of electromagnetism,
Maxwell’s equations, were also not deduced from empirical results alone.
Although Coulomb’s law for static charges and Ampere’s law for currents
were based on experiment, Maxwell’s modification of Ampere’s law (addi-
tion of the “displacement current”) was not required by any experimental
result at the time.

24. Recent measurements of the precession of muon spin in a magnetic field
gave results for the anomalous magnetic moment of the muon that dif-
fered from previous calculations based on the Standard Model by approx-
imately two standard deviations. See H. N. Brown, et al., Precise
Measurement of the Positive Muon Anomalous Magnetic Moment, Physi-
cal Review Letters 86 (2001) 2227. If sustained by further experiments
with better statistics and by confirmations of the theoretical prediction,
this disagreement would indicate the observation of a physical effect
beyond the Standard Model. However, subsequent recalculation of the
higher-order terms in the expression for the muon magnetic moment have
revealed an earlier error in sign which now makes the claim of a violation
of the standard model much less likely. See B. Schwarzschild, Correcting
a Correction Weakens a Whiff of Supersymmetry, Physics Today 55 (Feb-
ruary 2002) 18.

25. Carl Sagan, Billions & Billions, Random House, New York, 1997.
26. Newton’s law of gravity together with Newton’s second law F = mg applied

to a small mass m falling to the Earth leads to ME = gRE
2 /G.

27. The term “centripetal” derives from Latin for “seeking the center.” In
Chapter 5, the same acceleration was termed “centrifugal,” from Latin for
“fleeing the center.” The difference is one of reference frame. An object in
uniform circular motion undergoes centripetal acceleration to an observer
in an inertial reference frame, but centrifugal acceleration to an observer
at rest with respect to the object.

28. One light-year is the distance traveled by light in a year, or approximately
9.5 ¥ 1015 m.

29. For light propagating in vacuum, the ratio of the observed frequency �o to
the emitted frequency �e, or the ratio of the observed wavelength lo to the
emitted wavelength le, depends on the relative velocity of the source and
receiver according to the expression

l pL mc Nq= 2 24
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in which V is the relative speed, , and q is the angle
between the light ray from the source and the velocity of the source. 
If the source recedes from the observer, q = 180°; the observed frequency
is, therefore, lower than the emitted frequency, and the observed 
wavelength is longer than the emitted wavelength. The wave is said to be
red-shifted.

30. As a simple example, consider three collinear dots located at coordinates
0, 1, and 2 in some arbitrary unit. The dot at 0 is the reference dot.
Suppose that the linear space expands to three times its length in 1s, at
which time the coordinates of the dots become 0, 3, and 6. The distance of
the third dot from the first has increased by 6 - 2 = 4 units in the same
span of time that the distance of the second dot from the first has increased
by 3 - 1 = 2 units. Thus, the third dot, whose distance to the reference dot
is twice that of the second dot, is receding from the reference dot twice as
fast.

31. An entertaining and informative account of the lives and researches of
prominent astronomers and cosmologists can be found in Dennis Overbye,
Lonely Hearts of the Cosmos (HarperCollins, New York, 1991).

32. The theory of inflation maintains that the Universe, very shortly after its
creation, underwent an exponential expansion, vastly increasing in size
well beyond the distance that light could have traveled during that same
time interval. There is no violation of relativity theory so long as the 
speed of massive objects relative to the expanding space does exceed the
vacuum speed of light c. After the brief period of inflation (concluded in
under 10-30 s), the Universe evolved along the lines of the standard big-
bang theory. See A. Guth, Inflationary Universe: A Possible Solution to the
Horizon and Flatness Problems, Physical Review D 23 (1981) 347.

33. The Planck radiation law u� = (8ph�3/c2)(eh�/kT - 1)-1 expresses the energy
density of thermal radiation at absolute temperature T within a frequency
interval d� about frequency �. Expressed in terms of wavelength l = c/�,
the radiation density within a wavelength interval dl about l becomes ul

= (8phc/l5)(ehc/lkT - 1)-1.
34. The Wien displacement law, lmaxT = 0.029m-K, relates the absolute 

temperature T and the wavelength lmax at which the thermal radiation
intensity is greatest. It derives from the expression for ul in Note 33. The 

corresponding relation obtained from the expression for u� is 

GHzK-1. Note that the frequency at which u� is maximum does not corre-
spond to the wavelength at which ul is maximum (�max π c/l max).

35. The CBR is isotropic in the rest frame of the matter with which it was in
equilibrium before radiation and matter decoupled. However, the Galaxy
(Milky Way) is moving as part of the Local Group of galaxies toward the
Virgo Cluster at a speed of some 600km/s relative to the CBR. Thus, CBR
photons received from the direction in which the Local Group is moving
are blue-shifted; CBR photons received from the trailing direction are 
red-shifted. The result is a perceived anisotropy known as the cosmic
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microwave background dipole. To detect the small temperature fluctua-
tions in the CBR, the dipole anisotropy must first be subtracted from the
data.

36. The effect of mass density on radiation temperature is an example of what
is known as a gravitational red shift. Radiation propagating out of the
gravitational potential well produced by surrounding matter loses energy
and therefore incurs longer wavelengths depending on the depth of the
well (which itself depends on the density of matter). The greater the mass
density, the greater the gravitational red shift. Variations in the energy
density u of thermal radiation result in variations in radiation tempera-
ture T via the Stefan–Boltzmann relation, u µ T4. The gravitational red
shift was demonstrated terrestrially with gamma rays by Pound and
Rebka using the Mössbauer effect; see R. V. Pound and G. A. Rebka, Jr.,
Gravitational Red-Shift in Nuclear Resonance, Physical Review Letters 3
(1959) 439.

37. See the news reports: (a) J. Glanz, Radiation Ripples from Big 
Bang Illuminate Geometry of Universe, The New York Times on the 
Web (26 November 1999)[http://www.nytimes.com/library/national/science/
112699sci-big-bang.html]; (b) B. Schwarzschild, Balloon Measurements of
the Cosmic Microwave Background Strongly Favor a Flat Cosmos, Physics
Today 53 (July 2000) 17–19.

38. The mean thermal energy per particle is approximately kT, in which k is
Boltzmann’s constant. Equating this energy to the difference in rest-mass
energy of the neutron and proton leads to a temperature of about 7 billion
K.

39. If L is the intrinsic luminosity and F the observed flux, then the so-called
luminosity distance to the supernova is . There are other
ways, however, of determining distances. For example, the angular diam-
eter distance dA = D/d is the ratio of the proper diameter D of a structure
(e.g., a galaxy) to the observed angular diameter d. In a static Euclidian
geometry, the various definitions are equivalent, but this is not the case
in an expanding and possibly curved space.

40. A. G. Riess et al., Observational Evidence from Supernovae for an Accel-
erating Universe and a Cosmological Constant, Astrophysical Journal 116
(1998) 1009–1038; S. Perlmutter et al., preprint astro-ph/9812133.

41. From the assumed luminosity and measured apparent brightness of a
Type Ia supernova, one can infer a distance dL, as described in Note 39.
Similarly, from measurement of the red shift z and use of Hubble’s rela-
tion (with present value of the Hubble constant H0), one can calculate a
distance

The discovery that dL > dz suggests that dL µ 1/H in which the Hubble con-
stant H at a “look-back” time corresponding to z is smaller than the
present value H0. If this line of reasoning is correct, then the Universe is
presently expanding at a greater rate than at the times when the observed
high-z supernovae occurred.
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42. (a) Blast from the Past: Farthest Supernova Ever Seen Sheds Light 
on Dark Universe, Press Release No. STScI-PR01-09 (Space 
Telescope Science Institute, Baltimore MD, 2 April 2001). See
http://oposite.stsci.edu/pubinfo/PR/2001/09/pr.html. (b) A. G. Riess et al.,
The Farthest Known Supernova: Support for an Accelerating Universe
and a Glimpse of the Epoch of Deceleration, Astrophysics Journal 560
(2001) 49.

43. It is estimated on the basis of the big-bang cosmology that there should
be about as many relic neutrinos and antineutrinos in the cosmic back-
ground radiation as there are photons, approximately 109 times the
number of baryons.
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CHAPTER 10

Science and Wonder

In all the years that I have been pursuing physics as a career, I have
never found the subject dull, nor exhausted the multifarious store of
interesting questions to investigate. Maybe it is lack of imagination on
my part, but I have rarely felt the desire to change fields, for I could
think of nothing else as deeply satisfying. Poincaré has aptly depicted
the source of such feeling when he wrote (with perhaps only a modicum
of exaggeration)1

The Scientist does not study nature because it is useful to do so. He studies
it because he takes pleasure in it; and he takes pleasure in it because it is
beautiful. If nature were not beautiful, it would not be worth knowing and life
would not be worth living. . . .

The contrast between a working physicist’s perception of physics and
the attitude held by most other people is, in my experience, simply
astonishing. I have often noted with amusement the reactions shown
by strangers who, upon making my acquaintance, learn what I do for
a living. Following almost ritual complimentary remarks, uttered
ostensibly in admiration of an intellect that can master so difficult a
subject, inevitably comes a confession that physics was the speaker’s
most difficult and least enjoyable subject in school. If the conversation
continues long enough, however, it is usually disclosed that this dis-
comfiture originated less in difficulty than in boredom—and I learn
again, that the awe elicited by my occupation owes less to any pre-
sumed intellectual abilities that to the “Sitzfleisch” required to survive
memorizing disconnected facts and formulas and working through
countless hours of tedious exercises. For that, unfortunately, is the
impression widely left by courses that introduce (and often enough 
terminate) the study of physics.

Yet, it is a fact that, throughout my entire career as a professional
physicist, I have almost never had to memorize facts and formulas, but
simply avail myself of the appropriate references, or, when necessary,
derive the mathematical expressions I needed. What calculations I



have performed—and many were indeed lengthy and time-
consuming—were voluntarily undertaken to explore the topics that
interested me. How can it be that a subject which provides continued
intellectual challenge and pleasure to one person is at the same time
the epitome of tedium and pointlessness to so many others? Anyone
who teaches physics may have had occasion to think about this ques-
tion. The answer, in fact, is obvious: The way in which one encounters
physics in school usually bears little resemblance to the activities of a
working physicist, and, to varying degrees, this may be true of other
sciences as well.

* * *

I am in the main a physicist, not a philosopher. Yet, an important
component of both occupations, I believe, is ably addressed in philoso-
pher Alan Watt’s self-characterization2:

A philosopher, which is what I am supposed to be, is a sort of intellectual yokel
who gapes and stares at what sensible people take for granted, a person who
cannot get rid of the feeling that the barest facts of everyday life are unbe-
lievably odd. As Aristotle put it, the beginning of philosophy is wonder.

Generally speaking, one might assert as well that the beginning of
science is wonder. In a way, all healthy children are naturally born 
scientists; they come into this world with an innate and intense desire
to investigate everything around them. Parents of young children
know only too well (and perhaps to their frequent frustration) how dif-
ficult it is to prevent a child from exercising this inborn drive. What
has happened to so many people along their paths from infancy to
adulthood to so dull or cripple the natural inclination to explore and
understand? Educational theorist Jerome Bruner gets to the heart of
the matter clearly3:

The will to learn is an intrinsic motive, one that finds both its source and its
reward in its own exercise. The will to learn becomes a “problem” only under
specialized circumstances like those of a school, where a curriculum is set, stu-
dents confined, and a path fixed. The problem exists not so much in learning
itself, but in the fact that what the school imposes often fails to enlist the
natural energies that sustain spontaneous learning—curiosity, a desire for
competence, aspiration to emulate a model, and a deep-sensed commitment to
the web of social reciprocity.

Human curiosity lies at the root of all science and must be nour-
ished, or at least not thwarted, if it is to thrive. Yet, science education,
particularly at the introductory level, often amounts to conveying so
much information that it is overwhelming, or so little that it is unin-
formative. The recipients of such an education can only conclude that
science is mysterious and unapproachable, that scientific explanations
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either do not exist or cannot be understood. Then, the desire to learn
science is lost, perhaps irretrievably. The paramount task of science
education, as I see it, is to provide inspiration, and not merely 
information.

There is a common theme that echoes repeatedly in the responses
of scientists whenever they are asked what it is that led them to their
careers. What comes across, at least in the aggregate of many such
enquiries,4 is the sentiment that science is intellectually exciting, a
challenge to one’s mental and physical skills; that there is great beauty
to science, whether in a bold and artful experimental solution to a
seemingly insurmountable problem or in the aesthetic appeal and star-
tling predictive powers of a set of equations; that there is a particular
satisfaction in operating daily with universal laws and principles.
Unfortunately, this does not seem to come across in the classroom. I
have known many people with experience similar to those expressed
by palaeontologist Kevin Padian5:

. . . I had a fascination with dinosaurs, but science teaching deadened 
that fascination by [stressing prematurely] the mindless details of 
plant cell structures and the genetic code. It was, after all, the Age of 
Sputnik.

My first semester in college I [nearly failed] a required science course. 
I was all set for another [low grade] the second semester when the professor
paused in the middle of a particularly boring lecture and said, “You know, 
some of you may not be into this”. (It was now the Age of Aquarius.) “If you’d
like to do something else, see me after class.” I did. He put me in touch 
with a professor who specialised in all the things I’d always wanted to learn
about, who took the time to help me to study them independently and discuss
them.

That led to my eventual career which I wouldn’t trade for anything.

In a similar way, my own educational development was more often fur-
thered by self-study or through the sympathetic counsel of those who
shared their expertise with me, than through anything that occurred
in the classroom.

I realize that the responsibility facing most science educators is not
necessarily how to produce more scientists, but how to improve the
quality of science instruction and to raise the level of scientific aware-
ness of all those who would study science, even briefly. Nevertheless,
it is my firm conviction that any person, whether interested in a
science career or not, will be motivated to learn science for the same
reasons that motivate scientists themselves—to satisfy their curiosity;
to seek answers to personally meaningful questions.6

If my own experiences are in any way typical, then the tragedy con-
fronting science teachers today is that past a certain stage of devel-
opment too few students retain enough curiosity about nature to ask
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themselves any questions. And so conventional science instruction tells
its beneficiaries what precisely they must know, by when they must
know it, and how they must demonstrate on tests, homework, and 
laboratory work that they really know what they are supposed to. 
John Holt, an advocate of more self-directed education, has created a
particularly appropriate simile to describe this type of teaching and
learning: too often, teaching is like pouring liquid into bottles that
come down a conveyor belt. Questions about education reduce princi-
pally to questions about what, and how much, to pour into the bottles—
two semesters of introductory physics or four?—ignoring the lack of
correspondence between inanimate receptacles waiting to be filled and
real people who need to make sense of the world.

* * *

As a research physicist, I know that to perform my work well I must
have a sound background of factual information. However, I also know
why I need that information: to solve the problems that interest me.
The key to successful science education must lie first in kindling
curiosity where the spark has died and nurturing it where it lies
latent. Only then will learning become a pleasure, and the mastery of
theoretical concepts and empirical detail follow almost of their own
accord.

Having taught for many years under the “specialized circumstances”
referred to by Bruner, I understand only too well how deeply ingrained
in traditional educational practice these circumstances are and how
unlikely it is that they will be changed any time soon. How, then, are
science teachers to sustain students’ curiosity when they must do this
under the restrictive conditions of parceled time and fixed curricula
that contribute in the first place to its diminution?

Faced with an educational framework over which they may have but
little control, educators can, nevertheless, exert considerable influence
through their own attitudes toward their subject and their students.
There are important ties between the perception of science and the
teaching of science that affect whether a teacher will be a wellspring
or a dry well of inspiration. Who can doubt, for instance, that a teacher
for whom science is largely a technical discipline will provide a dif-
ferent type of instruction than one for whom science is more broadly
construed as a cultural activity? Or that a teacher for whom the
primary goal of science is the acquisition of accurate data will provide
a different type of instruction that a teacher for whom the goal of
science is the development of comprehensive theories? Attitudinal dif-
ferences on the part of an educator may produce students who are
interested in science for different reasons or whose working styles,
should they become scientists, are different. Such differences can be
important, yet educationally innocuous.
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Far more serious in their educational consequences are perspectives
that seriously misconstrue the essence of science. A teacher who sees
science in terms of authority figures—the allegedly great and wise who
pass down their knowledge to mere mortals—may well teach science
in an authoritarian manner, emphasize and require memorization of
material that scientists, themselves, would generally look up in refer-
ence books, assign problems involving needless repetition, discourage
inquiries, and repel with indignation challenges of fact or interpre-
tations. A teacher who sees science as a cut-and-dried impersonal
subject, a repository of facts from which correct answers inevitably
flow, may well communicate to students, implicitly or explicitly, that
human attributes and human interactions do not matter, that scien-
tific progress follows from slavish adherence to prescribed scientific
methods and not from creative imagination and resourceful use of
serendipity.

By contrast, a teacher who realizes that science is a multifaceted
mode of enquiry and not a sepulcher of facts, that science involves 
personalities, and that personality and human distinctiveness affect
discovery would likely have respect for his own students’ individuality
and regard that individuality as important and worth fostering. Such
a teacher, even with the restrictions and inflexibility of an institutional
environment, could create in the classroom an atmosphere in which
students are encouraged to think, to experiment, to challenge—in
short, to engage in the type of creative exploration of which science
consists.

* * *

I have come to recognize three principal tasks that science educa-
tors need to accomplish if they are to motivate the study of science.

The first is to convey an accurate and sympathetic impression of
science by revealing its humanistic ties to our general intellectual 
heritage. In the light of heightened public concern over the impact of
science on the quality of life, the physical sciences in particular are too
often perceived as cold, uninspiring activities pursued by people who
are, at best, asocial and, at worst, dangerous. Norman Campbell’s
remarks of eighty years ago still seem apt today7:

It is certain that one of the chief reasons why science has not been a popular
subject . . . and is scarcely recognized even yet as a necessary element of any
complete education, is the impression that science is in some way less human
than other studies.

If science is to be seen as a human endeavor, a quest by people for
answers to significant questions, then science educators ought to
provide some sense of historical perspective. Newton’s laws of motion
and law of gravity, for example, are among those enduring topics that
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will forever grace the introductory physics curriculum. Over the
decades, many a student, having retired for the night glassy eyed from
calculating the paths of falling projectiles, must certainly have won-
dered, “Why bother?” I have found, however, that when students
understand better the circumstances of Newton’s discoveries—that
Newton addressed “the great unanswered question confronting
natural philosophy” of his time;8 that the answers did not fall to him
with ease, but only after the intense labor of a “man transported
outside himself ”; that his answers had momentous impact on his con-
temporaries; that, being of a jealous and suspicious disposition, he had
to be coaxed, flattered, and wheedled by Edmund Halley (of comet
fame) into writing the Principia, and that even Newton had trouble
with the concepts of circular motion (he was, after all, inventing these
concepts, not reading them from a textbook)—they look with renewed
interest upon the subject. Students can be helped to realize that the
laws of motion and of gravity are not artificially concocted academic
exercises to improve proficiency in calculation; rather, they are a pre-
cious part of our cultural legacy, a historical landmark in mankind’s
progress toward knowledge and truth and away from error and 
ignorance.

As part of humanizing science education, teachers need also to make
their students aware of the aesthetic dimension that has long been a
source of personal pleasure and intellectual stimulation to scientists.
Sometimes, this beauty is explicitly visual, deriving from the color,
shape, or transformation of physical systems. Sometimes, it is, as
Feynman says, “a rhythm and a pattern between the phenomena of
nature which is not apparent to the eye, but only to the eye of analy-
sis.”9 And sometimes, it lies in the subtle intricacy or bold simplicity
of an ingenious experimental stratagem to wrest from nature her
closely held secrets. In whatever form it takes, the beauty of science
is part of a vital feedback loop of learning: It provides motivation to
explore and to comprehend while it increases with comprehension.

The second principal task is to help students appreciate that there
is survival value to the acquisition of scientific knowledge, procedure,
and attitude. In an age dominated by the fruits of science and tech-
nology, a person ignorant of the most basic scientific principles and
experimental skills is at a severe disadvantage. Children, as I noted
previously, are born with an innate sense of wonder; however, they
experience not only intense curiosity but also a strong impression of
the incomprehensible. The early years of childhood have been called
the “magic years”:

These are “magic” years because [the child’s] earliest conception of the world
is a magical one; he believes that his actions and thoughts can bring about
events. Later he extends this magic system and finds human attributes in
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natural phenomena and sees human or super-human causes for . . . ordinary
occurrences of daily life . . . But a magic world is an unstable world, at 
times a spooky world, and as the child gropes his way toward reason and 
an objective world he must wrestle with the dangerous creatures of his 
imagination. . . .10

It is not exclusively children but also those without scientific knowl-
edge and understanding who inhabit a “spooky world” where ordinary
(and not so ordinary) occurrences of daily life may seem threatening.
These people have no sound foundation upon which to rely to help 
distinguish plausible fact from wildly improbable speculation in the
barrage of imminent calamities and breakthroughs that fill the news
reports. They are often paralyzed in frustration by the failure or mal-
function of the technological devices upon which they must depend.
They are prey to the influence of occultism, mysticism, extreme reli-
gious fundamentalism, and bogus science. Like the world of early
childhood, theirs, too, is an unstable one troubled by the dangerous
creatures of their imagination.

The third principal task is to provide students an opportunity to
pursue, to whatever extent possible given circumstances and re-
sources, some form of scientific research. To participate in scientific
activity directly, to have occasion to utilize the facts and techniques
one is learning, is the greatest source of motivation to study science.

All science is, at root, an empirical activity involving the creative
interaction between theory and the facts that emerge from observa-
tion and controlled experiment. Unfortunately, most students who
take science courses will never understand the role, significance, and
procedures of the experimental aspect of science, nor ever experience
the exhilaration engendered by execution of a successful, self-
motivated experiment following arduous and perhaps frustrating
preparatory work. Yet, it is this experimental aspect of science—the
planning, looking, touching, manipulating, controlling, measuring,
recording, checking—this direct contact with the phenomena of nature
for the purpose of satisfying one’s own curiosity, that has provided
many a scientist the strongest motivation and deepest satisfaction.

Scientific experimentation has almost nothing in common with
instructional laboratories that provide practical exercises designed
from the outset to yield clean, unambiguous data in a reasonably short
time on previously well-studied phenomena with low probability of
failure. Not only does such laboratory work not reflect what actually
transpires in a research laboratory, but, worse still, it is ordinarily
assigned work, rather than an activity that a person would willingly
and enthusiastically undertake for the purpose of learning something.
Even students with little scientific experience recognize the distinction
between science and “cookbook” exercises that do not inspire—or
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perhaps even permit—innovation and that lead in the end to results
of no interest to anyone outside the classroom.

An exploratory activity, on the other hand, does not have to be of
momentous general significance to science as long as it is personally
meaningful to the person doing it. At times, I think back to the 
reaction of British naturalist Alfred Wallace to the discovery of a 
butterfly11:

None but a naturalist can understand the intense excitement I experienced
when at last I captured it. My heart began to beat violently, the blood rushed
to my head, and I felt much more like fainting than I have done when in appre-
hension of immediate death . . . so great was my excitement produced by what
will appear to most people a very inadequate cause.

One of the most enjoyable scientific experiences I have had myself was
when, as a child, I built a motor out of simple nails and wire. It was
pleasurable in large part because I wanted to do it; had I been required
to do it, the motivation would no longer have been my own, and the
educational value of the project most likely would have been lost.

* * *

Although few people would willingly admit with any pride to igno-
rance of their culture’s literature, music, and history, I have discerned
over the years no such reluctance when it comes to lack of scientific
knowledge. Indeed, among science educators, researchers, employers,
and administrators in the United States and Great Britain in particu-
lar (and the problem is no doubt even more acute in technologically
developing nations), the issue of scientific literacy—however that is
interpreted—has been a subject of wide concern for years. The statis-
tical details, if one believes them, are chilling, for they indicate
massive indifference to science and gross misconceptions about the
most basic facts of nature. Nor, if these reports are accurate, is there
reason to expect significant favorable change in the half-century to
come.

Solutions that I see proposed (depending on the level of instruction)
call for such remedies as extensive standardized testing, mandatory
science requirements, more classroom hours per day, longer school
terms, and, of course, more money to pay for all this. With respect to
colleges and universities, there seems to be a growing sentiment that
faculty research is at variance with good instruction, for it means less
time devoted to the classroom. The presumed remedy is to increase
teaching duties and thereby reduce what critics perceive to be educa-
tionally unproductive free time.

If history is any guide, remedies predicated on the belief that science
instruction and scientific research are incompatible, if not mutually
adversarial, and that impose additional curricular requirements and
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testing as the foundation of better science teaching are bound to fail,
just as they have in the past. For what the reports of scientific illiter-
acy dramatically show is quite simply that where there is no interest,
science cannot be taught. One does not generate interest by increas-
ing the very activities through which interest is lost. Real learning is,
like science itself, a process of discovery, and, as educational reform-
ers have often expressed, if one wants this process to occur in a school,
then one must create the conditions under which discoveries can be
made: leisure to think, freedom to explore.

Science educators whose idea of instruction goes no further than the
textbook, whose notes have become fossilized from unvarying use, and
whose concept of scientific activity is ritualized repetition of procedure
cannot hope to motivate and inspire students. Teachers must, them-
selves, be motivated and inspired to read avidly and regularly in order
to learn the lessons of the past and to keep abreast of the present and
to undertake their own investigations, however modest in scope or
means, in order to teach with confidence based on personal experience.

The keys to motivating science learning are all molded from the
same metal: that science instruction is most efficacious and enduring
when it reflects the intrinsic activities of science itself. To teach science
well, one must have the philosophical attitudes of a scientist: to see
science as culturally important, technically useful, and aesthetically
moving; to understand that the pursuit and acquisition of scientific
knowledge helps free the mind from the bondage of ignorance, super-
stition, and prejudice; to have a driving curiosity to comprehend the
reason that manifests itself in nature and to enjoy sharing this curios-
ity with others.

Einstein’s eloquent words say it all:

The fairest thing we can experience is the mysterious. It is the fundamental
emotion which stands at the cradle of true art and true science. He who knows
it not and can no longer wonder, no longer feel amazement, is as good as dead,
a snuffed-out candle.12

Our task, as educators, is to light that candle.
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nection and the influence of external potentials upon these correlations
show up in the coincidence count rate at two detectors, the variance
in count rate at one detector, and the conditional probability of parti-
cle detection as a function of delay time.

2a. On the Feasibility of Observing Electron Antibunching in a Field-
Emission Beam, Physics Letters A120 (1987) 442.

2b. On the Feasibility of a Neutron Hanbury Brown–Twiss Experi-
ment, Physics Letters A132 (1988) 154.

In contrast to the belief that a short coherence time and low beam
degeneracy necessarily prevent the direct observation of fermion anti-
correlation in a free-particle beam, the first paper shows that electron
antibunching is potentially observable with current technology. This
is not the case with neutrons, however, as discussed in the second
paper.

3. Gravitationally-Induced Quantum Interference Effects on Fermion
Antibunching, Physics Letters A122 (1987) 226.

The effect of gravity on the quantum mechanical phase of a multi-
particle system influences the way in which the particles cluster in
time and space. Here is an example of the influence of a gravitational
potential in the absence of a gravitational force.

4. Fermion Ensembles That Manifest Statistical Bunching, Physics
Letters A124 (1987) 27.

Although it has long been thought that electrons manifest only anti-
correlations as a result of Fermi–Dirac statistics, there are, in prin-
ciple, special types of electron states associated with the two input
beams of an interferometer that give rise to variety of particle corre-
lations, including effects similar to photon bunching.

5. Second-Order Temporal and Spatial Coherence of Thermal Elec-
trons, Il Nuovo Cimento B99 (1987) 227.

Thermal or blackbody radiation has played a seminal role in the devel-
opment of quantum mechanics and is one of the most thoroughly
studied systems in physics. Although often considered to be the
epitome of incoherent light, blackbody radiation does exhibit inter-
ference effects, as demonstrated, for example, by the Hanbury
Brown–Twiss experiments with starlight. Examination of the coher-
ence properties of a system of thermal electrons, a fermionic analog 
of blackbody radiation, shows the profound distinctions arising from
quantum statistics, the spinorial character of the basic fields, and con-
servation of particle number.
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6. An Aharonov–Bohm Experiment with Two Solenoids and Corre-
lated Electrons, Physics Letters A148 (1990) 154.

The “entanglement” of quantum states was regarded by Schrödinger
as one of the strangest features of quantum mechanics. Here, two
“back-to-back” AB experiments with momentum-correlated electrons
from a single source manifest strange long-range correlations charac-
teristic of the Einstein–Podolsky–Rosen paradox.

7. Aharonov–Bohm Effects of the Photon, Physics Letters A156 (1991)
131.

Even though it has no electric charge, a photon can theoretically inter-
act with the vector potential field outside a region of magnetic flux as
a result of quantum electrodynamic processes involving the virtual
production of correlated pairs of electrons and positrons.

8. Optical Manifestations of the Aharonov–Bohm effect by Ion Inter-
ferometry, Physics Letters A182 (1993) 323.

All experimental tests of the AB effect to date have employed the elec-
tron, a structureless point particle. The use of charged particles with
a composite internal structure, however, permits novel tests of the
state dependence of the AB effect and the consistency of different
quantum equations of motion. A distinctive feature of the proposed
experiment is to detect the AB effect by means of quantum interfer-
ence manifested in the spontaneous emission from the ion. Apart from
the focus on the AB effect, this paper was one of the first to propose
experiments involving ion interferometry.

9a. Electron Source Brightness and Degeneracy from Fresnel Fringes
in Field Emission Point Projection Microscopy, Journal of Vacuum
Science and Technology A12 (1994) 542.

9b. Brighter Than a Million Suns: Electron Interferometry with 
Atom-Sized Sources, in Foundations of Modern Physics: 70 
Years of Matter Waves, Editions Frontieres, Gif-sur-Yvette 1994, 
p. 273.

9c. The Brightest Beam in Science: New Directions in Electron
Microscopy and Interferometry, American Journal of Physics 63
(1995) 800.

The development of ultrasharp field-emission tips which emit electrons
from a region of one or a few atoms has led to startling new advances
in electron microscopy and interferometry. The tips produce a strongly
focused, highly coherent electron beam which can be used in a low-
voltage point-projection microscope for low-energy, lensless holo-
graphic imaging. The first paper describes such a microscope for which
the electron beam is sufficiently coherent that it gives rise to Fresnel
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fringes. From analysis of the fringe spacings and intensity are
obtained the image magnification, source size, transverse coherent
width, instrumental resolution, and source brightness. The second
paper discusses the importance of brightness and its relation to beam
intensity, coherence, and degeneracy. The third paper discusses the
unique features of the point-projection microscope as a new tool for
exploring quantum phenomena.

Chapter 4

1. Radiofrequency Spectroscopy of Hydrogen Fine Structure in n = 3,
4, 5, Physical Review Letters 26 (1971) 347.

The paper describes the experimental investigation of a broad range
of fine-structure states of hydrogen atoms generated by electron-
capture collisions of accelerated protons with gas targets. Various
radiofrequency and microwave fields are employed together to sup-
press overlapping transitions and allow measurement of energy 
intervals between selected states. This was one of the first applica-
tions of the merger of atomic beam technology and radiofrequency
spectroscopy.

2. Interaction of a Decaying Atom with a Linearly Polarized Oscil-
lating Field, Journal of Physics B: Atomic and Molecular Physics
5 (1972) 1844.

A two-level quantum system interacting with an oscillating electro-
magnetic field is a fundamental quantum mechanical problem of impor-
tance to spectroscopy, but for which no exact analytical solution to the
Schrödinger equation is known. The equation is commonly solved in the
so-called “rotating-wave” approximation which discards antiresonant
terms in the Hamiltonian—a procedure not always adequate for treat-
ment of unstable states, particularly in the radio-frequency domain.
This paper provides a more general analytical solution to the oscillat-
ing field problem that is almost indistinguishable from exact numeri-
cally integrated solutions for all cases of practical interest.

3. Observation of Fine Structure Quantum Beats Following Stepwise
Excitation in Sodium D States, Physical Review Letters 33 (1974)
1063.

The use of two synchronously pulsed dye lasers was used to prepare
sodium atoms in a linear superposition of fine-structure states. A
useful feature of the experiment was to demonstrate the marked
effects of light polarization on the phase of the quantum beats; this
effect was employed to enhance beat contrast.
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4. On the Anomalous Fine Structure in Sodium Rydberg States,
American Journal of Physics 48 (1980) 244.

A simple quantum mechanical model, based on the virtual excitation
of a core electron occurring together with the actual excitation of a
valence electron, was developed to account in part for the anomalous
reversal of the sodium D3/2 and D5/2 fine-structure levels.

5. General Theory of Laser-Induced Quantum Beats, Parts I and II,
Physical Review A18 (1978) 1507, 1517.

The two papers present a comprehensive theory of quantum beats gen-
erated by pulsed laser excitation. The first article is concerned with
the excitation of an atom by a single laser in the absence of external
fields; the second treats the sequential excitation of an atom by two
lasers and the influence of an external static magnetic field on the
beats. Of particular interest are the nonlinear effects arising from mul-
tiple interactions between the atom and the light during passage of an
intense laser pulse, and the marked difference in quantum beat pat-
terns between the cases of weak and strong external magnetic field.

6. The Curious Problem of Spinor Rotation, European Journal of
Physics 1 (1980) 116.

Experimental tests are discussed that address the question of whether
or not the 360° rotation of a spinor wave function can be observed.

7. The Distinguishability of 0 and 2p Rotations by Means of
Quantum Interference in Atomic Fluorescence, Journal of Physics
B: Atomic and Molecular Physics 13 (1980) 2367.

This paper describes the details of how, by observation of quantum
beats from atoms coherently excited by a pulsed laser and sub-
sequently irradiated by a radiofrequency field, one can distinguish a
cyclic transition between two atomic states from no transition at all.

8a. Quantum Interference Test of Orbital Angular Momentum Eigen-
values Predicted for a Spinless Charged Particle in the Presence
of Long-Range Magnetic Flux, Physical Review Letters 51 (1983)
1927.

8b. Angular Momentum and Rotational Properties of a Charged 
Particle Orbiting a Magnetic Flux Tube, Fundamental Questions
in Quantum Mechanics, edited by L. M. Roth and A. Inomata,
Gordon and Breach, New York, 1986, p. 177.

These papers discuss the curious properties of a charged particle rotat-
ing about an inaccessible magnetic field, such as that within a very
long solenoid. An experimental test employing a split beam of charged
particles was proposed to determine which set of angular momentum
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eigenvalues is relevant to describing the effects of rotation. The exper-
iment can distinguish between particle paths that wind a different
number of time around the solenoid.

9. On Measurable Distinctions Between Quantum Ensembles, in
Annals of the New York Academy of Sciences: New Techniques 
and Ideas in Quantum Measurement Theory, edited by D. M.
Greenberger, vol. 480, New York Academy of Science, New York,
1986, p. 292.

This paper is concerned with observable differences between quantum
systems in definite, although statistically distributed, eigenstates and
systems in a linear superposition of these same eigenstates.

10. Quantum Interference in the Fluorescence from Entangled Atomic
States, Physics Letters A149 (1990) 413.

The long-distance quantum beat effect is treated in detail and shown
to be insensitive to atomic motion and to allow macroscopic atomic 
separation.

Chapter 5

1. Relativistic Time Dilatation of Bound Muons and the Lorentz
Invariance of Charge, American Journal of Physics 50 (1982) 251.

This paper discusses the issues of bound-particle motion, the deter-
mination of the bound-muon lifetime, and the argument for charge
invariance as a consequence of atomic neutrality.

2. Zeeman Effect in Heavy Muonic Atoms, American Journal of
Physics 51 (1982) 605.

A muon bound to a nucleus of sufficiently large atomic number can
have a classical orbit located within the nuclear interior where the
electrostatic potential experienced by the muon resembles that of a
harmonic oscillator. This paper discusses the energy level structure of
such a muonic atom subject to electrostatic, spin–orbit, and magnetic
interactions.

3. The Lifetime of the Dimuon Atom, Il Nuovo Cimento D2 (1983) 848.

The theoretical existence of exotic atoms with two (or more) electrons
in the same orbit replaced by unstable elementary particles raises
interesting questions concerning the effects of quantum statistics on
particle lifetime. Would the constraints of the Pauli exclusion princi-
ple speed up, slow down, or not affect at all the decay of two ground-
state muons? The outcome is in some ways surprising.
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Chapter 6

1. Interference Colors with Hidden Polarizers, American Journal of
Physics 49 (1981) 881.

The paper explains the interference colors produced by birefringent
cellophane with Rayleigh scattering and Brewster angle reflection
serving as the “hidden” polarizers.

2. Investigation of Light Amplification by Enhanced Internal Reflec-
tion, Parts I and II, Journal of the Optical Society of America 75
(1983) 1732, 1739.

The theory developed in Part I and experimental tests described in
Part II of light amplification by total reflection from a medium with a
population inversion are shown to be in good agreement, thereby con-
firming the once controversial phenomenon of enhanced reflection.
This phenomenon now provides a basis for all-optical telecommunica-
tion systems employing optical fibers, instead of metal wires, and
optical amplification instead of amplification of electronic signals.

3a. Specular Light Scattering from a Chiral Medium, Lettere al
Nuovo Cimento 43 (1985) 378.

3b. Reflection and Refraction at the Surface of a Chiral Medium:
Comparison of Gyrotropic Constitutive Relations Invariant or
Noninvariant Under a Duality Transformation, Journal of the
Optical Society of America A3 (1986) 830.

In the first paper, the Fresnel amplitudes for light reflected from a
transparent isotropic optically active medium are derived from the two
supposedly equivalent, but fundamentally different, sets of chiral
material relations and shown to lead to physically distinguishable
effects. The second, more comprehensive paper extends the theory to
absorbing chiral media and traces the origin of the inequivalence to
the imposition of electromagnetic boundary conditions. These papers
provide a basis for the correct treatment of the electrodynamics and
optics of chiral media, a subject that has since become of widespread
interest for reasons as diverse as national defense and the search for
extraterrestrial intelligent life.

4. Effects of Circular Birefringence on Light Propagation and Reflec-
tion, American Journal of Physics 54 (1986) 69.

This paper demonstrates, among other things, the perhaps surprising
result that for reflection within an anisotropic chiral medium the angle
of incidence need not equal the angle of reflection.

5. Light Reflection from a Naturally Optically Active Birefringent
Medium, Journal of the Optical Society of America A7 (1990) 1163.
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Ordinarily, except for propagation along special directions (the optic
axes) of an anisotropic optically active medium, the effects of optical
activity are overwhelmed by the much stronger linear birefringence of
the medium. This paper shows that the differential reflection of cir-
cularly polarized light can still be sensitive to the weak chiral inter-
actions of the material.

6a. Experimental Method to Detect Chiral Asymmetry in Specular
Light Scattering from a Naturally Optically Active Medium,
Physics Letters A126 (1987) 171.

6b. Experimental Configurations Employing Optical Phase Modula-
tion to Measure Chiral Asymmetries, Journal of the Optical
Society of America A5 (1988) 1852.

These papers describe experimental configurations employing the 
photoelastic modulator to measure the difference in reflection of left
and right circularly polarized light, as well as other optical manifesta-
tions of left–right asymmetry in chiral media.

7. Large Enhancement of Chiral Asymmetry in Light Reflection near
Critical Angle, Optics Communications 74 (1989) 129.

Under conditions of total reflection the unequal scattering of left and
right circularly polarized light by an optically active medium can be
orders of magnitude greater than for ordinary reflection.

8. Differential Amplification of Circularly Polarised Light by
Enhanced Internal Reflection from an Active Chiral Medium,
Optics Communications 74 (1989) 134.

The paper demonstrates that right and left circularly polarized light
can be selectively amplified by reflection from an optically active
medium with a population inversion. Such selective amplification
could make possible novel techniques in quantum information pro-
cessing and cryptography.

9. Wave Propagation Through a Medium with Static and Dynamic
Birefringence: Theory of the Photoelastic Modulator, Journal of
the Optical Society of America A7 (1990) 672.

The unusual behavior of the photoelastic modulator first exhibited in
experiments designed to test the theory of light reflection from opti-
cally active materials is fully accounted for by an analysis of light prop-
agation through a medium with nonparallel axes of static and dynamic
birefringence. The paper discusses means of circumventing the effects
of static birefringence and expanding the use of photoelastic modula-
tion to novel experimental configurations.
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10. Multiple Reflection from Isotropic Chiral Media and the
Enhancement of Chiral Asymmetry, Journal of Electromagnetic
Waves and Applications 6 (1992) 587.

This paper discusses the conditions under which multiple reflec-
tion between two parallel optically active surfaces can enhance 
the difference in reflectance of left and right circularly polarized 
light.

11. Chiral Reflection from a Naturally Optically Active Medium,
Optics Letters 17 (1992) 886.

The difference in reflection of left and right circularly polarized light
from a sample of naturally optically active molecules was enhanced
and quantitatively observed for the first time.

Chapter 7

1. Satellite Test of Intermediate-Range Deviation from Newton’s Law
of Gravity, General Relativity and Gravitation 19 (1987) 511.

This paper analyzes the problem of a test mass subjected to the com-
bined influence of gravity and the “fifth force” within a closed spheri-
cal shell in orbit.

2. Rotational Degeneracy Breaking of Atomic Substates: A Composite
Quantum System in a Noninertial Reference Frame, General Rela-
tivity and Gravitation 21 (1989) 517.

It is shown in this article that the equations of motion for the center
of mass and internal coordinates of an atom undergoing rotation can
be separated (as in an inertial frame) and that the coupling to the
rotating frame splits otherwise degenerate magnetic substates. A
quantum beat experiment with atomic Rydberg states is proposed to
demonstrate this rotational-level splitting.

3a. Rotationally Induced Optical Activity in Atoms, Europhysics
Letters 9 (1989) 95.

3b. Effect of the Earth’s Rotation on the Optical Properties of Atoms,
Physics Letters A146 (1990) 175.

A quantum mechanical derivation is given in the first paper of rota-
tional circular birefringence in atoms; the treatment is generalized in
the second paper to include other optical effects as well expected in
the case of atoms on the spinning Earth.

4. Circular Birefringence of an Atom in Uniform Rotation: The Clas-
sical Perspective, American Journal of Physics 58 (1990) 310.
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The atom in a rotating reference frame is treated by classical mechan-
ics, and a classical interpretation of rotational optical activity is given
in terms of the Coriolis force. The paper also brings out explicitly the
connection between the behavior of systems in a field-free rotating 
reference frame and that in an inertial reference frame with a static
magnetic field.

5a. Measurement of Hydrogen Hyperfine Splittings as a Test of
Quantum Mechanics in a Noninertial Reference Frame, Physics
Letters A152 (1991) 133.

5b. Optical Activity Induced by Rotation of Atomic Spin, Il Nuovo
Cimento D14 (1992) 857.

It is shown that the level structure (paper 5a) and optical properties
(paper 5b) of atoms with zero internal orbital angular momentum are
nevertheless affected by rotation as a result of the coupling of particle
spin to the angular velocity of rotation. The hydrogen hyperfine struc-
ture, which is one of the most precisely measured of all physical quan-
tities, provides a good system for testing these predictions.

Chapter 8

1. On the Run: Unexpected Outcomes of Random Events, The Physics
Teacher 37 (1989) 218.

This paper describes the theory of runs in elementary terms and
applies it to various experiments (computer calculation of random
numbers, coin selection, nuclear decay) to determine whether or not
the outcomes represent a random process.

2a. Tests of Alpha-, Beta-, and Electron Capture Decays for Random-
ness, Physics Letters A262 (1999) 265.

2b. Tests for Randomness of Spontaneous Quantum Decay, Physical
Review A61 (2000) 042106-1.

In these papers, different kinds of nuclear decay processes were exam-
ined experimentally and the resulting data tested for randomness by
means of runs with respect to target values, parity, and sequential 
differences.

3. Experimental Tests for Randomness of Quantum Decay Examined
as a Markov Process, Physics Letters A272 (2000) 1.

In this paper, four distinct nuclear disintegration processes were
recorded over a long succession of counting intervals and examined as
a Markov process to ascertain whether the decay of nuclei is influenced
by their past history. No such dependence was found.
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Chapter 9

1. Symmetry Breaking in a Five-Dimensional Universe with Implica-
tions for the Nature of Dark Matter, Gravity Research Foundation
2000 Essay (GRF, Wellesley Hills, MA, 2000).

This paper makes a first attempt at constructing a gauge-field theory
of gravity based on spontaneously broken spacetime symmetry of a
neutral 5-vector field. (A 5-vector, in analogy to a 4-vector, has five com-
ponents, two of which in this case are temporal.) In an effort to account
for Newton’s gravitational constant as the expectation value of a scalar
field, the theory led to the prediction of low-mass vector bosons, which
would have formed a degenerate Bose–Einstein gas throughout virtu-
ally the entire evolution of the universe and thereby provide a source
of dark matter.

2. Cosmic Degenerate Matter: A Possible Solution to the Problem of
Missing Mass, Classical & Quantum Gravity 18 (2001) L37.

This paper provides a theory of dark matter (in ordinary four-
dimensional space–time) as a Bose–Einstein condensate of very low-
mass neutral bosons arising from the spontaneous breaking of 
reflection symmetry of a scalar (not vector) field. An estimate of the
boson mass is made by assuming a condensate density equal to the crit-
ical background density for a universe with density parameter W = 1.

3. Coherent Degenerate Dark Matter: A Galactic Superfluid?, Classi-
cal & Quantum Gravity 18 (2001) L103.

The theory in the preceding article is developed further in this paper,
which derives expressions for the transition temperature and conden-
sate coherence length and estimates the mass of the scalar boson based
on the density of matter in the galactic halo (rather than on the crit-
ical background density). In addition, the possibility that dark matter
in the halos of rotating galaxies may exhibit superfluid properties is
first proposed, and an estimate is made of the number of quantized
vortices in the Andromeda Galaxy (M31), a Galaxy similar to that of
the Milky Way.

4. Dark Matter as a Cosmic Bose-Einstein Condensate and Possible
Superfluid, General Relativity & Gravitation 34 (2002) 633.

In this paper, the process of symmetry breaking and the evolution and
distribution of dark matter as a degenerate Bose–Einstein gas are
studied in more detail. The nonlinear Schrödinger equation for a
Bose–Einstein condensate is solved, leading to the distribution of dark
matter and the rotational velocity of luminous matter in a galactic halo
of spherical symmetry. Comparison with the rotation curves of the
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Andromeda (M31) and Triangulum (M33) Galaxies leads to an esti-
mate of the boson mass consistent with the value obtained in the pre-
vious article (deduced from the coherence length).

Chapter 10

1. Science as a Human Endeavor, American Journal of Physics 53
(1985) 715.

To help students develop a more accurate and sympathetic perspective
of the nature of science, the paper describes a selection of readings and
topics of discussion emphasizing science as a cultural activity rather
than as a methodological abstraction.

2a. Two Sides of Wonder: Philosophical Keys to the Motivation of
Science Learning, Synthèse 80 (1989) 43.

2b. Raising Questions: Philosophical Significance of Controversy in
Science, Science and Education 1 (1992) 163.

Much of the present chapter was adapted from these essays (particu-
larly the first) which served as the basis of invited talks presented at
the First and Second International Conferences on the History and
Philosophy of Science Teaching respectively held at Florida State 
University, Tallahassee, Florida in 1989 and at Queen’s University,
Kingston, Ontario in 1992. The second paper examines several his-
torical and contemporary scientific controversies that illustrate how
different the actual practice of science is from that based on widely
prevailing idealizations taught in schools.
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Larmor field (magnetic) 272, 

278
Larmor formula 145, 191
Larmor frequency 271
Larmor’s theorem 272
laser 213
lawnchair pilot 38
lifetime 133

of atomic ground state 139
of bound muon 192

of proton 15
of radioactive nucleus 303
of Rydberg state 145

London penetration depth 381
Lorentz force 77
Lorentz invariance 329
Lorentz invariance of electric charge

188
Lorentz transformation 188

of coordinates 331
of electric and magnetic fields

335
lottery experiment 297–299

magnetic dipole moment 128, 
243

magnetic flux 80
magnetic permeability 204, 276
Markov chain 318–319
maser 212–213
mass

inertial and gravitational 248
of Earth 350
of Sun 350
of WIDGET 370

Maxwell demon 16
Maxwell equations 76–77, 334
Maxwell, J. C. (and Maxwell’s

demon) 16, (and
electromagnetism) 204, (on
experimentation) 235

Medawar, P. 37
Meissner effect 88, 344
metric tensor (and gravity)

367–368
Michelson, A. A. 280
Milky Way Galaxy 350
minimal coupling 339
Minkowski metric 333
Minkowski, H. 332
missing mass (also, see dark matter)

348
mixture of states 133
Monty Hall problem 281
muon 192

lifetime of 192,
muonic atom 193

lifetime of 194
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neutrino oscillations 364
Newton’s law(s)

of cooling 48, 50
of motion 248
of gravity 248, 349

Newton, I. 49, 251–252, 279–280,
390–391

nuclear radius 193
nucleosynthesis (cosmic) 359

Omega (cosmological parameter)
352–353, 357, 359, 364

optic axis 210, 224, 228
optical activity 226

atomic 246
rotational 267, 275

optical rotation 224–225
and Rayleigh scattering 226
classical model of 229–230

orbit (penetrating and
nonpenetrating) 142–143

orbital period 144

parity 231
Pauli, W. 21
penetration depth

in a light-absorbing medium 217
in an amplifying medium 222

phase-space effect 196
photoelastic modulator (PEM) 204,

236–237
photon bunching 107–108, 321
photon mass 75
planar rotator 164
Planck radiation law 355, 382
Planck’s constant 69, 247
planetary atom 197
Poisson distribution 290–291,

305–306, 324
polarizability (of an atom) 142,

264–267
polarization of light 204

circular 207, 225, 228
elliptical 207
linear 207

p-polarization 208–209
s-polarization 208–209

unpolarized light 209, 228
and dark matter 377

positronium 127
Potapov device 25
potential energy

of fifth force 253
gravitational 256
rotational 267, 274
in Ginzburg-Landau theory 345

precession (of wave packet) 198
principle of relativity 330
proton magnetic moment 129–130

quantum beats 134–137
restoration of 139
from entangled states 168,

172–177
quantum chromodynamics (QCD)

27, 342–343, 381
quantum interference

gravitationally induced 257
in atomic fluorescence 135–136,

161–163, 173
magnetically induced 79–83,

94–99
rotationally induced 259–261
two-particle 93–94, 109–110
two-slit 300

quark(s) 342

radioactivity 301
radiometer 8
radium-226 311
random events 283
random walk 139–140, 292–294
Ranque-Hilsch effect 20–21
Rayleigh scattering 211, 226
Rayleigh-Bénard effect 45
red shift 352

gravitational 383
reflectance 207, 209, 215
relativity 331

special theory of 190–191,
333–335

general theory of 348, 356, 358,
364, 368

retarded time 176
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Riemann tensor 368
rotation curve (of a galaxy) 351,

372–373
run(s) (of binary outcomes) 285

mean numbers of 286–288, 308,
322

standard deviation of 290
up and down 306–307, 314–316
with respect to a target value

305
with respect to parity 305

Rydberg atom 142, 197
Rydberg constant 128

Sagnac effect 259
for neutrons 261

scalar potential 77
Schiff-Barnhill effect 247
Schrödinger equation 338–339
shot noise 105
Silvermen’s law 57, 59–60
space-time interval 332–333
spatial dispersion 231
spin-orbit interaction 129, 146–147
spin-statistics connection 111, 126
spinor 158
spinor rotation experiment

161–163
spontaneous emission 130,

138–139, 212–213
spontaneous symmetry breaking

342
Standard Model (of elementary

particles) 347, 366
standard deviation 289
Stark effect 150
stationary state 186–187
Stefan’s law (of thermal radiation)

51–52
stimulated emission 139, 212–213
Stokes’ theorem 84, 115
superconductor (Type I) 88
superfluid helium-4 373–375
superfluid vortices 375–376, 385
superfluidity 373
supernova(e) 360

Type Ia 354, 360–364, 383
Type II 360

Szilard, L. (and Maxwell’s demon)
17

Taylor, G. I. 74
thermodynamics

First Law of 11
Second Law of 11, 19

Clausius formulation of 12
Kelvin-Planck formulation of

12
statistical formulation of 14

Thompson B. (Count Rumford) 51
time dilation (or dilatation) 191,

201
time travel 326
total reflection 212
tunneling 301–302

uncertainty relation 134–135, 138,
160, 184, 189

vacuum (quantum mechanical)
130

vacuum polarization 130
variance 289
vector potential 77
velocity operator 185–186
virtual particle 130
visibility (or contrast) 104, 125
Voice of the Dragon 8
vortex tube 10, 18
vortex whistle 21
vorticity 375

W bosons 346
wave function 157–158
wave noise 105
wave packet 73
weak neutral current 246
weak nuclear interactions 245–246,

343
WIDGET 366
Wien displacement law 382
Wigner-Eckart theorem 137
WIMP 364–365



Index 417

winding number 167
Wirbelrohr (see vortex tube)

Yang, C. N. 329
Yang-Mills theory 340
Yukawa, H. 192

Zeeman effect 272
Zeno of Elea 181

Z0 boson 246, 273, 346
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