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PREFACE

It would not be an exaggeration to say that semiconductor devices have transformed human
life. From computers to communications to internet and video games these devices and the
technologies they have enabled have expanded human experience in a way that is unique in
history. Semiconductor devices have exploited materials, physics and imaginative applications to
spawn new lifestyles. Of course for the device engineer, in spite of the advances, the challenges
of reaching higher frequency, lower power consumption, higher power generation etc. provide
never ending excitement. Device performances are driven by new materials, scaling, and new
device concepts such as bandstructure and polarization engineering. Semiconductor devices have
mostly relied on Si but increasingly GaAs, InGaAs and heterostructures made from Si/SiGe,
GaAs/AlGaAs etc have become important. Over the last few years one of the most exciting
new entries has been the GaN based devices that provide new possibilities for lighting, displays
and wireless communications. New physics based on polar charges and polar interfaces has
become important as a result of the nitrides. For students to be able to participate in this and
other exciting arena, a broad understanding of physics, materials properties and device concepts
need to be understood. It is important to have a textbook that teaches students and practicing
engineers about all these areas in a coherent manner. While this is an immense challenge we
have attempted to do so in this textbook by judiciously selecting topics which provide depth
while simultaneously providing the basis for understanding the ever expanding breath of device
physics.

In this book we start out with basic physics concepts including the physics behind polar het-
erostructures and strained heterostructures. We then discuss important devices ranging from
p − n diodes to bipolar and field effect devices. An important distinction users will find in this
book is the discussion we have presented on how interrelated device parameters are on system
function. For example, how much gain is needed in a transistor, and what kind of device char-
acteristics are needed. Not surprisingly the needs depend upon applications. The specifications
of transistors employed in A/D or D/A converter will be different from those in an amplifier in a
cell phone. Similarly the diodes used in a laptop will place different requirements on the device
engineer than diodes used in a mixer circuit. By relating device design to device performance
and then relating device needs to system use the student can see how device design works in real
world.

It is known that device dimensions and geometries are now such that one cannot solve de-
vice problems analytically. However, simulators do not allow students to see the physics of
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PREFACE xiv

the problem and how intelligent choices on doping, geometry and heterostructures will impact
devices. We have tried to provide this insight by carefully discussing and presenting analytical
models and then providing simulation based advanced results. The goal is to teach the student
how to approach device design from the point of view some one who wants to improve devices
and can see the opportunities and challenges. The end of chapter problems chosen in this book
are carefully chosen to allow students to test their knowledge by solving real life problems.

Umesh K. Mishra
University of California

Santa Barbara

Jasprit Singh
The University of Michigan

Ann Arbor
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INTRODUCTION

The pace of semiconductor materials and device development has been staggering, and the
impact on human society monumental. Leading this advance has been the development of the
silicon-based MOSFET device and its continuous high level of integration. Moore’s Law (shown
in figure .1), which predicts the doubling of device density every 18 months, has been the gov-
erning maxim of the industry. Sustaining Moore’s Law has required:

• The development of lithography tools to achieve the 45 nm gate length MOSFETs released
into production in 2006

• The continuous scaling of silicon wafers to 12 inch diameters (2005) and 15 inch in the
future to enable large chip yields per wafer

• Tremendous advances in interconnect technology

• Device innovations to continuously maintain charge control and low gate leakage as the
oxide thickness is scaled down along with the gate length

Though most of the chip and dollar volume of the industry has been driven by Si-based CMOS
architecture, there have been critical advances made in other semiconductor technologies. The
ability to grow epitaxial layers in a controlled fashion, initially by Liquid Phase Expitaxy (LPE)
and Vapor Phase Epitaxy (VPE) and currently by Metalorganic Vapor Phase Epitaxy (MOVPE)
and Molecular Beam Epitaxy (MBE), has enabled the compound semiconductor industry to
mature into a small but critical component of the total space. The impact has been felt in both the
electronics and photonics arenas. In the former, development of the Heterojunction Field Effect
Transistor (HFET) and the Heterojunction Bipolar Transistor (HBT) has had a large impact on
analog and mixed signal applications. In the low noise receiver area, GaAs and InP based HFETs
are the preferred technology. The GaAs-based HBT is preferred for power amplifiers in cellular
phones. The Si/SiGe HBT is being actively used in mixed signal applications such as A/D
converters and in BiCMOS implementations.

In the optical arena, the development of Light Emitting Diodes (LEDs), lasers, and detectors
has been profound. LEDs are used in prolific applications such as signage displays and remote
controls as well as in communication devices. The advent of GaN-based LEDs has raised the
possibility of a revolutionary advance in lighting with the emergence of solid-state lighting.
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Figure .1: Illustration of Moore’s Law.

Lasers and detectors have been the enabling elements in optical communications. Lasers have
also enabled entertainment devices such as the DVD.

The continuous expansion of the material and device tool set has enabled system designers
to choose the correct technology for the application, resulting in phenomenal advances at the
system level. This is best understood by studying a commercial widespread system - the cellular
phone. Consider the Motorola V551 phone, illustrated in figure .2. The key components of the
transmit/receive chain in any radio architecture are the switch, filter, modulator/demodulator,
LNA, mixer, gain blocks, and power amplifier. Integrating the different chips into a total radio
solution places varied specifications on the different chips used to achieve the radio solution. In
turn, these specifications drive the selection of the active device and process technology that is
used to implement the functionality of the particular chip.

As an example of this technology selection process, consider the POLARIS total radio solution
from RFMD, which is a highly integrated transciever that performs all functions of the handset
radio section, operating under GSM/GPRS/EDGE standards. The POLARIS chipset consists of
the following functional blocks, shown in figure .3:

1. The RF 2722 quad-band RF receiver.

2. The RF 3146 POWER STAR PA module with integrated power control.

3. The RF 6001 digital filter, fractional-N PLL, modulator, and power amplifier ramp control.
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Figure .2: The Motoral V551 cellular phone. Picture courtesy of A. Upton, R. Vetury, and J.
Shealy, RFMD.

The RF 2722 fulfills the functional requirement of a quad band LNA and mixer. It includes
a VCO and supports very low IF (VLIF) and direct conversion receive (DCR) architectures,
thus eliminating the need for IF SAW and RF interstage filters. The complexity of the circuit
architecture needed and the noise and linearity requirements placed by the LNA and mixer make
the technology of choice SiGe-BiCMOS.

The RF 3146 fulfills the functional requirement of a power amplifier. It includes considerable
power control circuitry and can be driven from the DAC output, thus eliminating the need for
directional couplers, detector diodes, and other power control circuitry. GaAs HBT technology
is chosen for this component in order to achieve the optimum combination of high power, high
PAE, and excellent linearity requirements at the frequency of operation.

The RF 6001 fulfills the functional requirements of a synthesizer and signal processor. To
achieve the optimum combination of low cost, high levels of integration, and low power con-
sumption, Si CMOS technology is chosen for this component.
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SiGe-BiCMOS

technology

GaAs HBT

technology

Si CMOS

technology

Figure .3: The POLARIS total radio solution from RFMD. Picture courtesy of A. Upton, R.
Vetury, and J. Shealy, RFMD.

So what does the future hold for semiconductor based device development? There are brick
walls facing the conventional scaling of CMOS circuits. Beyond the year 2012 and the 18 nm
node, several of the pathways to continued scaling are not obvious. Also, the power dissipation in
the chip threatens to set a thermal limit to the size and the speed of processors in the future. This
is best illustrated in figure .4, where it is clear that today’s chips seem hotter than a hot plate,
and chips of the future in a tongue-in-cheek prediction may rival the sun’s surface (obviously
impossible). Hence now is the time for all of us to rethink the conventional CMOS scaling
paradigm and consider what new pathways may open up. Could compound semiconductors,
with their high electron mobilities and velocities, play a role in achieving high clock speeds
and reduced power levels? Could large bandgap materials such as Gallium Nitride play a role
in applications where the operating temperature is continuously rising? Are there completely
new devices such as Carbon Nanotubes (CNTs) which operate in the ballistic regime of electron
and hole transport that can emerge as the dark horse in future complementary circuits? Or is
molecular electronics, the use of the electronic states of the molecule to achieve computation, the
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Figure .4: Chip power density is increasing exponentially with time.

answer? Is the control of electron spin rather than the total charge in the channel of the device
(the emerging field of spintronics) the holy grail? Are architectures based on single electron
transistors a high density, low power alternative?

The future is murky, and we as scientists and engineers have to help clarify it. This book seeks
to provide an understanding of the materials, devices, and technology of the various alternatives
being considerred, with detail appropriate to the maturity of the technology. A bias towards
compound semiconductors is obvious, as Si-based devices have been exclusively addressed over
the years in various forms. We hope that this book serves a function to academics teaching course
materials, engineers and researchers in the field tackling the murky future, and today’s graduate
students who will be the great engineers of tomorrow.
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Chapter 1

STRUCTURAL PROPERTIES OF
SEMICONDUCTORS

1.1 INTRODUCTION

In this text we will be exploring state of the art electronic devices that drive modern informa-
tion technology. Essentially all of these devices are based on semiconductors. Semiconductor
structures have also provided the stages for exploring questions of fundamental physics. As tech-
nology advances the number of semiconductors that are used in technology steadily increases.
Indeed many innovations have arisen as a result of using new materials and their heterostruc-
tures. Thus while Si, GaAs and InP have been most widely used, other materials like InAs, GaN,
InN etc. are finding important uses as well. It is important to recognize that the ability to exam-
ine fundamental physics issues and to use semiconductors in state of the art device technologies
depends critically on the purity and perfection of the semiconductor crystal.

Semiconductor structures can operate at their potential only if they can be grown with a high
degree of crystallinity and if impurities and defects can be controlled. For high structural quality
it is essential that a high quality substrate be available. This requires growth of bulk crystals
which are then sliced and polished to allow epitaxial growth of thin semiconductor regions in-
cluding heterostructures.

In this chapter we will discuss important semiconductor crystal structures. We also discuss
strained lattice structures and the strain tensor for such crystals. Strained epitaxy and its resultant
consequences are now widely exploited in semiconductor physics. High speed SiGe devices are
based on strained systems as are InGaAs and AlGaN/GaN microwave devices.

We will start with some general properties of crystalline materials and then discuss some
specific crystal structures important for semiconductors.

1
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1.2 CRYSTAL STRUCTURE

As noted above high performance semiconductor devices are based on crystalline materials.
Crystals are periodic structures made up of identical building blocks. While in “natural” crystals
the crystalline symmetry is fixed by nature, new advances in crystal growth techniques are allow-
ing scientists to produce artificial crystals with modified crystalline structure. These advances
depend upon being able to place atomic layers with exact precision and control during growth,
leading to “low dimensional systems”. To define the crystal structure, two important concepts
are introduced. The lattice represents a set of points in space forming a periodic structure. The
lattice is by itself a mathematical abstraction. A building block of atoms called the basis is then
attached to each lattice point yielding the physical crystal structure.

To define a lattice one defines three vectors a1, a2, a3, such that any lattice point R′ can be
obtained from any other lattice point R by a translation

R′ = R + m1a1 + m2a2 + m3a3 (1.2.1)

where m1, m2, m3 are integers. Such a lattice is called a Bravais lattice . The crystalline
structure is now produced by attaching the basis to each of these lattice points.

lattice + basis = crystal structure (1.2.2)

The translation vectors a1, a2, and a3 are called primitive if the volume of the cell formed by
them is the smallest possible. There is no unique way to choose the primitive vectors. It is
possible to define more than one set of primitive vectors for a given lattice, and often the choice
depends upon convenience. The volume cell enclosed by the primitive vectors is called the
primitive unit cell .

Because of the periodicity of a lattice, it is useful to define the symmetry of the structure. The
symmetry is defined via a set of point group operations which involve a set of operations applied
around a point. The operations involve rotation, reflection and inversion. The symmetry plays
a very important role in the electronic properties of the crystals. For example, the inversion
symmetry is extremely important and many physical properties of semiconductors are tied to
the absence of this symmetry. As will be clear later, in the diamond structure (Si, Ge, C, etc.),
inversion symmetry is present, while in the Zinc Blende structure (GaAs, AlAs, InAs, etc.), it is
absent. Because of this lack of inversion symmetry, these semiconductors are piezoelectric, i.e.,
when they are strained an electric potential is developed across the opposite faces of the crystal.
In crystals with inversion symmetry, where the two faces are identical, this is not possible.

1.2.1 Basic Lattice Types

The various kinds of lattice structures possible in nature are described by the symmetry group
that describes their properties. Rotation is one of the important symmetry groups. Lattices can
be found which have a rotation symmetry of 2π, 2π

2 , 2π
3 , 2π

4 , 2π
6 . The rotation symmetries are
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denoted by 1, 2, 3, 4, and 6. No other rotation axes exist; e.g., 2π
5 or 2π

7 are not allowed because
such a structure could not fill up an infinite space.

There are 14 types of lattices in 3D. These lattice classes are defined by the relationships be-
tween the primitive vectors a1, a2, and a3, and the angles α, β, and γ between them. We will
focus on the cubic and hexagonal lattices which underly the structure taken by all semiconduc-
tors.

There are 3 kinds of cubic lattices: simple cubic, body centered cubic, and face centered cubic.

Simple cubic: The simple cubic lattice shown in figure 1.1is generated by the primitive vec-
tors

ax, ay, az (1.2.3)

where the x, y, z are unit vectors.

Body-centered cubic : The bcc lattice shown in figure 1.2 can be generated from the simple
cubic structure by placing a lattice point at the center of the cube. If x̂, ŷ, and ẑ are three
orthogonal unit vectors, then a set of primitive vectors for the body-centered cubic lattice could
be

a1 = ax̂, a2 = aŷ, a3 =
a

2
(x̂ + ŷ + ẑ) (1.2.4)

A more symmetric set for the bcc lattice is

a1 =
a

2
(ŷ + ẑ − x̂), a2 =

a

2
(ẑ + x̂ − ŷ), a3 =

a

2
(x̂ + ŷ − ẑ) (1.2.5)

Face Centered Cubic: Another equally important lattice for semiconductors is the face-centered
cubic (fcc) Bravais lattice shown in figure 1.3. To construct the face-centered cubic Bravais
lattice add to the simple cubic lattice an additional point in the center of each square face. This
form of packing is called close-packed.

A symmetric set of primitive vectors for the face-centered cubic lattice (see figure 1.3) is

a1 =
a

2
(ŷ + ẑ), a2 =

a

2
(ẑ + x̂), a3 =

a

2
(x̂ + ŷ) (1.2.6)

The face-centered cubic and body-centered cubic Bravais lattices are of great importance,
since an enormous variety of solids crystallize in these forms with an atom (or ion) at each
lattice site. Essentially all semiconductors of interest for electronics and optoelectronics have a
close-packed structure, either fcc or Hexagonal Close Pack(HCP) as discussed below.

1.2.2 Basic Crystal Structures

Diamond and Zinc Blende Structures
Most semiconductors of interest for electronics and optoelectronics have an underlying fcc lat-
tice, with two atoms per basis. The coordinates of the two basis atoms are

(000) and (
a

4
,
a

4
,
a

4
) (1.2.7)
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x

y

z

a3

a2

a1
a

a3

a2
a1

z

y

x

a

a3

a2 a1

(a)

(b)

(c)

Figure 1.1: A simple cubic lattice showing the primitive vectors. The crystal is produced by
repeating the cubic cell through space.
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a

Two atoms per basis
Basis atoms same: Diamond structure
Basis atoms different: Zinc blende

Figure 1.2: The body centered cubic lattice along with a choice of primitive vectors.

z

y

x

a3

a2
a1

a

fcc lattice

Figure 1.3: Primitive basis vectors for the face centered cubic lattice.
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a

Figure 1.4: The zinc blende crystal structure. The structure consists of the interpenetrating
fcc lattices, one displaced from the other by a distance (a

4
a
4

a
4 ) along the body diagonal. The

underlying Bravais lattice is fcc with a two atom basis. The positions of the two atoms is (000)
and (a

4
a
4

a
4 ).

Since each atom lies on its own fcc lattice, such a two atom basis structure may be thought of as
two inter-penetrating fcc lattices, one displaced from the other by a translation along the body
diagonal direction (a

4
a
4

a
4 ).

Figure 1.4 shows this important structure. If the two atoms of the basis are identical, the
structure is called diamond. Semiconductors such as Si, Ge, C, etc., fall in this category. If the
two atoms are different, the structure is called the Zinc Blende structure. Semiconductors such
as GaAs, AlAs, CdS, etc., fall in this category. Semiconductors with diamond structure are often
called elemental semiconductors, while the Zinc Blende semiconductors are called compound
semiconductors. The compound semiconductors are also denoted by the position of the atoms in
the periodic chart, e.g., GaAs, AlAs, InP are called III-V (three-five) semiconductors while CdS,
HgTe, CdTe, etc., are called II-VI (two-six) semiconductors.

Hexagonal Close Pack Structure The hexagonal close pack (hcp) structure is an important
lattice structure and many semiconductors such as BN, AlN, GaN, SiC, etc., also have this un-
derlying lattice (with a two-atom basis). The hcp structure is formed as shown in figure 1.5a.
Imagine that a close-packed layer of spheres is formed. Each sphere touches six other spheres,
leaving cavities, as shown in figure 1.5. A second close-packed layer of spheres is placed on top
of the first one so that the second layer sphere centers are in the cavities formed by the first layer.
The third layer of close-packed spheres can now be placed so that center of the spheres do not
fall on the center of the starting spheres (left side of figure 1.5a) or coincide with the centers of
the starting spheres (right side of figure 1.5). These two sequences, when repeated, produce the
fcc and hcp lattices.
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(a)

(b)

+

Spheres on the starting layer

Center s of spheres on the second layer

Center s of spheres on the third layer

+ + +

+ + + + + + + + + +

+ + + +

+

fcc
hcp

a b

c

a

b

a

(c)

Figure 1.5: (a) A schematic of how the fcc and hcp lattices are formed by close packing of
spheres. (b) The hcp structure is produced by two interpenetrating hexagonal lattices with a
displacement discussed in the text. (c) Arrangement of lattice points on an hcp lattice.

In figure 1.5b and figure 1.5c we show the detailed positions of the lattice points in the hcp
lattice. The three lattice vectors a1, a2, a3 are shown as a, b, c. The vector a3 is denoted by c
and the term c-axis refers to the orientation of a3. The hexagonal planes are displaced from each
other by a1/3 + a2/3 + a3/2. In an ideal structure, if | a |=| a1 |=| a2 |,

c

a
=

√
8

3
(1.2.8)

In table 1.1 we show the structural and some important electronic properties of some important
semiconductors. Note that two or more semiconductors are randomly mixed to produce an alloy,
AxB1−x, the lattice constant of the alloy is given by Vegard’s law according to which the alloy
lattice constant is the weighted mean of the lattice constants of the individual components

aalloy = xaA + (1 − x)aB (1.2.9)

1.2.3 Notation to Denote Planes and Points in a Lattice: Miller Indices

To represent the directions and planes in a crystalline structure an agreed upon scheme is
used. The planes or directions are denoted by a series of integers called the Miller indices.
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Zinc Blende and Wurtzite
 CRYSTAL  STATIC LATTICE

MATERIAL STRUCTURE BANDGAP DIELECTRIC CONSTANT DENSITY

      (EV) CONSTANT (¯)  (gm-cm 3 )

C DI 5.50, I        5.570 3.56683 3.51525
Si DI 1.1242, I         11.9       5.431073 2.329002
SiC ZB 2.416, I             9.72       4.3596 3.166
Ge DI 0.664, I   16.2 5.6579060 5.3234
BN HEX 5.2, I     ε|| = 5.06       6.6612 2.18
       ε  = 6.85       2.5040 
BN ZB 6.4, I           7.1      3.6157 3.4870
BP ZB 2.4, I        11.      4.5383 2.97
BAs ZB                 4.777 5.22
AlN W 6.2,D       ε = 9.14      3.111 3.255
            4.981 
AlP ZB 2.45,I           9.8      5.4635 2.401
AlAS ZB 2.153,I         10.06    5.660 3.760
AlSb ZB 1.615,I         12.04    6.1355 4.26
GaN W 3.44,D ε||=10.4    3.175 6.095

ε  = 9.5 5.158 
GaP ZB 2.272,I         11.11    5.4505 4.138
GaAs ZB 1.4241,D         13.18    5.65325 5.3176
GaSb ZB 0.75,D        15.69    6.09593 5.6137
InN W 1.89,D          3.5446 6.81
    8.7034 
InP ZB 1.344,D     12.56 5.8687 4.81
InAs ZB 0.354,D          15.15      6.0583 5.667
InSb ZB 0.230,D       16.8     6.47937 5.7747
ZnO W 3.44,D     ε||= 8.75      3.253 5.67526

ε  = 7.8 5.213 
ZnS ZB 3.68,D       8.9 5.4102 4.079
ZnS W 3.9107,D      ε = 9.6      3.8226 4.084

 6.2605 
ZnSe ZB 2.8215,D       9.1 5.6676 5.266
ZnTe ZB 2.3941,D       8.7 6.1037 5.636 
CdO R 0.84,I     21.9 4.689 8.15
CdS W 2.501,D       ε = 9.83      4.1362 4.82

 6.714
CdS ZB 2.50,D             5.818      
CdSe W 1.751,D       ε||=10.16      4.2999 5.81
     ε = 9.29    7.0109
CdSe ZB                    6.052      
CdTe ZB 1.475,D         10.2      6.482 5.87
PbS R 0.41,D*      169.      5.936 7.597
PbSe R 0.278,D*      210.      6.117 8.26
PbTe R 0.310,D*      414.      6.462 8.219

a =
c =

a =
c =

a =
c =

a =
c =

a =
c =

a =
c =

a =
c =

a =
c =

Data are given at room temperature values (300 K).
Key: DI: diamond; HEX: hexagonal; R: rocksalt; W: wurtzite; ZB: zinc blende; 
*: gap at L point; D: direct; I: indirect ε||: parallel to c-axis; ε  : perpendicular to c-axis

Table 1.1: Structure, lattice constant, and density of some materials at room temperature
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These indicies are obtained using the following:

(1) Define the x, y, z axes (primitive vectors).
(2) Take the intercepts of the plane along the axes in units of lattice constants.
(3) Take the reciprocal of the intercepts and reduce them to the smallest integers.
The notation (hkl) denotes a family of parallel planes.
The notation (hkl) denotes a family of equivalent planes.

To denote directions, we use the smallest set of integers having the same ratio as the direction
cosines of the direction.

In a cubic system the Miller indices of a plane are the same as the direction perpendicular
to the plane. The notation [ ] is for a set of parallel directions; < > is for a set of equivalent
direction. Figure 1.6 shows some examples of the use of the Miller indices to define planes for a
cubic system.

Example 1.1 The lattice constant of silicon is 5.43 Å. Calculate the number of silicon
atoms in a Si MOSFET with dimensions of 50μm × 2μm × 1μm.

Silicon has a diamond structure which is made up of the fcc lattice with two atoms on each
lattice point. The fcc unit cube has a volume a3. The cube has eight lattice sites at the cube
edges. However, each of these points is shared with eight other cubes. In addition, there
are six lattice points on the cube face centers. Each of these points is shared by two
adjacent cubes. Thus the number of lattice points per cube of volume a3 are

N(a3) =
8

8
+

6

2
= 4

In silicon there are two silicon atoms per lattice point. The number density is, therefore,

NSi =
4 × 2

a3
=

4 × 2

(5.43 × 10−8)3
= 4.997 × 1022 atoms/cm3

The number in the MOSFET are

NMOSFET = 4.997 × 1012 atoms

Example 1.2 Calculate the surface density of Ga atoms on a Ga terminated (001) GaAs
surface.

In the (001) surfaces, the top atoms are either Ga or As leading to the terminology Ga
terminated (or Ga stabilized) and As terminated (or As stabilized), respectively. A square
of area a2 has four atoms on the edges of the square and one atom at the center of the
square. The atoms on the square edges are shared by a total of four squares. The total
number of atoms per square is

N(a2) =
4

4
+ 1 = 2

The surface density is then

NGa =
2

a2
=

2

(5.65 × 10−8)2
= 6.26 × 1014 cm−2
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ATOMS ON THE (111) PLANE

Could be either  Ga or As

1 bond connecting an adjacent  
plane on one side

3 bonds connecting an adjacent  
plane on the othe r side

ATOMS ON THE (110) PLANE

Each atom has 4 bonds:
• 2 bonds in the (110) plane
• 1 bond connects each atom to 
adjacent (110) planes

Cleaving adjacent planes 
requires breaking 1 bond per atom

ATOMS ON THE (001) PLANE

2 bonds connect each atom to 
adjacent (001) plane

Atoms are either  Ga or As in a 
GaAs crystal

Cleaving adjacent planes 
requires breaking 2 bonds per atom

Figure 1.6: Some important planes in the cubic system along with their Miller indices. This
figure also shows how many bonds connect adjacent planes. This number determines how easy
or difficult it is to cleave the crystal along these planes.
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1.2.4 Artificial Structures: Superlattices and Quantum Wells

Epitaxial crystal growth techniques such as molecular beam epitaxy (MBE) and metal or-
ganic chemical vapor deposition (MOCVD) allow one to have monolayer (∼3 Å) control in the
chemical composition of the growing crystal. Nearly every semiconductor extending from zero
bandgap (α-Sn,HgCdTe) to large bandgap materials such as ZnSe,CdS,AlN etc., has been grown
by epitaxial techniques. This allows growth of quantum wells and heterostructures where elec-
tronic properties can be altered. Heteroepitaxial techniques allow one to grow heterostructures
with atomic control, one can change the periodicity of the crystal in the growth direction. This
leads to the concept of superlattices where two (or more) semiconductors A and B are grown
alternately with thicknesses dA and dB respectively. The periodicity of the lattice in the growth
direction is then dA + dB . A (GaAs)/(AlAs) heterostructure is illustrated in figure 1.7.

In figure 1.8, we show a cross-sectional TEM image of a structure containing InGaAs/GaAs
and AlGaAs/GaAs superlattices, indicating the precision with which these structures can be
produced using modern epitaxial growth techniques.

Ga

As

Al

Figure 1.7: Arrangement of atoms in a (GaAs)/(AlAs) heterostructure grown along (001) direc-
tion.
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Figure 1.8: (b) This transmission electron microscope picture shows the precision with which
semiconductor compositions can be altered by epitaxial growth techniques. Individual semicon-
ductor layers as thin as 10 Å can be produced.

1.2.5 Surfaces : Ideal Versus Real

The arrangement of atoms on the surface can be quite different from that in the bulk. The
bulk crystal structure is decided by the internal chemical energy of the atoms forming the crystal
with a certain number of nearest neighbors, second nearest neighbors, etc. Since the surface,
the number of neighbors is suddenly altered, the spatial geometries which were providing the
lowest energy configuration in the bulk may not provide the lowest energy configuration at the
surface. Thus, there is a readjustment or “reconstruction” of the surface bonds toward an energy
minimizing configuration.

An example of such a reconstruction is shown for the GaAs surface in figure 1.9. The figure
(a) shows an ideal (001) surface where the topmost atoms form a square lattice. The surface
atoms have two nearest neighbor bonds (Ga-As) with the layer below, four second neighbor
bonds (e.g., Ga-Ga or As-As) with the next lower layer, and four second neighbor bonds within
the same layer. We could denote the ideal surface by the symbol C(1×1), representing the fact
that the surface periodicity is one unit by one unit along the square lattice along [110] and [1̄10].
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4 Å

4 Å

 (2 x 4 unit cell)

(a) (b)

Top layer As atoms
Second layer Ga atoms
Third layer As atoms

IDEAL SURFACE RECONSTRUCTED SURFACE

Figure 1.9: The structure (a) of the unreconstructed GaAs (001) arsenic-rich surface. The miss-
ing dimer model (b) for the GaAs (001) (2×4) surface. The As dimers are missing to create a 4
unit periodicity along one direction and a two unit periodicity along the perpendicular direction.

The reconstructed surfaces that occur in nature are generally classified as C(2×8) or C(2×4) etc.,
representing the increased periodicity along the [1̄10] and [110] respectively. The C(2×4) case
is shown schematically in figure 1.9, for an arsenic stabilized surface (i.e., the top monolayer is
As). The As atoms on the surface form dimers (along [1̄10] on the surface to strengthen their
bonds. In addition, rows of missing dimers cause a longer range ordering as shown to increase
the periodicity along the [110] direction to cause a C(2×4) unit cell. Similar reconstruction
occurs for Si surfaces as well.

Example 1.1 Calculate the planar density of atoms on the (111) surface of GaAs.

As can be seen from figure 1.6, we can form a triangle on the (111) surface. There are
three atoms on the tips of the triangle. These atoms are shared by six other similar
triangles. There are also 3 atoms along the edges of the triangle which are shared by two
adjacent triangles. Thus the number of atoms in the triangle are

3

6
+

3

2
= 2

The area of the triangle is
√

3a2/2. The density of GaAs atoms on the surface is then
7.29 × 1014 cm−2.



14 CHAPTER 1. STRUCTURAL PROPERTIES OF SEMICONDUCTORS

(a)

(b)

Figure 1.10: (a) Cross-sectional TEM images of a typical AlGaN/GaN HFET structure grown on
a SiC substrate. First, a 50 nm AlN nucleation layer is grown, followed by a 450 nm GaN buffer
layer and a 29 nm AlGaN cap. A large number of defects are formed at the AlN/GaN interface,
but many of the defects are annihilated as the GaN layer is thickened. The AlGaN cap layer is
coherently strained on top of the bulk GaN. No new defects are formed at this interface. (b) High
resolution X-ray diffraction scan of this structure. The close match between the data and theory
indicates the high crystalline quality of the structure. Images courtesy of Prof. J. Speck, UCSB.
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1.2.6 Interfaces

Like surfaces, interfaces are an integral part of semiconductor devices. We have already dis-
cussed the concept of heterostructures and superlattices which involve interfaces between two
semiconductors. These interfaces are usually of high quality with essentially no broken bonds
(see figure 1.10), except for dislocations in strained structures (to be discussed later). There is,
nevertheless, an interface roughness of one or two monolayers which is produced because of
either non-ideal growth conditions or imprecise shutter control in the switching of the semicon-
ductor species. The general picture of such a rough interface is as shown in figure 1.11a for
epitaxially grown interfaces. The crystallinity and periodicity in the underlying lattice is main-
tained, but the chemical species have some disorder on interfacial planes. Such a disorder can
be quite important in many electronic devices. In figure 1.11b we show a TEM for a GaAs/AlAs
interface.

One of the most important interfaces in electronics is the Si/SiO2 interface. This interface
and its quality is responsible for essentially all of the modern consumer electronic revolution.
This interface represents a situation where two materials with very different lattice constants and
crystal structures are brought together. However, in spite of these large differences the interface
quality is quite good. In figure 1.12 we show a TEM cross-section of a Si/SiO2 interface. It
appears that the interface has a region of a few monolayers of amorphous or disordered Si/SiO2

region creating fluctuations in the chemical species (and consequently in potential energy) across
the interface. This interface roughness is responsible for reducing mobility of electrons and
holes in MOS devices. It can also lead to “trap” states, which can seriously deteriorate device
performance if the interface quality is poor.

Finally, we have the interfaces formed between metals and semiconductors. Structurally, these
important interfaces are hardest to characterize and are usually produced in presence of high
temperatures. Metal-semiconductor interfaces involve diffusion of metal elements along with
complex chemical reactions.

1.2.7 Semiconductor Defects

Semiconductor devices have both unintended and intentional defects. Some unintentional de-
fects are introduced due to either thermodynamic considerations or the presence of impurities
during the crystal growth process. In general, defects in crystalline semiconductors can be char-
acterized as i) point defects; ii) line defects; iii) planar defects and iv) volume defects. These
defects are detrimental to the performance of electronic and optoelectronic devices and are to be
avoided as much as possible.
Localized Defects
A localized defect affects the periodicity of the crystal only in one or a few unit cells. There are
a variety of point defects, as shown in figure 1.13. Defects are present in any crystal and their
concentration is given roughly by the thermodynamics relation

Nd

NTot
= kd exp

(
− Ed

kBT

)
(1.2.10)

where Nd is the vacancy density, NTot the total site density in the crystal, Ed the defect formation
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D
l

AlAs (perfect crystal)

GaAs (perfect crystal)

GaAs

GaAs

2.1 ML AlAs

(a)

(b)

Figure 1.11: (a) A schematic picture of the interfaces between materials with similar lattice
constants such as GaAs/AlAs. No loss of crystalline lattice and long range order is suffered
in such interfaces. The interface is characterized by islands of height Δ and lateral extent λ.
(b) High resolution cross-sectional TEM image along with schematic diagram of (411A) GaAs
with a very thin (2.1 monolayer) AlAs layer in the middle. A small amount of roughness can
be observed at the interface. TEM image courtesy of S. Shimomura and S. Hiyamizu of Osaka
University.

energy, kd is a dimensionless parameter with values ranging from 1 to 10 in semiconductors, and
T , the crystal growth temperature. Defect formation energy is in the range of an eV for most
semiconductors.
Dislocations
In contrast to point defects, line defects (called dislocations) involve a large number of atomic
sites that can be connected by a line. Dislocations are produced if, for example, an extra half
plane of atoms are inserted (or taken out) of the crystal as shown in figure 1.14. Such dislocations
are called edge dislocations. Dislocations can also be created if there is a slip in the crystal so
that part of the crystal bonds are broken and reconnected with atoms after the slip. In the nitride
technology where alternate substrates are used, dislocation densities can be quite large.
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SiO2

Si
Rows
of Si
atoms

Figure 1.12: The tremendous success of Si technology is due to the Si/SiO2 interface. In spite
of the very different crystal structure of Si and SiO2, the interface is extremely sharp, as shown
in the TEM picture in this figure. TEM image courtesy of Bell Labs.

1.3 LATTICE MISMATCHED STRUCTURES

It is relatively easy to grow heterostructures where the overlayer lattice constant is the same or
similar to that of the substrate. In such lattice matched epitaxy the interface quality can be very
high with essentially negligible interface defects and atomically abrupt interface. However one
often needs structures where there is lattice mismatch between the overlayer and the substrate.
The motivation for lattice mismatched epitaxy is two fold:

i) Incorporation of built-in strain: When a lattice mismatched semiconductor is grown on a
substrate and the thickness of the overlayer is very thin, the overlayer has a built-in strain. This
built-in strain has important effects on the electronic and optoelectronic properties of the material
and can be exploited for high performance devices. It can be exploited in nitride heterostructures
to effectively dope structures. It can also be exploited in Si/SiGe systems.
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Vacancy

Self 
interstitial

Impurity 
interstitial

Substitutional

POINT DEFECTS

• Effect is localized
  to a few atomic sites

TYPICAL POINT DEFECTS IN CRYSTALS

Figure 1.13: A schematic showing some important point defects in a crystal.

ii) New effective substrate: High quality substrates are only available for Si, GaAs and InP
(sapphire, SiC and quartz substrates are also available and used for some applications). Since
most semiconductors are not lattice-matched to these substrates a solution that has emerged is
to grow a thick overlayer on a mismatched substrate. If the conditions are right, dislocations are
generated and eventually the overlayer forms its own substrate. This process allows a tremen-
dous flexibility in semiconductor technology. Not only can it, in principle, resolve the substrate
availability problem, it also allows the possibility of growing GaAs on Si, CdTe on GaAs, GaN
on SiC etc. Thus different semiconductor technologies can be integrated on the same wafer.

In figure 1.15 we show a TEM image of an InP/InAs double-barrier resonant tunneling device
(DBRT). The InP barriers are 5 nm wide, enclosing a 15 nm InAs quantum dot. The InP is
coherently strained, with no dislocations created at the interfaces. The sharpness of the interfaces
was determined to be 1-3 lattice spacings.

Coherent and Incoherent Structures
Consider situation shown schematically in figure 1.16 where an overlayer with lattice constant
aL is grown on a substrate with lattice constant aS . The strain between the two materials is
defined as

ε =
aS − aL

aL
(1.3.1)

If the lattice constant of the overlayer is maintained to be aL, it is easy to see that after every 1/ε
bonds between the overlayer and the substrate, either a bond is missing or an extra bond appears
as shown in figure 1.16b. In fact, there would be a row of missing or extra bonds since we have
a 2-dimensional plane. These defects are the dislocations discussed earlier.

An alternative to the incoherent case is shown in figure 1.16c. Here all the atoms at the in-
terface of the substrate and the overlayer are properly bonded by adjusting the in-plane lattice
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Row of atoms 
have only 3 
nearest 
neighbor bonds

Figure 1.14: A schematic showing the presence of a dislocation. This line defect is produced by
adding an extra half plane of atoms.

Figure 1.15: TEM image of an InP/InAs double-barrier resonant tunneling device (DBRT) con-
sisting of 5 nm InP barriers surrounding a 15 nm InAs quantum dot. The InP is coherently
strained, with no dislocations created at the interfaces. Image courtesy of M. Bjork, Lund Uni-
versity.
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(a)

(b)

(c)

n bonds: substrate

n + 1 bonds: epilayer

Substrate

Overlayer

aL > aS aL < aS

GROWTH WITH DISLOCATIONS

n  bonds: substrate

n–1 bonds: epilayer

DISLOCATION FREE

n~ 1
ε

Figure 1.16: (a) An overlayer with one lattice constant is placed without distortion on a substrate
with a different lattice constant. (b) Dislocations are generated at positions where the interface
bonding is lost. (c) The case is shown where the overlayer is distorted so that no dislocation is
free and coherent with the substrate.

constant of the overlayer to that of the substrate. This causes the overlayer to be under strain
and the system has a certain amount of strain energy. This strain energy grows as the overlayer
thickness increases. In the strained epitaxy, the choice between the state of the structure shown
in figure 1.16b and the state shown in figure 1.16c is decided by free energy minimization con-
siderations. The general observations can be summarized as follows:

For small lattice mismatch (ε < 0.03), the overlayer initially grows in perfect registry with
the substrate, as shown in figure 1.16c. However, as noted before, the strain energy will grow
as the overlayer thickness increases. As a result, it will eventually be favorable for the overlayer
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to generate dislocations. In simplistic theories this occurs at an overlayer thickness called the
critical thickness , dc, which is approximately given by

dc
∼= aS

2|ε| (1.3.2)

where aS is the lattice constant of the substrate and ε the lattice mismatch. In reality, the point in
growth where dislocations are generated is not so clear cut and depends upon growth conditions,
surface conditions, dislocation kinetics, etc. However, one may use the criteria given by equation
1.3.2 for approximately characterizing two regions of overlayer thickness for a given lattice
mismatch. Below critical thickness, the overlayer grows without dislocations and the film is
under strain. Under ideal conditions above critical thickness, the film has a dislocation array,
and after the dislocation arrays are generated, the overlayer grows without strain with its free
lattice constant.

If the strain value is greater than 0.03 one can still have strained epitaxy but the growth occurs
in the island mode where islands of the over-layer are formed. Such self-assembled islands are
being used for quantum dot structures.

Epitaxy beyond the critical thickness is important to provide new effective substrates for new
material growth. For these applications the key issues center around ensuring that the disloca-
tions generated stay near the overlayer-substrate interface and do not propagate into the overlayer
as shown in figure 1.17. A great deal of work has been done to study this problem. Often thin
superlattices in which the individual layers have alternate signs of strain are grown to “trap” or
“bend” the dislocations. It is also useful to build the strain up gradually.

In recent years, the GaN material system has seen much progress in electronic and optoelec-
tronic applications. Since GaN substrates are still not readily available, it is typically grown on
Al2O3 (sapphire) or SiC , neither of which are closely lattice matched to GaN. The resulting
material is therefore highly dislocated. Many of the dislocations propagate upwards and are
terminated at the surface. In figure 1.18a, we show a cross-sectional transmission electron mi-
croscope image of GaN grown on sapphire. The vertical lines propagating upwards from the
highly defective interface are dislocations. Figure 1.18b is an atomic force microscope (AFM)
image of the GaN surface. The black pits are dislocations that have propagated upwards. Also
evident are the atomic steps that are typical of GaN surfaces. Such surface reconstructions were
described in section 1.2.5. Note that these atomic steps are always terminated by a dislocation.

In figure 1.18c, we show an AFM image of the surface of dislocation-free GaN. In contrast to
the dislocated material in figure 1.18b, there are no pits visible on the surface, and the surface
step structure is smooth and continuous.

1.4 STRAINED EPITAXY: STRAIN TENSOR

Growth of an epitaxial layer whose lattice constant is close, but not equal, to the lattice con-
stant of the substrate can result in a coherent strain. What is the strain tensor in such epitaxy?
The strain tensor determines how the electronic properties are altered. If the strain is small one
can have monolayer-by-monolayer. In this case the lattice constant of the epitaxial layer in the
directions parallel to the interface is forced to be equal to the lattice constant of the substrate.
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Figure 1.17: Strained epitaxy above critical thickness . The left hand side figure shows a desir-
able structure in which the dislocations are confined near the overlayer-substrate interface. On
the right hand side, the dislocations are penetrating the overlayer.

The lattice constant of the epitaxial perpendicular to the substrate will be changed by the Poisson
effect . These two cases are depicted in figure 1.16c. This type of coherently strained crystal is
called pseudomorphic .

For layer-by-layer growth, the epitaxial semiconductor layer is biaxially strained in the plane
of the substrate, by an amount ε‖, and uniaxially strained in the perpendicular direction, by an
amount ε⊥. For a thick substrate, the in-plane strain of the layer is determined from the bulk
lattice constants of the substrate material, aS , and the layer material, aL:

e‖ =
aS

aL
− 1

= ε (1.4.1)

Since the layer is subjected to no stress in the perpendicular direction, the perpendicular strain,
ε⊥, is simply proportional to ε‖:

ε⊥ =
−ε‖
σ

(1.4.2)

where the constant σ is known as Poisson’s ratio .
Noting that there is no stress in the direction of growth it can be simply shown that for the

strained layer grown on a (001) substrate (for an fcc lattice)

σ =
c11

2c12
(1.4.3)

εxx = ε‖
εyy = εxx

εzz =
−2c12

c11
ε‖

εxy = 0

εyz = 0

εzx = 0
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Figure 1.18: (a) Cross-sectional TEM image of GaN grown heteroepitaxially on sapphire, in-
dicating the highly defective interface and the dislocations that propagate upwards. (b) AFM
surface image of the dislocated GaN , showing the atomic step structure which is typical of GaN
surfaces. The black dots are dislocations that have propagated upwards to the surface. (c) AFM
surface image of non-dislocated GaN, exhibiting a smooth and continuous step structure. Images
courtesy of P. Fini and H. Marchand of UCSB.
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while in the case of strained layer grown on a (111) substrate

σ =
c11 + 2c12 + 4c44

2c11 + 4c12 − 4c44

εxx =

[
2

3
− 1

3

(
2c11 + 4c12 − 4c44

c11 + 2c12 + 4c44

)]
ε‖

εyy = εxx

εzz = εxx

εxy =

[−1

3
− 1

3

(
2c11 + 4c12 − 4c44

c11 + 2c12 + 4c44

)]
ε‖

εyz = εxy

εzx = εyz (1.4.4)

In general, the strained epitaxy causes a distortion of the lattice and, depending upon the
growth orientation, the distortions produce a new reduced crystal symmetry. It is important
to note that for (001) growth, the strain tensor is diagonal while for (111), and several other
directions, the strain tensor has nondiagonal terms. The nondiagonal terms can be exploited to
produce built-in electric fields in certain heterostructures as will be discussed in the next section.

An important heterostructure system involves growth of hcp lattice-based AlGaN or InGaN
on a GaN substrate along the c-axis. In this case the strain tensor is given by (aL is the substrate
lattice constant, aS is overlayer lattice constant)

εxx = εyy =
aS

aL
− 1

εzz = −2
c13

c33
εxx (1.4.5)

This strain is exploited to generate piezoelectric effect based interface charge as discussed in
the next chapter. Such a charge can cause effective doping in heterostructures as discussed in
Chapter 2. In table 1.1 we provide values of elastic constant of several important semiconductors.

1.5 TECHNOLOGY CHALLENGES

Metal and insulator (glass) technologies have been around for thousands of years. Com-
pared to these semiconductor technology is relatively new. Semiconductors need to be extremely
“pure” if they are to be useful. Defect densities of a percent may have minimal effect on metals
and insulators, but will ruin a semiconductor device. For most high performance devices, defect
densities of less than one part in 100 million are needed

Semiconductor substrate technology is available (i.e., bulk crystals can be grown in sufficient
size/purity) for a handful of materials. These include Si, GaAs, InP, and Ge, which are widely
available and SiC, Al2O3, and GaSb, etc., which are available only in small pieces (a few square
centimeters) and are very expensive. Since most semiconductors do not have a substrate available
from either bulk crystal growth or another lattice matched substrate, this severely restricts the
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 Material C11(N/m2) C12(N/m2) C41(N/m2)

 Si 1.66 x 1011 0.64 x 1011 0.8 x 1011

 Ge 1.29 x 1011 0.48 x 1011 0.67 x 1011

 GaAs 1.2 x 1011 0.54 x 1011 0.59 x 1011

 C 10.76 x 1011 1.25 x 1011 5.76 x 1011

 Material C13(N/m2) C33(N/m2)

 GaN 10.9 x 1011 35.5 x 1011

 AlN 12 x 1011 39.5 x 1011

Table 1.2: Elastic constant for some fcc and hcp based semiconductors. (For Si, Ge, GaAs see H.
J. McSkimin and P. Andreatch, J. Appl. Phys., 35, 2161 (1964) and D. I. Bolef and M. Meres, J.
Appl. Phys., 31, 1010 (1960). For nitrides see J. H. Edgar, Properties of III-V Nitrides, INSPEC,
London (1994) and R. B. Schwarz, K. Khachaturyan, and E. R. Weber, Appl. Phys. Lett., 74,
1122 (1997).)

use of a wide range of semiconductors. In table 1.3 we show an overview of some important
substrates and issues in semiconductor technology.

1.6 PROBLEMS

Problem 1.1 A 10.0 μm Si epitaxial layer is to be grown. The Si flux is 1014 cm−2 s−1.
How long will it take to grow the film if the sticking coefficient for Si atoms is 0.95?

Problem 1.2 A Si wafer is nominally oriented along the (001) direction, but is found to be
cut 2◦ off, toward the (110) axis. This off axis cut produces “steps” on the surface which
are 2 monolayers high. What is the lateral spacing between the steps of the 2◦ off-axis
wafer?

Problem 1.3 Conduct a literature search to find out what the lattice mismatch is between
GaAs and AlAs at 300 K and 800 K. Calculate the mismatch between GaAs and Si at the
same temperatures.

Problem 1.4 In high purity Si crystals, defect densities can be reduced to levels of
1013 cm−3. On an average, what is the spacing between defects in such crystals? In
heavily doped Si, the dopant density can approach 1019 cm−3. What is the spacing
between defects for such heavily doped semiconductors?
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Statue / ISSUESI M P O R T A N T  S U B S T R A T E S

1.  Silicon (Si)  Mature, 12-inch diameter.  Next generation 

15-inch diameter.

2.  Gallium Arsenide (GaAs)  Mature, 6-inch diameter.

3.  Indium Phosphide (InP)  Mature, brittle, maximum diameter 4 inches.

4.  Silicon Carbide (SiC)  Developing technology, 3-inch diameter in 

production.  Micropipe density 1 cm-2 for 

n-type and 100 cm-2 for semi-insulating.

5.  Germanium (Ge)  6-inch diameter.  Limited supply.  Water-

soluble oxide.

6.  Sapphire (Al2O3)  Hydrothermal growth.  4-inch diameter 

available.  Low thermal conductivity.

7.  Aluminum Nitride (AlN)  1-inch diameter.  Early stages of 

development, sublimation growth technique.

8.  Gallium Nitride (GaN)

9.  Indium Antimonide (InSb)

10.  Zinc Oxide (ZnO)

2-inch diameter substrates by HVPE.  

Dislocation density 106 cm-2.

2-inch diameter, early stages of 

development.

Hydrothermal growth.  2-inch diameter 

available.  Dislocation density < 100 cm-2 for 

n-type.

Table 1.3: A brief overview of important substrates available in semiconductor technology.

Problem 1.5 Assume that a Ga-As bond in GaAs has a bond energy of 1.0 eV. Calculate
the energy needed to cleave GaAs in the (001) and (110) planes.

Problem 1.6 Consider a hcp structure shown in the text. Prove the relation given by
c/a =

√
8/3 = 1.633.

Problem 1.7 Why are entropy considerations unimportant in dislocation generation?

Problem 1.8 A coherently strained quantum well laser has to made from InxGa1−xAs on
a GaAs substrate. If the minimum thickness of the region is 50 Å, calculate the maximum
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composition of In that can be tolerated. Assume that the lattice constant of the alloy can be
linearly interpolated from its components.

Problem 1.9 Assume that in a semiconductor alloy, the lattice constant scales as a linear
weighted average. Find the composition of the InxGa1−xAs alloy that lattice matches with
an InP substrate.

Problem 1.10 Calculate the critical thickness for the growth of AlAs on a GaAs substrate.

Problem 1.11 A 100 Å In0.2Ga0.8As film is grown on a GaAs substrate. The film is
coherent. Calculate the strain energy per cm2 in the film.

Problem 1.12 Consider a coherently grown film of Si0.8Ge0.2 grown on a Si substrate.
Calculate the thickness of the film at which the strain energy density (eV cm−2) becomes
equal to the energy density arising from a square array of dislocations in the film.

Assume that the dislocations are on a planar square grid with one broken bond per spacing
of a/ε where a is the film lattice constant and ε is the strain. The energy per broken bond
is 1.0 eV.

1.7 FURTHER READING

• Crystal Structure

– M. M. Woolfson, An Introduction to Crystallography, Cambridge University Press
(1997).

– McGraw-Hill Encyclopedia of Science and Technology, Volume 4, McGraw-Hill
(1997).

– A. C. Gossard (ed.), Epitaxial Microstructures in Semiconductors and Semi
metals, Volume 40, Academic Press (1994).

– G. Benedek (ed.), Point and Extended Defects in Semiconductors, Plenum Publish-
ing Press (1989).

– Landolt-Bornstein, Numerical Data and Functional Relationships in Science and
Technology, (O. Madelung, M. Schultz, and H. Weiss, eds.), Springer (1985).

• Strained Structures

– J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and
Matrices, Oxford University Press (1987).

– T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press (1990).

– E. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous Polarization, and
Piezoelectric Constant of III-V Nitrides, Physical Review B, vol. 56, p. R10024
(1997).

– J. H. Edgar, Properties of Group III Nitrides, INSPEC, London (1994).



Chapter 2

ELECTRONIC LEVELS
IN SEMICONDUCTORS

2.1 INTRODUCTION

Semiconductor electronic and optoelectronic devices depend upon how electrons inside ma-
terials behave and how they are influenced by external perturbations which may be electrical,
electromagnetic, mechanical, or magnetic, etc. The simplest approach to understanding such
properties would be to use classical physics. Based on classical physics the general problem
could be solved by using Newton’s equation

dp

dt
= e (E + v × B)

where p is the electron momentum, v the velocity, and E and B are the electrical and magnetic
fields, respectively. Additional forces, if present, can be added on the right-hand side of the equa-
tion. Although classical physics has been successful in describing many of nature’s phenomena,
it fails completely when it is used to describe electrons in solids. To understand the underlying
physical properties that form the basis of modern intelligent information devices, we need to use
quantum mechanics.

According to quantum mechanics particles such as electrons behave as waves while waves
such as electromagnetic waves behave as particles. The wave nature of particles is manifested for
electrons in solids. To the level needed in device physics, the electronic properties are described
by the Schrödinger equation . However, It turns out we can develop effective descriptions for the
behavior of electrons and then use simple classical physics. Of course to develop this effective
description we have to solve the Schrödinger equation. But once this description is developed we
can use Newton’s equation to understand how electrons respond to external forces. This allows
us to use simple models to describe electronic devices.

In this chapter we will review a few important outcomes of quantum mechanics. In particular
we will discuss the following:

28
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• Electronic properties in an atom: All solids are made up of atoms and the properties of
electrons in atoms allows us to develop insight into the electronic properties of solids. We will
discuss the hydrogen atom problem since it is the simplest atom and captures the useful physics
needed to understand the theory of doping.

• Electrons in a quantum well: Quantum wells, both naturally occurring and artificially cre-
ated in semiconductor structures are very important in modern technology. In devices such as
MOSFETs, lasers, modulators etc. electrons are in quantum wells of various sizes and shapes.

• Electrons in free space and in crystalline materials: Most high performance semiconductor
devices are based on high quality crystals. In these periodic structures electrons have allowed
energies that form bands separated from each other (in energy) by gaps. Almost every semicon-
ductor property depends upon these bands. Once we understand the band theory, i.e properties
of electrons in crystalline solids we can develop the effective description mentioned above and
use simple classical concepts.

• Occupation of electronic states: Quantum mechanics has very specific rules on the actual
occupation of energies allowed by Schrödinger equation. This occupation theory is central to
understanding solid state physics and device behavior.

Once we have developed the basic quantum theory structure we will discuss properties of
various semiconductors and their heterostructures.

2.2 PARTICLES IN AN ATTRACTIVE POTENTIAL:
BOUND STATES

We will now examine several important quantum problems that have impact on materials and
physical phenomena useful for device applications. The Schrödinger equation for electrons can
be written in as [

− �
2

2m0
∇2 + V (r, t)

]
Ψ(r, t) = EΨ(r, t)

where m0 is the mass of the electron and V (r, t) is the potential energy. This is a differential
equation with solutions Ψ. Once the equation is solved we get a series of allowed energies and
wavefunctions. Energies are allowed while others not consistent with the equation are forbidden.
The band theory that forms the basis of all semiconductor devices is based on energy bands and
gaps.

2.2.1 Electronic levels in a hydrogen atom

The hydrogen atom problem is of great relevance in understanding dopants in semiconductors.
We will briefly summarize these findings. The hydrogen atom consists of an electron and a pro-
ton interacting with the Coulombic interaction. The problem can be solved exactly and provides
insight into how electrons behave inside atoms.

Wavefunctions in the H-atom problem have the following term:

ψn�m(r, θ, φ) = Rn�(r)F�m(θ)Gm(φ)
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The symbols n, �,m are the three quantum numbers describing the solution. The three quantum
numbers have the following allowed values:

principle number, n : Takes values 1, 2, 3, . . .

angular momentum number, � : Takes values 0, 1, 2, . . . n − 1

magnetic number,m : Takes values − �,−� + 1, . . . �

The principle quantum number specifies the energy of the allowed electronic levels. The
energy eigenvalues are given by

En = − μe4

2 (4πε0)
2

�2n2
(2.2.1)

The spectrum is shown schematically in figure 2.1. Due to the much larger mass of the nucleus
as compared with the mass of the electron, the reduced mass μ is essentially the same as the
electron mass m0. The ground state of the hydrogen atom is given by

ψ100 =
1√
πa3

0

e−r/a0 (2.2.2)

The parameter a0 appearing in the functions is called the Bohr radius and is given by

a0 =
4πε0�

2

m0e2
= 0.53 Å (2.2.3)

It roughly represents the spread of the ground state.
As noted earlier the dopant problem is addressed by using the potential of the H-atom

2.2.2 Electrons in a quantum well

As noted in the previous chapter, using semiconductor heterostructures it is possible to fab-
ricate quantum well systems. These systems are used for high-performance devices, such as
transistors, lasers and modulators. The quantum well problem can also be used to understand
how defects create trap levels.

A quantum well potential profile is shown in figure 2.2. The well (i.e., region where potential
energy is lower) is described by a well size W = 2a as shown and a barrier height V0. In
general the potential could be confining in one dimension with uniform potential in the other
two directions (quantum well), or it could be confining in two dimensions (quantum wire) or
in all three dimensions (quantum dot). As discussed later in this chapter such quantum wells
are formed in semiconductor structures and we can use the results discussed in this section to
understand these problems.

We assume that the potential has a form

V (r) = V (x) + V (y) + V (z)
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Figure 2.1: Allowed energy levels of electrons in a hydrogen atom .
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Figure 2.2: Schematic of a quantum well of width 2a and infinite barrier height or barrier height
V0 .

so that the wavefunction is separable and of the form

ψ(r) = ψ(x)ψ(y)ψ(z)

We will briefly discuss the problem of the square potential well, and in section 2.10 we will
use the quantum well physics to discuss semiconductor quantum wells of importance in devices.

The simplest form of the quantum well is one where the potential is zero in the well and
infinite outside. The equation to solve then is (the wave function is non-zero only in the well
region)

− �
2

2m

d2ψ

dx2
= Eψ (2.2.4)

which has the general solutions

ψ(x) = B cos
nπx

2a
, n odd

= A sin
nπx

2a
, n even (2.2.5)

The energy is

E =
π2

�
2n2

8ma2
(2.2.6)

Note that the well size is 2a.
The normalized particle wavefunctions are

ψ(x) =

√
2

W
cos

nπx

W
, n odd

=

√
2

W
sin

nπx

W
, n even (2.2.7)



2.3. ELECTRONS IN CRYSTALLINE SOLIDS 33

If the potential barrier is not infinite, we cannot assume that the wavefunction goes to zero at
the boundaries of the well. Let us define two parameters.

α =

√
2mE

�2

β =

√
2m(V0 − E)

�2
(2.2.8)

The conditions for the allowed energy levels are given by the transcendental equations

αW

2
tan

αW

2
=

βW

2
(2.2.9)

and
αW

2
cot

αW

2
= −βW

2
(2.2.10)

An important outcome of these solutions is that as in the H-atom case, only some energies are
allowed for the electron. This result is of importance in electronic devices as will be discussed
in section 2.10.

2.3 ELECTRONS IN CRYSTALLINE SOLIDS

The devices discussed in this text are made from crystalline materials. It is, therefore, impor-
tant to understand the electronic properties of these materials. Let us first examine the simpler
problem of electrons in free space. It turns out that electrons in crystals can be considered to
behave as if they are in free space except they have a different “effective properties”. In the
free space problem the background potential energy is uniform in space. The time-independent
equation for the background potential in a solid equal to V0 is

−�
2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(r) = (E − V0)ψ(r) (2.3.1)

A general solution of this equation is

ψ(r) =
1√
V

e±ik·r (2.3.2)

and the corresponding energy is

E =
�

2k2

2m
+ V0 (2.3.3)

where the factor 1√
V

in the wavefunction occurs because we wish to have one particle per volume
V or ∫

V

d3r | ψ(r) |2 = 1 (2.3.4)

We assume that the volume V is a cube of side L. Note that if we assign the momentum of the
electron as �k the energy-momentum relation of free electrons is the same as that in classical
physics. Later we will see that in crystalline material one can use a similar relationship except
the mass of the electron is modified by an effective mass.
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Density of states for a three-dimensional system

We will now discuss the extremely important concept of density of states. The concept of
density of states is extremely powerful, and important physical properties in materials, such as
optical absorption, transport, etc., are intimately dependent upon this concept. Density of states
is the number of available electronic states per unit volume per unit energy around an energy E.
If we denote the density of states by N(E), the number of states in a unit volume in an energy
interval dE around an energy E is N(E)dE.

Accounting for spin, the density of states can be shown to be (see Appendix C)

N(E) =

√
2m

3/2
0 (E − V0)

1/2

π2�3
(2.3.5)

In figure 2.4a we show the form of the three-dimensional density of states.

Density of states in sub-three-dimensional systems

The use of heterostructures has allowed one to make sub-three-dimensional-systems. In these
systems the electron can be confined in two-dimensions (forming a quantum well) or in one-
dimensional (quantum wire) and zero-dimensional (quantum dot) space. The two-dimensional
density of states is defined as the number of available electronic states per unit area per unit energy
around an energy E. It can be shown that the density of states for a parabolic band (for energies
greater than V0) is (see figure 2.3b)

N(E) =
m0

π�2
(2.3.6)

Finally, we can consider a one-dimensional system often called a “quantum wire.” The one-
dimensional density of states is defined as the number of available electronic states per unit
length per unit energy around an energy E. In a 1D system or a “quantum wire” the density of
states is (including spin) (see figure 2.3c)

N(E) =

√
2m

1/2
0

π�
(E − V0)

−1/2 (2.3.7)

Notice that as the dimensionality of the system changes, the energy dependence of the density
of states also changes. As shown in figure 2.3, for a three-dimensional system we have (E −
V0)

1/2 dependence, for a two-dimensional system we have no energy dependence, and for a
one-dimensional system we have (E − V0)

−1/2 dependence.
We will see later in the next section that when a particle is in a periodic potential, its wave-

function is quite similar to the free particle wavefunction. Also, the particle responds to external
forces as if it is a free particle except that its energy-momentum relation is modified by the
presence of the periodic potential. In some cases it is possible to describe the particle energy by
the relation

E =
�

2k2

2m∗ + Eedge (2.3.8)

where m∗ is called the effective mass in the material and Eedge is the bandedge energy. The ef-
fective mass in general summarizes the appropriate way to modify the free electron mass based
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Figure 2.3: Energy dependence of the density of states in: (a) three-dimensional, (b) two-
dimensional, and (c) one-dimensional systems.

on the physical property being characterized. Appendix C describes the various forms of effec-
tive mass in detail. The expressions derived for the free electron density of states can then be
carried over to describe the density of states for a particle in a crystalline material (which has a
periodic potential) by simply replacing m0 by m∗.
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EXAMPLE 2.1 Calculate the density of states of electrons in a 3D system and a 2D system at an energy
of 1.0 eV. Assume that the background potential is zero.

The density of states in a 3D system (including the spin of the electron) is given by (E is the energy in
Joules)

N(E) =

√
2(m0)

3/2E1/2

π2�3

=

√
2(0.91 × 10−30 kg)(E1/2)

π2(1.05 × 10−34 J · s)3

= 1.07 × 1056E1/2 J−1 m−3

Expressing E in eV and the density of states in the commonly used units of eV−1 cm−3, we get

N(E) = 1.07 × 1056 × (1.6 × 10−19)3/2(1.0 × 10−6)E1/2

= 6.8 × 1021E1/2 eV−1 cm−3

At E = 1.0 eV we get
N(E) = 6.8 × 1021 eV−1 cm−3

For a 2D system the density of states is independent of energy and is

N(E) =
m0

π�2
= 4.21 × 1014 eV−1 cm−2

2.3.1 Particle in a periodic potential: Bloch theorem

Band theory, which describes the properties of electrons in a periodic potential arising from
the periodic arrangement of atoms in a crystal, is the basis for semiconductor technology.

The Schrödinger equation in the crystal[−�
2

2m0
∇2 + U(r)

]
ψ(r) = Eψ(r) (2.3.9)

where U(r) is the background potential seen by the electrons. Due to the crystalline nature of
the material, the potential U(r) has the same periodicity

U(r) = U(r + R)

We have noted earlier that if the background potential is V0, the electronic function in a volume
V is

ψ(r) =
eik·r
√

V

and the electron momentum and energy are

p = �k

E =
�

2k2

2m0
+ V0
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The wavefunction is spread in the entire sample and has equal probability (ψ∗ψ) at every point
in space. In the periodic crystal electron probability is the same in all unit cells of the crystal
because each cell is identical. This is shown schematically in figure 2.4.

PERIODIC  POTENTIAL

U(r)

Wavefuntions |ψ|2 have the same periodicity as the potential

ψ(r) = u(r)eik•r

r

r

|ψ(r)|2

Figure 2.4: A periodic potential, |ψ|2 has the same spatial periodicity as the potential.

Bloch’s theorem states the eigenfunctions of the Schrödinger equation for a periodic potential
are the product of a plane wave eik·r and a function uk(r), which has the same periodicity as the
periodic potential. Thus

ψk(r) = eik·ruk(r) (2.3.10)

is the form of the electronic function. The periodic part uk(r) has the same periodicity as the
crystal, i.e.

uk(r) = uk(r + R) (2.3.11)

The wavefunction has the property

ψk(r + R) = eik·(r+R)uk(r + R) = eik·ruk(r)eik·R

= eik·Rψk(r) (2.3.12)

To obtain the allowed energies, i.e. the band structure, computer techniques are used to solve the
Schrödinger equation. One obtains a series of allowed energy bands separated by bandgaps as
shown schematically in figure 2.5. Each band has an E vs. k relation Examples of such relations
called bandstructure will be shown later in section 2.6. The product of � and the k-vector behaves
like an effective momentum for the electron inside the crystal.

The smallest k-values lie in a k-space called the Brillouin zone (see figure 2.6). If the k-value
is chosen beyond the Brillouin zone values, the energy values are simply repeated. The concept
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Figure 2.5: A schematic description of allowed energy levels and energy bands in an atom and
in crystalline materials.

of allowed bands of energy separated by bandgaps is central to the understanding of crystalline
materials. Near the bandedges it is usually possible to define the electron E–k relation as

E =
�

2(k − ko)
2

2m∗

where ko is the k-value at the bandedge and m∗ is the effective mass. The concept of an effective
mass is extremely useful, since it represents the response of the electron–crystal system to the
outside world.

k-vector
According to the Bloch theorem, in the perfectly periodic background potential that the crystal
presents, the electron propagates without scattering. The electronic state ∼ exp (ik · r) is an
extended wave which occupies the entire crystal. To describe the response of the electron waves
to external forces one uses the wavepacket description. The equation of motion for electrons in
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(a)

(b)

Figure 2.6: Brillouin zone of (a) the face centered cubic lattice and (b) the hexagonal lattice.
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general is
dp

dt
= Fext + Fint

However this is not very useful for a meaningful description of the electron because it includes
the internal forces on the electron. We need a description which does not include the evaluation
of the internal forces. Using a wavepacket description of electrons as with any wave phenomena
it is the wave group velocity that represents the propagation of wave energy. In the case of
a particle wave the group velocity represents the particle velocity. The group velocity of this
wavepacket is

vg =
dω

dk
(2.3.13)

where ω is the frequency associated with the electron of energy E; in quantum mechanics,
ω = E/�:

vg =
1

�

dE

dk

=
1

�
∇kE(k)

If we have an electric field E present, the work done on the electron during a time interval δt is

δE = −eE · vgδt (2.3.14)

We may also write, in general

δE =

(
dE

dk

)
δk

= �vg · δk (2.3.15)

Comparing the two equations for δE, we get

δk = −eE
�

δt

giving us the relation

�
dk

dt
= −eE (2.3.16)

In general, we may write

�
dk

dt
= Fext (2.3.17)

The term �k responds to the external forces as if it is the momentum of the electron, although,
as can be seen by comparing the true Newtons equation of motion, it is clear that �k contains
the effects of the internal crystal potentials and is therefore not the true electron momentum.
The quantity �k is called the crystal momentum . We can, for all practical purposes, treat the
electrons as if they are free and obey the effective Newtons equation of motion. This physical
picture is summarized in figure 2.7.
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Electron in a periodic potential

Bloch theorem: ψ = ukeik•r

Equation of motion
dk
dt = Fext

Electron behaves as if it is in free space, but 
with a different effective mass
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h

Figure 2.7: Electrons in a periodic potential can be treated as if they are in free space except that
their energy–momentum relation is modified because of the potential. Near the bandedges the
electrons respond to the outside world as if they have an effective mass m∗. The effective mass
can have a positive or negative value.

2.4 OCCUPATION OF STATES:
DISTRIBUTION FUNCTION

Bandstructure calculations give us the allowed energies for the electron. How will the particles
distribute among the allowed states? To answer this question we need to use quantum statistical
physics. According to quantum mechanics particles (this term includes classical particles and
classical waves which are represented by particles) have an intrinsic angular momentum called
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spin. The spin of particles can take a value of 0, 1/2�, �, 3/2�, etc. Particles which have inte-
gral spins (in units of �) are called bosons, while those that have half-integral spins are called
fermions.

According to thermodynamics, a system with a large number of particles can be described by
macroscopic properties such as temperature, pressure, volume, etc. Under equilibrium condi-
tions (no exchange of net energy with other systems) the system is described by a distribution
function, which gives us the occupation number for any energy level. To find this occupation
we have to minimize the free energy F of the system subject to any constraints from quantum
mechanics (such as the Pauli exclusion principle). The following distribution functions are ob-
tained for equilibrium:

• For fermions such as electrons

f(E) =
1

exp
[

E−EF

kBT

]
+ 1

Here f(E) is the occupation function; EF is the Fermi energy and its value depends upon particle
density).

In classical physics the occupation function for electrons is

f(E) =
1

exp
(

E−EF

kBT

) (2.4.1)

Note that if E − EF � kBT ; i.e., f(E) � 1, the classical function approaches the quantum
Fermi distribution function.
For completeness we note the distributed function for bosons as well.
• Massless bosons (like photons)

f(E) =
1

exp
(

E
kBT

)
− 1

(2.4.2)

• Bosons with mass (this applies to electron pairs that occur in superconductors)

f(E) =
1

exp
(

E−μ
kBT

)
− 1

(2.4.3)

where μ is an energy determined from the particle density.
• There is a distribution function that proves to be useful in solid state devices. When solving
the Schrödinger equation we can get more than one solution with the same energy. This is the
degeneracy gd of a state. Consider a case where a state has a degeneracy gi and can, in principle,
be occupied by gd electrons. However, for dopants and defect levels, when one electron is placed
in the allowed state, the next one cannot be placed because of the Coulombic repulsion. This
happens for some states, such as those states associated with donors or acceptors, traps, etc.
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Figure 2.8: Schematic of the Fermi function for electrons and other fermions. In general the
position of EF is dependent on temperature. The occupation probability is at 0.5 at the Fermi
energy.

Thus, even though Pauli exclusion principle would allow two (or more) electrons to reside on
the state, the repulsion would not. In such cases the occupation function can be shown to be

f(E) =
1

1
gd

exp
(

E−EF

kBT

)
+ 1

(2.4.4)

In figure 2.8 we show a schematic of the Fermi function for electrons and its dependence on
temperature. It is important to note that at E = EF , f(E) = 0.5 regardless of the temperature.
At zero temperature, the Fermi function becomes a step function with f(E < EF ) = 1.0 and
f(E) > EF = 0.0.

2.5 METALS AND INSULATORS

Band theory shows that the allowed energy states of electrons in a crystalline material are de-
scribed by a series of allowed bands separated by forbidden bandgaps. Two important situations
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Figure 2.9: Electron occupation of the bands in a metal and semiconductor (or insulator). In a
metal, the highest occupied band at 0 K is partially filled with electrons. In a semiconductor at
0 K, the highest occupied band is completely filled with electrons and the next band is completely
empty. The separation between the two bands is the bandgap Eg .

arise when we examine the electron occupation of allowed bands. As shown in figure 2.9 we
can have a situation where an allowed band is completely filled with electrons, while the next
allowed band is separated in energy by a gap Eg and is completely empty at 0 K. In a second
case, the highest occupied band is only half full (or partially full).

When an allowed band is completely filled with electrons, the electrons in the band cannot
conduct any current. Since electrons are fermions they cannot carry any net current in a filled
band since an electron can only move into an empty state. Because of this effect, when we
have a material in which a band is completely filled, while the next allowed band is separated
in energy and empty, the material has, in principle, infinite resistivity and is an insulator or a
semiconductor. The material in which a band is only half full with electrons has a very low
resistivity and is a metal.

The band that is normally filled with electrons at 0 K in semiconductors is called the valence
band, while the upper unfilled band is called the conduction band . The energy difference be-
tween the vacuum level and the highest occupied electronic state in a metal is called the metal
work function . The energy between the vacuum level and the bottom of the conduction band is
called the electron affinity.
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Figure 2.10: Illustration of the wavevector of a filled valence band with a missing electron ke.
The wavevector is −ke, which is associated with the hole.

Semiconductors have zero conductivity at 0 K and quite low conductivity at finite temper-
atures, but it is possible to alter their conductivity by orders of magnitude through doping or
applied electric potentials. This makes semiconductors useful for active devices.

2.5.1 Electrons and Holes

In semiconductors the valence band is full of electrons and the conduction band is empty
at 0 K. At finite temperatures some of the electrons leave the valence band and occupy the
conduction band. Electrons in the conduction band can carry current. When electrons leave the
valence band there are unoccupied states. Consider the situation as shown in figure 2.10, where
an electron with momentum ke is missing from the valence band. When all of the valence band
states are occupied, the sum of the total momentum is zero; i.e.∑

ki = 0 =
∑

ki �=ke

ki + ke (2.5.1)

This result is just an indication that there are as many positive k states occupied as there are
negative ones. Now, in the situation where the electron at wavevector ke is missing, the total
wavevector is ∑

ki �=ke

ki = −ke (2.5.2)

The missing state is called a hole and the wavevector of the system −ke is attributed to it. It is
important to note that the electron is missing from the state ke and the momentum associated
with the hole is at −ke. The position of the hole is depicted as that of the missing electron. But
in reality the hole wavevector kh is −ke, as shown in figure 2.10 and we have

kh = −ke (2.5.3)

If an electric field is applied, all the electrons move in the direction opposite to the electric field.
This results in the unoccupied state moving in the field direction. The hole thus responds as if
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it has a positive charge. It therefore responds to external electric and magnetic fields E and B,
respectively, according to the equation of motion

�
dkh

dt
= e [E + vh × B] (2.5.4)

where �kh and vh are the momentum and velocity of the hole.
Thus the equation of motion of holes is that of particles with a positive charge e. The mass of

the hole has a positive value, although the electron mass in its valence band is negative. When
we discuss the valence band properties, we refer to holes. This is because in the valence band
only the missing electrons or holes lead to charge transport and current flow.

2.6 BANDSTRUCTURE OF SOME IMPORTANT
SEMICONDUCTORS

In this section we will examine the band structure near the band edges for several important
materials. To represent the bandstructure on a figure that is two-dimensional, we draw the E-k
diagram in several panels where k goes from zero to its maximum value along the (100) direction
or the (111) direction, etc within the Brillouin zone. As shown in figure 2.6 for the fcc lattice,
the maximum k-value along the (100) direction is 2π/a(1, 0, 0). This point is called the X-point
and there are five other equivalent points, due to the cubic symmetry of the lattice. Similarly,
along the (111) direction, the maximum k-point is π/a(1, 1, 1) and seven other similar points.
This point is called the L-point. Thus we commonly display the E-k diagram with k going from
the origin (called the Γ-point) to the X-point and from the origin to the L-point.

2.6.1 Direct and indirect semiconductors

Two types of band structures arise in semiconductors- direct and indirect. The top of the
valence band of most semiconductors occurs at effective momentum equal to zero. A typical
bandstructure of a semiconductor near the top of the valence band is shown in figure 2.11. We
notice the presence of three bands near the valence bandedge. These curves or bands are labeled
I, II, and III in the figure and are called the heavy hole (HH), light hole (LH), and the split off
hole bands.

The bottom of the conduction band in some semiconductors occurs at k = 0. Such semicon-
ductors are called direct bandgap materials. Semiconductors, such as GaAs, InP, GaN, InN, etc.,
are direct bandgap semiconductors. In other semiconductors, the bottom of the conduction band
does not occur at the k = 0 point, but at certain other points. Such semiconductors are called
indirect semiconductors. Examples are Si, Ge, AlAs, etc.

Due to the law of momentum conservation, direct gap materials have a strong interaction with
light. Indirect gap materials have a relatively weak interaction with electrons.

When the bandedges are at k = 0 it is possible to represent the bandstructure by a simple
relation of the form

E(k) = Ec +
�

2k2

2m∗ (2.6.1)
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Figure 2.11: Schematic of the valence band, direct bandgap, and indirect bandgap conduction
bands. The curves I, II, III in the valence band are called heavy hole, light hole, and split-off
hole states, respectively.

where Ec is the conduction bandedge, and the bandstructure is a simple parabola. The equation
for the E–k relation looks very much like that of an electron in free space as noted in the previous
section.

Silicon
The most important semiconductor is silicon. Silicon has an indirect bandgap as shown in

figure 2.12. The bottom of the conduction band in Si is at point (∼ (2π/a)(0.85, 0.0); i.e., close
to the X-point. There are six degenerate X-points and, consequently, six conduction bandedge
valleys. The near bandedge bandstructure can be represented by ellipsoids of energy with simple
E vs. k relations of the form (for examples for the [100] valley)

E(k) =
�

2k2
x

2m∗
l

+
�

2
(
k2

y + k2
z

)
2m∗

t

(2.6.2)
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There are six equivalent valley in Si at the bandedge.

where we have two masses, the longitudinal and transverse. The constant energy surfaces of Si
are ellipsoids according to Eq. 2.6.2. The six surfaces are shown in figure 2.12

The longitudinal electron mass m∗
l is approximately 0.98 m0, while the transverse mass is

approximately 0.19 m0.
The next valley in the conduction band is the L-point valley, which is about 1.1 eV above the

bandedge. Above this is the Γ-point edge. Due to the six-fold degeneracy of the conduction
bandedge, the electron transport in Si is quite poor because of the very large density of states
near the bandedge, leading to a high scattering rate in transport.

GaAs
GaAs is a direct gap material with small electron effective mass. The near bandedge bandstruc-
ture of GaAs is shown in figure 2.13. The bandstructure can be represented by the relation
(referenced to Ec)

E =
�

2k2

2m∗ (2.6.3)

with m∗ = 0.067m0. A better relationship is the non-parabolic approximation

E(1 + αE) =
�

2k2

2m∗ (2.6.4)

with α = 0.67 eV−1.
For high electric field transport, it is important to note that the valleys above Γ-point are the

L-valleys. There are eight L-points, but, since half of them are connected by a reciprocal lattice
vector, there are four valleys. The separation ΔEΓL between the Γ- and L- minima is 0.29 eV.
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The L-valley has a much larger effective mass than the Γ-valley. For GaAs, m∗
L ∼ 0.25m0. This

difference in masses is extremely important for high electric field transport as will be discussed
in the next chapter.

The valence band of GaAs has the standard HH, LH, and SO bands. Due to the large spin–orbit
splitting, for most purposes the SO band does not play any role in electronic properties.

The bandstructures of Ge and AlAs, two other important semiconductors, are shown in fig-
ure 2.14, along with brief comments about their important properties.

InN, GaN, and AlN
The III–V nitride family of GaN, InN, and AlN have become quite important due to progress
in the ability to grow the semiconductor. These materials are typically grown with a wurtzite
structure, and have bandgaps ranging from ∼1.0 eV to over 6.0 eV. This large bangap is very
useful for short wavelength light emitters and high power electronics. In figure 2.15 we show
the bandstructure for nitrides.

It is important to note is that the bandgap of semiconductors generally decreases as temper-
ature increases. The bandgap of GaAs, for example, is 1.51 eV at T = 0K and 1.43 eV at
room temperature. In table 2.1 we show the temperature dependence of bandgaps of several
semiconductors.
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2.7 MOBILE CARRIERS

From our brief discussion of metals and semiconductors in Section 2.5, we see that in a metal
current flows because of the electrons present in the highest (partially) filled band. As shown
schematically in figure 2.16a. The density of such electrons is very high (∼ 1023 cm−3). In a
semiconductor, in contrast, no current flows if the valence band is filled with electrons and the
conduction band is empty of electrons. However, if somehow empty states or holes are created
in the valence band by removing electrons, current can flow through the holes. Similarly, if
electrons are placed in the conduction band, these electrons can carry current. This is shown
schematically in figure 2.16b. If the density of electrons in the conduction band is n and that of
holes in the valence band is p, the total mobile carrier density is n + p.

2.7.1 Mobile electrons in metals

In a metal, we have a series of filled bands and a partially filled band called the conduc-
tion band. The filled bands are inert as far as electrical and optical properties of metals are
concerned. The conduction band of metals can be assumed to be described by the parabolic
energy–momentum relation

E(k) = Ec +
�

2k2

2m0
(2.7.1)

Note that we have used an effective mass equal to the free electrons mass. This is a reasonable
approximation for metals. The large electron density in the band “screens” out the background
potential and the electron effective mass is quite close to the free space value.
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The electron density in the conduction band of a metal is related to the Fermi level by the
relation

n =

∫ ∞

Ec

√
2m

3/2
0

π2�3

E1/2dE

exp
(

E−EF

kBT

)
+ 1

(2.7.2)
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Experimental
bandgap
EG (eV)

Type of Temperature dependence
Compound bandgap 0 K 300 K of bandgap EG(T ) (eV)
AlP Indirect 2.52 2.45 2.52 – 3.18 ×10−4T 2/(T + 588)
AlAs Indirect 2.239 2.163 2.239 – 6.0 ×10−4T 2/(T + 408)
AlSb Indirect 1.687 1.58 1.687 – 4.97 ×10−4T 2/(T + 213)
GaP Indirect 2.338 2.261 2.338 – 5.771 ×10−4T 2/(T + 372)
GaAs Direct 1.519 1.424 1.519 – 5.405 ×10−4T 2/(T + 204)
GaSb Direct 0.810 0.726 0.810 – 3.78 ×10−4T 2/(T + 94)
InP Direct 1.421 1.351 1.421 – 3.63 ×10−4T 2/(T + 162)
InAs Direct 0.420 0.360 0.420 – 2.50 ×10−4T 2/(T + 75)
InSb Direct 0.236 0.172 0.236 – 2.99 ×10−4T 2/(T + 140)

Table 2.1: Bandgaps of binary III–V compounds (From Casey and Panish, 1978).

This integral is particularly simple to evaluate as 0 K, since, at this temperature

1

exp
(

E−EF

kBT

)
+ 1

= 1 if E ≤ EF

= 0 otherwise

this gives

n =

∫ EF

EC

N(E)dE

We then have

n =

√
2m

3/2
0

π2�3

∫ EF

EC

(E − EC)
1/2

dE

=
2
√

2m
3/2
0

3π2�3
(EF − EC)

3/2

or

EF − EC =
�

2

2m0

(
3π2n

)2/3
(2.7.3)

The expression is applicable to metals such as copper, gold, etc. In Table 2.2 we show the
conduction band electron densities for several metals. The quantity EF , which is the highest oc-
cupied energy state at 0 K, is called the Fermi energy. We can define a corresponding wavevector
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kF , called the Fermi vector, and a velocity vF , called the Fermi velocity as

kF =
(
3π2n

)1/3

vF =

(
�

m0

)(
3π2n

)1/3
(2.7.4)

It is important to note that even at 0 K, the velocity of the highest occupied state is vF and not
zero, as would be the case if we used classical statistics. At finite temperatures, the Fermi level
is approximately given by

EF (T ) = EF (0)

[
1 − π2

12

(kBT )2

(EF (0))2

]
(2.7.5)

where EF (T ) and EF (0) are the Fermi levels at temperatures T and 0 K, respectively. In Metals
there is very little change in the Fermi level with temperature.
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ELEMENT VALENCE DENSITY CONDUCTION   
  (gm/cm3) ELECTRON DENSITY   
   (1022 cm–3)
  
 Al 3 2.7 18.1

 Ag 1 10.5 5.86

 Au 1 19.3 5.90

 Na 1 0.97 2.65

 Fe 2 7.86 17.0

 Zn 2 7.14 13.2

 Mg 2 1.74 8.61

 Ca 2 1.54 4.61

 Cu 1 8.96 8.47

 Cs 1 1.9 0.91

 Sn 4 7.3 14.8

Table 2.2: Properties of some metals. In the case of elements that display several values of
chemical valence, one of the values has been chosen arbitrarily.



2.7. MOBILE CARRIERS 55

EXAMPLE 2.1 A particular metal has 1022 electrons per cubic centimeter. Calculate the Fermi energy
and the Fermi velocity (at 0 K).

The Fermi energy is the highest occupied energy state at 0 K and is given by (measured from the con-
duction bandedge)

EF =
�

2

2m0

(
3π2n

)2/3

=
(1.05 × 10−34)2[3π2(1028)]2/3

2(0.91 × 10−30)
= 2.75 × 10−19 J

= 1.72 eV

The Fermi velocity is

vF =
�

m0

(
3π2n

)1/3

=
(1.05 × 10−34 J.s)(3π2 × 1028 m−3)1/3

0.91 × 10−30 kg
= 7.52 × 105 m/s

= 7.52 × 107 cm/s

Thus, the highest energy electron has a large energy and is moving with a very large speed.

2.7.2 Electrons and holes in semiconductors

In pure semiconductors there are no mobile carriers at zero temperature. As temperature is
raised, electrons from the valence band are thermally excited into the conduction band, and in
equilibrium there is an electron density n and an equal hole density p, as shown in figure 2.17a
Note that the density of allowed states has the form

N(E) =

√
2 (m∗

dos)
3/2

(E − Ec)
1/2

π2�3
(2.7.6)

where m∗
dos is the density of states mass and Ec is the conduction bandedge. A similar expression

exists for the valence band except the energy term is replaced by (Ev − E)
1/2 and the density of

states exist below the valence bandedge Ev . Figure 2.17 shows a schematic view of the density
of states.

It is important to note that the density of states mass has a special term in indirect gap mate-
rials. In direct gap semiconductors m∗

dos is just the effective mass for the conduction band. In
indirect gap materials it is given by (see Appendix C)

m∗
dos = (m∗

1m
∗
2m

∗
3)

1/3

where m∗
1m

∗
2m

∗
3 are the effective masses along the three principle axes. For Si counting the six

degenerate X-valleys we have

m∗
dos = 62/3

(
m�m

2
t

)1/3
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For the valence band we can write a simple expression for a density of states masses , which
includes the HH and LH bands

m∗
dos =

(
m

∗3/2
hh + m

∗3/2
�h

)2/3

In calculating the position of the Fermi energy, charge density, etc. we need to use the density
of states mass. In pure semiconductors, electrons in the conduction come from the valence band
and n = p = ni = pi, where ni and pi are the intrinsic carrier concentrations. In general the
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electron density in the conduction band is

n =

∫ ∞

Ec

Ne(E)f(E)dE

n =
1

2π2

(
2m∗

e

�2

)3/2 ∫ ∞

Ec

(E − Ec)
1/2dE

exp (E−EF

kBT ) + 1
(2.7.7)

For small values of n (non-degenerate statistics where we can ignore the unity in the Fermi
function) we get

n = Nc exp [(EF − Ec) /kBT ] (2.7.8)

where the effective density of states Nc is given by

Nc = 2

(
m∗

ekBT

2π�2

)3/2

A similar derivation for hole density gives

p = Nv exp [(Ev − EF ) /kBT ] (2.7.9)

where the effective density of states Nv is given by

Nv = 2

(
m∗

hkBT

2π�2

)3/2

We also obtain

np = 4

(
kBT

2π�2

)3

(m∗
em

∗
h)

3/2
exp (−Eg/kBT ) (2.7.10)

Notice that within our low carrier density approximation, the product np is independent of the
position of the Fermi level and is dependent only on the temperature and intrinsic properties of
the semiconductor. This is the law of mass action. If n increases, p must decrease, and vice
versa. For the intrinsic case n = ni = p = pi, we have from the square root of the equation
above

ni = pi = 2

(
kBT

2π�2

)3/2

(m∗
em

∗
h)

3/4
exp (−Eg/2kBT )

EFi =
Ec + Ev

2
+

3

4
kBT ln (m∗

h/m∗
e) (2.7.11)

Thus the Fermi level of an intrinsic material lies close to the midgap.
In Table 2.3 we show the effective densities and intrinsic carrier concentrations in Si, Ge, and

GaAs The values given are those accepted from experiments. These values are lower than the
ones we get by using the equations derived in this section. The reason for this difference is due
to inaccuracies in carrier masses and the approximate nature of the analytical expressions.

We note that the carrier concentration increases exponentially as the bandgap decreases. Re-
sults for the intrinsic carrier concentrations for Si, Ge, GaAs, and GaN are shown in figure 2.18.
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 CONDUCTION BAND VALENCE BAND INTRINSIC CARRIER

 MATERIAL EFFECTIVE DENSITY (NC) EFFECTIVE DENSITY (NV) CONCENTRATION (ni = pi)

Si (300 K) 2.78 x 1019 cm–3 9.84 x 1018 cm–3 1.5 x 1010 cm–3

Ge (300 K) 1.04 x 1019 cm–3 6.0 x 1018 cm–3 2.33 x 1013 cm–3

GaAs (300 K) 4.45 x 1017 cm–3 7.72 x 1018 cm–3 1.84 x 106 cm–3

Table 2.3: Effective densities and intrinsic carrier concentrations of Si, Ge, and GaAs. The
numbers for intrinsic carrier densities are the accepted values even though they are smaller than
the values obtained by using the equations derived in the text.

In electronic devices where current has to be modulated by some means, the concentration of
intrinsic carriers is fixed by the temperature and therefore is detrimental to device performance.
Once the intrinsic carrier concentration increases to ∼ 1015 cm−3, the material becomes unsuit-
able for electronic devices, due to the high leakage current arising from the intrinsic carriers.
A growing interest in high-bandgap semiconductors, such as diamond (C), SiC, etc., is partly
due to the potential applications of these materials for high-temperature devices where, due to
their larger gap, the intrinsic carrier concentration remains low up to very high temperatures.
For GaN the background defect density usually does not allow one to reach theoretical intrinsic
carrier densities.

EXAMPLE 2.2 Calculate the effective density of states for the conduction and valence bands of GaAs and
Si at 300 K. Let us start with the GaAs conduction-band case. The effective density of states is

Nc = 2

(
m∗

ekBT

2π�2

)3/2

Note that at 300 K, kBT = 26 meV = 4 × 10−21 J.

Nc = 2

(
0.067 × 0.91 × 10−30 (kg) × 4.16 × 10−21 (J)

2 × 3.1416 × (1.05 × 10−34 (Js))2

)3/2

m−3

= 4.45 × 1023 m−3 = 4.45 × 1017 cm−3

In silicon, the density of states mass is to be used in the effective density of states. This is given by

m∗

dos = 62/3(0.98 × 0.19 × 0.19)1/3 m0 = 1.08 m0
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Figure 2.18: Intrinsic carrier densities of Ge, Si, GaAs, and GaN as a function of reciprocal
temperature. Currently, the lowest measured unintentional background density in GaN at room
temperature is around 1× 1015 cm−3, indicating that the electronic properties are dominated by
defects (either extrinsic or intrinsic point defects).
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The effective density of states becomes

Nc = 2

(
m∗

doskBT

2π�2

)3/2

= 2

(
1.06 × 0.91 × 10−30 (kg) × 4.16 × 10−21 (J)

2 × 3.1416 × (1.05 × 10−34 (Js))2

)3/2

m−3

= 2.78 × 1025 m−3 = 2.78 × 1019 cm−3

We can see the large difference in the effective density between Si and GaAs.
In the case of the valence band, we have the heavy hole and light hole bands, both of which contribute

to the effective density. The effective density is

Nv = 2
(
m

3/2

hh + m
3/2

�h

)(
kBT

2π�2

)3/2

For GaAs we use mhh = 0.45m0, m�h = 0.08m0 and for Si we use mhh = 0.5m0, m�h = 0.15m0, to
get

Nv(GaAs) = 7.72 × 1018cm−3

Nv(Si) = 9.84 × 1018cm−3

2.8 DOPING OF SEMICONDUCTORS

To avoid leakage current in the ‘OFF’ state, semiconductor devices operate at temperatures
where the intrinsic carrier density is small (

<∼ 1015 cm−3). To introduce electrons and holes in a
semiconductor the material is doped with dopants. The electrons (holes) created by the dopants
are used in device design.

Donors are dopants which can donate an electron to the conduction band and acceptors are
dopants which can accept an electron from the valence band and thus create a hole. The donor
atom replaces a host atom in the crystal and contains one (or more) extra electrons in its outer
shell. The donor atom could be a pentavalent atom in Si or a Si atom on a Ga site in GaAs.
Focusing on the pentavalent atom in Si, four of the valence electrons of the donor atom behave
as they would in a Si atom; the remaining fifth electron now sees a positively charged ion to
which it is attracted, as shown in figure 2.19. The ion has a charge of unity and the attraction is
simply Coulombic suppressed by the dielectric constant of the material. The problem is now that
of the hydrogen atom case, except that the electron mass is the effective mass at the bandedge.
The attractive potential is

U(r) =
−e2

4πεr
(2.8.1)

where ε is the dielectric constant of the semiconductor; i.e., the product of ε0 and the relative
dielectric constant. In this simplification the properties of the dopant atom can be described
by a simple hydrogen-like model, where the electron mass is simply the effective mass at the
bandedge.
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Figure 2.19: A schematic showing the approach we can take to understand donors in semicon-
ductors. The donor problem is treated as the host atom problem, together with a Coulombic
interaction term.

We have seen that electrons in the crystal can be represented by an effective mass near the
bandedge. We get the effective mass equation for the donor level which has an energy for Ed of[−�

2

2m∗
e

∇2 − e2

4πεr

]
Fc(r) = (Ed − Ec)Fc(r) (2.8.2)

where m∗
e is the conduction bandedge mass and Ed − Ec is the impurity energy with respect to

the conduction bandedge Ec levels.
This equation is now essentially the same as that of an electron in the hydrogen atom problem.

The only difference is that the electron mass is m∗ and the Coulombic potential is reduced by
ε0/ε.

The energy solutions for this problem are

Ed = Ec − e4m∗
e

2(4πε)2�2

1

n2
, n = 1, 2, ... (2.8.3)

A series of energy levels are produced, with the ground state energy level being at

Ed = Ec − e4m∗
e

2(4πε)2�2

= Ec − 13.6

(
m∗

mo

)(εo

ε

)2

eV (2.8.4)
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Figure 2.20: A schematic of doping of Si with arsenic (or other group V dopant). A donor level
is produced below the conduction bandedge.

Note that in the hydrogen atom problem the electron levels are measured from the vacuum energy
level which is taken as E = 0. In the donor problem, the energy level is measured from the
bandedge. Figure 2.20 shows the energy level associated with a donor impurity.

The wavefunction of the ground state is as in the hydrogen atom problem

Fc(r) =
1√
πa3

e−r/a (2.8.5)

where a is the donor Bohr radius and is given by

a =
(4πε)�2

m∗
ee

2
= 0.53

(
ε/ε0

m∗
e/m0

)
Å (2.8.6)

For most semiconductors the donor energies are a few meVs below the conduction bandedge
and the Bohr radius is ∼100 Å.

Note that donors are defect levels, which are neutral when an electron occupies the defect
level and positively charged when unoccupied. Acceptors are neutral when empty and negatively
charged when occupied by an electron. The acceptor levels are produced when impurities, which
have a similar core potential as the atoms in the host lattice, but have one less electron in the
outermost shell, are introduced into the crystal.

As shown in figure 2.21 the acceptor impurity potential could now be considered to be equiv-
alent to a host atom potential, together with the Coulombic potential of a negatively charged
particle. The “hole” (i.e., the absence of an electron in the valence band) can then bind to the ac-
ceptor potential. The effective mass equation can again be used, since only the top of the valence
band contributes to the acceptor level. The valence band problem is considerably more complex
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and requires the solution of multiband effective mass theory. However, the acceptor level can be
reasonably predicted by using the heavy hole mass. Due to the larger hole mass, acceptor levels
are usually deeper in the bandgap than donor levels.

Population of dopant levels
The presence of a dopant impurity creates a bound level Ed (or Ea) near the conduction (or va-
lence) bandedge. If the extra electron associated with the donor occupies the donor level, it does
not contribute to the mobile carrier density. The purpose of doping is to create a mobile electron
or hole. When the electron associated with a donor (or a hole associated with an acceptor) is in
the conduction (or valence) band, the dopant is said to be ionized. To calculate densities of elec-
trons and holes at finite temperatures in doped semiconductors we note that carrier densities the
electrons will be redistributed, but their numbers will be conserved and will satisfy the following
equality resulting from charge neutrality

(n − ni) + nd = Nd (2.8.7)

(p − pi) + pa = Na (2.8.8)

or

n + nd = Nd − Na + p + pa (2.8.9)

where

n = total free electrons in the conduction band

nd = electrons bound to the donors

p = total free holes in the valence band

pa = holes bound to the acceptors

The number density of electrons attached to the donors has been derived in equation 2.4.4 and
is given by

nd

Nd
=

1

1
2 exp

(
Ed−EF

kBT

)
+ 1

(2.8.10)

The factor 1
2 essentially arises from the fact that there are two states an electron can occupy at a

donor site corresponding to the two spin-states.
The probability of a hole being trapped to an acceptor level is given by

pa

Na
=

1

1
4 exp

(
EF −Ea

kBT

)
+ 1

(2.8.11)

The factor of 1
4 comes about because of the presence of the two bands, light hole, heavy hole,

and the two spin-states.
To find the fraction of donors or acceptors that are ionized, we have to use a computer pro-

gram in which the position of the Fermi level is adjusted so that the charge neutrality condition
given Eq. 2.8.9 is satisfied. Once EF is known, we can calculate the electron or hole densities
in the conduction and valence bands. For doped systems, it is useful to use the Joyce–Dixon
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approximation, which gives the relation between the Fermi level and the free carrier concentra-
tion. This approximation is more accurate than the Boltzmann approximation. According to the
Joyce–Dixon approximation , we have

EF = Ec + kBT

[
ln

n

Nc
+

1√
8

n

Nc

]
= Ev − kBT

[
ln

p

Nv
+

1√
8

p

Nv

]
(2.8.12)

This relation can be used to obtain the Fermi level if n is specified. Or else it can be used to
obtain n if EF is known by solving for n iteratively. If the term (n/

√
8 Nc) is ignored, the result

corresponds to the Boltzmann approximation.
If we examine the mobile carrier density dependence upon temperature, there are three regimes,

as shown in figure 2.22 for an n−type material. At low temperatures, the electrons coming from
the donors are attached to the donors and occupy the impurity levels Ed. Thus there is no con-
tribution to the mobile carrier density from the dopants. This regime is called the carrier freeze
out regime. At higher temperatures, the dopants ionize until most of them are ionized out over a
temperature regime, the mobile carrier is essentially equal to the dopant density and independent
of temperature. This is the saturation regime and semiconductor devices are operated in this
regime. At very high temperatures, the intrinsic carrier density overwhelms the dopant density
and the material acts as an intrinsic material.

In figure 2.23 we show experimentally measured properties of Mg in GaN (Mg acts as a
deep acceptor in GaN). When the temperature is not extremely high, the hole concentration is
much less than the effective acceptor concentration NA −ND, since deep acceptors are not fully
ionized at lower temperatures.
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Figure 2.22: Electron density as a function of temperature for a Si sample with donor impurity
concentration of 1015 cm−3.

2.9 DOPING IN POLAR MATERIALS

Semiconductors such as GaN, In, and AlN are called polar materials since they can have net
polarization due to a shift in the cation and anion sublattices. In unstrained zinc-blende structures
the cation and anion sublattices are arranged in such a way that there is no net polarization in
the material. However, in the wurtzite crystal (like InN, GaN, AlN) the arrangement of the
cation and anion sublattices can be such that there is a relative movement from the ideal wurtzite
position to produce a “spontaneous polarization” in the crystal which becomes very important
for heterostructures. This effect is illustrated in figure 2.24. Also given in table 2.4 are the values
of the spontaneous polarization which is aligned along the c-axis of the crystal.

In addition to spontaneous polarization is another phenomena which can lead to polarization in
the material. Strain can cause a relative shift between the cation and anion sublattices and create
net polarization in the material. This is the piezoelectric effect. In figure 2.25 we show how
the movement of rows can cause polarization effect by looking at the structural arrangements of
atoms in barium titanate.
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Figure 2.23: Measured properties of a deep acceptor: Mg doping of GaN. (a) Doping parameters
for six different samples. (b) Hole concentration as a function of temperature. Notice that for all
these samples, when the temperature is not extremely high, the hole concentration is much less
than the effective acceptor concentration NA − ND, since deep acceptors are not fully ionized
at lower temperatures. (c) Hole mobility as a function of temperature. Figures are from the PhD
dissertation of Peter Kozodoy, UCSB.
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C

a

Figure 2.24: The wurtzite crystal structure unit cell. In the ideal wurtzite structure the c lattice

constant is related to the a lattice constant by the relation c = 2
√

2
3a. However, when the cation-

anion bond lengths cause a deviation from this relationship a net spontaneous polarization is
created.

Polar Charge at Heterointerfaces

If there is a net movement of one sublattice against each other, a polarization field is set up.
This results in a positive and negative polar charge. Under most conditions the polar charge on
the free surfaces is neutralized by charges present in the atmosphere. This causes depolarization
of the material. If, however, a heterostructure is synthesized and the two materials forming the
structure have different values for the polarization, there is a net polar charge (and polarization)
at the interface as shown in figure 2.30. In semiconductors this polar charge can cause a built-in
electric field

E =
P

ε
(2.9.1)

The interface charge PA−PB and the built-in interface field (see figure 2.26) can be exploited in
device design since for most applications this fixed polar charge can act as dopant (see figure 2.27
and figure 2.28).
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Figure 2.25: The structure of a typical perovskite crystal illustrated by examining barium titanate.
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Figure 2.26: A schematic showing how interface charge density can be produced at heterointer-
faces of two polar materials.

For example, in AlGaN/GaN HFETs , a fixed sheet charge is formed at the heterointerface
due to the the piezoelectric polarization in the strained AlGaN, and the discontinuity in the
spontaneous polarization at the interface (see figure 2.27). To screen the net positive charge
at the AlGaN/GaN junction, a 2DEG is formed. The same effect can also be used to create a
bulk three-dimensional electron slab, as shown in figure 2.28. This is achieved by grading from
GaN to AlGaN, thus spreading the polarization-induced charge over the graded region. The
polarization-induced carrier density, ρπ , is given by the equation ρπ = ∇ · P; here P is the total
polarization in the material. Since the AlGaN composition and polarization are shown to be well-
approximated by Vegard’s law, any desired channel charge profile can be obtained by choosing
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ZINC BLENDE

Material e14 (C/m2)

 AlAs –0.23

 GaAs –0.16

 GaSb –0.13

 GaP –0.10

 InAs –0.05

 InP –0.04

WURTZITE (c-axis growth)

Material e31 (C/m2) e33 (C/m2) Psp (C/m2)

 AlN –0.6 1.46 –0.081

 GaN –0.49 0.73 –0.029

 InN –0.57 0.97 –0.032

Table 2.4: Piezoelectric constants in some important semiconductors. For the nitrides the spon-
taneous polarization values are also given. (Data for zinc-blende material from S. Adachi, J.
Appl. Phys. vol. 58, R1 (1985). For nitrides see E. Bernardini, V. Fiorentini, and D. Vanderbilt,
Phys. Rev. B vol. 56, R10024 (1997).)

the appropriate grading scheme. This polarization induced channel charge can be modulated by
a gate in a structure called a polarization-doped FET or PolFET can be used to tailor the gm-Vgs

profile of the PolFET. This is analogous to impurity doped MESFETs, where the gm-Vgs profile
is modified by dopant profile design. In figure 2.29, we show experimentally measured electrical
characteristics of doped GaN, GaN 2DEG structures, and GaN 3DEG structures.

Piezoelectric Effect
As noted above, when a structure is under strain a net polarization can arise—a phenomenon
called piezoelectric effect. The value of the polar charge induced by strain depends upon the
strain tensor. In the previous section we have discussed the nature of the strain tensor in strained
epitaxy (i.e., in the coherent growth regime).

Nitride heterostructures have polarization charges at interfaces because of strain related piezo-
electric effect as well as from spontaneous polarization. For growth along (0001) orientation the
strain tensor for coherently strained wurtzite crystals is given in Chapter 1. The piezoelectric
polarization is related to the strain tensor by the following relation

Ppz = e33εzz + e31(εxx + εyy) (2.9.2)

Piezoelectric effect is also present in zinc blende structures. However, the piezoelectric effect
only occurs when the strain tensor has off-diagonal components. The polarization values are
given by

Px = e14εyz

Py = e14εxz

Pz = e14εxy (2.9.3)
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Figure 2.27: Mobile 2-dimensional sheet of electrons induced by polarization fields in an Al-
GaN/GaN heterostructure. (a) Charge distribution and (b) band diagram for the structure.

As can be seen from the discussion of the previous section the strain tensor is diagonal for growth
along (001) direction. As a result there is no piezoelectric effect. However for other orientations,
notably for (111) growth there is a strong piezoelectric effect.
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Figure 2.28: A 3-dimensional charge distribution can be induced in polar materials via bandgap
grading. (a) 2-dimensional charge distribution induced via an abrupt interface. (b) Linear grade
and (c) parabolic grade result in the displayed 3-dimensional charge distributions. (Figure cour-
tesy S. Rajan, UCSB)

Piezoelectric effect can be exploited to create interface charge densities as high as 1013 cm−2

in materials. In Table 2.4 we provide the values of piezoelectric constants for some semicon-
ductors. In addition to the polarization induced by strain, the cation and anion sublattices are
spontaneously displaced with respect to each other producing an additional polarization. For
heterostructures the difference of the spontaneous polarization appears at the interfaces, as noted
earlier. In Chapter 1 we have provided the values of spontaneous polarization for AlN, GaN, and
InN.

EXAMPLE 2.5 A thin film of Al0.3Ga0.7N is grown coherently on a GaN substrate. Calculate the polar
charge density and electric field at the interface.

The lattice constant of Al0.3Ga0.7N is given by Vegard’s law

aall = 0.3aAlN + 0.7aGaN = 3.111 Å

The strain tensor is
εxx = 0.006

Using the elastic constant values from Chapter 1

εzz = −0.6 × 0.006 = 0.0036

The piezoelectric effect induced polar charge then becomes

Ppz = 0.0097 C/m2
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Figure 2.29: Measured electrical characteristics as a function of temperature for three different
GaN samples. The sample with the lowest sheet charge is doped with Si (a shallow donor in
GaN) to generate mobile electrons. In the sample with the highest sheet charge, carriers are
generated by grading AlGaN from 0% Al to 30% Al, resulting in a 3-dimensional electron dis-
tribution (as in figure 2.28b and c). In the third sample, a 2DEG is generated in an AlGaN/GaN
heterostructure (as in figure 2.28a). While the charge in the Si-doped sample decreases as tem-
perature is decrease (carrier freeze-out), the charge in the other two samples remains constant.
Figures courtesy of D. Jena, University of Notre Dame.

This corresponds to a density of 6.06 × 1012 cm−2 electronic charges.
In addition to the piezoelectric charge the spontaneous polarization charge is

Psp = 0.3(0.089) + 0.7(0.029) − 0.029 = 0.018 C/m2

which corresponds to a density of 1.125 × 1013 cm−2 charges. The total charge (fixed) arising at the
interface is the sum of the two charges.
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2.10 TAILORING ELECTRONIC PROPERTIES

In many applications we need bandgaps or carrier properties that are not available in naturally
occurring materials. It is possible to tailor electronic properties by using alloys and quantum
wells.

2.10.1 Electronic properties of alloys

Alloys are made from combinations of two or more materials and can be exploited to create
new bandgaps or lattice constants. In Chapter 1 we have discussed how the lattice constant of
alloys changes with composition. To the first order the electronic properties are also given by a
similar relation. Consider an alloy AxB1−x made from materials A with bandstructure given by
EA(k) and B with bandstructure given by EB(k). The bandstructure of the alloy is then given
by

Eall(k) = xEA(k) + (1 − x)EB(k) (2.10.1)

Note that the energy averaging is done at the same k value. If we make an alloy from a direct
and an indirect material, one does not simply average the bandgaps to get the alloy bandgap.
Instead the bandgaps at the same k values are averaged and the bandgap is then given by the
lowest energy difference between the conduction and valence energies.

Based on the equation above the effective mass of the alloy is to be averaged as

1

m∗
all

=
x

m∗
A

+
(1 − x)

m∗
B

(2.10.2)

It is important to note that alloys have inherent disorder since they have random arrangements
of atoms. This leads to disorder related scattering discussed in the next chapter.

2.10.2 Electronic properties of quantum wells

Quantum wells offer a very useful approach to bandstructure tailoring. In Section 2.2 we have
discussed electronic properties in quantum wells. In quantum wells electrons behave as if they
are in a 2-dimensional space and acquire properties that are especially useful for many electronic
and optoelectronic applications.

When two semiconductors with different bandgaps (and chemical compositions) form an in-
terface, We need to know how does the conduction band (valence band) on one material line
up with the other materials bands? This information is usually obtained through experiments.
There are three possible scenarios as shown in figure 2.30. In type I structures the layer bandgap
material “surrounds” the bandgap of the small gap material. In quantum wells made from such
materials, both electrons and holes are confined in the same physical quantum well. Most elec-
tronic and optoelectronic devices are based on type I lineup. In type II lineup the conduction
band of material A is below that of the material B, but the valence band of A is above that
of B as shown. In quantum wells made from such materials the electrons and holes are con-
fined in spatially different quantum wells. These structures are useful for applications in the
long wavelength regime, since their “effective” bandgap can be very small. Finally, in type III
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Figure 2.30: Various possible bandedge lineups in semiconductors A and B.

heterostructures, both the conduction and valence band edges of material A are above the con-
duction band edge of material B. In figure 2.31 we show bandlineups for a number of different
material systems.

In figure 2.32 we show a schematic of a type I quantum well made from a smaller bandgap
material B sandwiched between a large bandgap material A. To understand the electronic prop-
erties of the quantum well we use the effective mass approach and the discussion of Section 2.2.
The key difference in semiconductor quantum wells is that we need to use the effective mass
instead of the free electron mass.

The confinement of electrons and holes by quantum wells alters the electronic properties of
the system. This has important consequences for optical properties and optoelectronic devices.
In an infinite quantum well the confined energies are

En =
π2

�
2n2

2m∗W 2
(2.10.3)

The energy of the electron bands are then

E = En +
�

2k2
‖

2m∗ (2.10.4)

The two-dimensional quantum well structure thus creates electron energies that can be described
by subbands (n = 1, 2, 3 · · · ). The subbands for the conduction band and valence band are
shown schematically in figure 2.33.
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Figure 2.31: Bandedge lineups in a variety of materials.

If the barrier potential Vc is not infinite, the wavefunction decays exponentially into the barrier
region, and is a sine or cosine function in the well. By matching the wavefunction and its
derivative at the boundaries one can show that the energy and the wavefunctions are given by the
solution to the transcendental equations (see Section 2.2)

α tan
αW

2
= β

α cot
αW

2
= −β (2.10.5)

where

α =

√
2m∗E

�2

β =

√
2m∗(Vc − E)

�2
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Figure 2.32: A schematic of a quantum well formed for the electron and holes in a heterostruc-
ture.

These equations can be solved numerically. The solutions give the energy levels E1, E2, E3

. . . and the wavefunctions, f1(z), f2(z), f3(z), · · · .
Each level E1, E2, etc., is actually a subband due to the electron energy in the x–y plane. As

shown in figure 2.33 we have a series of subbands in the conduction and valence band. In the
valence band we have a subband series originating from heavy holes and another one originating
from light holes.

The subband structure has important consequences for the optical and transport properties of
heterostructures. An important manifestation of this subband structure is the density of states
of the electronic bands. The density of states figures importantly in both electrical and optical
properties of any system. In Section 2.3 we have discussed how dimensionality alters the density
of states.
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The density of states in a quantum well is

• Conduction band

N(E) =
∑

i

m∗

π�2
θ(E − Ei) (2.10.6)

where θ is the heavyside step function (unity if E > Ei; zero otherwise) and Ei are the subband
energy levels.
• Valence band

N(E) =
∑

i

2∑
j=1

m∗
j

π�2
θ(Eij − E) (2.10.7)

where i represents the subbands for the heavy hole (j = 1) and light holes (j = 2). The density
of states is shown in figure 2.33 and has a staircase-like shape.

The differences between the density of states in a quantum well and a three-dimensional semi-
conductor is one of the important reasons why quantum wells are useful for optoelectronic de-
vices. The key difference is that the density of states in a quantum well is large and finite at the
effective bandedges (lowest conduction subband and highest valence subband). As a result the
carrier distribution is highest at the bandedges.

The relationship between the electron or hole density (areal density for 2D systems) and the
Fermi level is different from that in three-dimensional systems because the density of states
function is different. The 2D electron density in a single subband starting at energy Ee

1 is

n =
m∗

e

π�2

∫ ∞

Ee
1

dE

exp
(

E−EF

kBT

)
+ 1

=
m∗

ekBT

π�2

[
ln

{
1 + exp

(
EF − Ee

1

kBT

)}]
or EF = Ee

1 + kBT ln

[
exp

(
nπ�

2

m∗
ekBT

)
− 1

]
(2.10.8)

If more than one subband is occupied we can add their contribution similarly. For the hole
density we have (considering both the HH and LH ground state subbands)

p =
m∗

hh

π�2

∫ −∞

Ehh
1

dE

exp
(

EF −E
kBT

)
+ 1

+
m∗

�h

π�2

∫ −∞

E�h
1

dE

exp
(

EF −E
kBT

)
+ 1

(2.10.9)

where m∗
hh and m∗

�h are the in-plane density of states masses of the HH and LH subbands. We
then have

p =
m∗

hhkBT

π�2

[
ln

{
1 + exp

(Ehh
1 − EFp)

kBT

}]
+

m∗
�hkBT

π�2

[
ln

{
1 + exp

(E�h
1 − EFp)

kBT

}]
(2.10.10)

If Ehh
1 − E�h

1 > kBT
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The occupation of the light hole subband can be ignored.
In many electronic devices used for information processing, a quantum well with a “triangu-

lar” shape is produced. The potential for electrons may be written in the form

V (x) = ∞ x < 0

= eẼx x > 0 (2.10.11)

The potential energy of the particle is of the form

V (x) = Fx + constant (2.10.12)

where F is the force on the particle (say, an electron) and has a value eE . We choose the
constant in the potential energy to be such that at x = 0, V (x) = Ex as shown in figure 2.34.
The solutions to this problem are the Airy functions

Φ(ξ) =
1√
π

∫ ∞

0

cos

(
u3

3
+ uξ

)
du (2.10.13)

with a normalized solution
ψ(ξ) = AΦ(ξ) (2.10.14)

The normalization constant can be shown to have the value

A =
(2m)1/3

π1/2E 1
6 �2/3

(2.10.15)

The Airy functions have the following asymptotic behavior:

Φ(ξ) ∼ 1

2
(ξ)−1/4 exp

(
−2ξ3/2

3

)
, ξ > 0

Φ(ξ) ∼ | ξ |−1/4 sin

(
2 | ξ |3/2

3
+

π

4

)
, ξ < 0 (2.10.16)

Note that at x = 0 the second form is to be used, since ξ < 0.
The solutions for the energy levels turn out to be:

En =

(
�

2

2m

)1/3 (
3

2
πE

)2/3 (
n − 1

4

)2/3

, n = 1, 2, . . . (2.10.17)

As shown in figure 2.35, in electronic devices such as a MOSFET or a MODFET the device
consists of an insulator-semiconductor junction. Electrons are injected at the interface on the
semiconductor side by a controlling electrode (the gate). The free charge causes a bending of
the semiconductor band to produce an approximately triangular quantum well, as shown. The
triangular quantum well is defined by an electric field Es which is related to the areal charge
density by Gauss’s law

Es =
ens

εs
(2.10.18)

As a result of the confinement, quantized energy levels are formed in the triangular well.
Approximate positions of these levels can be obtained from the results given above.
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Figure 2.34: A schematic of free electrons (conduction electrons) in a semiconductor device
confined to an approximately triangular quantum well.

2.11 STRAINED HETEROSTRUCTURES

As noted in chapter 1 it is now possible to incorporate strain into an epitaxial film. In fact,
strain of a few percent can be built-in simply by growing a film on a mismatched substrate. ne of
the most important strained heterostructure is the SiGe/Si structure. This system is compatible
with Si based technology since it uses Si substrates. Due the modifications in the bandstructure
high performance SiGe electronic devices can be made. Other important strained structures are
InGaAs grown on GaAs or InP substrates and the AlGaN/GaN structure.

Once the strain tensor is known, we are ready to apply the deformation potential theory to
calculate the effects of strain on various eigenstates in the Brillouin zone. The strain perturbation
Hamiltonian is defined and its effects are calculated in the simple first order perturbation theory.
In general we have

Hαβ
ε =

∑
ij

Dαβ
ij εij (2.11.1)

where Dij is the deformation potential operator which transforms under symmetry operations as
a second rank tensor. Dαβ

ij are the matrix elements of Dij .
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The built in strain causes several different effects on electronic properties: i) It can lift the
degeneracies or band edges; ii) it can change the bandgap; iii) it can alter effective masses.
To calculate the effect of strain one uses perturbation theory using equation 2.11.1. we will
summarize the relevant equations for a direct gap conduction band, an indirect gap X-valley
conduction bandedge and for the valence bands.

Case 1: Let us first examine how strain influences the bottom of the non degenerate Γ
′
2 state

which represents the conduction bandedge of direct bandgap semiconductors. This state is an
s-type state and has the full cubic symmetry associated with it. The effect of the strain is to
produce a shift in energy.

δE(000) = Hε

= Dxx(εxx + εyy + εzz) (2.11.2)

Conventionally we write
Dxx = Ξ

(000)
d (2.11.3)

where Ξ
(000)
d represents the dilation deformation potential for the conduction band (000) valley.

Case 2: In this next case we will examine indirect gap materials like Si which have the con-
duction bandedge along the (100) and equivalent directions. The bandedges are shifted according
to the following equations.

δE(100) = Ξ
(100)
d (εxx + εyy + εzz) + Ξ(100)

u εxx (2.11.4)

By symmetry we can write

δE(010) = Ξ
(100)
d (εxx + εyy + εzz) + Ξ(100)

u εyy (2.11.5)

δE(001) = Ξ
(100)
d (εxx + εyy + εzz) + Ξ(100)

u εzz (2.11.6)

We note that if the strain tensor is such that the diagonal elements are unequal (as is the case in
strained epitaxy), the strain will split the degeneracy of the six valleys in Si. This occurs in the
SiGe/Si structures so that the 6-fold degenerate valleys split into 2-fold and 4-fold valleys. The
amount of splitting will be given later in this section.

Case 3: The triple degenerate states describing the valence bandedge.
The valence band states are defined (near the bandedge) by primarily px, py , pz (denoted

by x,y,z) basis states. We have already discussed the strain tensor in epitaxial growth. For
(001) growth which has been the main growth direction studied because of its compatibility with
technology of processing we have

εxx = εyy = ε

εzz = −2c12

c11
ε (2.11.7)

The effects of the strain can be shown to be like heavy hole and light hole degeneracy at the
valence bandedge. This also causes the hole mass to become smaller. For the InyGa1−yAs
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system the separation between the HH and LH state is given by δ = −5.966ε eV. The effect
of strain on bandstructure for both conduction band and valence band states is illustrated by
examining the direct bandgap material InxGa1−xAs grown on GaAs and the indirect bandgap
material GexSi1−x alloy grown on Si. For direct bandgap materials conduction bands, the strain
tensor only moves the position of the bandedge and has a rather small effect on the carrier mass.

TENSILE STRAIN IN

GROWTH PLANE

UNSTRAINED COMPRESSIVE STRAIN IN

GROWTH PLANE

Light hole

Heavy hole

LH

HH

LH

HH

Figure 2.35: Effect of strain on bandedges of a direct bandgap material. Due to the epitaxial
strain, the valence band degeneracy is lifted.

In figure 2.35 we show a schematic of how strain in a layer grown along the (001) direction
influences the bandedges in a direct gap semiconductor. The conduction bandedge moves up or
down with respect to its unstrained position as discussed earlier, but since it is a non-degenerate
state there is no splitting. The valence bandedge is degenerate in the unstrained system. This de-
generacy is lifted by quantum confinement even in an unstrained quantum well, but the splitting
produced by quantum confinement is usually small (∼ 10–15 meV). Under biaxial compressive
strain the bandgap of the material increases and the HH and LH degeneracy is lifted. The split-
ting can easily approach 100 meV making strain an important resource to alter valence band
density of states. Under biaxial compressive strain the HH state is above the LH state, while
under biaxial tensile strain the LH state is above the HH state, as shown in figure 2.35.

In the case of the indirect bandgap Si1−xGex alloy grown on Si, the conduction band also is
significantly affected according to equation 2.11.4 through equation 2.11.6. For (001) growth
there is splitting in the 6 equivalent valleys.The results on the bandedge states are shown in
figure 2.36. Note that the biaxial compressive strain causes a lowering of the four-fold in-plane
valleys below the 2 two-fold out of plane valleys. We see that the bandgap of SiGe falls rapidly
as Ge is added to Si. This makes the SiGe very useful for Si/SiGe heterostructure devices such
as heterojunction bipolar transistors. the splitting of the HH, LH and SO bands also cause a
sharp reduction in the density of states mass near the bandedge. The splitting of the conduction
bandedge valleys also reduces the conduction band density of states in SiGe.
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2.12 DEFECT STATES IN SOLIDS

The band theory discussed in this chapter is valid only for perfect crystals. Even in good-
quality crystals there are defects, which break the periodicity of the structure. Typical defects in
crystalline materials are: (i) defects in the structure arise from missing atoms (vacancies), atoms
at the wrong sites, unintended impurities, etc. (ii) We may also have dislocations at surfaces of a
crystal the arrangement of atoms does not have the same periodicity as in the bulk. (iii) We could
also have absorbed atoms or molecules at the surface; disordered solids such as amorphous or
polycrystalline materials.

Defects and surface states

In figure 2.38 we show a schematic of a perfectly periodic material and one with a defect. A
deep potential region indicates the region of defect. In the case of the periodic system we have
seen the electrons see a bandedge and are described by simple a effective mass equations near
the bandedge. There are no allowed states in the bandgap region. In the case of a defect the deep
level causes new electronic states, which can have energies in the bandgap.

Bound state trapped near the 
grain boundary

Perfectly periodic material Defect in a material

ATOMIC

POTENTIALS

ψ ψ

Schematic of electron states 
in a perfect crystal

Schematic of a defect

r
"free" states

r

Defect

(a) (b)

ATOMIC

POTENTIALS

Figure 2.38: A schematic of the structural and electronic properties of (a) crystals and of (b) a
material with a defect.
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The key difference between electronic states in the perfect crystal and a non-perfect crystal is
related to the wavefunction. In the periodic state, the electron state is extended over the entire
system, as shown in figure 2.38a. This reflects the fact that the electron can propagate from one
region to another. In the case of a defect a bandgap state may be created with an associated
wavefunction that is spatially localized near the defect region, as shown in figure 2.38b. When
an electron is occupying such a localized state its transport (mobility, diffusion) properties are
seriously affected. Localized electrons cannot move across the material as easily.

In figure 2.39 we show a comparison of the density of states in a perfectly periodic and of a
defect-containing material. In the case of the perfect material we have a well-defined bandgap,
while in the presence of defects we have bandgap states. Electrons can be trapped into the
bandgap states (hence these states are also called traps).

2.13 TECHNOLOGY ISSUES

We have examined some of the driving forces behind some of the technologies. The use
of alloys and heterostructures adds a tremendous versatility to the available parameter space to
exploit. Semiconductor alloys are already an integral part of many advanced technology systems.
Consider the following examples.

• The HgCdTe alloy is the most important high-performance imaging material for long
wavelength applications (10 – 14 μm). These applications include night vision, seeing
through fog, thermal imaging of the human body parts for medical applications, and a
host of special purpose applications involving thermal tracking.

• The AlGaAs alloy is an important ingredient in GaAs/AlGaAs heterostructure devices
which drive a multitude of technologies including microwave circuits operating up to
100 GHz, lasers for local area networks, and compact disc players.

• InGaAs and InGaAsP alloy systems are active ingredients of MMICs operating above
100 GHz and long-haul optical communication lasers.

While alloys are important ingredients of many technologies, it must be emphasized again
that alloys are not perfectly periodic structures. This results in random potential fluctuations
which leads to an important scattering mechanism that limits certain performances. For example,
the low temperature low field mobility is severely affected by alloy scattering as is the exciton
line width of optical modulators. The growth and fabrication issues in alloy systems are also
sometimes serious due to miscibility gaps that may be present.

2.14 PROBLEMS

Problem 2.1 Plot the conduction band and valence band density of states in Si and GaAs
from the bandedges to 0.5 eV into the bands. Use the units eV−1 cm−3. Use the following
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data:

Si : m∗
1 = m∗

� = 0.98 m0

m∗
2 = m∗

3 = m∗
t = 0.19 m0

m∗
hh = 0.49 m0

m∗
�h = 0.16 m0

GaAs : m∗
e = m∗

dos = 0.067 m0

m∗
hh = 0.45 m0

m∗
�h = 0.08 m0

The wavevector of a conduction band electron in GaAs is k =
(0.1, 0.1, 0.0) Å−1. Calculate the energy of the electron measured from the conduction
bandedge.

Problem 2.2 Calculate the lattice constant, bandgap, and electron effective mass of the
alloy InxGa1−xAs as a function of composition from x = 0 to x = 1.

Problem 2.3 Calculate the effective density of states at the conduction and valence bands
of Si GaAs, and GaN at 77 K, 300 K, and 500 K.

Problem 2.4 Estimate the intrinsic carrier concentration of diamond at 700 K. You can
assume that the carrier masses are similar to those in Si. Compare the results with those
for GaAs, Si, SiC and GaN.

Problem 2.5 Estimate the change in intrinsic carrier concentration per K change in
temperature for InAs, Si, and GaAs at near room temperature.

Problem 2.6 Calculate the Fermi energy and Fermi velocity for the following metals: Ag,
Au, Ca, Cs, Cu, Na.

Problem 2.7 Calculate the change in the Fermi level as temperature changes from 0 to
1000 K for Al and Cu.

Problem 2.8 Consider a donor an energy ED from the conduction band as shown in
figure 2.40. If the density of the donor device is ND(cm−3) derive a relationship for the
position of the fermi level as a function of temperature in terms of NC and NV. Plot the
fermi level as a function of temperature for the case ND = NA= NV. Physically explain
your result. Repeat for the case of a donor and an acceptor of densities ND and NA

respectively. What will be the dependence of the fermi level on temperature if (i) ND =
NA, (ii) ND >NA, and (iii) ND < NA. Explain.

Problem 2.9 Consider a slab of GaAs that is doped n-type with 1017cm−3.

1. Consider the case where there is a surface donor state 0.5 eV from the conduction
band. What is the fermi level at the surface as the density of this level is increased
from 1010cm−2 to 1014cm−2?
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Figure 2.40: Figure for problem 2.8.

2. Solve the previous part for the case with only an acceptor state 0.5 eV from the
conduction band.

3. Assume now that there are two defect levels of equal density, one donor-like and the
other acceptor-like, at the surface. The acceptor state is 0.3 eV from the conduction
band edge and the donor state is 0.5 eV from the conduction band edge. How does
the fermi level pinning at the surface change as the areal density of each of these
states is kept equal and increased from 1010cm−2 to 1014cm−2?

4. Now the positions of the defect levels are changed. The acceptor state is 0.5 eV from
the conduction band edge and the donor state is 0.3 eV from the conduction band
edge. How does the fermi level pinning at the surface change as the density of each
of these states is kept equal and increased from 1010cm−2 to 1014cm−2?

5. Metals X and Y are now evaporated on the surface with 1013cm−2 donor states at 0.5
eV from the conduction band. Find the position of the fermi level at the surface for
metal X(Φms = 0.3eV ) and metal Y(Φms = 0.7eV ).

6. Repeat part 5 but with acceptor states this time, assuming they have the same energy
level and areal density.

Draw band diagrams to explain your solutions.

Problem 2.10 Assume a pn junction with an acceptor close to the valence band edge, so
that the acceptors are fully ionized at 300K. Assume NA = ND = 1018cm−3. What is the
built-in voltage of the junction? Now, the choice of acceptor is changed such that only
1/10th of the acceptors are ionized.

1. What is the acceptor level relative to the valence band?

2. What is the new built-in voltage of the diode. Make reasonable approximations
which should be justified.

3. Draw a band diagram of the system showing the acceptor level and the Fermi level.

Problem 2.11 Using Vegard’s law for the lattice constant of an alloy (i.e., the lattice
constant is the weighted average) find the bandgaps of alloys made in InAs, InP, GaAs,
GaP which can be lattice matched to InP.
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Problem 2.12 For long-haul optical communication, the optical transmission losses in a
fiber dictate that the optical beam must have a wavelength of either 1.3 μm or 1.55 μm.
Which alloy combinations lattice matched to InP have a bandgap corresponding to these
wavelengths?

Problem 2.13 Calculate the composition of HgxCd1−xTe which can be used for a night
vision detector with bandgap corresponding to a photon energy of 0.1 eV. Bandgap of
CdTe is 1.6 eV and that of HgTe is −0.3 eV at low temperatures around 4 K.

Problem 2.14 In the In0.53Ga0.47As/InP system, 40% of the bandgap discontinuity is in
the conduction band. Calculate the conduction and valence band discontinuities. Calculate
the effective bandgap of a 100 Å quantum well. Use the infinite potential approximation
and the finite potential approximation and compare the results.

Problem 2.15 In an n-type Si crystal the doping changes abruptly from ND = 1015 to
ND = 1017. Make a qualitative sketch of the band diagram. Calculate

1. the built-in potential at the n+/n− interface, in eV. Also calculate how much of the
band-bending occurs on each side of the junction,

2. the electric field at the n+/n− interface and

3. the electron concentration at the n+/n− interface.
Assume T = 300K.

Problem 2.16 Calculate the first and second subband energy levels for the conduction
band in a GaAs/Al0.3Ga0.7As quantum well as a function of well size. Assume that the
barrier height is 0.18 eV.

Problem 2.17 Calculate the width of a GaAs/AlGaAs quantum well structure in which the
effective bandgap is 1.6 eV. The effective bandgap is given by

Eeff
g = Eg(GaAs) + Ee

1 + Eh
1

where Eg (GaAs) is the bandgap of GaAs (= 1.5 eV) and Ee
1 and Eh

1 are the ground state
energies in the conduction and valence band quantum wells. Assume that
m∗

e = 0.067 m0,m
∗
hh = 0.45 m0. The barrier heights for the conduction and valence

band well is 0.2 eV and 0.13 eV, respectively.

Problem 2.18 Assume that a particular defect in silicon can be represented by a
three-dimensional quantum well of depth 1.5 eV (with reference to the conduction
bandedge). Calculate the position of the ground state of the trap level if the defect
dimensions are 5 Å× 5 Å× 5 Å. The electron effective mass is 0.26 m0.

Problem 2.19 A defect level in silicon produces a level at 0.5 eV below the conduction
band. Estimate the potential depth of the defect if the defect dimension is 5 Å× 5 Å×5 Å.
The electron mass is 0.25 m0.
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Problem 2.20 In an n-type Si crystal the doping changes abruptly from ND = 1015 to
ND = 1017. Make a qualitative sketch of the band diagram. Calculate
(a) the built-in potential at the n+/n− interface, in eV. Also calculate how much of the
band-bending occurs on each side of the junction,
(b) the electric field at the n+/n− interface and
(c) the electron concentration at the n+/n− interface.
Assume T = 300K.

Problem 2.21 Consider a schottky barrier formed between Al(sφM = 4.1eV ) and
GaAs(qχ = 4.04eV ). Consider that the surface has both acceptor and donor states in equal
concentration, 1.0 eV and 0.6 eV from the conduction band respectively. Assume that the
concentrations are equal (measured in cm−2). Assume a thin insulator (δÅ thick) between
the metal and the semiconductor to help set-up the problem. Calculate the barrier height as
a function of the density of states Dscm

−2. Solve the problem for both n and p type
semiconductors doped at 1017cm−3. Plot.
Note: The problem is solve by balancing charges in the system.
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Chapter 3

CHARGE TRANSPORT
IN MATERIALS

3.1 INTRODUCTION

Electronic devices rely on transport of electrons (holes) in materials. This transport occurs
either under the influence of an electric field or carrier concentration gradients. In this chapter
we will examine how electrical current flows occur in materials. The charges in a solid can
be loosely classified as fixed and mobile. When an external perturbation is applied (e.g., an
electric field) the mobile charges can move from one point in space to another. In particular
they can move from one contact on a device to another. The fixed charge, however, can only be
disturbed slightly from its equilibrium position, but cannot move over the length of a device. As
shown in figure 3.1 both fixed charges and mobile charges play an important role in the physics
of semiconductors. Essentially all electronic devices such as field effect transistors, bipolar
transistors, diodes, as well as optoelectronic devices, such as lasers and detectors depend upon
free or mobile charges. Mobile charges are the electrons in the conduction band and holes in the
valence band for semiconductors and insulators. As we have discussed in the previous chapter,
in metals the mobile charges are the electrons in the conduction band.

Fixed charges in materials also play an important role in devices, even though they cannot
participate in current flow. Small movements in the position of the fixed charges are responsible
for the dielectric response of solids. The fixed charges are also responsible for polarization
effects, which are exploited for devices, such as sensors and detectors.

Mobile carriers respond to electric fields and carrier concentration gradients. Electrons and
holes also combine with each other. In this chapter we will examine the physical processes that
form the basis of electronic devices

92
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FIXED CHARGES
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electrons
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electronic  and 
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CHARGES IN SOLIDS

Figure 3.1: An overview of fixed and mobile charges in solids and their impact on physical
phenomena. Semiconductor devices are dependent upon mobile electrons and holes.

3.2 CHARGE TRANSPORT: AN OVERVIEW

Before discussing issues in free carrier (or mobile carrier) transport we remind the reader of
the nature of electronic states in solids in figure 3.2. As noted in chapter 2, in the case of the
perfect crystal we see that in the conduction and valence bands the electronic states are “free,”.
There are no allowed energy levels in the bandgap (density of states is zero in the bandgap, as
shown). In the case of a crystal with defects we still have the free states in the conduction
and the valence bands, but we also have defect-related allowed states in the bandgap region, as
shown in figure 3.2b. In these states (trap states) electrons are not free to move.

We will first provide a simple overview of how electrons respond to applied electric fields. In
figure 3.3 we show a schematic of how electrons (holes) move through a sample when an electric
field is applied. In figure 3.3a we show the situation in a good-quality crystalline material. The
electron moves under the electric field force, but suffers a number of scattering processes. The
scattering occurs due to various imperfections, such as defects and vibrations of atoms (due to
thermal energy). The relation between the electron velocity or distance traveled and applied
field is complex. However at low fields the relation can be described by a simple relation. If
we examine the distance versus time trajectory of a typical electron we observe that the electron
shows a path as shown in figure 3.3. On average the electron trajectory is described by

d = vt

v = μE (3.2.1)

where d is the distance traveled in time t. The velocity v is proportional to the electric field
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Figure 3.2: A schematic of the nature of electronic states in solids: (a) for a perfect crystal, (b)
for a crystal with defects.

applied through μ, the mobility. When the electric field in large the relationship between velocity
and applied field is not so simple and will be discussed later.

3.3 TRANSPORT AND SCATTERING

The problem of transport involves non-equilibrium physics. We need to find the distribution
function for electrons in energy and momentum space under an applied field or under carrier con-
centration gradients. We know that under equilibrium the electron (hole) distribution in energy
(or momentum) is given by the Fermi–Dirac distribution

f(E) = f◦(E) =
1

exp
(

E−EF

kBT

)
+ 1

E = Ei +
�

2k2

2m∗

where Ei is the bandedge.
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Figure 3.3: A typical electron trajectory in a sample and the distance versus time profile.

We can see that in the absence of any applied electric field, the occupation of a state with
momentum +�k is the same as that of a −�k state. Thus there is net cancellation of momenta
and there is no net current flow. The distribution function in momentum space is shown schemat-
ically in figure 3.4a. The question we would like to answer is the following: If an electric field
is applied, what happens to the free electrons (holes)? When a field is applied the electron dis-
tribution will shift, as shown schematically in figure 3.4b, and there will be a net momentum of
the electrons. This will cause current to flow. If the crystal is rigid and perfect, according to the
Bloch theorem the electron states are described by

ψk(r, t) = uk exp i(k · r − ωt) (3.3.1)

where ω = E/� is the electron wave frequency. There is no scattering of the electron in the
perfect system. Also, if an electric field E is applied, the electron behaves as a “free” space
electron would, obeying the equation of the motion

�dk

dt
= Fext = −eE (3.3.2)

According to this equation the electron will behave just as in classical physics (in absence of
scattering) except the electron will gain energy according to the appropriate bandstructure rela-
tion.

In a real material, there are always imperfections which cause scattering of electrons so that the
equation of motion of electrons is not given by equation 3.3.2. A conceptual picture of electron
transport can be developed where the electron moves in space for some time, then scatters and
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Figure 3.4: A schematic of the electron momentum distribution function in (a) equilibrium where
f(k) = f(−k) and (b) in the presence of an electric field.

then again moves in space and again scatters. The process is shown schematically in figure 3.5.
The average behavior of the ensemble of electrons will then represent the transport properties of
the electron.

3.3.1 Quantum Mechanics and Scattering of electrons

As noted above in absence of scattering the electron transport is very simple to understand.
However, scattering dominates transport in semiconductor devices. The scattering problem in
solids is treated by using the perturbation theory in quantum mechanics. The electron problem
is formally represented by

HΦ = EΦ (3.3.3)

where H is the full hamiltonian (potential energy + kinetic energy operator) of the problem and
the electron states are denoted by Φ. This hamiltonian is, in our case, the sum of the hamiltonian
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Figure 3.5: Schematic view of an electron as it moves under an electric field in a semiconductor.
The electron suffers a scattering as it moves. In between scattering the electron moves according
to the “free” electron equation of motion.

of the perfect crystal Ho and the energy V corresponding to the imperfection causing scattering.
Thus

H = Ho + V (3.3.4)

The problem
Hoψ = Eψ (3.3.5)

just gives us the bandstructure of the semiconductor which has been discussed in chapter 2. In
the perturbation theory, we use the approach that the effect of the perturbation V is to cause
scattering of the electron from one perfect crystalline state to another. This theory works well if
the perturbation is small. The effect of the scattering is shown schematically in figure 3.6. The
rate of scattering for an electron initially in state i to a state f in the presence of a perturbation
of the form

V (r, t) = V (r) exp (iωt) (3.3.6)

is given by the Fermi golden rule

Wif =
2π

�
| Mij |2 δ(Ei ± �ω − Ef ) (3.3.7)

where the various quantities in the equation represent the following:



98 CHAPTER 3. CHARGE TRANSPORT IN MATERIALS

How strongly V(r) couples 
the initial and final states

How many final states there 
are to scatter into

SCATTERING RATE

Initial electron Final electron

SCATTERING POTENTIAL

V(r)

k'k

+

Figure 3.6: Scattering of an electron initially with momentum �k from a scattering potential
V (r). The final momentum is �k′. The scattering process is assumed to be instantaneous.

• | Mij |2: The quantity is called the matrix element of the scattering and is given by

Mij =

∫
ψ∗

fV (r)ψid
3r (3.3.8)

The matrix element tells us how the potential couples the initial and the final state. A stronger
coupling causes a higher rate of scattering.

• δ(Ei ± �ω − Ef ) :This δ-function is simply a representative of energy conservation. The
process where

Ef = Ei + �ω (3.3.9)

is called absorption, while the process

Ef = Ei − �ω (3.3.10)
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is called emission. Thus, both absorption or emission of energy can occur if the perturbation has
a time dependence exp(iωt). If the potential is time independent (defects of various kinds), the
scattering is elastic (Ei = Ef ).

The dominant scattering of carriers involves lattice vibrations resulting from thermal energy.
Carriers may scatter from various crystal imperfections including dopants and other point de-
fects, alloy disorder, and interface imperfections.

Phonon scattering
In chapter 1, we discussed the crystalline structure in which atoms were at fixed periodic po-

sitions. In reality, the atoms in the crystal are vibrating around their mean positions. These
lattice vibrations are represented by “particles” in quantum mechanics and are called phonons.
The properties of the lattice vibrations are represented by the relation between the vibration am-
plitude, u, frequency, ω, and the wavevector q. The vibration of a particular atom, i, is given
by

ui(q) = uoi exp i(q · r − ωt) (3.3.11)

which represents an oscillation with quantum energy �ω. In a semiconductor there are two kinds
of atoms in a basis. This results in a typical ω vs. k relation shown in figure 3.7. Although the
results are for GaAs, they are typical of all compound semiconductors. We notice two kinds of
lattice vibrations, denoted by acoustic and optical. Additionally, there are two transverse and
one longitudinal modes of vibration for each kind of vibration. The acoustic branch can be
characterized by vibrations where the two atoms in the basis of a unit cell vibrate with the same
sign of the amplitude as shown in figure 3.7b. In optical vibrations, the two atoms with opposing
amplitudes are shown.

As noted above, in quantum mechanics lattice vibrations are treated as particles carrying en-
ergy �ω. According to the discussion on Bose-Einstein statistics in chapter 2, the phonon occu-
pation is given by

nω =
1

exp
(

�ω
kBT

)
− 1

(3.3.12)

According to quantum mechanics, the total energy contained in the vibration is given by

Eω = (nω +
1

2
)�ω (3.3.13)

Note that even if there are no phonons in a particular mode, there is a finite “zero point” energy
1
2�ω in the mode. This is important since even if n = 0 one can have scattering processes.

The vibrations of the atoms produce three kinds of potential disturbances that result in the
scattering of electrons. A schematic of the potential disturbance created by the vibrating atoms
is shown in figure 3.8. In a simple physical picture, we can imagine the lattice vibrations causing
spatial and temporal fluctuations in the conduction and valence band energies. The electrons
(holes) then scatter from these disturbances. The acoustic phonons produce a strain field in the
crystal and the electrons see a disturbance which produces a potential of the form

VAP = D
∂u

∂x
(3.3.14)
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Figure 3.7: (a) Typical frequency-wavenumber relations of a semiconductor (GaAs in this case).
(b) The displacement of atoms in the optical and acoustic branches of the vibrations is shown.
The motion of the atoms is shown for small k vibrations.

where D is called a deformation potential (units are eV) and ∂u
∂x is the amplitude gradient of the

atomic vibrations.
The optical phonons produce a potential disturbance, which is proportional to the atomic

vibration amplitude, since in the optical vibrations the two atoms in the basis vibrate opposing
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Figure 3.8: A schematic showing the effect of atomic displacement due to lattice vibrations on
bandedge energy levels in real space.

each other
Vop = Dou (3.3.15)

where Do (units are eV/cm) is the optical deformation potential.
In compound semiconductors the two atoms on the basis are different and there is an effective

positive and negative charge e∗ on each atom. When optical vibrations take place, the effective
dipole in the unit cell vibrates, causing polarization fields from which the electron scatters. This
scattering, called polar optical phonon scattering, has a scattering potential of the form

Vpo ∼ e∗u (3.3.16)

Each material has its own effective charge which is related to the ionicity of the material.
By using the Fermi golden rule we can calculate the scattering rates of electrons due to lattice
vibrations. The acoustic acoustic phonon scattering rate for an electron with energy Ek to any
other state is given by

Wac(Ek) =
2πD2kBTN(Ek)

�ρv2
s

(3.3.17)

where N(Ek) is the electron density of states, ρ is the density of the semiconductor, vs is the
sound velocity and T is the temperature.

In materials like GaAs, the dominant optical phonon scattering is polar optical phonon scatter-
ing, and the scattering rate is given by (assuming the bandstructure is defined by a non-parabolic
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band; ε∞ and εs are the high frequency and static dielectric constants of the semiconductor,
while εo is the free space dielectric constant)

W (k) =
e2m∗1/2ωo

4π
√

2�

(
εo

ε∞
− εo

εs

)
1 + 2αE′

γ1/2(E)
Fo(E,E′)

×
{

n(ωo) absorption
n(ωo) + 1 emission

}
. (3.3.18)

where

E′ = E + �ωo for absorption

= E − �ωo for emission

γ(E) = E(1 + αE)

Fo(E,E′) = C−1

(
A ln

∣∣∣∣γ1/2(E) + γ1/2(E′)
γ1/2(E) − γ1/2(E′)

∣∣∣∣ + B

)
A = [2(1 + αE)(1 + αE′) + α {γ(E) + γ(E′)}]2
B = −2αγ1/2(E)γ1/2(E′)

= × [4(1 + αE)(1 + αE′) + α {γ(E) + γ(E′)}] a
C = 4(1 + αE)(1 + αE′)(1 + 2αE)(1 + 2αE′)

It is important to examine typical values of scattering rates from these processes. The values for
GaAs are shown in figure 3.9. Note that the phonon emission process can start only after the
electron has energy equal to the phonon energy. Optical phonon scattering is the most important
scattering mechanism for high-field or high-temperature transport of electrons. The emission rate
is stronger than the absorption rate by the rate n(ω0p + 1) to n(ω0). Optical phonon emission is
the dominant mechanism for electrons to lose energy they gain from the electric field.

Ionized impurity scattering

An important scattering mechanism is due to ionized dopants. The scattering potential is
Coulombic in nature, except that the potential is suppressed by screening effects due to free
carriers. The screening is due to the presence of the other free electrons or holes, which form
a cloud around the ion. There are several models for the ionized impurity scattering potential.
A good approximation for the potential seen by electrons in a semiconductor is given by the
screened Coulombic potential

V (r) =
e2

ε

e−λr

r
(3.3.19)

where

λ2 =
ne2

εkBT
(3.3.20)
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Figure 3.9: Scattering rates due to acoustic and optical phonons for GaAs electrons at room
temperature.

with n the free electron density. The scattering rate for an electron with energy Ek and momen-
tum �k can be shown to be

W (k) = 4πF

(
2k

λ

)2 [
1

1 + (λ/2k)2

]
F =

1

�

(
e2

ε

)2
N(Ek)

32k4
NI (3.3.21)

where NI is the ionized impurity density. Note that ionized impurities (and the scattering pro-
cesses discussed here) do not alter the spin of the electron. Thus N(E) is the density of states
without counting the spin degeneracy i.e it is half the usual density of states.
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Alloy scattering

Alloys are made from combinations of two or more materials. Since atoms on the lattice are
arranged randomly there is random potential fluctuation which causes scattering. The scattering
rate for an alloy AxB1−x is found to be

Wtot =
2π

�

(
3π2

16
V0

)
U2

all N(Ek)
[
x (1 − x)2 + (1 − x) x2

]
a =

3π3

8�
V0 U2

all N(Ek) x (1 − x) (3.3.22)

Here Uall is the potential difference between A type and B type potentials (see Appendix B), V0

is the volume of the unit cell in the lattice and N(E) is the density of states without counting
spin degeneracy.

While the phonon and impurity scattering are the dominant scattering processes for most trans-
port problems, electron–electron scattering, electron–hole scattering, and alloy potential scatter-
ing, etc., can also play an important role.

Example 3.1 Calculate the ratio of the polar optical phonon emission rate to the
absorption rate for GaAs and GaN at 300K.

The optical phonon energies in GaAs and GaN are 36 meV and 90 meV respectively. If the
electron energies are below these values, there is no phonon emission. The phonon
occupation number in GaAs at 300 K is 0.33 and in GaN is 0.032. Thus above threshold,
the emission to absorption ratios are approximately 4:1 and 32:1 respectively.

3.4 TRANSPORT UNDER AN ELECTRIC FIELD

The problem of finding the distribution function of electrons under an electric field is quite
complicated. Two important approaches to understanding transport in semiconductors are the
solution of the transport equation using numerical methods and the Monte Carlo method using
computer simulations. We will summarize the results of such theories by examining the drift
velocity versus electric field relations in semiconductors.

3.4.1 Velocity–electric field relations in semiconductors

When an electron distribution is subjected to an electric field, the electrons tend to move in
the field direction (opposite to the field E and gain velocity from the field. However, because
of imperfections in the crystal potential, they suffer scattering. A steady state is established
in which the electrons have some net drift velocity in the field direction. The response of the
electrons to the field can be represented by a velocity–field relation. We will briefly discuss the
velocity-field relationships at low electric fields and moderately high electric fields.
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Low field response: mobility
At low electric fields, the macroscopic transport properties of the material (mobility, conductiv-
ity) can be related to the microscopic properties (scattering rate or relaxation time) by simple ar-
guments. We will not solve the Boltzmann transport equation, but we will use simple conceptual
arguments to understand this relationship. In this approach we make the following assumptions:

(i) The electrons in the semiconductor do not interact with each other. This approximation is
called the independent electron approximation.
(ii) Electrons suffer collisions from various scattering sources and the time τsc describes the
mean time between successive collisions.
(iii) The electrons move according to the free electron equation

�dk

dt
= eE (3.4.1)

in between collisions. After a collision, the electrons lose all their excess energy (on the average)
so that the electron gas is essentially at thermal equilibrium. This assumption is really valid only
at very low electric fields.

According to these assumptions, immediately after a collision the electron velocity is the
same as that given by the thermal equilibrium conditions. This average velocity is thus zero after
collisions. The electron gains a velocity in between collisions; i.e., only for the time τsc.

This average velocity gain is then that of an electron with mass m∗, traveling in a field E , for
a time τsc

vavg = −eEτsc

m∗ = vd (3.4.2)

where vd is the drift velocity . The current density is now

J = −neevd =
ne2τsc

m∗ E (3.4.3)

Comparing this with the Ohm’s law result for conductivity σ

J = σE (3.4.4)

we have

σ =
ne2τsc

m∗ (3.4.5)

The resistivity of the semiconductor is simply the inverse of the conductivity. From the definition
of mobility μ, for electrons

vd = μE (3.4.6)

we have
μ =

eτsc

m∗ (3.4.7)

If both electrons and holes are present, the conductivity of the material becomes

σ = neμn + peμp (3.4.8)
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Bandgap Mobility at 300 K
(eV) (cm2/V-s)

Semiconductor 300 K 0 K Elec. Holes
C 5.47 5.48 1800 1200
GaN 3.4 3.5 1400 350
Ge 0.66 0.74 3900 1900
Si 1.12 1.17 1500 450
α-SiC 3.00 3.30 400 50
GaSb 0.72 0.81 5000 850
GaAs 1.42 1.52 8500 400
GaP 2.26 2.34 110 75
InSb 0.17 0.23 80000 1250
InAs 0.36 0.42 33000 460
InP 1.35 1.42 4600 150
CdTe 1.48 1.61 1050 100
PbTe 0.31 0.19 6000 4000
In0.53Ga0.47As 0.8 0.88 11000 400

Table 3.1: Bandgaps along with electron and hole mobilities in several semiconductors. Proper-
ties of large bandgap materials (C, GaN, SiC) are continuously changing (mobility is improving),
due to progress in crystal growth. Zero temperature bandgap is extrapolated.

where μn and μp are the electron and hole mobilities and n and p are their densities.
Notice that the mobility has an explicit 1

m∗ dependence in it. Additionally τsc also decreases
with m∗. Thus the mobility has a strong dependence on the carrier mass. In table 3.1 we show
the mobilities of several important semiconductors at room temperature. The results are shown
for pure materials. If the semiconductors are doped, the mobility decreases. Note that Ge has
the best hole mobility among all semiconductors.

The scattering rate (or inverse of scattering time) due to ionized impurity scattering is

1

〈〈τ〉〉 = Ni
1

128
√

2π

(
Ze2

ε

)2
1

m∗1/2 (kBT )
3/2

×

⎡⎢⎣ln

(
1 +

(
24m∗kBT

�2λ2

)2
)

− 1

1 +
(

�2λ2

8m∗kBT

)2

⎤⎥⎦ (3.4.9)

The mobility limited from ionized impurity scattering is

μ =
e〈〈τ〉〉
m∗

The mobility limited by ionized dopant has the special feature that it decreases with temper-
ature (μ ∼ T 3/2). This temperature dependence is quite unique to ionized impurity scattering.
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One can understand this behavior physically by saying that at higher temperatures, the electrons
are traveling faster and are less affected by the ionized impurities.

After doing the proper ensemble averaging the relaxation time for the alloy scattering is

1

〈〈τ〉〉 =
3π3

8�
V0U

2
allx(1 − x)

m∗3/2(kBT )1/2

√
2π2�3

1

0.75
(3.4.10)

according to which the mobility due to alloy scattering is

μ0 ∝ T−1/2

The temperature dependence of mobility is in contrast to the situation for the ionized impurity
scattering. The value of Uall is usually in the range of 1.0 eV.

Example 3.2 Consider a semiconductor with effective mass m∗ = 0.26 m0. The optical
phonon energy is 50 meV. The carrier scattering relaxation time is 10−13 sec at 300 K.
Calculate the electric field at which the electron can emit optical phonons on the average.

In this problem we have to remember that an electron can emit an optical phonon only if
its energy is equal to (or greater than) the phonon energy. According to the transport
theory, the average energy of the electrons is (vd is the drift velocity)

E =
3

2
kBT +

1

2
m∗v2

d

In our case, this has to be 50 meV at 300 K. Since kBT ∼ 26 meV at 300 K, we have

1

2
m∗v2

d = 50 − 39 = 11 meV

or

v2
d =

2 × (11 × 10−3 × 1.6 × 10−19 J)

(0.91 × 10−30 × 0.26 kg)

vd = 1.22 × 105 m/s

vd =
eτE
m∗

Substituting for vd, we get (for the average electrons) for the electric field

E =
(0.26 × 0.91 × 10−30 kg)(1.22 × 105 m/s)

(4.8 × 10−10 esu)(1013 s)

= 18.04 kV/cm

The results discussed correspond approximately to silicon. Of course, since the
distribution function has a spread, electrons start emitting optical phonons at a field lower
than the one calculated above for the average electron.
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Example 3.3 The mobility of electrons in pure GaAs at 300 K is 8500 cm2/V·s. Calculate
the relaxation time. If the GaAs sample is doped at Nd = 1017 cm−3, the mobility
decreases to 5000 cm2/V·s. Calculate the relaxation time due to ionized impurity
scattering.

The relaxation time is related to the mobility by

τ (1)
sc =

m∗μ
e

=
(0.067 × 0.91 × 10−30 kg)(8500 × 10−4 m2/V · s)

1.6 × 10−19 C

= 3.24 × 10−13 s

If the ionized impurities are present, the time is

τ (2)
sc =

m∗μ
e

= 1.9 × 10−13 s

The total scattering rate is the sum of individual scattering rates. Since the scattering rate
is inverse of scattering time we find that (this is called Mathieson’s rule) the
impurity-related time τ

(imp)
sc is given by

1

τ
(2)
sc

=
1

τ
(1)
sc

+
1

τ
(imp)
sc

which gives
τ (imp)
sc = 4.6 × 10−13s

Example 3.4 The mobility of electrons in pure silicon at 300 K is 1500 cm2/Vs. Calculate
the time between scattering events using the conductivity effective mass.

The conductivity mass for indirect semiconductors, such as Si, is given by (see Appendix
C)

m∗
σ = 3

(
2

m∗
t

+
1

m∗
�

)−1

= 3

(
2

0.19mo
+

1

0.98mo

)−1

= 0.26mo

The scattering time is then

τsc =
μm∗

σ

e
=

(0.26 × 0.91 × 10−30)(1500 × 10−4)

1.6 × 10−19

= 2.2 × 10−13 s

Example 3.5 Consider two semiconductor samples, one Si and one GaAs. Both materials
are doped n-type at Nd = 1017 cm−3. Assume 50 % of the donors are ionized at 300 K.
Calculate the conductivity of the samples. Compare this conductivity to the conductivity
of undoped samples.
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You may assume the following values:

μn(Si) = 1000 cm2/V · s
μp(Si) = 350 cm2/V · s

μn(GaAs) = 8000 cm2/V · s
μp(GaAs) = 400 cm2/V · s

In the doped semiconductors, the electron density is (50 % of 1017 cm−3)

nn0 = 5 × 1016 cm−3

and hole density can be found from

pn0 =
n2

i

nn0

For silicon we have

pn0 =
2.25 × 1020

5 × 1016
= 4.5 × 103 cm−3

which is negligible for the conductivity calculation.

The conductivity is
σn = nn0eμn + pn0eμp = 8 (Ω cm)−1

In the case of undoped silicon we get (n = ni = p = 1.5 × 1010 cm−3)

σundoped = nieμn + pieμp = 3.24 × 10−6 (Ω cm)−1

For GaAs we get

σn = 5 × 1016 × 1.6 × 10−19 × 8000 = 64 (Ω cm)−1

For undoped GaAs we get (ni = 1.84 × 106 cm−3)

σundoped = nieμn + pieμp = 2.47 × 10−9 (Ω cm)−1

You can see the very large difference in the conductivities of the doped and undoped
samples. Also there is a large difference between GaAs and Si.

Example 3.6 Consider a semiconductor in equilibrium in which the position of the Fermi
level can be placed anywhere within the bandgap.

What is the maximum and minimum conductivity for Si and GaAs at 300 K? You can use
the data given in the problem above.

The maximum carrier density occurs when the Fermi level coincides with the conduction
bandedge if Nc > Nv or with the valence bandedge if Nv > Nc. If Nc > Nv; the
Boltzmann approximation gives

nmax = Nc
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while if Nv > Nc we get
pmax = Nv

This gives us for the maximum density: i) for Si, 2.78 × 1019 cm−3 ii) for GaAs,
7.72 × 1018 cm−3. Based on these numbers we can calculate the maximum conductivity:

For Si

σmax = 2.78 × 1019 × 1.6 × 10−19 × 1000 = 4.45 × 103 (Ω cm)−1

For GaAs

σmax = 7.72 × 1018 × 1.6 × 10−19 × 400 = 4.9 × 102 (Ω cm)−1

To find the minimum conductivity we need to find the minima of the expression

σ = neμn + peμp

=
n2

i

p
eμn + peμp

To find the minimum we take the derivative with respect to p and equate the result to zero.
This gives

p = ni

√
μn

μp

This then gives for the minimum conductivity

σmin = nie[μn

√
μp

μn
+ μp

√
μn

μp
]

For Si this gives upon plugging in numbers

σmin = 2.8 × 10−6 (Ω cm)−1

and for GaAs
σmin = 1.05 × 10−9 (Ω cm)−1

Note that these values are lower than the values we get in the the previous problem for the
undoped cases. This example shows the tremendous variation in conductivity that can be
obtained in a semiconductor.

High field transport: velocity–field relations

In most electronic devices a significant portion of the electronic transport occurs under strong
electric fields. This is especially true of field effect transistors. At such high fields (∼ 1−
500 kV/cm) the electrons get “hot” and acquire a high average energy. The extra energy comes
due to the strong electric fields. The drift velocities are also quite high. The description of



3.4. TRANSPORT UNDER AN ELECTRIC FIELD 111

electrons at such high electric fields is quite complex and requires either numerical techniques
or computer simulations. We will only summarize the results.

At high electric field as the carriers gain energy from the field they suffer greater rates of
scattering, i.e., τsc decreases. The mobility thus starts to decrease. It is usual to represent
the response of the carriers to the electric field by velocity–field relations. There are several
important regimes in the velocity-field relation. At lower fields the relation is linear as discussed
above. As electrons (holes) gain enough energy to emit optical phonons the scattering rates
increase and the differential mobility starts to decrease as shown in figure 3.10. The relation is
no longer linear.

In the case of direct gap materials an interesting phenomena occurs that leads to negative
differential relation as shown in figure 3.10. As carriers gain energy comparable to the inter-
valley separation in the conduction band they get scattered out of the low mass lower energy
valley to higher mass upper valley. As a result the velocity drops as can be seen for GaAs and
InP in Figure 3. 10. The negative differential mobility (resistance) is exploited by microwave
devices such as Gunn diodes to generate microwave power.

At very high fields the drift velocity becomes saturated; i.e., becomes independent of the
electric field. This occurs because the scattering rates increase as the field increases so that the
electrons gain energy from the field but their net velocity does not change. The drift velocity for
carriers in most materials saturates to a value of ∼ 107 cm/s. The fact that the velocity saturates
is very important in understanding current flow in semiconductor devices.

It is important to note that the concept of velocity-field relation is valid if the fields are chang-
ing slowly over distances comparable the electron mean free path. This is the case in devices that
are longer than a micron or so. For sub-micron devices electrons can move without scattering
for a some distance. In this case the transport is called ballistic transport and is described by the
Newton’s equation without scattering,

m∗ dx

dt
= eF (3.4.11)

For short distances electrons can display overshoot effects i.e they can have velocities larger than
what may be expected from a steady state velocity-field relation. For light mass semiconductors
such as GaAs and InGaAs velocity overshoot effects dominate modern devices.

Example 3.7 The mobility of electrons in a semiconductor decreases as the electric field
is increased. This is because the scattering rate increases as electrons become hotter due to
the applied field. Calculate the relaxation time of electrons in silicon at 1 kV/cm and
100 kV/cm at 300 K.

The velocity of the silicon electrons at 1 kV/cm and 100 kV/cm is approximately 1.4 ×
106 cm s and 1.0 × 107 cm/s, respectively, from the v-F curves given in figure 3.10. The
mobilities are then

μ(1 kV/cm) =
v

E = 1400 cm2/V · s
μ(100 kV/cm) = 100 cm2/V · s



112 CHAPTER 3. CHARGE TRANSPORT IN MATERIALS

102

ELECTRIC FIELD (V/cm)

C
A

R
R

IE
R

D
R

IF
T

V
E

L
O

C
IT

Y
 (

cm
/s

)

103   104   105   106
105

106

107

108

GaAs

Si

InP

Electrons

Holes

Figure 3.10: Velocity–field relations for several semiconductors at 300 K.

The corresponding relaxation times are

τsc(1 kV/cm) =
(0.26 × 0.91 × 10−30 kg)(1400 × 10−4 m2/V)

1.6 × 10−19 C
= 2.1 × 10−13 s

τsc(100 kV/cm) =
(0.26 × 0.91 × 10−30)(100 × 10−4)

1.6 × 10−19
= 1.48 × 10−14 s

Thus the scattering rate has dramatically increased at the higher field.

Example 3.8 The average electric field in a particular 0.1 μm GaAs device is 50 kV/cm.
Calculate the transit time of an electron through the device (a) if the transport is ballistic;
(b) if the saturation velocity value of 107 cm/s is used.

For ballistic transport the transit time is

τtr =

√
2L

a

with the acceleration, a given by

a =
eE
m∗
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This gives a transit time of 0.123 ps.

The transit time, if the saturation velocity (which is the correct velocity value) is used, is

τtr =
L

v
=

1 × 10−5

107
= 1 ps

This example shows that in short channel devices, ballistic effects can be very strong.

Very high field transport: breakdown phenomena

When the electric field becomes extremely high (∼ 100 kV cm−1), the semiconductor suffers
a “breakdown” in which the current has a “runaway” behavior. The breakdown occurs due to car-
rier multiplication, which arises from the two sources discussed below. By carrier multiplication
we mean that the number of electrons and holes that can participate in current flow increases. Of
course, the total number of electrons is always conserved.

Avalanche breakdown

In the transport considered in the previous subsections, the electron (hole) remains in the
same band during the transport. At very high electric fields, this does not hold true. In the
impact ionization process shown schematically in figure 3.11, an electron, which is “very hot”
(i.e., has a very high energy due to the applied field) scatters with an electron in the valence
band via Coulombic interaction, and knocks it into the conduction band. The initial electron
must provide enough energy to bring the valence-band electron up into the conduction band.
Thus the initial electron should have energy slightly larger than the bandgap (measured from the
conduction-band minimum). In the final state we now have two electrons in the conduction band
and one hole in the valence band. Thus the number of current carrying charges have multiplied,
and the process is often called avalanching. Note that the same could happen to “hot holes” and
thus could then trigger the avalanche.

Once avalanching starts, the carrier density in a device changes as

dn(z)

dz
= αimpn (3.4.12)

where n is the carrier density and αimp represents the average rate of ionization per unit distance.
The coefficients αimp for electrons and βimp for holes depend upon the bandgap of the material

in a very strong manner. This is because, as discussed above, the process can start only if the
initial electron has a kinetic energy equal to a certain threshold (roughly equal to the bandgap).
This is achieved for lower electric fields in narrow gap materials.

If the electric field is constant so that αimp is constant, the number of times an initial electron
will suffer impact ionization after traveling a distance x is

n(x) = exp (αimpz) (3.4.13)

A critical breakdown field Ecrit is defined where αimp or βimp approaches 104 cm−1. When
αimp (βimp) approaches 104 cm−1, there is about one impact ionization when a carrier travels



114 CHAPTER 3. CHARGE TRANSPORT IN MATERIALS

Initial state has 
one electron

Final state has 
two electrons + 
one hole

Conduction band

Valence band
+

––

–

Figure 3.11: How carriers multiply. The impact ionization process where a high energy
conduction-band electron scatters from a valence-band electron, producing two conduction-band
electrons and a hole.

a distance of one micron. Values of the critical field are given for several semiconductors in
table 3.2. The avalanche process places an important limitation on the power output of devices.
Once the process starts, the current rapidly increases due to carrier multiplication and the control
over the device is lost.1 The push for high-power devices is one of the reasons for research in
large gap semiconductor devices. It must be noted that in certain devices, such as avalanche
photodetectors, the process is exploited for high gain detection. The process is also exploited in
special microwave devices.

Band-to-band tunneling breakdown

In quantum mechanics electrons behave as waves and one of the outcomes of this is that elec-
trons can tunnel through regions where classically they are forbidden. Thus they can penetrate
regions where the potential energy is larger than their total energy. This process is described by
the tunneling theory. This theory is invoked to understand another phenomenon responsible for
high field breakdown. Consider a semiconductor under a strong field, as shown in figure 3.12a.
At strong electric fields, the electrons in the valence band can tunnel into an unoccupied state in
the conduction band. As the electron tunnels, it sees the potential profile shown in figure 3.12b.

1An analytical treatment of the avalanche breakdown process of a p − n junction is presented in section 4.7
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Material B andga reakdown electric
(eV ) field (V/cm)

GaAs 1.43 4 x 105

Ge 0.664 105

InP 1.34

Si 1.1 3 x 105

In0.53Ga0.47As 0.8 2 x 105

C 5.5 107

SiC 2.9 2-3 x 106

SiO2 9 –107

Si3N4 5 –107

GaN 3.4 2  x 106

p B

Table 3.2: Breakdown electric fields in some materials.

The tunneling probability through the triangular barrier is given by

T = exp

(
−4

√
2m∗E3/2

g

3e�E

)
(3.4.14)

where E is the electric field in the semiconductor.
In narrow bandgap materials this band-to-band tunneling or Zener tunneling can be very im-

portant. It is the basis of the Zener diode, where the current is essentially zero until the band-to-
band tunneling starts and the current increases very sharply. A tunneling probability of ∼ 10−6

is necessary to start the breakdown process.

Example 3.9 Calculate the band-to-band tunneling probability in GaAs and InAs at an
applied electric field of 2 × 105 V/cm.
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Figure 3.12: (a) A schematic showing the band profile for a p–n junction. An electron in the
conduction band can tunnel into an unoccupied state in the valence band or vice versa. (b) The
potential profile seen by the electron during the tunneling process.

The exponent for the tunneling probability is (m∗(GaAs) = 0.065 m0; m∗(InAs)
∼ 0.02 m0; Eg(GaAs) = 1.5 eV; Eg(InAs) = 0.4 eV) for GaAs

− 4 × (2 × 0.065 × 0.91 × 10−30 kg)1/2(1.5 × 1.6 × 10−19 J)3/2

3 × (1.6 × 10−19 C)(1.05 × 10−34 Js)(2 × 107 V/m)

= −160

The tunneling probability is exp(−160) ∼= 0. For InAs the exponent turns out to be −12.5
and the tunneling probability is

T = exp (−12.5) = 3.7 × 10−6

In InAs the band-to-band tunneling will start becoming very important if the field is
∼ 2 × 105 V/cm.
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3.5 SOME IMPORTANT ISSUES IN TRANSPORT

We will discuss some important issues in transport and how bandgap, carrier masses, device
length, etc. influence transport. We note that in absence of collisions, electron transport is given
by the modified Newton’s expression

�
dk

dt
= eE (3.5.1)

which (for the simple parabolic band)

E(k) =
�

2k2

2m∗ (3.5.2)

Of course, in reality, as we have discussed earlier, scattering modifies this simple picture. In
figure 3.13(a) we show a schematic of carrier velocity as a function of electric field in steady
state for electrons in a direct bandgap material (solid line) and electrons in indirect bandgap ma-
terials (dashed line) or holes (dashed line), the negative resistance region arises due to electrons
transferring from a low mass direct gap valley to high mass indirect valley.
As indicated on the figure, at low fields the important scattering mechanisms are acoustic phonon
scattering, ionized impurity scattering, and optical phonon absorption. There is not much optical
phonon emission since electron energies are small compared to optical phonon energy. At high
fields, the optical phonon emission dominates. As a result of the different mechanisms dominat-
ing scattering at low and high fields, when temperature is lowered, low field mobility is greatly
enhanced (since phonon occupation is lower) but there is not much change in high field velocity.
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Figure 3.13: a) A schematic of how different scattering mechanisms dominate in various regions
of electric field; under steady state field conditions. b) non-steady state transport velocity versus
distance profile. The electron sees a step in field profile at the origin. At high fields, velocity
overshoot effects occur.
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GaN
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Figure 3.14: Scattering rates in InGaAs, GaAs, and GaN in 2-dimensional HFET channels

In figure 3.13b we show how an electron evolves with distance (or time) when electrons come
into a high field region. The important point to note is that electrons take time to scatter and dur-
ing that initial time (∼ picoseconds or smaller) travel ballistically according to equation equation
3.5.1 As a result of ballistic transport, electrons can exhibit overshoot effect of high fields where
electron velocity can be larger than what is expected from steady state velocity. This effect is
quite dominant in materials such as InGaAs and GaAs where scattering times are long. To
illustrate some of the points mentioned above, we examine electron transport in In0.53Ga0.47As,
GaAs, and GaN. Transport in Si falls in between GaAs and GaN in terms of scattering rates. In
figure 3.14 we show scattering rates in these three materials in 2-dimensional HFET channels
(not in bulk). We note that for low electron energies there is a great difference in the scattering
rates between the materials. At higher energies the relative difference is smaller. In table 3.3 we
show some of the important scattering mechanisms. The rates are given for low electron ener-
gies and higher energies. In figure 3.15 we show the temperature dependence of scattering rate
versus energy for InGaAs and GaN. materials. The rates drop quite dramatically at small elec-
tron energies due to phonon occupation number becoming small. Later when we examine device
properties in chapter 8 we will see how the issues disscus in long and short channel devices.

3.6 CARRIER TRANSPORT BY DIFFUSION

Semiconductor devices fall into two broad categories: majority carrier devices and minority
carrier devices. In the majority carrier devices, current flow is dominated by electric field driven
current. In minority carrier devices current flow is dominated by diffusion effects. Whenever
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a) b)

Figure 3.15: Temperature dependence of scattering rates in 2DEGs for (a) InGaAs and (b) GaN

Table 1: Scattering Comparison

Point A B

GaN GaAs InGaAs GaN GaAs InGaAs

Energy (eV) 0.2 0.2 0.2 0.8 0.8 0.8

Optical phonon emission 8.85x 1013 6.60x 1012 6.33x 1012 8.95x 1013 6.35x 1012 7.00x 1012

Optical phonon absorption 3.48x 1012 1.79x 1012 2.08x 1012 2.88x 1012 1.61x 1012 2.11x 1012

acoustic Phonon 1.50x 1012 3.44x 1011 1.64x 1011 3.23x 1012 9.06x 1011 5.69x 1011

Alloy scattering 0.0 0.0 9.56x 1010 0.0 0.0 4.23x 1011

ionized impurity 1.47x 1013 7.41x 1012 6.41x 1012 8.47x 1012 5.11x 1012 5.08x 1012

dislocation 2.33x 1012 7.35x 108 4.90x 108 2.33x 1012 7.35x 108 4.90x 108

Nonequivalent intervalley

emission(Γ–L)
0.0 0.0 0.0 0.0 3.42x 1013 1.23x 1013

Nonequivalent intervalley

absorption(Γ–L)
0.0 0.0 0.0 0.0 1.15x 1013 5.46x 1012

Total (s- 1 ) 1.11x 1014 1.61x 1013 1.51x 1013 1.06x 1014 5.97x 1013 3.30x 1013

Table 3.3: Scattering rate mechanisms in InGaAs, GaAs, and GaN 2-DEG channels

there is a gradient in the concentration of a species of mobile particles, the particles diffuse from
the regions of high concentration to the regions of low concentration. As the mobile charges
move they suffer random collisions, as discussed in the previous section. The collision process
can be described by the mean free path � and the mean collision time τsc. The mean free path
is the average distance the electron (hole) travels between successive collisions. In between the
collisions the electrons move randomly, with equal probability of moving in any direction (there
is no electric field). We are interested in finding out how the electrons move (diffuse) when there
is a concentration gradient in space.
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Figure 3.16: The concentration profile of electrons as a function of space. The terms nL, nR, L,
and R are defined in the text. The distance � is the mean free path for electrons; i.e., the distance
they travel between collisions.

In figure 3.16 is shown a concentration profile n(x, t) of electrons at time t,. We are going
to calculate the electron flux φ(x, t) across a plane x = xo at any instant of time. Consider a
region of space a mean free path � to each side of xo, from which electrons can come across the
x = xo boundary in time τsc. Electrons from regions further away will suffer collisions that will
randomly change their direction. Since in the two regions labeled L and R in figure 3.16, the
electrons move randomly, half of the electrons in region L will go across x = xo to the right and
half in the region R will go across x = xo to the left in time τsc. The flux to the right is

φn(x, t) =
(nL − nR)�

2τsc
(3.6.1)

where nL and nR are the average carrier densities in the two regions. Since the two regions L
and R are separated by the distance �, we can write

nL − nR
∼= −dn

dx
· � (3.6.2)

The total flux is

φn(x, t) = − �2

2τsc

dn(x, t)

dx
= −Dn

dn(x, t)

dx
(3.6.3)
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where Dn is called the diffusion coefficient of the electron system and depends upon the scatter-
ing processes that control � and the τsc. Since the mean free path is essentially vthτsc, where vth

is the mean thermal speed, the diffusion coefficient depends upon the temperature as well. In a
similar manner, the hole diffusion coefficient gives the hole flux due to a hole density gradient

φp(x, t) = −Dp
dp(x, t)

dx
(3.6.4)

The electron and hole flux causes current to flow in the structure This current is given by

Jtot(diff) = Jn(diff) + Jp(diff)

= eDn
dn(x, t)

dx
− eDp

dp(x, t)

dx
(3.6.5)

Note that the electron charge is −e while the hole charge is e. While both electrons and holes
move in the direction of lower concentration of electrons and holes respectively, the currents they
carry are opposite, since electrons are negatively charged, while holes are positively charged.

3.6.1 Drift and diffusion transport: Einstein’s relation

In case both electric field and carrier concentration gradients are present, the current is given
by

Jn(x) = eμnn(x)E(x) + eDn
dn(x)

dx

Jp(x) = eμpp(x)E(x) − eDp
dp(x)

dx
(3.6.6)

The diffusion and drift processes are linked by scattering processes. We will now establish
an important relationship between mobility and diffusion coefficients. Consider a case where a
uniform electric field is applied, as shown in figure 3.17a. The potential energy associated with
the field is shown in figure 3.17b. There is a positive potential on the left-hand side in relation to
the right-hand side. For a uniform electric field the potential energy is

U(x) = U(0) − eEx (3.6.7)

The applied force is related to the potential energy by

Force = −∇U(x) (3.6.8)

Thus, since the electron charge −e is negative, the bands bend as shown in figure 3.17c according
to the relation

Ec(x) = Ec(0) + eEx (3.6.9)

Thus, if a positive potential is applied to the left of the material and a negative to the right, the
energy bands will be lower on the left-hand side, as shown in figure 3.17c. The electrons drift
downhill in the energy band picture and thus opposite to the field.
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Figure 3.17: (a) Electric field profile in a semiconductor. (b) Plot of the potential energy associ-
ated with the electric field. (c) Electron energy band profile. The negative charge of the electron
causes the energy band profile to have the opposite sign to the potential energy profile.

To find the relation between diffusion parameters and drift parameters (i.e. between D and
μ) we assume that the system is in equilibrium and the total electron and hole currents are
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individually zero and we have from equation 3.6.6 for the electrons

E(x) = −Dn

μn

1

n(x)

dn(x)

dx
(3.6.10)

To obtain the derivative of carrier concentration, we write n(x) in terms of the intrinsic Fermi
level, EFi, which serves as a reference level, and the Fermi level in the semiconductor, EF (x).
If we assume that the electron distribution is given by the Boltzmann distribution we have

n(x) = ni exp

{
−

(
EFi − EF (x)

kBT

)}
(3.6.11)

This gives
dn(x)

dx
=

n(x)

kBT

(
−dEFi

dx
+

dEF

dx

)
(3.6.12)

At equilibrium, the Fermi level cannot vary spatially, otherwise the probability of finding
electrons along a constant energy position will vary along the semiconductor. This would cause
electrons at a given energy in a region where the probability is low to move to the same energy
in a region where the probability is high. Since this is not allowed by definition of equilibrium
conditions, i.e. no current is flowing, the Fermi level has to be uniform in space at equilibrium,
or

dEF

dx
= 0 (3.6.13)

We then have from equation 3.6.10 and equation 3.6.12

Dn

μn
=

kBT

e

using

E(x) =
1

e

dEFi

dx

This relation is known as the Einstein relation with an analogous relation for the holes. As we can
see from table 3.4 which lists the mobilities and diffusion coefficients for a few semiconductors
at room temperature, the Einstein relation is quite accurate.

Example 3.10 Use the velocity–field relations for electrons in silicon to obtain the
diffusion coefficient at an electric field of 1 kV/cm and 10 kV/cm at 300 K.

According to the v-E relations given in figure 3.10, the velocity of electrons in silicon is ∼
1.4 × 106 cm/s and ∼ 7 × 106 cm/s at 1 kV/cm and 10 kV/cm. Using the Einstein
relation, we have for the diffusion coefficient

D =
μkBT

e
=

vkBT

eE
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Dn Dp μn μp

  (cm2/s) (cm2/s) (cm2/V • s) (cm2/V • s)

 Ge 100 50 3900 1900
 Si 35      12.5 1350 480
 GaAs 220 10 8500 400

Table 3.4: Low field mobility and diffusion coefficients for several semiconductors at room
temperature. The Einstein relation is satisfied quite well.

This gives

D(1kV/ cm−1) =
(1.4 × 104m/s)(0.026 × 1.6 × 10−19 J)

(1.6 × 10−19 C)(105 V/m
−1

)

= 3.64 × 10−3 m2/s = 36.4 cm2/s

D(10kV/ cm−1) =
(7 × 104 m/s)(0.026 × 1.6 × 10−19 J)

(1.6 × 10−19 C)(106 Vm−1)

= 1.82 × 10−3 m2/s = 18.2 cm2/s

The diffusion coefficient decreases with the field because of the higher scattering rate at
higher fields.

3.7 CHARGE INJECTION AND QUASI-FERMI LEVELS

In semiconductor devices the electron and hole distributions are usually not under equilibrium.
electric fields and optical energy causes electron densities and velocities to be different from the
equilibrium values. If electrons and holes are injected into a semiconductor, either by external
contacts or by optical excitation, the question arises: What kind of distribution function describes
the electron and hole occupation? We know that in equilibrium the electron and hole occupation
is represented by the Fermi function. It is possible to describe the non-equilibrium distribution
by using the concept of quasi-equilibrium

3.7.1 Non-equilibrium Distributions

Under equilibrium conditions, electrons in the conduction band and holes in the valence band
are in equilibrium with each other. Under non-equilibrium conditions it is often reasonable to
assume that electrons are in equilibrium in the conduction band, while holes are in equilibrium
in the valence band. In this case, the quasi-equilibrium electron and holes can be represented by
an electron Fermi function fe (with electron Fermi level) and a hole Fermi function fh (with a
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different hole Fermi level). We then have

n =

∫ ∞

Ec

Ne(E)fe(E)dE (3.7.1)

p =

∫ Ev

−∞
Nh(E)fh(E)dE (3.7.2)

where

fe(E) =
1

exp (E−EF n

kBT ) + 1
(3.7.3)

and

fh(E) = 1 − fv(E) = 1 − 1

exp (
E−EF p

kBT ) + 1

=
1

exp (
EF p−E

kBT ) + 1
(3.7.4)

Each band is described by its own Fermi level, EFn and EFp. At equilibrium EFn = EFp.
If excess electrons and holes are injected into the semiconductor, the electron Fermi level EFn

moves toward the conduction band, while the hole Fermi level EFp moves toward the valence
band. This is shown schematically in figure 3.18. By defining separate Fermi levels for the
electrons and holes, one can study the properties of excess carriers using the same relationship
between Fermi level and carrier density as we developed for the equilibrium problem. Thus, in
the Boltzmann approximation we have

n = Nc exp

[
(EFn − Ec)

kBT

]
p = Nv exp

[
(Ev − EFp)

kBT

]
(3.7.5)

For high carrier densities, we have the more accurate Joyce-Dixon approximation:

EFn − Ec = kBT

[
�n

n

Nc
+

n√
8Nc

]
Ev − EFp = kBT

[
�n

p

Nv
+

p√
8Nv

]
(3.7.6)

3.8 CARRIER GENERATION AND RECOMBINATION

In this section we will examine how mobile carrier densities change when temperature is
changed or light shines on a semiconductor: The electron may start out in the valence band, then
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Figure 3.18: (a) Schematic of an equilibrium Fermi level position in an n−type semiconductor.
(b) The positions of the quasi-Fermi levels for the case where excess electrons are injected in the
conduction band. (c) The position of the quasi-Fermi levels when excess electrons and holes are
injected.

jump to the conduction band, then fall into a trap, etc. On a microscopic level there are generation
recombination processes occurring in a material which cause electrons to jump between valence
band, conduction band and trap states, as shown in figure 3.19.
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Figure 3.19: A schematic of carrier generation and recombination. Processes involving band to
band transitions are shown along with processes involving dopant or other impurity levels.

At equilibrium, thermal energy is responsible for exciting electrons from the valence band to
the conduction band. Such a generation process is called thermal generation. We can also see
that if electrons are continuously excited up from the valence band into the conduction band,
there will be a build-up of free carriers. In order to reach an equilibrium concentration there has
to be carrier recombination as well. Under steady state conditions we have

G = R (3.8.1)

where G is the generation rate and R is the carrier recombination rate.
In figure 3.19 we show a schematic description of carrier generation and recombination. Free

carriers can be generated if an electron leaves the valence-band and goes to the conduction-
band. They can also be generated if electrons leave a donor and go into the conduction-band.
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Figure 3.20: Band-to-band absorption in semiconductors. Momentum conservation ensures that
only vertical transitions are allowed during absorption and emission.

An electron from the valence-band going to an acceptor causes a hole to be generated. Reverse
processes can also occur.

One of the most important mechanisms for carrier generation and recombination is absorption
of light and emission of light.

3.8.1 Optical Absorption and Emission in Semiconductors

According to quantum mechanics, electromagnetic radiation is made up of particles called
photons, each carrying an energy �ω. The particle nature of E-M waves is manifested in semi-
conductor devices. When light shines on a semiconductor it can cause an electron in the valence
band to go into the conduction band. This process generates electron-hole pairs. It is also pos-
sible for an electron and a hole to recombine and emit light. The most important optoelectronic
interaction in semiconductors as far as devices are concerned is the band-to-band transition
shown in figure 3.20. In the photon absorption process, a photon scatters an electron in the
valence band, causing the electron to go into the conduction band. In the reverse process the
electron in the conduction band recombines with a hole in the valence band to generate a photon.
These two processes are of obvious importance for light-detection and light-emission devices.
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These processes are controlled by the conservation laws.

• Conservation of energy: In the absorption and emission process we have for the initial and
final energies of the electrons Ei and Ef

absorption : Ef = Ei + �ω (3.8.2)

emission : Ef = Ei − �ω (3.8.3)

where �ω is the photon energy. Since the minimum energy difference between the conduction
and valence band states is the bandgap Eg , the photon energy must be larger than the bandgap.

• Conservation of momentum: In addition to the energy conservation, one also needs to
conserve the effective momentum �k for the electrons and the photon system. The photon kph

value is given by

kph =
2π

λ
(3.8.4)

The k-value of photons with energies equal to the bandgaps of typical semiconductors ∼ 10−4 Å,
which is essentially zero compared to the k-values for electrons. Thus k-conservation ensures
that the initial and final electrons have the same k-value. Thus for optical processes only
transitions which are“vertical” in k are allowed in the bandstructure picture, as shown in fig-
ure 3.20.

Because of k-conservation, in semiconductors where the valence band and conduction band-
edges are at the same k = 0 value (the direct semiconductors), the optical transitions are quite
strong. In indirect materials like Si, Ge, etc. the optical transitions are very weak near the
bandedges because they require the help of lattice vibrations to satisfy k-conservation.

Electromagnetic waves traveling through a medium like a semiconductor are described by
Maxwell’s equations which show that the waves have a form given by the electric field vector
dependence

E = Eo exp
{

iω
(nrz

c
− t

)}
exp

(
−αz

2

)
(3.8.5)

Here z is the propagation direction, ω the frequency, nr the refractive index, and α the absorption
coefficient of the medium. As the E-M wave propagates through a material, its intensity decays
as

I(z) = I(0) exp {−αz} (3.8.6)

In figure 3.21 we show the absorption coefficient of some direct and indirect bandgap semi-
conductors. Note that for indirect gap semiconductors the absorption coefficient is weak near the
bandedge but once the photon energy is large enough to cause direct (vertical in k) transitions,
the absorption coefficient increases.

When a photon is absorbed it creates an electron and a hole. If P̃op is the optical power density
of light impinging on a semiconductor, the photon flux is

Φ =
P̃op

�ω
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Figure 3.21: Absorption coefficient of some direct and indirect gap semiconductors. For the
direct gap material, the absorption coefficient is very strong once the photon energy exceeds the
bandgap. For indirect materials the absorption coefficient is small near the bandedge, but once
the photon energy is more than the direct gap, the absorption coefficient increases rapidly.

and the electron-hole pair generation rate is

RG = αΦ =
αP̃op

�ω
(3.8.7)

Under equilibrium conditions, electron occupation in the valence band is close to unity while
the occupation in the conduction band is close to zero. Assuming this is the case the absorption
coefficient for direct gap materials is

α(�ω) =
πe2

�

2nrcεom0

(
2p2

cv

m0

)
Ncv(�ω)

�ω
· 2

3
(3.8.8)

Here nr is the refractive index of the material, pcv is the momentum matrix element for the
scattering process, c is the speed of light in vacuumand Ncv is the joint density of states for the
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electron-hole system and is

Ncv(E) =

√
2(m∗

r)
3/2(E − Eg)

1/2

π2�3
(3.8.9)

If we express the energy in eV, and the absorption coefficient in cm−1for most direct gap semi-
conductors the absorption coefficient is approximately

α(�ω) ∼ 5.6 × 104 (�ω − Eg)
1/2

�ω
cm−1 (3.8.10)

For indirect gap materials the absorption coefficient is an order of magnitude smaller than the
result given above since in first order transitions momentum is not conserved. Thus for materials
like Si and Ge near bandedge absorption is weak.If there are electrons in the conduction band and
holes in the valence band they can recombine to emit photons. If the occupation of an electron
state is unity and the occupation of the corresponding hole state is also unity the recombination
rate is given by

Wem =
1

τ0
=

e2nr

6πεom0c3�2

(
2p2

cv

m0

)
�ω (3.8.11)

Using typical values of the momentum matrix element pcv for direct gap materials the result is

Wem =
1

τ0
= 109Eg s−1 (3.8.12)

When electrons and holes are injected into the conduction and valence bands of a semiconductor,
they recombine with each other. In general the occupation of electrons and holes is given by
the quasi-Fermi levels. Theemission rateor the electron-hole recombination rate is (units are
cm−3s−1)

Rspon =
1

τo

∫
d(�ω)Ncv{fe(Ee)}{fh(Eh)} (3.8.13)

The spontaneous recombination rate is quite important for both electronic and optoelectronic
devices. It is important to examine the rate for several important cases. We will give results for
the electron hole recombination for the following cases: i) Minority carrier injection: If n � p
and the sample is heavily doped, we can assume that fe(Ee) is close to unity. We then have for
the rate at which holes will recombine with electrons,

Rspon
∼= 1

τo

∫
d(�ω)Ncvfh(Eh) ∼= 1

τo

∫
d(�ω)Nhfh(Eh)

(
m∗

r

m∗
h

)3/2

∼= 1

τo

(
m∗

r

m∗
h

)3/2

p (3.8.14)

Thus the recombination rate is proportional to the minority carrier density (holes in this case).
ii) Strong injection: This case is important when a high density of both electrons and holes is
injected and we can assume that both fe and fh are step functions with values 1 or zero. We get
for this case

Rspon =
n

τo
=

p

τo
(3.8.15)
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iii) Weak injection: In this case we can use the Boltzmann distribution to describe the Fermi
functions. We have

fe ·fh ∼= exp

{
− (Ec − EFn)

kBT

}
exp

{
− (EFp − Ev)

kBT

}
· exp

{
− (�ω − Eg)

kBT

}
(3.8.16)

The spontaneous emission rate now becomes

Rspon =
1

2τo

(
2π�

2m∗
r

kBTm∗
em

∗
h

)3/2

np (3.8.17)

If we write the total charge as equilibrium charge plus excess charge,

n = no + Δn; p = po + Δn (3.8.18)

we have for the excess carrier recombination (note that at equilibrium the rates ofrecombination
and generation are equal)

Rspon
∼= 1

2τo

(
2π�

2m∗
r

kBTm∗
em

∗
h

)3/2

(Δnpo + Δpno) (3.8.19)

If Δn = Δp, we can define the rate of a single excess carrier recombination as

1

τr
=

Rspon

Δn
=

1

2τo

(
2π�

2m∗
r

kBTm∗
em

∗
h

)
(no + po) (3.8.20)

At low injection τr is much larger than τo, since at low injection, electrons have a low probability
to find a hole with which to recombine. iv) Inversion condition: Another useful approximation
occurs when the electron and hole densities are such that fe + fh = 1. This is the condition for
inversion when the emission and absorption coefficients become equal. If we assume in this case
fe ∼ fh = 1/2, we get the approximate relation

Rspon
∼= n

4τo

∼= p

4τo
(3.8.21)

The recombination lifetime is approximately 4τo in this case. This is a useful result to estimate
the threshold current of semiconductor lasers.

Example 3.11 Optical radiation with a power density of 1.0 kW/cm2 impinges on GaAs.
The photon energy is 1.5 eV and the absorption coefficient is 3 × 103 cm−1. Calculate the
carrier generation rate at the surface of the sample. If the e − h recombination time is 1 ns,
calculate the steady state excess carrier density.

At the surface the carrier generation rate is

G(0) =
(3 × 103 cm−1)(103 W cm−2)

(1.5 × 1.6 × 10−19 J)

= 1.25 × 1025 cm−3s−1

The excess carrier density is

δn = δp = 1.25 × 1025 × 10−9 = 1.25 × 1016 cm−3
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3.8.2 Schockley Read Hall Statistics

Semiconductor behavior is determined primarily by controlled impurities. Shallow impurities
give rise to dopants, while deep impurities give rise to traps. In either case, the occupancy of all
states, whether in the bands or the gap, is determined by the occupancy function.

(a)
Electron capture

Before After

(a)
Electron capture

Before After

(b)
Electron emission

Before After

(b)
Electron emission

(b)
Electron emission

Before After

(c)
Hole capture

Before After

(c)
Hole capture

(c)
Hole capture
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Hole emission

Before After

(d)
Hole emission

Before After

Figure 3.22: Exchanges with the conduction band are dealt as electron capture and emission,
whereas exchanges with the valence band are considered hole capture and emission. The arrows
indicate electron transitions

In equilibrium, the occupancy function for these states may be written:

f =
1

1 + exp ((Et − Ef ) /kBT )
(3.8.22)

where Et is the trap energy and Ef is the Fermi energy. For non-equilibrium a quasi-fermi level
should be used, which in general applies to each set of states separately e.g. the conduction band,
valence band, and each group of traps separately. Each process shown in figure 3.22 has a rate,
r.

ra ∝ n · Nt (1 − f) (3.8.23)

where n is the concentration of available electrons and the Nt (1 − f) term represents the con-
centration of empty traps. To calculate the proportionality constant, we recognize that electrons
must be in the vicinity of the trap to be captured. We call this region σn cm−2, a capture cross
section as shown in figure 3.23.

The numbers of electrons that sweep past a trap in every second are contained in the volume
defined by:

V = σn · vth (3.8.24)

with units of cm3/s where vth is the thermal velocity of the electron. Those electrons contained
in the volume described by this product in a given unit of time will be captured by the trap.

Consider an electron as shown in figure 3.24, vth cms away from the trap position, x0. After
1 second the electron will be at x0, and therefore in the capture cross section of the trap. Any
electron vth +ΔL2 cms away will, after 1 second still be ΔL2 away (case 2) from x0 and hence
not be captured. All electrons closer than vth cms away (as for case 3 of the electron ΔL3 cms
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Figure 3.24: Electrons within the “volume” above will be captured by the trap

closer) would have intersected the capture cross section and be captured. Hence all electrons
in the volume V = σn · vth will be captured each second by available empty traps. Thus the
number of electrons available to be captured per second is

nσnvth (3.8.25)

and recalling the concentration of available empty traps is Nt (1 − f), then the rate, ra can be
written:

ra = vthσnnNt (1 − f) (3.8.26)

OR, the proportionality constant is σnvth (for the rate of electron capture)

vth =

√
2E

m∗ =

√
2 · 3kBT

2m∗ (3.8.27)
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where E is thermal energy, 3/2kBT in three dimensions. Thus

vth =

√
3kBT

m∗  107cm/sec (3.8.28)

For the electron emission process, b,
rb = enNtf (3.8.29)

where en is the emission rate from the trap and Ntf is the concentration of occupied traps. The
capture rate for holes, process c, will be analogous to process a with the difference that holes are
captured by occupied traps.

rc = vthσppNtf

Finally, the emission of holes has a rate:

rd = epNt (1 − f) (3.8.30)

where ep is the emission probability for holes. The next step is to determine the emission proba-
bilities en and ep. In general this is a very difficult problem since, f is known only in equilibrium.
So first consider the equilibrium values of en, and ep. In equilibrium transition rates into and out
of the conduction band must be equal, or ra = rb. Inserting

n = Nc exp (− (EC − EF ) /kBT ) = ni exp ((EF − Ei) /kBT ) (3.8.31)

into ra = rb leads to:

en = vthσnni exp ((Et − Ei) /kBT ) (3.8.32)

or
en = vthσnNC exp (− (EC − Et) /kBT ) (3.8.33)

Thus the emission probability of electrons into the conduction band rises exponentially as the
trap gets closer to EC which we expect intuitively. From rc = rd and

p = NV exp [− (Ef − EV ) /kBT ]

ep = vthσpNV exp (− (EV − Et) /kBT )

= vthσpni exp (+ (Ei − Et) /kBT )

In non-equilibrium (the case of most interest) f is unknown and has to be calculated. To do
so, rate equations are solved. Assume that non-equilibrium is generated by optical excitation
resulting in a generation rate of GL electron-hole pairs/second. We also assume that the emission
rates, en, and ep are not a function of illumination and the same as that calculated at equilibrium.

In steady state, the concentration of electrons, nn and holes, pn in an n−type semiconductor
is not a function of time and from figure 3.25 we get:

dnn

dt
= GL − (ra − rb) = 0 (3.8.34)

dPn

dt
= GL − (rc − rd) = 0 (3.8.35)

∴ ra − rb = rc − rd (3.8.36)
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Figure 3.25: Possible Recombination processes

or the net capture rate of electrons = net capture rate of holes. This leads us to:

vthσnnNt [1 − f(Et)] − vthni exp (Et−i/kBT ) Ntf(Et) =

vthσppNtf − vthσpni exp [(Ei − Et) /kBT ] Nt [1 − f(Et)]

Since we are in non-equilibrium, f (Et), the distribution function for the traps has to be cal-
culated from the above equation, where we have substituted for ra through rd,

f (Et) =
σnn + σpni exp (Ei−t/kBT )

σn [n + ni exp (Et−i/kBT )] + σp [p + n · exp (Ei−t/kBT )]
(3.8.37)

where for compactness we have used the notation: Ei−t = Ei − Et and vice versa. Re-
substituting to find a net rate of recombination:

U = ra − rb = rc − rd (3.8.38)

leads to:

U =
σpσnvthNt

(
pn − n2

i

)
σn [n + ni exp (Et−i/kBT )] + σp [p + ni exp (Ei−t/kBT )]

(3.8.39)

Let us now consider some special cases:

1. for σn = σp = σ

U = σvthNt
pn − n2

i

n + p + 2ni cosh (Et−i/kBT )
(3.8.40)

2. for σn = σp = σp and when Et = Ei

U =
1

τ

pn − n2
i

n + p + 2ni
(3.8.41)

We see clearly that pn−n2
i is the driving force for recombination. We can also see that n+p+2ni

is a resistance to recombination term, which is minimized when n + p is minimized. For low
level injection, we assume that nn � pn and

nn � ni exp ((Et − Ei) /kBT ) (3.8.42)
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as ET ∼ Ei for efficient recombination. Then the recombination rate becomes:

U =
σpσnvthNt

σnnn

[
nnpn − n2

i

]
(3.8.43)

= σpvthNt

[
pn − n2

i /nn

]
(3.8.44)

= σpvthNt [pn − pn0] (3.8.45)

U =
Δpn

τp
(3.8.46)

where the minority carrier lifetime, τp is defined as

1

τp
= σpvthNt (3.8.47)

Here the rate limiting step is the capture of the minority carrier. This is also achieved by recog-
nizing the hole capture rate, rc is the dominant step. In an n−type semiconductor, since EF is
close to the conduction band and f(ET ) → 1 which makes ra and rd both negligible. Typical
values of σ are 10−15 − 10−16cm−2.

Generation occurs when n2
i � pn. From equation 3.8.39

U = − σpσnvthNtn
2
i

σn [n + ni exp (Et−i/kBT )] + σp [p + ni exp (Ei−t/kBT )]

= − σpσnvthNtni

σn exp (Et−i/kBT ) + σpni exp (Ei−t/kBT )

For the case σn = σp = σ

U = − σvthNtni

2 cosh (Et−i/kBT )
(3.8.48)

Thus, generation rate peaks when the trap energy is at mid-gap:

U = −ni

2τ
(3.8.49)

when Ei → Et the lifetime

τ =
1

σvthNT

3.9 CURRENT CONTINUITY(The law of conservation
of electrons and holes separately)

In the previous sections we have considered several elements of non-equilibrium phenomena
in semiconductors. These include drift and diffusion, carrier generation and recombination.
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If we consider a volume of space in which charge transport and recombination is taking place,
we have the simple equality (see figure 3.26a) As a result of consideration of particle current,

Net Rate of particle flow = Particle flow rate due to current −
Particle loss rate due to recombination + Particle gain due to generation.

Let us now collect the various terms in this continuity equation. If δn is the excess carrier density
in the region, the recombination rate R in the volume A ·Δx shown in figure 3.26 may be written
approximately as

R =
δn

τn
· A · Δx (3.9.1)

where τn is the electron recombination time per excess particle due to both the radiative and the
nonradiative components. The particle flow rate into the same volume due to the current Jn is
given by the difference of particle current coming into the region and the particle current leaving
the region, [

Jn(x)

(−e)
− Jn(x + Δx)

(−e)

]
A ∼= 1

e

∂Jn(x)

∂x
Δx · A (3.9.2)

If G is the generation rate per unit volume, the generation rate in the volume A · Δx is GAΔx.
The rate of electron build up in the volume A · Δx is then

A · Δx

[
∂n(x, t)

∂t
≡ ∂δn

∂t
=

1

e

∂Jn(x)

∂x
− δn

τn

]
(3.9.3)

where δn/τn is U = G − R, the net recombination rate of electrons. We have similar terms for
holes, collecting the various terms we have, for the electrons and holes, the continuity equations
(note the sign difference in the particle current density for electrons and holes)

∂δn

∂t
=

1

e

∂Jn(x)

∂x
− δn

τn
(3.9.4)

∂δp

∂t
= −1

e

∂Jp(x)

∂x
− δp

τp
(3.9.5)

Using these expressions, the the diffusion currents are

Jn(diff) = eDn
∂δn

∂x
(3.9.6)

Jp(diff) = −eDp
∂δp

∂x
(3.9.7)

We get

∂δn

∂t
= Dn

∂2δn

∂x2
− δn

τn
(3.9.8)

∂δp

∂t
= Dp

∂2δp

∂x2
− δp

τp
(3.9.9)
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R= recombination rate

x

Area A

Loss Gain
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Particle current is conserved
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        Gain

in volume

Δx

Figure 3.26: (a) A conceptual description of the continuity equation. (b) Geometry used to
develop the current continuity equation.

the time dependent continuity equation for electrons and holes, valid separately. These equations
will be used when we discuss the transient time responses of the p-n diodes and bipolar transis-
tors. These equations are also used to study the steady-state charge profile in these devices. In
steady state we have (the time derivative is zero)

d2δn

dx2
=

δn

Dnτn
=

δn

L2
n

(3.9.10)

d2δp

dx2
=

δp

Dpτp
=

δp

L2
p

(3.9.11)
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δn(0)

δn(x=L)

δn(x)

L
x

0

Carrier injection

Figure 3.27: Electrons are injected at x = 0 into a sample. At x = 0, a fixed carrier concentration
is maintained. The figure shows how the excess carriers decay into the semiconductor.

where Ln(Lp) defined as Dnτn(Dpτp) are called the diffusion lengths We will see below that
the diffusion length represents the distance an electron (hole) will travel before it recombines
with a hole (electron). Let us examine the schematic of the equation derived above. Consider
the case where an excess electron density δn(0) is maintained at the semiconductor at x = 0, as
shown in figure 3.27. At some point L in the semiconductor the excess carrier density is fixed at
δ(L). We are interested in finding out how the excess density varies with position. The general
solution of the second-order differential equation 3.9.11 is

δn(x) = A1e
x/Ln + A2e

−x/Ln

Using the boundary conditions at x = 0 and x = L, we find that the coefficients A1 and A2 are

A1 =
δn(L) − δn(0)e−L/Ln

eL/Ln − e−L/Ln

A2 =
δn(0)eL/Ln − δn(L)

eL/Ln − e−L/Ln
(3.9.12)
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This gives for the excess carrier concentration

δn(x) =
δn(0) sinh

(
L−x
Ln

)
+ δn(L) sinh

(
x

Ln

)
sinh

(
L

Ln

) (3.9.13)

There are two important cases that occur in bipolar devices, we will examine them here:
(i) L � Ln and δn(L) = 0: In this case the semiconductor sample is much longer than Ln. This
happens in the case of the long p-n diode , which will be discussed in chapter 4 For this case we
have

δnp(x) = δnp(0)e−x/Ln (3.9.14)

Thus the carrier density simply decays exponentially into the semiconductor.
(ii) L � Ln: This case is very important in discussing the operation of bipolar transistors and
narrow p-n diodes . Using the small x expansion for sinh(x)

sinh(x) = x +
x3

3!
+

x5

5!
+ . . .

and retaining only the first-order terms we get

δnp(x) = δnp(0) − x [δnp(0) − δnp(L)]

L
(3.9.15)

i.e., in this case the carrier density goes linearly from one boundary value to the other.
Note that once the carrier density is known the diffusion current can be simply obtained by

taking its derivative.
Let us examine the case where excess carriers are injected into a thick semiconductor sample.

As the excess carriers diffuse away into the semiconductor they recombine. The diffusion length
Ln represents the distance over which the injected carrier density falls to 1/e of its original value.
It also represents the average distance an electron will diffuse before it recombines with a hole.
This can be seen as follows.

The probability that an electron survives up to point x without recombination is, from equation
3.9.15,

δnp(x)

δnp(0)
= e−x/Ln (3.9.16)

The probability that it recombines in a distance Δx is

δnp(x) − δnp(x + Δx)

δnp(x)
= − Δx

δnp(x)

dδnp(x)

dx
=

1

Ln
Δx (3.9.17)

where we have expanded δnp(x + Δx) in terms of δnp(x) and the first derivative of δnp. Thus
the probability that the electron survives up to a point x and then recombines is

P (x)Δx =
1

Ln
e−x/LnΔx (3.9.18)
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Thus the average distance an electron can move and then recombine is

< x > =

∫ ∞

o

xP (x)dx =

∫ ∞

0

xe−x/Ln

Ln
dx

= Ln (3.9.19)

This average distance (=
√

Dnτn) depends upon the recombination time and the diffusion con-
stant in the material. In the derivations of this section, we used a simple form of recombination
rate

R =
δnp

τn
(3.9.20)

where τn is given in terms of the radiative and nonradiative rates as

1

τn
=

1

τr
+

1

τnr
(3.9.21)

The simple δnp/τn form is valid, for example, for minority carrier recombination (p � n).
These equations are therefore used widely to discuss minority carrier injection.

3.10 PROBLEMS

Problem 3.1 The electron mobility of Si at 300 K is 1400 cm2/V·s. Calculate the mean
free path and the energy gained in a mean free path at an electric field of 1 kV/cm. Assume
that the mean free path = vth · τsc, where vth is the thermal velocity of the electron (vth ∼
2.0 × 107 cm/s).

Problem 3.2 The mobility of electrons in the material InAs is ∼ 35,000 cm2/V·s at 300K
compared to a mobility of 1400 cm2/V·s for silicon. Calculate the scattering times in the
two semiconductors. The electron masses are 0.02 m0 and 0.26 m0 for InAs and Si,
respectively.

Problem 3.3 Calculate the ionized impurity limited mobility (ND = 1016 cm−3;
1017 cm−3) in GaAs from 77 K to 300 K.

Problem 3.4 If the measured room temperature mobility of electrons in GaAs doped
n-type at 5 × 1017 cm−3 is 3500 cm2V−1 s−1 calculate the relaxation time for phonon
scattering.

Problem 3.5 Calculate the alloy scattering limited mobility in In0.53Ga0.47As as a
function of temperature from 77 K to 400 K. Assume an alloy scattering potential of
1.0 eV.

Problem 3.6 The velocity of electrons in silicon remains ∼1 × 107 cm s−1 between
50 kVcm−1 and 200 kVcm−1. Estimate the scattering times at these two electric fields.



3.10. PROBLEMS 143

Problem 3.7 The power output of a device depends upon the maximum voltage that the
device can tolerate before impact-ionization-generated carriers become significant (say
10% excess carriers). Consider a device of length L, over which a potential V drops
uniformly. What is the maximum voltage that can be tolerated by an Si and a diamond
device for L = 2 μm and L = 0.5 μm? Use the values of the critical fields given in this
chapter.

Problem 3.8 The electron concentration in a Si sample is given by

n(x) = n(0) exp(−x/Ln); x > 0

with n(0) = 1018 cm−3 and Ln = 3.0 μm. Calculate the diffusion current density as a
function of position if Dn=35 cm2/s.

Problem 3.9 Consider a GaAs sample doped n-type at 1016 cm−3 on which an
experiment is done. At time t = 0 an external stimulus introduces excess electrons at a
point x = 0. The excess charge is detected at x = 10.0 μm in the absence of any applied
field after 2.5 × 10−9 s.
Use this information to answer the following:
• What is the diffusion coefficient of electrons?
• How much time will electrons travel (by drift) 1.0 μm under an applied field of
1.0 kV/cm? Assume that the velocity–field relation is linear.
• What is the conductivity of this sample? Assume that the electron effective mass is
0.067 m0.

Problem 3.10 In a p-type GaAs doped at Na = 1018 cm−3, electrons are injected to
produce a minority carrier concentration of 1016 cm−3. What is the rate of photon
emission assuming that all e-h recombination is due to photon emission ? What is the
optical output power? The photon energy is �ω = 1.41 eV and the radiative lifetime is
1.0 ns.

Problem 3.11 Calculate the electron carrier density needed to push the electron Fermi
level to the conduction bandedge in GaAs. Also calculate the hole density needed to push
the hole Fermi level to the valence bandedge. Calculate the results for 300 K and 77 K.

Problem 3.12 A photodetector uses pure silicon as its active region. Calculate the dark
conductivity of the detector (i.e., conductivity when no light is shining on the detector).
Light with intensity 10−3 W/cm2 shines on the device. Calculate the conductivity in
presence of light.

μn = 1000 cm2/V · s
μp = 400 cm2/V · s
α = 103 cm−1

τr = 10−7 s
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Problem 3.13 Electrons are injected into a p−typesilicon sample at 300 K. The
electron-hole radiative lifetime is 1 ensuremathμs. The sample also has midgap traps with
a cross-section of 10−15 cm−2and a density of 1016 cm−3. Calculate the diffusion length
for the electrons if the diffusion coefficient is 30 cm2s−1.

Problem 3.14 Assume that silicon has a midgap impurity level with a cross-section of
10−14 cm2. The radiative lifetime is given to be 1 ensuremathμsat 300 K. Calculate the
maximum impurity concentration that will ensure that τr < τnr.

Problem 3.15 When holes are injected into an n−typeohmic contact, they decay within a
few hundred angstroms. Thus one can assume that the minority charge density goes to zero
at an ohmic contact. Discuss the underlying physical reasons for this boundary condition.

Problem 3.16 Electrons are injected into p−typeGaAs at 300 K. The radiative lifetime for
the electrons is 2 ns. The material has 1015 impurities with a cross-section of 10−14 cm2.
Calculate the distance the injected minority charge will travel before 50% of the electrons
recombine with holes. The diffusion coefficient is 100 cm2/s.

Problem 3.17 Electrons are injected into p−typesilicon at x = 0. Calculate the fraction of
electrons that recombine within a distance L where L is given by (a) 0.5 μm, (b) 1.0 μm,
and (c) 10.0 μm. The diffusion coefficient is 30 cm2s−1and the minority carrier lifetime is
10−7s.

Problem 3.18 Consider a Si sample of length L. The diffusion coefficient for electrons is
25 cm2s−1 and the electron lifetime is 0.01 μs. An excess electron concentration is
maintained at x = 0 and x = L. The excess concentrations are:

δn(x = 0) = 2.0 × 1018 cm−3; δn(x = L) = −1.0 × 1014 cm−3

Calculate and plot the excess electron distribution from x = 0 to x = L. Do the
calculations for the following values of L:

L = 10.0 μm

L = 5.0 μm

L = 1.0 μm

L = 0.5 μm

Note that the excess electron distribution starts out being nonlinear in space for the long
structure, but becomes linear between the two boundary values for the short structure.

Problem 3.19 An experiment is carried out at 300 K on n-type Si doped at Nd = 1017

cm−3. The conductivity is found to be 10.0 (Ω cm)−1.

When light with a certain intensity shines on the material the conductivity changes to 11.0
(Ω cm)−1. The light is turned off at time 0 and it is found that at time 1.0 μs the
conductivity is 10.5 (Ω cm)−1. The light-induced excess conductivity is found to decay as

δσ = δσ(0) exp

(
− t

τ

)
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where τ is the carrier lifetime. Calculate the following:
• What fraction of the donors is ionized?
• What is the diffusion length of holes in this material?

Use the following data:

μn = 1100 cm2/V · s : μp = 400 cm2/V · s

Problem 3.20 Calculate the area density of surface states that would lead to surface
generation rate of a fully depleted surface to equal twice the generation rate in the surface
depletion region. Consider the states to be characterized by a capture cross-section of
10−15cm2 and the thermal velocity to be 107 cm

s . Assume the surface depletion region to
be 1μm wide and the time constant τ0 = 1μs.
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Chapter 4

JUNCTIONS IN
SEMICONDUCTORS: P-N
DIODES

4.1 Introduction

In the introduction to this textbook we examined how semiconductor devices are driving mod-
ern information technology. Cell phones, computer, internet, etc. all depend upon devices that
will be discussed in the next several chapters. Semiconductor diodes (and Schottky diodes) dis-
cussed in this and the next chapter have rectifying properties. p-n diodes can be used as detectors
and light emitters. Devices such as field effect and bipolar transistors are used for amplification
and signal generation. They can also be used in digital technology as ON/OFF switches.

Semiconductor devices operate on the basis of the basic principle that the conducting and
optical properties of semiconductors can be altered easily and rapidly. One way this can be
done is through the use of junctions between dissimilar materials. Junctions can form between
n−type and p−type materials, between materials with different bandgaps, and between metals
and semiconductors. In this chapter we will discuss the p-n junction.

4.2 P-N JUNCTION IN EQUILIBRIUM

The p-n junction is one of the most important junctions in solid-state electronics. The junction
is used as a device in applications such as rectifiers, waveform shapers, variable capacitors,
lasers, detectors, etc. The key ingredient of the bipolar transistor, which is one of the most
important electronic devices is a p-n junction,. To understand how a p-n junction operates we
need to know: i) What are the carrier distributions for electrons and holes in the material? ii)
What are the physical processes responsible for current flow in the structure?

146
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Let us start with p- and n-type semiconductors without forming a junction as shown in fig-
ure 4.1(a). The electron affinity eχ, defined as the energy difference between the conduction
band and vacuum level, is shown along with the work function (eφsp or eφsn). The work func-
tion represents the energy required to remove an electron from the semiconductor to the “free”
vacuum level and is the difference between the vacuum level and the Fermi level.

Let us now examine what happens when the p- and n-type materials are made to form a
junction. In the absence of any applied bias, there is no net current in the system and the Fermi
level is uniform throughout the structure. In figure 4.1(b) we show a schematic of the band
diagram of a p-n junction.

Majority carriers near the interface on both sides diffuse across the junction (holes from p side
and electrons from n side), as a result of the difference in electron and hole densities across the
junction. Most of the electrons which diffuse to the p-side recombine with holes, and most of the
holes which diffuse to the n-side recombine with electrons. As a result, a region is formed near
the junction that has been depleted of mobile carriers. An electric field exists in this depletion
region that sweeps out any electrons and holes that enter the region.

Three regions can be identified as seen in figure 4.1(b):
i) The p-type region where the material is neutral and the bands are flat. The density of

acceptors exactly balances the density of holes (assuming that all of the acceptors are ionized);
ii) The n-type region away from the junction where again the material is neutral and the

density of immobile donors exactly balances the free electron density. Again we assume that all
of the donors are ionized. In general the majority carrier (holes in the p-region and electrons
in the n-region) densities are equal to the density of ionized dopants as long as minority carrier
densities are negligible.

iii) Around the junction there is a depletion region where the bands are bent and a field exists
that sweeps the mobile carriers, leaving behind negatively charged acceptors in the p-region and
positively charged donors in the n-region. The depletion region extends a distance Wp in the
p-region and a distance Wn in the n-region.

Due to the field in the depletion region electrons or holes which enter the depletion region are
swept away. Thus, once equilibrium is established, a drift current exists that counterbalances the
diffusion current. Let us calculate the width of the depletion region, and the electric field. To
obtain analytical results we make some simplifying assumptions:

i) The junction is uniformly doped.
ii) The mobile charge density in the depletion region is not zero, but it is much smaller than

the background dopant density. To solve the Poisson equation we will assume that the mobile
carrier density is essentially zero, the depletion approximation.

The various current flow terms in the diode are as follows: the electron drift current and
electron diffusion current as well as the hole drift and hole diffusion current, as shown in fig-
ure 4.2(b). When there is no applied bias, these currents cancel each other individually. Let us
consider these current components. The hole current density is

Jp(x) = e

⎡⎢⎢⎣μpp(x)E(x)︸ ︷︷ ︸
drift

−Dp
dp(x)

dx︸ ︷︷ ︸
diffusion

⎤⎥⎥⎦ = 0 (4.2.1)
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Figure 4.1: Forming a p-n junction (a) The p- and n-type regions before junction formation.
The electron affinity eχ and work functions eφsp and eφsn are shown along with the Fermi
levels. (b) A schematic of the junction and the band profile showing the vacuum level and the
semiconductor bands.
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Figure 4.2: (a) Region of a p-n junction without bias, showing the neutral and depletion ar-
eas. (b) A schematic showing various current and particle flow components in the p-n diode at
equilibrium.

The ratio of μp and Dp is given by the Einstein relation

μp

Dp
=

e

kBT
(4.2.2)

Since the Fermi level is uniform in the structure as we go from the p-side to the n-side, as shown
in figure 4.3. As a result of bringing the p and n type semiconductors, a built-in voltage, Vbi,is
produced between the n−side and the p−side of the structure. As indicated in figure 4.3, the
built-in voltage is given by

eVbi = Eg − (Ec − EF )n − (EF − Ev)p
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where the subscripts n and p refer to the n-side and p-side of the device. Using the Boltzmann
approximation for the Fermi level (see equation 2.4.4)

(Ec − EF )n = −kBT ln(
nno

Nc
)

where nno is the electron density on the n-side of the device. Assuming that all of the donors
are ionized,

nno = Nd

Similarly,

(EF − Ev)p = −kBT ln(
pp0

Nv
)

where ppo is the hole density on the p-side and is given by

pp = Na

This gives the built-in voltage

eVbi = Eg + kBT ln(
nn0pp0

NcNv
)

Using the relation for intrinsic carrier density

n2
i = NcNv exp

(
− Eg

kBT

)
we get

Vbi =
kBT

e
ln(

nn0pp0

n2
i

) (4.2.3)

If nn0 and np0 are the electron densities in the n-type and p-type regions, the law of mass action
(i.e., the product np is constant) tells us that

nn0pn0 = np0pp0 = n2
i (4.2.4)

This gives for the built-in potential, Vbi = Vn − Vp (figure 4.3)

Vbi =
kBT

e
ln

pp0

pn0
(4.2.5)

or

Vbi =
kBT

e
ln

nn0

np0
(4.2.6)

We have the following equivalent expressions:

pp0

pn0
= exp (eVbi/kBT ) =

nn0

np0
(4.2.7)
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Figure 4.3: A schematic showing the p-n diode and the potential and band profiles. The voltage
Vbi is the built-in potential at equilibrium.

In this relation Vbi is the built-in voltage in the absence of any external bias. Under the approxi-
mations discussed later, a similar relation holds when an external bias V is applied to alter Vbi to
Vbi −V , and will be used when we calculate the effect of external potentials on the current flow.

We need to solve the Poisson equation to calculate the width of the depletion region for the
diode under no applied bias. The calculation in the presence of a bias V will follow the same
approach and Vbi will simply be replaced by Vbi−V , the total potential across the junction. Note
that we have the equality

A WpNa = A WnNd (4.2.8)

where A is the cross-section of the p-n structure and Na and Nd are the uniform doping densities
for the acceptors and donors.
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The Poisson equation in the depletion approximation for various regions is

d2V (x)

dx2
= 0 −∞ < x < −Wp (4.2.9)

d2V (x)

dx2
=

eNa

ε
− Wp < x < 0 (4.2.10)

d2V (x)

dx2
= −eNd

ε
0 < x < Wn (4.2.11)

d2V (x)

dx2
= 0 Wn < x < ∞ (4.2.12)

Solving these equations gives the electric field in the p-side of the depletion region

E(x) = −dV

dx
= −eNax

ε
− eNaWp

ε
− Wp < x < 0 (4.2.13)

The electric field reaches a peak value at x = 0. The potential is given by integrating the field,

V (x) =
eNax2

2ε
+

eNaWpx

ε
+

eNaW 2
p

2ε
+ Vp − Wp < x < 0 (4.2.14)

For the n-side of the depletion region and n-side of the neutral region, we use the conditions

V (x) = Vn Wn < x < ∞
E(x) = 0 (4.2.15)

where Vn is the potential at the neutral n-side. The electric field and potential on the n-side is
found to be

E(x) =
eNdx

ε
− eNdWn

ε
0 < x < Wn (4.2.16)

V (x) = −eNdx
2

2ε
+

eNdWnx

ε
− eNdW

2
n

2ε
+ Vn 0 < x < Wn (4.2.17)

The potential difference between points −Wp and 0 is

V (0) − V (−Wp) =
eNaW 2

p

2ε
(4.2.18)

Similarly,

V (Wn) − V (0) =
eNdW

2
n

2ε
(4.2.19)

Thus the built-in potential is

V (Wn) − V (−Wp) = Vbi =
eNdW

2
n

2ε
+

eNaW 2
p

2ε
(4.2.20)
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Please note that in the above equation, and throughout this chapter, the p−type semiconductor
(the semiconductor on the left hand side) is the reference electrode. In the case of the MOSFET
as we will see in chapter 9 a different reference is used. As noted earlier charge neutrality gives
us

NdWn = NaWp (4.2.21)

and we get

Wp(Vbi) =

{
2εVbi

e

[
Nd

Na(Na + Nd)

]}1/2

(4.2.22)

Wn(Vbi) =

{
2εVbi

e

[
Na

Nd(Na + Nd)

]}1/2

(4.2.23)

W (Vbi) =

[
2εVbi

e

(
Na + Nd

NaNd

)]1/2

(4.2.24)

The expressions derived above can be extended to find the electric fields, potential, and
depletion widths for arbitrary values of Vp and Vn under certain approximations. Thus we can
use these equations directly when the diode is under external bias V , by simply replacing Vbi by
Vbi - V .

In figure 4.4 we show the charge and electric field profile. The electric field is nonuniform in
the depletion region, peaking at the junction with a peak value.

Em = −eNdWn

ε
= −eNaWp

ε
(4.2.25)

The sign of the field simply reflects the fact that in our study the field points toward the
negative x-axis. It is important to note that if Na � Nd, the depletion width Wp is much smaller
than Wn. Thus a very strong field exists over a very narrow region in the heavily doped side of
the junction. In such junctions (p+n or n+p) the depletion region exists primarily on the lightly
doped side.

Example 4.1 A diode is fabricated on an n-type (Nd = 1016 cm−3) silicon substrate, on
which a p-type region doped to 1018 cm−3 is created. Calculate the Fermi level positions
in the p- and n-regions, determine the contact potential in the diode, and calculate the
depletion widths on the p- and n-side. Using the effective density of states relations, we
have (Nc = 2.8 ×1019 cm−3; Nv = 1 ×1019 cm−3at 300 K)

EFn = Ec + kBT ln
nn0

Nc

= Ec − (0.026 eV) × 7.937

= Ec − 0.206 eV

EFp = Ev − kBT ln
pp0

Nv

= Ev + (0.026 eV) × 2.3

= Ev + 0.06 eV
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Figure 4.4: The p-n structure, with the charge and the electric field profile in the depletion region.
The electric field peaks at the junction as shown.
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The built-in potential is given by

eVbi = Eg − 0.06 − 0.206 eV

= 1.1 − 0.06 − 0.206

= 0.834 eV

The depletion width on the p-side is given by

Wp(Vbi) =

{
2εVbi

e

[
Nd

Na(Na + Nd)

]}1/2

∼=
{

2 × (11.9 × 8.84 × 10−12 F/m) × 0.834 (volts)

(1.6 × 10−19 C)

× 1022 m−3

1024 m−3 × (1.01 × 1024 m−3)

}1/2

= 3.2 × 10−9 m = 32 Å

The depletion width on the n-side is 100 times longer:

Wn(Vo) = 0.32 μm

4.3 P-N DIODE UNDER BIAS

We have noted that in the absence of an applied bias, even though there is no current flowing
in the diode, there are drift and diffusion currents that flow and exactly cancel each other. In the
presence of the applied bias, the balance between the drift and diffusion currents is disturbed and
a net current will flow. Under the following simplifying assumptions, one can use the formalism
of the previous section to study the biased diode. These approximations are found to be valid
under usual diode operating conditions.
• We assume that the change in carrier densities is small so that we can use the concept of quasi-
equilibrium. The diode is made up of quasi-neutral regions and the depletion region. In the
depletion region, the electron and hole distributions are essentially described by a Boltzmann
distribution and that the concept of a quasi-Fermi level (see section 3.7 and section 4.5.2) is
valid for electrons and holes. The quasi-Fermi levels for the electrons and holes extend from the
quasi-neutral regions as shown in figure 4.5.
• The external potential drops mainly across the depletion region because the major barrier to
current flow is the p-n junction dipole.

The key to the p-n diode operation is that a bias applied across the diode can shrink or increase
the barrier seen by electrons and holes. This is shown schematically in figure 4.5. When a
forward bias Vf is applied, the p-side is at a positive potential with respect to the n-side. In the
reverse bias case, the p-side is at a negative potential −Vr with respect to the n-side.

In the forward bias case, the potential difference between the n- and p-side is (applied bias
V = Vf )

VTot = Vbi − V = Vbi − Vf (4.3.1)
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Figure 4.5: A schematic showing (a) the biasing of a p-n diode in the equilibrium, forward, and
reverse bias cases; (b) the energy band profiles. In forward bias, the potential across the junction
decreases, while in reverse bias it increases. The quasi-Fermi levels are shown in the depletion
region.

while for the reverse bias case it is (the applied potential V is negative, V = −Vr, where Vr has
a positive value)

VTot = Vbi − V = Vbi + Vr (4.3.2)

Under the approximations given above, the equations for electric field profile, potential profile,
and depletion widths we calculated in the previous section are directly applicable except that Vbi

is replaced by VTot. Thus the depletion width and the peak electric field at the junction decrease
under forward bias, while they increase under reverse bias, as can be seen from equation 4.2.24
and 4.2.25 if Vbi is replaced by VTot.



4.3. CURRENT FLOW: P-N DIODE UNDER BIAS 157

4.3.1 Drift and Diffusion Currents in the Biased Diode

The p-n diode characteristics are dominated by minority carrier flow i.e. electrons entering
the p-side and holes entering from the p-side. When the diode is forward biased the barrier that
electrons (holes) need to overcome to enter the p-side (n-side) from the n-side (p-side) decreases.
This allows a higher minority charge injection. In reverse bias, the minority carrier injection is
suppressed. This is shown schematically in figure 4.6. The presence of the bias increases or
decreases the electric field in the depletion region. However, under moderate external bias, the
electric field in the depletion region is always higher than the field for carrier velocity saturation
(E >

∼10kV cm−1) for most semiconductors. Thus the change in electric field does not alter the
drift part of the electron or hole current in the depletion region and the magnitude is determined
by the rate of supply of minority carriers by diffusion from the bulk to the depletion region as
will be described in section 4.5. When no bias is applied we have

pp0

pn0
= exp (eVbi/kBT ) (4.3.3)

In the presence of the applied bias, under the assumptions of quasi-equilibrium, we get

p(−Wp)

p(Wn)
= exp (e(Vbi − V )/kBT ) ∼= pp0

p(Wn)
(4.3.4)

We have assumed that the injection of mobile carriers is small (low-level injection) so that the
majority carrier densities are essentially unchanged because of injection, i.e., p(−Wp) = pp0.
Taking the ratio of the two equations

pn(Wn)

pn0
= exp (eV/kBT ) (4.3.5)

This equation suggests that the hole minority carrier density at the edge of the n-side depletion
region can be increased or decreased dramatically by applying a bias.

A similar consideration gives, for the electrons injected as a function of applied bias,

np(−Wp)

np0
= exp (eV/kBT ) (4.3.6)

From these equation we can see that the excess carriers created due to injection across the deple-
tion regions are

Δpn = p(Wn) − pn = pn0( exp (eV/kBT ) − 1) (4.3.7)

Δnp = np(−Wp) − npo = npo( exp (eV/kBT ) − 1) (4.3.8)

The excess minority carriers that are introduced will decay into the majority region due to
recombination with the majority carriers. For long diodes, the decay is simply given by the ap-
propriate diffusion lengths (Lp for holes, Ln for electrons). Using results derived in section 3.9,

δp(x) = Δpn exp ((−(x − Wn)/Lp))

= pn0 [ exp (eV/kBT ) − 1] · exp [−(x − Wn)/Lp] (4.3.9)
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Figure 4.6: A schematic of the minority and majority charge distribution in the n- and p-sides.
The minority carrier injection (electrons from n-side to p-side or holes from p-side to n-side) is
controlled by the applied bias as shown.
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for x > Wn

δnp(x) = Δnpo exp ((x + Wp)/Ln)
= npo [ exp (eV/kBT ) − 1] exp [(x + Wp)/Ln]

(4.3.10)⎧⎨⎩
x < −Wp

x is negative
Wp is positive

⎫⎬⎭ .

Holes are injected into the n-side and the value of this diffusion current is

Ip(x) = −eADp
d(δp(x))

dx
= eA

Dp

Lp
(δp(x)) x > Wn (4.3.11)

The hole current injected into the n-side is given by the hole current at x = Wn (after using the
value of δp(x = Wn) from equation 4.3.9)

Ip(Wn) = e
ADp

Lp
pn ( exp (eV/kBT ) − 1) (4.3.12)

Using similar arguments, the total electron current injected across the depletion region into the
p-side region is given by

In(−Wp) =
eADn

Ln
npo ( exp (eV/kBT ) − 1) (4.3.13)

In this section we will assume that the diode is ideal which essentially means there is no e-h
recombination within the depletion region. In the next section we will discuss the case where
recombination occurs for a real diode. For the ideal diode the total current can be simply obtained
by adding the hole current injected across Wn and electron current injected across −Wp, which
is clear from figure 4.7c. The sum of the electron and hole currents in the depletion region,
I = Ip + In is given by Ip(Wn) + In(−Wp) as the currents do not change in the depletion
region due to the assumption of no generation - recombination. The diode current is therefore

I(V ) = Ip(Wn) + In(−Wp)

= eA

[
Dp

Lp
pn0 +

Dn

Ln
npo

]
( exp (eV/kBT ) − 1)

I(V ) = Io ( exp (eV/kBT ) − 1) (4.3.14)

This is the diode equation. Under reverse bias, the current simply goes toward the value −Io,
where Io is the prefactor of the diode equation.

Io = eA

(
Dppn0

Lp
+

Dnnpo

Ln

)
(4.3.15)

Notice that the diode current increases rapidly when a forward bias is applied and has a small
value at negative bias. This gives the diode its rectification properties.
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4.3.2 Minority and Majority Currents in the p-n Diode

The p-n diode is a bipolar device in which electrons and holes both carry current. To obtain
the diode current we have simply added the electron current and hole current injection across
the depletion region. This current was evaluated at its peak value at the edges of the depletion
region. The diffusion current decreases rapidly in the majority region because of recombination.
As the holes recombine with electrons in the n-region, an equal number of electrons are injected
into the region. These electrons provide a drift current in the n-side to exactly balance the hole
current that is lost through recombination. Let us consider the hole diffusion current in the n-type
region. This current is, from equation 4.3.11, using the value of δp(x) from equation 4.3.10,

Ip(x) = e A
Dp

Lp
pn0 exp

(
−x − Wn

Lp

)[
exp

(
eV

kBT

)
− 1

]
x > Wn

We have also seen that the total current is

I = e A

(
Dp

Lp
pn0 +

Dn

Ln
npo

)[
exp

(
eV

kBT

)
− 1

]
(4.3.16)

Thus the electron current in the n-type region is

In(x) = I − Ip(x) (for x > Wn)

= eA

{
Dp

Lp
pn0

[
1 − exp

(
−x − Wn

Lp

)]
+

Dn

Ln
np0

}[
exp

(
eV

kBT

)
− 1

]
As the hole current decreases from Wn into the n-side, the electron current increases correspondingly
to maintain a constant current. A similar situation exists on the p-side region. As the electron
injection current decays, the hole current compensates. The electron and hole currents flowing
in the diode have a behavior shown schematically in figure 4.7.

The rectifying properties of a diode are shown in figure 4.8. The reverse current saturates
to a value Io given by equation 4.3.15. Since this value is quite small, the diode is essentially
nonconducting. On the other hand, when a positive bias is applied, the diode current increases
exponentially and the diode becomes strongly conducting. The forward bias voltage at which
the diode current density becomes significant (∼ 103 A·cm−2) is called the cut-in voltage. This
voltage is ∼ 0.8V for Si diodes and ∼ 1.2 V for GaAs diodes. The cut-in voltage is approximately
80 % of the material bandgap.

4.3.3 Narrow Diode Current

In the discussion for the diode current we have assumed the n and p-sides have lengths that
are much greater than the minority carrier diffusion lengths. Often this is not the case. This
is true for high speed diodes and for p-n junctions in bipolar transistors. In this such case we
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cannot assume that the injected excess minority carrier density will simply decay exponentially
as exp {− (x − Wn) /Lp} (for holes). In fact, for the narrow diode one has to consider the ohmic
boundary conditions where at the contacts the excess minority carrier density goes to zero.

In figure 4.9 we show a case where the diode extends a distance Wln and Wln as shown in the
n- and p-sides. We know from section 3.9 if the diode is narrow the injected minority carrier
concentration goes from its value at the depletion edge toward zero at the contact in a linear
manner. The hole current injected across Wn becomes (note that δpn(W�n) = 0)

Ip(Wn) = −eADp
d(δp(x))

dx
= −eADp

[
δpn(Wn) − δpn(W�n)

W�n − Wn

]
=

−eADp

W�n − Wn
pn

[
exp

(
eV

kBT

)
− 1

]
(4.3.17)

A similar expression results in this linear approximation for the electron distribution. The net
effect is that the prefactor of the diode current changes (i.e., the term Ln or Lp in the denominator
is replaced by a smaller term (W�n − Wn) or (|W�p − Wp|). The prefactor becomes

Io = eA

[
Dppn0

(W�n − Wn)
+

Dnnp0

(|W�p − Wp|)
]

(4.3.18)

The narrow diode therefore has a higher saturation current than a long diode. The advantage of
the narrow diode lies in its superior time-dependent response—a topic we will consider later.
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4.4 REAL DIODES: CONSEQUENCES OF DEFECTS AND
CARRIER GENERATION

In the discussion so far we have assumed the diode we are dealing with is ideal, i.e., there are
no defects and associated bandgap states that may lead to trapping, recombination, or generation
terms. In section 3.7 we discussed the effects of bandgap states produced by defects. In a real
diode, a number of sources may lead to bandgap states. The states may arise if the material
quality is not very pure so that there are chemical impurities present. Let us assume that the
density of such deep level states is Nt. We will assume that the deep level is at the center of the
bandgap.

We learned in chapter 3 in the SRH analysis that under the approximation of:

1. σ = σn = σp and

2. Et = Ei, and

3. en, ep, σn, σp are unperturbed in non-equilibrium
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We get

U =
1

τ
· pn − n2

i

n + p + 2ni
(4.4.1)

where

τ =
1

σvthNt

and pn− n2
i = driving force for recombination and n + p + 2ni = resistance to recombination.

This applies to any semiconductor with or without band bending. Note that the values of n and p
are functions of band bending, photon flux, etc. Also, note that U is maximized for a certain level
of perturbation when the denominator is minimized. As electrons and holes enter the depletion
region, one possible way they can cross the region without overcoming the potential barrier is to
recombine with each other. This leads to an additional flow of charged particles. This current,
called the generation-recombination current, must be added to the current calculated so far. In
figure 4.10 we show a qualitative diagram of all current components flowing in the diode.

4.4.1 Generation-Recombination Currents

To calculate the recombination currents in a diode, the Sah-Noyce-Shockley current, JSNS ,
we consider a forward biased diode shown in figure 4.11b. Under a forward bias of V , the
product of np is a constant across the depletion layer and is

np = n2
i exp

(
eV

kBT

)
This is easily seen by recognizing that

n(x) = nn0 exp

(−eψ′(x)

kBT

)
(4.4.2)
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Figure 4.11: Band diagram of a p-n junction (a) in equilibrium and (b) under forward bias

p(x) = pp0 exp

(−eψ(x)

kBT

)
(4.4.3)

Note that ψ(x) is the voltage measured downwards from Eip and ψ′(x) is measured upwards
from Ein and that

n(x) · p(x) = nn0 pp0 exp

[−e(ψ′(x) + ψ(x))

kBT

]
ψ(x) + ψ′(x) = Vbi + V (4.4.4)

Therefore,

n(x) · p(x) = nn0pn0 exp

(
eV

kBT

)
or

n(x) · p(x) = n2
i exp

(
eV

kBT

)
(4.4.5)
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Under steady state bias of V the term n + p + 2ni is minimized when n = p. The value of x
where this occurs is chosen to be zero. This is the maximum recombination plane (MRP).

n(0) = p(0) = ni exp

(
eV

2kBT

)
(4.4.6)

If we move away from the MRP, the electron and hole concentrations change proportionally to
the term

exp

(
±eψ(x)

kBT

)
as shown in figure 4.12, Where

n(x) = n(0) exp

(
eψ(x)

kBT

)
and p(x) = p(0) exp

(
−eψ(x)

kBT

)
Assuming the distance x is small so that we can assume the electric field is constant for purposes
of the analysis to be E = E(0). Then ψ = ±Ex and therefore,

U =
1

τ
· pn − n2

i

n + p + 2ni
=

1

τ
· n2

i exp (eV /kBT ) − n2
i

n(0) exp (eψ/kBT ) + p(0) exp (−eψ/kBT ) + 2ni

Neglecting n2
i in the numerator and 2ni in the denominator we get

U =
1

τ
· ni exp (eV /2kBT )

2 cosh(eEx/kBT )
(4.4.7)
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Figure 4.13: Schematic of the net recombination rate as a function of distance from the MRP

To calculate the total recombination current we need to integrate over the volume of the depletion
region. Since the recombination rate curve is highly peaked about x = 0, the MRP, as shown in
figure 4.13, the following approximations remain valid.

1. Linearizing the potential ψ = ±Ex since only small values of x contribute to the integral.

2.
∫ Wn

−Wp
→ ∫

∞

Therefore,

ISNS = IR = eA

∫
U(x)dx (4.4.8)

Making these substitutions and solving equation 4.4.8, we find:

IR =
eniA

2τ
exp

(
eV

2kBT

)∫ +∞

−∞

dx

cosh [eE(0)x/kBT ]
(4.4.9)

=
eniA

2τ
· πkBT

eE(0)
exp

(
eV

2kBT

)
(4.4.10)

=I◦GR exp

(
eV

2kBT

)
(4.4.11)

At zero applied bias, a generation current of IG balances out the recombination current.
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The generation-recombination current therefore has an exponential dependence on the voltage
as well, but the exponent is different. The generation-recombination current is

IGR = IR − IG = IR − IR(V = 0)

= I◦GR

[
exp

(
eV

2kBT

)
− 1

]
(4.4.12)

where V is small so that the MRP is assumed constant.
The total device current now becomes

I = Io

[
exp

(
eV

kBT

)
− 1

]
+ I◦GR

[
exp

(
eV

2kBT

)
− 1

]
or

I ∼= IS

[
exp

(
eV

nkBT

)
− 1

]
(4.4.13)

= IS

[
exp

(
V

n
· e

kBT

)
− 1

]
where n is called the diode ideality factor or the voltage partitioning factor because the factor of 2
in equation 4.4.12 is a consequence of recombination occurring at the maximum recombination
plane. The prefactor Io

GR can be much larger than Io for real devices. Thus at low applied
voltages the diode current is often dominated by the second term. However, as the applied bias
increases, the diffusion current starts to dominate. We thus have two regions in the forward I-V
characteristics of the diode, as shown in figure 4.14. One of the reasons it is experimentally
difficult to measure an IV curve with an ideality factor of 2 is because the MRP is actually
changing with applied bias.

In figure 4.15, we show the effects that material defects can have on the diode current char-
acteristics. We can see that defects such as threading dislocations can cause large undesirable
reverse leakage currents that are not predicted by the ideal diode characteristics calculated in this
section.

Example 4.2 Consider the p-n diodes examined in problem 4.12. In that example, the
diode prefactor was calculated assuming that there is no recombination in the depletion
region. Calculate the effect of the generation-recombination current assuming a lifetime of
10−6 s.

The prefactor of the generation-recombination current is

Io
GR =

eAni

2τ

πkBT

eE(0)

At zero applied bias, we know that the MRP occurs where pp0e
− ψ(x)

kBT = ni. This allows
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Figure 4.14: A log plot of the diode current in forward bias. At low biases, the recombination
effects are quite pronounced, while at higher biases the slope becomes closer to unity. At still
higher biases the behavior becomes more ohmic.

us to solve for ψ(x) and thus E(0). This gives

I◦GR =

(
1.6 × 10−19 C

) (
10−3 cm2

) (
1.5 × 1010 cm−3

)
2 (10−6 s)

· (3.14) (.026V )

(3.2 × 104 V/cm)

= 3.0 × 10−12 A

and

IGR = Io
GR

[
exp

(
eV

2kBT

)
− 1

]
We can see that the generation-recombination prefactor is much larger than the prefactor
due to the diffusion term. Thus the reverse current will be dominated by the
generation-recombination effects.

In forward bias, the diffusion current is initially much smaller than the
generation-recombination term. However, at higher forward bias the diffusion current will
start to dominate. For example, we see that at a forward bias of 0.2 V, the diffusion current
is 2.2 × 10−11 A, while the generation-recombination current is 1.65 × 10−10 A. At a
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Figure 4.15: Effects of threading dislocations on reverse leakage current in p-n diodes. GaN
p-n diodes were fabricated on the same wafer, some of them being placed on areas with high
dislocation density, and some placed in areas with virtually no dislocations. The fabrication
process is shown in (a) - (c). Current characteristics for a number of diodes are shown in (d).
We see that the reverse leakage current in the devices on dislocated material is 3-4 orders of
magnitude higher than that of devices on non-dislocated material, indicating that the dislocations
provide a leakage path for current to travel. Figures taken from the PhD dissertation of Peter
Kozodoy, UCSB.
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forward bias of 0.6 V, the diffusion current is 1.07 × 10−4 A, while the
generation-recombination current is 8.45 × 10−7 A.

Example 4.3 Consider a long p-n diode on silicon with the following parameters:

n-side doping = 1017 cm−3

p-side doping = 1017 cm−3

Minority carrier lifetime τn = τp = 10−7 s

Electron diffusion constant = 30 cm2/s

Hole diffusion constant = 10 cm2/s

Diode area = 10−4 cm2

Carrier lifetime in the depletion region = 10−8 s

Calculate the diode current at a forward bias of 0.5 V and 0.6 V at 300 K. What is the
ideality factor of the diode in this range?

For this diode structure we have the following:

np = 2.25 × 103 cm−3

pn = 2.25 × 103 cm−3

Ln = 17.32 μm

Lp = 10.0 μm

Vbi = 0.817V

The prefactor in the ideal diode equation is

I0 = eA

(
Dppn

Lp
+

Dnnp

Ln

)
= 9.83 × 10−16

The prefactor to the recombination-generation current is

I0
GR =

eAni

2τ
· πkBT

eE(0)

where τ is the lifetime in the depletion region.

The E(0) at a forward bias of 0.5 V is found to be

E(0) = 6.94 × 104 V/cm

The E(0) at a forward bias of 0.6 V is found to be

E(0) = 5.74 × 104 V/cm
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The prefactors to the recombination-generation current is

I0
GR(0.5 V) = 1.4 × 10−11 A

I0
GR(0.6 V) = 1.7 × 10−11 A

The current is now

I(0.5 V) = 9.83 × 10−16 exp

(
0.5

0.026

)
+ 1.4 × 10−11 exp

(
0.5

0.052

)
= 4.33 × 10−7 A

and

I(0.6 V) = 9.83 × 10−16 exp

(
0.6

0.026

)
+ 1.7 × 10−11 exp

(
0.6

0.052

)
= 1.21 × 10−5 A

We can write the diode current as

I ∼= IS exp

(
eV

nkBT

)
Thus

I(V2)

I(V1)
∼= exp

(
e(V2 − V1)

nkBT

)
Using this relation, we find that

n ∼= 1.15

4.5 Reverse Bias Characteristics

The case for reverse bias is very different. Here the application of bias increases barriers.
The only carriers that can flow are those that can diffuse to the depletion region and are swept
across by the field; these are minority carriers, holes in the n-region and electrons in the p-region
(figure 4.16).

4.5.1 First Observation

Since we are only dealing with minority carrier currents we know that minority carrier drift can
be neglected, hence only minority carrier diffusion is relevant. To calculate diffusion currents we
need to know the charge profile. Charge profiles are obtained by solving the continuity equation
as shown in chapter 3. We assume that the large electric field in the reverse biased p-n junction
sweeps minority carriers away from the edge of the junction. Using the Schockley Boundary
Conditions:

np (−Wp) = 0 And pn (+Wn) = 0
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Figure 4.16: Here the minority carriers are electrons injected from the p-region to the n-region
(opposite to the forward-biased case)

We also know that the minority carrier concentration in the bulk is np0 (p−type) and pn0

(n−type). Therefore, the shape of the curve will be qualitatively as shown (figure 4.16) re-
ducing from the bulk value to zero at the depletion region edge. We now consider the flow of
minority holes. The charge distribution is obtained by solving:

Dp
d2pn

dx2
+ Gth − R = 0 (4.5.1)

Where Gth is the generation due to thermal emission of carriers, and R is the recombination
rate for excess carriers. The process of carrier recombination is driven by excess carriers. This
dependence may be written as: (where αr is a material-dependent rate constant).

R = npαr =
pn

τp
(4.5.2)

where in a p-type semiconductor τp = 1
αrn . Clearly, in an intrinsic semiconductor without

excess minority carriers the expressions for R and Gth become equivalent - expressing the equi-
librium of the system:

Gth − R = 0
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or
Gth = αrn

2
i

In non equilibrium recognizing that Gth is a function of temperature and invariant under injection

Gth − R = αrn
2
i − αrnp =

pn0 − pn

τp
(4.5.3)

Therefore, from equation 4.5.1

Dp
d2pn

dx2
+

pn0 − pn

τp
= 0 (4.5.4)

Note that the second term in this sum is a generation term because pn < pn0 for all x > Wn.
This is natural because both generation and recombination are mechanisms by which the system
returns to its equilibrium value. When the minority carrier concentration is above the equilibrium
minority carrier value then recombination dominates and when the minority carrier concentration
is less than that at equilibrium, then generation dominates. Again, using Δpn (x − Wn) =
pn0 − pn (x − Wn), we have

X=0 LpLn

np

+

+

Figure 4.17: Minority carriers generated within a diffusion length of the depletion region enter
and are swept away.

Dp
d2Δpn (x)

dx2
+

Δpn (x)

τp
= 0 (4.5.5)

and,

Δpn (x − Wn) = C1 exp

(
+

x − Wn

Lp

)
+ C2 exp

(
−x − Wn

Lp

)
(4.5.6)

Where we know that:⎧⎪⎨⎪⎩
C1 = 0 for physical reasons,

Δpn (x − Wn) → 0 x − Wn = ∞,

Δpn (x − Wn) → pn0 − pn(0) = pn0 x − Wn = 0.
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∴ Δpn (x − Wn) = pn0 exp

(
−x − Wn

Lp

)
which can be rewritten for x ≥ Wn

pn (x) = pn0

[
1 − exp

(
−x − Wn

Lp

)]
(4.5.7)

which implies that the flux of holes entering the depletion region is

Jp(Wn) = eDp
dpn(Wn)

dx
= e

Dp

Lp
pn0

and similarly, Jn = eDn

Ln
·np0. Assuming no generation in the depletion region, the net current

flowing is:

Js = e

(
Dp

pn0

Lp
+ Dn

np0

Ln

)
(4.5.8)

This result is remarkable because we get the same answer if we took the forward bias equation
(valid only in forward bias) and arbitrarily allowed V to be large and negative (for reverse bias)-
i.e.

J = Js [ exp (qV/kT ) − 1] (4.5.9)

if V is large and negative, JR = −JS which is the answer we derived in equation 4.5.8. This
can be understood as follows. As shown in figure 4.17 any minority carrier electrons generated
within a diffusion length of the n depletion edge can diffuse to the edge of the junction and be
swept away. Minority electrons generated well beyond a length Ln will recombine with holes
resulting in the equilibrium concentration, np0. Similarly holes generated within Lp, a diffusion
length, of the depletion region edge could diffuse into the depletion region. It is important to
note (from the first term of equation 4.5.8) that the slope of the minority carrier profile at the
depletion region edge :

slope =
pn0

Lp
=

difference from bulk value

Lp
(4.5.10)

This is always true when recombination and generation dominate. Recall that even in forward
bias (shown in figure 4.18) the slope of the carrier profile is again

difference from bulk value

Lp
=

Δpn(Wn)

Lp
(4.5.11)

4.5.2 Quasi Fermi Levels

The Quasi Fermi Level is a very useful concept as it accurately represents the occupancy of
states of the system that it refers to. It is important to recognize that semiconductor devices
are composed of several interacting systems. For example, the conduction band containing free
electrons, the valence band containing free holes and trap states in the gap have an occupancy,
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Figure 4.18: left: Reverse bias minority carrier concentration. right: Forward bias minority
carrier concentration

with each set of traps constituting a separate system. Each of these systems will be represented
by their own quasi Fermi level, EFn for the electrons, EFp for the holes and EFTi for the traps
of energy ETi. If thermal energy is the only energy source determining the occupancy of the
different states and the systems are all freely interacting then of course all the quasi Fermi levels
merge into the Fermi level of the system at equilibrium. We have also seen in figure 4.5 that
the quasi Fermi levels vary across a device in non-equilibrium. The variation of the Fermi level
is determined by the current flow in the system and the interaction of the various systems. Let
us look at the variation of EFn and EFp in the case of a forward biased diode in figure 4.5c.
The electron quasi Fermi level is determined by the electron concentration point by point and is
determined by the level set by the reservoir of electrons which is the n−type layer. The large
electron concentration in the n−type layer ensures that only a small gradient in EFn can sus-
tain current of relevant magnitudes and hence is pictured flat in the bulk. The same applies for
EFp on the p−side. As electrons and holes flow across the depletion region the quasi Fermi
levels remain almost flat because the length of the depletion region is very small allowing large
gradients to be present to satisfy needed current flow with low absolute values of ΔEFn and
ΔEFp. In the depletion region, since there is no recombination assumed, the electron concen-
tration is determined by the n−region and the hole concentration by the p−region, and in both
instances substantially by the thermal supply as given by the Boltzmann distribution as shown
in figure 4.6. However, in the bulk regions the electrons and holes recombine and hence the EFn

in the p−region decreases in a manner determined by the recombination rate and not the Boltz-
mann tail of the majority electrons. In the case of reverse bias (figure 4.5c) the injected electrons
and holes are sourced as thermally generated minority carriers in the bulk regions and swept
across the junction to constitute the reverse saturation current. The quasi-femi levels reflect the
change in the minority carrier concentration in the bulk regions on the application of the reverse
bias. The minority carrier electron concentration at the edge of the depletion region of the p-side
under zero bias is nn0 exp (−eVbi/kBT ) or np0. On application of the reverse bias of Vr, the
electron concentration at the junction edge supplied by thermionic emission from the n-side is
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given by nno exp (−e(Vbi − Vr)/kBT ) or np0 exp (eVr/kBT ), but since Vr is negative this is
very small. The linear decrease in the value of EFn from the p−bulk to the edge of the junc-
tion reflects the exponential decrease in the carrier concentration because of diffusion toward the
junction as shown in equation 4.5.7. The reader should be aware that this picture reflects the case
of no velocity saturation of either electrons or holes in the materials. If that happens, the electron
concentration at the edge of the junction cannot decrease arbitrarily and the problem has to be
solved such that the carriers allow current to be continuous through the structure and is left to
the reader as an exercise.

4.6 HIGH-VOLTAGE EFFECTS IN DIODES

In deriving the current-voltage relation we have made two important assumptions: i) the excess
carrier density injected across the depletion region is small compared to the majority charge
density; ii) the reverse current saturates since it is due to the carriers drifting across the depletion
region and is limited by the diffusive flux of minority carriers to the junction.

4.6.1 Forward Bias: High Injection Region

We have so far assumed that the injection density of minority carriers was low so that the
voltage all dropped across the depletion region. However, as the forward bias is increased, the
injection level increases and eventually the injected minority carrier density becomes comparable
to the majority carrier density. When this happens, an increasingly larger fraction of the external
bias drops across the undepleted region. The diode current will then saturate, as shown as Region
3 in figure 4.14. The minority carriers transport is not only due to diffusion, but also due to the
electric field that is now present in the undepleted region. As the forward bias increases, the
devices start to behave like a resistor, where the current-voltage relation is given by a simple
linear expression. The current is now controlled by the resistance of the n- and p-type regions as
well as the contact resistance.

4.6.2 Reverse Bias: Impact Ionization

We have noticed that under reverse bias conditions the electric field across the depletion region
increases. As a result electrons and holes forming the reverse current can acquire very high
energies. Once this excess energy reaches the value of the bandgap we can have impact ionization
as discussed in chapter 3. The final result is that one initial electron can create two electrons in
the conduction band and one hole in the valence band. This results in current multiplication and
the initial current reverse bias Io becomes

I
′

o = M(V )Io (4.6.1)

here M is a factor that depends upon the impact ionization rate which we now derive.
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4.7 Avalanche Breakdown in a p-n junction

Consider a p − i − n junction where the applied voltage is such that the electric field on the
intrinsic region which is a constant is assumed to be large enough to saturate the electron and
hole velocities. We assume in our analysis that vse = vsh = vs. As is shown schematically
in figure 4.19, a few lucky electrons (minority carriers) injected from the p-side into the high
field region can gain enough kinetic energy (> Eg) to collide with the lattice creating electron-
hole pairs. This process is called impact ionization. These electrons and holes accelerate again
leading to more collisions and further generation. The same applies to holes injected from the
n−side. To analyze the resultant current due to impact ionization one solves the continuity
equation for electrons and holes:

∂n

∂t
=

1

e

∂Jn

∂x
+ Gn(e) + Gh(e) (4.7.1)

where Gn(e) = the rate of generation of secondary electrons by accelerated electrons = αnn(x)vs,
where α(cm−1), the ionization coefficient of electrons, is the number of electron-hole pairs
generated per electron per cm, and n(x)(cm−3) is the local concentration of electrons, and vs

(cm/s) is the saturated electron velocity. The ionization coefficient is much less than 1 because
only lucky electrons create electron-hole pairs and the above equation assumes that all elec-
trons are participating in the process. Gh(e) is the rate of generation of secondary electrons by
accelerated holes:

Gh(e) = αp · p(x) · vs (4.7.2)

where αp is the ionization coefficient for holes. p(x)
(
cm−3

)
= local concentration of holes. vs

is the saturated hole velocity. Assuming αn = αp = α and that α �= f(E), the latter being a
good approximation in a p − i − n structure,

∂n

∂t
=

1

e

∂n

∂x
+ α (n(x)vs + p(x)vs) = 0 (4.7.3)

in steady state which we now consider. The impact ionization process causes the electron current
to increase from its reverse saturation value,

Jn0 = −e
Dn

Ln
np0 (4.7.4)

to a larger value at the p-side. The same is true for holes as shown in figure 4.20. To solve the
steady state continuity equation we also note that

Jn(x) = −en(x)vs (4.7.5)

and
Jp(x) = ep(x) (−vs) = −ep(x)vs (4.7.6)

which gives
∂Jn

∂x
− α (envs + epvs) = 0 (4.7.7)
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Figure 4.19: Band diagram for a p − i − n diode showing the avalanche ionization and mul-
tiplication process where an injected minority carrier causes generation of electron-hole pairs
through impact ionization. Multiple ionization events may be caused by a single carrier. The
star represents a collision which generates an electron-hole pair.

or
∂Jn

∂x
= α (Jp + Jn) = αJTotal (4.7.8)

Integrating over the length of the multiplication region, wa, we get∫
dJn = JTotal

∫ wa

0

α dx (4.7.9)

Jn (wa) − Jn(0) = JTotal

∫ wa

0

α dx (4.7.10)

Recognizing
Jn (wa) = JTotal − Jp0 (4.7.11)

and J(0) = Jn0, one gets

JTotal − JP0 − Jn0 = JTotal

∫ wa

0

α dx (4.7.12)
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Figure 4.20: Majority and minority currents in a reverse-biased p − i − n junction

Defining a multiplication factor, M ,

M =
JTotal

Jp0 + Jn0
=

JTotal

Js
(4.7.13)

the equation reduces to:

1 − 1

M
=

∫ wa

0

α dx (4.7.14)

or

M =

[
1 −

∫ wa

0

α dx

]−1

(4.7.15)

Breakdown is defined as the case where JTotal → ∞ or M → ∞. This condition is achieved
when

1 −
∫ wa

0

α dx → 0 (4.7.16)

or ∫ wa

0

α dx → 1 (4.7.17)

We recognize that α is a f(E) in general. In the case of a constant α, the breakdown condition
reduces to

α · wa → 1

which represents the case of every electron (hole) injected into the high field region generating
an electron-hole pair before exiting. This process is self-sustaining.

4.7.1 Reverse Bias: Zener Breakdown

Impact ionization or avalanche breakdown is one mechanism for breakdown in diodes. There
is another one that can be important for narrow gap diodes or heavily doped diodes. This mech-
anism is due to the quantum-mechanical process of tunneling. The tunneling process, allows
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Figure 4.21: Current-Voltage characteristics for a p − i − n diode in avalanche breakdown
showing the ideal (non-avalanche) case as well as the limit where M becomes large.

electrons in the valence band to tunnel into the conduction band and vice versa. Electrons tun-
neling through the diode do not have to go over the barrier and as a result the diode reverse
current can increase dramatically.

To examine how tunneling occurs let us examine the band profile in a reverse-biased p-n
junction. Assume that the diode is heavily doped so that the Fermi level on the n-side and the
Fermi level on the p-side are in the conduction and valence bands, respectively. The heavy
doping ensures that electrons in the conduction band can tunnel into “available” empty states in
the valence band. A typical electron sees a potential barrier between points x2 and x1, as shown
in figure 4.22b. The tunneling probability is given under such conditions by

T ≈ exp

(
−4

√
2m∗E3/2

g

3e�E

)
(4.7.18)

where Eg is the bandgap of the semiconductor, m∗ is the reduced mass of the electron-hole
system, and E is the field.

There is a special class of diodes called Zener diodes where tunneling is exploited. The
depletion width can be controlled by the doping density. If the junction is made from heavily
doped materials, the Zener tunneling can start at a reverse bias of Vz , which could be as low as
a few tenths of a volt. The voltage across the junction is then clamped at Vz , and the current is
controlled by the external circuit as shown in figure 4.23. This clamping property provides a very
useful application for the Zener diodes. If Vz is breakdown voltage (due to impact ionization or
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Figure 4.22: (a) A schematic showing the band diagram for a reverse-biased p-n junction along
with how an electron in the valence band can tunnel into an unoccupied state in the conduction
band.(b) The potential barrier seen by the electron during the tunneling process.

Zener breakdown), the current for reverse bias voltages greater than Vz is

I =
|V − Vz|

RL
(4.7.19)

Example 4.4 A silicon p+n diode has a doping of Na = 1019 cm−3, Nd = 1016 cm−3.
Calculate the 300 K breakdown voltage of this diode. If a diode with the same ε/Nd value
were to be made from diamond, calculate the breakdown voltage.

The critical fields of silicon and diamond are (at a doping of 1016 cm−3) ∼ 4 × 105 V/cm
and 107 V/cm. The breakdown voltage is

VBD(Si) =
ε(Ecrit)

2

2eNd
=

(11.9)(8.85 × 10−14F/cm)(4 × 105 V/cm)2

2(1.6 × 10−19 C)(1016 cm−3)
= 51.7 V
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Figure 4.23: (a) Tunneling breakdown effect in the reverse-biased p-n diode for a voltage-
clamping circuit. The circuit is thus very useful as a voltage regulator and zener diode circuit
symbol.

The breakdown for diamond is

VBD(C) = 51.7 ×
(

107

4 × 105

)2

= 32.3 kV!

One can see the tremendous potential of diamond for high-power applications where the
device must operate under high applied potentials. At present, however, diamond-based
diodes are not commercially available.

4.8 DIODE APPLICATIONS: AN OVERVIEW

4.8.1 Applications of p-n diodes

The p-n junction (or the Schottky diode) is the fundamental building block of semiconductor
devices. The applications are based on certain properties of the junction

I. The injection of electron-hole pairs to generate light via recombination (eg. LEDs and
LASERs)

II. The separation of electron-hole pairs at the junction to constitute a current source (eg.
solar cell)

III. The temperature dependence of the I-V characteristic (eg. a temperature sensor)

IV. The non-linear nature of the I-V characteristic (eg. frequency multipliers and mixers)

V. The device as a switch (eg. rectifiers, inverters, power supplies etc)
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DIODE 

PROPERTIES

CURRENT 

SOURCE

NON-LINEAR I-V 

AND C-V

EMISSION 

AND 

ABSORPTION

SWITCH

• SOLAR CELL
• PHOTODETECTOR
• TRANSISTOR

• MULTIPLIERS
• POWER DETECTORS
• TUNING CAPACITORS

• LEDs
• LASERs
• MODULATORS

• RECTIFIERS
• POWER CONDITIONING
• LEVEL SHIFTERS

Table 4.1: Some important applications of semiconductor diodes in electronics and optoelec-
tronics.

We now go through these applications briefly to help explain how these properties are har-
nessed. The goal is not to provide full details but to elucidate methodology. The diode has many
uses when employed as a current source. The diode when operated under reverse bias has the
properties of a current source (infinite output resistance or equivalently a constant current with
voltage). Consider figure 4.24. If a current source is available which can be controlled then it can
form the basis of several critical and valuable applications. If large changes in the current source
can be effected by a small change in input voltage, ΔVin) then the resultant change in output
voltage, ΔVout, could be large if the current is delivered to a large load resistance. The resultant
voltage gain , ΔVout/ΔVin, forms the basis of transistor operation and explains why the output
of a transistor is always represented by a current source. If the current source can be controlled
by incident photons, then the resultant current is basis of the operation of a photodetector or a
solar cell. The transistor is described in detail in later chapters and we describe the solar cell and
photodetector below.

4.8.2 The Solar Cell and Photodetector

Consider a reverse biased diode which is subjected to illumination with photons with energy
larger than the bandgap.

Generation Currents: p-n Junctions Illuminated With Light

For a reverse biased junction, equation 4.3.15 can be understood as follows. Any minority
carrier electrons generated within a diffusion length of the depletion edge can diffuse to the edge
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Figure 4.24: Simple circuit diagram (left) and current-voltage (I − V ) plot showing regimes of
operation for a p − n diode under illumination. When operated in quadrant III, the device acts
as a photodetector, whereas in quadrant IV it behaves as a solar cell

of the junction and be swept away. Minority electrons generated well beyond a length Ln will
recombine with holes resulting in the equilibrium concentration, np0. Similarly holes generated
within, Lp, a diffusion length, of the depletion region edge will be swept into the depletion
region.

In the event that there is light shining on the p-n junction, as shown in figure 4.25a, then the
charge profile is perturbed in the following manner. Far in the bulk region, an excess minority
carrier concentration is generated, where Δnp = GLτn and Δpn = GLτp. This is shown in
figure 4.25b. The new equation to be solved for reverse saturation current differs from the one
previously used in that a light generation term is added.

Dp
d2p

dx2
+ Gth − R + GL = 0 (4.8.1)

or

Dp
d2p

dx2
+

pn0 − pn

τp
+ GL = 0 (4.8.2)

with boundary conditions similar to before.

pn(∞) = pn0 + τpGL (4.8.3)

pn(Wn) = 0 (4.8.4)

Solving these equations, we get

pn(x) = (pn0 + τpGL)

[
1 − exp

(
−x − Wn

Lp

)]
(4.8.5)
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Figure 4.25: (a) Schematic diagram of a reverse-biased p-n junction illuminated with light. (b)
Minority carrier profile in the structure. (c) Reverse bias current increases as the light intensity
is increased.
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A similar set of equations for electrons gives us the following expression for np(x) in the neutral
p-region:

np(x) = (np0 + τnGL)

[
1 − exp

(
x + Wp

Ln

)]
(4.8.6)

The slope of the charge profile at the edge of the depletion region is

dpn(Wn)

dx
=

pn0 + τpGL

Lp
(4.8.7)

Therefore

Jp(x = Wn) = eDp

(
pn0 + τpGL

Lp

)
(4.8.8)

Similarly,

Jn(x = Wp) = eDn

(
np0 + τnGL

Ln

)
(4.8.9)

The reverse saturation current JR is then given by

JR = e

[
Dn

np,bulk

Ln
+ Dp

pn,bulk

Lp

]
(4.8.10)

where np,bulk(pn,bulk) is the minority carrier concentration in the bulk in non-equilibrium (steady
state). Here np,bulk = np0 + τnGL. By changing the slope of the minority profile at the edge
of the junction, such as by shining light on the diode, it is possible to control the reverse cur-
rent across the diode. This is shown schematically in figure 4.25c. Controlling and monitoring
the current flowing across a reverse bias diode forms the basis of a large number of devices,
including photodetectors and bipolar transistors. As the incident light intensity is enhanced, or
equivalently the electron-hole pair generation rate is increased, the reverse current increases as
is shown schematically in figure 4.24, where the I − V plane is demarcated into four quadrants.
The photodetector operation is in the third quadrant. Notice here that the current and voltage
have the same sign (negative) and hence the device dissipates power (a positive product of cur-
rent and voltage). However, if a positive voltage is applied to the diode while light is incident on
the junction then the sign of the current is negative and the sign of the voltage across the diode
is positive. This results in a negative product of current and voltage or the diode is a source of
power and not a dissipater of power. This is the regime of operation of the solar cell and is in
the fourth quadrant of the I − V plane. The current characteristic is best analyzed by employing
the rule that the current through the diode is always the sum of forward and reverse currents. In
the absence of any energy source (other than thermal) carriers contributing to both forward and
reverse currents are generated thermally (either by the thermal ionization of dopants, or band-
to-band generation). At zero bias these currents balance each other. In a solar cell under optical
excitation the forward current is unchanged and continues to be provided by the thermal injection
of carriers across the junction (as has been described before) whereas the reverse current changes
dramatically and is carried dominantly by photo-generated carriers. This is the reason why the
net current is not zero at zero applied bias in an illuminated solar cell. This current is called
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Figure 4.26: Equivalent circuit of a solar cell

the short circuit current, Isc. The forward voltage increases the forward thermionic/diffusion
currents exponentially as given by the diode law whereas the reverse current remains a constant
with the net current being given by

J · A = I = If − Ir = Is

[
exp

(
eV

kBT

)
− 1

]
− Isc (4.8.11)
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In a solar cell configuration the forward bias is not explicitly applied across the cell. It is
generated by the flow of the current across the load (which may be the resistance of a light bulb
for instance). This is shown schematically in figure 4.26 along with the equivalent circuit of the
solar cell. The total cell current goes to zero at a voltage, Voc, termed the open circuit voltage,
when the forward diode current is equal and opposite to the generated current. From equation
4.8.11

Voc =
kBT

e
ln

(
Isc

Is
+ 1

)
To obtain the maximum power from a cell it is desirable to have the largest product of voltage
and current possible in the fourth quadrant of the I−V plane. The maximum power point is that
bias at which the maximum power is available from the cell, or, is the bias at which the largest
rectangle can be accommodated within the I-V curve. The power at any bias point is given by
the IV product

P = I · V = (Isc − ID) · V =

[
Isc − Is exp

(
eV

kBT

)]
· V

and the maximum power point is obtained by maximizing the product. This is left as an exercise.
The maximum power is also alternately represented by

P = VocIsc · F

where F is the defined as the Fill Factor of the cell. Hence to get the maximum power from a cell
it is desirable to obtain the largest Voc and Isc possible which is best achieved by using a tandem
cell which comprise of a series connection of cells with different bandgaps that maximize solar
absorption (while maintaining a large open circuit voltage) coupled with concentrator lenses that
maximize input photon intensity.

4.8.3 The uses of diode non-linearity (Mixers, Multipliers, Power Detec-
tors)

A mixer is a frequency translation device that translates an input signal band of frequencies to
a different band of output frequencies. There are two main uses of the mixer: down conversion
and up conversion. Down conversion, used in receivers, takes a higher input RF frequency and
shifts it down to a lower frequency where the channel selection can be performed and interfering
signals can be filtered out. Up conversion takes a lower frequency band limited signal and shifts
it to a higher frequency. This is typically the transmitter application.

A mixer does not really “mix” or sum signals; it multiplies them. For example, the analog
multiplier performs the frequency translation function:

A = A sin ω1t B = B sin ω2t

(A sin ω1t)(B sin ω2t) = (AB/2) [cos(ω1 − ω2)t − cos(ω1 + ω2)t] (4.8.12)

Note that both sum and difference frequencies are obtained by the multiplication of the two
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Figure 4.27: Mixer symbol. A represents the signal input; B the reference input.

input sinusoidal signals as shown in equation 4.8.12. One of these is the input signal (A) whose
amplitude and phase generally vary with time. The other input (B) is a reference signal, locally
generated, called the local oscillator, normally with fixed amplitude and phase. With the ideal
analog multiplication process shown in figure 4.27, no harmonics or spurious signals are pro-
duced. Also, there is no feed through of A or B to the output. But, in reality, mixers always
produce many spurious outputs that consist of harmonics of A and B and additional mixing
products mω1 ± nω2, where m and n are integers. A “good” mixer is designed such that it
suppresses these spurious outputs and provides a highly linear amplitude and phase relationship
between signal input (A) and the output.

The forward I-V characteristic of the diode can be represented by a series expansion. For
example, in the case of a simple exponential diode characteristic, equation 4.8.13 can represent
the current voltage characteristic. Coefficients ai will vary with DC bias, series resistance, and
the shape of the I − V characteristic.

ID = IS

[
exp

(
eVD

kBT )

)
− 1

]
 IS

[
a1VD +

1

2
a2V

2
D +

1

6
a3V

3
D + . . .

]
(4.8.13)

VRF + VLO − VD − IS

(
a1VD +

1

2
a2V

2
o

)
(RS + RL) = 0

Vo(t) = IS(a1VD +
1

2
a2V

2
D)RL

a2V
2
D sin2 ωt = a2V

2
D [1 − cos 2ωt] (4.8.14)

Now, suppose that two inputs are summed as shown in figure 4.27 and the diode current produces
an output Vo(t) across resistor RL. One input VRF is the signal; the other VLO is the reference
local oscillator. The diode voltage, VD, can be found using the series approximation equation
4.8.13, and the output voltage, Vo(t), is calculated from the diode current ID. If only first and
second order terms are used, a quadratic equation is easily solved.

While only the outputs shown in equation 4.8.12 are desired, the mixer output will also contain
a DC term, RF and LO feed through, and terms at all harmonics of the RF and LO frequencies.
Only the second-order product term produces the desired outputs. It can be seen in equation
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4.8.14 that the second-order nonlinearity also produces a second harmonic and a DC term. The
second harmonic generation is the property used in frequency multipliers. Also, the DC term
amplitude is proportional to the square of the input voltage, hence input power. This is the
principle of operation of diode power detectors.

4.8.4 Power Devices

A DC-to-DC converter is a module that accepts a DC input voltage and produces a DC output
voltage typically at a different voltage level or of different polarity. These modules have become
ubiquitous in modern electronic systems. For example, laptops use them to convert the mains
power supply voltage to the battery voltage (18 V), which in turn is converted to the supply
voltage for the computing electronics (1.5-3.5 V) and the voltage for the display (voltage variable
depending on type of display). All are different! In addition, DC-to-DC converters are used to
provide bus isolation, power bus regulation, etc. There are several topologies to achieve the
desired conversion and we will briefly discuss a Buck or Step- Down Converter to appreciate the
functional requirements of the transistor switch and diode that this employed. As in most power
conversion circuits it is imperative to not have current flow with a large voltage across dissipative
elements such as transistor switches. This will cause power dissipation and excessive heating in
the circuit. To reduce the voltage across a switch while it is conducting, an inductor is typically
employed in circuits. Furthermore a capacitor is used at the output to stabilize the output voltage
through the switching cycle. In the Buck/Step-Down circuit (figure 4.28), an input transistor is
turned on causing the input voltage Vin (which has to be stepped-down) to appear at one end of
the inductor while the other remains at the output. This voltage will cause the inductor current to
rise, storing energy as magnetic flux. During this process the diode is reverse biased and turned
off and the current flows through the transistor and the inductor to the output capacitor and load.
When the transistor is turned off, the current through the inductor will continue flowing but now
be forced through the diode causing the diode to turn on. This process is called free-wheeling.
The voltages Vx and Vo will follow standard L and C charging/discharging relationships as
shown in figure 4.28.

Figure 4.28 shows schematically the change in the current and voltage across the inductor over
a switching cycle of the transistor. From the relation

Vx − Vo = L
di

dt
(4.8.15)

the change of current satisfies

if − ii =

∫
ON

(Vx − Vo) dt +

∫
OFF

(Vx − Vo) dt (4.8.16)

where ii and if are the currents through the inductor at the beginning and the end of a cycle.
For steady state operation it is required that the current at the start and end of a period T be the
same. To get a ’simple relation’ between voltages we assume ’no voltage drop across transistor
or diode’ while ON and a perfect switch change. Thus during the ON time Vx = Vin and in the
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Figure 4.28: (a)Buck converter schematic (b) Voltage and current changes

OFF time Vx = 0. Thus in steady state

if − ii = 0 =

∫ tON

0

(Vin − Vo) dt +

∫ tON+tOFF

tON

(−Vo) dt (4.8.17)

which gives
(Vin − Vo) tON − VotOFF = 0 (4.8.18)

or
Vo

Vin
=

tON

T
(4.8.19)

Using D as the “duty cycle” gives

D =
tON

T
(4.8.20)

the voltage relationship becomes Vo = DVin. Since the circuit is ’lossless’ and the input
and output powers must match on the average VoIo = VinIin . This requires the diode to
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have no voltage drop in the forward direction and no leakage current in the reverse direction.
In the presence of a reverse leakage current Irev , additional loss of IrevVin occurs in the free-
wheeling diode when the transistor is ON; and if the forward diode drop is non- negligible,
IoVdiode will be lost in the diode when the transistor is OFF. Both these losses are important
since in the first case Vin is large and in the second Io is large. It is imperative that in these
applications the device behave as a nearly- perfect diode with Vdiode and Irev both being as
small as possible. Furthermore, the diode should switch off faster than the transistor, to reduce
transient dissipation in it. Schottky diodes which are unipolar and have short switching times are
emerging as preferred diodes in free-wheeling applications.

One of the most important applications is in the area of optoelectronic devices. Essentially
all the semiconductor devices catering to optoelectronics use the diode concept. These include
detectors, avalanche photodetectors, optical modulators, as well as light-emitting diodes and
semiconductor lasers. In this section we discuss the operation of the light emitting diode

4.9 Light emitting diode (LED)

The simplicity of the light-emitting diode (LED) makes it a very attractive device for display
and communication applications. The basic LED is a p-n junction that is forward biased to
inject electrons and holes into the p- and n-sides respectively. The injected minority charge
recombines with the majority charge in the depletion region or the neutral region. In direct
band semiconductors, this recombination leads to light emission since radiative recombination
dominates in high-quality materials. In indirect gap materials, the light emission efficiency is
quite poor and most of the recombination paths are nonradiative, which generates heat rather
than light. In the following section we will examine the important issues that govern the LED
operation.

We will briefly outline some of the important considerations in choosing a semiconductor for
LEDs or laser diodes.

4.9.1 Emission Energy

The light emitted from the device is very close to the semiconductor bandgap, since the in-
jected electrons and holes are described by quasi-Fermi distribution functions. The desire for a
particular emission energy may arise from a number of motivations. In figure 4.29 we show the
response of the human eye to radiation of different wavelengths. Also shown are the bandgaps
of some semiconductors. If a color display is to be produced that is to be seen by people, one has
to choose an appropriate semiconductor. Very often one has to choose an alloy, since there is a
greater flexibility in the bandgap range available. In figure 4.30 we show the loss characteristics
of an optical fiber. As can be seen, the loss is least at 1.55 μm and 1.3 μm. If optical communi-
cation sources are desired, one must choose materials that can emit at these wavelengths. This
is especially true if the communication is long haul, i.e., over hundreds or even thousands of
kilometers. InP-based materials are used for these applications. Materials like GaAs that emit at
0.8 μm can still be used for local area networks (LANs), which involve communicating within
a building or local areas. The area of displays and lighting is filled dominantly by GaN-based
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Figure 4.29: The bandgap and cutoff wavelengths for several semiconductors. The semiconduc-
tor bandgaps range from 0 (for Hg0.84Cd0.15Te) to well above 3 eV, providing versatile detection
systems.

materials using InGaN as the emission region for blue and green and GaAs-based AlGaInP for
the red region.

Substrate Availability:

Almost all optoelectronic light sources depend upon epitaxial crystal growth techniques where
a thin active layer (a few microns) is grown on a substrate (which is ∼ 200 μm). The availabil-
ity of a high-quality substrate is extremely important in epitaxial technology. If a substrate that
lattice-matches to the active device layer is not available, the device layer may have dislocations
and other defects in it. These can seriously hurt device performance. One of the most important
opto-electronic materials for LEDs that has emerged lately is GaN. In spite of the lack of a native
substrate, GaN-based LEDs grown on either sapphire or SiC have become multi-billion dollar
industry. The reason is that the InGaN quantum well which is used as the emission region has
fluctuations which cause local energy minima for electron and holes. Thus radiative recombi-
nation is encouraged within this region and diffusion to and non-radiative recombination at a
dislocation minimized. This is shown schematically in figure 4.31. Furthermore, the dislocation
propagation and generation of dislocation sin GaN is very high because of the high bond energies
in the material. This eliminates one of the failure mechanisms in conventional LEDs and lasers,
that of generation and propagation of dislocations caused by absorption of emitted the photon
energy. The important substrates that are available for conventional light-emitting technology
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Figure 4.30: Optical attenuation vs. wavelength for an optical fiber. Primary loss mechanisms
are identified as absorption and scattering.

(which do not benefit from the above mentioned advantages of GaN and InGaN) are GaAs and
InP. A few semiconductors and their alloys can match these substrates. The lattice constant of an
alloy is the weighted mean of the lattice constants of the individual components, i.e., the lattice
constant of the alloy AxB1−x is

aall = xaA + (1 − x)aB (4.9.1)

where aA and aB are the lattice constants of A and B. Semiconductors that cannot lattice-match
with GaAs or InP have an uphill battle for technological success. The crystal grower must learn
the difficult task of growing the semiconductor on a mismatched substrate without allowing
dislocations to propagate into the active region.

Important semiconductor materials exploited in optoelectronics are the alloy GaxAl1−xAs,
and AlGaInP which is a quaternary material which is lattice-matched very well to GaAs sub-
strates; In0.53Ga0.47As and In0.52Al0.48As, which are lattice-matched to InP; InGaAsP, whose
composition can be tailored to match with InP and can emit at 1.55 μm; and GaAsP, which has
a wide range of bandgaps available.
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Figure 4.31: (a) e-h diffuse to dislocations and recombine. (b) In the presence of energy fluctu-
ations such as in the InGaN the electrons recombine efficiently.

In general, the electron-hole recombination process can occur by radiative and nonradiative
channels. Under the condition of minority carrier recombination or high injection recombination,
as shown in section 3.8.1and section 3.8.2, one can define a lifetime for carrier recombination. If
τr and τnr are the radiative and nonradiative lifetimes, the total recombination time is (for, say,
an electron)

1

τn
=

1

τr
+

1

τnr
(4.9.2)

The internal quantum efficiency for the radiative processes is then defined as

ηQr =
1
τr

1
τr

+ 1
τnr

=
1

1 + τr

τnr

(4.9.3)

In high-quality direct gap semiconductors, the internal efficiency is usually close to unity. In
indirect materials the efficiency is of the order of 10−2 to 10−3.

Before starting the discussion of light emission, let us remind ourselves of some important
definitions and symbols used in this chapter:

Iph : photon current = number of photons passing a cross-section/second.

Jph : photon current density = number of photons passing a unit area/second.

Pop : optical power intensity = energy carried by photons per second per area.
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Figure 4.32: Band diagram of a single quantum-well LED with the advantages of increased car-
rier density, enhanced confinement and reduced probability of re-absorption of emitted photons
in bulk layers.

4.9.2 Carrier Injection and Spontaneous Emission

The LED is essentially a forward-biased p-n diode, with a quantum well emission region as
shown in figure 4.32. The reason for using a quantum well is to (i) increase the electrons and
hole density in the recombination region increasing the direct recombination rate and leading
to higher light output, (ii) having an emission region that is lower in energy that the injection
(cladding) regions which allows the generated photons to escape without being re-absorbed in the
injection regions, (iii) minimizing the overflow of electrons into the cladding regions where the
injected carriers either recombine non-radiatively or generate light of an undesired wavelength.
The current flow in a p-n junction was discussed in detail earlier in this chapter.The basis of
that derivation was that electrons and holes are injected across the junction and recombine either
in the bulk(long base case) or at contacts (short base case). Neither of those conditions apply
to an LED. Here the current flow occurs via recombination in the quantum well. The turn-on
voltage of the LED is therefore given by the bandgap of the emission region and is not explicitly
related to the built-in voltage of the p-n junction. An example of this is an InGaN LED grown
within GaN p-and n regions. The built-in voltage of this device is close to the bandgap of GaN
(3.4V) though the turn-on voltage is 2.8V close to the emission energy of the photons. The
current flow mechanism is shown in figure 4.33. The current is given by J = e · Rspon where
Rspon is the spontaneous recombination rate in the well. The efficiency of the process is the
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Figure 4.33: Current flow mechanisms in a LED.

ratio of the current generating photons of the desired wavelength to the total current. The current
calculated for the p-n junction in the earlier sections are the wasted currents in the LED as they
calculate currents in the bulk and due to non-radiative centers. What remains to be calculated is
the spontaneous recombination rate Rspon.a

As discussed in section 3.8.1, the radiative process is “vertical,” i.e., the k-value of the elec-
tron and that of the hole are the same in the conduction and valence bands, respectively. From
figure 4.34 we see that the photon energy and the electron and hole energies are related by

�ω − Eg =
�

2k2

2

[
1

m∗
e

+
1

m∗
h

]
=

�
2k2

2m∗
r

(4.9.4)

where m∗
r is the reduced mass for the e-h system.

If an electron is available in a state k and a hole is also available in the state k (i.e., if the Fermi
functions for the electrons and holes satisfy fe(k) = fh(k) = 1), the radiative recombination rate
is found to be

Wem ∼ 1.5 × 109
�ω [eV s−1] (4.9.5)
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Figure 4.34: A schematic of the E-k diagram for the conduction and valence bands. Optical
transitions are vertical; i.e., the k-vector of the electron in the valence band and in the conduction
band is the same.

and the recombination time becomes (�ω is expressed in electron volts)

τo =
0.67

�ω[eV]
ns (4.9.6)

The recombination time discussed above is the shortest possible spontaneous emission time
since we have assumed that the electron has a unit probability of finding a hole with the same
k-value.

When carriers are injected into the semiconductors, the occupation probabilities for the elec-
tron and hole states are given by the appropriate quasi-Fermi levels. The emitted photons leave
the device volume so that the photon density never becomes high in the e-h recombination re-
gion. In a laser diode the situation is different, as we shall see later. The photon emission rate is
given by integrating the emission rate Wem over all the electron-hole pairs after introducing the
appropriate Fermi functions.



200 CHAPTER 4. JUNCTIONS IN SEMICONDUCTORS: P-N DIODES

There are several important limits of the spontaneous rate:

i. In the case where the electron and hole densities n and p are small (non degenerate case),
the Fermi functions have a Boltzmann form (exp(−E/kBT )). The recombination rate is
found to be

Rspon =
1

2τo

(
2π�

2m∗
r

kBTm∗
em

∗
h

)3/2

np (4.9.7)

The rate of photon emission depends upon the product of the electron and hole densities.
If we define the lifetime of a single electron injected into a lightly doped (p = Na ≤
1017cm−3) p-type region with hole density p, it would be given from equation 4.9.7 by

Rspon

n
=

1

τr
=

1

2τo

(
2π�

2m∗
r

kBTm∗
em

∗
h

)3/2

p (4.9.8)

The time τr in this regime is very long (hundreds of nanoseconds), as shown in figure 4.35,
and becomes smaller as p increases.

ii. In the case where electrons are injected into a heavily doped p-region (or holes are injected
into a heavily doped n-region), the function fh(fe) can be assumed to be unity. The
spontaneous emission rate is

Rspon ∼ 1

τo

(
m∗

r

m∗
h

)3/2

n (4.9.9)

for electron concentration n injected into a heavily doped p-type region and

Rspon ∼ 1

τo

(
m∗

r

m∗
e

)3/2

p (4.9.10)

for hole injection into a heavily doped n-type region.

The minority carrier lifetimes (i.e., n/Rspon) play a very important role not only in LEDs
but also in diodes and bipolar devices. In this regime the lifetime of a single electron (hole)
is independent of the holes (electrons) present since there is always a unity probability that
the electron (hole) will find a hole (electron). The lifetime is now essentially τo, as shown
in figure 4.35.

iii. Another important regime is that of high injection, where n = p is so high that one can
assume fe = fh = 1 in the integral for the spontaneous emission rate. The spontaneous
emission rate is

Rspon ∼ n

τo
∼ p

τo
(4.9.11)

and the radiative lifetime (n/Rspon = p/Rspon) is τo.
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Figure 4.35: Radiative lifetimes of electrons or holes in a direct gap semiconductor as a function
of doping or excess charge. The figure gives the lifetimes of a minority charge (a hole) injected
into an n-type material. The figure also gives the lifetime behavior of electron-hole recombina-
tion when excess electrons and holes are injected into a material as a function of excess carrier
concentration.

iv. A regime that is quite important for laser operation is one where sufficient electrons and
holes are injected into the semiconductor to cause “inversion.” As will be discussed later,
this occurs if fe + fh ≥ 1. If we make the approximation fe ∼ fh = 1/2 for all the
electrons and holes at inversion, we get the relation

Rspon ∼ n

4τo
(4.9.12)

or the radiative lifetime at inversion is

τ ∼ τo

4
(4.9.13)

This value is a reasonable estimate for the spontaneous emission rate in lasers near thresh-
old.
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The radiative recombination depends upon the radiative lifetime τr and the non-radiative lifetime
τnr. To improve the efficiency of photon emission one needs a value of τr as small as possible
and τnr as large as possible. To increase τnr one must reduce the material defect density. This
includes improving surface and interface qualities.

The LED current is then given by

J = eRspontQW + J0 exp

[
e
(
Vbi − Vturnon)

)
kBT

]
+ JSNS

The parasitic currents are the second and third terms in the expression. The second term repre-
sents current injected over the barrier and the third term the current recombining at the maximum
recombination plane.

Example 4.5 Calculate the e-h recombination time when an excess electron and hole
density of 1015cm−3 is injected into a GaAs sample at room temperature.

Since 1015 cm−3 or 1021 m−3 is a very low level of injection, the recombination time is
given by equation 4.9.8 as

1

τr
=

1

2τo

(
2π�

2m∗
r

kBTm∗
em

∗
h

)3/2

p

=
1

2τo

(
2π�

2

kBTm∗
e + m∗

h

)3/2

p

Using τo = 0.6 ns and kBT = 0.026 eV, we get for m∗
e = 0.067 mo,m

∗
h = 0.45 mo,

1

τr
=

1021 m−3

2 × (0.6 × 10−9 s)

[
2 × 3.1416 × (1.05 × 10−34 Js)2

(0.026 × 1.6 × 10−19 J) × (0.517 × 9.1 × 10−31 kg)

]3/2

τr = 5.7 × 10−6s ∼= 9.5 × 103τo

We see from this example that at low injection levels, the carrier lifetime can be very long.
Physically, this occurs because at such a low injection level, the electron has a very small
probability of finding a hole to recombine with.

Example 4.6 In two n+p GaAs LEDs, n+ � p so that the electron injection efficiency is
100% for both diodes. If the nonradiative recombination time is 10−7s, calculate the
300 K internal radiative efficiency for the diodes when the doping in the p-region for the
two diodes is 1016 cm−3 and 5 × 1017 cm−3.

When the p-type doping is 1016 cm−3, the hole density is low and the e-h recombination
time for the injected electrons is given by equation 4.9.8 as

1

τr
=

1

2τo

(
2π�

2m∗
r

kBTm∗
em

∗
h

)3/2

p
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From the previous example, we can see that for p equal to 1016 cm−3, we have (in the
previous example the value of p was ten times smaller)

τr = 5.7 × 10−7 s

In the case where the p-doping is high, the recombination time is given by the high-density
limit (see equation 4.9.10) as

1

τr
=

Rspon

n
=

1

τo

(
m∗

r

m∗
h

)3/2

τr =
τo

0.05
∼ 20τo ∼ 12 ns

For the low-doping case, the internal quantum efficiency for the diode is

ηQr =
1

1 + τr

tnr

=
1

1 + (5.7)
= 0.15

For the more heavily doped p-region diode, we have

ηQr =
1

1 + 10−7

20×10−9

= 0.83

Thus there is an increase in the internal efficiency as the p doping is increased.

Example 4.7 Consider a GaAs p-n diode with the following parameters at 300 K:

Electron diffusion coefficient, Dn = 30 cm2/V · s
Hole diffusion coefficient, Dp = 15 cm2/V · s
p-side doping, Na = 5 × 1016 cm−3

n-side doping, Nd = 5 × 1017 cm−3

Electron minority carrier lifetime, τn = 10−8 s
Hole minority carrier lifetime, τp = 10−7 s

Calculate the injection efficiency of the LED assuming no recombination due to traps.

The intrinsic carrier concentration in GaAs at 300 K is 1.84 × 106 cm−3. This gives

np =
n2

i

Na
=

(1.84 × 106)2

5 × 1016
= 6.8 × 10−5 cm−3

pn =
n2

i

Nd
=

(1.84 × 106)2

5 × 1017
= 6.8 × 10−6 cm−3

The diffusion lengths are

Ln =
√

Dnτn =
[
(30)(10−8)

]1/2
= 5.47 μm

Lp =
√

Dpτp =
[
(15)(10−7)

]1/2
= 12.25 μm
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The injection efficiency is now (assuming no recombination via traps)

γinj =

eDnnpo

Ln

eDnnpo

Ln
+

eDppno

Lp

= 0.98

Example 4.8 Consider the p-n+ diode of the previous example. The diode is forward
biased with a forward-bias potential of 1 V. If the radiative recombination efficiency ηQr =
0.5, calculate the photon flux and optical power generated by the LED. The diode area is
1 mm2.

The electron current injected into the p-region will be responsible for the photon
generation. This current is

In =
AeDnnpo

Ln

[
exp

(
eV

kBT

)
− 1

]
=

(10−2 cm2)(1.6 × 10−19 C)(30 cm2/s)(6.8 × 10−5 cm−3)

5.47 × 10−4 cm

[
exp

(
1

0.026

)
− 1

]
= 0.30 mA

The photons generated per second are

Iph =
In

e
· ηQr =

(0.30 × 10−3 A)(0.5)

1.6 × 10−19 C

= 9.38 × 1014 s−1

Each photon has an energy of 1.41 eV (= bandgap of GaAs). The optical power is thus

Power = (9.38 × 1014 s−1)(1.41)(1.6 × 10−19 J)

= 0.21 mW

4.10 PROBLEMS

• Section 4.2

Problem 4.1 Why does the potential in a p-n diode fall mainly across the depletion region
and not across the neutral region?

Problem 4.2 An abrupt GaAs p-n diode has Na = 1017 cm−3 and Nd = 1015 cm−3.
(a) Calculate the Fermi level positions at 300 K in the p and n regions.
(b) Draw the equilibrium band diagram and determine the contact potential Vbi.

Problem 4.3 Consider an Si p-n diode doped at Na = 1017 cm−3;Nd = 5 × 1017 cm−3

at 300 K. Plot the band profile in the neutral and depletion region. Also, plot the electron
and hole concentration from the p- to the n-sides of equilibrium. How good is the
depletion approximation?
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Problem 4.4 Consider the sample discussed in problem 4.2. The diode has a diameter of
50 μm. Also calculate the charge in the depletion regions and plot the electric field profile
in the diode.

Problem 4.5 An abrupt silicon p-n diode at 300 K has a doping of
Na = 1018 cm−3, Nd = 1015 cm−3. Calculate the built-in potential and the depletion
widths in the n and p regions.

Problem 4.6 A Ge p-n diode has Na = 5 × 1017 cm−3 and Nd = 1017 cm−3. Calculate
the built-in voltage at 300 K. At what temperature does the built-in voltage decrease by
1%?

Problem 4.7 Consider a p-n junction with NA = ND = 1017cm−3. When the
capacitance is measured to be twice the value expected.
The reason is an unintentional interfacial dipole between the p and n layers.

1. What is the magnitude of the dipole moment?

2. Draw the band diagrams of the ideal p-n junction and the non-ideal one. Include the
electric field profiles and depletion region widths.

Assume that the dipole is supported by negative and positive charges separated by a very
small distance, δ.

• Section 4.3

Problem 4.8 Explain, using physical arguments, why the reverse current in a p-n diode
does not change with bias (before breakdown). Would this be the case if the electrons and
holes had a constant mobility independent of the electric field?

Problem 4.9 The diode of problem 4.3 is subjected to bias values of: (a) Vf = 0.1 V; (b)
Vf = 0.5 V; (c) Vr = 1.0V; (d) Vr = 5.0 V. Calculate the depletion widths and the maximum
field Fm under these biases.

Problem 4.10 Consider a p+n Si diode with Na = 1018 cm−3 and Nd = 1016 cm−3. The
hole diffusion coefficient in the n-side is 10 cm2/s and τp = 10−7 s. The device area is
10−4 cm2. Calculate the reverse saturation current and the forward current at a forward
bias of 0.8 V at 300 K.

Problem 4.11 Consider a p+n silicon diode with area 10−4 cm2. The doping is given by
Na = 1018 cm−3 and Nd = 1017 cm−3. Plot the 300 K values of the electron and hole
currents In and Ip at a forward bias of 0.8 V. Assume τn = τp = 1 μs and neglect
recombination effects. Dn = 20 cm2/s and Dp = 10 cm2/s.

Problem 4.12 A GaAs LED has a doping profile of Na = 1017 cm−3, Nd = 1018 cm−3 at
300 K. The minority carrier time is τn = 10−8 s; τp = 5 × 10−9 s. The electron diffusion
coefficient is 100 cm2 s−1 while that of the holes is 20 cm2 s−1. Calculate the ratio of the
electron-injected current (across the junction) to the total current.
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Problem 4.13 The diode of problem 4.12 has an area of 1 mm2 and is operated at a
forward bias of 1.2 V. Assume that 50% of the minority carriers injected recombine with
the majority charge to produce photons. Calculate the rate of the photon generation in the
n- and p-side of the diode.

Problem 4.14 Consider a GaAs p-n diode with a doping profile of Na = 1016 cm−3,
Nd = 1017 cm−3 at 300 K. The minority carrier lifetimes are τn = 10−7 s; τp = 10−8 s.
The electron and hole diffusion coefficients are 150 cm2/s and 24 cm2/s, respectively.
Calculate and plot the minority carrier density in the quasi-neutral n and p regions at a
forward bias of 1.0 V.

Problem 4.15 Consider a p-n diode made from InAs at 300 K. The doping is
Na = 1016 cm−3 = Nd. Calculate the saturation current density if the electron and hole
density of states masses are 0.02mo and 0.4mo, respectively. Compare this value with that
of a silicon p-n diode doped at the same levels. The diffusion coefficients are
Dn = 800 cm2/s; Dp = 30 cm2/s. The carrier lifetimes are τn = τp = 10−8s for InAs.
For the silicon diode use the values Dn = 30 cm2/s; Dp = 10 cm2/s; τn = τp = 10−7s.

Problem 4.16 Consider a p-n diode in which the doping is linearly graded. The doping is
given by

Nd − Na = Gx

so that the doping is p-type at x < 0 and n-type at x > 0. Show that the electric field
profile is given by

E(x) =
e

2ε
G

[
x2 −

(
W

2

)2
]

where W is the depletion width, given by

W =

[
12ε (Vbi − V )

eG

]1/3

Problem 4.17 A silicon diode is being used as a thermometer by operating it at a fixed
forward-bias current. The voltage is then a measure of the temperature. At 300 K, the
diode voltage is found to be 0.6 V. How much will the voltage change if the temperature
changes by 1 K?

Problem 4.18 Compare the dark currents (i.e., reverse saturation current) in p-n diodes
fabricated from GaAs, Si, Ge, and In0.53Ga0.47As. Assume that all the diodes are doped at
Nd = Na = 1018 cm−3. The material parameters are (300 K):

GaAs : τn = τp = 10−8 s; Dn = 100 cm2/s; Dp = 20 cm2/s

Si : τn = τp = 10−7 s; Dn = 30 cm2/s; Dp = 15 cm2/s

Ge : τn = τp = 10−7 s; Dn = 50 cm2/s; Dp = 30 cm2/s

When p-n diodes are used as light detectors, the dark current is a noise source.



4.10. PROBLEMS 207

Problem 4.19 When we derived the law of the junction, we assumed that the electron and
hole quasi-fermi levels were constant across the depletion region. Inherent in this
assumption is another assumption, that the electron and hole mobilities are high enough
that most reasonable current densities can be provided by a minimum change in the
quasi-fermi level across the depletion edge, or ΔEFn is small. Jn = qμnnΔEF n

Δx What if
this were not true and I had a p-n junction made of a semiconductor where the hole
mobility was very low? Assuming no recombination in the junction calculate and plot the
hole concentration at the edge of the depletion region as a fuction of bias for μp = 10 cm2

V s
and compare to the the value obtained from the law of the junction. State your
assumptions.

Problem 4.20 Consider the GaAs diode shown in figure 4.36, where the n-type region has
a small width WN << LP while the p-region is thick.

1. Plot the minority and majority carrier and currents distributions in the n and p regions
of this diode.

2. Now the diode is illuminated leading to an optical generation of 1020cm−3s−1. Plot
the carrier distributions and currents in the n and p regions. Calculate the current in
the diode under forward bias and reverse bias voltages of 0.5 V and −1 V
respectively. Both sides are doped at 1017cm−3. Assume that there are ohmic
contacts on both sides, and that they have infinite recombination velocities.

WN

n p

WP

Figure 4.36: Figure for problem 4.20.

• Section 4.4

Problem 4.21 Consider a Si p-n diode at 300 K. Plot the I-V characteristics of the diode
between a forward bias of 1.0 V and a reverse bias of 5.0 V. Consider the following cases
for the impurity-assisted electron-hole recombination time in the depletion region: (a)
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1.0 μs; (b) 10.0 ns; and (c) 1.0 ns. Use the following parameters:

A = 10−3 cm2

Na = Nd = 1018 cm−3

τn = τp = 10−7 s

Dn = 25 cm2/s

Dp = 6 cm2/s

Problem 4.22 Consider a GaAs p-n diode with Na = 1017 cm−3, Nd = 1017 cm−3. The
diode area is 10−3 cm2 and the minority carrier mobilities are (at 300 K)
μn = 3000 cm2/V·s; μp = 200 cm2/V·s. The electron-hole recombination times are
10−8s (τp = τn = τ). Calculate the diode current at a reverse bias of 5 V. Plot the diode
forward-bias current including generation-recombination current between 0.1 V and 1.0 V.

Problem 4.23 A long base GaAs abrupt p-n junction diode has an area of 10−3 cm2,
Na = 1018 cm−3, Nd = 1017 cm−3, τp = τn = 10−8 s, Dp = 6 cm2 s−1 and
Dn = 100 cm2 s−1. Calculate the 300 K diode current at a forward bias of 0.3 V and a
reverse bias of 5 V. The electron-hole recombination time in the depletion regions is 10−7s.

Problem 4.24 Two different processes are used to fabricate a Si p-n diode. The first
process results in a electron-hole recombination time via impurities in the depletion region
of 10−7 s while the second one gives a time of 10−9 s. Calculate the diode ideality factors
for the two cases near a forward bias of 0.9 V. Use the following parameters:

Na = Nd = 1018 cm−3

τn = τp = 10−7 s

Dn = 25 cm2/s

Dp = 8 cm2/s

Problem 4.25 Consider a Si diode with the following parameters:

A = 10−3 cm2

Na = Nd = 1018 cm−3

τn = τp = 10−7 s

Dn = 25 cm2/s

Dp = 8 cm2/s

The length of the n- and p-sides are 1.0 μm each and the electron-hole impurity-assisted
recombination time in the depletion region is 10−8 s. Plot the I-V relation of the diode
from −5.0 V to 1.0 V. Compare the results for the case where a long diode is made from
the same material technology.
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Figure 4.37: Diode for problem 4.28.

Problem 4.26 Consider a GaAS p-n junction with NA = ND = 1017cm−3. Assume a
mid-gap trap in the material that causes the minority carrier lifetime to be 0.1ns. Calculate
and plot the electron and hole currents (including the recombination current) in the
depletion region. Explain the features on the graph.

Problem 4.27 Consider a Si p-n junction biased as a solar cell. Light falls on this solar
cell leading to optical generation GOP = 1020/s. What is the optically generated
current(IOP ) for the diode? What is the open-circuit voltage(VOC )? Plot the minority
carrier profiles when the voltage across the junction is VOC , VOC/2 and 0. Consider
generation in the depletion region. Use τp = τn = 10−6s, μn = μp = 1000cm2/V.s and
ND = NA = 1017.

Problem 4.28 Consider the diode in figure 4.37. A sheet of acceptors of areal density QA

is placed in an intrinsic region of GaAs such that it is at a distance L1 from one n+ region
and L2 from another.
(a) Calculate an expression for the potential across the structure in terms of QA, L1, L2,
ND and other material parameters of GaAs.
(b) Sketch the band diagram for the case where L1 = 0.1 μm, L2 = 0.2 μm, QA =
5 × 1011cm−2 and ND = NC . What will the turn-on voltage of the diode be in each
direction?
(c) Calculate the maximum value of QA, QA,MAX that gives the highest turn-on voltage in
each direction/polarity.
(d) If I now set QA=2QA,MAX , what will the turn-on voltage of the diode be? Explain
what happens.

Problem 4.29 Consider a p-i-n junction in AlInAs (Eg = 1.4 eV, ni = 107 cm−2) that is
grown by MOCVD. To prevent the acceptor atoms from diffusing, the temperature of
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Figure 4.38: Diode for problem 4.29.

growth is dropped after growth of the p-layer is completed. The growth is then completed
with an i-layer of thickness Wi and the subsequent n-layer, as shown in figure 4.19. When
the capacitance of the diode is measured, it is determined that the diode is actually a p-n
junction and not the p-i-n that was designed. The reason is that while waiting for the
temperature to drop after growth of the p-layer, oxygen (a donor) incorporated with
density qσ cm −2 at the p-i interface, (see figure 4.19).
(a) Derive the relation between the doping densities, Wi, and qσ so that the measurement
is explained. Assume NA = ND for simplicity.
(b) Next, calculate a numerical value for Wi. Assume NA = ND = 1017 cm−3 and
qσ = 5 × 1011 cm−2.

• Section 4.5

Problem 4.30 The critical field for breakdown of silicon is 4 ×105 V/cm. Calculate the
n-side doping of an abrupt p+n diode that allows one to have a breakdown voltage of 30 V.

Problem 4.31 Consider an abrupt p+n GaAs diode at 300 K with a doping of
Nd = 1016 cm−3. Calculate the breakdown voltage. Repeat the calculation for a similarly
doped p+n diode made from diamond. Use Appendix B for the data you may need.

Problem 4.32 What is the width of the potential barrier seen by electrons during
band-to-band tunneling in an applied field of 5 × 105 V/cm in GaAs, Si and
In0.53Ga0.47As (Eg = 0.8 V)?

Problem 4.33 Consider an Si p-n diode with Na = 1018 cm−3;Nd = 1018 cm−3.
Assume that the diode will break down by Zener tunneling if the peak field reaches
106 V/cm. Calculate the reverse bias at which the diode will break down.

Problem 4.34 Punch through diode: For junction diodes that have to operate at high
reverse biases, one needs a very thick depletion region. However, in forward-bias
conditions this region is undepleted and leads to a series resistance. One uses a p+-n-n+
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structure in such cases. The width of the n-region is smaller than the depletion region
width at breakdown.

Consider two Si p+-n-n+ diodes with the n region having a doping of 1014 cm−3. In one
case the n-region is 150 μm long while in the other case it is 80 μm. What are the
reverse-bias voltages that the diodes can tolerate before punch through occurs?

• Section 4.8

Problem 4.35 Consider a Si p-n junction where the p and n regions are much shorter than
the diffusion length. Assume that the doping on both sides is 1017cm−3. Use
mp = mn = 1000 cm2

V s , NA = ND = 1017cm−3 and that the neutral region width on each
side is Wn = Wp = 0.1μm Use Eg = 1.1eV,NC = NV = 1019cm−3 and tGEN = 1μs.

1. What is the reverse current in the this diode when no light shines on it? Assume a
large reverse bias, qV >> kT , and room temperature.

2. Now, light incident on the devide leads to an optical EHP generation rate
GOP = 1022cm−3s−1. What is the reverse current in the diode? Assume room
temperature, as before.

3. Now, the temperature of the diode is reduced with the light left on. At what
temperature will the reverse current be equal to that calculated in the first part of the
problem?

4.11 DESIGN PROBLEMS

Problem 4.1 Consider a Si long diode that must be able to operate up to a reverse bias of
10 V. The maximum electric field that the diode can tolerate anywhere within the structure
is 5 × 105 V/cm. Design the diode so that the reverse current is as small as possible within
the given specifications. Assume that Na = Nd. What is the doping density you will use?

Problem 4.2 Consider a Si short p-n diode with the following parameters:

n-side length = 2.0 × 10−4 cm

p-side length = 2.0 × 10−4 cm

n-side doping = 1017 cm−3

p-side doping = 1017 cm−3

minority carrier lifetime τn = τp = 10−7 s

electron diffusion constant = 25 cm2/s

hole diffusion constant = 10 cm2/s

diode area = 10−3 cm2

Calculate the diode current (assuming that the diode is non-ideal) at a forward bias of 0.1
V and at 0.7 V at 300 K. What are the diode ideality factors near the two biasing values?
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Problem 4.3 Give a short discussion on why the reverse-bias current in an ideal p-n diode
has no voltage dependence. Discuss also the voltage dependence of the reverse-bias
current in a non-ideal diode (i.e., a diode with defects).

Problem 4.4 Consider a Si short (or narrow) p-n diode with the following parameters:

n-side thickness = 3.0 μ/m

p-side thickness = 4.0 μ/m

n-side doping = 1018 cm−3

p-side doping = 1018 cm−3

minority carrier lifetime τn = τp = 10−7 s

electron diffusion constant = 30 cm2/s

hole diffusion constant = 10 cm2/s

diode area = 10−4 cm2/s

Calculate the diode current at a forward bias of 0.5 V at 300 K. Also calculate the total
excess hole charge (in coulombs) injected into the n-side (from Wn to the diode n-side
contact) at this biasing.

Problem 4.5 Consider a Si long p-n diode with the following parameters:

n-side doping = 1018 cm−3

p-side doping = 1018 cm−3

minority carrier lifetime τn = τp = 10−7 s

electron diffusion constant = 30 cm2/s

hole diffusion constant = 10 cm2/s

diode area = 10−4 cm2/s

Calculate the diode current at a forward bias of 1.0 V at 300 K.

An electron comes from the p-side into the depletion region and is swept away by the field
to the n-side. Estimate the time it takes the electron to cross the depletion region at zero
applied bias and a reverse bias of 1.0 volt.

Problem 4.6 Consider a Si long p-n diode with the following parameters:

n-side doping = 1017 cm−3

p-side doping = 1017 cm−3

minority carrier lifetime τn = τp = 10−7 s

electron diffusion constant = 30 cm2/s

hole diffusion constant = 10 cm2/s

diode area = 10−4 cm2

carrier lifetime in the depletion region = 10−8 s
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Calculate the diode current at a forward bias of 0.5 V and 0.6 V at 300 K. What is the
ideality factor of the diode in this range?

Problem 4.7 Consider a narrow diode with the same parameters as given above. Calculate
the total electron- and hole-injected charge in the n- and p- sides at a forward bias of 0.4 V.
The widths of the n- and p-sides are both 1.0 μm.

Problem 4.8 Discuss how a p-n diode can be used as a temperature sensor. Assuming an
ideal Si p-n diode, calculate the value of x and y where

x =
1

Io

dIo

dT
, y =

1

I

dI

dT

In real diodes the value of x and y is smaller than what is expected for an ideal diode.
Discuss the reason for this.

Problem 4.9 Assume that a Si diode suffers Zener breakdown at a field of 2×105 V/cm if
both n- and p-sides are doped above 1018 cm−3. Design a diode that suffers Zener
breakdown at a reverse bias of 5 V. Draw the I-V characteristics for this diode assuming
reasonable material parameters.

Problem 4.10 Consider a 20 μm diameter p-n diode fabricated in silicon. The donor
density is 1016 cm−3 and the acceptor density is 1018 cm−3. Calculate the following in
this diode at 300 K: i) The depletion widths and the electric field profile under reverse
biases of 0, 2, 5, and 10 V, and under a forward bias of 0.5 V. ii) What are the charges in
the depletion region for these biases?

Problem 4.11 Consider the diode discussed in design problem 4.10. Calculate the average
field in the depletion region at the four reverse-bias values considered. Calculate the
velocity of the electrons at these average fields using the velocity-field results given in
chapter 3 What can be said about the change in the drift components of the diode current
with the change in bias?

Problem 4.12 Consider an ideal diode model for a silicon p-n diode with
Nd = 1016 cm−3 and Na = 1018 cm−3. The diode area is 10−3 cm2.

The transport properties of the diode are given by the following values at 300 K:

n − side

{
μp = 300 cm2 V−1 s−1; μn = 1300 cm2 V−1 s−1

Dp = 7.8 cm2 s−1; Dn = 33 cm2 s−1

p − side

{
μp = 100 cm2 V−1 s−1; μn = 280 cm2 V−1 s−1

Dp = 2.6 cm2 s−1; Dn = 7.3 cm2 s−1

(Note that the mobility is a lot lower in the heavily doped p-side because of the increased
ionized impurity scattering.) Assume that τn = τp = 10−6 s. Calculate the diode current.
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Problem 4.13 We will define a p-n diode to be “turned on” when the current density
reaches 103 A/cm2 (this is an approximate criterion). Calculate the turn-on or cut-in
voltage for a GaAs and a Si p-n diode with following parameters (same for both diodes):

Nd = Na = 1017 cm−3

τn = τp = 10−8 s

Use table 3.1 to determine diffusion coefficients. Assume that the diodes are long and T =
300 K.

Problem 4.14 An important use of a forward-biased p-n diode is as an emitter in a bipolar
transistor. In the emitter it is desirable that the current be injected via only one kind of
charge. The diode efficiency is thus defined as (Jn is the current density carried by
electron injection into the p-side)

γinj =
Jn

JTot
=

1

1 + Jp/Jn

Consider a GaAs p-n diode with the following parameters:

Electron diffusion coefficient, Dn = 30 cm2/s
Hole diffusion coefficient, Dp = 15 cm2/s
p-side doping, Na = 5 × 1016 cm−3

n-side doping, Nd = 5 × 1017 cm−3

Electron minority carrier time, τn = 10−8 s
Hole minority carrier time, τp = 10−7 s

Calculate the diode injection efficiency (this is called the emitter efficiency in a bipolar
transistor).

Problem 4.15 Consider the p-n diode in problem 4.12. In that problem we examined the
prefactor of the diode current using the long diode conditions. Calculate the prefactor for
the case of a short diode in which both the n- and p-side widths are 5.0 μm.
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Chapter 5

SEMICONDUCTOR JUNCTIONS

5.1 INTRODUCTION

The discussions in chapter 4 suggest that when two different materials form a junction (e.g.
n−type and p−type semiconductors) interacting electrical effects arise. We have seen how
the p-n diode has nonlinear I-V characteristics and tunable C-V characteristics. We can form
junctions between metals and semiconductors, between semiconductors with different gaps etc.
These junctions also have special properties useful for devices. Metals by themselves are neces-
sary to connect the semiconductors to the “outside world” of voltage sources and circuits. They
are also able to produce rectifying junctions. Insulators are also an integral part of electronics.
These materials provide an isolation between two regions of a device, can be used for bandstruc-
ture tailoring, can be used as capacitors, etc. In this chapter we will examine some important
properties of a variety of junctions.

5.2 METAL INTERCONNECTS

Metals form an important part of semiconductor technology. As shown in figure 5.1, they are
used as interconnects (i.e. low resistance conductors), they form Schottky barriers and Ohmic
contacts, and they form gates in field effect transistors. We have discussed in section 2.7 that
due to the high density of mobile electrons, the resistivity of metals is very low. In table 5.1 we
show the resistivities of some important metals used in electronics. In semiconductor circuits,
interconnects provide pathways through which charge travels from one point to another. While
these interconnects are obviously passive elements of the circuit they are extremely important
and play a role in circuit performance. The metal strips making up the interconnect must be able
to carry adequate current and make good contact with the devices. Interconnects are deposited
on insulators and touch the active devices only through windows that are opened at select points.
Aluminum is a commonly used interconnect material. In bulk, Al is a good conductor, with
resistivity of 2.7×10−6 Ω − cm. In thin-film form, the resistivity can be up to a factor of 20

216
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Element Work function, φm (volt)

 Ag, silver             4.26

 Al, aluminum             4.28

 Au, gold             5.1

 Cr, chromium             4.5

 Mo, molybdenum            4.6

 Ni, nickel   5.15

 Pd, palladium   5.12

 Pt, platinum   5.65

 Ti, titanium   4.33

 W, tungsten   4.55

   ELECTRON AFFINITY OF SOME SEMICONDUCTORS

 Element Electron affinity, χ (volt)

 Ge, germanium  4.13

 Si, silicon   4.01

 GaAs, gallium arsenide 4.07

 AlAs, aluminum arsenide            3.5

MATERIAL                    RESISTIVITY

                                      (μΩ-cm)                               

Aluminum (Al)

Bulk 2.7

Thin Film 0.2-0.3

Alloys, Δρ

  per %Si +0.7%Si

  per %Cu +0.3%Cu

Titanium (Ti) 40.0

Tungsten (W) 5.6

 Ti-W 15-50

 Gold (Au) 2.44

 Silver (Ag) 1.59

 Copper (Cu) 1.77

 Platinum (Pt) 10.0

 Silicides

   PtSi 28-35

   NiS2 50

WORK FUNCTIONS OF SOME METALS

Table 5.1: Resistivities of some metals used in solid state electronics

lower, allowing the thin interconnect film to carry very high current densities, of the order of
(∼ 106 Acm−2).

Example 5.1 In this example we will study some important concepts in thin-film resistors,
which form an important part of semiconductor device technology. The resistors are often
made from polysilicon that is appropriately doped. In thin-film technology it is usual to
define sheet resistance instead of the resistance of the material. Consider, as shown in
figure 5.1b, a material of length L, width W , and depth D. The resistance of the material is

R =
ρL

WD
=

ρL

A
(5.2.1)

As we have discussed in chapter 3, the resistivity ρ is given by

ρ =
1

neμ
(5.2.2)



218 CHAPTER 5. SEMICONDUCTOR JUNCTIONS

R =

Cross-sectional area, A

Lρ
A

R esistivity = ρ

L
W

D

L

Sheet resistance 
= R W R  L

W
R =

(b )

ME T A L S IN SE MICONDUCT OR  T E CHNOL OGY

Interconnects to provide 
low resistance paths for 
current

Schottky barriers to 
provide non-linear 
I -V  response

Ohmic contacts to provide 
low resistance paths to inject 
electrons and holes into 
semiconductors

(a)

(c)

Figure 5.1: (a) Metals serve three important functions in semiconductor technology. (b) A resis-
tor of dimensions L × W × D. (c) Representation of the resistors in terms of sheet resistance.

where n is the free carrier density and μ is the mobility of the carriers (the equation can be
modified for a p-type material).

The sheet resistance is a measure of the characteristics of a uniform sheet of film. It is
defined as ohms per square, as shown in figure 5.1c, and is related to the film resistance by

R� = R
W

L
(5.2.3)
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5.3 METAL SEMICONDUCTOR JUNCTION:
SCHOTTKY BARRIER

The metal-semiconductor junction can result in a junction that has non-linear diode charac-
teristics similar to those of the p-n diode except that for many applications it has a much faster
response since carrier transport is unipolar. Such a junction is called a Schottky barrier diode.

5.3.1 Schottky Barrier Height

The working of the Schottky diode depends upon how the metal-semiconductor junction be-
haves in response to external bias. Let us pursue the approximation we used for the p-n junction
and examine the band profile of a metal and a semiconductor. A metal semiconductor structure
is shown in figure 5.2a. In figure 5.2b and figure 5.2c the band profiles of a metal and a semi-
conductor are shown. Figure 5.2b shows that the band profile and Fermi level positions when
the metal is away from the semiconductor. In figure 5.2c the metal and the semiconductor are in
contact. The Fermi level EFm in the metal lies in the band, as shown. Also shown is the work
function eφm. In the semiconductor, we show the vacuum level along with the position of the
Fermi level EFs in the semiconductor, the electron affinity, and the work function.

We will assume an ideal surface for the semiconductor in the first calculation. Later we will
examine the effect of surface defects. We will assume that φm > φs so that the Fermi level in the
metal is at a lower position than in the semiconductor. This condition leads to an n−type Schot-
tky barrier. When the junction between the two systems is formed, the Fermi levels should line
up at the junction and remain flat in the absence of any current, as shown in figure 5.2c. At the
junction, the vacuum energy levels of the metal side and semiconductor side must be the same.
To ensure the continuity of the vacuum level and align the Fermi levels. Electrons move out
from the semiconductor side to the metal side. Note that since the metal side has an enormous
electron density, the metal Fermi level or the band profile does not change when a small fraction
of electrons are added or taken out. As electrons move to the metal side, they leave behind pos-
itively charged fixed dopants, and a dipole region is produced in the same way as for the p-n
diode.

In the ideal Schottky barrier with no bandgap defect levels, the height of the barrier at the
semiconductor-metal junction (figure 5.2c), is defined as the difference between the semicon-
ductor conduction band at the junction and the metal Fermi level. This barrier is given by (see
figure 5.2c)

eφb = eφm − eχs (5.3.1)

The electrons coming from the semiconductor into the metal face a barrier denoted by eVbi

as shown in figure 5.2c. The potential eVbi is called the built-in potential of the junction and is
given by

eVbi = −(eφm − eφs) (5.3.2)

It is possible to have a barrier for hole transport if φm < φs. In figure 5.3 we show the case of
a metal-p-type semiconductor junction where we choose a metal so that φm < φs. In this case,
at equilibrium the electrons are injected from the metal to the semiconductor, causing a negative
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SCHOTTKY METAL  n Si   p Si         n GaAs

Aluminum, Al   0.7  0.8

Titanium, Ti    0.5  0.61

Tungsten, W   0.67

Gold, Au   0.79  0.25            0.9

Silver, Ag                 0.88

Platinum, Pt                 0.86

PtSi    0.85  0.2

NiSi2    0.7  0.45

Table 5.2: Schottky barrier heights (in volts) for several metals on n- and p-type semiconductors.

charge on the semiconductor side. The bands are bent once again and a barrier is created for hole
transport. The height of the barrier seen by the holes in the semiconductor is

eVbi = eφs − eφm (5.3.3)

The Schottky barrier height for n- or p-type semiconductors depends upon the metal and
the semiconductor properties. This is true for an ideal case. It is found experimentally that
the Schottky barrier height is often independent of the metal employed, as can be seen from
table 5.2 This can be understood qualitatively in terms of a model based upon non ideal surfaces.
In this model the metal-semiconductor interface has a distribution of interface states that may
arise from the presence of chemical defects from exposure to air or broken bonds, etc. We have
seen in chapter 3 that defects can create bandgap states in a semiconductor. Surface defects
can create ∼ 1013 cm−2defects if there is 1 in 10 defects at the surface. Surface defects lead
to a distribution of electronic levels in the bandgap at the interface, as shown in figure 5.4. The
distribution may be characterized by a neutral level φo having the property that states below it are
neutral if filled and above it are neutral if empty. If the density of bandgap states near φo is very
large, then addition or depletion of electrons to the semiconductor can not alter the Fermi level
position at the surface without large changes in surface charges (beyond the numbers demanded
by charge neutrality considerations). Thus, the Fermi level is said to be pinned. In this case, as
shown in figure 5.4, the Schottky barrier height is

eφb = Eg − eφo (5.3.4)
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n-type or p-type
semiconductor

Metal

≈ ≈

φm > φs n-type

Ec
EFs

n-semiconductor
Metal

EFm

(a)

Vacuum energy

Ev

METAL-SEMICONDUCTOR JUNCTION AT EQUILIBRIUM

eφs
eχs

eφm

(b)

(c)

Ec
EFs

Ev

EFm

eφm – eφs = eVbi

W

eφbeφm

eχs
Vacuum energy

Figure 5.2: (a) A schematic of a metal-semiconductor junction. (b) The various important energy
levels in the metal and the semiconductor with respect to the vacuum level. (c) The junction
potential produced when the metal and semiconductor are brought together. Due to the built-in
potential at the junction, a depletion region of width W is created.
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≈ ≈

p-type
Semiconductor

Metal

Evac

p-semiconductor

Metal

(a)

(b)

eφs

Ecs

EFs
Evs

EFm

Ec

EFs
Ev

eφs  –  eφm = eVbi
eφb

eχs
eφm

W

++++++++

Figure 5.3: A schematic of the ideal p-type Schottky barrier formation. (a) The positions of the
energy levels in the metal and the semiconductor; (b) the junction potential and the depletion
width.

and is almost independent of the metal used. The model discussed above provides a qualitative
understanding of the Schottky barrier heights. However, the detailed mechanism of the interface
state formation and Fermi level pinning is quite complex. In table 5.2 we show Schottky barrier
heights for some common metal-semiconductor combinations. In some materials such as GaN
and AlGaN,the surface retains its ideal behavior and the Schottky barrier is indeed controlled by
the metal work function.
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EFm

eφb = Eg – eφο

EFs
Ec

Ev

eφο

Defect levels in the bandgap

Figure 5.4: Interface states at a real metal-semiconductor interface. A neutral level φo is defined
so that the interface states above φo are neutral if they are empty and those below φo.

5.3.2 Capacitance Voltage Characteristics

Once the Schottky barrier height is known, the electric field profile, depletion width, depletion
capacitance, etc., can be evaluated the same way we obtained the values for the p-n junction. The
problem for a Schottky barrier on an n-type material is identical to that for the abrupt p+n diode,
since there is no depletion on the metal side. One again makes the depletion approximation; i.e.,
there is no mobile charge in the depletion region and the semiconductor is neutral outside the
depletion region. Then the solution of the Poisson equation gives the depletion width W for an
external voltage applied to the metal V

W =

[
2ε(Vbi − V )

eNd

]1/2

(5.3.5)

Here Nd is the doping of the n-type semiconductor. Note that there is no depletion on the metal
side because of the high electron density there. The potential V is the applied potential, which
is positive for forward bias and negative for reverse bias.

5.3.3 Current Flow across a Schottky Barrier: Thermionic Emission

Consider the Schottky barrier band diagram shown on figure 5.5 at zero bias.
The Schottky barrier between a metal and semiconductor is shown in equilibrium (at zero

bias) with the electron distribution shown on the right
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EFm

eVbi
eφ B

x

z

y

n

n(E-EC)

ECEFs

Figure 5.5: Schottky Barrier in equilibrium

Also shown is the electron distribution:

n (E − EC) = 2f (E − EC) · N (E − EC) (5.3.6)

similar to the case of a p−n junction, the factor of 2 in accounting for electron spin. Thermionic
emission assumes that all electrons in the semiconductor with kinetic energy in the +z direction
greater than eVbi (Ez > eVbi) and kz > 0, are capable of surmounting the barrier and con-
tributing to current flow from the semiconductor to the metal, Js→m. Note that the total kinetic
energy E − EC = Ex + Ey + Ez . At thermal equilibrium the current from the metal to the
semiconductor, Jm→s, will be equal in magnitude and opposite in sign to Js→m, making the net
current zero. To calculate Js→m one needs to sum the current carried by every allowed electron:

Js→m = e
∑

n (E − Ec) · vz (5.3.7)

for Ez > eVbi and vz > 0. The methodology employed is to calculate the number of electrons
at energy E in a volume of k-space (dk)3, multiply the number with the electron velocity in the
direction along the barrier, and sum or integrate over energy. Assuming a crystal of length L,
periodic boundary conditions yield allowed k values given by

k = 2πN (5.3.8)

where N is an integer and the separation between allowed k’s is Δk = 2π/L. The number of
electrons in a volume element dkx, dky, dkz is therefore

dN = 2f (E − EC)
dkxdkydkz

Δk3
(5.3.9)

Assuming (E − EC) � EF and writing E − EF = E − EC + EC − EF gives

dN = 2 exp

(−((E − EC) + (EC − EF ))

kBT

)
dkxdkydkz

Δk3
(5.3.10)
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The current density contributed by these electrons is

Jz = −evz
dN

L3
(5.3.11)

if kz > 0 and Ez > eVbi. Note that all values of Ex and Ey are allowed as they represent motion
in the x − y plane which is not constrained by the barrier in the +z direction. Note that

(Ex − EC) =
�

2k2
x

2m∗ (5.3.12)

with similar relationships for (Ey − EC) and (Ez − EC). Also employing the condition (Ez − Ec) >
eVbi yields a minimum value of

kmin =

√
eVbi

(
2m∗

�2

)
(5.3.13)

Also,

vz =
�kz

m∗ (5.3.14)

Therefore,

Jz =
−e

(2π)
3

∫ +∞

−∞
dkx

∫ +∞

−∞
dky

∫ +∞

kmin

�kz

m∗ dkz ·

2 exp [− (Ex + Ey + Ez) /kBT ] · exp [− (EC − EF ) /kBT ] exp

(
EC

kBT

)

= − 2e

(2π)
3

∫
x

·
∫

y

·
∫

z

exp

(
−EC − EF

kBT

)
(5.3.15)

where ∫
x

=

∫
y

=

∫ ∞

−∞
exp

(
�

2k2
x

2m∗kBT

)
dkx =

√
2πm∗kBT

�
(5.3.16)

and ∫
z

=

∫ ∞

kmin

exp

(
−�

2k2
z

kBT

)
· �kz

m∗ · dkz (5.3.17)

=
kBT

�
exp

(−�
2k2

min/kBT
)

=
kBT

�
exp

(−eVbi

kBT

)
(5.3.18)

Therefore,

Jz =
4π

(2π�)
3 · em∗k2

BT 2 exp

(
− (eVbi + (EC − EF ))

kBT

)
(5.3.19)

or

Jz = A∗ · T 2 exp

(−eφB

kBT

)
= Js→m (V = 0) (5.3.20)
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where

A∗ =
4πem∗k2

B

2π�3
= 120 A cm−2 K−2 × m∗

m0
(5.3.21)

is the Richardson constant and φB = Vbi + (EC − EF ), the barrier seen by electrons in the
metal of the Schottky barrier height. We have calculated Js→m at V = 0. The analysis can be
easily extended to a forward bias of VF , the only change being replacing the barrier, Vbi by the
new barrier Vbi − VF . This changes Iz to

Iz =
kBT

�
exp

(
− eVbi

kBT

)
· exp

(
eVF

kBT

)
(5.3.22)

or

Js→m (V = VF ) = Js→m (V = 0) · exp

(
eVF

kBT

)
(5.3.23)

Since the current flow from the metal to the semiconductor is unchanged:

J (V = VF ) = Js→m (V = VF ) − Jm→s (V = VF ) (5.3.24)

= A∗T 2 exp

(−qφB

kBT

)[
exp

(
eVF

kBT

)
− 1

]
(5.3.25)

Example 5.2 In a W-n-type Si Schottky barrier the semiconductor has a doping of 1016

cm−3 and an area of 10−3 cm2.
(a) Calculate the 300 K diode current at a forward bias of 0.3 V.
(b) Consider an Si p+ − n junction diode with the same area with doping of
Na = 1019 cm−3 and Nd = 1016 cm−3, and τp = τn = 10−6 s. At what forward bias will
the p-n diode have the same current as the Schottky diode? Dp = 10.5 cm2/s.

From table 5.2 the Schottky barrier of W on Si is 0.67 V. Using an effective Richardson
constant of 110 A cm−2K−1, we get for the reverse saturation current

Is = (10−3 cm2) × (110 A cm−2K−2) × (300K)2 exp

(−0.67(eV)

0.026(eV)

)
= 6.37 × 10−8 A

For a forward bias of 0.3 V, the current becomes (neglecting 1 in comparison to
exp (0.3/0.026))

I = 6.37 × 10−8A exp(0.3/0.026)

= 6.53 × 10−3 A

In the case of the p-n diode, we need to know the appropriate diffusion coefficients and
lengths. The diffusion coefficient is 10.5 cm2/s, and using a value of τp = 10−6s we get
Lp = 3.24 × 10−3 cm. Using the results for the abrupt p+ − n junction, we get for the
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saturation current (pn = 2.2 × 104 cm−3) (note that the saturation current is essentially
due to hole injection into the n-side for a p+-n diode)

Io = (10−3 cm2) × (1.6 × 10−19 C) × (10.5 cm2/s−1)

(3.24 × 10−3 cm)
× (2.25 × 104 cm−3)

= 1.17 × 10−14 A

This is an extremely small value of the current. At 0.3 V, the diode current becomes

I = Is exp

(
eV

kBT

)
= 1.2 × 10−9 A

a value which is almost six orders of magnitude smaller than the value in the Schottky
diode. For the p-n diode to have the same current that the Schottky diode has at 0.3 V, the
voltage required is 0.71 V.

This example highlights the important differences between Schottky and junction diodes.
The Schottky diode turns on (i.e., the current is ∼1 mA) at 0.3 V while the p-n diode turns
on at closer to 0.7 V.

5.3.4 Comparison of Schottky and p-n diodes

Both the p − n diode and the Schottky diode can be used for rectification and non-linear
I − V response. One may ask which provides superior performance. The answer depends upon
specific applications. The questions of turn on voltage, speed needed, reverse leakage, etc. are
important in deciding whether a p − n diode or Schottky diode should be used. The Schottky
diodes have a number of important advantages over p − n diodes. Some of these are listed in
figure 5.6. The temperature dependence of the Schottky barrier current is quite weak compared
to that of a p-n diode. This is because in a p-n diode, the currents are controlled by the diffusion
current of minority carriers, which in turn depends on minority carrier concentration that has a
rather strong temperature dependence.

The fact that the Schottky barrier is a majority carrier device gives it a tremendous advantage
over p-n diodes in terms of the device speed. Device speed is no longer dependent upon ex-
tracting minority charge via diffusion or recombination. By making small devices, the RC time
constant of a Schottky barrier can approach a few picoseconds, which is orders of magnitude
faster than that of p-n diodes.

Another important advantage of the Schottky diode is the fact that there is essentially no
recombination in the depletion region and the ideality factor is very close to unity. In p-n diodes,
there is significant recombination in the depletion region and ideality factors range from 1.2 to
2.0.

The main disadvantage of Schottky diodes is a higher reverse current density. The thermionic-
emission-controlled prefactor gives a current density in the range of ∼ 10−7 Acm−2, which is
three to four orders of magnitude higher than that of the p − n diode. Thus for a given applied
bias, the Schottky barrier has much higher current than the p−n diode. As a result the Schottky
diode is preferred as a low-voltage high-current rectifier. Since, the reverse current in a Schottky
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SCHOT T K Y  DIODEp-n DIODE

R everse current is very low

Forward current due to minority 
carrier injection from n- and p-sides

Switching speed controlled by
recombination (elimination) of 
minority injected carriers

Ideality factor in I -V  characteristics 
~ 1.2-2.0 due to recombination in 
depletion region

R everse current is relatively large

Device very fast: switching speed 
controlled by thermalization of 
“hot”  injected electrons across the 
barrier ~ few picoseconds

Forward current due to majority
injection from the semiconductor

E ssentially no recombination in 
depletion region        ideality factor 
~ 1.0

T he cut-in voltage is quite smallForward bias needed to make the 
device conducting (the cut-in 
voltage) is large

Figure 5.6: A comparison of some pros and cons of the p-n diode and the Schottky diode.

barrier is also quite large, which is a disadvantage for many applications. Another issue is
technology related. The Schottky barrier quality depends critically on the surface quality, the
processing steps are quite critical. For many semiconductors, it is not possible to have a good
Schottky contact since the contact is very “leaky” due to defects. For such materials, the only
way to have rectification is by using a p-n junction.
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Figure 5.7: Current-voltage characteristics of an ohmic contact along with the band diagrams of
metal -n+-n contact. The heavy doping reduces the depletion width to such an extent that the
electrons can tunnel through the spiked barrier easily in either direction.

5.4 METAL SEMICONDUCTOR JUNCTIONS
FOR OHMIC CONTACTS

In our discussion on p−n diodes and Schottky diodes we have discussed how a bias is applied
across the device to cause current flow. It is important to ask how a connection is made from a
power supply to the semiconductor. How do electrons or holes flow into and out of a semicon-
ductor? There is a large barrier (the work function) that restricts the flow of electrons. We have
also seen from the previous section that at least in some cases a metal-semiconductor junction
also provides a barrier to flow of electrons. However, it is possible to create metal-semiconductor
junctions that have a linear non-rectifying I-V characteristic, as shown in figure 5.7. Such junc-
tions or contacts are called ohmic contacts.

There are two possibilities for creating ohmic contacts. In the previous section, to produce
a Schottky barrier on an n−type semiconductor, we needed (for the ideal surface) a metal
with a work function larger than that of the semiconductor. Thus, in principle, if we use a
metal with a work function smaller than the semiconductor, one should have no built-in barrier.
However, this approach is not often useful in practice because the Fermi level at the surface of
real semiconductors is pinned because of the high interface density in the gap.

The Schottky barrier discussed earlier can be altered to create an ohmic contact. This is done
through heavy doping and use of tunneling to get large current across the interface. Let us say
we have a built-in potential barrier, Vbi. The depletion width on the semiconductor side is

W =

[
2εVbi

eNd

]1/2

(5.4.1)

Now if near the interface region the semiconductor is heavily doped, the depletion width could
be made extremely narrow. In fact, it can be made so narrow that even though there is a potential
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barrier, the electrons can tunnel through the barrier with ease, as shown in figure 5.7. The quality
of an ohmic contact is usually defined through the resistance R of the contact over a certain area
A. The normalized resistance is called the specific contact resistance rc and is given by

rc = R · A (5.4.2)

Under conditions of heavy doping where the transport is by tunneling, the specific contact
resistance has the following dependence for tunneling, probability T , through a triangular bar-
rier):

ln (rc) ∝ 1

�n(T )
∝ (Vbi)

3/2

F
(5.4.3)

where the field is

E =
Vbi

W
∝ (Vbi)

1/2 (Nd)
1/2 (5.4.4)

Thus,

�n (rc) ∝ Vbi

∝ 1√
Nd

(5.4.5)

The resistance can be reduced by using a low Schottky barrier height and doping as heavily
as possible. The predicted dependence of the contact resistance on the doping density is, indeed,
observed experimentally. It is observed from experiments that it is usually more difficult to obtain
contacts with p−type semiconductors with low resistance. This is due to the difficulty in p-
doping. It is also due to the fact that in many materials the relatively high effective mass of holes,
leads to reduced tunneling currents. Also, in the case of many wide bandgap semiconductors
such as GaN, the barrier heights between available metals and the valence band is much greater
than that of the conduction band.

5.5 INSULATOR-SEMICONDUCTOR JUNCTIONS

In chapter 2 we have called materials with large bandgaps insulators. Usually these materials
don’t have high crystalline quality and are difficult to dope. These materials have very high
resistivity and are used to isolate regions to prevent current flow. Most insulator-semiconductor
combinations involve structures that are not lattice-matched. In most cases the insulator and
the semiconductor do not even share the same basic lattice type. In this section we will briefly
review a few such combinations. Important issues in these junctions are listed in figure 5.8. The
key issues here revolve around producing an interface with very low density of trapping states
and low interface leakage.

5.5.1 Insulator-Silicon

The most important junction in solid state electronics is the SiO2-Si system. In spite of the
severe mismatch between SiO2 structure and Si structure, the interface quality is quite good.
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Figure 5.8: Insulator-semiconductor junctions are dominated by interface quality and defect
levels in insulators.

Midgap interface density as low as 1010 eV−1 cm−2can be readily obtained. The ability to
produce such high-quality interfaces is responsible for the remarkable success of the metal-
oxide-silicon (MOS) devices. Due to the low interface densities, there is very little trapping of
electrons (holes) at the interface so that high-speed switching can be predictably used. In has to
be recognized though that the interface is still rough with islands with a height of 5 Å over lateral
extents of ∼50 Å. Typical electron mobility in Si MOSFETs is ∼600 cm2/(V · s) compared to
a mobility of ∼1100 cm2/(V · s) (300 K) for bulk pure Si. We will discuss the MOS structure
in detail in chapter 9.

Silicon nitride (Si3N4) is another important film that forms modest-quality junctions with Si.
Silicon nitride can be used in a metal-insulator-semiconductor device in Si technology, but its
applications are limited. The film is used more as a mask for oxidation of the Si film. It also
makes a good material for passivation of finished devices. Silicon oxy-nitride on the other hand
forms high-quality interfaces with silicon and can be used in FETs.

Although not an insulator or a metal, we include polycrystalline silicon (“poly”) in this chapter
because of its importance in Si technology. Polysilicon can be deposited by the pyrolysis (heat-
induced decomposition) of silane:

SiH4 −→ Si + 2H2 (5.5.1)

Depending upon the deposition temperature, micro crystallites of different grain sizes are
produced. Typical grain size is ∼ 0.1 μm.

Poly films can be doped to low resistivity to produce useful conductors for a number of
applications. Poly is often used as a gate of an MOS transistor, as a resistor, or as a link between
a metal and the Si substrate to ensure an ohmic contact.
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5.6 SEMICONDUCTOR HETEROJUNCTIONS

A growing number of modern devices are based on semiconductor heterojunctions, or junc-
tions formed between two different materials. Modern bipolar transistors employ a p-n het-
erojunction in order to improve the emitter injection efficiency (see chapter 7), while in HFET
technology a heterojunction is used to form a high mobility channel (see chapter 8). In this
section we discuss the properties of p-n heterojunctions. Specifically, we will focus on the junc-
tion formed between an n-type wide bandgap material (such as AlGaAs) and a p-type narrower
bandgap material (such as GaAs).

5.6.1 Abrupt p-n heterojunction

Electrostatics

To construct a band diagram for an abrupt p-n heterojunction, we proceed in the same manner
as for the p-n homojunction. We begin with two separate materials (figure 5.9a) and consider
what the equilibrium conditions must be when a junction is formed between them (figure 5.9b).
In figure 5.9a, the material on the left (material 1) is n-type and has a wide bandgap, while
the material on the right (material 2) is p-type and has a narrower bandgap. The doping in the
p-type material is much higher than that of the n-type material (this is the typical emitter-base
structure in a III-V npn heterojunction bipolar transistor). The two materials have different
electron affinities (χ1 and χ2), bandgaps (Eg1 and Eg2), and dielectric constants (ε1 and ε2).

Figure 5.9b shows a band diagram of the system once a junction is formed between the two
materials. Since the materials have different bandgaps, there must exist a discontinuity in the
conduction band (ΔEc) and/or the valence band (ΔEv) at the interface . The difference in the
bandgap between the two materials is equal to the sum of the conduction band and valence band
discontinuities, or

ΔEg = Eg1 − Eg2 = ΔEc + ΔEv (5.6.1)

By examination of figure 5.9, it is tempting to assume that ΔEc is simply the difference in
the electron affinities of the two materials. However, there also exist dipole charges at the het-
erointerface which cause a shift in the relative band discontinuities. These dipole charges result
from the locally different atomic and electronic structures of the two materials at the heterointer-
face as compared to their bulk atomic structure. While electron affinity rules accurately predict
discontinuities in a limited number of material systems in which these dipole effects are small,
in most heterostructures these dipole charges are significant and must be accounted for. Band
line-ups for a number of materials were shown in figure 2.31.

Similar to the case of a p-n homojunction, when the p- and n-type semiconductors are brought
together, a built-in voltage, Vbi, is produced between the two sides of the structure. The built-in
voltage is equal to the sum of the band bending on the n-side (Vd1) and the bend bending on the
p-side (Vd2). By examination of figure 5.9, the built-in voltage can be shown to be

eVbi = eVd1 + eVd2 = Eg2 − (EF − Ev)p − (Ec − EF )n + ΔEc

where the subscripts n and p refer to the n-side and p-side of the device. Comparing this ex-
pression to that of the p-n homojunction , we see that the only difference is the additional ΔEc
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Figure 5.9: (a) Band line-ups of two distinct materials prior to the formation of a junction. (b)
Band diagram of a heterojunction formed between the two materials.

term. Making the same substitutions for (EF − Ev)p and (Ec − EF )n as we made in the p-n
homojunction case gives us the built-in potential as

Vbi =
1

e
(ΔEc + Eg2) − kBT

e
�n

[
Nc1Nv2

n1p2

]
(5.6.2)

where Nc1 is the conduction band density of states in material 1, Nv2 is the valence band den-
sity of states in material 2, n1 = Nd1 is the electron concentration in material 1 (assuming full
ionization), and p2 = Na2 is the hole concentration in material 2 (also assuming full ionization).

The depletion region width W (Vbi) and the electric field profile in the depletion region can
be found in the same way as for a p-n homojunction, except that ε1 �= ε2, so the electric field
is not continuous at the material interface. The charge density and electric field profiles in the
structure are shown in figure 5.10. Gauss’ Law states that the displacement field D = εE (E is
the electric field) must be continuous at the interface. This gives the relationship

ε1E1,m = ε2E2,m (5.6.3)

where E1,m is the maximum electric field in material 1 and E2,m is the maximum electric field
in material 2 (see figure 5.10).
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Figure 5.10: (a) Space-charge density and (b) electric field profiles in an n-p heterostructure.

To find E1,m, E2,m, Wn, and Wp, the following equations, along with equation 5.6.3, can be
used:

NdWn = NaWp (5.6.4)

E1,m

Wn
=

qNd

ε1
and

E2,m

Wp
=

qNa

ε2
(5.6.5)

Vbi = area under E =
1

2
[WnE1,m + WpE2,m] = Vd1 + Vd2 (5.6.6)

These are essentially the same set of equations used to derive Wn, Wp, and E for a p-n homo-
junction . Equation 5.6.4 is our charge neutrality condition, and equation 5.6.5 and equation
5.6.6 result from solving Poisson’s equation.

From these equations, we obtain the following set of relationships:

Wp(Vbi) =

{
2ε1ε2Vbi

e

[
Nd

Na(Naε2 + Ndε1)

]}1/2

(5.6.7)

Wn(Vbi) =

{
2ε1ε2Vbi

e

[
Na

Nd(Naε2 + Ndε1)

]}1/2

(5.6.8)

W (Vbi) = Wp(Vbi) + Wn(Vbi) =
[
W 2

n(Vbi) + W 2
p (Vbi) + 2Wn(Vbi)Wp(Vbi)

]1/2
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W (Vbi) =

[
2ε1ε2Vbi

e

(
[Na + Nd]

2

NaNd [Naε2 + Ndε1]

)]1/2

(5.6.9)

E1,m =
eNdWn

ε1
(5.6.10)

E2,m =
eNaWp

ε2
(5.6.11)

We can also solve for the band bending on either side of the junction Vd1 and Vd2:

Vd1 =
1

2
WnE1,m =

eNdW
2
n

2ε1
(5.6.12)

Vd2 =
1

2
WpE2,m =

eNaW 2
p

2ε2
(5.6.13)

Current flow in abrupt p-n heterostructure

In a p-n homojunction, the ratio of current carried by electrons to current carried by holes
In/Ip can be made large by making Nd larger than Na. However, in bipolar transistor technol-
ogy, it is desirable to have Na be large while simultaneously maintaining a large value of In/Ip.
This can only be achieved by employing a p-n heterostructure. We will now calculate the current
characteristics of a p-n heterojunction and show how the ratio In/Ip can be controlled.

In figure 5.11a, we show the band diagram of the p-n heterostructure from figure 5.9b under
forward bias. In determining the current characteristics of this structure, we make the following
assumptions:

1. The electron and hole components of the current can each be described by thermionic
emission, similar to the treatment given in section 5.3.3 for the electron current in an
n-type Schottky barrier. The barrier to hole injection from the p side to the n side is
labeled eφBh in figure 5.11a, and the barrier to electron injection from the n side to the p
side is labeled eφBe. The electron current In ∝ exp[−eφBe/kBT ], and the hole current
Ip ∝ exp[−eφBh/kBT ].

2. The downwards notch in the conduction band immediately to the right of the junction does
not capture electrons or in any way affect the electron current.

The general idea behind the use of heterostructures is that we would like to increase the barrier
that holes must overcome φBh relative to the barrier that electrons must overcome φBe. In p-n
homojunctions, φBe = φBh = Vbi − VF . In p-n heterojunctions, these barriers are no longer
equal.
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Figure 5.11: Band diagrams of (a) a forward biased abrupt p-n junction and (b) a forward biased
graded p-n junction

Referring to figure 5.11a, for an abrupt p-n heterojunction, the barriers to hole injection (φBp)
and to electron injection (φBn) are given by

eφBh = Eg1 − (EF − Ev)p − (Ec − EF )n − eVF (5.6.14)

eφBe = e(Vd1 − VF ) (5.6.15)

= Eg2 − (EF − Ev)p − (Ec − EF )n − eVF − eVd2 + ΔEc (5.6.16)

Since we are assuming Na >> Nd, the term eVd2 in the expression for φBe is small and can be
omitted. The difference in the two barriers is given by

eφBh − eφBe = Eg1 − Eg2 − ΔEc = ΔEv (5.6.17)

The ratio of electron current to hole current in a p-n homojunction is given by(
In

Ip

)
hom

=
DnNdLp

DpNaLn
(5.6.18)

In the p-n homojunction, the barrier seen by electrons is the same as that seen by holes, and
the only means of controlling this ratio is through doping. In an abrupt p-n heterojunction with
negligible barrier discontinuity at the conduction band edge, the barrier seen by electrons is
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smaller than that seen by holes by an amount ΔEv , and so the corresponding ratio of electron
current to hole current becomes(

In

Ip

)
het

=
DnNdLp

DpNaLn
exp

(
ΔEv

kBT

)
(5.6.19)

We can see that even if Na is kept high, the ratio of electron current to hole current in a hetero-
junction can still be kept large, even for a relatively modest bandgap discontinuity.

5.6.2 Graded p-n heterojunction

Although the abrupt p-n heterostructure discussed in the previous section did result in an
increase in the barrier to hole injection, the notch in the conduction band at the interface also
caused an undesirable increase in the barrier to electron injection. While the net effect was still
an increase in the ratio In/Ip, eliminating this notch further increases In/Ip to a value(

In

Ip

)
=

DnNdLp

DpNaLn
exp

(
ΔEg

kBT

)
(5.6.20)

In order to reduce this notch, the bandgap of the p material can be graded upwards from the
junction, as shown in figure 5.11b. For example, in an n-AlGaAs/p-GaAs graded heterostructure,
the n material is GaAs at the junction and is graded to the final AlGaAs composition over a short
distance. The final shape of the notch depends on the length and profile of the grade; longer
grading typically gives a smaller notch. However, it is important that the grade is contained well
within the depletion region. If the grade ends outside the depletion region, then the barrier seen
by holes decreases, thus reducing the benefits of the heterojunction. Note that the barrier to holes
in both abrupt and graded heterojunctions is the same. It is just the barrier for electron flow that
is reduced in the graded structures, allowing for the increased ratio of In/Ip.

Example 5.3 Designing a p-n heterojunction grade
Consider four different n-p+ Al0.3Ga0.7As/GaAs heterojunctions with ND = 1017 and
NA = 5 × 1018. The AlGaAs in these junctions is graded from x = 0 to x = 0.3 over
XGrade = 0(abrupt), XGrade = 100Å, XGrade = 300Å, and XGrade = 1μ. Calculate
and plot the energy band diagrams for the above four cases.

Assume the dielectric constant of AlGaAs to be the same as that of GaAs.
Eg = 1.8 eV for Al0.3Ga0.7As, and Eg = 1.4 eV for GaAs. ΔEg = 0.374 eV,
ΔEC = 0.237 eV, and ΔEV = 0.137 eV. On the AlGaAs emitter side, far away from the
junction,

φn = EC − EF = kBT ln

(
NC

n

)
= 0.0323 eV (5.6.21)

Since the the p-GaAs is degenerately doped, Joyce-Dixon statistics must be applied:

φp = EV − EF =
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Figure 5.12: Solutions to example 5.3

kBT

[
ln

(
p

NV

)
+ A1

p

NV
+ A2

(
p

NV

)2
]

= 0.011 eV

The solutions are plotted in figure 5.12.

5.6.3 Quasi-electric fields

In a homogeneous semiconductor, the separation between the conduction and valence bands is
everywhere equal to the semiconductor bandgap. Any electric field applied to the material there-
fore results in an equal slope in the conduction and valence bands, as indicated in figure 5.13a.
When a hole or electron is placed in this structure, a force of magnitude eE will act on the par-
ticle. The magnitude of the force is equal to the slope of the bands and is the same for both
electrons and holes. However, the direction of the force is opposite for the two particles.
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Figure 5.13: (a) Band diagram when an electric field is applied to a homogeneous semiconductor.
(b) Quasi-field causes a force on holes but not on electrons. (c) Quasi-field in which electrons
and holes feel a force in the same direction.

An interesting phenomenon arises in semiconductors with graded bandgaps, such as the bipo-
lar transistor emitter-base structure shown in figure 5.11b. In the graded region, the bandgap
is not constant, so the slopes in the conduction and valence bands are no longer equal. Hence
the forces acting on electrons and holes in this region are no longer equal in magnitude. It is in
general possible for a force to act on only one type of carrier, as shown in figure 5.13b, or for
forces to act in the same direction for both electrons and holes, as in figure 5.13c. Such behavior
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cannot be achieved by pure electric fields in homogeneous materials. These fields, which were
first described by Herbert Kroemer in 1957, are therefore referred to as quasi-electric fields.

In a given material, the total field acting on a hole or an electron is always the sum of the
applied field and the quasi field, or

Ee,tot = Eapp + Ee,quasi (5.6.22)

Eh,tot = Eapp + Eh,quasi (5.6.23)

The applied field, which results from applying a voltage difference between the ends of the
material, will always be the same for both electrons and holes, but the quasi field could be
different for both. The band profiles in figure 5.13b and figure 5.13c can therefore be achieved
in a number of different ways. For example, the profile in figure 5.13b could be achieved in the
following two ways:

1. An undoped (intrinsic) material with a graded composition and zero applied electric field
typically results in the profile in figure 5.13c. If an electric field Eapp = −Ee,quasi is then
applied to this material, the resulting profile will be the one shown in figure 5.13b.

2. A uniformly doped n-type material with a graded composition and zero applied electric
field will also result in the profile in figure 5.13b. In this case, the doping ensures that
the separation between the conduction band and the Fermi level remains approximately
constant. Notice that the resulting quasi-electric field in this structure acts only on minority
carriers.

Quasi-electric fields provide engineers with additional tools that can be exploited in device
design. They have proven to be very useful in decreasing transit times in devices that rely on
minority carrier transport. For example, in bipolar technology, a highly doped graded base layer
is often used to speed up the transport of minority carriers from the emitter to the collector. For
a base with uniform bandgap, minority carriers injected from the emitter must diffuse across
the base, a process that is generally slow. By using a highly doped graded base to generate a
quasi-electric field, such as was described in the second example above, minority carriers can be
swept across much more quickly, thus reducing the base transit time and improving the device
RF performance.

5.7 PROBLEMS

Temperature is 300 K unless stated otherwise.

• Section 5.2

Problem 5.1 A 2 μm thick ×10 μm Al interconnect is used in a semiconductor chip. If
the length of a particular interconnect is 1 cm, calculate the resistance of the line. Use
table 5.1 for the resistivity data.
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Problem 5.2 If a current density of 105 A/cm2 flows in the interconnect of problem 5.1 to,
calculate the potential drop.

Problem 5.3 Use the resistivity of Al and Cu given in table 5.1 and use the Drude model
(chapter 1) to calculate the mobility of electrons in these two materials.

Problem 5.4 Discuss why in the analysis of the conductivity of metals we do not consider
hole conductivity.

• Section 5.3

Problem 5.5 Assume the ideal Schottky barrier model with no interface states for an
n-type Si with Nd = 1016 cm−3. The metal work function is 4.5 eV and the Si electron
affinity is 4 eV. Calculate the Schottky barrier height, built-in voltage, and depletion width
at no external bias.

Problem 5.6 A Schottky barrier is formed between Al and n-type silicon with a doping of
1016 cm−3. Calculate the theoretical barrier if there are no surface states. Compare this
with the actual barrier height. Use the data in the text.

Problem 5.7 Assume that at the surface of GaAs, 50% of all bonds are “defective” and
lead to a uniform distribution of states in the bandgap. Each defective bond contributes
one bandgap state. What is the two-dimensional density of bandgap states (units of
eV−1cm−2)? Assume that the neutral level φo is at midgap. Approximately how much
will the Fermi level shift if a total charge density of 1012 cm−2 is injected into the surface
states? This example gives an idea of “Fermi level pinning”.

Problem 5.8 The capacitance of a Pt-n-type GaAs Schottky diode is given by

1

(C(μF ))
2 = 1.0 × 105 − 2.0 × 105 V

The diode area is 0.1 cm2. Calculate the built-in voltage Vbi, the barrier height, and the
doping concentration.

Problem 5.9 Calculate the mean thermal speed of electrons in Si and GaAs at 77 K and
300 K. m∗

Si = 0.3mo;m
∗
GaAs = 0.067mo.

Problem 5.10 Calculate the saturation current density in an Au Schottky diode made
from n-type GaAs at 300 K. Use the Schottky barrier height values given in table 5.2.

Problem 5.11 Consider an Au n-type GaAs Schottky diode with 50 μm diameter. Plot
the current voltage characteristics for the diode between a reverse voltage of 2 V and a
forward voltage of 0.5 V.

Problem 5.12 Calculate and plot the I-V characteristics of a Schottky barrier diode
between W and n-type Si doped at 5 × 1016 cm−3 at 300 K. The junction area is 1 mm2.
Plot the results from a forward current of 0 to 100 mA.
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Problem 5.13 In some narrow-bandgap semiconductors, it is difficult to obtain a good
Schottky barrier (with low reverse current) due to the very small barrier height. Consider
an n-type InGaAs sample. Describe, on physical bases, how the “effective” Schottky
barrier height can be increased by incorporating a thin p-type doped region near the
surface region.

Problem 5.14 In the text, when we discussed the current flow in a Schottky barrier, we
assumed that the current was due to thermionic emission only. This is based on classical
physics where it is assumed that only particles with energy greater than a barrier can pass
through. Consider a W -n-type GaAs Schottky barrier in which the Schottky barrier
triangular potential is described by a field of 105 V/cm. The Schottky barrier height is 0.8
V. Calculate the tunneling probability through the triangular barrier as a function of
electron energy from E = 0.4 eV to E = 0.8 eV. The tunneling current increases the
Schottky reverse current above the value obtained by thermionic current considerations.

Problem 5.15 Consider an Al-n-type Si Schottky diode. The semiconductor is doped at
1016 cm3. Also consider a p-n diode made from Si with the following parameters (the
diode is ideal):

Nd = Na = 1018 cm−3

Dn = 25 cm2/s

Dp = 8 cm2/s

τn = τp = 10 ns

Calculate the turn-on voltages for the Schottky and p-n diode. Assume that the current
density has to reach 105 A/cm2 for the diode to be turned on.

Problem 5.16 An important problem in very high-speed transistors (to be discussed in
chapter 8) based on the InAlAs/InGaAs system is the reliability of the Schottky barrier.
Consider a Schottky barrier formed on an InAlAs doped n-type at 1016 cm−3. Calculate
the saturation current density if the Schottky barrier height is (i) 0.7 V; (ii) 0.6 V at 300 K.

The mass of the electrons in InAlAs is 0.08 mo. The Richardson constant has a value

R∗ = 120

(
m∗

mo

)
= 9.6A cm−2K−2

The saturation current density then becomes

Js (φb = 0.7 V) = R∗T 2 exp

[
−

(
eφb

kBT

)]
= 1.8 × 10−6 A/cm

2

Js(φb = 0.6 V) = 8.2 × 10−5 A/cm
2

Thus the current density varies by a very large value depending upon the Schottky barrier
value. The Schottky barrier height depends upon the metal-semiconductor interface
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quality and can be easily affected by fabrication steps. In a p-n diode, on the other hand,
the built-in voltage is fixed by doping and is more controllable.

Problem 5.17 A metal-i-GaN-n-GaN Schottky junction is shown in the figure 5.14 (a)
below. Fixed positive and negative polarization charges across the GaN create a 2DEG in
this structure. The metal semiconductor barrier height φB is 0.5 eV. Assume that the
i-GaN layer is 50 nm thick, and that the relative dielectric constant of AlGaN is 10.

1. Draw the equilibrium band diagram. Also draw the band diagram for a reverse bias
of 10V.

2. Now, a phantom material (see figure 5.14(b)) with a high dielectric constant of 100
and thickness of 50 nm is inserted between the gate and the GaN layer. Draw the
band diagram at equilibrium and at a reverse bias of 10 V across the junction.
Assume that the barrier height on this material is the same as in the case of GaN, and
that the bands of this material align perfectly with GaN.

3. The tunneling probability across a barrier of the form in figure 5.14 (c) is given by

P = e
− 4π

√
2md(E

3/2
0 −E

3/2
1 )

2(E0−E1)h

Use the above expression to estimate the ratio between the tunneling probabilities for
the cases in part (a) and (b) at equilibrium, and when a reverse bias of 10 V is
applied.

i - GaN

n - GaN

Metal

i - GaN

n - GaN

Metal

Phantom 
Material

EC

E1

E0

A B C

Figure 5.14: Figure for problem 5.17.

• Section 5.4

Problem 5.18 A gold contact is deposited on GaAs doped at Nd = 5 × 20 cm−3.
Calculate the tunneling probability of the electrons to go into the semiconductor.

Problem 5.19 A metal with a work function of 4.2 V is deposited on an n-type silicon
semiconductor with an electron affinity of 4.0 V. Assume that there are no interface states.
Calculate the doping density for which there is no space charge region at zero applied bias.
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Problem 5.20 To fabricate very high-quality ohmic contacts on a large-bandgap material
one often deposits a heavily doped low-bandgap material. For example, to make an n-type
ohmic contact on GaAs, one may deposit n+InAs. Discuss why this would help to
improve the resistance of the contact.

Problem 5.21 Consider a W -n Si Schottky barrier on silicon doped at 1018 and
1020 cm−3. Calculate the tunneling probability of electrons for electrons with energies
near the conduction band in the two doping cases.

• Section 5.5

Problem 5.22 A (001) Si-SiO2 interface has ∼ 1011 cm−2 interface states. Assume that
each state corresponds to one defective bond at the interface. Calculate the fraction of
defective bonds for the interface.

Problem 5.23 Calculate the sheet resistance of a 0.5 μm thick poly film doped n-type at
1019 cm−3. This film is used to form a resistor of width 20 μm and length 0.1 cm.
Calculate the resistance of the contact if the electron mobility is 150 cm2/V·s.

• Section 5.6

Problem 5.24 The measured value of ΔEC for the AlGaAs/GaAs system is
approximately 0.6ΔEG. However, electron affinity rules predict a different value for
ΔEC . Show, using band diagrams and potential profiles, that an interfacial dipole present
at the AlGaAs/GaAs interface can explain this. Discuss both n-AlGaAs/n-GaAs and
n-AlGaAs/p-GaAs junctions.

Problem 5.25 Consider four different n-p+ Al0.3Ga0.7As/GaAs heterojunctions with
ND = 1017 and NA = 5 × 1018. The AlGaAs in these junctions is graded from x = 0 to
x = 0.3 over XGrade = 0 (abrupt), XGrade = 100 Å, XGrade = 300 Å, and
XGrade = 1 μm.
(a) Calculate and plot the energy band diagrams for the above four cases.
(b) When a forward bias is applied, how will the minority carrier current ratio
In−GaAs/Ip−AlGaAs vary in these four heterojunctions? Which one would you use as the
base-emitter junction in an n-p-n HBT?
Assume the dielectric constant of AlGaAs to be the same as that of GaAs.

Problem 5.26 In an attempt to increase the collector breakdown voltage of an
n-AlInAs/p-GaInAs/i-GaInAs/n+-GaInAs HBT, I replace the i-GaInAs collector with
i-InP. Unfortunately, this introduced a potential barrier in the conduction band of
ΔEC = 0.2eV . I decide to linearly grade the barrier over a distance of 50nm for GaInAs
(Eg = 0.7eV ) to InP (Eg = 1.4eV ). Design the electrostatics so that there is no barrier to
electron from over the graded region. Assume that EF = EV in the p base and EF = EC

in the n+ subcollector. How would the desing change if I decided to grade the region
parabolically as shown in figure 5.15.
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Linear Parabolic

EC EC

EV EV

50nm 50nm

GaInAs GaInAsInP InP

Figure 5.15: Figure for problem 5.26.
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Chapter 6

BIPOLAR JUNCTION
TRANSISTORS

6.1 INTRODUCTION

The bipolar junction transistor was the first three-terminal device in solid state electronics and
continues to be a device of choice for many digital and microwave applications. For a decade
after its invention, the bipolar device remained the only three-terminal device in commercial
applications. However, as the Si-SiO2 interface improved, the MOSFET has become dominant.
Heterojunction bipolar devices now have very high performance in terms of frequency and gain.
In figure 6.1 we show the structure and device performance parameters of a state of the art
InGaAs/InP heterojunction bipolar transistor. In a three terminal device the goal is to use a small
input to control a large output. The input could be an incoming weak signal to be amplified,
or a digital signal. The workings of a three terminal device can be understood by examining
how the flow of water can be controlled. In one case, let’s say the water was to flow in a pipe
of fixed diameter while in another, it could flow over an open channel. In figure 6.2 we show
two different ways one could design a system to control the water flow. On the left-hand side
sequence of figure 6.2 we show how a change in the ground potential can be used to modify
the water flow. Only the fraction of water that is above the bump will flow across the potential
profile. The value of the potential bump could be controlled by an independent control input.

Water flow can also be controlled by a faucet in which the faucet controls the constriction of
the pipe and thus the water flow. In a bipolar device one controls the potential profile in the
current flow channel by using the base current as a controlling agent. In a FET on the other hand
one controls the channel constriction by applying a gate bias.

As noted earlier, an important requirement for an electronic device is that a small change in
the input should cause a large change in the output, i.e., the device should have a high gain.
This requirement is essential for amplification of signals, tolerance of high noise margins in
digital devices, and the ability to have a large fan-out (i.e., the output can drive several additional
devices). Another important requirement is that the input should be isolated from the output. For

246
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Figure 6.1: State of the art n-InP/p+-InGaAs/n−-InP double heterojunction bipolar transistor
(DHBT). (a)SEM image of device, (b) dc I-V characteristics, and (c) high frequency current
gain and power gain. For this device, the average β ≈ 36 and VBR,CEO = 5.1 V (measured at
IC = 50 μA). Figures courtesy of M. Rodwell and Z. Griffith, UCSB.

the faucet example, these two requirements mean we should be able to turn the faucet on and off
with little effort and the water should not leak out of the faucet head!

In this chapter we will discuss static characteristics of the bipolar transistor.
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Fluid flow Fluid flow in a confined region

A potential energy profile created 
to stop flow
OFF state

Constriction is controlled by a “gate”
OFF state

A reduced profile 
allows flow

Opening in constriction 
allows flow

⇒ Field effect transistors 
channel constriction is
controlled by gate bias.

⇒BJT, HBTs        potential 
energy profile is controlled 
by base-emitter voltage

Controlling flow by potential 
energy change

Controlling flow by altering 
a constriction

Figure 6.2: Two different ways to control flow of a fluid. The bipolar and field effect transistors
use these two approaches to control current flow.

6.2 BIPOLAR TRANSISTOR: A CONCEPTUAL PICTURE

The bipolar junction transistor employs two back to back p − n diodes which with clever
design rules can have a high amplification and can operate at high frequency. It can also act as a
digital device and as a microwave device.
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Figure 6.3: A schematic of the structure and doping profiles of a bipolar junction transistor along
with a simplified view of the cross-section.

We have shown a state of the art bipolar device. A schematic of the device is shown in
figure 6.1. The device could have a doping of the form n+ − p-n or p+ − n-p. We will focus on
the n+ − p-n device. The emitter is heavily doped n−type, the p-region forms the base, and the
lower n region is the collector. The emitter doping Nde is much larger than the base doping Nab

to ensure that the device has a high current gain, i.e., that a small base current change produces
a large collector current change.

To understand how the device can have gain, let us consider a BJT where the emitter base
junction (EBJ) is forward biased and the base collector junction (BCJ) is reverse biased. This
biasing creates the forward active mode. The band profile of the device is shown in figure 6.4.
Note that the base width Wb is much smaller than the diffusion length of electrons in the p-
type base region. So that when electrons are injected from the emitter, most cross the base
without recombining with holes. The strong electric field these electrons see once they reach the
collector, cause them to be swept away and form the collector current.
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Figure 6.4: (a) Band profile of an unbiased n+p-n BJT. (b) Band profile of a BJT biased in the
forward active mode, where the EBJ is forward biased and the BJT is reverse biased.

We remind ourselves that if the EB diode is asymmetrically doped, the forward bias current
is essentially made up of injection of electrons into the p-side. This forward-biased current
can also be altered by a very small change in the forward bias voltage since the current depends
exponentially on the forward bias value. The forward-biased n+ emitter injects electrons into the
p-base. Some of the electrons recombine in the base with the holes, but if the base region is less
than the diffusion length of the minority carriers, most of them reach the depletion region of the
p-n base-collector diode and are swept out to form the collector current. The collector current is
proportional to the minority carriers (electrons) that reach the edge of the p−n depletion region,
as shown in figure 6.4b. Since the injected minority carriers are due to the emitter current, we
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have
IC = BIEn (6.2.1)

where IEn is the electron part of the emitter current and the factor B is called the base transport
factor. In the absence of e-h recombination, the emitter current is made up of electrons injected
from the n- to p-sides (IEn) and holes injected from p- to n-sides (IEp). Since the BCJ is reverse
biased, the collector current is related only to the electrons injected and we define the emitter
efficiency γe as

γe =
IEn

IEn + IEp
(6.2.2)

For optimum devices, γe and B should be close to unity. The ratio between the collector and
emitter currents is the current transfer ratio, α

IC

IE
=

BIEn

IEn + IEp
= Bγe = α (6.2.3)

This ratio is close to unity in good bipolar devices. In figure 6.5 we show a typical circuit for
a BJT in the forward-bias active mode. A change in the base current alters the minority carrier
density np in the base and causes a large change in the collector current. The ratio between the
collector current and the controlling base current is of great importance since this represents the
current amplification . The base current is made up of the hole current injected into the emitter
(IEp) and the hole current due to the recombination in the base with injected electrons from the
emitter (= (1−B)IEn). Thus

IB = IEp + (1 − B)IEn (6.2.4)

The base-to-collector current amplification factor, denoted by β is then

β =
IC

IB
=

BIEn

IEp + (1 − B)IEn
=

B(IEn/IE)

1 − B(IEn/IE)

=
Bγe

1 − Bγe
(6.2.5)

This gives for the current gain

β =
α

1 − α
(6.2.6)

The factor β can be quite large for the bipolar transistor. In the next section we will discuss the
mathematical derivation of the device characteristics.
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Figure 6.5: A schematic showing how the change in base current affects the majority carrier
injection density and the collector current in a bipolar device. (a) A circuit using a bipolar tran-
sistor. (b) The effect of base current variation on the injected minority charge and the collector
current. The collector current is much larger than the base current.

6.3 STATIC CHARACTERISTICS: CURRENT-VOLTAGE
RELATION

We will now develop a model for the current flow in a BJT. Initially we will use a simple
model which captures the essence of the device performance. Later we will discuss secondary
issues. In the bipolar device carriers from the emitter are injected “vertically” across the base
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while the base charge is injected from the “side” of the device, as can be seen in figure 6.6. If
we assume that the emitter width is wide, the device can be understood using a one-dimensional
analysis. We will use the following simplifying assumptions.

1. The electrons injected from the emitter diffuse across the base region and the field across
the base is small enough that there is no drift.

2. The electric fields are nonzero only in the depletion regions and are zero in the bulk mate-
rials.

3. The collector injection current is negligible when the BJT is reverse biased.

4. In describing voltages, we use the following notation. The first subscript of the voltage
symbol represents the contact with respect to which the potential is measured. For exam-
ple, VBE > 0 means the base is positive with respect to the emitter.

In general, a number of currents can be identified in the bipolar device, (figure 6.6) as follows:

• Base current:Is made of holes that recombine with electrons injected from the emitter
(Component I) and holes that are injected across the emitter-base junction into the emitter
(Component II). Once again we ignore the BCJ for the forward active region.

• Emitter current: Consists of the electron current that recombines with the holes in the base
region (III), the electron current which is injected into the collector (IV), and the hole
current injected from the base into the emitter (II).

Minority electron (V) and hole (VI) currents flow in the base-collector junction and are im-
portant when the emitter current goes toward zero. In our analysis, we will assume that all the
dopants are ionized and the majority carrier density is simply equal to the doping density. The
symbols for the doping density are (for the npn device): Nde—donor density in the emitter;
Nab—acceptor density in the base; Ndc—donor density in the collector. If the ionization of the
dopants is not complete we need to adjust for the ionization efficiency.

The back to back p − n diodes in the bipolar device can operate in four possible biasing
modes as shown in table 6.1. Depending upon the applications, the bipolar device operation
may span one or all of these modes. For example, for small-signal applications where one needs
amplification one only operates in the forward active mode, while for switching applications the
device may have to operate under cutoff and saturation modes and pass through the active mode
during the switching.

6.3.1 Current Flow in a BJT

Since the bipolar device is based on p − n diodes, we will use our understanding of current
flow of p − n diodes. Note that we will assume the emitter width is long compared to hole
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Figure 6.6: A schematic of an Si BJT showing the three-dimensional nature of the structure and
the current flow. Along the section AA′, the current flow can be assumed one-dimensional. The
various current components in a BJT are discussed in the text.

diffusion length while the base width is small compared to the electron diffusion length. We will
use the different axes and origins shown in figure 6.7. The distances are labeled xe, xb, and xc

as shown and are measured from the edges of the depletion region. The base width is Wb, but
the width of the “neutral” base region is Wbn as shown. We assume that Wb and Wbn are equal.
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Mode of operation EBJ bias CBJ bias
Forward active Forward (VBE > 0) Reverse(VCB > 0)
Cutoff Reverse (VBE < 0) Reverse (VCB > 0)
Saturation Forward (VBE > 0) Forward (VCB < 0)
Reverse active Reverse (VBE < 0) Forward (VCB < 0)

Table 6.1: Operation modes of the npn bipolar transistor. Depending upon the particular appli-
cation, the transistor may operate in one or several modes.

Later we will study the effect of the two widths being different. Using the p-n diode theory,
we have the following relations for the excess carrier densities in the various regions are(see our
discussion on carrier decay in chapter 3 and chapter 4):

δpe(xe = 0) = excess hole density at the emitter side of the EBJ

= peo [exp (eVBE/kBT ) − 1] (6.3.1)

δnb(xb = 0) = excess electron density on the base side of the EBJ

= nbo [exp (eVBE/kBT ) − 1] (6.3.2)

δnb(xb = Wbn) = excess electron density at the base side of the CBJ

(collector-base junction)

= nbo [exp (−eVCB/kBT ) − 1] (6.3.3)

δpc(xc = 0) = excess hole density at the collector side of the CBJ

= pco [exp (−eVCB/kBT ) − 1] (6.3.4)

As shown in figure 6.7 in these expressions the subscripts peo, nbo, and pco represent the
minority carrier equilibrium densities in the emitter, base, and collector, respectively. The total
minority carrier concentrations pe in the emitter, nb in the base, and pc in the collector are shown
schematically in figure 6.7b. Assuming 100% ionization of the dopants, the majority carrier
densities are neo = Nde, pbo = Nab, and nco = Ndc for the emitter, base, and collector. We
will assume that the emitter and collector regions are longer than the hole diffusion lengths Lp,
so that the hole densities decrease exponentially away from base regions.

To find the current flow we have to calculate the spatial variation of carrier densities. In
the base region, the excess electron density is given at the edges of the neutral base region by
equation 6.3.2 and equation 6.3.3 To obtain the electron density in the base we must solve the
continuity equation using these two boundary conditions, as discussed in section 3.9. The excess
minority carrier density in the base region is given by

δnb(xb) =
nbo

sinh
(

Wbn

Lb

) {
sinh

(
Wbn − xb

Lb

)[
exp

(
eVBE

kBT

)
− 1

]

+ sinh

(
xb

Lb

) [
exp

(
−eVCB

kBT

)
− 1

]}
(6.3.5)



256 CHAPTER 6. BIPOLAR JUNCTION TRANSISTORS

pe(xe = 0) nb(x)

Emitter         VBE            Base          VCB                Collector

peo

pbo nco

pco

IE

|EBJ| |     CBJ |
depletion
    layer

depletion
    layer

(a)

nbo

E
qu

ili
br

iu
m

   
de

ns
ity

Wbn

neo

– – ++

xcxe

(b)

nbopeo

xe = 0
xb= 0 xb =Wbn xc = 0

xb

pco

Wb

ICIB

Forward bias Reverse bias

Figure 6.7: A forward active mode BJT. (a) The equilibrium carrier concentrations of electrons
and holes and positions of the junction depletion regions in the npn transistor. (b) Minority
carrier distributions in the emitter, base, and collector regions.

The profile of the total minority carrier densities (i.e., background and excess) is shown in fig-
ure 6.7b. The electron distribution in the base is almost linear, as can be seen, and is assumed
to be so for some simple applications. Once the excess carrier spatial distributions are known
we can calculate the currents as we did for the p-n diode. We assume that the emitter-base cur-
rents are due to carrier diffusion once the device is biased. We have, for a device of area A and
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diffusion coefficients Db and De in the base and emitter, respectively,

IEn = IEB
n = eADb

dδnb(x)

dxb

∣∣∣∣
xb=0

(6.3.6)

IEp = IBE
p = −eADe

dδp(x)

dxe

∣∣∣∣
xe=0

(6.3.7)

These are the current components shown in figure 6.6 and represent the emitter current compo-
nents II, III, and IV. Assuming an exponentially decaying hole density into the emitter, we have,
as in the case of a p-n diode ,

IEp = −A

(
eDepeo

Le

)[
exp

(
eVBE

kBT

)
− 1

]
(6.3.8)

Using the electron distribution derived in the base, we have for the electron part of the emitter
current

IEn = − eADbnbo

Lb sinh
(

Wbn

Lb

) {
cosh

(
Wbn − xb

Lb

)[
exp

(
eVBE

kBT

)
− 1

]

− cosh

(
xb

Lb

) [
exp

(
−eVCB

kBT

)
− 1

]}∣∣∣∣
at xb=0

= − eADbnbo

Lb sinh
(

Wbn

Lb

) {
cosh

(
Wbn

Lb

)[
exp

(
eVBE

kBT

)
− 1

]

−
[
exp

(
−eVCB

kBT

)
− 1

]}
(6.3.9)

For high emitter efficiency we want IEn to be much larger than IEp. This occurs if the emitter
doping is much larger than the base doping. The total emitter current becomes

IE = IEn + IEp = −
{

eADbnbo

Lb
coth

(
Wbn

Lb

)
+

eADepeo

Le

}
[

exp

(
eVBE

kBT

)
− 1

]
+

eADbnbo

Lb sinh
(

Wbn

Lb

) [
exp

(
−eVCB

kBT

)
− 1

]
(6.3.10)

The collector current components can be obtained by using the same approach. Thus we have

IBC
n = eADb

dδnb(xb)

dxb

∣∣∣∣
xb=Wbn

(6.3.11)

IBC
p = eADp

dδp(xc)

dxc

∣∣∣∣
xc=0

(6.3.12)
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Using the results shown in the first part of equation 6.3.9 at xb = Wbn, we have

IBC
n = − eADbnbo

Lb sinh(Wbn/Lb)

[
exp

(
eVBE

kBT

)
− 1

]
+

eADbnbo

Lb
coth

(
Wbn

Lb

)[
exp

(
−eVCB

kBT

)
− 1

]
(6.3.13)

The hole current on the collector side is the same as for a reverse-biased p-n junction:

IBC
p = −eADcpco

Lc

[
exp

(
−eVCB

kBT

)
− 1

]
(6.3.14)

From the way we have defined the currents, the two current components flow along +x direction.
If we define IC as the total current flowing from the collector into the base, we have

−IC =

[
eADcpco

Lc
+

eADbnbo

Lb
coth

(
Wbn

Lb

)][
exp

(
−eVCB

kBT

)
− 1

]
− eADbnbo

Lb sinh
(

Wbn

Lb

) [
exp

(
eVBE

kBT

)
− 1

]
(6.3.15)

The base current is the difference between the emitter and collector currents: (IB = IE − |IC |).
It is interesting to point out that if the base region Wbn is much smaller than the diffusion length,
the electron gradient in the base region can be simplified by using the approximations

sinh(α) =
eα − e−α

2
= α +

α3

3!
+

α5

5!
+ · · ·

cosh(α) =
eα + e−α

2
= 1 +

α2

2!
+

α4

4!
· · ·

For the forward active mode if we ignore the current flow in the reverse-biased BCJ we get

IE =
−eADbnb0

Lb
coth

(
Wbn

Lb

)[
exp

(
eVBE

kBT

)
− 1

]
−eADepe0

Le

[
exp

(
eVBE

kBT

)
− 1

]
(6.3.16)

Here the first part is due to electron injection from the emitter into the base (III and IV) and the
second part is due to the hole injection from the base into the emitter (II). The collector current
is

IC =
eADbnb0

Lb sinh
(

Wbn

Lb

) [
exp

(
eVBE

kBT

)
− 1

]
(6.3.17)

Assuming that Wbn � Lb, we can expand the hyperbolic functions as noted above. The base
current is the difference between the emitter and collector current. We find that

IB =
eADepe0

Le

[
exp

(
eVBE

kBT

)
− 1

]
+

eADbnb0Wbn

2L2
b

[
exp

(
eVBE

kBT

)
− 1

]
(6.3.18)
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The first part represents the hole current injected from the base into the emitter and the second
part represents the hole current recombining with electrons injected from the emitter .

Having derived the current components, in the next section we will examine how material
properties and doping levels can be manipulated to improve device performance. It is useful to
recast the prefactor of the first term in the emitter current (equation 6.3.16) in a different form.
The prefactor, which we will denote by IS (we assume that Wbn � Lb so that coth α = 1/α),
is

IS =
eADbnbo

Wbn
=

e2A2Dbn
2
i

eANabWbn
=

e2ADbn
2
i

eQG

where QG is called the Gummel number for the transistor. It has a value

QG = NabWbn (6.3.19)

and denotes the charge in the base region of the device (assuming full ionization). As we will
see later, the Gummel number has an important effect on device performance.

To understand the operation of a BJT as an amplifier or a switching device it is useful to ex-
amine the device under conditions of saturation, forward active (or reverse active), and cutoff. In
figure 6.8 we show the band profile and the minority carrier distribution for each of these modes.
Note that in saturation where both EBJ and BCJ are forward biased, a large minority carrier den-
sity (electrons for the npn device) is injected into the base region. This plays an important role
in device switching, as will be discussed later. In the cutoff mode there is essentially no minority
charge in the base, since the EBJ and BCJ are both reverse biased. In the forward active mode,
the mode used for amplifiers, the EBJ is forward biased while the BCJ is reverse biased. Under
this mode IC � IB , providing current gain.

6.3.2 BJT Biasing in circuits

The three terminal bipolar transistor can be biased in one of three different configurations
shown in figure 6.9a. The configuration chosen depends upon the applications. As shown, one
of the terminals can be chosen as a common terminal between the input and output terminals.
The full I-V characteristics of a BJT in the common-base and the common-emitter configuration
are shown in figure 6.9b. In the common-base configuration the cutoff mode occurs when the
emitter current is zero. Note that the emitter current is finite, the collector current does not go
to zero at VCB = 0. The BCJ has to be forward biased at the turn on voltage (∼ 0.7 V for Si
devices) to balance the injected emitter current.

In the common-emitter mode, the cutoff mode occurs when the base current is zero and indi-
cates the region where the EBJ is no longer forward biased. The saturation region is represented
by the region where VCE = VBE and both EBJ and BCJ are forward biased.

6.3.3 Current-Voltage: The Ebers-Moll Model

It is useful in circuit applications to represent the I − V characteristics derived by us in terms
of a simple physical model. Several models have been developed to do so. Here we will discuss
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Figure 6.8: The band profile and minority charge distribution in a BJT under saturation, forward
active, and cutoff modes.

the Ebers-Moll model. We can write the currents given in equation 6.3.10 and equation 6.3.17
as

IE = −IES

[
exp

(
eVBE

kBT

)
− 1

]
+ αRICS

[
exp

(
−eVCB

kBT

)
− 1

]
(6.3.20)

IC = αF IES

[
exp

(
eVBE

kBT

)
− 1

]
− ICS

[
exp

(
−eVCB

kBT

)
− 1

]
(6.3.21)

where

IES =
eADbnbo

Lb
coth

(
Wbn

Lb

)
+

eADepeo

Le
(6.3.22)

ICS =
eADcpco

Lc
+

eADbnbo

Lb
coth

(
Wbn

Lb

)
(6.3.23)

αF IES = αRICS =
eADbnbo

Lb sinh
(

Wbn

Lb

) (6.3.24)

Notice the symmetry underlying these equations. This symmetry allows us to develop a simple
model described in figure 6.10. The parameter αF represents the common-base current gain in
the forward active mode, ICS gives the reverse-bias BCJ current, αR is the common-base current
gain for the inverse active mode (i.e., EBJ is reverse biased and CBJ is forward biased) and IES
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Figure 6.9: (a) Three possible configurations under which a BJT can be used in circuits. (b)
A schematic of the current-voltage characteristics of a BJT in the common-base and common-
emitter configuration.

gives the reverse-bias EBJ current. These equations represent two diodes that are coupled to
each other. The Ebers-Moll model is primarily useful to develop a physical description of the
bipolar device.

An important application of the Ebers-Moll model is to find the conditions for the saturation
mode. In the common-emitter mode, the saturation condition is given by

VCE(sub) = VBE + VCB = VBE − VBC (6.3.25)

Note that both VBE and VBC (= −VCB) are positive.
We also have the current conservation expression:

IE + IB + IC = 0 (6.3.26)
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Figure 6.10: The Ebers-Moll equivalent circuit of a bipolar transistor looks at the device as made
up of two coupled diodes.

Using this equation to eliminate IE from equation 6.3.20, we can obtain the values of VBE and
VBC in terms of IC , IB , and the parameters IES , ICS , αR, and αF . This gives for VCE(sat)

VCE(sat) = VBE − VBC =
kBT

e
�n

[
IC(1 − αR) + IB

αF IB − (1 − αF )IC
· ICS

IES

]
(6.3.27)

Substituting for ICS/IES from equation 6.3.24, we get

VCE(sat) =
kBT

e
�n

[
IC(1 − αR) + IB

αF IB − (1 − αF )IC
· αF

αR

]
(6.3.28)

Typical values of VCE(sat) are 0.1 to 0.2 V, as can be seen in example 6.2.

6.4 DEVICE DESIGN AND DEVICE PERFORMANCE PA-
RAMETERS

In this section we will examine how device design influences performance of a BJT. Through
material and geometric parameters we can control are doping densities, base width, device area,
and in some cases material choice (e.g. Si or GaAs etc.). Usually it would be difficult to change
the material system since it is difficult to alter the processing technology. The main performance
parameters one wants to improve are the current gain, and device operation frequency. Addition-
ally there are issues related to high voltage biasing that we will discuss later. We will focus on
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the forward active mode of the device so that we have the conditions

eVBE � kBT (6.4.1)

eVCB � kBT (6.4.2)

In a well-designed bipolar transistor we always have Wb � Lb.

Emitter Injection Efficiency

Bipolar transistor gain is intimately tied to emitter efficiency. The emitter injection efficiency
is the ratio of the electron current (in the npn BJT) due to the electron injection from the emitter
to the total emitter current. Thus,

γe =
IEn

IEn + IEp
(6.4.3)

For high emitter efficiency, IEp should be minimal. Under the voltage approximations made we
have from Eqns. 6.3.16 and 6.3.18,

IEp = −eADepeo

Le
exp

(
eVBE

kBT

)
(6.4.4)

IEn
∼= − eADbnbo

Lb tanh
(

Wbn

Lb

) exp

(
eVBE

kBT

)
(6.4.5)

Thus the emitter efficiency becomes

γe =
1

1 + (peoDeLb/nboDbLe) tanh (Wbn/Lb)
(6.4.6)

If the base width is small compared to the electron diffusion length, the tanh (Wbn/Lb) can be
replaced by (Wbn/Lb) and we have

γe
∼= 1

1 + (peoDeWbn/nboDbLe)
∼ 1 − peoDeWbn

nboDbLe
(6.4.7)

Thus for γe to be close to unity, we should design the device so that Wbn � Le and peo � nbo.
Thus a small base width and a heavy emitter doping compared to the base doping are essential.
Of course, the base width cannot be arbitrarily reduced.

Base Transport Factor

The second part of the device gain is related to how electrons injected from the emitter move
over the base. The base transport factor is the ratio of the electron current reaching the base-
collector junction to the current injected at the emitter-base junction. As the electrons travel
through the base, they recombine with the holes so that the base transport factor is less than
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unity . We have from equation 6.3.16 and equation 6.3.17 (in the forward active mode, the
collector current is essentially due to electron injection from the emitter)

B =
IC

IEn

∼= 1

cosh
(

Wbn

Lb

) (6.4.8)

For small base width we have

B ∼= 1 − W 2
bn

2L2
b

(6.4.9)

Note that the base transport factor depends upon the neutral base width, not the chemical base
width. Thus it depends upon the bias conditions. This causes the Early effect discussed later.

Collector Efficiency γc

The collector efficiency is the ratio of the electron current that reaches the collector to the
base-collector current. Due to the high reverse bias at the base-collector junction, essentially all
the electrons are swept into the collector so that the collector efficiency can be taken to be unity.

Current Gain

Since we know how the expression for the emitter efficiency and base transport factor we can
now examine the current gain. We are primarily interested in the ratio of the collector current
and the base current. The parameter α defined as the ratio of the collector current to the emitter
current is given by

α =
IC

IE
=

BIEn

IEn + IEp
= γeB

=

[
1 − peoDeWbn

nboDbLe

] [
1 − W 2

bn

2L2
b

]
(6.4.10)

The ratio of the collector current to the base current is extremely important since it is the base
current that is used to control the device state. This is given by

β =
α

1 − α
(6.4.11)

We can see that heavy emitter doping and narrow base width are critical for high β. An
important parameter characterizing the device performance is the transconductance, which de-
scribes the control of the output current (IC) with the input bias (VBE). The transconductance is
(IC ∝ exp (eVBE/kBT ))

gm =
∂IC

∂VBE
=

eIC

kBT
=

eβIB

kBT
(6.4.12)

The transconductance of bipolar devices is extremely high compared to that of field-effect tran-
sistors of similar dimensions. This is because of the exponential dependence of IC on VBE in
contrast to a weaker dependence of current on “gate bias” for field effect transistors.
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6.5 BJT DESIGN LIMITATIONS: NEED FOR BAND
TAILORING AND HBTs

So far in this chapter we have assumed that the emitter, base, and collector are made from the
same material, Of course this need not be the case since as we have noted in previous chapters
heterostructures can be fabricated with ease. In this section we will see the tremendous advan-
tages of using heterostructure concepts in bipolar transistors. In the BJT, once a material system
is chosen the only flexibility one has in the device design is the doping levels and the device
dimensions. This is not optimum for high-performance devices. Let us examine the material
parameters controlling the device performance parameters. We have seen that for the narrow
base width case

α =

[
1 − peoDeWbn

nboDbLe

] [
1 − W 2

bn

2L2
b

]
(6.5.1)

and the current gain β is

β =
α

1 − α
(6.5.2)

We have already noted that for β to be high, it is essential that: (i) the emitter doping be much
higher than the base doping, i.e., for an npn device (neo � pbo); and (ii) the base width be as
small as possible. In fact, the product pboWb, called the Gummel number, should be as small as
possible. However, a small base with relatively low doping (usually in BJTs neo ∼ 102-103pbo)
introduces a large base resistance, which adversely affects the device performance. From this
point of view, the Gummel number should be as high as possible.

One may argue that the emitter should be doped as much as possible maintaining neo � pbo

and yet having a high enough base doping to ensure low base resistance. However, a serious
problem arises from the bandgap shrinking of the emitter region that is very heavily doped.

If we assume that hole injection across the EBJ is a dominant factor, the current gain of the
device becomes

β =
α

1 − α
 nboDbLe

peoDeWbn
(6.5.3)

If the emitter bandgap shrinks by |ΔEg| due to doping, the hole density for the same doping
changes by an amount that can be evaluated using the change in the intrinsic carrier concentra-
tion,

nie (Eg − |ΔEg|) = nie (Eg) exp

( |ΔEg|
2kBT

)
(6.5.4)

where ΔEg is positive in our case. Thus the value of peo changes as

peo (Eg − |ΔEg|) ∝ n2
ie (Eg − |ΔEg|) (6.5.5)

= peo (Eg) exp

( |ΔEg|
kBT

)
(6.5.6)

The bandgap decrease with doping is given for Si by (Nd is in units of cm−3)

|ΔEg| = 22.5

(
Nd

1018
· 300

T (K)

)1/2

meV (6.5.7)
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The expression is reasonable up to a doping of 1019cm−3. At higher doping levels, the
bandgap shrinkage is not so large. For example, at a doping of 1020 cm−3the shrinkage is ∼
160 meV and not 225 meV as given by the equation above. As a result of the bandgap decrease,
the gain of the device decreases according to the equation

β =
DbNdeLe

DeNabWbn
exp

(
−|ΔEg|

kBT

)
(6.5.8)

were we have assumed full ionization, i.e.

peo

nbo
=

Nab

Nde
(6.5.9)

As a result of this for a fixed base doping, as the emitter doping is increased, initially the current
gain increases, but then as bandgap shrinkage increases, the current gain starts to decrease. From
the discussion above, it is clear that the conflicting requirements of heavy emitter doping, low
base doping, small base width, etc., as shown in figure 6.11, cannot be properly met by a BJT in
which the same bandgap semiconductor is used for the emitter and the base. This led Shockley
and Kroemer in the 1950s to conceive of the heterojunction bipolar transistor (HBJT or HBT),
where the emitter is made from a wide-gap material. In a typical HBT the emitter is made from
a material that has a bandgap that is, say, > 0.2 eV larger than the bandgap of the material used
in the base. Near the base side, the emitter material composition is graded so that there is a
smooth transition in the bandgap from the emitter side to the base side. A typical example of
an HBT structural layout is shown in figure 6.12a. In the case shown, the emitter material is
AlGaAs, which has a larger bandgap than GaAs, used for the base and the collector. We have
discussed the heterojunction in detail in section 5.6. There we realized that the maximum benefit
is obtained by grading the E-B junction such that the full bandgap differential can be used.

In figure 6.12b we show the band profile for the emitter and the base region. We can see that
if ΔEg is the bandgap difference between the emitter material bandgap and the base material
bandgap, this difference appears across the valence band potential barrier, seen by holes. Thus,
holes in the base see an increased barrier for injection into the emitter. As a result, the emitter
efficiency dramatically increases. The suppression of hole injection current is given by

IEp(HBT )

IEp(BJT )
= exp

(−ΔEg

kBT

)
The gain β in the device increases by the exponential factor. We have for β in an HBT

β =
DbNdeLe

DeNabWbn
exp

(
ΔEg

kBT

)[
1 − w2

bn

L2
b

]
(6.5.10)

Typically the values of ΔEg/kBT are ∼ 10, so that β improves by∼ 104. Due to the heavy
doping now allowed in wide emitter HBTs, the base can be made narrow without too large a
base resistance or the danger of punch through. This also avoids secondary effects such as Kirk
effect and Early effect discussed later.
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 CHALLENGESNEEDS

DEMANDS AND PROBLEMS FOR A

BIPOLAR JUNCTION TRANSISTOR

 • High gain
 • High emitter efficiency
 • High speed

Heavy emitter doping

• Low base doping
• Narrow base width

Bandgap shrinkage causing 
base injection

High base resistance

SOLUTION: HETEROJUNCTION BIPOLAR TRANSISTORS

Figure 6.11: Figure showing the conflicting requirements for high-performance BJTs. Het-
erostructure devices offer reconciliation of all these requirements.

Example 6.1 Consider an npn GaAs BJT that has a doping of
Nde = 5 × 1017 cm−3, Nab = 1017 cm−3. Compare the emitter efficiency of this device
with that of a similarly doped HBT where the emitter is Al0.3Ga0.7As and the base is
GaAs. The following parameters characterize the devices at 300 K:

Electron diffusion constant in the base, Db = 100 cm2s−1

Hole diffusion constant in the emitter, De = 15 cm2s−1

Base width, Wb = 0.5 μm
Bandgap discontinuity, ΔEg = 0.36 eV
Minority carrier length for holes, Le = 1.5 μm
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Figure 6.12: (a) A structural schematic of a heterojunction bipolar transistor made from GaAs
and AlGaAs. (b) The band profile for a homojunction and heterojunction transistor. In the HBT,
grading is used to avoid a potential “notch”.

For GaAs we have the emitter and base minority carrier concentrations

peo =
n2

i

Nde
=

(2.2 × 106)2

5 × 1017
= 9.7 × 10−6 cm−3

nbo =
n2

i

Nab
=

(2.2 × 106)2

1017
= 4.84 × 10−5 cm−3

The emitter efficiency is

γe = 1 − peoDeWb

nboDbLe
= 1 − (9.7 × 10−6)(15)(0.5 × 10−4)

(4.84 × 10−5)(100)(1.5 × 10−4)

= 0.99

In the HBT, the value of peo is greatly suppressed. The new value is approximately

peo(Al0.3Ga0.7As) =
n2

i (GaAs)

Nde
exp

(
−ΔEg

kBT

)
= peo(GaAs) exp

(
−ΔEg

kBT

)
= 9.4 × 10−12 cm−3

In this case the emitter efficiency is essentially unity.
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6.5.1 The Generalized Moll-Ross Relationship

This very important relationship first developed by Moll and Ross, and subsequently gener-
alized by Kroemer, is derived in this section. The Moll-Ross Relationship links the collector
current density to the applied base-emitter voltage VBE and to the Gummel number QG. It is a
very powerful relationship, since it shows that the nature of the doping in the base is inconse-
quential as far as the output current is concerned. Rather, the total number of dopants in the base
is the controlling factor. Kroemer’s generalization expands this to heterostructure devices.

Let us assume an n-p-n transistor with a high current gain such that the hole current Jp ≈ 0.
In the base of the transistor, we can write

Jn = μnn
dEFn

dx
(6.5.11)

and

Jp = μpp
dEFp

dx
(6.5.12)

Since Jp is assumed to be approximately zero, dEF p

dx ≈ 0, and so equation 6.5.12 can be rewritten
as

Jn = μnn
d

dx
(EFn − EFp) (6.5.13)

Inserting Einstein’s relationship

μn = Dn
e

kBT
(6.5.14)

and using the relations

EFn − Ei = kBT ln

(
n

ni

)
(6.5.15)

and

Ei − EFp = kBT ln

(
p

ni

)
(6.5.16)

we get
d

dx

[
ln

(
np

n2
i

)]
=

Jn

eDnn
(6.5.17)

or

d

[
ln

(
np

n2
i

)]
=

Jn

e
· p

Dnn2
i

· dx (6.5.18)

Let us integrate equation 6.5.18 from x = 0 to the edge of the neutral base x = Wbn.

np

n2
i

∣∣∣∣
Wbn

− np

n2
i

∣∣∣∣
x=0

= − np

n2
i

∣∣∣∣
x=0

=
Jn

e

∫ Wbn

0

p(x)

Dnn2
i

dx (6.5.19)

Here, because of Shockley boundary conditions, we have assumed np/n2
i

∣∣
Wbn

can be neglected.

The quantity np/n2
i

∣∣
x=0

is given by the law of the junction

np

n2
i

∣∣∣∣
x=0

= exp

(
eVBE

kBT

)
(6.5.20)
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This leads to the generalized Moll-Ross relation

Jn = −
e · exp

(
eVBE

kBT

)
∫ Wbn

0

(
p(x)

Dnn2
i

)
dx

(6.5.21)

where the integration is over the extent of the neutral base. In the case where ni and Dn are
constant throughout the base, or equivalently the material is homogeneous,

Jn = − eDnn2
i∫ Wbn

0
p(x)dx

exp

(
eVBE

kBT

)
= −eDnn2

i

QG
exp

(
eVBE

kBT

)
(6.5.22)

where

QG =

∫ Wbn

0

p(x)dx 
∫ Wbn

0

Nadx (6.5.23)

is the Gummel number, defined as the total number of acceptor atoms in the neutral base.

6.5.2 How much β do we need?

This question is very important, but it really has no universal answer. Different applications
have different minimum tolerances for β . This will be illustrated in the four examples shown
below. Because an understanding of these applications requires some knowledge of bipolar
frequency response, it is recommended that the reader examine chapter 7 before reading this
section. We thank Prof. Mark Rodwell for discussions on this topic.

Microwave power amplifiers

In figure 6.13, we show a basic BJT small-signal model. As derived in chapter 7,

Cin = Cπ + CBE =
τB + τC

re
+ CBE (6.5.24)

We will assume that Cπ >> CBE , so that Cin can be written as

Cin ≈ τB + τC

re
= (τB + τC) gm (6.5.25)

At a small signal frequency ω, the input current Iin is given by

Iin =

{
jω [(τB + τC) gm] +

gm

β

}
Vin (6.5.26)

For an efficient transistor, one wants the first term in this expression to dominate, or

ω (τB + τC) >
1

β
(6.5.27)
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Figure 6.13: Basic BJT small-signal model for microwave power amplifiers.

If τB + τC is the dominant delay, then we may assume τB + τC  (ωT )
−1. Equation 6.5.27 can

then be written as
ω

ωT
>

1

β
(6.5.28)

Since power amplifiers are rarely operated at frequencies a factor of 20 below the transit fre-
quency, β ∼ 20 is in most instances adequate for these applications.

Microwave low noise amplifiers

The noise figure of low noise amplifiers is determined by the shot noise at the input. For BJTs
this is the shot noise of the base current 2eIB , while for FETs it is that of the gate current 2eIG,
were IB is the base current of the BJT and IG is the reverse leakage current of the gate diode
of the FET. Since the forward bias base current IB = IC/β is typically much larger than the
reverse bias current IG, the minimum noise figure attainable at low frequencies (f << fT ) is
limited by β, as shown in figure 6.14. Hence a high β (typically β > 100) is desirable for low
noise applications.

Logic applications

To explain the relevant issues in logic circuits, we will use a representative logic family, CML.
Let us assume one gate driving n gates, connected as shown in figure 6.15. Also assume that
node A is at a high. In the absence of base current, the difference between the voltage high and
the voltage low ΔVL = IoRL. However, in the presence of base current, since node C is high, a
current nIB is sourced by the node. Hence the voltage at node C is VCC −nIBRL. This reduces
the logic difference to

ΔVL = − (VCC − IoRL) + (VCC − nIBRL) = (Io − nIB) RL = Io

(
1 − n

β

)
RL (6.5.29)

To provide adequate noise margin, it is necessary that

n

β
<< 1
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Figure 6.14: Minimum noise figure versus frequency for a BJT.
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Figure 6.15: One gate driving n gates in a CML circuit.

Typically, β ∼ 50 is desirable in such applications.

Flash analog-to-digital converters

An m-bit flash ADC is shown in figure 6.16 to illustrate the need for high β’s in comparators
using BJT-based differential amplifiers. These architectures are based on using N = 2m resistors
in a reference ladder connected to a reference voltage Vref and comparing each node voltage to
the input voltage Vin. If the input voltage is between Vj and Vj+1, the comparators A1 through
Aj will produce a 1 at their output, and the rest will produce a zero. This output is connected via
a decoder to a digital output. It is imperative that the voltage at any node, say Vj , be a predictable
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Figure 6.16: Circuit diagram of an m-bit flash analog-to-digital converter, N = 2m.

function of the number of resistors, i.e.

Vj =
(j − 1)

N
Vref

However, the base current flowing into the comparators causes a deviation from this linear be-
havior. It is clear that the nodes 1 and N have minimum deviation, since they are proximal to
the voltage supplies. However, as the nodes progress away from 1 and N toward the center of
the array, the deviation increases because of a continuously increasing fraction of base current
IB drawn by the comparators. The maximum deviation is thus instinctively understood to be at
the center node j = N/2 and is

〈ΔV 〉 =
1

8
N2RuIB (6.5.30)

Therefore IB should be reduced as much as possible, and hence β should be maximized. β >
100 is desirable for such applications.
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6.6 SECONDARY EFFECTS IN REAL DEVICES

In the derivations of the bipolar device characteristics, we have made a number of simplifying
assumptions. There are important secondary effects that make the device characteristics deviate
from those derived so far. These deviations have important effects on circuit design as well as
on the limits of device performance.

6.6.1 High Injection: The Kirk Effect

As will be shown in our high frequency analysis of the bipolar transistor in chapter 7, in order
to achieve high frequency device operation, it is essential to operate the device at high current
density. The reason for this in essence is that many important delays in the transistor have their
origin in charging capacitances of the form

C =
εAj

wd
(6.6.1)

where Aj is the area of the capacitor (typically the area of the p-n junction) and wd is the junction
depletion depth. Delays in the device are of the form

τ = rj · C (6.6.2)

where

rj =
∂V

∂I
=

kBT

eI
(6.6.3)

is the ac resistance of the junction. The delay time τ can therefore be written as

τ =
kBT

eI
· εAj

wd
=

kBT

e

ε

wd
· 1

J
(6.6.4)

where J = I/Aj is the current density. Thus it is imperative to increase J if one needs to reduce
τ and hence increase the maximum device operating frequency.

There is, however, a maximum current density that the device can be operated at, above which
the β of the transistor and the device frequency response drop catastrophically. Essentially, once
the current density reaches this maximum value, the effective base length (i.e. the length between
the emitter and the collector which electrons must diffuse across) becomes wider as a result of
space-charge injection into the collector. This phenomenon is known as the Kirk Effect, and the
associated current density at which it occurs is called the Kirk Threshold , JKirk. We will now
explain why this occurs.

The basic analysis of bipolar transistors carried out in this chapter involved applying Shock-
ley boundary conditions at the reverse biased base-collector junction. Under this assumption,
the minority carrier density drops to zero at the collector edge of the base region and is zero
everywhere within the base-collector depletion region. This of course is physically not possible,
because having zero minority carriers within the junction requires carriers to travel at extremely
high velocities as dictated by current continuity.

JC = enp,Cve (6.6.5)
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as np,C → 0

ve → ∞
where np,C is the electron concentration at the base-collector junction. Since in reality the bulk
velocity in the base will saturate at some value vs, np,C cannot drop to zero, but instead drops to
a value

np,C =
JC

evs
(6.6.6)

Because electrons in the depleted collector all travel at the saturated velocity vs, the injected
carrier concentration in the collector will everywhere be equal to np,C , and the net charge density
in the collector

NC,net = Nd,C − np,C (6.6.7)

The resulting charge profile, as well as electric field profile in the collector region, for a device
under dc bias with collector doping Nd,C is shown in figure 6.17. Here we have assumed that
the device is biased such that the n− collector region is fully depleted (this is typically the case
for bipolars in modern circuits). As indicated in figure 6.17c, the slope of the electric field in the
collector region is given by

dE
dx

=
eNC,net

ε
(6.6.8)

We will now consider the effect that increasing the collector current density JC has on the
charge distribution and electric field in the structure. We assume that the voltage across the base-
collector junction maintains a constant value VCB , implying that the total potential drop across
the junction is VCB + Vbi. Under this assumption, the area underneath the electric field curve in
figure 6.17c always maintains a constant value VCB + Vbi. The voltage drops in the p+ and n+

regions at the edge of the base-collector depletion region are very small relative to the voltage in
the n− layer, and hence the area of the shaded region in figure 6.17c is assumed to be VCB +Vbi.
Equivalently, the total base-collector depletion depth wd,BC can be assumed to be approximately
equal to the collector width wC .

As JC increases, the injected charge density in the collector np,C must increase to maintain
current continuity, as indicated by equation 6.6.6. This causes the net charge in the collector
NC,net to decrease (equation 6.6.7). Hence the slope of the electric field profile in the collector,
which is proportional to NC,net, decreases. At the critical current density

Jcrit = eNd,Cve (6.6.9)

the injected mobile charge np,C exactly balances the ionized donor charge Nd,C , resulting in
zero net charge as well as a constant electric field in the collector (see figure 6.18). Concur-
rently, the depletion region depth at the base edge xpC decreases, since the electric field at the
base edge of the collector must decrease in order for the shaded area in figure 6.17c to remain
constant. Similarly, the depletion region in the n+ subcollector xnC increases, as the region has
to terminate a higher electric field.

As JC > Jcrit, the slope of the electric field reverses sign, as NC,net = Nd,C − np,C is now
negative. This process continues until another critical current threshold is reached, when the



276 CHAPTER 6. BIPOLAR JUNCTION TRANSISTORS

|E|

dE
dx = e

ε (Nd,C − np,C)

Figure 6.17: (a) Schematic diagram of a typical bipolar transistor structure. The EBJ is forward
biased, and the BCJ is reverse biased such that the collector is fully depleted. (b) Corresponding
charge profile in the device. The space charge in the device results from depletion charge (light
gray) and injected mobile charge (dark gray). (c) Electric field in the collector region.

electric field at the base-edge reaches zero (and equivalently the depletion region width xpC =
0). The current density when this condition occurs is called the Kirk threshold current density
and is given the symbol JKirk. Its value can be readily calculated by solving equation 6.6.6-
equation 6.6.8 subject to the conditions that the electric field at the base edge of the collector is
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JC < Jcrit

JC = Jcrit

JC = JKirk

wC xnCxpC

|E|

Figure 6.18: Electric field profile in the collector when JC < Jcrit, JC = Jcrit, and
JC = JKirk. The depletion extension into the base and subcollector are labeled xpC and xnC ,
respectively. xpC and xnC shown in this figure correspond to the profile with JC = Jcrit.

zero and the area underneath the electric field is VCB + Vbi. From that we get the following set
of equations.

1

2
EmaxwC = VCB + Vbi (6.6.10)

Emax

wC
=

dE
dx

=
e

ε
(nKirk − Nd,C) (6.6.11)

nKirk =
JKirk

evs
(6.6.12)

Combining these equations and solving for JKirk gives us

JKirk =

[
2ε

ew2
C

(VCB + Vbi) + Nd,C

]
evs (6.6.13)

Let us examine the consequence of reaching the Kirk threshold. If one assumed that the
process of electric field modification with increasing current density described in this section
were to continue, then a situation occurs where the direction of the electric field reverses in a
region wrev near the base-collector edge, as shown in figure 6.19a. This corresponds to the band
diagram shown in figure 6.19b. However, this is an unphysical situation for homojunctions, as
there is no blocking barrier for holes. Hence the holes from the base would flood the collector to
achieve the physical situation of the holes being contained within a region ΔwB in the collector.
Here, they neutralize the injected negative charge, resulting in zero electric field within this
region. This is shown in figure 6.20.
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JC > JKirk (hypothetical)

JC = JKirk

wC

(a)

EC

EF,n

EV
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(b)

eVBC

|E|

Figure 6.19: (a) Hypothetical electric field profile in the collector if the electric field were to
continue evolving as described earlier after JC > JKirk. (b) Band diagram corresponding to
JC > JKirk above.

Now, electrons diffusing across the base must diffuse over a distance wB + ΔwB before
they are swept into the collector by the electric field in the depletion region. This effective
extension of the base region is called base widening. The consequence is a rapid increase in
base recombination or a decrease in β for JC > JKirk. It it therefore critical that JKirk be
maximized. From equation 6.6.13, we can see that this can be achieved by
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Figure 6.20: (a) Electric field profile, (b) charge profile, and (c) band diagram in the collector
region when JC > JKirk.
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1. Minimizing wC

2. Maximizing Nd,C

3. Maximizing vs

Increasing Nd,C and decreasing wC both lead to higher electric fields in the collector, thus
decreasing the breakdown voltage. Therefore, materials with larger bandgaps and higher electron
velocity characteristics (such as InP) are preferred for collector regions.

In figure 6.1c, we showed the current-gain cutoff frequency fT versus drain current JC for a
state-of-the-art InP-based bipolar transistor. Indeed, we see that initially, fT increases with JC .
However, as JC becomes larger, fT saturates and eventually begins to drop once JC > JKirk.

6.6.2 High Injection: Thermal Effects

At high injection levels there is thermal heating of the bipolar device since a power level of
ICVBC is dissipated. As the temperature of the device changes the current usually increases
further. This is due to the exponential dependence of the injection current and the increase in
the recombination time (which increases faster than the increase in the base transit time), which
increases the base transport factor. As the current increases, a further increase in heat dissipation
occurs until the device can be burnt out if proper design considerations are not met.

6.6.3 Base Width Modulation: The Early Effect

As seen clearly in our discussion of the Kirk Effect, the quantity Wbn that appeared in our
derivation for the current-voltage characteristics is not the metallurgical base width Wb, but the
distance which electrons must diffuse before they are swept into the collector by large electric
fields. For Wbn � Lb we can see from equation 6.3.17 that the collector current

IC ∝ 1

Wbn

We saw that Wbn can be affected by the collector current density IC for high injection conditions.
Additionally, Wbn (and therefore IC) also vary with the applied base-collector bias VBC . This
non-ideal behavior is known as the Early Effect. The physical reason for it is illustrated in
figure 6.21. An increase in VBC at a fixed emitter-base voltage results in an increase in the base-
collector depletion width and a subsequent decrease in Wbn. This results in an increase in the
slope of the minority carrier profile in the base, resulting in an increased collector current IC . As
can be seen in figure 6.21b, the Early Effect results in a finite output resistance of the transistor,
which we will now show is

Ro =
VA

IC
(6.6.14)

where VA is called the Early voltage.
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Figure 6.21: (a) Slope of the electron profile in the base increases when VBC is increased,
resulting in an increase in IC . (b) Device dc I-V characteristics when Early Effect is accounted
for.

Using the Moll-Ross relationship in equation 6.5.22, the variation of IC with respect to VBC

can be written as

∂IC

∂VBC
= −eDnn2

i AE exp

(
eVBE

kBT

)
· ∂

∂x

(
1∫ Wbn

0
p(x)dx

)
(6.6.15)

= +eDnn2
i AE exp

(
eVBE

kBT

)
· p(Wbn)[∫ Wbn

0
p(x)dx

]2

∂(Wbn)

∂VBC
(6.6.16)

Collecting terms, we can simplify this expression to

∂IC

∂VBC
= −IC

[
p(Wbn) · 1∫ Wbn

0
p(x)dx

· ∂Wbn

∂VBC

]
= − IC

VA
=

IC

|VA| (6.6.17)
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where

VA =

∫ Wbn

0
p(x)dx

p(Wbn) ∂Wbn

∂VBC

(6.6.18)

is defined as the Early voltage. It is clear that VA is a bias-dependent quantity and hence is best
defined for a particular base-collector voltage, which is chosen to be VBC = 0. It turns out that
for heavily doped base regions (used in most high performance devices), the variation of VA with
VBC is small.

Let us now study the expression for VA. The quantity∫ Wbn

0

p(x)dx

was defined as the Gummel number QG(cm−2). If we take the derivative of QG with respect to
VBC , we get

∂QG

∂VBC
=

∂

∂VBC

(∫ Wbn

0

p(x)dx

]
= p(Wbn)

(
∂Wbn

∂VBC

)
(6.6.19)

So VA can be rewritten as

VA =
QG

∂QG/∂VBC
(6.6.20)

The change in base charge with respect to VBC is by definition the base-collector depletion
capacitance CBC , or

CBC =
e∂QG

∂VBC
(Fcm−2) (6.6.21)

Thus VA can be written as

VA =
eQG

CBC
(6.6.22)

Both QG and CBC are measured at VBC = 0. Variations in QG due to changes in VBC

are considered negligible, giving a constant VA independent of bias. In actuality, the output
conductance always increases with VBC because the decrease in CBC with bias tends to be
smaller than the decrease in QG, since CBC is determined dominantly by the depletion layer
thickness in the collector.

To minimize the output conductance, or equivalently increase the Early voltage, one must
increase the Gummel number QG and decrease CBC . The path with least penalty is to increase
QG, because a decrease in CBC is equivalent to an increase in the collector depletion region
thickness, which in high frequency transistors may result in an unacceptable collector transit
delay.

6.6.4 Drift Effects in the Base: Nonuniform Doping

We have assumed so far that the base doping is uniform and consequently there is no built-in
electric field in the base region. In real devices the doping can be quite nonuniform, especially if
the doping is done by ion implantation. The nonuniform doping causes a built-in field that can
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Figure 6.22: Avalanche breakdown related characteristics of a bipolar transistor in the common-
base and common-emitter configurations.

help or hinder the carriers injected into the base from the emitter. Of course, if the doping can
be made non-uniform in a controlled manner, it can be exploited to shorten the base transit time.

6.6.5 Avalanche Breakdown

Just as in the case of the p-n diode, the avalanche process limits the collector-base voltage
that the transistor can sustain. This then sets the limit on the power that can be obtained by
the transistor. The breakdown due to the impact ionization (avalanching) is reflected in the
I-V characteristics of the transistor in a manner shown in figure 6.22. In the common-base
configuration, the breakdown occurs at a well defined collector-base voltage BVCBO. On the
other hand, for the common-emitter configuration, the breakdown is not as sharply reflected
in the device output characteristics. The breakdown in the common-emitter configuration also
occurs at a lower value of VCE than it does in the common-base configuration.
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In the common-base configuration, as VCB is increased, the breakdown is essentially similar
to that of a single p-n junction discussed in chapter 4. The current coming from the emitter has
little effect on the breakdown. However, in the common-emitter configuration, as soon as the
impact ionization process starts, say, in an npn BJT, the secondary holes are injected into the
base and act as a base current, leading to increased emitter current and eventual current runaway
as the process snowballs.

6.6.6 Low Injection Effects and Current Gain

In our calculations for the BJT junction currents we have assumed that in the space charge
region, the junctions are “ideal,” i.e., there is no current flow due to recombination-generation
effects. In chapter 5, we discussed how non-ideal effects arising from recombination genera-
tion in the depletion region alter the current flowing in the junction. This effect is particularly
important under low injection (i.e., low values of VEB) conditions.

If we examine the forward-biased EBJ for a device operating in the forward active mode, the
base current will have an “ideal” current component and a “non-ideal” current component arising
from generation-recombination. We can write

IB =
eADenoe

L
exp

(
eVEB

kBT

)
+

eAniWEBJ

2τ
exp

(
eVEB

2kBT

)
where the second term is due to recombination in the emitter-base junction depletion region
(WEBJ ). The recombination time is τ . The base current may be written as

IB = IS exp

(
eV

mkBT

)
where m is the junction ideality factor.

The collector current is not greatly influenced by the recombination-generation process. At
low injection the recombination-generation part of the base current dominates and as a result,
the current gain β is reduced. As the injection (VEB value) is increased, the recombination part
becomes negligible and the value of β reaches its ideal value calculated earlier.

In section 6.3.3 we discussed the Ebers-Moll model for bipolar transistors. This model does
not account for some of the issues discussed in this section. A more advanced model that includes
more realistic effects is the Gummel-Poon model. Three important effects are incorporated in
the Gummel-Poon model:

• Recombination current in the emitter depletion region under low injection levels.
• Reduction of current gain at high injection levels.
• Finite output conductance in terms of an Early voltage, VA.

6.6.7 Current Crowding Effect

The picture we have developed for the BJT is a one-dimensional picture. In reality, the base
current flows along the directions perpendicular to the emitter, as can be seen from figure 6.6.
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Figure 6.23: Top view and the cross-section of a typical device using an interdigitated emitter.

There is a voltage drop IR across the base cross-section that becomes increasingly important at
high injections and high frequencies. As a result of this potential drop, the edge of the emitter
may be forward biased but the “core” of the emitter region may not be forward biased. Higher
current densities would thus flow along the edges of the emitter. This effect is called emitter
crowding and, because of it, the high injection effects discussed above can be important even at
low total current values.

Emitter crowding has an adverse effect on power transistors where high current values are
required. It is essential for these transistors that the emitter be properly designed. Computer
simulation techniques are used to study the current flow so that an optimum emitter can be
used. The emitter crowding effects can be suppressed by increasing the perimeter-to-area ratio
of the emitter. This is often done by using long fingers for the emitter and base contacts in the
“interdigitated” approach shown in figure 6.23.

Example 6.2 Consider an npn silicon transistor at 300 K with a base doping of
5×1016 cm−3 and a collector doping of 5×1015 cm−3. The width of the base region is 1.0
μm. Calculate the change in the base width as VCB changes from 1.0 to 5.0 V. Also
calculate how the collector current changes and determine the Early voltage. Assume that
Db = 20 cm2/s, VBE = 0.7 V, and Wb � Lb.
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The depletion width at the base-collector junction is shared between the base and the
collector region. The extent of depletion into the base side is given by

ΔWb =

{
2εs(Vbi + VCB)

e

(
Ndc

Nab(Nab + Ndc)

)}1/2

The built-in voltage Vbi is given by

Vbi =
kBT

e
ln

NabNdc

n2
i

= (0.026(V )) × �n(1.1 × 1012)

= 0.721 V

For an applied bias of 1 V, we get

ΔWb =

{
2 × (8.84 × 10−14 × 11.9 F/cm)(1.72 V)

(1.6 × 10−19 C)
× 1

5.5 × 1017 cm−3

}1/2

= 6.413 × 10−6 cm = 0.064 μm

The neutral base width is thus
Wbn = 0.936 μm

When the collector-base voltage increases to 5 V, we get

ΔWb = 0.117 μm

The neutral base width is
Wbn = 0.883 μm

In the limit of Wbn � Lb we have for the collector current density (using equation 6.3.17
with sinh (Wbn/Lb) ∼ Wbn/Lb)

JC =
eDbnbo

Wbn
exp

(
eVBE

kBT

)
where

nbo =
n2

i

Nab
=

2.25 × 1020

5 × 1016
= 4.5 × 103 cm−3

For the base-collector bias of 1 V, we have Wbn = 0.936 μm. The collector current density
is then

JC =
(1.6 × 10−19 C) × (20 cm2 s−1) × (4.5 × 103 cm−3)(4.93 × 1011)

(0.936 × 10−4 cm)

= 75.8 A/cm2

When the collector-base bias changes to 5 V, the current density becomes

JC = 80.35 A/cm2
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The slope of the JC vs. VCE curve is then

dJC

dVCE

∼= ΔJC

ΔVCE

∼= 80.35 − 75.8

4
Acm−2 V−1

We define the Early voltage VA through the relation

dJC

dVCE
=

JC

VCE + VA

Equating the two relations, we get

VA
∼= 64.9 V

Example 6.3 Consider a npn Si-BJT at 300 K with the following parameters:

Nde = 1018 cm−3

Nab = 1017 cm−3

Ndc = 5 × 1016 cm−3

Db = 30.0 cm2s−1

Lb = 15.0 μm

De = 10.0 cm2s−1

Le = 5.0 μm

(i) Calculate the maximum base width, Wb, that will allow a current gain β of 100 when
the EBJ is forward biased at 1.0 V and the BCJ is reverse biased at 5.0 V.
(ii) Describe two advantages and two disadvantages of making the base smaller.

Since the base width is much smaller than the base diffusion length, we have for the
emitter and collector current

IE =

[
eADbnb0

Wbn
+

eADepe0

Le

] [
exp(

eVBE

kBT
) − 1

]

IC =

[
eADbnb0

Wbn

] [
exp(

eVBE

kBT
) − 1

]
The base current is the difference of these and the current gain β is

β =
IC

IB
=

Dbnb0Le

Depe0Wbn
= 100

This gives for Wbn

Wbn = 1.5 × 10−4 cm
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This is the neutral base width. The actual base width will be larger and we need to
calculate the depletion on the base side at the BCJ due to the biasing of the device. Since
the EBJ is strongly forward biased, there is essentially no depletion of the base at this
junction.

The built-in voltage on the BCJ is

Vbi =
kBT

e
ln

(
NabNdc

n2
i

)
= 0.8 V

Using the Vbi value we find that the depletion width on the base side of the EBJ for a 5 volt
bias at the base collector junction is

ΔW (V = 5 V) = 1.59 × 10−5 cm

and the base width becomes

Wb = Wbn + 1.59 × 10−5 = 1.659 × 10−4 cm

(ii) Two disadvantages of a shorter base:
• The output conductance will suffer and the collector current will have a stronger
dependence on VCB .
• The device may suffer punch through at a lower bias.

Two advantages:
• The current gain will be higher.
• The device speed will be faster.

Example 6.4 Consider a npn Si-BJT at 300 K with the following parameters:

Nde = 1018 cm−3

Nab = 1017 cm−3

Ndc = 1016 cm−3

Db = 30.0 cm2s−1

Lb = 10.0 μm

Wb = 1.0 μm

De = 10 cm2s−1

Le = 10.0 μm

Emitter thickness = 1.0 μm

Device area = 4.0 × 10−6 cm2

Calculate the emitter efficiency and gain β when the EBJ is forward biased at 1.0 V and
the BCJ is reverse biased at 5.0 V.

Calculate the output conductance of the device defined by

go =
ΔIC

ΔVCB
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To solve this problem we need to calculate the neutral base width in the device. Also note
that since the emitter thickness is small compared to the carrier diffusion length in the
emitter, we will use the narrow diode theory to calculate the emitter efficiency. .

Using the parameters given, the built-in voltage in the BCJ is

Vbi =
kBT

e
ln

(
1017.1016

2.25 × 1020

)
= 0.757 V

The depletion width on the base side of the BCJ is found to be

δW (5.0 V) = 8.296 × 10−6 cm

and
δW (6.0 V) = 8.981 × 10−6 cm

Thus the neutral base width is

Wbn(5.0 V) = 9.17 × 10−5 cm

The emitter efficiency is (for a narrow emitter of width We)

γe = 1 − pe0DeWbn

nb0DbWe
= 0.969

We find that the base transport factor is

B = 1 − W 2
bn

2L2
b

= 0.996

This gives
α = γeB = 0.9656

and the current gain is

β =
α

1 − α
= 28

The collector current is

IC =
eADbnb0

Wbn

[
exp

(
eVBE

kBT

)
− 1

]
− eADbnb0Wbn

2L2
b

[
exp

(
eVBE

kBT

)
− 1

]
with the second part being negligible.

We find that
IC(5.0 V) = 23.79 A

We now calculate the neutral base width when the BCJ is reverse biased at 6.0 V. This is

Wbn(6.0 V ) = 9.1 × 10−5 cm

This gives
IC(6.0 V ) = 23.973 A

The output conductance is now
go = 0.183 Ω−1
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6.7 PROBLEMS

Temperature is 300 K unless otherwise specified.

• Section 6.3

Problem 6.1 An npn HBT, shown in figure 6.24, is illuminated leading to an optical
generation of 1020 1

cm3s . τN = τP = 1ns. Assume Shockley boundary conditions.

1. Assume that all the light is absorbed in the collector depletion region. How will
IB , IC , and IE be different from the case where there is no illumination?

2. Now assume that all the light is absorbed in the (short) neutral base region. Again
explain how IB, IC , and IE be different from the case where there is no
illumination? Assume that the emitter injection efficiency is 1.

A

Emitter
n

Base 
p

Collector 
n

B

Emitter
n

Base 
p

Collector 
n

Figure 6.24: Figure for problem 6.1.

Problem 6.2 Consider an npn transistor with the following parameters:

Db = 20 cm2 s−1 De = 10 cm2 s−1

Nde = 5 × 1018 cm−3 Nab = 5 × 1016 cm−3

Ndc = 5 × 105 cm−3 Wb = 1.0 μm

τB = τE = 10−7 s n2
i = 2.25 × 1020 cm−6

A = 10−2 cm2
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Calculate the collector current in the active mode with an applied emitter base bias of
0.5 V. What is the collector current when the base current is now increased by 20%?

Problem 6.3 An Si npn transistor at 300 K has an area of 1 mm2, base width of 1.0 μm,
and doping of Nde = 1018 cm−3, Nab = 1017 cm−3, Ndc = 1016 cm−3. The minority
carrier lifetimes are τE = 10−7 = τB ; τC = 10−6 s. Calculate the collector current in the
active mode for (a) VBE = 0.5 V, (b) IE = 2.5 mA, and (c) IB = 5 μA. The base diffusion
coefficient is Db = 20 cm2s−1.

Problem 6.4 An npn silicon transistor is operated in the inverse active mode (i.e.,
collector-base is forward biased and emitter base is reverse biased). The doping
concentrations are Nde = 1018 cm−3; Nab = 1017 cm−3, and Ndc = 1016 cm−3. The
voltages are VBE = −2 V, VBC = 0.6 V. Calculate and plot the minority carrier distribution
in the device. Also calculate the current in the collector and the emitter. The device
parameters are: Wb = 1.0 μm, τE = τB = τC = 10−7s, Db = 20 cm2s−1, De =
10 cm2s−1, Dc = 25 cm2s−1, A = 1 mm2.

Problem 6.5 Calculate the error made in the emitter efficiency expression (i.e., equation
6.4.7 versus equation 6.4.6) when one makes the approximation given in the text for tanh.
Obtain the error as a function of the ratio of Lb to Wbn.

Problem 6.6 Plot the dependence of the base transport factor in a bipolar transistor as a
function of Wb/Lb over the range 10−2 ≤ Wb/Lb ≤ 10. Assume that the emitter
efficiency is unity. How does the common-emitter current gain vary over the same range of
Wb/Lb?

Problem 6.7 In an npn bipolar transistor, calculate and plot the dependence of the emitter
efficiency on the ratio of Nab/Nde in the range 10−2 ≤ Nab/Nde ≤ 1. Calculate the
results for the cases: (a) De = Db, Le = Lb,Wb = Lb, and (b)
De = 0.2Db, Le = 0.2Lb,Wb = 0.1Lb.

Problem 6.8 In a uniformly doped npn bipolar transistor, the following current values are
measured (see figure 6.6 for the current definitions):

IEn = 1.2 mA IEp = 0.1 mA

IC = InC = 1.19 mA IRBE = 0.1 mA

Determine the parameters α, β, γe for the transistor.

Problem 6.9 Consider an npn bipolar transistor at 300 K with the following parameters:

Nde = 5 × 1018 s; Nab = 5 × 1016 cm−3; Ndc = 1015 cm−3

De = 10 cm2 s; Db = 15 cm2 s; Dc = 20 cm2 s
τE = 10−8 s; τB = 10−7s; τC = 10−6 s
Wb = 1.0 μm; A = 0.1 mm2

Calculate the emitter current and the collector current as well as the values of α, γe, β for
VBE = 0.6 V; VCE = 5 V.
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Problem 6.10 The mobility of holes in silicon is 100 cm2/V·s. It is required that a BJT be
made with a base width of 0.5 μm and base resistivity of no more than 1.0 Ω-cm. It is also
desired that the emitter injection efficiency be at least 0.999. Calculate the emitter doping
required. The various device parameters are

Lb = 10 μm

Le = 10 μm

De = 10 cm2s−1

Db = 20 cm2s−1

What is the current gain β of the device? Assume Wbn = Wb.

Problem 6.11 Consider a npn Si-BJT at 300 K with the following parameters:

Nde = 1018 cm−3

Nab = 1017 cm−3

Ndc = 5 × 1016 cm−3

Db = 30.0 cm2s−1

Lb = 15.0 μm

De = 10.0 cm2s−1

Le = 5.0 μm

(i) Calculate the maximum base width, Wb, that will allow a current gain β of 100 when
the EBJ is forward biased at 1.0 V and the BCJ is reverse biased at 5.0 V.
(ii) Describe two advantages and two disadvantages of making the base smaller.

Problem 6.12 The VCE(sat) of an npn transistor decreases as the base current increases
for a fixed collector current. In the Ebers-Moll model, assume αF = 0.995, αR = 0.1, and
IC = 1.0 mA. At 300 K, at what base current is the VCE(sat) value equal to (a) 0.2 V, (b)
0.1 V?

Problem 6.13 Consider an npn bipolar device in the active mode. Express the base
current in terms of αF , αR, IES , ICS , and VBE , using the Ebers-Moll model.

Problem 6.14 Derive the expressions for the emitter and collector current for a pnp
transistor in analogy with the equations derived in the text for the npn transistor.

Problem 6.15 An npn silicon bipolar device has the following parameters in the
Ebers-Moll model at 300 K:

αF = 0.99; αR = 0.2

Calculate the saturation voltage VCE for IC = 5 mA and IB = 0.2 mA. Why is IC/IB not
equal to αF /(1 − αF )?
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• Section 6.5

Problem 6.16 Consider an npn silicon bipolar transistor in which
Wb = 2.0 μm, Le = Lb = 10.0 μm, and De = Db = 10 cm2s−1. Assume that
Nab = 1016 cm−3. What is the emitter injection efficiency for Nde = 1018, 1019 and 1020

cm−3 when (a) bandgap narrowing is neglected, (b) bandgap narrowing is included?

Problem 6.17 A silicon npn bipolar transistor is to be designed so that the emitter
injection efficiency at 300 K is γe = 0.995. The base width is 0.5 μm and
Le = 10Wb, De = Db, and Nde = 1019 cm−3. Calculate the base doping required with
and without bandgap narrowing effects.

Problem 6.18 Consider a GaAs/AlGaAs HBT in which an injector efficiency of 0.999 is
required at 300 K. The emitter and base doping are both 1018 cm−3. The base width is 0.1
μm. The carrier diffusion coefficients are Db = 60 cm2s, and De = 20 cm2s. The carrier
lifetimes are τB = τE = 10−8s. Calculate the Al fraction needed in the emitter of the
HBT.

Problem 6.19 Due to the high base doping possible, the base of an HBT can be very
narrow. Consider a GaAs/AlGaAs HBT where the GaAs base is 500 Å. The minority
charge diffusion coefficient is 100 cm2/V·s in the base. Calculate the base transit time
limited cutoff frequency of this device.

Problem 6.20 Consider an n-p-n bipolar transistor where the base is graded from
Al0.04Ga0.96As at the emitter end to GaAs at the collector end. The emitter material is
Al0.22Ga0.78As and it is graded to Al0.04Ga0.96As at the base.
(a) Sketch the detailed band diagram of the HBT in equilibrium, and under forward active
bias. What is the quasi-electric field, Equasi,B, in the base?
(b) Solve the drift-diffusion equation to obtain an expression for the base minority carrier
concentration, n(x), in terms of the total current JC , Equasi,B, and WB . Assume μ =
1000 cm2/Vs.

Problem 6.21 Due to an error during growth, the emitter-base grade in the transistor
shown in the figure 6.25 below was started after the emitter n-type dopant cell shutter was
opened. As a result, there was a thin n-type GaAs region between the p-type base and the
grade.

1. Construct the equilibrium band diagram of this structure taking into account quasi-
electric and electrostatic fields. What is the β of this transistor at zero emitter-base
bias?

2. Now, the transistor is operated under high-injection conditions. If an emitter-base
bias of 1V is applied, how will the β be affected? Draw field and potential profiles to
explain your result.
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AlGaAs
Eg = 1.7 eV

ΔEc = 0.2 eV

n-type: 1017 cm-3

Graded region

n-type: 1017 cm-3

Base

p+ - GaAs

0.2 μm 0.1 μm

Emitter

n - GaAs

n-type: 1017 cm-3

Figure 6.25: Figure for problem 6.21.

• Section 6.6

Problem 6.22 A silicon pnp transistor at 300 K has a doping of
Nae = 1018 cm−3, Ndb = 5 × 1016 cm−3, Nac = 1015 cm−3. The base width is 1.0 μm.
The value of Db is 10 cm2/s and τB = 10−7 s. The emitter base junction is forward biased
at 0.7 V. Using the approximation that the minority carrier distribution in the base can be
represented by a linear decay, calculate the hole diffusion current density in the base at (a)
VCB = 5 V (reverse bias), (b) VCB = 15 V.

Problem 6.23 A uniformly doped npn bipolar transistor is fabricated to within
Nde = 1019 cm−3 and Ndc = 1016 cm−3. The base width is 0.5 μm. Design the base
doping so that the punch through voltage is at least 25 V in the forward active mode.

Problem 6.24 An npn silicon bipolar transistor has a base doping of 1016 cm−3 and a
heavily doped collector region. The neutral base width is 1.0 μm. What is the base
collector reverse bias when punch through occurs?

Problem 6.25 The punch through voltage of a Ge pnp bipolar transistor is 20 V. The base
doping is 1016 cm−3, and the emitter and collector doping are 1018 cm−3. Calculate the
zero bias base width. If τB = 10−6 s, what is the α of the transistor at a 10 V reverse bias
across the collector-base junction at 300 K? The hole diffusion coefficient in the base is 40
cm2s−1.

Problem 6.26 In a silicon npn transistor, the doping concentrations in the emitter and
collector are Nde = 1018 cm−3 and Ndc = 5 × 1015 cm−3, respectively. The neutral base
width is 0.6 μm at VBE = 0.7 V and VCB = 5 V. When VCB is increased to 10 V, the
minority carrier diffusion current in the base increases by 5%. Calculate the base doping
and the Early voltage if Db = 20 cm2/s and τB = 5 × 10−7s.
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Problem 6.27 Consider a npn Si-BJT at 300 K with the following parameters:

Nde = 1018 cm−3

Nab = 1017 cm−3

Ndc = 1016 cm−3

Db = 30.0 cm2s−1

Lb = 10.0 μm

Wb = 1.0 μm

De = 10 cm2s−1

Le = 10.0 μm

Emitter thickness = 1.0 μm

Device area = 4.0 × 10−6 cm2

Calculate the emitter efficiency and gain β when the EBJ is forward biased at 1.0 V and the
BCJ is reverse biased at 5.0 V. Calculate the output conductance of the device defined by

go =
ΔIC

ΔVCB

Problem 6.28 An important advance in Si bipolar transistors is the use of polysilicon
emitters. If a normal ohmic contact is made to an emitter, the injected minority density
goes to zero at the ohmic contact boundary. In polysilicon emitters, heavily doped
polysilicon forms the contact to the emitter. The minority density does not go to zero at the
polysilicon contact, but decreases to zero well inside it. This allows one to have very thin
emitter contacts for high-speed operation. Discuss the disadvantage of such a contact over
a normal ohmic contact in a thin emitter. (Consider the emitter efficiency and how it is
affected by a thin emitter by using the discussions in chapter 5 on the narrow p-n diode.)

Problem 6.29 Consider an npn BJT with a base width of 0.5 μm and base doping of
1017 cm−3. The hole mobility is 200 cm2/V·s. An emitter stripe of 25 μm ×100 μm is
placed to form the EBJ. If a base current of 100 μA passes in the device and the EBJ is
forward biased at 0.7 V at the edge of the emitter, estimate the value of the forward bias of
the EBJ at the middle of the emitter. Discuss the possible problems that the biasing
difference could cause. (Assume that the base current is flowing through an area 100 μm
×0.5 μm.)

Problem 6.30 From our discussions of narrow p-n diodes, the importance of the boundary
conditions imposed on the injected minority charge at the contact is quite obvious. We
have used the condition that the minority charge density goes to zero at the contact. This is
a reasonable approximation for the metal contact. One approach to defining the boundary
conditions at any interface is through the concept of a recombination velocity. The
recombination velocity vrecom is defined via the relation (say, for holes as minority charge)

Jp |boundary = e vrecom δp|boundary
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where the current and the excess charge are evaluated at the boundary. Using the
expression for minority current in terms of the diffusion coefficient and the charge density
gradient, we have

Dp
d(δp)

dx
|boundary = vrecom δp|boundary

Consider the case where an excess hole density of δp(x1) is injected across a depletion
region into an n-side. The boundary of the contact is at a position x2. The distance
(x2 − x1) � Lp so that the hole concentration can be assumed to decrease linearly.
Express δp(x2) in terms of the surface recombination velocity, δp(x1), and the diffusion
coefficient Dp and (x2 − x1).

Problem 6.31 Consider an npn bipolar transistor where the base is graded from
Al0.04Ga0.96As at the emitter end to GaAs at the collector end. The emitter material is
Al0.22Ga0.78As and it is graded to Al0.04Ga0.96As at the base.
(a) Sketch the detailed band diagram of the HBT in equilibrium, and under forward active
bias. What is the quasi-electric field, EB, in the base?
(b) Solve the drift-diffusion equation to obtain an expression for the base minority carrier
concentration, n(x), in terms of the total current JC, EB, and WB. Assume μ =
1000 cm2/Vs.

Problem 6.32 An npn HBT has a collector consisting of slabs of two different materials,
A and B. The velocity in material A is vs while that in material B is vs

2 . The thickness of
these slabs is equal, ie. WA = WB = WC

2 , where WC is the total collector width. Assume
that the doping in the collector is ND, and that the voltage VCB depletes the entire
collector region.
(a) Consider the case when slab A is adjacent to the base. Draw the charge, electric field
and potential profiles in the collector when the Kirk threshold current is reached. What is
the Kirk threshold of this transistor? How does it compare with a transistor whose
collector is made up of material A throughout?
(b) Repeat the above but now with slab B adjacent to the base. Compare the two cases and
explain the result.
(c) Assume that the breakdown field in material A is less than in material B. Which
material should be placed adjacent to the base to maximize the breakdown voltage under
high injection?

Problem 6.33 For some unknown reason, possibly dislocated assisted diffusion, the base
doping in the bipolar transistor diffuses back into the collector forming a base profile
shown in figure 6.26.
(a) Calculate the transit time across the depletion region of the base-collector junction for
this transistor.
(b) Assuming that the collector remains fully depleted, and that the current density is
measured by the collector current divided by the collector area, how is the Kirk current
threshold for the transistor affected? Comment on your answer. Assume vs = 107cm/s
and μ = 1000cm2/V.s for electrons. Apply both the impulse function and charge control
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B-C JUNCTION

Figure 6.26: Figure for problem 6.33.

methods to arrive at the answer. For the impulse function, make sure the impulse charge is
initiated at the base-emitter junction by the application of an impulse voltage. Think about
how the charge density is distributed based on the fact that the base has a varying width.

Problem 6.34 An n-p-n AlGaAs-GaAs HBT is grown with the emitter-base junction
graded from Al0.2Ga0.8As to GaAs over 0.19 μm. Assume that the emitter is doped
5 × 1016 cm−3, and that the base is doped at 1018 cm−3. Assume the conduction band
offset between Al0.2Ga0.8As and GaAs to be 0.16 eV, and the bandgap of Al0.2Ga0.8As
and GaAs to be 1.67 eV and 1.4 eV respectively.
(a) Draw the equilibrium band diagram of the emitter-base junction, indicating the band
bending due to depletion charges and quasi-electric field. Calculate the depletion width of
the junction.
(b) Calculate β for this device.
(c) Now, if a forward bias of 1 V is applied to this junction, what is the new depletion
width? Calculate the conduction band profile and draw the band diagram for the device.
(d) Calculate the β when the emitter-base junction is forward biased.

Problem 6.35 Consider a GaAs npn BJT with the structure shown in figure 6.27. In this
problem, we consider the effect of a non-zero lateral base resistance, RB . The effective
emitter base potential, VBE(x), drops along the lateral direction x (shown in the figure)
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Figure 6.27: Figure for problem 6.35.

changing the current gain of the transistor. Note: You may ignore the vertical base
resistance in this problem.
(a) Write the expression for the minority charge, n(x, z), and integrated minority charge,
q(x) =

∫
n(x, z)dz (in cm−2) in the base as a function of the varying emitter-base

potential VBE(x).
(b) Derive the differential equation that relates the emitter base potential VBE(x) to q(x)
in terms of the base resistance, RB , and recombination time, tN . What are the boundary
conditions?
(c) Using your results from (a) and (b), derive an expression for n(x, z), q(x), and the base
current IB(x).
(d) What is the total emitter current and base current for this transistor? Find the
expression for the current gain, β, in terms of RB and tN . Assume ideal emitter injection
efficiency.

Problem 6.36 Consider an npn transistor where the base is open (figure 6.28). Assume
that the β of the transistor is not impacted by recombination in the base. Show that the
breakdown voltage, VCEO, in this configuration is reduced from the normal breakdown
voltage of the base-collector junction, VCBO. Derive an analytical expression for VCEO.
State all your assumptions.

Problem 6.37 Consider a GaAs n-p-n transitor shown in figure 6.29. I make a mistake and
during the growth and insert a 10nm thick quantum well in the center of a 100 nm base.
The result of this mishap is to reduce the lifetime of the injected minority carriers to 0.1 ns
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Figure 6.28: Figure for problem 6.36.

in the quantum well region compared to 1 ns in the rest of the base. The emitter is doped at
5 × 1017cm−3. The collector is doped at 5 × 1016cm−3. Assume that the elctron mobility
is 5000 cm2

V s and that the device is operate at room temperature. Calculate and sketch the
electron current and charge profile in the structure at an emitter-base bias of 0.5 eV.
Compare with the case of a homogeneous base. Next, calculate the early voltage of
transistors with and without the quantum well in the base . Comment on all your solutions.

E

B

C
QW

10 nm

50 nm

Figure 6.29:

Problem 6.38 Consider the transistors with two different collector doping profiles as
shown in figure 6.30. Assume that the same base-collector bias, VBC , is applied in both
cases. You may also assume that the collector is fully depleted, and that the saturated
velocity in both devices is vSAT . Calculate the difference between the current densities at
the Kirk threshold of transistors A and B. Give a physical explanation of your result using
charge and electric field profiles.

Problem 6.39 The base-collector junction in a bipolar transistor has the structure shown
in figure 6.31.
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Figure 6.30: Figure for problem 6.38.
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0.4 μm 0.1 μm

Figure 6.31: Figure for problem 6.39

1. Draw the band diagram of this base collector junction at zero bias. Assume that the
base is heavily doped so that the entire voltage falls in the collector region. The
built-in voltage is 1.4 eV.

2. Since the Γ − L valley spacing in GaAs is 0.3 eV, we would like to make the voltage
drop in the intrinsic collector adjacent to the base to be equal to that number. This
would lead to high electron velocities without intervalley transfer. Is it possible to
achieve this by adding a single sheet of acceptors or donors to this structure? Draw
charge, electric field and energy band profiles to explain your answer. Calculate the
acceptor or donor sheet charge density you would use.
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6.8 DESIGN PROBLEMS

Problem 6.1 Consider a npn Si-BJT at 300 K with the following parameters:

Nde = 1018 cm−3

Nab = 1017 cm−3

Ndc = 1016 cm−3

Db = 30.0 cm2s−1

Lb = 10.0 μm

Wb = 1.0 μm

De = 10 cm2s−1

Le = 5.0 μm

electron mobility in the emitter = 500 cm2 V−1 s−1

area = 5.0 × 10−7 cm2

Calculate the emitter efficiency and gain β when the EBJ is forward biased at 1.0 V and
the BCJ is reverse biased at (a): 5.0 V and (b) 10.0 V.

For high-speed operation, it is found that the BJT discussed above has too large an emitter
resistance. The device designer wants to limit the emitter resistance (keeping the area
unchanged) to 2.0 Ω. Calculate the emitter efficiency and β for the new device using the
case (a) given above.

Problem 6.2 Consider a npn Si-BJT at 300 K with the following parameters:

Nde = 1018 cm−3

Nab = 1017 cm−3

Ndc = 5 × 1016 cm−3

Db = 30.0 cm2s−1

Lb = 15.0 μm

De = 10.0 cm2s−1

Le = 5.0 μm

Design the maximum base width, Wb, that will allow a current gain β of 100 when the
EBJ is forward biased at 1.0 V and the BCJ is reverse biased at 5.0 V. You may make the
following approximations:
• The reverse bias collector current is zero.
• Wb is much smaller than Lb.
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Problem 6.3 Consider a npn Si-BJT at 300 K with the following parameters:

Nde = 1018 cm−3

Nab = 1017 cm−3

Ndc = 1016 cm−3

Db = 30.0 cm2s−1

Lb = 10.0 μm

Wb = 1.0 μm

De = 10 cm2s−1

Le = 10.0 μm

emitter thickness = 1.0 μm

device area = 4.0 × 10−6 cm

(a) Calculate the emitter efficiency and gain β when the EBJ is forward biased at 1.0 V and
the BCJ is reverse biased at 5.0 V.
(b) Calculate the output conductance of the device defined by

go =
ΔIC

ΔVCB

Problem 6.4 Consider an npn Si-BJT at 300 K with the following parameters:

Nde = 1018 cm−3

Nab = 1017 cm−3

Ndc = 5 × 1016 cm−3

Db = 20.0 cm2s−1

Lb = 15.0 μm

De = 10.0 cm2s−1

Le = 5.0 μm

emitter dimensions = 100 μm × 100 μm

(a) Calculate the base width, Wb, that will allow a current gain β of 200 when the EBJ is
forward biased at 0.8 V and the BCJ is reverse biased at 5.0 V. Design the base width so
that the gain goal is achieved and the base resistance is minimum.
(b) Estimate the base resistance. Note that the base hole current flows sideways into the
device (figure 6.6). The hole mobility in the base is 300 cm2/V·s.
You may make the following approximations :
• The reverse bias collector current is zero.
• Wb is much smaller than Lb.
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Chapter 7

TEMPORAL RESPONSE OF
DIODES AND BIPOLAR
TRANSISTORS

7.1 INTRODUCTION

In chapters 4-6, we studied the dc properties of diodes and bipolar transistors. In practice,
these devices are used in circuits for both digital and analog applications, such as the circuit
pictured in figure 7.1. In digital circuits, the devices will constantly be switched from the “on”
(conducting) state to the “off” (non-conducting) state and back. The speed at which the circuit
can process bits of data is largely determined by the switching speed of the devices.

In analog applications, the circuit is biased at some dc value, and then a small ac signal vin is
applied at the input. The input signal is amplified by the circuit, resulting in a signal vout at the
output. The gain of the devices in the circuit is frequency dependent and compresses at higher
frequencies. Therefore, in order to design high frequency circuits, it is important to understand
the frequency response of the devices.

In this chapter, we derive the frequency response of diodes and bipolar transistors. We address
issues for both large-signal switching applications and small-signal high frequency applications.
We will see that in many cases, there are trade-offs between achieving superior dc performance
and being able to operate at higher frequencies.

7.2 MODULATION AND SWITCHING OF A P -N DIODE:
AC RESPONSE

In chapter 5, we discussed the dc characteristics of the p-n diode. However, many applications
of diodes will involve transient or ac properties of the diode. The transient properties of the diode
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Figure 7.1: (a) Photograph of a 142 GHz master-slave latch, along with (b) the corresponding
circuit diagram. The circuit is based on the InP HBT technology illustrated in figure 7.1 Figures
courtesy of M. Rodwell and Z. Griffith, UCSB.
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are usually not very appealing, especially for high-speed applications. This is one of that reasons
that diodes have been replaced by transistors and Schottky diodes (to be discussed later) in many
applications.

A homojunction p-n diode is a minority carrier device, i.e., it involves injection of electrons
into a p-type region and holes into an n−type region. In forward-bias conditions where the
diode is in a conducting state, the current is due to the minority charge injection. In figure 7.2a,
we show the minority charge (hole) distribution in the n-side of a forward-biased p-n diode. If
this diode is to be switched, this excess charge must be removed. The device time response,
therefore, depends upon how fast one can alter the minority charge that has been injected. In
figure 7.2b we show how the minority charge can be extracted. As noted in this figure, one can
speed up the process either by introducing defects that speed up the recombination or by using
very narrow diodes. Both these approaches have problems. A high defect density causes non-
ideal diode behavior and increases reverse leakage and a narrow diode has a large reverse-bias
current.

For the reverse-biased case, where no minority charge injection occurs, the device speed can
be quite high and is dominated by the device RC time constant. Let us examine the response of
the p − n diode to large and small signals.

7.2.1 Small-Signal Equivalent Circuit of a p-n Diode

We will start by developing a model for the diode small-signal capacitance and resistance.
The diode capacitance arises from two distinct regions of charge: i) The junction capacitance
arises from the depletion region where there are regions of fixed positive and negative charge;
and ii) The diffusion capacitance is due to the region outside the depletion region where minority
carrier injection has introduced excess charges. The diffusion capacitance due to injected carriers
dominates under forward-bias conditions. While in the reverse bias case the junction capacitance
dominates. The small signal capacitance is in general defined by the relation

C =

∣∣∣∣dQ

dV

∣∣∣∣ (7.2.1)

It is important to note that by definition, capacitance is a lossless energy storage element.
This implies that any charge which is stored in a capacitor must be reclaimable . Charge which
is lost during modulation (for example through electron-hole recombination) is not reclaimed
and therefore does not contribute to the capacitance defined in equation 7.2.1. We will see in this
section that in p-n diodes, only a fraction of the stored charge is reclaimed during high frequency
operation. This impacts the diode small-signal response.

We will now use the equations derived in chapter 4 to calculate the capacitance. The junction
depletion width of the p-n diode is

W =

[
2ε(Vbi − V )

e

(
Na + Nd

NaNd

)]1/2

(7.2.2)

The depletion region charge is

|Q| = eA WnNd = eA WpNa (7.2.3)
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Figure 7.2: (a) The minority hole distribution in a forward-biased p-n diode. If the diode is to be
switched, the excess holes have to be extracted. (b) A schematic of what controls device response
of minority-carrier-based devices. Three approaches used to speed up the device response are
described.

where we showed earlier (see equation 4.2.22 through equation 4.2.24)

Wn =
Na

Na + Nd
W ; Wp =

Nd

Na + Nd
W (7.2.4)

Thus

|Q| =
eA NaNd

Nd + Na
W = A

[
2eε(Vbi − V )

NdNa

Nd + Na

]1/2

(7.2.5)
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The small signal junction capacitance is then

Cj =

∣∣∣∣dQ

dV

∣∣∣∣ =
A

2

[
2eε

(Vbi − V )

NaNd

Na + Nd

]1/2

=
Aε

W
=

Cjo

(1 − V
Vbi

)1/2
(7.2.6)

where Cjo is the capacitance at zero applied bias. Since the depletion width depends upon the
applied bias, the diode capacitance can be tailored electronically. This voltage-dependent diode
capacitor is called a varactor is useful for tuning frequency of a resonant cavity electronically.

In real diodes, the doping in the n-side and p-side gradually changes from n−type to p−type.
In such cases, the depletion capacitance of the diode is written as

Cj =
Cjo(

1 − V
Vbi

)m (7.2.7)

where m is a parameter called the grading parameter. For abrupt junctions, m = 1/2 as can be
seen in equation 7.2.6. For linearly graded junctions, m = 1/3.

For the forward-biased diode, the injected charge density can be large and can dominate the
capacitance. The injected hole charge is (see Eqn. 5.3.12 for the forward bias hole current;
remember that charge is Iτp and use τpDp = L2

p; we also ignore 1 in the forward-bias state)

Qp = Iτp = eA Lppn eeV/kBT (7.2.8)

The diffusion capacitance is then

dQp

dV
=

e2

kBT
A Lppn eeV/kBT =

e

kBT
Iτp (7.2.9)

Using the diode equation for small-signal ac response, the ac conductance of the diode is

Gs =
dI

dV
=

e

kBT
I(V ) (7.2.10)

from the definition of the I(V ) function. We will show later that this expression only holds at
low frequencies. At room temperature the conductance is (rs is the diode resistance)

Gs =
1

rs
=

I(mA)

25.86
Ω−1 (7.2.11)

Consider now a p-n diode that is forward-biased at some voltage Vdc, as shown in figure 7.3a. If
an ac signal is now applied to the diode, the current changes as shown schematically. The small
signal equivalent circuit of the diode is shown in figure 7.3b and consists of the diode resistance
rs (= G−1

s ), the junction capacitance, and the diffusion capacitance. At first glance, it would
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appear that the diffusion capacitance in figure 7.3b is given by equation 7.2.9. However, this
is not the case, since when an ac signal is applied, not all of the injected minority charge is
reclaimed through the junction. Some of the charge simply recombines in the neutral region. In
the forward-bias condition, the diffusion capacitance will dominate and we have the following
relation between the current is and the applied voltage signal vs:

is = Gsvs + Cdiff
dvs

dt
(7.2.12)

If we assume an input voltage with frequency ω (vs ∼ vo
s exp (jωt)), we get

is = Gsvs + jωCdiffvs (7.2.13)

and the admittance of the diode becomes

y =
is
vs

= Gs + jωCdiff (7.2.14)

To find Gs and Cdiff in equation 7.2.14. it is necessary to calculate the admittance y by
solving the time-dependent continuity equation, and then Gs and Cdiff can be extracted. We
first solve the continuity equation to find the ac part of the injected charge distribution when a
bias V (t) = Vdc + vo

s exp (jωt) is applied to the diode. From this we can determine the ac
part of the current and thus calculate the admittance. The general form for the time-dependent
continuity equation is

∂p

∂t
= −1

e
∇ · J + G − R (7.2.15)

We assume here that we have a wide base diode (base >> (Dpτp)
1/2), and we are applying a

voltage V (t) = Vdc + vo
s exp (jωt). The continuity equation then takes the form

eA
∂ (Δp)

∂t
= −eA

Δp

τp
− ∂Ip

∂x
(7.2.16)

Assuming our current Ip is purely diffusion (Ip = −eADp
d(Δp)

dx ), the continuity equation be-
comes

∂ (Δp)

∂t
= −Δp

τp
+ Dp

∂2 (Δp)

∂x2
(7.2.17)

Under dc bias, the left hand side of this equation is zero, and our solution was given by

(Δp)dc = Δp (0) e−x/Lp (7.2.18)

where x = 0 is at our depletion region edge and Lp = (Dpτp)
1/2. When an ac signal is added,

we assume a solution of the form

Δp = (Δp)dc + (Δp)ac = Δp (0) e−x/Lp + Δ̃p(x)ejωt (7.2.19)
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Figure 7.3: (a) A p-n diode is biased at a dc voltage Vdc and a small signal modulation is applied
to it. (b) The equivalent circuit of a forward-biased diode

where Δ̃p(x) is the amplitude of the ac hole concentration due to the small signal. Plugging this
back into equation 7.2.16 and simplifying, we get

jωΔ̃p(x) = −Δ̃p(x)

τp
+ Dp

d2
(
Δ̃p(x)

)
dx2

(7.2.20)

Equation 7.2.19 allows us to solve for the ac part of the injected charge distribution. The
general solution to this equation is

Δ̃p(x) = C1e
−x/λ + C2e

+x/λ (7.2.21)

where λ is the ac diffusion length and is given by

λ =

[
jω

Dp
+

1

Dpτp

]−1/2

(7.2.22)

Applying appropriate boundary conditions (Δ̃p = 0 when x → ∞ and Δ̃p = Δ̃p(0) when
x = 0) results in

C2 = 0 (7.2.23)

C1 = Δ̃p(0) (7.2.24)

and the ac injected charge distribution becomes

(Δp)ac =

[
Δ̃p(0) exp

(
−x

√
jω

Dp
+

1

Dpτp

)]
exp (jωt) (7.2.25)
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Δ̃p(0) can be calculated by noting that the total injected charge at x = 0, Δptot(0), is the sum

of the dc and ac components
(
Δpdc(0) = pn0 exp

[
eVdc

kBT

])
.

Δptot(0) = Δpdc(0) + Δ̃p(0) = pn0 exp

(
e (Vdc + vs)

kBT

)
= pn0 exp

(
eVdc

kBT

)
exp

(
evs

kBT

)
= Δpdc(0) exp

(
evs

kBT

)
(7.2.26)

Since we are assuming vs to be small, exp
(

evs

kBT

)
 1 + evs

kBT . Inserting this into equation

7.2.25 and solving for Δ̃p(0) gives us

Δptot(0) = pn0e
eVdc
kBT

(
1 +

evs

kBT

)
(7.2.27)

Δ̃p(0) = Δpdc(0) · evs

kBT
(7.2.28)

Notice that the time-independent part of the ac injected charge in equation 7.2.25 has the same
form as the dc injected charge, only with a complex diffusion length, λ. It is interesting to note
that λ is frequency dependent; when ω = 0, λ = Lp, and as ω increases, λ decreases, since the
injected charge can be reduced via reclamation through the junction during the negative swing
of the ac voltage.

Using the results of equation 7.2.25 and equation 7.2.28, we can find the current is that results
from our applied voltage signal vs. The total current is is given by the diffusion current at x = 0.

is = −eADp
dΔ̃p(x)

dx

∣∣∣∣∣
x=0

= eADpΔ̃p(0)

√
jω

Dp
+

1

Dpτp
(7.2.29)

=
eaDp

Lp
Δpdc(0) · evs

kBT

√
1 + jωτp (7.2.30)

=
eIvs

kBT

√
1 + jωτp (7.2.31)

From this equation, we calculate the small signal admittance

y =
is
vs

=
eI

kBT

√
1 + jωτp (7.2.32)

The admittance, as well as the small signal parameters Cdiff and Gs, take different forms at
low frequencies (ωτp < 1) and at high frequencies (ωτp > 1). At low frequency, the admittance
is

y  eI

kBT

[
1 +

jωτp

2

]
(7.2.33)
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and Gs and Cdiff are given by (see equation 7.2.14)

Gs =
eI

kBT
(7.2.34)

Cdiff =
e

2kBT
Iτp =

1

2

(
dQp

dV

)
(7.2.35)

While the diode conductance Gs is the same for low frequency ac response as its value at dc

(equation 7.2.10), we see that the diffusion capacitance Cdiff = 1
2

(
dQp

dV

)
(see equation 7.2.9),

indicating that only half of the injected charge is reclaimed through the junction. The other half
recombines in the neutral region. A similar analysis can be carried out for narrow base diodes to
show that in that case, 2/3 of the injected charge is reclaimed through the junction. In general,
the diffusion capacitance of the small-signal description can be written as

Cdiff = K
e

kBT
Iτp (7.2.36)

where K is a factor which is 1/2 for long base diodes and 2/3 for narrow base devices.
At high frequencies, the admittance becomes

y  eI

kBT

√
jωτp =

eI

kBT

√
ωτp

2
+ jω

eI

kBT

√
τp

2ω
(7.2.37)

and Gs and Cdiff are given by

Gs =
eI

kBT

√
ωτp

2
(7.2.38)

Cdiff =
eI

kBT

√
τp

2ω
(7.2.39)

We see that at high frequencies both the small signal resistance rs = G−1
s and capacitance Cdiff

decrease with ω as 1√
ω

.
In figure 7.3b we show the equivalent circuit of a packaged diode where we have the additional

series resistance Rs associated with the diode n and p−type neutral regions and a capacitance
Cp associated with the diode packaging. As discussed, at forward bias the diffusion capacitance
dominates, while at reverse bias the junction capacitance is dominant.

7.2.2 Switching characteristics of diodes

In many approaches the diode is switched from the conducting state to its non-conducting
state. Large-signal switching occurs in digital technology, in pulse shaping, and in optoelectron-
ics. Accurate time responses of current to voltage switching are complex series solutions to the
time-dependent semiconductor equations. However, simplified approaches give a good insight
to the problem and will be discussed.
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In the forward-biased state, minority charge is injected across the depletion region. In the
reverse-bias state, the excess minority charge is below the equilibrium value. Thus in diode
switching, minority charge has to be removed and injected, and the diode temporal response is
controlled by the time it takes to inject and remove the minority charge.

To understand the time response of the diode, we use the relationship between the excess
minority charge and the current in the diode. We will assume an asymmetrically doped diode
(p+ − n) so that hole lifetime will limit the device response. The total charge Qp injected into
the n-region for a long diode is

Qp = eA

∫ ∞

Wn

δpn(x)dx (7.2.40)

Using the relation between the charge and the voltage across the diode, we have

Qp = eALppno

(
eeV/kBT − 1

)
(7.2.41)

In steady state the current is related to the charge by

I =
Qp

τp
(7.2.42)

where τp is the hole recombination time. For a narrow diode the relevant time is the carrier
extraction time from the neutral n-region of width Wln − Wn, which is given by:

τT =
|Wln − Wn|2

2Dp
(7.2.43)

A change in density with time defines the current. This give the equation

i(t) =
Qp

τp
+

dQp

dt
(7.2.44)

where the first term is due to e − h recombination and the second is due to the change in the
minority charge with time.

Turn-ON Response

We will start by examining how a p − n diode switches to its ON state. Consider the circuit
of figure 7.4 where a diode is driven by a square wave pulse with the voltage switching between
VF and VR. The voltage VF is much larger than the voltage across the diode under forward-bias
conditions. Let us consider how the diode responds when the voltage pulse switches to VF . As
shown in figure 7.4a, the voltage switches at t = t1. Once the diode is forward biased, the
current becomes

i(t) =
VF − V1

R
(7.2.45)
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where V1 is the voltage across the diode and is related to the minority charge by the relation (see
Eqn. 5.3.5)

V1(t) = kBT ln

(
p(Wn)

pn

)
(7.2.46)

Since turn on voltage of the diode is small compared to VF

i(t) ∼ VF

R
(7.2.47)

It is important to note that upon turn-on, the diode current reaches its peak value almost instantly,
as shown in figure 7.4b.

The minority charge in the n-region increases gradually, and is controlled by diffusion, as
shown in figure 7.4c. From equation 7.2.46 we see that the voltage across the diode also increases
and saturates at

V1 = kBT ln

(
IF

Io

)
(7.2.48)

The time taken for the voltage to saturate to V1 is approximately 2τp. The voltage across the
diode starts from zero and grows to V1 as shown in figure 7.4d.

Turn-OFF

We now discuss the turn-off behavior of the diode as shown in figure 7.5a. The voltage is
switched from VF to VR at t = t2. To understand the diode response to this turn-off, we note the
relation between the excess hole density on the n-side and the voltage across the diode:

δp(Wn) = pn

[
exp

(
eV

kBT

)
− 1

]
(7.2.49)

An important outcome of this equation is that as long as δp(Wn) is positive, the voltage across
the diode is essentially the forward bias voltage (∼ 0.7 V). The diode current is

t < t2 : i(t) = IF =
VF − V1

R

t = t2 : i(t) = IR =
VR − V1

R
(7.2.50)

Since the diode is in the forward-biased state before the diode is reverse biased, there is excess
minority charge (holes) stored in the n-side. The diode response is controlled by the rate at
which this charge is removed. If t3 is the time at which the excess minority charge is extracted,
then up to this time, the diode cannot be reverse biased (see equation 7.2.49). To examine the
time response, let us examine the charge control equations

t < t2 : i(t) = IF =
Qp

τp

t = t2 : i(t) = IR =
Qp

τp
+

dQp

dt
(7.2.51)
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The general solution of the equation is

Qp(t) = iRτp + Ce−t/τp (7.2.52)

To obtain the constant C, we note that at time just before t2,

Qp(t) = iF τp = iRτp + Ce−t2/τp

or
C = τp (iF − iR) et2/τp (7.2.53)

The time dependence of the minority charge becomes

t > t2 : Qp(t) = τp

[
iR + (iF − iR) e(t2−t)/τp

]
(7.2.54)

At t = t3, the entire excess minority charge is removed, i.e., Qp(t3) = 0. This gives us

iR + (iF − iR) e−(t3−t2)/τp = 0

For the long diode, we get

t3 − t2 = τp ln
iF − iR

iR
= τsd (7.2.55)

The time (t3 − t2) it takes to remove the stored minority charge is called the storage delay time
τsd. Until this time, the diode remains forward biased. For the short diode, the time τp is replaced
by the transit time defined in equation 7.2.43. We have, for the short diode,

t3 − t2 = τT ln
iF − iR

iR
= τsd (7.2.56)

Once the minority charge has been removed, the diode reverse biases in a time controlled by the
circuit resistance and the average depletion capacitance of the diode. This time, known as the
transition time, is

τt ∼ 2.3 RCj (7.2.57)

where R is the resistance in the circuit and Cj is the average depletion capacitance.
The discussion of the turn-off process is represented schematically in figure 7.5.

7.3 Temporal Response of a Schottky Diode

In chapter 5 we have examined the Schottky diode. The key difference between the Schottky
diode and the p − n diode is that the Schottky diode is a majority carrier device and as a result
minority carrier injection and extraction is not an issue. The small-signal equivalent circuit of a
Schottky diode is shown in figure 7.6. One has the parallel combination of the resistance

Rd =
dV

dI
(7.3.1)
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Figure 7.6: Equivalent circuit of a Schottky diode.

and the differential capacitance of the depletion region. The depletion capacitance has the form:

Cd = A

[
eNdε

2(Vbi − V )

]1/2

(7.3.2)

As noted earlier, there is no diffusion capacitance. These circuit elements are in series with the
series resistance Rs (which includes the contact resistance and the resistance of the neutral doped
region of the semiconductor) and the parasitic inductance. Finally, one has to include the device
geometry capacitance:

Cgeom =
εA

L
(7.3.3)

where L is the device length. The absence of the diffusion capacitance that dominates the
forward-bias capacitance of a p-n diode allows a very fast response of the Schottky diode.

7.4 BIPOLAR JUNCTION TRANSISTORS:
A CHARGE-CONTROL ANALYSIS

In our dc analysis of the bipolar transistor , we saw that when the device is under bias, current
flows through each of the terminals, and a stored charge profile is established within the structure
(figure 6.8). When an ac signal is applied, the stored charge and the current are modulated.
However, the stored charge cannot be modulated instantaneously; once a signal is applied, a
finite amount of time is required for the corresponding charge distribution to be established.
Determining the switching behavior of a bipolar transistor essentially boils down to finding the



7.4. BIPOLAR JUNCTION TRANSISTORS: A CHARGE-CONTROL ANALYSIS 319

relationship between the currents and the stored charge, the charge control model, and then
determining the delays associated with modulation of stored charge. We shall discuss the small
signal model of the bipolar transistor after the charge control model, since that allows the reader
to better appreciate setting up the continuity equations for the minority carriers.

The charge-control model, presented in this section, establishes relationships between the
currents and stored charge in the device. These relationships are quite useful for calculating
delays. In section 7.5 the response of bipolar transistors to small signals is derived using the
charge-control framework.

The two junctions of the BJT can be biased in several ways to produce four operating modes
for the transistor, as was shown in figure 6.8. When the device is used for small-signal amplifica-
tion, it remains biased in forward active mode. Hence, the analysis of the device in this mode is
sufficient for deriving the response of the device to small signals (section 7.5). For large-signal
applications, in addition to forward active mode, the device will also at times switch to saturation
and cutoff modes. We will now briefly discuss behavior in all four modes and concentrate on the
forward active mode in section 7.5.
Forward Active Mode
In this mode the emitter-base junction (EBJ) is forward biased, while the base-collector junction
(BCJ) is reverse biased. We will use the subscript F to denote various terms in the forward active
mode. The currents are given by the Ebers-Moll model discussed in section 6.3.3 (eVCB � kBT
in this mode):

IE = IES exp

(
eVBE

kBT

)
+ αRICS

IC = αF IES exp

(
eVBE

kBT

)
+ ICS (7.4.1)

Here we assume that the emitter and collector current have the same direction. If we express
IES exp (eVBE/kBT ) in the second equation using the first equation, we can write

IC = αF (IE − αRICS) + ICS

= αF IE + ICS (1 − αF αR) (7.4.2)

Using IE = IB + IC , we have

IC = αF IB + αF IC + ICS (1 − αF αR) (7.4.3)

or

IC =
αF

1 − αF
IB +

ICS (1 − αF αR)

1 − αF

= βF IB + (βF + 1) ICS (1 − αF αR) (7.4.4)

where
βF =

αF

1 − αF
(7.4.5)

βF represents the forward active current gain IC/IB for the transistor.
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It is useful to examine the charge in the device in the forward active mode. In figure 6.8b
we showed the minority charge injected in the emitter, base, and collector. The excess minority
charge injected into the base region is given by

QF =
eAWbnnb0

2

(
exp

eVBE

kBT
− 1

)
(7.4.6)

We can define the collector current in terms of the excess charge by defining a time constant τF

which is the forward transit time of minority carriers through the base. We have

QF = τF IC (7.4.7)

In other words, for a collector current IC to be maintained, the excess minority charge in the
base QF must be replaced every τF seconds. As discussed in chapter 3 , the forward transit time
is

τF =
W 2

bn

2Db
(7.4.8)

The base current IB is due to recombination in the neutral base with the minority charge and
hole injection into the emitter. These two effects can be summarized by a time constant τBF and
we can write

IB =
QF

τBF
(7.4.9)

The current gain is then

βF =
IC

IB
=

τBF

τF
(7.4.10)

Now let us examine what happens when the junction voltages are modulated. Consider the
transistor connected in a common emitter configuration shown in figure 7.7. When the emitter-
base voltage is increased by ΔVBE , the current and the stored charge in the device both change.
The collector current increases by some amount ΔIC , causing the collector voltage vout to drop
by an amount Δvout = ΔIC · RCC . This decreases the reverse bias across the base-collector
junction, causing the base-collector depletion region to become narrower, as illustrated in fig-
ure 7.7b. Additionally, because VBE has increased, the emitter-base depletion region becomes
narrower, and the injected minority charge in the base QF increases in magnitude. The variation
in emitter-base and base-collector depletion widths implies a change in the amount of stored
charge in each of the depletion regions, as indicated in figure 7.7b.

Figure 7.7c shows a schematic diagram of the current at each of the three terminals. Additional
stored charge in the emitter, base, and collector regions must be supplied by the emitter, base,
and collector currents. Including the current required to supply the additional stored charge, iC ,
iB , and iE can be written as

iC =
QF

τF
− dQBC

dt

iB =
QF

τBF
+

dQF

dt
+

dQBC

dt
+

dQBE

dt

iE = iC + iB = QF

(
1

τF
+

1

τBF

)
+

dQF

dt
+

dQBE

dt
(7.4.11)
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Figure 7.7: Charge control model for forward active mode. (a) Bipolar transistor biased in
common emitter configuration. (b) Charge components corresponding to a change in base-
emitter voltage ΔVBE . Because of charge injection into the base-collector depletion region,
ΔQBC �= ΔQ

′

BC (c) Currents at each of the three transistor terminals.
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This is valid at current densities much below the Kirk threshold density (section 6.6.1) where
ΔQBC ≈ ΔQ

′

BC (see figure 7.7).
Reverse Active Mode
In the reverse active mode the EBJ is reverse biased while the BCJ is forward biased. Note that
bipolar devices are asymmetrically doped, i.e., Nde � Ndc, and the reverse active mode has a
poor current gain. The current and excess minority charge can be written, in analogy with the
forward active mode case (note that the collector is now acting as the emitter):

QR =
eAWbnnb0

2

[
exp

(
eVBC

kBT

)
− 1

]
iE =

−QR

τR
+

dQV E

dt

iB =
QR

τBR
+

dQR

dt
+

dQV C

dt
+

dQV E

dt

iC = −QR

(
1

τR
+

1

τBR

)
− dQR

dt
− dQV C

dt
(7.4.12)

Cutoff Mode
In the cutoff mode, both junctions are reverse biased and we may write

IE = −IES + αRICS

IC = −αF IES + ICS (7.4.13)

In the cutoff mode the terminal currents are extremely small and there is an effective open circuit
at the terminals.
Saturation Mode
In the saturation mode the EBJ and the BCJ are both forward biased. In this case a good approx-
imation to the current-voltage equations is

IE = IES exp

(
eVBE

kBT

)
− αRICS exp

(
eVBC

kBT

)
IC = αF IFS exp

(
eVBE

kBT

)
− ICS exp

(
eVBC

kBT

)
(7.4.14)

In saturation there is charge injected into the base from the emitter (QF ) and the collector (QR).
The charge in the depletion region charge is negligible, since the junction voltages do not change
much once the device is in saturation. The current-charge relations can be written as

iC =
QF

τF
− QR

(
1

τR
+

1

τBR

)
− dQR

dt

iB =
QF

τBF
+

QR

τBR
+

d

dt
(QF + QR) (7.4.15)
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Figure 7.8: Minority charge in the base of a BJT in saturation mode. Charge is injected from
the emitter and the collector into the base. The figure on the right shows a representation of the
charge in terms of a uniform charge QS and charge QA.

The charges QF and QR are shown in figure 7.8. The total base charge may be written as shown
on the right-hand side of figure 7.8:

QB = QF + QR

= QA + QS (7.4.16)

where QA represents the charge at the edge of saturation (EOS) and QS is the overdrive charge
that drives the device into saturation. The charge QA can be written as

QA = τF IC(EOS) = τBF IB(EOS)

IC(EOS)

IB(EOS)
= βF (7.4.17)

The overdrive charge QS can be written as

QS = τSIBS (7.4.18)

where IBS is the base current over and above IB(EOS) that brings the device to the edge of
saturation. The time τS is the weighted mean of τBF and τBR.

The static base current in saturation is

IB = IB(EOS) + IBS (7.4.19)

The instantaneous value of the base current is

iB(t) =
QA

τBF
+

QS

τS
+

dQS

dt
(7.4.20)

We can use the relation
QA

τBF
=

τF IC(EOS)

τBF
=

IC(EOS)

βF
(7.4.21)
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so that we have

iB(t) − IC(EOS)

βF
=

QS

τS
+

dQS

dt
(7.4.22)

We will see later that in the switching characteristics of the BJT, the overdrive charge and the
time constant τS appearing in the equation above play a critical role.

7.4.1 Junction Voltages at Saturation

Having discussed the various operating modes of the BJT, we will now obtain expressions for
the junction voltages as the device goes into the saturation mode. These voltages are useful in
studying the behavior of BJTs for logic elements. In figure 7.9 we show a simple model of the
BJT in the saturation mode. Let us apply Kirchhoff’s voltage law (KVL) to the voltage values:

VCE = VCB + VBE

= −VBC + VBE (7.4.23)

Thus
VCE(sat) = VBE(sat) − VBC (7.4.24)

To obtain VBE(sat) we multiply the second of Eqns. 6.68 by αR and subtract the resulting
equation from the first of Eqns. 5.68. This gives

IE − αRIC = IES(1 − αF αR)eeVBE/kBT (7.4.25)

Using IE = IB + IC , we find

IB + IC(1 − αR) = IES(1 − αF αR)eeVBE/kBT (7.4.26)

This gives for VBE(sat)

VBE(sat) =
kBT

e
ln

[
IB + IC(1 − αR)

IEO

]
(7.4.27)

where
IEO = IES(1 − αF αR) (7.4.28)

In a similar manner, the value of VBC(sat) is

VBC(sat) =
kBT

e
ln

[
αF IB − IC(1 − αF )

ICO

]
(7.4.29)

with
ICO = ICS(1 − αF αR) (7.4.30)

From these values of VBE(sat) and VBC(sat) we have

VCE(sat) =
kBT

e
ln

[
IB + IC(1 − αR)

αF IB − IC(1 − αF )
· ICO

IEO

]
(7.4.31)
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Figure 7.9: The BJT and a simple model for a device in the saturation mode.

Note that
ICO

IEO
=

ICS

IES
=

αF

αR
(7.4.32)

The equation for VCE(sat), after some simple manipulation, can be written as

VCE(sat) =
kBT

e
ln

[
1

αR
+ IC

IB

1−αR

αR

1 − IC

IB

1−αF

αF

]
(7.4.33)

We finally substitute for the current gains βR = αR/(1 − αR), βF = αF /(1 − αF ) to get

VCE(sat) =
kBT

e
ln

[
1

αR
+ IC

IB

1
βR

1 − IC

IB

1
βF

]
(7.4.34)

Typical values of VCE(sat) from the expression derived here are ∼ 50 mV. If one adds to this
value the voltage drop across the neutral regions of the emitter and the collector, we find that
VCE(sat) is ∼ 0.1 V. For silicon devices typical values for the various junction voltages, are

VBE(sat) ∼ 0.8 V

VCE(sat) ∼ 0.1 V (7.4.35)

7.5 HIGH-FREQUENCY BEHAVIOR OF A BJT

An important application of bipolar transistors is in the amplification of high-frequency small
signals. For this application, the device is biased as shown in figure 7.7a, and a signal vin is
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applied at the base terminal, resulting in an output voltage vout at the collector terminal. The
device remains in forward active mode at all times, so the charge control framework developed
for this mode is sufficient to derive the small-signal response.

When the emitter current in the device is modulated by an amount ΔiE , the collector current
does not respond immediately. The delay in establishing the change in collector current ΔiC is
a result of the finite time required to modulate the various stored charge elements in the device.
The total emitter to collector delay τEC is given by

τEC = τBE + τB + τBC (7.5.1)

where τBE is the EBJ capacitance charging time, τB is the total delay in the quasi-neutral base
region, and τBC is the delay associated with the base-collector capacitance (which includes the
contribution due to change in mobile charge in the collector, which is equivalent to the collector
transit delay). It will be shown later in section 7.5.3 that the current gain cutoff frequency fτ of
the device is given by

fτ =
1

2πτEC
(7.5.2)

This is the maximum frequency at which it is possible to achieve current gain in the device.
To calculate the delays in the device, we apply the following rule. The ratio of the change in

stored charge to the change in current is the delay associated with the element. We are interested
in the delay in setting the output current. We can write the ac portions of equation 7.4.11 as

|ΔiE | =
ΔQF

τB
+

ΔQBE

τBE

|ΔiC | =
ΔQBC

τBC
(7.5.3)

The delay element τBE can be written as

τBE =
ΔQBE

ΔIE
= CBE

(
ΔVBE

ΔIE

)
∼= CBE

(
ΔVBE

ΔIC

)
(7.5.4)

where (
ΔVBE

ΔIC

)−1

= gm0 = (re)
−1 ∼= eIC

kBT
(7.5.5)

is the transconductance of the device. τBE is therefore given by

τBE = reCBE =

(
kBT

eIC

)
CBE (7.5.6)

The base delay τB is the time required to supply the additional charge ΔQF to the quasi-
neutral base region. If we assume Shockley boundary conditions (np(wB) = 0), then τB can be
written as

τB =
w2

B

2DnB
(7.5.7)
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(a)
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Δnp(0) |ΔQF|
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Δnp(0) |ΔQF|
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Figure 7.10: Charge profile in the base when device is modulated. (a) Approximate base charge
profile with Shockley boundary conditions. (b) Base charge profile when velocity saturation in
the collector is included.

where ΔQF for this case is shown in figure 7.10a. However, as we saw in the case of the Kirk
effect, the carrier density cannot drop to zero at the collector side of the neutral base. Instead,
np(wB) is given by

np(wB) =
IC/AE

evsat
(7.5.8)

where vsat is the electron saturation velocity in the material and AE is the emitter area. If we
increase the current in the device by an amount ΔIC , the electron density at the collector side
of the base also rises, as indicated in figure 7.10b. This results in additional charge that must
be supplied to the base region. In figure 7.10b, the charge above the dotted line is equal to
the total charge supplied when Shockley boundary conditions are assumed (figure 7.10a). The
charge below the dotted line is the additional charge due to velocity saturation in the collector.
Including velocity saturation effects, τB can be written as

τB =
w2

B

2DnB
+

wB

vsat
(7.5.9)

In the base-collector depletion region, the change in stored charge ΔQBC results from two
separate effects.

1. The base-collector depletion width changes due to the variation in the base-collector volt-
age, as was illustrated in figure 7.1b. We will refer to the associated change in space charge
as ΔQBC1.

2. As discussed in the derivation of τB , because of velocity saturation, the mobile charge
density in the base-collector depletion region must also increase when IC increases (this
is the origin of Δnp(wB) in figure 7.10b). Because this increased mobile charge cannot
result in a change in voltage across the depletion region (the voltage is fixed by the bias
conditions), the base-collector depletion widths are adjusted by an additional amount to
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Figure 7.11: Biasing circuit for calculation of τBC1.

accommodate the mobile charge. Stated differently, each electron introduced into the base-
collector depletion region must be imaged at the depletion edges. Because the induced
charge due to this effect at both ends of the depletion region is positive, the total charge
at the base end increases, while the charge at the collector end decreases in magnitude
(becomes less negative). Hence referring to figure 7.7b,ΔQBC �= ΔQ

′

BC . Since the
charge at the base end (ΔQBC) is the one which must be supplied at the input to induce
a change in the output current, it is this charge that we are interested in calculating. We
will call the change in the base-collector depletion charge associated with finite electron
velocity in the collector, ΔQC .

The total change in charge in the base-collector depletion region ΔQBC = ΔQBC1 + ΔQC .
We will split the base-collector delay into two components, τBC = τBC1 + τC , where

τBC1 =
ΔQBC1

ΔIC
(7.5.10)

τC =
ΔQC

ΔIC
(7.5.11)

τC is commonly referred to as the collector delay . To determine τBC1, we refer to the circuit
shown in figure 7.11. Delay analysis is by convention carried out with the collector incrementally
shorted to the emitter. Assuming a change in the base-emitter voltage ΔVBE leads to a change
in collector current ΔIC , we can write the following expression for ΔVBC .

ΔVBC = ΔVBE + ΔIC (RE + RC) (7.5.12)

By definition,
ΔQBC1 = CBCΔVBC (7.5.13)
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Inserting the above equation and equation 7.5.12 into equation 7.5.10 gives us for τBC1

τBC1 =
CBCΔVBC

ΔIC
=

CBC (ΔVBE + ΔIC (RE + RC))

ΔIC
(7.5.14)

=

(
ΔVBE

ΔIC

)
CBC + (RE + RC) CBC

τBC1 = (rE + RE + RC) CBC (7.5.15)

In calculating τC , we will assume that the electron velocity profile in the base-collector deple-
tion region does not necessarily need to remain constant. This would, for example, be the case if
the material composition in the collector was varied, such as in a double heterojunction bipolar
transistor structure, or in the case of non-stationary transport in short collectors. The increased
electron concentration in the collector Δn(x) as a function of ΔIC is then given by

Δn(x) =
ΔIC

AEeve(x)
(7.5.16)

where AE is the emitter area and ve(x) is the electron velocity at a point x in the collector.
figure 7.12 shows a schematic plot of Δn(x) in the collector for an arbitrary velocity distribution
ve(x).

We first need to calculate ΔQC . To do this, we find the induced charge d (ΔQC) at x = 0
caused by a sheet of charge −eΔn(x)dx at a point x, and integrate from x = 0 to x = wC , as
illustrated in figure 7.13a (note that we assume wd,BC  wC , since the base and subcollector
are doped highly and the collector is typically fully depleted when the device is under bias).
The electric field induced in the depletion region by each sheet charge element is shown in
figure 7.13b. Using Gauss’ Law, we can relate d(ΔQC) and eΔn(x)dx to dE+(x) and dE−(x).

dE+(x) =
d (ΔQC)

εAE
(7.5.17)

dE+(x) + dE−(x) =
eΔn(x)dx

ε
(7.5.18)

Also, since the change in voltage in the collector due to the induced charge must be zero, the
area under dE+(x) in figure 7.13b must equal the area above dE−(x), or

x · dE+(x) = (wC − x) dE−(x) (7.5.19)

Solving for ΔE−(x) in this equation gives us

dE−(x) =

(
x

wC − x

)
dE+(x) (7.5.20)

We can then substitute this result into equation 7.5.18 to get

dE+(x) +

(
x

wC − x

)
dE+(x) =

eΔn(x)dx

ε
(7.5.21)
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Figure 7.12: (a) Arbitrary velocity profile ve(x) in the base-collector depletion region. (b) In-
jected charge Δn(x) corresponding to this velocity profile, along with the image charges at the
depletion edges. AE

∫ wd,BC

0
|eΔn(x)|dx = ΔQC + ΔQ

′

C (charge neutrality)

Solving for dE+(x) and using equation 7.5.16 to substitute for Δn(x) gives us

dE+(x) =

(
1 − x

wC

)
ΔIC

εAEve(x)
dx (7.5.22)

Substituting equation 7.5.17 into the equation above and integrating both sides, we can now
solve for ΔQC .

d (ΔQC) =

(
1 − x

wC

)
ΔIC

ve(x)
dx (7.5.23)

ΔQC = ΔIC

∫ wC

0

(
1 − x

wC

)
1

ve(x)
dx (7.5.24)
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Figure 7.13: Induced (a) image charge and (b) electric field due to an injected sheet charge
−eΔn(x)dx at a point x.

Finally, we can solve for τC .

τC =
ΔQC

ΔIC
=

∫ wC

0

(
1 − x

wC

)
1

ve(x)
dx (7.5.25)

For the case of a constant electron velocity vs, τC is given by

τC =
wC

2vs
(7.5.26)

The delay analysis for bipolar transistors presented here accurately describes the frequency
limitations of the device and provides us with the tools required to design devices for high fre-
quency operation. However, it does not give us any information about how the device will
perform at frequencies less than fτ . Since these transistors will ultimately be used in circuits,
we need to be able to determine the frequency response of a circuit containing these devices. It
is therefore necessary to derive a small-signal model of the device that can then be applied in
circuit simulations. We will see in the next section that the discrete components of the bipolar
equivalent circuit can be written in terms of the delays that we have derived.
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Example 7.1 Consider an npn transistor with the following properties at 300 K:

Emitter current, IE = 1.5 mA
EBJ capacitance, Cje = 2pF
Base width, Wb = 0.4 μm
Diffusion coefficient, Db = 60 cm2/s
Width of collector depletion region, Wdc = 2.0 μm
Collector resistance, rC = 30Ω
Total collector capacitance, (Cs + Cμ) = 0.4pF
Saturated electron velocity, vs = 5 × 106 cm/s

Calculate the cutoff frequency of this transistor. How will the cutoff frequency change (i)
if the emitter current level is doubled? (ii) if the base thickness is halved?

The emitter resistance r
′
e is given by (see equation 7.5.11 for the resistance of a

forward-biased diode)

r
′

e =
dIE

dVBE

∼= kBT

eIE
=

0.026

1.5 × 10−3
= 17.3 Ω

This gives
τe = r

′

eCje = (17.3)(2 × 10−12) = 34.6 ps

The base transit time is

τt =
W 2

b

2Db
=

(0.4 × 10−4)2

2 × 60
= 13.3 ps

The collector transit time is

τC =
Wdc

2vs
=

(2.0 × 10−4)

1 × 107
= 10 ps

The collector charging time is

τc = rc(Cμ + Cs) = 30(0.4 × 10−12) = 12 ps

The total time is
τec = 34.6 + 13.3 + 10 + 12 = 69.9 ps

The cutoff frequency is

fτ =
1

2πτec
=

1

2π(69.9 × 10−12 s)
= 2.3 GHz

If the emitter current is doubled (assuming no other change occurs), the time τe is reduced
by half. This gives a cutoff frequency of 2.54 GHz. Similarly, if the base width is reduced
by half, the base transit time becomes 3.3 ps and the cutoff frequency becomes 2.65 GHz.
In this problem the dominant source of delay is the emitter junction.
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Figure 7.14: Current components in a bipolar transistor when a small signal vin is applied. The
direction of the arrows shows the direction of the electron flux.

7.5.1 Bipolar Transistor Small-Signal Equivalent Circuit

In figure 7.14, we show a schematic diagram of various current components in a bipolar tran-
sistor when a small signal vin(t) is applied. The total base-emitter voltage VBE(t) is given
by

VBE(t) = Vdc + vin(t) (7.5.27)

where we assume vin(t) to be of the form

vin(t) = vωejωt (7.5.28)

This generates a small-signal current iE at the emitter. The current entering the base is denoted as
iω(0). In general, iω(0) differs from iE because of the delay in the emitter-base depletion region.
Electrons then continue through the base, where they undergo a transit delay τB , resulting in a
flux iω(wB) leaving the base. Finally, the delay in the base-collector region results in an output
current iC at the collector. We are interested in determining the output current iC as a function
of the input voltage vin.

We continue to make the assumption that the current in the base is purely diffusive and is
therefore given by

iω(x) = eAEDn
∂nω(x)

∂x
(7.5.29)

where iω(x) and nω(x) are the position-dependent amplitudes of the ac current and charge. Thus
to determine iω(x), we must first calculate nω(x). In order to do this, it is necessary to solve the
time-dependent continuity equation for electrons, which in the case of zero recombination takes
the form

∂n(x, t)

∂t
= − ∂

∂x

(
Ie(x, t)

−eAE

)
= Dn

∂2n(x, t)

∂x2
(7.5.30)
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We assume solutions of the form

n(x, t) = ndc(x) + nω(x)ejωt (7.5.31)

where ndc(x) is the dc component of the current calculated above and nω(x, t) = nω(x)ejωt. If
we insert the ac part of equation 7.5.30 back into equation 7.5.29, the result can be written in the
form

d2nω(x)

dx2
=

nω(x)

λ2
e

(7.5.32)

where λe is the frequency dependent diffusion length and is given by

1

λe
=

√
jω

Dn
= (1 + j)

√
ω

2Dn
(7.5.33)

Assuming nω(wB) = 0 (Shockley boundary conditions), the solution for nω(x) in equation
7.5.31 is given as

nω(x) = nω(0)
sinh [(wB − x) /λe]

sinh [wB/λe]
(7.5.34)

where nω(0) is the amplitude of the the ac portion of the electron concentration at x = 0.
The value of nω(0) obviously depends on the magnitude of the ac voltage, which we have

called vω . Again assuming Shockley boundary conditions, n(0, t) can be written as

n(0, t) = np0exp

[
eVBE(t)

kBT

]
= np0exp

(
eVdc

kBT

)
exp

(
evωejωt

kBT

)
(7.5.35)

Assuming vω is small, we can linearize the second exponential in this equation, such that

exp

(
evωejωt

kBT

)
 1 +

evω

kBT
ejωt (7.5.36)

We may then write equation 7.5.35 as

n(0, t) = ndc(0) + nω(0)ejωt (7.5.37)

where

ndc(0) = np0exp

(
eVdc

kBT

)
(7.5.38)

and

nω(0) = np0exp

(
eVdc

kBT

)
· evω

kBT
= ndc(0)

evω

kBT
(7.5.39)

Now that we know our ac charge distribution nω(x), we can calculate the amplitudes of the
ac currents iω(0) and iω(wB). If we insert nω(x) from equation 7.5.34 into equation 7.5.29 and
evaluate the derivative at x = 0, we get

iω(0) = −eAEDnnω(0)

λe
coth

[
wB

λe

]
(7.5.40)
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We see that the injected current amplitude is complex, indicating that the current has both a
conductive (real) and capacitative (imaginary) part. If the frequency is sufficiently low such that
wB <<

√
ω/(2Dn), the hyperbolic cotangent term may be expanded in the following manner:

α coth α = 1 +
α2

3
+ H.O.T. (7.5.41)

This gives us for iω(0)

iω(0) = −eAEDnnω(0)

wB

[
1 + jω

w2
B

3Dn

]
(7.5.42)

If we insert the expression for nω(0) from equation 7.5.38 into equation 7.5.41, we can express
iω(0) in terms of our input signal vω

iω(0) = −eAEDnndc(0)

wB

e

kBT

[
1 + jω

w2
B

3Dn

]
vω (7.5.43)

or

iω(0) = − eIE

kBT

[
1 + jω

w2
B

3Dn

]
vω (7.5.44)

where IE is the dc emitter current. iω(0) may also be written in the form

iω(0) = − (Gs + jωCdiff ) vω (7.5.45)

where

Gs =
1

re
=

eIE

kBT
(7.5.46)

is the emitter-base diode conductance , and

Cdiff =
2

3

∂QF

∂VBE
=

2

3
CB =

eAEndc(0)wB

3

e

kBT
(7.5.47)

is the diffusion capacitance measured at the emitter terminal. As was discussed in section 7.2,
the diffusion capacitance is 2/3 the value of the apparent diffusion capacitance (CB), since for
a short-base diode only 2/3 of the charge stored in the base is reclaimable. Finally, recognizing
that CB can be written related to the base transit time τB by

τB = re · CB (7.5.48)

we may express iω(0) as

iω(0) = − 1

re

(
1 + jω

2τB

3

)
vω (7.5.49)
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ΔJc

ΔJc=eΔn(x)Δx/τ

τ = Wc/vs

ΔQc

ΔQc

vs

Δn(x) 

Wc

Δ x

x

BASE

Figure 7.15: The induced charges and collector current versus time for a sheet of charge traveling
at a constant velocity vs.

Now, to calculate the flux leaving the base iω(wB), we insert nω(x) from equation 7.5.34
into equation 7.5.29 and evaluate the derivative at x = wB . If we Taylor expand the result and
neglect higher order terms, we can express iω(wB) as

iω(wB) = − 1

re

(
1 − jω

τB

3

)
vω (7.5.50)

Note that the reactive part of iω(wB) corresponds to a negative capacitance. This behavior
results from the fact that any rise in current at the emitter end of the base appears at the collector
end with a delay of one transit time τB , as can be seen by examination of equation 7.5.49 and
equation 7.5.50.

Now all that remains is to calculate the collector current iC . We showed in our time delay
analysis (see figure 7.13) that electrons which are injected into the base-collector depletion re-
gion have a finite velocity and thus require a finite amount of time to transit this region. As the
electrons travel through the depletion region, they induce image charges at the depletion edges,
as illustrated in figure 7.13a. The collector current is equal to the time rate of change of the
induced charge at the collector end of the depletion region.

7.5.2 Attenuation and Phase Shift of a Traveling Electron Wave

To analyze the delay introduced due to velocity saturation in the collector, we first derive the
current, ΔJc induced by a sheet of charge of areal density Δn(x) · Δx traveling with a velocity
vs and a distance x from the edge of the base as shown in figure 7.15.
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Following the analysis in section 7.5 (equation 7.5.16 through equation 7.5.26) and using

ΔJc

v(x)
= eΔn(x) · Δx (7.5.51)

we see that the charge induced on the base is

ΔQc = (1 − x

Wc
) · eΔn(x) · Δx (7.5.52)

and the image on the collector is by charge neutrality

ΔQ
′

c = Δn(x)Δx − ΔQc = eΔn(x)Δx · x

Wc
(7.5.53)

The displacement current flowing in the external circuit, ΔJc is given by

ΔJc =
d

dt
ΔQ

′

c = eΔn(x)Δx · dx

dt
· 1

Wc
(7.5.54)

Using dx
dt = vs we arrive at an important relationship also known as the Ramo-Shockley theorem

ΔJc =
eΔn(x)Δx

τ
(7.5.55)

The current carrying electrons in the collector can be assumed to comprise of several sheet
charges of magnitude Δn(x)Δx. Hence the net induced current due to the electrons will be a
sum (integral) of all the induced currents. The total current per unit area is therefore obtained by
integration over all sheets:

J = −e · (v/w) ·
∫

n(X) · dX (7.5.56)

We apply (equation 7.5.56) to a traveling electron wave of the form

n(x, t) = n0 exp [jω(t − x/v)] (7.5.57)

It clearly corresponds to a wave of (angular) frequency ω traveling with a uniform speed v.
The convection current in the plane x = 0 is evidently

iω(wB) = −en0v · exp (jωt) (7.5.58)

this is the current density that would be flowing if the capacitor were infinitesimally thin and the
transit time of the electrons through the capacitor were zero. With the help of equation 7.5.58
we may write equation 7.5.57 as

n(x, t) = −
(

iω(wB)

ev

)
exp (−jωx/v) (7.5.59)
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If this is inserted into equation 7.5.56, and the integration executed, one finds readily

J = iω(wB)
exp (−jωt) − 1

−jωt
(7.5.60)

where we have introduced the electron transit time through the capacitor,

τ = w/v (7.5.61)

The expression equation 7.5.60 is easily transformed into the product of an amplitude factor and
a phase factor:

J = iω(wB) ·
[
sin(ωτ/2)

ωτ/2

]
exp (−jωτ/2) (7.5.62)

The two factors following iω(wB) indicate the attenuation and the phase shift of the current
leaving the capacitor by the finite transit time through the capacitor.

We note first of all that the signal delay is only one-half the transit time of the electrons
themselves. We also note that there is an attenuation, due to the destructive interference between
different portions of the traveling wave. For ω = 2π/τ the amplitude factor is zero, and no
current is collected at all. This is the case when the wavelength λ = 2πv/ω of the traveling
wave is equal to the capacitor plate separation w.

The two terms following iω(wB) indicate that that the signal passing through the base-collector
depletion capacitor has been both attenuated and phase shifted as a result of the finite transit time
through this region.

Substituting for iω(wB) we can express the output current iC in terms of the input signal vω .

iC = −vω

re

(
1 − jω

τB

3

)
· sin (ωτC)

ωτC
· exp (−jωτC) (7.5.63)

If the frequency ω is sufficiently small, this may be written as

iC = −vω

re
· sin (ωτC)

ωτC
· exp

[
−jω

(τB

3
+ τC

)]
(7.5.64)

The device transconductance, gm, is defined as

gm =
∂iC
∂vω

(7.5.65)

Inserting equation 7.5.65 into equation 7.5.63, we get for the bipolar transistor transconductance

gm = gm0 · sin (ωτC)

ωτC
· exp

[
−jω

(τB

3
+ τC

)]
(7.5.66)

where gm0 = r−1
e is the device transconductance at dc.

The base current iB in figure 7.14 is simply the difference in iE and iC , or

iB = iE − iC = iω(0) − iC (7.5.67)
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Figure 7.16: Small-signal model of a bipolar transistor.

Inserting our expressions from , we get

iB = −vω

re

[(
1 + jω

2τB

3

)
−

(
1 − jω

τB

3
− jωτC

)]
(7.5.68)

where we have assumed ω to be small so that

iC  −vω

re

[
1 − jω

(τB

3
+ τC

)]
(7.5.69)

Simplifying equation 7.5.57 gives us for iB

iB = −jω
(τB + τC)

re
vω = −jωCπvω (7.5.70)

where
Cπ =

τB + τC

re
(7.5.71)

which illustrates how collector delay adds to the input capacitance.
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= rπ
Cπ CBE

CBC

Iin ( jω)
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vBE gmVBE
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Figure 7.17: Bipolar equivalent circuit for calculating fτ .

Now that we have derived all of the small-signal currents in the device and expressed them in
terms of conductive and capacitative components, it is relatively straightforward to construct a
small-signal equivalent model. This model is shown in figure 7.16.

7.5.3 Small Signal Figures of Merit

Current gain cutoff frequency fτ

As stated earlier, the current gain cutoff frequency fτ is defined as the frequency at which the
short circuit current gain becomes 1. We assumed earlier that fτ could be found by summing all
the delays in the device (see equation 7.5.1 and equation 7.5.2). We will now show why this is
the case.

The value of fτ is obtained by applying nodal analysis to the bipolar equivalent circuit for
the termination shown in figure 7.17. The input capacitance Cin = Cπ + CBE . The frequency
dependent current gain of the device β (jω) is given by

β (jω) =
Io (jω)

Iin (jω)
(7.5.72)

We define the input impedance zin as

zin = rπ

∣∣∣∣∣∣∣∣ 1

jωCin
=

rπ

1 + jωrπCin
(7.5.73)

We can then write Iin and Io as

Iin (jω) =

[
vBE

zin
+ jωvBECBC

]
(7.5.74)

Io (jω) = vBE [gm − jωCBC ] (7.5.75)

Using gm = r−1
e

Io (jω)

Iin (jω)
=

zin

re

[
1 − jωCBCre

1 + jωCBCzin

]
(7.5.76)
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This expression reduces to

Io (jω)

Iin (jω)
=

rπ

re

[
1 − jωCBCre

1 + jωrπ (Cin + CBC)

]
(7.5.77)

Neglecting the zero introduced by reCBC , since re and CBC are both small, β (jω) can be
written as

β (jω) =
β0

1 + jωrπ (Cin + CBC)
=

β0

1 + jωβ0re (Cin + CBC)
(7.5.78)

or

β (jω) =
β0

1 + jβ0

(
ω

ωT

) (7.5.79)

where

ωT =
1

re (Cin + CBC)
(7.5.80)

It is readily seen that

1

ωT
= re (Cin + CBC) = re [(Cπ + CBE) + CBC ]

= re (CBE + CBC) + τB + τC (7.5.81)

= τEC

where τEC is the total delay from the emitter to the collector.
Let us examine our expression for β (jω) in equation 7.5.79. When ω < ωT /β0, the denomi-

nator in equation 7.5.79 is approximately equal to 1, and |β(jω)| is given by the dc current gain
β0. Once ω > ωT /β0, we can ignore the 1 in the denominator, and β(jω) is approximately
given by

β (jω)  ωT

jω
(7.5.82)

So we see that at ω = ωT , |β| = 1, or the current gain is unity. ωT is the transit frequency and
determines the current gain cutoff frequency as ωT = 2πfτ , or

fτ =
1

2πτEC
(7.5.83)

Maximum frequency of oscillation fmax

fτ is a very important figure of merit because it is determined by the intrinsic delay in the de-
vice and is therefore related intimately to material parameters such as carrier velocity, lifetimes,
etc. However, when used as an amplifier, in many cases the device can amplify power beyond
fτ , because often voltage gain can be achieved at frequencies higher than fτ . The maximum
frequency of operation beyond which the power gain is less than 1 is termed fmax. Beyond this
frequency, the device dissipates more power than it outputs.
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Figure 7.18: Equivalent circuit for determining (a) the input impedance and (b) the output
impedance of a BJT biased in the common emitter configuration.

In well designed transistors, fmax is larger than fτ , though it is possible (but undesirable) to
have fmax < fτ . Since an amplifier functions by delivering power to a load, the calculation
of fmax is carried out under conditions of the load being conjugately matched to the output of
the device. Let us calculate the input and output impedances of a BJT via its equivalent circuit
in the common emitter configuration. For these calculations, we refer to the circuit diagrams in
figure 7.18.

The input impedance (calculated by applying a test generator at the input and an open circuit
at the output as in figure 7.18a) is seen to very rapidly approach rb for

ω >
1

rπCin

The circuit used in the output impedance calculation is shown in figure 7.18b. Here, the input
may be terminated with any impedance under the assumption that

1

jωCin
< rb

so that the current flow through rb is negligible. Applying a test voltage Vo, we can calculate the



7.5. HIGH-FREQUENCY BEHAVIOR OF A BJT 343

Zo CBC
1

ωT CBC

Figure 7.19: Equivalent circuit representation of the output impedance Zo.

output impedance

Zo =
Vo

Io
(7.5.84)

From nodal analysis, we get the following expression for Io:

Io =
−jωT

ω
· iB + iB =

[−jωT

ω
+ 1

]
iB (7.5.85)

We now assume CBC << Cin, and since

iB = jωCBC (Vo − vBE)

and
iB = jωCinvBE

we can combine these expressions to show that

vBE =

(
CBC

Cin + CBC

)
Vo

This shows that vBE << Vo, and so iB  jωCBCVo.
We can now write Io as a function of Vo.

Io =

[−jωT

ω
+ 1

]
· jωCBCVo

= [ωT CBC + jωCBC ] Vo (7.5.86)

= [Gs + jX] Vo

This shows us that the output impedance can be expressed as a resistor 1/(ωT CBC) in parallel
with a capacitor CBC , as shown in figure 7.19. The dc output conductance

R−1
o =

IC

VA
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Zo CBC
1

ωT CBC

Figure 7.20: Equivalent circuit representation of the intrinsic device with the dominant extrinsic
elements outside.

is also in parallel to the ac components in figure 7.19 but is typically very small compared to the
ac conductance. The transistor can now be represented as an intrinsic device with the dominant
extrinsic elements outside, as shown in figure 7.20.

Power gain is always calculated for the case of a conjugately matched load ZL = Z∗
o to

enable maximum power transfer to the load. The conjugately matched load ZL for the output
impedance shown in figure 7.19 is illustrated in figure 7.21. Since the output current in the load
is one-half of the short circuit current,

iC
iB

=
iC(short)

2
· 1

iB
=

β

2
(7.5.87)

The power gain can be written as

G =
Pload

Pin
=

|iC |2 Rload

|iB |2 Rin

=

(
iC
iB

)2

· 1

ωT CBC
· 1

rb
(7.5.88)

or

G =
|β|2
4

· 1

ωT CBC
· 1

rb
(7.5.89)

Substituting |β| = ωT /ω (equation 7.5.82) and using ω = 2πf , we get

G =
fτ

8πrbCBC
· 1

f2
(7.5.90)

fmax is defined as the frequency at which G → 1. This gives us

fmax =

√
fτ

8πrbCBC
(7.5.91)

where rb is the total base resistance of the device including contact resistance, sheet resistance
of the extrinsic base, and the intrinsic base resistance of the device.
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Figure 7.21: Conjugately matched load ZL (right) for the output impedance Zo shown on the
left.

7.6 BIPOLAR TRANSISTORS: A TECHNOLOGY
ROADMAP

In this section we will discuss some of the important design considerations in the performance
of bipolar devices. Bipolar devices must compete with the field effect transistor (FETs) and in
many respects the two classes of families carry out similar functions. This puts a tremendous
pressure on the BJT and HBT device designers to design the best devices in a given material
system.

Bipolar devices are exploiting both fabrication techniques and new material systems to pro-
duce superior devices. A survey of the development of advanced devices was given in figure 7.22.
We will now give a brief overview of these developments.

7.6.1 Si Bipolar Technology

In spite of the superior performance of HBTs, the Si bipolars continue to be the workhorse
devices for both digital and some microwave applications. The advances in Si technology have
come from two directions. The first direction relates to advanced fabrication technology and the
second one relates to the use of polysilicon as a contact for the emitters.

The fabrication-technology-related advances in Si bipolars have resulted from: (i) self-aligned
emitter and base contacts, which allow extremely precise placement of the base contact next to
the emitter contact and thus reduce parasitic resistances; (ii) trench isolation, which allows very
dense packing of the transistors without cross-talk. This involves etching narrow grooves around
the transistor down to the substrate, lining them with SiO2, and filling them with polysilicon.
This greatly reduces the isolation capacitance; (iii) sidewall contact process, which dramatically
reduces the extrinsic base collector capacitance. In this process polysilicon is used to contact the
base and is isolated from the collector by a thick oxide. The device becomes essentially one-
dimensional as a result and also becomes quite symmetric between the emitter and the collector.

The second source of improvements in Si bipolar devices is the use of polysilicon to con-
tact the emitter. The advantages of polysilicon over metal contacts arise from the boundary
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Silicon bipolar technology
• Advanced fabrication techniques 
are allowing devices with fT ~25
GHz

Advanced fabrication techniques
• Self-aligned emitter base
• Trench isolation to avoid cross-talk (SiO2 fills 
the "trenches").
• Sidewall contacts. Polysilicon is used to contact 
the base.
• Polysilicon emitter contact      provides low 
recombination at the contact and suppresses base 
injection into the emitter.

Si can be combined with 
• amorphous silicon (Eg = 1.5 eV)

• β-SiC             (Eg = 2.2 eV)

• polysilicon             (Eg = 1.5 eV)

Most promising combination is Si/SiGe, which 
 can be fabricated by epitaxial growth.

• Excellent quality of interface allows fabrication 
of high-quality HBTs.
• Devices can be monolithically integrated with 
optoelectronic devices.

• In0.53Ga0.47As is lattice-matched to InP and 
In0.52Al0.48As.
• High-quality HBTs can be produced and 
integrated with optical devices.

InGaAs/InAlAs and 
InGaAs/InP HBTs
• fT  of ~175 GHz has been 
achieved.

GaAs/AlGaAs HBTs
• fT of ~100 GHz has been 
demonstrated.

Si-based HBTs
• Si/SiGe HBTs have shown 
remarkable promise. Cutoff 
frequencies approaching 100 GHz 
have been demonstrated.

Figure 7.22: A survey of advanced bipolar devices.

conditions the contact places on the hole density injected into the emitter from the base. The
boundary condition is very important for the thin emitters needed for high-frequency applica-
tions. The hole density goes to zero at a normal ohmic contact due to the very large recombina-
tion rate with the electrons. In the case of polysilicon the hole density goes to zero gradually so
that the hole injection current is similar to that of a thick emitter. Due to this, the base injection
into the emitter is strongly suppressed.

With advanced technology in use, Si BJTs have reached fτ values of ∼200 GHz.

7.6.2 Si-Based HBTs

Although Si BJTs are still workhorse devices for most applications, there is an increasing
interest in Si HBTs for obvious reasons. Several wide-gap emitters have been proposed, al-
though most still have technology-related problems. Among materials considered for emitters
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are: (i) amorphous Si, which has a large “effective bandgap” (∼1.5 eV). The problems include
poor-quality contacts to amorphous Si; (ii) β-SiC with bandgap of 2.2 eV. The material has a
strong lattice mismatch with Si and it is not clear how reliable the technology will be; (iii) semi-
insulating polycrystalline Si, which has a gap of 1.5 eV. High current gains have been reported
for this system; (iv) use of III-V compounds like GaP. The main problem here is the cross-doping
issue since Si dopes GaP while Ga and P dope Si.

A material system that appears to have a tremendous advantage and is still compatible with
Si technology is the Si-SiGe system. The Si1−xGex is an alloy with lattice constant that is
mismatched from Si by 4x%. However, for very thin base regions n-Si/p-SiGe/n-Si HBTs can
be fabricated with very high performance. The smaller gap of SiGe suppresses hole injection
into the emitter. Devices operating up to 350 GHz have been reported in this material system.

7.6.3 GaAs/AlGaAs HBTs

In chapter 3 we discussed the bandstructure of GaAs and AlAs systems. The two semiconduc-
tors have excellent lattice matching (∼0.14%) and high-quality GaAs/AlGaAs heterostructures
can be grown. The bandgap of the alloy AlxGa1−xAs up to compositions of x ∼ 0.45 is given
by

Eg(x) = 1.42 + 1.247x

Above x ∼ 0.45, the material becomes indirect and is usually not used for most device applica-
tions because of poor transport and optical properties.

GaAs material has a high bandgap and thus the intrinsic carrier concentration is quite low
(∼ 2.2 × 106 cm−3) at room temperature. Thus the semi-insulating GaAs can have a very
high resistivity (∼ 5× 108 Ω-cm), with the result that there is essentially negligible capacitance
between the substrate and the interconnects or the collector. This is a serious problem for Si at
high frequencies.

An important advantage of GaAs technology is that the electronic devices can be monolith-
ically integrated with optoelectronic devices, leading to optoelectronic integrated circuits (OE-
ICs), which are certainly not possible for Si technology (so far).

Another important advantage of GaAs technology is the ability to fabricate millimeter mi-
crowave integrated circuits (MMICs) in which the active and passive elements of the circuit are
all made on the same chip. MMIC technology is quite advanced in GaAs while it is still primitive
in Si.

In the GaAs/AlGaAs system, HBTs with fτ values around 200 GHz have been achieved,
making this material system an important player in microwave technology.

7.6.4 InGaAs/InAlAs and InGaAs/InP HBTs

An important consideration in the development of any material technology is the substrate
availability. One must have a high-quality substrate that is lattice-matched to the material and has
very few defects. There are three main substrates that have reached a very high quality level: Si,
GaAs, and InP. The material systems In0.53Ga0.47As (Eg ∼ 0.75 eV) and In0.52Al0.48As(Eg

∼=
1.4 eV) are lattice-matched to InP. Thus the In0.53Ga0.47As/In0.52Al0.48As and InGaAs/InP both
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Figure 7.23: Plot of 1
C2 vs. V for problem 7.1.

can be exploited for high-performance HBTs. InGaAs has extremely attractive electronic prop-
erties and is therefore the material of choice for all high-speed/high-frequency applications. The
InGaAs/InP HBTs have achieved fτ values of over 600 GHz.

7.7 PROBLEMS

• Section 7.2

Problem 7.1 The 1
C2 versus applied voltage relation in a silicon p+ − n − n+ junction

diode is measured to have a form shown in figure 7.23. Calculate the thickness of the
n-region, the built-in voltage, and the Na and Nd concentrations in the p+ and n regions.
The diode area is 10−3 cm2. Also calculate the width of the n-region.

Problem 7.2 Consider a long base p+n diode that is biased to carry a forward current of
1 mA. The junction capacitance is 100 pF. If the minority carrier lifetime τp is 1μs, what is
the admittance of the diode at 300 K for a 1 MHz signal?

Problem 7.3 A p+-n silicon diode has an area of 10−2 cm2. The measured junction
capacitance is given by (at 300 K)

1

C2
= 5 × 108(2.5 − 4 V)
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where C is in units of μF and V is in volts. Calculate the built-in voltage and the
depletion width at zero bias. What are the dopant concentrations of the diode?

Problem 7.4 In a long base n+p diode, the slope of the Cdiff versus IF plot is
1.6 × 10−5F/A. Calculate the electron lifetime, the stored charge, and the value of the
diffusion capacitance at IF = 1 mA.

Problem 7.5 Consider a Si p+n diode with a long base. The diode is forward-biased (at
300 K) at a current of 2 mA. The hole lifetime in the n-region is 10−7 s. Assume that the
depletion capacitance is negligible and calculate the diode impedance at the frequency of
100 KHz, 100 MHz, and 500 MHz.

Problem 7.6 Consider a diode with the junction capacitance of 16 pF at zero applied bias
and 4 pF at full reverse bias. The minority carrier time is 2 × 10−8 s. If the diode is
switched from a state of forward-bias with current of 2.0 mA to a reverse-bias voltage of
10 V applied through a 5kΩ resistance, estimate the response time of the transient.

Problem 7.7 Consider a Si p-n diode at room temperature with following parameters:

Nd = Na = 1017 cm−3

Dn = 20 cm2/s

Dp = 12 cm2/s

τn = τp = 10−7 s

Calculate the reverse saturation current for a long ideal diode. Also estimate the storage
delay time for the long diode. Now consider a narrow diode made from the structure given
above. The thickness of the n-side region is 1.0 μm. The thickness of the p-side region is
also 1.0 μm. Calculate the reverse saturation current in the narrow diode at a reverse bias
of 2.0 volt. Also estimate the storage delay time for this diode.

Problem 7.8 Consider the p-n junction diode shown in figure 7.24. Assume
NA = ND = 1017cm−3. Assume that the width of the n-region L1 << LP and that the

P N

L2 L1

Figure 7.24: Figure for problem 7.8.
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width of the p-region L2 >> Ln. Calculate the depletion and diffusion capacitances of the
diode. Obtain an expression for the ac resistance.

• Section 7.3

Problem 7.9 In the Schottky barrier, the electrons are injected across the barrier with
energies equal to the barrier height. These electrons are very hot. Estimate the
“temperature” of these electrons in a typical Si Schottky barrier with a barrier height of φb

= 0.6 V. (Electron temperature, Te, is defined by 3
2kBTe ∼ 〈Ee〉 where 〈Ee〉 is the average

electron energy.)

Problem 7.10 An important consideration in the speed of Schottky barrier diodes is the
time it takes hot electrons (see the previous problem) to lose their energy and achieve
equilibrium thermal energy. In GaAs, electrons lose excess energy exponentially with a
time constant of 1 ps. Consider a W -n-type GaAs Schottky diode with φb = 0.8 V. How
far will electrons move in the GaAs before they lose 99% of their energy?

• Section 7.4

Problem 7.11 Consider an HBT with a base graded from InGaAs to GaAs so that the
bandgap is narrow at the emitter and wide at the collector.

1. Draw the band diagram in the neutral base region of the device.

2. Write down the drift-diffusion equation governing the current in the base region
assuming no recombination in the base. Assume a forward bias at the base-emitter
junction and a reverse bias across the base-collector junction. What are the boundary
conditions for this equation?

3. Solve the differential equation to get the minority charge profile (n(x) versus x) as a
function of injected current in the base.

4. Sketch (without actually calculating exact values) the minority charge profile with
and without a reverse grade in the base for the same injected current density. Give
physical arguments for your result.

5. How will the base transit time vary in these two cases? Why?

• Section 7.5

Problem 7.12 In a particular BJT, the base transit time forms 20% of the total delay time
of the charge transport. The base width is 0.5 μm and the diffusion constant is
Db = 25 cm2s. Calculate the cutoff frequency for the device.

Problem 7.13 A silicon npn bipolar transistor has a cutoff frequency at 300 K limited by
base transit time. The cutoff frequency is 1 GHz. Estimate the base width if the base
doping is 1016 cm−3. The minority carrier mobility in the base is 500 cm2/V·s.
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Figure 7.25: Band diagram for device in problem 7.14.

Problem 7.14 Consider a bipolar transistor where the wide bandgap collector is used,
such that ΔEc = 0.3eV , as illustrated in figure 7.25. Calculate the additional delay
introduced by the barrier for a current density of 10kA/cm2. Assume thermionic emission
over the collector barrier. You may also assume that the notch is a quantum well of width
100 Å with infinite barriers when calculating the Fermi level in the notch.

Problem 7.15 Tired of making planar HBT’s, I decide to make a cylindrical HBT as
shown in figure 7.26. (a) Derive an expression for the transit time delay in the collector of
this HBT.
(b) Calculate delays for RB = 1μm and RC = 3μm, and compare these delays with
values for planar HBT’s with the same base and collector thickness. Explain the
difference. Assume that the electron velocity is saturated in the collector.
(c) Calculate the minority charge distribution in the base of the cylindrical HBT and
compare it with the planar structure, assuming Ie is the same in both cases. Assume no
recombination in the base. How is the delay affected relative to the planar HBT with the
same base width?

Problem 7.16 Consider the HBT from prefxch07/6.36.
(a) Obtain an expression for the base transit time in this graded base. Compare it to an
HBT with an ungraded base, but with the same collector current.
(b) What is the base transit time when the current density is 10 kA·cm−2. What will the
base transit time at this current level be if the base is not graded? Assume
μ = 1000 cm2/(V · s), vsat = 107cm/s. You may assume that the electron velocity is
saturated for electric fields greater than 2 kV/cm.

Problem 7.17 Consider two HBT structures, whose collector velocity profiles are shown
in figure 7.27. Derive expressions for the collector transit delays in these two structures in
terms of the saturated velocity vs and collector width, WC . Now, calculate the base transit
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Figure 7.26: Figure for problem 7.15.

delay for each of these structures in terms of the base width, WB , diffusion constant Dn,
and carrier velocity vs. Do not assume Shockley boundary conditions. Use charge control
analysis to derive these delays.

Problem 7.18 To maintain a high breakdown voltage in the collector of an InP-based
HBT, it is preferable to use an InP collector. In problem 7.14, you calculated the additional
base delay introduced by a charge accumulation layer at the interface for a current density
of 10kA/cm2.

1. To eliminate the above delay, I linearly grade the bandgap from InGaAs to InP across
the base. Derive an expression for the new base delay. Based on physical arguments,
sketch the expected minority charge profile. Compare this with a device whose base
is not graded. Physically explain your result. Do not assume Shockley boundary
conditions to calculate the delay. Instead, assume a saturated velocity vs.
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Figure 7.27: Figure for problem 7.17
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Figure 7.28: Figure for problem 7.18.

2. Next, I grade the InGaAs to InP in the collector, rather than in the base. Assume the
doping in the collector to be ND = 1016cm−3. What is the length of the parabolic
grade necessary to eliminate the barrier at VBC = 0 Why do you want the grading
distance to be minimum?

3. How can you shorten the grading distance in the collector by half? What is the
penalty you pay?

4. Calculate the collector delay time for the abrupt and graded cases.
For the graded case, assume that the velocity profile is as shown in figure 7.29. For
the abrupt case, assume a saturation velocity vs1. In the figure, t0 is the length of the
grade calculated in part (b), vs2 = 4.107cm/s, and vs1 = 107cm/s. Use a collector
width of 3500Å.

5. How do you expect the Kirk current threshold in the graded case to compare with the
ungraded one? Assume the same velocity profiles as above.

Problem 7.19 The base-collector junction in a bipolar transistor has the structure shown
in figure 7.30. A p-type doping sheet is added at the i-n junction to create a 0.3 eV drop
across the intrinsic region. Calculate the density of this doping sheet. This is a ballistic



354 CHAPTER 7. TEMPORAL RESPONSE OF DIODES AND BIPOLAR TRANSISTORS

t

vs

vs

0

1

2

Figure 7.29: Figure for problem 7.18.
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Figure 7.30: Figure for problem 7.19
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Figure 7.31: Figure for problem 7.19.

collector transistor. The velocity field profile for this material is given below. This is
expressed in terms of the velocity versus voltage drop in collector. The reason for the
sudden drop is the Γ − L intervalley transfer of electrons in GaAs. Of course, this is an
idealized profile to make the problem tractable.

1. Calculate the transit delay for this structure at VCB = 0V .

2. I now apply a reverse bias of VCB = 1V on the collector-base junction. Calculate the
transit delay at this bias. Assume that the depletion thickness is small in the n++ and
p++ regions, and that the n-region is just fully depleted at VCB = 0V .

7.8 DESIGN PROBLEMS

Problem 7.1 Design a p+n Si diode that can be used in a digital system operating at 1
gigabit per second. Assume that the minority carrier lifetime is 107 s. Other parameters
can be obtained from the text. Plot the I-V characteristics of this diode. At what applied
reverse bias would the entire n-region be depleted in this diode?

Problem 7.2 A Si p+n diode is to be used in the reverse bias state (VR = 5V ) as a
high-speed detector. Design the diode so it can operate up to a frequency of 5 GHz. Make
reasonable assumptions for the material parameters.



Chapter 8

FIELD EFFECT TRANSISTORS

8.1 INTRODUCTION

In this and the next chapter we will examine the field effect transistor (FET) and Metal-Oxide-
Semiconductor FETs (MOSFETs). These simple devices are majority carrier devices which are
relatively simple to fabricate and are extremely versatile. FETs are now made from a wide variety
of materials (Si, SiGe, GaAs, InGaAs, GaN, SiC, etc.). Figure 8.1 shows a GaAs-based Metal
Semiconductor FET or MESFET.

The basic concept behind the FET is quite simple and is illustrated in figure 8.2. The device
consists of an active channel through which electrons (or holes) flow from the source to the drain.
The source and drain contacts are ohmic contacts. The conductivity of the channel is modulated
by a potential applied to the gate. This results in the modulation of the charge density flowing in
the channel. It is important to isolate the gate from the channel so that no current flows into the
gate. The gate isolation is done in a variety of ways, leading to a number of different devices. In
the MOSFET, the gate is isolated from the channel by an oxide. This is the basis of the silicon
devices. In the metal-semiconductor FET or MESFET, the gate forms a Schottky barrier with the
semiconductor and the gate current is small in the useful range of gate voltages. In the junction
FET or JFET, a p-n junction is used in reverse bias to isolate the gate. Heterojunction field effect
transistors (HFETs) or modulation doped FETs (MODFETs) use a large bandgap semiconductor
to isolate the gate from the active channel. In this chapter we will examine the MESFET or JFET
devices. In the next chapter we examine MOSFETs.

8.2 JFET AND MESFET: CHARGE CONTROL

The operation of JFETs and MESFETs are similar. The key difference is that in a JFET a
p+ − n structure is used to create a barrier between the metal gate and the semiconductor while
in a MESFET the Schottky barrier height is used. We have seen from chapter 5that the reverse
current in a Schottky junction is much larger than that in a p-n junction. As a result the JFET is
especially used in materials for which it is difficult to produce a large Schottky barrier.

356
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Figure 8.1: MESFETs and JFETs are important devices for high-speed, low-noise amplifiers,
D/A and A/D converters, and much “front-end” processing where high speed is critical. These
devices exploit materials, like GaAs, InP, and InGaAs, that have transport properties that are
superior to Si. (Top) A cutoff cross-section of a 0.1 μm MESFET. (Bottom) Top view of the
MESFET.

Let us examine a typical JFET or MESFET structure as shown in figure 8.3a. The device is
based on a low-conductivity substrate on which an n-type region is grown to form an “active”
conducting channel of thickness h. The gate is formed by a p+ region (n+ region for a p−type
FET) or a Schottky barrier. The source and drain are ohmic contacts. In figure 8.3b we show
a case where the active channel is partially depleted (say at zero gate bias). A negative bias on
the gate reverse biases the gate-ohmic conductor junction (for an n-type device) and alters the
width of the depletion region. This allows the gate to modulate the conductance of the device.
In figure 8.3c we show a case where the channel is completely depleted.

Consider the cases shown in figure 8.4. In figure 8.4a we show the device with a small source-
drain bias VDS and no gate bias. As the gate bias is increased and the gate semiconductor
junction is reverse biased, the current through the channel decreases until eventually the channel
is “pinched off” and there are no free carriers in it. If the gate bias is fixed and the drain bias
is increased, as shown in figure 8.5, the gate semiconductor junction near the drain becomes
more reverse biased. Eventually, the channel is pinched off near the drain side. At this point the
current cannot increase even if the drain voltage is increased. This is called the saturation region.
Once the device reaches saturation, the current in the channel remains more or less unchanged.
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Gate controlled carrier density in the channel

Source Drain

Gate

Figure 8.2: The physical principle behind the FET involves the use of a gate to alter the charge
in a channel. Depending upon the method used for isolation of gate different FETs arise.

The thickness of the doped active channel is h as shown in figure 8.3 and Vbi is the built-
in voltage. The gate bias required to pinch off the channel is simply given by the depletion
approximation

h =

{
2ε(Vbi − VGS)

eNd

}1/2

(8.2.1)

It is possible that the built-in voltage may by itself pinch the channel off. In an n-channel
device, if the device is not pinched off by Vbi, then a negative gate bias will cause pinch-off. In
a p-channel device, a positive bias is needed for pinch-off.

The pinch-off voltageVp (called the intrinsic pinch-off voltage) is defined by

Vp =
eNdh

2

2ε
(8.2.2)

and the gate bias needed for pinch-off for the n-channel device is

VT = Vbi − Vp (8.2.3)

where VT is called the threshold voltage for the device. If the voltage Vp is smaller than the
built-in potential Vbi, the device channel is completely depleted in the absence of a gate bias.
A positive gate bias (for n-channel devices) can allow the channel to have free charge and be
conducting. Such devices are said to be enhancement-mode devices. On the other hand, if Vp

is larger than Vbi, the device has free charge in the channel at VG = 0 since the channel is only
partially depleted. A negative gate bias will then turn the device off, i.e., deplete the channel.
Such devices are said to operate in the depletion mode. Electronic circuits may use enhancement-
or depletion-mode devices or even combinations of them, depending upon the application.
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Figure 8.3: (a) A schematic of a JFET or MESFET showing the source, drain, and gate. The
channel width of this device is h; (b) the band profile when the applied gate bias is zero as is the
source-drain bias; (c) the band profile with a negative gate bias so that the channel is depleted.
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Figure 8.4: (a) Depletion width and channel in a JFET or MESFET under zero gate bias. The
channel has a large opening. Such a device is called a depletion-mode device; (b) the device
with a negative gate bias showing reduction in the channel opening and current; (c) the gate bias
is large and negative and the channel is pinched off with current in the channel zero.

An important consideration in JFET or MESFET technologies is that the gate current be negli-
gible. the requires that the gate be biased appropriately. This also requires a large built-in voltage
or Schottky barrier height. For small gap semiconductors (e.g. InGaAs, InSb, etc.) this may not
be possible.

Example 8.1 Consider an n-MESFET made from GaAs doped at 1017 cm−3. Calculate
the gate current density under normal operation if:

(i) the gate is made from a Schottky metal with a barrier φb = 0.8 V;

(ii) the gate is made from a heavily doped p+ GaAs.
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Figure 8.5: The effect of increased drain bias at a fixed gate bias. (a) the drain bias is small;
(b) the drain bias is increased and the channel is constricted near the drain; (c) the drain bias is
increased to the point that the channel is pinched off at the drain side. The drain current saturates
as shown.

You may use the following parameters:

Dp = 20 cm2/s

Lp = 1.0 μm

A∗ = 8 Acm−2K−2

The gate current under normal operation is just the reverse-bias current of the junction
between the gate and the semiconductor. For the Schottky case we have (see chapter 5)

Js = A∗T 2 exp

(
− eφb

kBT

)
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This gives
Js = 8 × (300)2 × 4.34 × 10−14 = 3.125 × 10−8 A/cm

2

For the p+-gate we have from p-n diode theory (see chapter 4)

J0 =
eDppn

Lp

This gives

J0 =
1.6 × 10−19 × 20 × 3.38 × 10−5

10−4
= 1.08 × 10−18 A/cm

2

We see that the gate current is much smaller for the JFET case. However for the GaAs case
considered here, the MESFET gate current is small enough for most applications.

8.3 CURRENT-VOLTAGE CHARACTERISTICS

The MESFET is one of the simplest three terminal devices to fabricate and to conceptually
understand. The most common material used in MESFETs is GaAs. Other compound semicon-
ductors can also be used although is common to use a HFET approach for most materials. It is
important that one have a high resistivity substrate to avoid current flow through the substrate.
This is usually done by impurity doping. These impurities create levels at midgap, pinning the
Fermi level..

We will first present a very simple model for the current-voltage relation in the MESFET.
Then we will describe a more accurate model. However, to obtain realistic results one needs to
use computer simulation tools.

In figure 8.6 we show the device structure along with the band profile under the gate. In
figure 8.7 we show the MESFET cross-section along with the depletion width under the gate
region. In the absence of any bias, there is a uniform depletion region under the gate region, as
shown in figure 8.7a. If the gate bias is made more negative, the depletion width spreads further
into the active region until eventually the channel is completely depleted. Thus, as the gate bias
is increased (to negative values), the total charge available for conduction decreases until the
channel is pinched off.

If the gate bias is fixed and the drain voltage is increased toward positive values, current
starts to flow in the channel. The depletion region now becomes larger near the drain side, as
shown in figure 8.7b. As the drain voltage is increased, the depletion width toward the drain end
starts to increase, since the potential difference between the gate and the drain end of the channel
increases. The channel then starts to pinch off at the drain end. As this happens, the current starts
to saturate. Once the drain voltage reaches a value VDS(sat) such that the channel pinches off
at the drain end, the current remains essentially constant even as the drain voltage is increased.

8.3.1 The Ohmic Regime

As noted earlier we will start with a very simple model which, though not accurate for mod-
ern short gate devices, provides insight into the device operation. We will use the following
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Figure 8.6: A schematic of a GaAs MESFET. Also shown are the energy band profile under the
gate region and some important device parameters.

approximations:

• The mobility of the electrons is constant and independent of the electric field. Thus the
velocity increases linearly with field.

• The gradual channel approximation introduced by Shockley is assumed. In the absence
of any source-drain bias, the depletion width is simply given by the one- dimensional
model we developed for the p-n diode. However, strictly speaking, when there is a source-
drain bias, one has to solve a two-dimensional problem to find the depletion width and,
subsequently, the current flow. In the gradual channel approximation, we assume that field
in the direction from the gate to the substrate is much stronger than from the source to
the drain, i.e., the potential varies “slowly” along the channel as compared to the potential
variation in the direction from the gate to the substrate. Thus the depletion width, at a
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Figure 8.7: A schematic of a MESFET showing the depletion width under the gate. (a) In the
absence of a source-drain bias, the depletion width is uniform and is controlled by the gate bias.
(b) In the presence of a source-drain bias, the depletion width is greater in the drain side.

point x along the channel, is given by the potential at that point using the simple one-
dimensional results.

Both the approximations given above are reasonable only if the channel fields are small.
These approximations do not work for modern devices and we will discuss a better model
later.
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The current in the drain is given by (field = −dV/dx)

ID = channel area × (charge density) × (mobility) × (field)

= Z[h − W (x)]eNd μn
dV

dx
(8.3.1)

where W (x) is the depletion width as shown in figure 8.8 and h is the channel thickness. Thus
h − W (x) is the channel opening. The depletion width at a point x is given in terms of the gate
voltage VGS , the built-in voltage Vbi, and the channel voltage V (x) by the depletion equation

W (x) =

[
2ε [V (x) + Vbi − VGS ]

eNd

]1/2

(8.3.2)

To find ID as a function of VDS and VGS , we substitute for W (x) in equation 8.3.1 and
integrate (ID is constant throughout the channel) to get

ID

∫ L

0

dx = eμnNdZ

∫ VDS

0

[
h −

{
2ε [V (x) + Vbi − VGS ]

eNd

}1/2
]

dV (8.3.3)

which gives (after dividing by L)

ID =
eμnNdZh

L

{
VDS − 2

[
(VDS + Vbi − VGS)3/2 − (Vbi − VGS)3/2

]
3(eNdh2/2ε)1/2

}
(8.3.4)

We denote by go the channel conductance when the channel is completely open,

go =
eμnNdZh

L
(8.3.5)

We have defined the pinch-off voltage Vp as

Vp =
eNdh

2

2ε
(8.3.6)

In terms of Vp, the drain current versus drain voltage characteristics can be written as

ID = go

{
VDS − 2

[
(VDS + Vbi − VGS)3/2 − (Vbi − VGS)3/2

]
3V

1/2
p

}
(8.3.7)

It must be remembered that this equation was derived under the condition that the gate and drain
voltages are such that there is no pinch-off near the drain region, i.e.,

W (L) =

{
2ε

VDS + Vbi − VGS

eNd

}1/2

< h (8.3.8)
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Figure 8.8: (a) A schematic of the MESFET with VD < VDS(sat). The current flow occurs only
in the undepleted region. The channel potential at any point x in the channel is V (x). (b) Band
diagram along the channel (dotted line in (a)).

We assume that to the first approximation, when pinch-off occurs, the drain current saturates.
What happens once saturation occurs will be discussed in the following section. The drain
voltage at which saturation occurs is

VDS(sat) = Vp − Vbi + VGS (8.3.9)
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and the saturated channel current becomes, from equation 8.3.7 (the drain current does not
change in our simple model once VDS ≥ VDS(sat)),

ID(sat) = go

[
Vp

3
− Vbi + VGS +

2(Vbi − VGS)3/2

3V
1/2
p

]
(8.3.10)

This expression will be reexamined with a better approximation later.
An important parameter of the device is the transconductance gm, which defines the control

of the gate on the drain current. From equation 8.3.7, the transconductance becomes

gm =
dID

dVGS

∣∣∣∣
VDS=constant

= go
(VDS + Vbi − VGS)1/2 − (Vbi − VGS)1/2

V
1/2
p

(8.3.11)

From equation 8.3.5 and equation 8.3.11 we can see that the transconductance is improved
by using a higher-mobility material as well as a shorter channel length. An improved transcon-
ductance means the gate has a greater control over the channel. This results in higher gain and
high-frequency capabilities, as will be discussed later.

When the source-drain voltage is small, the expression for the current can be simplified by
using

VDS � Vbi − VGS (8.3.12)

Using the Taylor series, we then get from equation 8.3.7,

ID = go

[
1 −

(
Vbi − VGS

Vp

)1/2
]

VDS (8.3.13)

The device is ohmic in this regime, as shown in figure 8.9, with a transconductance

gm =
goVDS

2V
1/2
p (Vbi − VGS)1/2

(8.3.14)

In the saturation regime the transconductance is, from equation 8.3.10,

gm(sat) = go

[
1 −

(
Vbi − VGS

Vp

)1/2
]

(8.3.15)

In the model discussed here (known as the Shockley model) the current cannot be calculated
beyond pinch-off. At pinch-off, the channel width becomes zero so that the electron velocity
must, in principle, go to infinity to maintain constant current. This, of course, does not happen.
We will now discuss, using physical arguments, what happens in the saturation region.
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Figure 8.9: Typical I-V characteristics of an n-MESFET. In the Shockley model discussed in the
text, it is assumed that once pinch-off of the channel occurs, the current saturates. In the figure,
VB is the breakdown voltage.

8.3.2 A Nearly Universal Model for FET Behavior : The Saturation Regime

The Shockley model is only valid for drain voltages smaller than VDS(sat). Consider again
what happens when the gate voltage is held fixed and the drain voltage is increased toward
positive values. As the drain voltage approaches VDS(sat), the drain end of the channel becomes
very narrow, so the electric field in the direction of current flow must become large in this region
in order for current continuity to be maintained. This clearly violates the assumption of a gradual
channel that was used in the Shockley analysis. The current characteristics beyond pinch-off can
be explained as follows.

Consider the two generic materials Si and GaAs. In materials like silicon the velocity-field
relations are such that the velocity increases monotonically with the applied field and eventually
saturates. In GaAs, the velocity peaks at a field Ep (∼ 3 kV/cm) and then decreases and gradually
saturates. Therefore, it is reasonable to assume that in a FET, once the drain voltage is very close
to VDS(sat), the velocity of the electrons at the drain side of the channel saturates, as the channel
on the drain side narrows approaching pinch-off; we denote the channel width on the drain side
at pinch-off by the symbol δ.

δ =
ID(sat)

eNdvsatZ
(8.3.16)

where vsat is the electron saturation velocity in the material.
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Figure 8.10a shows a schematic diagram of the FET depletion profile when VDS > VDS(sat).
Beyond pinch-off, the channel does not become any narrower near the drain, since this would
imply a reduction in current and would have to be accompanied by a decrease in the electric
field near the source. Rather, any additional drain voltage is supported by a lateral extension
of the depletion region near the drain. The universality of the analysis alluded to in the title of
this section comes from the similarity of the electrostatics that exists in all FETs to first order
in the saturation regime.Once the device behavior is understood in the saturation region in say
the JFET that is detailed below, the analysis can be readily extended to MOSFETs, HEMTs etc
by merely changing materials and geometrical parameters but keeping the device physics the
same. A very illustrative analysis of the JFET in saturation has been presented by Grebene and
Ghandhi. The detail of their analysis leads to the physical understanding of the universality of
FET electrostatics and I-V behavior and hence deserves consideration. It explains the basis of all
FET design, namely the high aspect ration design, in an elegant, analytical manner. Following
their analysis, it is useful to divide the channel into two separate regions in the direction of current
flow, as shown in figure 8.10. In Region I, near the source, the electric field in the direction of
current flow is small, so the gradual channel approximation is valid. In Region II, near the drain,
the electric field in the direction of current flow is large, so carriers travel at their saturation
velocity. Prior to pinch-off, Region I covers the entire channel, and the current characteristics
are described by the Shockley model. VDS = VDS(sat) represents the onset at which Region II
appears. Beyond pinch-off, Region II continues to become longer. However, the field profile in
Region I remains approximately constant, which implies that the current remains nearly constant
even as VDS is increased.

For the saturation region (Region II), a fundamentally different relationship between voltage
and distance occurs. Here, the charge and electric field (x-component) distributions are shown
schematically in figure 8.11. The voltage distribution V (x, y) in the saturation region is deter-
mined by solving Poisson’s equation.

∇2V (x, y) = −ρ(x, y)

ε
= −eN(y)

ε
(8.3.17)

The solution to this partial differential equation can be divided into a homogeneous solution and
a particular solution such that V (x, y) = Vhom(x, y) + Vpar(x, y), where

∇2Vhom(x, y) = 0

∇2Vpar(x, y) = −eN(y)

ε
(8.3.18)

The solution to the homogeneous part is the solution of a Laplacian is the part of the solution
that is independent of the doping in the channel and is therefore independent of the particular
form of the gating mechanism which defines the various categories of FETs, namely a junction
gate for a JFET, an MOS capacitor for a MOSFET and a modulation doped doped structure for a
HEMT. This provides the near-universality to the electrostatics of different FETs. The solution
of the homogeneous part (the Laplacian) is assumed to be of the form

Vhom(x, y) =

∞∑
n=1

An sin (αny) sinh (βnx) (8.3.19)
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Figure 8.10: Schematic diagram of FET when VDS > VDS(sat), drain end of channel is pinched
off. (b) Band diagram across the channel of the device.

where the sine function represents the symmetric boundary conditions in the y-direction. This
voltage distribution is caused by the positive charges on the drain electrode. The boundary
conditions that have to be satisfied are

Vhom(x, 0) = 0

Vhom(0, y) = 0

∂Vhom(x, h)

∂y
= 0 (8.3.20)

∂Vhom(0, h)

∂x
= −Ec

The first two conditions are satisfied by the chosen functional form of Vhom. The third condi-
tion requires

αn = βn =
(2n − 1) π

2h
(8.3.21)
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Figure 8.11: Schematic diagram of (a) the charge distribution and (b) the x-component of the
electric field in the pinched-off region. The exact form of the electric field distribution is found
by solving Laplace’s equation.

The fourth condition, which reflects the assumption that pinch-off and velocity saturation occur
simultaneously, leads to

∞∑
n=1

An (2n − 1) =
2hEc

π
(8.3.22)

For a physically meaningful solution, An must rapidly tend to zero for increasing values of
n. Otherwise, the sinh function will lead to extremely high fields near the drain which are larger
than the breakdown field of the semiconductor. We therefore retain only the first term in the
series, which leads to

Vhom(x, y) ∼= 2hEc

π
sin

(πy

2h

)
sinh

(πx

2h

)
(8.3.23)

The particular solution, which is dependent on the gating structure and hence the type of FET
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under consideration, can be readily shown to be the gradual channel solution of the depletion
region potential derived previously,

Vpar(x, y) = −VG +
e

ε

[
N(y) − N(0) − yN(a)

]
(8.3.24)

where the following convention has been used.

N(y) ≡
∫

N(y)dy (8.3.25)

The above equation readily reduces to the equations in the previous section when N(y) is assumed
to be constant, ND. Hence the total voltage in Region II is given by

V (x, y) = −VG +
e

ε

[
N(y) − N(0) − yN(a)

]
+

2hEc

π
sin

(πy

2h

)
sinh

(πx

2h

)
(8.3.26)

Along the line y = h, equation 8.3.26 reduces to

V (x, h) = Vpar − VG +
2hEc

π
sinh

(πx

2h

)
(8.3.27)

The sine function in equation 8.3.26 reflects the inherent symmetry of the structure with a pe-
riod 2h in the y-direction, whereas the hyperbolic function is the standard solution of Laplace’s
Equation in the non-symmetric direction. This hyperbolic dependence of V on x is critical to the
operation of FETs in the saturation regime. The band diagram (and hence the voltage profile) of
a FET biased in the saturation regime is shown in figure 8.10b.

As can be seen, the solution of Laplace’s Equation leads to the electrostatic formation of a
“collector” region, using terminology borrowed from bipolar transistors. The difference between
this collector formed due to saturation/pinch-off is that voltage has an exponential dependence
on length with applied voltage to conventional depletion regions that follow simple power laws
of depletion depth with voltage. Voltages applied beyond VDS(sat), shown in figure 8.12 and
labeled Vdp, are therefore absorbed efficiently within small extensions of Region II. The slope
of the I-V curve in the saturation region is the output conductance gd and is first explained
quantitatively and then analytically.

Qualitative description of the output conductance

For a qualitative description of the output conductance, let us consider what is happening on
the source side of the device. If the source electric field is Es, then the current in the device is

ID = AeμnnsEs

where eμnns = σs is the conductivity of the source and A = W · h is the cross-sectional area
of the device. Under most conditions σs is not a function of drain bias VD. Hence any increase
in ID can only result from an increase in Es. Therefore, a large increase in ID with respect to
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VD (or a large output conductance gd) implies a large increase in Es, whereas insensitivity of ID

with respect to VD (or a small gd) implies a small increase in Es.
The first is the case before saturation where

Es  VD

L

Es continues to increase until VD = VDS(sat) and at a corresponding current

ID(sat) = σs
VDS(sat)

L

In general

ID(sat) = σs
VDS(sat)

LI

where LI is the length of Region I. Prior to saturation, L = LI .
Once VD > VDS(sat), the total channel voltage is split between Region I and Region II.

The voltage drop across Region I remains close to VDS(sat), while the remaining voltage Vdp =
VD−VDS(sat) is dropped across Region II. In Region II, the hyperbolic relation of V to distance
allows for large changes in V to be absorbed with only a small change in LII . Hence the
gradual channel length LI = L − LII changes very slowly with drain bias, leading to a very
small increase in IDS(sat) for VD > VDS(sat), or a small output conductance in the saturation
regime. This is critical to good device operation.

This analysis can also give a clear understanding of the square law behavior of IDS(sat) =

K (VG − VT )
2. The channel conductivity at the source σs can be written as

σs = eμnns = eμnCG (VG − VT ) (8.3.28)
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where CG is assumed to be constant (which is true for a MOSFET) and is the normalized capac-
itance of the gate. Therefore

IDS(sat) = σsEsZ = eμnCG (VG − VT ) · VDS(sat)

L
· Z

= eμnCG (VG − VT ) · (VG − VT )

L
· Z (8.3.29)

=
eμnCGZ

L
(VG − VT )

2

where Z is the device width.
This analysis assumed that the electric field along the length of the channel was uniform. A

more rigorous analysis which allows for resistance and hence field variation leads to a factor of
2 in the expression, giving

IDS(sat) =
eμnCGZ

2L
(VG − VT )

2 (8.3.30)

Analytical derivation of the output conductance; high aspect ratio design

The output conductance gd is given by

gd =
∂ID

∂VD

∣∣∣∣
VG

(8.3.31)

For a particular value of VG, ID is of the form

ID =
K(VG)

LI
(8.3.32)

Therefore
∂ID

∂VD
= −K(VG)

L2
I

· ∂LI

∂VD
= −ID

LI
· ∂LI

∂VD
(8.3.33)

Realizing that LI + LII = L gives ΔLI = −ΔLII , equation 8.3.33 can be written as

∂ID

∂VD
=

ID

LI

(
∂LII

∂VD

)
(8.3.34)

Also assuming LI >> LII , a reasonable assumption for long gate length devices (L ≥ 0.5μm),
LI may be replaced by L, giving

gd  ID

L

(
∂LII

∂VD

)
(8.3.35)

To evaluate (∂LII/∂VD) let us consider equation 8.3.26 again. We can write

V (x, h) = Vpar − VG +
2hEc

π
sinh

(πx

2h

)
(8.3.36)
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and
V (LII , h) = VD (8.3.37)

The voltage drop in the pinched region (Region II) is VD − (VG−VT ) or VD −VDS(sat) = Vdp.
Therefore

LII =
2h

π
sinh−1

[
Vdpπ

2Ech

]
(8.3.38)

and

∂LII

∂VD
=

1

Ec

[
1 +

(
Vdpπ

2Ech

)2
]−1/2

(8.3.39)

For the case of interest, where the device is biased well into saturation, the second term in the
bracket becomes large, giving

rd =
1

gd
=

πVdp

2ID

(
L

h

)
(8.3.40)

This is a very important result. It says that to maintain a high value of rd, which is necessary
for high voltage gain, it is essential to maintain a high aspect ratio of the gate length to channel
thickness (L/h). Typically, (L/h) should be at least 10. Of course, as the current in the channel
decreases, rd increases, but this benefit is largely negated by a similar decrease in the device gm.
An increase in rd with Vdp is based on the increase in the saturated region which further isolated
the drain potential from the source, reducing gd.

8.4 HFETs: INTRODUCTION

In the previous sections we have discussed the MESFET (or JFET) devices. In the MESFET
the gate is insulated from the channel by a barrier created by either a Schottky barrier (or a
p+n junction). The charge in the channel is provided by dopants in the channel. The dopants,
while providing charge, also cause scattering and reduce mobility. The question arises: Can
we have channel charge but avoid dopant scattering? This is possible in the Si MOSFET where
charge can be induced by inversion. However, the MOSFET charge has to contend with interface
roughness scattering. In the Si/SiO2 case the interface is between a high quality semiconductor
and a non-epitaxial layer and the interface scattering can greatly reduce mobility. Thus while
room temperature electron mobility in pure Si is ∼ 1300 cm2/V.s, it is only half this value in
the NMOS channel. It would be ideal to have a heterostructure grown epitaxially where band
inversion could occur. However, so far this has been difficult, though advances continue to be
made. It is possible to make heterostructure devices where mobile charge is donated by dopants
or other fixed charges.

The most widely used heterostructure FET utilizes the modulation doping concept. The device
is called modulation doped field effect transistor (MODFET) or high electron mobility transistor
(HEMT) or 2-dimensional gate field effect transistor (TEGFET), etc. It has also been shown
that polar charges created at interfaces by piezoelectric and/or Spontaneous polarization can also
be exploited to create free charge. This approach has become quite dominant in nitride based
devices. Heterostructure field effect transistors (HFETs) offer many advantages over MESFETs
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or MOSFETs. A typical modulation doped device structure is shown in figure 8.13a. We show a
structure fabricated by epitaxial techniques such as MBE or MOCVD and using the recessed gate
technology. For the AlGaAs/GaAs structure the substrate is semi-insulating GaAs on which an
undoped GaAs layer is grown. A heterostructure is formed by depositing AlGaAs which is left
undoped to provide a “spacer” region. The remaining barrier material is doped strongly. Finally,
a heavily doped GaAs cap layer is deposited on which the ohmic source contacts are deposited.
The cap layer is etched off and the Schottky gate is deposited on the high barrier material.

The electrons from the donor atoms in the high barrier material spill over into the low bandgap
material conduction band creating a dipole layer. As a result, the band bends as shown in fig-
ure 8.13b to produce a quantum well in which the electrons are trapped. The quantum well has
a triangular form and the electrons have 2-dimensional properties; i.e., they are free to move in
the plane of the device but are confined in the device growth direction. As a result the density of
states of the electrons have the usual 2-dimensional features. The term 2-dimensional electron
gas (2DEG) is used to describe the electron system .

The key motivations for HFETs are:

• High Mobility Due to Suppression of Ionized Impurity Scattering: We have earlier dis-
cussed the effect of ionized impurity scattering on mobility. In the HFET, due to the phys-
ical separation of the dopants from the free electrons, the mobility is greatly improved.
For example, in a GaAs MESFET channel, doped at 5 × 1017 cm−3, the room temper-
ature mobility is ∼ 4000 cm2V −1s−1. In a MODFET channel with equivalent charge
density the mobility is essentially limited by phonon scattering to ∼ 8000 cm2V −1s−1.
The effects are even more dramatic at low temperatures.

The improved mobility allows the device to have a very low resistance between the source
and the gate region (low access resistance or source resistance). The high field transport in
the MODFET channel is, however, not too much better than the MESFET channel since
at high fields, transport is governed primarily by phonon (lattice vibration) scattering.

• Superior Low Temperature Performance: We had noted in Chapter 3 the carrier freezeout
effect that occurs in doped semiconductors at low temperatures. In a MODFET channel,
this effect is avoided since the electrons are in a region of energy below the donor lev-
els in the high bandgap material. Thus a high carrier density can be maintained at very
low temperature exploiting the low temperature improvement in transport. Extremely low
noise, high gain microwave devices are exploiting this low temperature feature for special
applications such as deep space signal reception.

• Use of Superior Materials in the Channel: In the MODFET, the active channel in which
the transport takes place need only be ∼ 200 Å. Thus one can use a very high mobility
material system in the channel. Normally materials like InAs or InSb which have very high
mobilities cannot be used as MESFETs since it is difficult to process these narrow bandgap
materials which are very “soft” and defect prone. However, when only a narrow region
is used, the device can be quite robust. On GaAs substrates one can use InxGa1−xAs
channels for active regions while on InP one can use In0.53+xGa0.47−xAs as active channel
materials. In the two cases above, if x �= 0, the channel is under strain, resulting in
pseudomorphic MODFETs.
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• High Sheet Charge Density: The charge density in the 2-dimensional HFET channel de-
pends upon the doping density in the large bandgap material or on polar charge at the
interface and the conduction band discontinuity at the channel-barrier interface. By us-
ing materials with large conduction band discontinuities, a very high sheet charge density
(
>∼ 1013 cm−2) can be introduced. This results in a very large device transconductance

and device performance.

In figure 8.14, we show an SEM image of a state-of-the-art InP-based HFET along with its
layer structure, I-V characteristics, and an integrated circuit composed of these devices. A
careful examination of the gate in the SEM image shows that the gate is recessed; the advantages
of this are described later in this chapter. The T-gate structure, which is characteristic of all
modern high speed FETs, is desirable because it is possible to achieve a very small intrinsic gate
length (in this case 0.1 μm) while still maintaining a bulkier gate metal, which reduces the lateral
gate resistance. Also evident is the dielectric passivation layer which covers the device. This
prevents undesirable charging of surface states as well as protects the device from contaminants
that may be present in the ambient environment.

In the I-V characteristics, we see that the current saturates at a very low voltage, indicative
of the low contact resistance, access resistance, and channel resistance that can be achieved with
this technology. However, one can see that the current does not completely saturate. This non-
zero output conductance results from short channel effects. Additionally, in the I-V curves, the
device is only biased to 1.5 V, since the breakdown voltage for InP devices with such short gate
lengths is typically ∼ 3 V. In GaN-based HFET technology, much higher breakdown voltages
can be achieved due to the wide bandgaps of the materials in the nitride system.

In this chapter we will examine some important issues in HFETs. In particular we will exam-
ine how polar charge can be exploited to create free electron or hole gas. Such undoped HFETs
have become very important due their use in the large bandgap AlGaN/GaN technology.

8.5 CHARGE CONTROL MODEL FOR THE MODFET

In a MODFET, electrons are introduced into the channel via doping of a region which is
spatially separated from the channel, as shown in figure 8.13 and figure 8.15. In this way, the
electron mobility is not degraded by ionized impurity scattering. A number of different doping
schemes are possible for this device. The entire barrier material, with the exception of a thin
spacer layer near the channel, can be doped, resulting in the structure that was shown in fig-
ure 8.13. Alternatively, one can dope a very thin (∼ 10 Å) layer of barrier material separated
from the channel by an undoped spacer layer. This scheme, known as δ-doping, is illustrated in
figure 8.15a.

While the continuous doping scheme is in practice easier to implement, δ-doping is preferable
because the maximum amount of charge that can be induced in the channel is higher. Addition-
ally, δ-doping reduces the risk of inducing a parasitic channel within the barrier material. For
the MODFET charge control model introduced in this chapter, we assume a δ-doped layer with
an areal donor density Nd [cm−2] separated from the heterointerface by a distance ds, as shown
in figure 8.15a.
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The charge distribution in the system is determined by electrostatics and can be varied by
applying a voltage to the gate. In general, electrons from donors in the barrier region can end up
in one of three places:

1. In the channel. We will call this charge ns.

2. On the gate. We will call this charge nm.

3. Inside the barrier material, where they create a parasitic channel. We call this charge npar.

All charges are expressed in units [cm−2]. We treat the distributed 2DEG as if it were a perfect
2-dimensional sheet placed a distance Δd from the heterointerface, where Δd is simply the
centroid of the 2DEG charge distribution. The resulting charge distribution, band diagram, and
electric field profile in the system is are shown in figure 8.15. For the purpose of this discussion,
let us assume the heterojunction is between AlGaAs and GaAs. In this analysis we use the
result of Kroemer that the capacitance of a Schottky barrier on a semiconductor with an arbitrary
charge distribution is

C =
ΔQ

ΔV
=

ε

< x >

where < x > is the centroid of incremental displaced electron distribution, ΔQ, caused by ΔV .
Note that when the charge centroid approximation is used, the electric field in the GaAs is ter-

minated at the centroid of the charge distribution. The actual electric field in the GaAs, indicated
by the dashed line in figure 8.15c, is gradually terminated by the 2DEG following Gauss’ Law,
where

∂E
∂z

= −en(z)

ε
(8.5.1)

and n(z) is the local volume electron concentration [cm−3]. Similarly, the band diagram has
been drawn as a solid line for the charge centroid approximation and as a dashed line for the true
behavior.

Charge neutrality states that the total charge in the system must be zero, or

N+
d = nm + npar + ns (8.5.2)

For the purpose of MODFET operation, it is desirable that npar = 0, since electrons in the
barrier region create a low mobility parallel parasitic current path. npar can become significant
when a large forward bias is applied to the gate or if Nd is very large. For the remainder of this
discussion, we will assume that the device is biased such that npar is negligible.

In HFETs with channels having electrons with a low electron effective mass and hence a low
density of states, it is important to consider the variation in eV −

di (see figure 8.15c) as a function
of the charge ns in the channel. Clearly, an increase in ns also requires an increase in eV −

di . This
is an undesirable effect because

1. It decreases the channel confinement potential and hence sets a limit on the maximum
current available.
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2. It effectively acts as a voltage divider between the gate and source as the Fermi level in
the channel EF,ch is raised relative to the Fermi level in the source EF,s, and hence only
part of the applied gate-source voltage VGS is used for charge control. Thus the intrinsic
source-gate bias VGS,int is related to the applied source gate voltage VGS by

VGS,int = VGS − (EF,ch − EF,s) (8.5.3)

This voltage division (or reduced charge control) can also be represented by a displacement
of the centroid of the 2DEG Δd away from the heterointerface (see figure 8.15c), effectively
increasing the gate to channel distance to d + Δd and reducing the gate capacitance CG to

CG =
εA

d + Δd

This is sometimes referred to as gate capacitance reduction due to a quantum capacitance asso-
ciated with motion of the fermi level. We now calculate an analytic expression for Δd. We first
assume that the 2DEG forms a triangular potential well, as shown in figure 8.16. The sub-band
energies are well known to be

Ei 
(

�
2

2m∗

)1/3 [
3

2
eE2π

(
i +

3

4

)]2/3

(8.5.4)

We assume that the electric field E2 is generated by only the 2DEG charge ns, yielding

Ei 
(

�
2

2m∗

)1/3 [
3

2
eπ

(
i +

3

4

)]2/3 (ens

ε

)2/3

= γin
2/3
s (8.5.5)

where i = 0, 1, 2, ..., n. The coefficients γi are material dependent, explicitly related to the
density of states effective mass m∗. Typical values for GaAs are

γ0 = 2.5 × 10−12 eV · cm4/3

γ1 = 3.2 × 10−12 eV · cm4/3

The 2DEG concentration is related to the position of the Fermi level via the Fermi-Dirac
distribution

ns = Ds
kBT

e

n∑
i=0

ln

[
1 + exp

(
e(EF − Ei)

kBT

)]
(8.5.6)

where Ds is the 2D density of states

Ds =
em∗

π�2
(8.5.7)

Assuming only the first sub-band is dominant, we can write

ns = Ds
kBT

e
ln

[
1 + exp

(
e(EF − E0)

kBT

)]
(8.5.8)
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Figure 8.16: Band structure of the HFET channel region represented as a triangular potential
well.

For the case of (EF − E0)/kBT ≥ 1, we get

ns · e

kBT
· 1

Ds
=

EF − E0

kBT
(8.5.9)

or

EF − E0 =
e

Ds
ns =

π�
2

m∗ ns (8.5.10)

For EF − E0 ≈ eV −
di , we get

V −
di =

(
π�

2

em∗

)
= ans (8.5.11)

This tells us that eV −
di , the amount that the conduction band drops below the Fermi energy

at the heterointerface, increases linearly with ns. The coefficient a in equation 8.5.11 is clearly
material dependent since it varies with m∗. By examining the band diagram and the electric field
profile near the channel, we can calculate Δd.

V −
di = ans = E2 · Δd =

ens

ε
· Δd (8.5.12)

Δd =
εa

e
(8.5.13)

Typical values of Δd are 80 Å for the AlGaAs/GaAs system, 50 Å for the AlInAs/GaInAs, and
20 Å for the AlGaN/GaN system and the Si/SiO22 system. When calculating the band diagram
of a HEMT, one of two boundary conditions are typically used:
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1. The electric field in the buffer (or bulk) is zero.

2. The voltages in the system are specified

The first condition allows voltages in the system to adjust and the second allows charges and
hence fields to adjust. Both conditions should not be applied simultaneously. We can now use
the band diagram in figure 8.15c to calculate the charge in the 2DEG as a function of gate bias
VG. The methodology is to follow the energy bands from the Fermi level in the metal to that in
the GaAs and set the difference equal to the gate bias VG. After dividing by the electron charge
e, we get the following equation:

−VG + φb − V1 + V2 − ΔEc

e
+ V −

di = 0 (8.5.14)

V1 and V2 are found by solving Poisson’s equation and are given by

V1 =
enm (d − ds)

ε
(8.5.15)

V2 =
ensds

ε
(8.5.16)

Substituting the relationships from equation 8.5.6 and equation 8.5.7 into equation 8.5.5 and
rearranging terms, we get

ens (d + Δd)

ε
− eN+

d (d − ds)

ε
− [VG − (φb − ΔEc/e)] = 0 (8.5.17)

From figure 8.15a, we see that d − ds = dδ is the distance between the gate and the δ-doped
layer, and d + Δd = D is the distance between the gate and the 2DEG. Solving for ns gives us

ns(VG) =
eN+

d dδ + ε [VG − (φb − ΔEc/e)]

eD
(8.5.18)

The term N+
d (dδ/D) in our expression for ns depicts what is known as the Lever Rule for

charge sharing. To illustrate its impact, consider the special case where φb − VG = ΔEc/e.
When the δ-doped layer is half way between the gate and the channel (dδ = D/2), the charge
is shared equally between the gate metal and the 2DEG (ns = nm = N+

d /2). When the δ-
doped layer is brought closer to the metal, more of the charge is imaged on the gate; as dδ → 0,
nm → N+

d . Similarly, as the δ-doped layer is brought closer to the channel, more of the charge
is imaged in the 2DEG. The change in the charge in the 2DEG can be related to the gate voltage
as

Δns = ns (Vg = 0) − ns (Vg)

=
Nddz − ε/eΔ(0)

D
− Nddz − ε/eΔ(Vg)

D
or

eΔns =
ε

D
· [Δ (Vg) − Δ(0)]
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therefore
eΔns =

ε

D
· (±Vg)

This is the charge control equation of the gate capacitor where

ΔQ2DEG

[
C · cm−2

]
= Cg · ΔVg

[
F · V · cm−2

]
This is to be expected since we are indeed dealing with a capacitor where the depleted AlGaAs
layer is the dielectric and the two plates of the capacitor are the gate metal and the centroid of the
2DEG separated by a distance D. By examining equation 8.5.9, we see that at a given gate volt-
age, ns increases linearly with dδ . Thus, moving the δ-doped layer closer to the AlGaAs/GaAs
heterojunction causes more of the induced charge to be imaged in the channel rather than on
the gate. This also illustrates why a δ-doped structure is preferable to continuous doping; in the
δ-doped structure, the centroid of the donor charge distribution is much closer to the 2DEG, re-
sulting in more charge being induced in the channel. However, moving the doped layer too close
to the heterointerface causes a degradation in channel mobility, since ionized impurity scattering
increases.

The pinch-off voltage Vp in a MODFET is the gate voltage required to deplete the channel of
carriers. To find Vp, we set ns in equation 8.5.9 equal to zero and solve for the gate voltage. This
gives us

Vp = −eN+
d dδ

ε
+ (φb − ΔEc/e) (8.5.19)

figure 8.17a shows the band diagram of a MODFET biased at pinch-off. Here, nm = −N+
d and

ns = 0, so the the only region with a non-zero electric field is between the gate and the δ-doped
layer.

In figure 8.17b, we show a MODFET with a large forward bias on the gate. If we bias the
device at pinch-off (figure 8.17a) and then increase the voltage on the gate, charge is transferred
from the gate (nm) to both the 2DEG (ns) and the barrier (npar increases and N+

d decreases,
since some of the electrons end up in the conduction band and some fill empty donor states).
Initially, almost all of the charge from the gate is transferred to the channel, and the change in
npar and N+

d remains small. However, as VG becomes large, the conduction band in the AlGaAs
begins to approach the Fermi level, implying that the electron concentration in the barrier must be
increasing (see figure 8.17b). Hence, if the gate voltage is further increased, charge is transferred
from the gate into both the 2DEG and the barrier. This is obviously not the biasing required for
good MODFET performance. The device operates between the two limits given by figure 8.17a
and figure 8.17b.

8.5.1 Modulation Efficiency

We have seen that in general, modulating the gate voltage causes charge to be transferred from
the gate to both the 2DEG and the barrier region. Even under optimal MODFET bias conditions,
npar and N0

d = Nd−N+
d (the density of occupied donors in the AlGaAs) are typically negligible,

but they are not zero, so increasing VG will still cause a small change in the charge density in
the AlGaAs. The concept of modulation efficiency was introduced by Foisy et al to describe
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Figure 8.17: A schematic diagram of a MODFET band profile under conditions where (a) a
negative gate bias is applied to completely deplete the 2DEG, and (b) a large positive gate bias
is applied, such that the gate loses control over the 2DEG.

charge transfer in the situation where a change in VG does not exclusively result in a change in
the 2DEG concentration. We define the modulation efficiency (ME) to be

ME(VG) =
eΔns

ΔVG
· 1

CG
(8.5.20)

where CG = ε/D (see figure 8.15a) is the gate-channel capacitance. The denominator of equa-
tion 8.5.11 CG · ΔVG represents the ideal induced charge in the 2DEG.

In general, the change in the charge density on the gate is

|Δnm| = Δns + Δnpar + ΔN0
d (8.5.21)

where ΔN0
d is the change in density of occupied donors in the AlGaAs, the superscript empha-

sizing that this is the change in the concentration of neutral donor atoms. For simplicity, we will
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assume Δnpar =
∫ 0

−d
n(AlGaAs)dx → 0. From equation 8.5.9, we have

ns(VG) =

(
Nd − N0

d

)
dδ − ε/e [VG − (φb − ΔEc/e)]

D
(8.5.22)

From this expression, we can solve for Δns

ΔVG
:

Δns

ΔVG
=

1

D

[
−ΔN0

d

ΔVG
· dδ +

ε

e

]
(8.5.23)

Inserting this into equation 8.5.11 gives us the following expression for the modulation effi-
ciency:

ME(VG) = 1 − e

ε

ΔN0
d

ΔVG
· dδ = 1 − Cp,eff

Cp
(8.5.24)

where

Cp,eff =
eΔN0

d

ΔVG

Cp =
ε

dδ

Again, if the change in charge density in the AlGaAs ΔN0
d is negligible, then Cp,eff → 0 and

ME → 1. Finding an expression for Cp,eff requires solving for the conduction band occupancy
in the AlGaAs as a function of VG. This must be done numerically and is left as a problem for
the reader.

Example 8.1 Consider an n-type GaAs/Al0.3Ga0.7As MODFET at 300 K with the
following parameters:

Schottky barrier height, φb = 0.9 V
Barrier doping, Nd = 1018 cm−3

Conduction band discontinuity, ΔEc = 0.24 eV
Dielectric constant of the barrier, εb = 12.2
Spacer layer thickness, ds = 30 Å
Barrier thickness, d = 350 Å

Calculate the 2DEG concentration at VG = 0 and VG = −0.5 V.

The parameter Vp2 of this structure is given by

Vp2 =
eNd

εb
(d − ds)2 =

(
1.6 × 10−19 C

) (
1018 cm−3

) (
320 × 10−8 cm

)2

12.2 (8.85 × 10−14 F/cm)

= 1.52 V

The threshold voltage Voff is given by

Voff = 0.9 − 0.24 − 1.52 = −0.86 V
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The device is thus a depletion mode MODFET. The 2DEG carrier concentration is given
by

ns (VG = 0) =
12.2

(
8.85 × 10−14 F/cm

)
(0.86 V)

(1.6 × 10−19 C) (350 × 10−8cm)
= 1.66 × 1012 cm−2

ns (VG = −0.5) =
12.2

(
8.85 × 10−14

)
(0.36)

(1.6 × 10−19) (350 × 10−8)
= 6.94 × 1011 cm−2

8.6 POLAR MATERIALS AND STRUCTURES

8.6.1 Polar Materials

An emerging class of materials is the (Al,Ga,In)N-based system for use in both optoelec-
tronics and electronics. These materials are fundamentally different from conventional cubic
semiconductors in that they exist normally in the wurtzite phase and exhibit strong polarization
in the <0001> direction (also known as the C-direction). Before studying HFETs fabricated
from these materials, it is necessary to first understand the effects that these polarization fields
have on the electronic properties of the material.

Figure 8.18a shows the ball and stick model of GaN in the C+ orientation (Ga face on top)
and the associated polarization in the crystal. In the classical model, these polarization charges
exist on each unit cell. The sum of the internal polarization within the crystal is zero, as shown
in figure 8.18b, leaving ± Qπ charge at each end of the crystal forming a dipole . Since an
unscreened dipole will result in a non-sustainable dipole moment, nature will always provide for
a screening dipole by placing equal and opposite charges at or close to the charges of polarization
dipole, as shown in figure 8.18c. Let us consider some numbers to see how large the polarization
dipole moment is.

The spontaneous polarization charge density in GaN nπ ∼ 1013 cm−2. This leads to an electric
field

Eπ =
Qπ

ε
=

enπ

ε
 1.6 MV/cm (8.6.1)

In a crystal of thickness d = 1 μm, the voltage across the material that results from this dipole
charge is

Vπ = Eπ · d = 160 V (8.6.2)

which is not sustainable. Hence a screening dipole is essential. This raises the question of what
is the nature of the charges that form the screening dipole. They could arise from counter ions
from the atmosphere (such as H+ and OH−). This is probably the case for bulk polar materials
used in the ceramic industry (such as ZnO for varistors and piezoelectric sensors). However,
this is probably not the case for epitaxial GaN thin films, since these films can be created in an
atmosphere free of counter ions, such as in an MBE reactor. This begs the question of whether
screening is possible without external counter ions. The following discussion addresses this
issue.

Consider a lightly doped n-type GaN sample in the initial stages of growth, shown in fig-
ure 8.19a. Due to the lack of availability of GaN substrates, currently GaN is typically grown
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Figure 8.18: (a) Stick-ball representation of Wurtzite GaN crystal structure. (b) Classical model
of polarization charge in a polar material such as GaN. (c) Crystal will draw in charge to screen
the polarization dipole - From M. J. Murphy et al, MRS Internet J. Nitride Semicond. Res. 4S1,
G8.4(1999)

heteroepitaxially (on sapphire, Si, or SiC substrates). The material at the substrate / thin film
interface is highly defective and therefore capable of trapping mobile charges. We will assume
that the effect of the background n-type doping on the electric field profile within the material
is negligible compared to the electric field generated by the polarization charges. We will also
ignore the effects of surface states on the electrical properties of the material. Both of these
effects will be considered later.

In the absence of surface states, as the material becomes thicker, the electric field in the ma-
terial (given by the slope of the conduction and valence band) will remain constant until the
valence band crosses the Fermi level, as shown in figure 8.19b. The thickness of the film dcr at
which this occurs is given simply by

dcr =
Eg

eEπ
=

3.4 eV

1.6 MeV/cm
 215 Å (8.6.3)

where Eg = 3.4 eV is the bandgap of GaN. Once d > dcr, holes begin to accumulate at
the surface (created by generation across the gap), leading to an equal electron concentration
which drifts to the substrate-epi interface (the GaN N-face), creating a screening dipole. This is
illustrated in figure 8.19c. The magnitude of the screening charge Qscr increases continuously
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Figure 8.19: Schematic diagram of an n-type GaN sample along with charge profile and band
diagram (a) during the initial stages of growth, (b) for d = dcr, and (c) for d > dcr.

with epitaxial layer thickness. The evolution of the screening charge with distance is obtained
by recognizing that the maximum voltage across the structure is the bandgap of the material, or

1

e
Eg = |E| · d =

(
Qπ − Qscr

ε

)
d (8.6.4)

Qscr = Qπ − εEg

ed
(8.6.5)

As d → ∞, Qscr → Qπ , or in other words for very thick samples the polarization dipole is fully
screened.

If we now assume that there exists a surface donor state, a very similar situation develops,
except that instead of holes providing the positive screening charge, ionized surface donors do.
These states pin the Fermi level at the surface to create a built-in voltage equal to the donor
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Figure 8.20: Schematic diagram of an n-type GaN sample along with charge profile and band
diagram when the effects of surface states are taken into account. (a) Very thin GaN, for which
surface states are not ionized. (b) Once GaN is thick enough such that EDD is very close to EF

at the GaN surface, surface donors become ionized and polarization charge is screened.

depth (EC − EDD)/e, as illustrated in figure 8.20. As the epitaxial thickness increases, the
donor level EDD approaches the Fermi level EF at the GaN surface, and the screening charge
N+

DD increases as given by the Fermi-Dirac occupancy probability

N+
DD = [1 − f (EDD(0))]NDD (8.6.6)

=

⎡⎣ exp
(

EDD(0)−EF

kBT

)
1 + exp

(
EDD(0)−EF

kBT

)
⎤⎦ · NDD (8.6.7)
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Figure 8.21: Schematic diagram of (a) a thick n-type GaN sample along with (b) the corre-
sponding charge profile and band diagram when surface states and the donor charge are taken
into account.

If eNDD > Qπ , then Qπ will be fully screened when (EC −EDD) − (EC −EF ) is very close
to zero, or in other words when EDD is very close to EF . Analogous to the previous case of
screening via holes,

N+
DD = Qπ − εEDD

ed
(8.6.8)

where EDD/e is now the built-in voltage as opposed to Eg/e.
We have ignored the effects of the donor charge in the analysis until now because we were

seeking to understand the formation of the screening dipole. Figure 8.21 shows the band diagram
of a thick n-type GaN film. Experimental evidence has shown that the surface of GaN indeed
has a neutral level, EDD, which is currently assumed to be the position of the surface donor.
Since the GaN is considered to be very thick, the energy bands must be flat (zero electric field).
The surface negative polarization charge −Qπ is balanced by the sum of the positively charged
ionized surface states N+

DD and the areal density of charges in the depletion region Nd · w, or

Qπ = N+
DD + Nd · w (8.6.9)
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Figure 8.22: Polar heterostructures can generate a 2DEG which is used as the channel region of
an HFET. (a) Typical AlGaN/GaN heterostructure used in polar HFET technology, along with
(b) the charge distribution and (c) the band diagram of the structure.
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Figure 8.23: Top view of an AlGaN/GaN HFET structure with 2 gate fingers. Pictured in the
inset is a close up of the 0.12 μm T-gate. Picture courtesy of Ilesanmi Adesida.

8.6.2 Polar HFET Structures

Now that we have described how charge is distributed within polar materials, we are ready to
show how polarization fields can be used to generate a 2DEG in polar heterostructures. Consider
the AlGaN/GaN structure illustrated in figure 8.22. The charge density distribution is shown
along with the band diagram. For sufficiently thick AlGaN layers, the surface potential eφs is
pinned by the surface donor and is approximately equal to the donor depth EDD. Due to the
lattice mismatch between AlGaN and GaN, the thin AlGaN cap is under tensile strain. Hence
the total polarization charge at the AlGaN surface −Qπ(AlGaN) is the sum of the spontaneous
and piezoelectric contributions from the AlGaN. In addition to the negative polarization charge,
there will also be a positive charge at the surface N+

DD resulting from the ionized surface donors.
At the AlGaN/GaN interface, the net polarization charge Qπ(net) is the sum of the polariza-

tion contributions from the AlGaN and the GaN, or

Qπ(net) = Qπ(AlGaN) − Qπ(GaN) (8.6.10)

Qπ(net) is a positive number for Ga-face polarity because of the higher polarization in the
AlGaN relative to GaN. From the band diagram, we can see that there must also exist a dis-
tribution of electrons in the GaN near the AlGaN/GaN heterointerface. Again, we have drawn



8.7. DESIGN ISSUES IN HFETS 395

the distributed charge as a 2 dimensional sheet charge of density ens a distance Δd from the
heterointerface, where Δd is the centroid of the charge distribution.

To find our 2DEG carrier density ns, we follow the same methodology as in our MODFET
analysis (see equation 8.5.5). Doing this, we get

φs − V1 − ΔEc

e
+ V −

di = 0 (8.6.11)

where V −
di was given in equation 8.5.3 and V1 is given by

V1 =
[Qπ(net) − ens] dAlGaN

ε
(8.6.12)

Substituting these values into equation 8.6.11 and setting dAlGaN + Δd = D gives us for ns

ns =
Qπ(net) · dAlGaN − ε (φs − ΔEc/e)

eD
(8.6.13)

which is the same expression as that derived for conventional HFETs with ds = 0 (i.e. with
the donor sheet at the heterointerface). This is reassuring, since in the case of AlGaN/GaN
heterostructures, the positive sheet charge that induces the 2DEG is the net polarization charge at
the heterointerface. The physical difference between conventional and polar HFETs is simply the
origin of the electrons in the 2DEG. In conventional HFETs, the channel electrons are provided
by a donor sheet, while in GaN-based HFETs, they come from ionized surface donor states.

In an HFET structure, we place a gate metal on top of the AlGaN layer and apply a gate
voltage to modulate the charge in the 2DEG. The only difference between the HFET charge
control analysis and the one presented here for an AlGaN/GaN heterostructure is that in the
HFET, the potential barrier at the metal/AlGaN interface is given by φb − VG, where φb is the
metal-semiconductor barrier height and VG is the applied gate voltage. Thus, for the AlGaN/GaN
HFET, the 2DEG sheet charge density as a function of gate voltage can be written as

ns(VG) =
Qπ(net) · dAlGaN + ε [VG − (φb − ΔEc/e)]

eD
(8.6.14)

8.7 DESIGN ISSUES IN HFETS

In addition to the issue of aspect ratio discussed for MESFETs and JFETs in Chapter 8, there
are several other design issues to be considered in HFETs. They are summarized in table 8.1.
We will discuss a number of techniques which are employed in modern HFET processes that
address these issues.

8.7.1 n+ Cap Layers

n+ cap layers are used to reduce the contact resistance as well as the access resistance in
the device. The schematic of an AlGaAs/GaAs HFET with an n+ GaAs cap layer is shown in



396 CHAPTER 8. FIELD EFFECT TRANSISTORS

Design Issues in HFET Technology

NE E D METHODOLOGYDE S I G N IS S U E

1.  Ohmic contact  
resistance

Minimize n+ cap layers, optimized alloying

schemes, ion implantation

2.  Channel and  
access resistance

Minimize Ion implantation, high 2DEG

density-mobility product, 

n+ cap layers 

3.  Substrate injection  Minimize Quantum well structures, p-type 

buffers

4.  Gate leakage  Minimize Junction HFETs, insulated gate 

structures, gate recess, field plates

5.  Parasitic  
capacitances

Minimize Low Κ dielectrics, lateral structures

preferred

6.  Breakdown voltage  Maximize Gate recess structures, high

bandgap materials, field plates

7.  Threshold voltage  Control Etch-stop layers, controlled

epitaxial growth

Table 8.1: Overview of technology issues that must be addressed in HFET design.

figure 8.24 along with a band diagram. The access resistance of the HFET is comprised of the
sheet resistance of the n+ cap layer Rn+ , the sheet resistance of the 2DEG R2DEG, and the
interchannel resistance posed by the barrier to electron flow between the cap and the channel
Rint (see figure 8.24b). The total resistance can be modeled as a distributed network of all of
these components, as shown schematically in figure 8.24a.

Solutions to reducing Rint are to reduce the barrier to electron flow from the n+ layer to the
2DEG channel, and to reduce the barrier to tunneling. The first is best achieved by increasing the
doping in the n+ layer so that it is very degenerate, causing EF to rise above EC . The second is
achieved by adding n+ doping in the AlGaAs layer nearest to the surface, which in turn enhances
the surface electric field and thereby tunneling. A schematic diagram illustrating the benefits of
both these solutions is shown in figure 8.25.

8.7.2 Maximizing 2DEG Conductivity

The 2DEG conductivity in MODFET structures σ is given by

σ = eμnns (8.7.1)
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Figure 8.24: (a) Schematic of an AlGaAs/GaAs HFET with an n+ cap layer and a recessed gate.
Also shown are the various resistive components that make up the source access resistance. (b)
Band diagram across the structure.

The 2DEG conductivity is at a maximum when the μn · ns product is maximized. From our
discussion of the Lever Rule in section 8.5, it is clear that the 2DEG density ns increases as the
δ-doping sheet is brought closer to the heterointerface. However, decreasing the spacer distance
ds also causes the electron mobility μn to decrease because of the increase in remote ionized
impurity scattering. It is therefore clear that the 2DEG conductivity will have a maximum at a
value ds(optimum) which must be determined for each material system and doping level. Typical
values are 5 nm for the AlInAs/GaInAs system, 3 nm for the AlGaAs/InGaAs system, and 2 nm
for the AlGaAs/GaAs system.
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n+-AlGaAs
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EF (GaAs)
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Figure 8.25: (a) Layer structure and (b) band diagram of an AlGaAs/GaAs HFET with a highly
degenerate n+ GaAs cap layer directly above a thin n+ AlGaAs layer. The high doping in the
GaAs cap layer reduces the barrier eφB that electrons must overcome, and the n+ AlGaAs layer
increases the probability of electrons tunneling through a portion of the barrier.

8.7.3 Back-barriers to Substrate Injection

Control of channel charge is the essence of FET operation. If electrons travel through the
path labeled Is in figure 8.26a, then they are effectively controlled by the gate. Electrons trav-
eling along the path labeled Ipar within the substrate and far from the gate are not effectively
modulated and are parasitic currents leading to both reduced output resistance (hence low power
gain) and low current gain. To keep electrons from being injected into the substrate, we need to
present a barrier to current flow, as shown in figure 8.26b. This can be done by introducing a
fully depleted p-type layer or a wider bandgap buffer. The band diagrams for each of these are
shown in figure 8.26c and figure 8.26d.

The p-type buffer introduces negative space charge to the region immediately below the chan-
nel, thus increasing the electrostatic barrier to electron injection into the buffer by a maximum
amount

Δφb  eNad2
bar

2ε
(8.7.2)
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Figure 8.26: (a) In standard MODFET structures, a small parasitic leakage current Ipar flows
through the substrate. (b) MODFET structure which incorporates a back barrier to prevent cur-
rent injection through the substrate. (c) Band diagram for a p-type barrier. (d) Band diagram for
a barrier composed of a wide bandgap buffer.
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Figure 8.27: HFET structures with (a) a single gate recess and (b) a double recess.

The wide bandgap buffer approach provides a barrier increase of

Δφb =
ΔEC

e
(8.7.3)

The latter confinement scheme is common in AlGaAs/InGaAs/GaAs pseudomorphic HFETs and
is the preferred design for GaAs-based HFET structures.

8.7.4 Gate Recess Design

Recessed gate structures are required when n+ cap layers are employed, and they can also be
designed to improve gate leakage and breakdown characteristics as well as to control the device
threshold voltage. Designing the gate recess is one of the more important issues in HFET design.
Recess structures can generally be placed into two categories: single recess (figure 8.27a) and
double recess (figure 8.27b) structures.

The single recess is designed so that the recess and the gate metal are both defined through
a single opening in the photoresist such that the recess width is approximately equal to the gate
length Lg . The advantage of this process is that the source and drain access resistances are
minimized, so the transit delay is determined dominantly by the gate length, as the high field
region in the structure is effectively terminated by the source and drain cap layers. The major
disadvantage of this scheme is that the lack of depletion field extension beyond the gate increases
the electric field at the drain edge of the gate, thus increasing gate leakage and decreasing the
breakdown voltage.

The double recess design, shown in figure 8.27b, allows one to trade off transit delay versus
gate leakage and breakdown. By utilizing the first recess of length LR to etch through the n+

cap layer and the second recess to simultaneously define the gate length and threshold voltage.
Single recess structures are used for small signal analog applications such as low noise am-

plifiers and in digital circuits, whereas double recess designs are used in large signal analog
applications such as power amplifiers.
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Figure 8.28: Various field plate configurations. (a) Gate-terminated field plate. (b)Source-
terminated field plate. (c) Multiple field plate structure. SEM image courtesy of Y. Dora,UCSB.

8.7.5 Field Plates

One can actively control the gate extension beyond the drain edge of the gate and thereby
reduce the peak electric field by using field plate structures. This is advantageous for applica-
tions such as high voltage switching and high power amplifiers, in which very high breakdown
voltages are necessary. For this reason, field plates have become especially popular for HFETs
in the GaN-based material system. There are a number of methods of implementing field plates,
a few of which are shown in figure 8.28. One can have a dielectric-assisted extension of the gate
toward the drain (i.e. a gate-terminated field plate). The gate extension effectively modulates the
channel beyond the primary gate, thereby spreading the electric field between two peaks, one at
the gate edge and the other at the edge of the termination, as shown in figure 8.32. The penalty
for this approach is the enhanced gate-drain feedback capacitance CGD.

Field shaping can also be achieved by utilizing a field plate connected to the source, as shown
in figure 8.28b. Here, image charges on the plate result in an enhanced drain-source capacitance
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Figure 8.29: Schematic structure and band diagrams of AlInAs/GaInAs and AlGaN/GaN
HFETs.

CDS and an enhanced gate-source capacitance CGS , but a reduced CGD because of the screening
of the gate from the drain by the source-connected field plate. One can effectively trade off the
capacitances based on the geometry of the gate-connected and source-connected field plates,
thus mapping out a design space of gain and breakdown voltage.

8.7.6 Comparison of two disparate material systems:
AlInAs/GaInAs and AlGaN/GaN

It is instructive to compare the behavior of two families of HFET devices which could in
some ways be considered to be at opposite ends of compound semiconductor space. One is the
AlInAs/GaInAs/InP system, where the In composition in the GaInAs channel can be increased
beyond the 53% value required to achieve lattice matching to come close to the 6.1 Å lattice
constant of InAs. The bandgap of course decreases from 0.74 eV in the lattice matched case
toward the bandgap of InAs (∼ 0.36 eV). The mobility in the 2DEG can increase from 9,000
cm2/V ·s to over 15,000 cm2/V ·s. The effective mass of the electron decreases from 0.47m0 to
0.25m0.
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At the other extreme is the AlGaN/GaN system, where EG in the channel is 3.4 eV. and the
effective mass is 0.2 m0. Though the channel can be modified in a pseudomorphic fashion by
adding In, the advantages are not obvious. Figure 8.29 shows the band structure of the Al-
GaN/GaN HFET and the AlInAs/GaInAs HFET. One feature to note is that the AlInAs/GaInAs
HFET is modulation doped whereas the AlGaN/GaN HFET achieves its 2DEG as a result of
polarization. The second is that the 2DEG concentration is only 3 × 1012 cm−2 in the AlI-
nAs/GaInAs HFET, as opposed to 1.2×1013 cm−2 in the AlGaN/GaN HFET. The reason is that
beyond an electron concentration of that order, the conduction band in the AlInAs touches the
Fermi level, drastically reducing the modulation efficiency. The low scattering rates in GaInAs
because of the small electron effective mass and the large separation between the Γ and L valleys
results in large electron velocity overshoot in channels which are much smaller than the mean
free path.

It is imperative to include velocity overshoot in calculating current-voltage (I − V ) curves
of InGaAs HEMTs where an average velocity of over 4×107 cm/s is easily attained for gate
lengths of 0.1μm. In comparison, the large effective mass of electrons in GaN, the high phonon
energy, and the strong coupling between electrons and phonons increases the scattering rate by
over an order of magnitude compared to InGaAs (1013 s−1 vs. 1012 s−1 in bulk materials).
Hence, the probability of overshoot is much lower in this case.

Figure 8.30 shows that the GaN HFET has a very small fraction of the 0.1 μm long channel
exhibiting velocity overshoot, whereas the InGaAs HFET exhibits it over the full channel. Initial
estimates suggest that velocity overshoot will become important at gate lengths of 20 nm or
less in the GaN system. The difference in the non-stationary electron transport behavior is the
primary reason why the InGaAs HFET shows excellent fτ behavior with decreasing gate length,
as shown in figure 8.30. The current state-of-the-art is an fτ of over 560 GHz at a gate length
of 30 nm. On the other hand, AlGaN/GaN HFETs have achieved an fτ value of 163 GHz at 90
nm. The power performance of a state-of-the-art AlGaN/GaN HFET, which has high breakdown
voltage because of the large Eg is shown in figure 8.31a.

8.7.7 Non-idealities in state-of-the-art transistors

The performance of state-of-the-art HEMTs is strongly affected by gate modulation efficiency,
electron confinement in the channel and small signal access resistances. This section will show
several examples of how these parameters affect the performance of the transistors. It will also
describe some techniques that allow a higher performance by overcoming these limitations. We
use AlGaN/GaN HEMTs as the vehicle for demonstration.

As shown in previous sections, a good aspect ratio between the gate length and the gate-to-
channel distance is critical to obtain a good modulation of the channel electrons by the gate.
This is especially important in high frequency devices where a poor gate modulation efficiency
degrades fτ . To illustrate this problem, figure 8.33 shows the fτ of AlGaN/GaN HEMTs for
different gate aspect ratios. There is a clear increase in fτ and fmax as the aspect ratio increases.

However, a good aspect ratio is not enough to allow a good modulation of the channel electrons
by the gate. A poor carrier confinement in the channel can also degrade the performance of
transistors, even with good gate aspect ratios. Figure 8.35a shows the transconductance as a
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Figure 8.30: fτ vs. LG and velocity field profiles along the channel for both GaN and InGaAs
HFETs.

function of gate voltage for different drain voltages in an AlGaN/GaN HEMT. At low drain
voltages, the gate can easily modulate the electrons in the channel and a good pinch-off voltage
is obtained for a gate voltage of -5 V. However, as the drain voltage increases, the pinch-off
degrades significantly, shifting to lower VGS voltages and becoming softer. These problems
are the consequence of the poor electron confinement typical of single heterojunction devices
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Figure 8.31: (a) Power performance of an AlGaN/GaN HFET at 40 GHz. The maximum power
output of this device Pout > 10.5 W/mm with a PAE of 33%. Figure courtesy of T. Palacios,
UCSB.(b) Record power densities have been achieved by employing field plates in AlGaN/GaN
technology. Shown here are power measurements taken at 4 GHz of a 246 μm wide device
biased at VDS = 120 V. The maximum output power density Pout = 32.2 W/mm with a PAE of
54.8%. Figure courtesy of Y.-F. Wu, Cree Inc.
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Figure 8.32: (a) Schematic diagrams of HFET structures with and without gate-terminated field
plates. In the field plated device, the depletion region extends over a larger lateral distance. (b)
Electric field profiles within the depletion region along the channel of both devices.

like the AlGaN/GaN HEMT. While there is a significant potential barrier at the AlGaN/GaN
heterointerface, there is no barrier between the channel and the buffer. Therefore, it is easy for
hot electrons to get injected into the buffer, which increases the gate to channel distance and
degrades the performance.

Especially in high frequency devices with very short channels, it is important to increase the
confinement of the channel by providing a potential barrier between the channel and the buffer.
This barrier can be formed by the conduction band discontinuity between a wide bandgap semi-
conductor buffer and a narrow bandgap channel. This is the approached normally followed in
AlGaAs/GaAs/AlGaAs transistors. The channel confinement can also be increased by doping
the buffer p−type, which generates an electric field in the buffer in a direction that opposes the
injection of hot electrons from the channel. An additional option in nitride-based devices is to
use ultra thin InGaN backbarrier layers as shown in figure 8.36. In this device, the difference
in the polarization coefficients between the GaN buffer and the InGaN backbarrier induces two
sheets of fixed charge at the GaN/InGaN interfaces. These polarization induced charges gener-
ate an electric field in the InGaN layer which lowers the conduction band in the GaN channel
with respect to the GaN buffer. This creates an effective conduction band discontinuity which
provides a barrier for the flow of electrons into the buffer as shown in the band diagram in fig-
ure 8.36b. The improved confinement provided by the InGaN back barrier allows much better
gate modulation at high drain voltages as shown in the transconductance measurements of fig-
ure 8.35b. In these improved devices, there is no degradation in the quality of the pinch-off as
the drain voltage increases, although there is still a shift in the pinch-off voltage.
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Figure 8.33: Effect of the gate-to-channel distance in the frequency performance of an Al-
GaN/GaN HEMT with a gate length of 230 nm.

The higher channel confinement of double heterojunction devices is also beneficial in increas-
ing the output resistance of the transistors. Figure 8.34 compares the output resistance as a func-
tion of gate length for several standard AlGaN/GaN HEMTs and some AlGaN/GaN HEMTs
with InGaN backbarrier. Almost a 50% increase in the output resistance can be measured in
the devices with higher channel confinement. This increase in output resistance also causes an
increase in the fmax of the devices, as predicted by equation 8.8.12, and shown in figure 8.37.

Another interesting non-ideality in the behavior of many transistors is the decrease of gm with
drain current. From equation 8.8.2, the transconductance of a HEMT operating in the saturated
mode should be independent of the drain current level. However, this is normally not the case.
As shown in figure 8.38 for an AlGaN/GaN HEMT, gm decreases as current increases once that
the maximum gm has been reached. This kind of behavior has been observed in many differ-
ent transistor technologies, including Si MOSFETs, AlGaAs/GaAs MODFETs and AlGaN/GaN
HEMTs. The cause of this decrease is different in each technology. In Si MOSFETs, simula-
tions have related this decrease in performance with roughness at the Si/SiO2 interface. On the
other hand, in AlGaAs/GaAs HEMTs, as the drain current increases, there is a reduction in the
modulation efficiency of the gate due to the capture of channel electrons by the ionized donors in
the AlGaAs barrier, which reduced gm. Finally, in GaN technology, the reason for this decrease
is related to the increase in small signal source access resistance due to a reduction in the elec-
tron mobility at higher electric fields in this material system . Other studies have also proposed
the emission of hot phonons and the subsequent reduction of the electron velocity as a possible
cause for this decrease in performance.
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Figure 8.35: Change in gm and pinch off with VDS in a standard AlGaN/GaN HEMT and in a
HEMT with an InGaN back-barrier.
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Figure 8.36: a) Effect of the insertion of an ultra-thin layer of InGaN in the conduction band
diagram of a GaN buffer. Due to the extremely thin InGaN layer, the conduction band discon-
tinuity, ΔEc, of one side of the heterostructure is canceled by the ΔEC in the other side and
it can be neglected, resulting in an effective band discontinuity equal to ΔEp. In the figure,
the polarization-induced sheet charges at the heterointerfaces are also shown. b) Schematic and
conduction band diagram of the basic InGaN back-barrier sample used in this work.

In conclusion, in this section we have reviewed several of the problems limiting the perfor-
mance of real HEMTs as well as some of the solutions normally adopted to overcome them.
Some solutions, like to keep a good gate aspect ratio, are common to every semiconductor fam-
ily; others, like the use of InGaN back-barriers, are specific to some materials. Therefore, to
fabricate high performance transistors is fundamental not only to understand the physics of the
device but also to know the particularities of each material system, its limitations and advanced
properties.
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8.8 SMALL AND LARGE SIGNAL ISSUES AND FIGURES
OF MERIT

It is important to understand the behavior of devices at higher frequencies both in small and
large signal operation. The former refers to applications such as low noise amplifiers in receivers
whereas the latter to applications such as power amplifiers used in transmitters.In this context
several figures of merit have been defined to characterize device performance. It is important to
recognize that frequencies of merit are in general a function of the application or equivalently
a function of the input and output networks that the device is connected to. In the following
sections we will study this in more detail and present in this introduction a short synopsis of the
treatment. The most important figure of merit is the current gain cut-off frequency, fτ , which is
proportional to the inverse of the electron transit time across the device. The output termination
of the device when fτ is calculated is always an AC short circuit and hence reflects the device
behavior independent of the circuit. The fτ is the primary indicator of the average electron
velocity through the transistor and detailed analysis can extract electron velocity in regions of
the transistor. The power gain cutoff frequency of the device fmax is evaluated with the output
of the device presented with the complex conjugate of its output impedance to maximize power
transfer. This again is predominantly dependent on the device as the termination is determined
uniquely by the device characteristic. In other instances, like in large signal amplifiers driving
50 ohms, the load line is what determines the termination and hence another figure of merit, flsg

, the large signal figure of merit is used. In the discussion of the bipolar device high frequency
response we had to discuss minority carrier injection and removal. The FET is a majority carrier
device. The device performance is essentially controlled by carrier transit time effects. Thus
lithographic techniques defining the gate length and carrier mobility and velocity figure strongly
in device response.

8.8.1 Small-Signal Characteristics

The equivalent circuit of a MESFET and the source of the various terms are shown in fig-
ure 8.39. A change of charge ΔQ on the gate produces the change ΔQ in the channel (assuming
charge neutrality). If Δt is the time taken by the device to respond to this change, the change in
the current in the channel is

δID =
δQ

Δt
(8.8.1)

where ID is the current flowing between the source and the drain. The time Δt can be inter-
preted as the average transit time ttr for the electrons to move through the device. The transistor
transconductance can be related to the transit time. The transistor intrinsic transconductance is
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Figure 8.39: (a) Equivalent circuit of a MESFET. (b) Cross-section of a MESFET indicating the
origins of the elements.

given by

gm =
∂ID

∂VG

∣∣∣∣
VD

=
∂ID

∂Q

∣∣∣∣
VD

∂Q

∂VG

∣∣∣∣
VD

=
CG

Δt
=

CG

ttr
(8.8.2)
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where CG is the gate-to-channel capacitance and describes the relationship between the gate
voltage and the gate charge. The intrinsic transconductance is thus inversely proportional to the
carrier transit time. The gate capacitance can be characterized by the gate-source capacitance
CGS and the gate-drain capacitance CDG shown in figure 8.39b.

We can also define the output conductance gD, which describes the effect of the drain bias on
the drain current as

gD =
∂ID

∂VDS

∣∣∣∣
VGS

(8.8.3)

In addition to the intrinsic circuit elements discussed above, important extrinsic parasitic ele-
ments are the gate resistance RG, the drain resistance RD, and the source resistance RS , which
represents the series resistance of the ohmic contact and the channel region between the source
and the gate. Also, we have the drain-to-substrate and drain-to-channel capacitances CDS and
CDC respectively. These parameters lead to a simplified circuit model for the FET device shown
in figure 8.39. This figure shows the equivalent circuit based on the physical origin of the cir-
cuit elements discussed above. An important characterization parameter is the forward current
gain cutoff frequency fτ , which is measured with the output short-circuited. The parameter fτ

defines the maximum frequency at which the current gain becomes unity. Figure 8.40 shows a
simplified AC equivalent circuit where the input resistances are condensed into Ri and the output
is represented by RDS = 1/gD.
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Figure 8.40: (a)Simplified A.C. π-model for the transistor used in this analysis, (b) definition of
short circuit current gain and (c) definition of maximum available power gain (d) definition of
large signal power gain for load line match.
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If the capacitance charging time is the limiting factor, at the cutoff frequency the gate current
Iin is equal to the magnitude of the output channel current gmVGS . The input current is the
current due to the gate capacitor, and for a small-signal sinusoidal signal we have

Iin = jωCGVGS (8.8.4)

Equating this to gmVGS at ω = 2πfτ , we get for the cutoff frequency

fτ =
gm

2πCG
=

1

2πttr
(8.8.5)

where ttr represents the transit time of the electrons through the channel. The frequency response
is therefore improved by using materials with better transport properties and shorter channel
lengths. If we assume that the carriers are moving at a saturated velocity, the transit time ttr is
simply

ttr = Δt =
L

vs
(8.8.6)

and the cutoff frequency becomes

fτ =
vs

2πL
(8.8.7)

It may be noted that the source resistance RS has an effect of reducing the effective transcon-
ductance of the device. In the presence of a source resistance the gate bias is V

′

GS since a part of
the input voltage drops across the resistance RS . The drain current is

ID = gmV
′

GS (8.8.8)

Also we have
VGS = V

′

GS +
(
gmV

′

GS

)
RS = (1 + gmRS)V

′

GS (8.8.9)

The drain current now becomes

ID =
gmVGS

1 + gmRS
= g

′

mVGS (8.8.10)

where g
′
m is the extrinsic transconductance and is smaller than gm.

The transistor provides the maximum power gain when both the input and output are conju-
gate matched to the generator and load impedance respectively figure 8.40(c)). This maximum
available power gain (MAG) is given by,

MAG =
Pload

Pav,gen
=

G2
mRds

16π2f2C2
gsRi

≡
(

fmax

f

)2

, (8.8.11)

where

fmax =
fτ

2
√

Ri/Rds

, (8.8.12)



8.8. SMALL AND LARGE SIGNAL ISSUES 415

is the frequency at which the power gain becomes unity, also called the power gain cut-off
frequency. In power amplifiers a load line match is usually provided at the output (equation
8.8.19) as in figure 8.40d, rather than a match for the maximum power gain as in figure 8.40c.
The large signal power gain (LSG) is then given by (for the case RL � Rds),

LSG =
Pload

Pav,gen
=

(
Vbr − Vk

Vp

)
Gm

4π2f2C2
gsRi

≡
(

flsg

f

)2

(8.8.13)

where

flsg =

√
Vbr − Vk

IDSS

fτ√
Ri

(8.8.14)

Here the large signal power gain cut-off frequency (flsg) is the frequency at which the power
gain becomes unity for a load line match.

With the transistor parameters scaling with the device periphery (W ) as IDSS ∝ W , Cgs ∝
W , Gm ∝ W , Ri ∝ 1/W and Rds ∝ 1/W , fτ , fmax and flsg are independent of the device
periphery.

8.8.2 Power-frequency limit

An important limitation called the power-frequency (pf2) limit relates to the inherent limit on
the breakdown voltage a high frequency device technology can achieve. This limits the output
power one can obtain from a given device technology. The pf2 limit, well-known in microwave
power transistor design, imposes particularly severe performance limits on broadband microwave
power amplifiers.

In high frequency transistors, whether HEMT or HBT, there is a high-field drift region separat-
ing the control region (the HEMT channel, the HBT base) from the output terminal. In HEMTs
it is the extension of the gate depletion region laterally toward the drain contact, while in a HBT
this drift region is the collector depletion layer. If the length of this region is Ddrift, and the
semiconductor breakdown electric field is Emax, then the transistor breakdown voltage is,

Vbr = EmaxDdrift (8.8.15)

This drift layer introduces space-charge transit time, τsct. If the electron velocity is vsat, then
the space charge transit time

τsct =
Ddrift

2vsat
(8.8.16)

and (ignoring all other transit delays) the unity current-gain cutoff frequency is

fτ ≤ vsat

πDdrift
(8.8.17)

Combining equation 8.8.15 and equation 8.8.17, we get

fτVbr ≤ Emaxvsat

π
(8.8.18)
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Figure 8.41: Plot of the maximum operating voltage for transistors made of selected semiconduc-
tors as a function of estimated fτ . The fτ estimates are based on the steady-state velocity-field
curve for each material. (After M. W. Geis, N. N. Efremow, and D. D. Rathman, “Summary
Abstract: Device Applications of Diamond,” J. Vac. Sci. Technol. A6, 1953 (1988).)

which is purely dependent on the material parameters. So, the transistor fτ and Vbr have to be
traded against each other, with extended drift regions giving high breakdown voltages but low
fτ and thin drift regions giving low breakdown voltages but high fτ .

8.8.3 Classes of operation of transistor power amplifiers and necessary de-
vice characteristics

The configuration of the uses of transistor amplifiers in say transmitter(power) applications
are called classes and determined by one or more of the following criterion:

1. where the device is biased

2. what load-line the device sees

3. whether the active device is operated as an amplifier or a switch

Though the number of classes in existence is far too many to be described here in detail, we will
briefly describe the class-A, and class-AB/B operations and highlight their performance with



8.8. SMALL AND LARGE SIGNAL ISSUES 417

����� �����

��
���

����
��

�����

�����

���

��

���

Figure 8.42: Circuit schematic of a simple class-A power amplifier.

respect to efficiency and bandwidth and associated device requirements . We will conclude the
section by referring to power amplifiers where the devices is used as a switch. These classes
offer the highest efficiency of operation but are the most stringent on device requirements .

Class-A : Least restrictive on device characteristics

Figure 8.42 shows the circuit schematic of a simple class-A power amplifier. This class of
amplifiers is used for highly linear applications and can be used for both narrow and large band-
width applications. For narrow band applications, a tuning network might be added at the output
to terminate the harmonics created due to the variation in device transconductance. In this class
of power amplifiers the device is biased normally-on, at about half the peak-peak output current
and half the peak-peak output voltage (figure 8.43).

The load-line in class-A operation is linear at low frequencies and primarily determined by the
load resistance (RL). To obtain the maximum power from the device, the load-line is chosen so
that the device operates between the maximum allowed drain to source voltage (the breakdown
voltage, Vbr) at one extreme and the maximum allowed drain current (the saturation current,
IDSS) at the other extreme. This requires that the optimum load resistance RL,opt be,

RL,opt =
(Vbr − Vk)

IDSS
(8.8.19)

This ensures that device provides the maximum output power obtainable, given by

Pout,max =
1

2
· 1

2
(Vbr − Vk) · 1

2
IDSS

where the first term of 1/2 comes from time averaging. Therefore,

Pout,max ≤ (Vbr − Vk)IDSS

8
≡ (Vbr − Vk)2

8RL,opt
(8.8.20)
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Choosing this load-line minimizes the total device periphery (and hence the die area) required
for a given RF output power. This also provides the best bandwidth. Larger device periphery
results in larger device input and output capacitances which degrade the bandwidth. Oversizing
is done if the device on-resistance in the linear region (Ron) is large (i.e. Vk/Vbr is large). Then
by operating at Id,max < IDSS , the I2

dRon losses are reduced and the efficiency is improved.
However this is achieved at the cost of reduced bandwidth.
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Figure 8.43: Optimum load-line for class-A operation

The maximum output power obtainable is roughly half the DC power, which means that the
theoretical maximum drain efficiency (ratio of the output RF power to the DC power) is 50%.
Since the device is normally on, a constant DC power of nearly twice the peak RF output power
is dissipated at all times. This might degrade the performance of high power amplifiers with
time. But the advantages of class-A operation include broadband operation and high linearity.

Reflecting on the discussion above the following device requirements can be extracted. To
minimize the losses in the linear region or on-state of the device the channel conductivity or
the product of sheet charge and electron mobility should be maximized. This allows the device
periphery for a certain value of allowed on resistance to be minimized which in turn reduces
the device capacitances and hence reduces the amount of circuit inductance required to tune the
device. This device requirement is applicable to all classes of operation, a universal requirement.
It is intuitive clear that the presence of large tuning elements result in LC networks which are
inherently narrow band centered around their resonance frequency and are undesirable in broad-
band applications. The output power is a function a the product of available current and voltage.
The current is typically proportional to the channel conductivity and electron velocity. This is
compatible to the requirement of low on resistance but typically materials that have high mobil-
ity and electron velocity have low bandgaps such as, Si, GaInAs and InAs. The one remarkable
exception is GaN which has a large bandgap, high electron mobility, and high electron velocity
enabling large currents and large voltages simultaneously and is hence the subject of intensive
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research. Another extremely important figure of merit for power transistors after output power
capability is efficiency. Why is this important? Power amplifiers transmit power. Depending on
the application these powers can be large. 120W per amplifier and over 1kW for a base station is
typical for cellular phone applications. The requirements for RADAR are even larger. Imagine
an amplifier that has an efficiency of say 50% (the best one can do in class A operation). Then
approximately 1 kW is wasted as heat for 1 kW of transmitted power. This is not only is wasteful
but poses a severe challenge in the packaging of the device as the heat has to be removed from the
chip. If the temperature of the chip rises then the mobility of the materials drop as discussed in
chapter 3 and the resistances rise which in turn heat up the chip even more. To prevent this from
resulting in a catastrophic failure of the device, adequate thermal management (cooling) has to
be in place. The average efficiency of an amplifier operating under GSM modulation schemes
(a popular scheme in wireless transmission the world over) is closer to 18%. It should not be a
surprse to the reader that forced air cooling is required for many base stations. The efficiency of
amplifiers is therefore becoming as important if not more than the requirement for high power.
There are two definitions of efficiency; the Drain Efficiency (DE) and the power added efficiency
(PAE) and are explained below.

1. Drain efficiency (DE%) or D.C. to RF conversion efficiency is defined as the ratio of R.F.
output power (Pout) to the D.C. power drawn from the drain supply (PDC,D) expressed as
a percentage ;

DE% =
Pout

PDC,D
· 100% . (8.8.21)

Drain efficiency represents what fraction of the D.C. power is converted into R.F. output
power.

2. Power Added Efficiency (PAE%) is defined as the ratio of the difference in the R.F. output
to input power, to the total D.C. power drawn from all bias supplies (PDC).

PAE% =
Pout − Pin

PDC
· 100% ≡ Pout

PDC

(
1 − 1

G

)
· 100% , (8.8.22)

where Pin is the RF input power, and G is the power gain. As PAE also accounts for
the input R.F. drive power required for the amplifier it is representative of how the power
amplifier output stage is going to impact the overall system efficiency.

The PAE is the more important of these figures because it includes the amount of input
power required to achieve the desirable output power. In many instances the amount of gain and
output power simultaneously required for the system may not be achievable in a single amplifier
stage. An example is the emerging need for mm-wave imaging (cameras operating at 94 GHz).
Here gain of over 30 dB is required which requires multi-stage amplifiers. In this instance a
high input drive (low power gain) would imply that the efficiency of the driver stage is also
going to significantly affect the overall efficiency. So at least a power gain of 10 (10 dB) is
required to obtain high PAE (say up to 45% for the class-A case). This ensures that the system
efficiency is primarily determined by the efficiency of the output stage and the driver stages do
not significantly affect the overall efficiency.
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Class-AB and B: Requires devices with excellent pinch-off characteristics and preferably
complementary devices for push-pull architectures

In class-AB (class-B) amplifiers the device is biased close to pinch-off (at pinch-off) so that
the device operates as a amplifier for half the cycle and remains cut-off for the other half of the
cycle. In tuned class-AB/B amplifiers sinusoidal output swings are obtained using a resonator at
the output (figure 8.44) tuned to the fundamental frequency. The drain voltage and current wave-
forms are sinusoidal and half-sinusoidal respectively and the drain is biased at roughly half the
peak-peak RF output voltage swing (figure 8.45). Under these conditions the LC resonant circuit
is charged during the conducting portion of the device cycle and discharges into the load when
the device is off providing the sinusoidal outputs desired. It is also apparent from figure 8.45 that
for the same device periphery as the class-A case the optimum load is now reduced by a factor
of 2, but the net fundamental output power is the same. Since the device is off when the voltage
across it is high, lower D.C. consumption and hence higher efficiency up to 78.6% is expected.
However, this configuration is inherently narrow-band because the series (parallel) resonator that
is designed to be a short (open) at a fundamental frequency acts close to a open (short) at the
second harmonic, and so even bandwidths of 2:1 are hard to realize. This bandwidth limitation
is mitigated by employing a push-pull architecture where sinusoidal output swings are obtained
using two devices, each operating for half the cycle and combining the output currents.
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Figure 8.44: Circuit schematic of a simple class-B tuned power amplifier

In push-pull class-AB/B configuration. (Figure 8.46) This configuration could be made rel-
atively broadband but requires broadband transformers or complementary devices. The most
prevalent of all complementary devices is the Si-CMOS structure which is the dominant tech-
nology in the world today. The importance of having complementary devices is apparent by
comparing Figure 8.46a and b, where figure 8.46a shows the case of a technology that does not
have a complementary architecture and figure 8.46b the Si CMOS case. The complexity and the
size penalty in the former is obvious as one has to generate out of phase signals at the input using
transformer and add the outputs also using transformers. As mentioned before these transform-
ers have typically narrow band and hence limit bandwidth. As in the tuned class-B case, higher
efficiency up to 78.6% is obtained due to reduced D.C. consumption. The device requirements
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Figure 8.45: Device bias point and load-line for class-B operation.

for high performance Class B amplifiers is high gain near pinch-off conditions as this is the bias
condition of the device is biased near pinch-off. this requires that the device leakage near pinch-
off be minimal. Devices that have quantum well channels, p-type buffer layers, wide bandgap
buffer layers or other means of enhanced charge control are required.

Higher Classes of Operation; Most stringent on device requirements

Class-C amplifiers are similar to the class-B tuned power amplifier with the device biased
deep into cut-off region, so that the conduction angle (the fraction of the cycle that the device
is on) for a sinusoidal waveform is less than 180◦. Higher efficiencies are obtained by lowering
the conduction angle, up to a theoretical limit of 100% with 0◦ conduction angle. Class-D,E are
switched mode power amplifiers, where the device is operated as a switch. The load networks
are chosen to minimize the current and voltage waveform overlap across the device, resulting in
higher efficiency. But, again as in the case of class-B tuned power amplifiers, these classes as
well as other classes like F, G, H etc. use a resonator at the output to obtain the fundamental
power and are of no significance in broadband amplifiers. The requirements for devices operat-
ing as switches are the most extreme because since the waveforms are nearly square waves, the
device has to have have gain at least to the third harmonic of the fundamental to be able to recon-
struct the waveforms with reasonable accuracy. In addition the requirements of high gain near
pinch-off, low leakage and high subthreshold slope, similar to to the case of Class B amplifiers
are still desirable.

8.9 Implications on device technology and circuits

Having understood the limitations on decade bandwidth high power amplifiers, the following
implications on the choice of circuits and device technology are apparent:
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a)

b)
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Figure 8.46: Push-pull amplifiers realized using (a) non-complementary devices, and b) comple-
mentary (CMOS) devices

Table 8.2: Typical power obtainable from various device technologies driving a Zo = 50Ω load.
device typical typical typical device typical
technology Vbr Vk IDSS periphery Pout,max

(V) (V) (mA/mm) (mm) (W)
GaAs MESFET 20 1 300 600 200
§InP PHEMT 12 1 500 0.45 0.3
†GaN HEMT 150 5 1000 57.6 500

§ HRL, † CREE

1. Class-A mode of operation is desired when requirements of linearity and bandwidth have
to be simultaneously satisfied

2. Push-pull class - AB/B operation is attractive if complementary devices. are available such
as CMOS

3. designs must be for at least 10 dB gain to ensure high PAE.

4. circuits must use a device technology with high fτVbr product.

8.10 PROBLEMS

• Section 8.2

Problem 8.1 Discuss the reasons why one needs a large Schottky barrier value for the gate
in a MESFET.
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Problem 8.2 By drawing the band profile of a MESFET, discuss the restrictions on the
gate bias values that can be allowed.

Problem 8.3 Consider an n-channel Si JFET at 300 K with the following parameters:

p+-doping, Na = 5 × 1018 cm−3

n-doping, Nd = 1017 cm−3

Channel thickness, h = 0.5 μm

(a) Calculate the internal pinch-off for the device. (b) Calculate the gate bias required to
make the width of the undepleted channel 0.25 μm.

Problem 8.4 Consider a GaAs JFET with the same characteristics as those of the Si
device in problem 8.3. Repeat the calculations for this GaAs device.

Problem 8.5 An n-type In0.53Ga0.47As epitaxial layer doped at 1016 cm−3 is to be used
as a channel in a FET. A decision is to be made whether the JFET or MESFET technology
is to be used for the device. In the JFET technology a p+ region can be made with a doping
of 5 × 1017 cm−3. In the MESFET technology a Schottky barrier with a height of 0.4 V is
available. Which technology will you use? Give reasons considering gate isolation issues.
(R∗ = 5 Acm−2K−2;Dp = 20 cm2/s; Dn = 50 cm2/s; Ln = 5 μm;Lp = 5 μm.)

Problem 8.6 Consider a p-channel Si JFET with the following parameters:

p-doping, Na = 5 × 1016 cm−3

n+-doping, Nd = 5 × 1018 cm−3

Channel depth, h = 0.25 μm

(a) Calculate the internal pinch off for the device as well as the gate bias needed for pinch
off.
(b) Calculate the width of the undepleted channel for gate biases of VGS = 1 V and VGS =
2 V for VDS = 0.

Problem 8.7 Design an AlInAs/GaInAs HEMT for maximum gm such that charge in the
channel is 3 × 1012cm−2. Assume the doping in the AlInAs is 5 × 1012cm−2. Assume
the surface barrier is 0.8 V and ΔEC = 0.55eV . Also, assume that the substrate is GaInAs
and is doped p-type such that EF = EV in the substrate. Assume the buffer is 0.5μm
thick. Also assume the minimum spacer allowed is 2 nm. What is the current available
from the device. At zero gate bias assuimng a gate length of 1μm. The velocity-field wave
is shown in figure 8.48.

• Section 8.3

Problem 8.8 Consider an n-channel GaAs MESFET with the following parameters:

Schottky barrier height, φb = 0.8 V
Channel doping, Nd = 5 × 1016 cm−3

Channel width, h = 0.8 μm



424 CHAPTER 8. FIELD EFFECT TRANSISTORS

AlInAs

p – GaInAs substrate 

GaInAs undoped buffer

Figure 8.47: Figure for problem 8.7.
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Figure 8.48: Figure for problem 8.7.

Calculate the minimum width of the undepleted channel (near the drain side) with VGS =
0.5 V when (a) VDS = 0.0 V; (b) VDS = 1.0 V; (c) VDS = 2.0 V; (d) VDS = 10 V.

Problem 8.9 (a) An n-type GaAs MESFET is to be designed so that the device is just
turned off at a gate voltage of VGS = 0 V. The Schottky barrier height φb is 0.8 V and the
channel thickness is 0.2 μm. Calculate the channel doping required. To calculate the
depletion region thickness (only) you may assume that Vbi

∼= φb - 0.1 V.
(b) If a gate bias of 0.2 V is applied, calculate the gate current.
(c) What is the saturation drain current when the gate bias is 0.2 V? Compare the gate
current with the drain current.

Mobility, μn = 5000 cm2/ V · s
Gate length, L = 2.0 μm
Gate width, Z = 20.0 μm
Channel width, h = 0.2 μm
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Problem 8.10 In the text we used the constant-mobility model to obtain the relation
between the drain current and the gate and drain voltages below pinch-off. Obtain a result
for the depletion region h − h(x) as a function of x (distance from source to drain) for a
gate bias VGS and a drain bias VDS . Use the symbols used in the text for other device
parameters.

Problem 8.11 Consider the design of two n-channel GaAs MESFETs with the following
parameters:

Schottky barrier height, φb = 0.8 V; 0.8 V
Channel doping, Nd = 2 × 1016 cm−3; 2 × 1017 cm−3

The first sequence belongs to one device and the second sequence to the other. Calculate
the depths of the channel needed for each device so that the devices are just turned off in
the absence of any gate bias.

Problem 8.12 Consider an n-channel GaAs MESFET at 300 K with the following
parameters:

Schottky barrier height, φb = 0.8 V
Channel thickness, h = 0.25 μm

Calculate the channel doping needed so that the device turns off at a gate bias of VGS = VT

= 0.5 V.

Problem 8.13 Consider an n-channel Si MESFET at 300 K with the following known
parameters:

Barrier height, φb = 0.7 V
Channel doping, Nd = 1016 cm−3

It is found that when a gate bias of VGS = −0.3 V is applied (VDS = 0), the channel is just
fully depleted. Calculate the channel depth h for the device.

Problem 8.14 Consider a GaAs n-channel MESFET at 300 K with the following
parameters:

Schottky barrier height, φb = 0.8 V
Electron mobility, μn = 6000 cm2/ V · s
Channel width, Z = 25 μm
Channel length, L = 1.0 μm
Channel depth, h = 0.25 μm
Channel doping, Nd = 1.0 × 1017 cm−3

(a) Calculate the gate bias VGS = VT needed for the device to just turn off.
(b) Calculate VD(sat) for gate biases of VGS = −1.5 V and VGS = −3.0 V.
(c) Calculate the saturation drain current for the cases considered in part b.
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Problem 8.15 Consider an n-channel GaAs MESFET at 300 K with the parameters of
problem 8.14. Calculate the transconductance of the device in the saturation region for the
gate biases VGS = −1.5 V and VGS = −2.0 V. Express the results in terms of mS/mm.

Problem 8.16 Consider an n-channel Si MESFET at 300 K. The following parameters
define the MESFET:

Schottky barrier height, φb = 0.8 V
Channel mobility, μn = 1000 cm2/ V · s
Channel doping, Nd = 5 × 1016 cm−3

Channel length, L = 1.5 μm
Channel depth, h = 0.25 μm
Gate width, Z = 25 μm

(a) Calculate the turn-on voltage VT for the structure.
(b) Calculate VDS(sat) at a gate bias of VGS = 0. Also calculate the device
transconductance.
(c) If the device turn-on voltage is to be VT = −2.0 V, calculate the additional doping
needed for the channel.

Problem 8.17 In a MESFET, as the gate length shrinks, the channel doping has to be
increased. Discuss the reasons for this.

Problem 8.18 Derive and plot the I-V curves for a GaAs MESFET with
ND = 5 × 1017cm−3, and a channel thickness of 50 nm. Assume a two-region mobility
model, with a saturated velocity vsat = 2 × 107 cm

s . Plot these curves for a gate length of
1μm and 10μm, with maximum drain voltage, VDS = 2V , and maximum gate voltage,
VGS = 0V . Assume the electron mobility in the doped GaAs to be 5000 cm2

V s , and a
Schottky barrier height of 1 eV for the gate metal. Normalize the current to unit
with(mA/mm).

• Section 8.5

Problem 8.19 Consider an Al0.3Ga0.7N/GaN HEMT structure. Assume that the Schottky
barrier is 1.7 eV on AlGaN and 0.9 eV on GaN.
(a) How does the sheet charge at the AlGaN/GaN junction vary with the thickness of the
AlGaN barrier? Plot the sheet charge ns for AlGaN thickness up to 40 nm.
(b) Plot the band diagram of an AlGaN/GaN HEMT with a 30 nm AlGaN cap at zero gate
bias, and at pinch-off. What is the pinch-off voltage?
(c) Now, a 5 nm layer of GaN is added above the AlGaN barrier. Calculate and plot the
band diagram of this structure at zero bias and at pinch-off. What is the effective
Schottky-barrier height in these two cases? Do you expect the gate leakage of this diode to
be different from the AlGaN/GaN structure? Why (not)?

Problem 8.20 I grow an AlGaN on GaN HEMT (Device A) where the net polarization
charge, Qπ,NET = 1.5 x 1013 cm−2. The spontaneous and piezoelectric polarizations (due
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Figure 8.49: Figure for problem 8.21.

to the strain in the AlGaN) contribute 1 x 1013 cm−2 and 5 × 1012cm−2 electrons to this
charge, respectively.
(a) Draw the band diagram of this structure assuming that the surface pinning is 1.8 eV
and the conduction band discontinuity of 0.7 eV.
(b) When measuring device A, I find the output conductance is high. I therefore grow a
different device on a relaxed AlGaN buffer to reduce substrate injection and grow the
strained 10 nm GaN QW followed by the same AlGaN cap I grew before (ie. 200 Å).
Draw the band diagram of device B by calculating and showing the relevant voltages and
changes in the system. How much electron charge is available? How would you expect the
output conductance to change?
(c) What is the main problem in device B? Suggest a qualitative solution to this problem.

Problem 8.21 I make a HEMT as shown in figure 8.49 and get a gm versus VGS curve
that deviates from the ideal one. Draw the charge, electric field and energy band profiles
for this structure along the line AA’. What is the transconductance curve you measure and
why? The electron velocity in the structure is 2 x 107 cm−2. Assume ΔEC = 0.5 eV,
Schottky barrier height, φB = 0.8 eV, and Δd = 5 nm, where Δd is the mean distance
between the electron gas and hetero-interface. You may also assume that the transistor
operates in the fully saturated region.

Problem 8.22 Consider a GaAs n-channel MESFET operating under conditions such that
one can assume that the field in the channel has a constant value of 5.0 kV/ cm−1. The
channel length is 2.0 μm. Calculate the transit time for an electron to traverse the channel
if one assumes a constant mobility of 7500 cm2/V·s. What would the time be if the correct
velocity-field relations plotted in chapter B were used?
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Problem 8.23 Consider a 1.0 μm channel length n-channel Si MESFET operating under
the condition that the average field in the channel is 15 kV/cm. Assume the electric field in
the channel is constant at this value. Calculate the electron transit time assuming a constant
mobility of 1000 cm2/V·s and using the velocity-field relations for Si given in the text.

Problem 8.24 Consider two n-channel GaAs MESFETs operating at a source-drain bias
of 2.0 V. Assume that the electric field in the channel is constant and has a value of VDS/L
where L = 1.0 μm for one device and 5 μm for the second. Calculate the transit time for
electrons in the two devices using two models for transit: (a) constant-mobility model with
μ = 6000 cm2/V·s; (b) correct velocity-field relations for the velocity. Use the curves given
in chapter B for the velocity field. Note that the discrepancy in the two models is larger for
the shorter channel device.

Problem 8.25 Consider an n-channel GaAs MESFET with the following parameters:

Schottky barrier height, φb = 0.8 V
Channel doping, Nd = 5 × 1016 cm−3

Channel depth, h = 0.5 μm
Channel mobility, μn = 5000 cm2/ V · s
Channel length, L = 1.5 μm
Channel width, Z = 20.0 μm

Calculate the value of VDS(sat) at VGS = 0. Also calculate the output resistance of the
channel at VDS = VDS(sat) + 2.0 V.

Problem 8.26 Consider an n-channel GaAs with the same parameters as the device in
problem 8.25 except for the channel length. A maximum value of VDS is 10.0 V for the
device, and it is required that the effective channel length L′ at VGS = 0 and the maximum
drain voltage should be no less than 90% of the actual channel length L. What is the
smallest channel length L that satisfies this requirement?

Problem 8.27 Consider the nominal AlGaAs-GaAs (ΔEC = 0.25eV ) HEMT structure
shown in figure 8.50. The sheet charge in the channel is 1 × 1012cm−2.

(a) Calculate the sheet doping in the donor layer required to achieve that. Show clearly
the electric field distribution and the resultant band diagram of the structure.

(b) I wish to now have a flat quantum wll (as opposed to a triangular quantum well)
holding the same sheet charge density. First, clearly state the design methodology to
achieve this. Next, proceed with the quantitative analysis.

(c) Explain why I would want a flat quantum well. Are there any disadvantages?

(d) Calculate the gm vs. Vgs curve for the transistor assuming that
vs(GaAs) = 1 × 107 cm

s and vs(AlGaAs) = 2 × 107 cm
s . Use 3-d density of states

in the AlGaAs for your calculation.
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Figure 8.50: Figure for problem 8.27.

Problem 8.28 Consider the AlInAs/GaInAs HEMT, shown in figure 8.51 where the
AlInAs is delta-doped with Si to the level of 5 × 1012cm−2. The spacer layer thickness is
5nm. You may assume that the Schottky barrier height is determined by Fermi level
pinning of the surface and is 1 eV. Next, I consider the same structure grown on p+

GaInAs (EFp ≈ EV ), where the thickness of the buffer is 1μm to enable threshold voltage
adjustment. What is the sheet charge in this structure compared to the structure grown on
undoped GaInAs? Last, but not least consider a forward bias of 0.8 eV applied to the
conventional HEMT structure. Assuming an effective mass of 0.5m0. Assume tunneling
as the transport mechanism. Calculate the position of the Fermi level around the donor by
balancing the current in with that out and linking the resident electron concentration to
EF . Use Eg(GaInAs) = 0.7eV and Eg(AlInAs) = 1.4eV , and ΔEC = 0.5eV .

• Section 8.8

Problem 8.29 In this problem we will consider the effect of the source resistance on the
device transconductance. Consider an n-channel GaAs MESFET with the following
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Figure 8.51: Figure for problem 8.28.

parameters:

Schottky barrier height, φb = 0.8 V
Gate length, L = 3.0 μm
Channel mobility, μn = 6000 cm2/ V · s
Channel doping, Nd = 5 × 1016 cm−3

Channel depth, h = 0.5 μm
Gate width, Z = 25 μm

Calculate the intrinsic transconductance of the device. If the source-to-gate separation is
0.5 μm, calculate the value of the extrinsic transconductance.

Problem 8.30 Calculate the maximum cutoff frequency for the ideal device of problem
8.24 (with the source resistance assumed equal to zero). Calculate the degradation in the
cutoff frequency due to the effect of the source series resistance.

Problem 8.31 Consider an n-type GaAs MESFET at 300 K with the following
parameters:

Schottky barrier height, φb = 0.8 V
Channel doping, Nd = 1017 cm−3

Channel mobility, μn = 6000 cm2/ V · s
Channel depth, h = 0.2 μm
Channel width, Z = 2.0 μm
Channel length, L = 1.0 μm

Calculate the maximum cutoff frequency using the constant-mobility model and the
saturation velocity model.

Problem 8.32 An important effect in short-channel FETs made from high-mobility
materials like GaAs and InGaAs is the “velocity overshoot effect.” The average time for
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scattering τsc in such materials is ∼1.0 ps. If the electron transit time is less than 1 ps, the
electron moves “ballistically,” i.e., without scattering. Consider a FET in which the
average electric field is 20 kV/cm. Electrons are injected at the source with thermal
velocities and move in the average electric field toward the drain. Estimate the gate length
at which the velocity overshoot effect will become important for Si, GaAs, and InAs.
Assume that the average scattering time is 1 ps for all three materials. Assume electron
effective masses of 0.26 m0, 0.067 m0, and 0.02 m0, respectively.

8.11 DESIGN PROBLEMS

Problem 8.1 Consider an n-MESFET made from GaAs operating in an ON state. Sketch
schematically (i.e., only semi-quantitatively) the electric field in the channel below the
gate going from the source to the drain for the following cases:
(a) the device is in the linear regime, i.e., the drain bias is very small.
(b) the device is under a high drain bias (i.e., VD ∼ VD(sat)).
Give reasons for your results.

Problem 8.2 A field-effect transistor is to be made from the high-speed material
n-InGaAs. The doping is 1017 cm−3. The bandgap of the material is 0.8 eV and the
maximum Schottky barrier height possible is 0.4 eV. In the device the maximum gate
leakage current density allowed is 10−2 Acm−2. Discuss how you would design the FET
using the MESFET and JFET approach.

R∗ = 4.7 Acm−2K−2

Dp = 25 cm2/s

Lp = 1.5 μm

ni = 2 × 1011 cm−3

Discuss the limitations on the gate bias for the MESFET and the JFET.

Problem 8.3 An n-MESFET is made from GaAs doped at 1017 cm−3. The gate width Z
is 50.0 μm and the gate length is 2.0 μm and the channel thickness h is 0.25 μm.

To characterize the gate properties, the gate semiconductor current is measured and is
found to have the value (at 300 K)

IG = 3.12 × 10−14[exp(eV/kBT ) − 1] A

where V is the bias between the gate and the semiconductor. The mobility in the
semiconductor is measured to be 4000 cm2/V·s.
(a) Calculate the threshold voltage VT for the device.
(b) Calculate the transconductance at saturation when the gate bias is VGS = −2.0 V.

Problem 8.4 Consider a GaAs MESFET with a gold Schottky barrier of barrier height
0.8 V. The n-channel doping is 1017 cm−3 and the channel thickness is 0.25 μm. Calculate
the 300 K threshold voltage for the MESFET.
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Problem 8.5 Consider the device in problem 8.4. Calculate the maximum channel
thickness at which the device is OFF when no gate bias is applied, i.e., the device is an
enhancement MESFET.

Problem 8.6 Consider a GaAs MESFET with the following parameters:

Schottky barrier height = 0.8 V
Channel doping = 1017 cm−3

Channel depth = 0.06 μm

Calculate the gate bias needed to open up the MESFET channel.

Problem 8.7 Consider a GaAs MESFET with the following parameters:

Channel mobility, μn = 6000 cm2/ V · s
Schottky barrier height, φb = 0.8 V
Channel depth, h = 0.25 μm
Channel doping, Nd = 5 × 1016 cm−3

Channel length, L = 2.0 μm
Gate width, Z = 25 μm

Calculate the 300 K saturation current when a gate bias of 0.0 V and −1.0 V is applied to
the MESFET. Also calculate the transconductance of the device at these biases.

8.12 FURTHER READING
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Chapter 9

FIELD EFFECT TRANSISTORS:
MOSFET

9.1 INTRODUCTION

The basic principles of the field effect transistor have been discussed in chapter 8. A key
requirement for a FET is zero or negligible gate leakage current. To ensure this one needs some
kind of barrier for electron (hole) from the gate to the source, channel and drain. In the devices
in chapter 8 this barrier is provided by a Schottky barrier (or p+ − n built-in voltage.) or a large
bandgap semiconductor. Of course one may ask: Why not use an insulator to isolate the gate
from the channel? Obviously an insulator would be an ideal choice but so far only on Si has it
been possible to grow a high quality and reliable insulator. This has led MOSFET technology to
become so dominant. In many ways the MOSFET is an ideal device since a large gate

bias can be applied to “invert” the bands and induce electron (or holes) in a channel without the
concern of gate leakage. An example of a MOSFET today is shown in cross-section in figure 9.2.
Over the last several years steady progress has been made on using the MOSFET concept with
other semiconductors, notably GaAs. Indeed GaAs NMOSFETs have been demonstrated with
channel mobilities much higher than those in NMOS FET based on Si. However, widespread
use of such devices is still not near.

In this chapter we will first discuss the MOS capacitor and examine how mobile charge is
induced in the the MOS structure by “inversion.” It is important to note that in a MOSFET,
unlike the MESFET or JFET, channel charge is induced electrostatically by the gate by using
the gate as a capacitor with the gate metal electrode and the semiconductor being the other plate
of the capacitor without the need for doping, however the addition of dopants in the channel
provides additional control on the charge. Once we discuss the MOS capacitor we will examine
the operation of the MOSFET.

433
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30 nm30 nm

Figure 9.1: SEM cross-sectional image of a state-of-the-art MOSFET with a physical gate length
of 30nm. Figure courtesy of R. Chau, Intel.

9.2 MOSFET: DEVICES AND IMPACT

MOSFETs can be made so that the current from the source to drain is carried by electrons
(NMOS), by holes (PMOS), or in the case of complementary MOSFET (CMOS), by electrons
and by holes in two devices. In figure 9.2 we show a schematic of an NMOS device. The struc-
ture starts with a p-type substrate. We will see later that a voltage applied to the gate “inverts”
the polarity of the carriers and produces electrons near the oxide-semiconductor interface.In fig-
ure 9.3 we show the well known “Moore’s Law” and its impact on technology. It is well known
that the advances shown in figure 9.3 have been possible because of the Si MOSFET devices.

CMOS Technology

CMOS technology has become the most widely used technology, finding use in wireless,
microprocessors, memories, and a host of other applications. The chief attraction is low power
dissipation. Since both NMOS and PMOS transistors are to be fabricated on the same substrate,
additional steps are needed compared to the NMOS case discussed earlier. The cross-section
of a typical CMOS structure is shown in figure 9.4a. As can be seen, the NMOS transistor is
fabricated within a p-type well that is implanted or diffused into the n-substrate. The p-well acts
as the body or substrate for the NMOS. In addition to creating the p-well, one needs to do an n+

implant for the source and drain of the transistor. In figure 9.4b the symbolic representation of
the CMOS transistor is shown.

It is critical in MOSFETs to follow a voltage convention to make sure that errors are avoided
in calculating critical parameters such as threshold voltage. Consider two materials 1 and 2,
shown in figure 9.5 with work functions φ1 and φ2 which form a junction. We always reference
voltages with respect to the material 2. The electrochemical potential of material 1 with respect
to material 2 is φ1 − φ2. Hence the built-in voltage of this structure, which by definition is the
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Figure 9.2: (a) A schematic of an NMOS device along with a symbol for the device. The contact
B denotes the body or substrate of the device. (b) A cross-section of the NMOS. Modern devices
involve considerably more complexities.

voltage required to align the two Fermi levels, is therefore equal to

Vbi = − (φ1 − φ2) (9.2.1)

The applied voltage necessary to create flat bands in the junction is Vfb = −Vbi.
Now let us consider an MOS capacitor. Figure 9.6c shows the device band diagrams with

zero bias across an MOS structure and V = Vfb applied to material 1 with respect to material 2.
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Figure 9.3: Illustration of Moore’s Law.
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Figure 9.4: (a) A cross-section of a CMOS device. (b) Symbol representing the CMOS.
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Figure 9.5: Above: Band line-up before junction formation. Below: Band line-up after junction
formation

Following our convention
Vbi = − (φm − φs) = −φms

In the case shown φms is negative and therefore Vbi is a positive number. Hence from Vfb =
−Vbi we get Vfb = φms . When applied to the case shown we see that Vfb is negative

9.3 METAL-OXIDE-SEMICONDUCTOR CAPACITOR

We have noted several times in this book that Si technology is so far unique in that a high-
quality oxide SiO2 that can be formed on Si. The Si-SiO2 interface perfection has been the reason
why field-effect devices are suitable for many applications. Their higher areal density, better
switching characteristics and lower power dissipation have made them the dominant device in
electronic systems and the engine driving Moore’s law.

To understand the operation of the MOSFET we first need to examine the MOS capacitor,
whose structure and band diagrams are shown in figure 9.6. An oxide layer is grown on top
of a p-type semiconductor and a metal contact is placed on the oxide. In general, the insulator
could be any large bandgap material. The main purpose of the oxide layer is to provide isolation
between the metal and the semiconductor.
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in MOS devices. Note the signs of φms for three different gate types for NMOS and PMOS.

In figure 9.7 we show the values of φms for several different metals as a function of doping
density. Starting from the flat band position, there are three important regimes of biasing in the
MOS capacitor, as shown in figure 9.8.

(i) Hole Accumulation: If a negative bias is applied between the metal and the semiconductor,
the valence bands are bent to come closer to the Fermi level, causing an accumulation of holes
at the interface as shown in figure 9.8a. The difference between the Fermi level in the metal and
the semiconductor is the applied bias.

(ii) Depletion: If a positive bias is applied to the metal with respect to the semiconductor, the
Fermi level in the metal is lowered by an amount eV with respect to the semiconductor, causing
the valence band to move away from the semiconductor Fermi level near the interface. As a
result the hole density near the interface falls below the bulk value in the p-type semiconductor
as shown in figure 9.8b. So, n ∼ p ∼ 0.

(iii) Inversion: If the positive bias on the metal side is increased further, the conduction band
at the oxide-semiconductor region comes close to the Fermi level in the semiconductor. This
reverses the mobile charges from holes to electrons at the interface and the electron density at
the interface starts to increase. If the positive bias is increased until Ec comes quite close to
the electron quasi Fermi level near the interface, the electron density becomes very high and the
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Figure 9.9: Band bending of the semiconductor in the inversion mode. The interface poten-
tial is ψs. A simple criterion for inversion is that ψs = 2φF . The electron density changes
monotonically near inversion.

semiconductor near the interface has electrical properties of an n-type semiconductor. This is
shown in figure 9.8c. The device can be switched between depletion (OFF) and inversion (ON)
and as a result current flow can be modulated by a gate bias.

Due to the importance of the inversion regime in the MOSFET, let us examine it in quantita-
tive detail. In figure 9.9 we show the band bending of the semiconductor on the onset of strong
inversion. The band bending is described by the quantity eψ, which measures the position of
the intrinsic Fermi level with respect to the bulk intrinsic Fermi level. The surface band bend-
ing at the oxide-semiconductor interface is described in terms of the potential eψs as shown in
figure 9.9.

The onset of inversion is a gradual process as a function of gate bias. We will first use the
criterion that strong inversion occurs when the electron concentration at the interface is equal to
the bulk p-type concentration. Thus the intrinsic level EFi should be at a position eφF below
the Fermi level at the interface. Thus the surface band bending is given by

ψs(inv) = 2φF (9.3.1)

Note that for an NMOS FET, the substrate is p-type and φF is positive and a positive bias ψs

is needed to cause inversion. For a PMOS FET the substrate is n−type and φF is positive. A
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negative bias is needed to cause inversion. From Chapter 2, using Boltzmann statistics,

φF =
kBT

e
ln

p

ni
∼ kBT

e
ln

Na

ni
(9.3.2)

where Na is the acceptor density and ni is the intrinsic carrier concentration. The strong inver-
sion criterion then becomes

ψs(inv) = 2
kBT

e
ln

Na

ni
(9.3.3)

Later we will develop a model for sub-threshold current based on a more gradual transition
in the electron density. At the onset of strong inversion there is an electron charge density of
∼ 1011 cm−2 at the surface so that the interface region’s conductivity is high. Let us now
evaluate the charge in the semiconductor channel. The electron concentration is approximately
given by the Boltzmann distribution. In the bulk region, this concentration is

np0 = ni exp (EF − EFi)/kBT = ni exp

(
eφF

kBT

)
(9.3.4)

We are interested in calculating the carrier concentration in the semiconductor near the Si-SiO2

interface.
A detailed overview of the charge, electric field, and potential in the inversion regime is shown

in figure 9.10. The areal charge density on the metal Qm is balanced by the channel depletion
charge Qd and the inversion charge Qn. We are interested in calculating the gate voltage needed
to cause inversion in the channel. This voltage is called the threshold voltage.

The total surface charge density is related to the surface field by Gauss’ law and is

|Qs| = εs |Es| (9.3.5)

This charge Qs is the total surface charge density at the semiconductor-oxide interface region
and includes the induced free charge (in inversion) and the background ionic charge. The charge
Qs goes to zero when the bands are flat.

We can relate the gate voltage to the surface potential ψs by using the continuity of the electric
displacement across the oxide-semiconductor interface (Es and Eox are the electric fields in the
semiconductor and the oxide at the interface):

εsEs = εoxEox (9.3.6)

The voltage between the gate and the semiconductor is best understood by starting from the flat
band condition such that

VGS − Vfb = ΔVox + ψs

or the applied voltage difference from flat-band is the sum of the change the oxide voltage, ΔVox

and ψs. (Note: In the absence of additional fixed charges and traps in the system, Vox at flat-band
is zero and Vfb = φms.) In general

VGS − Vfb = ΔVox + ψs (9.3.7)
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Figure 9.10: A schematic of the distributions of charge, electric field, and electrostatic potential
in the ideal MOS capacitor in inversion. Once inversion begins, the depletion width W does not
increase further because of the high mobile electron density at the interface region.
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Also

ΔVox = ΔEox · dox =
εsΔEsdox

εox

=
εsΔEs

Cox
(9.3.8)

where Cox is the oxide capacitance per unit area (= εox/dox). Thus

VGS = Vfb + ψs +
εsΔEs

Cox
= Vfb + ψs +

Qs

Cox
(9.3.9)

Let us evaluate the threshold voltage VT applied to the gate at which strong inversion starts in
the channel. A reasonable approximation when inversion just occurs, the charge in the channel
is essentially due to the depletion charge (= eNaW ) since the total free charge is still small.
This is because even though the maximum mobile charge at inversion is equal to the bulk charge
concentration, Na, its concentration drops off exponentially with band bending and hence the
areal charge density is much smaller than the depletion charge eNaW . Using the relation
between the depletion width W and the potential Vs,

W =

(
2εs |ψs|

eNa

)1/2

(9.3.10)

the areal charge density (Qs = eNaW ) becomes (using ψs(inv) = 2φF )

Qs = (2εseNa |ψs|)1/2 = (4εseNa |φF |)1/2 (9.3.11)

This gives, from equation 9.3.10,

VT = VGS (ψs = +2φF ) = Vfb + 2φF + (4eεsNa |φF |)1/2 1

Cox
(9.3.12)

Once the inversion condition is satisfied, the depletion width does not change since the large
density of free carriers induced after inversion starts prevent further depletion as all additional
applied voltage is dropped across the oxide since small changes in semiconductor band bending
cause exponential increases in the inversion charge. The maximum depletion width is given by
using ψs = +2φF in equation 9.3.11 as

Wmax =

(
4εs |φF |

eNa

)1/2

(9.3.13)

Using the above equation and equation 9.3.6, the field at the surface at the onset of strong inver-
sion is

Es =

(
4eNa |φF |

εs

)1/2

(9.3.14)
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If the body is at a bias VSB with respect to the inversion region, then the surface potential needed
to cause inversion becomes +2φF +VSB . Replacing this value for ψs in Eqns. 9.3.12 and 9.3.14,
we get, for the threshold voltage,

VT = Vfb + 2φF + (2eεsNa |2φF + VSB | )1/2 1

Cox
(9.3.15)

In the Si/SiO2 interface region there are often traps or charge centers. Since Si and SiO2 have
quite different lattice structures. These centers can cause a shift in the threshold voltage. Let
Nt(x) be the position-dependent trap density in the MOS device in the oxide region. The traps
will have additional charge, which will cause a voltage drop across the insulator. The voltage
drop will cause a shift in the flat-band voltage and hence the threshold voltage that is given by
Gauss’ law and the superposition principle as

ΔVfb(oxidecharge) = ΔVT =
−e

Cox

∫ dox

o

zNt(z)

dox
dz (9.3.16)

Note that the value of the integral is the centroid of the charge distribution. Variations in VT

can have serious consequences for the device turn-on Note that that the effect of the interface
trap charge on the threshold voltage depends upon where the charge is spatially located. It has
the least effect if it is near the gate (z = 0), and has the maximum effect if it is at the Si-SiO2

interface (z = dox). If Qss is the effective fixed charge density per unit area at the oxide-
semiconductor interface, the potential drop will occur across the oxide and the flat-band voltage
changes from its ideal value φMS to φMS − QSS/Cox or

ΔVfb(interfacecharge) = Vox(@FB) =
−Qss

Cox

Adding the voltage shift due to interface charge, the threshold voltage expression becomes

VT = Vfb + 2φF +
[
2eεsNa |−2φF + VSB |1/2

] 1

Cox
(9.3.17)

where Vfb = φMS −QSS/Cox − e
Cox

∫ dox

o
zNt(z)

dox
dz and defining a parameter, γ, known as the

body factor as

γ =
1

Cox

√
2eεsNa (9.3.18)

we can write the equation for the threshold voltage as

VT = VTO + γ
(√

|2φF + VSB | −
√

2 |φF |
)

(9.3.19)

where VTO is the threshold voltage when VSB = 0. The expressions given above are valid for
NMOS or PMOS. Of course, Na has to be replaced by substrate doping Nd in the case of a
PMOS. The signs for various terms in the threshold voltage equation for NMOS and PMOS are
provided in table 9.1.
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Parameter NMOS PMOS

Substrate p-type n-type

φms

Al-gate ––

n+ Si-gate – –

p+ Si-gate ++

φF + –

Qox + +

γ + –

–

Cox + +

Source-to-body voltage VSB +

Table 9.1: Signs for various terms in the threshold voltage equation for a MOSFET.

Example 9.1 Assume that the inversion in an MOS capacitor occurs when the surface
potential is twice the value of eφF . What is the maximum depletion width at room
temperature of a structure where the p-type silicon is doped at Na = 1016cm−3

At room temperature, the intrinsic carrier concentration is ni = 1.5 ×1010cm−3 for Si.
Thus, we have for the potential φF ,

φF =
kBT

e
ln

Na

ni
= (0.026eV) ln

(
1016

1.5 × 1010

)
= 0.347 V

The corresponding space charge width is

W =

[
4εs |φF |

eNa

]1/2

=

[
4 × 11.9 × (8.85 × 10−14)(0.347)

1.6 × 10−19 × 1016

]1/2

= 0.30 μm

Example 9.2 Consider an aluminum-SiO2-Si MOS device. The work function of Al is
4.1 eV, the electron affinity for SiO2 is 0.9 eV, and that of Si is 4.15 eV. Calculate the
potential Vfb if the Si doping is Na = 1014cm−3.
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The potential Vfb is given by

eVfb = eφm − (eχs + (Ec − EF ))

The position of the Fermi level is

EF = EFi + kBT ln
Na

ni

below the conduction band. Also, EFi = Eg/2 where for Si, Eg = 1.11 eV. Using T =
300 K, we get

EF = 0.555 + 0.026 ln

(
1014

1.5 × 1010

)
= 0.783 eV

below the conduction band. Thus

Vfb = 4.1 − (4.15 + 0.783) = −0.833 V

Example 9.3 Consider a p-type silicon doped to 3 × 1016cm−3. The SiO2 has a thickness
of 500 Å. An n+ polysilicon gate is deposited to form the MOS capacitor. The work
function difference Vfb = −1.13 eV for the system; temperature = 300 K. Calculate the
threshold voltage if there is no oxide charge and if there is an oxide charge of 1011cm−2.

The position of the Fermi level is given by (measured from the intrinsic Fermi level)

φF = 0.026 ln

(
3 × 1016

1.5 × 1010

)
= 0.376 V

Under the assumption that the charge Qs is simple NaW where W is the maximum
depletion width, we get

Qs = (4εseNa |φF |)1/2

=
(
4 × (11.9) × (8.85 × 10−14 F/cm) (1.6 × 10−19 C)(3 × 1016 cm−3)(0.376 V)

)1/2

= 8.64 × 10−8 C cm−2

In the absence of any oxide charge, the threshold voltage is

VT = −1.13 + 2(0.376) +
(
8.64 × 10−8

)( 500 × 10−8

3.9(8.85 × 10−14)

)
= 0.874 V

In the case where the oxide has trap charges, the threshold voltage is shifted by

ΔVT =
(
1011

) (
1.6 × 10−19

)( 500 × 10−8

3.9 × 8.85 × 10−14

)
= −0.23 V

It can be seen from this example that oxide charge can cause a significant shift in the
threshold voltage of an MOS device.
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Example 9.4 Consider an n-MOSFET made from Si-doped p-type at
Na = 5 × 1016 cm−3 at 300 K. The other parameters for the device are the following:

φMS = −0.5 V

μn = 600 cm2 V−1 s−1

μp = 200 cm2 V−1 s−1

The inversion condition is ψs = 2φF . Assume that the electrons induced under inversion
are in a region 200 Å wide near the Si/SiO2 interface.

(i) Calculate the channel conductivity near the Si-SiO2 interface under flat band condition
and at inversion.

(ii) Calculate the threshold voltage.

(i) Assuming that all of the acceptors are ionized, we have at flat band

p = Na = 5 × 1016 cm−3

This gives

σ(fb) = (5 × 1016 cm−3)(1.6 × 10−19 C)(200 cm2/ V · s) = 1.6 (Ω cm)−1

At inversion with ψs = 2φF we have

n(interface) = p(bulk) = 5 × 1016 cm−3

This gives (near the interface)

σ(inv) = (5 × 1016 cm−3)(1.6 × 10−19C)(600 cm2/ V · s) = 4.8 (Ω cm)−1

(ii) To calculate the threshold voltage we need φF . This is given by

φF =
kBT

e
ln(

p

pi
) = +0.39 V

Using the parameters given and the equation for the threshold voltage we get

VT = −0.5 + 0.78 + 1.637 V = 1.93 V

9.4 CAPACITANCE-VOLTAGE CHARACTERISTICS
OF THE MOS STRUCTURE

The study of capacitance-voltage characteristics of a MOSFET provides valuable information
on threshold voltage, oxide thickness, trap density, etc. In the C-V measurement, a dc bias V is
applied to the gate, and a small ac signal (∼ 5-10 mV) is applied to obtain the capacitance at the
bias applied.
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Figure 9.11: A simple equivalent capacitance model for the MOS capacitor.

As shown in figure 9.11, the capacitance of the MOS structure is the series combination of the
oxide capacitance Cox and the semiconductor capacitance Cs. The semiconductor capacitance
per unit area is, by definition

Cs =
dQs

dVs
(9.4.1)

and the capacitance of the MOS capacitor is

Cmos =
CoxCs

Cox + Cs
(9.4.2)

In the accumulation region (negative VGS), the holes accumulate at the surface and Cs is much
larger than Cox. This is because a small change in bias causes a large change in Qs in the
accumulation regime. The MOS capacitance becomes

Cmos
∼= Cox =

εox

dox
(9.4.3)

As the gate voltage becomes positive and the channel is depleted of holes, the depletion ca-
pacitance becomes important. The depletion capacitance is simply given by εs/W , and the total
capacitance

Cmos =
Cox

1 + Cox

Cs

=
εox

dox + εoxW
εs

(9.4.4)

With greater bias, the value of Cmos decreases, as shown in figure 9.12. At the strong in-
version condition, the depletion width reaches its maximum value Wmax. At this point there is
essentially negligible free carrier density. The minimum capacitance takes the value

Cmos(min) =
εox

dox + εoxWmax

εs

(9.4.5)
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where Wmax is defined by equation 9.3.13. At the onset of strong inversion, free electrons begin
to collect in the inversion channel and the depletion width remains unchanged with bias. The low
frequency capacitance of the semiconductor again increases since a small change in ψs causes a
large change in Qs. The capacitance of the MOS device thus returns toward the value of Cox:

Cmos(inv) = Cox =
εox

dox
(9.4.6)

Another important point on the C-V characteristics is the point where the bands become flat. The
flat band capacitance of the MOS device is (see example 9.5)

Cmos(fb) =
εox

dox + εox

εs

√
kBT

e
εs

eNa

(9.4.7)

One must now ask as to where the electrons come from when the device is in inversion. The
excess electrons needed are introduced into the channel by e-h generation, by thermal generation
processes, or by diffusion of the minority carriers from the p-type substrate. Since the generation
process takes a finite time, the inversion sheet charge can follow the voltage only if the voltage
variations are slow. If the variations are fast, the capacitance due to the free electrons makes
no contribution and the capacitance is dominated by the depletion capacitance. Thus, under
high-frequency measurements, the capacitance does not show a turnaround and remains at the
value Cmos(min), as shown in figure 9.12. The capacitance in the inversion regime starts to
decrease even at frequencies of 10 Hz and at 104 Hz it reaches the low value of Cmos(min). In
the MOSFET this is not an issue since electrons can be rapidly supplied by the ohmic contacts.
The presence of the fixed charge simply causes a voltage drop across the oxide given by

ΔVfb = ΔV =
−Qss

Cox
(9.4.8)

where Qss is the fixed charge density (cm−2) in the oxide. As a result, if Qss is positive the
entire C-V curve shifts to a more negative value. Since the charge Qss is independent of the gate
bias, the entire C-V curve shifts as shown schematically in figure 9.13a. The value of Qss can be
obtained by measuring the shift as compared with the calculated ideal curve. Such measurements
are very important for characterizing the quality of MOS devices.

The interface charge, Qis , has a somewhat different effect on the C-V characteristics. In an
ideal system, there are no allowed electron states in the bandgap of a semiconductor. However,
since the Si-SiO2 interface is not ideal, a certain density of interface states are produced that lie
in the bandgap region.

In contrast to the fixed charge, electrons can flow into and out of these interface states de-
pending upon the position of the Fermi level. The character of the interface states is defined as
“acceptor-like” and “donor-like.” An acceptor state is neutral if the Fermi level is below the state
(i.e., the state is unoccupied) and becomes negatively charged if the Fermi level is above it (i.e.,
the state is occupied). The donor state is neutral if the Fermi level is above it (i.e., the state is
occupied) and positively charged when it is empty. As a result, when the position of the Fermi
level is altered, the charge at the interface changes.
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Figure 9.12: (a) A typical dependence of MOS capacitance on voltage. Curve (i) is for low
frequencies and curve (ii) is for high frequencies. Also shown are the various important regions
in the capacitance-voltage relations. (b) The charge density |Qs| is shown schematically as a
function of the surface potential Vs.
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Figure 9.13: (a) A schematic plot of the high-frequency capacitance voltage of MOS capacitors
with different values of the fixed oxide charge. (b) Interface states cause a smearing out the C-V
curves.

When the interface charge is positive, the C-V curve shifts toward negative voltages, while
when it is negative, the curve shifts toward positive voltages. This is shown schematically in
figure 9.13b. The C-V curve is thus “smeared out” due to the presence of interface states. In
modern high-quality MOS structures, the interface state density is maintained below 1010 cm−2,
so that the effect is negligible.
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Example 9.5 Derive the relation for the semiconductor capacitance per unit area of the
MOS capacitor at the flat band condition. The charge density near the flat band is

δρ(z) =
eδV (z)po

kBT
=

eNaδV (z)

kBT

The Poisson equation then gives us

d2δV (z)

dz2
= −eNaδV (z)

kBT

The solution is a simple exponentially decaying function:

δV (z) = δVs exp (−bz)

where

b =

√
eNa

kBT

The charge density is now

δρ(z) =
eNa

kBT

The areal charge density is obtained by integrating this from the interface into the bulk,
with the result

| δQs |=
∫ ∞

o

ρ(z)dz =
eNa

b kBT
δVs

The capacitance is now

Cs =
δQs

δVs
=

eNa

b kBT

which gives the result given in equation 9.4.7 when the value of b is used.

Example 9.6 Consider a MOS capacitor made on a p-type substrate with doping of
1016cm−3. The SiO2 thickness is 500 Å and the metal gate is made from aluminum.
Calculate the oxide capacitance, the capacitance at the flat band, and the minimum
capacitance at threshold.

The oxide capacitance is simply given by

Cox =
εox

dox
=

3.9 × 8.85 × 10−14

500 × 10−8
= 6.9 × 10−8 F/cm

2

To find the minimum capacitance, we need to find the maximum depletion width at the
threshold voltage. The value of φF is given by

φF = 0.026 V ln

(
Na

ni

)
= 0.026 ln

(
1016

1.5 × 1010

)
= 0.347 V
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The maximum depletion width (assuming Vs = −2φF ) is

Wmax =

(
4ε |φF |
eNa

)1/2

=

{
4(11.9 × 8.85 × 10−14)(0.347)

1.6 × 10−19 × 1016

}
= 0.3 × 10−4 cm

The minimum capacitance is now

Cmin =
CoxCs

Cox + Cs
=

(
εox

dox + εox

εs
Wmax

)
= 2.3 × 10−8 F/cm

2

The capacitance under flat band conditions is

Cfb =
εox

dox + εox

εs

√(
kBT

e

) (
εs

eNa

)
=

3.9 × (8.85 × 10−14)

(500 × 10−8) + 3.9
11.9

√
0.026×11.7×8.85×10−14

1.6×10−19×1016

= 5.42 × 10−8 F/cm
2

It is interesting to note that Cfb is ∼ 80% of Cox and Cmin is ∼ 33% of Cox.

9.5 MOSFET OPERATION

With some important differences the MOSFET behaves in a manner similar to the MESFETs
and HFETs discussed in chapter 8. A key difference is of course the electron density created by
inversion. In figure 9.14 we show the basic NMOSFET structure.

9.5.1 Current-Voltage Characteristics

The full three-dimensional analysis of the MOSFET requires complex numerical techniques.
However, we will present a simplified approach that gives a good semi-quantitative understand-
ing of the current-voltage characteristics of the device.

Qualitatively, we can see how the MOSFET I-V characteristics behave. When a bias is applied
between the source and the drain, current flows in the channel near the Si-SiO2 interface if a
channel exists. The charge density in the channel is controlled by the gate bias as well as the
source-drain bias. The gate bias can thus modulate the current flow in the channel, as discussed
for the MESFET or JFET case . For a simple model we assume that the mobility is constant.
We also use the gradual channel approximation. In the analysis discussed here we will assume
that the source is grounded and all voltages are referred to the source. Using the gradual channel
approximation for the induced charge in the channel, we can treat the charge-voltage problem
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Figure 9.14: a) A schematic of the MOSFET structure. b) a cross-section of the NMOSFET.

as a one-dimensional problem. The induced charge per unit area, once we are in the inversion
region, is

Qs = Cox [VGS − VT − Vc(x)] (9.5.1)

We know that

Vc(x) = 0 at the source

= VDS at the drain (9.5.2)

We also assume that the body bias is zero. The case of finite body bias will be discussed later.
The current is given by (current = surface charge density × mobility × electric field × gate
width)

ID = Qsμn
dVc(x)

dx
Z (9.5.3)

where Z is the width of the device. The current ID is constant at any cross-section of the channel.
The above equation may be rewritten as

IDdx = Qs μn dVc(x)Z (9.5.4)

The integration of this equation from the source (x = 0) to the drain (x = L) after using the
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value of Qs gives (Vc(L) = VDS)

ID =
μnZCox

L

[{
VGS − VT − VDS

2

}]
VDS (9.5.5)

Let us define parameters k and k′ to define the prefactor in the equation above:

k =
μZCox

L
=

k′Z
L

(9.5.6)

From equation 9.5.1 we see that for a sufficiently high drain bias, the channel mobile charge be-
comes zero (the channel is said to have pinched off) at the drain side. This defines the saturation
drain voltage VDS(sat), i.e.,

Qs(VDS) = Qs(VDS(sat)) = 0

The pinch-off occurs at the drain end of the channel.

VDS (Qs(x = L) = 0) = VDS(sat) = VGS − VT (9.5.7)

Our derivation of the current is valid only up to pinch-off. Beyond pinch-off as discussed in
chapter 7 the current essentially remains constant except for a small increase related to a decrease
in effective channel length. Other factors that cause increase in drain current beyond pinch-off
such as lowering of the threshold voltage and substrate injection are considered later.

Linear or Ohmic Region

In the case where the drain bias VDS is less than VDS(sat)

VDS < VDS(sat) = VGS − VT (9.5.8)

For very small drain bias values, the current increases linearly with the drain bias, since the
quadratic term in VDS in equation 9.5.6 can be ignored. The current in this linear regime is

ID = k [(VGS − VT )VDS ] (9.5.9)

where VT is the gate voltage required to “turn on” the transistor by creating strong inversion.

Saturation Region

The analysis discussed above is valid up to the point where the drain bias causes the channel to
pinch off at the drain end. The saturation current now becomes, after substituting for VDS(sat)
in equation 9.5.5,

ID(sat) = k
{

(VGS − VT )2 − (VGS−VT )2

2

}
= k

2 (VGS − VT )2
(9.5.10)

Thus once saturation starts, the drain current has a square-law dependence upon the gate bias
similar to all FETs.
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Material and Device Parameters

Important material and device parameters can be extracted from the I-V characteristics of the
MOSFET. At low drain bias we can ignore the quadratic term in VDS . The drain current is given
by

ID =
ZμnCox

L
(VGS − VT )VDS (9.5.11)

so that the extrapolation of the low drain bias current points gives the threshold voltage VT . This
is shown schematically in figure 9.16. Also, if the drain current is measured at two different
values of VGS while keeping VDS fixed, the mobility in the channel can be determined, since

ID2 − ID1 =
ZμnCox

L
(VGS2 − VGS1)VDS (9.5.12)

where ID1 and ID2 are the currents at gate biases of VGS1 and VGS2. Since Z,L and Cox are
known, the inversion channel mobility can be obtained. It is worth noting that the mobility in a
MOSFET channel is usually much smaller than the mobility in bulk silicon. This is because of
the strong scattering that occurs due to the roughness of the Si-SiO2 interface. Typical MOSFET
electron mobilities are ∼ 600 cm2/V·s while typical electron mobilities in bulk silicon are ∼
1300 cm2/V·s.

The performance of the MOSFET as a device is defined via two important parameters, the
drain conductance (output conductance) and the transconductance.

The drain conductance is defined as

gD =
∂ID

∂VDS

∣∣∣∣
VGS=constant

(9.5.13)
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Figure 9.16: A schematic showing how the basic parameters VT and mobility can be obtained
from the ID − VGS curves in the ohmic region of the MOSFET.

At low drain biases we get from equation 9.5.9 for the ohmic region

gD =
ZμnCox

L
(VGS − VT ) (9.5.14)

In the saturation region in our simple model, the drain conductance is zero. In real devices gD

is not zero at saturation, as discussed in section 9.6.2. The transconductance of the MOSFET is
closely linked to the speed of the device and is given by

gm =
∂ID

∂VGS

∣∣∣∣
VDS=constant

(9.5.15)

In saturation we have

gm =
ZμnCox

L
(VGS − VT ) (9.5.16)

A high-transconductance device is produced if the channel length is small and channel mobility
is high. The transconductance represents the control of the gate on the channel current and is
usually quoted in millisiemens per millimeter (mS/mm) to remove the dependence on the gate
width Z.

9.5.2 Substrate Bias Effects

In the analysis above we have assumed that the substrate bias is the same as the source bias. In
MOSFET circuits, the source-to-substrate (or body) bias VSB is an additional variable that can
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be exploited. In figure 9.17 we show an n-channel MOSFET showing the source-to-body bias,
which is chosen to be zero or positive to reverse bias the source-to-substrate junction.

In the absence of VSB , the inversion condition occurs when Vs, the surface potential, is equal
to −2φF as shown in figure 9.17b. In case VSB is positive, the surface voltage required for
inversion is increased as shown in figure 9.17c by an amount VSB , since the body is at a higher
energy level.

When VSB > 0, the depletion width is no longer Wmax but is increased to absorb the added
potential VSB . As noted previously the body bias alters the threshold voltage. The change in
the threshold voltage is given by

ΔVT =

√
2eεsNa

Cox

[√
|2φF + VSB | −

√
|2φF |

]
(9.5.17)

To ensure a positive shift in the threshold voltage, VSB must be positive for the NMOS.
The threshold voltage of a MOSFET can also be modified by altering the doping density in the

silicon region as well. This can be done by ion implantation so that an added dose of acceptors
(or donors) is introduced. This changes the value of the depletion charge and consequently the
threshold voltage is altered.

Example 9.7 Consider a n-channel MOSFET at 300 K with the following parameters:

Channel length, L = 1.5 μm
Channel width, Z = 25.0 μm
Channel mobility, μn = 600 cm2/ V · s
Channel doping, Na = 1 × 1016 cm−3

Oxide thickness, dox = 500 Å
Oxide charge, Qss = 1011 cm−2

Metal-semiconductor work function difference, φms = −1.13 V

Calculate the saturation current of the device at a gate bias of 5 V.

The Fermi level position for the device is given by

φF = 0.026 ln

(
1 × 1016

1.5 × 1010

)
= 0.348 V

The flat band voltage is

Vfb = φms − Qss

Cox
= −1.13 − 0.23 = −1.35 V

The threshold voltage is given by equation 9.3.12 as

VT = −1.35 + 0.696

+

[
4(1.6 × 10−19)(11.9)(8.84 × 10−14)(1016)(0.348)

]1/2
(500 × 10−8)

3.9(8.85 × 10−14)

= 0.04 V
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Figure 9.17: (a) An n-MOSFET showing the voltage between the source and the body of the
transistor; (b) band profiles of the MOSFET with VSB = 0 at the inversion condition; (c) band
profile of the MOSFET when VSB > 0. The depletion width increases when VSB > 0.
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The saturation current is now, from equation 9.5.11,

ID(sat) =
(25 × 10−4)(600)

2(1.5 × 10−4)

(3.9)(8.85 × 10−14)

500 × 10−8
[5.0 − 0.04]2

= 8.5 mA

Example 9.8 Consider a silicon NMOS device at 300 K characterized by
φms = 0, Na = 4 × 1014 cm−3, dox = 200 Å, L = 1.0 μm, Z = 10 μm. Calculate the
drain current for a gate voltage of VGS = 5 V and drain voltage of 4 V. The electron
mobility in the channel is 700 cm2/V·s.

We start by calculating the threshold voltage. The potential φF is given by

φF = (0.026) ln

(
4 × 1014

1.5 × 1010

)
= 0.264 V

The threshold voltage is, from equation 9.3.12,

VT = 0.528 +

[
4(1.6×10−19)(11.9×8.85×10−14)(4×1014)(0.264)

]1/2

3.9 × 8.85 × 10−14
· (2 × 10−6

)
= 0.58 V

The saturation voltage for a gate bias of 5 V is, from equation 9.5.7,

VDS(sat) = 4.42 V

The saturation current is now, from equation 9.5.11,

ID(sat) = 11.8 mA

Example 9.9 Consider an n-channel MOSFET with gate width Z = 10 μm, gate length L
= 2 μm and oxide capacitance Cox = 10−7F/cm2. In the linear region, the drain current is
found to have the following values at VDS = 0.1 V:

VGS = 1.5V, ID = 50 μA

= 2.5V, ID = 80 μA

The intercept of the ID − VGS curve is at −0.16 V, which is the threshold voltage.

Example 9.10 Consider an n-channel MOSFET with a substrate doping of
Na = 2 × 1016

cm−3 at 300 K. The SiO2 thickness is 500 Å and a source-body bias of 1.0 V is applied.
Calculate the shift in the threshold voltage arising from the body bias.

The potential φF is given by

φF = 0.026 ln

(
Na

ni

)
= 0.026 ln

(
2 × 1016

1.5 × 1010

)
= 0.367 V
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The oxide areal capacitance is

Cox =
εox

dox
=

3.9(8.84 × 10−14)

500 × 10−8
= 6.9 × 10−8 F/cm

2

The change in the threshold voltage is

ΔVT =

[
2(1.6 × 10−19)(11.9)(8.84 × 10−14)(2 × 1016)

]1/2

6.9 × 10−8

·
{

[2(0.367) + 1.0]
1/2 − [2(0.367)]

1/2
}

= 0.54 V

9.5.3 Depletion and Enhancement MOSFETs

In the discussions of the MOSFET so far, we saw that as the gate voltage is increased, at some
positive value VT , inversion occurs and the device starts conducting or turns ON. This, of course,
is not the only configuration in which the device can operate. It is possible to design devices that
are ON when no gate bias is applied or are ON when negative bias is applied. This versatility is
quite important since it gives a greater flexibility to the logic designer.

A device in which the current does not flow when the gate bias is zero, and flows only when
a positive or negative gate bias is applied, is called an enhancement-mode device. Conversely,
if the current flow occurs when the gate bias is zero and the device turns off when the gate bias
is positive or negative, the device is said to operate in the depletion mode. The device we have
discussed so far is an enhancement-mode device since, in our discussions, a positive gate bias
was needed to cause inversion and channel formation.

To produce a depletion-mode device that is ON without any gate bias, the MOSFET fabrica-
tion is altered. As shown in figure 9.18, one starts with a p-type substrate and two n+ contacts
are placed. Additionally, in the depletion-mode device, one diffuses a thin layer of donors to
produce a thin n-type channel between the n+ contacts. The rest of the MOSFET is produced
in the normal way by placing an oxide layer and a gate. The I-V characteristics of such a device
are also shown in figure 9.18b.

The device discussed above can be fabricated in p-type or n-type substrates. In this device one
has free carriers due to the doping and therefore the device is ON even if the gate bias is zero.
The gate bias can now be used to turn the device OFF as shown.

The MOSFET can be used as a switching element in the same way as the bipolar devices or
other FETs. Regardless of whether the FET is an enhancement or a depletion device, the FET
carries current in one of the states of the switch. This causes power dissipation in the circuits.
This is of great concern when the circuits are dense and power dissipation can cause serious
heating problems. This can be avoided by using the NMOS and PMOS devices together, as will
be discussed next.
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Figure 9.18: (a) A schematic of a depletion MOSFET fabricated in a p-type substrate, with an
n-channel. (b) In the depletion mode, the device is ON at zero gate bias. To turn the device
OFF, a negative gate bias is required as shown. The device symbol is also shown. (c) The I-V
characteristics showing the device behavior in the enhancement mode. The device symbol is also
shown.
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Figure 9.19: (a) A complementary MOS structure shown to function as an inverter. The circuit
draws current only during the input voltage switching. (b) A schematic of the CMOS structure.

9.5.4 Complementary MOSFETs

It is possible to greatly reduce the power dissipation problem if an enhancement-mode n-
channel device is connected to an enhancement-mode p-channel device in series. This is the
complementary MOSFET or CMOS and is fabricated on the same chip, as shown in figure 9.19.
In the CMOS inverter shown, the drains of the n- and p-MOSFET are connected and form the
output. The input is presented to the gates of the device as shown. The p-channel device has a
negative threshold voltage while the n-channel device has a positive threshold voltage. When a
zero input voltage Vin is applied, the voltage between the source and gate of the n-channel device
is zero, turning it OFF. However, the voltage between the gate and source of the p-channel device
is −V since the source of the p-channel device is at +V . This turns the p-channel device ON.
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Thus the p-channel is ON and the n-channel is OFF so that the output voltage is Vout = V . No
current flows in the devices since they are connected in series.

When a positive gate bias is applied, the n-channel device is ON, while the p-channel device
is OFF. The output voltage Vout = 0. Once again no current flow occurs since the devices are in
series and one of them is OFF. As can be seen, for input of 1 (High) or 0 (Low), one of the devices
remains OFF. Thus the CMOS does not consume power when it is holding the information
state. Only during switching is there a current flow. This low power consumption property
of the CMOS makes it very attractive for high density applications, such as for semiconductor
memories and processors. However, it must be noted that the device is much more complex
to fabricate. Also, since the p-type transport is much poorer than the n-type transport, one has
to take special care to design the two devices to have similar performances. In Chapter 10 we
discuss applications of CMOS in digital and analog circuits.

Example 9.11 An n-channel MOSFET is formed in a p-type substrate with a substrate
doping of Na = 1014 cm−3. The oxide thickness is 500 Å and φms = −0.83 V. Calculate
the threshold voltage and check whether the device is an enhancement- or depletion-mode
device. If the device threshold voltage is to be changed by 0.5 V by ion implanting the
channel by dopants, calculate the density of dopants needed. Assume that the dopant
charge is all placed near the Si-SiO2 interface within a thickness of 0.1 μm. Temperature
is 300 K.

The position of the Fermi level is given by

φF = 0.026 ln

(
1014

1.5 × 1010

)
= 0.228 V

The threshold voltage is

VT = φms + 2φF +
[4eεsNa |φF |]1/2

Cox

= −0.83 + 0.456

+

[
4 × (1.6 × 10−19)(11.9 × 8.85 × 10−14)(1014)(0.228)

]1/2
(5 × 10−6)

(3.9 × 8.85 × 10−14)

= −0.318 V

In this device there is an inversion layer formed even at zero gate bias and the device is in
the depletion mode. To increase the threshold voltage by + 0.5 V, i.e., to convert the device
into an enhancement-mode device, we need to place more negative charge in the channel.
If we assume that the excess acceptors are placed close to the semiconductor-oxide region
(i.e., within the distance Wmax), the shift in threshold voltage is simply (N2D

a is the areal
density of the acceptors implanted)

ΔVT =
eN2D

a

Cox
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or

N2D
a =

ΔVT Cox

e
=

(0.5)(3.9 × 8.85 × 1014)

(1.6 × 10−19)(5 × 10−6)

= 2.16 × 1011 cm−2

The dopants are distributed over a thickness of 0.1 μm. The dopant density is then

Na =
2.16 × 1011

10−5
= 2.16 × 1016 cm−3

The use of controlled implantation can be very effective in shifting the threshold voltage.

9.6 IMPORTANT ISSUES AND FUTURE CHALLENGES
IN REAL MOSFETS

In the discussions above, we have made a number of simplifying assumptions. These assump-
tions allowed us to obtain simple analytical expressions for the I-V relationships for the device.
However, in real devices a number of important effects cause the device behavior to differ from
our simple results. In this section we will briefly examine the important issues that control the
performance of real MOSFETs and discuss future challenges. A summary of these challenges is
shown in figure 9.32.

9.6.1 Subthreshold Conduction

As device dimensions are shrunk below 50 nm the behavior of the device below threshold or
in the sub-threshold regime becomes critical. The analysis up to now has assumed that the device
turns on abruptly at a gate voltage above threshold or

Vg − Vth >
∼

0∗

that no current flows at gate voltages below Vth. As shown in figure 9.20, this assumption does
not account for current that flows through the channel in the region below strong inversion or in
the weak inversion regime which is defined as the region where the surface band bending ψs is
in the range,

φF < ψs < 2φF

Note that in strong inversion as we move from the source to the drain, the voltage across the
oxide, Vox decreases and the band bending in the semiconductor, ψS increases by a magnitude
equal to Vc(x). Now, let us compare this to the weak-inversion case: Figure 9.21 and illustrate
the fundamental difference between current flow and the evolution of the band diagram between

∗This is equivalent to a band bending of ψs = 2φF where φF is the bulk potential = EiB − EFP and ψS is the
band bending measured from the bulk
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0

Figure 9.20: Observation: The device current does not abruptly turn-ff below threshold but
decreases monotonically at a slope of 60 mV/decade of current.

the source and the drain for the case above threshold and below threshold. For Vg > Vth and in
the linear region, the full channel remains in strong inversion. The electron quasi-Fermi level in
the channel follows the voltage variation and therefore drops by an amount equal to the channel
potential, Vc(x), and subsequently the band bending required to sustain inversion increases by
this value. The current flow in this case is given by electron drift and

Jn = σch(x)E(x)

everywhere in the channel. This increased band bending increases Vth as a f(x) by an amount Vc

and hence the channel charge decreases monotonically, given by ns inv(x) = Cox (Vg − Vth(x)).
One critical element in the diagram is that the oxide voltage decreases and the band bending in
the semiconductor increases as we go toward the drain. This can also be understood as the de-
crease in the channel inversion charge (negative) results in a reduced positive image charge on
the gate and therefore a reduced band bending in the oxide.

The analysis of current transport in the subthreshold regime is less clear than the case above
threshold. figure 9.22 shows the band diagram of the device operating in the subthreshold regime
with zero bias on the source and drain regions. On applying a bias to the drain relative to the
source, current could be carried either by diffusion, drift or a combination of both. figure 9.23
shows the band diagram assuming that the dominant current transport is by drift and figure 9.24
shows the case if the current transport is mainly by diffusion. The first case assumes that the
applied bias drops uniformly along the channel and the second assumes that the bias drops pri-
marily adjacent to the drain with very little drop along the channel. We will now show that the
latter, diffusive transport dominates. In the weak inversion regime the maximum charge in the
inversion layer is small (less than the bulk majority carrier concentration). If drift were to be
true the band bending in the semiconductor has to increase continuously toward the drain which
because of the constant gate voltage requires that the band bending in the oxide decreases by the
same amount. The only manner that the oxide voltage can decrease is by having the inversion
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Figure 9.21: Band diagrams taken at the source side (AA’) and the drain side (BB’) of the gate

charge decrease faster than the increase in the depletion charge. This is not possible since the
device is in weak inversion and the inversion charge is very small. Hence the change in band
bending in the semiconductor and the oxide is minimal as one approaches the drain which is
equivalent to saying that the lateral field in the channel is small. The very maximum voltage
drop in the channel is φF to keep the channel in weak inversion throughout the channel but even
this is not achievable when we consider the arguments based on the boundary condition placed
by the gate as described above. The combination of very small voltage drop in the channel
coupled with the small charge in the weak inversion layer makes drift currents minimal in the
channel. Another way to physically understand the picture is to recognize that in the weak inver-
sion regime the junction between the drain and the channel is closer to a reverse biased junction
and hence absorbs most of the applied voltage as is shown in figure 9.24.

In this instance, the inversion charge in the channel in the absence of generation and recombi-
nation is obtained as the solution of the diffusion equation

nch(x) = nsource

(
1 − x

Lch

)
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much like the electron profile in a narrow base bipolar transistor

∴ IDS = eDn
nsource

Lchannel

the magnitude of nsource is limited by the barrier at the source end of the channel

nsource = NC exp (−eφBS/kBT )

or

IDS = q
Dn

Ln
NC exp (−eφBS/kBT )

to get I vs. (Vg − Vth) we need to relate φBS to (Vg − Vth) which is readily done by analyzing
the band diagram along AA′.

Vg − Vfb = ψs +
1

Cox

√
2εseNAψs
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at threshold

Vth − Vfb = 2φF +
1

Cox

√
2εseNA (2φF )

below threshold,

Vg − Vfb = ψS (φF < ψS < 2φF ) +
1

Cox

√
2εseNAψs

∴ (Vg − Vth) = ψs − 2φF  −φBS

where we have neglected the terms in the square root

∴ IDS =
eDnNC

LCh
exp

(
VG − Vth

kBT

)
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where Vg < Vth. This gives us the desired subthreshold slope in current of 60 mV/decade.
Deviations from this can occur if

1. Charge sharing occurs i.e. the gate charge is not imaged in the semiconductor but on the
electrodes as well (short channel effect, or traps in the system)

2. Cox is small or the aspect ration is small

3. Voltage division occurs - for example due to poor contacts

4. Gate leakage occurs.

5. Leakage through the buffer occurs.

Figure 9.25 shows the impact that non-idealities have on subthreshold leakage.
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Figure 9.25: As gate lengths in MOSFETs are reduced, subthreshold leakage increases due to
drain induced barrier lowering (DIBL) and band-to-band tunneling, as illustrated at the top of
this figure. At the bottom, we show the ITRS roadmap for subthreshold leakage in future devices.
Illustrations from Solomen et. al., IEDM 2003.

9.6.2 Mobility Variation with Gate Bias

In our simple model for carrier transport, we regarded the carrier mobility as having no de-
pendence upon the gate bias. As the gate bias is changed the electron density in the channel
changes. The electron density in turn is related to the surface field Es normal to the channel
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by equation 9.3.5. Thus, if the sheet charge ns increases the surface field also increases. The
increased electric field forces electrons closer to the Si-SiO2interface. As a result, the electrons
suffer a greater degree of scattering from the interface roughness and oxide impurities, and the
mobility degrades.

Mobility Variation with Channel Field

The mobility of electrons (holes) in silicon is not independent of longitudinal field as well,
but is high at low field and becomes smaller at high fields where the velocity saturates. Velocity
saturation typically occurs because at higher fields the rate of phonon emission increases and the
rate of energy gained form the electric field equals the rate of energy loss to the crystal primarily
through phonons. This phenomenon has a classical analog in the terminal velocity achieved by a
person in a parachute or rain drops etc.. As a result, the current calculated by our simple model is
much larger than the current observed in real devices. More realistic device modeling approaches
use a more accurate description of the velocity-field relationship. A common expression used
for the velocity-field relation is (see figure 9.26a)

v(E) =
μE

1 + μE
vs

(9.6.1)

where vs is the saturation velocity (∼ 107 cm/s) and E is the local longitudinal field in the
channel. Use of this expression in calculating drain current causes a reduction in current by a
factor of ∼ (1 + μVDS/vsL).

In figure 9.26 we show a comparison of the current-voltage relations calculated using the
constant-mobility model and the more accurate saturation velocity model.

Channel Length Modulation in Saturation Region

In our simple model, once VDS exceeds VD(sat) and the channel pinches off at the drain end,
the current is assumed to remain independent of VDS . The current in the channel is inversely
proportional to the channel length. We have so far assumed that the channel length is the met-
allurgical channel length. However, the L that appears in the current-voltage relation represents
the distance under the gate from the source side to the pinch-off point, as shown in figure 9.27a.
As VDS increases beyond VD(sat), the pinch-off point comes closer to the source side, thus
effectively decreasing the channel length. This produces a change in the channel length ΔL (see
figure 9.27b) and the current increases as

ID =
L

L − ΔL(VDS)
ID(sat) (9.6.2)

where ID(sat) is the current calculated assuming a fixed channel length. The effect results in
an increase in the output conductance of the device. A similar effect occurs in MESFETs and
JFETs. It is common to represent the increase in drain current arising from channel-length
modulation by an expression

ID = ID(L = fixed)(1 + λVDS) (9.6.3)
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Figure 9.26: (a) Velocity-field relation for the constant-mobility model and saturation-velocity
model. (b) ID − VDS relations for a MOSFET using the constant-mobility model and the more
accurate saturation-velocity model.

where ID(L = fixed) is the current calculated assuming the channel length is fixed.
To a first approximation we can evaluate the change in effective channel length by assuming

that the excess potential ΔVDS falls across the region L. This gives

ΔL =

√
2ε

eNa

[√
φfb + VDS(sat) + ΔVDS −

√
φfb + VDS(sat)

]
(9.6.4)

where
ΔVDS = VDS − VDS(sat)

This is also referred to as Vdp in the Grebene and Ghandhi analysis presented in chapter 8 on
FETs and is only defined for Vds > Vds(sat) Following the analysis of chapter 8 the drain
resistance

rd =
ΔVDS

ΔIDS
or rd =

ΔVdp

ΔIDS

is given by

rd =
πVdp

2ID

(
L
˜dox

)
where Vdp = VDS − VDS(SAT ), and ˜dox is ε/εox · dox the equivalent oxide thickness. This
emphasizes the need to reduce oxide thickness as we shrink the gate length, L; a high aspect
ratio design.
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Figure 9.27: (a) A schematic of the MOSFET channel when VDS = VDS(sat). (b) A schematic
showing the decrease in the effective channel length for VDS > VDS(sat).

9.6.3 Important Effects in Short-Channel MOSFETs

Advances in lithographic techniques are allowing MOSFET channel lengths to shrink to sizes
below 1.0 μm. Experimental devices with channel lengths smaller than 0.1 μm have been fabri-
cated. The force for miniaturization is coming from the need for dense circuits for high-density
memory and logic applications as well as from the need for high-frequency microwave devices.
In short-channel devices the simple models we developed for the current-voltage characteristics
become quite invalid for quantitative description. In addition to the effects discussed in the pre-
vious subsection for long-channel devices, specific issues relating to short-channel devices also
play an important role. Important issues that need to be considered are VT lowering; surface
scattering, velocity saturation and overshoot; hot carrier generation, impact ionization and drain
induced barrier lowering and punch through. Some of these are now discussed.

Gate Leakage

As gate lengths are reduced, gate oxide thickness must also be reduced to maintain a constant
aspect ratio. Currently, the SiO2 gates in MOSFETs are only a few monolayers thick. Future de-
vices will require high-K dielectric gates, as shown in figure 9.30, which allows for the physical
thickness to be large while maintaining a small equivalent oxide thickness, ˜dox
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Figure 9.28: Schematic of long and short channel MOSFETs (above) with corresponding
current-voltage characteristics below.

Three-Dimensional Transport

In our simple model for the MOSFET current, we assumed that the current flow was one-
dimensional and we could use the gradual channel approximation. For a very short-channel
device, the current flow is not just parallel to the gate, but one has to consider the current flow
from the source and drain side, which is highly two-dimensional. Also, if the gate width Z is
small, the transport becomes truly three-dimensional, requiring enormous computations to do a
proper device simulation.

Charge Sharing and VT lowering (Drain Induced Barrier Lowering)

It is observed that the threshold voltage of a MOSFET becomes increasingly negative as the
gate length of the device shrinks with all other parameters remaining the same. In conventional
analysis there is no dependence of VT on the gate length or channel length. This is because
conventional analysis assumes that the band bending in the semiconductor and hence the onset
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Figure 9.29: Schematic of the channel of a short-channel MOSFET showing the definitions for
relevant length parameters.

of strong inversion (threshold) is determined by the 1-dimensional potential distribution from
the gate to the substrate. This in effect neglects the effect of the source and drain contacts on the
charge and hence band bending in the channel. Figure 9.28 shows the impact of the contacts on
the band bending in the channel. The depletion due to the source and drain contacts encroaches
substantially under the gate, increasing the band bending and hence decreasing the additional
gate voltage required to create strong inversion compared to the long channel case. This is shown
in figure 9.29 where the source and drain regions are assumed to be cylindrical with radius dj

and the depletion depth of extent dB . At strong inversion the conduction band at the surface is
close to the source and hence the surface band bending is similar to band bending at the n+ − p
junctions giving a uniform value of dB for small values of VDS . The amount of charge that
images on the gate electrode is assumed under a trapezoidal approximation to be:

Q′
B = −eNAdB

(
L + L′

2

)
In the long channel case:

QB = −eNAdBL

or the charge in the shaded regions image on the gate and not on the contacts. Thus the reduced
bulk charge is the source of the reduced threshold voltage from

VT = 2φF + Vfb − QB

Cox

and

V̂T = 2φF + Vfb − Q′
B

Cox

or

ΔVT =
QB − Q′

B

Cox
=

QB

Cox

[
1 − Q′

B

QB

]
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geometrical analysis gives

Q′
B

QB
= 1 − dj

L

[√
1 +

2dB

dj
− 1

]

As L increases, Q′
B/QB → 1 approaching the long channel case as expected. As dB/dj be-

comes small (the case for large dj) which is shown in figure 9.29 then

Q′
B

QB
= 1 − dB

L

In general
Q′

B

QB
− 1 − β1dB

L

this leads to

ΔVT = 2β1
εs

εox

tox

L
(2φF + VBS)

when VBS is the substrate bias and β1 is a parameter based on specific geometry.
Hot Electron Effects
As the channel lengths shrink, the electric fields in the channel increase if the supply voltages
are kept fixed. The carriers become very “hot,” i.e., they acquire higher kinetic energies than the
thermal energy in such devices. These hot electrons can be injected into the oxide barrier causing
a tunneling gate current. They can also cause deterioration of the device by breaking bonds in
the semiconductor-oxide interface region or causing oxide charging. This damage is especially
dangerous since over a period of time the device degrades and eventually the circuit based on the
device loses its functionality. High fields also cause impact ionization near the drain end of the
channel. To avoid hot electron devices, MOSFETs are being designed so that the electric field
does not become very large in any region of the device.

9.6.4 Parasitic Bipolar Transistors and Latch-up in CMOS

CMOS circuits, while having the important benefit of low power consumption, have an im-
portant undesired property. This effect, known as latch-up, results from the presence of parasitic
bipolar transistors present in integrated circuits. In figure 9.31 we show the origins of the para-
sitic bipolar transistors in a CMOS structure. We can see that in the CMOS structure there is an
npn bipolar transistor and a pnp transistor in close proximity. As can be seen, the npn and pnp
transistors form a positive feedback circuit. The resistances R1, R2, R3, and R4 are parasitic
resistances associated with the n-substrate and p-well regions, as shown.

If we examine the two-terminal current between A and B as a function of bias, we find that up
to a certain bias, VL, the current is very low (∼ μA range). However, above this critical voltage
VL (related to the punch through of the transistor, typically ∼ 10 V), the two transistors start to
conduct and the current rises abruptly to the level of milliamperes. The current is now controlled
by the resistors R3 and R4. This phenomenon is called latch-up. Latch-up can occur whenever
the voltages applied to input or output cause forward biasing of pn junctions in the devices and
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Figure 9.30: (a) TEM of MOSFET structure employing a high-K gate dielectric and a strained
SiGe channel. (b) Device I-V characteristics. Figures courtesy of R. Chau, Intel corp.
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Figure 9.31: (a) a schematic of the parasitic effects that lead to CMOS latch-up problems. (b)
current versus voltage effect. the onset of latch-up is represented by a sharp rise in the parasitic
current.

can cause permanent damage to the chips. To avoid latch-up it is important that device design be
such that the bipolar transistor gain is low.

9.7 SUMMARY

In this chapter we have discussed the basic operating principles of one of the most important
devices in solid state electronics. The MOS capacitor and the MOSFET are key devices in almost
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Figure 9.32: Challenges to the future of MOSFETs.

all electronic components. As devices continue to be scaled new challenges continue to be faced
as is summarized in figure 9.32. The solutions will come in the form of high K dielectrics,
structures with enhanced gate control such as the FINFET or Tri-gate structures, and probably
new semiconductors such as GaAs, InGaAs, and InSb based MOSFETs. The future direction is
truly unpredictable and therefore very exciting for research.

9.8 PROBLEMS

Assume a temperature of 300 K unless explicitly stated otherwise.

• Section 9.3

Problem 9.1 Calculate the maximum space charge width Wmax in p-type silicon doped at
Na = 1016 cm−3and at 1017 cm−3.

Problem 9.2 A p-type silicon has a uniform doping of Na = 1016 cm−3. Calculate the
surface potential needed to cause strong inversion.

Problem 9.3 A 50 Å oxide is grown on p-type silicon with Na = 5 × 1015 cm−3.
Assume that the oxide charge is negligible and calculate the surface potential and gate
voltage to create inversion at the surface. Calculate the value of Wmax for the device. The
flat band voltage is -1.0 V.
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Problem 9.4 An Al-gate MOS capacitor has an oxide thickness of 100 Å and an oxide
charge density of 3×1011 cm−2. The charge is positive. Calculate (a) the flat band
voltage, (b) the turn-on voltage. Also, draw the energy band diagram and electric field
profile of the structure at the onset of inversion. Na = 5×1015cm−3.

Problem 9.5 An Al-gate transistor is fabricated on a p-type substrate with an oxide
thickness of 600 Å. The measured threshold voltage is VT = 1.0 V, and the p−type doping
is 5×1016cm−3. Calculate the fixed charge density in the oxide.

• Section 9.4

Problem 9.6 An n-channel MOS capacitor has a doping of Na = 1015 cm−3. The gate
oxide thickness is 500 Å. Calculate the capacitances Cox, Cfb, and Cmin for the capacitor.

Problem 9.7 Show that if ρ(x) is the distribution of charge density in the SiO22 region of
thickness dox, the shift in the flat band voltage is given by

ΔVfb = − 1

Cox

∫ dox

0

xρ(x)dx

dox

(Use Gauss’ law for electric field due to a thin sheet of charge density. Then use the
superposition principle.)

Problem 9.8 Calculate the shift in the flat band voltage using the result of problem 9.7 for
the following oxide charge distributions: (a) Q

′
ss = 1011 cm−2 is at the Si-SiO2 interface;

(b) the same charge is uniformly distributed in the oxide; (c) the charge is at the gate-SiO2

interface. The oxide thickness is 500 Å. Assume that the charge is positive.

Problem 9.9 The small signal capacitance of a (Metal − SiO2 − Si − Metal) MOS
capacitor is equal to a series connection of two capacitors.
(a) One capacitor is formed by a plate in bulk Si and the other plate at the SiO2 − Si
interface.
(b) The second capacitor, has its plates separated by the oxide layer.
Prove this using Gauss’ law.

• Section 9.5

Problem 9.10 Consider an n-channel MOSFET with a Z/L ratio of 15, a threshold
voltage of 0.5 volt, mobility, μn = 500 cm2/V·s, and dox = 700 Å. Calculate the drain
current and transconductance of the device (a) at VDS = 0.2 V; (b) in the saturation region.
The gate voltage is 1.5 V for both cases. Assume that the p-type doping is small.

Problem 9.11 Consider an ideal n-channel MOSFET with the following parameters:

Flat band voltage, Vfb = −0.9 V
Channel width, Z = 25 μm
Channel mobility, μn = 450 cm2/ V · s
Channel length, L = 1.0 μm
Oxide thickness, dox = 500 Å
Channel doping, Na = 5 × 1014 cm−3
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Calculate and plot ID versus VDS for 0 ≤ VDS ≤ 5 V and for VGS values of 0, 1, 2, 3
volts. Also, draw the locus of the VD(sat) points for each curve.

Problem 9.12 Consider an ideal p-channel MOSFET with the following parameters:

Channel width, Z = 25 μm
Channel mobility, μp = 250 cm2/ V · s
Channel length, L = 1.0 μm
Oxide thickness, dox = 500 Å
Threshold voltage, VT = −0.8 V

Calculate and plot ID vs. VDS for −0.5 ≤ VDS ≤ 0 V for a gate bias of
VGS = 0,−1,−2,−3 V. Assume that the background doping is very small.

Problem 9.13 In the text we used the criterion that inversion occurs when Vs = 2φF .
Calculate the channel conductivity near the Si-Si02 interface for two MOS devices with
the following parameters:

Na = 5 × 1013 cm−3 Na = 5 × 1015 cm−3

μn = 600 cm2/ V · s μn = 600 cm2/ V · s

The problem shows the rather arbitrary way of defining the inversion condition.

Problem 9.14 An n-channel and a p-channel MOSFET have to be designed so that they
both have a saturated current of 5 mA when the gate-to-source voltage is 5 V for the
n-MOS and −5 V for the p-MOS. The other parameters of the devices are:

Oxide thickness, dox = 500 Å
Electron mobility, μn = 500 cm2/ V · s
Hole mobility, μp = 300 cm2/ V · s
VT for the n-MOS, = +0.7 V
VT for the p-MOS, = −0.7 V

What is the Z/L ratio for the n-MOSFET and the p-MOSFET?

Problem 9.15 An n-channel MOSFET has the following parameters:

Oxide thickness, dox = 500 Å
p-type doping, Na = 1016 cm−3

Flat band voltage, Vfb = −0.5 V
Channel length, L = 1.0 μm
Channel width, Z = 15 μm
Channel mobility, μn = 500 cm2/ V · s

Plot
√

ID(sat) versus VGS over the range 0 ≤ ID(sat) ≤ 1 mA for the source-to-body
voltage of VSB = 0, 1, 2 V.
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Problem 9.16 Consider a p-channel MOSFET with oxide thickness of 500 Å, and
Nd = 1016 cm−3. Calculate the body-to-source voltage needed to shift the threshold
voltage from the VBS = 0 results by −1.0 V.

Problem 9.17 A NMOS with VT of 1.5 V is operated at VGS = 5 V and IDS = 100 μA.
Determine if the device is in linear or saturation regime.

k =
μZCox

L
= 20 μA/V 2

Problem 9.18 In the text we considered a criterion for inversion Vs = 2φF . Consider
another criterion that asserts that inversion occurs when the channel conductivity near the
interface is 0.1(Ωcm)−1. Calculate the surface potential bending needed to satisfy this
criterion when the channel has a p-type doping of: (a) 1014 cm−3; (b) 1015 cm−3; (c)
1016 cm−3. Compare the surface band bending arising from this new criterion to be a
value of Vs given by the criterion used in the text (μn = 600 cm2/V·s).

Problem 9.19 Threshold bias for an n-channel MOSFET: In the text we used a criterion
that the inversion of the MOSFET channel occurs when Vs = ψs = 2φF where
eφF = (EFi − EF ). Consider another criterion in which we say that inversion occurs
when the electron density at the Si/SiO2 interface becomes 1016 cm−3. Calculate the gate
threshold voltage needed for an MOS device with the following parameters for the two
different criteria:

dox = 500 Å

φms = 1.0 V

Na = 1013 cm−3

Problem 9.20 A frequently needed quantity in experimental studies of MOS transistors is
ψS , the surface potential.
(a) Show that when the gate voltage VG is changed in a MOS capacitor biased in the
depletion region, it is possible to find the corresponding change in ψS , by using the
measured capacitance of the MOS system. The change is calculated from the relation

ψS(VG2) − ψS(VG1) =

∫ VG2

VG1

(1 − C

Cox
)dVG (9.8.1)

(b) If VG1 is taken as VFB (flat-band voltage), sketch a low frequency MOS capacitance
curve for p-type silicon bulk. Normalize it to C∞ and indicate by shading an area of the
curve equal to ΔφS .

Problem 9.21 Consider the Si MOSFET structure in figure 9.33. Calculate the threshold
voltage when the p-type region is doped at 1017cm−3 uniformly as shown in Fig. 9.26b.
Because of problems during processing, I lose Boron atoms from 50 nm of the Si and it
gets magically incorporated uniformly in the oxide and provides unit negative charge per
atom there. The resultant doping in the Si is shown below in Fig. 9.26c. Calculate the new
threshold voltage VTH of the structure. Assume φMS = 0 eV.
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Figure 9.33: Figure for problem 9.21.

Problem 9.22 Consider that a MOS system on p-type silicon is biased to deep depletion
by the sudden deposition of a total charge QG on the gate at time t = 0. Carrier generation
in the space charge region at the silicon surface results in a charging current for the
channel charge Qn according to the net generation rate equation

JG = qnixi

2τ0

where τ0 is the maximum recombination rate, and xi is the width of the space charge
region. This allows us to write

dQn

dt = − qni(xd−xdf )
2τ0

where xd is the (time dependent) depletion region width at the surface. The quantity xdf is
the space charge region width at thermal equilibrium; that is, when xd = xdf , channel
charging by generation is zero.
(a) Show that the time evolution of Qn is governed by the differential equation

Qn + (2τ0NA

ni
)(dQn

dt ) = −(QG − qNAxdf )

(b) Solve this equation subject to the BC that Qn(t = 0) = 0, and thus show that the
characteristic time to form the surface inversion layer is of the order

T ∼ 2NAτ0

ni

9.9 DESIGN PROBLEMS

Problem 9.1 Consider an n-MOSFET made from Si-doped p-type at Na = 1016 cm−3 at
300 K. The source and drain contacts are ohmic (negligible resistance) and are made from
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n+-doped regions. The other parameters for the device are the following:

Vfb = −1.0 V

μn = 500 cm2 V−1 s−1

μp = 100 cm2 V−1 s−1

Gate length = 2.0 μm

Gate width = 20.0 μm

dox = 500 Å

(a) Calculate the channel conductivity near the Si-SiO2 interface under flat band condition
and at inversion. Use the condition Vs = 2φF for inversion.
(b) Calculate the electron and hole densities at the Si-SiO2 interface on the source and
drain side of the gate when the gate bias is VT + 0.5 V and VDS = 1.0 V.
(c) Calculate the saturation current in the channel for the gate bias specified above.
(d) If the gate voltage is such that the Si bands are flat, estimate the current density in in
the channel for a drain bias of 1.0 V.

Problem 9.2 Consider an n-MOSFET made from Si-doped p-type at
Na = 5 × 1016 cm−3 at 300 K. The other parameters for the device are the following:

Vfb = −0.5 V

μn = 600 cm2 V−1 s−1

μp = 100 cm2 V−1 s−1

Gate length = 1.5 μm

Gate width = 50.0 μm

dox = 500 Å

The inversion condition is Vs = 2φF .
(a) Calculate the threshold voltage VT .
(b) Calculate the channel current when the gate bias is VT + 1.5 V and the drain bias is
1.0 V.
(c) Estimate the ratio of the electron velocities in the channel on the source side and the
drain side of the gate for the biasing in part (ii).

Problem 9.3 Consider an n-MOSFET made from Si doped p-type at
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Na = 5 × 1016 cm−3 at 300 K. The other parameters for the device are the following:

Vfb = −0.5 V

μn = 600 cm2 V−1 s−1

μp = 200 cm2 V−1 s−1

Gate length = 1.5 μm

Gate width = 50.0 μm

dox = 500 Å

The inversion condition is Vs = 2φF . Assume that the electrons induced under inversion
are in a region 200 Å wide near the Si/SiO2 interface.
(a) Calculate the channel conductivity near the Si-SiO2 interface under flat band condition
and at inversion. Use the condition Vs = 2φF for inversion.
(b) Calculate the threshold voltage.

Problem 9.4 Consider an n-MOSFET at room temperature made from Si-doped p-type.
To characterize the device C-V measurements are done for the MOS capacitor. It is found
from the low-frequency measurements that the maximum and minimum capacitances per
unit area are 1.72 × 10−7 F/cm2 and 2.9 × 10−8 F/cm2. The other parameters for the
device are the following:

μn = 600 cm2 V−1 s−1

Gate length = 1.5 μm

Gate width = 50.0 μm

(a) Calculate the oxide thickness.
(b) Estimate the p-doping level in the channel.
(c) Calculate the channel current at saturation when the gate bias is VT + 1.5 V .
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Chapter 10

COHERENT TRANSPORT AND
MESOSCOPIC DEVICES

10.1 INTRODUCTION

In quantum mechanics electrons are waves (or wavepackets) which have a discrete charge
(1.6×10−19 C), amplitude and phase and have a spin (1/2�). Yet none of the electronic devices
we have considered explicitly use these features. Conventional electronic devices do not use
the wave nature of electrons (e.g interference effects are not used), nor is the discrete nature of
electron charge reflected in the current or conductance. The spin of electrons is also not directly
used in diodes or transistors. There are several reasons for this. The devices are large so that
scattering effects dominate and electron phase information is lost. Also the number of electrons
is very large (say in billions or more) so that the discrete nature of electron charge is unimportant.
Finally in traditional semiconductors there is no simple way to distinguish electron spin.

Charge transport in devices discussed so far is described within Born approximation or the
Fermi golden rule. This involves free flight and scattering processes. While such an approach
is quite relevant to modern microelectronic devices there are a number of important issues that
are not described by this approach. These issues relate to the wave nature of the electrons, the
discrete nature of charge in current flow and the spin of electrons. As semiconductor devices
evolve and shrink, these issues are becoming increasingly important. In this chapter we will
discuss some transport issues and devices that come into prominence as devices become smaller
and smaller. In particular we will discuss devices that exploit electron phase, discrete electron
charge and electron spin.

Let us recall how scattering is influenced by crystal quality and device dimensions. In fig-
ure 10.1 we show several types of structural properties of materials. In figure 10.1a we show a
perfect crystal where there are no sources of scattering. Of course, in a real material we have
phonon related fluctuations even in a perfect material. However, for short times or at very low
temperatures it is possible to consider a material with no scattering. There are several types of
transport that are of interest when there is no scattering: i) ballistic transport, where electrons

489
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Figure 10.1: A schematic of how levels of structural disorder and size impact electronic proper-
ties of a material.

move according to the modified Newton’s equation; and ii) Bloch oscillations, where electrons
oscillate in k-space as they reach the Brillouin zone edge, as will be discussed in section 10.2.
In addition we can have tunneling type transport as well as quantum interference effects. These
are discussed in Sections section 10.3 and section 10.4. The wave nature of electrons and the
quantization of charge also leads to conductance quantization and Coulomb blockade effects.
Finally if the spin of electrons can be manipulated novel devices can result.

In figure 10.1b we show the case where there is a small degree of disorder. This is the situation
where Born approximation can be used and transport under these conditions has been discussed
in the previous chapters. In figure 10.1c we show the case where the structural disorder is large.
This happens in amorphous materials and leads to localized states (band tails) and transport
that is described by “hopping” behavior. Transport in disordered semiconductors (or amorphous
semiconductors) is relatively poor and used primarily for low cost applications such as thin film
transistors for display. Such devices are not useful for high performance devices which are the
primary focus of this text.

Finally in figure 10.1d we show the case for devices that are very small (several tens of atoms
across). Such structures are called mesoscopic structures and are increasingly becoming impor-
tant as fabrication technology improves. Mesoscopic structures have a number of very interesting
and potentially important transport properties. Single electron effects as well as spin effects are
manifested in such structures.
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10.2 ZENER-BLOCH OSCILLATIONS

In a perfect crystal electrons see a periodic potential and according to Bloch theorem an elec-
tron wavefunction is described by a plane wave with a central cell periodic part. Of course the
crystal has to be rigid since lattice vibrations even in a defect-free structure will cause scattering.
There are many interesting effects that occur when electrons move without scattering in crystals.
One such effect is Zener-Bloch oscillations. The equation of motion of electrons in an electric
field is simply

�
dk

dt
= eE (10.2.1)

In the absence of any collisions the electron will simply start from the bottom of the band (fig-
ure 10.2) and go along the E vs k curve until it reaches the Brillouin zone edge.

It must be noted that just as the electron sees a periodic potential in real space in a crystal the
bandstructure E vs k is also periodic in k-space. The electron at the zone edge is thus “reflected”
as shown in figure 10.2 and now starts to lose energy in its motion in the field. The k-direction of
the electron changes sign as the electron passes through the zone edge representing oscillations
in k-space and consequently in the real space. These oscillations are called the Zener-Bloch
oscillations.

If we have a spatial periodicity defined by distance a the bandstructure is periodic in the
reciprocal vector Γ = 2π/a. As a result the frequency of Bloch-Zener oscillation is

ωb =
eEa

�
(10.2.2)

The oscillation frequency is quite high and can easily be in the several terrahertz regime. Note
that the oscillations depend upon field direction since the edges of the Brillouin zone (see chap-
ter 3) are at different points along different directions. From a practical device point of view it
has not been possible to exploit Bloch oscillations since the scattering mechanisms are usually
strong enough to cause a electron to scatter before it can go through a complete oscillation, it
has not been possible to observe these oscillations.

If τSC is the scattering time oscillations can occur if we have the condition

ωbτSC ≥ 1 (10.2.3)

From the oscillation condition given above we see that if the periodic distance in real space
is increased, it will take less time to reach the zone edge and one can expect Bloch oscillations
to survive. The periodicity can be increased by using superlattices. In figure 10.3 we show a
schematic of the effect of enlarging the periodic distance (by making superlattices) on an energy
band. On the top we show the energy band schematic of a crystal with a unit cell periodicity
represented by the distance a. The zone edge in k-space is at 2π/a. Now if a superlattice with
a period na is made as shown in the lower panel the zone edge occurs at 2π/na. Assuming that
the scattering time is not changed much due to superlattice formation, it can be expected that
an electron will be able to reach the superlattice zone edge without scattering, thus Bloch-Zener
oscillations could occur. Although these considerations seem promising, real devices have not
been created.
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Figure 10.2: A schematic showing how an electron starting at t = 0 at the bottom of the conduc-
tion band (Γ-valley) travels up the E vs k diagram and gets reflected at the zone edge.

10.3 RESONANT TUNNELING

In absence of scattering the behavior of electron waves is similar to that of optical waves.
Effects like filtering, interference and diffraction can occur. One class of devices that has been
demonstrated and used for high performance applications is the one based on electron tunneling
through heterostructures. Resonant tunneling is a very interesting phenomenon in which an elec-
tron passes through two or more classically forbidden regions sandwiching a classically allowed
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Figure 10.3: An increase in periodic spacing through the use of a superlattice can reduce the
k-space an electron has to traverse before it reaches the zone edge. The reduced zone edge may
allow the possibility of Bloch-Zener oscillations.

region. A particularly interesting outcome of resonant tunneling is “negative differential resis-
tance.” In Fig. figure 10.4a we show a typical potential profile for a resonant tunneling structure.
As shown the double barrier structure of figure 10.4 has a quasi-bound ground state at energy E0

as shown. The level E0 is close to the level in the quantum well formed within the double barrier
region but it is broadened due to the escape lifetime. The broadening comes from the Heisenberg
energy-time uncertainty. If the electrons coming from the left have energies close to E0 they are
able to transmit through the structure. The operation of a resonant tunneling structure is under-
stood conceptually by examining figure 10.4. At zero bias, point A, no current flows through the
structure since the allowed level in the well is not aligned with the energy of electrons coming
from the left.. At point B, when the Fermi energy lines up with the quasibound state, a maximum
amount of current flows through the structure. Further increasing the bias results in the structure
of point C, where the current through the structure has decreased with increasing bias (negative
resistance). Applying a larger bias results in a strong thermionic emission current and thus the
current increases substantially as shown at point D.

To understand the tunneling behavior, the potential profile (say, the conduction band lineup)
is divided into regions of constant potential. The Schrödingerequation is solved in each region
and the corresponding wavefunction in each region is matched at the boundaries with the wave-
functions in the adjacent regions as shown in figure 10.5.
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Figure 10.4: (a) A conceptual explanation of the operation of resonant tunneling devices showing
the energy band diagram for different bias voltages. (b) Negative resistance region in the current–
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Figure 10.5: Typical resonant tunneling structure with two barriers. The wavefunction in each
region has a general form shown. By matching the wavefunctions and their derivatives at the
boundaries one can obtain tunneling probabilities.

A simple application of this formalism is the tunneling of electrons through a single barrier of
height V0 and width a. The tunneling probability is given by

T1B(E) =

∣∣∣∣A3

A1

∣∣∣∣2
=

4E(V0 − E)

V 2
0 sinh2(γa) + 4E(V0 − E)

(10.3.1)

with

γ =
1

�

√
2m(V0 − E) (10.3.2)

If we have two barriers as shown in figure 10.4, the tunneling through the double barrier is
given by

T2B =

[
1 +

4R1B

T 2
1B

sin2 (k1W − θ)

]−1

(10.3.3)

where R1B is the reflection probability from a single barrier

R1B =
V 2

0 sinh2 γa

V 2
0 sinh2 γa + 4E(V0 − E)

(10.3.4)

and θ is given by

tan θ =
2k1γ cosh γa

(k2
1 − γ2) sinh γa

(10.3.5)
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The wavevector k1 is given by
�

2k2
1

2m∗ = E

While tunneling through a single barrier has no interesting feature, tunneling through a double
barrier structure has interesting resonances as can be seen from the expression for T2B . The cal-
culated transmission probability as a function of longitudinal electron energy for a typical double
barrier is shown in figure 10.6. The sharp peaks in the transmission probability correspond to
resonant tunneling through the quasi-bound states in the quantum well formed between the two
barriers. The tunneling probability reaches unity at energies corresponding to the quasi-bound
states in the quantum well. To calculate the current density in the system we note that

J = nev

=
e

4π3�

∫ ∞

0

dk�

∫ ∞

0

d2kt

[
f(E) − f(E

′
)
]
T (E�)

∂E

∂k�
(10.3.6)
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where the longitudinal velocity is

v =
1

�

∂E

∂k�

and the net current is due to the electrons going from the left-hand side with energy E and from
the right-hand side with energy E

′
= E + e |E| l = E + eV where |E| is the electric field and l

is the distance between the contacts on the two sides.

J =
e

4π3�

∫
dk�T (E�)

∂E

∂k�

∫
d2kt

[
1

exp [(Et + E� − EF )/kBT ] + 1

− 1

exp [(Et + E� + eV − EF )/kBT ] + 1

]
The transverse momentum integral can be simplified by noting that

d2kt = kt dkt dφ

=
m∗ dEt dφ

�2

This gives

J =
em∗

2π2�3

∫
dE�T (E�)

∫ ∞

0

dEt

[
1

exp [(Et + E� − EF )/kBT ] + 1

− 1

exp [(Et + E� + eV − EF )/kBT ] + 1

]
=

em∗

2π2�3

∫ ∞

0

T (E�) ln

[
1 + exp [(EF − E�)/kBT ]

1 + exp [(EF − E� − eV )/kBT ]

]
dE� (10.3.7)

In figure 10.7 we show typical current-voltage characteristics measured in resonant double
barrier structures. The results show are for a InGaAs/AlAs structure with parameters shown. As
can be seen a large peak to valley current ration can be obtained at room temperature. There is
a region of negative resistance as expected from simple arguments. The negative resistance can
be exploited for microwave devices or for digital applications.

10.4 QUANTUM INTERFERENCE EFFECTS

In a perfectly periodic potential the electron wavefunction has the form

ψk(r) = uk(r)eik·r

and the electron maintains its phase coherence as it propagates in the structure. However, in
a real material electrons scatter from a variety of sources. In high-quality semiconductors (the
material of choice for most information-processing devices) the mean free path is ∼ 100 Å at
room temperature and ∼ 1000 Å at liquid helium. For sub-micron devices it is possible to see
quantum interference effects at very low temperatures in semiconductor devices. These effects



498 CHAPTER 10. COHERENT TRANSPORT AND MESOSCOPIC DEVICES

1.5

1.0

0.5

0.0

VOLTAGE (V)

300 K

C
U

R
R

E
N

T
D

E
N

SI
T

Y
(1

04
 A

/c
m

2 ) 24 Å 24 Å

} }

1.2 eV

44 Å

0.0 0.5 1.0 1.5 2.0

InGaAs

AlAs

Figure 10.7: Room temperature current–voltage characteristics of an InGaAs/AlAs resonant
tunneling diode.

can be exploited to design digital devices and switches operating at very low power levels. The
general principle of operation is shown in figure 10.9. Electron waves travel from a source to a
drain via two paths. At the output the intensity of the electron wave is (addition is coherent)

I(d) =| ψ1(d) + ψ2(d)2 (10.4.1)

If the waves are described by

ψ1(x) = Aeik1x

ψ2(x) = Aeik2x (10.4.2)

where k1 and k2 are the wavevectors of the electrons in the two paths. We have

I(d) = 2A2[1 − cos(k1 − k2)d] (10.4.3)

If we can now alter the wavevectors of the electron (i.e., the value of (k1 − k2)) we can
modulate the signal at the drain. This modulation can be done by using an electric bias to alter
the kinetic energy of the electrons in one arm. In figure 10.8b we show a schematic of a split-
gate device in which electrons propagate from the source to the drain either under one gate or
the other. The ungated region is such that it provides a potential barrier for electron transport as
shown by the band profile. Interference effects are then caused by altering the gate bias.

In quantum interference transistors, a gate bias is alters the potential energy seen by the elec-
trons. The electron k-vector at the Fermi energy is given by (Ec is the bandedge i.e the subband
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Figure 10.8: (a) A schematic of a coherent electron beam interference structure. (b) A schematic
of a split-gate transistor to exploit quantum interference effects. Electrons propagate from the
source to the drain under the two independently controlled gates in the 2-dimensional channel of
AlGaAs/GaAs as shown.

energy in the quantum well)

EF = Ec +
�

2k2

2m∗ (10.4.4)

By changing the position of EF , one can alter the k-value. Thus one can develop quantum
interference transistors.
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10.5 MESOSCOPIC STRUCTURES

In mesoscopic structures single electron effects arising from phase coherence or from charge
quantization become important. The structures are so small that density of states is not a con-
tinuous function but has discreteness to it. As a result mesoscopic structures show a number of
interesting transport effects.

10.5.1 Conductance Fluctuations and Coherent Transport

In very small structures electron waves can flow from one contact to another maintaining phase
coherence. Additionally the structures are so small that the change in electron number by unity
creates observable effects. In structures that are ∼ 100–500 Å this occurs at low temperatures,
since at high temperatures the random scattering due to phonons removes the coherence in the
transport process. A dramatic manifestation of the phase coherence is the fluctuation seen in
conductivity of mesoscopic structures as a function of magnetic field, electron concentration,
etc.

The origin of the fluctuations can be understood on the basis of Landauer formalism which
allows one to study transport in terms of the scattering processes directly. For simplicity consider
a one-dimensional system with scattering centers. Each of these scatterers is characterized in
terms of a transfer matrix which describes what fraction of the incident electron is “reflected”
after scattering and what fraction is transmitted. The scatterer is described by the reflection and
transmission coefficients shown in figure 10.9. The reflection and transmission coefficients are
R and T for an incident wave from the left or right. We will provide a simple formulation to
understand the origin of conductance fluctuations in mesoscopic structures. We assume a one
dimensional flow of charge from one contact to another. This allows us to use 1-dimensional
density of states to describe carrier density changes.

X

S

a

b

d

c

Mesoscopic system transport

Figure 10.9: Transport in a mesoscopic structure. A schematic showing the effect of the scatter-
ing center S on electron waves a and c incident from the left and right respectively. The waves b
and d emerge as a result of reflection and transmission.
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In small structures where phase information is retained we will see that conductance has quan-
tized behavior. The conductance is

G =
δI

δV
(10.5.1)

Also
δI = δn.e.vk (10.5.2)

where the carrier velocity is

vk =
1

�

δE

δk
(10.5.3)

If δV is the potential change we have

δn =
dn

dE
(e δV ) (10.5.4)

Using these equations we get for a small change in current

δI =
e2

�

δn

δ
δV (10.5.5)

The conductance is then

G =
e2

�

δn

δk
(10.5.6)

Now for a 1-dimensional case the number of electron states available per k-state is

dn

dk
=

1

π
(10.5.7)

so that (including the spin degeneracy factor of 2)

G =
2e2

h
(10.5.8)

The expression shows that the fundamental unit of conductance is 2e2/h. By using Landauer
formalism where electrons are treated as incident, transmitted and reflected waves it can be
shown that there is a remarkable universality in the magnitude of the fluctuations independent
of the sample size, dimensionality and extent of disorder, provided the disorder is weak and the
temperature is low (a few Kelvin). Such universal conductance fluctuations have been measured
in a vast range of experiments involving magnetic field and Fermi level position (voltage).

In figure 10.10 we show experimental results of Wees, et al., carried out on a GaAs/AlGaAs
MODFET at low temperatures. As shown, a pair of contacts are used to create a short channel of
the high mobility region, and conductance is measured. The gates form a 1-dimensional channel
in which the Fermi level and thus the electron wavefunctions can be altered. As can be seen from
the figure 10.10, there are quantized steps in the conductance.

Transistors based on the mesoscopic effects described here are called single electron transis-
tors. They promise low power operation although they require low temperatures. In figure 10.11
we show an SEM image of a single electron transistor where the conductance fluctuations dis-
cussed here have been observed.
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Figure 10.10: Experimental studies on conductance fluctuations arising in a GaAs/AlGaAs chan-
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Figure 10.11: SEM image of a single electron transistor (SET) structure. Figure courtesy of
Greg Snyder, University of Notre Dame.

10.5.2 Coulomb Blockade Effects

So far in our discussion we have not paid attention to the Coulombic repulsion between elec-
trons. The reason is that in large systems the repulsion is negligible. However, in very small
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systems, electron charging energy effects arising from Coulomb interactions between electrons
can become significant. This phenomenon is called the Coulomb blockade effect. We are fa-
miliar with the parallel plate capacitor with capacitance C and the relation between a charge
increment ΔQ and the potential variation ΔV

C =
ΔQ

ΔV
or ΔV =

ΔQ

C
(10.5.9)

The capacitance is given by the spacing of the plates (d) and the area (A)

C =
εA

d
(10.5.10)

Now consider a case where the capacitance decreases until a single electron on the capacitor
causes a significant change in the voltage. The charging energy to place a single electron on a
capacitor is

ΔE =
e2

2C
(10.5.11)

and the voltage needed is
e

2C
=

80 mV

C(aF )
(10.5.12)

where the capacitance is in units of 10−18 F(aF ). If we write the charging energy as a thermal
energy, kBT0, the temperature associated with the charging energy is

T0 =
e2

2kBC
=

928.5 K

C(aF )
(10.5.13)

Coulomb blockade effects will manifest themselves if the sample temperature T is smaller than
this effective charging temperature T0and we expect the following to occur:
• When the capacitance reaches values approaching ∼ 10−18 F, each electron causes a shift in
voltage of several 10s of millivolts.
• The charging energy of the capacitor, i.e., the energy needed to place a single extra electron
becomes comparable to or larger than kBT with T reaching 10 K or even 100 K if the capacitance
becomes comparable to 10−18 F.

To get the small capacitors needed to generate Coulomb blockade effects at reasonable tem-
peratures one has to use areal dimensions of

<∼ 1000 Å× 1000 Å with spacing between the
contacts reaching ∼ 50–100 Å. With such dimensions (using a relative dielectric constant of ∼
10) we get capacitors with capacitances of the order of ∼ 10−16 F. The charging voltages are
then ∼1 mV and T0 ∼10 K. If the area of the capacitor is reduced further these values increase.
It is possible to fabricate small capacitors with capacitance approaching 10−18 F.

In figure 10.12 we show the band profile of a typical tunnel junction capacitor which consists
of two metal contacts separated by a thin tunneling barrier. In the absence of any Coulomb
blockade we observe a monotonic increase in current with applied bias as shown in figure 10.12a.

In case the Coulomb blockade is significant we get a very different device behavior. In fig-
ure 10.12b we show the behavior for a structures where the charging energy is large enough to
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Figure 10.13: A schematic of how current voltage relations change as temperature is raised.
Above T0, defined in the figure, normal ohmic conduction occurs.

have measurable effects. At zero bias there is no net flow of electrons as usual. However at
small biases smaller than the charging energy, an electron cannot move from the left to the right
because that would raise the energy of the right side by e2/2C as shown. Once the voltage level
(times electron charge) exceeds the charging energy, electrons can flow across the junction and
we have ohmic behavior. The current–voltage relation shows a highly non-linear behavior as
shown in figure 10.12b.

The effects sketched in figure 10.12b have a strong temperature dependence. As the temper-
ature rises, the distribution of carriers in the contact is smeared by ∼ kBT . AS a result the
Coulomb blockade effect survives only up to the temperature, T0 defined above. In figure 10.13
we show how the current-voltage relations change when temperature is raised.

10.6 MAGNETIC SEMICONDUCTORS
AND SPINTRONICS

In most semiconductors the asymmetry between spin up and spin down electrons is negligible
even in presence of a magnetic field. As a result in existing electronic devices the spin of the
electron is not relevant to current flow. The density of spin up and spin down electrons is the
same unless a strong magnetic field is applied to select a particular state. The contacts used to
inject electrons also usually have no spin selectivity. If spin selectivity can be created it should be
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possible to develop electronic devices that are dependent on the spin of the electrons much like
optical devices are dependent on polarization of light. In optics the use of a polarizer, analyzer
and modulator allow one to make switches. The same can be possible in electronics if electrons
can be injected and extracted with spin selection.

In magnetic semiconductors it is possible to use ferromagnetic contacts to inject electrons
with spin selectivity. Notable examples of magnetic semiconductors are InGaAsMn, CdMnTe,
ZnMnSe, and HgMnTe. These semiconductors, known as diluted magnetic semiconductors, and
their heterostructures with other semiconductors can now be fabricated and they offer a unique
opportunity for the combined studies of semiconductor physics and magnetism. The magnetic
semiconductors are fabricated by the usual epitaxial techniques like MBE or MOCVD and Mn
is introduced as an extra ingredient. The Mn composition is usually ≤ 20%.

In recent years there has been a growing interest in a field known as “spintronics” (after spin
and electronics). In conventional electronics, electron density is modulated to create devices for
digital and analog applications. In spintronics the expectation is that one modulates the spin
of electrons. As in quantum interference devices discussed in section 10.4, such a possibility
promises very low power, high density devices. An important point to note in spin dependent
devices is that usual scattering mechanisms that impact transport cause only very weak spin
scattering. Thus an electron can maintain its spin value for several microns (or even 100 microns
at low temperature). However, this does not mean that spin based transistors can function at
high temperatures or for long channel lengths. Non-spin altering scattering processes are still
important in spintronic devices.

In conventional electronic devices we ignore the electron spin. As noted above the main
reason we have not worried about electron spin is that usually density of spin-up and spin-down
electrons is the same and the spin splitting in the presence of a magnetic field is small. However,
it is possible to prepare a semiconductor sample in a state where electrons in the conduction band
have a much higher density of spin-down electrons. This can be done by using optical injection
or electronic injection. Electrons (or other charged particles) interact with a magnetic field via a
magnetic moment which is written as

μs = −gμBS = γ�S (10.6.1)

where S is the spin of the particle; g is known as the g-factor and characterizes the particle. The
constant μB is the Bohr magneton and has a value

μB =
e�

2m
(10.6.2)

The constant γ is called the gyromagnetic or magnetogyric ratio. The magnetic interacction
associated with the spin is

Hspin = −μs · B (10.6.3)

Spin Injection and Spin Transistor

In ferromagnetic materials, once the material is magnetized, there is a strong selection of spin
orientation (below the Curie temperature). If a ferromagnetic contact is used in a semiconductor
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Figure 10.14: A schematic of a spin transistor in which electrons with a selected spin are injected
into a 2-dimensional channel.

device it is possible to inject electrons or holes in a spin selected state using ferromagnetic
contacts. In figure 10.14a we show a spin-transistor in which spin selected electrons are injected
from an Fe contact acting as a source. The magnetized contact injects electrons with spin selected
by the magnetization field and maintain this spin state as they travel throughout the device. The
spin transistor exploits quantum interference effects with two nuances: i) spin select electrons
can be injected into a transistor channel; ii) spin splitting of spin-up and spin-down states causes
the two spin state electrons to have a different k-vector which can be controlled by a gate bias to
create interference effects.

Using the geometry shown in figure 10.14a, electrons are injected into the 2-dimensional
channel with a spin polarized along the +x direction. These electrons may be written in terms
of the spin-up (positive z-polarized) and spin-down (negative z-polarized) states

〈x| → 1√
2

(〈↑| + 〈↓|) (10.6.4)

Now consider the possibility where the energy of the spin-up and spin-down electrons is different
as shown in figure 10.15. The splitting in the spin-up and spin-down states can occur due to
external magnetic fields or internal spin-orbit effects combined with lack of inversion symmetry.
These effects are strongest in narrow bandgap semiconductors where the conduction band states
are influenced by the p-type valence band states.
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Figure 10.15: A schematic of the band profile of spin-up and spin-down electrons. At the Fermi
energy the k-vector for spin-up and spin-down electrons are different.

The position of the Fermi level is the same for the spin-up and spin-down states as shown in
figure 10.15. We have

EF = Ec − ΔE +
�

2k2(↓)
2m∗

= Ec + ΔE +
�

2k2(↑)
2m∗ (10.6.5)

As the electrons move down the channel the phase difference between spin-up and spin-down
electrons changes according to the usual wave propagation equation

Δθ = [k(↑) − k(↓)] L (10.6.6)

where L is the channel length. The drain contact acts as a spin filter and only accepts electron
states with spin in the x-direction. Thus the current flows if Δθ = 2nπ. Otherwise the current
value is lower. Thus the spin transistor essentially behaves as an electrooptic modulator where
the phase is controlled by the gate voltage which controls EF .
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10.7 PROBLEMS

• Section 10.2

Problem 10.1 Consider a GaAs sample in which fields of 10 kV/cm and 100 kV/cm is
applied. Discuss the restrictions on scattering times under which Bloch oscillations can
occur. Also calculate the frequency of oscillations.

Problem 10.2 Design a GaAs/AlAs superlattice structure in which Bloch oscillations
could occur when the scattering rate is 1013 s−1 and the applied field is 100 kV/cm.
Discuss possible effects that could prevent the observation of the oscillations.

Problem 10.3 Consider a Si crystal in which a field of 105 V/cm is applied. Calculate the
Bloch oscillation period if the field is applied along the i) [100]; ii) [110], and iii) [111]
directions. Discuss if these oscillations are feasible .

• Section 10.3

Problem 10.4 In the resonant tunnel structure the transmission probability vs. energy plot
has resonances with a line width ΔEn. Show that if En is the energy of the nth resonance,

ΔEn ∼ EnT1B

πn

where T1B is the transmission through a single barrier.

Problem 10.5 Estimate the time an electron will take to tunnel through a resonant tunnel
double barrier structure. You can use the Heisenberg relation ΔtΔE ∼ �, where ΔE is
the energy line width of the transmission resonance.

Problem 10.6 Consider a resonant tunneling structure with the following parameters:

Barrier height, V0 = 0.3 eV

Well size,W = 60 Å

Barrier width, a = 25 Å

Effective mass ,m∗ = 0.07 m0

Calculate and plot the tunneling probability of electrons as a function of energy for
0 < E < V0.

Problem 10.7 Consider a 0.1 μm AlGaAs/GaAs device in which a 2-dimensional gas is
formed with a density of n2D = 1012 cm−2. A split gate device is made from the
structure. Estimate the minimum gate voltage needed to switch a quantum interference
transistor. How does this compare to the voltage needed to switch regular FET?

Problem 10.8 In normal transistors the ON and OFF states of the device are produced by
injecting and removing electrons in the device. Consider a Si device with an area of
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2.0 μm×0.1 μm in which a 1 V gate bias changes the electron density in the channel from
1012 cm−2 to 108 cm−2, thus switching the device from ON to OFF. What is the switching
energy?

Estimate the switching energy if quantum interference effects were used in the same
device.

Problem 10.9 Consider a 2-dimensional electron channel in a AlGaAs/GaAs device. The
gate length is 0.1 μm and gate width is 2.0 μm. The device is biased so that the electron
density in the channel is 1012 cm−2. How much will the electron number in the channel
change if Δσ = 2e2/h? Use a semi-classical model with mobility 105 cm2/V·s.

Problem 10.10 Consider a metal-oxide-silicon capacitor. At what areal dimensions will it
display Coulomb blockade effects at 300 K? The relative dielectric constant of SiO2 is 3.9
and the oxide thickness is 25 Å.

Problem 10.11 Consider a single electron transistor based on a MOSFET in which the
gate capacitance is 10−18 F. The gate capacitor state is altered by a single electron (at very
low temperatures). Calculate the change in the device channel current if the device
transconductance is

gm =
δI

δVG
= 1.0 S

10.8 Further Reading

• Mesoscopic Structures

– Articles in Nanostructure Physics and Fabrication (edited by M. A. Reed and W. P.
Kirk, Academic Press, New York, 1989).

– Datta, Supriyo, Electronic Transport in Mesoscopic Systems (Cambridge University
Press, 1995).

– Ferry, D. K., Semiconductors (Macmillan, New York, 1991).

– Gradert, Hermann and H. Michel, Editors, Single Charge Tunneling: Coulomb Block-
ade Phenomenon in Nanostructures (NATO ASI Series, B, Physics, vol. 294), Plenum
Publishing Corporation, 1992.

– Janssen, Martin, Fluctuations and Localization in Mesoscopic Electron Systems (World
Scientific Publishing Company, 1991).

– Landauer, R., Philos. Mag., 21, 863 (1970).

– Murayama, Yoshinasa, Mesoscopic Systems, (John Wiley and Sons, 2001).

– Physics Today, (Dec. 1988). Covers the important aspects of physics in mesoscopic
structures.

– Van Wees, B. J., H. Van Houten, C. W. J. Beenakker, J. L. Williamson, L. P. Kauwen-
hoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett., 60, 848 (1988).



Appendix A

LIST OF SYMBOLS

a lattice constant (edge of the cube for the semiconductor fcc lattice)

B base transport factor in a bipolar transistor

c velocity of light

Cox oxide capacitance per unit area
Cmos capacitance (per area) of an MOS capacitor
Cmos(min) minimum capacitance (per area) of an MOS capacitor
Cmos(fb) capacitance (per area) of an MOS capacitor under flatband conditions
CGS , CGD gate to source and gate to drain capacitance in a FET
CDS drain to substrate capacitance in an FET
Cj , Cd junction, diffusion capacitance in a p-n diode

Dn electron diffusion coefficient
Dp hole diffusion coefficient
Db diffusion coefficient in the base of a bipolar transistor
De diffusion coefficient in the emitter of a bipolar transistor
Dc diffusion coefficient in the collector of a bipolar transistor

e magnitude of the electron charge

E energy of a particle
EF Fermi level
EFi intrinsic Fermi level

511
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EFn electron quasi-Fermi level
EFp hole quasi-Fermi level
Ee(Eh) energy of an electron (hole) in an optical absorption or emission measured

from the bandedges
Ec(Ev) conduction (valence) bandedge

f(E) occupation probability of an electron state with energy E at equilibrium.
This is the Fermi-Dirac function

fe(E) occupation function for an electron in non-equilibrium state. This is the
quasi-Fermi function

fh(E) occupation function for a hole = 1 − fe(E)
fτ cutoff frequency for unit current gain
fmax available power gain is unity at this frequency

E electric field
Fext external force such as an electric or magnetic force

gm transconductance of a transistor
gD output conductance of a transistor

GL electron-hole generation rate due to a light beam

� Planck’s constant divided by 2π
h channel thickness of a JFET or an MESFET
h(x) depletion region thickness in an FET at position x along the source to drain

channel

H magnetic field

Iph photon particle current
IE , IB , IC emitter, base, and collector current in a BJT
IEn, IEp electron, hole part of the emitter current in an npn BJT
ID drain current in an FET
Io reverse bias saturation current in a p-n diode
Is reverse bias saturation current in a Schottky diode
IGR generation recombination current in a diode
Io
GR prefactor for the generation recombination current
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J current density
JL photocurrent density
Jph photon particle current density

� mean free path between successive collisions

Ln diffusion length for electron
Lp diffusion length for holes

mo free electron mass
m∗

e electron mass
m∗

h hole mass
m∗

dos density of states mass
m∗

σ conductivity mass
m∗

hh mass of the heavy hole
m∗

�h mass of the light hole
m∗

r reduced mass of the electron-hole system

M,Me,Mh multiplication factor, multiplication factor for electrons,
mulitplication factor for holes

n electron concentration in the conduction band
ni intrinsic electron concentration in the conduction band
nd electrons bound to the donors
np(np) equilibrium electron density in the p-side (n-side) of a p-n junction

Ncv joint density of states for electrons and holes
Ne(E) density of states of electrons in the conduction band
Nh(E) density of states of holes in the valence band
Nc(E) effective density of states in the conduction band
Nv(E) effective density of states in the valence band
Nd donor density
Na acceptor density
N2D(E) 2-dimensional density of states
Nt density of impurity states (trap states)
Nab acceptor concentration in the base of an npn BJT
Nde donor concentration in the emitter of an npn BJT
Ndc donor concentration in the collector of npn BJT
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p momentum of a particle
p hole concentration in the valence band
pi intrinsic hole concentration in the valence band
pa holes bound to acceptors
pcv momentum matrix element for an optical transition between the

valence and conduction band
pn(pp) equilibrium hole density in the n-side (p-side) of a p-n junction

Pop optical power density (energy flow/sec/area)

Qs total charge (per area) in an MOS channel
Qn total mobile charge (per area) in an MOS channel
Qss surface charge density in an MOS capacitor
Qdep depletion charge (per area) in an MOS channel

Rspon total rate at which an electron-hole system recombines to emit
photons by spontaneous recombination

Rs, RG, RD parasitic resistances associated with the source, gate and
drain of a transistor respectively

RL load resistance
R∗ Richardson constant in a Schottky barrier

ttr transit time of a carrier through a channel

T tunneling probability

U(r) position dependent potential energy

v velocity of the electron
vs saturation velocity of the carrier (electron, hole)

Vbi built-in voltage
VG gate bias (referred to the source)
VD drain bias
Vp pinch-off voltage to deplete the channel of an FET
VT threshold gate bias for pinch-off
Vfb flat band voltage. Voltage needed to make the semiconductor bands

flat in an MOS capacitor



APPENDIX A. LIST OF SYMBOLS 515

VSB source to body (substrate) potential
Vr(Vf ) reverse (forward) bias voltage in a diode
VBE , VBC base to emitter, base to collector bias in a bipolar transistor
Vpt punchthrough voltage

Wn(Wp) depletion region edge on the n-side (p-side) of a p-n junction
W depletion region width
Wb,Wbn base width, neutral base width of a bipolar transistor

α optical absorption coefficient
α current transfer ratio in a bipolar transistor
αR reflection loss coefficient in an optical cavity
αimp impact ionization coefficient for electrons
β base to collector current amplification factor in a BJT
βimp impact ionization coefficient for holes
γe emitter efficienty of a bipolar transistor
γinj injection efficiency of a p-n diode for electron (hole) current
ΔEg bandgap difference between two materials
ΔEc,ΔEv band discontinuity in the conduction, valence band in a

heterostructure
εo free space permittivity
ε product of the relative dielectric constant and εo

ψ electron wavefunction
σn(σp) electron (hole) capture cross-section for an impurity
σ conductivity of a material
μ mobility of a material
μn(μp) electron (hole) mobility
τsc scattering time between successive collisions. Also called relaxation

time
ω frequency
τo rate at which an electron recombines radiatively with a hole at the

same momentum value
τr radiative recombination time for e-h pair
τnr non-radiative recombination time for a e-h pair
τn lifetime of an electron to recombine with a hole
τp lifetime of a hole to recombine with an electron
τsd storage delay time in a diode
δn excess electron density in a region. This is the density above the

equilibrium density
δp excess hole density in a region
φm metal work function
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χs electron affinity of a semiconductor
φs work function of a semiconductor
φms difference between a metal and semiconductor work function
φb barrier height seen by electrons coming from a metal towards a

semiconductor



Appendix B

BOLTZMANN TRANSPORT
THEORY

Transport of electrons in solids is the basis of many modern technologies. The Boltzmann
transport theory allows us to develop a microscopic model for macroscopic quantities such as
mobility, diffusion coefficient, and conductivity. This theory has been used in Chapter 8 to study
transport of electrons and holes in materials. In this appendix we will present a derivation of this
theory.

B.1 BOLTZMANN TRANSPORT EQUATION

In order to describe the transport properties of an electron gas, we need to know the distribution
function of the electron gas. The distribution would tell us how electrons are distributed in
momentum space or k-space (and energy-space) and from this information all of the transport
properties can be evaluated. We know that at equilibrium the distribution function is simply the
Fermi-Dirac function

f(E) =
1

exp
(

E−EF

kBT

)
+ 1

(B.1)

This distribution function describes the equilibrium electron gas and is independent of any col-
lisions that may be present. While the collisions will continuously remove electrons from one
k-state to another, the net distribution of electrons is always given by the Fermi-Dirac function
as long as there are no external influences to disturb the equilibrium.

To describe the distribution function in the presence of external forces, we develop the Boltz-
mann transport equation. Let us denote by fk(r) the local concentration of the electrons in
state k in the neighborhood of r. The Boltzmann approach begins with an attempt to determine
how fk(r) changes with time. Three possible reasons account for the change in the electron
distribution in k-space and r-space:

517
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n(r)

Position

Time t = 0

r = δtvk
n(r)

Position

Time t = δt

δtvk

r 

Figure B.1: At time t = 0 particles at position r − δtvk reach the position r at a later time δt.
This simple concept is important in establishing the Boltzmann transport equation.

1. Due to the motion of the electrons (diffusion), carriers will be moving into and out of any
volume element around r.

2. Due to the influence of external forces, electrons will be changing their momentum (or
k-value) according to � dk/dt = F ext.

3. Due to scattering processes, electrons will move from one k-state to another.

We will now calculate these three individual changes by evaluating the partial time derivative
of the function fk(r) due to each source.

B.1.1 Diffusion-Induced Evolution of fk(r)

If vk is the velocity of a carrier in the state k, in a time interval t, the electron moves a distance
t vk. Thus the number of electrons in the neighborhood of r at time δt is equal to the number of
carriers in the neighborhood of r − δt vk at time 0, as shown in figure B.1

We can thus define the following equality due to the diffusion

fk(r, δt) = fk(r − δt vk, 0) (B.2)

or

fk(r, 0) +
∂fk

∂t
· δt = fk(r, 0) − ∂fk

∂r
· δt vk

∂fk

∂t

∣∣∣∣
diff

= −∂fk

∂r
· vk (B.3)
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B.1.2 External Field-Induced Evolution of fk(r)

The crystal momentum k of the electron evolves under the action of external forces according
to Newton’s equation of motion. For an electric and magnetic field (E and B), the rate of change
of k is given by

k̇ =
e

�
[E + vk × B] (B.4)

In analogy to the diffusion-induced changes, we can argue that particles at time t = 0 with
momentum k − k̇ δt will have momentum k at time δt and

fk(r, δt) = f
k−k̇δt(r, 0) (B.5)

which leads to the equation

∂fk

∂t

∣∣∣∣
ext. forces

= −k̇
∂fk

∂k

=
−e

�

[
E +

v × B

c

]
· ∂fk

∂k
(B.6)

B.1.3 Scattering-Induced Evolution of fk(r)

We will assume that the scattering processes are local and instantaneous and change the state
of the electron from k to k

′
. Let W (k,k

′
) define the rate of scattering from the state k to k

′

if the state k is occupied and k
′

is empty. The rate of change of the distribution function fk(r)
due to scattering is

∂fk

∂t

)
scattering

=

∫ [
f
k
′ (1 − fk) W (k

′
,k) − fk (1 − f

k
′ ) W (k,k

′
)
] d3k

′

(2π)3
(B.7)

The (2π)3 in the denominator comes from the number of states allowed in a k-space volume
d3k

′
. The first term in the integral represents the rate at which electrons are coming from an

occupied k
′

state (hence the factor f
k
′ ) to an unoccupied k- state (hence the factor (1 − fk)).

The second term represents the loss term.
Under steady-state conditions, there will be no net change in the distribution function and the

total sum of the partial derivative terms calculated above will be zero.

∂fk

∂t

)
scattering

+
∂fk

∂t

)
fields

+
∂fk

∂t

)
diffusion

= 0 (B.8)

Let us define
gk = fk − f0

k
(B.9)

where f0
k

is the equilibrium distribution.
We will attempt to calculate gk, which represents the deviation of the distribution function

from the equilibrium case.
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Substituting for the partial time derivatives due to diffusion and external fields we get

−vk · ∇rfk − e

�

(
E +

vk × B

c

)
· ∇kfk =

−∂fk

∂t

)
scattering

(B.10)

Substituting fk = f0
k

+ gk

−vk · ∇rf
0
k
− e

�
(E + vk × B)∇kf0

k

= −∂fk

∂t

)
scattering

+ vk · ∇rgk + e
�

(E + vk × B) · ∇kgk

(B.11)

We note that the magnetic force term on the left-hand side of equation B.11 is proportional to

vk · e

�
(vk × B)

and is thus zero. We remind ourselves that (the reader should be careful not to confuse Ek, the
particle energy and E , the electric field)

vk =
1

�

∂Ek

∂k

and (in semiconductor physics, we often denote μ by EF )

f0
k =

1

exp
[

Ek−μ
kBT

]
+ 1

Thus

∇rf
0 =

−
[
exp

(
Ek−μ
kBT

)]
[
exp

(
Ek−μ
kBT

)
+ 1

]2∇r

(
Ek − μ(r)

kBT (r)

)

= kBT · ∂f0

∂Ek

[
− ∇μ

kBT
− (Ek − μ)

kBT 2
∇T

]

∇rf
0 =

∂f0

∂Ek

[
−∇μ − (Ek − μ)

T
∇T

]
(B.12)

Also

∇kf0 =
∂f0

∂Ek

· ∇kEk

= �vk

∂f0

∂Ek

(B.13)
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Substituting these terms and retaining terms only to second-order in electric field (i.e., ignoring
terms involving products gk · E), we get, from equation B.11,

− ∂f0

∂Ek

· vk ·
[
− (Ek−μ)

T ∇T + eE −∇μ
]

= −∂f
∂t

)
scattering

+ vk · ∇rgk + e
�

(vk × B) · ∇kgk.

(B.14)

The equation derived above is the Boltzmann transport equation.
We will now apply the Boltzmann equation to derive some simple expressions for conductivity,

mobility, etc., in semiconductors. We will attempt to relate the microscopic scattering events to
the measurable macroscopic transport properties. Let us consider the case where we have a
uniform electric field E in an infinite system maintained at a uniform temperature.

The Boltzmann equation becomes

− ∂f0

∂Ek

vk · eE = −∂fk

∂t

)
scattering

(B.15)

Note that only the deviation gk from the equilibrium distribution function above contributes to
the scattering integral.

As mentioned earlier, this equation, although it looks simple, is a very complex equation which
can only be solved analytically under fairly simplifying assumptions. We make an assumption
that the scattering induced change in the distribution function is given by

−∂fk

∂t

)
scattering

=
gk

τ
(B.16)

We have introduced a time constant τ whose physical interpretation can be understood when
we consider what happens when the external forces have been removed. In this case the pertur-
bation in the distribution function will decay according to the equation

−∂gk

∂t
=

gk

τ

or
gk(t) = gk(0)e−t/τ (B.17)

The time τ thus represents the time constant for relaxation of the perturbation as shown
schematically in figure B.2 The approximation which allows us to write such a simple relation is
called the relaxation time approximation (RTA).

According to this approximation

gk = −∂fk

∂t

)
scattering

· τ

=
−∂f0

∂Ek

τvk · eE (B.18)
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t = τ

f(k)

t = 0.5 τ
t = 0

k = 0
k

Figure B.2: This figure shows that at time t = 0, the distribution function is distorted by some
external means. If the external force is removed, the electrons recover to the equilibrium distri-
bution by collisions.

Note that we have not defined how τ is to be calculated. We have merely introduced a simpler
unknown that still needs to be determined. The k-space distribution function may be written as

fk = f0
k
−

(
∂f0

k

∂Ek

)
eτvk · E (B.19)

= f0
k
− (∇kf0

k

) · ∂k

∂Ek

· eτvk · E (B.20)

Using the relation

�
∂k

∂Ek

· vk = 1

We have

fk = f0
k − (∇kf0

k

) · eτE
�

= f0
k

(
k − eτE

�

)
(B.21)

This is a very useful result which allows us to calculate the non-equilibrium function fk in
terms of the equilibrium function f0. The recipe is very simple—shift the original distribution
function for k values parallel to the electric field by eτE/�. If the field is along the z-direction,
only the distribution for kz will shift. This is shown schematically in figure B.3. Note that for
the equilibrium distribution function, there is an exact cancellation between positive velocities
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eτE

h

fk

0

0 )eτE

h
f 0  k – )

Figure B.3: The displaced distribution function shows the effect of an applied electric field.

and negative velocities. When the field is applied, there is a net shift in the electron momenta
and velocities given by

δp = �δk = −eτE
δv = −eτE

m∗ (B.22)

This gives, for the mobility,

μ =
eτ

m∗ (B.23)

If the electron concentration is n, the current density is

J = neδv

=
ne2τE

m∗

or the conductivity of the system is

σ =
ne2τ

m∗ (B.24)

This equation relates a microscopic quantity τ to a macroscopic quantity σ.
So far we have introduced the relaxation time τ , but not described how it is to be calculated.

We will now relate it to the scattering rate W (k,k
′
), which can be calculated by using the Fermi

golden rule. We have, for the scattering integral,

∂f

∂t

)
scattering

=

∫ [
f(k

′
)(1 − f(k))W (k

′
,k) − f(k)(1 − f(k

′
))W (k,k

′
)
] d3k

′

(2π)3

Let us examine some simple cases where the integral on the right-hand side becomes simplified.
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Elastic Collisions
Elastic collisions represent scattering events in which the energy of the electrons remains un-
changed after the collision. Impurity scattering and alloy scattering discussed in Chapter 8 fall
into this category. In the case of elastic scattering the principle of microscopic reversibility
ensures that

W (k,k
′
) = W (k

′
,k) (B.25)

i.e., the scattering rate from an initial state k to a final state k
′

is the same as that for the reverse
process. The collision integral is now simplified as

∂f

∂t

)
scattering

=

∫ [
f(k

′
) − f(k)

]
W (k,k

′
)

d3k
′

(2π)3

=

∫ [
g(k

′
) − g(k)

]
W (k,k

′
)

d3k
′

(2π)3
(B.26)

The simple form of the Boltzmann equation is (from equation B.17)

−∂f0

∂Ek

vk · eE =

∫
(gk − g

k
′ ) W (k,k

′
)d3k

′

=
−∂f

∂t

)
scattering

(B.27)

The relaxation time was defined through

gk =

(−∂f0

∂E

)
eE · vk · τ

=
−∂f

∂t

)
scattering

· τ (B.28)

Substituting this value in the integral on the right-hand side, we get

−∂f0

∂Ek

vk · eE =
−∂f0

∂Ek

eτE ·
∫

(vk − v
k
′ ) W (k,k

′
) d3k

′
(B.29)

or

vk · E = τ

∫
(vk − v

k
′ ) W (k,k

′
) d3k

′ · E (B.30)

and
1

τ
=

∫
W (k,k

′
)

[
1 − v

k
′ · E

vk · E
]

d3k
′

(B.31)

In general, this is a rather complex integral to solve. However, it becomes considerably sim-
plified for certain simple cases. Consider, for example, the case of isotropic parabolic bands and
elastic scattering. In figure B.4 we show a geometry for the scattering process. We choose a
coordinate axis where the initial momentum is along the z-axis and the applied electric field is
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Figure B.4: Coordinate system illustrating a scattering event.

in the y-z plane. The wavevector after scattering is given by k
′

represented by the angles α and
φ. Assuming that the energy bands of the material is isotropic, |vk| = |v

k
′ |. We thus get

v
k
′ · E

vk · E =
cos θ

′

cos θ
(B.32)

We can easily see from figure B.4 that

cos θ
′
= sin θ sin α sin φ + cos θ cos α

or
cos θ

′

cos θ
= tan θ sin α sin φ + cos α

When this term is integrated over φ to evaluate τ , the term involving sin φ will integrate to zero
for isotropic bands since W (k,k

′
) does not have a φ dependence, only an α dependence. Thus

1

τ
=

∫
W (k,k

′
) (1 − cos α) d3k

′
(B.33)



526 APPENDIX B. BOLTZMANN TRANSPORT THEORY

This weighting factor (1−cos α) confirms the intuitively apparent fact that large-angle scatter-
ings are much more important in determining transport properties than small-angle scatterings.
Forward-angle scatterings (α = 0), in particular, have no detrimental effect on σ or μ for the
case of elastic scattering.

Inelastic Collisions
In the case of inelastic scattering processes, we cannot assume that W (k,k

′
) = W (k

′
,k). As a

result, the collision integral cannot be simplified to give an analytic result for the relaxation time.
If, however, the system is non-degenerate, i.e., f(E) is small, we can ignore second-order terms
in f and we have

∂f

∂t

∣∣∣∣
scattering

=

∫ [
g
k
′ W (k

′
,k) − gkW (k,k

′
)
] d3k

′

(2π)3
(B.34)

Under equilibrium we have
f0
k
′ W (k

′
,k) = f0

kW (k,k
′
) (B.35)

or

W (k
′
,k) =

f0
k

f0
k
′
W (k,k

′
) (B.36)

Assuming that this relation holds for scattering rates in the presence of the applied field, we have

∂f

∂t

∣∣∣∣
scattering

=

∫
W (k,k

′
)

[
g
k
′
f0
k

f0
k
′
− gk

]
d3k

′

(2π)3
(B.37)

The relaxation time then becomes

1

τ
=

∫
W (k,k

′
)

[
1 − g

k
′

gk

f0
k

f0
k
′

]
d3k

′

(2π)3
(B.38)

The Boltzmann is usually solved iteratively using numerical techniques.

B.2 AVERAGING PROCEDURES

We have so far assumed that the incident electron is on a well-defined state. In a realistic
system the electron gas will have an energy distribution and τ , in general, will depend upon the
energy of the electron. Thus it is important to address the appropriate averaging procedure for τ .
We will now do so under the assumptions that the drift velocity due to the electric field is much
smaller than the average thermal speeds so that the energy of the electron gas is still given by
3kBT/2.

Let us evaluate the average current in the system.

J =

∫
e vk gk

d3k

(2π)3
(B.39)
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The perturbation in the distribution function is

gk =
−∂f0

∂Ek

τvk · eE

≈ f0

kBT
vk · eE (B.40)

If we consider a field in the x-direction, the average current in the x-direction is from equation
B.39 and B.40

〈Jx〉 =
e2

kBT

∫
τ v2

x f0 d3k

(2π)3
|E|x (B.41)

The assumption made on the drift velocity ensures that v2
x = v2/3, where v is the total velocity

of the electron. Thus we get

〈Jx〉 =
e2

3kBT

∫
τ v2 f0(k)

d3k

(2π)3
|E|x (B.42)

Now we note that

1

2
m∗〈v2〉 =

3

2
kBT

⇒ kBT = m∗〈v2〉/3

also

〈v2 τ〉 =

∫
v2 τ f0(k) d3k/(2π)3∫

f0(k) d3k/(2π)3

=

∫
v2 τ f0(k) d3k/(2π)3

n
(B.43)

Substituting in the right-hand side of equation B.42, we get (using 3kBT = m
〈
v2

〉
)

〈Jx〉 =
ne2

m∗
〈v2τ〉
〈v2〉 |E|x

=
ne2

m∗
〈Eτ〉
〈E〉 |E|x (B.44)

Thus, for the purpose of transport, the proper averaging for the relaxation time is

〈〈τ〉〉 =
〈Eτ〉
〈E〉 (B.45)

Here the double brackets represent an averaging with respect to the perturbed distribution func-
tion while the single brackets represent averaging with the equilibrium distribution function.

For calculations of low-field transport where the condition v2
x = v2/3 is valid, one has to

use the averaging procedure given by equation B.45 to calculate mobility or conductivity of the
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semiconductors. For most scattering processes, one finds that it is possible to express the energy
dependence of the relaxation time in the form

τ(E) = τ0(E/kBT )s (B.46)

where τ0 is a constant and s is an exponent which is characteristic of the scattering process.
We will be calculating this energy dependence for various scattering processes in the next two
chapters. When this form is used in the averaging of equation B.45, we get, using a Boltzmann
distribution for f0(k)

〈〈τ〉〉 = τ0

∫∞
0

[p2/(2m∗kBT )]s exp[−p2/(2m∗kBT )] p4 dp∫∞
0

exp[−p2/(2m∗kBT )] p4 dp
(B.47)

where p = �k is the momentum of the electron.
Substituting y = p2/(2m∗kBT ), we get

〈〈τ〉〉 = τ0

∫∞
0

ys+(3/2)e−ydy∫∞
0

y3/2e−ydy
(B.48)

To evaluate this integral, we use Γ-functions which have the properties

Γ(n) = (n − 1)!

Γ(1/2) =
√

π

Γ(n + 1) = n Γ(n) (B.49)

and have the integral value

Γ(a) =

∫ ∞

0

ya−1e−ydy (B.50)

In terms of the Γ-functions we can then write

〈〈τ〉〉 = τ0
Γ(s + 5/2)

Γ(5/2)
(B.51)

If a number of different scattering processes are participating in transport, the following ap-
proximate rule (Mathiesen’s rule) may be used to calculate mobility:

1

τtot
=

∑
i

1

τi
(B.52)

1

μtot
=

∑
i

1

μi
(B.53)

where the sum is over all different scattering processes.



Appendix C

DENSITY OF STATES

In semiconductor devices we use the effective mass approximation to describe the properties
of electrons in a crystal. Using the effective mass picture the Schrödinger equation for electrons
can be written as a “free’ electron problem with a background potential V0,

−�
2

2m∗

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(r) = (E − V0)ψ(r)

A general solution of this equation is

ψ(r) =
1√
V

exp (±ik · r)

and the corresponding energy is

E =
�

2k2

2m
+ V0

where the factor 1/
√

V in the wavefunction occurs because we wish to have one particle per
volume V or ∫

V

d3r | ψ(r) |2 = 1

We assume that the volume V is a cube of side L.
An important aspect of electronic bands is the density of states which tells us how many

allowed energy levels there are between two energies. To obtain macroscopic properties inde-
pendent of the chosen volume V , two kinds of boundary conditions are imposed on the wave-
function. In the first one the wavefunction is considered to go to zero at the boundaries of the
volume, as shown in figure C.1a. In this case, the wave solutions are standing waves of the form
sin(kxx) or cos(kxx), etc., and k-values are restricted to positive values:

kx =
π

L
,
2π

L
,
3π

L
· · ·

529
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Periodic boundary conditions are shown in figure C.2b. Even though we focus our attention on a
finite volume V , the wave can be considered to spread in all space as we regard the entire space
as made up of identical cubes of sides L. Then

ψ(x, y, z + L) = ψ(x, y, z)

ψ(x, y + L, z) = ψ(x, y, z)

ψ(x + L, y, z) = ψ(x, y, z)

ψ(x–L)

y

x

E
N

E
R

G
Y

L
E

V
E

L
S

W
A

V
E

F
U

N
C

T
IO

N
S

L0

= 2
3 Lλ

λ= L

λ= 2L

(a) (b)

L

L

ψ(x) ψ(x+L)

Figure C.1: Two types of boundary conditions. A schematic showing (a) the stationary boundary
conditions; (b) the periodic boundary conditions.

In this case the allowed values of k are (n are integers—positive and negative)

kx =
2πnx

L
; ky =

2πny

L
; kz =

2πnz

L

If L is large, the spacing between the allowed k-values is very small. Also it is important to
note that the results one obtains for properties of the particles in a large volume are independent
of whether we use the stationary or periodic boundary conditions. It is useful to discuss the
volume in k-space that each electronic state occupies. As can be seen from figure C.2, this
volume is (in three dimensions) (

2π

L

)3

=
8π3

V
(C.1)



APPENDIX C. DENSITY OF STATES 531

2π
L

kx

ky

2π
L

Figure C.2: k-Space volume of each electronic state. The separation between the various allowed
components of the k-vector is 2π

L .

If Ω is a volume of k-space, the number of electronic states in this volume is

ΩV

8π3

It is easy to verify that stationary and periodic boundary conditions lead to the same density
of states value as long as the volume is large.

Density of States for a Three-Dimensional System
Important physical properties in materials such as optical absorption, transport, etc., are inti-
mately dependent upon how many allowed states there are. Density of states is the number of
available electronic states per unit volume per unit energy around an energy E. If we denote the
density of states by N(E), the number of states in a unit volume in an energy interval dE around
an energy E is N(E)dE. To calculate the density of states, we need to know the dimensionality
of the system and the energy versus k relation that the particles obey. We will choose the particle
of interest to be the electron, since in most applied problems we are dealing with electrons. Of
course, the results derived can be applied to other particles as well. For the free electron case we
have the parabolic relation

E =
�

2k2

2m∗ + V0

The energies E and E +dE are represented by surfaces of spheres with radii k and k +dk, as
shown in figure C.3. In a three-dimensional system, the k-space volume between vector k and
k + dk is (see figure C.3a) 4πk2dk. We have shown in equation C.1 that the k-space volume
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per electron state is ( 2π
L )3. Therefore, the number of electron states in the region between k and

k + dk is
4πk2dk

8π3
V =

k2dk

2π2
V

Denoting the energy and energy interval corresponding to k and dk as E and dE, we see that
the number of electron states between E and E + dE per unit volume is

N(E) dE =
k2dk

2π2

Using the E versus k relation for the free electron, we have

k2dk =

√
2m∗3/2(E − V0)

1/2dE

�3

and

N(E) dE =
m∗3/2(E − V0)

1/2dE√
2π2�3

The electron can have a spin state �/2 or −�/2. Accounting for spin, the density of states
obtained is simply multiplied by 2

N(E) =

√
2m∗3/2(E − V0)

1/2

π2�3

Density of States in Sub-Three-Dimensional Systems
In quantum wells electrons are free to move in a 2-dimensional space. The two-dimensional den-
sity of states is defined as the number of available electronic states per unit area per unit energy
around an energy E. Similar arguments as used in the derivation show that the density of states
for a parabolic band (for energies greater than V0) is (see figure C.3b)

N(E) =
m∗

π�2

The factor of 2 resulting from spin has been included in this expression. Finally, we can consider
a one-dimensional system often called a “quantum wire.” The one-dimensional density of states
is defined as the number of available electronic states per unit length per unit energy around an
energy E. In a 1D system or a “quantum wire” the density of states is (including spin) (see
figure C.3c)

N(E) =

√
2m∗1/2

π�
(E − V0)

−1/2

Notice that as the dimensionality of the system changes, the energy dependence of the density
of states also changes. As seen in figure C.4, for a three-dimensional system we have (E −
V0)

1/2 dependence, for a two-dimensional system we have no energy dependence, and for a
one-dimensional system we have (E − V0)

−1/2 dependence. The changes in density of states
with dimensions are exploited in electronic and optoelectronic devices.
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ky
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kz

k–k

2 dk = k space between k and k + dk

k

2πk dk =  area between circles 
                with radii k and k + dk

4πk2 dk = volume between surfaces of 
spheres with radii k and k + dk

2D system
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dkdk

(a)

(b)

(c)

Figure C.3: Geometry used to calculate density of states in three, two, and one dimensions. By
finding the k-space volume in an energy interval between E and E+dE, one can find the number
of allowed states.
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N(E)

N(E)

E–1/2

1D system

E

(a)

E1/2
N(E)

3D system

E

E0

2D system

E

(b)

(c)

V0

V0

V0

Figure C.4: Energy dependence of the density of states in (a) three-dimensional, (b) two-
dimensional, and (c) one-dimensional systems. The energy dependence of the density of states
is determined by the dimensionality of the system.



Appendix D

IMPORTANT PROPERTIES
OF SEMICONDUCTORS

The data and plots shown in this Appendix are extracted from a number of sources. A list of
useful sources is given below.

• S. Adachi, J. Appl. Phys., 58, R1 (1985).

• H.C. Casey, Jr. and M.B. Panish, Heterostructure Lasers, Part A, “Fundamental Princi-
ples;” Part B, “Materials and Operating Characteristics,” Academic Press, N.Y. (1978).

• Landolt-Bornstein, Numerical Data and Functional Relationship in Science and Technology,
Vol. 22, Eds. O. Madelung, M. Schulz, and H. Weiss, Springer-Verlog, N.Y. (1987). Other
volumes in this series are also very useful.

• S.M. Sze, Physics of Semiconductor Devices, Wiley, N.Y. (1981). This is an excellent
source of a variety of useful information on semiconductors.

• “World Wide Web;” A huge collection of data can be found on the Web. Several professors
and industrial scientists have placed very useful information on their websites.
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Material Structure Lattice Constant Density
  (Å) (gm/cm3)

 C Diamond 3.5668 3.5153

 Si Diamond 5.431 2.329

 Ge Diamond 5.658 5.323

 GaAs Zinc Blende 5.653 5.318

 AlAs Zinc Blende 5.660 3.760

 InAs Zinc Blende 6.058 5.667

 GaN Wurtzite  a = 3.175; c = 5.158 6.095

 AlN Wurtzite a = 3.111; c = 4.981 3.255

 SiC Zinc Blende 4.360 3.166

 Cd hcp a = 2.98; c = 5.620 8.65

 Cr bcc 2.88 7.19

 Co hcp a = 2.51; c = 4.07 8.9

 Au fcc 4.08 19.3

 Fe bcc 2.87 7.86

 Ag fcc 4.09 10.5

 Al fcc 4.05 2.7 

 Cu fcc 3.61 8.96 

Table D.1: Lattice constants and density of some semiconductors.
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LATTICE CONSTANTS AND BADGAPS OF SEMICONDUCTORS AT ROOM TEMPERATURE

5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5
0

0.4

0.8

1.2

1.6

2.0

2.4 0.517
0.539
0.563
0.590
0.620
0.652
0.689
0.729
0.775
0.826
0.885
0.953
1.033
1.127
1.240
1.377
1.550
1.771
2.067
2.480
3.100
4.133
6.200

12.40

AlAs
GaP

GaAs

InP

InSb

GaSb

AlSb

InAs

W
A

V
E

L
E

N
G

T
H

IN
M

IC
R

O
N

S

E
N

E
R

G
Y

G
A

P
IN

E
L

E
C

T
R

O
N

V
O

L
T

S

LATTICE CONSTANT IN ANGSTROMS

Direct Gap

Indirect Gap

6.0

5.0

4.0

3.0

2.0

1.0

3.0             4.0              5.0             6.0

LATTICE CONSTANT (Å)

E
N

E
R

G
Y

G
A

P 
(e

V
)

Direct bandgap
Indirect bandgap

Sapphire

AlN

GaN

MgS

ZnS

CdSe
InP

GaAs

MgSe

GaP
SiC

InN

ZnSeAlP
AlAs

Figure D.1: Lattice constants and bandgaps of semiconductors at room temperature.
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Figure D.2: Lattice constants of several alloy systems.
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Semi-            Type of         Temperature Dependence
conductor    Energy Gap   0 K     300 K     of Energy Gap  (eV) 

Experimental  
Energy Gap 
Eg (eV)

AlAs  Indirect 2.239   2.163         2.239–6.0 x 10–4T2/(T + 408)

GaP  Indirect 2.338   2.261     2.338–5.771 x 10–4T2/(T + 372)

GaAs  Direct  1.519   1.424     1.519–5.405 x 10–4T2/(T + 204)

GaSb  Direct  0.810   0.726       0.810-–3.78 x 10–4T2/(T + 94)

InP  Direct  1.421     1.351       1.421–3.63 x 10–4T2/(T + 162)

InAs  Direct  0.420   0.360       0.420–2.50 x 10–4T2/(T + 75)

InSb  Direct  0.236   0.172       0.236–2.99 x 10–4T2/(T + 140)

Si  Indirect 1.17   1.11        1.17–4.37 x 10–4T2/(T + 636)

Ge  Indirect 0.66   0.74        0.74–4.77 x 10–4T2/(T + 235)

Table D.2: Energy gaps of some semiconductors along with their temperature dependence.
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Material      Electron Mass    Hole Mass
    (m0)          (m0)

  AlAs    0.1

  AlSb    0.12    mdos = 0.98

  GaN    0.19    mdos = 0.60

  GaP    0.82    mdos = 0.60

  GaAs    0.067    mlh = 0.082
              mhh = 0.45

  GaSb    0.042    mdos = 0.40

   Ge          ml = 1.64    mlh = 0.044
          mt = 0.082   mhh = 0.28

  InP    0.073    mdos = 0.64

  InAs    0.027    mdos = 0.4

  InSb    0.13    mdos = 0.4

   Si          ml = 0.98    mlh = 0.16
          mt = 0.19    mhh = 0.49 

Table D.3: Electron and hole masses for several semiconductors. Some uncertainty remains in
the value of hole masses for many semiconductors.
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Direct Energy Gap 
Compound           Eg (eV)

AlxIn1-x P 1.351 + 2.23x

AlxGa1-x As 1.424 + 1.247x

AlxIn1-x As 0.360 + 2.012x + 0.698x2

AlxGa1-x Sb 0.726 + 1.129x + 0.368x2

AlxIn1-x Sb 0.172 + 1.621x + 0.43x2

GaxIn1-x P 1.351 + 0.643x + 0.786x2

GaxIn1-x As 0.36 + 1.064x

GaxIn1-x Sb 0.172 + 0.139x + 0.415x2

GaPxAs1-x 1.424 + 1.150x + 0.176x2

GaAsxSb1-x 0.726 + 0.502x + 1.2x2

InPxAs1-x 0.360 + 0.891x + 0.101x2

InAsxSb1-x 0.18 + 0.41x + 0.58x2

Table D.4: Compositional dependence of the energy gaps of the binary III-V ternary alloys at
300 K. (After Casey and Panish (1978).)
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Bandgap Mobility at 300 K
(eV) (cm2/V-s)

Semiconductor 300 K 0 K Elec. Holes
C 5.47 5.48 1800 1200
GaN 3.4 3.5 1400 350
Ge 0.66 0.74 3900 1900
Si 1.12 1.17 1500 450
α-SiC 3.00 3.30 400 50
GaSb 0.72 0.81 5000 850
GaAs 1.42 1.52 8500 400
GaP 2.26 2.34 110 75
InSb 0.17 0.23 80000 1250
InAs 0.36 0.42 33000 460
InP 1.35 1.42 4600 150
CdTe 1.48 1.61 1050 100
PbTe 0.31 0.19 6000 4000
In0.53Ga0.47As 0.8 0.88 11000 400

Table D.5: Bandgaps along with electron and hole mobilities in several semiconductors. Proper-
ties of large bandgap materials (C, GaN, SiC) are continuously changing (mobility is improving),
due to progress in crystal growth. Zero temperature bandgap is extrapolated.
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Figure D.3: Velocity-Field relations for several semiconductors at 300 K.
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Material B andga p Breakdown electric
(eV ) field (V/cm)

GaAs 1.43 4 x 105

Ge 0.664 105

InP 1.34

Si 1.1 3 x 105

In0.53Ga0.47As 0.8 2 x 105

C 5.5 107

SiC 2.9 2-3 x 106

SiO2 9 –107

Si3N4 5 –107

GaN 3.4 2  x 106

Table D.6: Breakdown electric fields in some semiconductors.



Appendix E

BEYOND THE DEPLETION
APPROXIMATION

In the depletion approximation the contribution of mobile charges to the electrostatics of the
depletion region was neglected. This allowed one to accurately define depletion region edges be-
yond which the material was neutral. A schematic of this structure is shown below in figure E.1.

However, this picture is not physical because the mobile charges cannot abruptly go to zero
but will decrease in a manner predicted by the law of the junction where

n = nn0e
−qΨ
kBT (E.1)

where Ψ is the band bending measured from the bulk. This is shown schematically in fig-
ure E.2.

As the mobile charge concentration decreases exponentially with band bending the net charge
in the regions close to the depletion region edge is no longer given by the depletion charge, but
as is always the case in general, the sum of all mobile and fixed charges. Studying the p-side of
the junction

ρ =
−eN−

A + epp(Ψ)

ε

and ∂E
∂x derivates from the linear relationship when the charge is constant. This leads to “skirts”

in the E vs. x relationship. It also raises the question, “what is the depletion region edge?”
The depletion region edge is defined by extrapolating the linear region of the curve (where the
mobile charges are negligible) to zero. We recognize that the area under the E vs. x is the built-in
voltage of the junction, Vbi. This is obviously larger than the area of the triangle, specifically by
the area of the “skirts” shown shaded in figure E.2. We will show shortly that each of the areas
is of the order kBT

e , the thermal voltage. Hence the area under the triangular E vs. x curved
bounded by −Wp and +Wn is

V
′

bi = Vbi − kBT

e
− kBT

e
= Vbi − 2kBT

e
(E.2)
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Figure E.1: Schematic of a p − n junction within the depletion approximation.
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Figure E.2: Schematic of a p-n junction within the Gummel correction to the depletion approxi-
mation
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This is called the Gummel correction to the built-in voltage. To apply the depletion approxima-
tion and calculate parameters related to electrostatics such as depletion region width, depletion
capacitance etc., it is necessary to substitute V

′

bi for Vbi in previous formulae. Hence,

W =

√
2εs

e

(
1

NA
+

1

ND

)
(V

′
bi) (E.3)

note that in a Schottky barrier the correction due to the thermal broadening of carriers (which
occurs over a Debye Length, LD) occurs in only the semiconductor and hence

V
′

bi = Vbi − kBT

e

for a Schottky barrier.
The Gummel correction is arrived at by solving Poisson’s equation in the depletion region in-
cluding the contribution of mobile charges. Consider the band diagram of a p-n junction in
figure E.3. For the purpose of our analysis we will only consider the p-type semiconductor. The
analysis is equivalent for the n-side. The governing equations are

d2Ψ

dx2
= −ρ(x)

ε
( Poisson′s equation ) (E.4)

and
ρ(x) = q(N+

D − N−
A + pp − np) (E.5)

where N+
D and N−

A are the ionized donors and acceptors respectively with the latter dominant
in the p-region. In the bulk of the semiconductor charge neutrality requires ρ(x) = 0 or from
equation E.5

N+
D − N−

A = np0 − pp0 (E.6)

Applying equation E.6 to equation E.5 and equation E.4 we get the resultant Poisson’s equation

d2Ψ

dx2
= −e

ε
[(pp − pp0) − (np − np0)] (E.7)

From Boltzmann statistics and figure E.3 we know pp = pp0e
− eΨ

kBT and np = np0e
+ eΨ

kBT or

d2Ψ

dx2
= −e

ε

[
pp0(e

− eΨ
kBT − 1) − np0(e

+ eΨ
kBT − 1)

]
(E.8)

Recognizing that
(

∂Ψ
∂x

)
d
(

∂Ψ
∂x

)
= ∂2Ψ

∂x2 dΨ we can integrate equation E.8 from the bulk towards
the junction∫ ∂Ψ

∂x

0

(
∂Ψ

∂x

)
d

(
∂Ψ

∂x

)
= −e

ε

∫ Ψ

0

[
pp0(e

− eΨ
kBT − 1) − np0(e

+ eΨ
kBT − 1)

]
dΨ (E.9)

Using E = −∂Ψ
∂x we get

E =

(
2kBT

ε
pp0

[(
e
− eΨ

kBT +
eΨ

kBT
− 1

)
+

np0

pp0

(
e
− eΨ

kBT − eΨ

kBT
− 1

)]) 1
2

(E.10)
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For our purposes of understanding the origin of the Gummel correction we will evaluate equation
E.10 for a condition of mild depletion, where Ψ is small and positive, of such magnitude that

E =

(
2kBT

ε
pp0

) 1
2
(

eΨ

kBT
− 1

) 1
2

(E.11)

where the 2nd term in parentheses in equation E.10 is neglected because of the np0

pp0
pre-factor

and the e
− eΨ

kBT is neglected because Ψ is positive. Thus

E =

√
2pp0

εe

(
Ψ − kBT

e

)
This is identical to the depletion approximation except for Ψ being replaced by Ψ − kBT

e . This
reflects the reduced electric field because of the effect of mobile charges (in our case holes) at
the depletion region edge.

Therefore, the depletion region edge is defined by using the depletion approximation while
reducing the built-in potential by kBT

q at each depletion region edge as shown in figure E.2 and
stated in equation E.3.

eΨ

Ecp

Ei p

Evp

Ecn

Ei n

Evn

E
FE

F

Figure E.3: Band diagram of a p-n junction showing the references used to describe eΨ.



Appendix F

DESIGN OF GRADED
HETEROJUNCTIONS
FOR BIPOLAR TRANSISTORS

This appendix discusses the design of graded heterojunctions for bipolar transistors using an
example from the text (Example 5.3).

Consider four different n-p+ Al0.3Ga0.7As/GaAs heterojunctions with ND = 1017 and NA =
5 × 1018. The AlGaAs in these junctions is graded from x = 0 to x = 0.3 over XGrade =
0 (abrupt), XGrade = 100 Å, XGrade = 300 Å, and XGrade = 1 μm. Calculate and plot the
energy band diagrams for the above four cases. Assume the dielectric constant of AlGaAs to be
the same as that of GaAs.

Solution: Eg = 1.8 eV for Al0.3Ga0.7As, and Eg = 1.42 eV for GaAs. ΔEg = 0.374 eV,
ΔEC = 0.237 eV, and ΔEV = 0.137 eV. On the AlGaAs emitter side, the conduction band
energy relative to the Fermi level far away from the junction is given by

φn =
EC − EF

e
=

kT

e
ln(

NC

n
) = 0.0323 V. (F.1)

Since the p-GaAs is degenerately doped, Joyce-Dixon statistics must be applied:

φp = EV − EF =
kT

e
(ln(

p

NV
) + A1(

p

NV
) + A2(

p

NV
)2) = 0.011 V. (F.2)

The built-in potential in the conduction band, φbi is given by

φbi =
1
e
(Eg(GaAs) + ΔEc) − (φp + φn) = 1.62 V. (F.3)

548
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Quasi E-field

Quasi E-field

Effective field Effective field

0WN

xgrade

xgrade
0

Electrostatic
field

Negative
Electric field

WN

Figure F.1: Electric field in a graded heterojunction. If the grading distance is too short (Right),
the quasi-electric field can cause the effective electric field to reverse direction, leading to a
barrier in the conduction band. When designed correctly, the quasi-electric field magnitude is
lower than the electrostatic field (Left).

Assuming xD1 and xD2 are the depletion thicknesses in the n and p regions, and solving,

NDxD1 = NAxD2 (F.4)

e

2ε
(NDW 2

n + NAW 2
p ) = φbi (F.5)

Wn = 1.5 × 10−5, and Wp = 3.0 × 10−7.
Since Wn and Wp are known, the electrostatic potential can now be calculated. The band

profiles are found by superimposing the electrostatic and quasi-electric fields. The quasi electric
field is given by − ΔEC

e xgrade
for the conduction band, and ΔEV

e xgrade
for the valence band.

In the 100 Å and 300 Å cases, we can assume that the depletion width is much larger than the
grading distance. The electric field in the conduction band is given by the following equations:
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Figure F.2: Calculated band profiles for the graded heterojunctions with (a) abrupt, (b)100Å, and
(c) 300Å grade. There is no bump in the 300Å case.

0 < x < xgrade E = −eND

ε
(1 − x

Wn
) +

ΔEC

e xgrade
(F.6)

xgrade < x < Wn : E = −eND

ε
(1 − x

Wn
) (F.7)

x > Wn : E = 0 (F.8)

The equations describing the valence band potential are similar except that ΔEC is replaced
by −ΔEV .
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The final potential is found by integrating the piecewise electric field function above. The
conduction band at the junction (x = 0) is given by

φ(0) = φn +
eNDW 2

n

2ε
. (F.9)

The conduction band profile is given by the following equations.

0 < x < xgrade EC = φ(0) − eND

ε
(x − x2

2Wn
) +

ΔECx

e xgrade
(F.10)

xgrade < x < Wn : EC = φ(0) − eND

ε
(x − x2

2Wn
) +

ΔEC

e
(F.11)

x > Wn : EC = φn (F.12)

In the case where the AlGaAs is graded over 1 μm, the quasi-electric field is very small
compared to the electrostatic field. The electrostatic depletion depth is therefore much smaller
than the grading distance. The junction behaves almost like a n-GaAs/p-GaAs homojunction,
and very little performance advantage is gained from using a heterojunction.

The band profiles for the three different grading conditions, (a) abrupt grade, (b) 100 Å grade,
and (c) 300 Å grade are shown in Figure 2.

The quasi-electric field can create an undesirable bump in the conduction band if not designed
correctly, as seen in Figure 2 for the abrupt and the 100 Å case. The 300 Å grade is best suited
for the HBT since it does not lead to a barrier to electron flow.
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2-dimensional gate FET (TEGFET), 375
2DEG, 68, 376, 377, 381, 382

Conductivity, 396
Polar heterostructures, 394
Sheet charge density, 395

Absorption coefficient, 129
Direct and indirect semiconductors, 130

Absorption of energy, 99
AC conductance, 308
AC diffusion length, 311
AC injected charge distribution, 310
Access resistance, 378, 395
Active mode, 253
Admittance, 309
Airy function, 79
Al2O3, 21
AlxGa1−xN, 388
AlGaN/GaN HFETs, 68, 394
Alloy scattering, 104, 107

Relaxation time, 107
Apparent diffusion capacitance, 335
Arsenic-rich, 13
Attenuation vs. wavelength, 195
Avalanche breakdown, 113, 178, 283
Average rate of ionization per unit distance,

113

Back-barriers, 398
Ballistic transport, 111
Band-to-band transition, 128
Band-to-band tunneling, 114
Bandedge lineups in heterostructures, 74

Type I, 73
Type II, 73

Type III, 74
Bandedge lineups in materials, 75
Bandgap, 44

Temperature dependence, 52
Bandgap grading, 71, 237, 238
Bandgap shrinkage, 265
Bandstructure, 46

AlAs, 50
Alloy, 73
AlN, 51
GaAs, 49
GaN, 51
Ge, 50
InN, 51
Si, 47, 48

Base transport factor, 263
Base widening, 274, 278
Base width modulation, 280
Basis, 2
β, 251, 266, 270
Bipolar junction transistor, 246

Avalanche breakdown, 283
Base, 249
Base current, 253
Base transport factor, 251, 264
Base widening, 278
Base width modulation, 280
β-requirements, 270
Biasing, 253
Biasing in circuits, 259
Collector, 249
Collector current, 250, 258
Collector efficiency, 264
Current amplification factor, 251

552
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Current flow, 253
Current gain, 264
Design limitations, 265
Emitter, 249
Emitter crowding, 285
Emitter current, 253, 257
Emitter injection efficiency, 251, 263
Emitter-base diode conductance, 335
Gummel number, 259
High-frequency performance, 325
Minority carrier distribution, 256
Small-signal equivalent circuit, 333
Small-signal model, 339
Static characteristics, 252
Transconductance, 264, 338

Bloch theorem, 36
Bohr radius, 30

Dopants, 62
Boltzmann approximation, 125
Boltzmann distribution, 176
Boltzmann transport equation, 105, 517
Bose-Einstein distribution function, 99
Boson, 42
Bound states, 29
Bravais lattice, 2
Breakdown, 113, 178
Breakdown electric fields in some materi-

als, 115
Breakdown phenomena, 113
Breakdown voltage, 378, 417
Brillouin zone, 37, 39

Face-centered cubic , 39
Hexagonal lattice, 39

Built-in voltage, 149, 358, 435

Carrier freeze out, 64, 377
Carrier injection, 126
Carrier transit time, 413
Channel

Conductance, 365, 373
Confinement potential, 381
Interchannel resistance, 396
Resistance, 378

Charge centroid, 381, 385

Capacitance, 381
Charge control, 326
Charge injection, 124, 157
Charge neutrality, 63
Charge-control analysis, 318
Coherent structures, 18
Collector, 372
Collector current, 258, 336
Collector delay, 328, 331
Collector efficiency, 264
Common base, 261
Common collector, 261
Common emitter, 261
Conduction band, 44, 83
Conduction band discontinuity, 232, 378
Conductivity, 105, 523
Conservation of energy, 129

Optical transitions, 129
Conservation of momentum, 129

Optical transitions, 129
Constant energy surface

Electrons in Si, 48
Contact resistance, 378, 395
Continuity equation, 137–139
Core level, 44
Critical breakdown field, 113
Critical thickness, 21, 22, 389
Crystal momentum, 40
Crystal structure

Wurtzite, 388
Crystal structures, 3

Diamond, 3
Hexagonal close pack, 6
Zinc blende, 3

Current continuity, 137
Current crowding effect, 284
Current flow, 157
Current gain, 264, 398
Current gain cutoff frequency, 340, 413
Current transfer ratio, 251
Current-voltage characteristics, 362
Cutoff, 253
Cutoff mode, 322
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DC output conductance, 343
DC transconductance, 338
Ddrift, 415
Defect, 15, 84, 163

Dislocation, 16
Impurity interstitial, 18
Point defect, 15
Self interstitial, 18
Substitutional, 18
Vacancy, 18

Deformation potential, 80, 100
Degeneracy of a state, 42
Delay

Base, 326
Base-collector capacitance, 326
Collector, 328
Emitter to collector, 326
Emitter-base junction, 326

δ-doping, 378, 380, 384
Density of states, 34, 529

1-D, 78
2-D, 34, 78, 382, 532
3-D, 34, 78
Material with defects, 85
Quantum well, 77

Density of states mass, 55
Electrons, 55
Holes, 56

Depletion approximation, 152
Depletion region, 147
Depletion width, 223, 365
Depletion-mode device, 358
Dielectric passivation, 378
Diffusion, 118, 121
Diffusion capacitance, 309, 312, 335
Diffusion coefficient, 121
Diffusion current, 138
Diffusion length, 137, 140
Dimer, 13
Diode conductance, 312
Diode ideality factor, 168
Dipole, 388
Dipole moment, 388

Direct bandgap, 46, 47
Dislocation, 21
Distribution function, 41
Donor energy level, 61
Doping in polar materials, 65
Doping of semiconductors, 60
Drain efficiency, 419
Drain resistance, 375, 413
Drain-to-channel capacitance, 413
Drain-to-source capacitance, 401
Drain-to-substrate capacitance, 413
Drift, 121
Drift velocity, 105

Early effect, 264, 280
Early voltage, 282
Ebers-Moll model, 259
Effect of strain on bandedges, 82
Effective density of states, 57
Effective mass, 34, 60

Alloy, 73
Equation for the donor level, 61
Longitudinal mass, 48
Transverse mass, 48

Effective Newton’s equation, 40
Einstein relation, 121, 123
Electron affinity, 44, 147, 219, 232
Electron diffusion current, 121
Electron Fermi level, 125
Electron mobility, 106
Electron spin, 532
Electron-hole pair generation rate, 130
Electronic properties of alloys, 73
Electrons, 45
Electrons in crystalline solids, 33
Emission of energy, 99
Emitter crowding, 285
Emitter current, 257
Emitter injection efficiency, 251, 263
Emitter-base diode conductance, 335
Energy band, 122
Enhancement-mode device, 358
Equivalent circuit, 317, 413

BJT, 333
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BJT fτ , 340
Forward-biased diode, 310
Schottky diode, 318

Excess carrier density, 255
Excess carriers, 157
Excess minority carrier concentration, 185

Fermi energy, 42
Fermi golden rule, 97
Fermi level

In equilibrium, 123
Intrinsic material, 57

Fermi level pinning, 220, 222, 362, 390
Fermi-Dirac distribution, 382
Fermi-Dirac occupancy probability, 391
Fermion, 42
Field effect transistor (FET), 356

Band diagram, 372
Depletion profile, 369
High-frequency response, 411
Voltage profile, 372

Field plate, 401
Field shaping, 401
Fixed charge, 92
fmax (Bipolar), 341
fmax, see Power gain cut-off frequency
fmax(FET), 415
Forward active mode, 319
fτ (FET), 403, 413
fτ (Bipolar), 326
Full hamiltonian, 96

GaAs, 362, 368
GaAs/AlGaAs HBTs, 347
GaN, 388
Gate capacitance, 374, 382
Gate capacitor, 385
Gate leakage, 400
Gate recess, 400
Gate resistance, 413
Gate-to-channel capacitance, 386, 413
Gate-to-drain capacitance, 413
Gate-to-source capacitance, 402, 413
Gauss’ law, 233

Generalized Moll-Ross relationship, 269, 270
Generation, 125
Generation currents, 164
Graded p-n heterojunction, 237
Gradual channel approximation, 363
Gradual channel length, 373
Group velocity, 40
Gummel correction, 546
Gummel number, 259, 270, 282
Gummel-Poon model, 284

HBT, 247, 266
GaAs/AlGaAs, 347
InGaAs/InAlAs, 348
Si Based, 346

Heavy hole band, 47
HEMT, 375

Back-barriers, 398
Band diagram, 381, 385
Boundary conditions, 383
Charge distribution, 381
Conductivity, 396
Design issues, 395
Electric field profile, 381
Field plate, 401
Gate recess, 400
Lever rule, 384
n+ cap layers, 395
Pinch-off voltage, 385
Sheet charge density, 395
T-gate, 378

Heteroepitaxy, 389
Heterojunction, 232

Abrupt p-n, 232
Built-in potential, 233, 435
Current flow, 235
Depletion width, 233
Quasi-electric field, 238
Ratio of electron to hole current, 237

Heterojunction FET (HFET), 356, 362, 375
High field transport, 110
High injection, 177, 280
High-field drift region, 415
High-voltage effects, 177
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Hole diffusion current, 121
Hole Fermi level, 125
Hole mobility, 106
Holes, 45
Hydrogen atom, 29, 60

Energy levels, 31

IDSS , see Saturation current
Impact ionization, 113, 177
InxGa1−xN, 388
Incoherent structures, 18
Indirect bandgap, 47
InGaAs/InAlAs HBTs, 348
Injected charge distribution, 309
Insulator, 43
Insulator-semiconductor junctions, 230
Interconnects, 216
Interdigitated, 285
Interface, 15, 230

Interface roughness, 15
Interface state, 222
Si/SiO2 interface, 17

Interface roughness scattering, 375
Intrinsic carrier density, 59
Intrinsic gate length, 378
Ionicity, 101
Ionized impurity scattering, 102, 377, 378,

385, 397

Joyce-Dixon approximation, 64, 125
Joyce-Dixon statistics, 237
Junction capacitance, 308
Junction FET (JFET), 356
Junction voltage at saturation, 324

k-space volume per electron, 531
k-vector, 38
Kirk effect, 274
Kirk threshold, 274, 277

Landauer formalism, 500
Laplace equation, 369, 372
Large signal power gain(LSG), 415
Lateral gate resistance, 378

Lattice, 2
Lattice constant of an alloy, 195

Lattice mismatch, 17, 394
Lattice types, 2

Body-centered cubic, 3
Face-centered cubic, 3
Hexagonal close pack (HCP), 3
Simple cubic, 4

Law of mass action, 57, 150
Layer-by-layer growth, 22
LED

Substrates, 194
Lever rule, 384, 397
Light hole band, 47
Load-line, see Power amplifier
Local area networks, 193
Localized defect, 15
Localized states in solids, 84
Long p − n diode, 141

Magnetic semiconductors, 505
Materials properties, 8
Maximum available gain (MAG), 414
Maximum frequency of oscillation, 341, 414
Maxwell’s equations, 129
Mean collision time, 119
Mean free path, 119, 121
MESFET, 356, 362

Boundary conditions, 370
Channel conductivity, 373
Current-voltage characteristics, 362
Cutoff frequency, 414
Depletion width, 365
Equivalent circuit, 413
Ohmic regime, 362
Output conductance, 372
Saturation regime, 367, 368
Small signal response, 411
Transconductance, 367

Mesoscopic structures, conductance fluctu-
ations, 502

Metal, 43, 44, 50
Properties, 54

Miller indices, 7
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Minority carrier injection, 131
Minority carrier lifetime, 307
MMIC technology, 347
Mobile carriers, 50
Mobility, 105

In selected semiconductors, 106, 542
Modulation doped FET (MODFET), 356,

375
Modulation doping, 375
Modulation efficiency, 385, 387
Moll-Ross relationship, 281
Moore’s Law, 434, 436

Narrow p − n diode, 141
Narrow diode, 160
Negative capacitance, 336
Nitride heterostructures, 69
Nitrides, 388
Non-parabolic approximation, 48
Nonradiative recombination rate, 142

Occupation number, 42
Ohm’s law, 105
Ohmic contact, 229, 413
Ohmic regime, 362
Optical phonon, 100
Optical processes in semiconductors, 128
Optical transitions in indirect materials, 129
Optimum load resistance, 417
Output conductance, 372–374, 378, 413

High aspect ratio, 374, 375
Output impedance, 343
Output resistance, 398
Overshoot effects, 111

p-n diode, 146
AC response, 304
Admittance, 309
Band diagram, 151
Built-in potential, 150
Current flow, 157, 159
Defect, 163
Depletion region width, 151
Diode equation, 159

Drift and diffusion current, 147
Electric field, 153, 154
Forward bias, 155
Generation-recombination current, 168
High injection, 177
High-voltage effects, 177
Illuminated with light, 184
Junction capacitance, 308
Majority and minority currents, 160
Poisson equation, 152
Potential, 152
Reverse saturation current, 176
Schottky diode, 227
Small signal equivalent circuit, 306
Tunneling, 180
Turn-on voltage, 214
Under bias, 155
Voltage partitioning factor, 168

Parasitic channel, 378, 381
Passivation, 231
Periodic potential, 36
Perturbation V , 97
Perturbation theory, 97
Phonon scattering, 377

Rates in GaAs, 103
Phonons, 99, 101

Acoustic, 99
Longitudinal, 99
Modes in GaAs, 100
Optical, 99
Transverse, 99

Photon absorption, 128
Photon flux, 129
Piezoelectric effect, 65, 69
Pinch-off, 357, 358, 362

Voltage, 358, 365
Pinch-off voltage, 385
Poisson effect, 22
Poisson’s equation, 152, 223, 384
Poisson’s ratio, 22
Polar charge at heterointerfaces, 67
Polar optical phonon scattering, 101
Polarization, 388, 389
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2DEG in polar heterostructures, 394
Charge, 388, 389
Dipole, 388, 390
Effects, 92
Fields, 388
Fields in an AlGaN/GaN heterostruc-

ture, 70
Piezoelectric, 375, 394
Polar HFET, 394
Polar materials, 388
Spontaneous, 375, 394

Polycrystalline silicon-silicon junction, 231
Power added efficiency, 419
Power amplifier

Class-A, 417
Load-line, 417, 418

Class-AB (class B), 420
Class-B

Bias point, 421
Circuit schematic, 420

Class-C, 421
Class-D,E, see switched mode
Switched mode, 421
Typical power obtainable, 422

Power gain cut-off frequency
Large signal (flsg), 415
Small signal (fmax), 415

Power-frequency (pf2) limit, 415
Primitive unit cell, 2
Properties of some metals, 54
Pseudomorphic, 22

Quantum capacitance, 382
Quantum well, 11, 30, 76, 377

Density of states, 77
Finite barrier V0, 32
Infinite barrier, 32
Triangular potential, 79

Quasi-electric field, 238
Quasi-equilibrium, 124

RL,opt, see Optimum load resistance
Radiative lifetimes of electrons or holes in

a direct gap semiconductor, 201

Radiative recombination rate, 142
Ramo-Shockley theorem, 337
Reclaimable charge, 306
Recombination, 125
Recombination currents, 164
Recombination time for e-h pairs, 196
Reconstruction, 12
Reduced mass, 30
Relaxation time, 112, 525

Approximation, 521
Temperature dependence, 528

Resistivity, 217
Resonant tunneling current in an RTD, 497
Reverse active mode, 322
Richardson constant, 226

Saturation current, 417
Saturation mode, 253, 322
Saturation regime, 368, 372, 373
Saturation region, 357
Scattering, 96
Scattering rate, 106
Schottky barrier, 219, 356, 360
Schottky barrier diode, 317

Built-in potential, 219
Capacitance voltage characteristics, 223
Depletion width, 223

Schottky barrier height, 219
Schrödinger equation, 28, 36
Screened coulombic potential, 102
Screening dipole, 388, 389
Semiconductor, 44
Semiconductor heterojunctions, 232
Series resistance, 413
Sheet charge density, 378, 395
Sheet resistance, 218, 396
Shockley analysis, 368
Shockley boundary conditions, 274
Shockley gradual channel approximation, 363
Short channel effects, 378
Si, 368
Si based HBTs, 346
Si bipolar technology, 345
Si1−xGex, 83
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SiC, 21
Silicon dioxide-silicon junction, 230
Silicon nitride, 231
Six equivalent valleys, 48
Small signal capacitance, 306
Small signal equivalent circuit of a diode,

306
Small signal figures of merit, 340

fτ , 340
fmax, 341

Source resistance, 413, 414
Space charge transit time (τtransit), 415
Specific contact resistance, 230
Spin, 42
Split-off band, 47
Split-off energy, 47
Spontaneous emission rate, 200
Spontaneous polarization, 65
Storage delay time, 317
Strain energy, 20
Strain tensor, 69
Strained heterostructures, 17, 80
Strong injection, 131
Substrates, 194

Al2O3, 26
AlN, 26
GaAs, 26
GaN, 26
Ge, 26
InP, 26
InSb, 26
Si, 26
SiC, 26
ZnO, 26

Superlattice, 11
(GaAs)2(AlAs)2, 11

Surface, 12
Surface donor, 390, 392, 394
Surface state, 84, 389
Switching characteristics of diodes, 312

τtransit, see Space charge transit time
T-gate, 378
Tensile strain, 394
Three-dimensional electron slab, 68
Threshold voltage, 358, 387
Time-dependent continuity equation, 333
Transconductance, 264, 338, 367, 378, 411,

414
Transit time, 307, 414
Transition time, 317
Transport, 94, 121

Averaging procedures, 526
Triangular quantum well, 377, 382, 383
Tunneling, 180, 230, 396
Tunneling probability, 181
Turn-off, 315
Turn-on response, 313

Unbiased P -N junction, 146
Unit cell, 2

Vbr, see Breakdown voltage
vsat, see Velocity saturation
Vacuum energy, 44
Vacuum level, 147, 219
Valence band, 44, 83
Valence band discontinuity, 232
Velocity

Overshoot, 403, 430
Saturation, 111, 368, 415

Vertical transitions, 129

Weak injection, 132
Work function, 44, 147, 219
Wurtzite, 65, 67, see Crystal structure

Zener breakdown, 180
Zener diode, 115
Zener tunneling, 115, 181


	51jCHvJ6G4L
	00front-matter
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	back-matter



