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Preface

Ernest Rutherford (New Zealand–British physicist, 1871–1937), the
1908 Nobel Laureate who discovered the existence of atomic nuclei,
is famously quoted as having said: “Physics is the only real science.
All the rest is butterfly collecting.” Or something to that effect. I like
to include this quote in my introductory remarks at the first class
meetings of the physics courses I teach.

I have seen that there are those who interpret this as a put-down of
amateurs (butterfly collectors) in science. However, my own interpre-
tation of Rutherford’s statement is that he is claiming that, except for
physics, all of the rest of science is involved merely in collecting facts
and classifying them (butterfly collecting). It is physics, unique among
the sciences, that is attempting to find explanations for the classified
data.

The periodic table of the chemical elements, originally proposed by
Dmitri Ivanovich Mendeleev (Russian chemist, 1834–1907), presents an
example of this. Chemists toiled to discover the chemical elements and
their properties and then classified the elements in the scheme that
is expressed by the periodic table. Here was the chemists’ butterfly
collecting. It took physicists to explain the periodic table by means of
quantum theory.

Rutherford’s assessment of science might well have held a large de-
gree of validity in the 19th and early 20th centuries. But since then
other fields of science than physics have developed ‘physics envy’ and
they too are now busy searching for explanations. For example, chem-
istry finds its explanations in physics. And explanations in biology
are found, on one level, in evolution theory and, on another level, in
chemistry and physics.
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I differ with Rutherford, though, in his narrow conception of sci-
ence. To be sure, science involves searching for explanations. But pro-
duction and collection of data through experimentation and observa-
tion and classification of the data supply the raw material for science
to attempt to explain. Without them there would be nothing to ex-
plain and no ‘real science’ in Rutherford’s sense. So I include butterfly
collecting in my broad conception of science.

The point of all that, for the purpose of this book, is to lead to the
notion that science – even in its broad conception – not only makes
much use of symmetry, but is essentially and fundamentally based
on symmetry. Indeed, science rests firmly on the triple foundation of
reproducibility, predictability, and reduction, all of which are symme-
tries, with additional support from analogy and objectivity, which are
symmetries too. So it is not much of an exaggeration to claim that sci-
ence is symmetry. Or perhaps in somewhat more detail, science is our
view of nature through symmetry spectacles. That is one component
of the main thesis of this book.

In addition to an exposition and justification of this central idea,
that science is founded on symmetry, we also look into how symmetry
is used in science in general and in physics in particular (Rutherford’s
‘real science’). And we find: symmetry of evolution (symmetry of the
laws of nature), symmetry of states of physical systems, gauge sym-
metry of the fundamental interactions, and the symmetry inherent to
quantum theory. So not only do we view nature through symmetry
spectacles, but we understand nature in the language of symmetry.
That is another component of this book’s main thesis.

All that leads to deep questions that await clarification. What is
the source of all this symmetry? What is nature telling us? Is nature
symmetry, at least in some sense? If not at the level that physics
is presently investigating, are deeper levels of reality involved with
symmetry in a very major way? Or even, will symmetry turn out
to be what those fundamental levels are all about? Is symmetry the
foundational principle of the Universe?

Such ideas lurk in the back of many physicists’ minds, and some
physicists express them outrightly. Brian Greene, for one, states in
Chap. 8 of [1]: “From our modern perspective, symmetries are the
foundation from which laws spring.” And Stenger [2] adds his vote.

Speaking of the Universe, it is shown in this book that the Universe
cannot possess exact symmetry. This connects to conceptual problems
with symmetry breaking at ‘phase transitions’ in the evolution of the
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Universe according to big-bang type cosmological schemes. Such and
related matters are discussed, including the nature of the ‘quantum
era’ that is assumed to form the first evolutionary stage in big-bang
type schemes. But many questions remain for future elucidation. Are
big-bang type cosmological schemes the best models for the evolution
of the Universe? If so, did the Universe pass through distinct eras sepa-
rated by transitions that might be characterized as ‘phase transitions’?
What were the properties of the eras and of the transitions? Was there
a ‘quantum era’? If there was, can it be meaningfully described? And
can present-day high-energy physics reflect the properties of earlier
stages in the evolution of the Universe? If it can, what will the results
of experiments soon to be performed at high-energy laboratories, such
as CERN’s Large Hadron Collider, reveal about the earlier Universe?
And what will they tell us about today’s physics? Will they help clarify
or will they sow confusion?

Here is the order of presentation: We start in Chap. 1 with a brief
introduction to the concept of symmetry, including an analysis of the
intimate relation between symmetry and asymmetry – especially that
symmetry implies asymmetry – and a discussion of analogy and clas-
sification as symmetry. We then see in Chap. 2 what science is, how
it makes use of symmetry, and how it is based solidly on symmetry.
So solidly, in fact, that one might well view science as symmetry. In
Chap. 3 we consider a number of ways in which physics, in particular,
additionally makes use of symmetry. Since physics underlies the other
sciences, we find that science is based even more solidly on symmetry,
and perhaps nature will turn out to possess a symmetry foundation
as well. The symmetry principle, also known as Curie’s principle, is
derived in its various versions in Chap. 4. We see in Chap. 5 two ways
in which the symmetry principle is very usefully applied in science.
In Chaps. 6 and 7 we discuss the ideas of imperfect symmetry and
symmetry in general and as applied to the Universe and its evolution,
as well as related ideas.

There then follows the more formal part of the book, in which we
develop a formalism of symmetry. Chapters 8 and 9 form a brief in-
troduction to group theory, the mathematical language of symmetry,
which is indispensable for serious quantitative, as well as qualitative,
applications of symmetry in science, mostly in physics and chemistry.
Nevertheless, in spite of that indispensability, Chaps. 8 and 9 can be
skipped without too much harm to those preferring a more conceptual
approach. Chapter 10 develops the language and formalism that un-
derlie the application of symmetry. Group theory is unavoidable there,
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but I try to allow the reader to make sense of the ideas even without
group theory. And finally, in Chap. 11 we apply symmetry consider-
ations and the symmetry formalism to physical processes and derive
the symmetry principles that apply to them.

Chapter 12 brings together and summarizes the principles of sym-
metry that are developed and presented in this book.

I would like to express my thanks to my friends and colleagues
Avshalom C. Elitzur and Lawrence W. Fagg, who kindly read the
manuscript of this book and helped me with their comments and sug-
gestions. And especially, I thank my wife, Mira Frost, for her unflagging
support and for putting up with my disappearances into my study to
work on this book.

Rockville, Maryland, J. Rosen
August 2007
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1

The Concept of Symmetry

1.1 The Essence of Symmetry

Everyone has some idea of what symmetry is. We recognize the bilat-
eral (left-right) symmetry of the human body, of the bodies of many
other animals, and of numerous objects in our environment. We enjoy
the rotation symmetry of many kinds of flower. We consider a sca-
lene triangle, one with all sides unequal, to be completely lacking in
symmetry, while we see symmetry in an isosceles triangle and even
more symmetry in an equilateral triangle. That is only for starters.
Any reader of this book can easily point out many more kinds and
examples of symmetry.

In science, of course, our recognition and utilization of symmetry is
often more sophisticated, sometimes very much more. But what sym-
metry actually boils down to in the final analysis is that the situation
possesses the possibility of a change that leaves some aspect of the sit-
uation unchanged .

A bilaterally symmetric body can be reflected through its mid-
plane, through the (imaginary) plane separating the body’s two simi-
lar halves. Think of a two-sided mirror positioned in that plane. Such
a reflection is a change. Yet the reflected body looks the same as the
original one; it coincides with the original: the reflected right and left
hands, paws, or hooves coincide, respectively, with the original left and
right ones, and similarly with the feet, ears, and other paired parts (see
Fig. 1.1).

For the triangles let us for simplicity confine ourselves to rotations
and reflections within the plane of the figures. Then a rotation is made
about a point in the plane, which is the point of intersection of the
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Fig. 1.1. Bilateral symmetry

axis of rotation that is perpendicular to the plane. A reflection is made
through a line in the plane, where the line is where a two-sided mirror
that is perpendicular to the plane intersects the plane. An infinite
number of such changes can be performed on any triangle. But for an
equilateral triangle there are only a finite number of them that can
be made on it and that nevertheless leave its appearance unchanged,
i.e., rotations and reflections for which the changed triangle coincides
with the original. They are rotations about the triangle’s center by
120◦ and by 240◦, and reflections through each of the triangle’s three
heights, five changes altogether (see Fig. 1.2). (For the present we do
not count rotations by multiples of 360◦, which are considered to be
no change at all.)
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Fig. 1.2. Changes bringing an equilateral triangle into coincidence with itself

Fig. 1.3. Change bringing an isosceles triangle into coincidence with itself

Although an infinity of planar rotations and reflections can also
be performed on any isosceles triangle, there is only a single such
change that preserves the appearance of such a triangle, that leaves
the triangle coinciding with itself. It is reflection through the height
on its base (see Fig. 1.3). And a scalene triangle cannot be made to
coincide with itself by any planar rotation or reflection, once again not
counting rotations by multiples of 360◦ (see Fig. 1.4).
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Fig. 1.4. No change brings a scalene triangle into coincidence with itself

I stated above that symmetry is in essence that the situation pos-
sesses the possibility of a change that nevertheless leaves some aspect
of the situation unchanged. That can be concisely formulated as this
precise definition of symmetry:

Symmetry is immunity to a possible change.

When we have a situation for which it is possible to make a change
under which some aspect of the situation remains unchanged, i.e., is
immune to the change, then the situation can be said to be symmetric
under the change with respect to that aspect . For example, a bilater-
ally symmetric body is symmetric under reflection through its mid-
plane with respect to appearance. Its external appearance is immune
to midplane reflection. (The arrangement of its internal organs, how-
ever, most usually does not have that symmetry. The human heart,
for instance, is normally left of center.) For very simple animals, their
bilateral symmetry might also hold with respect to physiological func-
tion as well. That is not true for more complex animals.

An equilateral triangle is symmetric with respect to appearance
under the rotations and reflections we mentioned above. An isosce-
les triangle is symmetric with respect to appearance under reflection
through the height on its base. But a scalene triangle is not symmetric
with respect to appearance under any planar rotation or reflection.

Note the two essential components of symmetry:

1. Possibility of a change. It must be possible to perform a change,
although the change does not actually have to be performed.

2. Immunity . Some aspect of the situation would remain unchanged,
if the change were performed.
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If a change is possible but some aspect of the situation is not im-
mune to it, we have asymmetry . Then the situation can be said to be
asymmetric under the change with respect to that aspect . For exam-
ple, a scalene triangle is asymmetric with respect to appearance under
all planar rotations and reflections. All triangles are asymmetric with
respect to appearance under 45◦ rotations. While equilateral trian-
gles are symmetric with respect to appearance under 120◦ rotations
about their center, isosceles triangles do not possess this symmetry;
they are asymmetric under 120◦ rotations with respect to appearance.
And while a triangle might be symmetric or asymmetric with respect
to appearance under a given rotation or reflection, all triangles are
symmetric under all rotations and reflections with respect to their
area; rotations and reflections do not change area. On the other hand,
all plane figures are asymmetric with respect to area under dilation,
which is enlargement (or reduction) of all linear dimensions by the
same factor. The area then increases (or diminishes) by the square of
that factor.

If there is no possibility of a change, then the very concepts of sym-
metry and asymmetry will be inapplicable. For example, if the property
of color is not an ingredient of the specification of a plane figure, then
the change of, say, color interchange will not be a possible change for
such a figure. Thus color interchange symmetry or asymmetry will not
be conceptually applicable to the situation. Or alternatively, one might
say that such a plane figure will possess trivial symmetry under such
a change. One might say that all its aspects will be trivially immune
to such a change. It is a matter of taste, but I tend to prefer calling it
inapplicability rather than triviality.

If, however, color is included in the specification of a figure, then
color interchange will become a possible change for it. For example,
if the figure is black and white, it will be symmetric under red–green
interchange with respect to appearance. Interchange red and green,
and nothing will happen to the figure. If the figure is black and green,
it will be asymmetric under the same change with respect to the same
aspect. Interchange red and green, and the figure will become black
and red, which is not the same as black and green.

As an example, consider the black–white figure of Fig. 1.5. What
symmetries can we find lurking here? For simplicity let us confine
ourselves to the plane of the figure, as we did earlier. If we consider
only the geometric properties of the figure and ignore its coloring,
then the figure possesses the symmetry of the square with respect to
its appearance: it is symmetric under rotations by 90◦, 180◦, and 270◦,
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Fig. 1.5. Black–white figure as an example

and under reflections through each of its diagonals and through each
of its vertical and horizontal midlines. (You might want to indicate
these four lines in the figure.) That adds up to seven changes under
which the figure is symmetric with respect to appearance, ignoring its
coloration.

Let color enter our considerations. Some of the changes that did
not change appearance before, now do make a difference. They are ro-
tations by 90◦ and 270◦ and reflections through the vertical and hori-
zontal midlines. That leaves the colored figure symmetric with respect
to appearance only under rotation by 180◦ and reflections through
each of the two diagonals, three changes. With color now in the pic-
ture, we can consider black–white interchange. However, the figure is
asymmetric under this change. Nevertheless, we can still find symme-
try under black–white interchange if we combine the interchange with
a geometric change to form a compound change. Thus the figure is
symmetric with respect to appearance under the compound changes
consisting of black–white interchange together with rotation by 90◦,
with rotation by 270◦, with reflection through the vertical midline, and
with reflection through the horizontal midline, making four compound
changes.

Approximate symmetry is approximate immunity to a possible
change. There is no approximation in the change or in its possibility;
it must indeed be possible to perform a change. The approximation
is in the immunity. Some aspect of the situation must change by only
a little, however that is evaluated, when some change is performed.
Then the situation can be said to be approximately symmetric under
the change with respect to that aspect .
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Fig. 1.6. Approximate two-fold rotation symmetry

For example, the figure of Fig. 1.6 possesses approximate two-fold
rotation symmetry with respect to its appearance. Under 180◦ rotation
about its center its appearance changes, but only by a little. And the
bilateral symmetry of humans and other animals is in reality also only
approximate. Not only do the internal organs not all possess that sym-
metry, but even for external appearance the symmetry is never exact.
For instance, the fingerprints of one hand are not the mirror images
of the corresponding fingerprints of the other hand, and the hand and
foot of one side (usually the right side for right-handed people) are
almost always slightly longer than those of the other side.

Approximate symmetry is a softening of the hard dichotomy be-
tween symmetry and asymmetry. The extent of deviation from exact
symmetry that can still be considered approximate symmetry will de-
pend on the context and the application and could very well be a mat-
ter of personal taste. The same figure, for example that of Fig. 1.6,
might be considered approximately symmetric (or slightly asymmet-
ric) by some observers, while others might consider it very asymmet-
ric (or nowhere near symmetric). We will discuss approximate sym-
metry in more detail in Sect. 6.1 and will formalize the notion in
Sect. 10.6.
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1.2 Symmetry Implies Asymmetry

Change is the bringing about of something different. For a difference
to exist, in the sense of having physical meaning, a physical gauge for
the difference, a reference frame, is needed. A reference frame serves
as a standard against which putative changes are evaluated: You think
you have performed a change. OK, let us gauge the situations before
and after what you think was a change. They come up different, the
gauge distinguishes between them? You have indeed made a change.
The gauge shows no difference, does not distinguish between them?
Your ‘change’ is no change. Thus, the existence of a reference frame
is necessary to give existence to the difference and to the possibility
of change. And the nonexistence of an appropriate reference frame
makes a supposed change impossible. In Sect. 3.3 we discuss the idea
of reference frame in detail.

To illustrate this, think of an object floating in otherwise empty
space. Now consider the change of moving the object by some distance
in some direction, i.e., spatial displacement. All right, the object is
now displaced, at least we might think it is. Picture the result of the
move: again an object floating in otherwise empty space. Is the result
of the displacement physically (as opposed to, say, philosophically)
different from the original situation? No. There is no way to distinguish
between the original and the displaced situations. They are identical.
A displacement involves a change of location. But in otherwise empty
space all locations are identical, since there is no reference frame for
position in the space. So no change has taken place and the supposed
change is not a possible change. The case is similar for rotation and
for reflection.

In order to be capable of gauging a difference, a reference frame
cannot be immune to the change that brings about the difference. It
cannot be immune to the change for which it is intended to serve as
reference. Otherwise it could not serve its purpose.

For example, the change of spatial displacement brings about a dif-
ference in location. A set of tape measures as coordinate axes could
serve as a reference frame for that, but not if the tapes are themselves
immune to displacement, i.e., not if the tapes are infinite and homo-
geneous (unmarked). Imagine sliding such a tape parallel to itself and
compare the final and original situations of the tape with each other.
There is no difference. Marked axes, which can indeed gauge differences
in location and can thus serve as a reference frame for displacements,
are themselves affected by displacements. Imagine sliding a marked
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tape, like an ordinary tape measure, parallel to itself and compare its
final and initial situations with each other. They are clearly different.
If you imagine sliding the tape eight meters in the positive direction,
then in its final state the tape’s zero mark will align with the eight
meter mark of the tape in its original state.

A reference frame is a changeable aspect of a situation. Now, any
changeable aspect of a situation can serve as a reference frame for that
change in the situation, since it is tautological that a changeable aspect
of a situation is not immune to its own change. A changeable aspect
of a situation allows the possibility of a change. Indeed, we can say
that it represents the possibility of a change and that any possibility
of a change is represented by a changeable aspect of the situation.
So a situation will possess symmetry if and only if it has both an
aspect that can change – giving the possibility of a change – and an
aspect that does not change concomitantly – giving the immunity to
the possible change. In other words, the possibility of a change, which is
a necessary component of symmetry, is contingent upon the existence
of an asymmetry of the situation under the change. And hence the
succinct result:

Symmetry implies asymmetry.

This is discussed further in [3]. Another, less succinct way of expressing
the relation between symmetry and asymmetry is this:

Symmetry requires a reference frame, which is necessarily asym-
metric. The absence of a reference frame implies identity, hence
no possibility of change, and hence the inapplicability of the
concept of symmetry.

Consider, for example, the equilateral triangle of Fig. 1.2. Its appear-
ance is an aspect of it that is immune to 120◦ rotation about its center
in its plane, so it possesses symmetry under 120◦ rotation with respect
to appearance. Or so we might blithely think. But what is this change
we call ‘120◦ rotation’? Do what we will to the triangle – twist it, twirl
it, twitch it, swivel it – when is it rotated by 120◦, or rotated at all for
that matter? Unless we have a reference frame to endow an orienta-
tion difference with existence and thus give significance to a rotation,
all our actions amount to nil, nothing is accomplished. The situations
before and after our efforts remain identical. We then have no rotation
at all, nor do we have even the conceptual possibility of rotation. So
the concept of rotation symmetry is inapplicable to the triangle in the
absence of an appropriate reference frame.
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However, the triangle is not a universe in itself. The total situation,
that of the equilateral triangle together with its environment, does
possess aspects that are not immune to 120◦ rotation and that can
thereby serve as a reference frame for 120◦ rotation. The walls of the
room, for instance, could serve as reference frame, since they are asym-
metric under 120◦ rotation. Thus, rotation by 120◦ is indeed a change.
The equilateral triangle is symmetric in the context of its environment.
It is symmetric under 120◦ rotation thanks to its environment’s lack
of immunity to 120◦ rotation, thanks to the asymmetry of the total
situation – triangle plus environment – under the rotation.

The above results concerning symmetry, change, immunity, refer-
ence frame, and asymmetry can be summarized by the following dia-
gram, where arrows denote implication:

symmetry
↗
↘

possibility
of a change

immunity to
the change

−→ reference for
the change

−→ asymmetry
under the change

Thus, for there to be symmetry, there must concomitantly exist asym-
metry under the same change that is involved in the symmetry. For
every symmetry there is an asymmetry tucked away somewhere in the
Universe.

So symmetry implies asymmetry. This relation is not symmetric,
since asymmetry does not imply symmetry, at least not in the same
sense that symmetry implies asymmetry, in the sense that actual sym-
metry implies actual asymmetry, as was demonstrated above. However,
asymmetry does imply symmetry in the limited sense that the lack of
immunity to a possible change implies the conceptual possibility of
immunity to the change. Thus actual asymmetry implies merely the
conceptual possibility of, but not actual, symmetry.

1.3 Analogy and Classification Are Symmetry

A very important kind of symmetry for science, one that is not often
thought of as symmetry, is analogy . Analogy is the immunity of the
validity of a relation to changes of the elements involved in it.

To see what we actually have here, consider, for example, the re-
lation expressed by the statement, ‘An animal has a relatively long
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tail’. This relation involves two elements, an animal and a relatively
long tail. The former element is not unique, since there are more than
just a single animal in the world. Indeed, one can say, for example,
‘This deer has a relatively long tail’, or ‘That squirrel has a relatively
long tail’. But the relation is not valid for all animals. Deer do not
have relatively long tails, while squirrels do. Nevertheless, there are, in
fact, more than just a single animal for which the statement is valid.
Squirrel A has a relatively long tail, squirrel B also has a relatively
long tail, squirrel C does too, so does squirrel D, and so on for all
squirrels as well as for certain other animals. The relation defines an
analogy among animals: All relatively long-tailed animals are analo-
gous in that, whatever their differences, they all possess the common
property of having a relatively long tail. And as a fringe benefit we
have that all relatively non-long-tailed (i.e., medium-, short-, and no-
tailed) animals are analogous in that, whatever their differences, they
all possess the common property that their tails are not relatively long.

We see that this analogy is symmetry by noting:

1. There is the possibility of a change. Since the relation is formulated
for more than a single animal, the animal to which it is applied can
be switched.

2. The validity of the relation is immune to certain such changes. The
relation holds just as well for squirrel A, for squirrel B, for C, etc.,
who each proudly waves a relatively long tail.

For another, similar analogy consider the relation expressed by ‘An as-
tronomical body moves along an elliptical orbit with the Sun at one of
its foci’. This statement, too, can be viewed as involving two elements,
an astronomical body and an elliptical orbit with the Sun at one of
its foci. The former element is not unique; there are more than a sin-
gle astronomical body in the cosmos. For example, one can say, ‘The
Moon moves . . . ’, or ‘Venus moves . . . ’. But the relation is not valid
for all astronomical bodies. The Moon does not move in such a way,
while Venus does. There are, however, more than a single astronomical
body for which the statement is valid. They include all the planets of
the solar system, for whom the statement becomes Kepler’s first law
of planetary motion (Johannes Kepler, German astronomer and math-
ematician, 1571–1630), as well as the asteroids, dwarf planets, some
of the comets, etc. The statement is an expression of analogy among
astronomical bodies: All those bodies that move along elliptical orbits
with the Sun at one of their foci are analogous in that, whatever their
differences, they all move in just that way. And we also have that all
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the other astronomical bodies, such as stars and moons, are analogous
in that, whatever their differences, they all do not move along ellipses
with the Sun at one of the foci.

This analogy, too, is symmetry:

1. There is the possibility of a change. Since the relation is applicable
to more than a single astronomical body, the body to which it is
applied can be switched.

2. The validity of the relation is immune to certain such changes. The
statement is valid just as well for Mars, for Neptune, for Uranus,
etc., each of which moves along an elliptical orbit with the Sun at
one of its foci.

Now, consider a relation involving a pair of changeable elements, ‘X
is the locus of all points equidistant from a given point (its center),
all points lying in Y’. The relation involves a pair of elements, (X, Y),
where X and Y can be any geometric objects and are certainly not
unique. For instance, one can say, ‘A triangle is the locus . . . lying in
an ellipsoid’, or ‘A circle is the locus . . . lying in a plane’. But the
relation is not valid for all pairs of geometric objects. It is not true
for the pair (a triangle, an ellipsoid), while it does hold for the pair
(a circle, a plane). There are more than one pair (X, Y) for which it is
valid. Three of them are: (a pair of points, a line), (a circle, a plane),
and (a spherical surface, space). This relation between X and Y defines
an analogy among pairs of geometric objects: All those pairs (X, Y)
whose elements X and Y fulfill the relation as stated are analogous
in that, whatever their differences, they all fulfill the relation. And in
addition, all those pairs whose elements do not fulfill the relation are
analogous in that, whatever their differences, they do not fulfill the
relation.

Analogies involving pairs of changeable elements are often put in
the form: A is to B as C is to D as . . . . For the present example
this form is: A pair of points is to a line as a circle is to a plane
as a spherical surface is to space . . . . (This form of expressing an
analogy can easily be generalized for relations involving any number
of changeable elements.) The symmetry here is:

1. Since the relation is applicable to more than one pair of geometric
objects, the pair to which it is applied can be switched.

2. The validity of the relation is immune to certain such changes.
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Now, consider the experimental setup of a given sphere rolling down
a fixed inclined plane, with the experimental procedure of releasing the
sphere from rest, letting it roll for any time interval t, and noting the
distance d the sphere rolls in this time interval. Performing n such ex-
periments, we collect n data pairs (or data points) (t1, d1), ..., (tn, dn).
The pairs obey the relation dk = bt2k, where b is a positive propor-
tionality constant, for k = 1, . . . , n. This is a relation involving two
changeable elements, as in the preceding example. The n data pairs,
as well as an infinity of potential data pairs, are analogous in that they
all obey the same relation, d = bt2, and in that sense t1 is to d1 as
t2 is to d2 as . . . . All other (t, d) pairs, which do not obey the rela-
tion d = bt2, are also analogous in that they do not obey the relation.
The symmetry is that we can switch among actual and potential data
pairs, and however we switch among them, the relation between t and
d remains the same.

Additional physics analogies can by found in [4].
With the help of the four examples above we now see how analogy,

as the immunity of the validity of a relation under changes of the
elements involved in it, is indeed what we thought we understood by
the term ‘analogy’ before we found ourselves hopelessly confused by
such a weird definition. The reason for such a definition of analogy,
besides its being a good one, is that it directly exposes the symmetry
that is analogy, since it implies:

1. the possibility of a change, the change of elements involved in the
relation,

2. the immunity of the validity of the relation to certain such changes.

Note that analogy implies and is implied by classification. An analogy
imposes a classification by decomposing the set of elements or element
pairs, triples, etc., to which the relation is applicable into classes of
analogous elements or pairs, triples, etc. For example, among animals
the relation, ‘An animal has a relatively long tail’, separates all animals
into a class of relatively long-tailed animals, those animals for which
the relation is valid, and a class of relatively non-long-tailed animals,
those for which the statement is false. In the astronomical example the
relation, ‘An astronomical body moves along an elliptical orbit with
the Sun at one of its foci’, decomposes the set of all astronomical bodies
into a class of those for which the relation is valid, the most notable of
which are the planets of the solar system, and a class of astronomical
bodies that do not move according to the statement, which includes
the planetary moons and all the stars, among others.
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In the geometric example the relation, ‘X is the locus of all points
equidistant from a given point (its center), all points lying in Y’, sepa-
rates all pairs of geometric objects into a class of those pairs for which
the relation holds, the best known of which are (a pair of points, a line),
(a circle, a plane), and (a spherical surface, space), and a class of those
that do not fulfill the relation, such as (a triangle, an ellipsoid) and
(a hyperboloid, space). And in the laboratory example the relation
d = bt2 decomposes all (t, d) pairs into a class of those obeying the
relation, i.e., all actual and potential data pairs for the experiment,
and a class of those for which d �= bt2, those that cannot be data for
the experiment.

Conversely, a classification defines the analogy of belonging to the
same class. If any set is decomposed into mutually exclusive classes,
then the very property of belonging to the same class defines an anal-
ogy among the elements of the set. For instance, the kids in a school
can be, and for administrative purposes are, classified by grade. That
makes all pupils in the same grade analogous. Or, motor vehicles can be
classified by the number of axles. This classification makes all vehicles
with the same number of axles analogous, which might find expression
in the toll rate on toll roads.

For a detailed example, consider the classification of the chemical
elements that is expressed by the periodic table, originally proposed
by Mendeleev. Each column of the table comprises a group of ele-
ments possessing similar chemical properties. There is the noble gas
group (helium, neon, argon, . . . ), the halogen group (fluorine, chlorine,
bromine, . . . ), and so on. The analogy that is defined by this classifi-
cation is the relation, ‘Element X belongs to group N’, where X is the
changeable element for any fixed group N. Thus helium, neon, argon,
. . . , are analogous in that they are all noble gases. Fluorine, chlorine,
bromine, . . . , are analogous by all belonging to the halogen group. And
so on for the other groups. The symmetry here is this [5]:

1. Every group N contains more than a single element, so the element
X to which the relation ‘Element X belongs to group N’ is applied
can be changed.

2. The validity of the relation is immune to switching among elements
X that belong to group N.

This example serves also as the example of Ernest Rutherford’s ‘but-
terfly collecting’ that was discussed in the introduction.
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And one more example. For the purposes of blood donation and
transfusion, people are classified by their blood type (A, B, AB, O)
and their Rh group (+,−), giving eight classes (A+, A−, B+, . . . ,
O−). The analogy here is among people belonging to the same blood
class, with the relation, ‘Individual X possesses blood of type/group
Y’, for changeable X and fixed Y (A+, . . . , or O−). The symmetry
here is:

1. More than a single person have blood of any of the eight combina-
tions of blood type and group, so X in the relation can be changed.

2. The validity of the relation is immune to switching among people
of the same blood type/group.

Thus, analogy and classification, which imply each other, are both
symmetry.

1.4 Summary

Symmetry is immunity to a possible change, i.e., we have symme-
try when it is possible to perform some change in the situation that
nevertheless leaves some aspect of the situation unaffected. Then we
have symmetry under the change with respect to that aspect. If some
aspect of the situation is not immune to the change, then the situa-
tion is asymmetric under the change with respect to this aspect. Since
a change requires the existence of a reference frame that is affected
by the change, such a reference frame is necessarily asymmetric un-
der the change. Thus, for every symmetry there exists an asymmetry .
That was the gist of Sects. 1.1 and 1.2.

In Sect. 1.3 we saw that analogy is symmetry and discussed
how analogy implies and is implied by classification, which is also
symmetry.



2

Science Is Founded on Symmetry

In this chapter we briefly review what science is about, and we see
that it strongly involves reduction, which is shown to be symmetry.
We consider three ways reduction is used in science – observer and
observed, quasi-isolated system and environment, and initial state and
evolution – and see in detail the symmetry implied by each.

Reproducibility and predictability, which are both essential com-
ponents of science, are shown to be symmetries as well. Since science
rests firmly on the triple foundation of reproducibility, predictability,
and reduction, science is solidly based on symmetry. Indeed, science
can be said to be symmetry, at least to the extent that it is our view
of nature through symmetry spectacles.

In addition, analogy, shown earlier to be symmetry, is seen to be
essential for the operation of science.

2.1 Science

For the purpose of our discussion we take this definition of nature:

Nature is the material universe with which we can, or can con-
ceivably, interact.

The material universe is everything of a purely material character.
Here I mean ‘material’ in the broad sense of anything related to matter,
including such as energy, momentum, electric charge, fields, waves,
and so on. To interact with something is to act upon it and be acted
upon by it. That implies the possibility of performing observations
and measurements on it and of receiving data from it, which is what
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we are actually interested in. To be able conceivably to interact with
something means that, although we might not be able to interact with
it at present, interaction is not precluded by any principle known to
us and is considered attainable through further technological research
and development. Thus nature, as the material universe with which
we can, or can conceivably, interact, is everything of purely material
character (in the broad sense) that we can, or can conceivably, observe
and measure.

We live in nature, observe it, and are intrigued. We try to under-
stand nature in order both to improve our lives by better satisfying
our material needs and desires and to satisfy our curiosity. And what
we observe in nature is a complex of phenomena, including ourselves,
where we are related to all of nature, as is implied by our definition of
nature as the material universe with which we can, or can conceivably,
interact. The possibility of interaction is what relates us to all of nature
and, due to the mutuality of interaction and of the relation it brings
about, relates all of nature to us. It then follows that all aspects and
phenomena of nature are actually interrelated, whether they appear
to be so or not. Whether they are interrelated independently of us or
not, they are certainly interrelated through our mediation. Thus all of
nature, including Homo sapiens, is interrelated and integrated.

Now we come to science:

Science is our attempt to understand rationally and objectively
the reproducible and predictable aspects of nature.

This, as we will see, is essentially the same as

Science is our attempt to understand rationally and objectively
the lawful aspects of nature.

And I repeat, nature is the material universe with which we can, or
can conceivably, interact. By ‘our’ in the above definition I mean that
science is a human endeavor and is shaped by our modes of perception
and our mental makeup. It is the endeavor of all humanity, not of any
particular individual, so it must be as objective as possible. ‘Attempt’
means that we try but might not always succeed. By ‘understand ra-
tionally and objectively’ I mean be able to explain in a logical way
that is valid for everybody. That excludes explanations based on in-
tuition, feeling, or religious considerations, among others. We explain
logically and objectively by finding order among the reproducible and
predictable aspects of nature, formulating laws, and devising theo-
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ries [6]. In the following I use ‘understand’ and ‘explain’ solely in their
rational and objective sense.

Note that I am using the term ‘science’ in this book strictly in the
sense of natural science. More specifically, I am not including such as
mathematics and philosophy in what I mean by science.

Reproducibility means that experiments can be replicated in other
labs and in the same lab, thus making science a common endeavor
that is as objective as possible. (Reproducibility is treated in more
detail in Sect. 2.3.) Predictability means that among the phenomena
investigated, order can be found, from which laws can be formulated,
predicting the results of new experiments. (See Sect. 2.4 for a more
detailed treatment of predictability.) There is no claim here that all
of nature’s aspects are reproducible and predictable. Indeed, they are
not. For example, according to our understanding of nature’s quan-
tum aspect, individual submicroscopic events, such as the radioactive
decay of an unstable nucleus, are inherently unpredictable. (However,
the statistical properties of many submicroscopic events, such as the
half-life of a radioactive isotope, may be predictable.) And perhaps the
behavior of an individual organism is inherently not completely pre-
dictable either. But all such aspects of nature lie outside the domain
of concern of science. Reproducibility and predictability form two es-
sential components of the foundation upon which science firmly rests.
If either is lacking, science will be unable to operate.

As science attempts to comprehend larger- and larger-size phenom-
ena of nature, actual reproducibility is replaced by declared repro-
ducibility, in the sense that, even if we cannot actually replicate the
effect at our pleasure, such as a volcano eruption or the birth of a star,
nature supplies us with sufficient quantity and variety to enable us to
investigate the phenomena. But as the size increases to truly gigan-
tic, such as superclusters of galaxies, that reasoning becomes tenuous.
Moreover, when the Universe is considered as a whole, we cannot even
declare reproducibility. Whatever metaphysical ideas one might have
about universes, science deals solely with the single universe we are
part of, with the Universe, which is thus irreproducible by any mean-
ing of the word. What this lengthy introduction is leading to is that
the fields of cosmology (the study of the working of the cosmos, the
Universe as a whole) and cosmogony (considerations of the origin of
the cosmos), as fascinating as they are, cannot rightfully be considered
scientific endeavors in the same sense that the more mundane branches
of science are. For a more detailed discussion of this issue see Chap. 7.
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2.2 Reduction Is Symmetry

But how are we to grasp the wholeness, the integrality, that is nature?
When we approach nature in its completeness, it appears so awesomely
complicated, due to the interrelation of all its aspects and phenomena,
that it might seem utterly beyond hope to understand anything about
it at all. True, some obvious simplicity stands out, such as day–night
periodicity, the annual cycle of the seasons, and the fact that fire con-
sumes. And subtler simplicity can be discerned, such as the term of
pregnancy, the relation between clouds and rain, and that between the
tide and the phase of the moon. Yet, on the whole, complexity seems
to be the norm, and even simplicity, when considered in more detail,
reveals wealths of complexity. But again due to nature’s unity, any
attempt to analyze nature into simpler component parts cannot but
leave something out of the picture.

Holism is the approach to nature that holds that nature can be
understood only in its wholeness or not at all. And this includes human
beings as part of nature. As long as nature is not yet understood, there
is no reason a priori to consider any aspect or phenomenon of it as
being intrinsically more or less important than any other. Thus, it is
not meaningful to pick out some part of nature as being more ‘worthy’
of investigation than other parts. Neither is it meaningful, according to
the holist position, to investigate an aspect or phenomenon of nature
as if it were isolated from the rest of nature. The result of such an effort
would not reflect the normal behavior of that aspect or phenomenon,
since in reality it is not isolated at all, but is interrelated with and
integrated in all of nature, including ourselves.

On the other hand lies the approach called reductionism, which
holds that nature is indeed understandable as the sum of its parts.
According to the reductionist position nature should be studied by
analysis, should be ‘chopped up’ (mostly conceptually, of course) into
simpler component parts that can be individually understood. (By
‘parts’ we do not necessarily mean actual material parts; the term
might be used metaphorically. An example of that is presented in
Sect. 2.2.3.) A successful analysis should then be followed by synthesis,
whereby the understanding of the parts is used to help attain under-
standing of larger parts compounded of understood parts. If necessary,
that should then be followed by further synthesis, by the consideration
of even larger parts, comprising the understood compound parts, and
attaining understanding of the former with the help of the understand-
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ing achieved thus far. And so on to the understanding of ever larger
parts, until we hopefully reach an understanding of all of nature.

Now, each of the poles of holism and reductionism has a valid point
to make. Nature is certainly interrelated and integrated, at least in
principle, and we should not lose sight of that fact. But if we hold fast
to extreme holism, everything will seem so fearsomely complicated
that it is doubtful we will be able to do much science. Separating
nature into parts seems to be the only way to search for simplicity
within nature’s complexity. Thus, the method of reduction shares with
reproducibility and predictability their eminence as components of the
foundation of science, and we should think of all three as forming the
triple foundation of science.

Yet, an approach of extreme reductionism might also not allow
much scientific progress, since nature might not be as amenable to
reduction as such an approach claims, and the reductionist method of
science might eventually run up against a holistic barrier. So science
is forced to the pragmatic mode of operating as if reductionism were
valid and adhering to that assumption for as long as it works. In the
meanwhile science continues to operate very well. But it should be
kept in mind that the inherent integrity of nature can raise its head at
any time and indeed does so. The most well known aspect of nature’s
irreducibility is nature’s quantum character [7, 8].

Since all of nature, including ourselves, is interrelated and inte-
grated, one might wonder how it is that reduction works at all. The
answer lies in the choice of the part of nature that we apply reduction
to. The coupling between that part and the rest of nature, including
ourselves, must be sufficiently weak that it can be ignored or com-
pensated for to a reasonably good approximation. In other words, the
part of nature that is under investigation must be sufficiently isolated
or isolable from the rest of nature, but not so much that we cannot
observe or measure it. That consideration includes the well known is-
sue of nondisruptive measurement: Our measurements must ideally
not affect, and in practice only minimally affect, whatever it is that
we are measuring. Thus the reductionist approach of science does not
claim that the method of reduction is applicable in all cases. It does
claim – and obviously correctly so – that nature offers us sufficiently
many important situations in which the method of reduction works.
But even when reduction is successful, it is a fact that the success is
only an approximation, albeit possibly a very good one.



22 2 Science Is Founded on Symmetry

Reduction in science, the separation of nature into parts that can
be individually understood, implies symmetry. The point is that if
a reduction separates out a part that can be understood individually,
then that part exhibits order and law (to be discussed in Sects. 2.2.3
and 2.4) and is explainable regardless and independently of what is
going on in the rest of nature. In other words, the part of nature that
is being individually understood possesses aspects that are immune to
possible changes in the rest of nature. And this is symmetry:

1. Possibility of a change. It is possible to make many changes in the
rest of nature.

2. Immunity . These changes do not affect important aspects of the
part of nature that can be individually understood.

Reduction of nature can be carried out in many different ways. As the
old saying goes, there’s more than one way to slice a salami. We now
consider three ways reduction is commonly applied in science, three
ways nature is commonly ‘sliced up’, and we examine the symmetry
implied by each.

2.2.1 Reduction to Observer and Observed

The most common way of reducing nature is to separate it into two
parts: the observer – us – and the observed – the rest of nature. This
reduction is so obvious, it is often overlooked. It is so obvious because
in doing science we must observe nature to find out what is going on
and what needs to be understood. Now, what is happening is this: Ob-
servation is interaction, so we and the rest of nature are in interaction,
are interrelated, as was pointed out in the Sect. 2.2. Thus, anything
we observe inherently involves ourselves too. The full phenomenon is
thus at least as complicated as Homo sapiens. Every observation must
include the reception of information by our senses, its transmission to
our brain, its processing there, its becoming part of our awareness, its
comprehension by our consciousness, etc. We appear to ourselves to
be so frightfully complicated, that we should then renounce all hope
of understanding anything at all.

So we reduce nature into us, on the one hand, and the rest of nature,
on the other. The rest of nature, as complicated as it might be, is much
less complicated than all of nature, since we have been taken out of the
picture. We then concentrate on attempting to understand the rest of
nature. (We also might, and indeed do, try to understand ourselves.
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But that is another story.) However, as we saw above, since nature with
us is not the same as nature without us, what right do we have to think
that any understanding we achieve by our observations is at all relevant
to what is going on in nature when we are not observing? The answer
is that in principle we simply have no such right a priori. What we are
doing is assuming , or adopting the working hypothesis, that the effect
of our observations on what we observe is sufficiently weak or can be
made so, that what we actually observe well reflects what would occur
without our observation and that the understanding we reach under
this assumption is relevant to the actual situation. This assumption
might be a good one or it might not, its suitability possibly depending
on the aspect of nature that is being investigated. It is ultimately
assessed by its success or failure in allowing us to understand nature.

As is well known, the observer-observed analysis of nature is very
successful in many realms of science. One example is Newton’s explana-
tion (Isaac Newton, English scientist and mathematician, 1642–1727)
of Kepler’s laws of planetary motion. That excellent understanding
of an aspect of nature was achieved under the assumption that ob-
servation of the planets does not affect their motion substantially. In
general, the reduction of nature to observer and observed seems to
work very well from astronomical phenomena down through everyday-
size phenomena and on down in size to microscopic phenomena. How-
ever, at the microscopic level, such as in the biological investigation
of individual cells, extraordinary effort must be invested to achieve
a good separation. The ever-present danger of the observation’s dis-
torting the observed phenomena, so that the observed behavior does
not well reflect the behavior that would occur without observation,
must be constantly circumvented.

At the molecular, atomic, and nuclear levels and at the subnuclear
level, that of the so-called elementary particles and their structure,
the observer-observed analysis of nature does not work. Here it is not
merely a matter of lack of ingenuity or insufficient technical profi-
ciency in designing devices that minimize the effect of the observation
on the observed phenomena. Here it seems that the observer-observed
interrelation cannot be disentangled in principle, that nature holisti-
cally absolutely forbids our separating ourselves from the rest of itself.
Quantum theory successfully deals with such matters [7,8]. From it we
learn that nature’s observer-observed disentanglement veto is actually
valid for all phenomena of all sizes. Nevertheless, the amount of resid-
ual observer-observed involvement, after all efforts have been made to
separate, can be characterized more or less by something like atom size.
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Thus an atom size discrepancy in the observation of a planet, a house,
or even a cell is negligible, while such a discrepancy in the observation
of an atom or an elementary particle is of cardinal significance.

One aspect of the symmetry implied by the observer-observed re-
duction, when this reduction is valid, is that the behavior of the rest
of nature (i.e., nature without us) is unaffected by and independent
of our observing and measuring. This behavior is thus an aspect of
nature that is immune to certain possible changes, the changes being
changes in our observational activities. It is just this symmetry that
allows the compilation of objective, observer-independent data about
nature that is a sine qua non for the very existence of science. It is
intimately related to the symmetry that is reproducibility, which is
discussed separately in Sect. 2.3.

Inversely, another aspect of this symmetry is that our observational
activity is unaffected by and independent of the behavior of the rest
of nature, at least in certain respects and to a certain degree. For ex-
ample, if we had an ideal thermometer, we would apply exactly the
same temperature measurement procedure regardless of the system
whose temperature is being taken. (In practice, of course, things are
not so simple and instead we make use of a consistent set of tempera-
ture measuring devices.) The symmetry here is that our observational
activity is an aspect of nature that is immune to changes in what is
being observed. This symmetry allows the setting up of measurement
standards and thus allows the meaningful comparison of observational
results for different systems. For instance, we can meaningfully com-
pare the temperature of the sea with that of the atmosphere.

I might add that objectivity, too, is symmetry. Objective data are
data that all observers agree about and whose validity is independent
of observer. This means that the data are immune in some way to
changes of observer. The symmetry is:

1. Possibility of a change. Observers can be changed.
2. Immunity . The validity of the data is independent of the observer.

That is certainly the general idea, although matters are not at all
as simple as they might appear here. For the purposes of the present
discussion we forgo the complications, some of which can be seen in [9].

Let me mention that there are fields of study, such as psychology,
sociology, anthropology, and economics in which the observer-observed
separation can be very difficult, if not altogether impossible, due to the
strong interaction between the observer and the observed. Workers in
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such fields must take extra care to ensure that their data are in fact
objective and observer-independent. If that is not achievable, then they
are not doing scientific research.

2.2.2 Reduction to Quasi-Isolated System and Environment

Whenever we reduce nature into observer and the rest of nature, we
achieve simplification of what is being observed, because instead of
observing all of nature, we are then observing only what is left of
nature after we ourselves are removed from the picture. Yet even the
rest of nature is frightfully complicated. That might be overcome by
further slicing of nature, by separating out from the rest of nature just
that aspect or phenomenon that especially interests us. For example,
in order to study liver cells we might remove a cell from a liver and
examine it under a microscope.

But what right have we to think that by separating out a part of
nature and confining our investigation to it, while completely ignoring
the rest of nature, we will gain meaningful understanding? We have in
principle no right at all a priori. Ignoring everything going on outside
the object of our investigation will be meaningful if the object of our
investigation is not affected by what is going on around it, so that it
really does not matter what is going on around it. That will be the
case if there is no interaction between it and the rest of nature, i.e., if
the object of our investigation is an isolated system.

Now, an isolated system is an idealization. By its very definition
we cannot interact with, thus we cannot observe, an isolated system,
so no such thing can exist in nature, where nature is, we recall, the
material universe with which we can, or can conceivably, interact. So
we have no choice but to deal with nonisolated systems. Known anti-
isolatory factors include the various forces of nature, which can either
be effectively screened out or can be attenuated by spatial separation
[10]. Additional known anti-isolatory factors involve quantum effects
and inertia, which can be neither screened out nor attenuated. Thus
even the most nearly perfectly isolated natural system is simply not
isolated, and I therefore prefer the term ‘quasi-isolated system’ for
a system that is as nearly isolated as possible. Or better, perhaps,
a system that is sufficiently isolated for the purpose at hand. This is
obviously not a clear-cut matter and involves approximation.

The separation of nature into quasi-isolated system and environ-
ment will be a reduction, if, in spite of the system’s imperfect isola-
tion, there are aspects of the system that are nevertheless unaffected
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by its environment, at least to a sufficient extent. And the fact of the
matter is that the investigation of quasi-isolated systems does yield
meaningful understanding, thus proving quasi-isolation to be a reduc-
tion of nature. Indeed, science successfully operates and progresses by
the double reduction of nature into observer and observed and the
observed into quasi-isolated system and its environment.

One side of the symmetry implied by this reduction is that those
aspects of quasi-isolated systems that are not affected by their envi-
ronment are aspects of nature that are immune to possible changes,
the changes being changes in the situation of the environment. So the
symmetry is:

1. Possibility of a change. Changes can be made in the environment
of a quasi-isolated system.

2. Immunity. A quasi-isolated system possesses aspects that are not
affected by certain such changes.

This symmetry is intimately related to the symmetry that is pre-
dictability, which will be discussed in Sect. 2.4. Inversely, due to the
mutuality of interaction or of lack of interaction, there are also aspects
of the environment of quasi-isolated systems that are immune to cer-
tain changes in the states of the quasi-isolated systems. This is another
side of the symmetry implied by this reduction.

The reduction into quasi-isolated system and environment is not
always possible. For complex systems whose components are in strong
mutual interaction, such as, perhaps, social and economic systems, the
reduction to significantly quasi-isolated relatively simple subsystem
and environment (the rest of the complex system together with the
rest of the world) might be difficult or impossible.

2.2.3 Reduction to Initial State and Evolution

The previous two ways of reducing nature – separation into observer
and observed and separation into quasi-isolated system and its envi-
ronment – are literal applications of the reductionist approach. The
present way of reducing is a metaphoric application, or a broaden-
ing of the idea of a part of nature. Rather than a separation that
can usually be envisioned spatially – observer here, observed there, or
quasi-isolated system here, its environment around it – the present re-
duction is a conceptual separation, the separation of natural processes
into initial state and evolution.
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Things happen. Events occur. Changes take place. Nature evolves.
That is the relentless march of time. The process of nature’s evolution
is of special interest to scientists, since predictability, one of the cor-
nerstones of science, has to do with telling what will be in the future,
what will evolve in time. Nature’s evolution is certainly a complicated
process. Yet order and law can be found in it, when it is properly
sliced. First the observer should separate himself or herself from the
rest of nature. Then he or she should narrow the scope of investigation
from all of the rest of nature to quasi-isolated systems and investi-
gate the natural evolution of such systems only. Actually, it is only for
quasi-isolated systems that order and law are found.

Finally, and this is the present point, the natural evolution of quasi-
isolated systems should be analyzed in the following manner. The evo-
lution process of a system should be considered as a sequence of states
in time, where a state is the condition of the system at any time. For
example, the solar system evolves, as the planets revolve around the
Sun and the moons revolve around their respective planets. (For sim-
plicity we are ignoring other components of the solar system.) Now
imagine that some duration of this evolution is recorded on a video
cassette or a DVD. Such a recording is actually a sequence of still pic-
tures. Each still picture can be considered to represent a state of the
solar system, the positions of the planets and moons at some time.
The full recording – the cassette or DVD – represents a segment of the
evolution process. This illustration is deficient, however, since a state
of the solar system really involves not only the positions of the planets
and moons at some time, but also their velocities at the same time,
while still pictures do not show velocities.

Then the state of the system at every time should be considered as
an initial state, a precursor state, from which the following remainder
of the sequence develops, from which the subsequent process evolves.
For the solar system, for instance, the positions and velocities of the
planets and moons at every single time, such as when it is twelve
o’clock noon in Rockville on 20 October 2008, say, or any other time,
should be considered as an initial state from which the subsequent
evolution of the solar system follows.

When that is done, when natural evolution processes of quasi-
isolated systems are viewed as sequences of states, where every state
is considered as an initial state initiating the system’s subsequent evo-
lution, then it turns out to be possible to find order and law. (Order
and law are discussed in more detail in Sect. 2.4.) What turns out is
that, with a good choice of what is to be taken as a state for a quasi-
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isolated system, one can discover a law that, given any initial state,
then gives the state that evolves from it at any subsequent time. Such
a law, since it is specifically concerned with evolution, is referred to as
a law of evolution.

For an example let us return to the solar system. It turns out that
the specification of the positions of all the planets and moons at any
single time is insufficient for the prediction of their positions at later
times. Thus the specification of states solely in terms of position is not
a good one for the purpose of finding lawful behavior. However, the
description of states by both the positions and the velocities of the
planets and moons at any single time does allow the prediction of the
state evolving from any initial state at any subsequent time. The law
of evolution in this case consists of Newton’s three laws of motion and
law of gravitation.

So the reduction needed to enable the discovery of order and law
in the natural evolution of quasi-isolated systems is the conceptual
splitting of the evolution process into initial state and evolution. The
usefulness of such a separation depends on the independence of the
two ‘parts’, on whether for a given system the same law of evolution
is applicable equally to any initial state and whether initial states can
be set up with no regard for what will subsequently evolve from them.
Stated in other words, the analysis of the evolution process of a quasi-
isolated system into initial state and evolution will be a reduction,
if, on the one hand, nature indeed allows us, at least in principle,
complete freedom in setting up the initial state (i.e., if nature is not
at all concerned with initial states), while, on the other hand, what
evolves from an initial state, once it is set up, is entirely beyond our
control.

Let us consider this specifically for the example of the solar system
and Newton’s laws of motion and gravitation. The above reduction
into initial state and law of evolution is successful because the two
‘parts’ are indeed independent. Newton’s laws are indeed applicable
to the solar system in whatever state it might be, no matter where
the planets are located regardless of their velocities. On the other
hand, there is nothing in Newton’s laws that precludes us, at least
in principle, from setting up a solar system in any state (of planetary
positions and velocities) that we choose.

This reduction of evolution processes into initial state and evolution
has proved to be admirably successful for everyday-size quasi-isolated
systems and has served science faithfully for ages. Its extension to the
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very small seems quite satisfactory, although when quantum theory
becomes relevant, the character of initial states becomes quite different
from what we are familiar with in larger systems. Its extension to the
large, where we cannot actually set up initial states, is also successful.
But we run into trouble when we consider the Universe as a whole. One
reason for this is that the concepts of order and law are scientifically
meaningless for the evolution of Universe as a whole [6, 11]. Another
reason is that it is not at all clear whether the concept of initial state
is meaningful for the Universe. I do not think it is [12].

The symmetry that is implied by reduction into initial state and
evolution follows immediately from the independence of the two ‘parts’,
as described above. On the one hand, laws of evolution are an aspect of
nature that is immune to possible changes, the changes being changes
in initial states. On the other hand, initial states are an aspect of
nature that is immune to possible changes, where the changes are hy-
pothetical changes in laws of evolution, in the sense that initial states
can be set up with no regard for what will subsequently evolve from
them. So one symmetry of such a reduction is:

1. Possibility of a change. The state of a system, as an initial state,
can be changed.

2. Immunity . The law of evolution for the system is the same no
matter what its initial state.

While inversely and somewhat awkwardly:

1. Possibility of a change. The law of evolution of a system can be
thought of as hypothetically varying.

2. Immunity . The system’s state can be set up with no regard for
what will evolve from it.

This symmetry, together with that implied by the reduction into quasi-
isolated system and environment, is intimately related to the symmetry
that is predictability, which is discussed in Sect. 2.4.

2.3 Reproducibility Is Symmetry

Science rests firmly on the triple foundation of reproducibility, pre-
dictability, and reduction. Science is concerned with the reproducible
and predictable phenomena of nature, and any phenomenon that is ei-
ther irreproducible or unpredictable or both, lies outside the domain of
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concern of science. Reproducibility is the replicability of experiments in
the same lab and in other labs, which makes science a common human
endeavor, rather than, say, a collection of private, incommensurate ef-
forts. It makes science as much as possible an objective, or at least
intersubjective, endeavor. (Intersubjectivity means that even if we are
not sure about the objectivity of science, i.e., about its independence of
any kind of observer, at least all human observers agree about what is
going on. Concerning objectivity as symmetry, see [9].) We now show
that reproducibility is symmetry, and we also show that reproducibility
implies analogy (which, as we saw in Sect. 1.3, is symmetry).

Let us express matters in terms of experiments and their results.
Reproducibility is then commonly defined by the statement that the
same experiment always gives the same result. But what is the ‘same’
experiment? Actually each experiment, and we are including here even
each run of the same experimental apparatus, is a unique phenomenon.
No two experiments are identical. They must differ at least in time (the
experiment being repeated in the same lab) or in location (the exper-
iment being duplicated in another lab), and might, and in fact almost
always do, differ in other aspects as well, such as in spatial orientation
(since Earth revolves and rotates). So when we specify ‘same’ exper-
iment and ‘same’ result, we actually mean equivalent in some sense
rather than identical. We cannot even begin to think about repro-
ducibility without permitting ourselves to overlook certain differences,
where those differences involve time, location, and orientation, as well
as various other aspects of experiments.

Consider the difference between two experiments as being expressed
by the change that must be imposed on one experiment in order to
make it into the other. Such a change might involve temporal displace-
ment, if the experiments are performed at different times. It might
(also) involve spatial displacement, if they are (also) performed at dif-
ferent locations. If the experimental setups have different directions in
space, the change will involve rotation. If they are in different states
of motion, a boost (a change of velocity) will be involved. We might
bend the apparatus. We might replace a brass part with a plastic one.
Or we might measure velocity rather than pressure. And so on.

But not all possible changes are changes we associate with repro-
ducibility. Let us list those we do. We certainly want temporal dis-
placement, to allow the experiment to be repeated in the same lab,
and spatial displacement and rotation, to allow other labs to perform
the experiment. The motion of Earth requires spatial displacement and
rotation even for experiments performed in the same lab as well as ve-
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locity boosts for those performed at different times or locations. Then,
to allow the use of different sets of apparatus, we need replacement by
other materials, other atoms, other elementary particles, etc. Due to
unavoidably limited experimental precision we must also include small
changes in the conditions. And we also need changes in quantum phases
(which are particularly quantum properties of systems, unrelated to
such as ‘liquid phase’), over which we have no control in principle.
Those are the most apparent changes associated with reproducibility.

Let us denote the set of all changes we associate with reproducibil-
ity – and add any I might have overlooked – by REPRO. We now
define reproducibility as follows: Consider an experiment and its re-
sult, consider the experiment obtained by changing the original one
by any change belonging to REPRO, and consider the result obtained
by changing the original result in the same way. If the changed result
is what is actually obtained by performing the changed experiment,
and if this relation holds for all changes belonging to REPRO, we have
reproducibility.

As an example, imagine some experiment whose result is a violet
flash emanating from some point in the apparatus some time interval
after the switch is turned on. Now imagine repeating the experiment
with the same apparatus, in the same direction and state of motion
relative to Earth, etc., but 8 1/2 hours later and at a location 2.2 kilo-
meters east of the original location. If a violet flash now appears 8 1/2
hours later than and 2.2 kilometers east of its previous appearance,
we have evidence that the experiment might be reproducible. (As we
know in this business, whereas a single negative result disproves repro-
ducibility, no number of positive results can prove it. A few positive
results make us suspect reproducibility; many will convince us; addi-
tional positive results will confirm our belief.)

Symmetry is materializing here; reproducibility is indeed symmetry.
We see that in this way. Consider a reproducible experiment and its
result. Change it and its result together by any change belonging to
REPRO. The pair (changed experiment, changed result) is in general
different from the pair (original experiment, original result), but there
is an aspect of the pairs that is immune to the change. This aspect is
the relation – call it physicality, actuality, reality, or whatever – that
the result is what is actually obtained by performing the experiment .
Said in other words, the symmetry that is reproducibility is that, for
any reproducible experiment and its result, the experiment and result
derived from them by any change belonging to REPRO are also an
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experiment and its actual result. Expressed in our two-point schema,
the symmetry is:

1. Possibility of a change. Changes belonging to REPRO can be per-
formed on the experiment and its result.

2. Immunity . The changed result remains the actual result of the
changed experiment.

Reproducibility implies analogy, discussed in Sect. 1.3. The analogy is
that the changed experiment is to the changed result as the original
experiment is to the original result for all changes belonging to RE-
PRO, with the relation that the result in each case is what is actually
obtained by performing the experiment.

Earlier in this chapter, in Sect. 2.2.1, I stated that the symmetry
implied by the observer-observed reduction is intimately related to the
symmetry that is reproducibility. Both symmetries involve immunity
under changes in observational activities. And in both cases the immu-
nity is that the observed behavior does not change. So reproducibility,
as a component of the foundation of science, is not independent of one
of the other components, reduction.

2.4 Predictability Is Symmetry

The other constituent of the foundation of science, along with repro-
ducibility and reduction, is predictability. Predictability means that
among the phenomena investigated, order can be found, from which
laws can be formulated, predicting the results of new experiments.
Then theories can be developed to explain the laws. We now show
that predictability, too, is symmetry and show as well the analogy
that predictability implies.

Here again we express things in terms of experiments and their re-
sults. Predictability, then, is that it is possible to predict the results of
new experiments. Of course, that does not often come about through
pure inspiration, but is much more usually attained by performing ex-
periments, studying their results, finding order, and formulating laws.

So imagine we have an experimental setup and run a series of n ex-
periments on it, with experimental inputs exp1, . . . , expn, respectively,
and corresponding experimental results res1, . . . , resn. We then study
those data, apply experience, insight, and intuition, perhaps plot them
in various ways, and discover order among them. Suppose we find that
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all the data obey a certain relation – denote it R – such that all the
results are related to their respective inputs in the same way. Using
function notation, we find that resk = R(expk), k = 1, . . . , n. This
relation is a candidate for a law res = R(exp) predicting the result res
for any experimental input exp. Imagine further that this is indeed
the correct law. Then additional experiments will confirm it, and we
will find that resk = R(expk) also for k = n + 1, . . . , as predicted.
Predictability is the existence of such relations for experiments and
their results.

For an example, consider again a given sphere rolling down a fixed
inclined plane, with the experimental procedure of releasing the sphere
from rest, letting it roll for any time interval t, and noting the distance
d the sphere rolls in that time. Here t and d are playing the roles of
exp and res, respectively. Suppose we perform ten experiments, giving
the data pairs (t1, d1), . . . , (t10, d10). We study the data and plot them
in various ways. The plot of distance dk against square of time interval
t2k looks like all ten points tend to fall on a straight line. That suggests
the relation that the distance traveled from rest is proportional to
the square of the time interval, dk = bt2k, k = 1, . . . , 10. And that in
turn suggests the law d = bt2 predicting the distance d for any time
interval t. As it happens, this hypothesis is correct, and all additional
experiments confirm it. The relation dk = bt2k is found to hold also for
k = 11, 12, . . . , i.e., also for data pairs (t11, d11), (t12, d12), . . . . Thus,
the relation of distance to time interval is a predictable aspect of the
setup.

That predictability is symmetry can be seen as follows. For a given
predictable experimental setup consider all the experiment–result pairs
(exp, res) that have been, will be, or could be obtained by perform-
ing the experiment. Change any one of these into any other simply
by replacing it. The changed pair is different from the original one in
general, but the pairs possess an aspect that is immune to the change.
This aspect is that exp and res obey the same relation for all pairs,
namely, the relation res = R(exp). Put in different words, the sym-
metry is that for any experiment and its result, the experiment and
its result obtained by changing the experimental input obey the same
relation as the original experiment and result. In the two-point schema:

1. Possibility of a change. The input to the experiment can be
changed.

2. Immunity . The experimental result maintains the same relation
with the experimental input.
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Just as for reproducibility, predictability implies analogy: For a pre-
dictable experimental setup any experiment is to its result as any other
experiment is to its result. The same relation res = R(exp) holds for
the input exp and result res in each case.

It might prove enlightening to consider a case study here. Let us
study the archetypal case of Kepler and his three laws of planetary mo-
tion. While pondering the many and various astronomical phenomena
known to him, Kepler found a certain order within the general confu-
sion. He found a classification of the motions of the celestial bodies,
whereby the motions of the then known planets were assigned to one
class and the motions of all the other bodies were assigned to another.
The significant characterization of the former class, that of the planets,
was that in a heliocentric reference frame (1) the orbit of each body
is an ellipse with the Sun at one of its foci, (2) the radius vector of
each body from the Sun sweeps out equal areas in equal time intervals,
(3) the squared ratio of the orbital periods of any two bodies equals
the cubed ratio of their respective orbital major axes. The class of all
the non-planets was characterized, of course, by the nonfulfillment of
(1)– (3). Thus the planetary motions were transformed, through the
order Kepler perceived, from a set of individual motions, each requir-
ing its own explanation, to a class of motions requiring a common
explanation.

As we saw in Sect. 1.3, classification implies and is implied by anal-
ogy. Thus the motions of the known planets were found to be analogous
in that they all fulfilled (1)–(3), while the motions of all the other ce-
lestial bodies were analogous in that they did not fulfill (1)–(3). We
also saw that analogy and classification are symmetry, and we just
saw that this symmetry in the present case is the symmetry that is
predictability. Kepler’s order = classification = analogy suggested that
(1)–(3) might be laws of planetary motion for all solar planets, not just
for the then known ones, and indeed this hypothesis has been contin-
ually confirmed as additional planets have been discovered. To put
things in terms of experiments and their results, the discovery of ad-
ditional planets might be thought of as additional experiments, whose
results fit the laws derived from the order perceived in the motions of
the previously known planets, which might be thought of as previous
experimental results. Kepler’s laws inspired Newton to develop an ex-
planatory theory in the form of his three laws of motion and his law
of gravitation.

For another example of order, leading to law and predictability,
leading to theory, we can consider the periodic table of the chemical
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elements that exemplified Ernest Rutherford’s ‘butterfly collecting’ in
the Preface and was discussed more thoroughly in Sect. 1.3. The order
and law that the chemists found, as expressed by the periodic table, did
indeed allow them to predict the existence of elements that were miss-
ing from the table and, moreover, predict their properties. When those
elements, such as gallium and germanium, were eventually discovered,
their properties were found to be very close to what was predicted. The
explanation of the periodic table was eventually provided by physics,
Rutherford’s ‘real science’, in the form of quantum theory.

In Sect. 2.2.3 earlier in this chapter, I stated that the symmetry
implied by reduction into initial state and evolution and that implied
by reduction into quasi-isolated system and environment are intimately
related to the symmetry that is predictability. Well, now is the time
to justify the statement. Predictability is the result of order and law,
in particular law of evolution. We can predict what the outcome of
a situation will be, if we know the law of evolution for the system
under consideration. This is reduction into initial state and evolution.
No such reduction, no predictability. Hence they are related intimately
and so, therefore, are the symmetries that they imply.

The possibility of usefully performing a reduction into initial state
and evolution hinges on a successful reduction into quasi-isolated sys-
tem and environment. Only then is the system sufficiently free of the
uncontrollable and unpredictable influences of the environment to be
able to exhibit orderliness and lawful behavior, which allow the possi-
bility of a useful reduction into initial state and evolution and thus al-
low predictability. That intimately relates predictability and reduction
into quasi-isolated system and environment and, accordingly, relates
their implied symmetries. Q.E.D.

2.5 Analogy in Science

Since both reproducibility and predictability imply analogy and anal-
ogy is symmetry, I would be remiss if I did not take this opportunity to
elaborate a bit on the role of analogy in science. It has been stated [13]:
“The value of [. . . ] analogies in stimulating research [ . . . is] self-evident
. . . ,” and “. . . it cannot be denied that analogy plays an important
role in scientific creativity.” I would put it much more strongly and
state that analogy is essential in any science-related activity. My jus-
tification for this claim is the following.
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We showed in Sects. 2.3 and 2.4 that analogy lies at the founda-
tion of science, specifically that both reproducibility and predictability
imply analogy. For reproducibility, any experiment-result pair can be
changed by any of the set of changes associated with reproducibility,
and the changed result is what is actually obtained by performing
the changed experiment. Thus, all experiment-result pairs related by
reproducibility-associated changes are analogous in that they all obey
the same relation, namely, that the result is what is actually obtained
by performing the experiment. For predictability, all actual and po-
tential experiment-result pairs for the same predictable experimental
setup are analogous in that they all obey the same law, usually ex-
pressed as a mathematical relation, as in the example of the rolling
sphere.

Zooming in on predictability and order, the analogy involved there
is more familiar than might be thought. After all, order, in any sense of
the term, involves classification, which implies analogy. Thus, however
one prefers to look at the matter, analogy is essential for any science
related activity, be it science teaching, science research, or scientific
creativity.

For discussions of analogy in science see [14], for a very general
discussion, and [13], where analogy symmetry is given the name ‘logical
symmetry’ and its pertinence to classification in science and to the
periodic table of the chemical elements in particular is discussed.

Examples are certainly warranted here, and we might start with
Kepler’s three laws of planetary motion, which served us so well in
Sect. 2.4. Kepler concluded from the astronomical data available to him
that the motions of all the observed planets obeyed the same laws. That
made the planets analogous, introduced order into the astronomers’
picture of the solar system, and enabled Newton to derive his three
laws of motion and law of gravitation.

For another example, Mendeleev’s periodic table of the chemical
elements exhibited order and analogies among the elements [13]. Those
analogies were a major driving force in the development of models of
atomic structure and in the development of quantum theory to explain
the structure.

For yet another example, the analogies discovered among the ele-
mentary particles [10,15,16] were and are essential to the development
of theories of their behavior and structure.
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2.6 Symmetry at the Foundation of Science

We are now in a position to recognize and appreciate how large a role
symmetry plays in the foundation of science. First, reproducibility,
a major component of that foundation, is symmetry. And reproducibil-
ity implies analogy, which is symmetry also (see Sect. 2.3). Second,
predictability, another major component of the foundation of science,
is symmetry too. And it, too, implies analogy, which again is symmetry
(refer to Sect. 2.4). And third, reduction, which forms the third major
component of the foundation of science, is symmetry (see Sect. 2.2).
In addition, objectivity is symmetry (see Sect. 2.2.1).

What is going on here? Where does all this symmetry come from?
What does it mean? What is this telling us?

It seems to me that to answer these questions we should recall that
science, whose foundation, as we just learned, is flooded with symme-
try, is our attempt to understand rationally and objectively the repro-
ducible and predictable aspects of nature . Note: (1) Our attempt. (2)
‘Understanding’ here refers to our understanding. (3) Reproducibility
has to do with our investigational activities. (4) Predictability means
that we can predict. So science is very much about us. Of course, for
science to succeed, nature must possess reproducible and predictable
aspects and be understandable rationally and objectively. So the suc-
cess of science is saying something about nature itself, about the on-
tology of nature.

But the ‘we/us/our’ character of science is an epistemological mat-
ter, having to do with the acquisition of knowledge about nature and
achievement of understanding. So the abundance of symmetry at the
foundation of science reflects on the way we view nature: We see na-
ture through symmetry spectacles. Apparently it is built into our in-
nate perceptional makeup to pay special attention to patterns and to
notice order, analogy, and symmetry. Presumably that trait evolved in
Homo sapiens as an advantageous one, since it does prove to be very
useful.

Might we then go so far as to claim that science is symmetry? Well,
I suppose this is a matter of taste. I would indeed go so far. But even
if you disagree with me about this, I hope you do agree that it is not
too much of a stretch.

We will see in Chap. 3 that science reveals many and diverse sym-
metries in nature. Indeed, it turns out that our understanding of what
appear to be very fundamental aspects of nature is couched in terms
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of symmetry. So not only do we view nature through symmetry spec-
tacles, but we understand nature in the language of symmetry. Yet it
is hardly justified to claim that nature is symmetry, at least at our
present stage of understanding. We understand enough to know that
there is much more to understand. It is clear that deeper levels of
nature must underlie what now seems to be fundamental. The way
nature has been revealing itself through science so far would lead us
to expect that symmetry will be found to play a major role at those
very fundamental levels. Perhaps it will be found that in some sense
nature indeed is symmetry. That is something to look forward to. But
more about this in Chap. 3.

2.7 Summary

We started out in Sect. 2.1 by defining nature as the material universe
with which we can, or can conceivably, interact. Science, then, is our
attempt to understand rationally and objectively the reproducible and
predictable aspects of nature. In Sect. 2.2 we saw that science oper-
ates by the method of reduction, by ‘slicing’ the Universe into ‘parts’,
and that reduction implies symmetry. Three ways that reduction is ap-
plied in science are: observer and observed, quasi-isolated system and
environment, and initial state and evolution, discussed in Sects. 2.2.1,
2.2.2, and 2.2.3, respectively. The symmetry implied by each reduction
was pointed out. It is for quasi-isolated systems that order and law are
found, so for such systems reduction into initial state and evolution
can be useful.

Science rests firmly on the triple foundation of reproducibility, pre-
dictability, and reduction. In Sect. 2.3 we discussed in detail repro-
ducibility, the possibility of replicating experiments, and saw how re-
producibility is symmetry and how it implies analogy, which is sym-
metry too. Then, with a detailed discussion in Sect. 2.4, we saw the
same for predictability, the existence of order from which laws can
be formulated, predicting the results of new experiments. In Sect. 2.5
we elaborated a bit on the role of analogy, which is symmetry, in sci-
ence and in any science related activity: It is absolutely essential. And
putting it all together, we saw in Sect. 2.6 that via reproducibility,
predictability, and reduction, and with the help of analogy, symmetry
holds major importance in the foundation of science. So much so, in
fact, that one might well claim that science is symmetry.
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Symmetry in Physics

Science possesses a hierarchical structure, in which each of its various
hierarchy levels, or ‘sciences’, maintains a rather independent exis-
tence. The science of chemistry, for instance, can operate largely within
its own framework, without reference to other sciences. Similarly for bi-
ology, physics, psychology, and sociology, as examples. However, when
explanations are required from outside any particular science, such ex-
planations have very well defined directions, which impose order in the
hierarchy of the sciences.

Extrachemical explanations about chemical phenomena come only
from physics and from no other science. When an explanation for a bi-
ological effect is required from outside biology, its source invariably
lies either in chemistry or in physics, or possibly in both, and not in
any other science. The science of mind, psychology, is more and more
obtaining extrapsychological explanations from biology. Extrasociolog-
ical explanations for sociological phenomena come from psychology.
Physics, alone among the sciences, has no need for any of the other
sciences to explain anything within its purview.

Thus a hierarchy exists, in which physics can be pictured at the
bottom, in foundation position, chemistry just above physics, biology
lying above chemistry, psychology above biology, and sociology on top
of psychology. Every level obtains explanations solely from lower levels.
Thus, all explanations from one science to another eventually reach
physics and physics is therefore the most fundamental science.

As the most fundamental of all sciences, physics studies the most
fundamental aspects of nature. It turns out that those aspects reveal
much symmetry, even beyond the symmetries that allow science to op-
erate through reproducibility, predictability, and reduction, with the
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help of analogy and objectivity, as described in Chap. 2. In the present
chapter we start discussing how physics deals with the symmetries of
nature and what kinds of symmetry nature presents.

In line with the somewhat more technical character of this chap-
ter compared with the previous ones, our terminology becomes more
technical as well. We start by replacing the term ‘change’, in the sense
of what symmetry is immunity under, with transformation, which is
the conventional usage.

3.1 Symmetry of Evolution

Two important and useful manifestations of symmetry in physics are
symmetry of evolution of quasi-isolated physical systems and symme-
try of states of physical systems. We start with a discussion of the
former.

Physical systems evolve. Systems evolve from initial states to final
states, if considered discretely, or considered continuously, the states
of systems are functions of time. Physics is concerned with the evo-
lution of quasi-isolated systems, because their evolution is found to
have reproducible and predictable features (see Sect. 2.2.2). Indeed,
the choice of what is to be considered a state for a system is made in
such a way as to maximize those features.

(Note the circularity here. A physical system is declared quasi-
isolated if it exhibits reproducibility and predictability with suitable
choice of state. In fact, it is by the lack of reproducibility and pre-
dictability that new effects and interactions are discovered, such as
occurred in the discovery of the neutrino, for example.)

Symmetry of evolution of quasi-isolated systems means that there is
some transformation that, if applied to any physically possible evolu-
tion, would result in another physically possible evolution, and if hypo-
thetically applied to any impossible evolution, would result in another
impossible evolution. For quantum phenomena it would result in an
evolution having the same probability. The aspect of evolutions that
is immune to the transformation is then their possibility, impossibility,
or probability. Such symmetry is reflected in the laws and theories de-
scribing and explaining the evolution of quasi-isolated systems and as
such is also called symmetry of the laws of nature. Symmetries of evo-
lution of quasi-isolated systems, or symmetries of the laws of nature,
are intimately associated with conservations (also called conservation
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laws), such as conservation of energy, conservation of momentum, and
conservation of electric charge. We elaborate on that in Sect. 3.7.

As in the discussion of reproducibility in Sect. 2.3, in the present
discussion, too, it is convenient to express things in terms of experi-
ments (initial states of quasi-isolated systems) and their results (the
final states evolving from them). So consider some transformation ap-
plied both to an experiment and to its result. If the actual result of
performing the transformed experiment is the same as the transformed
result of the original experiment and if that is valid for all experi-
ments, we will have symmetry of evolution (or, symmetry of the laws
of nature). In other words, we will have symmetry of evolution under
a transformation, if for any experiment and its result, the experiment
and result derived from them by the transformation are also an exper-
iment and its actual result. The aspect of experiment-result pairs that
is immune to the transformation is, just as for reproducibility, that the
result is what is actually obtained by performing the experiment .

The physical significance of symmetry of evolution is that nature
is indifferent to certain aspects of physical systems, that the evolu-
tion of physical systems is independent of certain of their aspects. Or
stated in other words, certain aspects of physical systems are irrelevant
to the systems’ evolution. All transformations affecting only those as-
pects of physical systems that are irrelevant in this sense are symmetry
transformations of evolution, and any transformation affecting a rel-
evant aspect cannot be a symmetry transformation of evolution. So
two systems differing only in irrelevant aspects will evolve in exactly
the same way save for their (irrelevant) difference, and thus their dif-
ference will be preserved throughout their evolution, resulting in final
states that differ precisely and solely as did the respective initial states.
The transformation bringing about this difference is thus a symmetry
transformation of evolution.

When symmetry of evolution is reflected in laws and theories as
symmetry of the laws of nature, it is sometimes referred to as express-
ing ‘impotence’. The idea is that the laws and theories are ‘powerless’
to grasp and take into consideration the irrelevant aspects involved
in the symmetry, those aspects to which nature is indifferent. Thus
indifference of nature is exhibited as impotence of laws and theories.

Now, nature does indeed possess such symmetries. As far as is
known at present, the universal symmetries of evolution of quasi-
isolated systems are symmetries under spatial displacements (chan-
ges of location), temporal displacements (changes of time), rotations
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(changes of orientation), changes of velocity (also called boosts) up to
the speed of light [or, taken together and formulated group theoreti-
cally, symmetry under the Poincaré group of space-time transforma-
tions (Jules Henri Poincaré, French mathematician, 1854–1912), the
symmetry required by the special theory of relativity], and a certain
kind of change of phase (a more abstract kind of transformation) de-
noted U(1). (Here the term ‘phase’ refers to a quantum characteristic
of a system and has nothing to do with such as ‘solid phase’. Note
that many of these symmetries are involved in the symmetry that we
already know as reproducibility, which was discussed in Sect. 2.3, so
that the very existence of science already implies certain symmetries
of evolution, but we refrain from elaborating on the point.) Expressed
in another way, the just-mentioned universal symmetries mean that
with regard to the evolution of quasi-isolated systems nature does not
recognize, respectively, absolute position, absolute instant, absolute
direction, absolute velocity, or absolute phase.

As an example, symmetry of evolution under spatial displacements,
the indifference of nature to position, can be expressed in this manner:
Any two physical systems that are simultaneously in identical states,
except for one being here and the other being there, will evolve into
final states that are also simultaneously identical, except for one being
here and the other there, respectively, for all heres and theres. Thus,
nature does not recognize absolute position through the evolution of
quasi-isolated systems. Laws and theories must accordingly be impo-
tent with regard to position, and the only position variables that can
be allowed to enter them are relative positions. So if one is developing
a mathematical theory of, say, the interaction of two particles, the only
position variable that can appear in the theory is the relative position
of one particle with respect to the other.

Or, we can express the symmetry of evolution under boosts (veloc-
ity changes), the indifference of nature to velocity, this way: Any two
physical systems that are simultaneously in identical states, except for
one moving at constant velocity with respect to the other, will evolve
into final states that are also simultaneously identical, except for one
moving at the same constant velocity with respect to the other, respec-
tively, for all velocities up to the speed of light. In that way nature does
not recognize absolute velocity through the evolution of quasi-isolated
systems. Accordingly, laws and theories must be impotent with regard
to velocity, and the only velocity variables allowed in them are relative
velocities.
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As another example of symmetry of evolution, but not a universal
symmetry, consider any macroscopic system, which can be described
both in terms of its macrostates and in terms of its microstates, where
every macrostate represents a class of corresponding microstates. The
macroscopic evolution of such a system is indifferent to the actual mi-
crostate realizing its macrostate, or in other words, its microstate is an
irrelevant aspect of its macrostate with regard to its macroevolution.
Thus we have symmetry of macroevolution under the transformation
of permuting, i.e., switching around, microstates corresponding to the
same macrostate. This symmetry is not universal, because not all sys-
tems are macroscopic and have the dual characterization in terms of
microstates and macrostates.

To be more specific, imagine a quantity of pure ideal gas in thermal
contact with a heat bath, which is a system whose job is to maintain
a constant temperature. The gas’s macrostates can be specified by the
quantities: pressure, volume, temperature, and amount of gas (for in-
stance, the number of molecules or moles). The macroevolution of the
gas is described by the ideal gas law pV = nRT , where p denotes the
pressure, V the volume, n the quantity of gas, T the absolute tem-
perature, and R is a suitable constant. The gas’s microstates can be
specified by the position and velocity of every one of its molecules.
Its microevolution is described by Newton’s laws of motion and what-
ever intermolecular force law applies. The heat bath maintains a con-
stant temperature, by definition, and we need not get involved with
its microstates.

Now, imagine starting with the gas in some macrostate and the
heat bath at twice the gas’s absolute temperature and putting the two
in contact, while maintaining a constant quantity of gas at a constant
volume. Then the system will very rapidly evolve to equalize temper-
atures and thus evolve to a macrostate in which the gas has twice the
absolute temperature and twice the pressure than it did before the
process and in which the bath temperature is unchanged. That evolu-
tion is independent of the particular microstates the gas and the bath
are in at any time. Whatever the combined system’s initial microstate,
it will evolve to some microstate among those that correspond to its
final macrostate.

It is also a possibility, and in fact it happens, that nature possesses
symmetries of evolution that are not valid for all systems, but only for
certain ones of them. Such inexact symmetries are described, according
to the case, as ‘partial’, ‘limited’, or ‘approximate’. For example, sym-
metry of evolution under the transformation of particle-antiparticle
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conjugation (the replacement of every particle with its corresponding
antiparticle) is valid only for all systems that do not involve neutri-
nos. Also, symmetry of evolution under the transformation of spatial
inversion (reversal of all directions, which is equivalent to mirror re-
flection combined with a 180◦ rotation) is valid only for systems that
do not involve neutrinos. Yet symmetry of evolution under the com-
bined transformation of particle-antiparticle conjugation and spatial
inversion is valid for systems involving neutrinos, but not for those
that involve neutral kaons, for instance.

Consider also the transformation of time reversal. This has nothing
to do with time running backwards, whatever that might mean. It is
the replacing of an evolution with an evolution that starts from the end
of the original evolution and ends at the original evolution’s beginning.
Think of it as running a video, DVD, or movie in reverse. Symmetry
of evolution under time reversal means that the original evolution and
its time reversed counterpart would either both be physically possible,
both be physically impossible, or both have the same probability. This
symmetry is not valid for macroscopic systems. Whereas a dropped raw
egg splatters and makes a mess, such a mess is never found to collect
itself together and jump up into one’s hand as an intact egg. Yet at
the level of the fundamental interactions, symmetry of evolution under
time reversal is valid in general, but not for a class of systems including
those that involve neutral kaons.

Earlier in this section we mentioned change of phase. One universal
symmetry of evolution of quasi-isolated systems is indeed symmetry
under a certain kind of phase change, denoted U(1). Other kinds of
phase change are associated with partial symmetry of evolution. Evo-
lutions that are governed by the strong interaction possess symmetry
under a certain kind, denoted SU(3), while this symmetry is invalid
for evolutions controlled by the weak interaction. The latter evolutions
have their own symmetry under a different kind of phase change, whose
symbol is SU(2).

3.2 Symmetry of States

Another important and useful manifestation of symmetry in physics
is the symmetry of states of physical systems. This manifestation
would seem reasonably straightforward: We have symmetry of states,
or a state is symmetric, if it is possible to change a state in a way that
leaves some aspect of it intact. That, however, is opening a Pandora’s
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box of triviality and boredom, since very many physical systems are
sufficiently complex that there are very many physically trivial and
uninteresting transformations that leave intact very many physically
trivial and uninteresting aspects of their states.

Well, if it is physical significance and interest we want, and that is
certainly what scientists should want, we had better let nature guide
us. And nature has spoken: Let the immune aspects of states be their
irrelevant aspects in the sense of Sect. 3.1, those aspects to which na-
ture is indifferent and with regard to which the laws and theories are
impotent, whether totally, partially, approximately, or to some lim-
ited degree. The transformations under which states are symmetric,
then, are the transformations involved in the symmetries of evolu-
tion, again either exact symmetries or partial, approximate, or limited
symmetries. Under those transformations the transformed state is in-
distinguishable (or approximately indistinguishable) by nature from the
original .

That being the situation, then how, one very well might ask, do
the transformed and original states differ at all, and just what trans-
formations were actually performed? Indeed, there is no difference be-
tween the transformed and original states and, indeed, the transforma-
tions are invisible – within the context of the quasi-isolated system for
whose evolution the immune aspects of states are irrelevant, so that the
state is symmetric under the transformations. That purely and sim-
ply follows from our definitions. The states are distinguishable and the
transformations detectable only with respect to some suitable external
system to which the transformations are not applied. Such a system is
a reference frame for the transformations. (We discuss reference frames
in Sect. 3.3.)

As an example, consider the action of any of the universal symme-
try transformations mentioned in Sect. 3.1, say spatial displacement,
on any state of a quasi-isolated system. Within the system the trans-
formed and original states do not differ in any way that nature can
distinguish; their difference is irrelevant. Put in more familiar terms,
no experiment carried out wholly within the system can detect any
difference between the states. Or in other words, absolute position is
undetectable within a quasi-isolated system. (However, they do differ
with respect to a fixed coordinate system external to the system under
consideration.)

For another example, replace ‘spatial displacement’ with ‘boost’
(change of velocity) in the previous example. The bottom line then
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becomes: Absolute velocity is undetectable within a quasi-isolated sys-
tem. And so on for the other universal symmetry transformations:
rotations and certain phase changes and the undetectability within
quasi-isolated systems of absolute direction and absolute phase. And
similarly for the limited symmetry transformations.

As an additional example, consider an equilaterally triangular ho-
mogeneous flat metal plate. The system possesses symmetry under ro-
tations by 120◦ and 240◦ about its center within its plane with respect
to appearance and macroscopic physical properties. This means that
any triplet of states mutually related by those rotations are indistin-
guishable by means of external appearance and macroscopic physical
properties. External appearance involves the evolution of light waves
impinging on and absorbed and reflected by the surface of the plate,
which means that such triplets of states absorb and reflect light in the
same way, as far as our visual perception is concerned. That is the
basic immunity that underlies unchanged external appearance. As for
macroscopic physical properties, the states of such a triplet are actually
microstates corresponding to the same macrostate, and the macroevo-
lution involved in macroscopic physical properties cannot distinguish
among them. That is the basic immunity here.

For another example, note that with respect to macroevolution,
every macrostate of a quasi-isolated macroscopic system is symmetric
under change of microstate realizing that macrostate. The difference
between microstates corresponding to the same macrostate is irrelevant
to the macroevolution of the system. For instance, every macrostate of
a gas (specified, say, by pressure, volume, temperature, and quantity
of gas) can be realized by a very large of number of microstates (char-
acterized by the position and velocity of every molecule). As far as
quasi-isolated macroevolution of the gas is concerned, it is immaterial
which of all those microstates realizes a macrostate. If the gas evolves
from some initial macrostate to some final macrostate, then whatever
its initial microstate realizing its initial macrostate, its microevolution
will take it into some final microstate realizing its final macrostate.

One of the most impressive – to me, at least – manifestations of
state symmetry in nature is the crystalline state. The transformations
under which every crystal is symmetric are spatial displacements by
integer multiples of certain minimal displacements, which are the di-
mensions of the crystal’s unit cell. (The unit cell of a crystal is the
‘building block’ of the crystal, in the sense that a perfect crystal can
be viewed as constructed of very many replicas of the unit cell arrayed
in precise spatial order in three dimensions.) In addition, a crystal
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might also possess symmetry under various rotations, reflections, and
combinations of those. In actuality all these symmetries are approx-
imate, due to the finite size of a crystal and to naturally occurring
defects in the crystal structure. So when we think of crystalline sym-
metry, we are really thinking of a perfectly structured infinite crystal,
called a crystal lattice.

The coexistence of rotation, reflection, and discrete displacement
symmetries for a crystal lattice imposes severe limitations on the pos-
sible combinations of those symmetries, which are the subject of crys-
tallography. For instance, it is rather easy to show that any axis of
rotation symmetry of a crystal lattice must be either two-fold (i.e.,
symmetry under 180◦ rotations about the axis), three-fold (symmetry
under 120◦ and 240◦ rotations), four-fold (symmetry under 90◦, 180◦,
and 270◦ rotations), or six-fold (symmetry under rotations by inte-
ger multiples of 60◦). Five-fold, seven-fold, and higher-fold rotation
symmetry axes are simply incompatible with symmetry under spatial
displacements.

Thus, it came as a very big surprise when five-fold rotation symme-
try was experimentally detected in certain crystals [17]. It turned out,
however, that the five-fold symmetry was not symmetry of the lattice
as a whole – as indeed it could not be – but rather the symmetry
of certain local, limited configurations of atoms (or ions or molecules,
as the case may be) that happened to legitimately form part of the
crystal structure.

Another very interesting and important phenomenon involving
state symmetry has to do with phase transitions, such as the freezing
of liquid water and its inverse, the melting of ice. (Phase transition
has nothing to do with change of phase that we discussed in Sect. 3.1.
‘Phase’ in ‘phase transition’ refers to a macroscopic state of matter,
such as solid, liquid, or gas, while ‘phase’ in ‘change of phase’ denotes
an abstract, mathematical, quantum property of a system.) Let us
follow just such a phase transition from the point of view of state sym-
metry. Imagine starting with liquid water. At any instant the water
molecules and ions are distributed in quite a random manner through-
out the liquid’s volume. So at any instant the liquid does not possess
any displacement, rotation, or reflection symmetry. However, the mi-
croscopic constituents of the liquid are in constant random motion. So
on average over time the liquid can be considered to be homogeneous
and isotropic and to be symmetric under all displacements, rotations,
and reflections. Actually, as for a crystal, it is only an infinite volume
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of liquid that ideally possesses those symmetries. But we ascribe them
to the actual volume of liquid.

When liquid water is cooled to its freezing point, 0◦C under stan-
dard conditions, further removal of heat causes it to undergo a phase
transition and become ice, a crystalline solid. There is also a con-
comitant reduction of symmetry. Instead of the liquid’s symmetry
under all spatial displacements, the solid possesses symmetry only
under displacements that are integral multiples of certain minimal dis-
placements. Instead of symmetry under all rotations about all axes,
ice is symmetric only under certain rotations about certain axes.
And instead of symmetry under all reflections, we find symmetry
only under certain reflections. The phase transition creates distinc-
tions among locations, directions, and orientations that were initially
indistinguishable.

On the other hand, a solid-to-liquid phase transition brings about
an increase of symmetry. The limited symmetry of the crystal state
becomes the wider symmetry of a liquid. Initially distinct locations,
directions, and orientations become indistinguishable.

A phase transition that is somewhat similar to the liquid-to-solid
one occurs when a ferromagnetic material is cooled. This kind of ma-
terial is one that exhibits a strong response to an applied magnetic
field by becoming a magnet itself and greatly reinforcing the applied
field. At sufficiently high temperature and in the absence of an external
magnetic field, a ferromagnetic material is not magnetized. In a very
sketchy description, the atoms of a ferromagnetic material are them-
selves tiny magnets that affect their neighbors strongly, so that there
exists a tendency for the atoms to align with each other and reinforce
each other’s magnetic field. An external, applied magnetic field tends
to force those elementary magnets to align with it. On the other hand,
when the material is sufficiently warm, the random thermal motion of
the atoms overcomes their tendency to align and, in the absence of
an applied magnetic field, they take no distinguished direction on the
average. So the material then possesses symmetry under all rotations
about all axes.

As such a material is cooled, it reaches a temperature at which it
undergoes a phase transition. In that transition the tendency of the
atoms to align with each other overcomes the randomizing effect of
their thermal motion, and the elementary atomic magnets align with
and magnetically reinforce each other. The material spontaneously be-
comes a macroscopic magnet. That introduces a distinguished direc-
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tion, the direction of the magnet’s axis, which the material did not
posses at higher temperatures. Thus the phase transition of sponta-
neous magnetization is accompanied by a reduction of symmetry. Sym-
metry under all rotations about all axes reduces to symmetry under
all rotations about all axes in but a single direction.

For some other kinds of phase transition, see, for example, [18]
and [19].

3.3 Reference Frame

In Sect. 1.2 we saw that for a transformation to be physically signifi-
cant, a reference frame is needed. The reference frame must be affected
by the transformation. So if a transformation is one that is involved
in symmetry, an appropriate reference frame for the transformation
must be asymmetric under the transformation. In the present section
we discuss the idea of reference frame in detail.

A reference frame is a standard by which transformations are de-
fined, performed, and detected and by which states are distinguished.
By its very raison d’être a reference frame cannot be immune to the
transformations for which it is to serve as reference, nor can those
transformations be applied to it . Therefore, a reference frame must
be asymmetric under the transformations for which it is a reference;
even if transformations are involved in symmetries of any kind, their
reference frame must violate those symmetries.

Accordingly, a reference frame for spatial displacement, for exam-
ple, must possess a distinguished origin, must have scales marked off in
three independent directions, and must be declared fixed in space and
thus unaffected by any spatial displacing that might be occurring. Such
a reference frame is indeed asymmetric under spatial displacement.

Or, for particle-antiparticle conjugation, which is the replacement
of every particle with its corresponding antiparticle, an appropriate
reference frame would be a set of standard declared particles – a pro-
ton, a neutron, an electron, etc. – preserved at an intergalactic bureau
of standards, with which by comparison one could distinguish between
proton and antiproton, neutron and antineutron, etc. Fortunately our
own bodies furnish such a standard, at least for the proton, neutron,
and electron. If the universe consisted solely of photons and gravi-
tons, which are the respective antiparticles of themselves, there would
be no reference frame for standard particles, the concept of particle-
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antiparticle would be meaningless, and so would particle-antiparticle
conjugation and symmetry under it.

Transformations made on physical systems, where the transforma-
tions are referred to fixed reference frames, are called active transfor-
mations. That is the only kind of transformation we have been consid-
ering so far in this book. However, one can do things differently. In con-
trast, transformations can be made only on reference frames without
affecting the physical systems under investigation. Such transforma-
tions are called passive transformations. Thus, while active transfor-
mations actually transform states to physically different states, passive
transformations do not transform states but transform the descrip-
tions of the same states, i.e., they transform only the names of states.
A given transformation, with no specification of what it is supposed
to affect, can freely be viewed either actively or passively, i.e., either
as a transformation of state or as a transformation of reference frame,
where the latter transformation is the inverse of the former. In other
words, an active transformation can be given a passive interpretation
and vice versa.

For example, a particle located at a point with x, y, z coordinates
(1, 2, 5) might be actively moved two units in the positive x direc-
tion, so that its new location becomes (3, 2, 5). Alternatively, a passive
transformation might be made, leaving the particle at (1, 2, 5) right
where it is, while shifting the coordinate system two units in the neg-
ative x direction, giving the untransformed location of the particle the
new name (3, 2, 5). In both cases, the state designated (1, 2, 5) is trans-
formed to the state named (3, 2, 5). From the active point of view, the
state is physically transformed, and the change of name simply re-
flects the fact. From the passive point of view, nothing is physically
changed, and the change of name merely reflects the transformation
of the coordinate system, the same state having different descriptions
with respect to different coordinate systems. Note that the transfor-
mation of reference frame in the passive interpretation, a two-unit shift
in the negative x direction, is the inverse of the transformation of state
in the active interpretation, which is a two-unit shift in the positive x
direction.

For another example, let us actively perform particle-antiparticle
conjugation on a proton and change it into an antiproton, physically
transforming the state called ‘proton’ to the state called ‘antiproton’,
which is a very different state from ‘proton’. (For instance, an an-
tiproton carries negative electric charge, while a proton is positively
charged.) Now instead, let us conjugate our bodies, our standard for
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distinguishing between particles and antiparticles, and transform our
bodies into antibodies, while continuing to declare whatever is serving
as our bodies to be the standard for the proton. Then the particle in
state ‘proton’, without undergoing any physical transformation what-
soever, without changing its physical properties in the slightest, will
find itself in state ‘antiproton’, since it will now be the antiparticle
of the newly declared standard proton. It will have its untransformed
state relabeled simply as a result of the passive transformation of ref-
erence frame.

Under both transformations a state designated ‘proton’ is trans-
formed to a state called ‘antiproton’. From the active point of view
a proton is physically transformed into an antiproton, and the name
of the state is changed accordingly. From the passive point of view
there is no physical transformation, and the change of state desig-
nation is merely the result of the transformation of reference frame,
changing the declared standard proton from a proton to an antiproton,
with the same physical state having different names with respect to
the different reference frames. In the present example both the active
transformation and the passive transformation are particle-antiparticle
conjugation, and this transformation is inverse to itself.

One might, and with good reason, ask how a transformation of ref-
erence frame is made. Is another reference frame needed to define the
transformation? The answer is that the original reference frame serves
as reference for its own transformation. The transformation is first de-
fined with respect to that reference frame and then the transformation
is performed on it.

The transformations we have been considering in the preceding sec-
tions were all active transformations. However, since it is formally
possible to give any active transformation a passive interpretation as
the inverse transformation performed on the reference frame, all the
symmetries we have been discussing can be formulated equivalently
in terms of immunity to possible (passive) transformation of reference
frame rather than in terms of immunity to possible (active) transfor-
mation of experiment, result, state, etc. Still, I prefer the active point
of view for formulating the symmetries of nature, one reason being
that, as in the last example, transformed reference frames are not al-
ways physically realizable.

Let us taste the flavor of the passive point of view of symmetry in
practice. Recall from Sect. 3.1 that symmetry of evolution of quasi-
isolated systems means that there is some transformation that, if ap-
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plied to any possible evolution of the system, would result in another
possible evolution, and if hypothetically applied to any impossible evo-
lution, would result in another impossible evolution. For quantum phe-
nomena it would result in an evolution having the same probability.
That is the active point of view. The passive formulation of symmetry
of evolution of quasi-isolated systems is that there is some transforma-
tion such that, if applied to any reference frame, any pair of evolutions
of identical description, as referred one to the transformed and the
other to the original reference frame, are either both possible or both
impossible or, for quantum phenomena, both have the same probabil-
ity. This can be expressed in terms of experiments and their results.
Consider some transformation applied to any reference frame. If for
all pairs of experiments of identical description, as referred one to the
transformed and the other to the original reference frame, their results,
similarly and respectively referred, are also of identical description, we
have symmetry of evolution. Or expressed very compactly, the pas-
sive formulation of symmetry of evolution is that the same physics
is found with respect to all pairs of reference frames related by some
transformation.

As an example, the active formulation of symmetry of evolution
under spatial displacements, as presented in Sect. 3.1, is this: Any two
physical systems that are simultaneously in identical states, except
for one being here and the other being there, will evolve into final
states that are also simultaneously identical, except for one being here
and the other there, respectively, for all heres and theres. The passive
formulation of that symmetry is: For any pair of spatially displaced,
but otherwise identical, reference frames, any two physical systems
that are simultaneously in states of identical description, as referred
one to one reference frame and the other to the other, will evolve
into final states that are also of identical description, similarly and
respectively referred. Or, expressed compactly: The same physics is
found with respect to all pairs of reference frames that differ solely by
spatial displacement.

For another example, from Sect. 3.1 we have this for the active
formulation of symmetry of evolution under boosts (velocity changes):
Any two physical systems that are simultaneously in identical states,
except for one moving at constant velocity with respect to the other,
will evolve into final states that are also simultaneously identical, ex-
cept for one moving at the same constant velocity with respect to the
other, respectively, for all velocities up to the speed of light. Now for-
mulated passively: For any pair of otherwise identical reference frames
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of which one is moving at constant velocity with respect to the other
up to the speed of light, any two physical systems that are simultane-
ously in states of identical description, as referred one to one reference
frame and the other to the other, will evolve into final states that are
also of identical description, similarly and respectively referred. Ex-
pressed compactly: The same physics is found with respect to all pairs
of reference frames that differ solely by relative motion at constant
velocity up to the speed of light.

From the passive formulations of these examples we derive another
reason for preferring the active point of view over the passive for formu-
lating the symmetries of nature: When expressed in full detail, passive
formulations turn out to be somewhat more awkward than their re-
spective active counterparts. On the other hand, passive formulations
have very compact versions.

3.4 Global, Inertial, and Local Reference Frames

The reference frames we have been considering in this section and
in preceding sections have tacitly been assumed to be global reference
frames, in the sense that each investigation makes use of a single refer-
ence frame that is taken to be in force at all locations and for all time.
For example, the same x, y, z coordinate axes would cover all space and
be valid for all times. Or, the same standard proton would serve for
distinguishing between proton and antiproton over all space and for
all time. Active transformations would be performed with respect to
such global reference frames. Passive transformations would be made
on them globally, thus changing them into new global reference frames.

Let us now consider the kind of evolution known as inertial evo-
lution. Throughout such evolution nothing physically interesting hap-
pens at all: Newton’s first law rules (so objects move at constant ve-
locities), objects preserve their identities, etc.; in short, no dynamics.
Reference frames relative to which dynamics-free evolution does in fact
appear inertial are called inertial frames. (There is circularity here, but
we will not go into the issue.) For example, a free proton with constant
spin direction and at rest is an inertial evolution. So is such a proton
that is moving with constant velocity. Reference frames with respect
to which those evolution descriptions are obtained for a free proton
are inertial frames.

It follows from the definition of symmetry of evolution (see Sect. 3.1)
that the transformations involved in it transform inertial evolution into
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inertial evolution, from the active point of view, or inertial frames into
inertial frames, when considered passively. Thus, such transformations
can justifiably be described as inertial transformations. (The same can
be said for the transformations involved in partial, limited, or approxi-
mate symmetry, but only in those cases where such symmetry is valid.)
For example, a boost (velocity change) transforms a free proton at rest
to one moving with constant velocity, both being inertial evolutions,
when viewed actively, or makes a proton at rest appear to be moving
with constant velocity, when considered passively. So boosts are iner-
tial transformations. Or, particle-antiparticle conjugation transforms
a resting proton to a resting antiproton, again an inertial evolution,
from the active point of view, while from the passive point of view
a resting proton is made to appear to be a resting antiproton. So
particle-antiparticle conjugation is an inertial transformation as well.

Symmetry of evolution, then, includes what can be called symmetry
of inertia, or inertial symmetry . The latter is defined as the possibility
of a transformation under which all inertial evolutions remain inertial
(or only some subset of them, for inexact symmetry), from the ac-
tive point of view, or under which all inertial frames (or again, some)
remain inertial, from the passive point of view.

Now, the concept of global reference frame can be generalized to
that of local reference frame, which is the assignment of an individ-
ual reference frame to every point of space-time. (The technical term
for a network of local reference frames over space-time is ‘frame bun-
dle’.) For example, the local x, y, z coordinate axes could have different
orientations at different locations and at different instants, or the de-
clared standard proton might vary by particle-antiparticle conjugation
from location to location and from instant to instant. The reference for
such space-time variation of local reference frames is the local reference
frames at neighboring points. Thus, the space-time dependence of lo-
cal reference frames is conventionally taken to be smooth, and discrete
variation, such as a violently varying standard proton, is excluded.

As an example, consider the physical quantity known as isospin.
This is an abstract quantity that is useful for describing nucleons (i.e.,
protons and neutrons), pions, and other particles. A nucleon is rep-
resented in abstract two-dimensional isospin space, with one axis for
a neutron state and one axis for a proton state. Intermediate states,
called superposition states – neither pure proton states nor pure neu-
tron states – are also possible, and they have various probabilities to
be detected as a neutron or as a proton. In a global isospin reference
frame a free nucleon, say a proton, would maintain its identity as it
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moved along or remained at rest. However, a network of local isospin
reference frames might be such that a free nucleon, again say a proton,
would appear to smoothly change its identity, converting into a neu-
tron-proton superposition or into a pure neutron, as it moves along
or at rest. Or for another example, with respect to a network of local
x, y, z coordinate axes, a physically free particle might seem to violate
Newton’s first law by undergoing what appear to be strange changes
in its direction of motion.

The special case of a network of local reference frames that do not
vary in space and time essentially defines and is equivalent to a global
reference frame in the sense we have been using. It might be necessary
to add additional specifications, though, such as the location of the
origin of global coordinate axes derived from a space-time-nonvarying
network of local coordinate axes. As might be expected due to the es-
sential self-reference involved, the treatment of local spatial reference
frames and local spatiotemporal reference frames [of the kind used in
relativity, such as Minkowski coordinates (Hermann Minkowski, Ger-
man mathematician, 1864–1909)] is mathematically more complicated
than that of local abstract reference frames such as isospin, but this
point will not concern us here.

3.5 Gauge Transformation

The transformations that we have considered so far for global reference
frames, whether involved in symmetry or not, can now reasonably be
called global transformations. Of course, global transformations can be
made on networks of local reference frames and will affect all the local
reference frames in the same way. But it is useful to generalize the con-
cept of global transformation to that of transformation affecting local
frames differently from location to location and from instant to instant,
which can be called local transformation. Thus a local transformation
involves at least one space-time-dependent parameter, specifying the
effect of the transformation on the local reference frame at every lo-
cation and instant. The space-time dependence of the transformation
parameters must be smooth to ensure smoothness of the transformed
local reference frame network. A global transformation is obtained as
a special case of a local transformation, when the transformation pa-
rameters are taken to be space-time-independent.

As an example, a local xy rotation might be performed on a network
of local coordinate axes by rotating the axes in the local xy plane at
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each location through an angle that depends on the location and time.
Or, a local isospin transformation might be made on a network of local
nucleon isospin reference frames by rotating the local neutron-proton
axes through a space-time-dependent angle.

At this point let us consider the term ‘gauge’ as it is commonly used
in expressions such as ‘gauge symmetry’ and ‘gauge theory’. ‘Gauge’ is
synonymous with ‘reference frame’. A tire pressure gauge, for example,
is a reference frame for air pressure, allowing the difference between
the air pressure in the tire and that of the atmosphere to be speci-
fied with respect to some standard, such as Pa (pascal), equivalent to
N/m2 (newton per square meter), kg/cm2 (kilogram force per square
centimeter), or psi (pound force per square inch). A global gauge is
a global reference frame, such as identically calibrated tire pressure
gauges being used at all locations and for all time. A local gauge is ac-
cordingly a local reference frame, like the use of pressure gauges whose
calibration varies from location to location and at each location varies
with time.

A passive transformation, a transformation of reference frame, can
then be called a gauge recalibration. However, we will use the con-
ventional term gauge transformation. Such a transformation might
be global or local, but in common usage ‘gauge transformation’ im-
plies the more general, local transformation, which could, of course,
be global as a special case. In the tire pressure gauge context a (tire
pressure) gauge transformation would in general be performed differ-
ently at different locations and instants, but could possibly be done in
a global manner. Gauge transformations are certainly not inertial in
general, as they typically transform inertial reference frames to nonin-
ertial networks of local reference frames.

Consider, for example, the application of an isospin gauge trans-
formation to an inertial nucleon isospin reference frame with respect
to which a free proton is moving at constant velocity. With respect to
the resulting network of local isospin reference frames (different isospin
reference frames at different locations, all changing in time), the pro-
ton is still moving at the same constant velocity, but appears to change
its identity among various neutron-proton superpositions (intermedi-
ate states), possibly even posing as a neutron, as it moves along. That
evolution does not appear inertial. Indeed, gauge transformations can
be said to introduce fictitious interactions or forces, in the present case
an ‘interaction’ causing what appears to be a changing nucleon state
(see Fig. 3.1).
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Fig. 3.1. (a) Free proton moving at constant velocity with respect to an
inertial reference frame. (b) After an isospin gauge transformation, the same
particle appears to change identity as it moves along

Or, let a gauge transformation involving space-time-dependent ro-
tations be applied to an inertial reference frame with respect to which
a free particle is moving with constant velocity, say a global set of
x, y, z coordinate axes. Referred to the resulting network of local, time-
dependent x, y, z coordinate axes, the particle appears to be in motion
at constant speed and in continuously varying direction, which is accel-
erated, therefore noninertial, motion. Thus, this gauge transformation
introduces fictitious forces ‘responsible’ for what appears to be accel-
erated motion.

As another example, let us start with a global tire pressure gauge,
which is a set of identically and permanently calibrated tire pressure
gauges distributed along the road. With respect to this global refer-
ence frame the pressure of a car tire does not vary as the car travels
along. That is inertial evolution of tire pressure. Now let a gauge trans-
formation be performed, recalibrating the pressure gauges differently
at different locations along the road and in a time-dependent manner.
With respect to the changed and changing gauges, the tire pressure
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appears to vary as the car travels along, i.e., appears to evolve nonin-
ertially. This behavior is ‘explained’ by a fictitious interaction between
the tire and its environment, whereby it looks as if the tire’s temper-
ature is changing and/or air is being pumped into and out of it.

The bottom line of this section is that by means of gauge trans-
formations inertial processes can be made to take the appearance of
dynamic processes. Processes in which nothing very interesting hap-
pens – such as particles moving at constant velocities and preserving
their identities – can, through the intervention of gauge transforma-
tions, appear as processes in which all hell can break loose: Particles
might change their identity over time, undergo changes in speed and
direction of motion, etc.

3.6 Gauge Symmetry

Global passive transformations might, and indeed often do, appear
in parametrized families. We call such families groups, since that is
the technical, mathematical term for them. For example, rotations in
a plane, say xy rotations, form a one-parameter group with the angle
of rotation serving as the parameter. Rotations of neutron-proton axes
in abstract nucleon isospin space similarly constitute a one-parameter
group. All rotations about a point make up a three-parameter group.
Two of the parameters might specify the direction of the rotation axis,
with the third determining the angle of rotation about this axis. Al-
ternatively for those familiar with them, the Euler angles of rotation
might serve as the three parameters.

Spatial displacements in all directions also form a three-parameter
group of global passive transformations. In this case the three param-
eters could specify the values of the x, y, and z displacements needed
to constitute the desired resultant displacement of the coordinate sys-
tem. Boosts (velocity changes) in all directions form a three-parameter
group as well. The values of the changes in the x, y, and z components
of velocity that are required to achieve the boost might serve as the
parameters.

Now, a parametrized group of global passive transformations can
be converted into a group of (local) gauge transformations, can be
‘gauged’, as conventional jargon puts it. That is done by making the
parameters of the group depend on location and time, by replacing
the space-time-independent, global parameters with arbitrary space-
time-dependent functions. Thus, the resulting local transformations,
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the resulting gauge transformations, will generally transform the local
reference frames by different members of the original parametrized
group at different locations and at different instants. Such a group is
called a gauge group.

For example, under a member of the gauged group of rotations
about a point acting on an ordinary global x, y, z coordinate system,
at some instant and at some location the local coordinate system might
be found rotated from its original orientation by 20◦ in the local xy
plane, while at the same instant at some other location the local coor-
dinate system might be found rotated by 12◦ in its yz plane. And at
any fixed location the local coordinate system will generally vary its
orientation with time, as the result of the time-dependent effect of the
gauge transformation.

For another example, a gauge group can be obtained by gauging
the group of nucleon isospin rotations. Then under a member of this
group, at some location and at some instant the local neutron-proton
axes might be found rotated from their original orientation by 22.5◦,
while at the same location two seconds later they might be found
rotated from their original orientation by 21.3◦. And at some other
location the respective orientations at those instants might be 205◦
and 211◦ from the original orientation.

Let us now specifically consider parametrized groups of symmetry
transformations of evolution (whether exact, partial, limited, or ap-
proximate), or in short, global symmetry groups, and let us zoom
in on those groups of gauge transformations that are obtained by
gauging global symmetry groups and which can thus be called global-
symmetry-derived gauge groups. In spite of the inertiality of the trans-
formations belonging to the original global symmetry groups (since, as
symmetry transformations of evolution, they transform inertial evolu-
tion into inertial evolution), the gauge transformations thus obtained
are not inertial, since by their local nature gauge transformations in
general are not inertial, whatever the recipe used to cook them up.
Thus these gauge transformations, just like all other gauge transfor-
mations, introduce fictitious forces and interactions in that they make
inertial evolution appear noninertial.

We saw that in the three examples at the end of Sect. 3.5. The first
example involves gauging the one-parameter group of rotations of the
global nucleon isospin reference frame, which is related to a group of
global partial symmetry transformations (that are valid only for cer-
tain classes of processes). The resulting gauge group introduces an ‘in-
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teraction’ causing what appear to be changes of neutron-proton iden-
tity. In the second example the three-parameter group of rotations of
the global x, y, z coordinate axes, which is a global exact symmetry
group, is gauged, introducing ‘forces’ responsible for what appears to
be accelerated motion. And the third example is the gauging of the
one-parameter group of global pressure scale changes, a global lim-
ited symmetry group, which introduces ‘interactions’ to explain what
appears to be varying tire pressure.

Based on what we have seen so far, it would seem absurd to consider
gauge groups as candidates for symmetries of evolution, even those
obtained by gauging global symmetry groups – those we called global-
symmetry-derived gauge groups – so that they have, one might say,
symmetry in their genes. The inherent noninertiality of gauge trans-
formations of any kind would seem to preclude this possibility. Nev-
ertheless, it turns out to be very useful to consider global-symmetry-
derived gauge groups as possible symmetries of evolution, and that
happens because of, rather than in spite of, their noninertiality. The
point is that nature seems to possess this symmetry, called gauge sym-
metry . More specifically, the evolution of quasi-isolated systems seems
to be symmetric under certain global-symmetry-derived gauge groups.
But not only that. When gauge symmetry is imposed on the theories
that are proposed to explain the evolution of quasi-isolated systems,
it constrains the theories so stringently that the dynamics, or at least
its mathematical form, is essentially determined. The term ‘gauge the-
ory’ refers to just such a gauge symmetric theory. So rather than being
an absurd idea, gauge symmetry seems to be an extremely important
idea.

What, then, is gauge symmetry? Since gauge transformations are
passive transformations, we now take the passive point of view for
symmetry of evolution of quasi-isolated systems. Gauge symmetry is
the existence of a global-symmetry-derived gauge group – a group of
gauge transformations obtained by gauging a group of global symmetry
transformations – such that, if applied to any network of local reference
frames, any pair of evolutions of identical description, as referred one
to any transformed network and the other to the original network,
are either both physically possible or both physically impossible or,
for quantum phenomena, both possess the same probability. Or very
compactly, we can say that gauge symmetry is that the same physics is
found with respect to all local reference frame networks that are related
by some global-symmetry-derived gauge group. That is the way gauge
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symmetry is usually defined, and that is the standard guidance to its
application in physics (more specifically, in field theory).

But to obtain an idea of the essence of gauge symmetry rather
than only its formal statement, we should turn from the passive to the
active point of view. First we need the active interpretation of a gauge
transformation: Consider an evolution described with respect to some
network of local reference frames. Consider the action of a gauge trans-
formation on the network. Referred to the transformed local reference
frame network, the same evolution will have a transformed description.
Reinterpret the transformed description as the description of a trans-
formed evolution with respect to the original network of local reference
frames, and this transformed evolution is the result of an active gauge
transformation acting on the original evolution, the inverse of the pas-
sive gauge transformation that acted on the frame network.

For examples, we return again to the three at the end of Sect. 3.5.
In the first example the original, inertial evolution is a free proton
moving at constant velocity. A passive isospin gauge transformation is
applied to the (inertial) global nucleon isospin reference frame. With
respect to the resulting (noninertial) network of local nucleon isospin
reference frames, the original evolution appears as a constant-velocity
nucleon that is continuously changing its identity among neutron-
proton superpositions. Thus, the effect of the active gauge transfor-
mation that is the inverse of the passive one is to transform the (iner-
tial) constant-velocity proton evolution to the (noninertial) constant-
velocity varying-identity nucleon evolution, where both evolutions are
referred to the original (inertial) global nucleon isospin reference frame.

In the second example the original, inertial evolution is a free mas-
sive particle moving with constant velocity. A passive rotation gauge
transformation is applied to the (inertial) global x, y, z coordinate axes.
With respect to the resulting (noninertial) network of local x, y, z coor-
dinate axes, the original evolution appears to be a massive particle in
accelerated motion – at constant speed and in continuously changing
direction. So the effect of the corresponding active gauge transforma-
tion is to transform the (inertial) free massive particle evolution to the
(noninertial) accelerated massive particle evolution, with both evolu-
tions referred to the original (inertial) global x, y, z axes.

In the third example the original, inertial evolution is a tire rolling
along with constant pressure. A passive gauge (recalibration) trans-
formation is applied to the (inertial) global tire pressure gauge (which
is a set of identically and permanently calibrated tire pressure gauges
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distributed along the road). Referred to the resulting (noninertial) net-
work of local recalibrated tire pressure gauges, the original evolution
appears to be a tire rolling along with continuously varying pressure.
Thus, the effect of the corresponding active gauge transformation is
to transform the (inertial) constant-pressure rolling to the (noniner-
tial) varying-pressure rolling, where both evolutions are referred to the
original (inertial) global tire gauge.

We can now present an active formulation of gauge symmetry: If
there is a global-symmetry-derived gauge group (a group of gauge
transformations obtained by gauging a group of global symmetry
transformations) such that all (or some subset of) evolutions related by
it (as an active gauge transformation) are either all physically possible
or all physically impossible or, for quantum phenomena, all possess the
same probability, we have gauge symmetry (or partial, limited, or ap-
proximate gauge symmetry). This prepares us for working in the active
picture and discovering what is actually implied by gauge symmetry.

As we saw, active gauge transformations transform inertial evolu-
tions to noninertial, dynamic ones. In this sense active gauge transfor-
mations can be said to introduce dynamics. Gauge symmetry connects
inertial and dynamic (noninertial) evolutions by ruling that the physi-
cal possibility, impossibility, or probability of some dynamic evolution
is the same as that of some inertial evolution. Thus, gauge symmetry
deserves to be called dynamic symmetry in the same way symmetry
under global transformations is called inertial symmetry. In fact, global
symmetry is a special case of gauge symmetry. When the space-time
dependence of global-symmetry-derived gauge groups is made trivially
constant, the global symmetry group that was gauged is regained, the
dynamics accordingly disappears and turns into inertial evolution, and
the dynamic symmetry becomes inertial.

The interdependence of inertial and dynamic evolutions required
by gauge symmetry imposes severe constraints on the dynamics. To
see that, let us return yet again to the three examples at the end of
Sect. 3.5, as they were analyzed a few paragraphs above. The first ex-
ample was simplified for the sake of presentation. The actual global
symmetry of the strong interaction is the eight-parameter color trans-
formation group – denoted SU(3) in group theoretical language – act-
ing on the color states of the quarks composing the strongly interacting
particles such as nucleons and pions. In the context of the strong inter-
action a constant-velocity proton is indeed a possible inertial evolution.
Thus any (noninertial) varying-identity evolution obtained from it by
the action of a color gauge transformation must also be possible. So the
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identity changing interaction that was considered to be fictitious from
the passive point of view must now be taken seriously; an interaction
really must exist.

Hence we must recognize the incompleteness of our original picture
consisting solely of a nucleon, and a fortiori solely of a proton, and ad-
mit the essential ingredient of additional entities interacting with the
quarks comprising the nucleon, which are the gluons. In this way we
obtain the picture of quarks emitting and absorbing gluons and quarks
interacting with quarks by means of gluon exchange. In quantum chro-
modynamics (QCD), which is the field theory that is supposed to ex-
plain such goings-on, the imposition of color gauge symmetry, together
with the various global symmetries, forces the inclusion of a gluon field
along with the quark field and determines the mathematical form of
the interaction.

The second example, too, was simplified. A fuller global symmetry
group is the six-parameter Lorentz group (Hendrik Antoon Lorentz,
Dutch physicist, 1853–1928) consisting of all rotations about the ori-
gin and all boosts up to the speed of light. Since constant-velocity
motion of a massive particle is a possible inertial evolution, so should
the motion obtained from it by any Lorentz gauge transformation be
a possible evolution. Such motions are generally accelerated motions,
and the accelerations should be attributed to real forces. Therefore, the
picture of a free massive particle is incomplete, and an accompanying
force field, the gravitational field, must be appended. The correspond-
ing gauge theory is the general theory of relativity, viewed as a field
theory in flat space-time. The more common view of general relativ-
ity as a theory of inertial motion in curved space-time, rather than
noninertial motion in flat space-time, is completely equivalent. The
equivalence has to do with the arbitrariness inherent in the splitting
of physical reality into background geometry (inertia) and dynamics,
but we will not go into that issue. Here too, as in the case of strong
interaction, the general theory of relativity is essentially determined by
the gauge symmetry. It is the simplest nontrivial theory that possesses
gauge symmetry under Lorentz gauge transformations.

In similar vein, the other two fundamental interactions of nature,
the electromagnetic interaction and the weak interaction – or in their
unified form, the electroweak interaction – are also successfully de-
scribed by gauge theories based on gauge symmetries. (These gauge
symmetry groups are denoted U(1) for the electromagnetic interaction
and SU(2) for the weak interaction.) The laws of these interactions are
essentially determined by the gauge symmetries.
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Since the one-parameter group of global pressure gauge recalibra-
tions in the third example is an extremely limited symmetry, so should
be the corresponding local gauge symmetry, symmetry under local
gauge recalibrations. But as this is a whimsical example anyway, we
will push on and find out the imagined implications of such a gauge
symmetry. Now, tire rolling at constant pressure is a possible inertial
evolution. So all varying-pressure motions obtained from it by active
local gauge recalibration should also be possible evolutions, and the
varying pressure should be attributed to real effects: heating and cool-
ing by the environment and pumping air into and out of the tire.
Therefore, the picture of a free tire is incomplete, and accompanying
heat and air pumping mechanisms must be appended. The thermal
aspect is well covered by radiation, conduction, and convection. The
insertion of air into and its removal from the tire are easily accom-
plished by a reversible air pump connected to the tire via a suitably
swiveled hose.

Gauge symmetries’ essentially unique determination of the theo-
ries of nature’s fundamental interactions leads one to wonder whether
symmetry might underlie all of nature, whether symmetry might even
form the foundational principle of the Universe. Now, that is quite
a conceptual leap. Yet, it has the right feel to it, at least to me it does.
And I am not alone in this. Greene, for example, states in Chap. 8
of [20]: “From our modern perspective, symmetries are the foundation
from which laws spring.” See also [21].

And as for gauge symmetry itself, what is it telling us about na-
ture’s indifference, about what is irrelevant to nature, over and above
the indifference implied by global symmetry? When we take the step
from symmetry under space-time-independent transformations to sym-
metry under space-time-dependent ones, what are we adding to our
understanding of nature? I do not have an answer. I do suspect that
we are being told something, not merely about matter and its interac-
tions, but about space-time itself at a deep level of reality. However,
it is not at all clear to me what that might be. Something about inde-
pendence, or perhaps interrelatedness, of events occurring at different
locations or at different times? About locality and nonlocality? Per-
haps about some aspect of nature that we are not yet even aware of?
What a fascinating mystery!
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3.7 Symmetry and Conservation

There is more to be said about symmetry of evolution, or symmetry of
the laws of nature, and that concerns conservation. There are a number
of conservations, also called conservation laws, that hold for quasi-
isolated systems. The most commonly known of them are conservation
of energy, conservation of linear momentum, conservation of angular
momentum, and conservation of electric charge. What is meant is that,
if the initial state of any quasi-isolated physical system is characterized
by possessing definite values for one or more of those quantities, then
any state that evolves from the initial state will have the same values
for the quantities.

For example, in a particle scattering experiment, where an acceler-
ated particle (perhaps a proton) collides with another (a gold nucleus,
say), the vector sum of the linear momenta of all the participating par-
ticles before the scattering has taken place equals the vector sum of the
linear momenta of all the particles that emerge from the collision (such
as protons, neutrons, pions, and light nuclei, from high-energy proton–
gold scattering). In addition, the total electric charge of the particles
before collision equals their total charge afterward. And similarly for
total angular momentum and total energy. These conservations hold
even when particles are produced or annihilated during the process!

It turns out that each conservation is intimately and fundamentally
related to a global symmetry group of evolution, to a certain symme-
try of the laws of nature. Although there is considerable theoretical
understanding of that relation, there is still much room for further in-
vestigation of it. A theoretical discussion of the relation is beyond the
scope of this book.

Note that conservation is itself symmetry. Since the value of a con-
served quantity does not change with time, we have symmetry of evo-
lution of quasi-isolated systems under temporal displacements with
respect to the value of the conserved quantity. Moreover, symmetry
of the laws of nature under global transformation groups is itself con-
servation. Not conservation of a physical quantity, but conservation
nevertheless. For such symmetry to be related to conservation in the
manner we have discussed in this section, it must be valid for all times.
Thus, it is the validity of the symmetry that is conserved.

Let us now mention the symmetries of the laws of nature that are
related to the conservations mentioned above and show, for three of
the four, how each conservation can be derived analytically from its
related symmetry for a simple mechanical system.
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Conservation of electric charge is related to symmetry of the laws
of nature under a group of certain global phase transformations [de-
noted U(1)], to the fact that the laws of nature are the same whatever
the phase of the system. (Recall that this is an abstract quantum
phase, not phase in the sense of ‘liquid phase’.) The description of this
symmetry and the derivation of charge conservation from it are con-
siderably more complicated than for the other symmetries and their
related conservations, so we forgo its description and the derivation of
the conservation from it.

3.7.1 Conservation of Energy

Conservation of energy is related to symmetry of the laws of nature
under the group of global temporal-displacement transformations, to
the fact that the laws of nature do not change with time. That is called
temporal homogeneity of the laws of nature. It means that for every
physically allowed process, all processes that are identical to that one
except for their occurring at different times are also allowed by nature.

Consider the nonrelativistic system of a single point particle of mass
m moving in one dimension with a potential U(x) that is a function
only of the particle’s coordinate x. The system’s evolution is deter-
mined by Newton’s second law of motion,

F = mẍ ,

where F denotes the force on the particle and a double dot denotes the
second time derivative, so ẍ is the particle’s acceleration. The force is
obtained from the potential by

F = −dU(x)
dx

.

The particle’s evolution is determined by the resulting equation for its
acceleration,

ẍ = − 1
m

dU(x)
dx

.

The mass is constant, the potential energy does not depend explic-
itly on time, and the second derivative is immune to temporal dis-
placements, t→ t + constant. So this equation retains its form under
temporal displacements. Thus, the evolution of the system is temporal-
displacement symmetric.
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The total energy of the system, the sum of kinetic and potential
energies, is

E =
1
2
mẋ2 + U(x) ,

where a single dot represents the first time derivative, so ẋ is the par-
ticle’s velocity. The time rate of change of the total energy is given by

dE

dt
= mẋẍ +

dU(x)
dx

ẋ .

Substitute the acceleration ẍ from the previous paragraph in this ex-
pression to obtain

dE

dt
= −ẋ

dU(x)
dx

+
dU(x)

dx
ẋ = 0 .

So the time rate of change of the total energy of this system van-
ishes, meaning that the total energy does not change with time; it is
conserved.

3.7.2 Conservation of Linear Momentum

Conservation of linear momentum is related to symmetry of the laws of
nature under the group of global spatial-displacement transformations,
to the fact that the laws of nature are the same everywhere. That is
referred to as spatial homogeneity of the laws of nature and means that
for every physically allowed process all processes that are identical to
it but occur at different locations are also allowed by nature.

As an example, consider a nonrelativistic one-dimensional system
comprising of a number of point particles, labeled by i, j, k, whose
masses are mi. Let xi denote the coordinate of the i th particle, ẋ,
its velocity, and ẍ, its acceleration. And let the particles interact via
a potential U that depends only on the differences of the particles’
coordinates. We now find the equation for the acceleration of the i th
particle, the equation that governs the motion of that particle. New-
ton’s second law of motion for the i th particle is

Fi = miẍi ,
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where Fi denotes the force on the particle. The force is obtained from
the potential by

Fi = −∂U

∂xi
= −

∑

j �=i

∂U

∂(xi − xj)
∂(xi − xj)

∂xi
= −

∑

j �=i

∂U

∂(xi − xj)
.

The equation for the i th particle’s acceleration is then

ẍ = − 1
mi

∑

j �=i

∂U

∂(xi − xj)
.

Neither the potential, its derivatives, the mass, nor the acceleration
depends on the location of the system relative to the coordinate sys-
tem’s origin. So this equation is invariant under spatial displacements,
xk → xk + constant. Thus, the evolution of the system is spatial-
displacement symmetric.

The total linear momentum of the system is

P =
∑

i

miẋi .

The time rate of change of the total momentum is

dP

dt
=

∑

i

miẍ .

Now substitute the acceleration ẍ from the previous paragraph to ob-
tain

dP

dt
= −

∑

i

∑

j �=i

∂U

∂(xi − xj)
= 0 .

The expression vanishes, since each pair of terms in the double sum
with i and j interchanged cancel. Thus, the total linear momentum
does not change in time; it is conserved.

3.7.3 Conservation of Angular Momentum

Conservation of angular momentum is related to symmetry of the laws
of nature under the group of global rotations about all axes through
a point, to the fact that the laws of nature are the same in all directions.
That is called isotropy of the laws of nature. It means that for every
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physically allowed process, all processes that are identical to that one
but have different spatial orientations are also allowed by nature.

Consider the nonrelativistic system of a single point particle of mass
m moving in a plane in a central potential, i.e., a potential that depends
only on the particle’s distance from the coordinate origin, U(r). Let
(x, y) denote the particle’s coordinates in the plane. Then its distance
from the origin is

r =
√

x2 + y2 .

The x-component of the particle’s velocity is ẋ, the y-component of
its velocity is ẏ, and the x- and y-components of its acceleration are
ẍ and ÿ, respectively. Newton’s second law of motion for the particle
takes the form

Fx = mẍ , Fy = mÿ ,

where Fx and Fy denote the x- and y-components of the force acting
on the particle. The force components are obtained from the potential:

Fx = −∂U(r)
∂x

= −dU(r)
dr

∂r

∂x
= −x

r

dU(r)
dr

,

Fy = −∂U(r)
∂y

= −dU(r)
dr

∂r

∂y
= −y

r

dU(r)
dr

.

The equations for the components of the particle’s acceleration, which
govern the particle’s motion, are then

ẍ = − x

mr

dU(r)
dr

,

ÿ = − y

mr

dU(r)
dr

.

Since the two equations, in x and in y, have the same form and since
r is not affected by rotations about the origin, then any such rotation
will result in a set of equations having the same form as this set, and
the evolution of the system is rotation symmetric.

The particle’s angular momentum with respect to the origin is

M = m(xẏ − yẋ) ,
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and the time rate of change of the angular momentum is

dM

dt
= m(xÿ − yẍ) .

Now substitute the acceleration components from the previous para-
graph to obtain

dM

dt
= −1

r
(xy − yx)

dU(r)
dr

= 0 .

Thus, the angular momentum does not change with time; it is con-
served.

3.8 Symmetry at the Foundation of Physics

In Sect. 2.6 we pointed out the three essential manifestations of sym-
metry at the foundation of science:

1. reproducibility,
2. predictability,
3. reduction,

with analogy and objectivity, also symmetries, giving a helping hand.
Since physics is a science, in fact the most fundamental of sciences,
these same symmetry manifestations appear also at the foundation of
physics. In the present chapter we saw that the way physics analyzes
and attempts to comprehend nature involves three more realizations
of symmetry, which are

4. symmetry of evolution,
5. symmetry of states,
6. gauge symmetry.

To these we add

7. symmetry inherent to quantum theory,

since quantum theory introduces additional symmetry that is inherent
to the foundation of quantum theory and thus also to the foundation
of physics. That is the subject of Sect. 3.9.

These seven manifestations of symmetry lie at the foundation of
physics. Since physics underlies the other sciences, all this symmetry
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lies also at the foundation of science. By the end of Chap. 2, sym-
metry manifestations 1–3 were sufficient by themselves to convince us
– I hope – that science is founded on symmetry, indeed that science
is symmetry. And now we have seven symmetry manifestations! That
should nail it down extra solidly as far as science is concerned. But
what about nature? Not only do we view nature through symmetry
spectacles, as discussed in Sect. 2.6, but we understand nature in the
language of symmetry. Can we then justifiably claim that nature, too,
is symmetry? I do not think we can, at least not yet. I do expect, how-
ever, that if and when deeper levels of reality are ever investigated,
they will be found to involve symmetry in a very major way. Perhaps
symmetry will turn out to be what those fundamental levels are, in
fact, all about. In the final analysis, then – if indeed there will eventu-
ally be a final analysis – will symmetry be revealed as the foundational
principle of the Universe? See, for instance, [20] and [21].

3.9 Symmetry at the Foundation of Quantum Theory

We will see that much symmetry lies at the foundation of quantum
theory. That symmetry also lies at the foundation of physics, since
quantum theory forms a very fundamental part of physics. However,
due to the very technical nature of a discussion of the symmetry, I pre-
fer to relegate its discussion to the end of the chapter. The discussion
assumes that the reader is sufficiently familiar with the Hilbert space
formalism of quantum theory. The section may be skipped by those
who are not sufficiently familiar.

3.9.1 Association of a Hilbert Space with a Physical System

This postulate has various formulations. It says that an abstract
Hilbert space (David Hilbert, German mathematician, 1862–1943) is
associated with every physical system. Furthermore, it says that to
each state of a physical system there corresponds (or belongs, or that
each state of a physical system is characterized by) a ray (all multi-
ples of a vector), or a unit ray (all normalized multiples of a vector),
in the Hilbert space associated with the system. That correspondence
(or belonging, or characterization) is postulated to be exhaustive in
the sense that there is no aspect of the state that is not comprehended
by the ray, or unit ray. Moreover, every vector, or unit vector, of the
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Hilbert space is postulated to correspond to (or belong to, or char-
acterize) a state of the system. (The existence of superselection rules
moderates this statement, but we will not get that technical.) Much
symmetry is hiding within this postulate:

1. Since it is the abstract Hilbert space that is associated with a phys-
ical system, the physical significance of the association is immune
to possible change of representation of the Hilbert space. For ex-
ample, one might use coordinate representation, momentum rep-
resentation, Heisenberg representation (Werner Karl Heisenberg,
German physicist, 1901–1976), Schrödinger representation (Erwin
Schrödinger, Austrian physicist, 1887–1961), etc. The same physics
is being described in each case.

2. If it is a ray in the Hilbert space that corresponds to a state of
the system, then given a vector corresponding to a state, all multi-
ples of the vector correspond to the same state. Thus the vector →
state correspondence is immune to possible multiplication of the
vector by any complex number. If unit ray, rather than ray, serves
in the formulation, then the correspondence is immune to possible
multiplication of the unit vector by any phase factor, i.e., a com-
plex number of unit modulus. The moduli and phases of all state
vectors anyway cancel out in the formulas for physical results (i.e.,
probabilities and expectation values, see Sect. 3.9.7 below). Thus
the modulus and phase of a vector in a system’s Hilbert space are
irrelevant to quantum theory. That does not exclude their potential
relevance to a more general theory than quantum theory.

3. The exhaustiveness of the vector → state correspondence does not
mean that a system’s states cannot possess aspects that are not
comprehended by vectors of the system’s Hilbert space. It does
mean, however, that if a system’s states do possess such aspects,
those aspects are irrelevant to quantum theory. Thus the physical
properties and evolution that are determined by quantum theory
for a state are immune to possible change in such aspects of the
state. Obvious examples of such aspects are the esthetic or moral
value one might assign to a state. And there might even be objec-
tive aspects, such as of the nonlocal-hidden-variable variety, that,
in spite of their irrelevance to quantum theory, might be relevant
to a more general theory.
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3.9.2 Correspondence of Observables
to Hermitian Operators

Another postulate of quantum theory states that all observables (phys-
ical quantities) of a system correspond to Hermitian (self-adjoint) op-
erators (Charles Hermite, French mathematician, 1822–1901) in the
system’s Hilbert space and that the possible values of an observable
are the eigenvalues of its corresponding operator. As far as is known
to me, this correspondence is unique for each observer; i.e., possibly
barring some pathological cases that I have not heard about, for each
reference frame there is but a single Hermitian operator corresponding
to each observable. As an example of different observers having dif-
ferent operators for the ‘same’ observable, the addition of a constant
real multiple of the identity operator to the energy operator of one
observer gives the operator corresponding to the energy of the system
relative to the shifted energy reference level of another observer.

1. This does not imply that the operator corresponding to some ob-
servable for a given system always has the same representation.
Just as the physical significance of the association of an abstract
Hilbert space with a system is immune to possible change of the
representation of that space (see item 2 in Sect. 3.9.1 above), so is
the correspondence of an observable to a Hermitian operator for
a given system immune to possible change of the representation of
that operator. The correspondence is with the abstract operator.

2. The possible values of an observable are the possible results of mea-
suring that quantity. But the postulate does not specify just how
the measurement is to be carried out. If we have a classical cri-
terion for determining whether different measurement procedures
accord with the same observable, then the observable → operator
correspondence is immune to possible change in the measurement
process, as long as the same observable is being measured. If there
is no such criterion, then we are dealing with a purely quantal
physical quantity, having no classical analog. In this case the ob-
servable will more or less be defined by its operator (eigenvalue
spectrum), and all measurement procedures corresponding to the
operator will compose the range of possible change under which the
correspondence is immune, in an essentially tautological manner.

3. The possible values of an observable for a given system are postu-
lated to be the eigenvalues of its corresponding Hermitian operator
in the Hilbert space of the system. This postulate is immune to pos-
sible change in the result of measuring the observable, where the
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range of possible change is the eigenvalue spectrum of the corre-
sponding operator. In other words, the same measurement proce-
dure might give different results, but all possible results are con-
strained to belong to the eigenvalue spectrum of the corresponding
operator. This is much the same as in classical physics.

4. But in quantum theory the statement has an added twist: Even
when the same measurement procedure is applied to the same state
of the system, different results might be obtained, but all possible
results are constrained to belong to the eigenvalue spectrum of the
corresponding operator. (In classical physics, of course, all such
results would simply be the same.)

3.9.3 Complete Set of Compatible Observables

A complete set of compatible observables (or variables) for a given sys-
tem is a maximal set of simultaneously measurable functionally inde-
pendent observables for the system. Such a set corresponds to a com-
plete set of commuting Hermitian operators in the system’s Hilbert
space. A complete set of compatible observables can in general be cho-
sen in various ways for a given system, and each choice corresponds to
a different complete set of commuting Hermitian operators.

1. Each choice of a complete set of compatible observables implies
a different way of specifying a state of the system. The physical
properties and evolution determined by quantum theory for a state
are immune to possible change in the way the state is specified,
and thus also to possible change in the choice of complete set of
compatible observables.

2. Modulo degeneracy complications, the simultaneous eigenvectors
of a complete set of commuting Hermitian operators can serve as
a basis for the Hilbert space, giving a representation of the space
along with its vectors and operators. The physical significance of
the association of a Hilbert space with a system, along with the
correspondence of vectors, or unit vectors, to states and of Hermi-
tian operators to observables, is thus immune to possible change
in the choice of complete set of compatible observables (see item 1
in Sect. 3.9.1 and item 1 in Sect. 3.9.2 above).
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3.9.4 Heisenberg Commutation Relations

To quantize a classical system described in terms of a set of canonical
variables, the Hermitian operators corresponding to the canonical vari-
ables are postulated to obey the Heisenberg commutation relations.

The same classical system can be equivalently described by different
sets of canonical variables related to each other by canonical transfor-
mations. In quantizing the system, the same Heisenberg commutation
relations are imposed on the Hermitian operators corresponding to
whatever set of canonical variables one uses. Thus, the Heisenberg com-
mutation relations for the Hermitian operators corresponding to the
canonical variables are immune to possible canonical transformation
of those variables. This symmetry follows from the invariance of the
Poisson bracket relations (Siméon Denis Poisson, French mathemati-
cian and physicist, 1781–1840) for the canonical variables themselves
under canonical transformations, which we can express analogously as
the immunity of the Poisson bracket relations for the canonical vari-
ables to possible canonical transformation of those variables.

3.9.5 Operators for Canonical Variables

For a classical system described in terms of a set of canonical variables,
physical quantities are expressed as functions of the canonical vari-
ables. Modulo ordering technicalities (such as symmetrization, time
ordering, normal ordering), the Hermitian operators corresponding to
observables for the quantum analog of a classical system are obtained
from the above-mentioned functions by substituting for the canonical
variables their corresponding operators.

Different sets of canonical variables, related to each other by canon-
ical transformations, can be used to equivalently describe a classical
system. Different sets of canonical variables entail different functions
for the same physical quantity and hence different forms for the Hermi-
tian operator corresponding to the same observable. Thus, the physical
significance of a Hermitian operator is immune to possible change in its
form entailed by canonical transformation of the canonical variables.

3.9.6 A Measurement Result Is an Eigenvalue

Any vector in the Hilbert space of a system can be decomposed into
a linear combination of eigenvectors of any Hermitian operator in the
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space. Accordingly, any state of the system can be considered as a su-
perposition of eigenstates of any observable (with appropriate qualifi-
cation in the case of superselection rules, as pointed out in Sect. 3.9.1
above). It is postulated that a measurement of an observable inde-
terministically brings about a change of the system’s state to one of
the observable’s eigenstates, of which the original state can be con-
sidered a superposition, i.e., the system’s state is indeterministically
projected onto one of the set of eigenstates of the measured observ-
able. The result of the measurement is postulated to be the eigenvalue
corresponding to the resulting eigenstate.

The symmetry here is that the general effect of a measurement,
as describe above, is independent of the state in which the system
actually is. Whatever the state of a system, the measurement of an
observable indeterministically projects that state as described above,
bringing about some eigenstate of the measured observable and giving
the corresponding eigenvalue as the measurement result. Thus, the
effect of a measurement (but not its numerical result!) is immune to
possible change of the state of the system.

3.9.7 Expectation Values and Probabilities

The formulas for expectation values and probabilities are invariant
under multiplication of each vector appearing in them by any complex
number (which may be different for each vector), if ‘ray’ is used in
Sect. 3.9.1 above, or by any phase factor (which may be different for
each vector), if ‘unit ray’ is used in the same section. So calculated
expectation values and probabilities are immune to the choice of vector
from the ray, or unit ray, corresponding to a state of the system (see
item 1 in Sect. 3.9.2 above).

3.9.8 The Hamiltonian Operator

The Hamiltonian operator (William Rowan Hamilton, Irish mathe-
matician and physicist, 1805–1865), the Hermitian operator corre-
sponding to the energy of the system, is the generator of the system’s
deterministic evolution.

This symmetry is similar to that of Sect. 3.9.6. Whatever state the
system may be in, the Hamiltonian is the generator of the deterministic
temporal evolution of the system from that state to the future and
from the past to that state. The Hamiltonian’s property of being the
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generator of deterministic evolution is immune to possible change of
the state of the evolving system.

3.9.9 Planck’s Constant as a Parameter

In the mathematical formalism of quantum theory Planck’s constant
h (Max Karl Ernst Ludwig Planck, German physicist, 1858–1947) ap-
pears as a parameter. Only experiment determines the actual value of
h in terms of conventional units (or alternatively, determines conven-
tional units in term of h and the other fundamental constants).

Thus, the mathematical formalism of quantum theory possesses the
symmetry that the formalism (but not values of calculated results!) is
immune to possible change of the actual value of h.

3.9.10 The Correspondence Principle

For a quantized system with classical analog, the expectation values of
Hermitian operators corresponding to observables must behave in the
limit h→ 0 like the respectively corresponding classical physical quan-
tities. (However, in certain cases the correspondence principle breaks
down.)

1. This principle is the particular application to quantum theory of
the general correspondence principle, that any physical theory
more general than classical theory must be consistent with clas-
sical theory in the latter’s domain of validity, that such a theory
must in some sense reduce to classical theory in that domain. For
the particular case of quantum theory, the reduction is carried out
by taking the limit h → 0 in the mathematical formalism of the
theory. The general correspondence principle therefore possesses
the symmetry that its validity is immune to possible change of the
more general physical theory to which it is applied.

2. The particular correspondence principle for quantum theory shares
the symmetry presented in the preceding paragraph. Its validity is
immune to possible change of the actual value of h.

3.10 Summary

We discussed symmetry of evolution of quasi-isolated physical sys-
tems and symmetry of states of such systems in Sects. 3.1 and 3.2,
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respectively. The former symmetry, also called symmetry of the laws
of nature, is a manifestation of nature’s indifference to certain aspects
of physical systems. When systems differ only in such aspects, nature
treats the systems in essentially the same manner so that they evolve
in essentially the same way. States of systems are symmetric when
changes can be applied to them that affect only those of their aspects
to which nature is indifferent.

In Sect. 3.3 we discussed reference frames, which are needed to
endow transformations with physical significance and must themselves
be asymmetric under the transformations. The notion of active and
passive transformations was introduced, where the former affect phys-
ical systems (and not reference frames), while the latter act only on
reference frames (and not on systems). That led to active and pas-
sive formulations of symmetry of evolution. Both formulations involve
different evolving physical systems. In the active formulation the evo-
lutions have different descriptions with respect to the same reference
frame, while in the passive formulation they have the same description
with respect to different reference frames.

In Sect. 3.4 we introduced the concepts of global reference frame,
which is a single frame that is valid for all space and all time; inertial
reference frame, which is a reference frame in which inertial motion
appears as such; and local reference frame, which is the assignment
of an individual reference frame to every space-time point, i.e., the
assignment of an individual time varying reference frame to every point
in space.

We discussed gauge issues in Sects. 3.5 and 3.6. A global transfor-
mation is one that has the same effect at all locations and instants.
Gauge transformations are passive transformations that in general
have different effects at different locations and instants (although, as
a particular case, a gauge transformation might have the same ef-
fect at all locations and instants, making it a global transformation).
A gauge group is a group of gauge transformations that are obtained
by taking a parametrized group of global transformations and mak-
ing its parameters space-time-dependent. That leads to the notion of
gauge symmetry, which is symmetry of evolution under a gauge group.
Gauge symmetry relates inertial and dynamic evolutions. Gauge the-
ories are theories that possess gauge symmetry. Indeed, the most suc-
cessful theories of the fundamental particles and their interactions are
gauge theories. Further, the gauge symmetries essentially determine
these theories.
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The relation between symmetries and conservations, also known
as conservation laws, was discussed in Sect. 3.7. Each conservation is
fundamentally linked to a symmetry of evolution, or symmetry of the
laws of nature.

The symmetry that lies at the foundation of physics was presented
in Sects. 3.8 and 3.9. It comprises the symmetry lying at the foun-
dation of science – reproducibility, predictability, and reduction, with
the help of analogy (all discussed in Chap. 2) – and the realizations
of symmetry that are particular to physics – symmetry of evolution,
symmetry of states, gauge symmetry, and the symmetry inherent to
quantum theory.

In this chapter we used loosely a number of technical terms that
possess precise definitions. They include transformation, group, sym-
metry transformation, and symmetry group and will be treated rig-
orously in Chap. 10. My purpose in taking this approach is to try to
make the concepts as accessible as possible with only the absolute min-
imum of mathematics. However, for the complete picture the relevant
mathematical background is needed and is presented in Chaps. 8–10.



4

The Symmetry Principle

The fundamental principle in the application of symmetry considera-
tions to problem solving in science and engineering and devising the-
ories in physics is the symmetry principle, also known as Curie’s prin-
ciple (Pierre Curie, French physicist, 1859–1906). In this chapter we
will see how the symmetry principle follows from one of the most basic
notions in all of science, indeed, one of the most crucial underpinnings
of our grasp of reality – the causal relation.

4.1 Causal Relation

The first step in our development of the symmetry principle is achiev-
ing understanding of the notion of causal relation, also called cause-
effect relation. It might seem that in everyday affairs there should be
no difficulty in understanding that relation; the cause brings about the
effect, and the effect is a result of the cause. Obvious, right? But is
the situation really so clear? For example, at the end of a concert you
applaud, whereby your clapping makes a noise that expresses your ap-
preciation. The clapping makes the noise, so the clapping is the cause
and the noise is the effect, which is satisfactory. But why do you clap?
You clap to make the noise; if clapping did not make that kind of
noise, you would not clap. Thus, your clapping is performed because
of the noise. And does this not mean that the noise is the cause and
the clapping the effect? Or is it the desire to produce the noise that is
the cause?

Possibly in everyday affairs we can make do with such foggy con-
cepts, but in science our concepts must be much clearer (which would
do no harm in everyday affairs too!). So we will attempt to clarify the
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concept of causal relation to a degree of hairsplitting that is sufficient
for our purposes.

Now, we have been using the term ‘system’ in this book to indicate
a physical system. Since the symmetry principle is applicable to more
than just physical systems, we will make its derivation as general as
possible. To this end we will use ‘system’ in a more general way, to
indicate whatever it is that attracts our interest and attention. Any
part of a system is termed a subsystem. A subsystem of a system is
also a system in its own right. And just as a system can have states, so
can a subsystem. The state of a system determines the state of each of
its subsystems. However, the state of a subsystem does not in general
determine the state of the whole system or of any other subsystem
(although that might happen in certain cases).

Consider two subsystems, which we denote A and B, of any system.
Consider all states of the whole system and imagine that we set up
a triple-column list of pairs of states of subsystems A and B that are
determined by each state of the whole system for all of its states. Of
course, it is possible that the same state of a subsystem will appear
more than once in the resulting list (see Table 4.1).

Let us now look for a correlation between states of subsystem A and
states of subsystem B in the list by asking the following questions: (1)
Does the same state of subsystem A always appear with the same state
of subsystem B (and possibly different states of A appear with the same
state of B)? (2) Does the same state of subsystem B always appear
with the same state of subsystem A (and possibly different states of
B appear with the same state of A)? If the answer to either or both
questions is affirmative, we say that a causal relation, or a cause-effect

Table 4.1. States of two subsystems determined by the state of the whole
system

States of whole system Determine states of

Subsystem Subsystem
A B

a h p
b i p
c h q
d j r
e j s
...

...
...
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relation, exists between the two subsystems. If the first question is
answered affirmatively, we say that subsystem A is a cause subsystem
and subsystem B is an effect subsystem. If the second question is an-
swered affirmatively, we say that B is a cause subsystem and A is an
effect subsystem. If the answers to both questions are affirmative, each
subsystem is both cause and effect (see Tables 4.2 and 4.3).

In that manner the definition of a causal relation between subsys-
tems is based on a correlation between their states. There is not even
a hint of ‘bringing about’, ‘resulting’, ‘producing’, or ‘causing’ (in the
usual sense). The states of one subsystem and those of the other are
connected through the fact that they are determined by the states of
the same whole system, and this connection is the origin of possible
causal relations between subsystems. If we think we understand the
‘mechanism’ that underlies the correlation, we express the relation in

Table 4.2. A is a cause subsystem and B is an effect subsystem

States of whole system Determine states of

Subsystem Subsystem
A B

a h p
b i q
c j r
d i q
e l r
f m s
...

...
...

Table 4.3. Each subsystem is both a cause and an effect subsystem

States of whole system Determine states of

Subsystem Subsystem
A B

a h p
b i q
c j r
d k s
e h p
f l t
...

...
...
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terms of ‘producing’, etc. But even if we do not understand the ‘mech-
anism’ or perceive any ‘mechanism’ at all, a causal relation may still
exist between systems as an empirical fact of correlation between their
states. Upon discovering a pair of causally related systems, we do in-
deed tend to search for a whole system of which the causally related
systems form subsystems, in order to understand the causal relation.
However, the existence of a causal relation and our knowledge of its
existence in no way depend on our understanding or perceiving its
underlying ‘mechanism’.

And how does that abstract definition of causal relation relate to
our intuitive understanding of the concept of causal relation? First
of all, I would like to warn against attaching too much importance
to one’s intuitions, at least in science. Intuitions are largely thought
habits. And since those habits developed as a result of limited experi-
ence, their appropriateness to phenomena lying outside this range of
experience is suspect, at the least. (Need I remind you of the history of
the special theory of relativity and quantum theory?) Second of all, in
spite of that – I merely wanted to express my opinion and offer a warn-
ing – there is no contradiction between our abstract definition of causal
relation and our intuitive understanding of the concept. We are used
to the idea that, if a cause produces an effect, every time the cause is
in the same state the effect is in the same state. Otherwise we would
not have even considered the ‘cause’ as being a cause to begin with.

For example, we are used to thinking that forces produce acceler-
ation, that the forces are the cause and the acceleration is the effect,
and not vice versa. And indeed, whenever the same set of forces acts
on a given body, the same acceleration occurs. We cannot agree that
the acceleration is the cause and the forces the effect, because the same
acceleration may be correlated with different sets of forces. Different
sets of forces may be correlated with the same acceleration, while dif-
ferent accelerations are never correlated with the same set of forces.
In abstract terms the system comprises the body, the forces acting on
it, and its acceleration. The forces form subsystem A and the acceler-
ation makes up subsystem B. The answer to the first question – Does
the same state of subsystem A always appear with the same state of
subsystem B (and possibly different states of A appear with the same
state of B)? – is affirmative; the same state of forces is always corre-
lated with the same state of acceleration, and even different states of
forces are correlated with the same state of acceleration. The answer
to the second question – Does the same state of subsystem B always
appear with the same state of subsystem A (and possibly different
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states of B appear with the same state of A)? – is negative; the same
state of acceleration is not always correlated with the same state of
forces. Therefore, the forces and the acceleration are in causal relation,
with the forces the cause and the acceleration the effect.

Let us return to our example of applause. The system consists of
the human body, all its actions, and all its noises. The hands compose
subsystem A, which is considered to possess only two states: clapping
and not clapping. Subsystem B is composed of all body noises and is
also considered to have only two states: clapping noise and not clapping
noise (i.e., silence or any other noise). As we review all states of the
whole system, we find a most astounding correlation between the states
of A and the states of B: Whenever the hands clap, clapping noise
sounds; and whenever clapping noise sounds, the hands are clapping.
Thus, the answers to both the first and the second questions are affir-
mative, and there exists a causal relation between hand clapping and
clapping noise, where each may be taken as cause, as effect, or as both.

Another example is the space-time configuration of electric charges
and currents as the cause and the electric and magnetic field strengths
as effect. Or, for a quantum system we could have the scattering po-
tential and incident wave function as cause and the scattered wave
function as effect. The cause might be your present situation and re-
cent history, with your present mood as effect. And so on.

Or consider the famous Rutherford experiment, in which alpha par-
ticles are scattered from stationary metal nuclei. If the exact locations
of the target nuclei and the precise trajectory of each incident particle
could be known, those would serve as the cause, and the effect would
be the point where each scattered alpha particle hits the fluorescent
detection screen. However, neither the locations of the target nuclei
nor the trajectory of each incident particle are known. The best we
can do is to confine the metal nuclei to a thin foil of known density
and to know the statistical properties of a beam of alpha particles
(particle flux, velocity distribution, etc.). Taking these as the cause,
the effect certainly cannot be the final trajectory of a scattered particle
or even its scattering angle, since scattering in all directions is actu-
ally observed in the experiment. The effect is, in fact, the statistical
distribution of scattering angles for the scattered alpha particles, ex-
pressed by the angular-distribution density function or the differential
scattering cross-section.
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4.2 Equivalence Relation, Equivalence Class

The ultimate goal of our line of reasoning that started with a discussion
of causal relation is the symmetry principle. Along that line we must
stop at three way stations, which cannot be avoided if we want not
only to use the symmetry principle but to understand it. At our first
stop along the way we must become acquainted with the concept of
equivalence relation for states of a system. Actually, the concept of
equivalent relation is more general than only for states of a system
and is applicable to any set of elements, whatever their nature might
be. So here we will introduce the concept for an abstract set of abstract
elements, and later we will apply it to sets of states of systems. An
equivalence relation for a set of elements is defined as any relation,
commonly denoted by ≡, that might hold for pairs of elements of the
set and satisfies these three conditions:

1. Reflexivity . Every element of the set has this relation with itself,
i.e.,

a ≡ a ,

for all elements a of the set.
2. Symmetry . If one element has the relation with another, then the

second has it with the first, for all elements of the set. In symbols
that is

a ≡ b ⇐⇒ b ≡ a ,

for all elements a, b of the set. (The arrow ⇒ denotes implication
in the arrow’s direction. The double arrow ⇔ indicates implica-
tion both ways. Recall that whatever stands at the head of an
implication arrow is a necessary condition for whatever stands at
the tail. And whatever stands at the tail is a sufficient condition
for whatever stands at the head. Whatever stands at one head of
a double implication arrow is a necessary and sufficient condition
for whatever stands at the other head.)

3. Transitivity . If one element possesses the relation with a second el-
ement and the second has it with a third, then the first element has
the relation with the third, for all elements of the set. Represented
symbolically, that is

a ≡ b , b ≡ c =⇒ a ≡ c ,

for all elements a, b, c of the set.
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One somewhat fanciful example of an equivalence relation is friendship.
(1) It is a reflexive relation, since everyone is presumably a friend of
himself or herself. (2) It is symmetric, since if you are my friend, I am
your friend. (3) It is transitive, since a friend of a friend is (in an ideal
world) a friend.

More seriously, the most familiar example of equivalence relation is
the relation of equality, as denoted by =. (1) Every number is equal to
itself. (2) If number a equals number b, then b equals a. (3) If a equals
b and b equals c, then a equals c. Quite obvious.

Similarly, the congruence relation of modular arithmetic of integers,
written ≡ (mod n), is an equivalence relation. And so is the geometric
relation of similarity (possessing the same shape) for figures in a plane.
For another example of equivalence relation, take the relation among
people of having the same birthday. And yet another, the relation
among purebred dogs of being of the same breed.

An example of a relation that is not an equivalence relation is the
relation of ‘less than’ between numbers, denoted < . (1) It is not re-
flexive, since no number is less than itself. (2) Neither is it symmetric,
since if number a is less than number b, certainly b is not less than a.
(3) The relation is, however, transitive; if a is less than b and b is less
than c, then a is less than c.

Just for practice, let us modify the ‘less than’ relation to ‘less than
or equal to’, which is denoted ≤ . (1) This relation is reflexive, since
every number fulfills it with itself thanks to the ‘equal to’ option. (2)
But the addition of the ‘equal to’ option does not make the relation
symmetric. If a is less than or equal to b, then it does not follow in
general that b is less than or equal to a. That would happen only in the
special case that a = b, but not in general. (3) Transitivity is fulfilled.

Another example is inequality, denoted �= . (2) This relation is sym-
metric, but is neither (1) reflexive nor (3) transitive. (If a does not
equal b and b does not equal c, nothing is implied about the relation
between a and c.)

In a set of elements (which might be a set of states of a system) for
which an equivalence relation is defined, a complete set of mutually
equivalent elements is a subset of elements all of which are equivalent
with each other and only with each other. Such a subset is called an
equivalence class. No element of the set can simultaneously be a mem-
ber of two different equivalence classes. If one hypothetically were,
then due to the symmetry and transitivity properties of an equiva-
lence relation, what we thought were two equivalence classes would
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really form a single equivalence class. Thus, an equivalence relation
brings about a decomposition of the set of elements for which it is de-
fined into equivalence classes. Every element of the set is a member of
one and only one equivalence class. And any element that happens to
be equivalent only with itself simply forms an equivalence class of one.

As an example, consider the equality relation among numbers.
Every number is equal only to itself. So the equivalence classes contain
only a single number in each.

For a more interesting example, take the congruence relation ≡
(mod n) of modular arithmetic of integers. This equivalence relation
is that two integer numbers are equivalent, or congruent, when they
leave the same remainder when divided by the integer n. For instance,
1 ≡ 13 (mod 4). This particular relation decomposes the set of all
integers into four equivalence classes: (0) the class of all multiples of
4, {. . . ,−8,−4, 0, 4, 8, . . . }, all integers that leave a remainder of 0
when divided by 4; (1) the class of all integers that leave a remain-
der of 1 when divided by 4, {. . . ,−7,−3, 1, 5, 9, . . . }; (2) the class
{. . . ,−6,−2, 2, 6, 10, . . . }, all of which leave a remainder of 2; and (3)
the class {. . . ,−5,−1, 3, 7, 11, . . . } of all integers leaving a remainder
of 3. All numbers within each equivalence class are equivalent (congru-
ent) with each other, and no number is equivalent (congruent) with
a number in a different equivalent class.

As a further example, consider the geometric relation of similarity
(possessing the same shape) for figures in a plane. This equivalence re-
lation decomposes that set of all plane figures into equivalence classes,
each of which contains all figures of the same shape and different size.
For instance, one equivalence class contains all equilateral triangles,
another contains all 30◦-60◦-90◦ triangles, another all squares, yet an-
other all rectangles whose sides are in 1:3 proportion, and so on and
so forth.

Conversely, any decomposition of a set of elements (possibly a set
of states of a system) into subsets, such that every element of the set is
contained in one and only one subset, defines an equivalence relation.
The subsets may then be declared, by fiat, equivalence classes, and
the corresponding equivalence relation is simply that two elements are
equivalent if and only if they belong to the same subset.

The decomposition of humanity into 366 subsets of people having
the same birthday serves as an example of that. This decomposition
defines the equivalence relation of having the same birthday. Thus all
people whose birthdays fall on 16 November, for instance, are thus
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defined as equivalent. And no such person is equivalent with anybody
whose birthday is 9 July.

Similarly, the decomposition of the population of purebred dogs into
pure breeds as subsets defines the equivalence relation of being of the
same breed. All miniature poodles, for instance, are thus equivalent.

As another example, the decomposition of the human population
into eight subsets characterized by blood class (A+, A−, B+, . . . , O−)
defines an equivalence relation for all humans, the relation of having
blood of the same class.

That leads us back to Sect. 1.3, where it was concluded that anal-
ogy and classification are symmetry. Indeed, analogy and classification
impose just such decompositions on sets and thus define equivalence re-
lations. The blood class example was presented in that section as well.
The other examples can similarly be immediately translated from the
language of analogy and classification into the language of equivalence
and equivalence class.

I might point out that every set of elements (which could be a set
of states of a system) possesses two trivial decompositions into equiv-
alence classes. The most exclusive equivalence relation, that every el-
ement is equivalent only with itself, decomposes the set into as many
equivalence classes as there are elements of the set, since every equiva-
lence class contains but a single element. We saw that in the example
of the equivalence relation of equality for the set of all numbers.

On the other hand, the most inclusive equivalence relation, that all
elements of the set are equivalent with each other, makes the whole set
a single equivalence class in itself. For instance, we can enhance our
feeling of unity with all of humankind by recognizing that the equiva-
lence relation among people that all human beings are equivalent de-
termines that the whole human population forms a single equivalence
class.

4.3 The Equivalence Principle

We now have two more intermediate stops along the way to the symme-
try principle. At the first of them we must clarify to ourselves certain
points concerning the nature of science. At the second stop we will
show that the very existence of science implies the equivalence princi-
ple, which is: Equivalent causes – equivalent effects. We will deal with
those two issues in this section. In Sect. 4.4 we will derive the long-
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awaited symmetry principle as an almost immediate consequence of
the equivalence principle, and we defer its formulation to there.

One component of the foundation of science is reproducibility
(about which, see Sects. 2.1 and 2.3). Reproducibility is the possi-
bility of repeating experiments under conditions that are similar in
certain respects, yet different in other respects (such as location or
time), and obtaining essentially the same results. (Section 2.3 goes
into more detail.) That possibility furnishes the objectivity that is es-
sential for science to be a common, lasting endeavor rather than a set
of private sciences or impossible altogether. We are not claiming that
all the phenomena in the world fulfill the condition of reproducibility.
For instance, the phenomena of parapsychology are notorious for their
irreproducibility. This fact does not negate the possible existence of
such phenomena nor does it necessarily invalidate the investigation of
them. But as long as reproducibility is not achieved in parapsychology,
the latter will continue to lie outside the domain of concern of science.

Another component of the foundation of science is predictability
(discussed in Sects. 2.1 and 2.4). Predictability is the possibility of
predicting the result of as yet unperformed experiments. This means
that, until proved otherwise, we labor under the assumption that hu-
man intelligence is capable of understanding nature sufficiently to allow
the prediction of phenomena that have not yet been observed. Repro-
ducibility alone, without predictability, does not make science. It only
allows recording, cataloging, and classifying of experimental observa-
tions as public information, with no benefit beyond the compilation
itself. Science begins to be possible only when order is perceived among
the collected facts, and on the basis of that order the results of new
experiments are predicted. (See Sect. 2.4 for more detail.)

The scientific tool by which we predict the results of experiments
is the law. A law is any conceptual recipe or mathematical formula
or other means like those that, when fed data about the conditions of
an experiment, tells us the experimental result to be expected. The
first test of a proposed law is performed by comparing it with past
experiments and their results. If the results expected according to the
law match the results actually obtained, the law advances to the next
testing stage. If not, it goes back to the drawing board for corrections or
overhaul or into the wastebasket. For the next test the law must predict
the results of as yet unperformed experiments. If it does that with
continuing success, our confidence in it continually increases. However,
a single failure is sufficient to invalidate a proposed law in spite of its
past success.
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Reproducibility and predictability are expressions of our realization
that causal relations exist in nature. A scientific law is the expression of
a particular causal relation: The data that the law receives represent
the physical cause, and the results that the law gives represent the
physical effect. When a law receives the same data, it always gives the
same results, and that reflects the relation between the cause and the
effect.

A scientific law may be considered as including a sort of antianalog
computer. I use the term ‘antianalog computer’, since, whereas analog
computers represent mathematical procedures by physical processes,
scientific laws lead to representations of physical processes by (almost
always) mathematical procedures. (More accurately, I should better
state that analog computers represented mathematical procedures by
physical processes, since such computers were most commonly used
prior to the development of digital computers. Digital computers are
now so powerful, cheap, and ubiquitous, that I doubt analog computers
are used at all any more.)

This antianalog computer is equipped with a set of terminals into
which input may be fed and out of which output may be obtained. Dif-
ferent subsets of terminals might be used to feed and obtain different
types of input and output. Some terminals might be exclusively either
for input or for output, while others might serve for both input and
output (though not during the same application). Every input uniquely
determines an output. (It is possible, of course, that the same output
might be the result of different inputs.) That gives us reproducibility
and predictability. A scientific law must also supply a set of rules for
translating a physical situation into input acceptable by the antianalog
computer (and even for deciding whether a physical situation can be
so translated) and for translating the output into physical terms.

As an example, consider the laws of classical vacuum electro-
magnetism with Maxwell’s equations (James Clerk Maxwell, Scottish
physicist, 1831–1879) and certain boundary conditions as their an-
tianalog computer. The input might be functions, as a mathematical
translation of a physical situation in terms of electric charges and cur-
rents. The output is then functions, which are translated as electric
and magnetic field strengths, giving the forces on test charges.

As another example, consider the theory of nonrelativistic quan-
tum mechanics with the Schrödinger equation and certain boundary
conditions as its antianalog computer. Our input often consists of func-
tions, as a mathematical translation of a physical situation in terms of
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Fig. 4.1. Relation of a law to cause and effect in a physical system

potential and incident wave function. The output is then a function,
which is translated as the scattered wave function and from which are
derived probability, cross-sections, and such measurable quantities.

Consider a physical system and a law of its behavior. A system
must possess at least one pair of subsystems in causal relation for
a law of its behavior to be possible, since, as stated above, a law is
an expression of a causal relation in a system. Consider any such pair,
a cause subsystem and an effect subsystem. Since the law describes
the behavior of the whole system, it must take the translation of the
states of the cause subsystem as input to its antianalog computer,
and the translation of the output of its antianalog computer must, by
exhausting its total information content, determine states of the effect
subsystem. Moreover, the state of the effect that is causally correlated
with a given state of the cause must be consistent with the translation
of the output that is uniquely produced by the antianalog computer
as a result of receiving as input the translation of the given state of
the cause (see Fig. 4.1).

States of causes and effects are actual physical situations occurring
in actual physical systems. Each such state is unique; no two are iden-
tical. Although similar in many respects, a pair of states might still
differ, for example, in their geographical locations, in their instants of
occurrence, or in the experimental apparatuses with which they are
concerned. In fact, since no physical system is perfectly isolated from
the rest of the Universe,1 in order to make sure we are not missing any-
1 See Sect. 2.2.2. Even if a physical system were isolated from the rest of the

Universe with respect to all the known forces and interactions, there would still
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thing, we should, to be precise, take the whole Universe as the only
physical system worth investigating. Otherwise we run the danger of
neglecting some influence, say from the Crab Nebula, that might be
crucial. Then states of cause and effect subsystems would be charac-
terized by an infinite number of parameters; we would have to take
into consideration the state of every object, field, etc., in the Universe
– and at all times too – since they might possibly influence the states
of subsystems.

That holistic point of view, with its emphasis on the uniqueness of
situations, is unconducive to science. (See the discussion in Sect. 2.2.)
In its light everything appears so awesomely complicated that there
seems to be no hope of understanding (in the sense of science) any-
thing. Reproducibility and predictability seem utterly beyond reach.
Science begins to be possible only when some order is discerned within
the confusion, when similarities are remarked upon in spite of the dif-
ferences. To do science, one must, by decision, guesswork, or bliss-
ful ignorance, make assumptions about which influences are more or
less important and on those assumptions ‘slice’ the world into quasi-
isolated components. One must then investigate those relatively simple
physical systems as if they were really isolated. The simplest systems
must be investigated first. Then more complicated systems can be
attacked by considering them as syntheses of simpler systems in inter-
action. This very rough picture gives an idea of the attitude necessary
for science to be possible.

Let me add that we have here, it seems to me, the main reason
why science, and especially its predictability aspect, developed in the
West and not in the East. While the dominant Eastern philosophies
emphasized the oneness and wholeness of everything, making science
extremely unlikely, if not altogether impossible, the Western weltan-
sicht encouraged analysis, making science most likely, if not inevitable.
The different conceptions of the position of Homo sapiens vis-à-vis the
rest of nature, tying in with religious considerations, were part of the
whole scene. But let us return to our business.

We are thus led to the recognition that all scientific laws are doomed
in principle to a sort of imprecision. The reasoning is that, if we took

remain that influence which, according to the Mach principle (Ernst Mach, Aus-
trian physicist, psychologist, and philosopher, 1838–1916), is the origin of in-
ertia [22]. It would indeed be a great day if we were to succeed in abolishing
inertia. In addition, the effect of quantum entanglement is also an anti-isolatory
factor, as quasi-isolated systems might be correlated with their surroundings via
quantum correlations.
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everything into consideration, we would be dealing solely with unique
situations, reproducibility and predictability would be impossible, no
order could be discerned within the confusion, and science would be
inconceivable. It is only by ignoring certain aspects of physical real-
ity that we can discover similarities, obtain reproducibility and pre-
dictability, discern order, and find laws.

That essential ignoring is usually taken to be of two kinds. There
is ignoring in practice, where we admit there exists or might exist in-
fluence, but we assume it to be sufficiently weak that it is negligible
compared with the effects under consideration. And there is ignoring in
principle, where we assume there is no influence at all. An example of
ignoring in practice is the influence of the star Sirius on our laboratory
experiments. We know there are gravitational and electromagnetic in-
fluences, but we ignore them, because we know they are negligible. We
do not know whether there are other influences, but we assume that, if
there are, they too are negligible. An example of ignoring in principle
is the influence of ‘absolute’ position on our experiments; we assume
there is none. We assume the laws of nature are the same everywhere
in the Universe (refer to Sect. 3.1).

From the empirical point of view it is impossible to distinguish be-
tween precise lack of influence and sufficiently weak influence. Exper-
imental investigations can only supply upper bounds for the strength
of the effect. Indeed, it is possible that in principle there is no precise
lack of influence and that all ignoring is ignoring in practice. (Such
matters and others are discussed in [23].) In practice, however, it is
convenient to think in terms of the two kinds of ignoring.

Return now to a law of behavior for a physical system in terms of
antianalog computer and translation rules, as described previously. We
have just convinced ourselves that the translation of states of a cause
subsystem is essentially ‘weak’ in the sense that certain aspects of the
states are ignored in the antianalog computer. And similarly, the out-
put does not contain sufficient information for unique determination
of a state of the effect, so that more than one state of the effect is
consistent with the translation of an output. That defines equivalent
relations for the sets of states of the cause and effect subsystems, ac-
cording to which states of the cause are equivalent if and only if they
translate into the same input, and states of the effect are equivalent if
and only if they are consistent with the translation of the same output.

For example, if a law is consistent with the special theory of rel-
ativity, all states differing only by spatial or temporal displacements,
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rotations, or boosts (velocity changes) up to the speed of light are
equivalent. States that differ only in this way translate into the same
input or are translated from the same output for a relativistic law.
In other words, a relativistic law may take interest in any property of
a state that is not a position, instant, orientation, or velocity connected
with that state.

Or, if a law for a system of particles does not distinguish individ-
ual particles, all states differing only by interchange of particles are
equivalent.

By that definition of equivalence for the set of states of a cause sub-
system, all states belonging to the same equivalence class translate into
the same input. This input uniquely determines an output according to
the law. And all states of the effect subsystem that are correlated with
those states of the cause by the causal relation are translated from the
output and are therefore equivalent to each other by definition. It is
possible that also states of the effect that are correlated with states of
the cause belonging to a different equivalence class, i.e., that translate
into a different input, are equivalent to these, since different states of
a cause may be causally related to the same state of an effect (but
not vice versa) and since different inputs of a theory may determine
the same output (while the same input always determines the same
output).

Figure 4.2 should help make that clear. Note in the example of
the figure that the set of states of the cause decomposes into three
equivalence classes, which translate into three different inputs. The
antianalog computer converts two of the inputs into the same output
and the third input into a different output. The two outputs trans-
late into states of the effect, which decompose accordingly into two
equivalence classes.

What we have just proved is the equivalence principle:

Equivalent causes – equivalent effects.

This formulation is relatively imprecise to avoid putting off those who
have not yet studied its significance. The intention of the word ‘causes’
is, of course, states of a cause, and the word ‘effects’ similarly stands
for states of an effect of the cause. The precise formulation is, therefore:

Equivalent states of a cause – equivalent states of its effect.
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Fig. 4.2. A law imposes equivalence relations on sets of states of cause and
effect in physical systems, leading to the equivalence principle

And if we desire to put even more emphasis on the causal relation, we
might insert an arrow:

Equivalent states of a cause −→ equivalent states of its effect.

I should mention that the converse of the equivalence principle does
not hold as a principle, since equivalent states of an effect are not
necessarily causally correlated with equivalent states of a cause, as we
saw.

We derived the equivalence principle as a direct consequence of
the existence of science. Thus the existence of science requires the
existence of the equivalence principle, which is therefore a necessary
condition for the existence of science. No equivalence principle (and
thus no reproducibility) −→ no science!

The equivalence principle will be empty if and only if the equiva-
lence relation that a law imposes on states of a cause is the trivial one,
that every state is equivalent only to itself. Such a law does not allow
reproducibility, so it is not suitable for science. Thus, it is the ‘weak-
nesses’, or ‘impotencies’, of scientific laws, their essential inability to
distinguish among the members of certain sets of states, that make the
equivalence principle nontrivial (see also Sects. 3.1 and 3.2).

Let us summarize our line of reasoning that led to the equivalence
principle. We started with the fact the experimentally reproducible
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phenomena exist in nature and that causal relations are found in na-
ture. We assumed the validity of predictability, i.e., we assumed that
the human intellect is capable of exploiting reproducibility to attain
sufficient understanding of natural causal relations to enable predic-
tion of as yet unobserved phenomena. The conceptual tool for the
expression of causal relations in physical systems is the law. Thus, our
assumption is that the human intellect is capable of inventing laws that
describe the behavior of physical systems. This assumption seems to
be well justified. A law, by its essential ‘impotence’, creates an equiva-
lence relation for the set of states of a cause and for the set of states of
an effect: States of a cause are equivalent if and only if they translate
into the same input, and states of an effect are equivalent if and only
if they are translated from the same output. From that and from the
character of any causal relation we obtained the equivalence principle:

Equivalent states of a cause −→ equivalent states of its effect.

Or in less precise language:

Equivalent causes – equivalent effects.

4.4 The Symmetry Principle

We are finally in a position to reach our goal of deriving the sym-
metry principle. Although the equivalence principle is fundamental to
the application of symmetry in science, in practice it is the symmetry
principle, derived directly from the equivalence principle, that is usu-
ally used. Its precise formulation, in the language of group theory (see
Chaps. 8 and 10), is this:

The symmetry group of the cause is a subgroup of the symmetry
group of the effect.

Equivalently:

A symmetry transformation of the cause is also a symmetry
transformation of the effect.

Or, expressed in a less technical sounding form:

The effect is at least as symmetric as the cause.

The symmetry principle is also called Curie’s principle [24].
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To prove the symmetry principle and see what it means, we first
define the terms used in it. Consider again a physical system and a law
of its behavior. Any state u of the system implies a state for each of
its subsystems and, in particular, implies state uc for a given cause
subsystem and state ue for a given effect subsystem. The law imposes
an equivalence relation for the set of states of the cause subsystem
(giving the ‘equivalent causes’ in the equivalence principle) and an
equivalence relation for the set of states of the effect subsystem (giving
the ‘equivalent effects’ in the equivalence principle), as discussed in
Sect. 4.3.

Define cause equivalence, denoted
c≡, for the set of states of the

whole system as follows: Two states of the whole system are cause
equivalent if and only if the states of the cause subsystem implied by
them are equivalent. Symbolically,

uc ≡ vc ⇐⇒ u
c≡ v ,

for states u and v of the whole system. Similarly, define effect equiv-
alence, denoted

e≡, for states of the whole system: Two states of the
whole system are effect equivalent if and only if the states of the effect
subsystem implied by them are equivalent:

ue ≡ ve ⇐⇒ u
e≡ v ,

for states u and v of the whole system (see Fig. 4.3).
The equivalence principle states that if the states of the cause sub-

system implied by states of the whole system are equivalent, then the
states of the effect subsystem implied by the same states of the whole
system are also equivalent. Symbolically,

uc ≡ vc =⇒ ue ≡ ve ,

for states u and v of the whole system. From our definitions we con-
clude that cause equivalence implies effect equivalence for the set of
states of the whole system. Or, symbolically,

u
c≡ v =⇒ u

e≡ v ,

for states u and v of the whole system (see Fig. 4.4).
Consider transformations of states of the whole system. They are

changes that carry states of the system into states of the system. Con-
sider in particular those transformations that carry every state into
a cause equivalent state. For them any state and its resulting state
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Fig. 4.3. Definition of cause equivalence and effect equivalence for the states
of a physical system

imply states of the cause subsystem that are equivalent. Another way
of looking at this is in terms of cause equivalence classes. Cause equiv-
alence for the set of states of the whole system decomposes the set into
cause equivalence classes. All the states that belong to the same class
imply states of the cause subsystem that are equivalent. Now consider
those transformations whose effect is to change states of the whole sys-
tem to states in such a way that any state and its resulting state are
within the same cause equivalence class. In other words, such transfor-
mations stir up the set of states, but do their stirring only within the
cause equivalence classes and do not mix classes. Those transforma-
tions are symmetry transformations, symmetry transformations of the
cause; they bring about change, but keep intact membership in cause
equivalence classes. The family of all symmetry transformations of the
cause is called the symmetry group of the cause.

Similarly, transformations that preserve membership in effect equiv-
alence classes are symmetry transformations of the effect, and the fam-
ily of all those transformations is the symmetry group of the effect.
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Fig. 4.4. Cause equivalence implies effect equivalence for the states of a phys-
ical system

Since, by the equivalence principle and our definitions, cause equiv-
alence implies effect equivalence, it follows that every transformation
that preserves cause equivalence must also preserve effect equivalence,
that every symmetry transformation of the cause must also be a sym-
metry transformation of the effect. However, there may be symmetry
transformations of the effect that are not symmetry transformations
of the cause, since effect equivalence does not imply cause equivalence.
That gives us one formulation of the symmetry principle:

A symmetry transformation of the cause is also a symmetry
transformation of the effect.

Thus, the symmetry group of the effect contains all the transformations
that constitute the symmetry group of the cause and possibly more.
When groups stand in such a relationship, the group that is included
is called a subgroup of the including group (see Sect. 8.5). That leads
to an equivalent statement of the symmetry principle:

The symmetry group of the cause is a subgroup of the symmetry
group of the effect.
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Degree of symmetry can be quantified by the number of corresponding
symmetry transformations (see Sect. 10.7 for more detail). In that
sense the symmetry principle can be given the form:

The effect is at least as symmetric as the cause.

Beyond the technical language, what the symmetry principle is telling
us is this:

Any symmetry of a cause must appear in its effect. (However,
the effect may possess symmetry that is not symmetry of the
cause.)

We will discuss applications of the symmetry principle in Chap. 5.
But let us now look at one simple example to help see how the sym-
metry principle works. So imagine we have an electric charge distri-
bution possessing spherical symmetry. This means that any rotation
about any axis through the center of the charge distribution leaves
the distribution unchanged. (Also, although we do not need it for the
present problem, reflection through any plane containing the distribu-
tion’s center leaves the distribution unchanged.) In addition, imagine
that a resting test charge (a point particle carrying a small electric
charge) is situated at some distance from the center of the charge dis-
tribution. We will use the symmetry principle to find the direction of
acceleration of the test charge due to the charge distribution.

What we are actually doing is finding the direction of the electric
field of a spherically symmetric charge distribution. But I prefer to
formulate the problem in spatiotemporal terms, in terms of accelera-
tion, rather than in terms of the electric field, since the transformation
properties of the electromagnetic field are not obvious and I prefer not
to get involved with them here. Note that I am also avoiding formu-
lating the problem in terms of force, since, although no harm would
have been done, I still feel we are standing on somewhat firmer ground,
conceptually, when we assign transformation properties to acceleration
rather than to force. Also note that this example is equally applicable
to any central force field, not just the electric field, as no use will be
made of Coulomb’s law (Charles Augustin de Coulomb, French physi-
cist, 1736–1806) specifically.

The cause in this example consists of the charge distribution and
the test charge. The effect is the acceleration of the test charge (re-
fer to Fig. 4.5). Any rotation about the axis passing through the test
charge and the center of the charge distribution (the dashed line in the
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Fig. 4.5. System consisting of a spherically symmetric charge distribution
and a resting test charge, as cause, and the acceleration a of the test charge,
as effect

figure) is a symmetry transformation of the cause. By the symmetry
principle, those transformations must be symmetry transformations
also of the effect (which might, moreover, possess additional symme-
try transformations). Since any nonradial component the acceleration
might have would not be carried into itself by those rotations, the ac-
celeration must therefore be radial, i.e., directed precisely toward or
away from the center of the charge distribution. Only for these direc-
tions are the symmetry transformations of the cause also symmetry
transformations of the effect, as required by the symmetry principle.
Whether the acceleration is directed toward the center of the charge
distribution or away from it depends on the signs of the test charge
and the charge distribution and cannot be determined by symmetry
considerations [25].

In this section we have been playing free and loose with tech-
nical terms that possess rigorous and precise definitions: transfor-
mation, group, subgroup, symmetry transformation, and symmetry
group. They will be treated rigorously in Chaps. 8–10. What I am at-
tempting to do here is to present and clarify the concepts with only
the unavoidable minimum of mathematics. For a fuller understanding,
however, the mathematics is needed and is presented with sufficient
rigor in Chaps. 8–10.

4.5 Cause and Effect in Quantum Systems

This section is intended for readers with a good background in quan-
tum theory and its Hilbert space formulation.

The application of symmetry in quantum systems is straightfor-
ward and successful. It is, in fact, one of the greater success stories of
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theoretical physics. That is due to the special nature of sets of quan-
tum states, called quantum state spaces, specifically to their being
linear vector spaces. This makes it possible to work with realizations
of transformation and symmetry groups by groups of matrices acting
on the components of the elements (vectors) of quantum state spaces.
Such realizations are called linear representations, or representations.
The detailed study of the application of symmetry in quantum sys-
tems, which is beyond the scope of this book, is well presented in
a considerable number of more advanced texts.

It is worthwhile, however, to devote a brief discussion to causes and
effects in quantum systems. Causes and effects, as defined previously,
are subsystems of the systems under consideration, and subsystems
of quantum systems are themselves quantum systems. Thus, causes
and effects in quantum systems are quantum systems with all the
consequences thereof. For example, in a scattering experiment, if the
sharply peaked momentum distribution in the incident beam is part
of the cause, one may not expect that the positions of the individual
particles in the beam might also be included in the cause, since the
latter are in principle indeterminate in the given setup. As for the
effect, neither particle trajectories nor scattering angles of individual
particles can be part of it. The effect is, in fact, the wave function,
especially the ‘scattered wave function’, from which probabilities and
differential cross-sections can be calculated.

If that sounds like the Rutherford experiment, you are quite right,
and we should compare the classical and quantum theories of such
scattering with regard to cause and effect in each kind of theory. In
the classical approach the cause could in principle be the initial posi-
tion, velocity, and orientation of each incident alpha particle and the
position and orientation of each target nucleus. The effect would then
be the point where each scattered alpha particle hits the fluorescent
detection screen and causes it to flash. However, such a cause is not
practically realizable (and is, of course, precluded by quantum prin-
ciples), and we must make do instead with the statistical properties
of the incident beam and the target material. The effect is then cor-
respondingly reduced to statistical properties of the scattered alpha
particles.

In nonrelativistic quantum mechanics, on the other hand, the cause
is the incident wave function and the scattering potential, which in-
deed involve statistical properties of the incident and target particles
but are different from the classical cause. For instance, the incident
wave function has a nonclassical phase (over which we admittedly have
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no control, but which could be of importance in its relation to other
phases in the system). The effect is the scattered wave function, which
also contains a phase in addition to statistical information about the
scattered particles.

The vacuum state of quantum theory is also due for some discus-
sion. Invariably, even in the most fundamental theories, the properties
of the vacuum state are part of the assumptions of the theory, rather
than derived from other assumptions. Thus, the vacuum state is part
of the cause. That must be kept in mind, especially when the vacuum
state is assumed to possess a lower degree of symmetry than the rest of
the cause. It is the symmetry of the total cause, including the vacuum
state, that, by the symmetry principle, must appear in the effect. Since
the vacuum state is crucial in determining the properties of the physi-
cal states, as the effect, it should come as no surprise that the physical
states are not as symmetric as the cause without the vacuum state,
and the situation is in no way a violation of the symmetry principle.

I brought up that point because it has often been presented as an
apparent violation of the symmetry principle. The symmetry principle
has nothing to fear from such or other apparent violations. It has been
contrived so that, as long as we are concerned with conventional science
(reproducibility, predictability, laws, etc.), it is inviolable.

4.6 Summary

In this chapter we derived the symmetry principle, which is the fun-
damental principle in the application of symmetry considerations to
problem solving in science and engineering and devising theories in
physics. We started by discussing in Sect. 4.1 the concept of causal re-
lation in physical systems, whereby certain correlations exist between
states of cause subsystems and states of effect subsystems, correlations
resulting from the fact that states of subsystems are determined by the
states of the whole system.

In Sect. 4.2 we acquainted ourselves with the concepts of equiva-
lence relation and equivalence class.

In Sect. 4.3 we looked into scientific laws as expressions of causal
relations. We saw that such laws must ignore certain aspects of states
of physical systems. That introduces equivalence relations in the sets of
states of systems, from which follows the equivalence principle: Equiva-
lent states of a cause→ equivalent states of its effect. From the equiva-
lence principle we derived in Sect. 4.4 the symmetry principle: A sym-
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metry transformation of the cause is also a symmetry transformation
of the effect. Equivalently: The symmetry group of the cause is a sub-
group of the symmetry group of the effect. Alternatively: The effect
is at least as symmetric as the cause. What the symmetry principle
means is that any symmetry of a cause must appear in its effect, while
the effect may possess symmetry that is not symmetry of the cause.

In Sect. 4.5 we briefly discussed causes and effects in quantum
systems.
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Application of Symmetry

The symmetry principle can be used to set a lower bound on the sym-
metry of an effect or to set an upper bound on the symmetry of a cause.
The former use, which we call the minimalistic use, is characteristic of
most practical, technological, and textbook problems, where the law
and cause are known for a given system and it is desired to find some
or all of the effect, on whose symmetry the symmetry principle sets
a lower bound. The problems of basic research, on the other hand,
are usually opposite to those. Here one is working from the effect to
find the cause, and the symmetry principle sets an upper bound on
the cause’s symmetry. This is the maximalistic use of the symmetry
principle. We start with a discussion of the symmetry principle’s min-
imalistic use.

5.1 Minimalistic Use of the Symmetry Principle

The symmetry principle is used minimalistically in the application of
symmetry to problems in which the law and cause are known for a given
system and it is desired to find some or all of the effect. Such problems
are characteristic of practical, technological, and pedagogical applica-
tions. If the cause is known, its symmetry can be worked out. The
symmetry principle then states that the effect also possesses this sym-
metry (and possibly more). The knowledge of the minimal symmetry
of the effect is often sufficient for solving the problem fully or partially
or at least for simplifying it to some extent. The minimalistic use of the
symmetry principle is exploited in varying degrees of sophistication.
Here we offer some examples of more simple-minded applications, in
order to keep the symmetry considerations in the foreground.
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Our first example of minimalistic application of the symmetry prin-
ciple was presented in Sect. 4.4 of the preceding chapter. There we were
given a spherically symmetric electric charge distribution from whose
center a resting test charge is situated at some distance. We asked for
the direction of the test charge’s acceleration. The charge distribution
and test charge serve as the cause, with the test charge’s accelera-
tion as effect. Applying the symmetry principal minimalistically, we
know that any symmetry transformation of the cause must also be
a symmetry transformation of the effect. Any rotation about the axis
connecting the center of the charge distribution with the test charge
is a symmetry transformation of the cause. The requirement that all
such rotations be symmetry transformations also of the effect, the ac-
celeration, strongly constrains the direction of the acceleration to the
radial, i.e., pointing directly toward or away from the center of the
charge distribution.

In the next example we find the direction of the acceleration of a test
charge moving parallel to a straight, infinitely long, current-carrying
wire. Although the force on the test charge is magnetic, that fact will
not enter our discussion. And I purposely formulated the problem in
terms of the acceleration of a test charge rather than in terms of the
magnetic field around the wire, in order to avoid the complicating issue
of the transformation properties of the magnetic field under reflection,
a common source of trouble to the unwary.

The cause consists of the current and the moving test charge. The
effect is the test charge’s acceleration (refer to Fig. 5.1). (Although
in the figure the current is given the same sense as the velocity of
the test charge, that is immaterial, and the opposite sense serves as
well.) The cause is symmetric under the transformation of reflection
through the plane containing the wire and the test charge, the plane

Fig. 5.1. System consisting of an infinite straight current and a test charge
moving parallel to it, as cause, and the acceleration a of the test charge, as
effect
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of the page in the figure. The symmetry principle declares that this
transformation must also be a symmetry transformation of the effect,
so the acceleration can possess no component perpendicular to the
plane of the page. Thus, thanks to the symmetry principle, we now
know that the direction of the acceleration is confined to the plane. But
that is still too loose, and we need to constrain the acceleration even
more. The way to do that is to find another symmetry transformation
of the cause that, when applied to the effect, removes some or all of
the remaining ambiguity.

Such a symmetry transformation is supplied by the compound
transformation consisting of the consecutive application of temporal
inversion (or time reversal) and spatial reflection (plane reflection)
through the plane perpendicular to the current and containing the test
charge (at any instant) (see Fig. 5.2). The temporal-inversion trans-
formation by itself reverses the senses of all velocities, in our example
both that of the test charge and that of the moving charges that form
the current in the wire. Since both the current and the test charge’s
velocity are perpendicular to the reflection plane of the second part of
the compound transformation, their senses are reversed again by the
reflection. Thus, the compound transformation indeed leaves the cause
intact.

But how does it affect the effect, the acceleration, of which it must
be a symmetry transformation, according to the symmetry principle?
Temporal inversion by itself does not affect acceleration, because ac-
celeration is the second derivative of position. In other words, accel-
eration is the time rate of change of velocity, and velocity is the time
rate of change of position. Thus, acceleration involves two time rates of
change, one the rate of change of the other. Under temporal inversion
every time rate of change changes sign. That reverses the direction of
velocity. But the sign of acceleration is changed twice, so acceleration
does not change under temporal inversion. The reflection transforma-
tion reverses the component of acceleration perpendicular to the re-
flection plane. So for the compound transformation to be a symmetry
transformation of the acceleration, the acceleration may not possess
a component that is perpendicular to the reflection plane. Since neither
may the acceleration have a component perpendicular to the page, as
we saw earlier, that leaves the acceleration perpendicular to the wire
and pointing either toward or away from the wire. Whether the ac-
celeration is directed toward the wire or away from it depends on the
sign of the test charge and whether its velocity is in the same sense as
the current or in the opposite sense.
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Fig. 5.2. The compound transformation consisting of the consecutive appli-
cation of temporal inversion and plane reflection is the symmetry transfor-
mation of the cause for the system of Fig. 5.1. Its effect on the acceleration
a of the test charge is shown
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In our next example we prove that the orbit of a planet about
its sun lies completely in a plane and that this plane contains the
center of the sun. Our only assumption is that the sun and planet are
each spherically symmetric. Recall that spherical symmetry means the
body is symmetric under any rotation about any axis containing its
center and under reflection through any plane containing its center.
We assume nothing about the nature of the force between the two.
(The reasoning will be valid also for a spherically symmetric body in
any central force field.)

Consider the situation at any instant. The planet has a certain posi-
tion and a certain instantaneous velocity relative to the sun. Of all the
planes containing the line connecting the centers of the planet and the
sun, only one is parallel to the direction of the planet’s instantaneous
velocity. We call it the plane of symmetry (see Fig. 5.3). The cause
consists of the sun and the moving planet. The effect is the planet’s
acceleration.

The cause has reflection symmetry with respect to the plane of
symmetry: The sun and planet are each reflection symmetric with re-
spect to any plane containing their centers, since they are spherically
symmetric, and the plane of symmetry contains both centers. The po-
sitions of the planet and sun are not changed by reflection through the
plane of symmetry, again since the plane contains both their centers.
The direction of the planet’s instantaneous velocity is parallel to the
plane of symmetry, so that velocity is also invariant under reflection

Fig. 5.3. The system consisting of a sun and a moving planet, as cause, and
the acceleration a of the planet, as effect. The plane of symmetry is indicated
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through the plane. Thus, the cause is reflection symmetric with respect
to the plane of symmetry. The effect, the acceleration of the planet,
must then possess that symmetry, by the symmetry principle. There-
fore, the direction of the planet’s acceleration must be parallel to the
plane of symmetry. Otherwise, if the acceleration had a component
perpendicular to the plane, it and its reflection would not coincide. So
the planet’s velocity, which is parallel to the plane of symmetry, un-
dergoes a change (due to the acceleration) that is parallel to the plane
of symmetry (since the acceleration is parallel to the plane) and thus
remains parallel to the plane of symmetry. In this way we see that the
planes of symmetry of the system at all instants are in fact one and
the same plane and that the motion of the planet is confined to that
plane.

Our next example of application of the symmetry principle con-
cerns electric currents. Consider the DC circuit of Fig. 5.4, certainly
good for nothing but an exercise. The six emf (voltage) sources, the 11
resistors, and their connections constitute the cause. The effect con-
sists of the resulting currents in the thirteen branches of the circuit
and the potential differences between all pairs of points of the circuit.
We follow Kirchhoff’s rules (Gustav Robert Kirchhoff, German physi-
cist, 1824–1887) for finding the currents. By Kirchhoff’s junction rule

Fig. 5.4. DC circuit
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we arbitrarily designate seven of the currents i1, i2, i3, i4, i5, i6, i7
and express the other six currents in terms of them, as in the figure.
Kirchhoff’s loop rule then gives us a set of seven simultaneous linear
equations for the seven unknown currents, which we do not show here.
The equations can be solved and the solutions used to calculate the
other six currents. With all the currents known, the potential difference
between any pair of points can be calculated with the help of Ohm’s
law (Georg Simon Ohm, German physicist, 1787–1854). For example,
referring to the figure, we might want to know the potential difference
between any pair of the points marked A, B, C, D, E, F, such as VAB,
VAD, or VEF.

A glance at Fig. 5.4 reveals that the cause possesses symmetry, two-
fold rotation symmetry, i.e., symmetry under rotation by 180◦, about
the axis through the 2-kΩ resistor and perpendicular to the plane of
the page. So the symmetry principle can be invoked, and the effect, the
currents and potential differences, must have the same symmetry. To
help see what that implies, we rotate the system by 180◦ with the result
shown in Fig. 5.5. Now compare the rotated system of Fig. 5.5 with
the unrotated system of Fig. 5.4. Symmetry of the effect gives us for
the currents i1 = i4, i2 = i5, i3 = i6, i7 = −i7, so that i7 = 0. For the
potential differences symmetry of the effect gives VAD = VDA, VBE =

Fig. 5.5. DC circuit for Fig. 5.4 rotated by 180◦
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VEB, VCF = VFC. And since by the nature of potential differences
VDA = −VAD, etc., we have VAD = VBE = VCF = 0. Symmetry of the
effect also gives us relations among the potential differences, such as
VAF = VDC, VCE = VFB, etc.

Thus, the symmetry principle gives more than half the solution to
the problem in this example. Instead of solving seven simultaneous
equations for seven unknown currents, we need to solve only three
equations for three currents. Three of the desired potential differences
are now known, and only half of the others need to be calculated.

Our next example again involves electricity. In this example the
system has a higher degree of symmetry than in the preceding one,
and the symmetry principle makes the complete solution quite simple,
although its explanation is somewhat drawn out. We solve the well
known problem of finding the resistance of a network of 12 equal re-
sistors connected so that each resistor lies along one edge of a cube,
where the resistance is measured between diagonally opposite vertices
of the cube, such as between vertices A and H in Fig. 5.6. Let r de-

Fig. 5.6. Cube of resistors
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note the resistance of each resistor. We imagine a voltage V applied to
vertices A and H, as a result of which current i enters the network at
A, branches through the resistors, and leaves the network at H. The
resistance of the network between A and H is then R = V/i by Ohm’s
law. The cause is the network and the applied voltage, while the cur-
rents in the resistors and the corresponding potential drops (another
term for potential differences) on the resistors comprise the effect.

The cause in the present example does not possess the full symme-
try of the cube, in spite of all the resistors being equal, since vertices
A and H are distinguished from the other vertices and from each other,
as the current enters the network at A and leaves at H. So the sym-
metry transformations of the cause consist of only those symmetry
transformations of the cube that do not affect vertices A and H: rota-
tions by 120◦ and 240◦ about the diagonal AH (i.e., the diagonal AH is

Fig. 5.7. Symmetry of the cause for resistance of the cube of resistors be-
tween A and H. (a) Axis of three-fold rotation symmetry. (b)–(d) Planes of
reflection symmetry
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an axis of three-fold rotation symmetry) and reflections through each
of the three planes ABHG, ACHE, ADHF, as in Fig. 5.7. Then by the
symmetry principle the effect must also have that symmetry. We can
use this fact to find the current in each resistor of the network.

The current i entering the network at vertex A splits among three
branches and flows to vertices B, C, and D. Due to the three-fold
rotation symmetry, the current divides equally, so that current i/3
flows in each branch AB, AC, and AD, as in the diagram of Fig. 5.8.
The current i/3 entering vertex B then divides again between two
branches and flows to vertices E and F. It divides equally between the
two branches because of the reflection symmetry with respect to plane
ABHG. Thus, current

1
2

(
1
3
i

)
=

1
6
i

flows in each branch BE and BF. Similar reasoning also gives current
i/6 in each of branches CF, CG, DG, and DE, as in Fig. 5.9.

Fig. 5.8. Three-fold rotation symmetry requires equal first division of the
current entering the network
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Fig. 5.9. Plane reflection symmetry requires equal second division of the
current

After that stage the symmetry takes care of itself. Current i/6
enters vertex E from each of vertices B and D, producing current
2× i/6 = i/3 leaving E and flowing to H. Similarly, current i/3 enters
H from each of vertices F and G. The three currents i/3 entering ver-
tex H join to give current 3× i/3 = i leaving the network, as it should
(what enters at A must exit at H). That is illustrated in Fig. 5.10.

Now, the voltage V between A and H equals the sum of potential
drops between those two vertices, where the sum may be calculated
over any continuous path in the circuit that connects A and H. Let
us choose path ABEG. By Ohm’s law the potential drop on a resistor
equals the product of the current in the resistor and its resistance. So,
referring to Fig. 5.10, the potential drop from A to B is ir/3, from B to
E the potential drop is ir/6, and from E to H it is ir/3. Adding those
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Fig. 5.10. Rejoining of divided currents in two stages before leaving the
network

together, we obtain V = 5ir/6. Thus, the resistance of the network
between A and H is

R =
V

i
=

5ir/6
i

=
5
6
r .

This is the solution of the problem.
In the last two examples note that it is not the actual geometry of

the circuits that is important, but rather their electric structure. Thus,
it is not the geometric symmetry of the circuits that really interests
us, but rather the permutation symmetry of their components, the
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fact that the circuit remains unchanged under certain interchanges of
components. It is true that we expressed that permutation symmetry
in geometric terms in order to keep our considerations as familiar as
possible. However, the former circuit does not have to be laid out as
nicely as in Fig. 5.4, nor does the latter network actually have to lie
along the edges of a cube for our symmetry argument to hold. Thus,
it is really permutation symmetry that we are using, based on the
functional, rather than geometric, equivalence of parts of the circuit.
This point is important to keep in mind in the application of symmetry
to physical systems. Functional equivalence of parts of a system can
be a source of permutation symmetry.

Another point to note in the last two examples is that each prob-
lem has a unique solution. So naturally the solution was chosen to
be the effect in each case, and application of the symmetry principle
was straightforward. Uniqueness of solution is characteristic of passive
electric circuits. That is not always the case, however, when circuits
contain active components, such as transistors. Then more than one
solution might be possible. What is the effect in that case and how is
the symmetry principle applied? Read on.

Our next example of minimalistic application of the symmetry prin-
ciple is of somewhat different character. It is often assumed that the
static electric charge distribution on the surface of an isolated charged
conducting sphere is homogeneous, i.e., that the surface charge density
in such a case possesses spherical symmetry. And if any explanation is
offered at all, it is invariably simply a reference to ‘symmetry consid-
erations’. Now, it is indeed true that the surface charge density on an
isolated charged conducting sphere in the static case possesses spher-
ical symmetry. This can be shown, using the fact that the surface of
a conducting sphere is then an equipotential surface and relying on
uniqueness considerations. This has not been shown, as far as I know,
by proving that the spherically symmetric charge configuration is the
configuration of lowest electrostatic potential energy. As for ‘symmetry
considerations’, they certainly do not require a spherically symmetric
charge distribution, as we will see, although they do allow it.

How does the sphere get its charge to begin with? We must charge
it. We then remove the charging device far enough away so that the
sphere can be considered isolated. The cause consists of the charging
device and the sphere, and the effect is the final charge distribution
on the sphere. The most symmetric practically attainable cause I can
think of is attained by keeping the charge source very far from the
sphere at all times and connecting the two through a straight wire
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that touches the sphere perpendicularly to the sphere’s surface, so
that the line of the wire passes through the center of the sphere. When
charging is complete, the wire is withdrawn from the sphere along its
line. (Alternatively, a spherical charge source could be put in contact
with the sphere and then removed along the line containing the two
centers.)

Thus, the most symmetry we can give the cause is axial and re-
flection symmetry, symmetry under all rotations about the line of the
wire (or the line containing the centers) and reflections through all
planes containing that line (see Fig. 5.11). This is not spherical sym-
metry, which is symmetry under all rotations about all axes through
the center of the sphere and reflections through all planes containing
the center. The latter group of transformations obviously includes the
former. Indeed, the sphere itself is spherically symmetric. However,
the total cause possesses only the axial and reflection symmetry de-
scribed. So the only symmetry we can demand of the effect, the surface
charge distribution, is, by the symmetry principle, also axial and re-
flection symmetry. Even so, spherical symmetry is not excluded by the
symmetry principle, since the effect may be more symmetric than the
cause.

If we do not know or prefer to ignore the way the sphere is charged
and wish to consider the sphere itself as the cause, the effect will
certainly not be the charge distribution, which might depend on the
way the sphere is charged, but rather the set of all allowed charge
distributions. Since the cause in this case is spherically symmetric,
so is the effect, by the symmetry principle. Thus, even though no
single allowed charge distribution has to be spherically symmetric,
given any one allowed charge distribution, all those obtained from it
by any rotation about any axis through the center of the sphere or
reflection through any plane containing the center are also allowed
charge distributions [26].

That brings us to the following warning. If the state of what is cho-
sen as the cause in a problem is not sufficient to determine a unique

Fig. 5.11. Charging of a conducting sphere
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solution to the problem, then the effect cannot be the solution, but is
rather the family of all solutions consistent with a state of the cause.
For another example of this, note that the symmetry principle is ap-
plicable not only to physical systems, but to any system in which
a causal relation exists. Such is an equation and its set of solutions.
Then, given as the cause an equation possessing some symmetry, the
effect is not any particular solution of the equation, and indeed no so-
lution need possess the full symmetry of the equation. The effect is the
family of all solutions of the equation, and that is what must have the
symmetry of the equation. Given any one solution, the application to
it of any symmetry transformation of the equation produces another
solution (or even possibly the same solution). If, however, additional
conditions are involved, such as boundary or initial conditions or con-
straints, they may be included in the cause and will usually reduce its
symmetry.

To give a more specific example, consider the algebraic equation

x2 − 9 = 0 ,

or any other polynomial equation involving only either even or odd
powers of the unknown variable. Every such equation is symmetric
under the transformation

x −→ −x .

(The odd-power polynomials change sign under the transformation,
but the equations are the same, since the equation −P = 0 amounts
to the same as the equation P = 0 for polynomial P .) If each root of
such an equation had the same symmetry, the only allowed root would
be x = 0. However, it is the set of all roots of the equation, and not
each root, that must possess the symmetry of the equation, with the
result that for equations of the type we are discussing all nonzero roots
must appear in positive-negative pairs. For instance, the roots of the
equation just presented are x = ±3.

Or consider the harmonic-oscillator differential equation

d2y

dt2
+ a2y = 0 , a = constant .
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It possesses symmetry under each of the following transformations:

• temporal displacement: t −→ t + b, for arbitrary constant b,
• temporal inversion: t −→ −t,
• spatial dilation: y −→ cy, for arbitrary, positive constant c,
• spatial inversion: y −→ −y.

Since no initial conditions are specified, the family of solutions of this
equation must possess the same symmetry as the equation. Thus, if

y = f(t)

is a solution, so must also

y = f(t + b) , y = f(−t) , y = cf(t) , y = −f(t)

be solutions for arbitrary allowed constant b and c. For the oscillator
equation the family of all solutions can be written in the forms

y = A sin(at + B) = C sin at + D cos at ,

for all constant A and B or C and D. Under the temporal-displacement
transformation the general solution becomes

y = A sin(at + ab + B)
= A sin(at + B′) , B′ = ab + B .

Since B′ ranges over the same values as does B, we have recovered the
same family.

Under the temporal-inversion transformation the general solution
becomes

y = A sin(−at + B)
= A sin(at−B)
= A′ sin(at + B′) , A′ = −A , B′ = −B ,

and again we find that the family is symmetric.
Under the spatial-dilation transformation the general solution be-

comes

y = cA sin(at + B)
= A′ sin(at + B) , A′ = cA ,

whence we have symmetry again.
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And under the spatial-inversion transformation the general solution
becomes

y = −A sin(at + B)
= A′ sin(at + B) , A′ = −A ,

and is symmetric.
If initial conditions are imposed by specifying the values of the

solution and its derivative for some value of t, the particular solution
will in general not possess any of the above symmetries, although in
certain cases it might retain one or more of them [27].

Note that each solution of the oscillator equation possesses the
property of periodicity, i.e., it is symmetric under a certain minimal
temporal displacement and integer multiples of it,

y

(
t +

2π
a

n

)
= y(t) ,

for

n = 0,±1,±2, . . . .

The minimal temporal displacement, or period, is 2π/a. This sym-
metry does not follow from the symmetry of the equation. It can be
discovered only by actually solving the equation. For comparison, the
equation

d2y

dt2
− a2y = 0 , a = constant ,

which is very similar to the oscillator equation, possesses the same
four symmetries that we found for that equation, but does not have
periodic solutions. Its general solution can be written

y = C sinh at + D cosh at ,

and the hyperbolic functions are not periodic. The family of its solu-
tions must and does possess the four symmetries of the equation.

Finally, to end this section, I will present an apparent violation
of the symmetry principle and its resolution. According to Hermann
Weyl (German-American mathematician, 1885–1955) [28], Ernst Mach
“tells of the intellectual shock he received when he learned as a boy
that a magnetic needle is deflected in a certain sense, to the left or
to the right, if suspended parallel to a wire through which an electric
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current is sent in a definite direction.” Refer to Fig. 5.12. Let us see
why that phenomenon appears to violate the symmetry principle, to
Mach’s shock. The cause in that case is the electric current in the wire
and the magnet hanging above the wire. The effect is the deflection of
the magnet. Presumably, as a boy, Mach had not yet learned about the
nature of a magnet. So the cause, as he perceived it, was symmetric
under reflection through the vertical plane that contains the wire and
the magnet. In other words, left and right appeared to be equivalent in
the cause, with neither distinguished from the other. By the symmetry
principle, then, the deflection of the magnet should possess the same
symmetry and should not be either to the left or to the right, which
would distinguish one sense from the other. When the magnetic needle
was nevertheless deflected in a certain sense (to the left or to the right),
Mach could not see what there was in the cause that distinguished that
sense from the other sense.

When the symmetry principle appears to be violated, we must ques-
tion our understanding of the cause and the effect. In this case, it was
the nature of a magnet that Mach was not understanding. Simply put,
the reflected magnet does not coincide with the original, even if it vi-
sually seems to. A magnet derives its magnetism from aligned atomic
magnets, where each such magnet is essentially a microscopic electric
current loop. Those currents are flowing in a certain sense, either clock-

Fig. 5.12. Mach’s dilemma
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wise or counterclockwise, when viewed along the axis of the magnet,
along the line through the magnet’s poles. In the example of Fig. 5.12,
if we looked along the axis from the south pole (S) to the north pole
(N), and if our vision were sufficiently sharp, we would see the atomic
current loops flowing clockwise. Clearly, then, reflection through the
vertical plane that contains the wire and the magnet does not leave
the situation unchanged. It changes the clockwise currents to counter-
clockwise currents and thus reverses the polarity of the magnet . Since
the cause is not reflection symmetric, neither need the effect, the mag-
net’s deviation, be reflection symmetric, and indeed it is not. In the
setup of Fig. 5.12 the north pole of the magnet deflects to the right,
as viewed from S to N by a person standing normally.

5.2 Maximalistic Use of the Symmetry Principle

The problems of basic scientific research are usually opposite to those
for which the symmetry principle is used minimalistically. In basic
research it is the effect that is given, and we try to find the cause.
The effect in such a problem is one or more experimental phenomena,
and we attempt to discern order among them, find laws for them, and
devise a theory explaining those phenomena as being brought about by
some cause. A theory is considered to be better the more phenomena
it explains and the simpler the cause that is supposed to be producing
them [29]. Although simplicity is not a standardized concept and is at
least somewhat a matter of taste, it is generally agreed that symmetry
contributes greatly to simplicity.

The reason that a symmetric situation is simpler than an asym-
metric one is that the former involves less conceptual raw material.
For example, in an amorphous solid the atoms (or molecules) are lo-
cated at more or less random positions and there is no microscopic
spatial symmetry. (Viewed macroscopically , however, the material is
approximately homogeneous and isotropic, i.e., has no distinguished
locations or directions. This implies approximate spatial symmetries
on the macroscopic scale, but that is another matter.) The micro-
scopic situation is fully described by the specification of the location
of every atom, which is a tremendous amount of information. In a crys-
talline solid, on the other hand, the atoms (or ions or molecules) are
located on a lattice, i.e., they are arranged in a spatially periodic array.
The situation possesses certain spatial symmetries: definitely spatial-
displacement symmetry and possibly also others, such as rotation and
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reflection symmetries. To describe the situation, it is sufficient to spec-
ify the locations of the few atoms composing the unit cell and the re-
peat distance of the unit cell in three independent directions. Thus,
very much less information is involved here than in the amorphous
case and in that sense the crystalline situation is simpler than the
amorphous one. The symmetry clearly and strongly brings about the
simplicity.

For another example, at a more fundamental level, imagine we have
a physics theory that involves different laws of nature in different di-
rections. According to such a theory, the same system will evolve dif-
ferently when it is oriented in different directions. Such a theory does
not possess rotation symmetry. Compare that with a rotation sym-
metric theory, one that gives the same law in all directions. Rather
than a different physics in each direction, we now have the physics of
a single direction repeated in all directions. The latter is considered to
be much simpler than the former.

Thus, in devising a theory for a given set of experimental phenom-
ena, we usually assume as symmetric a cause as possible. And how
symmetric can a cause be? Here the symmetry principle serves to set
an upper bound on the symmetry of the cause: The cause can be no
more symmetric than the effect. That is what we call the maximalistic
use of the symmetry principle.

So we must first identify the symmetry of the phenomena we wish to
explain. That symmetry is often far from obvious. Then we construct
our theory so that the cause will have just the same symmetry, if pos-
sible. If it is not possible to assign maximal symmetry to the cause, we
must assume a less symmetric cause and include in the theory an ex-
planation of why the effect is more symmetric than the cause. But we
may never assume that the cause has more symmetry than do the phe-
nomena being explained, which would violate the symmetry principle.

What most often happens, though, is that the symmetry of a set of
phenomena is only approximate. (We discuss approximate symmetry
in Sects. 1.1 and 6.1.) In such a case the first step toward a theory is to
determine the ideal symmetry that is only approximated by the phe-
nomena. That can be very difficult, if the symmetry is far from exact.
Then, to obtain as symmetric a cause as possible, we try to construct
a theory such that the cause will contain a dominant part possessing
the ideal symmetry of the effect and another, symmetry breaking part
that does not have the symmetry. In the (possibly hypothetical) limit
of complete absence of symmetry breaking, the dominant part of the
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cause produces the ideal symmetry of the phenomena, while the sym-
metry breaking part brings about the deviation from ideal symmetry.
A complete theory contains the symmetry breaking mechanism within
its framework. But sometimes the cause of the symmetry breaking
must be left as a mystery to be cleared up when more experimental
facts are known or a better theory can be found.

For a classic example of the maximalistic use of the symmetry prin-
ciple we turn to nuclear physics. The basic problem of nuclear physics
is the strong nuclear interaction, the force that binds protons and
neutrons together to form nuclei. This force is not yet completely un-
derstood, but appears to be explainable in terms of the interactions
among the quarks that compose the proton and neutron. Those inter-
actions are mediated by gluons and are described by the SU(3) color
gauge theory (see Sect. 3.6). Protons and neutrons are also affected by
the weak nuclear interaction, but at a strength much lower than that
of the strong interaction. This interaction is also not yet completely
understood, but seems to be described by another gauge theory.

On the other hand, the electromagnetic interaction among protons
and neutrons as well as the Pauli exclusion principle (Wolfgang Pauli,
Swiss–Austrian physicist, 1900–1958) are very well understood. (The
Pauli principle states in the present context that no two protons or no
two neutrons can be in the same quantum state.) The effect consists
of such phenomena as the various properties of all kinds of nuclei and
the results of scattering experiments, in which protons and neutrons
are made to collide and nuclei are bombarded with electrons, protons,
neutrons, other nuclei, etc. The effect is found to exhibit the following
approximate symmetry. Two kinds of nuclei differing only in that one
of the neutrons in one kind is replaced by a proton in the other often
possess certain similar properties (although their electric charges, for
instance, are clearly unequal). Also, in scattering experiments similar
results are obtained whether the interacting particles are two protons,
two neutrons, or a proton and a neutron.

Thus, nuclear phenomena are approximately symmetric under in-
terchange of proton and neutron. That symmetry is called charge sym-
metry, since the major difference between the proton and the neutron
is their different electric charges. The symmetry principle then suggests
that we assume the strong nuclear interaction is exactly charge sym-
metric, i.e., completely blind to any difference between the proton and
the neutron. The symmetry breaking factors are assumed to consist
of the electromagnetic interaction, which discriminates between pro-
ton (electrically charged) and neutron (electrically neutral), the weak
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nuclear interaction, which also discriminates between proton and neu-
tron, and the Pauli principle, which discriminates between identical
particles and different particles. That assumption has, in fact, proved
to be very successful.

Another example of the maximalistic use of the symmetry princi-
ple is in the study of the elementary particles and their interactions
(of which nuclear physics is a particular case). Here the symmetries
of the experimental phenomena are much more complicated and much
more approximate (i.e., less nearly exact, except for certain exact sym-
metries) than in nuclear physics. Maximalistic use of the symmetry
principle has guided physicists to an understanding that is called the
standard model. This scheme is based on a framework in which the
elementary particles of nature are composed of two sets: matter parti-
cles and force particles. The set of matter particles in turn comprises
two sets: hadrons and leptons. There are four interactions among the
matter particles: the strong, weak, electromagnetic, and gravitational
interactions. The interactions are mediated by the force particles. For
every type of particle there exists a corresponding antiparticle, al-
though some particles are their own antiparticles. The standard model
is concerned solely with the strong, weak, and electromagnetic inter-
actions, ignoring gravitation [30–32].

Of the matter particles, the strong interaction affects only the
hadrons. The set of hadrons comprises six quarks, which are classified
in pairs and given very fanciful names: (up, down), (strange, charmed),
(bottom, top). (The nuclear particles of ordinary matter, which are the
proton and neutron – collectively called nucleons – are composed of
quarks.) Each quark has three states, designated, again fancifully, by
the colors red, blue, and green. The strong interaction is mediated by
a set of eight gluons. In addition to the strong interaction, the hadrons
are subject also to the other three interactions.

The leptons are affected only by the weak, electromagnetic, and
gravitational interactions. The set of leptons consists of six particles,
which are classified in pairs: (electron, electron neutrino), (muon, muon
neutrino), (tau, tau neutrino). (These three pairs are suspected of be-
ing related, in some as yet to be understood way, to the three pairs
of quarks.) The weak interaction is mediated by three ‘intermediate
bosons’, designated W+, W−, Z0. The mediator of the electromagnetic
interaction is the photon, and that of the gravitational interaction is
the graviton.

The standard model describes each of the three interactions it is
concerned with by a gauge theory, a theory based on gauge symmetry
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(see Sect. 3.6). The gauge symmetry of the strong interaction is de-
noted SU(3), where the 3 comes from the number of quark colors. This
is symmetry under transformations that mix the colors. For the weak
interaction the gauge symmetry is called SU(2), with the 2 referring
to the two members of each pair of hadrons and leptons. The trans-
formations involved in this symmetry mix the members of each pair.
The gauge symmetry of the electromagnetic interaction is named U(1)
and has to do with changes of phase, an abstract quantity that charac-
terizes states of particles. The complete gauge theory of the standard
model comprises the three gauge theories. Its symmetry is denoted
SU(3)×SU(2)×U(1), indicating the three independent symmetries of
the theory.

The standard model does not tell the whole story and leaves much
to be explained. Physicists hope that experimental results to be ob-
tained in the near future from new, more powerful particle accelerators
will shed light on physics beyond the standard model. Such physics is
expected to involve even more symmetry than that of the standard
model. One such extension that has already been recognized unifies
the weak and electromagnetic interactions into the electroweak inter-
action. The electroweak gauge theory is a more symmetric theory than
the two theories it unifies, since it possesses symmetry transformations
in addition to all the symmetry transformations of the separate the-
ories. Such additional transformations might mix the photon and the
Z0, for instance.

A further extension is envisioned, although its character is still
unclear. Called grand unified theory (GUT), it would unify the elec-
troweak and strong interactions and should give a good description
all non-gravitational phenomena. The GUT gauge theory would pos-
sess even more symmetry than do the strong and electroweak theories
it unifies. Certain of its symmetry transformations that would not
be symmetry transformations of the two separate theories might mix
hadrons and leptons, for example.

Even that does not exhaust the capacity of physicists’ imaginations.
The gravitational interaction, which has so far been left out of the
picture (for very good reasons, which we will not discuss here), might
be unified with the other three in what is often called a theory of
everything (TOE). A TOE would be even more symmetric than any
of the theories mentioned above [30,33].

A different kind of extension of physics beyond the standard model
involves what is called supersymmetry (SUSY). This is symmetry un-
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der transformations that mix matter particles and force particles. It
requires the existence of additional kinds of particle to those that the
standard model deals with, particles that have not (yet) been discov-
ered or produced. Evidence relating to SUSY is anticipated in the near
future from new particle accelerators [31].

Another approach to unification goes under titles like ‘string the-
ory’, ‘superstring theory’, and ‘M-theory’. Not only does it attempt to
describe nature at a more fundamental level than the above-mentioned
theories do, but it requires the existence of additional spatial dimen-
sions to the three we are familiar with. Its fundamental entities, called
strings, have sizes of the order of 10−35 meter and are assumed to
oscillate in various ways and to join and split. This theory has been
under development for some time now, but has yet to produce results
that are experimentally testable, even by new particle accelerators.
See [30,34], and for an opposing view see [35,36].

5.3 Summary

This chapter dealt with the application of the symmetry principle. In
its minimalistic use, the symmetry principle sets a lower bound on
the symmetry of an effect, since, according to the principle, the sym-
metry of an effect cannot be less than that of its cause. In Sect. 5.1
we examined examples of minimalistic use of the symmetry principle.
Some of the examples involved physical systems, while others were
mathematical. The physical cases had the character of problem solv-
ing for a unique solution, and the solution was fully or partially found
by applying the symmetry of the cause to the effect. The mathemat-
ical examples served to examine how to deal with situations in which
a problem possesses more than one solution. In such cases it is the
family of all solutions that serves as the effect and must exhibit the
symmetry of the cause (and possibly more).

In Sect. 5.2 we discussed the maximalistic use of the symmetry
principle. In that use the principle sets an upper bound on the sym-
metry of a cause, since, by the symmetry principle, the cause cannot
be more symmetric than its effect. Maximalistic use is characteristic of
basic science research, in which the effect is given and its cause must
be found. For a cause to be as simple as possible, it must be as sym-
metric as possible, and its maximal allowed symmetry is that of the
effect. The examples were from the fields of nuclear physics and the
physics of elementary particles and their interactions.
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Approximate Symmetry,

Spontaneous Symmetry Breaking

In this chapter we briefly discuss approximate symmetry, based on the
concept of a metric for a set of states of a system. We present the con-
cepts of approximate symmetry transformation, exact symmetry limit,
broken symmetry, and symmetry breaking factor. We then more sub-
stantially discuss spontaneous symmetry breaking, situations in which
the symmetry principle – that the effect is at least as symmetric as the
cause – seems to be violated. The essence of the matter is stability of
the symmetry of an effect under perturbations of the symmetry of its
cause.

6.1 Approximate Symmetry

In Sect. 1.1, I presented a conceptual definition of approximate sym-
metry. However, in order to express approximate symmetry within the
general symmetry framework that we started developing in Chaps. 3
and 4 and will formalize further in Chap. 10, we need the notion of ap-
proximate symmetry transformation. That is any transformation that
changes every state of a system to a state that is nearly equivalent to
the original state. And just what does ‘nearly equivalent’ mean? For
that we must soften the all-or-nothing character of the equivalence re-
lation, upon which symmetry is based (see Sects. 4.2–4.4), in order to
allow, in addition to equivalence, varying degrees of inequivalence. The
way to do that is to find a metric for a set of states of a system, a ‘dis-
tance’ between every pair of states, such that null ‘distance’ indicates
equivalence and positive ‘distances’ represent degrees of inequivalence.
In Sect. 10.6 we will work out the formal details of metrics. Here we
will stick with concepts.
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A metric is an expression of the physical properties of the system.
States that are ‘close’ to each other are ‘almost’ equivalent in a mean-
ingful physical sense. States that are ‘farther’ from each other are ‘less
nearly’ equivalent in a physically significant way. Consider the simple
example of approximate symmetry in Fig. 1.6 in Sect. 1.1. The figure
possesses no exact symmetry; there is no transformation that brings
the figure into exact coincidence with itself. Rotation by 180◦ about
the center in the plane of the page brings the figure into a state that
nearly coincides with the original state. Rotations by angles that pro-
gressively differ from 180◦ transform the figure into progressively less
near coincidence. So a metric for this system would give a small ‘dis-
tance’ between states that differ by 180◦ rotation and progressively
larger ‘distances’ between states that differ by rotations through an-
gles that progressively deviate from 180◦. States that differ by 90◦ or
270◦ are the most different from each other, and for such pairs a metric
would give the greatest ‘distance’. As the angular difference between
pairs of states decreases from 90◦ or increases from 270◦, the states be-
come closer to coincidence, and the closer the angular difference is to
0◦ or to 360◦, the more nearly the states coincide. So a metric would
give decreasing ‘distances’ between the members of such pairs, ‘dis-
tances’ that approach zero as the angular difference approaches 0◦ or
360◦. Perfect coincidence occurs for 0◦ or 360◦, but those ‘rotations’
do nothing, and we have merely the trivial coincidence of every state
with itself. Any metric must give null ‘distance’ between every state
and itself.

Now that we have introduced the concept of a metric, we can define
an approximate symmetry transformation for a set of states equipped
with a metric. It is any transformation that transforms all states into
states that are sufficiently nearly equivalent to the originals, where
‘nearly equivalent’ means within some specified ‘distance’ as given by
the metric. Thus, what is or is not considered an approximate symme-
try transformation depends on how great a deviation from equivalence
one is willing to tolerate, where that is expressed by the greatest metric
‘distance’ one will accept.

In the example of Fig. 1.6, that might result in my determination
that only rotations in these ranges are approximate symmetry trans-
formations: 175◦–185◦, 0◦–8◦ (not including 0◦), and 352◦–360◦ (not
including 360◦). The first range consists of rotation angles in the neigh-
borhood of 180◦±5◦. The other two ranges together can be thought of
as rotations in the range −8◦ to +8◦ (excluding 0◦), where a negative
rotation is performed in the opposite sense to that of a positive rota-
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tion, and the result of rotation by −a◦ is the same as that of rotation
by 360◦−a◦. However, you might perhaps be more stringent than I am
about what is to be considered nearly equivalent. So for you only rota-
tions in the more limited ranges of 180◦±3◦ and −6◦ to +6◦ (excluding
0◦) might be considered approximate symmetry transformations.

For a set of states equipped with a metric and a set of approxi-
mate symmetry transformations for the set of states and metric, an
exact symmetry limit is another metric for the same set of states for
which some of the approximate symmetry transformations (accord-
ing to the original metric) are exact symmetry transformations, for
which some near equivalences (according to the original metric) be-
come exact equivalences. Since we are considering physical systems,
so that the metric has physical significance, an exact symmetry limit
of it might correspond to a physically realizable system, to a conceiv-
able but physically unrealizable system, or to nothing conceivable as
a physical system at all.

We can use the example of Fig. 1.6 again. Since states that differ
by 180◦ are nearly equivalent, so that a metric would give a small
‘distance’ between such states, a natural exact symmetry limit would
be a new metric that is similar to the original one but now gives null
‘distance’ for such states. The new metric describes a system, similar
to the original one, for which pairs of states that differ by 180◦ are
exactly equivalent. That is not only conceivable but easily realizable.
Simply reduce the size of the lower-right X and arcs to match the
upper-left X and arcs (or enlarge the latter to match the former) and
– voila! – we have a realization of the exact symmetry limit. For the
altered system a rotation by 180◦, which was an approximate sym-
metry transformation for the original system, is an exact symmetry
transformation.

Returning to the nuclear physics example of maximalistic use of
the symmetry principle presented in Sect. 5.2, we have charge sym-
metry as an approximate symmetry. An exact symmetry limit would
have charge symmetry as an exact symmetry, i.e., the strong nuclear
interaction would be acting, while the weak nuclear interaction, the
electromagnetic interaction, and the Pauli exclusion principle would
be ‘switched off’. Such a situation is conceivable, since by describing it
just now we are conceiving of it, but it certainly is not physically real-
izable. In terms of metrics, any realistic metric for the actual situation
must give nonzero ‘distances’ for pairs of states differing only in that
one or more protons in one state are replaced by neutrons in the other
and vice versa, since the weak nuclear interaction, the electromagnetic
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interaction, and the Pauli principle distinguish between such states.
An exact symmetry limit for charge symmetry would give null ‘dis-
tance’ for such pairs, expressing their equivalence in the hypothetical
absence of the three effects that ruin the exact symmetry.

That brings us to another term for approximate symmetry, which
is broken symmetry. The symmetry breaking factor is whatever factor
the (possibly hypothetical) switching off of brings about an exact sym-
metry limit. In the example of Fig. 1.6 the symmetry breaking factor is
the difference in size between the two Xs and pairs of arcs. When that
difference is eliminated, the approximate symmetry, or broken sym-
metry, becomes exact. In the nuclear-physics example the weak nu-
clear interaction, the electromagnetic interaction, and the Pauli prin-
ciple constitute the symmetry breaking factor. In their hypothetical
absence, approximate charge symmetry, or broken charge symmetry,
would be an exact symmetry.

Another example is a crystal, which possesses broken spatial dis-
placement symmetry. The exact symmetry limit is an infinite perfect
crystal, obviously unobtainable in practice. The symmetry breaking
factor here comprises the real crystal’s finiteness and defects. Or, con-
sider the four-equal-straight-armed figure of Fig. 6.1, where each pair
of opposite arms forms a straight line segment and the angle δ is al-
most, but not quite, a right angle. That system possesses approximate

Fig. 6.1. A system possessing approximate four-fold rotation symmetry for
δ �= 90◦ but δ ≈ 90◦
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four-fold rotation symmetry. The symmetry breaking factor is the dif-
ference between δ and 90◦. The exact symmetry limit is the system
with δ = 90◦ and is realizable.

6.2 Spontaneous Symmetry Breaking

In discussions of symmetry and the symmetry principle, that the effect
is at least as symmetric as the cause, the question of ‘spontaneous sym-
metry breaking’ inevitably arises. There appear to be cases of physical
systems in which the effect simply has less symmetry than the cause,
where the symmetry of the cause is possessed by the effect only as
a badly broken symmetry. In those cases the family of exact symme-
try transformations of the effect forms part of the family of symmetry
transformations of the cause, rather than vice versa as the symmetry
principle requires. In other words, we seem to have broken symme-
try with no symmetry breaking factor. Among those cases are Gar-
rett Birkhoff’s hydrodynamic ‘symmetry paradoxes’ (American math-
ematician, 1911–1996) [37], and additional examples are noted later
in this section. Yet, as we have convinced ourselves, the symmetry
principle cannot but hold.

The trouble is that what is taken to be the cause is not complete,
and the complete cause is less symmetric. What is assumed to be the
exact symmetry of the cause is really only an approximate symmetry,
although a very good approximation. The approximation is so good
that we are deceived into believing that it is perfect and overlook the
small symmetry breaking factor that makes the symmetry only ap-
proximate. What is in fact usually overlooked is the influence of small,
random fluctuations in physical systems. Thus, the symmetry principle
is saved. The exact symmetry of the cause remains, as it must, the min-
imal exact symmetry of the effect. But a good approximate symmetry
of the cause can be possessed by the effect as a badly broken symmetry.

Just how do small, symmetry breaking perturbations of a cause
affect the symmetry of the effect? What can be said about the sym-
metry of an effect relative to the approximate symmetry of its cause?
That depends on the actual nature of the particular physical system,
on whatever it is that links cause and effect in each case. But we can
consider the possibilities:

1. Stability . The deviation from the exact symmetry limit of the cause,
introduced by the perturbation, is ‘damped out’, so that the ap-
proximate symmetry of the cause is the minimal exact symmetry of
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the effect. In this case there is no spontaneous symmetry breaking
and the symmetry principle does not appear to be violated.

2. Lability . The approximate symmetry of the cause serves as the
minimal approximate symmetry of the effect with similar degrees
of approximation. Here too the symmetry principle does not appear
to be violated.

3. Instability . The deviation from the exact symmetry limit of the
cause, introduced by the perturbation, is ‘amplified’, and the min-
imal symmetry of the effect is only the exact symmetry of the
cause (including perturbation), with the approximate symmetry
of the cause appearing in the effect as a badly broken symmetry.
This is what is commonly called spontaneous symmetry breaking .
To quote Birkhoff [37]:

Although symmetric causes must produce symmetric effects,
nearly symmetric causes need not produce nearly symmetric
effects: a symmetry problem need have no stable symmetric
solutions.

An example of a stable situation is offered by the solar system. All the
planetary orbits lie pretty much in the same plane, and that seems to
have been the case for as long as observations have been recorded, or
even for as long as the planets have existed, according to the modern
theory of the origin of the solar system. That is symmetry, reflection
symmetry with respect to the plane of the solar system. Now, if the
state of the solar system at any instant is taken as the cause, its state
at any later instant is an effect. Thus, the solar system exhibits sta-
bility for reflection symmetry. In spite of the various and numerous
internal and external perturbations that the solar system has suffered
throughout its history, which might be expected to have broken the
reflection symmetry more and more as time went on, the symmetry
has obviously been preserved. Symmetry in processes will be discussed
in detail in Chap. 11.

As an example of lability, consider the DC circuit shown in Fig. 5.4
in Sect. 5.1 as an example of the minimalistic application of the sym-
metry principle. That system possesses two-fold rotation symmetry
(actually, as explained there, functional permutation symmetry). But
it is the ideal system that is symmetric. No real circuit built according
to the diagram will be exactly symmetric, due to practical limitations
on the precision of resistors, of emf sources, and so on. Yet the ef-
fect, consisting of the currents and potential differences, always shows
two-fold rotation symmetry to reasonable precision. So the situation is
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certainly not one of instability. Is it stability or lability? To check that,
we replace a fixed resistor with a variable one or a fixed emf source
with a variable source and gradually break the symmetry of the cause,
following the symmetry of the effect with ammeters and voltmeters as
we do so. And we find that the symmetry of the effect gets broken as
gradually as we break the symmetry of the cause. This proves that the
system is labile for two-fold rotation symmetry.

For an example of instability we return to the solar system, this
time to its origin and evolution. Modern theory has the solar system
originating as a rotating gas cloud with approximate axial symmetry,
i.e., symmetry under all rotations about its axis. If that state of what
is now the solar system is taken as the cause, the present state can be
taken as the effect. Any axial symmetry the protosolar system once
possessed has clearly practically disappeared during the course of evo-
lution, leaving the solar system as we now observe it. The random,
symmetry breaking fluctuations in the original gas cloud grew in im-
portance as the system evolved, developing into planets and other ob-
jects, until the original axial symmetry became hopelessly broken. Ad-
ditional examples of instability are Birkhoff’s ‘symmetry paradoxes’,
referred to previously.

An example exhibiting both stability and instability, although un-
der different conditions, is a volume of liquid at rest in a container.
Such a liquid is macroscopically isotropic; its macroscopic physical
properties are independent of direction. That is symmetry. The sys-
tem is stable for isotropy, and the liquid will overcome our attempts
to break the symmetry, if only it can. A tap on the side of the con-
tainer introduces anisotropy, which is very soon damped out by the
system, and isotropy is regained. A small crystal of the frozen liquid
thrown into the liquid also breaks the symmetry, but it soon melts
and isotropy returns. However, when the liquid is cooled to below its
freezing point, the situation changes drastically.

Let us imagine that the liquid is cooled very slowly and evenly to
below its freezing point and that no isotropy breaking perturbations
are allowed; in other words, assume that the liquid is supercooled. It is
then still in the liquid state and isotropic. If we now tap the container
or throw in a crystal or otherwise introduce anisotropy, the supercooled
liquid will immediately crystallize and thus become highly anisotropic.
So in the subfreezing temperature range the system’s isotropy is un-
stable; any anisotropic perturbation is immediately amplified until the
whole volume becomes anisotropic and stays that way. If, in spite of our
precautions, the supercooled liquid should undergo spontaneous sym-
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metry breaking and spontaneously crystallize during or after cooling,
the reason is that its own internal random fluctuations are sufficient to
set off the instability. The colder the liquid (below its freezing point),
the greater the instability. The freezing point is the boundary between
the temperature range of stability and that of instability. In fact, it
can be defined in that way (see also Sect. 3.2).

The phenomenon of spontaneous magnetization is an additional
example of spontaneous symmetry breaking (see Sect. 3.2).

Even in situations of lability and instability, if the perturbation is
truly a random one, there exists a sense in which the symmetry of the
unperturbed cause, the exact symmetry limit, nevertheless persists as
the minimal symmetry of the effect. That pivots on the nature of ran-
dom perturbations, or, more accurately, on their definition. A random
perturbation of an unperturbed cause is defined, for our purpose, as
a fluctuating perturbation such that the symmetry of the totality of
states of the perturbed cause tends to that of the unperturbed cause.
In other words, a random perturbation would average out over all
states of the perturbed cause to no perturbation at all. One might also
express that in terms of observations of the state of the cause, where as
the number of observations increases, the symmetry of the totality of
observed states of the perturbed cause tends to that of the unperturbed
cause. Thus, taking the totality of states of a cause as ‘the cause’ in the
symmetry principle, we have that for a random perturbation the total-
ity of states of the effect, as ‘the effect’ in the symmetry principle, tends
to exhibit at least the symmetry of the unperturbed cause. Or, ex-
pressed in terms of observation, for a random perturbation, as the num-
ber of observations increases, the totality of observed states of the effect
will tend to exhibit at least the symmetry of the unperturbed cause.

As an illustration, consider the system consisting of a current of
air blowing against the edge of a wedge, with the direction of the air
current far upstream from the wedge parallel to the bisector of the
wedge, as in Fig. 6.2. Take as the cause the wedge and the incident

Fig. 6.2. Air current blowing against the edge of a wedge, viewed in cross-
section
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air current a large distance from the wedge, and the air flow around
the wedge as the effect. The cause possesses reflection symmetry with
respect to the plane bisecting the angle of the wedge. So we expect the
air flow above the wedge to be the mirror image of the air flow under
the wedge. And, in fact, that is what happens, as long as the speed of
the incident air current is sufficiently low so that the flow is laminar.
However, at sufficiently high flow speeds vortices form at the edge and
are shed downstream. They are not produced symmetrically, but rather
alternately at one side and the other. (That periodic phenomenon is
the mechanism of production of ‘edge tones’, the acoustic source of
woodwind instruments.)

The effect then apparently possesses less symmetry than the cause.
However, random fluctuations in the direction of incident air flow make
the reflection symmetry of the cause only an approximate symmetry.
At low incident-flow speeds the situation is labile, and the resulting
laminar flow around the wedge is also approximately symmetric. (Un-
derblowing a woodwind instrument produces no tone.) At high flow
speeds the situation is unstable, and the vortical flow around the wedge
lacks reflection symmetry altogether. But if the vortical flow is pho-
tographed sufficiently often at random times, the total collection of
photographs will exhibit reflection symmetry: For every flow config-
uration photographed, a mirror image configuration will also appear
among the pictures.

The situation, discussed in Sect. 4.5, where the vacuum state of
a quantum theory is less symmetric than the rest of the theory, can be
viewed as broken symmetry, with the symmetry of the theory without
the vacuum state taken as the exact symmetry limit and the vac-
uum state as the symmetry breaking factor. However, such a situa-
tion is sometimes referred to as spontaneous symmetry breaking. That
nomenclature is misleading, and the attribution of spontaneity is not
justified. The vacuum state is an obvious component of the cause for
such theories, and its effect in reducing the symmetry of the total cause
from that of the exact symmetry limit is in no sense small, nor is it
(or should it be) liable to be overlooked.

What might justifiably be called spontaneous symmetry breaking
in this connection is a higher-level theory, a super theory, that is sup-
posed to explain the first theory, including the lower symmetry of the
vacuum state compared with that of the rest of the theory, or at least
it is supposed to explain the vacuum state. If the super explanation
involves instability and amplification of perturbations, so that the vac-
uum state, as an effect of the super theory, comes out possessing less
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symmetry than that of the unperturbed super cause, whatever that
might be, then the use of the term ‘spontaneous’ is reasonable and
consistent with our previous discussion. A situation like that is de-
scribed in Sect. 7.1.

6.3 Summary

In Sect. 6.1 we met with the idea of a metric for a set of states of
a system. A metric gives a ‘distance’ between every pair of states, with
null ‘distance’ for equivalent states and nonzero ‘distances’ for degrees
of inequivalence. Thus, a metric is a softening of the all-or-nothing
character of an equivalence relation. That allowed the definition of
an approximate symmetry transformation as any transformation that
changes every state to a state that is nearly equivalent with the origi-
nal. An exact symmetry limit for a set of states equipped with a metric
and a set of approximate symmetry transformations is another metric
for the same set of states for which some of the approximate symmetry
transformations (according to the original metric) are exact symmetry
transformations. Broken symmetry is another term for approximate
symmetry, and a symmetry breaking factor is whatever factor the (pos-
sibly hypothetical) switching off of brings about an exact symmetry
limit.

We discussed spontaneous symmetry breaking in Sect. 6.2. The crux
of the matter was seen to be the issue of stability: How do small, sym-
metry breaking perturbations of a cause affect the symmetry of its ef-
fect? Although, by the symmetry principle, exact symmetry of a cause
must appear in its effect, approximate symmetry of a cause might ap-
pear in the effect as exact symmetry (stability), as approximate sym-
metry (lability), or as badly broken symmetry (instability). The latter
situation is what is known as spontaneous symmetry breaking.
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Cosmic Considerations

7.1 Symmetry of the Laws of Nature

Let us now return to the analysis of nature into initial state and evolu-
tion that we discussed in Sect. 2.5. That reduction, whereby the laws
of natural evolution, or laws of nature, and initial states are considered
as being independent, seems to be satisfactory for our understanding
of nature from the microscopic scale to the macroscopic. It appears to
work even for astronomical phenomena, where, for example, we think
of different planetary systems or even galaxies as evolving according
to the same laws of nature but from different initial conditions. The
dichotomy fades away, however, at nature’s extreme scales: at the sub-
nuclear scale, which is the scale of elementary particles, and at the
scale of the Universe. A currently widely accepted cosmological sce-
nario holds that the Universe had its beginning in a ‘big bang’ in the
far past. Can the evolution of the Universe be analyzed in terms of ini-
tial conditions and subsequent development according to the laws of
nature? Perhaps, if one considers the Universe to be only one of a vari-
ety of possible universes, any one of which could have come into being
at the time of the big bang. Then the Universe, our universe, would be
the result of whatever chance initial state initiated its evolution. And
the other potential universes? Are they but theoretical possibilities,
or did they all come into being in some sense but are inaccessible to
us? Some cosmologists are taking the latter idea seriously [38]. Such
speculations, however intriguing, can never be proved or disproved by
science, since we cannot experiment with different initial states for the
Universe and follow the evolution of each.

Another point of view, which some people find philosophically more
satisfactory, is that, since the Universe is by very definition the totality
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of all we have access to, it is meaningless to consider other possible
universes, and we must honor the Universe with the distinction of being
the only one possible according to the laws of nature. But what are the
laws of nature, if not a description of the evolution of the Universe?
What this point of view holds is that the big bang, the Universe, the
initial state, and the laws of nature are all intimately intertwined, are
all aspects of a single, self-consistent situation. Another aspect of this
situation is the variety of elementary particles that nature offers. While
cosmologists are asking why the Universe is as it is on the cosmic scale,
other scientists are asking why it is as it is on the subnuclear scale, why
nature presents us with the kinds of elementary particles it does and no
other kinds. Is that phenomenon explainable on the basis of the known
laws of nature or must new laws of nature be found that relate more
directly to the big bang and its immediately subsequent developments,
when the present variety of elementary particles presumably came into
existence? The latter possibility seems the more likely. This point of
view might be summarized by the statement that things are as they
are because they cannot be otherwise [39].

How is symmetry connected with all this? Every aspect of that
self-consistent entity, the Universe, exhibits various symmetries and
approximate symmetries, and we must try to understand how they,
too, fit into the all-encompassing picture. It has even been proposed
that the laws of physics are the result of symmetries [40, 41]. The
following tale is possibly a small part of the picture.

For every allowed state of most of the elementary particles the
spatially inverted state (i.e., the state obtained by point inversion, by
changing the sign of all three coordinates, x, y, and z, giving what
amounts to a rotated mirror image) is also allowed by nature. Now,
the law of natural evolution called the strong interaction, which affects
certain of the elementary particles, possesses space inversion symmetry
(see Sect. 3.1). And all the elementary particles that are affected by
the strong interaction are among those that possess space inversion
symmetry. Also the law of nature called the electromagnetic interaction
is space inversion symmetric. Similarly, all the elementary particles
that are affected by this interaction, i.e., all the electrically charged
elementary particles, possess space inversion symmetry.

Thus, we have the situation where certain laws of nature and the en-
tities whose behavior they govern possess the same symmetry, space in-
version symmetry, also called P symmetry, where P denotes the point
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inversion transformation.1 In addition, the transformation of particle–
antiparticle conjugation,2 denoted C, is a symmetry both of the strong
and electromagnetic interactions and of the elementary particles whose
behavior is governed by those interactions: For every kind of such par-
ticle there is a kind that is the antiparticle of it, and all states allowed
to particles are also allowed to their antiparticles and vice versa. So
again we have the same symmetry, C symmetry, for certain laws of
nature and for the objects they apply to.

On the other hand, the neutrinos are deficient in those symme-
tries. The space inversion image of an allowed neutrino state is not
a state allowed by nature. It would be, if the image particle were an
antineutrino, for the allowed states of antineutrinos are just the for-
bidden states of neutrinos. And the inverted states of antineutrinos
are forbidden to antineutrinos but allowed to neutrinos. It is as if only
left-handed neutrinos and right-handed antineutrinos are permitted
(or, perhaps better, required) to exist by nature, while the existence
of right-handed neutrinos and left-handed antineutrinos is precluded.
Thus, neither P nor C is a symmetry transformation of neutrinos,
while the combined transformation of point inversion and particle–
antiparticle conjugation, denoted CP , is a symmetry transformation.
Now, the strong and electromagnetic interactions do not affect neu-
trinos, while the law of nature called the weak interaction does. (It
also affects other particles.) The weak interaction possesses neither P
symmetry nor C symmetry; it does possess CP symmetry.

Are the P and C symmetries of the objects upon which the strong
and electromagnetic interactions act basically caused by the P and C
symmetries of the interactions themselves? Or vice versa? Or are the
interactions and the elementary particles along with their symmetries
parts of a self-consistent situation with neither more basic than the
other? And are the P and C asymmetries and CP symmetry of the
neutrinos fundamentally a result of the P and C asymmetries and CP
symmetry of the weak interaction? Or vice versa? Or is it all a self-
consistent whole?

1 Actually, P denotes ‘parity’, which is a property of elementary particles that
has to do with what happens to them what a point inversion transformation
is applied. But since that is beyond the scope of this book, and since ‘point
inversion’ also starts with P , we can leave the matter as it is.

2 C actually denotes ‘charge’ in ‘charge conjugation’, which is a common term for
particle–antiparticle conjugation. Fortunately ‘conjugation’ also starts with C.
So we have reasonable mnemonics.
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And how does all that relate to conditions prevailing at the earliest
stages of the evolution of the Universe, when the kinds of elemen-
tary particles that we know today presumably came into being? Why
did the other-handed versions of the neutrinos and antineutrinos not
materialize then? Did the laws of nature even then preclude their exis-
tence? Or did the chance production of the first neutrino-antineutrino
pair as a left-handed neutrino and a right-handed antineutrino cause
the as yet ‘amorphous’ laws of nature to ‘crystallize’ into such a form
that would from that moment onward allow proliferation of the ex-
isting versions of neutrino and antineutrino and forbid the existence
of the other-handed versions? That would have been a case of cosmic
spontaneous symmetry breaking (see Sect. 6.2).

Or should we avoid the question by restructuring our concepts to
make CP the only meaningful transformation, so that there would be
no reason to consider the hypothetical possibility of other versions of
neutrinos and antineutrinos? But then why are P and C separately
relevant to the strong and electromagnetic interactions?

Our pursuit of symmetry and of the understanding of symmetry
carries us to the very frontiers of modern science and even to specula-
tions out beyond.

7.2 Symmetry of the Universe

Our discussion in Sect. 1.2 led to the conclusion:

Symmetry implies asymmetry.

Or, expressed less succinctly:

Symmetry requires a reference frame, which is necessarily asym-
metric. The absence of a reference frame implies identity, hence
no possibility of change, and hence the inapplicability of the
concept of symmetry.

To see how that works, consider a hypothetically perfectly homo-
geneous Universe, which might appear to possess perfect spatial-
displacement symmetry. (In contrast, the real Universe does have as-
pects that are symmetric under spatial displacement.) However, in this
version of the Universe there is no reference frame for location, there
is nothing to serve as coordinate system. And since the Universe is
by definition everything, no externally imposed coordinate system is
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available. With no coordinate system, all locations are identical. Thus,
spatial displacement is meaningless, and so is symmetry or asymmetry
under it. This Universe would not possess the possibility of spatial dis-
placement, so the notion of immunity or lack of immunity under such
change would be irrelevant to it. We can go even farther and declare
that this Universe would have no spatial dimensionality at all! In the
absence of anything that could serve as a coordinate system, the claim
of identity for all locations is much too mild. More strongly, the very
idea of ‘location’ would be irrelevant to such a universe.

Homogeneity means the possession of identical properties at all lo-
cations. Perfect homogeneity means that all locations are absolutely
indistinguishable and are thus identical. So there are no different loca-
tions at which properties can be compared. All locations are identical
and therefore merge into a single location, which makes the very con-
cept of location redundant. And hence no spatial dimensionality. So
a perfectly homogeneous Universe is an oxymoron.

How then did we ever come up with the silly idea of a perfectly ho-
mogeneous Universe? By extrapolating from the real, inhomogeneous
Universe, by trying to imagine the limit of vanishing inhomogeneity.
A perfectly homogeneous three-dimensional mathematical space may
serve as an approximate model of the real world in certain respects.
And we have no difficulty conceptually and meaningfully imposing co-
ordinate systems on it. But as a thing-in-itself, there can be no such
animal.

Or, consider nuclear charge symmetry, discussed in Sects. 5.2 and
6.1. Nuclear charge symmetry is explained by assuming that the strong
nuclear interaction is blind to the difference between proton and neu-
tron, while the deviation from exact symmetry is explained by the
Pauli exclusion principle and the electromagnetic and weak interac-
tions. Note that proton-neutron interchange is possible precisely be-
cause there is a difference between proton and neutron. The blindness
of the strong nuclear interaction to the proton-neutron difference is an
aspect of nature, but so too is the difference between the proton and
the neutron an aspect of nature. And it is both the proton-neutron
difference and the blindness of the strong nuclear interaction to the
difference that bring about the symmetry.

Imagine a hypothetical world in which there is no standard for
distinguishing between proton and neutron and thus no difference be-
tween them. Then they would be identical, and there would be no pro-
tons and no neutrons, only nucleons. That world would not be more
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symmetric than the real world; it would not possess exact charge sym-
metry, while in reality our charge symmetry is only approximate. On
the contrary, it would have no charge symmetry at all! In that world
there would be no possibility of a change to which the strong nuclear
interaction would be immune. Replacing a hypothetical nucleon with
another hypothetical nucleon would be no change at all. That would be
as much a change as replacing a proton with a proton in the real world.

The point here is that a physical change inherently involves a ref-
erence frame by which the change acquires significance, a standard
to which the change is referred. Indeed, it is the reference frame that
makes a change possible. And the reference frame cannot itself be im-
mune to the change under consideration, otherwise it could not serve
its purpose.

As we learned in Sect. 1.2, symmetry implies asymmetry, or asym-
metry is inherent to symmetry. So if any aspect of the Universe pos-
sesses some symmetry, then there must exist another aspect of the
Universe that is asymmetric under the change involved in the symme-
try. From here follows:

Exact symmetry of the Universe as a whole is an empty concept.

We saw this for perfect spatial displacement symmetry and for per-
fect charge symmetry in the above examples. Since the Universe is
everything, no external reference frames can be imposed on it, and
exact symmetry precludes relevant internal reference frames. In the
first example, due to its hypothetical perfect homogeneity, i.e., spa-
tial displacement symmetry, the Universe would possess no coordinate
system of its own, since a coordinate system would be an inhomogene-
ity. Thus, there would be no possibility of spatial displacement, so the
very concept of spatial displacement symmetry would be inapplicable
to the Universe. In the example of nuclear charge symmetry, in a hy-
pothetically perfectly symmetric Universe there would be no standard
for differentiating protons from neutrons, as such a standard would
introduce asymmetry. Thus, there would be no possibility of proton-
neutron interchange, and the very notion of charge symmetry would
be irrelevant to such a Universe.

What we have is this:

For the Universe as a whole, undifferentiability of degrees of
freedom means their physical identity.

Or, in paraphrase: If it makes no difference to the Universe, then there
is nothing else for it to make a difference to.
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In the example of a homogeneous Universe, all locations would be
undifferentiable and would therefore be identical. As mentioned above,
such a Universe would possess no spatial dimensionality at all. We can
consider such three-dimensional homogeneous spaces as mathemati-
cal models, but only by externally imposing coordinate systems on
them. That cannot be done for the Universe. In the charge-symmetric-
Universe example, protons and neutrons would be undifferentiable and
would thus be identical. We would have only nucleons, which would
not be further differentiated.

7.3 No Cosmic Symmetry Breaking or Restoration

The big-bang type cosmological schemes that are currently in vogue
generally have the Universe evolve through a number of distinct eras.
During each era the Universe evolves in a continuous manner, while
the transition from one era to the next is supposed to have the char-
acter of a (discontinuous) phase transition, much like crystallization
or spontaneous magnetization, which is accompanied by spontaneous
symmetry breaking (see Sects. 3.2 and 6.2 and also [42]). One such
scheme includes these eras (see, for example, [40] and [43]):

1. Quantum (or Planck) era. The less said the better, to avoid putting
one’s foot in one’s mouth.

2. GUT era. This is the era in which the grand unified theory is
assumed to have reigned (see Sect. 5.2). Just as in our era, there
were space-time, gravitation, and quantum microscopic behavior.
But instead of the three fundamental interactions in addition to
gravitation that we now see, there was only a single additional
interaction among a single set of elementary matter particles. This
interaction was mediated by a single set of force particles.

3. Electroweak era. There were space-time, gravitation, and quan-
tum microscopic behavior. The single nongravitational interaction
among elementary particles is assumed to have been replaced by
the strong interaction among quarks, mediated by the gluons, and
the electroweak interaction among leptons and quarks, mediated
by a set of electroweak bosons.

4. Present era. We have space-time, gravitation, and quantum mi-
croscopic behavior. We also have the strong interaction among
quarks, mediated by gluons, the weak interaction among leptons
and quarks, mediated by the W+, W−, Z0 intermediate bosons,
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and the electromagnetic interaction among all electrically charged
particles, mediated by photons.

During eras 2–4 the interactions are assumed to be describable by
gauge theories.

The details and fine structures of the eras and even their number
are unimportant for our discussion. So if my list does not fit your
favorite scheme, or even if you do not like the names I use, please
feel free to make corrections. All we need for our present purpose is
a number of temporally ordered eras of continuous evolution preceded
by a practically unmentionable era, where each era is the result of a
(discontinuous) phase transition from the preceding era.

Now, what do we mean by phase transition? Two often used exam-
ples are crystallization and spontaneous magnetization, as I mentioned
above and which we discussed in Sects. 3.2 and 6.2. As a material in
liquid state is cooled, its properties change continuously until (under
suitable conditions) it spontaneously and discontinuously crystallizes
into a solid state. Or, as an unmagnetized ferromagnet is cooled, var-
ious of its properties change continuously until it spontaneously and
discontinuously becomes magnetized.

In each of the examples the phase transition is, and phase transi-
tions in other systems are often, accompanied by spontaneous symme-
try breaking, whereby equivalent degrees of freedom suddenly become
inequivalent (and the set of symmetry transformations is reduced). In
crystallization the system jumps from a state of no distinguished posi-
tions and directions to a state of distinguished positions and directions.
The choice of those distinguished positions and directions is extremely
sensitive to conditions and is thus effectively random. The symmetry
of an effectively homogeneous and isotropic medium is broken to that
of a crystal lattice. In magnetization the system jumps from a state
of no distinguished direction to one of a single distinguished direction,
the direction of magnetization, whose choice is again extremely sensi-
tive to conditions and is thus effectively random. The symmetry of an
effectively isotropic medium is broken to that of a vector, or a directed
line. (There is a complication here due to the character of a magnet
as equivalent with a current loop, but we can ignore that now.)

In each example and in general, at a symmetry breaking phase tran-
sition the volume of the system might divide into domains, whereby
the symmetry breaking takes different directions in different domains.
In crystallization the resulting solid might be composed of crystalline
domains, of which the crystal axes are differently oriented in each.
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And in spontaneous magnetization the ferromagnetic medium might
divide up into magnetic domains, where the direction of magnetization
is different in different domains. Adjacent domains are separated by
relatively thin transition surfaces called domain walls.

That is what can happen at ordinary-scale phase transitions dur-
ing the present cosmological era. But what happened at the assumed
cosmic phase transitions, when the whole Universe is assumed to have
jumped from its state at the end of one era to its state at the beginning
of the next? Consider, for example, the transition from the GUT era
(2) to the electroweak era (3). The major change seems to have been
that the single interaction among a single set of matter particles, me-
diated by a single set of force particles, became the strong interaction
among quarks, mediated by gluons, along with the electroweak inter-
action among leptons and quarks, mediated by a set of electroweak
bosons.

Does that mean the quarks evolved from an equal number of pre-
quarks, the leptons evolved from an equal number of preleptons, and
the prequarks and preleptons were somehow equivalent in era (2) but
became inequivalent at the beginning of era (3)? Does that mean the
gluons evolved from an equal number of pregluons, the electroweak
bosons evolved from an equal number of pre-electroweak bosons, and
the pregluons and pre-electroweak bosons were somehow equivalent
in era (2) and became inequivalent at the beginning of era (3)? Does
that mean the family of symmetry transformations of era (3) was re-
duced from the family of symmetry transformations of the GUT gauge
theory?

No! Our discussion in Sect. 7.2 taught us that cosmic equivalence
means identity. In era (2) there simply was no reference frame by
which prequark-prelepton and pregluon-pre-electroweak-boson distinc-
tions could have been possible, so there was no distinction. And that
means identity, not equivalence. Thus, there were no equivalent pre-
quarks and preleptons that at the phase transition became inequiva-
lent quarks and leptons. There was only a set of GUT matter particles,
which at the phase transition was replaced by a set of quarks and lep-
tons. And similarly, there was only a set of GUT bosons, which at
the phase transition was replaced by a set of gluons and a set of elec-
troweak bosons. The number of members of each GUT set was not
simply the sum of the numbers of members of the two respectively
resulting sets of era (3). The particle menagerie of era (2) is open
to speculation, although I would assume that the numbers of parti-
cle kinds were likely to be less than the just-mentioned sums. (This
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assumption is based on my personal gut feeling.) Indeed, the particle
zoo of the electroweak era (3) is similarly open to speculation, and I
would similarly assume that the numbers of particle kinds then were
likely less than their numbers in the present era (4).

The questions posed in the second preceding paragraph are the
result of extrapolating backward in time from the reference frame of
era (3). Such extrapolation gives meaning to the terms used in those
questions. However, such conceptual extrapolation on our part in no
way obliges era (2) to conform. The transition from era (2) to era (3)
is supposed to have been discontinuous, so a continuous conceptual
limiting process from era (3) back to era (2) is in principle useless.

In what sense, then, can the transitions from era to era be viewed as
phase transitions? Clearly not in the sense of the equivalent becoming
inequivalent, i.e., not in the sense of symmetry breaking. Symmetry
change, yes. Each era had and has its own characteristic symmetry
expressed in terms of the degrees of freedom of that era. But the change
in symmetry at a transition was not symmetry breaking; it was not
a reduction of the group of symmetry transformations. At least not if
we want to retain the discontinuity of the transitions. If we choose to
give up discontinuity, the cosmological scheme will have an altogether
different character, and the concept of phase transition will not be
applicable. If, however, we keep discontinuity, then the only sense in
which the transitions might be considered phase transitions is in their
discontinuous character itself. Yet, as a compensating factor that we
saw above, we have the appearance of new degrees of freedom.

A by-product of discontinuous transition and the appearance of new
degrees of freedom is, in analogy to what happens in laboratory phase
transitions, the possibility of domaining. Space might become divided
into domains, in which the ‘orientation’ of physics in the abstract space
of the new degrees of freedom is different in different domains. Such
domains would be separated by relatively thin domain walls, which
might be of importance for the formation of galaxy clusters. It is hard
to see how thin domain walls could form as a result of continuous
cosmic evolution.

Physics involves the devising of metaphors to describe reality. Our
metaphors are often mathematical, but still they are metaphors. ‘Phase
transition’ is a metaphor for describing the transitions between the eras
of big-bang type cosmological schemes. In order not to be misled, we
are well warned not to take this metaphor (or any metaphor, for that
matter) too literally. As we just saw, the ‘phase transition’ metaphor is



7.3 No Cosmic Symmetry Breaking or Restoration 151

appropriate only in that discontinuity and the possibility of domaining
are common to both cosmic and ordinary-scale phase transitions. It
is inappropriate in that, while ordinary-scale phase transitions might
involve the equivalent becoming inequivalent, i.e., they might involve
symmetry breaking, cosmic transitions cannot involve the equivalent
becoming inequivalent and thus cannot involve symmetry breaking.

The reasoning of this and the preceding section leads to the follow-
ing interrelated conclusions:

1. Cosmological schemes cannot involve perfect symmetry for
the Universe as a whole.

Thus, no symmetry we consider for the present cosmic era (4), be it
the SU(3) gauge symmetry of the strong interaction or any other, can
be assumed to be perfect. Some aspect of the Universe must violate
it. And the same for the previous cosmic eras.

2. Cosmological schemes cannot involve fundamentally undif-
ferentiable, yet still somehow different, degrees of freedom of
the Universe.

We might try to imagine such degrees of freedom for previous cosmic
eras by conceptually imposing upon those eras the reference frame of
the present era. But that is physically meaningless, since the reference
frame of the present era was not part of the Universe then. For an
additional example, it is assumed that during era (3) the present elec-
tromagnetic and weak interactions were unified as a single interaction,
the electroweak interaction. Then, it is assumed, the precursors of the
Z0 intermediate boson of the weak interaction and the photon, the
mediator of the electromagnetic interaction, as different as the latter
two are in the present era (4) (e.g., the Z0 possesses mass, while the
photon is massless), were somehow undifferentiable while still forming
two degrees of freedom. That is meaningless.

3. Cosmological schemes with phase transitions between eras
cannot involve symmetry breaking.

If a transition was continuous, then perfect symmetry could not have
become approximate symmetry. And according to our conclusion,
there could not have been perfect symmetry anyway. However, approx-
imate symmetry could have changed its approximation at a continuous
cosmic transition. Thus, at a continuous cosmic transition a good ap-
proximation could have worsened, perhaps imitating symmetry break-
ing.
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If a transition was discontinuous, was a ‘phase transition’, the char-
acter and number of degrees of freedom could have changed. Thus, one
(approximate) symmetry could have changed to another. But undif-
ferentiable degrees of freedom becoming differentiable could not have
occurred, since there could not have been undifferentiable degrees of
freedom to begin with. So no symmetry breaking. At a discontinu-
ous cosmic transition, at a ‘cosmic phase transition’, there could have
occurred symmetry change, but no symmetry breaking.

It then follows that cosmological schemes that assume perfect sym-
metry of, or equivalently, indistinguishable degrees of freedom for, the
Universe are meaningless. I am not claiming that such schemes cannot
be perfectly valid schemes by the criteria of consistency with exper-
imental data and self-consistency. Neither am I claiming that such
schemes cannot be very useful and valuable in addition to their being
beautiful and amazing intellectual achievements. Nevertheless, when
cosmological schemes assume perfect symmetry of the Universe, they
are indeed meaningless.

One way of circumventing the meaninglessness is to take such
schemes as approximate descriptions of a situation that is not per-
fectly symmetric, just as a spatially homogeneous model is taken as
an approximation to describe the real Universe. A price to pay for that
is giving up the idea, if one in fact holds the idea, that such schemes
could be final and exact descriptions of the Universe.

It is commonly taken for granted that by raising particle accelerator
energies higher and ever higher, thus probing physics at higher tem-
peratures, at shorter distances, and at shorter time intervals, we are
actually investigating the conditions prevailing during previous cos-
mic eras. Indeed, it is assumed that if we managed to produce energies
high enough to probe time intervals and distances at the Planck scale
(about 10−43 second and 10−35 meter), we would even be investigating
the quantum era (1) itself. However, the idea that we can reconstruct
past cosmological eras by investigations performed in the present era is
a fallacy, as long as we are assuming discontinuous cosmic transitions.

The problem can be expressed in this way: Why should the high-
energy physics of the present era reflect the physics of previous eras?
For a model of continuous cosmic evolution that would indeed be a rea-
sonable assumption; we might then very well assume that by raising
accelerator energies we would be reconstructing previous cosmic con-
ditions in our laboratories. But discontinuous transitions are barriers
to such ‘time travel’. The reconstruction idea is reasonable only as far
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back as the beginning of the present era. Beyond that it just does not
hold water.

The essence of the matter is that the physics of the present era,
however high the energy might be, is still a characteristic of the present
era. It is occurring in the context of the reference frame of the present
era. For example, no matter how similar the photon and the Z0 become
at higher and higher energies, they never become identical and are
always distinguishable in principle. However, in the electroweak era
(3), the era immediately preceding the present era, the situation was
qualitatively different from that of the present era, as we have learned
above. ‘Indistinguishable’ as the limit of ‘barely distinguishable’ is very
different from ‘identical’.

The assumption of reconstruction, or symmetry restoration, is car-
rying the ‘phase transition’ metaphor too far. It is true that by re-
heating a crystalline solid or magnetized ferromagnet we restore the
symmetry that was broken at the phase transition induced by cooling.
The cosmic analog would be the reheating of the whole Universe. And
that is an extremely far cry from the high-energy physics of the present
era, in which an infinitesimal part of the whole Universe, merely a few
or even a few hundred particles within an infinitesimal volume of space,
are heated infinitesimally briefly within a cold environment.

It is not unreasonable to expect that as we go to higher ener-
gies, new symmetries will turn up, so that higher-energy physics will
be characterized by a higher degree of symmetry than lower-energy
physics is (and the family of symmetry transformations of the lat-
ter will be reduced from that of the former). It is not unreasonable
to hope that at sufficiently high accelerator energies the weak and
electromagnetic interactions will be found to merge into a unified elec-
troweak interaction, whose symmetry subsumes that of the distinct
interactions. But it is completely baseless to assume that we are thus
reconstructing past eras and thus restoring the symmetries that were
assumed broken at the cosmic phase transitions. (In fact, as we saw
above, there can be no symmetry breaking at discontinuous cosmic
transitions.) Specifically, there is no reason whatsoever to expect that
the electroweak interaction and its symmetry that we might discover
at sufficiently high energies should reflect the actual situation during
era (3).

Yet, in order to construct some cosmological scheme rather than
simply giving up in despair, we might, not unreasonably, assume that
high-energy physics does give us some indication, however imperfect,
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of the situations in previous cosmic eras. We know we cannot count
degrees of freedom. But perhaps we can deduce the general character
of the situation. Indeed, that is how the eras presented at the begin-
ning of this section were proposed. For example, it is not unreasonable
to assume that the era preceding the present one was characterized
by, among its other characteristics, an interaction additional to and
weaker than the strong interaction and a set of mediating bosons (dis-
tinct from gluons) that affected via that interaction both quarks and
another set of matter particles that were lighter than quarks. That in-
teraction is assumed to have ‘split’ into the weak and electromagnetic
interactions at the cosmic phase transition between the preceding era
(3) and the present one (4), and so it is reasonable to call the interac-
tion ‘electroweak’ and the additional set of matter particles ‘leptons’.
However, that interaction is not the expected high-energy merger of
the electromagnetic and weak interactions. It is altogether another an-
imal. That interaction is assumed to have been a characteristic of the
preceding cosmic era, while the latter is expected to be a property of
the present era.

High-energy physics cannot be expected to reflect precisely the
situation that prevailed during earlier cosmic eras that evolved
into the present era via phase transitions, although it might be
indicative. Specifically, any symmetry emerging at high energies
cannot have been a feature of such earlier eras.

I would like to emphasize, however, that if the evolution of the Uni-
verse occurred in a continuous manner, instead of via (discontinuous)
phase transitions, then an approximate symmetry for the Universe in
some era could have worsened in a later era, and high-energy physics
in our era might indeed reveal the situations that prevailed in ear-
lier cosmic eras. In either case, whether cosmic evolution proceeded
discontinuously or continuously, or whether what actually took place
is better described in different terms altogether, the results of future
high-energy physics experiments, such as at CERN’s Large Hadron
Collider, are eagerly awaited by physicists, at least by those special-
izing in such matters. The experimental results might give physicists
a better understanding of the Universe in our own era. And they might
shed light on earlier eras as well. However, they might instead throw
physics into turmoil by posing more puzzles than they solve. We wait
and see.
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7.4 The Quantum Era and The Beginning

As I mentioned in Sect. 7.3, it is commonly assumed that if we suc-
ceeded in probing the Planck scale, we would be investigating the
quantum era (1). Nevertheless, as we saw in Sect. 7.3, that assump-
tion is fallacious. Yet, can anything, however general and qualitative,
be reasonably deduced concerning the quantum era? What can rea-
sonably be thought to have preceded the GUT era (2), assuming, of
course, that there was indeed a GUT era and that it was the result of
a discontinuous cosmic transition?

So let us assume there was a GUT era characterized by space-time,
gravitation, quantum microscopic behavior, and, say (the details are
not important), a single interaction, mediated by a single set of force
particles, among a single set of matter particles. And let us consider
what the high-energy physics of the present era tells us. What? We
have not reached the Planck scale yet? What shirkers those experi-
mentalists are! Never mind. Let us consider what we think we would
find at the Planck scale. We think that at the Planck scale we would
discover the fundamental quantum character of space-time, also called
quantum gravity. We expect to find quantum fluctuations of space-
time itself, a situation suggestively called ‘space-time foam’ [44]. We
expect to find some of the fluctuations leading to the ‘pinching off’ of
Planck-size regions, which become disconnected from the Universe and
form ‘baby universes’ [38]. What those picturesque, vaguely meaning-
ful metaphors indicate is that we think known physics, including the
notion of space-time itself, utterly breaks down at the Planck scale.

Now, the assumed transitions from era (2) to era (3) and from era
(3) to era (4) had the property of carrying a situation that can be
considered simpler into one we might deem more complex. A single
interaction in era (2) became two interactions in era (3), which then
became three in the present era (4). Using that as a guide, we expect
the quantum era (1) was somehow simpler than the GUT era (2). In
what way simpler? One interaction less than a single interaction is no
interaction. Perhaps some protogravitation in era (1) can be viewed
as splitting into gravitation and the single interaction of era (2). But
gravitation is intimately connected with space-time. And the assumed
results of our gedanken Planck scale high-energy investigations point to
the irrelevance of space-time, as we are macroscopically familiar with
space and time, to the quantum era. So then macroscopic gravitation,
or something like it, appears to be out as well.
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It looks as if our surest guesses about the character of the quan-
tum era are negative: no space, no time, no gravitation. How, then,
can we conceive of anything about the quantum era, if we cannot do
so in terms of space and time, in terms of being and becoming, i.e.,
in terms of existence and change? (Our metaphoric description of the
Planck scale breakdown of known physics was couched in terms of
space and time, of being and becoming.) One might try something like
this: “The quantum era was a situation of highly quantum character,
strongly fluctuating. It was unstable to fluctuations and thus under-
went a transition to era (2) and space-time.” But the idea of instability
leading to transition implies becoming and time.

In the cosmological scheme of eras (1)–(4) certain properties of cer-
tain eras are supposed to have carried over, fully or partially, into
the subsequent eras. For example, space-time is assumed to have car-
ried over from era (2) to era (3) and on to the present era (4). And
something of the electroweak interaction of era (3) is supposed to be re-
flected in the present electromagnetic and weak interactions, especially
in their high-energy behavior. Furthermore, something of the assumed
grand unified interaction of era (2) is supposed to be reflected in the
present strong, weak, and electromagnetic interactions. The assumed
describability of the era (2) interaction by a gauge theory formulated in
spatio-temporal terms seems to have carried over fully into the present
era, since all three present interactions appear to possess that charac-
ter. And presumably the very-high-energy physics of the present era
should reflect other relic properties of the GUT era interaction.

Now, the quantum era, too, presumably bequeathed properties to
its descendants. The moderate quantum character of the present era
– moderate, because it is not dominant at all scales but mostly only
at the submicroscopic scale – might be thought of as a relic of an
extreme quantum character of era (1). And the assumed nonspatiality
and nontemporality of the quantum era might be considered to be
the source of present quantum spatial and temporal nonlocality. The
idea here is that according to quantum theory all locations and all
times, separately, are in a certain sense equivalent. In the quantum
sense all locations can be thought of as the same location and all times
as the same time. Thus, for example, the fact that a measurement at
one place instantaneously ‘affects’ the situation at other places can be
understood, rather than as faster-than-light propagation, better as no
propagation at all . The ‘effect’ of the measurement does not have to
go anywhere; it is already there, since there and here are in a sense
the same. But if all locations are the same location and all times the
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same time, the situation is reduced, in the relevant quantum sense, to
zero spatiotemporal dimensionality. In other words, to nonspatiality
and nontemporality.

On the other hand, as we saw above, it is reasonable not to consider
space-time to be a property of the quantum era, so the spatiotemporal
character of subsequent eras cannot be thought of as a quantum-era
relic. The origin of space-time should then be understood to be the
spontaneous appearance of new degrees of freedom at the transition
from the quantum era to era (2). And those degrees of freedom are
assumed to have survived the transitions from era (2) to the present.

What else can be said about the quantum era? Very little of any
physical significance, it seems to me. I have emphasized elsewhere [45]
that cosmological schemes, dealing as they do with a unique phe-
nomenon par excellence, the Universe as a whole, have exceeded the
domain of physics and have ventured into the domain of metaphysics.
That is true a fortiori for considerations involving the quantum era.
I do not intend to imply that cosmological schemes do not involve
physics nor that they are not very useful for physics. Indeed, a suc-
cessful cosmological scheme would be a marvelous achievement and
would offer physicists important and useful insight and guidance. Yet,
given the inaccessibility of the quantum era from the present era and
the current status of our cosmological understanding, it seems reason-
able that the more detailed any statement about the quantum era is,
the more suspect that statement should be held to be. For example,
specific equations have been proposed to describe the quantum era.
Such considerations actually belong to the domain of metaphysics,
and, although expressed in the language of physics, they really have
little, if any real physics content.

That brings us to the subject of The Beginning. It seems to be
a common misconception that cosmological schemes of the general type
of that presented in Sect. 7.3 imply this chronological sequence: (a) The
Beginning, followed by (b) the quantum era, which had a duration
of about 10−43 second, which in turn was followed by (c) era (2),
and so on. However, as we saw above, the quantum era seems best
considered nontemporal. Thus, it should not be thought of as having
been characterized by any time duration at all. The Planck time of
about 10−43 second is considered to be characteristic of the quantum
nature of space-time in the present era. But the quantum era is not
the present era, nor is it reasonably considered to have possessed the
property of time. The assignment of duration to the quantum era is an
unwarranted extrapolation from the present era to the quantum era.
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It is a conceptual imposition of a reference frame of our era on an era
inherently possessing no such reference frame.

It also follows from the nontemporality of the quantum era that
it cannot be thought of as having been preceded nor as having been
succeeded by anything. From its own, nontemporal point of view the
very concepts of precession and succession are meaningless for the
quantum era. However, the quantum era can still be considered to
have been followed by era (2) in the following carefully construed sense.
Era (2) is assumed to have been characterized by time. Thus, from the
temporal reference frame of era (2) the quantum era can legitimately
be thought of as having preceded era (2), just as era (3) is thought
of as having followed era (2). Then by verbal manipulation we replace
the expression ‘the quantum era preceded era (2)’ with the expression
‘era (2) followed the quantum era’. But in both cases the temporal
ordering is with respect to the reference frame of era (2).

Thus, the quantum era, by its reasonably assumed nontemporality,
forms a barrier to the flight of our imagination back in time in search of
The Beginning. Although it can be thought of as having preceded era
(2), it itself cannot be considered as having had duration. Nor are the
concepts of ‘the beginning of the quantum era’ or ‘before the quantum
era’ anything but vacuous. So The Beginning, as the beginning of
the quantum era or as whatever preceded the quantum era, is utterly
meaningless.

A reasonable alternative to The Beginning is ‘the beginning of
time’, in whatever sense the latter can be assigned meaning. Now,
since the quantum era can be thought of as having preceded era (2),
and since era (2) is thought of as having been characterized by time,
the quantum era itself or the transition from the quantum era to era
(2), the transition to space-time, might be thought of as the begin-
ning of time. The idea is that the quantum era and the transition to
space-time are considered to precede any time. As far back in time as
we imagine – and using a suitable time variable, we can imagine go-
ing back in time ‘forever’ [46] – the quantum era and the transition to
space-time will still be considered to be earlier. That is the meaning we
can assign to ‘the beginning of time’. So if one feels any need for The
Beginning, the quantum era or perhaps the transition to space-time
can reasonably fulfill that need. In summary:

The quantum era can reasonably be assumed to have been non-
temporal, nonspatial, and extremely quantal. The Beginning can
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reasonably be identified with the quantum era or with the tran-
sition to space-time.

Let me remind the reader that the concept of a quantum era is a com-
ponent of big-bang type cosmological schemes, which are attempts
to model and grasp the evolution of the Universe. At present, such
schemes seem to be the best we have. However, their validity is not
guaranteed. Whether the evolution of the Universe really occurred in
such a way is still an open question, and the existence of a quantum
era is by no means assured. More experiments, additional observa-
tions, and further theoretical research will surely improve our cosmic
understanding, and we look forward to future developments.

But to put matters in perspective, think how humanity’s cosmology
has evolved over the millennia, over the recent centuries, and even
during the past century. At every stage the Universe was understood
in terms and in a manner that were appropriate and valid for that
era [47]. When the cosmological picture eventually changed over time,
people would deride the primitive concepts of their ancestors, just as
we look back even as recently as to the early twentieth century and
wonder at the limited thinking of cosmologists then. Considering that
science in general and cosmology in particular are accelerating in pace,
I strongly suspect that in only some ten to twenty years, we will be
the ones who will serve as objects of ridicule: What idiots; how could
they have thought that? Well, we will see in some ten to twenty years.

7.5 Summary

In Sect. 7.1 we looked into the significance of reduction to initial state
and evolution for the Universe as a whole. Since we have access to only
a single universe, that reduction is problematic. We also considered
how symmetry of the laws of nature might fit into the picture.

We discussed symmetry of the Universe in Sect. 7.2 and reached the
conclusions that the Universe as a whole cannot possess exact symme-
try, and for the Universe as a whole, undifferentiability of degrees of
freedom means their physical identity.

In Sect. 7.3 we considered big-bang cosmological schemes that have
the Universe evolve through a number of eras, starting with a ‘quantum
era’. The discussion led to these conclusions: (1) Cosmological schemes
cannot involve perfect symmetry for the Universe as a whole. (2) Cos-
mological schemes cannot involve fundamentally undifferentiable, yet
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still somehow different, degrees of freedom of the Universe. (3) Cos-
mological schemes with phase transitions between eras cannot involve
symmetry breaking. (4) High-energy physics cannot be expected to
reflect precisely the situation that prevailed during earlier cosmic eras
that evolved into the present era via phase transitions, although it
might be indicative. Specifically, any symmetry emerging at high en-
ergies cannot have been a feature of such earlier eras. However, if the
evolution of the Universe occurred in a continuous manner, instead of
via (discontinuous) phase transitions, then an approximate symmetry
for the Universe in some era could have worsened in a later era, and
high-energy physics in our era might indeed reveal the situations that
prevailed in earlier cosmic eras.

Finally, we speculated in Sect. 7.4 on the nature of the quantum
era that presumably served as the first in the sequence of eras forming
the evolution of the Universe and considered what The Beginning of
that evolution could have been.



8

The Mathematics of Symmetry: Group Theory

So far in this book I have been trying to deal with symmetry con-
ceptually and make do with as little formalism and mathematics as
reasonably possible. I must admit that, especially in our discussion of
the symmetry principle in Chap. 4, I needed to make use of heavier
formalism than I was happy doing. But I thought the subject was too
important to postpone to after the formalism chapters.

Nevertheless, when it comes to seriously applying symmetry consid-
erations in science, the conceptual approach can go only so far, which
is not very far. Particularly when the applications are quantitative,
the conceptual approach is simply incapable of supplying the neces-
sary tools. So for the application of symmetry in science it is necessary
to develop a general symmetry formalism. In this book the formalism
is developed in Chap. 10. It is couched in the mathematical language
of symmetry, which is group theory. So in order to get a grasp of the
symmetry formalism, it is necessary to obtain some grasp of group
theory. That is what we will aim for in this chapter and the next.

The present chapter presents the barest minimum of the most fun-
damental ideas of group theory. In Chap. 9, we will build on that
foundation to achieve what I think is a reasonable introductory body
of understanding.

8.1 Group

A group is, first of all, a set of elements. In a more rigorous presenta-
tion one might first study some set theory before approaching group
theory. However, for our purposes it is sufficient to know that a set is
a collection and the elements of a set are what are collected to form the
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collection. An element of a set is said to be a member of the set, or to
belong to the set. Besides whatever property the elements of a set pos-
sess that makes them belong to the set, they need have no additional
properties. For a set to be a group, however, very definite additional
properties are needed, as we will see in the following discussion.

The number of elements of a set or group is called its order . It
may be finite, denumerably infinite, or nondenumerably infinite. You
know what finite means, and you most likely have a reasonable idea
of what infinite means. Denumerably infinite means that the elements
can be labeled by the natural numbers, 1, 2, 3, . . . . So the set of nat-
ural numbers is by definition denumerably infinite, and so is the set of
all integers and even – believe it or not – the set of all rational num-
bers (numbers expressible as the ratio of two integers), as examples.
Nondenumerably infinite means that the elements cannot be labeled
by the natural numbers. The set of all real numbers, for instance, is
of nondenumerably infinite order, as are the set of all straight lines in
a plane and the set of all spheres in three-dimensional space.

We use italic capital letters to denote sets and groups and italic
small letters for elements, in general. Curly brackets { } denote the set
consisting of all elements indicated or defined within them. Thus, the
equation

S =
{
a, b, c, d

}

means that the set denoted by S consists of the elements denoted
by a, b, c, d. The sign = in such equations means that the set on the
left-hand side and that on the right are one and the same. Another
example is

P =
{
all real numbers a such that −1 < a < +1

}
,

which means that the set P consists of all real numbers greater than
−1 but less than +1.

The symbol ∈ is used to indicate membership in a set or group.
The statement

w ∈ U

means that the element w is a member of the set U .
Another use of the sign = is to relate elements of a set, as in the

equation

a = b .
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Here the = sign means that the two elements a and b are one and the
same element.

For a set to be a group it must be endowed with a law of com-
position. What this means is that any two elements of the set can be
combined (without specifying just how that is to be done). In fact, any
pair of elements can be combined in two ways. If a, b are elements of G,
the two compositions of a and b according to the law of composition of
set G are denoted ab and ba. (It is fortunate with regard to notation
that composition involves only two ways of combining!)

But in itself composition does not yet make a group. To be a group,
a set G together with its law of composition must satisfy the following
four properties:

1. Closure. For all a, b such that a, b ∈ G, we have

ab, ba ∈ G .

This means that for all pairs of elements of G both compositions
are themselves elements of G. Another way of stating this is that
the set G is closed under composition.

2. Associativity . For all a, b, c such that a, b, c ∈ G, we have

a(bc) = (ab)c .

This means that in the composition of any three elements the or-
der of combining pairs is immaterial. Thus, one can evaluate abc
by first making the composition (bc) = d and then forming ad, cor-
responding to a(bc), or one can start with ab = f and then make
the composition fc, corresponding to (ab)c. Both results must be
the same element of G, which can thus unambiguously be denoted
abc. In short, one says that the composition is associative. It then
follows that associativity holds for composition of any number of
elements.

3. Existence of identity . G contains an element e, called an identity
element, such that

ae = ea = a ,

for every element a of G. The characteristic property of an iden-
tity element is, then, that its composition in either way with any
element of G is just that element itself.
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4. Existence of inverses. For every element a of G there is an element
of G, denoted a−1 and called an inverse of a, such that

aa−1 = a−1a = e .

In words, for every element of G there is an element whose compo-
sition with it in either way is an identity element. (It might happen
that a−1 = a for some or all elements a of a group.)

That ends the definition of a group. To summarize, a group is a set
endowed with a law of composition such that the properties of (1)
closure, (2) associativity, (3) existence of identity, and (4) existence of
inverses hold. A group is abstract if its elements are abstract, i.e., if
we do not define them in any concrete way. However, with an eye to
the future, we will take special interest in groups whose elements are
transformations. For such groups the law of composition of two trans-
formations is consecutive application of the transformations. That is
discussed in detail in Sect. 10.2.

In general ab �= ba in a group. (Otherwise, why insist on two ways
of composition?) But it might happen that certain pairs of elements
a, b of G do obey ab = ba. Such a pair of elements is said to com-
mute. From property 3 of the definition of a group it is seen that an
identity element e commutes with all elements of a group and that
every element commutes with its inverse. Obviously, every element of
a group commutes with itself. If all the elements of a group commute
with each other, i.e., if ab = ba for all elements a, b of G, the group G
is called commutative or Abelian (after the Norwegian mathematician
Niels Henrik Abel, 1802–1829, but do not conclude that everyone who
studies group theory dies so young).

In property 3 we demand the existence of an identity element but
do not demand that it be unique. And in property 4 and the para-
graph preceding the present one I carefully refrain from referring to
the identity in order not to imply uniqueness. However, all that devi-
ousness was only to allow us the pleasure of proving that the identity
is indeed unique. This will be our first example of a group theoretical
proof. Please note that we will be very careful to justify each operation
and each equation by reference to the definition of a group. That is
especially important, since we are using familiar notation (multipli-
cation, parentheses, equality) but assigning it novel significance that
takes getting used to.

To prove uniqueness of the identity, we assume the opposite, that
more than a single identity element exist, and show that this leads
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to a contradiction. Denote any two of the assumed different identity
elements by e′ and e′′. By property 3 we then have

e′a = ae′ = e′′a = ae′′ = a ,

for every element a of group G. Evaluate the relation e′a = a for the
specific element a = e′′. We obtain e′e′′ = e′′. Now evaluate ae′′ = a for
a = e′. We get e′e′′ = e′. Comparing the two results, we have e′ = e′′,
which is a contradiction to our assumption that e′ and e′′ are different.
That proves the uniqueness of the identity.

Although we do not require it in property 4, the inverse of an ele-
ment is unique; i.e., for every element a of group G there is only one
element, denoted a−1, such that

aa−1 = a−1a = e .

As an additional example of group theoretical proof, we prove that
statement. We again assume the opposite and show how it leads to
a contradiction. So assume that element a possesses more than one
inverse and denote any two of them by b, c. Then by property 4

ab = ba = ac = ca = e .

Now, according to property 2, the associativity property,

c(ab) = (ca)b .

By the equation before last and using the property of the identity, the
left-hand side of the last equation is

c(ab) = ce = c ,

while the right-hand side becomes

(ca)b = eb = b .

So the associativity property gives b = c, and we have a contradiction
to our assumption that b and c are different. That proves uniqueness
of inverses.

From the definition and uniqueness of inverses it is clear that the
inverse of the inverse is the original element itself, i.e., the inverse of
a−1 is a. In symbols,

(a−1)−1 = a .
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The inverse of a composition of elements is the composition in op-
posite order of the inverses of the individual elements. In symbols this
means that

(ab)−1 = b−1a−1 ,

(abc)−1 = c−1b−1a−1 ,

and so on, which is verified directly. For example, we show that b−1a−1

is indeed the inverse of ab by forming their composition and proving
it is the identity:

(ab)(b−1a−1) = a(bb−1)a−1 (by associativity)

= aea−1 (by inverse)

= (ae)a−1 (by associativity)

= aa−1 (by identity)

= e (by inverse) .

The verification of

(b−1a−1)(ab) = e

is performed similarly.
We define powers of elements by

a2 = aa , a3 = a2a = aa2 = aaa ,

and so on, and

a−2 = a−1a−1 = (a2)−1 ,

and so on. Then the usual rules for exponents are largely applicable,
except that noncommutativity must be kept in mind. For example, if
elements a, b do not commute with each other, then

(ab)2 = (ab)(ab) = abab �= a2b2 .

The structure of a group is a statement of the results of all possible
compositions of pairs of its elements. For finite-order groups that is
most clearly done by setting up a group table, similar to an ordinary
multiplication table. Refer to Fig. 8.1. To find ab look up a in the left
column and b in the top row; the composition ab is then found at the
intersection of the row starting with a and the column headed by b.
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Fig. 8.1. Group table

For the composition ba it is b that is on the left and a at the top. When
the symbols for the group elements have the same ordering in the top
row (left to right) as in the left column (up to down), a group table
will be symmetric under reflection through the diagonal if and only if
the group is Abelian. That is easily seen from the figure.

Note that by reordering the rows and columns or by changing the
symbols denoting the group elements, a group table can be made to
look different while still describing the same group. That must be taken
into account when comparing group tables. Thus, two group tables
describe the same abstract group, i.e., express the same structure,
if they can be made identical by reordering rows and columns and
redenoting elements.

For groups of infinite order a group table is obviously impossible.
Instead, the results of all possible compositions must be expressed by
a general rule.

A concrete example of an abstract group, i.e., a group of concrete
elements with a concretely defined law of composition, possessing the
same structure as an abstract group, is called a realization of the ab-
stract group. Such realizations might be, for example, groups of num-
bers, of matrices, of rotations, or groups of other geometric transfor-
mations.

We now consider all abstract groups of orders 1 to 5 and one ab-
stract group of order 6, and present examples, or realizations, of each
but the last.

Order 1

There is only a single abstract group of order 1. Its symbol is C1.
It is the trivial group consisting of only the identity element e. It is



168 8 The Mathematics of Symmetry: Group Theory

Abelian, since e commutes with itself. One realization of the group is
the number 1 and ordinary multiplication as the composition. Another
realization is the number 0 and the composition of ordinary addition.

Order 2

There is only one abstract group of order 2, denoted C2. It is Abelian. It
consists of the identity element e and one other element a, which must
then be its own inverse, aa = e. The group table is shown in Fig. 8.2.
A realization of the group is the set of numbers {1,−1} (the two square
roots of 1) under ordinary multiplication. The number 1 serves as the
identity, while the number −1 is its own inverse, (−1) × (−1) = 1.
Another, geometric realization is the set consisting of the transforma-
tion of not doing anything, called the identity transformation, and the
transformation of mirror reflection (in a two-sided mirror), the com-
position being consecutive reflection. (Transformations are discussed
in more detail in Sect. 10.2.) The identity transformation serves as the
group’s identity element, and the reflection transformation is its own
inverse, since two consecutive reflections in the same mirror bring the
situation back to what it was originally.

Another realization is the set of rotations about a common axis by
0◦, which is another way of expressing the identity transformation, and
by 180◦, with the composition of consecutive rotation. Note that the
group elements here are not the orientations of 0◦ and 180◦, but the
rotations through those angles. Rotation by 0◦ is the identity element.
Rotation by 180◦ is its own inverse, since two consecutive rotations by
180◦ about the same axis amount to a total rotation by 360◦, which is
no rotation at all, the identity element.

Fig. 8.2. Group table of C2
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Order 3

There is only a single abstract group of this order, denoted C3, and it
is Abelian. It consists of the identity e and two more elements a and
b, each of which is the inverse of the other,

ab = ba = e ,

and each of which composed with itself gives the other,

aa = b , bb = a .

Figure 8.3 shows the group table.

Fig. 8.3. Group table of C3

One realization is the set of complex numbers
{
1, e2πi/3, e4πi/3

}
(the

three third roots of 1) under multiplication. The number 1 serves as
the identity element, and the other two numbers can respectively cor-
respond to either a, b or b, a. Another realization is the set of rotations
about a common axis by
{
0◦ (identity transformation), 120◦ (= 360◦/3), 240◦ (= 2× 120◦)

}
,

with the composition of consecutive rotation. The identity transfor-
mation of rotation by 0◦ corresponds to the identity element e, while
the other two rotations can respectively correspond to either a, b or
b, a.

Order 4

There are two different abstract groups of order 4. Both are Abelian.
One of them has a structure similar to that of the abstract group
of order 3. It is denoted C4. Its group table is shown in Fig. 8.4. It
can be realized by the set of complex numbers {1, i,−1,−i} (the four
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Fig. 8.4. Group table of C4

Fig. 8.5. Group table of D2

Fig. 8.6. Two perpendicular intersecting mirrors A and B and their line of
intersection C
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fourth roots of 1) under multiplication. Another realization is the set
of rotations about a common axis by
{
0◦ (identity), 90◦ (= 360◦/4), 180◦ (= 2× 90◦), 270◦ (= 3× 90◦)

}
,

with consecutive rotation as composition.
The other group of order 4, denoted D2, has the group table of

Fig. 8.5. In this group each element is its own inverse,

aa = bb = cc = e .

To obtain a realization we imagine two perpendicular intersecting two-
sided mirrors A and B and their line of intersection C, as in Fig. 8.6.
The results of the transformations of reflection through each mirror
and rotation by 180◦ about their line of intersection are shown in cross
section in Fig. 8.7. The set of transformations consisting of those trans-
formations and the identity transformation, with consecutive transfor-
mation as composition, forms a group and is a realization of D2.

Fig. 8.7. Reflections in perpendicular intersecting mirrors A and B and
rotation by 180◦ about their line of intersection C, shown in cross section
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Order 5

There is only a single abstract group of order 5, denoted C5, and it
is Abelian. Its structure is similar to that of C4. Figure 8.8 displays
its group table. One realization is the set of five fifth roots of 1 under
multiplication. Another is the set of rotations
{
0◦, 72◦(= 360◦/5), 144◦(= 2×72◦), 216◦(= 3×72◦), 288◦(= 4×72◦)

}
,

with consecutive rotation as composition.
All groups of orders 1 to 5 are Abelian. One might be tempted to

guess by induction that all finite-order groups are Abelian. (That is
the kind of ‘induction’ by which one ‘proves’ that 60 is divisible by
all natural numbers: it is divisible by 2, by 3, by 4, by 5, by 6, and
so on.) That is false. It turns out that the lowest-order non-Abelian
group is one of the two order-6 groups, which is denoted D3. To dispel
any lingering impression that all finite-order groups are Abelian, its
group table is displayed in Fig. 8.9.

Now for some infinite-order groups. We present examples in terms
of realizations, because the general rule for composition is most easily
expressed in the context of a realization.

1. The set of all integers (positive, negative, and zero) under addition
forms a group. (1) Closure holds, since the sum of any two inte-
gers is an integer. (2) Addition of numbers is associative. (3) The
identity of addition is the number 0, which is an integer. (4) The
inverse of any integer a is its negative −a, which is also an integer.
The group is Abelian, since addition is commutative. That set of
numbers, however, does not form a group under ordinary multi-
plication. (1) Closure holds, since the product of any two integers

Fig. 8.8. Group table of C5
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Fig. 8.9. Group table of D3

is an integer. (2) Multiplication of numbers is associative. (3) The
identity of multiplication is the number 1, which is an integer. But
it is property 4 that is not satisfied, since the multiplicative inverse
of any integer a, which is its reciprocal 1/a, is not in general an
integer; for a = 0 it is not even defined.

2. The set of all nonzero rational numbers, numbers expressible as
a ratio of nonzero integers, does form a group under multiplica-
tion. (1) The product of any two rational numbers is rational. (2)
Multiplication is associative and even commutative, so the group is
Abelian. (3) The identity of multiplication, the number 1, is ratio-
nal. (4) The multiplicative inverse of any nonzero rational number
a is its reciprocal 1/a, which is also rational, since if a is the ratio
of two integers, so is 1/a. This set of numbers together with the
number 0 forms a group under addition.

3. The set of all n×n matrices forms a group under matrix addition.
(1) The sum of any two n × n matrices is an n × n matrix. (2)
Matrix addition is associative. It is also commutative, so the group
is Abelian. (3) The identity of matrix addition is the n × n null
matrix, the n×n matrix whose elements are all 0, which is a mem-
ber of the set. (4) The inverse of any n× n matrix is its negative,
which is also an n × n matrix. The same set of matrices fails to
form a group under matrix multiplication. It runs into trouble with
property 4.

4. However, the set of all nonsingular n × n matrices, where a non-
singular matrix is one with nonvanishing determinant, does form
a group under matrix multiplication. (1) The product of any two
nonsingular n×n matrices is a nonsingular n×n matrix. (2) Matrix
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multiplication is associative. It is not commutative, so the group is
non-Abelian (except for n = 1). (3) The identity of matrix multi-
plication is the n×n unit matrix, the n×n matrix whose diagonal
elements all equal 1 and the rest of whose elements are all 0, which
is nonsingular. (4) The inverse of any nonsingular n× n matrix is
its matrix inverse, which exists and is a nonsingular n× n matrix.
This set of matrices does not form a group under matrix addition,
since it does not fulfill properties 1 and 3.

5. The set of all real orthogonal n×n matrices under matrix multipli-
cation forms a group. A real orthogonal matrix is a matrix whose
elements are all real and whose transpose, which is the matrix ob-
tained by reflecting the matrix’s elements through its diagonal, i.e.,
by interchanging rows and columns, is its matrix inverse. (1) The
matrix product of any two real n× n orthogonal matrices is a real
orthogonal n × n matrix. (2) Matrix multiplication is associative.
(3) The n×n unit matrix, the identity of matrix multiplication, is
real and orthogonal. (4) The inverse of any real orthogonal n × n
matrix is its matrix inverse, which exists and is also a real orthog-
onal n× n matrix. This group is non-Abelian for n > 2.

6. The set of all spatial displacements (some call them translations) in
a common direction forms a group with the composition of consec-
utive displacement. (1) The composition of any two displacements
in a common direction is a displacement in the same direction. In
fact, the composition of displacement by a meters and displace-
ment by b meters in a common direction, where a and b are any
two real numbers and the displacements are performed in either
order, is displacement by (a + b) meters in the same direction. We
see that the group is Abelian, since addition of numbers is commu-
tative. (2) Composition by consecutive displacement is associative.
That might or might not be clear. In Sect. 10.2, we will see that
composition of transformations by consecutive application is al-
ways associative. In the present case the composition is seen to be
associative, as the addition of numbers is associative. (3) The iden-
tity transformation, displacement by 0 meters, is a member of the
set and serves as the identity of the group. The identity transfor-
mation is the identity of any group of transformations with consec-
utive application as composition. That will be discussed in detail
in Sect. 10.2. (4) For any displacement the inverse is also a dis-
placement in the same direction. It is displacement by the same
distance, in the same direction, but in the opposite sense. In other



8.1 Group 175

Fig. 8.10. Example of noncommuting rotations

words, the inverse of displacement by a meters is displacement by
−a meters in the same direction.

7. The set of all rotations about a common axis, with composition of
consecutive rotation, forms a group. (1) The composition of any
two rotations about the same axis is a rotation about the same
axis. Rotation by a◦ followed by rotation by b◦ about the same
axis, or vice versa, results in total rotation by (a + b)◦ about the
same axis. The group is clearly Abelian. (2) Composition of con-
secutive rotation is associative. That is discussed in Sect. 10.2. (3)
The identity transformation is a member of the set, since the null
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rotation, rotation by 0◦, is the group identity. (4) The inverse of
any rotation is also a rotation about the same axis. For rotation
by a◦ the inverse might be expressed as rotation about the same
axis by −a◦ or by (360 − a)◦.

8. The set of all rotations about a point, comprising all rotations
about all axes through a point, forms a group under composition
of consecutive rotation. (1) Closure is far from obvious, and we do
not show it here. (2) Associativity holds and will be discussed in
Sect. 10.2 for transformations in general. (3) The identity trans-
formation is a member of the set and serves as the group identity;
it is the null rotation about any axis through the point. (4) The
inverse of any rotation by a◦ about any axis through the point
is rotation by −a◦, or by (360 − a)◦, about the same axis and is
thus also a member of the set. The group is non-Abelian. To show
that, consider Fig. 8.10, in which rotation by 90◦ about the axis
through the center of the square and perpendicular to the plane of
the page and rotation by 180◦ about axis AB through the center
of the square and lying in the plane of the page are applied to the
marked square consecutively in each possible order. The two results
are different. Since at least those two rotations, both members of
the group, are noncommuting, the group is non-Abelian.

8.2 Mapping

At this point it is worthwhile to devote a short discussion to the con-
cept of mapping , because we will make much use of mappings in the
rest of the book. A mapping is a correspondence made from one set
to another (or to the same set). The sets may or may not be groups.
A mapping from set A to set B puts every element of A in correspon-
dence with some element of B, as in Fig. 8.11. A mapping is denoted
A → B. If the mapping is given a name, say mapping M from A to
B, it is denoted A

M−→ B or M : A −→ B.
An element of set B that is in correspondence with an element of set

A is called the image of the element of A. The element of A is called an
object of the element of B. A mapping A→ B such than an element of
B may be the image of more than one element of A is called a many-to-
one mapping . An example is shown in Fig. 8.11. If, however, different
elements of A are always in correspondence with different elements of
B, i.e., if every image in B is the image of a unique object in A, the
mapping is called one-to-one. (A one-to-one mapping is also called an
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Fig. 8.11. Many-to-one mapping of set A into set B

injective mapping, in case you meet the term somewhere.) Figure 8.12
illustrates a one-to-one mapping.

If not all elements of set B are necessarily images under the map-
ping, it is called a mapping of A into B. Figures 8.11 and 8.12 illustrate
such mappings. If, however, every element of B is the image of at least
one element of A, the mapping is from A onto B, as in Fig. 8.13. (An
onto mapping is also called a surjective mapping.)

A mapping may also be denoted in terms of the elements, as a −→
b or a

M−→ b, where a and b represent elements of sets A and B,
respectively. We use that notation extensively. Another notation, using
the notation commonly used for mathematical functions, is b = M(a).
We also use this notation, but not in Chaps. 8 and 9.

A mapping may be from a set to itself, i.e., sets A and B may be
the same set. Familiar examples of such mappings are real functions,

x −→ y = f(x) ,

where the set is the set of all real numbers. The function y = x2 is
a many-to-one (actually two-to-one except for y = 0) mapping of the
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Fig. 8.12. One-to-one mapping of set A into set B

reals into the reals (only the nonnegative numbers serve as images).
The function y = sin x is an infinity-to-one mapping of the reals into
the reals (only numbers whose absolute values are not larger than 1
serve as images). The function y = 3x − 7 is a one-to-one mapping
from the reals onto the reals.

A one-to-one mapping from set A onto set B may be inverted,
simply by reversing the sense of the correspondence arrows, to obtain
a one-to-one mapping from B onto A. The latter mapping is called the
inverse of the former. All elements of B are objects under the inverse
mapping, because all elements of B are images for the direct mapping.
The inverse mapping is one-to-one, since the direct mapping is one-to-
one. And the inverse mapping is onto, because all elements of A are
objects under the direct mapping. Thus, the inverse mapping is indeed
a one-to-one mapping from B onto A, as in Fig. 8.14. Its inverse is the
direct mapping itself.
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Fig. 8.13. Many-to-one mapping of set A onto set B

If the direct mapping is denoted M , its inverse is denoted M−1, so
that

A
M−→ B , B

M−1−→ A ,

a
M−→ b , b

M−1−→ a ,

b = M(a) , a = M−1(b) .

Note that only a mapping that is both one-to-one and onto possesses an
inverse; none of the other kinds of mapping we discussed is invertible.
(For your information, a mapping that is both one-to-one and onto, i.e.,
is both injective and surjective, is called bijective. Thus, bijectiveness
and invertibility imply one another.)

As an example of an inverse mapping, taking the one-to-one map-
ping

x −→ y = 3x− 7 ,
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Fig. 8.14. One-to-one mapping M of set A onto set B and its inverse M−1

from the reals onto the reals, the inverse mapping is

y −→ x =
y + 7

3
.

8.3 Isomorphism

Consider a many-to-one or one-to-one mapping of a group G onto
another group G′. Then every element of G is assigned an image in G′
and every element of G′ is an image of at least one element of G, as in
Fig. 8.15.

Now consider such a mapping that preserves structure. What we
mean is that, if a and b are any two elements of G with images a′ and
b′, respectively, in G′, and if we denote by (ab)′ the image in G′ of the
composition ab in G, then

a′b′ = (ab)′ ,

where the composition a′b′ is, of course, in G′. In other words, the
image of a composition is the composition of images. That can also be
expressed by this diagram for all a, b in G:

a b = c

↓ ↓ ↓
a′ b′ = c′
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Fig. 8.15. Many-to-one mapping of group G onto group G′

Such a structure preserving mapping is called a homomorphism. We
postpone the discussion of homomorphism in general to the next sec-
tion.

If a homomorphism is one-to-one, i.e., if each element of G′ is the
image of exactly one element of G so that the mapping can be in-
verted, it is called an isomorphism and is denoted G ∼ G′. Figure 8.16
shows such a mapping. And the structure preserving property of an
isomorphism can be expressed by the diagram

a b = c

� � �
a′ b′ = c′

Isomorphic groups possess the same structure. And groups having the
same structure, in the sense we used previously that their group tables
can be made the same by reordering rows and columns and redenoting
elements, are isomorphic. So ‘isomorphic’ makes precise the concept of
‘having the same structure’ and is more general, since it is applicable
to infinite-order as well as finite-order groups. Thus, all realizations
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Fig. 8.16. Isomorphism mapping of groups G and G′

Fig. 8.17. Isomorphism of C3 and two of its realizations

of an abstract group are isomorphic with the abstract group of which
they are realizations as well as with each other.

Consider some examples of isomorphism.

1. The abstract group C3 of order 3 and two of its realizations, by
rotations and by complex numbers (see Fig. 8.17).
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2. The Abelian infinite-order group of integers under addition is iso-
morphic with the Abelian infinite-order group of integral powers
of 2 (or of any other positive number) under multiplication. The
mapping is n ↔ 2n. The identities are 0 ↔ 20 = 1. Structure is
preserved by the mapping:

m + n = (m + n)
� � �

2m × 2n = 2m+n

3. The Abelian infinite-order group of all real numbers under addition
is isomorphic with the Abelian infinite-order group of all displace-
ments in a common direction with the composition of consecutive
displacement (see Fig. 8.18 for structure preservation).

Here and in the following we adopt the convention that transformations
are read from right to left. The reason is made clear in Sect. 10.2. For
the time being we use “+” to denote composition of transformations
by consecutive application.

4. The Abelian infinite-order group of all rotations about a common
axis, with composition of consecutive rotation, is isomorphic with
the Abelian infinite-order group of all unimodular (determinant =
1) real orthogonal 2×2 matrices under matrix multiplication. Both
are isomorphic with the group of unimodular (absolute value = 1)
complex numbers under multiplication.

Fig. 8.18. Structure preservation for the isomorphism of the group of real
numbers under addition with the group of displacements in a common direc-
tion (with composition of consecutive displacement, denoted “+”)
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Note that the most general 2 × 2 matrix that is unimodular, real,
and orthogonal can be written as

(
cos α − sin α
sin α cos α

)
,

with α real. The most general unimodular complex number is eiα

with α real. The mapping for those isomorphisms is

(rotation by angle α)←→
(

cos α − sinα
sin α cos α

)
←→ eiα .

The identities are

(rotation by angle 0)←→
(

1 0
0 1

)
←→ e0 = 1 .

For structure preservation see Fig. 8.19.
5. The non-Abelian infinite-order group of all rotations about a com-

mon point under consecutive rotation is isomorphic with the non-
Abelian infinite-order group of unimodular real orthogonal 3 × 3
matrices under matrix multiplication. The mapping is

(
rotation by

angle α about axis with direction cosines (λ, μ, ν)
)←→ (

a certain
unimodular real orthogonal 3 × 3 matrix M(λ, μ, ν;α) uniquely
determined by (λ, μ, ν) and α in a way that we do not go into
here

)
[48, 49]. For structure preservation see Fig. 8.20.

Fig. 8.19. Structure preservation for the isomorphism of the group of ro-
tations about a common axis (with composition of consecutive rotation, de-
noted “+”), the group of unimodular real orthogonal 2 × 2 matrices under
matrix multiplication, and the group of unimodular complex numbers under
multiplication
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Fig. 8.20. Structure preservation for the isomorphism of the group of ro-
tations about a common point (with composition of consecutive rotation,
denoted “+”) with the group of unimodular real orthogonal 3 × 3 matrices
M(λ, μ, ν; α) under matrix multiplication. α is the angle of rotation about
an axis with direction cosines (λ, μ, ν)

Fig. 8.21. Reflexivity of isomorphism

Referring back to Sect. 4.2, note that isomorphism is an equivalence
relation among groups. It possesses the three defining properties of an
equivalence relation: (1) Isomorphism is reflexive, because every group
is isomorphic with itself. The mapping is simply that every element
is its own image (see Fig. 8.21). (2) Isomorphism is symmetric, since
the mapping is one-to-one and onto and thus invertible (see Fig. 8.22).
(3) Isomorphism is transitive. If one group is isomorphic with a second
and the second with a third, then the first is isomorphic with the third.
Figure 8.23 is worth a hundred words.
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Fig. 8.22. Symmetry of isomorphism

Fig. 8.23. Transitivity of isomorphism

8.4 Homomorphism

We now return to the discussion of homomorphism (of which isomor-
phism is a special case) in general, which we started and abandoned
in the preceding section. Such a mapping is not invertible (unless it is
an isomorphism and only then). Homomorphism is denoted G → G′,
where the mapping is many-to-one from group G to group G′, as in
Fig. 8.24. As was pointed out in the preceding section, the structure
preserving property of homomorphism can be expressed by

a′b′ = (ab)′ ,

or by the diagram

a b = c

↓ ↓ ↓
a′ b′ = c′
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Fig. 8.24. Homomorphism mapping of group G to group G′

where a, b, ab, c are elements of G and a′, b′, (ab)′, c′ their respective
images in G′.

Although homomorphism preserves the group structure in the sense
just shown, homomorphic groups do not possess the same structure,
unless they are isomorphic. For example, non-Abelian groups may
be homomorphic to Abelian groups (the opposite is impossible, how-
ever). And while isomorphic groups have the same order, infinite-order
groups may be homomorphic to finite-order groups, and groups of
different finite orders may be homomorphic. I will present examples
shortly. Homomorphism is not an equivalence relation, since it is not
symmetric. It is reflexive, however, with isomorphism as a special case
of homomorphism (see Fig. 8.21). And it is transitive (see Fig. 8.25).

In a homomorphism G → G′ the set of all elements of G whose
images are the identity element of G′ is called the kernel of the homo-
morphism. We will return to that in Sect. 9.1.
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Fig. 8.25. Transitivity of homomorphism

Here are some examples of homomorphism.

1. Any group G whatsoever is trivially homomorphic to the abstract
group of order 1, denoted C1, as in Fig. 8.26. Structure is preserved:

a b = c

↓ ↓ ↓
e′ e′ = e′

All of G serves as the kernel of such a homomorphism In terms of
realizations, we can homomorphically map all the elements of any
group to the number 1 (under multiplication) or to the number 0
(under addition).

2. Both abstract groups of order 4 (and any realizations thereof) are
homomorphic to the abstract group of order 2, C2 (and any of its re-
alizations). For C4 the mapping is shown in Fig. 8.27. For D2 there
are three possible mappings, shown in Fig. 8.28. Structure preser-
vation can be checked with the help of the group tables shown in
Sect. 8.1. The kernel of the first homomorphism (Fig. 8.27) is {e, b}.
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Fig. 8.26. Trivial homomorphism of any group G to the order-1 group C1

Fig. 8.27. Homomorphism of C4 to C2

The three possible kernels of the second homomorphism (Fig. 8.28)
are {e, a}, {e, b}, and {e, c}.

3. The non-Abelian order-6 group D3 is homomorphic to Abelian C2.
The mapping is shown in Fig. 8.29. Preservation of structure is
checked with the group tables in Sect. 8.1. The kernel of the ho-
momorphism is {e, a, b}.
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Fig. 8.28. Homomorphism of D2 to C2

Fig. 8.29. Homomorphism of D3 to C2

4. The Abelian infinite-order group of all nonzero real numbers under
multiplication is homomorphic to Abelian C2 and its realization,
for example, by the numbers {1,−1} under multiplication. The
mapping is

(any positive number) −→ e←→ 1 ,

(any negative number) −→ a←→ −1 .

Structure preservation is seen as follows:

(positive number) × (positive number) = (positive number)
↓ ↓ ↓
e e e

� � �
1 × 1 = 1



8.4 Homomorphism 191

(positive number) × (negative number) = (negative number)
↓ ↓ ↓
e a a

� � �
1 × (−1) = (−1)

(negative number) × (positive number) = (negative number)
↓ ↓ ↓
a e a

� � �
(−1) × 1 = (−1)

(negative number) × (negative number) = (positive number)
↓ ↓ ↓
a a e

� � �
(−1) × (−1) = 1

The set of all positive numbers forms the kernel of the homomor-
phism.

5. The non-Abelian (for n > 1) group of all nonsingular (having non-
vanishing determinant) complex n×n matrices under matrix multi-
plication is homomorphic to the Abelian group of nonzero complex
numbers under multiplication. Each matrix A is mapped to the
complex number that is the value of its determinant, A→ |A| (so
that A−1 → 1/|A|). Structure preservation follows from the fact
that the determinant of a matrix product is the product of the
individual determinants:

A B = (AB)
↓ ↓ ↓
|A| × |B| = |AB|

The unimodular n × n matrices make up the kernel of the homo-
morphism, since they are all the n× n matrices whose image is 1,
the identity of number multiplication.
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8.5 Subgroup

A subset of a set S is any set all of whose elements are also elements
of S. For example, the set of positive integers is a subset of the set of
integers, or the set of real matrices is a subset of the set of complex
matrices. Note that according to the definition any set forms a subset
of itself. If set T is a subset of set S, the relation is denoted T ⊂ S and
S ⊃ T , where ⊂ and ⊃ denote the relation of inclusion. (Sometimes ⊂
and ⊃ are used to denote only strict inclusion, where the sets may not
be the same, so that there is at least one element in the including set
that is not a member of the subset. Inclusion that allows the subset to
coincide with the including set is then denoted ⊆ and ⊇. However, we
do not use that convention.)

If a subset of the elements of a group G itself forms a group with
respect to the composition law of G, it is called a subgroup of G. If H
is a subgroup of G, the relation is denoted H ⊂ G and G ⊃ H, using
the same notation as for set inclusion.

Every group G possesses two trivial subgroups: (1) the group of
order 1 consisting of the identity element of G and (2) the group G
itself. Any subgroup of a group except the group itself is a proper
subgroup.

It can be shown, and we will show in Sect. 9.2, that if a finite-order
group of order n includes a subgroup of order m, then m is a divisor
of n, i.e., n = ms for some integer s. From that theorem it follows that
groups of prime order possess no proper subgroups except the trivial
subgroup of order 1. Thus, the groups of orders 2, 3, and 5, which were
presented in Sect. 8.1, can have no nontrivial proper subgroups, as an
examination of their group tables will confirm. In any case the group
of order 2 is of too low an order to have nontrivial proper subgroups.

If G′ is a subgroup of G and G′′ is a subgroup of G′, then clearly
G′′ is also a subgroup of G.

Consider the following examples of subgroups.

1. In the order-4 group C4 (rotations by
{
0◦, 90◦, 180◦, 270◦

}
) the

elements {e, b}, as shown in Fig. 8.4 of Sect. 8.1, (rotations by{
0◦, 180◦

}
) form an order-2 subgroup, C2. That is the only non-

trivial subgroup of C4.
2. The order-4 group D2, as shown in Fig. 8.5 of Sect. 8.1, includes

three order-2 subgroups: {e, a}, {e, b}, and {e, c}. According to the
above theorem, the order-4 subgroups, C4 and D2, cannot possess
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order-3 subgroups, since three is not a divisor of four. So we have
found all their nontrivial subgroups.

3. An order-6 group can have nontrivial subgroups of orders 2 and 3
only. In fact, the non-Abelian order-6 group D3, shown in Fig. 8.9
in Sect. 8.1, includes four such subgroups, one of order 3 and three
of order 2: {e, a, b}, {e, c}, {e, d}, {e, f}.

4. The group of nonzero real numbers under multiplication includes
various subgroups. Among those are the positive real numbers, the
nonzero rational numbers, the positive rational numbers, and the
integral powers of a fixed real number.

We conclude this section with a search for the nontrivial subgroups
of the order-8 group D4, whose group table is shown in Fig. 8.30. By
the divisor theorem, we know we are looking only for subgroups of
orders 2 and 4. Examine the diagonal of the table. Every appearance
of e indicates an order-2 subgroup, since b2 = d2 = f2 = g2 = h2 = e.
So all the order-2 subgroups are {e, b}, {e, d}, {e, f}, {e, g}, {e, h}.

Look at powers of a: a2 = b, a3 = ab = c, a4 = ac = e. Thus,
we found an order-4 subgroup {e, a, b, c}, which is C4. Attempting to
apply the power trick further does not prove useful.

Let us see whether we can combine some of the order-2 subgroups to
form order-4 subgroups. We see that dg = gd = b. Also, fh = hf = b.
None of the other compositions are particularly useful. So we have two
more order-4 subgroups, {e, b, d, g} and {e, b, f, h}, which are both D2.
That exhausts the nontrivial subgroups of D4.

Fig. 8.30. Group table of D4
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8.6 Summary

This chapter was the start of an introduction to group theory, the
mathematical language of symmetry. In it we discussed the most fun-
damental of the fundamental concepts and ideas of group theory. To
summarize, here is a list of the more important concepts discussed in
each section:

• Section 8.1: element, group, order, composition, closure, associa-
tivity, identity element, inverse element, noncommuting elements,
commuting elements, Abelian (commutative) group, group struc-
ture, group table, realization.

• Section 8.2: mapping, object, image, many-to-one mapping, one-to-
one mapping, into mapping, onto mapping, inverse mapping.

• Section 8.3: isomorphism.
• Section 8.4: homomorphism, kernel.
• Section 8.5: subgroup, proper subgroup.
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Group Theory Continued

In this chapter we build on the foundation that was laid in the pre-
ceding chapter to achieve a reasonable introduction to group theory.

9.1 Conjugacy, Invariant Subgroup, Kernel

If for some pair of elements a and b of group G there exists a (not
necessarily unique) element u of G such that

u−1au = b ,

then a and b are called conjugate elements in G. Conjugacy is denoted

a ≡ b .

It is an equivalence relation among group elements. (We presented and
discussed the concept of equivalence relation earlier in Sect. 4.2.) Here
is how conjugacy fulfills the three properties of an equivalence relation:

1. Conjugacy is reflexive, since every element a is conjugate with it-
self, a ≡ a for all a in G. That is due to the fact that e−1ae = a.

2. Conjugacy is symmetric, since for all a and b in G if a ≡ b, then
b ≡ a. That comes about because if there exists an element u in G
such that u−1au = b, then v−1bv = a with v = u−1. To prove it,
substitute v = u−1 in v−1bv = a and see what develops. First we
obtain

(u−1)−1bu−1 = a .
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Since the inverse of an inverse is the element itself, this becomes

ubu−1 = a .

Now perform the composition of each side of the equation with u on
the right and with u−1 on the left, and for convenience interchange
the sides of the equation:

u−1au = u−1(ubu−1)u

= (u−1u)b(u−1u) (by associativity)

= ebe (by inverse)

= e(be) (by associativity)

= eb (by identity)

= b (by identity) ,

which is what we started from, u−1au = b. So symmetry is proved.
3. And finally, conjugacy is transitive, since for all a, b, c in G if a ≡ b

and b ≡ c, then a ≡ c. If there exist elements u and v of G such
that u−1au = b and v−1bv = c, then w−1aw = c with w = uv. To
prove that, substitute b = u−1au into c = v−1bv:

c = v−1(u−1au)v (by substitution)

= (v−1u−1)a(uv) (by associativity)

= (uv)−1a(uv) (by inverse of product)

= w−1aw (by putting uv = w) ,

which proves transitivity, a ≡ c.

Note that more than two elements might be conjugate with each other.
The identity element is conjugate only with itself:

u−1eu = u−1(eu) (by associativity)

= u−1u (by identity)

= e (by inverse) ,
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for any element u. In an Abelian group every element is conjugate only
with itself:

u−1au = u−1(au) (by associativity)

= u−1(ua) (by commutativity)

= (u−1u)a (by associativity)

= ea (by inverse)

= a (by identity) ,

for all elements a and u of the group.
As an example, we find the conjugate elements of the order-6 group

D3, whose group table is displayed in Fig. 8.9 in Sect. 8.1 and Fig. 9.11
in Sect. 9.8. First find all the inverses. Since ab = ba = e, we have
a−1 = b and b−1 = a. And since cc = dd = ff = e, we know that
c−1 = c, d−1 = d, and f−1 = f . Now conjugate each element of the
group by all the others to find conjugates. For example,

c−1ac = c(ac) = cf = b ,

d−1cd = d(cd) = da = f ,

f−1cf = f(cf) = fb = d .

In that way obtain the breakdown into conjugate elements:

e , a ≡ b , c ≡ d ≡ f .

A subset of group elements that consists of a complete set of mutu-
ally conjugate elements is called a conjugacy class of the group. The
identity element, since it in not conjugate with any other element, is
always in a conjugacy class of its own. In an Abelian group every el-
ement is in a conjugacy class of its own. For example, the conjugacy
classes of the group D3 are {e}, {a, b}, {c, d, f}, as we just found.

At this point recall or review the concept of equivalence class, which
was presented and discussed earlier in Sect. 4.2. If we have a set of el-
ements (which might form a group) for which an equivalence relation
is defined, any subset that contains a complete set of mutually equiv-
alent elements is an equivalence class. It is easily shown that different
equivalence classes in the same set cannot possess common elements.
Thus, an equivalence relation brings about a decomposition of the set
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for which it is defined, such that every element of the set is a member
of one and only one equivalence class.

Two examples of equivalence class that we have already met are
conjugacy classes, where the equivalence relation is conjugacy between
group elements, and classes of groups with the same structure, where
the equivalence relation is isomorphism of groups in the set of all
groups. For the D3 example above, note how the group does indeed
decompose into its three conjugacy classes.

Conversely, any decomposition of a set into subsets such that every
element of the set is a member of one and only one subset defines an
equivalence relation. The subsets may be declared, by fiat, equivalence
classes, and the corresponding equivalence relation is simply that two
elements are equivalent if and only if they belong to the same subset.

Two trivial equivalence class decompositions for any set of elements
are the following. The most exclusive equivalence relation, that every
element is equivalent only with itself and with no other, decomposes
the set into as many equivalence classes as there are elements in the
set, since every equivalence class contains but a single element. And
on the other hand, the most inclusive equivalence relation, that all
elements of the set are equivalent with each other, makes the whole
set a single equivalence class in itself.

Let us return to conjugation. Conjugation by a single element has
an interesting and useful property. Let a, a′, b, b′, c, c′ be elements of
group G such that a ≡ a′, b ≡ b′, c ≡ c′ with respect to conjugation
by the same element u of G:

a′ = u−1au , b′ = u−1bu , c′ = u−1cu .

Now, assume ab = c. Compose each side of the relation with u−1 on the
left and with u on the right. The right-hand side becomes u−1cu = c′.
The left-hand side becomes

u−1(ab)u = u−1(a(eb))u (by identity)

= u−1aebu (by associativity)

= u−1a(uu−1)bu (by inverse)

= (u−1au)(u−1bu) (by associativity)

= a′b′ .

Thus, a′b′ = c′, and intragroup relations are invariant under conju-
gation by the same element. If you happen to be familiar with the
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invariance of algebraic relations among matrices under similarity trans-
formations, note the analogy.

For example, in the group D3, whose group table is displayed in
Fig. 8.9 in Sect. 8.1 and Fig. 9.11 in Sect. 9.8, we find the relation
bd = f . Under conjugation by c the element b becomes b′, where

b′ = c−1bc = cbc (c is its own inverse)

= c(bc) (by associativity)

= cd (from the group table)

= a (from the group table) .

Similarly,

d′ = c−1dc = f , f ′ = c−1fc = d .

Invariance of intragroup relations means that b′d′ = f ′, or in the
present case that af = d. Check in the D3 group table to confirm
that this is indeed true.

If H is a subset (not necessarily a subgroup) of group G, g−1Hg
for some g in G denotes the subset of G consisting of elements g−1hg,
where h runs over all elements of H, i.e., g−1Hg is the subset conjugate
with H by g. If G is Abelian, g−1Hg = H for all g in G.

If H is a subgroup of G, then g−1Hg for any g in G is also a sub-
group of G. That is seen as follows:

1. Since H is a subgroup, it is closed under the composition of G.
Therefore, so is g−1Hg closed, since, as we saw above, intragroup
relations are invariant under conjugation by the same element (here
g).

2. Associativity holds for g−1Hg, since it holds for G and g−1Hg is
a subset of G.

3. The set g−1Hg contains the identity, since H, being a subgroup,
contains it and g−1eg = e.

4. Any element of g−1Hg is expressible as g−1hg, where h is some
element of H. The inverse of g−1hg is (g−1hg)−1 = g−1h−1g, which
is also an element of g−1Hg, since h−1 is an element of H. Thus,
g−1Hg contains the inverses of all its elements.

So g−1Hg possesses the four group properties and is indeed a group if
H is. And, again since intragroup relations are invariant under conju-
gation by the same element, conjugate subgroups are isomorphic.



200 9 Group Theory Continued

For example, D3 includes the subgroup {e, c}. The conjugate sub-
group by a is {e, f}:

a−1{e, c}a = b{e, c}a = {bea, bca} = {e, f} .

Both subgroups are isomorphic, since they are both of order 2 and
there is only one abstract order-2 group, C2.

If H is a subgroup of G and g−1Hg = H for all g in G, i.e., if H
is conjugate only with itself, H is called an invariant subgroup (also
normal subgroup).

As an example, the subgroup {e, a, b} of D3 is an invariant sub-
group. Earlier in this section we found that elements a and b are con-
jugate with each other and with no other element, while the identity
e is conjugate only with itself. Thus,

g−1{e, a, b}g = {g−1eg, g−1ag, g−1bg} = {e, a, b} ,

for all elements g of D3 and the subgroup is proved invariant as claimed.
If you care to, check this for g = e, a, b, c, d, f . You might find your
result looking like {e, b, a}, but it is the same set as {e, a, b}.

Note that the trivial subgroups {e} and G of any group G are
invariant. In an Abelian group all subgroups are invariant.

Now, consider the homomorphism G→ G′. The subset of elements
of G that is mapped to the identity element e′ of G′ is called the ker-
nel of the homomorphism, as was mentioned in Sect. 8.4. A kernel is
usually denoted K. Thus K consists of all g in G for which g → e′. For
any homomorphism G→ G′ the kernel K is an invariant subgroup of
G, as we proceed to prove. First we show that K is a subgroup of G:

1. Let a and b be any pair of elements of K, so that a→ e′ and b→ e′.
Denote the image of their composition c (= ab) by c′. Preservation
of structure by homomorphism requires

a b = c

↓ ↓ ↓
e′ e′ = e′

But e′e′ = e′, so c′ = e′, c→ e′, and c ∈ K. Thus K is closed under
the composition of G.

2. Associativity holds for K, since it holds for G and K is a subset
of G.
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3. Is e an element of K? The identity element e obeys ea = a for
all a in G. Let e → x′ and a → a′ under the homomorphism.
Since a runs over all elements of G, a′ runs over all elements of G′.
Preservation of structure requires

e a = a

↓ ↓ ↓
x′ a′ = a′

Thus, x′a′ = a′, for all a′ in G′, which means that x′ = e′, since
the identity is unique. So e→ e′, and e is indeed an element of K.

4. Let a be any element of K, so that a → e′, and denote the image
of its inverse by (a−1)′. By preservation of structure

a a−1 = e

↓ ↓ ↓
e′ (a−1)′ = e′

Thus, (a−1)′ = e′, and a−1 is an element of K. So K contains the
inverses of all its elements.

Since K is endowed with all four group properties, it is a group, a sub-
group of G.

We now prove that K is an invariant subgroup of G. Let a be any
element of K so that a→ e′, and form the conjugation g−1ag = b for
all elements g of G. Denote by b′, g′, and (g−1)′ the images of b, g, and
g−1, respectively. Preservation of structure gives us (g−1)′ = g′−1 and

g−1 a g = b

↓ ↓ ↓ ↓
g′−1 e′ g′ = b′

from which it follows that b′ = e′ and b ∈ K. Thus, g−1ag is an element
of K for all a in K and all g in G. So g−1Kg = K for all g in G, and
K is an invariant subgroup of G as claimed.

If the kernel of a homomorphism G → G′ consists only of the
identity element e, the mapping is, as we will see in Sect. 9.4, one-to-
one, and the homomorphism is actually an isomorphism. If the kernel
is the group G itself, the homomorphism is the trivial one g → e′ for
all g in G, where G′ is the order-1 group.
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Consider a few examples of homomorphism kernels as invariant
subgroups:

1. For the homomorphism D3 → C2, presented as an example in
Sect. 8.4, the kernel is {e, a, b}. It was shown earlier in the present
section that it is an invariant subgroup of D3.

2. Consider the homomorphism, also presented as an example in
Sect. 8.4, of the group of nonsingular (having nonzero determi-
nant) complex n × n matrices under matrix multiplication to the
group of nonzero complex numbers under multiplication, where
each matrix is mapped to the complex number that is the value of
its determinant, A→ |A|. The kernel of the homomorphism is the
subset consisting of all unimodular n×n matrices, i.e., all complex
n × n matrices whose determinant has the value 1. Now we show
that the kernel is a subgroup:
(1) The product of unimodular n × n matrices is a unimodular

n× n matrix. That follows from the fact that the determinant
of a matrix product equals the product of the individual deter-
minants, i.e., |AB| = |A||B| for any matrices A and B. So the
kernel is closed under matrix multiplication.

(2) Matrix multiplication is associative.
(3) The unit n × n matrix, the identity of matrix multiplication,

is unimodular.
(4) The inverse of any unimodular n × n matrix exists, because

every nonsingular matrix is invertible. The inverse is an n ×
n matrix and is unimodular, since if |A| = 1, then |A−1| =
1/|A| = 1.

Having the four group properties, this kernel is confirmed to be
a subgroup (which was proved in general earlier in this section).
Now check that it is an invariant subgroup (which it must be, as
was proved in general). Let A be any nonsingular n×n matrix and
U any unimodular n×n matrix. Form the conjugate element of U
by A, A−1UA (which is just the similarity transformation of U by
A). The value of its determinant is

|A−1UA| = |A−1||U ||A|
= (1/|A|)|U ||A|
= |U |
= 1 .
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So A−1UA is always unimodular and an element of the kernel,
which is thus confirmed to be an invariant subgroup.

3. As we saw in Sect. 8.4, the group of all nonzero real numbers under
multiplication is homomorphic to the group of numbers {1,−1}
under multiplication, with the mapping

(any positive number) −→ 1 ,

(any negative number) −→ −1 .

Since the number 1 serves as identity in {1,−1}, the kernel of the
homomorphism is the subset consisting of all positive real num-
bers, which is indeed a group under multiplication. Moreover, it is
trivially invariant, as multiplication of numbers is commutative.

9.2 Coset Decomposition

Let H be any proper subgroup of group G (i.e., any subgroup of G
that is not G itself). Form the set aH, where a is any element of G
that is not a member of H. That is the set of elements ah, where h
runs over all the elements of H. Such a set is called a left coset of H
in G. Similarly, Ha is called a right coset . Coset aH is not a subgroup
of G, since it does not contain the identity element e. If it did contain
e, H would have to contain a−1. Since H is a subgroup, it would then
have to contain also the inverse of a−1, which is a. But by assumption
H does not contain a. So aH is not a subgroup.

If H is of order m, then aH also contains m elements. The coset
certainly contains no more than m elements and could contain less
only if ah1 = ah2 for some distinct pair of elements h1 and h2 of H.
But ah1 = ah2 implies h1 = h2 by composition with a−1 on the left,
which is a contradiction. Therefore, aH contains exactly m elements.

In addition, no element of aH is also an element of H. Otherwise
we would have ah1 = h2 for some pair of elements h1, h2 of H. That
implies a = h2h

−1
1 by composition with h−1

1 on the right. Since H is
a subgroup and is closed under composition, a = h2h

−1
1 means that

a is an element of H, contrary to assumption. So H and aH have no
element in common.

The union of a number of given sets is the set of all distinct elements
of the given sets. The symbol ∪ is used to denote union of sets. Form
the union of H and aH, H ∪ aH. The set H ∪ aH might or might not
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exhaust all the elements of G. If it does not, take any element b of G
that is not a member of the set H ∪ aH, i.e., b is an element neither
of H nor of aH, and form the left coset bH. By reasoning similar to
the above, bH has exactly m elements and has no element in common
with H or with aH. Now form the union H ∪aH ∪ bH. If that set does
not exhaust G, continue forming left cosets in the same manner. If G
is of finite order n, the procedure will eventually exhaust it:

G = H ∪ aH ∪ bH ∪ . . . ∪ kH .

Since H and each of its cosets contain m elements per set and the sets
have no element in common, we obtain the result that n = ms for
some integer s, i.e., m is a divisor of n, as mentioned in Sect. 8.5. This
result is known as Lagrange’s theorem (Joseph Louis Lagrange, French
mathematician and astronomer, 1736–1813). Note that the proof can
be performed just as well with right cosets.

The decomposition of a group G into cosets of any subgroup will
always be the same for left cosets as for right cosets if G is Abelian. If
G is non-Abelian, the decompositions might differ, although not nec-
essarily. The decomposition of G into left (or right) cosets of subgroup
H is unique. By that we mean that, if we form a left coset lH of H
with any element l of G that is not a member of H and is not among
the elements a, b, . . . , k used in the decomposition

G = H ∪ aH ∪ bH ∪ . . . ∪ kH ,

the coset lH will necessarily be one of the cosets aH, bH, . . . , kH. To
see that, note that l must be a member of some one of those cosets,
say aH. Since all elements of aH are of the form ah, where h runs over
all elements of H, then l = ah1 for some element h1 of H. Thus, by
composition with h−1

1 on the right, a = lh−1
1 and all elements of aH

are of the form

ah =
(
lh−1

1

)
h = l

(
h−1

1 h
)

,

where h, and consequently also h−1
1 h, runs over all elements of H.

Therefore, aH = lH. So the same decomposition of G into left (or
right) cosets of subgroup H is obtained whatever elements are used to
form the cosets.

Examples of decomposition into cosets follow. Refer to Sect. 8.1 for
group tables of the groups involved.
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1. The order-4 group C4 includes a single nontrivial proper subgroup,
H = {e, b}. Its left coset formed with a is

aH = {ae, ab} = {a, c} .

Its left coset formed with c is

cH = {ce, cb} = {c, a} = aH .

So the unique decomposition of the group into left cosets of H is

G = {e, b} ∪ {a, c} .

Since the group is Abelian, decomposition into right cosets of H is
the same, which is obvious in this example, as there is only a single
possibility for any coset of H.

2. The order-4 group D2 possesses three nontrivial proper subgroups,
which are {e, a}, {e, b}, and {e, c}. So we have three different de-
compositions into left cosets:

H = {e, a} , bH = cH = {b, c} , G = {e, a} ∪ {b, c} ,

H = {e, b} , cH = aH = {a, c} , G = {e, b} ∪ {a, c} ,

H = {e, c} , aH = bH = {a, b} , G = {e, c} ∪ {a, b} .

Right and left cosets of the same subgroup are the same in this
example, since D2 is Abelian.

3. The non-Abelian order-6 group D3, whose group table is shown also
in Fig. 9.11 in Sect. 9.8, includes the nontrivial proper subgroups
{e, a, b}, {e, c}, {e, d}, and {e, f}. So we have four decompositions
into left cosets:

H = {e, a, b} , cH = {c, d, f} , G = {e, a, b} ∪ {c, d, f} ,

H = {e, c} , aH = {a, f} , bH = {b, d} ,

G = {e, c} ∪ {a, f} ∪ {b, d} ,

H = {e, d} , aH = {a, c} , bH = {b, f} ,

G = {e, d} ∪ {a, c} ∪ {b, f} ,
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H = {e, f} , aH = {a, d} , bH = {b, c} ,

G = {e, f} ∪ {a, d} ∪ {b, c} .

Since the group is non-Abelian, its decompositions into right cosets
might be different from its decompositions into left cosets. Its four
decompositions into right cosets are

H = {e, a, b} , Hc = {c, d, f} , G = {e, a, b} ∪ {c, d, f} ,

H = {e, c} , Ha = {a, d} , Hb = {b, f} ,

G = {e, c} ∪ {a, d} ∪ {b, f} ,

H = {e, d} , Ha = {a, f} , Hb = {b, c} ,

G = {e, d} ∪ {a, f} ∪ {b, c} ,

H = {e, f} , Ha = {a, c} , Hb = {b, d} ,

G = {e, f} ∪ {a, c} ∪ {b, d} .

Thus, decomposition into cosets of subgroup {e, a, b} is the same
for left and for right, whereas decomposition into cosets of any of
the order-2 subgroups is different for left and for right.

Let H be any invariant proper subgroup of group G, so that g−1Hg =
H for all g in G. By composition with g on the left, the relation can be
put in the form Hg = gH for all g in G, with the result that left and
right cosets of any invariant subgroup are the same. But be careful!
The relation gH = Hg for all g in G does not mean that all elements
of G commute with all elements of H. Rather, the set of elements
hg, where H runs over all elements of H, is the same as the set of
elements gh, where h runs over all elements of H, for all elements g of
G. Thus, decomposition of a group into cosets of an invariant subgroup
is the same whether left or right cosets are used. We saw that in the
example of decomposition of D3 into cosets of its invariant subgroup
{e, a, b}. In an Abelian group all subgroups are invariant, so left-coset
and right-coset decompositions are the same for any subgroup.
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9.3 Factor Group

In Sect. 9.2 we found that decomposition of a group into left cosets of
an invariant subgroup is the same as decomposition into right cosets of
the same invariant subgroup. That fact has far-reaching consequences,
as we will see in the present section and the next.

We now define a composition of cosets of an invariant subgroup
H of group G. It is denoted (aH)(bH) and is defined as the set of
all elements h′h′′, where h′ runs over all elements of coset aH and h′′
independently runs over all elements of coset bH. That can also be
expressed as the set of elements (ah1)(bh2) = ah1bh2, where h1 and
h2 independently run over all elements of H. Using associativity and
equality of left and right cosets of the invariant subgroup H, we obtain
the following string of equalities for the composition of cosets aH and
bH, as defined just now:

(aH)(bH) = a(Hb)H

= a(bH)H

= (ab)(HH)

= (ab)H .

The last equality follows from HH = H, since HH is the set of ele-
ments h1h2, where h1 and h2 independently run over all elements of H,
which is just H itself, since H is a subgroup and is closed under com-
position. An expression such as a(Hb)H is the set of elements ah′h,
where h′ runs over all elements of Hb and h independently runs over all
elements of H, or equivalently, the set of elements a(h1b)h2 = ah1bh2,
where h1 and h2 independently run over all elements of H. After over-
coming our unfamiliarity with the notation, the point of what we are
doing here can be appreciated. The composition of coset aH and coset
bH, (aH)(bH), is also a coset of H, the coset (ab)H (although some
element other than ab might be used to form it in the decomposition
of G). Thus, the set of cosets of any invariant subgroup H of group G
is closed under coset composition.

Note that we have risen to a higher level of complexity than that
of groups with their elements and rules of composition of elements.
Here we are looking at cosets as ‘elements’ of a set of cosets and are
considering their composition. So our higher-level elements are cosets.
They make up a set of cosets. Our higher-level composition operates
between higher-level elements, i.e., between cosets.



208 9 Group Theory Continued

We just found that the set of cosets of an invariant subgroup is
closed under coset composition. Let us see if coset composition pos-
sesses any additional interesting properties. Is it associative? Yes:

[
(aH)(bH)

]
(cH) = (aH)

[
(bH)(cH)

]
.

as a direct result of associativity of the composition defined for G.
The composition of any coset of H with H itself gives

H(aH) = (Ha)H

= (aH)H

= a(HH)

= aH ,

and

(aH)H = a(HH) = aH ,

using associativity, equality of left and right cosets, and HH = H. So
H has the characteristic property of an identity in coset composition;
its composition with any coset in either order is just that coset.

And what happens when we compose any coset aH with coset
a−1H?

(aH)(a−1H) = a(Ha−1)H

= a(a−1H)H

= (aa−1)(HH)

= eH

= H

and

(a−1H)(aH) = a−1(Ha)H

= a−1(aH)H

= (a−1a)(HH)

= eH

= H ,

using associativity, equality of left and right cosets, properties of in-
verse and identity, and HH = H. Thus, for any coset aH there exists



9.4 Anatomy of Homomorphism 209

a coset a−1H (although some element other than a−1 might be used to
form it in the decomposition of G), such that their coset composition
in either way gives H. In other words, every coset has an inverse coset.

What have we found, if not a new group? This is a higher-level
group than the group G that serves as the foundation of it all. This
group is based on an invariant proper subgroup of G, on decomposition
of G into cosets of the invariant subgroup, and on coset composition
between cosets. In more detail, we start with any group G and invariant
proper subgroup H. We decompose G into cosets of H (left and right
cosets being the same),

G = H ∪ aH ∪ bH ∪ . . . .

We consider the set consisting of H and its cosets, {H,aH, bH, . . . }.
(Is it clear that each element of this set is itself a set, that this is a set
of sets?) And we consider coset composition between pairs of cosets.
And, indeed, we found (1) closure, (2) associativity, (3) existence of
identity, and (4) existence of inverses – in short, a group. That group is
called the factor group (also quotient group) of G by H and is denoted
G/H. (I strongly suggest that at this point you review the development
of the factor group and make sure it is clear how H’s being a subgroup
and the invariance of H each plays its role.) If G is of finite order n
and H is of order m, the order of the factor group G/H is s = n/m
by Lagrange’s theorem (see Sect. 9.3).

As an example, we take for G the non-Abelian order-6 group D3,
whose group table appears in Fig. 8.9 in Sect. 8.1 and Fig. 9.11 in
Sect. 9.8, and its invariant subgroup H = {e, a, b}. The corresponding
coset decomposition is

G = {e, a, b} ∪ {c, d, f} .

The factor group G/H is the set of sets

G/H =
{
{e, a, b}, {c, d, f}

}

under coset composition. It is an order-2 group, isomorphic with C2.

9.4 Anatomy of Homomorphism

Let us return once more to homomorphism G → G′ with kernel K.
As was shown in Sect. 9.1, K is an invariant proper subgroup of G
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(excluding the trivial homomorphism G → C1). So we decompose G
into cosets of K,

G = K ∪ aK ∪ bK ∪ . . . ,

and construct the factor group

G/K = {K,aK, bK, . . . } .

All elements of K are, by definition, mapped by the homomorphism
to e′, the identity element of G′. Consider the following structure-
preservation diagram for any element a of G and all elements k of K,
where a′ is the image of a in G′:

a k = (ak)
↓ ↓ ↓
a′ e′ = a′

Thus, all members of coset aK, which have the form ak with k running
over all elements of K, are mapped to a′. Similarly, all members of coset
bK are mapped to b′, the image of b in G′, and so on.

Can members of different cosets of K be mapped to the same ele-
ment of G′? No, they cannot. To see that, assume b is not a member of
coset aK, which is a necessary and sufficient condition for cosets aK
and bK to be different, as we have seen. We then want to prove that,
if a→ a′ and b→ b′, we must have a′ �= b′. So we assume the opposite,
that a, b → a′. By preservation of structure, the image of b−1 in G′
must then be a′−1. That gives us the structure preservation diagram
for the composition b−1a:

b−1 a = (b−1a)
↓ ↓ ↓

a′−1 a′ = e′

Since b−1a is mapped to e′, it is an element of the kernel K, say
b−1a = k. Composition with b on the left and with k−1 on the right
gives ak−1 = b. But if k is an element of K, so is k−1, since K is
a subgroup. Then b has the form ak1, where k1 is an element of K,
and b is a member of coset aK in contradiction to our assumption that
it is not.

Thus, whereas all members of the same coset of K are mapped by
the homomorphism to the same element of G′, members of different
cosets have different images in G′. And since, by definition, all members
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of G′ are images in the homomorphism, we thereby obtain a one-to-
one correspondence between all cosets of K in G and all elements of
G′. We also obtain the result that any homomorphism is an m-to-one
mapping, where m is the order of the kernel as well as of every one of
its cosets.

That one-to-one mapping between the factor group G/K and G′
is, in fact, an isomorphism. Preservation of structure is based on the
relation

(aK)(bK) = (ab)K ,

found in the preceding section, and is exhibited in the diagram

(aK) (bK) = (ab)K
↓ ↓ ↓
a′ b′ = (a′b′)

where a′ and b′ are the respective images of a and b in G′. The mapping
looks like that of Fig. 9.1.

To summarize our result, given a homomorphism G → G′ with
kernel K, we have the isomorphism G/K ∼ G′.

A converse result is obtained if, instead of starting with a homo-
morphism, we start with group G and an invariant proper subgroup
of it, H. Decompose G into cosets of H,

G = H ∪ aH ∪ bH ∪ . . . ,

Fig. 9.1. Isomorphism of G/K with G′, where K is the kernel of the homo-
morphism of G to G′
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and construct the factor group

G/H = {H,aH, bH, . . . } .

Consider the mapping from G to G/H, where each element of G is
mapped to the coset of H of which it is a member. That is an m-to-
one mapping, where m is the order of H (as well as of every coset
of H), in which every element of G has an image in G/H and every
element of G/H serves as an image. The mapping is a homomorphism.
To confirm that structure is preserved, note that the cosets of H to
which elements a, b, ab of G belong and to which they are mapped
can be represented as aH, bH, (ab)H, respectively (although different
elements might be used to form them). Then, by the relation

(aH)(bH) = (ab)H ,

which was demonstrated in Sect. 9.3, we have the structure preserva-
tion diagram

a b = (ab)
↓ ↓ ↓

(aH) (bH) = (ab)H

Since structure is preserved, the mapping is indeed a homomorphism.
The kernel of the homomorphism is H, since all elements of H, and
only they, are mapped to H, the identity element of G/H.

To sum up this section, given a homomorphism G→ G′ with kernel
K, we have the isomorphism G/K ∼ G′. Conversely, given a group
G and a invariant proper subgroup H, we have the homomorphism
G → G/H with kernel H. That should help clarify what goes on
in homomorphism and how homomorphism, kernel, invariant proper
subgroup, and factor group are intimately interrelated.

Here are some examples to help clarify the clarification. See Sect. 8.1
for group tables.

1. We again return to the non-Abelian order-6 group D3, discussed
so often above, as G. (Its group table is shown also in Fig. 9.11 in
Sect. 9.8.) Its only invariant proper subgroup is H = {e, a, b}, C3.
The factor group G/H, here D3/C3, is the order-2 group

G/H = {H, cH} =
{
{e, a, b}, {c, d, f}

}
,

isomorphic with the abstract order-2 group G′ = {e′, a′}, C2. We
then have the three-to-one homomorphism G→ G/H with kernel
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H, as well, of course, as the three-to-one homomorphism G →
G′ with kernel H. The whole situation can be represented as in
Fig. 9.2.

2. Consider the order-4 group C4, or its realization by the group of
rotations about a common axis by

{
0◦, 90◦, 180◦, 270◦

}
, as G. Since

the group is Abelian, its only proper subgroup is invariant. This
subgroup is H = {e, b}, C2, or its realization by the subgroup of
rotations by

{
0◦, 180◦

}
. The factor group, C4/C2, is

G/H = {H,aH} =
{
{e, b}, {a, c}

}
,

or its rotational realization
{{

0◦, 180◦
}
,
{
90◦, 270◦

}}
.

It is isomorphic with the abstract group C2, G′ =
{
e′, a′

}
, or its

realization by rotations
{
0◦, 180◦

}
. We then have the two-to-one

homomorphism G→ G′ with kernel H, among the abstract groups
as well as among their rotational realizations. All that can be ex-
pressed by the diagram of Fig. 9.3.

3. We take an infinite-order example. The group of all nonzero real
numbers under multiplication, R, includes the group of all positive
numbers under multiplication, P, as a subgroup. It is an invariant

Fig. 9.2. Homomorphism of G (D3) to G/H (D3/C3), isomorphism of G/H
(D3/C3) with G′ (C2), and homomorphism of G (D3) to G′ (C2)
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Fig. 9.3. Homomorphism of G (C4) to G/H (C4/C2), isomorphism of G/H
(C4/C2) with G′ (C2), and homomorphism of G (C4) to G′ (C2): abstract
groups and rotational realizations

subgroup, since R is Abelian. The corresponding coset decomposi-
tion of R is

R = P ∪ a× P ,

where a is any number not in P, i.e., any negative number. The
coset a × P is just the set of all negative numbers, N. The order-
2 factor group is R/P = {P,N}. It is isomorphic with any other
order-2 group, C2, say Z = {1,−1} under multiplication. We then
have the infinity-to-one homomorphism R → R/P with P as the
kernel. Refer to Fig. 9.4.
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Fig. 9.4. Homomorphism of the multiplicative group of all nonzero real num-
bers, R, to R/P, where P is the multiplicative group of all positive numbers;
isomorphism of R/P with the multiplicative group Z = {1,−1}; and homo-
morphism of R to Z. N is the set of all negative numbers

9.5 Generator

Any subset of elements of a finite-order group such that they, their
positive powers, and their compositions (and repeated compositions,
as many times as necessary) produce the whole group is called a set
of generators of the group. For a given group a set of generators is
not unique. For example, the set of all elements of a group is a set
of generators, and so is the set of all elements excluding the identity.
However, there are sometimes smaller sets, and there are always min-
imal sets. Minimal sets of generators are not in general unique either.
If a minimal set of generators of a group consists of a single element,
so that this element and its positive powers produce the whole group,
such a group is called a cyclic group, and the element is called a gen-
erating element of the group. Since all elements of a cyclic group are
powers of a single element, a cyclic group is always Abelian.
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A group of prime order must be cyclic. Let us prove that by assum-
ing the opposite, that a group G of prime order n is not cyclic, and
showing a contradiction. Since by assumption G is not cyclic, it con-
tains no element whose positive powers produce the whole the group.
Consider any one of its elements a that is not the identity and con-
sider the sequence a, a2, a3, . . . . As the order of the group is finite, the
sequence cannot go on forever. So for some power of a the sequence
must repeat itself and return to a. Denote by ak the last distinct term
in the sequence. The next term is ak+1 = a. Compose with a−1 on the
right to obtain ak = e. Thus, the k elements e, a, a2, . . . , ak−1 form
a cyclic group of order k. Since by assumption those elements do not
exhaust G, that order-k cyclic group is a proper subgroup of G. Then
by Lagrange’s theorem (see Sect. 9.2) k is a divisor of n. Here lies
the contradiction, since n was assumed to be prime. That proves that
a group of prime order must be cyclic.

Thus, there is only a single abstract group of any prime order,
the cyclic group of that order, which is Abelian. Finite-order groups
of rotations about a common axis are cyclic. A possible generating
element is the smallest nonzero rotation of each group. Cyclic groups
are denoted Cn, where n is the order. We met this notation in Sect. 8.1.
Thus, Cn can be realized by the group of rotations about a common
axis by

{
0◦, 360◦/n, 2× 360◦/n, . . . , (n− 1)× 360◦/n

}
.

(The notation Dn, which we have met also, is for the dihedral groups,
of order 2n. We do not discuss them here but will present their general
definition in Sect. 10.5.)

Examples of minimal sets of generators and cyclic groups include
the following. Relevant group tables are found in Sect. 8.1.

1. The order-2 group C2 is cyclic, since a2 = e, so a is its generat-
ing element. For its realization by {1,−1} under multiplication,
the number −1 is the generating element, since (−1) × (−1) = 1.
In terms of its realization by rotations about a common axis by{
0◦, 180◦

}
, rotation by 180◦ is the generating element, since two

consecutive rotations by 180◦ produce a rotation by 360◦, the iden-
tity transformation.

2. The order-3 group C3 is cyclic, since a2 = b and a3 = e, or b2 = a
and b3 = e, so that a and b are each a generating element. In terms
of its realization by rotations by

{
0◦, 120◦, 240◦

}
about a common

axis, rotation by 120◦ is a generating element, since two consecutive
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rotations by 120◦ produce a rotation by 240◦, and three consecu-
tive rotations by 120◦ result in a rotation by 360◦, which is rotation
by 0◦. Rotation by 240◦ is also a generating element. Two consec-
utive rotations by 240◦ produce rotation by 480◦, which is rotation
by 120◦, and three consecutive 240◦ rotations make a rotation by
720◦ = 2 × 360◦, which is the identity transformation. Note that
both 2 and 3 are primes and that there is only a single group of
each order and it is cyclic.

3. The order-4 group C4 is cyclic, since a2 = b, a3 = c, and a4 = e,
or c2 = b, c3 = a, and c4 = e. Thus, a and c are generating ele-
ments. However, b is not, since b2 = e and higher powers of b do not
produce a and c. In terms of the group’s realization by rotations
about a common axis by

{
0◦, 90◦, 180◦, 270◦

}
, the generating ele-

ments are rotation by 90◦ and rotation by 270◦. Rotation by 180◦ is
not a generating element, since two consecutive rotations by 180◦
produce the identity transformation, and the other rotations are
not produced by further consecutive rotations by 180◦.

4. Since four is not a prime, there may be noncyclic groups of that
order, and indeed there is one, D2. Minimal sets of generators are
{a, b} (a2 = e, ab = c), {a, c} (a2 = e, ac = b), and {b, c} (b2 = e,
bc = a). In terms of its realization by reflections and rotation,
presented in Sect. 8.1 and in Figs. 8.6 and 8.7 there, a minimal set
of generators consists of two reflections or the rotation and either
reflection.

5. The order-5 group C5 is of prime order and is cyclic. Any one of
its nonidentity elements is a generating element, for example, c,
c2 = a, c3 = d, c4 = b, c5 = e. In the group’s rotational realization
any nonzero rotation is a generating element.

6. The order-6 group D3 is non-Abelian and therefore not cyclic. Its
group table appears also in Fig. 9.11 in Sect. 9.8. Two of its minimal
sets of generators are {a, c} (a2 = b, a3 = e, ac = f , a2c = d) and
{d, f} (d2 = e, df = a, fd = b, dfd = c).

9.6 Direct Product

The direct product of two groups G and G′ is denoted G × G′ and is
the group consisting of elements that are ordered pairs (g, g′), where g
and g′ run independently over all elements of G and G′, respectively.
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If the orders of G and G′ are n and n′, respectively, the order of G×G′
is nn′. Composition for G×G′ is defined in this way:

(a, a′)(b, b′) = (ab, a′b′) ,

for all elements a, b in G and all a′, b′ in G′. Composition ab is in G,
while composition a′b′ is in G′. The composition thus defined for the
direct product group G×G′ assures (1) closure and (2) associativity.
(3) The identity of group G × G′ is the element (e, e′), where e and
e′ are the respective identities of G and G′. (4) The inverse of any
element (g, g′) of G × G′ is (g−1, g′−1). Thus, G × G′ is shown to be
a group, as claimed.

Among the possible proper subgroups of G × G′ there is one iso-
morphic with G, consisting of elements of the form (g, e′) for all g
in G, and another isomorphic with G′, consisting of elements of the
form (e, g′) for all g′ in G′. Both are invariant subgroups. The direct-
product group G′×G is isomorphic with G×G′. [To see that, consider
the mapping (g′, g)↔ (g, g′) and confirm that it preserves structure.]

Higher-degree direct-product groups are formed similarly. For in-
stance, G × G′ × G′′ denotes the group of ordered triples (g, g′, g′′),
where g, g′, g′′ run independently over all elements of G, G′, G′′, re-
spectively. Composition for that group is

(a, a′, a′′)(b, b′, b′′) = (ab, a′b′, a′′b′′) .

Consider the following examples:

1. The direct product C2 × C2 is an order-4 group. But which one
of the two abstract order-4 groups is it? Refer to Sect. 8.1. The
elements of C2 × C2 are (e, e), (e, a), (a, e), and (a, a), with a2 = e.
The group table is shown in Fig. 9.5. The total domination of the
group-table diagonal by the identity element (e, e) discloses that
this is the structure of D2 (Fig. 8.5 in Sect. 8.1). One possible
isomorphism mapping is shown in Fig. 9.6.

Fig. 9.5. Group table of C2 × C2
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Fig. 9.6. Isomorphism of C2 × C2 with D2

Fig. 9.7. Group table of C2 × C3

Fig. 9.8. Group table of C6

2. The direct product C2 × C3 is an order-6 group. Since the con-
stituent groups are Abelian, so is their direct product. There-
fore, that is not the order-6 group D3, discussed so frequently al-
ready (see Sect. 8.1). The elements of C2 × C3 are (e, e′), (a, a′),
(e, b′), (a, e′), (e, a′), (a, b′), where {e, a} is C2 and {e′, a′, b′} is
C3. The group table is shown in Fig. 9.7. If we relabel the ele-
ments e′′, a′′, b′′, c′′, d′′, f ′′, respectively, the group table of Fig. 9.7
takes the form of Fig. 9.8. That is clearly the cyclic group of
order 6, C6 (see Sect. 9.5). Its generating elements are a′′ and
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f ′′, or in C2 × C3 notation (a, a′) and (a, b′). The group C6 can
be realized by the group of rotations about a common axis by{
0◦, 60◦, 120◦, 180◦, 240◦, 300◦

}
, whose generating elements are ro-

tation by 60◦ and rotation by 300◦. The groups C6 and D3 (see
Fig. 8.9 in Sect. 8.1) are the only abstract groups of order 6.

3. The group of complex numbers under addition is isomorphic with
the direct product of the group of real numbers under addition
with itself.

4. The group of 3-vectors under vector addition is isomorphic with
the direct product of the group of real numbers under addition
with itself twice.

9.7 Permutation, Symmetric Group

A permutation is a rearrangement of objects. Imagine, for example,
that we have four objects in positions 1, 2, 3, 4, and further imagine
that we permute, i.e., rearrange, them so that the object in position 1 is
placed in position 4, the object in position 2, is moved to position 1, the
object in position 3 is left where it is, and the object in position 4 finds
itself in position 2. Figure 9.9 should help here. Such a permutation

is denoted
(

1234
4132

)
, where the top row lists the positions and each

number in the bottom row is the final location of the object originally
located at the position whose number is directly above it in the top

row. The top row can be in any order, so both
(

2431
1234

)
and

(
3142
3421

)
,

for instance, denote the same permutation as in our example.

Fig. 9.9. Permutation
(

1234
4132

)
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A general permutation of n objects is denoted
(

1 2 3 . . . n
p1 p2 p3 . . . pn

)
,

where p1, p2, . . . , pn are the numbers 1, 2, . . . , n in some order (i.e.,
some permutation of 1, 2, . . . , n), which directs us to move the object
in position 1 to position p1, the object in position 2 to position p2, and
so on. The top row can be in any order, as long as pi appears beneath
i for i = 1, 2, . . . , n.

Permutations of the same number of objects are composed by con-
secutive application; the second permutation acts on the result of the
first. The composition of permutations

a =
(

1234
4132

)
and b =

(
1234
1342

)
,

for example, with permutation a acting first and permutation b acting
on the result of a, is denoted

ba =
(

1234
1342

)(
1234
4132

)
.

(The order of application of permutations, as well as of any other
kind of transformation, is specified from right to left. That will be
discussed in Sect. 10.2.) The composition is the permutation obtained
by following the itinerary of each object through the permutations to
which it is subjected. In the example the object originally in position
1 is carried to position 4 by permutation a and from there to position
2 by b. The object originally in position 2 is shifted to position 1 by a
and then left in position 1 by b. And so on to obtain

ba =
(

1234
2143

)
.

A useful trick is to reorder the rows of the second permutation to
make the top row match the bottom row of the first permutation. The
combined permutation is then obtained by ‘canceling’ the bottom row
of the first permutation with the top row of the second, leaving the
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top row of the first and the bottom row of the second as the result. In
the example,

ba =
(

1234
1342

)(
1234
4132

)

=
(

4132
2143

)(
1234
4132

)

=
(

1234
2143

)
.

And as another example,

ab =
(

1234
4132

)(
1234
1342

)

=
(

1342
4321

)(
1234
1342

)

=
(

1234
4321

)
.

For general permutations of n objects

a =
(

1 2 3 . . . n
p1 p2 p3 . . . pn

)
and b =

(
1 2 3 . . . n
q1 q2 q3 . . . qn

)
,

the composition is

ba =
(

1 2 3 . . . n
q1 q2 q3 . . . qn

)(
1 2 3 . . . n
p1 p2 p3 . . . pn

)

=
(

p1 p2 p3 . . . pn

qp1 qp2 qp3 . . . qpn

)(
1 2 3 . . . n
p1 p2 p3 . . . pn

)

=
(

1 2 3 . . . n
qp1 qp2 qp3 . . . qpn

)
.

Similarly,

ab =
(

1 2 3 . . . n
pq1 pq2 pq3 . . . pqn

)
.

Thus, the composition of permutations of n objects is also a permu-
tation of n objects. Composition of permutations is not, in general,
commutative, as we see in the example or in the general case. It is,
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however, associative, as we could easily prove by composing three per-
mutations and obtaining three tiers of indices in the bottom row, which
we mercifully refrain from doing. (The composition of transformations
of any kind by consecutive application is associative, as will be seen in
Sect. 10.2.)

The ‘nonpermutation’
(

1 2 . . . n
1 2 . . . n

)
serves as the identity permuta-

tion of n objects. The inverse of the permutation
(

1 2 . . . n
p1 p2 . . . pn

)

is simply the permutation
(

p1 p2 . . . pn

1 2 . . . n

)
.

Each clearly undoes the other.
What could we be leading up to, if not that the set of permu-

tations of n objects, under composition of consecutive permutation,
forms a group? It is called the symmetric group of degree n and is
denoted Sn. In the preceding paragraphs we (1) proved closure, (2)
claimed associativity, and showed (3) existence of identity and (4) ex-
istence of inverses. The order of Sn is n!. It is non-Abelian for n > 2.
The symmetric group Sn includes Sm as a subgroup, Sn ⊃ Sm, for
n ≥ m.

Here are several examples of symmetric groups:

1. S1 is the order-1 group consisting of the identity permutation of

a single object,
(

1
1

)
.

2. S2 consists of the two permutations
(

1 2
1 2

)
and

(
1 2
2 1

)
and is iso-

morphic with C2. It is Abelian.
3. S3 is an order-6 group (3! = 6). It is non-Abelian, so it must be iso-

morphic with D3, whose group table appears in Fig. 8.9 in Sect. 8.1
and in Fig. 9.11 in Sect. 9.8. An isomorphism mapping is shown in
Fig. 9.10.

4. S4 is of order 24 (= 4!), too large to consider here, and higher-
degree symmetric groups possess even larger, and rapidly increas-
ing, orders. For example, 11! = 39 916 800, and 12! exceeds the
capacity of an eight-digit calculator.
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Fig. 9.10. Isomorphism of S3 with D3

9.8 Cayley’s Theorem

Consider the group table of any group G of finite order n. For example,
the group D3, whose table is repeated in Fig. 9.11. If the first row
is e, a, b, . . . , the row starting with element g is obtained from the
first row by composition with g on the left: ge (= g), ga, gb, . . . . It
follows directly that (1) each row contains all the elements of the first
row, but (2) in some other arrangement (unless g = e), and (3) rows
starting with different elements are different. As for (1), if any row
did not contain all the elements of the first row, we would have, say,
ga = gb for the element g at the left of that row and some pair of
elements a, b. Composing both sides of the equation with g−1 on the
left, we would then have a = b, which is a contradiction, since the
first row of the group table contains n different symbols for n distinct
elements. (2) The arrangement of the elements in the row starting with
g is different from that of the first row, simply because the first row
starts with e and the other does not (unless g = e, and we are talking
about the first row anyway). Result (3) is trivial, since rows starting
with different elements differ simply in that they start with different
elements. Confirm (1), (2), and (3) in Fig. 9.11 for D3.

Fig. 9.11. Group table of D3
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What we are getting at, however, is that to each element of a finite
group we can assign a unique permutation of n objects in a one-to-one
correspondence; to every element g we assign the permutation whose
top row is the top row of the group table and whose bottom row is the
row of the group table that starts with g,

g ←→
(

e a b . . .

g ga gb . . .

)
.

That is indeed a permutation, although we have become used to de-
noting permutations with numbers rather than with letters. To make
it look more familiar one might replace the letters e, a, b, . . . by the
numbers 1, 2, . . . , n according to some cipher.

From the discussion of the second preceding paragraph it is clear
that this is indeed a one-to-one mapping of all elements of G onto
a subset of Sn. In fact, the mapping is an isomorphism, and the subset
of Sn is therefore a subgroup of Sn. To see that structure is preserved,
consider Fig. 9.12, keeping in mind our trick for composing permu-
tations. (The whole discussion could be carried out just as well with
columns instead of rows of a group table.) The result, known as Cay-
ley’s theorem (Arthur Cayley, British mathematician, 1821–1895), is
that every group of finite order n is isomorphic with a subgroup of the
symmetric group Sn. Cayley’s theorem is helpful for finding groups of
a given order.

Fig. 9.12. Structure preservation diagram for Cayley’s theorem
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9.9 Summary

In this chapter we continued the introduction to group theory that we
started in the preceding chapter. We summarize by listing the more
important concepts that are discussed in each section:

• Section 9.1: conjugate elements, conjugacy class, equivalence class,
invariant (normal) subgroup, kernel of homomorphism.

• Section 9.2: coset, coset decomposition, Lagrange’s theorem.
• Section 9.3: coset composition, factor (quotient) group.
• Section 9.4: homomorphism.
• Section 9.5: set of generators, cyclic group, generating element.
• Section 9.6: direct product.
• Section 9.7: permutation, symmetric group.
• Section 9.8: Cayley’s theorem.
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The Formalism of Symmetry

Now that we have laid the mathematical foundation for the formal
study of symmetry, we are prepared to deal with a general symmetry
formalism. Such a formalism is needed for many, especially quantita-
tive, applications of symmetry considerations in science. In this chapter
we will develop a general symmetry formalism, making extensive use
of the mathematical concepts that were discussed in Chaps. 8 and 9
and earlier in the book. Our road to a symmetry formalism starts with
a state space of a system and proceeds through transformation, trans-
formation group, symmetry transformation, symmetry group, and ap-
proximate symmetry transformation. The quantification of symmetry
will be discussed, as will the application of the symmetry formalism
to quantum systems.

10.1 System, State

We start by presenting the concepts of system, subsystem, state, and
state space. Those concepts are purposely not sharply defined and are
assumed to be more or less intuitively understood, in order to allow
the widest possible applicability of the following development.

A system is whatever we investigate the properties of. I am inten-
tionally being vague and general here, so as to impose no limitations
on the possible objects of our interest. A system might be abstract
or concrete, microscopic or macroscopic, static or dynamic, finite or
infinite. Anything – and not only things – can be a system.

A subsystem is a system that is wholly contained, in some sense,
within a system. Again, vagueness and generality.
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A state of a system is a possible condition of the system. Here, too,
we are saying very little. We can add, though, that a system might
possess a finite or infinite number of states, and that the same system
might have different kinds or numbers of states, depending on how it
is being considered.

A state space of a system is a set of all states of the same kind,
where ‘the same kind’ may be interpreted in any useful way. Earlier in
this book we used the term ‘set of states’ for what we now call state
space.

Consider some examples:

1. Let the system be a given amount of a certain pure gas. Consid-
ered microscopically, the states of the system are characterized by
the positions and velocities of all the molecules (assuming spinless,
structureless, point particles). The set of all allowable positions
and velocities for all molecules forms a state space of the system.
Macrostates, assuming that the gas is confined and in equilibrium,
are described by any two quantities among, say, pressure, volume,
and temperature. So a state space might be the set of all allowed
pressures and temperatures. In both cases, microscopic and macro-
scopic, the number of states is infinite, though ‘more so’ in the
microscopic case.

2. Take as the system a plane figure. States of such a system are
described by shape, size, location, orientation, and even color, tex-
ture, and so on, and are infinite in number.

3. Or to be more explicit, let the system be a plane figure of given
shape and size, lying in a given plane, and with one of its points
fixed in the plane. Ignore color, texture, and the like. States of this
system are characterized by a single angle specifying its rotational
orientation in the plane and by its handedness (also called chiral-
ity), i.e., which of its two mirror-twin versions (such as left and
right hands) is appearing.

4. Consider the system of a ball lying in any one of three depressions
in the sand. That system possesses three states.

5. Consider the system of three balls lying in three depressions. States
are described by specifying which ball is in which depression. The
state space of that system consists of six states, the six possible
arrangements of three balls.

6. The system might be any quantum system. Its states are quantum
states, characterized by a set of quantum numbers, the eigenvalues
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of a complete set of commuting Hermitian operators. State space is
postulated to be a Hilbert space, in which states are represented by
vectors (actually rays). Quantum systems will be treated in more
detail in Sect. 10.8.

10.2 Transformation, Transformation Group

See Sect. 8.2 for our earlier discussion of mapping. Here we will make
free use of concepts and terminology that were presented and discussed
there.

A transformation of a system is a mapping of a state space of the
system into itself. What that means is this: Every state has an image,
which is also a state; more than one state might have the same image;
but not every state must necessarily serve as an image in the mapping.
We denote the action of a transformation T by

u
T−→ v or v = T (u) ,

in arrow notation and function notation, where u and v represent states
of the system. State v is the image of state u under transformation T .
State u runs over all states of a state space. If the number of states of
a state space is finite, a transformation might be expressed as a two-
column table. Otherwise it must be expressed as a general rule.

Transformations are composed by consecutive application, i.e., the
composition of two transformations is defined as the result of applying
one transformation to the result of the other. For transformations T1

and T2 one possible composition is T2T1, denoting the result of first
applying T1 and then applying T2, as shown in Fig. 10.1. The function
notation practically ‘forces’ us to specify consecutively applied trans-
formations from right to left, and we adhere to that convention. The

Fig. 10.1. Shown in arrow notation, the transformation T2T1 applied to an
arbitrary state u is the result of first applying transformation T1 to u and
then applying transformation T2 to image state v to obtain image state w
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other possible composition of T1 and T2 is, of course, T1T2, where T2

is applied first, followed by T1.
For composition of transformations to be meaningful, they must

act in the same state space. That will always be tacitly assumed. As
defined, the composition of any two transformations is a mapping of
a state space into itself and is therefore also a transformation. Thus,
the set of transformations of a system for any of its state spaces is
closed under the composition of consecutive application.

In general it matters in which order transformations are applied,

T2T1 �= T1T2 .

However, a pair of transformations T1, T2 whose composition in either
order gives the same result T2T1 = T1T2, meaning

(T2T1)(u) = (T1T2)(u) ,

for all states u of a state space, are said to commute.
Composition of transformations by consecutive application is easily

shown to be associative, i.e.,

T3(T2T1) = (T3T2)T1 ,

for all transformations T1, T2, T3, so that the notation T3T2T1 is un-
ambiguous. We referred to and made use of that property of transfor-
mation composition a number of times earlier in this book. Using the
definition of composition, the transformation on the left-hand side of
the equation acting on arbitrary state u is

(
T3(T2T1)

)
(u) = T3

(
(T2T1)(u)

)

= T3

(
T2

(
T1(u)

))
.

Similarly, the right-hand side gives
(
(T3T2)T1

)
(u) = (T3T2)

(
T1(u)

)

= T3

(
T2

(
T1(u)

))
,

which is the same. That proves associativity. In arrow notation, which
is more awkward here, the same proof looks like Fig. 10.2.

The mapping I of every state of a state space to itself,

u
I−→ u or u = I(u) ,
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Fig. 10.2. Proof of associativity of transformation composition by consecu-
tive application, shown in arrow notation. Both diagrams are valid for arbi-
trary transformations T1, T2, T3 and any state u. States v, w, x are images
and images of images. The top diagram shows T3(T2T1) = T3T2T1 and the
bottom diagram shows (T3T2)T1 = T3T2T1

for all states u of a state space, is called the identity transformation.
Indeed, it acts as the identity under composition by consecutive appli-
cation:

TI = IT = T ,

for all transformations T , since for arbitrary state u

(TI)(u) = T
(
I(u)

)
= T (u) , (IT )(u) = I

(
T (u)

)
= T (u) .

That is shown in arrow notation in Fig. 10.3.
Among the transformations of a system there are those that are

one-to-one and onto (bijective), i.e., every state of a state space serves
as an image of the mapping and is the image of only a single state.
For those transformations, and only for those, can inverses be defined.
For any transformation T that is one-to-one and onto,

u
T−→ v or v = T (u) ,
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Fig. 10.3. Proof that the identity transformation I acts as the identity
of transformation composition by consecutive application, shown in arrow
notation. T represents an arbitrary transformation acting on any state u,
giving image state v. The left-hand diagram shows TI = T and the right-
hand diagram shows IT = T

the inverse transformation, denoted T−1, is defined as the mapping
obtained by reversing the sense of the T mapping,

u
T−1−→ v or u = T−1(v) .

That was explained in detail in Sect. 8.2.
Under composition by consecutive application, transformations T

and T−1 are mutual inverses, since their compositions in both orders
result in the identity transformation,

T−1T = TT−1 = I .

That is proved in Figs. 10.4 and 10.5.
I hope it is clear that we are discovering a group. The set of all

invertible transformations of any state space of a system forms a group
under composition of consecutive application, called a transformation
group of the system.

Fig. 10.4. Proof that T−1T = I for any invertible transformation T , where
I is the identity transformation, u is any state, and v is the image of u by T
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Fig. 10.5. Proof that TT−1 = I for any invertible transformation T , where
I is the identity transformation, v is any state, and u is the image of v by
T−1

1. The set is closed under composition, since the composition of in-
vertible transformations is an invertible transformation. Indeed,
the composition of one-to-one (injective) transformations is a one-
to-one transformation, and, if every state of a state space serves
as an image for each of two transformations, every state will serve
as an image for their composition. [Or in short, the composition of
onto (surjective) transformations is an onto transformation.]

2. We proved associativity.
3. The identity transformation is invertible, so belongs to the set, and

serves as the identity element.
4. Existence of inverses holds by definition, since we are dealing with

the set of all invertible transformations.

Note that a transformation group of a system is not unique, i.e., the
transformation group of a system is not defined in general, as the same
system might possess different transformation groups for different state
spaces.

I might point out that a transformation that is one-to-one and
onto (bijective), i.e., invertible, is a permutation of state space. If such
a transformation, acting on a finite state space, is represented by a two-
column table, the list of states in the image column will be some per-
mutation of the list of states in the object column. That is true, since
for such a transformation all states appear in each column and, more-
over, appear only once in each. Thus the transformation group of any
finite state space containing n states is isomorphic with the symmetric
group of degree n, Sn (which we discussed in Sect. 9.7 and is not to
be confused with symmetry group, which we will study in Sect. 10.5).
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For infinite state spaces the idea is the same, although perhaps not so
clear intuitively.

Examples of transformation groups include the following:

1. Consider the equilibrium macrostates of the system of a given
amount of a certain confined pure gas. Since p, V , T (pressure,
volume, absolute temperature) are related by an equation of state,
we are free to vary any two of them, as long as they remain positive.
Thus, all transformations of the system are of the form

p −→ p′ = f(p, T ) , T −→ T ′ = g(p, T ) ,

for arbitrary positive functions f(p, T ) and g(p, T ). For all invert-
ible positive functions whose range of values is all the positive
numbers we obtain the (infinite-order) transformation group of the
system for its macrostate space.

2. Now considering microstates of the same system, each molecule
(all of which are identical, since the gas is pure) has three degrees
of freedom (assuming spinless, structureless, point particles), so
its state is characterized by three coordinates, x, y, z, and three
components of velocity, vx, vy, vz. All coordinates and all velocity
components for all molecules can be varied freely (ignoring the
relativistic limit of the speed of light). Thus, all transformations of
the system have the form

xi −→ x′
i = Xi(xj , yj , zj , vxj , vyj , vzj) ,

yi −→ y′i = Yi(xj , yj, zj , vxj, vyj , vzj) ,

zi −→ z′i = Zi(xj , yj, zj , vxj , vyj , vzj) ,

vxi −→ v′xi = Vxi(xj , yj , zj , vxj , vyj , vzj) ,

vyi −→ v′yi = Vyi(xj , yj, zj , vxj, vyj , vzj) ,

vzi −→ v′zi = Vzi(xj , yj, zj , vxj, vyj , vzj) ,

for i, j = 1, . . . , N , where N is the number of molecules, with
arbitrary functions Xi( ), Yi( ), Zi( ), Vxi( ), Vyi( ), Vzi( ). For all
invertible functions whose range of values is all the real numbers
we obtain the (infinite-order) transformation group of the system
for its microstate space.

3. For a plane figure of given shape and size, lying in a given plane,
with one of its points fixed in the plane, the angle of rotational
orientation in the plane, γ, and its handedness can be varied freely.
Thus, all transformations of this system consist of the angle changes
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γ −→ γ′ = g(γ) .

[these are orientation dependent rotations within the given plane
about the fixed point by angle g(γ) − γ] and reflections through
all two-sided mirrors perpendicular to the given plane and passing
through the fixed point. Restricting the functions g(γ) to being
invertible, we obtain, including the reflections, a transformation
group (of infinite order) of the system.
If, however, the transformation

γ −→ γ′ = g(γ)

is understood, not as giving the new orientation of the whole figure
for every possible original orientation, but rather as giving the new
angular position (with respect to the fixed point) of each point of
the figure for every possible original angular position of the point,
whatever the state of the figure as a whole – which, in fact, is the
usual interpretation (see Sect. 10.3) – then for the figure to retain
its shape, all its points must rotate through the same angle. The
functions g(γ) are then immediately restricted to the form

g(γ) = γ + α ,

which describes rotation by angle α,

γ −→ γ′ = γ + α .

4. For the system of one ball and three depressions the transformation
group is the group of permutations of the three states of its state
space, the symmetric group of degree 3, S3, of order 3! = 6 (see
Sect. 9.7).

5. For the system of three balls in three depressions, the transforma-
tion group is the group of permutations of the six states of its state
space, which is the symmetric group of degree 6, S6, whose order
is 6! = 720 (see Sect. 9.7).

6. For any quantum system the set of all transformations is all the
operators in its Hilbert space of states. The subset of all invertible
operators constitutes the transformation group. However, general
operators are not considered for quantum systems, but only lin-
ear and antilinear ones. The transformation group is correspond-
ingly the subset of all invertible linear and antilinear operators. See
Sect. 10.8 for a more detailed treatment of quantum systems.
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10.3 Transformations in Space, Time, and Space-Time

Although we have defined transformations in a very general way, and,
as we saw in the examples in Sect. 10.2, transformations can be very
diverse indeed, transformations in space, in time, and in space-time
are especially important, since the states of many systems are de-
scribed in spatiotemporal terms. We therefore devote a section to
a brief summary of some of the more important and useful trans-
formations of these kinds. We use Cartesian coordinates (x, y, z) (af-
ter René Descartes, French philosopher, mathematician, and scientist,
1596–1650) for space and Minkowskian coordinates (x, y, z, t) (Her-
mann Minkowski, Russian mathematician, 1864–1909) for space-time.
First consider a number of spatial transformations.

The transformation of spatial displacement (or spatial translation)
maps all points of space to image points that are all the same dis-
tance away and in the same direction from their object points. Spatial
displacements are invertible transformations. The most general spatial
displacement has the form

x −→ x′ = x + a , x′ −→ x = x′ − a ,

y −→ y′ = y + b , y′ −→ y = y′ − b ,

z −→ z′ = z + c , z′ −→ z = z′ − c .

The rotation transformation maps all points of space to image points
found by rotation about a fixed common axis through a common angle.
Rotations are invertible. If the axis of rotation is taken as the z axis
and the rotation angle is α (in the positive sense, from the positive x
axis to the positive y axis), we have [50,51]

x −→ x′ = x cos α− y sinα , x′ −→ x = x′ cos α + y′ sinα ,

y −→ y′ = x sin α + y cos α , y′ −→ y = −x′ sin α + y′ cos α ,

z −→ z′ = z , z′ −→ z = z′ .

The plane reflection (or plane inversion or mirror reflection) trans-
formation is the transformation of reflection through a fixed two-sided
plane mirror, the reflection plane. The image of any point is found by
dropping a perpendicular from the point to the reflection plane and
continuing the line on for the same distance on the opposite side of
the plane. The image point is located at the end of the line segment.
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Plane reflections are invertible. If the reflection plane is taken as the
xy plane, we have

x −→ x′ = x , x′ −→ x = x′ ,

y −→ y′ = y , y′ −→ y = y′ ,

z −→ z′ = −z , z′ −→ z = −z′ .

The transformation of line inversion (or line reflection) is inversion
through a fixed straight line, the inversion line. The image of any
point is the point at the end of the line segment constructed by drop-
ping a perpendicular from the original point to the inversion line and
continuing the perpendicular on for the same distance. Line inversions
are invertible. If the inversion line is taken as the z axis, we have

x −→ x′ = −x , x′ −→ x = −x′ ,

y −→ y′ = −y , y′ −→ y = −y′ ,

z −→ z′ = z , z′ −→ z = z′ .

By putting α = 180◦ in the rotation formulas above, we find that line
inversion and rotation by 180◦ about the inversion line are the same
transformation.

For the point inversion (or point reflection or space inversion)
transformation the image of any point is at the end of the line segment
running from the object point through a fixed point, the inversion cen-
ter, and on for the same distance. Point inversions are invertible. If the
inversion center is taken as the coordinate origin, we have

x −→ x′ = −x , x′ −→ x = −x′ ,

y −→ y′ = −y , y′ −→ y = −y′ ,

z −→ z′ = −z , z′ −→ z = −z′ .

The glide transformation is the transformation consisting of the con-
secutive application of displacement parallel to a fixed plane and re-
flection through the plane, called a glide plane. (The two transforma-
tions can just as well be applied in reverse order, since they commute.)
Glide transformations are invertible. If the glide plane is taken as the
xy plane, we have

x −→ x′ = x + a , x′ −→ x = x′ − a ,

y −→ y′ = y + b , y′ −→ y = y′ − b ,

z −→ z′ = −z , z′ −→ z = −z′ .
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The screw transformation is the transformation resulting from the con-
secutive application (in either order, since they commute) of a rotation
and a displacement parallel to the rotation axis, called a screw axis.
Screw transformations are invertible. If the screw axis is taken as the
z axis, we have for rotation through angle α along with displacement
by c

x −→ x′ = x cos α− y sinα , x′ −→ x = x′ cos α + y′ sinα ,

y −→ y′ = x sin α + y cos α , y′ −→ y = −x′ sin α + y′ cos α ,

z −→ z′ = z + c , z′ −→ z = z′ − c .

Under a spatial dilation (or scale) transformation the image of any
point is found by moving the point away from a fixed point, the dilation
center, along the straight line connecting them, to a distance from the
fixed point related to the original distance by a fixed positive factor, the
dilation factor. This transformation increases the distances between all
pairs of points by the same factor. (If the dilation factor is less than
1, all distances are actually decreased.) Dilations are invertible. If the
dilation center is taken as the coordinate origin, we have for positive ρ

x −→ x′ = ρx , x′ −→ x = x′/ρ ,

y −→ y′ = ρy , y′ −→ y = y′/ρ ,

z −→ z′ = ρz , z′ −→ z = z′/ρ .

The image of any point under a plane projection transformation is
a point in a fixed plane, the projection plane. It is the point of intersec-
tion of the perpendicular dropped from the original point to the projec-
tion plane. Projections are not invertible; they are neither one-to-one
nor onto. If the projection plane is taken as the xy plane, we have

x −→ x′ = x ,

y −→ y′ = y ,

z −→ z′ = 0 .

Under a line projection transformation the image of any point is a point
on a fixed line, the projection line. The image is the point of inter-
section of the perpendicular dropped from the original point to the
projection line. If the projection line is taken as the z axis, we have

x −→ x′ = 0 ,

y −→ y′ = 0 ,

z −→ z′ = z .
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We now look at three temporal transformations. All are invertible. The
first is temporal (or time) displacement (or translation), under which
the images of all instants are the same time interval d away from the
object instants:

t −→ t′ = t + d , t′ −→ t = t′ − d .

The transformation of temporal (or time) inversion (or reflection or
reversal) maps each instant to the instant that is the same time inter-
val before a fixed instant, the central instant, as the object instant is
after it, or vice versa. If the inversion central instant is taken as the
temporal origin, we have

t −→ t′ = −t , t′ −→ t = −t′ .

The temporal (or time) dilation (or scale) transformation maps all in-
stants to instants whose time intervals from a fixed instant, the central
instant, are larger by a fixed positive factor, the dilation factor, than
those of the respective object instants. The transformation increases
the time intervals between all pairs of instants by the same factor. (If
the dilation factor is less than 1, all time intervals are actually de-
creased.) If the dilation central instant is taken as the temporal origin,
we have for positive σ

t −→ t′ = σt , t′ −→ t = t′/σ .

Our first spatiotemporal transformation is the Lorentz transformation
(Hendrik Antoon Lorentz, Dutch physicist, 1853–1928), also called
boost or velocity boost , which maps all events to the events whose coor-
dinates are the same as those that an observer moving with constant
rectilinear velocity would assign to the original events with respect to
his or her rest frame (the Minkowskian frame with respect to which he
or she is at rest). Lorentz transformations are invertible. They form an
essential ingredient of Albert Einstein’s (German–American physicist,
1879–1955) special theory of relativity. If the observer is moving in the
negative x direction with velocity v, such that −c < v < c, where c
denotes the speed of light, and if his or her Minkowskian coordinate
axes are parallel to ours and his or her origin coincides with ours at
time t = 0 = t′, we have

x −→ x′ = γ(x + vt) , x′ −→ x = γ(x′ − vt′) ,

y −→ y′ = y , y′ −→ y = y′ ,

z −→ z′ = z , z′ −→ z = z′ ,

t −→ t′ = γ(t + vx/c2) , t′ −→ t = γ(t′ − vx′/c2) ,
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where

γ =
1√

1− v2/c2
.

Our other spatiotemporal transformation is the Galilei transforma-
tion (Galileo Galilei, Italian astronomer, mathematician, and physicist,
1564–1642), also called nonrelativistic boost or nonrelativistic velocity
boost . It is defined like the Lorentz transformation, except that the
mathematical limit of c → ∞ (or v/c → 0) is taken. With the same
assumptions as above we have

x −→ x′ = x + vt , x′ −→ x = x′ − vt′ ,

y −→ y′ = y , y′ −→ y = y′ ,

z −→ z′ = z , z′ −→ z = z′ ,

t −→ t′ = t , t′ −→ t = t′ .

10.4 State Equivalence

In Sect. 4.2 we became acquainted with the notion of equivalence re-
lation. The introduction there was a general one, not particularly for
states of systems. Now, as part of the symmetry formalism that we are
developing, we recall the definition of equivalence relation. This time
it is expressed explicitly in terms of states and state space.

An equivalence relation for a state space of a system is any relation,
denoted ≡, that might hold between any pair of states that satisfies
these three properties:

1. Reflexivity. Every state has the relation with itself, i.e.,

u ≡ u ,

for all states u of the state space. Every state is equivalent with
itself.

2. Symmetry . If one state has the relation with another, then the
second has it with the first, for all states of the state space. In
symbols that is

u ≡ v ⇐⇒ v ≡ u ,

for all states u, v of the state space. If state u is equivalent with
state v, then v is equivalent with u.
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3. Transitivity. If one state possesses the relation with a second state
and the second has it with a third, then the first state has the
relation with the third, for all states of the state space. Represented
symbolically, that is

u ≡ v , v ≡ w =⇒ u ≡ w ,

for all states u, v, w of the state space. If state u is equivalent with
state v and v is equivalent with state w, then u is equivalent with w.

Recall from Sect. 4.2 also that any subset of states – which in our
context is called a subspace of state space – such that all the states
it contains are equivalent with each other and with no other state, is
called an equivalence class, or, in our context, an equivalence subspace.
And recall also that an equivalence relation brings about a decompo-
sition of a state space into equivalence subspaces.

Here are some examples of state equivalence:

1. If microstates of the gas of previous examples are being considered,
while only the macroscopic properties of the gas are really of inter-
est, any two microstates corresponding to the same pressure, vol-
ume, and temperature can be taken as equivalent. Actually, there
is an infinite number of microstates corresponding to any given
macrostate and thus forming an equivalence subspace. As for the
infinity of microstates that do not correspond to any equilibrium
macrostate, we can define all of them as equivalent to each other.

2. Considering only macrostates of the gas, for some purposes states
with the same temperature, for example, might be equivalent. That
would occur if the gas served solely as a heat sink. Then all states
with the same temperature would form an equivalence subspace.

3. Take an equilateral triangle for the plane figure of given shape and
size, lying in a given plane, with one of its points fixed in the plane.
As far as appearance is concerned, any state of the triangle will be
equivalent to the two states obtained from it by rotations by 120◦
and by 240◦ about the axis through its center (as the fixed point)
and perpendicular to its plane and to the three states obtained
from it by reflection through the three planes containing this axis
and a median. Thus, the state space of the system decomposes into
equivalence subspaces of six equivalent states each.

4. If the triangle of the preceding example has one vertex marked or
if it is deformed into an isosceles triangle, then the states obtained
from any given state by rotations by 120◦ and 240◦ will no longer
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be equivalent to the original state with respect to appearance. And
of the reflections, only the reflection through the plane containing
the median of the different vertex and perpendicular to the plane
of the triangle will still produce an equivalent state. Now the state
space of the system decomposes into equivalence subspaces of only
two states each.

5. If yet another vertex of the triangle is marked and differently from
the first, or if the isosceles triangle is further deformed into a sca-
lene triangle, then all equivalence among states, with regard to
appearance, will disappear.

6. In the system of one ball and three depressions, if the three de-
pressions are adjacent to one another and the scene is viewed from
a sufficient distance, then as far as appearance is concerned all three
states will look the same from that distance and will be equivalent.

7. Now imagine that only two of the depressions are adjacent to one
another with the third separated from them, and view the system
again from a distance. As far as appearance is concerned, two of the
states will be equivalent with each other and the third will not be
equivalent with either of them. The state space will then decompose
into two equivalence subspaces, one containing two states and the
other containing one.

8. If the same system is viewed from close up, no state will look like
another in any case, and there will be no equivalence with regard
to appearance.

9. For the system of three balls in three depressions, if all three balls
look the same, than as far as appearance is concerned all six states
of the system will be equivalent with each other.

10. In the preceding example if two balls look alike (are red, say) and
the third is distinct (perhaps blue), each state of the system will
be equivalent with the state obtained from it by interchanging the
similar balls. Thus, the state space of six states will decompose into
three equivalence subspaces of two states each.

11. If all three balls look different, there will be no equivalence among
states with regard to their appearance.

12. Since quantum systems are especially important, we discuss quan-
tum state equivalence and its consequences separately in Sect. 10.8.
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10.5 Symmetry Transformation, Symmetry Group

One might observe that the symmetry formalism we are developing and
our earlier, mostly conceptual discussion of symmetry are converging.
A change is represented by a transformation, while transformation
groups represent families of changes. An equivalence relation for a state
space of a system brings about a decomposition of the state space into
equivalence subspaces, which is classification, which implies analogy,
which is symmetry (see Sects. 1.3 and 2.5).

The fundamental definition of symmetry as immunity to a possible
change, which was presented in Sect. 1.1, now finds formal expression
within the framework that is being erected in the present chapter. Any
transformation (i.e., a replacement of states with states) that replaces
states only with states that are equivalent to them leaves unchanged
the property of states that is their membership in an equivalence sub-
space. In simpler language: As long as the equivalence relation is not
the trivial one that every state is equivalent only with itself, it is al-
ways possible to make a nontrivial change, i.e., perform a transforma-
tion that is not the identity transformation, that replaces states with
equivalent states only. Such a transformation operates solely within in-
dividual equivalence subspaces and does not mix them up. Thus, the
property of states that they belong to a certain equivalence subspace
is immune to such a transformation. That gives symmetry as the im-
munity of equivalence class membership to a possible transformation.
Such a transformation is called a symmetry transformation.

And again, in the symmetry formalism we are developing, decom-
position of a state space into nontrivial equivalence subspaces repre-
sents the aspect of the situation that is left unchanged by possible
changes, which in our formalism are transformations. So symmetry is
represented by the existence of transformations that leave equivalence
subspaces invariant, i.e., transformations that map every state to an
image state that is equivalent with the object state. Such a transfor-
mation is a symmetry transformation. Thus, the defining property of
a symmetry transformation S is

u
S−→ v ≡ u or S(u) = v ≡ u ,

for all states u of the state space, where state v is the image of u.
The set of all invertible symmetry transformations of a state space

of a system for an equivalence relation forms a group, a subgroup of the
transformation group, called the symmetry group of the system for the
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equivalence relation. (Do not confuse symmetry group with symmetric
group!) That is seen as follows:

1. Closure follows from transitivity of the equivalence relation. In
Fig. 10.6 it is proved that if S1 and S2 are symmetry transfor-
mations, so is S2S1. The proof for S1S2 is similar.

2. Associativity holds for composition of transformations by consec-
utive application, as shown in Sect. 10.2.

3. The identity transformation is a symmetry transformation. That
follows from reflexivity of the equivalence relation:

u
I−→ u ≡ u or I(u) = u ≡ u ,

for all states u.
4. The inverse of any invertible symmetry transformation is also

a symmetry transformation. Let S be an invertible symmetry trans-
formation, so that

u
S−→ v ≡ u or S(u) = v ≡ u ,

for all states u. Then by the symmetry property of the equivalence
relation

v
S−1−→ u ≡ v or S−1(v) = u ≡ v ,

for all states v. Thus S−1 is indeed a symmetry transformation.

Fig. 10.6. Proof of closure for the composition of symmetry transformations
by consecutive application: S2S1 is a symmetry transformation if S1 and S2

are. Arrow notation is shown on the left, and function notation on the right.
The relations are valid for all states u of the state space. State v is the image
of u by S1, and state w is the image of v by S2
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So the set of all invertible symmetry transformations of a state space of
a system for an equivalence relation possesses the four group properties
and thus forms a group, a subgroup of the transformation group of the
state space. In general a system might have different symmetry groups
for its different state spaces and for the different equivalence relations
that might be defined for them. If no two states are equivalent, i.e.,
if every state is equivalent only with itself, the symmetry group will
consist only of the identity transformation, and the system will be
asymmetric. In that case, although changes are possible, there are
none that leave an aspect of the situation unchanged. In the other
extreme, if all states are equivalent with each other so that all of state
space forms a single equivalence subspace, the symmetry group will be
the transformation group itself.

The line of reasoning by which any equivalence relation determines
a subgroup of the transformation group can be reversed to allow any
subgroup of the transformation group to determine an equivalence re-
lation. Given such a subgroup, the corresponding equivalence relation
is simply: State u is equivalent with state v if and only if some trans-
formation T that is an element of the subgroup transforms u to v,

u
T−→ v or v = T (u) .

That this relation is indeed an equivalence relation is seen as follows:

1. The reflexivity property of the relation follows from the identity
transformation’s belonging to the subgroup.

2. The symmetry property follows from the existence of inverses for
the subgroup.

3. Transitivity follows from the subgroup’s closure under composition
by consecutive application.

Such a subgroup might or might not be the symmetry group for the
equivalence relation it determines in that way. Clearly all elements
of the subgroup are symmetry transformations for the equivalence re-
lation it determines. There might, however, exist additional invert-
ible symmetry transformations. If not, the subgroup is the symmetry
group. In any case it is a subgroup of the symmetry group.

Consider some examples of symmetry groups:

1. In the case of a gas, where microstates corresponding to the same
macrostate are considered equivalent to each other, the (infinite-
order) symmetry group, transforming microstates to equivalent mi-
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crostates only and thus preserving macrostates, is a subgroup of
the (infinite-order) transformation group.

2. If macrostates of the gas having the same temperature are con-
sidered equivalent, we will have the constraint T (p, V ) = const.
(isotherms), and all symmetry transformations will be of the form

p −→ p′ = f(p, T = const.) ,

for arbitrary positive functions f(p, T ). Those transformations
form a subset of all transformations of this state space as pre-
sented in Sect. 10.2. For arbitrary invertible positive functions
f(p, T ) whose range of values is all positive numbers, we obtain
the (infinite-order) symmetry group, a subgroup of the (infinite-
order) transformation group.

3. The symmetry group of the equilateral triangle (see Sect. 10.4)
is the group consisting of the identity transformation, rotations
by 120◦ and by 240◦ about the axis through the center of the
triangle and perpendicular to its plane, and reflections through
each of the three planes containing the rotation axis and a median,
the order-6 group D3. Refer to Fig. 10.7 for the system and to
Fig. 9.11 in Sect. 9.8 for the group table. That group is a subgroup
of the transformation group of the system, which is the same as the

Fig. 10.7. Equilateral triangle. The center is the point of intersection of the
axis of three-fold rotation symmetry, perpendicular to the page. The medians
are lines of intersection of planes of reflection symmetry, also perpendicular
to the page
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transformation group of any plane figure of given shape and size,
lying in a given plane, with one of its points fixed in the plane, and
was presented in Sect. 10.2.

4. For the equilateral triangle with one vertex marked or for an isosce-
les triangle, the symmetry group consists only of the identity trans-
formation and reflection through the single plane containing the
median of the distinct vertex and perpendicular to the plane of the
triangle, the order-2 group C2. See Fig. 10.8 for the triangle and
Fig. 8.2 in Sect. 8.1 for the group table. That group is a subgroup
of the transformation group of the system and is also a proper
subgroup of the symmetry group of the equilateral triangle.

5. For the equilateral triangle with two vertices marked differently or
for a scalene triangle, the symmetry group consists only of the iden-
tity transformation. Those systems are asymmetric. Their trivial
symmetry group is a subgroup of the transformation group of the
system and is also a proper subgroup of the symmetry group of the
singly marked equilateral triangle or the isosceles triangle and thus
also a proper subgroup of the symmetry group of the equilateral
triangle.

6. For a similar example, replace the equilateral triangle of the pre-
ceding examples with a square. The symmetry group of this system
for the equivalence relation of identical appearance consists of the
identity transformation, rotations by 90◦, 180◦, and 270◦ about
the axis through the center of the square and perpendicular to its

Fig. 10.8. Equilateral triangle with one vertex marked and isosceles triangle.
The median of the distinct vertex is the line of intersection of the plane of
reflection symmetry, perpendicular to the page
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plane, reflections through each of the two planes containing the
axis and a diagonal, and reflections through each of the two planes
containing the axis and parallel to a pair of edges, the order-8 group
D4. Refer to Fig. 10.9 for the square and to Fig. 8.30 in Sect. 8.5
for the group table. That symmetry group is a subgroup of the
transformation group of the system (the same as that of any plane
figure of given shape, etc.).

Note that the symmetry group of the equilateral triangle is D3 and
that of the square is D4. A pattern is emerging here. We take this
opportunity to present the definition of the general dihedral group Dn.
In a generalization of the symmetry groups of the equilateral triangle
and of the square, the dihedral group Dn is the symmetry group of the
regular n-sided polygon (also called regular n-gon). It consists of the
identity transformation, rotations about the axis through the center
of the polygon and perpendicular to its plane by 360◦/n, 2 × 360◦/n,
3× 360◦/n, . . . , (n− 1)× 360◦/n, and reflections through each of the
n planes containing the axis and a vertex or the center of a side (or
both). Dn is of order 2n.

7. If the square is squeezed into a rectangle, its symmetry group
will reduce to the identity transformation, rotation by 180◦ about
the axis through the center of the rectangle and perpendicular to
its plane (or inversion through the axis, which is the same – see

Fig. 10.9. Square. Lines of intersection of planes of reflection symmetry, per-
pendicular to the page, are indicated. The center is the point of intersection
of the four-fold rotation symmetry axis, also perpendicular to the page
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Sect. 10.3), and reflections through each of the two planes contain-
ing the axis and parallel to a pair of edges, the order-4 group D2.
Refer to Fig. 10.10 for the rectangle and to Fig. 8.5 in Sect. 8.1 for
the group table. That group is a subgroup of the transformation
group of the system (that of any plane figure of given shape, etc.)
and is also a proper subgroup of the symmetry group of the square.

8. If for the system of one ball and three depressions all three de-
pressions are adjacent so that all three states look the same from
a sufficient distance, then all states will be equivalent, and the
symmetry group will be the transformation group itself, the order-
6 group S3. That group happens to be isomorphic with the sym-
metry group of the equilateral triangle of given size, etc., D3 (see
Fig. 9.10 in Sect. 9.7).

9. If only two of the depressions are adjacent, so that only two of
the three states are equivalent to each other, the symmetry group
will consist of the identity transformation and the permutation
interchanging the two equivalent states, the order-2 group S2 (see
Sect. 9.7). That group is a subgroup of the transformation group
of the system, S3, which is also the symmetry group of the system
with all depressions adjacent. In addition, S2 is isomorphic with

Fig. 10.10. Rectangle. Lines of intersection of planes of reflection symmetry,
perpendicular to the page, are indicated. The center is the point of intersec-
tion of the two-fold rotation symmetry axis, also perpendicular to the page
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the symmetry group of the isosceles triangle (or equilateral triangle
with one vertex marked) of given size, etc., C2 (see Sect. 8.1).

10. If all three depressions are separated and no states are equivalent,
the symmetry group will consist only of the identity transforma-
tion. That is a subgroup of the transformation group and is also
a proper subgroup of the symmetry group of the system with two
adjacent depressions and thus also a proper subgroup of the sym-
metry group of the system with three adjacent depressions.

11. If in the system of three balls in three depressions all three balls
look the same, then, since all states are equivalent, the symmetry
group will be the transformation group itself, the order-720 group
S6 (see Sect. 9.7).

12. If only two balls look alike and the third is distinct, the symmetry
group will be the direct product of the permutation groups of the
individual equivalence subspaces, the direct product of the sym-
metric group of degree 2 with itself twice, S2×S2×S2, an order-8
group. That group is a subgroup of the transformation group of
the system, S6, which is also the symmetry group of the system
with three similar balls (see Sects. 9.6 and 9.7).

13. If all three balls look different, the symmetry group will consist only
of the identity transformation and the system is asymmetric. That
is a subgroup of the transformation group and is also a proper
subgroup of the symmetry group of the system with two similar
balls and thus also a proper subgroup of the symmetry group of
the system with three similar balls.

Note that in each of examples 8 to 13 the state space is finite and we
found the symmetry group exactly according to its definition. In each
of examples 1 to 7, however, the state space is infinite (all orienta-
tions and both mirror image versions of the figure) and decomposes
into an infinite number of equivalence subspaces. What we found is
the transformation group of each equivalence subspace rather than
the symmetry group of the entire state space. The latter is the infinite
direct product of the transformation groups of the individual equiva-
lence subspaces, which is so awkward that the normal procedure is to
do just what we did.

Symmetry groups for quantum systems are discussed in Sect. 10.8.
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10.6 Approximate Symmetry Transformation

In Sect. 1.1 we became acquainted with the concept of approximate
symmetry, and in Sect. 6.1 we started formalizing the concept by intro-
ducing the notion of approximate symmetry transformation with the
help of a metric. The idea of a metric was not developed beyond a con-
ceptual description, which allowed a definition of approximate symme-
try transformation that was sufficient for the purpose of Chap. 6. In
the present section, in order to include approximate symmetry in the
symmetry formalism we are developing, we will make the ideas more
precise.

So, picking up from Sect. 6.1, we need to make precise the notion
of approximate symmetry transformation, which is any transforma-
tion that changes every state of a system to a state that is ‘nearly
equivalent’ to the original state. And just what does ‘nearly equiva-
lent’ mean? For that we must soften the all-or-nothing character of the
equivalence relation, upon which symmetry is based (see Sects. 10.4
and 10.5), in order to allow, in addition to equivalence, varying degrees
of inequivalence. The way to do that is to define a metric for a set of
states of a system, a ‘distance’ between every pair of states, such that
null ‘distance’ indicates equivalence and positive ‘distances’ represent
degrees of inequivalence.

More precisely, a metric is a nonnegative function of two states,
denoted d( , ), having the following properties for all states u, v, w of
a state space of a system:

1. Null self-distance d(u, u) = 0 ,

2. Symmetry d(u, v) = d(v, u) ,

3. Triangle inequality d(u,w) ≤ d(u, v) + d(v,w) .

A metric is a generalization of an equivalence relation and includes it
as a special case, where null distance between states u and v,

d(u, v) = 0 ,

defines equivalence of those states:

d(u, v) = 0 def=⇒ u ≡ v .

Null distance is indeed an equivalence relation, since the properties
of (1) reflexivity, (2) symmetry, and (3) transitivity of an equivalence
relation (see Sect. 10.4) follow, respectively, from the properties of (1)
null self-distance, (2) symmetry, and (3) triangle inequality of a metric.
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1. Null self-distance means, by definition, that every state is equiva-
lent with itself, which is the reflexivity property of an equivalence
relation.

2. By the symmetry property of a metric, if states u and v have null
distance, then so do states v and u, for all states u and v. That, by
definition, is the same as the statement that if u is equivalent with
v, then v is equivalent with u, which is the symmetry property of
an equivalence relation.

3. If states u and v have null distance and so do states v and w, then
by the triangle inequality relation states u and w must have null
distance, for all states u, v, w. That translates into the transitivity
property of an equivalence relation, that if u and v are equivalent
and v and w are equivalent, then u is equivalent with w.

For a set of states that is equipped with a metric d( , ) some of the
transformations might change all states to ‘nearby’ states only. To
express that more precisely, we denote a general transformation by T
and use function notation to indicate the result of changing state u by
transformation T , which is then T (u). For a given positive number ε
there might be transformations T such that

d
(
u, T (u)

)
< ε ,

for all states u. Such a transformation is called an approximate symme-
try transformation of the system. We see that whether a given trans-
formation is an approximate symmetry transformation can depend on
the value of ε. The larger the value of ε, the more transformations
are approximate symmetry transformations in general. Note that all
the approximate symmetry transformations for a set of states of a sys-
tem include among them all the exact symmetry transformations (see
Sect. 10.5). That is because, for symmetry transformation S, which
transforms all states to equivalent states, meaning all states u to states
that have null distance with u, we have

d
(
u, S(u)

)
= 0 < ε .

So all symmetry transformations of a system are also approximate
symmetry transformations for any value of ε.

The set of all invertible approximate symmetry transformations of
a given system for any of its state spaces equipped with a metric and
for a given value of ε does not in general form a group. There might be
trouble with closure. The set does include the corresponding symmetry
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group, as we saw in the preceding paragraph, and might include other
groups that in turn include the symmetry group.

For our purpose in this book it is sufficient to mention here that
it is nevertheless possible to define approximate symmetry groups for
state spaces equipped with metrics, and it is possible to define a mea-
sure of goodness of approximation for every approximate symmetry
group. See [52], for example. A system will in general possess different
approximate symmetry groups with different measures of goodness of
approximation. For the same state space and metric, every approxi-
mate symmetry group will include the corresponding symmetry group
as a subgroup. It might also include as subgroups approximate sym-
metry groups of higher goodness of approximation than that of itself.

An approximate symmetry group does not in general contain all
the invertible approximate symmetry transformations for some value
of ε. And perhaps somewhat strangely, for any given value of ε an
approximate symmetry group might contain transformations that are
not approximate symmetry transformations at all.

In Sect. 6.1 we became acquainted with the ideas of exact symmetry
limit, broken symmetry, and symmetry breaking factor. We will not
elaborate on them further here.

10.7 Quantification of Symmetry

We now have at our disposal the means to attempt to quantify symme-
try or at least set up a hierarchy, or ordering, of symmetries. A quan-
tification of symmetry would be a way of assigning a number to each
symmetry group, expressing the degree of symmetry of a system pos-
sessing that symmetry group. A symmetry ordering would be a way of
comparing any two symmetry groups to determine which of two sys-
tems, each possessing respectively one of the two symmetry groups, has
the higher degree of symmetry. A symmetry quantification is clearly
a symmetry ordering, although an ordering might not go so far as to
be a quantification.

There are three properties that, on the basis of our experience, we
may reasonably expect of any scheme of symmetry quantification or
ordering. First of all, if the symmetry group of a system is isomorphic
with the symmetry group of another system (e.g., the equilateral tri-
angle of given size, etc., and the ball and three adjacent depressions,
or the isosceles triangle and the ball and two adjacent and one sep-
arated depressions), it is reasonable to consider them as possessing
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the same degree of symmetry (even though their symmetry transfor-
mations might be of entirely different character, as in the examples).
Thus, it is the abstract group of which the symmetry group is a real-
ization that is of interest, rather than the symmetry group itself.

Next, if the symmetry group of a system is isomorphic with a proper
subgroup of the symmetry group of another system (e.g., the isosceles
triangle and the equilateral triangle, or the ball and two adjacent and
one separated depressions and the ball and three adjacent depressions,
or the isosceles triangle and the ball and three adjacent depressions,
or the rectangle and the square), the latter system may reasonably be
considered more symmetric than the former.

And finally, if a system is asymmetric – if its symmetry group con-
sists solely of the identity transformation – it is reasonable to assign
it the lowest degree of symmetry.

But how should we compare the degrees of symmetry of systems
whose symmetry groups are neither isomorphic with each other nor one
isomorphic with a proper subgroup of the other (e.g., the square and
the equilateral triangle)? The main purpose of any symmetry quantifi-
cation or ordering scheme is to answer just that question.

One possibility for a quantification scheme is to take for the de-
gree of symmetry of a system the order of its symmetry group (or
any monotonically ascending function thereof, such as its logarithm).
For finite-order symmetry groups (and we do not go into infinite-order
groups here) that is a perfectly satisfactory scheme in that it possesses
the three properties that we demanded above: Isomorphic groups have
the same order, a proper subgroup is of lower order than its including
group, and the order-1 group has the lowest order of all. However, it
might well be objected on philosophical grounds that this quantifica-
tion scheme assigns equal weights to all the elements of a symmetry
group, i.e., to all the symmetry transformations of a system, while in
fact they are not all independent, as they can be generated by repeated
and consecutive applications of a minimal set of generators.

We are thus led to consider the scheme whereby the degree of sym-
metry of a system is taken to be the minimal number of generators of
its symmetry group. As for the three properties, it possesses the first:
Isomorphic groups have the same minimal numbers of generators. It
is, however, deficient with respect to the second property: a proper
subgroup does not necessarily have a smaller minimal number of gen-
erators than does its including group. For example, the order-2 cyclic
group C2 is a proper subgroup of the order-4 cyclic group C4, yet, be-
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Table 10.1. Table of orders and minimal numbers of generators for various
symmetry groups

Symmetry Minimal number
System group Order of generators

Square D4 8 2
Rectangle D2 4 2
Equilateral triangle D3 ∼S3 6 2
Isosceles triangle C2 ∼S2 2 1
Ball and three adjacent S3 ∼D3 6 2
depressions
Ball and two adjacent and S2 ∼C2 2 1
one separated depressions
Asymmetric system C1 1 0 (defined)

ing cyclic, each group can be generated by positive powers of a single
element. The third property can be forced by assigning the value 0 to
the order-1 group.

For comparison we list in Table 10.1 some of the symmetries we
found in our examples along with the degrees of symmetry assigned to
the systems by the two symmetry quantification schemes that we have
considered. Note, for example, that the minimal-number-of-generators
scheme assigns equal degrees of symmetry to the square and to the
rectangle. So the group order scheme is clearly preferable in that re-
gard. Other, intermediate schemes might be devised, giving the degree
of symmetry of a system as some function of both the order and the
minimal number of generators of its symmetry group.

10.8 Quantum Systems

This section is a concise presentation, intended to place the subject
of symmetry in quantum systems within the formalism developed in
this chapter. Thus, it should introduce, but by no means replace, the
various discussions of the same subject found elsewhere. It is intended
for readers with a good understanding of the Hilbert space formulation
of quantum theory. Others are advised to skip this section.

Quantum systems, which are but special cases of the general sys-
tems we have been discussing, are so important that they deserve sep-
arate treatment. Their special nature allows us to be more specific in
our discussion of their symmetry.
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The state spaces of quantum systems are Hilbert spaces, and quan-
tum states are vectors in those spaces. (Actually, quantum states are
represented by vectors in Hilbert spaces. More accurately, they are rep-
resented by rays, since all complex multiples of any vector are supposed
to represent the same state. But for the convenience of the present dis-
cussion we identify state with vector. For the sake of simplicity we also
ignore possible complications due to coherent subspaces, which in any
case can be overcome with slight additional effort.) The transforma-
tions of interest for quantum systems are linear and antilinear trans-
formations in their Hilbert spaces, said to be implemented by linear
and antilinear operators.

Recall that a linear operator L in a Hilbert space is characterized
by the properties

L
(|u〉+ |v〉) = L|u〉+ L|v〉 ,

Lz|u〉 = zL|u〉 ,

for all vectors |u〉, |v〉 and all complex numbers z. Similarly, an anti-
linear operator A obeys

A
(|u〉+ |v〉) = A|u〉+ A|v〉 ,

Az|u〉 = zA|u〉 ,

where z denotes the complex conjugate of z.
Now, what properties of states of quantum systems might be uti-

lized for the definition of equivalence relations? Consider the following:

1. Transition amplitudes. Every state |u〉 is characterized by the tran-
sition amplitudes between itself and all states of its Hilbert space,
〈u|v〉 or 〈v|u〉 for all states |v〉.

2. Norm. Especially, every state |u〉 is characterized by its transition
amplitude with itself, 〈u|u〉, the square of its norm.

3. Eigenheit. Every state |u〉 either is or is not an eigenstate of each
member of any set of operators {Oi} in its Hilbert space, and if it
is, it is characterized by its eigenvalue.

4. Expectation values. Every state |u〉 gives a set of expectation values{〈u|Oi|u〉/〈u|u〉
}

for any set of operators {Oi} in its Hilbert space.
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It seems reasonable to define state equivalence for a given quantum
system and a given set of operators in its Hilbert state space as indis-
tinguishability with respect to all four properties.

The search for all symmetry operators for the equivalence relation
of indistinguishability with respect to (1) transition amplitudes and (2)
norm is essentially reducible to the search for all operators preserving
scalar products up to complex conjugation. And the standard result is
the group of all unitary and antiunitary operators in the Hilbert state
space of the system [53].

As a reminder, unitary operators are linear operators U that obey

〈u|U †U |v〉 = 〈u|v〉 ,

for all states |u〉, |v〉, where the dagger denotes Hermitian conjugation.
Antiunitary (or unitary antilinear) operators are invertible antilinear
operators A obeying

〈u|A†A|v〉 = 〈v|u〉 = 〈u|v〉 ,

for all states |u〉, |v〉, where the bar denotes complex conjugation.
Now, consider property 3. Equivalent states, in addition to their

being related by unitary or antiunitary operators, are also required to
be either all eigenstates or all not eigenstates of each operator Oi of
a given set {Oi}, and if they are all eigenstates, they must have the
same eigenvalue. The first part of the requirement leaves as symme-
try operators only those unitary and antiunitary operators commuting
with the set {Oi}. The second part in general rejects the antiunitary
operators among those, since, while eigenstates related by unitary op-
erators indeed have the same eigenvalue of an operator commuting
with the unitary operators, a pair of eigenstates related by an antiu-
nitary operator commuting with the operator of which they are eigen-
states have eigenvalues that form a complex-conjugate pair. However, if
the set of operators {Oi} consists solely of Hermitian operators, which
indeed is the usual case, with Hermitian operators representing mea-
surable physical quantities, the antiunitary operators are not rejected.
In that case a pair of eigenstates related by an antiunitary operator
commuting with the Hermitian operator of which they are eigenstates
have the same eigenvalue, since the eigenvalues of Hermitian operators
are real. A very important Hermitian operator that is almost always
included in the set {Oi} is the Hamiltonian operator (William Rowan
Hamilton, British mathematician, 1805–1865), which represents the
energy of the system and generates the system’s evolution.
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That also takes care of property 4. States that are related by uni-
tary operators commuting with a given set of operators {Oi} give equal
sets of expectation values. A pair of states related by an antiunitary
operator commuting with the set give complex-conjugate sets of ex-
pectation values. But if {Oi} is a set of Hermitian operators, they will
give equal sets of (real) expectation values.

In summary, then, for a given quantum system and a given set
of operators in its Hilbert space of states, the symmetry group for
equivalence with respect to (1) transition amplitudes, (2) norm, (3)
eigenheit, and (4) expectation values is the group of all unitary oper-
ators in the Hilbert space commuting with the given set of operators.
If the given set consists solely of Hermitian operators, the symmetry
group is the group of all unitary and antiunitary operators commuting
with the set. (But if it is desired to preserve scalar products strictly,
not just up to complex conjugation, then the antiunitary operators are
excluded whether the operators of the given set are Hermitian or not.)

10.9 Summary

In this chapter we developed a general symmetry formalism needed
for the application of symmetry considerations in science, especially
quantitative applications. In Sect. 10.1 we introduced these very gen-
eral concepts: system, which is whatever we investigate the properties
of; subsystem, a system wholly subsumed within a system; state of
a system, a possible condition of the system; and state space of a sys-
tem, which is the set of all states of the same kind. The concept of
transformation, a mapping of a state space of a system into itself, was
presented in Sect. 10.2. We saw that the set of all invertible transforma-
tions of a state space of a system forms a group, called a transformation
group of the system.

Section 10.3 was a compilation of a number of transformations in
space, in time, and in space-time. The spatial transformations pre-
sented were: displacement, rotation, plane reflection, line inversion,
point inversion, glide, screw, dilation, plane projection, and line pro-
jection. The temporal transformations were displacement, inversion,
and dilation. And the spatiotemporal transformations we saw were
the Lorentz and Galilei transformations.

In Sect. 10.4 we considered the possibility of an equivalence rela-
tion for a state space of a system. Such a relation decomposes a state
space into equivalence subspaces. That led in Sect. 10.5 to the idea of
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a symmetry transformation, which is any transformation that maps ev-
ery state to an image state that is equivalent to the object state, i.e.,
any transformation that preserves equivalence subspaces. The set of
all invertible symmetry transformations of a state space for an equiv-
alence relation forms the symmetry group of the state space for the
equivalence relation, and is a subgroup of the transformation group.

We brought approximate symmetry into the symmetry formalism in
Sect. 10.6, where we made precise the notion of approximate symmetry
transformation by means of a metric in the state space of a system,
and we saw properties of metrics. Quantification of symmetry was
discussed in Sect. 10.7, where we found that the order of a (finite-order)
symmetry group, or any monotonically increasing function thereof, can
reasonably serve as the degree of symmetry of a system possessing that
symmetry group.

Our discussion of state equivalence for quantum systems in Sect. 10.8
led to the result that for a given quantum system and a given set of op-
erators in its Hilbert space of states, the symmetry group is the group
of all unitary operators commuting with the given set. If the given
set consists solely of Hermitian operators, the symmetry group is the
group of all unitary and antiunitary operators commuting with the set.
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Symmetry in Processes

In Sect. 2.5 we discussed the reduction of the natural evolution of quasi-
isolated systems into initial state and evolution. Then, in Sects. 3.1 and
3.2, we considered symmetry of evolution and of states. In the present
chapter we will elaborate on those ideas and incorporate them into the
framework of the symmetry formalism that we developed in Chap. 10.

We will start with a discussion of symmetry of evolution, also known
as symmetry of the laws of nature. That will include an analysis of time
reversal symmetry. Then we will consider symmetry of initial and final
states of processes, leading to the equivalence and symmetry princi-
ples for natural processes in quasi-isolated systems and to the general
and special symmetry evolution principles for such systems. The latter
two principles are both concerned with the nondecrease of degree of
symmetry during the evolution of quasi-isolated systems. We will ob-
tain an explanation for the empirical observation that macrostates of
stable equilibrium of a physical system are often especially symmetric.
Symmetry and entropy will be shown to be related to each other.

11.1 Symmetry of the Laws of Nature

Laws of nature, or laws of evolution, are what in Sect. 4.1 we called
causal relations in systems. But in the present context the term ‘sys-
tem’, which in Chaps. 4 and 10 was intentionally left very vague and
general, refers specifically to natural processes of quasi-isolated sys-
tems. The whole evolution process is the ‘system’. Initial and final
states of the process are ‘parts’ of that system, are subsystems of it.
In fact, for lawful behavior of quasi-isolated systems the initial state
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is the ‘cause subsystem’ and the final state the ‘effect subsystem’, as
was explained in Sects. 2.5, 3.1, and 4.1.

Please note well and beware of the two senses in which the term
‘system’ is being used here! One sense is that of a physical system,
which can be described in terms of initial and final states and natural
evolution from the former to the latter. The other sense is ‘what-
ever we investigate the properties of’, according to the presentation of
Sect. 10.1. And here we are investigating the properties of the evolu-
tion processes of quasi-isolated systems (in the former sense), where
those processes involve initial states evolving into final states. So in
the latter sense of the term ‘system’, the initial state, the final state,
and the evolution are all parts of the system that is the process.

Yes, it is the dynamic process, the temporal evolution of the physi-
cal system, that is taken as the ‘system’, while the state of the physical
system at any initial time is the ‘cause subsystem’ and the state at any
final time is the ‘effect subsystem’. The laws of nature, or laws of evo-
lution, are the causal relation between cause and effect subsystems in
such cases, the causal relation between initial and final states of physi-
cal processes. Equivalently, and in more familiar language, the laws of
nature can be viewed as the natural temporal development of physical
systems from initial states to final states [54,55].

It must be emphasized that we are considering only quasi-isolated
physical systems, where by ‘quasi-isolated’ we mean that there ex-
ists minimal interaction with the rest of the world, that the physical
systems evolve, to the extent possible, under internal influences only.
That is implied by the existence of causal relation, cause subsystem,
and effect subsystem, with initial states leading to unique final states.

Earlier in this book and possibly from other sources as well, you
have read and heard of various symmetries and approximate sym-
metries that are ascribed to the laws of nature. They include such
as special relativistic symmetry, SU(3) symmetry, charge symmetry,
particle-antiparticle conjugation (C) symmetry, space inversion (P )
symmetry, time reversal (T ) symmetry, CP symmetry, and CPT sym-
metry. There are two points of view about the meaning of symmetry
of the laws of nature:

1. A scientist (with a laboratory) investigates nature and discovers
laws. Another scientist (with her laboratory), related to the first by
some transformation, also investigates nature and discovers laws. If
these laws are the same as those discovered by the first scientist (or
if a certain subset of these is the same as a certain subset of those),
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and if, moreover, that is true for all pairs of scientists related by
the transformation, then the transformation is a symmetry trans-
formation of the laws of nature (or of a certain subset of them).
This is called the passive point of view.

2. If among all processes that can be conceived as occurring naturally
(or a certain subset of them) any pair related by a certain transfor-
mation are either both allowed or both forbidden by nature (or, in
quantum phenomena, both have the same probability), then that
transformation is a symmetry transformation of the laws of nature
(or of a certain subset of them). This is called the active point of
view.

For example, the symmetry of the special theory of relativity can be
expressed passively: (1) All pairs of scientists with arbitrary spatiotem-
poral separation, arbitrary relative orientation, and arbitrary constant
rectilinear relative velocity discover the same laws of nature, including
the speed of light. Or it can be put actively: (2) Among all processes
that can be conceived as occurring naturally, including the propagation
of a light signal over a certain distance during a certain time interval,
any two that are identical except for arbitrary spatiotemporal separa-
tion, arbitrary relative orientation, and arbitrary constant rectilinear
relative velocity are either both allowed or both forbidden by nature
(or have the same probability).

Another example: CP symmetry, which seems to be valid in all of
nature except for a certain class of weak interactions among elementary
particles, can be formulated passively: (1) All pairs of scientists who
are particle-antiparticle conjugates and space-inversion images of each
other discover the same laws of nature (with certain exceptions). The
transformation involved here is converting a scientist into an antiscien-
tist, i.e., replacing all the protons, neutrons, and electrons composing
the scientist and his laboratory with antiprotons, antineutrons, and
positrons, respectively, and then point inverting the antiscientist (or
first invert and then conjugate; the results are the same). Since anti-
scientists are not at present physically realizable (at least not in the
sense just defined), the passive point of view seems absurd. So one
might prefer the active one: (2) Among all processes that can be con-
ceived as occurring naturally (with certain exceptions), any two that
are identical except for particle-antiparticle conjugation and space in-
version are either both allowed or both forbidden by nature (or have
the same probability).
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The two points of view are called passive and active, respectively,
because of the nature of the transformations under which the laws of
nature are symmetric. A transformation is called passive if it does not
change the world but changes the way the world is observed, i.e., it
changes the reference frame. For a spatial transformation, for example,
that would be a change of coordinate system. A transformation is
called active if it does not change the observer but changes the rest of
the world. The same reference frame is used for a changed world. In
the spatial case the locations of objects and events would be changed
with respect to a fixed coordinate system. Refer also to our discussion
of passive and active transformations in Sect. 3.3.

I prefer the active (second) point of view for considering symme-
try of the laws of nature. The main reason is that, as we saw in the
example concerning CP symmetry, transformed reference frames (ob-
servers) are not always physically realizable. From the active point of
view, a symmetry transformation of the laws of nature can be con-
cisely defined, just as in Sect. 3.1, as a transformation for which the
transformed result of an experiment is the same as the result of the
transformed experiment for all experiments (or for some subset of ex-
periments, in which case we have a symmetry transformation of a sub-
set of the laws of nature).

I will now present a precise, diagrammatic formulation of symmetry
of the laws of nature. It is the expression, in the symmetry formalism
we are developing, of the qualitative formulation presented in Sect. 3.1.
The laws of nature, or laws of evolution, are expressed by a transforma-
tion, denoted N (for ‘nature’), of the state space of every quasi-isolated
physical system into itself, a mapping giving as the image of any state
the final state evolving naturally from the object state as initial state
and thus exhibiting the causal relation between initial and final states
(see Fig. 11.1). Since not all states are necessarily obtainable as fi-
nal states, there may exist states that do not serve as images in this
mapping. How then, you might well ask, are such states obtained to
serve as initial states of processes of natural evolution? They are set up
by tampering with the system. They are the final states of processes
during which the system is not quasi-isolated .

So, if u denotes the initial state of any physical system, N(u) is the
final state that is the result of the evolution of the system from initial
state u. We can also use the notation

u
N−→ N(u)
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Fig. 11.1. Laws of evolution for a quasi-isolated physical system are a map-
ping of the system’s state space into itself, where the image of any state is
the final state evolving from the object state as initial state

to make the transformation graphically look more like a process. The
discrete, initial −→ final model of evolution will best serve the pur-
poses of our discussion. Continuous evolution is obtained in the limit
of infinite reiteration of infinitesimal discrete steps.

Let Θ denote any transformation of every physical system, such as
rotation, spatial displacement, reflection, or particle-antiparticle con-
jugation. The image of state u of any physical system is state Θ(u) of
the same system, or

u
Θ−→ Θ(u) ,

although we are not indicating a process this time.
The process

u
N−→ N(u)

is (or could be) the running of an experiment, where u denotes the
initial experimental setup and N(u) denotes the result. Transforming
the experimental result N(u) by Θ gives the image state ΘN(u), or

N(u) Θ−→ ΘN(u) .
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Now, consider the transformed experiment, the image of the above
experiment under transformation Θ. Its initial setup is obtained by
transforming state u to state Θ(u), or

u
Θ−→ Θ(u) .

Starting from initial state Θ(u), the transformed experiment takes
place, proceeding according to the laws of nature, and yields the result
NΘ(u), or

Θ(u) N−→ NΘ(u) .

Combining those results, our definition of symmetry transformation of
the laws of nature, a transformation Θ for which for all experiments
the transformed result is the same as the result of the transformed
experiment (see Sect. 3.1) now becomes

ΘN(u) = NΘ(u) ,

for all states u, or diagrammatically as in Fig. 11.2. Since that holds
for all states u, we have the formal, mathematical definition of a sym-
metry transformation of the laws of nature: The transformation un-
der consideration commutes with the evolution transformation (see
Sect. 10.2),

ΘN = NΘ .

Fig. 11.2. A symmetry transformation of the laws of nature is any transfor-
mation Θ for which the diagram is valid for all states u. N is the evolution
transformation
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(For a symmetry transformation of a subset of the laws of nature,
things must be formulated accordingly in terms of all states u belong-
ing to a certain subspace of state space.)

The fundamental point underlying those definitions and formula-
tions, as discussed in Sect. 3.1, is this: Symmetry of the laws of nature
is indifference of the laws of nature. For a transformation to be a sym-
metry transformation of the laws of nature, the latter must ignore some
aspect of physical states, and the transformation must affect that as-
pect only. A pair of initial states related by such a transformation
are treated impartially by the laws of nature, so that they evolve into
a pair of final states that are related by precisely the same transfor-
mation. The laws of nature are blind to the difference between the two
states, which is then preserved during evolution and re-emerges as the
difference between the two final states.

As an example, consider spatial-displacement symmetry of the laws
of nature, meaning that the laws of nature are the same everywhere.
If we perform two experiments that are the same except for one being
here and the other being there, they will yield outcomes that are the
same except for one being here and the other there, respectively. And
that is found to be valid for all experiments and for all heres and
theres. For a picture see Fig. 11.3.

Those insensitivities of the natural evolution of quasi-isolated sys-
tems remind us of the ‘impotences’ of scientific laws, discussed in
Sect. 4.3. Indeed, since laws are expressions of nature’s order, all sym-

Fig. 11.3. Spatial-displacement symmetry of the laws of nature. The diagram
is valid for all experiments and for all heres and theres
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metries of evolution must appear as impotences of laws, if the laws
are to express nature’s order faithfully. Any subset of natural evo-
lution processes will possess the symmetry of the full set and might
have additional symmetry. Partial laws, those laws that are concerned
with only part of the phenomena of nature, might accordingly possess
additional impotences.

For example, since natural evolution is symmetric under spatial
displacements, no scientific law may accept absolute position as in-
put. For examples of partial theories, the gas laws are concerned with
macroscopic states of gases, and Kirchhoff’s rules are concerned with
electric currents. In the former case, although the laws of nature do
have something to say about which gas molecules go where and when,
the gas laws ignore microscopic aspects of the gas. In the latter case, al-
though the laws of nature do apply to the motion of each of the moving
electrons that form the electric current, Kirchhoff’s rules ignore such
details.

The set of invertible symmetry transformations of the laws of na-
ture, i.e., the set of all invertible transformations commuting with the
evolution transformation, is easily shown to form a group. We call that
group the symmetry group of the laws of nature.

Another possible symmetry of the laws of nature, very different
in kind from the others, is temporal-inversion, or time reversal, sym-
metry, also called reversibility. The time reversal transformation acts
on a process by replacing each state with its time reversal image and
reversing the temporal order of events. A moving picture shown in
reverse is a good model of time reversal. The time reversal image of
a state depends on the type of state involved. For classical mechanics
it is obtained merely by reversing the senses of all velocity vectors.
The question then is whether the image process, leading from the time
reversed final state to the time reversed initial state, is the process that
would evolve naturally from the time reversed final state. If that is so
for all processes, the laws of evolution possess time reversal symmetry,
or are reversible. That is illustrated in Fig. 11.4.

In symbols, the object process is

u
N−→ N(u) .

The time reversal image of the final state N(u) is TN(u),

N(u) T−→ TN(u) ,
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Fig. 11.4. Time reversal symmetry, or reversibility, of the laws of nature, if
the diagram is valid for all experiments

where T denotes the time reversal transformation. The natural evolu-
tion from state TN(u) is

TN(u) N−→ NTN(u) .

And if the final state of this process is the time reversal image of the
initial state of the object process, i.e., if

NTN(u) = T (u) ,

for all states u, we have time reversal symmetry, the definition of which
is then

NTN = T .

Note how this differs from the definition, derived previously, of a sym-
metry transformation of the usual kind Θ:

ΘN = NΘ .

At present, time reversal symmetry, or reversibility, seems to be valid
in nature for the laws of evolution of almost all microscopic systems.
(Microscopic systems containing neutral kaons form a notable excep-
tion.) On the other hand, that symmetry is invalid for almost all macro-
scopic systems. As a typical example, whereas gas flows spontaneously
from a higher-pressure region to one of lower pressure, gas is never
found to flow in the opposite direction spontaneously. Nor does a bro-
ken egg ever collect itself together and become whole again.
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Note that time reversal has nothing to do with processes ‘running
backwards in time’, and nothing we have said about time reversal or
time reversal symmetry of the laws of nature should be construed as
implying anything like a ‘backward flow of time’. All the evolutions we
are considering, even evolutions from the time reversed final state, are
natural evolutions. True, we often represent time by a coordinate axis
labeled t, and that is indeed very useful. However, it is then all too
tempting to spatialize time and imagine that everything is ‘moving’
along that axis in the positive t direction. So then why not ‘move’ in
the negative t direction? Well, that is just not the nature of time. But
we are going astray.

11.2 Symmetry of Initial and Final States,
the General Symmetry Evolution Principle

In the analysis of the behavior of quasi-isolated systems into initial
state and evolution, the laws of evolution, or laws of nature, do not
exhaust all of what is going on. The laws of nature do indeed determine
how any process, once started, will evolve and what its outcome will be.
But it is the initial state, the situation at any given single instant, that
determines just which process is to take place. And, with an important
exception discussed in Sect. 7.1, the laws of nature do not determine
initial states. Or perhaps we might say that initial states are whatever
nature allows us to have control over, at least in principle, or perhaps
even better, whatever nature prefers not to be bothered with.

For an example in classical mechanics, consider a set of bodies in-
teracting only with each other. The laws of evolution are Newton’s
laws of motion and the forces among the bodies. We may arbitrarily
specify the positions, velocities, orientations, and angular velocities of
all the bodies at a given time, but no more than that. So those specify
initial states.

Since the laws of nature are beyond our control, the initial state
uniquely determines for us the process and its outcome – the final state
of the quasi-isolated system. Thus, as described in Sect. 11.1, initial
state and outcome are in causal relation. Taking the whole process as
our ‘system’, the initial state and the final state are cause and effect
subsystems, respectively.

I again emphasize that we are considering only quasi-isolated phys-
ical systems, in which initial states do indeed uniquely determine the
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outcomes of processes, in which there is a minimum of outside influ-
ences messing things up.

Refer back to Sects. 3.2 and 4.3. Symmetry of the laws of nature
(time reversal symmetry excluded) determines an equivalence relation
in the state space of a system: A pair of states is equivalent if and only
if they are indistinguishable by the laws of nature, i.e., if and only if
some symmetry transformation of the laws of nature carries one into
the other. Thus, the symmetry group of the laws of nature determines
a decomposition of state space into equivalence subspaces, the physical
significance of which is that the members of each equivalence subspace
are all those states, and only those, that are indistinguishable by the
laws of nature. Then, following reasoning similar to that in Sect. 4.3, we
obtain the equivalence principle for processes in quasi-isolated systems
(see Fig. 11.5):

Equivalent states, as initial states, must evolve into equivalent
states, as final states, while inequivalent states may evolve into
equivalent states.

That principle is valid and useful for natural evolution processes, for
any subset of them, for universal scientific laws, or for partial laws.

For an example of the equivalence principle for processes, since the
laws of nature possess spatial-displacement symmetry, initial states
that differ only in position evolve into final states that differ only in
position.

Or, all known laws of nature are symmetric under interchange of
elementary particles of the same species, so such particles are, as far
as we know, inherently indistinguishable. Two initial states differing
only in the interchange of, say, two electrons cannot, by any known
process, lead to distinguishable final states.

Or, certain laws of nature might apply to macroscopic states of
a system and be indifferent to microstates, as long as the latter corre-
spond to the same macrostate. Then two different initial microstates
corresponding to the same initial macrostate will evolve into final mi-
crostates corresponding to the same macrostate. Among those are the
gas laws. Kirchhoff’s rules care nothing about the composition and
structure of resistors and emf (voltage) sources, as long as they have
the resistance and emf they are supposed to have. Newton’s laws are
obviously indifferent to many aspects of the states to which they apply,
such as odor, color, etc.
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Fig. 11.5. Decomposition of the state space of a quasi-isolated physical
system into equivalence subspaces determined by the symmetry group of the
laws of nature. According to the equivalence principle, equivalent states must
evolve into equivalent states, while inequivalent states may also do so

Let us call the state space equivalence relation defined by the sym-
metry group of the laws of nature ‘initial equivalence’ for convenience.
That really is for convenience in the following discussion, and is not just
to use two words where one will do. We now define another, possibly
different, equivalence relation, which we call ‘final equivalence’, as fol-
lows. A pair of states is final-equivalent if and only if the pair of states
evolving from them is initial-equivalent, i.e., is equivalent with respect
to the laws of nature. Initial equivalence implies final equivalence, by
the equivalence principle for processes, since initial-equivalent states
must evolve into initial-equivalent states and are thus final-equivalent.
However, states that are not initial-equivalent may also evolve into
initial-equivalent states and thus be final-equivalent. So, according to
the equivalence principle for processes, in the decomposition of the
state space of a physical system into final-equivalence subspaces, each
final-equivalence subspace consists of one or more initial-equivalence
subspaces in their entirety (see Fig. 11.6).
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Fig. 11.6. Decomposition of the state space of a quasi-isolated physical
system into initial-equivalence subspaces and into final-equivalence subspaces
for the example of Fig. 11.5. Each final-equivalence subspace consists of one
or more initial-equivalence subspaces

When considering symmetry in processes, the process is the ‘sys-
tem’ in the general sense of the symmetry and equivalence principles,
and the set of all possible processes of a physical system is the ‘state
space’ in the same general sense. Transformations of that ‘state space’
act on processes. However, as we have seen, the set of all possible pro-
cesses stands in one-to-one correspondence with the set of states of the
physical system, since every state, as initial state, initiates a unique
process, and every process starts with some initial state. So, to keep
things as uncomplicated as possible (relatively speaking, of course), we
apply our transformations to the physical system’s state space rather
than to process space. As we transform the states about, we keep in
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mind that each one drags around with it the process that it initiates,
just like mice running around in a cage, each carrying its tail.

Then since, as we saw above, initial states are the cause subsystem
and final states the effect subsystem for processes in quasi-isolated
physical systems, we have that the symmetry group of the cause (see
Sect. 4.4) is the group of all invertible transformations of state space
that preserve initial-equivalence subspaces. And the symmetry group
of the effect is the group of all invertible transformations preserving
final-equivalence subspaces. And since, as follows from the discussion
two paragraphs above, any transformation that preserves initial equiv-
alence must also preserve final equivalence, we have the result:

The ‘initial’ symmetry group (that of the cause) is a subgroup
of the ‘final’ symmetry group (that of the effect).

This is the symmetry principle for processes in quasi-isolated systems.
And in this sense we can say (see Sect. 10.7 concerning degree of sym-
metry):

For a quasi-isolated physical system the degree of symmetry can-
not decrease as the system evolves, but either remains constant
or increases.

We call that result the general symmetry evolution principle. The ad-
jective ‘general’ is included in the name of the principle, because the
principle is derived from very fundamental considerations with no ad-
ditional assumptions. Thus, it is indeed general, so general, in fact,
as to make it rather useless, as we will see and remedy in Sect. 11.3.
Our motive for deriving it was theoretical, not utilitarian. We should
see where our fundamental considerations lead us when applied to the
evolution of quasi-isolated physical systems.

11.3 The Special Symmetry Evolution Principle
and Entropy

Here is the reason the general symmetry evolution principle, although
perfectly valid, is not very useful. When we consider the evolution of
a quasi-isolated physical system, we normally consider the sequence
of states it passes through and their symmetry and are usually not
interested in the entire state space of the system, in terms of whose
transformations the ‘initial’ and ‘final’ symmetry groups are defined
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in Sect. 11.2. The symmetry group of a single state is the group of all
invertible transformations of the physical system that carry the state
into equivalent states, where equivalence is with respect to the laws
of evolution, the laws of nature. Thus, the symmetry group of a state
is just the group of permutations of all members of the equivalence
subspace in state space to which the state belongs (where we general-
ize suitably for equivalence subspaces with discretely or continuously
infinite populations, or, to use the terms presented in Sect. 8.1, of de-
numerably or nondenumerably infinite orders). Let us recall that by
‘equivalence subspace in state space’ we mean the equivalence class of
states that are indistinguishable by the laws of nature, as explained in
Sect. 11.2.

If the equivalence subspace contains n states, the state’s symme-
try group is the symmetric group of degree n, Sn, whose order is n!
(see Sect. 9.7). So, referring to the discussion in Sect. 10.7, the de-
gree of symmetry of a state can be measured by the population of its
equivalence subspace: The more states that are equivalent to it, the
higher the order of its symmetry group, and the higher its degree of
symmetry.

What can be stated about the degrees of symmetry of the sequence
of states through which a quasi-isolated system evolves? Or equiv-
alently, what do we know about the populations of the sequence of
equivalence subspaces to which those states belong? In spite of the
general symmetry evolution principle, we know nothing about that in
general. We can, however, obtain a result by making the assumption
of nonconvergent evolution: Different states always evolve into differ-
ent states. Then the population of the equivalence subspace of a final
state is at least equal to that of the initial state that evolved into
the final state. That is because, by the equivalence principle, all mem-
bers of the initial state’s equivalence subspace evolve into members
of the final state’s equivalence subspace, and, by the nonconvergence
assumption, the number of the latter equals the number of the former.
Moreover, additional states, inequivalent to the initial state, may also
evolve into members of the final state’s equivalence subspace (conver-
gence of equivalence subspaces), and these members will all be distinct
from those we just counted. Thus:

As a quasi-isolated system evolves, the populations of the equiv-
alence subspaces (equivalence classes) of the sequence of states
through which it passes cannot decrease, but either remain con-
stant or increase.
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Or, equivalently [56]:

The degree of symmetry of the state of a quasi-isolated system
cannot decrease during evolution, but either remains constant
or increases.

We call that result the special symmetry evolution principle (illustrated
in Fig. 11.7). To compare the special and general symmetry evolution
principles, both derive from the equivalence principle for processes,
while the special principle involves the additional assumption of non-
convergent evolution.

The symmetry group of the final state, the group of permutations of
all members of its equivalence subspace, clearly includes as a subgroup
the symmetry group of the initial state, the group of permutations of
all members of its equivalence subspace (all groups being considered
abstractly). Actually it includes as a subgroup the symmetry group of
every state evolving into a state equivalent to the final state. Further-

Fig. 11.7. The special symmetry evolution principle. The population, mea-
suring the degree of symmetry, of the final equivalence subspace at least
equals that of the initial equivalence subspace. That follows from the equiv-
alence principle and the assumption of nonconvergent evolution. The solid
arrow indicates the actual process being considered, while dashed arrows in-
dicate other possible processes
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more, it even includes as a subgroup the direct product (see Sect. 9.6)
of the symmetry groups of all the distinct equivalence subspaces of
states evolving into states equivalent to the final state (or, we could
say, of all distinct equivalence subspaces converging to the final equiv-
alence subspace).

Those statements follow from a property of permutations and sym-
metric groups that is easily verified, although we will not verify it here.
Let the populations of the distinct equivalence subspaces that converge
to the final equivalence subspace be n1, n2, . . . . Then the population
of the final equivalence subspace is n1 + n2 + · · · = n. Recall that the
group of permutations of m objects is the symmetric group Sm (see
Sect. 9.7). The statements in the preceding paragraph then all follow
from this relation for symmetric groups:

Sn ⊃ Sn1 × Sn2 × . . . ⊃ Sni .

The assumption of nonconvergent evolution (of states, not of equiva-
lence subspaces) seems to be valid in nature for microscopic processes,
at least as far as we now know. However, it is not valid for macroscopic
processes. That is just fine, since the essence of the macroscopic char-
acter of a macrostate is that a macrostate is an equivalence subspace
of microstates in microstate space, and such equivalence subspaces are
just what we are dealing with here. They are allowed to converge and
in the real world very often do.

Evolution with constant degree of symmetry is typical of microscop-
ically considered systems, systems about which sufficient information
is available so that they need not be treated by statistical methods.
The mechanism of evolution with constant degree of symmetry is, as
we have seen, nonconvergence of equivalence subspaces. Reversibility,
or time reversal symmetry, of the laws of evolution implies evolution
with constant degree of symmetry. That is easily seen: If the degree of
symmetry increased during a process, the time reversed process would
take place with decreasing degree of symmetry, which is forbidden by
the special symmetry evolution principle. Thus, evolution with con-
stant degree of symmetry is a necessary (but not sufficient) condition
for reversibility.

As an example of evolution with constant degree of symmetry, con-
sider a system consisting of a few nucleons and pions about which
sufficient information is available. The symmetry transformations of
the laws of evolution, which define state equivalence, are for this ex-
ample spatial and temporal displacements, rotations, velocity boosts,
particle-antiparticle conjugation, spatial (point or plane) reflection,
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and others. The evolution is reversible, since its laws of evolution are
time reversal symmetric. Thus, the system evolves with constant de-
gree of symmetry. As it evolves, the populations of the equivalence sub-
spaces of the sequence of states constituting the process are all equal.

Evolution with increasing degree of symmetry is typical of macro-
scopically considered systems, systems about which insufficient infor-
mation is available, so they must be treated by statistical methods [57].
From the special symmetry evolution principle it follows immediately
that evolution with increasing degree of symmetry implies irreversibil-
ity, or time reversal asymmetry, of the laws of evolution. The mecha-
nism of evolution with increasing degree of symmetry is convergence
of equivalence subspaces, i.e., convergent evolution of macrostates (see
Fig. 11.8).

An example of evolution with increasing degree of symmetry is
a confined, quasi-isolated gas considered macroscopically. Let the gas
initially occupy some part of the container and have volume Vi and
temperature Ti. The final macrostate is a homogeneous distribution of
gas in the whole container with volume Vf and temperature Tf . All ini-
tial macrostates with the same Vi and Ti, but with different parts of the
container occupied, lead to the same final macrostate. And there are
also initial macrostates with different initial volumes and temperatures
that lead to the same final macrostate as well. The macroscopic laws of

Fig. 11.8. Convergent evolution of macrostates, which are equivalence sub-
spaces of microstates. Circles denote microstates, ellipses denote macrostates.
Dashed arrows represent nonconvergent evolution of microstates, solid arrows
show convergent evolution of macrostates



11.3 The Special Symmetry Evolution Principle and Entropy 279

evolution are blind to the differences among microstates corresponding
to the same macrostate. Thus, each macrostate is an equivalence sub-
space of microstate space. In microscopic terms there is convergence
of equivalence subspaces during evolution. Not only do equivalent ini-
tial microstates – corresponding to the same Vi and Ti and the same
occupied part of the container – lead to equivalent final microstates,
but there are also inequivalent initial microstates – corresponding to
the same Vi and Ti but different parts of the container, or to different
Vi and Ti – that lead to equivalent final microstates. Since microstates
do not converge during evolution, the population of the final equiva-
lence subspace, which is the number of microstates corresponding to
the final macrostate, is larger – actually very much larger – than the
population of the initial equivalence subspace.

The final macrostate in this example is a state of stable equilibrium
of the system. As such, it is the outcome of evolution from a very
large number of initial macrostates. By the special symmetry evolution
principle, its symmetry group, which is the group of permutations of
all microstates corresponding to it, must include as a subgroup the
direct product of the symmetry groups of all those initial macrostates,
as we observed above, and must therefore be of relatively high order.
In other words:

The degree of symmetry of a macrostate of stable equilibrium
must be relatively high.

That is a general theorem, independent of the example in the context
of which it was derived. Although the symmetry is with respect to per-
mutations of equivalent microstates, it can have macroscopic manifes-
tations. In the example the final state is homogeneous, i.e., symmetric
under all permutations of subvolumes of the gas. The theorem is in
accord with observation [58].

But what about those systems that insist on evolving toward re-
duced symmetry in spite of our theoretical arguments? For example,
the solar system is thought to have evolved from a state of axial sym-
metry (symmetry under all rotations about its axis) and reflection
symmetry (through the plane through its center and perpendicular to
its axis) to the present, less symmetric state of only approximate re-
flection symmetry. And the evolutionary development of plants and
animals seems to be toward a reduction of symmetry. The answer is
that those systems do not fulfill the conditions of our argument. They
are either only approximately symmetric – while our argument is based
on exact symmetry – or not isolated – thus possibly subject to external
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influences, which we exclude – or both and are not stable against such
perturbations. Since no symmetry of a macroscopic physical system is
exact and no physical system is absolutely isolated, both conditions be-
ing convenient and often useful idealizations, the crucial point is that of
stability. A sufficiently stable system will behave as we described, will
evolve with nondecreasing symmetry, and, if macroscopic, will possess
relatively highly symmetric states of stable equilibrium (see Sect. 6.2).

Under the correspondence

degree of symmetry ←→ entropy ,

the special symmetry evolution principle and the second law of ther-
modynamics are isomorphic. Both are concerned with the evolution of
quasi-isolated systems and both state that a quantity, a function of
macrostate, cannot decrease during evolution. So, following good sci-
ence practice, we assume that a fundamental relation exists between
entropy and degree of symmetry and look for a functional relation giv-
ing the value of one as a strictly monotonically increasing function of
the other. Such a relation is already known, however, from the statis-
tical definition of entropy,

S = k log W ,

where k denotes the Boltzmann constant and W is the number of mi-
crostates (the population of the equivalence subspace of microstate
space) corresponding to the macrostate for which the value of the
entropy S is thus defined. The definition holds for the case of noncon-
vergence of microstates during evolution. As mentioned above, W can
be used to measure the degree of symmetry of the macrostate, and the
function k log W is indeed a strictly monotonically increasing function
of W [59, 60].

Thus entropy and degree of symmetry for quasi-isolated systems ei-
ther remain constant together or increase together, with a concomitant
constancy or decrease in the degree of order for the system. Note that
disorder stands in positive correlation with symmetry. Total disorder
is maximal symmetry. Organization implies and is implied by reduc-
tion of degree of symmetry. The hypothetical ‘heat death’ or ‘entropy
death’ of the Universe can also be called its ‘symmetry death’.

11.4 Summary

Taking the active view of transformations in Sect. 11.1, we formal-
ized the notion of symmetry of the laws of nature, or symmetry of
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evolution. A symmetry transformation of the laws of nature is a trans-
formation that commutes with the evolution transformation. We saw
that the fundamental point underlying the formalism is that symmetry
of evolution is an indifference of nature, whereby the laws of nature
ignore some aspect of states of physical systems. We also considered
the meaning of a time reversed process and time reversal symmetry of
the laws of nature.

In Sect. 11.2 we saw that symmetry of the laws of nature deter-
mines an equivalence relation in a state space of a system, the equiva-
lence of states that are indistinguishable by the laws of nature. Apply-
ing the equivalence principle, developed in Sect. 4.3, we obtained the
equivalence principle for processes in quasi-isolated systems: Equiva-
lent states, as initial states, must evolve into equivalent states, as fi-
nal states, while inequivalent states may evolve into equivalent states.
That led to the symmetry principle for processes in quasi-isolated sys-
tems: The ‘initial’ symmetry group (that of the cause) is a subgroup
of the ‘final’ symmetry group (that of the effect). And that in turn
led to the general symmetry evolution principle: For a quasi-isolated
physical system the degree of symmetry cannot decrease as the system
evolves, but either remains constant or increases. The latter principle
is too general to be of much use.

So rather than consider the symmetry group of all of state space, in
Sect. 11.3 we looked at the symmetry group of only a single state, the
group of permutations of the equivalence subspace (equivalence class in
state space) to which it belongs. With the assumption of nonconvergent
evolution, that led to the special symmetry evolution principle: The
degree of symmetry of the state of a quasi-isolated system cannot
decrease during evolution, but either remains constant or increases.
Or equivalently: As a quasi-isolated system evolves, the populations of
the equivalence subspaces of the sequence of states through which it
passes cannot decrease, but either remain constant or increase.

For systems, such as a gas, that possess nonconvergent evolution
of microstates and convergent evolution of macrostates to macrostates
of stable equilibrium, the special symmetry evolution principle gave
the theorem that the degree of symmetry of a macrostate of stable
equilibrium must be relatively high.

The special symmetry evolution principle and the second law of
thermodynamics are very similar. That suggested a functional relation
between entropy and degree of symmetry, which in fact is already
known.
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Summary of Principles

Here is a summary of the principles of symmetry that are derived in
this book.

12.1 Symmetry and Asymmetry

Symmetry is immunity to a possible change.

So symmetry involves these two essential components:

1. Possibility of a change. It must be possible to perform a change,
although the change does not actually have to be performed.

2. Immunity . Some aspect of the situation would remain unchanged,
if the change were performed.

If these components are fulfilled, we have symmetry of the situation
under the change with respect to the aspect. If a change is possible but
some aspect of the situation is not immune to it, we have asymmetry
of the situation under the change with respect to that aspect. If there
is no possibility of a change, then the very concepts of symmetry and
asymmetry are inapplicable (see Sect. 1.1).

12.2 Symmetry Implies Asymmetry

Succinctly:

Symmetry implies asymmetry.
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In more detail:

For there to be symmetry, there must concomitantly exist asym-
metry under the same change that is involved in the symmetry.

In much more detail:

Symmetry requires a reference frame, which is necessarily asym-
metric. The absence of a reference frame implies identity, hence
no possibility of change, and hence the inapplicability of the
concept of symmetry.

Graphically:

symmetry
↗
↘

possibility
of a change

immunity to
the change

−→ reference for
the change

−→ asymmetry
under the change

Conclusion (see Sect. 1.2):

For every symmetry there is an asymmetry tucked away some-
where in the Universe.

12.3 No Exact Symmetry of the Universe

Exact symmetry of the Universe as a whole is an empty concept.

Corollary:

For the Universe as a whole, undifferentiability of degrees of
freedom means their physical identity.

Paraphrase:

If it makes no difference to the Universe, then there is nothing
else for it to make a difference to.

This principle follows immediately from the conclusion of the principle
‘Symmetry implies asymmetry’, that for every symmetry there is an
asymmetry tucked away somewhere in the Universe, as applied to the
Universe as a whole (see Sect. 7.2).
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12.4 Cosmological Implications

From Sect. 7.3:

1. Cosmological schemes cannot involve perfect symmetry for the Uni-
verse as a whole.

2. Cosmological schemes cannot involve fundamentally undifferen-
tiable, yet still somehow different, degrees of freedom of the Uni-
verse.

3. Cosmological schemes with (discontinuous) phase transitions be-
tween eras cannot involve symmetry breaking.

4. High-energy physics cannot be expected to reflect precisely the
situation that prevailed during earlier cosmic eras that evolved into
the present era via (discontinuous) phase transitions, although it
might be indicative. Specifically, any symmetry emerging at high
energies cannot have been a feature of such earlier eras.

12.5 The Equivalence Principle

Roughly:

Equivalent causes – equivalent effects.

Precisely:

Equivalent states of a cause −→ equivalent states of its effect.

The principle is derived from the existence of causal relations in nature
and from the character of scientific laws as expressions of those causal
relations. The equivalence principle is fundamental to the application
of symmetry in science (see Sect. 4.3).

12.6 The Symmetry Principle

Roughly:

The effect is at least as symmetric as the cause.

Precisely:

The symmetry group of the cause is a subgroup of the symmetry
group of the effect.
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The symmetry principle, also known as Curie’s principle, is derived
directly from the equivalence principle and, of the two principles, is
the one that is most commonly used (see Sect. 4.4).

12.7 The Equivalence Principle for Processes

Equivalent states, as initial states, must evolve into equivalent
states, as final states, while inequivalent states may evolve into
equivalent states.

This principle is derived by applying the equivalence principle to
natural evolution processes of quasi-isolated physical systems (see
Sect. 11.2).

12.8 The Symmetry Principle for Processes

The ‘initial’ symmetry group (that of the cause) is a subgroup
of the ‘final’ symmetry group (that of the effect).

The symmetry principle for processes is derived from the equivalence
principle for processes and is essentially the application of the symme-
try principle to natural evolution processes of quasi-isolated physical
systems (see Sect. 11.2).

12.9 The General Symmetry Evolution Principle

For a quasi-isolated physical system the degree of symmetry can-
not decrease as the system evolves, but either remains constant
or increases.

This principle follows immediately from the symmetry principle for
processes. The general symmetry evolution principle has theoretical
significance, but is so general as to be quite useless (see Sect. 11.2).

12.10 The Special Symmetry Evolution Principle

Usually:

The degree of symmetry of the state of a quasi-isolated system
cannot decrease during evolution, but either remains constant
or increases.
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Equivalently:

As a quasi-isolated system evolves, the populations of the equiv-
alence subspaces (equivalence classes) of the sequence of states
through which it passes cannot decrease, but either remain con-
stant or increase.

This is the useful symmetry evolution principle. It is derived from the
equivalence principle for processes with the additional assumption of
nonconvergent evolution. This principle is closely related to the second
law of thermodynamics (see Sect. 11.3).
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56. P. Renaud: Sur une généralisation du principe de symétrie de Curie, C.
R. Acad. Sci. Paris 200, 531–534 (1935). English translation: J. Rosen, P.
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